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Abstract 
 

In this dissertation, we study the effect of recent regulatory and technological changes on trading 

dynamics. Advances in communication and computing technologies have made millisecond 

latencies as the new trading standard and have resulted in a new era of automated trading. The 

introduction of Reg-NMS (Regulation National Market System, implemented in 2007) has set 

strict rules for the access and removal of liquidity from the fragmented US equity market, de 

facto linking the trading activities across trading venues. These transformations have not only 

changed how equity markets function but also how market participants interact with the market 

and among themselves.  

We begin this study by examining how the introduction of Reg-NMS has affected the trading 

strategies of fast, impatient traders. The implementation of Rule 611, which extends price priority 

across all the trading venues in the National Market System, forces them to monitor all trading 

venues in order to correctly asses the placement of their orders. We find evidence that because 

of their impatient nature, these traders react to all events that negatively affect the position of 

their orders, regardless of the venue of origin. This behavior results in an order flow that is made 

up of a high volume of very short-lived limit orders, which is consistent with a previously studied, 

but not yet fully explained, phenomenon of fleeting liquidity.  

We then investigate whether fast, impatient traders are able to leverage their speed advantage 

to turn market fragmentation in their favor. We find evidence that their ability to anticipate the 



 
 

order flow of the other market participants, allows them to engage in a trading strategy that 

relies on the simultaneous submission of multiple orders across exchanges. Such strategy, called 

Overbooking, aims at executing only one of these orders rather than all of them and uses the 

availability of multiple exchanges to increase the probability of execution while limiting the risk 

of over execution thanks to their speed advantage.  

Overall, our findings show that a sub group of traders was not only able to adapt to a changing 

trading environment but actually take advantage of it. The Overbooking trading strategy is 

effective at increasing the probability of execution while also decreasing execution time and it is 

particularly effective for stocks with a high degree of competition for superior queue placement. 

This suggests that the ability to effectively trade on multiple venues simultaneously allows fast, 

impatient traders to avoid engaging in a costly algorithmic battle for a favorable queue 

placement, or submitting very aggressively priced limit orders, to attain quick execution.  

Moreover, our findings show that the actions of these traders, driven by their fast, and impatient 

nature and constrained by the complex rules that regulate liquidity access and provision on the 

National Market System, result in the linking of order flow dynamics across trading venues. We 

find that the cancellation of an order can be determined by changes that have occurred 

elsewhere in the market and that to model correctly order flow dynamics it is necessary to 

include in the analysis the changes that occur on all trading venues. We also find that fast, 

impatient traders, actively monitor the state of all trading venues after order submission, and 

that they benchmark the present state of the market to the state at submission.  
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1 Introduction 
 

Recent technological and regulatory changes have transformed how equity markets function. 

The competition enhancing spirit of Reg-NMS, combined with the significant developments in 

the technology used to transfer and analyze data, have allowed for a new breed of 

sophisticated traders to emerge. These traders, use a variety of different trading strategies, 

ranging from simple market making to more advanced statistical arbitrage, and they can vary 

considerably in terms of their size and resources. They do, however, have one thing in common: 

their reliance on algorithmic trading. These market participants increasingly use big data and 

machine learning techniques in their quantitative trading, and adopt algorithms in what has 

become mostly a computer-driven investing world. In a recent survey carried out by LCH 

Investments, “…four of the top 20 hedge funds that have generated the highest amounts of net 

returns are highly reliant on algorithmic trading.” However, the spread of this computer and 

data driven approach to investing is not limited to the hedge fund industry: a growing number 

of investment funds have started to develop or strengthen their quantitative trading arms by 

investing in their analytical and data capabilities. Assessing the extent of the success of quants 

is not possible, given how difficult it is to collect data from some of the key players but the 

information that is available suggests that there will be a continuing trend in developing 

strategies that rely on automation.  

Traders that employ automation in their trading strategies can be characterized as fast and 

impatient. In fact, one of the primary objectives behind the automation of trading is that of 

increasing the speed with which a trader can react to market events. However, the use of 
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powerful computing does not only allow algorithmic traders to react instantly to any changes in 

the market: it also allows them to base their decisions on the rapid analysis of the large amount 

of market data that is generated during a trading day. The extensive investments in 

computational resources made by traders, give them a considerable speed advantage over the 

other market participants, suggesting that making a distinction among traders based on their 

speed is, in fact, meaningful. On the other hand, the impatient nature of some traders is a 

result of their trading strategies. Some of their most common trading strategies are based on 

exploiting short-lived arbitrage opportunities across markets or across trading venues, or on 

trading from both sides of the market and making a profit on the difference between the two, 

or on creating the momentum that leads to favorable price changes. These are by no means the 

only ways in which traders can generate a profit but they do show how this sub-group of 

traders prioritizes the ability to quickly enter and exit the market, making them considerably 

less likely to hold any inventory or, patiently, wait for a favorable trading opportunity.  

The significant role played by fast, impatient traders in today’s equity market, with the extreme 

competition in the industry, make this sub group of traders particularly sensitive to changes in 

regulation and to the introduction of new technologies. In the first part of our study, we 

investigate how the implementation of Rule 611 from Reg-NMS has affected the trading 

dynamics of these impatient traders and, specifically, we investigate the role this regulation 

plays in explaining fleeting liquidity. In fact, several recent empirical studies have found a 

significant presence of short-lived limit orders in the market. Such orders do not fit the classical 

economic perspective that limit order submitters are patient liquidity suppliers who are willing 

to delay execution in exchange for a better price. This phenomenon of short-lived limit orders 
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has received considerable attention yet there is no consensus on the rationale behind it. 

Anecdotal evidence suggests that the portion of fleeting liquidity that is submitted inside the 

spread could be explained as a trading strategy aimed at discovering hidden liquidity. “Pinging”, 

as it is often called by industry practitioners, the limit order book is supposed to help locate 

hidden liquidity and allow to trade at prices better than the quoted ones. Yet, it is unclear why 

such strategy would not be implemented with visible limit orders rather than with hidden ones 

or why is it not done with immediate-or-cancel orders which, if not filled immediately, would be 

cancelled automatically without the need to send an additional message to do so. Hasbrouck 

and Saar (2009) suggest that market fragmentation creates a coordination problem between 

traders since patient traders need to decide the target venue for their hidden limit orders while 

impatient ones need to signal the venue on which they will be conducting their search. In such 

a setup, fleeting liquidity would serve a signaling purpose aimed at attracting the other trader’s 

attention to a specific venue. Such an explanation raises a number of questions, most notably, 

whose attention is this signal supposed to attract since it is not possible for a human trader to 

notice a signal from such short-lived orders. Moreover, such explanation does not justify the 

fleeting liquidity submitted outside the spread, which recent studies find to be a significant 

portion of the fleeting orders.  

We posit that fleeting liquidity is caused by market fragmentation but not as the result of a 

coordination problem between traders. The impatient nature of traders suggests that they 

value a quick execution, which is only possible if their limit orders are placed as close as 

possible to the best Bid or best Ask. Hence, attaining a superior queue placement is particularly 

relevant for them and any market event that sets back one of their orders could determine 
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their decision to cancel that order. Given that Rule 611 of Reg-NMS enforces a strict price 

priority rule across trading venues, this implies that to correctly asses the position of an order, 

it is necessary to consider the state of all the trading venues rather than only the state of the 

venue where the order is submitted. Hence, we argue that algorithmic traders actively monitor 

all trading venues after order submission and that, because of their impatient nature, react to 

any market event that results in a less favorable placement of their orders, regardless of the 

venue. Consistent with this argument, it follows that market fragmentation affects fleeting 

liquidity since the determinant of cancellation for an order can now be traced to any of the 

trading venues in the National Market System. 

We propose and test the hypothesis that changes that lead to adverse positioning of the orders 

submitted by fast, impatient traders are behind the phenomenon of fleeting liquidity. In this 

study, we define fleeting orders as orders that stay in the limit order book for no more than one 

second, even shortening the previous cut off value of two seconds employed by Hasbrouck and 

Saar (2009). However, when necessary, we will re-run the analysis using the two second cut off 

value in order to compare our findings to previous studies. We believe, though, that the 

considerable increase in the speed and market activity of today’s equity markets, requires me 

to update the cut-off time in order to correctly capture the order flow generated by the fast, 

impatient traders whose behavior is the core of our study. 

