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Abstract

In this thesis, I will investigate the properties of disordered materials under strain. Dis-

ordered materials encompass a large variety of materials, including glasses, polymers,

granular matter, dense colloids, and gels. There is currently no constitutive equation

based on microscopic observables that describes these materials. Given the prevalence

and usefulness of these materials, we derive tools to aid our understanding of them. We

develop a new method to isolate localized defects from extended vibrational modes in

disordered solids. This method augments particle interactions with an artificial potential

that acts as a high-pass filter: it preserves small-scale structures while pushing extended

vibrational modes to higher frequencies. The low-frequency modes that remain are “bare”

defects; they are exponentially localized without the quadrupolar tails associated with

elastic interactions. We demonstrate that these localized excitations are excellent predic-

tors of plastic rearrangements in the solid. We characterize several of the properties of

these defects that appear in mesoscopic theories of plasticity, including their distribution

of energy barriers, number density, and size, which is a first step in testing and revising

continuum models for plasticity in disordered solids.

We additionally study the properties of rearrangement types in 2D disordered packings

of particles with a harmonic potential at a range of packing fractions above jamming.

We develop a generalizable procedure that classifies events by stress drop, energy drop,

and reversibility under two protocols. Somewhat surprisingly, we find a large population

of contact change events that have no associated stress drop. Reversible events become

more common at high pressures above a packing fraction of φ = 0.865, at which point

line reversible events are more common than loop reversible events. At low pressures,

irreversible events are associated with spatially extended events, while at high pressures

reversible events are much more spatially localized.
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Chapter 1

Introduction

1.1 Scope

Many disordered systems, including granular systems, atomic and molecular glasses [4–

6], foams, emulsions, pastes [7], and even granular fault gouges in earthquake physics [8]

flow via local structural rearrangement. While the detailed interactions in these systems

differ, the fact that they all flow via localized rearrangements gives hope that a univer-

sal description exists. In disordered solids such as granular materials, foams, and dense

colloids, the mechanisms for flow and failure vary widely as a function of material prepa-

ration and the type of applied stress and remain poorly understood. On the macroscopic

scale, solids can weaken via a reduced elastic modulus [9] or fail via localized rearrange-

ments [10], sporadic large-scale avalanches [11–13], or continuously evolving extended

shear bands [14–17].

The response of disordered solids to applied shear is similar to and different than defor-

mation in crystals. In crystals, applying strain builds up stress, which is at first accom-

modated globally by a small, affine elastic change in the particle positions. As strain

continues to build, some particles will move past each other, in a rearrangement. These

rearrangements occur at lattice defects, which are the dislocations [18], easily identified

by looking at the bond-orientational order. Once enough stress has built up, a rearrange-

ment happens at a dislocation. Often whole rows of particles will participate in these

1



slip events. In fact, the types of rearrangements in crystals are well enumerated and well

studied.

In disordered solids, such as granular materials [8, 19–21] and bulk metallic glasses [4–6],

the initial story is the same– applying strain builds up stress, which is at first accommo-

dated globally by a small, affine elastic change in the particle positions. Once enough

stress has built up, it will be released in an event where several particles have large

non-affine displacements [6, 22]. Generally, a particle will slip past other particles and

acquire new neighbors. The simplest such event is a T1 transition, which involves 4

particles–larger and more complex rearrangements also occur. As there are no disloca-

tions, identifying where this will occur a priori is difficult. In addition, the relationship

between slip events is more complicated. Instead of an easily identified dislocation glide

or climb, the effect of an initial particle slip event travels through the bulk of the material

and may trigger other such events in what is called an avalanche.

Localized defects can self-organize, changing the bulk properties of materials. For ex-

ample, shear bands, which are regions that flow faster than the rest of the material, are

thought to develop when defects co-localize [15, 17]. In other regimes, self-organization

of defects leads to avalanching, where a material deforms elastically until a stress-lowering

rearrangement at one defect triggers a cascade of rearrangements at other defects [12].

Interesting memory effects [7, 23] may also be generated by self-organization of defects.

Defects play an important role in several mesoscopic phenomenological theories of plas-

ticity, such as the theory of shear transformation zones (STZ) [22, 24], which given a

population and energy scale for defects, predicts how the solid will fail, and the theory

of soft glassy rheology (SGR) [25], which assumes a population of yielding mesoscopic

regions.

To make predictions about such large-scale failure mechanisms, many continuum mod-

els [22, 26–29] make assumptions about the statistics of a solid’s complex potential energy

landscape and how applied shear stress drives the system to explore mechanically stable

minima within that landscape.

In addition, recent experiments and simulations suggest that particle rearrangements in

periodically strained disordered solids can encode memories that can be read out using a

proper strain protocol[23, 30]. Interestingly, several details of these memories (including
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their robustness to noise) appear to depend on the interaction potential and corresponding

properties of the potential energy landscape. Furthermore, the ability to encode memories

has been tightly linked with the reversibility of rearrangement events.

For these reasons, it is critically important to characterize the elementary particle rear-

rangements that allow a solid to explore different mechanically stable states. However,

there is no universally-accepted definition of when a particle packing has crossed to a

“different state”.

While harder to identify than crystal dislocations, evidence is building that ‘soft spots’,

where the rearrangements are more likely to occur, do exist. As discussed in the Introduc-

tion to Chapter 2, several methods have been developed that show a correlation between

localized structural weak spots and rearrangements, though all have drawbacks. If we

can better understand these soft spots, we will have taken a large step understanding the

properties and deformation of disordered materials.

1.2 Background

1.2.1 Amorphous Materials

By now, it is well known that glasses and granular packings are members of the same class

of materials and belong on the same phase diagram as shown in Fig. 1.1, first proposed

by Liu and Nagel in 1998[1] and studied by many others [31–34].

My work studies athermal packings of particles with only repulsive interactions, such that

I am studying packings along the 1/density axis of Fig. 1.1. As a system of equally sized

particles will form a crystal under pressure, I use the Kob-Anderson model [35], which

consists of two sizes of particles such that no crystal forms, as seen in Fig. 1.2.

1.2.2 Dynamical Matrix

We can calculate the linear response of the packing by calculating the eigenvectors and

eigenvalues of the Hessian matrix, which is defined by the following equation:

3



Figure 1.1: Glasses and granular packings are both members of the same class of
disordered or amorphous materials. [1]
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Figure 1.2: Snapshot taken from a jammed packing at a packing fraction of φ = 0.9.
Particle radii ratio is 1.4(red):1(blue).

Hiαjβ =
∂2U

∂uiα∂ujβ
, (1.1)

where U is the total energy of the system and u are particle displacements. For simple

two-body potentials, it can be shown that the Hessian can be written in terms of inter-

particle energies [11], rather than the total energy, in the following form:
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Hiαjβ =


∂2Vij
∂rα∂rβ

, off diagonal

−
∑
i 6=j

Hiαjβ, on diagonal .
(1.2)

The rows of the matrix therefore sum to zero, which is necessary for force balance in the

packing. The related dynamical matrix M is simply the Hessian Matrix, with scaling by

the particle masses.

M = MH, (1.3)

where Mij = miδij and mi is the mass of particle i. In the simulations described here,

mi = 1 for all i, so M = H, to be consistent with previous literature [36–38] .

The total energy of the packing is the sum of the interparticle energies

U =
∑
ij

Vij. (1.4)

The change in energy ∆U generated by displacing all the particles along some direction

u is

∆U =
1

2
Hijαβuiαujβ. (1.5)

The normal modes are the eigenvectors of the dynamical matrix, and their associated

eigenvalues are the frequencies.

While in simulation the dynamical matrix, and thus the vibrational modes, are easy to

calculate, in experiments it is more difficult. It is possible to extract the vibrational modes

from experiments, by characterizing time averaging two-particle correlation functions [39].

1.2.3 Density of States

The energy spectrum of a disordered packing is well known. All disorders solid have a

typical density of states—the distribution of the energies of the modes. At low frequencies,

the density follows the Debye prediction and goes proportional to ∼ ωd−1, as modes are

plane-wave-like. At medium frequencies, the density of states rises above the Debye

prediction, in what is known as the Boson Peak. This peak occurs at a characteristic

length scale ω∗, above which modes no longer have plane-wave-like nature [2]. At high
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Figure 1.3: Density of states for a 3D system of harmonic spheres at various packings
fractions δφ = φc − φ. [2]

Figure 1.4: A typical low-frequency quisilocalized standard mode for a disordered 2D
packing.

frequencies, the density falls off and goes to zero. This behavior can be seen in Fig. 1.3

for systems at several packing fractions.

Phonon-like modes and defect-localized modes both have low frequencies and exist below

the boson peak. In disordered packings, it has been observed that phonon-like-modes are

roughly at the same energy as localized modes. According to perturbation theory, we

expect that modes with similar energies will mix and generate hybridized low-frequency

modes— mixtures of phonon-like-modes and local modes. Such a mode is seen in Fig.

1.4.
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1.3 Continuum models

One goal of this work is to constrain continuum models for amorphous plasticity that

postulate the existence of soft regions. Therefore we briefly describe two of the most

popular such models, shear transformation zone (STZ) and soft glassy rheology (SGR).

1.3.1 Shear transformation zones

Shear transformation zone theory assumes some population of shear transformation zones

(STZs). They have an orientation and can be ’activated’- they deform in response to

stress. The number density and internal degrees of the STZs then inform how the packing

evolves. These internal degrees of freedom include the orientation and the activation

energy—the energy barrier. The STZs do not only interact with the environment, but

also with each other. STZs have a formation energy related to the effective disorder

temperature. The full STZ equations for an athermal amorphous solid [15, 22, 24, 40–42]

are

τ0D
pl
ij (s, χ) =

v0

V
(R(s)N− −R(−s)N+) = ε0e

−1/χ sij
s
C(s) (T (s)−M(s)) . (1.6)

The plastic part of the rate of deformation tensor Dpl
ij depends on the rate R at which

STZs ‘flip’, and the number N of positively and negatively oriented defects transitioning

from one state to the other, controlled by the molecular timescale τ0 such as the Debye

frequency. vo is a characteristic strain associated with an STZ flip and V is a unit of

volume. N is in turn written using a Boltzmann-like factor for the effective disorder

temperature χ and factors that are derived from the STZs.