The evidence presented in this study confirms that a distinction in order flow based on the 

lifetime of orders is meaningful. In our analysis of Level III data for select eighty-five stocks, we 

find a significant presence of fleeting liquidity in today’s equity markets. On average, 52.8% of 

all submitted limit orders are cancelled within two seconds of submission, compared to only 
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36.9% found in Hasbrouck and Saar (2009). Figure 1 clearly indicates that markets are now 

functioning at a higher speed and cancellation rates are higher than those observed in 

Hasbrouck and Saar (2009) and it re-affirms the necessity for selecting a shorter life-s[an to 

characterize the fleeting orders.  

 

Figure 1: Cumulative Empirical Cancellation Probability. This figure compares the cancellation probability of outstanding limit 
orders (as a function of time) found in our study to that reported in Hasbrouck and Saar (2009). The values are obtained with a 
survival analysis approach where the survival functions are built using all non-marketable limit orders in our sample of eighty-five 
stocks. Moreover, in the estimation of the cancellation process, executions are taken as censoring events. 

Before testing our main research hypothesis, we investigate a competing argument proposed in 

Hasbrouck and Saar (2009) and find empirical evidence to support their claim that the fleeting 

liquidity submitted inside the spread can serve a signaling purpose to attract the attention of 

other traders to a specific venue. We then test our assumption that adverse changes in queue 

placement are behind fleeting liquidity, and investigate the determinants of cancellations of 

fleeting orders. We find evidence to support the hypothesis that fast, impatient traders actively 

monitor all exchanges in order to correctly asses the placement on their orders and that 

fleeting order flow dynamics can be properly explained only when accounting for the changes 

that occur on all trading venues. The empirical findings provide support of the research 
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hypothesis and confirm that the implementation of Reg-NMS, combined with the impatient 

nature of algorithmic traders, is behind the puzzling phenomenon of fleeting liquidity.  

In the second part of our study, We focus on how the latest technological developments have 

affected the trading strategies of fast, impatient traders. In particular, we investigate whether 

these traders are able to exploit their considerable speed advantage since a number of recent 

theoretical papers (van Kervel (2015) or Baldauf and Mollner (2015)), suggest that it should 

allow them to anticipate the order flow generated by the other, slower market participants. If 

that is the case, we argue that these fast, impatient traders should be able to leverage market 

fragmentation and make use of the availability of market data from multiple trading venues by 

engaging in an overbooking trading strategy. Such strategy would be based on the 

simultaneous submission of multiple limit orders across different trading venues with the 

objective of executing only one of them. In fact, we argue that such strategy would allow them 

to increase the probability of execution without increasing their risk of over execution, because 

of their speed advantage that allows them to anticipate the other market participants and 

cancel the remaining orders as soon as the execution of one is attained.  

In order to test this hypothesis, we first develop a procedure to identify those orders that we 

believe are submitted simultaneously by the same trader, and we call them clustered orders. 

Such first step is necessary since Level III data does not provide any information about the 

identity of the order submitter, making it impossible to match directly individual orders to 

specific traders. Then, we carry out an analysis of the nature and composition of these clusters 

of limit orders and we compare their performance to remaining orders. Finally, we test the 

notion that they belong to the same cluster and we investigate when such trading strategy is 
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most effective. The results provide evidence to support the claim that the proposed clustering 

procedure is able to recognize correctly those limit orders that are submitted simultaneously 

across trading venues and that belong to the same overbooking trading strategy. We also find 

evidence that such strategy is able to bring higher execution probability and shorter execution 

times and that it is particularly effective for stocks for which there is a lot of competition to 

attain a favorable queue placement or that have a high level of trade fragmentation. 

The remainder of our study is organized as follows. In Section 2, we give an overview of Reg-

NMS and we discuss the dynamics of order placement in the queue. In Section 3, we review the 

literature related to fast trading and market fragmentation while in Section 4 we describe the 

data used in our study and provide some summary statistics. In Section 5, we test the signaling 

hypothesis proposed in Hasbrouck and Saar (2009) by investigating the relation between 

fleeting orders submitted inside the spread and the execution of hidden liquidity. In Section 6, 

we test our hypothesis on the role of adverse changes in queue placement on fleeting liquidity 

by studying the impact of the events on all trading venues on the determinants of cancellations 

for fleeting orders. In Section 7, we investigate how fast, impatient traders are able to leverage 

their speed advantage over the other market participants by studying the effectiveness of a 

trading strategy based on the simultaneous submission of multiple orders across trading 

venues. Finally, the conclusions are presented in Section 8. 
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2 Market Structure, Superior Queue Placement and Reg-NMS 
 

2.1 Market Structure  
 

In this study, we focus on US equity markets and analyze data from four major trading venues:  

BATS-Z (the main BATS exchange), EDGE-X & A and NASDAQ. If a market participant wants to 

trade on either of these venues, he has two ways of doing so: he can use a Market Order, which 

allows him to immediately sell or buy the stock by paying the bid or ask price or, he can use a 

Limit Order which allows him to set the highest (lowest) price that he is willing to pay in order 

to buy (sell) the stock. This means that the Limit Order allows to trade at a better price, in 

exchange for a delay in execution, while the Market Order allows to obtain immediate 

ownership, in exchange for a higher price. The collection of all the outstanding Limit Orders at 

any point in time is called the Limit Orders Book, which is the platform used to operate all Order 

Driven Markets.  

Trading venues can differ greatly in terms of their fee and rebate structure and in terms of the 

rules that regulate liquidity access and provision. However, the vast majority of them, including 

the four used in our study, enforce a strict time and price priority. This means that Limit Orders 

that are more aggressively priced, that is higher prices for buy orders and lower prices for sell 

orders, have priority over those with less aggressive pricing, and that if multiple orders are 

submitted at the same price, those that were submitted first will have priority over those that 

came in after. This mechanism makes it very convenient to think of order placement in a Limit 

Order Book following a queueing system, in with each queue represents the Limit Orders that 

are submitted at a given price. Figure 2 is a simple example of a Limit Order Book.  
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Figure 2: Structure of a Limit Order Book. The collection of all outstanding Limit Orders submitted to an exchange is called a Limit 
Order Book. The vast majority of trading venues, including the four in our study, enforce a time and price priority rule to regulate 
access, and provision of liquidity. Price priority implies that Limit Orders submitted at more aggressive prices, higher (lower) for 
buy (sell) orders, have priority over those at less aggressive prices, while time priority means that if multiple orders are submitted 
at the same price, those that were submitted first have priority over those that came later.  

Execution of a Limit Order occurs when a counterparty willing to pay the asking price enters the 

market and submits a Market Order. The price priority rule implies that Market Orders will first 

get executed against the most aggressively priced Limit Orders. From Figure 2, it follows that a 

Limit Order to Buy submitted at $20.24 will be executed only after the execution of all the Limit 

Orders at $20.25. Thus, a clear trade-off between the limit price of an order and the waiting 

time until execution emerges: in fact, better prices for a trader, lower for buys and higher for 

sells, might lead to longer execution times, as more Limit Orders might need to be executed 

before this order. It is also important to realize that a delay in execution may also negatively 

affect the overall probability of attaining the execution since, while waiting, new information 

might arrive in the market and change the fundamental value of the asset moving the market 

away from the limit order. An interesting consequence of the price and time priority rules is 

that all Limit Orders on each side of the book belong, de facto, to the same queue that starts 

with the first order submitted at the most aggressive price and ends with the last order 

submitted at the least aggressive one.  
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2.2 Superior Queue Placement 
 

In our study, we focus on the analysis of the order flow generated by fast, impatient traders. 

Such traders can be loosely thought of as traders who use some kind of automation in their 

trading strategies. The fast nature of their orders implies that they can react to changing market 

condition in a millisecond time scale while their impatience suggests that their main priority is 

to attain a quick execution. The combination of these two features, speed and impatience, is 

what makes the queue position of their limit orders particularly relevant for them. A fast, 

impatient trader will not be able to make the most of a short-lived trading opportunity unless 

he is able to place his limit orders as close as possible to the top of the queue. In fact, only if 

such superior queue placement is attained, the trader will be able to find, in a short time, a 

counter party willing to trade via a Market Order and not have to wait for a large number of 

Limit Orders in front to clear.   