τ0Ṅ± = R(±s)N∓ −R(∓s)N± + Γ(s)

(
Neq

2
−N±

)
. (1.7)

The number of defects is governed by the rate at which they flip, and also the creation

and annihilation rate Γ of new STZs due to noise, modulated by the equilibrium number

of STZs.
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R(s) = R0(s) exp

(
−∆(s)

θ

)
; ∆(s) = ∆0e

−s/µ̄. (1.8)

The transistion rate between defects is exponential in the energy barriers ∆(s) between

the states. The energy barriers are drawn from an exponential distribution.

The creation-annihilation term Γ is the most complex:

Γ(s) =
2C(s) (T (s)−M(s)) (s/s0 − ξ(M))

1−M(s)ξ(M)
. (1.9)

C(s) =
1

2
(R(s) +R(−s)) , (1.10)

T (s) =
R(s)−R(−s)
R(s) +R(−s)

, (1.11)

M(s) =
s0

2s

((
1 +

s0

s
T (s)

)
−

√((
1 +

s0

s
T (s)

)2

− 4
s

s0

T (s)

))
, (1.12)

ξ(M) =
1

s0

T −1(M), (1.13)

such that T (s0ξ(M)) = M . In the end, there are several parameters: the effective

disorder temperature χ, the energy barrier required to activate a defect ∆, the equilibrium

number of defects Neq. The disorder temperature can also evolve with time, and has its

own set of equations describing this evolution. STZ theory has had excellent qualitative

agreement with experiment[24, 41] . One drawback of STZ theory is that the microscopic

parameters have historically been identified from fits to macroscopic data, as it has not

been possible to identify STZs in experiment or simulations.

1.3.2 Soft glassy rheology

Soft glassy rheology [25, 26] assumes that the solid is composed a number of mesoscopic

regions, each with a stress threshold taken from a distribution. Each region has a separate

have a max yield drawn from an exponential distribution. This is an extension of the

Bouchard Trap model[43], in which an exponential distribution of barrier heights are

activated thermally, leading to glassy behavior. SGR adds strain and replaces the thermal

8



temperature with an effective temperature χ due to mechanical noise generated by regions

elsewhere in the system. The model assumes local linearity between stress and strain of

the form σloc = kl, where k is an elastic constant. Each region has a probability P of

being in a state with yield energy E, local strain l of

∂

∂t
P (E, l, t) = −γ̇ ∂

∂l
P − Γ0e

−(E−(1/2)kl2)/χP + Γ(t)ρ(E)δ(l). (1.14)

The evolution of each region is a combination of stress increase due to loading the packing

at rate γ̇, interaction-activated yielding with yielding rate Γ, and creations of new regions

from the activated ones now with zero local stress and an yielding energy drawn from the

exponential distribution ρ(E) = exp(−E).

Γ(t) = Γ0

〈
e−(E−(1/2)kl2)/χ

〉
P

= Γ0

∫
dEdlP (E, l, t)e−(E−(1/2)kl2)/χ. (1.15)

The total yielding rate Γ(t) is the expectation value for the number of yielding sites. The

macroscopic stress can be computed from the average local stresses

σ(t) = k 〈l〉P ≡ k

∫
dEdlP (E, l, t)l. (1.16)

The primary parameters in this model are the yield attempt frequency Γ0 and the effec-

tive temperature χ. One drawback of SGR theory is that the evolution of the effective

temperature cannot be derived from either first principles or mesoscopic principles [44].

Additionally, there exists experimental discrepancy with SGR predictions [45].

1.3.3 Effective temperature

Both of these models depend on an effective disorder temperature. It is common in contin-

uum mechanics develop constitutive relations that depend on thermodynamic variables.

However, the normal statistical physics temperature as measured by a thermometer is

not usually relevant, as it has been shown [46–48] that athermal systems seem to obey

a fluctuation-dissipation relation with a new, effective coefficient. In disordered sys-

tem, there are two contributions to the entropy: the number of metastable states, called

the configurational entropy, and the number of configurations within these metastable

basins, called the vibrational energy [49]. In many cases, the effective temperature has
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been linked to the configurational entropy. For powders and granular materials, Edwards

[50] suggested that the free volume was the conjugate variable to the configurational en-

tropy, and introduced a compactivity or angoricity. The compactivity takes the place of

temperature, such that
1

X
=
∂S(V )

∂V
(1.17)

However, this formulation ignores the important contributions of force chains and local

stresses. Therefore a generalized version of the Edward formulation [51] was developed.

In this formulation, the conserved quantity is the force-moment tensor

Σ̂ =
∑
m,n

dmnfmn (1.18)

where dmn is the vector pointing from the center of particle m to the interparticle contact

with its neighbor particle n, fmn is the interparticle contact force. The temperature-like

variable is named the angoricity

αµλ ≡
∂S(Σ̂)

∂Σµλ

(1.19)

This is a likely candidate for the disorder temperature used in both the STZ and SGR

paradigms, and has been shown to work in an SGR-like theory [52–55]. In STZ theory,

it has been proposed[15] that the effective temperature sets the density of STZs:

Λ̇ = Γ(e−1/χ − Λ). (1.20)

where Λ is the STZ density.

1.4 Rearrangements

In disordered materials, stress is not accommodated by continuous affine motion, but by

sudden events where many particles move at once, termed plastic events. Depending on

the system and the event, such an event could involve anywhere from four particles to

the entire system.

Stress-strain curves such as the one in Fig 1.5 clearly show the sudden nature of these

events, and demonstrate that particle motion is a combination of slow affine motion where
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Figure 1.5: Typical stress-strain curve for a jammed packing undergoing simple shear.
There are stress drops only at large scale particle rearrangments-plastic events, which

can be reversible.

the stress accumulated, punctuated by plastic events that reduce the stress in the system.

Note that the plastic events are of different sizes—and are distributed by the power law

〈δσ〉 ∼ N−2/3 (1.21)

as investigated by Dubey et al. [56].

1.4.1 T1 Transitions

The simplest common non-affine rearrangement that allows particles to move is called the

T1 transition. A T1 transition involves four particles in contact with each other. Each

touches its neighbors on the outside, but only one pair contacts across the center. A T1

transition is an event where this center pair changes, such that the other 2 particles are

in contact across the center, as shown in Fig. 1.6. This transition is the most fundamen-

tal plastic rearrangement and involves several particles in close proximity changing the

contact network.
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Figure 1.6: A T1 transition. Particles 1 and 4 are initially in contact, and particles 2
and 3 are not. After the transition, particles 2 and 3 are in contact, and particle 1 and

4 are not.

1.4.2 Avalanches

Often, one rearrangement event will trigger a large rearrangement that can span much

of the system. These large bulk rearrangements are known as avalanches- the ordinary

landslide from which this takes its name is, in fact, an example of an avalanche in a

granular packing. The power law statistics for avalanches have been well studied [13, 57–

60]. Avalanches are known to start at a defect but can grow to encompass the whole

packing.

1.4.3 Reversibility

While reversing the strain cannot undo large events such as avalanches, smaller events

can be reversible [61].

Below jamming, there is a clear separation between three types of reversible behavior.

During a single shear cycle, Shreck et al. [3] classified the behavior of particles. At low

strains and packing fractions, particles do not come into contact or deflect off each other,

and thus have particle paths that reverse exactly. These we call line-reversible events.

At higher strains and packing fractions, particles return to their previous positions but

follow different paths back. These we call loop reversible. Just below jamming and at

high packing fractions, they see irreversible events, where particles do not return to their

original positions. These behaviors are shown in Fig. 1.7.

Above jamming, the situation appears more complicated, as reversible and irreversible T1

events exist at the same packing fraction and shear cycle [62]. To compensate, many have

studied the proportion of irreversible events during shear cycles [7, 30, 63]. Interestingly,

below some critical strain value, a cycled system will reach a reversible steady-state, while
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Figure 1.7: a) Line reversible event. b) Loop reversible event. c) irreversible event.
d), e), and f) are equivalent to a),b),and c) with the affine portion subtracted off. Green
pluses, blue circles, and red crosses mark the beginning, middle, and end of the particle
tracks respectively, and particle outlines correspond to the beginning of the cycle. g)
Below jamming reversibility phase diagram, showing line reversibility as black circles,

loop reversibility as green triangles, and irreversibility as red squares. [3]

above it will remain irreversible [7]. This steady state can even hold memory, as a system

cycled at one strain amplitude will see a signature at that amplitude if sheared further

[30].

1.5 Numerical model for simulations

We study these phenomena in computer simulations, where the exact position and energy

of every particle is known.There are many parameter choices and a variety of techniques

for implementing dynamics in these systems.

The first choice is the number of dimensions. 1D has some applications[64], but most work

focuses on common higher dimensions. 2D is physically realistic for a number of different

systems. However, 2D simulations with particles of equal size will crystallize. Therefore
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Figure 1.8: The Lees-Edwards boundary condition can be represented as offset cells,
where simple strain is set by the offset and the box size.

in order to perform 2D simulations of disordered materials, it is required to have particles

of different sizes [35]. 3D is, of course, the most realistic, but computation time scales

with the box length cubed instead of box length squared and they are more difficult to

visualize. Given that the number of particles per side in a simulation can typically be

50, 3D simulations can quickly become very expensive. Higher dimensions, while not

physical, can be used to approximate mean field theories—in infinite dimensions, mean

field assumptions become exact[65, 66].

It is well known that the size of a system can affect the results of a simulation [12, 67–69].

There is a tradeoff between accuracy of result and simulation time. In cases where we are

interested in the thermodynamic limit, we will study different system sizes to understand

finite-size effects.