A superior queue placement, however, comes with some disadvantages as well as it exposes to 

a higher risk of being picked off by an informed trader. In fact, if new information that alters the 

fundamental value of the asset arrives, the limit prices of the outstanding orders need to be 

reevaluated. This means that the closer the order to the top of the queue, in less time the order 

will have to be re-submitted at a new price before an informed trader picks it off at the now 

stale and outdated, price. Hence, if on one hand being at the top of the queue allows for a 

shorter execution time on the other it requires constant monitoring of all information 

generated in the market to decrease the risk of being picked off by an informed trader.  
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2.3 Regulation National Market System 
 

When the Securities and Exchange Commission proposed Reg-NMS in February 2004, it 

described it as “a series of initiatives designed to modernize and strengthen the National 

Market System for equity securities.” The declared objective of this financial regulation was to 

assure that investors received the best price for their executions by encouraging competition 

and by strictly regulating the access and provision of liquidity in the marketplace. In fact, by 

then regulators had become concerned with the extent of the fragmentation of the equity 

markets and with its possible implications on market quality. Thus, it became apparent that 

new set of rules had become necessary in order to regulate trading across all the different 

venues on which a market participant could buy, or sell, shares.  

In Reg-NMS, two rules in particular play an important role in understanding our argument 

about how the actions of fast, impatient traders affect fleeting liquidity: Rule 610, also called 

the “Access Rule” and Rule 611, also known as the “Order Protection Rule”. The “Access Rule” 

is broad in scope and addresses the issue of accessing market data by market participants. 

Beyond prohibiting the imposition of discriminatory terms that would prevent access to an 

exchange’s quotations, it also requires that members of the National Market System avoid 

quotations that would “lock” or “cross” the marketplace. This means that market participants 

are not free to submit a Limit Order at any price they might want: when setting their limit price, 

an exchange needs to make sure that it does not match, or exceed, the best price on the 

opposite side of the book on another, competing exchange. Figure 3 illustrates an example 

when such rule is, for a very short period of time, violated. On January 25th, 2011, between 
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10:42.545 am and 10:44.547 am, the best Ask Price for AOL on BATS-Z was above the best Buy 

Price on the NASDAQ. However, shortly afterwards, the NASDAQ accepted a Limit Order to Buy 

shares of AOL at the same price at which one could sell those shares on BATS-Z. Such event is 

called a “locked” market as the two opposite best prices overlap. A further analysis of data in 

Figure 3 shows how shortly afterwards, the best Ask Price on BATS-Z actually drops below the 

initial value, resulting in what is called a “crossed” market during which the best Ask Price on 

one exchange is below the best Buy Price on another one. Such situations, even though not 

permitted, can occur several times during a trading day but are, generally, quickly corrected.  

 

Figure 3: Locked and Crossed Markets. This figure provides a good example of what it means for the National Market System to 
be “Locked” or “Crossed”. Rule 610 in Reg-NMS, mandates that an exchange should not accept limit orders at prices that match, 
or exceed, the best price on the opposite side of the book on a competing trading venue. In practice, instances of locked or 
crossed markets can occur regularly during a trading day but they are usually immediately corrected. In our example, we see how 
on January 25th, 2011, between , 10:42.545 am and 10:44.547 am, the best Ask Price for AOL on BATS-Z was above the best Buy 
Price on the NASDAQ. However, shortly afterwards, the NASDAQ accepts a Limit Order to Buy shares of AOL at the same price at 
which one could sell those shares on BATS-Z. Such event is called a “locked” market as the two best prices overlap. Moreover, 
shortly afterwards, the best Ask Price on BATS-Z actually drops below the initial value, resulting in what is called a “crossed” 
market in which the best Ask Price on one exchange is below the best Buy Price on another on. 

 

The second most relevant rule to our study is Rule 611, also called the “Order Protection Rule”, 

which requires that members of the National Market System prevent “trade-throughs” in the 

marketplace. What this means is that those Limit Orders that are submitted at the most 
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aggressive prices will always have priority over all others, regardless of the venue on which they 

are submitted. Figure 4 provides an example that will help to better understand the 

implications of Rule 611. If the best Bid on the NASDAQ is at $24.05, while that on BATS-Z is 

$24.06, any limit order on the best Bid of the NASDAQ will be executed after the execution, or 

removal, of all the buy Limit Orders on BATS-Z at $24.06. Hence, even though limit orders to 

buy shares on the NASDAQ at $24.05 are the most aggressively priced ones on that venue, they 

are not the most aggressively priced ones across the entire National Market System since more 

aggressive orders exist on BATS-Z. This rule protects the best price across the entire market, 

regardless of how small the venue quoting it might be, guaranteeing that the most aggressive 

orders will be executed first. Such rule allows to attain two important results: first, it allows 

even the smaller venues to compete with the larger ones, as long as they are willing to provide 

a better price. In fact, a growing concern for regulators before the introduction of Reg-NMS was 

that the large exchanges, such as the NASDAQ or NYSE, were able to attract traders based on 

the large depth provided in their limit order books (which offered the opportunity to trade fast 

and in larger quantities) rather than because of their competitive quotes. This made it very hard 

for the smaller trading venues to compete more effectively with the leading exchanges, since 

they were not able to match the level of liquidity provided by their larger competitors. Second, 

it protects the traders who submit their Market Orders by assuring that they will be always able 

to buy at the lowest price or sell at the highest one. In fact if, in the example in Figure 4, a 

trader were to submit a Market Order to sell shares on the NASDAQ, open receiving such order 

the NASDAQ would have to automatically re-route it to BATS-Z where the seller would be able 

to receive a higher price for his shares.  



14 
 

 

Figure 4: Trade-Throughs on the National Market System. Rule 611, called the “Order Protection Rule”, mandates that the most 
aggressive price always receives priority regardless of the venue quoting it. In the following example, the most aggressive Bid 
price on the NASDAQ is $24.05, while that on BATS-Z is $24.06. Given that the most aggressive price is on BATS-Z, it will not be 
possible for a Buy Limit Order on the NASDAQ at $24.05 to be executed until all outstanding Limit Orders on BATS-Z at $24.06 
are removed or executed. Such mechanism attains two purposes: first, it allows even the smaller venues to compute more 
effectively with the larger ones, as long as there are willing to provide a better price. Second, it guarantees that every trader will 
always receive the best price possible regardless of his target venue. In fact, a Market Order will be always automatically re-
directed to the venue offering the best price if that does not match the venue it was submitted to. 

The implementation of Rule 611 can result in an interesting consequence: it extends the price 

priority rule across trading venues. In fact, if after the submission of my Limit Order a new, 

more aggressive one is submitted on another venue, its effect on the priority of my order will 

be the same as if this new order had been submitted on my own venue. This, in essence, 

creates one large queue for each side of the book across the entire Market System since Rule 

611 aggregates the orders submitted on all trading venues. This implies that the overall position 

of a Limit Order will now depend from the distribution of Limit Orders on all trading venues and 

not only from the shape of the venue where my order resides. One important clarification is in 

order: even though Rule 611 extends the price priority across trading venues, the same is not 

true for time priority. If two Limit Orders are submitted at the same price but on different 

trading venues, it will not matter which one was submitted first: time priority will always only 

apply to those Limit Orders that are submitted at the same price and on the same venue. What 

this implies is that when looking across venues in order to better understand the placement of 
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an order in the overall queue, one has only to consider those orders that are submitted at 

prices that are more aggressive than the order’s limit price. 

3 Literature Review 
 

The scope of our research, calls for reviewing those areas of market micro-structure that are 

relevant to market fragmentation, to the interaction between trading venues and to the issue 

of fast and slow trading.  

The increased competition resulting from the implementation of Reg-NMS brought an 

explosion of trading venues leading to today’s fragmented market with over 30 lit venues. 

These venues differ in terms of trading rules, pricing structure for posting and removing 

liquidity and for the level of pre-trade transparency while competing on execution speeds, 

system latencies and order types. This proliferation of venues has, apparently, brought several 

improvements to the equity markets:  O’Hara and Ye (2011) find that a higher degree of market 

fragmentation results in lower transaction costs and shorter execution times and that prices 

appear to follow more closely a random walk, suggesting that the market has become more 

efficient. Boehmer and Boehmer (2003) find that after the NYSE started trading ETFs listed on 

the American Stock Exchange there has been a substantial decrease in trading costs across 

market centers and a considerable increase in quoted depth as a result of declined estimated 

price impact of trades. Hendershott and Mendelson (2000) demonstrate that the addition of an 

alternative trading venue reduces inventory risk, narrows spreads and attracts new liquidity 

which allows to increase liquidity-based order flow and, in the case of fundamental, value-

based information trading, provides another venue for informed trading for individual dealers. 
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Foucault and Menkveld (2008) find that the entry of a new trading venue increases 

consolidated limit order book depth enhancing liquidity supply while Fong, Madhavan, and 

Swan (2001) find positive effects on trading costs for large Australian stocks when executed off-

exchange. Finally, a number of earlier empirical work also find positive effects of fragmentation. 

Most notably, Battalio (1997) finds that spreads narrowed on the NYSE after a major third 

market broker, Bernard L. Madoff Investment Securities, started trading. 

Yet other empirical research contradicts those findings. Bennett and Wei (2006) find that order 

flow becomes consolidated when stocks switch from a dealer market, NASDAQ, to an exchange, 

NYSE, and that the post switching improvements of market quality are directly related to the 

degree of order flow fragmentation on the NASDAQ. Gajewski and Gresse (2007) find reduced 

trading costs when moving to a more consolidated market while Amihud, Lauterbach and 

Mendelson (2003) test the value effect of consolidation and find that the liquidity of the stock 

improves after consolidation of trading on the Tel-Aviv Stock Exchange. In addition, a number of 

earlier theoretical papers have shown results in favor of consolidation. Chowdry and Nanda 

(1991) argued that adverse selection costs increased with the number of markets trading a 

given asset. Pagano (1989) demonstrated that equilibrium with multiple venues is inherently 

unstable as traders eventually gravitate towards the venue with more liquidity and Madhavan 

(1995) found that dealers can benefit from fragmentation by being less competitive and that 

informed and large traders could benefit by being able to hide their trades.  

However, even if the fundamental issue of how market fragmentation affects market quality is 

still debated, and even if we account for a number of potential venue consolidations in the near 

future (going beyond those observed this far of BATS and Direct Edge or ICE and NYSE in 2013) 
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or the introduction of new federal regulation aimed at consolidating the market (as recently 

declared by SEC Commissioner Dan Gallagher, http://www.cnbc.com/id/102050921), a 

fragmented market with several points of entry appears to be the new standard in the US 

equity market.  

A growing yet still very limited body of literature addresses the issue of the interaction between 

trading venues. Significant empirical evidence suggests that sophisticated investors employ 

cross-venue trading strategies in order to maximize their execution probabilities and minimize 

trading costs. Cont and Kukanov (2013) show that, market participants consider order flow 

characteristics and queue size on all trading venues when making their order routing decisions. 

Moreover, they find that traders have the tendency to place, across multiple exchanges, more 

orders than they need to fill and argue that such strategy is aimed at reducing the risk of non-

execution. van Kervel (2015) shows that cross-venue strategies create highly interlinked 

markets since trades on one venue are followed by sizeable cancellations of limit orders on 

competing ones. These cancellations are explained in a simple model of competition between 

two limit order markets with fast and slow traders. O’Hara (2015) crafts a careful analysis of 

market microstructure since the high frequency trading revolution, which developed in parallel 

to the process of trading automation that has followed the introduction of Reg-NMS and brings 

up the issue of the effect of sophisticated cross-venue trading strategies on the interpretation 

of market data and, more importantly, of the information content of some well-established 

measures of market performance. The evidence points to the fact that events occurring on one 

venue can be the result, or the determinants, of events occurring on other venues which 

http://www.cnbc.com/id/10000893
http://www.cnbc.com/id/102050921
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suggests that studying the interaction in order flow across venues can help us better 

understand how market participants interact  in a fragmented market environment.  

Finally, a number of recent theoretical and empirical studies investigate the coexistence of fast 

and slow traders on lit venues. Baldauf and Mollner (2015) study the consequences of high 

frequency trading in a multi-venue framework and find that the ability of fast traders to 

anticipate orders from other market participants reduces the incentive to carry out costly 

information acquisition about the fundamental value of an asset. This, in turn, leads to less 

information available to incorporate into prices, which hurts the price discovery function of lit 

venues. Hoffman (2014) finds that the ability by fast traders to revise their limit orders soon 

after the arrival of new information allows them to reduce the risk of being picked off by an 

informed trader and increases trading. On the other hand, their presence also induces slow 

traders to strategically submit limit orders with a lower execution probability, which can 

actually reduce trading and hurt social welfare. In van Kervel (2015) the author develops a 

simple model of competition between two limit order markets with fast and slow traders and 

finds that the presence of fast traders prompts market makers to reduce liquidity supply on all 

venues which results in highly interlinked markets. In these studies it is assumed that the two 

types of traders differ in their reaction speed to the release of new information and that fast 

traders are able to trade on multiple venues while slower ones are either unable to do so or are 

unable to do so successfully. 
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4 Data  
 

4.1 Sample Summary Statistics 
 

In order to select our sample, we perform a double sort based on equity market capitalization 

and volatility1 of all domestic common stocks with primary listing on the New York and NASDAQ 

exchanges. We then obtain a one hundred stocks sample by taking one stock for each decile of 

the sort, resulting with fifty-four stocks with primary listing on the NASDAQ and forty-six on the 

NYSE. In our empirical analysis, however, we drop all stocks that have average price below $2, 

resulting in a final sub-sample of eighty-five stocks. The sample period is the twenty trading 

days of January 2011 and we collect data from four major US exchanges: BATS-Z (the main BATS 

exchange), EDGE-X & A and NASDAQ. The data was purchased from a low latency data vendor 

and the choice of venues was dictated by the sellers’ availability.  

Our dataset contains almost every message generated by each exchange and Table 1 presents a 

summary of the types of messages that are reported. The only message that is not included is 

the one reporting the submission of a hidden limit order. Given that our dataset is comprised of 

a time-stamped sequence of almost all the messages generated by each exchange, we are able 

to rebuild completely the visible portions of the four limit order books. Whenever a new limit 

order is submitted, it is reported in our dataset with a "B" if it is a buy order and "S" if it is a sell 

one. If an outstanding order is cancelled, it is reported as a “D” for a full cancellation and as a 

“C” for a partial one. On the other hand, if the outstanding order is executed, it will be reported 

                                                           
1 Equity market capitalization and volatility are computed based on monthly data for 2010 collected from the CRSP 
dataset.  
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as an “F” for a full execution and as an “E” for a partial one. For each message reported in the 

dataset, a time-stamp, precise to the millisecond, is added together with a unique order ID 

identifying the limit order affected by the message. When a newly submitted limit order is 

marketable, it is matched (fully or in part) against (one or multiple) outstanding limit orders and 

a message of partial or full execution is generated. If, however, the limit order is not 

marketable, a new order submission message is generated specifying the side (buy or sell), 

price and size of the order. When an outstanding limit order is cancelled (fully or in part) a 

cancellation message is generated specifying the order being removed. Even though the 

submission of a partially or completely hidden order is not reported in our dataset, a message 

reports when a marketable limit order is executed against a hidden one, event reported in our 

dataset with a "T". In our analysis we will only use messages that are generated during regular 

trading hours and we will only investigate those limit orders that are submitted at the top ten 

price levels of the limit order book.  

Exchange Generated Message Limit Order Book Event 
B Submission of visible limit order on Buy side 
S Submission of visible limit order on Sell side 
E Partial execution of visible limit order 
F Full execution of visible limit order 
C Partial cancellation of visible limit order 
D Full cancellation of visible limit order 
T Execution of hidden limit order 

Table 1: List of Messages Generated on Each Exchange. The dataset contains almost every messages generated on each 
exchange, with the only exception of the submission of a hidden order. Each event has a timestamp, precise to the millisecond, 
and a unique order ID that specifics the order that it refers to. 

In Table 2 we present some summary statistics for the stocks in our sample. We do not resort to 

any sampling, but rather use the entire messaging data. By construction, there is large variation 

in market cap, with values ranging from $18m to $326b and with average value of $29.1b. 

Similarly, stock price also shows considerable variation with the cheapest stock in our sample 
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having an average closing price of $2.1 while the most expensive one $494.12. The average 

turnover, defined as the ratio of traded shares out of all outstanding, is 28% but we also include 

stocks with very low and very high turnover ratios (respectively, 1% and 133.6%). In the lower 

panel of Table 2, we look at the extent of order flow fragmentation, which allows me to get a 

better idea of the variation in market share of each venue across stocks.  

 Mean Median SD Min Max 
Stock Characteristics      
Market Cap ($mln) 
 

29,127 2,059 59,822 18 325,931 

Price ($) 
 

31.52 16.82 60.68 2.10 494.12 

Turnover (%) 
 

28 21 27 1 134 

Volatility 0.20 0.14 0.19 0.04 1.06 
Order Flow Fragmentation     
Executions (Percentages)     
EDGE-A  
 

9.5 8.4 7.8 0 38.2 

EDGE-X  
 

17.3 13.6 11.1 5.1 55.1 

NASDAQ  
 

52.4 52.6 11.4 24.2 78.1 

BATS – Z  20.8 22.2 9.5 1.0 37.1 
Submissions (Percentages)     
EDGE-A  
 

9.3 9.2 7 0 27.9 

EDGE-X  
 

11.3 10.4 5.4 1.3 27.5 

NASDAQ  
 

57.2 55.9 15.4 18.6 98.1 

BATS – Z  22.3 24.3 9.4 0.6 63.7 
Table 2: Sample Summary Statistics. In the upper panel we present the sample distribution of market cap (in $billions), price (in 
US dollars), turnover (measured as the ratio of traded shares out of all outstanding) and volatility (measured as the standard 
deviation of monthly returns). The data necessary to build this portion of the table was collected from COMPUSTAT and CRISP 
for years 2009 and 2010. In the lower panel, we show the sample distribution of order flow fragmentation across venues, 
measured as the percentage of executions or submissions occurring on each venue out of total. This portion of the table was 
built using all the messages in our sample period of January 2011.  