One common boundary condition when working with sheared systems in the Lees-Edwards

boundary condition, shown in Fig. 1.8. As in normal periodic boundary conditions, the

right and left sides of the box are connected, as are the top and bottom. However, the

image box on the top is offset by some amount—which becomes the shear strain on the

system. This offset can be changed in order to shear the system. As the boundary moves,

particles on one side of a boundary experience force from the ‘moving’ image particles on

the other side of the boundary, creating shear.

1.5.1 Inter-particle Potentials

Particles in simulations often interact via a simple two-body interaction potential, which

can be categorized a hard or soft. A hard sphere/disk potential (Vhard) is one where

particles cannot overlap but are otherwise free to move. Such a potential cannot explore
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conditions above jamming, as that would require particle overlap and thus an infinite

system energy:

Vhard =

∞ δ > 0

0 δ ≤ 0
(1.22)

where δ is the particle overlap.

A soft sphere potential (Vsoft) is short range potential in which it costs energy for particles

to overlap, but there is no energy cost when the particles are not touching:

Vsoft =

κδα δ > 0

0 δ ≤ 0
(1.23)

where κ is a force constant and α is some power. α = 2 is called a harmonic potential,

as the interactions between particles are that of springs. α = 5
2

is the Hertzian potential

which is the exact scaling potential of the overlap of elastic spheres as a function of the

overlap between their centers–assuming the strains are small and within the elastic limit.

The Lennard-Jones potential is a long range potential that mimics certain features of

atomic interaction potentials. Particles are repelled at close range, and attracted at long

range, with a ‘well’ representing the lowest energy state at a ‘distance’ equal to the particle

‘radius’.

VLJ = ε

((
σ

rm

)12

−
(
σ

rm

)6
)

(1.24)

where ε is the depth of the energy well and rm is the position of the well.

While these are the most common potentials used in these simulations, there are others

used in more specialist applications. Additionally, many extra terms can be added to

simulate other effects such as friction, wetting, or nonspherical particle shape.

1.5.2 System preparation

There are several ways of preparing random packings of particles. An infinite temperature

quench is a protocol where all particles are placed randomly in the box at their full

size. The energy in then minimized to reach a locally stable state. This corresponds

to the (impossible) physical process of having the particles move in a gas at an infinite
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Figure 1.9: Correlation lengths from left to right are 50, 20, 5, and 1. Particles are
colored by the bond orientational order.

temperature, and then instantly removing all the kinetic energy from the system. This is

a relatively fast and inexpensive way to create a disordered packing.

The Lubechevsky-Stillinger algorithm is an algorithm in which particles are initially

placed randomly as point particles (though it is possible to control the degree of dis-

order). The particles are slowly grown until the desired packing fraction is reached. This

method has the benefit of being able to create packings with differing degrees of disor-

der. By weighing the radii of a particle by a Gaussian random distribution with a set

correlation length, we can choose the degree of disorder in the packing, as seen in Fig.

1.9.

1.5.3 Simulation steps

There are several different protocols for shearing a simulated packing of particles that

reflect the competing timescales in those systems. The main ones are the timescale for

particles to relax to a local energy minimum and the timescale of strain.

Here we perform athermal quasistatic simulations (AQS), where the timescale of strain is

taken to be infinitely large compared to the timescale of relaxation. In this protocol, the

packing is sheared a small amount, whereupon the energy is minimized, and then sheared

again. This ensured that the packing is always at an energy minimum.

To do this, an energy minimization algorithm must be used. While steepest descent is

the simplest algorithm, it is also very slow, especially when far from the minimum, such

as the start of the infinite quench. In these cases, a conjugate gradient algorithm is much

more efficient. When the packing is close to the local minimum—such as when there has
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been only a small step away, then a line search algorithm is faster than the conjugate

gradient algorithm. A good compromise between speed and capturing realistic physics

is the FIRE algorithm, which runs particle dynamics in between steps with a damping

term.

How small do the steps need to be? As the packing undergoes long periods of smooth

motion punctuated by bursts of motion at a rearrangement event, a single step size is

not efficient. We use two different protocols. In one protocol, we do a universal sweep

forwards with a single set large step size. This misses the dynamics of the plastic events

but does locate them. In the second protocol, using a bisection algorithm, we then load

the packing before the event and take smaller step sizes in order to locate the event more

accurately. This is done several times until we have a set of very small strain steps across

the event.

1.5.4 Conjugate Gradient Minimization

The conjugate gradient minimization method is a numerical method for solving large

systems of linear equations, that is, systems of the form

A~x = ~b (1.25)

where A is a positive-definite matrix, ~x is an unknown vector, and ~b is a known vector.

Rather than following the gradient down to the minimum– a process known as steepest

decent– the conjugate gradient method finds a spanning set of orthogonal vectors, takes

a quadratic approximation in each direction, and jumps to the bottom of each, thus

finding the minimum in N steps, where N is the full dimensionality of the problem. The

vectors are found using Gram-Schmidt and the fact that the residual after a step will be

orthogonal to all previous steps.

1.5.5 Fast inertial relaxation engine

The second protocol uses a bisection algorithm to identify and zoom in on plastic events.

Large strain steps are taken forwards until an event is identified. A bisection algorithm
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is then used to determine the exact location of the minimum. Once found to sufficient

tolerance, the points searched by the bisection algorithm that occurs after the plastic

event are ignored, and the process repeats for the next plastic event. The energy is

minimized at each step by the (Fast inertial relaxation engine) FIRE algorithm with

velocity-verlet MD step given below:

~a(t) = − 1

M
~F (t), (1.26)

~v(t+ δt) = ~v(t) ∗ c+ ~a(t)δt, (1.27)

~v(t+ δt) = (1− α)~v(t+ δt) + α
~F (t)∣∣∣~F (t)

∣∣∣ |~v(t+ δt)| , (1.28)

~r(t+ δt) = −~r(t) + ~v(t+ δt)δt, (1.29)

where ~F = ∂U(t)
∂~r

, and initially α = αstart. If ~v · ~F > 0 for several steps, α is slightly

decreased, to indicate confidence in the direction of motion. If ~v · ~F ≤ 0, α is reset to

the original αstart. This is repeated until the energy no longer changes from step to step

below some tolerance.

1.6 Outline

The aim of this dissertation is to predict and characterize particle-scale rearrangements is

disordered solids. We answer the questions: What are the fundamental units of plasticity?

How can we predict where amorphous solids will deform? What does it mean for a

system to be in a new state? What makes some rearrangements reversible and others

non-reversible?

In Chapter 2, we develop a new method to isolate localized defects from extended vibra-

tional modes in disordered solids. This method augments particle interactions with an

artificial potential that acts as a high-pass filter: it preserves small-scale structures while

pushing extended vibrational modes to higher frequencies. The low-frequency modes that

remain are “bare” defects; they are exponentially localized without the quadrupolar tails

associated with elastic interactions, and do an excellent job of predicting plastic rear-

rangements. We identify a robust definition for the energy barrier associated with each
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defect, which is an important parameter in continuum models for plasticity. We find that

the energy barriers for localized modes are less than the energy barriers for quasilocalized

modes. We also quantify other important parameters for continuum models, including

the size and number density of defects.

In Chapter 3 we study rearrangements in disordered packings of particles with a harmonic

potential at a range of packing fractions above jamming. We develop a generalizable

procedure that classifies events by stress drop, energy drop, and reversibility. We show

that changes in the contact network are not sufficient to generate stress drops and that

only about 10% of contact changes correspond to stress drops. Additionally, we probe the

state of the packing by relaxing the boundary conditions, allowing the system to relax to

a state of zero stress, and demonstrate that all contact changes that lack an associated

stress drop relax to an identical zero-stress state. We also examine the reversibility of

events by performing a single strain cycle around them. We characterize the frequencies

and relationships between these different types of rearrangement events.

Finally, Chapter 4 discusses the significance of these results and highlights direction for

future research.
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Chapter 2

Disentangling defects and sound

modes in disordered solids

2.1 Introduction

Under applied stress, solids can flow plastically. In crystals, this flow is controlled via

rearrangements at lattice defects, which are the dislocations [18], easily identified by

looking at the bond-orientational order. In disordered solids, such as granular materials

[8, 19–21] and bulk metallic glasses [4–6] the structural defects are not easily identifiable

using structural data, though the rearrangements are still localized [6, 22].

Localized defects can self-organize, changing the bulk properties of materials. For ex-

ample, shear bands, which are regions that flow faster than the rest of the material, are

thought to develop when defects co-localize [15, 17]. In other regimes, self-organization

of defects leads to avalanching, where a material deforms elastically until a stress-lowering

rearrangement at one defect triggers a cascade of rearrangements at other defects [12].

Interesting memory effects [7, 23] may also be generated by self-organization of defects.

Defects play an important role in several mesoscopic phenomenological theories of plas-

ticity, such as the theory of shear transformation zones (STZ) [22, 24], which given a

population and energy scale for defects, predicts how the solid will fail, and the theory

of soft glassy rheology (SGR) [25], which assumes a population of yielding mesoscopic

regions.
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Isolating and quantifying features of defects in disordered solids has proved difficult.

Finding the precise set of particle displacements that allow the system to rearrange at

the lowest energy cost is computationally difficult. Observations that the low-frequency

linear vibrational modes are strongly correlated with particle rearrangements and plastic-

ity [70, 71] suggest that low-frequency localized excitations have very low energy barriers

and therefore may identify defects. However, this conjecture is difficult to test because

individual low-frequency normal modes are quasi-localized with long-ranged quadrupolar

tails required to satisfy long-range elasticity.

One approach to overcoming this difficulty is to identify localized regions with the largest

displacements in the lowest frequency modes. One finds that they do cluster into soft

spots that identify locations where rearrangements are likely to occur [10]. This method

has been extended to glasses at various temperatures [72], in different geometries [38], and

to identify the approximate directions of particle displacements [73]. Building on these

observations, a new machine learning method has been developed to identify softness

fields in disordered solids [74]. A related approach characterizes the nonlinear response

and uses an iterative approach to identify soft nonlinear modes and their associated energy

barriers [75].