The NASDAQ appears to be the dominant exchange for both executions and new order 

submissions as, on average, we see that every other execution (52.4% of market share) and 



22 
 

new order submission (57.2% of market share) occurs on it. BATS-Z is a distant second with, 

around, one execution or new order submission every five (respectively, 20.8% and 22.3% of 

market share). Not surprisingly, EDGE-A (the only inverted pricing2 venue in our sample) has, on 

average, a very small market share confirming the niche role played by venues utilizing this type 

of fee and rebate structure. 

We will now summarize the Limit Order Book characteristics of the stocks in our sample: in the 

specific, we will look at the level of market activity and outstanding depth imbalance. In fact, 

given our ultimate goal of studying the cancellation determinants of fleeting orders, it is clear 

that we will be working on a microstructure level and, hence, it is important to verify that our 

sample is representative of a wide range of microstructure behaviors.  

In the upper panel of Table 3, we present the distribution of the average number of trades per 

day on each trading venue for the stocks in our sample. Once again, we see a fair degree of 

variation suggesting that the sample includes both very heavily traded stocks, with a maximum 

average number of daily trades of almost 20,000, and not very active ones, that average only a 

handful of executions per day. Consistent with the results reported in the lower panel of Table 

2, we see that the NASDAQ is the venue that has the largest number of trades: the most 

actively traded stock in our sample reports almost 20,000 trades every day on the NASDAQ 

while on BATS-Z the most actively traded stock has only about 9,000. If we look at the mean or 

median number of trades per day, we see that, once again, the NASDAQ is the venue were 

                                                           
2 An inverted pricing venue is a venue on which market participants are charged a fee when posting a limit order 
and collect a rebate when removing it. Their name is due to the fact that most venues implement the opposite fee 
and rebate structure, paying a rebate for order submissions and collecting a fee for their removal.  
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most of the trades occur. BATS-Z is a fairly distant second with about half the executions 

reported on the NASDAQ while the two EDGES, combined, have a similar number of trades to 

that of BATS-Z. 

Another way of characterizing the level of market activity for the stocks in our sample, is to look 

at the number of limit order book modifications that occur during a trading day. Such approach 

gives a more complete view of limit order book dynamics than that obtained by simply looking 

at the number of trades report during a day. The results for the average number of daily 

messages generated on each exchange are presented in the lower panel of Table 3. Once again, 

we see that some of the stocks in our sample are considerably more active than others, with an 

average daily number of messages that ranges from 0 to over 600,000. Moreover, consistent 

with what was seen those far, the NASDAQ is still the venue with the largest average daily 

number of limit order book modifications, 117,837, while EDGE-A is the one with the smallest 

one, only 28,049. It is also interesting to point out that the results in Table 3 suggest that our 

sample includes a stock that is not at all traded on EDGE-A.   

We now investigate whether there is any systematic imbalance between the Bid and Ask sides 

during our sample period. The results in Table 4 present the summary statistics for the depth 

available to traders on each venue for the two sides of the Limit Order Book. In the specific, we 

look at the time-weighted average aggregate value, in US dollars, of all the outstanding limit 

orders on the Bid (Ask) side at prices between the mid-point and the mid-point minus (plus) ten 

basis points. 
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 Mean Median SD Min Max 
Trades      
EDGE-A 
 

1,026 169 1,664 0 6,902 

EDGE-X 
 

1,149 191 1,777 0.31 7,991 

NASDAQ 
 

2,983 785 4,023 4 19,465 

BATS – Z 1,830 415 2,570 0.05 9,064 
Limit Order Book 
Events 

     

EDGE-A 
 

28,049 7,260 49,168 0 307,081 

EDGE-X 
 

35,461 5,950 55,940 5 245,862 

NASDAQ 
 

117,837 34,348 147,898 263 603,896 

BATS-Z 61,310 14,371 89,679 0.3 451,881 
Table 3: Limit Order Book Sample Summary Statistics. The upper portion of the table presents the summary statistics for the 
average number of trades reported each day on each venue for the stock in our sample. The lower portion of the table, 
presents the distribution of the average number of limit order book events generated one each venue. Looking at the number 
of messages generated by each stock on each venue, as opposed to only counting the number of executions, allows for a more 
complete picture of the level of activity for the stocks in our sample. 

The choice of ten basis points guarantees that only depth that is close to the mid-point is 

considered which assures that we only consider the most relevant price levels. This is important 

as depth far away from the best bid and ask is very unlikely to get executed and hence it is of 

little interest to traders. Moreover, the choice of time-weighting the aggregate values further 

helps to give an idea of the true depth available to traders without giving too much importance 

to phantom liquidity that cannot be effectively accessed by most traders. Based on these 

requirements we have developed the following measures of liquidity for the two side of the 

book and for each one of the N trading venues.  

If we define 𝑃𝑃𝑗𝑗  with 𝑗𝑗 = 1, 2, … , 𝐽𝐽 the price grid of prices available within 10 basis points from 

the mid-price, 𝑄𝑄𝑗𝑗 as the outstanding depth available at each price level and time as the amount 

of time during which that level if outstanding depth is available in the book then for venue N  
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁 =  �𝑃𝑃𝑗𝑗,𝑁𝑁
𝐴𝐴𝐴𝐴𝐴𝐴𝑄𝑄𝑗𝑗,𝑁𝑁

𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷,
𝐽𝐽

𝑗𝑗=1

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝐵𝐵𝑡𝑡𝐵𝐵𝑁𝑁 =  �𝑃𝑃𝑗𝑗,𝑁𝑁
𝐵𝐵𝐵𝐵𝐵𝐵𝑄𝑄𝑗𝑗,𝑁𝑁

𝐵𝐵𝐵𝐵𝐵𝐵 ∗ 𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷.
𝐽𝐽

𝑗𝑗=1

 

indicate the time-weighted value, in US dollars, of all the outstanding depth within 10 basis 

points from the mid-quote on each side of the book. 

The upper part of Table 4 present the results for the Ask side, while the lower one those for the 

Bid side: the entries represent US dollars. With the exception of EDGE-X which present some 

degree of asymmetry in the depth available on the two sides of the book, with more depth 

available on the ask side, the other three venues have similar values of outstanding depth. 

Moreover, if we compare the results in Table 4 to those in Table 3, we see that the higher the 

executed volume in a venue, the higher the depth available. In fact, we can see how the 

NASDAQ, which executes twice the trades of BATS-Z has also, roughly, twice the depth 

available. A similar pattern holds when comparing BATS -Z with EDGE-X and EDGE-X with EDGE-

A. This is in contrast with the findings of van Kervel (2015) who, using data for a sample of FTSE 

1003 stocks, found that venues with a smaller share of executions offered a comparable level of 

outstanding depth to the dominant ones. 

Overall, the results in Table 2, Table 3 and Table 4 underlined the extent of the variation in our 

sample. The selected eighty-five stocks vary considerably in terms of size, volatility, price and 

turnover. Moreover, they also differ considerably in terms of market activity, measured by 

                                                           
3 The Financial Times Stock Exchange 100 Index, also called the FTSE 100, is a share index of the 100 companies 
with the highest market capitalization on the London Stock Exchange.  
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either the daily number of executions or, more completely, by the daily number of limit order 

book modification. 

Depth Ask  Mean  Median SD Min Max  
EDGE-A 
 

96,107 37,232 151,254 3,740 477,241 

EDGE-X 
 

232,785 172,210 233,030 6,564 642,507 

NASDAQ 
 

599,704 391,232 624,766 22,088 1,841,260 

BATS – Z 250,377 228,665 247,364 16,624 793,033 
Depth Bid       
EDGE-A 
 

143,624 42,343 185,282 3,782 485,634 

EDGE-X 
 

188,801 99,655 195,172 7,036 545,765 

NASDAQ 
 

572,210 403,318 587,792 21,686 1,712,756 

BATS – Z 236,487 195,753 248,975 7,888 803,096 
Table 4: Summary of Outstanding Limit Order Book Depth. This table presents the results for the time-weighted average 
aggregate value (in US dollars) of all the Limit Orders submitted within ten basis points from the mid-quote. Such choice for the 
cut-off value allows us to correctly represent only the depth that is of interest to traders as limit orders that are deep in the 
book are unlikely to be executed, hence are of limited interest. Moreover, by computing a time-weighted average, rather than a 
simpler arithmetic one, we make our measure resistant to possible short-lived peaks of phantom liquidity that cannot be 
effectively accessed by traders. 

However, our preliminary findings also show some remarkable differences between the four 

trading venues. The NASDAQ is the dominant exchange in terms of executions and new order 

submission and it is also considerably more active than other venues. On the other hand, EDGE-

A, the only inverted pricing venue, is the smallest and least active one in our sample. Given the 

extent of the variation across exchanges reported in these first results, and in light of the 

objective of our study, we will dedicate the remainder of this section to further investigate the 

key differences between the four venues in our sample.  

First, we look at the cancellation statistics across trading venues since they allow to understand 

whether venues differ considerably in terms of market quality. In fact, a common measure 

used, and mandated by the SEC, to evaluate the quality of the liquidity provided by an exchange 
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is the cancellation rate, defined as the ratio of Limit Order cancellations to the total number of 

Limit Order submissions. The intuition behind this is that a high cancellation rate signifies that a 

high proportion of Limit Orders is cancelled rather than executed. This suggests that it is not 

possible to trade against a high proportion of limit orders, which, in turn, implies that the 

liquidity provided on that exchange cannot be relied upon. The results in Table 5 show how, on 

average, there is very little variation in the cancellation rates across the four venues. Consistent 

with the findings of Hasbrouck and Saar (2009), we see that the vast majority of Limit Orders is 

cancelled. We find that the overall cancellation rate across is 95% with little variation. These 

findings are not surprising and support the commonly held belief that liquidity dynamics can 

change dramatically in a very short period of time.  

 EDGE.A EDGE.X BATS.Z NASDAQ Total 

Submitted LO 

 

24,493,611 30,752,292 52,498,530 99,175,346 206,919,779 

Cancelled LO 

 

22,743,830 28,845,117 49,643,881 94,478,106 195,710,934 

% of cancelled LO 
 

93% 94% 95% 95% 95% 

% of total cancellation 
on each venue 

12% 15% 25% 48% 100% 

Table 5: Cancellation Rates. This table presents the total number of Limit Order submissions and cancellations reported on each 
exchange. It further presents the cancellation rates for each venue, defined as the proportion of cancelled Limit Orders out of 
the total of all orders submitted. In the last row of the table, we present the percentage of cancellations on each venue out of 
the total.  

Second, we look at the difference across trading venues in terms of the cost of trading. In fact, 

as documented in a recent study by Battalio, Corwin and Jennings (2016), traders do take into 

consideration the fee and rebate structure of an exchange when executing their trading 

strategies. Hence, it is important to know whether any such differences exist in our sample.  
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The fee and rebate structure of a trading venue determines the cost of trading and therefore 

will determine the profitability of trading strategies. One of the ways in which the exchange 

generates its revenue is by charging fees to those who want to trade on them while, one of the 

ways in which it attracts market participants and increases its market share, is offering a rebate 

on the Limit Orders. The difference between the fees charged and rebates paid is the profit 

made by the exchange. Such pricing model is called “Maker-Taker4” and the rationale behind it 

is that traders who use Market Orders, usually, want to trade as fast as possible and with as 

little price impact as possible. Hence, such traders will prioritize trading on those exchanges 

that can offer the most liquidity at the best prices and, presumably, traders are willing to pay 

for such opportunity. Charging a fee for removing liquidity via a Market Order, also allows the 

exchange to offer a rebate for traders who send Limit Orders their way. This inflow of Limit 

Orders allows the exchange to build its liquidity and, as a result, become more desirable to 

traders who need to trade. Even though the “Maker-Taker” pricing model is the dominant one 

as is used by the vast majority of trading venues, there exist an interesting alternative: the 

“Inverted-Pricing” model. As the name suggests, such model uses an inverted pricing system, 

which means that those who send a Market Order to an “Inverted-Pricing” venue will be paid a 

rebate while those who submit a Limit Order will be charged a fee. The idea behind such pricing 

model is that offering a rebate for every Market Order should make that venue considerably 

more appealing to traders who choose the target venue for their Market Orders. On the other 

hand, if the ultimate purpose of a Limit Order is execution, a Limit Order submitter might view 

                                                           
4 The name “Maker-Taker” refers to the fact that the market participant who “makes” the market by submitting his 
Limit Order receives a rebate, while the one who “takes” from the market with his Market Order will have to pay a 
fee. 
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favorably a trading venue that he knows is preferred by Market Orders submitters as such 

venue would offer him a higher chance of meeting a counterparty. Only a handful of “Inverted-

Pricing” venues exist in the US and they have a very small market share compare to the venues 

that use the regular “Maker-Taker” pricing model. 

Table 6 summarizes the fee and rebate structure for the four venues in our sample. During our 

sample period, January 2011, NASDAQ and EDGE-X are the venues that charge the most for 

removing liquidity: respectively, $0.0030 and $0.0029 per share. On the other hand, BATS-Z is 

the venue that charges the least for removing liquidity, with only $0.0025 per share. BATS-Z is 

also the venue that offers the highest rebate when submitting a limit order, $0.0024 per share 

while, the NASDAQ offers the lowest one, paying only $0.0010 per share. If we now look at 

EDGE-A, we see that it is a clear example of an “Inverted-Pricing” venue since removing liquidity 

from this venue results in a rebate of $0.0002 while posting a new Limit Order requires the 

payment of a fee of $0.0030. In essence, out of the three venues with a standard maker-taker 

fee structure, NASDAQ is the least attractive one while BATS-Z is the most attractive. 

 It is also interesting to point out how the fee and rebate structure of a venue can change 

during the lifetime of the trading venue. For example, for EDGE-X we see that in January 2010, 

it used to charge a fee for posting a hidden order yet, 10 months later, it switches to paying a 

rebate when doing so. Other, smaller adjustment are also pretty common with the 
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 EDGE – A EDGE-X NASDAQ BATS – Z 

01/01/2010 
1. Posting Hidden: -0.0030 
2. Posting Visible: -0.0002 
3. Removing: 0.0002 

1. Posting Hidden: -0.0030 
2. Posting Visible: 0.0029 
3. Removing: -0.0029 

1. Posting Hidden: 0.0010 
2. Posting Visible: 0.0020 
3. Removing: -0.0030 

1. Posting Hidden: 0.0020 
2. Posting Visible: 0.0024 
3. Removing: -0.0025 

     

09/30/2010 No Change  
1. 0.0026 
2. 0.0026 
3. -0.0030 

No Change  No Change  

     

10/5/2010 
1. -0.0030 
2. -0.00025 
3. 0.00015 

No Change  No Change  No Change  

     

10/29/2010 No Change  No Change  No Change  
1. 0.0020 
2. 0.0027 
3. -0.0028 

     

3/1/2011 No Change  
1. -0.0030 
2. 0.0023 
3. -0.0030 

No Change  No Change  

     

7/1/2011 No Change  No Change  No Change  
1. 0.0017 
2. 0.0025 
3. -0.0029 

     

7/27/2011 
1. -0.0030 
2. 0.0005 
3. -0.0006 

No Change  No Change  No Change  

     

9/30/2011 
1. -0.0030 
2. 0.0004 
3. -0.0007 

1. 0.0015 
2. 0.0023 
3. -0.0030 

No Change  No Change  

Table 6: Fee and Rebate Structure Across Venues. All prices are in USD per share traded. Negative values represent fees charged while positive ones are rebates paid by the 
exchange. The term “Posting Hidden” refers to the action of submitting a hidden limit order; “Posting Visible” refers to the submission of a visible limit order while “Removing” 
refers to the action of removing a limit order, hence refers to the action of submitting a market order. Exchanges implement a tiered pricing structure in which better clients 
receive better pricing. Better pricing usually means lower fees and higher rebates but, occasionally, can also mean that a client will receive a rebate instead of paying a fee. The 
prices reported in this table represent the lowest tier in the pricing structure for each venue, which is the least competitive one offered to their clients. 
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NASDAQ being the only exception and not changing at all its fee and rebate structure during 

the two year period covered in our dataset. One final remark is about the prices stated in Table 

6. Every exchange implements a tiered pricing model, where better clients get better pricing. 

Better pricing, usually, means that the client will pay a lower fee or will receive a higher rebate. 