A different, yet complementary approach analyzes the response of circular regions of

particles to applied shear in many directions [76], and also finds evidence for pre-existing

structural defects. This method effectively predicts rearrangement sites, orientations, and

energy barriers.

However, there are drawbacks to each of these approaches. The soft spots algorithm

contains systematic errors due to hybridization of soft spots and sound modes [10], while

the machine learning algorithm does not identify directions of particle displacement and

does not yet provide strong physical insight [74]. The method of Patinet et al. [76] allows

for the computation of energy barriers, but it is computationally expensive and not clearly

related to the microstructure or linear response.

In this chapter, we develop a new method that pushes phonon-like modes out of the

low-frequency spectrum, leaving isolated excitations behind. We find that these localized

excitations are excellent predictors of future rearrangements. We also characterize the

number density of defects, finding that fewer soft spots are required to make accurate

predictions than previously thought.
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It also allows us to characterize properties of localized excitations that are usually treated

as fit parameters in mesoscopic models, including defect size and the magnitude of as-

sociated energy barriers. We find a localization length for defects of approximately 7.3

particle diameters, corresponding to a soft spot containing about 150 particles. To cal-

culate energy barriers, we do not follow existing methods that use the adjacency matrix

associated with the contact network to identify saddle points [77] as these can generate

false positives [78, 79]. We develop a more robust method and find that defects have

lower energy barriers than those for normal modes.

2.2 Simulation Model

We study 50:50 mixtures of 2500 bidisperse disks with diameter ratio 1.4, at a packing

fraction of φ = 0.9, significantly larger than the jamming transition at φJ ' 0.84 [37].

Their interaction potential is Hertzian: V = 2
5
κδ5/2, where δ is the particle overlap.

Lengths are in units of the mean particle diameter, and energies are in units of κ. We

analyze mechanically stable packings in a periodic box of linear size L ' 50 generated by

an infinite temperature quench [37]. The system is sheared using Lees-Edwards boundary

conditions [80].

To find vibrational modes, we use ARPACK [81] to calculate eigenvalues, λ, and eigenvec-

tors, ei, of the dynamical matrix, M , which describes the linear response of the packing

to particle displacements [82]. At large displacements, broken contacts disrupt the linear

response [83], but there is always a well-defined linear regime [9, 84]. In our Hertzian

packings at φ = 0.9, we are well within this regime.

To penalize long-range collective motion, we augment the system with an artificial square

grid (lattice constant a) of spring-like interactions. These spring-like interactions link the

coarse-grained particle motions ũ, and generate an augmented potential energy Ũ :

Ũ =
1

2

 n∑
i

n∑
j

x,y∑
α

x,y∑
β

uiαMiαjβujβ +

g2∑
k

g2∑
l

x,y∑
γ

Kkl (ũkγ − ũlγ)2

 , (2.1)

where i, j are particle indices, k, l are grid point indices, Greek indices represent spatial

dimensions, g = L/a is the number of grid points per side, and ũkγ is a Gaussian weighting
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of particle displacements and represents an effective grid point motion as described in

Appendix A and illustrated schematically in Fig. 2.1. With this augmented energy

Ũ = U + U †, the dynamical matrix is M̃ = M +M † with

M † =

g2∑
k

g2∑
l

Kklδαβ (W (i, k)W (j, k)− 2W (i, k)W (j, l) +W (i, l)W (j, l)) , (2.2)

and

W (i, l) = Exp

[
−

x,y∑
η

(xiη − lηa)2 /σ2

]
. (2.3)

We refer to modes associated with U as standard modes and those associated with Ũ

as augmented modes. As we have implemented the effective spring network on a square

grid, Kkl = Kδk,l±1. The “motion” of each grid point (ũ) is illustrated schematically in

Fig. 2.1(a); average displacements in the same direction are penalized.

There are three parameters for the augmentation: the width of the Gaussian weighting for

each gridpoint σ, the spacing between grid points a, and the strength of the augmentation

K. We do not want the augmented energy to affect the energy of individual particles.

As discussed in the appendix, the sum of Gaussians is nearly unity when σ is equal to or

larger than a; therefore we choose σ = a for the remainder of this chapter.

We want to choose a such that the augmented energy acts as a high-pass filter, increasing

the energy of modes with small wavenumbers. Therefore, we compare the standard

(U) and augmented (Ũ) energies associated with a field of displacements that vary in

amplitude as a plane wave with wavenumber k. An analytic expression for this quantity

is derived in Appendix A. The analytic and numerical results, shown in Fig. 2.2(a),

suggest that wavevectors smaller than ∼ L/2a are significantly penalized and that there

is a systematic decrease in sensitivity as a decreases. To balance these effects, we choose

a = L/7 for the remainder of this chapter.

A more subtle question is how to balance the magnitude of the augmented energy and

the standard energy, which is controlled by the parameter K. We want the augmented

energy to be sufficient to push out plane waves, without affecting finer scale structure. To

do so, we examine the number of well-localized modes as a function of K, as described in
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Figure 2.1: (a) A square grid of points is connected by a spring-like interaction.
Movement of a grid point is defined by the weighted particle displacements. (b) A
typical hybridized vibrational mode from a standard dynamical matrix. (c) A typical
localized mode from an augmented dynamical matrix. (d,e) The sum of the magnitudes
of particle displacements in the 30 standard (d) and augmented (e) modes with the
lowest frequencies. The colorbar represents the magnitude of the summed polarization

vector.
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Figure 2.2: Energy due to augmentation, Ũ − U , of a plane wave of wavenumber k
for various number of grid points spacing a ranging from L/2 to L/10 at L = 46. The
solid line corresponds to a = L/7. Results are shown both for the analytic prediction,

as lines, and numerical results, as points, which do not differ significantly.

Appendix B. We find that K = 0.01 is sufficient to penalize plane waves without altering

the fine-scale structure.

2.3 Results

Having specified reasonable values for a and K, we now explore the eigenspectrum of

the augmented system. Fig. 2.1(b) shows the particle displacements in a typical low-

frequency hybridized mode derived from the standard dynamical matrix M . A typical

low-frequency eigenvector of the augmented dynamical matrix M̃ , shown in Fig. 2.1(c),

is localized. The inset shows an exponential decay in amplitude away from the center of

the defect, highlighting the absence of long-range quadrupolar tails [11].

Fig. 2.1(d,e) show the sum of the magnitudes of the 30 lowest frequency modes for typical

standard and augmented matrices, respectively. In Fig. 2.1(e), large magnitudes occur

in the same localized regions as in Fig. 2.1(d), indicating that the augmented potential

does not interfere with small-scale structure or alter the locations of the soft spots. The

augmentation does suppress the background associated with extended excitations, making

soft spots easier to identify.
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Figure 2.3: a) The radius of gyration of the 20 lowest frequency modes in 100 real-
izations are much smaller for augmented modes (solid line) than for standard modes
(dashed line). b) Density of states plotted as number of modes per packing, for aug-
mented (solid) and standard(dashed) modes. Localized modes (red) only appear in the
augmented DOS, while the plane waves (blue) in the augmented system have increased

energy.

With this choice of parameters we can measure localization with the radius of gyra-

tion [85], given by

Rg =

√∑N
i=1(|ri − rcm|2 |ei|)∑N

i=1(|ei|)
. (2.4)

To confirm that modes with increased energies are indeed extended, we split eigenvectors

into three groups. We find that the normal modes rarely have a RG / 16 particle

diameters as shown in Fig. 2.3a, therefore we denote modes with RG < 16 as “localized”.

Remaining modes are characterized by an integral If over the Fourier spectrum and L2

distance LBP between their cumulative distribution functions (cdfs) and the typical boson

peak cdf [86]. We find that If = 0.3− 2.3LBP is the best separating plane in If − LBP
space between “phonon-like” and “boson peak” modes.
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Fig. 2.3(b) shows that the augmented potential is altering the spectrum as intended. The

augmented eigenspectrum shown by solid lines contains a significant number of localized

modes, and plane waves are pushed to higher frequencies compared to standard modes

(shown by dashed lines).

2.3.1 Size and number density

In mesoscopic models for plasticity, two important parameters are the number density

and size of localized excitations, and therefore one of our goals is to extract distributions

for these parameters directly from simulations.

The number of localized augmented modes should serve as a lower bound on the number of

localized defects. As seen in Fig. 2.2, our choice of grid spacings suppresses wavenumbers

of up to k ∼= 3 so localized excitations with frequencies above that range will not be

isolated. The distribution for the number of localized excitations in our 2D box of 2500

particles is shown in Fig. 2.4a – the average is about 7.

We can also extract a length scale for each localized augmented mode by fitting an

exponential function to the decay in displacement amplitude away from the defect center.

The distribution of lengthscales associated with these exponential fits is shown in Fig 2.4b,

with a mean of 7.89 particle diameters. We have checked that this length is independent

of our choice of grid spacing a.

To see how these results compare to previous approaches, we characterize the size and

number density of the localized excitations using the soft spots approach [10]. This

method identifies clusters of soft particles by grouping together the Np particles with the

largest motion from the lowest Nm frequency modes and optimizes Np and Nm in order to

maximize the correlation Csr of spots with rearrangements. Csr is a very strict criterion

comparing the particles that have large displacements in soft spots and rearrangements,

respectively.

For standard normal modes at a packing fraction of 0.9, the best correlation with re-

arrangements is found when we include the Nm = 25 lowest frequency modes and the

Np = 20 particles in each mode. This corresponds to 14± 3 soft spots in each packing of

2500 particles, with an average soft spot size of 14.3± 5.7 particles.
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Figure 2.4: a) The number of modes with RG < 16 in the augmented system. The
line is a Gaussian fit with µ = 6.79 and σ = 2.45. b) The length scale extracted
from an exponential fit to the radially averages distribution of displacement vectors for

augmented localized modes. The line is a Gaussian fit with µ = 7.89 and σ = 2.01.

These results are quite different from those we found with our new augmented approach

– the augmented approach finds about half as many localized excitations in the same

packing (7 compared to 14) and excitations that are an order of magnitude larger (a

lengthscale corresponding to 150 particles compared to 14 particles). Typical defect sizes

reported in the literature vary widely and are typically between these two values [6, 22, 87–

90].

To unpack this discrepancy, we first look more closely at the size of localized excitations.

Fig 2.5 compares displacements in a localized augmented mode to the locations of particles

identified by the soft spot algorithm. The soft spot singles out the particles with very large

motion during a rearrangement, while the augmented mode retains smaller displacement

vectors. Because the defect core is far from compact (perhaps even with string-like

structures reported previously [85]), the spatial extent of the soft spot and the localization

length (derived from an exponential fit to the displacement field) are actually very similar.
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Figure 2.5: A soft cluster compared to the most similar augmented mode, of RG =
15.3. The localization length of the augmented mode (lmode = 8.8) is represented as a
circle. (inset) Blue points are the radially averaged magnitudes of particle displacements
|ei| a distances r from largest particle displacement; the red line is the best exponential

fit.

This suggests that the size of a localized excitation may depend quite a bit on how size

is measured.

Next, we investigate the number density of localized excitations. A possible weakness

of existing soft spots algorithms is that they are only able to demonstrate that a given

number of soft spots is sufficient for predicting plasticity, but not that the number is

necessary – e.g. these methods may be identifying more spots than are needed to predict

rearrangements.

To test this hypothesis, we run the soft spot analysis using only the localized augmented

modes. As expected, this generates about the same number of soft spots as localized

modes (an average of 7 spots). The results are largely insensitive to the number of

particles per mode, Np, for Np between 20 and 50, as we might have expected from our
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analysis of soft spot size above. We report results for Np = 25 so that the average soft

spot size matches that for standard modes.

An interesting question is whether the 7 spots identified by our new augmented method

are just as effective at predicting plasticity as the 14 spots generated by the old method.

Interestingly, the overall average correlation is nearly identical Csr = 0.777 for standard

modes and Csr = 0.781 for localized augmented modes. Fig 2.6(a) shows Csr for stan-

dard modes and only localized augmented modes as a function of γ − γc, which is the

strain required to activate the next rearrangement. We see that close to the event the 7

localized augmented modes are slightly better than the 14 standard soft spots at predict-

ing rearrangements, and nearly as good even far from the event. This suggests that our

augmented potential is identifying a subset of localized excitations that predict plasticity

and that the number density of such excitations is actually significantly smaller than

previously thought.

2.3.2 Direction information and energy barriers

Of course, one of the main benefits of this algorithm is that we can calculate not only

the locations of the localized excitations but also the directions of particle motions in an

excitation. To see if this directional information is also predictive for particle rearrange-

ments, we take the scalar dot product between each of the localized augmented modes

and the rearrangement, as well as the lowest-frequency standard modes. We restrict the

dot product to a circular region of radius rc around the localized event, to avoid noise

associated with dot products of many random vectors with small magnitudes. We choose

rc = L/5 – which is slightly above the localization length, but results are not highly

sensitive to the choice of rc. We also restrict ourselves to non-avalanche rearrangements,

where the rearrangement has over an 80% overlap with the mode that goes to zero at

the critical strain [10]. Fig. 2.6 b shows the probability distribution for the highest dot

product amongst all modes. There is a much higher probability of finding a dot product

near unity for the augmented modes compared to the standard modes, indicating that

augmented modes are better predictors of the rearrangement dynamics, even at strains

long before a rearrangement event.
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Figure 2.6: a) Correlation function CSR between soft spots and rearrangements gen-
erated from the localized augmented modes (magenta) are very similar to those for
standard modes (black), and more accurate far from the event. Events are binned as
a function of the strain required to get to the next particle rearrangement (γc − γ).b)
Comparison of the highest dot product between localized (RG < 16) augmented modes
(magenta) and standard modes (black). The various curves represent different distances
in strain from the rearrangement. The solid lines correspond to strains close to a rear-
rangement ((γ − γc) < 10−4.5), the dashed lines are 10−4.5 ≤ (γ − γc−) ≤ 10−3.5, and
the dotted line represents (γ − γc) ≥ 10−3.5. The pdf was created from a cumulative
distribution function using a Gaussian smoothing filter of σ = .07. We see that the
localized augmented modes tend to match the rearrangement much better than the
standard mode, especially far from the rearrangement as demonstrated by the magenta

curves having larger weights near unity.
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Figure 2.7: Probability distribution of energy barrier for standard (dashed), and aug-
mented (solid) modes, collected over the 50 lowest frequency modes in 100 realizations
are plotted separated by mode type as in Fig. 2.3. Localized augmented modes are
more likely to have very low energy barriers. Curves were produced by smoothing the

cumulative distribution function with a Gaussian filter of width 0.7.

This algorithm for the first time allows us to calculate the distribution of energy barriers

associated with bare defects. We displace particles along each eigenvector and use the

LBFGS line search algorithm [91] to minimize the potential energy at every step. At

the first step where the minimized state is different from the initial state, we identify a

particle rearrangement and define an energy barrier ∆U as the difference between the

initial energy and the maximum energy attained [77].

The definition of a particle rearrangement or new state can be subtle. Although previous

studies in particulate matter have used changes in the contact network adjacency matrix

to identify energy barriers [77], not all contact changes identify saddle points in the

potential energy landscape [9, 78]. In Appendix C, we compare several methods for

identifying saddle points in the potential energy landscape, and identify a subset that

are self-consistent and match our expectations for saddle points. Using one of these

self-consistent definitions, we calculate the energy barriers for the 50 lowest frequency

standard and augmented modes over 100 realizations, separated by mode type. Fig. 2.7

shows that the localized augmented modes are more likely to have very low energy barriers

compared to standard modes, although the average value is similar.
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2.4 Discussion and Conclusions

Using a simple physically-motivated augmented potential, we were able to push extended

low-frequency vibrational modes to higher frequencies and isolate localized “bare” defects.

We demonstrate that these localized excitations are excellent predictors of both the lo-

cation and displacements associated with particle rearrangements in a disordered solid.

Finally, we characterize the lengthscales, number density, and energy barriers associated

with these excitations.

These results should immediately improve continuum models for plasticity in amorphous

solids. The energy barriers associated with defects in disordered solids are an important

parameter in both STZ and SGR models. While these were previously fitting parameters,

one can now extract them from a simulation and test specific model predictions.

A future direction of inquiry is to study the creation, annihilation, and activation of

defects in sheared simulations and compare to continuum model assumptions [6, 15, 63,

92–94]. In particular, it would be instructive to use the directional and energy barrier

data to predict which defect would activate given a particular shear direction.

We know that other methods for identifying soft spots such as those calculating local yield

stress [76], analyzing nonlinear modes [95], or using machine learning [96] also correlate

well with particle rearrangements. Therefore, it would be useful to systematically compare

these methods on the same packing and determine whether the identify the same localized

excitations.

While we have used a multiple contact-change metric for determining a new state to

calculate energy barriers, there are many other choices. Ongoing work [78] suggests that

all saddle points are accompanied by a drop in stress, while contact changes that are not

associated with saddle points do not have a substantial stress drop. We do not use stress

drops as an indicator of saddle points here because they are difficult to identify along

the non-physical particle paths prescribed by our augmented modes, but we expect this

alternate definition to be useful in other systems, such as those under simple shear.

As this method can robustly identify defects far from rearrangements, we are now well

poised to study their dynamics. For example, we hope to study the creation and an-

nihilation of defects under shear, and whether their statistical properties (such as the
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lengthscale, number density, or energy barrier) are different as a function of material

preparation or shearing history. This new technique should also allow us to study the

spatial organization of defects in processes such as shear banding that lead to catastrophic

failure.

Additionally, it would be interesting to try to extend this algorithm to systems that are

not in mechanical equilibrium. For example, during an avalanche, in a highly jammed

packing we expect that most of the motion will be along a few floppy modes, so that most

of the curvatures in the potential energy landscape are still positive and amenable to

study via vibrational mode techniques. This would allow us to observe the activation and

formation of defects, to understand if avalanches mostly result from one defect triggering

other, pre-existing defects, or if avalanches create and activate new defects.

The self-organization of defects may also provide insight into the reversibility dynamics

seen by Keim et al. [7, 30, 63]. The evolution of soft spots as a function of time and

their organization in the highly reversible system acquired after many cycles might allow

a mesoscopic description of memory formation in materials.

2.5 Appendix A

In this Appendix, we derive the augmented dynamical matrix that allows us to separate

localized modes from extended plane-wave-like modes at low frequency in a disordered

solid. Latin indices are used to label particles and Greek indices to label Cartesian

components. All summations are explicit.

The low frequency vibrational modes of a disordered solid contain localized excitations

at defects hybridized with extended plane-wave-like modes and are the eigenvectors of

the Dynamical matrix Miαjβ = ∂2U
∂uiα∂ujβ

. In order to examine the bare defects, we must

separate these two types of modes. To prevent hybridization, our goal is to increase the

energy of the plane-wave-like modes without increasing the energy of the localized modes.

To do this, we add an extra term to the total energy of the packing U that represents

a grid of virtual points connected by a spring-like interaction. The motion of each grid

point is defined as the motion of the particles near it, weighted by a Gaussian function

of the distance between them. The new energy is then
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Ũ =
1

2

 n∑
i

n∑
j

x,y∑
α

x,y∑
β

uiαMiαjβujβ +

g2∑
k

g2∑
l

x,y∑
γ

Kkl (ũkγ − ũlγ)2

 , (2.5)

where

ũkγ =

n∑
pupγExp

[
−

x,y∑
η (xpη − kηa)2 /σ2

]
n∑
pExp

[
−

x,y∑
η (xpη − kηa)2 /σ2

] , (2.6)

kx = Floor[k/g], (2.7)

ky = Mod[k, g], (2.8)

g = L/a, (2.9)

where g is the number of grid points per side, a is the spacing between grid points, and L

is the side length. Kkl sets the connectivity and the strength of the connection between

grid points. In this work, we connect adjacent grid points on a square grid, so that

Kkl = Kδk,l±1.