Sometime, however, better pricing can mean that a trader will actually receive a rebate instead 

of paying a fee and vice versa. An example of such case is EDGE-A: based on the information 

provide in Table 6, it would appear that on 7/27/2011, this venue switched from an “Inverted-

Pricing” model to a classic “Maker-Taker” model. However, upon closer analysis, we observe 

that such pricing is available only for the lowest tier of customers. The better ones, are still 

treated with the previous fee and rebate structure and receive a rebate when removing 

liquidity and need to pay a fee when posting it. Different venues use different criteria to rank 

their clients but, in general, a client that sends a large number of Limit or Market Orders during 

a trading day is rated higher. Sometime restrictions apply in terms of how long do the Limit 

Orders need to stay in the book or how aggressively priced they must be in order to qualify for 

a certain tier but, in general, a client with more orders gets better pricing. The same is true for 

the case of EDGE-A in our sample: in fact, even though the lowest tier implies a classic “Maker-

Taker” fee structure, attaining a better pricing tier is extremely simple on this venue and is 

possible even with the submission of a very limited number of orders. Hence, it is critical to 

clarify that the prices provided in Table 6, are those for the lowest tier possible, hence they 

represent the worst-case scenario for a trader on each of these venues, when he has to pay the 

highest fee or he receives the lowest rebate. 
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4.2 Fleeting Liquidity Summary Statistics 
 

We begin now to analyze the fleeting liquidity present in our sample and we do so by means of 

empirical survival analysis. Table 7 and Figure 5 present the estimated cumulative cancellation 

and execution probabilities for the stocks in our sample and are generated by pooling together 

all of the non-marketable limit orders for the eighty-five stocks. Consistent with what was 

observed in previous studies, a large number of limit orders is cancelled within a very short 

time period since submission. We observe that 44.2% of all submitted limit orders are cancelled 

within one second of submission with the percentage increasing up to 52.8% if we consider the 

cancellations within the first two seconds.  

 Cumulative Probability of 
Time Cancellation Execution 
1 milliseconds 3.7% 0.1% 
10  14.8% 0.6% 
50  21.7% 1.1% 
100  26.3% 1.3% 
500  41.1% 2.3% 
1 seconds 44.2% 2.9% 
2  52.8% 3.8% 
10  71.2% 7.7% 
1 minutes 88.3% 15.1% 
2  92.5% 18.6% 
10  97.9% 26.7% 
1 hours 99.6% 35.7% 

Table 7: Cancellation and Execution Rates of Limit Orders. This table presents the estimated cumulative probabilities of 
cancelling and executing a limit order within a given time interval after submission. The survival function is estimated using the 
life-table approach using all non-marketable limit orders for each of the 85 stocks in our sample. Moreover, in the estimation 
for the cancellation (execution) process, executions (cancellations) are taken to be the censoring events. 
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Figure 5: Cancellation and Execution Rates of Limit Orders. This figure presents the estimated cumulative probabilities of 
cancelling and executing a limit order within a given time after submission. The survival functions are built using all non-
marketable limit orders in our sample of eighty-five stocks and is estimated using the life-table approach. Moreover, in the 
estimation of the cancellation (execution) process, executions (cancellations) are taken as censoring events. 

This results show how markets have become considerably faster since the findings of 

Hasbrouck and Saar (2009). In fact, in that study 29.6% (36.9%) of all limit orders were canceled 

within one (two) seconds of submission. This suggests that fleeting liquidity has now become 

even more present in today’s equity markets and confirms the importance that market 

participants place on speed when submitting and cancelling their order flow. The probability of 

an execution within an hour of submission is 26.7%, which is considerably lower than the 56.8% 

observed by Hasbrouck and Saar (2009). This indicates that either executions have become 

rarer than in the past or that execution times have now gotten considerably longer. However, 

in either case, the cancellation and execution results presented in Table 7 and in Figure 5 

support a commonly held belief that, in recent years, markets have experienced an increase in 

submissions and cancellations but not in executions. Regulators and industry practitioners alike 

have been pointing out to the fact that limit order book events seem to be driven by other limit 
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order book events rather than by events that alter the true value of the underlying asset. Such 

behavior, they argue, is against the fundamental role of financial markets that is providing and 

taking liquidity and does not bode well for the future of equity markets. 

Given the increase in cancellations reported in Table 7 and in Figure 5, and in order to select and 

define as fleeting orders those orders that today resemble the most those studied in Hasbrouck 

and Saar (2009), we define a limit order as fleeting if it is cancelled within one second of 

submission rather than two. However, at times we will use the two-second classification as 

well, in order to make our result more directly comparable to those of Hasbrouck and Saar 

(2009).  

We now study the submission patterns of the two types of limit orders, fleeting and not, and 

present in Table 8 their distribution across price levels for both one and two seconds limit: the 

entries in parenthesis represent the results for the two second cut off value, while the others, 

those for the updated value of one second. we find that 48.8% of all limit orders is cancelled 

within two seconds of submission while 45.5% is cancelled after more than two seconds. This 

implies that, overall, 94.3% of all limit orders is cancelled and that only 5.7% is executed. In 

contrast, Hasbrouck and Saar (2009) report a smaller overall cancellation rate of 92.3% and find 

that fleeting orders make up only 36.69% of the entire order flow. Moreover, they find that 

non-fleeting orders make up 56.24% of the total. Our results, once again, point to the fact that 

today’s equity markets are considerably faster than before and are consistent with the results 

from the empirical survival analysis study reported in Table 5 and in Figure 5. Moreover, they 

suggest that not only execution rates have become lower than before but also that execution 

times have now become considerably longer. This confirms the trend of increased market 
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activity, if measured by the number and frequency of submission and cancellation, but not if 

measured by the number of executions.  

 Cancelled Limit Orders 
 Fleeting Orders Non-Fleeting Orders 
Percentage of Orders in Category (relative to all limit orders) 44.2% (48.8%) 50.1% (45.5%) 
Relative to same-side BBO at submission   
Price Improving 10.9% (10.8%) 5% (4.8%) 
At BBO 53.9% (52.2%) 33.9% (32.5%) 
Top 5 27.3% (28.5%) 39.1% (39.9%) 
Top 10 4.4% (4.8%) 12.9% (13.3%) 
Behind Top 10 3.4% (3.7%) 9.1% (9.5%) 
Total  100% (100%) 100% (100%) 

Table 8: Submission Patterns of Cancelled Limit Orders. In this table, we distinguish between two types of limit orders: those 
that are cancelled within one second of submission (“fleeting orders”) and those that are cancelled after one second (“non-
fleeting orders”). However, in order to allow for a direct comparison of our findings to Hasbrouck and Saar (2009), we provide 
in parenthesis the results when using the two seconds cut off value. The first line of the table presents the sample average for 
the proportion of limit orders belonging to each category (out of the totality of all limit orders submitted). In the remaining 
portion of the table, we describe the submission statistics for orders belonging to each relative price level. Orders that are 
submitted at prices that are better (higher on the bid side and lower on the ask side) than the best price are called “Price 
Improving”. Those that are submitted at the best price are called “At BBO”; those orders that are submitted between the 
second best and the fifth best relative price are called “Top 5”, while those that are submitted between the sixth and tenth best 
relative price are called “Top 10”. Finally, orders submitted beyond the tenth best relative price are called “Behind Top 10”. 

Another interesting difference from previous studies is how the fleeting orders distribute across 

relative prices. As reported in Table 8, only 10.9% of all fleeting orders are submitted at prices 

that are better, higher for the bid side and lower for the ask side, than the quoted best. This is 

much lower than the 35.39% observed in Hasbrouck and Saar (2009) and suggests that even if 

the signaling hypothesis is correct, it can only explain a small portion of the entire fleeting order 

flow. The remainder of the fleeting orders is split between those submitted at the best price, 

53.9%, and those submitted deeper in the limit order book, 35.1%. Compared to the findings in 

Hasbrouck and Saar (2009), who report, respectively, 34.7% and 29.9% of fleeting orders at the 

best price or in the deeper portion of the book, it can be noted that today there is considerably 

more fleeting liquidity at the best price but considerably less at the most aggressive, price 

improving price levels. It is also interesting to observe that regardless of the cutoff value used 
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to classify a fleeting order, there is little variation in the distribution of orders across relative 

prices. This suggests that both values can be used to correctly distinguish a fleeting order from 

a non-fleeting one (hence, a limit order submitted by a fast, impatient trader from the rest of 

the order flow) and that our choice of updating the cutoff value from two seconds to only one 

should not affect the rest of the analysis. Overall, the results in Table 8 confirm the extent of 

the changes in equity market and point to the fact that it is necessary to develop a more 

general explanation for fleeting liquidity, as the signaling hypothesis can provide only a partial 

explanation. The results also suggest that a cutoff value of one second can be used to correctly 

identify, in our data, those orders that are submitted by fast, impatient traders, and support 

our claim that even with this updated cut-off value we are still able to directly relate our 

findings to those in Hasbrouck and Saar (2009). 