The width of the Gaussian weighting is set equal to the grid spacing, as the sum of a grid

of Gaussians with the width equal to the spacing is flat to within 10−6, as seen in Fig.2.8.

We divide by the Gaussian contribution of each particle near the grid point to normalize

by particle density.
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The total augmented energy can be written as a quadratic function in terms of the stan-

dard dynamical matrix M and the dynamical matrix M † corresponding to the augmented

potential:

Ũ =
1

2

(
n∑
i

n∑
j

x,y∑
α

x,y∑
β

uiα

(
Miαjβ +M †

iαjβ

)
ujβ

)
. (2.10)

To simplify notation, we introduce a weighing function

W (i, l) =
Exp

[
−
∑x,y

η (xiη − lηa)2 /σ2
]

n∑
pExp

[
−

x,y∑
η (xiη − lηa)2 /σ2

] . (2.11)

and then Ũ becomes:

Ũ =
1

2
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j
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g2∑
k

g2∑
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x,y∑
γ

Kkl

((
n∑
p

upγW (p, k)

)(
n∑
p

upγW (p, k)

)
−

2

(
n∑
p

upγW (p, k)

)(
n∑
p

upγW (p, l)

)
+

(
n∑
p

upγW (p, l)

)(
n∑
p

upγW (p, l)

)))
.

(2.12)

Without loss of generality, we reindex the summations from p to i and j

Ũ =
1

2

 n∑
i

n∑
j

x,y∑
α

x,y∑
β

uiαMiαjβujβ +

g2∑
k

g2∑
l

x,y∑
γ

Kkl

((
n∑
i

uiγW (i, k)

)(
n∑
j

ujγW (j, k)

)
−

2

(
n∑
i

uiγW (i, k)

)(
n∑
j

ujγW (j, l)

)
+

(
n∑
i

uiγW (i, l)

)(
n∑
j

ujγW (j, l)

)))
. (2.13)

As each term has a sum over i and j, these can be grouped
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2

n∑
i

n∑
j

(
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Kkluiγujγ

(
W (i, k)W (j, k)−
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We reindex again:

∑
γ

uiγujγ =
∑
α

uiαujα, (2.15)

∑
α

uiαujα =
∑
α

∑
β

uiαujβδαβ, (2.16)

by definition of Kronecker delta. Grouping the dimension sums and gathering terms we

find

Ũ =
1

2

n∑
i

n∑
j

x,y∑
α

x,y∑
β

(
uiα

(
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(
W (i, k) ∗W (j, k)−

2W (i, k) ∗W (j, l) +W (i, l) ∗W (j, l)
))

ujβ

)
(2.17)

,

resulting in the final definition of M †,

M † =

g2∑
k

g2∑
l

Kklδαβ

(
W (i, k)W (j, k)− 2W (i, k)W (j, l) +W (i, l)W (j, l)

)
. (2.18)

We can analytically determine the energy increase for plane waves by assuming a con-

tinuous field of particles, which allows us to go from a summation to an integral over
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particle positions. We let the plane wave be defined as

ux = A sin(2πkx/L+ φ), uy = 0. (2.19)

Then the continuous form is

U † =
Gt∑
kx=1

Gt∑
lx=1

Gt∑
ky=1

Gt∑
ly=1

(
δ(lx, kx ± 1)δ(ly, ky ± 1)K·

∫ ∞
−∞

∫ ∞
−∞

(
dxdy

A

πσ2
sin(2πkx/L+ φ)

(
e−

(x−akx)2+(y−aky)2

σ2 − e−
(x−alx)2+(y−aly)2

σ2

)))
.

(2.20)

In order to deal with boundary conditions, we take the limit as Gt → ∞. we also set

σ = a, and λ = L/k. This computation gives the result

U † = −4π2A2Ke−
8π4a2

λ2

(
cos

(
4π2a

λ

)
− 1

)
. (2.21)

which is shown by the dashed lines in Fig. 2.2 in the main text

2.6 Appendix B

To choose a value for the parameter K, the connection strength, we calculate the total

number of localized modes of the 50 lowest frequency modes in the packing as a function

of K, where localized modes are defined using the radius of gyration as defined in the

main text. As seen in Fig 2.9, the number of localized modes grows until a value of

K = 0.01 and essentially plateaus thereafter. Additionally, the number of boson peak

modes is relatively constant until the same value. Furthermore, the number of plane-wave

modes begins a more sharp decline at that value. Taken together, this suggests that a

value of K = 0.01 balances the augmented energy with the internal potential energy to

shift plane waves without generating spurious localized modes.
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Figure 2.9: The 50 lowest frequency modes in 100 packings, sorted by type as in
Fig.2.3b, plotted as a function of K. There are three regions: 0 < K < 0.01, where
the augmentation begins to have an effect, 0.01 < K < 0.02, where the augmentation
begins to greatly alter the mode structure, and 0.02 < K, where the number of spurious
localized modes grow linearly with K, as shown in the inset over a wider range of K.

2.7 Appendix C

In order to define a new state, we examine seven independent criteria: i) any change in

the contact network (CR+), ii) non-rattler [97] contact changes (CR-), iii) requiring more

than two particles to change contacts (C2), iv) energy differences between the original and

final basins of greater than 10−8 (E-8), v) a displacement of a single particle more than

two large particle diameters in a direction perpendicular to the mode (D), vi) having a

significant stress drop (S), and vii) requiring that more than 2 contact changing particles

must be neighbors, thereby rearranging as a unit, (C2N).

As shown in Fig. 2.10, for each standard mode and each of the first five definitions, we

measure the ratio between the energy barrier calculated using that definition and C2N

(∆U/∆UC2N).Several of these criteria, such as contact changes that include or exclude

rattlers (CR+, CR-), generate energy barriers that are significantly lower than the other

criteria and different from each other. We note that these definitions have been used

for studies of energy barriers in the past [77]. This result suggests that these criteria

generate a lot of “false positives” – they identify changes to the network that do not

correspond to a particle rearrangement. In contrast, the four other methods (C2, E-8,

D, S) generate distributions of energy barriers with the same median as C2N, indicating
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Figure 2.10: Ratio of energy barriers ∆U/∆UC2N calculated using different defini-
tions for what constitutes a particle rearrangement, as described in the main text. Box
and whiskers contains 50 % and 92 % of the data points, respectively, blue bars denote

the median, and outliers are circles.

that these criteria are very similar and likely identify particle rearrangements associated

with saddle points and plasticity.

2.8 Appendix D: Defect size and predictive capabil-

ity

As discussed in the main text, we find that the augmented modes are just as predictive

as standard modes if we use the soft spot algorithm to correlate localized excitations with

plasticity, and we can use fewer modes (15 augmented modes compared to 25 standard

modes).

As a third measure of whether localized excitations predict plastic events, we compare

the distance between the center of mass of the localized excitation and the center of mass

of the rearrangement.

Of course, we expect that this distance will scale with the number density of candidate

defects, so we first calculate the probability density P for the minimum distance r between
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the origin and n points randomly distributed in 2D space:

P (r, n) = 2πnrΘ

(
1

2
− r
)(

1− πr2
)n−1 − nΘ

(
r − 1

2

)

∗

− 4r√
4r2 − 1

+
4√

4− 1
r2

+ 2r
(
π − 4 csc−1(2r)

)
∗
(
−
√

4r2 − 1 + r2
(
π − 4 csc−1(2r)

)
+ 1
)n−1

, (2.22)

where Θ is the Heavyside function. The expected minimum distance for n randomly

distributed points is then dnrand =
∫
rP (r, n)dr.

Given the location of the center of a rearrangement and a list of n locations corresponding

to centers of localized excitations, we compute the minimum distance between the rear-

rangement and any localized excitation dn. We then normalize dn by the value of a random

distribution, dnrand, and if our rearrangements are predictive than d ≡ dn/dnrand < 1, and

there is no bias as a function of the number or size of the localized regions.

We compare the distributions of d for several different definitions of localized excitations.

We first assume every localized augmented mode corresponds to a defect, and compare d

just before (at a strain 10−6 below the critical strain) the event (denoted ’near’), as well

as immediately after the previous rearrangement (far). We repeat this procedure for the

standard modes and soft spots generated by the method of Manning and Liu [15].

As shown in Fig. 2.11, using this strict metric, the augmented modes display significant

improvement over a random distribution with the same number of candidates. The

augmented modes are also closer in distance to the rearrangement than soft spots once

controlled for the number of candidates.

As discussed in the main text, we also want to understand how the size of localized

augmented excitations compares to the size of soft spots. To this end, we use the published

soft spots algorithm to identify the optimal number of modes (Nm = 25) and number of

particles (Np = 20). A histogram for the number of spots and their size are shown by

the black data points in Fig. 2.12 a and b, respectively. Next, we only study soft spots

generated from localized augmented modes, and since there are only 7 such modes we

expect to find approximately that number of soft spots, which is the case, as shown by

the red and magenta data points in Fig 2.12a. The correlation with rearrangements is
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Figure 2.11: Comparison of the separation distances between the center of a mode and
the center of a rearrangement. We compare standard modes, augmented modes, and
soft spots, near and far from the rearrangement, as well as a comparison to a random
distribution of the same number as described in Appendix C. Each line is scaled by the

expected value of a random distribution of the same number of candidates.

largely insensitive to Np for values between 20 and 30, but Np does affect soft spot size,

as shown in Fig. 2.12b.
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Figure 2.12: a) The number of clusters for the standard soft spots algorithm (black),
as well as when using only the localized augmented modes (RG < 16), with Np = 25
(magenta) and Np = 40 (red). Using only the localized modes gives fewer spots. Dashed
lines are Gaussian fits. b) The average number of particles per soft spot. Colors are

same as in a).
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Chapter 3

Distinguishing rearrangement events

in disordered solids as a function of

pressure †

3.1 Introduction

While all solids resist shear deformations, they will begin to weaken and flow if a large

enough shear stress is applied. In disordered solids such as granular materials, foams,

and dense colloids, the mechanisms for flow and failure vary widely as a function of

material preparation and the type of applied stress and remain poorly understood. On

the macroscopic scale, solids can weaken via a reduced elastic modulus [9] or fail via

localized rearrangements [10], sporadic large-scale avalanches [11–13], or continuously

evolving extended shear bands [14–17].

To make predictions about such large-scale failure mechanisms, many continuum mod-

els [22, 26–29] make assumptions about the statistics of a solid’s complex potential energy

† This chapter is part on on ongoing collaboration with Martin van Hecke, Merlijn van Deen, and
Peter Morse. This work initiated a manuscript in preparation on this topic. [78]
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landscape and how applied shear stress drives the system to explore mechanically stable

minima within that landscape.

In addition, recent experiments and simulations suggest that particle rearrangements in

periodically strained disordered solids can encode memories that can be read out using a

proper strain protocol[23, 30]. Interestingly, several details of these memories (including

their robustness to noise) appear to depend on the interaction potential and corresponding

properties of the potential energy landscape. Furthermore, the ability to encode memories

has been tightly linked with the reversibility of rearrangement events.

For these reasons, it is critically important to characterize the elementary particle rear-

rangements that allow a solid to explore different mechanically stable states. However,

there is no universally-accepted definition of when a particle packing has crossed to a

“different state”. This was already discussed in Chapter 2, where we wanted to define an

energy barrier for localized excitations.

In granular systems where the interaction potential is zero if two particles are not touching–

such as a Harmonic potential– it is common to define a rearrangement event as a change

to the particle contact network [3, 9, 98]. An additional complication is whether to in-

clude rattlers – particles that are not constrained by the rigid backbone of the solid – in

the definition of network changes.

In either case, packings before and after a discrete contact change necessarily possess

distinct force contact networks, and it has been shown that the nonlinear rheology the

dependence of the bulk modulus on the applied strain is altered during a contact change

[9]. For these reasons, it has often been assumed that the packings before and after a con-

tact change correspond to different minima in the potential energy landscape, separated

by an energy barrier [3, 98]. However, this seems to be contradicted by the observa-

tion that contact changes are not sufficient to drive the system towards an instability

associated with a negative modulus or zero-frequency modes [3, 11, 11, 62, 99].

In addition, it is unclear how the concept of contact changes might be generalized in

systems with attractive or non-contact potentials (such as Lennard-Jones). In these

systems, particle rearrangements have been associated with stress drops and local shear

modulus [100].
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Figure 3.1: a) A 2D histogram of the stress drop/initial stress vs the rsq displacement
of the particles during an event. There are two clear lobes: the upper right corresponds
to a physical event. b) A 2D histogram of the stress drop/initial stress vs the energy
drop/initial energy during an event. There are two clear lobes: the upper right corre-
sponds to a physical event. c) A 2D histogram of the energy drop/initial energy vs the
rsq displacement of the particles during an event. There are two clear lobes: the upper
right corresponds to a physical event. The colorbar represents log number of events in

each bin. All events that result in a new relaxed state occur in the white boxes.

Furthermore, the behavior of materials under periodic strain suggests that macroscopic

properties depend on whether elementary shear transformations are reversible or not [7,

62, 63]: under a periodic loop of applied strain a shear transformation can be (a) ir-

reversible: particles end up in a different position from where the started, (b) loop re-

versible: particles end up in the same position but go back via a different path, or (c) line

reversible: particles end up in the same position and traverse the same path. Identifying

these different types of rearrangement events might help generate predictive models for

memory in disordered solids.

Therefore, the goal of this Chapter is to use a simple model granular solid to identify

distinct classes of particle rearrangements that correspond to new mechanical states. We

would like to understand the properties of these events (such as their degree of spatial

localization), and how the frequency of each type depends on control variables such as

the strain and pressure.

We find two major categories of rearrangement events, which we denote “rearrangement”

and “network”, for convenience. “Rearrangement” events are shear transformation events

associated with measurably non-zero changes in shear stress, energy, and particle posi-

tions. “Network” events correspond to simple changes in the contact network, with no

associated changes in the stress, energy, or particle positions.
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We further divide both categories into five mutually exclusive event types. Events can

either be line reversible, loop reversible, or irreversible. We find network events are

either line reversible or irreversible while rearrangement events can be any of the three

reversibility types. As we describe below, this classification is useful because the degree of

localization and the relative fractions of each event type change drastically as a function

of pressure, revealing two distinct regimes: a fragile low-pressure regime dominated by

extended, irreversible events and a robust high-pressure regime dominated by reversible,

more localized events.

3.2 Methods

Unless otherwise noted, we study 50:50 mixtures of 512 bidisperse disks with diameter

ratio 1.4, under Lees-Edwards boundary conditions at a number of packing fractions

above jamming φJ ' 0.84 [37]. Their interaction potential is harmonic: V = 1
2
κδ2, where

δ is the particle overlap. Lengths are in units of the mean particle diameter, and energies

are in units of κ. We generate 100 shear-stabilized packings [9] at each pressure studied,

which we vary from P = 10−7 to 2 × 10−1. Pressure scales with packing fraction as

P ∼ |φ− φJ |1.08 [101] for this harmonic system, and such shear stabilized packings have

zero residual shear stress [102]. We apply quasi-static simple shear using Lees-Edwards

boundary conditions.[103] We denote strain that moves the top boundary to the right as

“positive strain”.

Individual contact changes are identified using a bisection algorithm with an accuracy

δγ/γ∗ < 10−6, as described in [9]. This algorithm is used to generate 25 events per

packing at most pressures, with an additional 75 events studied at the lowest pressures to

improve the signal to noise ratio in that regime. We find that contact changes are required

for all rearrangement events; for example, we never find a drop in the total energy without

a contact change. Therefore, we tag all strain steps where a contact change occurs and

proceed to categorize these events.
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3.3 Contact changes

For each contact change event, we can calculate the change in shear stress ∆σ, total

system energy ∆E, and particle positions R2. R2 is defined as the sum of the squares of

the differences in the individual particle positions before and after the event. In order to

collapse our results, we look at the ratio between the magnitude of the change in stress

(or energy) and the initial stress σi or energy Ei.

Our first important observation is that a large fraction of contact change events does

not generate an instability that leads to a stress or energy drop. As seen in Figure 3.1,

there is a clear separation between events that have a measurably non-zero stress drop,

energy drop, and particle displacement, and those that do not. This clustering serves as

good criteria for determining a “rearrangement” event; in each panel, we have drawn two

black lines separating the clusters into exclusive definitions of rearrangement and network

events.

The white box in each panel of Figure 3.1 contains every rearrangement event; the fact

that the white boxes match up with the black lines demonstrates that measurable changes

to the stress are always accompanied by measurable changes to the energy and particle

positions as well.

Because all rearrangement events are accompanied by a contact change, we can also study

the number of particles that change neighbors in a rearrangement event. Interestingly,

a contact change involving only two particles can generate a rearrangement event; shear

transformations or T1s typically associated with four or more particles changing contact

are not required.

3.4 Stress relaxation

How can we reconcile the fact that contact changes necessarily alter the force contact

network with our observation most contact changes do not change the stress or energy

state of the system? One hint is given by identifying each contact network with its

relaxed state. Specifically, we associate each packing configuration and its contact network
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Figure 3.2: The fraction of rearrangements that relax to the same (red) or different
(blue) state under minimization at zero stress as a function of pressure for a 128 particle

system.

with a zero-stress relaxed state, generated by minimizing the energy while the boundary

conditions are allowed to evolve freely.

We find that the relaxed state of a packing before a network event is always identical

to the relaxed state of packing after that event. This suggests that for network events

the two particle configurations on either side of the event are in the same energy basin –

there is a flat path in the potential energy landscape between the two configurations that

is accessible when the boundaries are allowed to freely evolve.

Interestingly, it is possible for two configurations on either side of a rearrangement event

to correspond to the same relaxed state as well. Fig. 3.2 shows that about 30% of rear-

rangement events are bookended by configurations with the same relaxed state, while the

remaining 70% correspond to configurations with different relaxed states, though the ex-

act percentage varies systematically with pressure. By definition, during a rearrangement

event, one configuration is driven towards another through a specific path in coordinate

space defined by the Lees-Edwards boundary conditions, encountering an energy barrier

along that path. However, our results suggest that these states are not always separated

by an energy barrier when the boundary conditions are allowed to freely evolve.
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Figure 3.3: Step 1: complete a forwards strain sweep, and identify rearrangement
events. Step 2: Load in packing from after event at γ1, and strain till before γ3. Step

3: Strain backwards to the original leading strain.

3.5 Strain reversibility

Next, we want to categorize all events by their reversibility under periodic strain. Specif-

ically, after we have identified an event that occurs under positive strain, we load in the

packing after that event. We then strain forwards through an event and stop before the

subsequent event. We then strain backwards, called the ”reverse path”, using the same

strain steps until the original strain is reached, which allows us to directly compare the

packing at the same values of strain along each path.

For example, as diagrammed in Fig. 3.3, if we wish to investigate an event at some strain

γ2, we note the strains of the preceding event at γ1 and the following event at γ3. The

system is loaded at state γ+
1 : the closest strain to the preceding event that occurs after

that event has taken place. The system is then strained to a strain of γ−3 : the closest

strain to the following event that occurs before the event has taken place.

To quantify if the event was reversible or irreversible, we first measure the return distance

∆r, defined as the mean of the sum of the square of each particle’s net displacement from

the beginning to end of the strain cycle. To determine if events are loop or line reversible,

we track the positions of each particle during the loop. At each value of the strain, we

examine the difference between the particle positions for the forward and reverse paths,

and evaluate the max loop distance M , defined to be the mean of the largest d = 5 net

displacements, though the results are similar for other values d < 10. This measure has

the same units as ∆r, and thus is ideal for comparison.
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Figure 3.4: a) Every rearrangement event binned as a function of the return distance
∆r and max loop distance M , as described in the main text. Three clear regimes
separate the events into irreversible (upper right), loop reversible (upper left) and line
reversible (lower left). b) Every network event binned as a function of the return
distance ∆r and max loop distance M , as described in the main text. Three clear
regimes separate the events into irreversible (upper right), loop reversible (upper left)

and line reversible (lower left).
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As seen in Fig. 3.4a, these two metrics are sufficient to separate all rearrangement events

into three clusters: high ∆r and high M are irreversible, high M and low ∆r are loop

reversible, and low ∆r and low M are line reversible. There are, and can be, no events

that have high M and low ∆r. Fig 3.4b demonstrates that there are no loop reversible

network events.

Next, we study how the relative fraction of each of the five event types depends on pressure

as shown in Fig.3.5. Fig.3.5a shows all five event types, while Fig.3.5b shows just the

relative fractions of macroscopic events.
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A first observation is that network events are significantly more common than rearrange-

ment events at all pressures accounting for more than 90% of all events. This confirms

that studies using contact changes to identify different states are looking at a very differ-

ent subset of events than those using physical parameters such as energy dissipation or

particle displacements to identify different states.

A second observation is that there appear to be two distinct regimes as a function of

pressure: a low-pressure regime (P < 10−2 in natural units) dominated by irreversible

events and a high-pressure regime dominated by reversible ones.

This suggests that the fragility of the system near jamming suppresses reversibility: there

are many mechanically stable states with similarly low energies, and therefore any contact

change disrupts the structure enough to allow it to find a different state upon reversal.

At high pressures the rigid backbone is much more robust, suggesting that there are only

a few accessible states with low energy barriers and therefore contact changes are not

enough to alter the final state. In fact, for both rearrangement and network events, it

is much more common for particles to take the same path forwards and backward (line

reversible) than any other path back to the same initial state (loop reversible).

The picture that irreversibility is enhanced by the fragility near the critical jamming point

is corroborated by recent work for particle packings at densities below jamming; Schreck

and coworkers also see a peak in irreversibility at the critical point [3].

An obvious question is whether fragility and irreversibility are related to the spatial

organization of particle displacements during a rearrangement event. Therefore, we char-

acterize the localization of each event using two metrics: the participation ratio and the

radius of gyration of the particle displacement field. While the participation ratio is a

standard metric for localization[104], we calculate the radius of gyration by first associ-

ating the magnitude of each particle displacement during the event with a mass located

at the particle position before the event, using a standard method to identify the center

of mass [105], and calculating the radius of gyration about that center [85].
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in both equations.

3.6 Event size

As seen in Fig.3.6, the spatial extent of all event types plateaus at a constant value for

P . 10−4, and decreases thereafter, illustrating that at higher pressures all events become

spatially localized. Although rearrangement events decrease gradually with pressure for

P & 10−4, extended network events begin to fall off very quickly for P & 10−2, which

corresponds to the reversible/irreversible crossover.

Overall, Fig.3.6 suggests that spatial organization of displacements correlates strongly

with reversibility. At low pressures, displacements are extended because the network is

fragile with extended low-frequency normal modes [106]. These extended displacements

are not reversible. At high pressures, the system only fails at localized soft spots, and

these same spots seem to flip back and forth as the strain is reversed.

3.7 Conclusion and outlook

We have shown that in granular systems, rearrangements that alter the total energy

or shear stress in a system, denoted rearrangement events, are much rarer than network
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events that alter the contact network but leave the energy unchanged. An analysis of zero-

stress states suggests that configurations separated by network events may not correspond

to distinct energy basins in the potential energy landscape, as has been assumed in

previous work. Furthermore, for both network and rearrangement events, we find a strong

connection between reversibility, spatial localization, and pressure. At low pressures,

rearrangements are irreversible and spatially extended, while at high pressures they are

reversible and spatially localized.

This opens up several future avenues for research. First, it suggests that different contin-

uum models for rheology are appropriate in different pressure regimes. Above P ≈ 10−2

rearrangements are localized, robust, and reversible, in line with many of the assump-

tions of Shear Transformation Zone theories [22, 24]. Below P ≈ 10−2, rearrangements

are extended, fragile, and irreversible, suggesting that a scaling theory for low-frequency

normal modes [36, 75, 95, 107, 108] may capture many of the important features.

Postdoctoral associate Peter Morse has continued to study these protocols and has found

similar results. He has developed a more sensitive criteria for network events based on

stress drop as a function of pressure, as shown in Fig.3.7. We expect that this new

definition may alter some of the results reported here, although we expect this analysis

to guide future work.

It will also be useful to think about which regimes are important for various oscillatory

strain protocols, and whether memory formation and readout are more effective in one

regime compared to another.

This analysis can be extended to frictional systems and systems with different particle

shapes. It will be interesting to see if the sharp crossover between the reversible and

irreversible regimes still exists in these perturbed systems, and whether the location of

the crossover changes.

So far, we have restricted ourselves to studying particle packings that are not strained

very far (less than 5%) from a zero-stress state. Therefore, we are unlikely to see large

avalanches associated with self-organized states that occur when the average shear stress

is comparable to the average pressure. It will be interesting to study how reversibility is

affected by the average shear stress in addition to the pressure.
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Figure 3.7: Histogram illustrating frequency of stress drops as a function of pressure.
The red line is the best separating plane between network events and rearrangements

with S ≈ 10−5P .

We thank Giuseppe Passucci for discussions. M.L.M. and S.W. were supported by NSF-

DMR-1352184, and M.L.M. was supported by the Alfred P. Sloan Foundation.

56



Chapter 4

Conclusion

4.1 Summary

In summary, we have developed an algorithm that is able to determine the soft spots in

a disordered material, and therefore predict the sites of rearrangement, as well as pre-

dicting the displacement directions and energy barriers for defect activation and particle

rearrangements. This method, though used here only for a 2D Hertzian contact poten-

tial system, is easily generalizable to any system for which a dynamical matrix can be

calculated.

Additionally, we have shown that most contact change events are not defect activations,

but network events that only change the bulk modulus, but not the generalized energy

basin of the system. This tells us that contact changes do not define a new state. Despite

the reasoning that we should expect topological differences in the contact network to be

different basins in the energy landscape, the true measure of a new state is a stress drop,

or equivalently an eigenvalue going to zero.

The metric for events that change the state of the system is conclusively found in Chapter

3 to be stress drops. However, this is not the metric used in Chapter 2 to define the

energy barriers. Why the difference? Stress is a well-defined metric when states are at

their energy minimums; the states creating during the energy-barrier finding procedure

are deliberately unstable and the stress in not well defined.
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4.2 Outlook

We have observed that all rearrangement events are predicted by a soft spot. While we

did not explicitly check network events, they may also be predicted by soft spots, though

we would expect the spot to persist through the event.

All the tools are now in place to look at the time evolution and dynamics of defects.

Our method allows the direct calculation of energy barriers associated with defects in

disordered solids, an important parameter in both STZ and SGR models. A future

direction of inquiry is to study the creation, annihilation, and activation of defects in

sheared simulations and compare to continuum model assumptions [6, 15, 63, 92–94].

In particular, it would be instructive to use the directional and energy barrier data to

predict which defect would activate given a particular shear direction.

Observing the creation and annihilation rates of defects would provide instructive param-

eters for STZ and other continuum models for glassy dynamics. In fact, we now have

the ability to generate all the parameters in Eqs. 1.6–1.13. While these were previously

fitting parameters, one can now extract them from a simulation and test specific model

predictions. Our method can measure creation rates, transition rates, orientation, and

energy barrier for the STZs in a packing. These parameters can directly be used in the

STZ equations of motion to analytically derive the stress-strain relation, which can be

directly compared to the simulation. We feel this would be a strong test for STZ theory.

We are also able to test the protocol dependence suggested by Gendelman et al. [109],

who show that even small changes in the shear direction can alter where the packing

deforms. Our method is able to predict all potential rearrangement sites, and thus show

that defects are part of the inherent structure. A similar methodology could find a relation

between the orientation of the activated defect and the strain angle.

It is known that packings at cyclic shear with a low strain amplitude settle into a re-

versible steady-state [7]. Given that such systems encode memory[30], it is likely that the

defect statistics between the steady state and the uncycled state are quantitatively dif-

ferent, which could be measured by the augmentation algorithm. Defects corresponding

to reversible rearrangements may even differ from defects corresponding to irreversible

rearrangement.
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In 2014, Charbonneau, Kurchan, et al. [110–112] exactly solved the replica symmetry

breaking solution for the distribution of contact forces

P (f) ∼ f θ, (4.1)

and showed that their solution held for the infinite dimensional case with θ = 0.42311.

However, they found that this prediction became less accurate at low dimensions. They

went on to demonstrate that this could be resolved and the mean-field value recovered. By

splitting the distribution into a localized and an extended part, they create two distinct

power laws. They found that buckling particles,described as particles with exactly d+ 1

contact, had an exponent of θl = 0.17462, while the exponent for the rest-labeled extended

modes, has an exponent of θe = 0.42311. The full scaling relation is then

P (f) = nlPl(f) + (1− nl)Pe(f). (4.2)

The question then becomes: how do you determine which modes or particles to label

as local, and which as extended. The work outlined in this thesis gives insight into this

problem. We have also observed two kinds of events—the small network events and the ex-

tended rearrangement events. It seems promising that the scaling of network events would

follow the localized scaling, and the rearrangement events would follow the extended scal-

ing. Additionally, the defects found in Chapter 2 correspond to rearrangements, and thus

the extended modes.
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