In conclusion, preliminary findings show that equity markets have become considerably faster 

in recent years. The activity in the limit order book has increased considerably but the level of 

executions has not: the overall proportion of limit orders that attain execution has decreased 

and the execution times have gotten considerably longer. We also find that today fleeting 

liquidity has become an even more relevant component of the entire order flow and argue that 

its present submission patterns call for a careful study of its possible causes since previous 

hypothesis are not able to fully explain this. Finally, the results in Table 5, Figure 5 and Table 8 

suggest that in today’s equity markets, time is even more compressed and that a cut off value 

of one second is more appropriate in order to identify the order flow generated by fast, 

impatient traders. 
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5 Signaling Hypothesis 
 

We begin our empirical study of fleeting liquidity with a test of the signaling hypothesis 

proposed by Hasbrouck and Saar (2009) which suggests that the fleeting liquidity submitted 

inside the spread serves a signaling purpose. In fact, the authors argue that due to market 

fragmentation there is a co-ordination problem between those traders looking for hidden 

liquidity inside the spread and those willing to submit it but uncertain about the target venue. 

They believe that fast, impatient traders may want to signal to other market participants the 

venue in which they are searching for hidden liquidity to attract more attention to that venue. 

However, the authors do not test their hypothesis and just state that it is consistent with the 

observed limit order submission patterns. However, it is unclear whose attention are the fast 

traders trying to get, as normal traders would not be able to notice a signal based on limit 

orders that stay in the limit order book for only a few seconds while fast (silicon) traders would 

not need that much time in order to notice it and react to it.  

We provide a test for this hypothesis by investigating the relation between fleeting order 

submissions and the submission of hidden orders inside the spread. Given that our data does 

not provide me with the information about the submission of hidden orders, we cannot directly 

observe whether the signal is effective in attracting them. However, since fast, impatient 

traders are supposed to be signaling their intention to execute against hidden orders submitted 

inside the spread, we argue that if the signal were effective in attracting them then we would 

observe an increased number of hidden executions, which are documented in our dataset by 

the use of message “T” (see Table 1 for details). Hence, we propose that the signaling 
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hypothesis can be tested by studying the relation between the fleeting orders that are 

submitted inside the spread and the subsequent execution of hidden liquidity. 

To test this hypothesis, we look at whether the present number of hidden executions, which 

proxies for the unobservable number of hidden orders submitted inside the spread, is affected 

by the past intensity of the signal, as measured by the submission of fleeting liquidity inside the 

spread. In order to do so, we use a linear regression approach and, given the lack of consensus 

about to the time that fast, impatient traders need to react to the signal, we employ an 

aggregation time of one second. An alternative aggregation time of two seconds, consistent 

with the alternative cut-off value for the definition of a fleeting order, is used as robustness 

checks and the results are provided in Section 5.1. Also, in order to make the results over 

different stocks relatable, the number of hidden executions and that of fleeting order 

submissions are standardized by, respectively, the number of all, visible and hidden, executions 

and by the number of all, fleeting and not, limit orders submitted. Moreover, we include in our 

analysis three control variables. The first is the lag one value of hidden executions, standardized 

by the number of all, visible and hidden, executions, to control for the well documented 

persistence in hidden order executions. In fact, when hidden liquidity is discovered, other 

market participants attempt to make the most of the price improving opportunity and increase 

the aggressiveness of their order flow. The second is the number of all, visible and hidden, 

executions standardized by the number of all, fleeting and not, limit order submissions. This 

controls for overall market activity, which, as it can be easily seen, affects the number of hidden 

order executions. Finally, we control for the concurrent effect that signaling for hidden liquidity 

has on finding/executing against it. To that end, we include in our analysis the present number 
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of fleeting orders submitted inside the spread, standardized by the number of all, fleeting and 

not, limit order submissions.  

When investigating the signaling effect of fleeting liquidity on a given venue, we must also 

include in our analysis the activity on the remaining/competing ones. This is necessary to 

correctly account for market wide dynamics and for the competition across trading venues. 

Hence, in our model, we also want to account for the past and concurrent strength of the signal 

and for overall market activity on each remaining, competing venue. However, in order to 

reduce the dimensionality of the problem without losing information, we do not include in the 

model a separate set of parameters for each one of the remaining three venues. Rather, we 

aggregate executions, hidden and visible, and submissions, fleeting and not, across venues and 

compute only one set of parameters that captures the state of the competing market. We refer 

to them as the Super Book parameters.  

The resulting linear regression equation used in our analysis is of the form 

𝐻𝐻𝑡𝑡𝐵𝐵𝐵𝐵𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻𝐵𝐵,𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂 × 𝐻𝐻𝑡𝑡𝐵𝐵𝐵𝐵𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻𝐵𝐵,𝑡𝑡−1 +  𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻𝐵𝐵,𝑡𝑡 
                                  + 𝛽𝛽3𝑂𝑂𝑂𝑂𝑂𝑂 × 𝐹𝐹𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝐵𝐵,𝑡𝑡 +  𝛽𝛽4𝑂𝑂𝑂𝑂𝑂𝑂 × 𝐹𝐹𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝐵𝐵,𝑡𝑡−1 
                                  + 𝛽𝛽5

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐹𝐹.𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻𝐵𝐵,𝑡𝑡 +  𝛽𝛽6
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐹𝐹.𝐹𝐹𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝐵𝐵,𝑡𝑡 

                                                  + 𝛽𝛽7
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐹𝐹.𝐹𝐹𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝐵𝐵,𝑡𝑡−1                                                         ( 1 ) 

where 𝑡𝑡 = {𝐻𝐻𝐷𝐷𝐸𝐸𝐻𝐻 − 𝐴𝐴,𝐻𝐻𝐷𝐷𝐸𝐸𝐻𝐻 − 𝑋𝑋,𝑁𝑁𝐴𝐴𝐹𝐹𝐷𝐷𝐴𝐴𝑄𝑄,𝐵𝐵𝐴𝐴𝐵𝐵𝐹𝐹 − 𝑍𝑍} while 𝐷𝐷 − 1 indicates the lag one 

value of the variable.   

If the signaling hypothesis were correct, for each venue we would expect to observe an 

increase in hidden order executions as a result of an increase in the lag one submission of 

fleeting orders inside the spread. Moreover, the control variables should all have a positive 

effect on hidden executions. The discovery of hidden liquidity, signaled by the execution against 
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a hidden order, induces other market participants to increase the aggressiveness of their order 

flow (in an attempt to take advantage of the newly discovered price improvement opportunity) 

hence results in more executions against hidden orders. Higher market activity, measured by 

number of executions, will result mechanically in more executions against hidden orders as the 

incoming order flow of market orders executes against them. Finally, the concurrent strength of 

the signal will once again increase the number of execution against hidden orders, as the 

fleeting orders submitted inside the spread will execute against the hidden liquidity. For the 

Super Book parameters, we expect that market activity on the competing venues will also have 

a positive effect on hidden executions on the signaling venue since market activity can spill over 

across venues. On the other hand, the effect of the lag one strength of the signal should have a 

negative effect on hidden executions. In fact, if the signaling on other venues increases than the 

hidden order flow should be diverted to those venues and result in less hidden executions on 

the remaining one.  

In Table 9, we report (we) the averages of the values of the coefficients obtained by running a 

separate regression for each of the eighty-five stocks on each trading venue and (ii) the number 

of stocks that have that specific coefficient significant at a 5% level. Several interesting 

conclusions can be made from the regression results. First, on every venue, an increase in the 

past intensity of the signal results in an increase in hidden order executions. This suggests that 

the stronger the signal generated by a fast, impatient trader, the more hidden orders are 

executed after allowing for a certain reaction time. In light of our decision to use hidden 

executions as proxy for hidden order submissions (which are not reported in our data), the 

regression results suggest that an increase in fleeting liquidity inside the spread positively 
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affects the future submission of hidden orders in that same venue, consistent with the signaling 

hypothesis proposed in Hasbrouck and Saar (2009). Second, the average value for most of the 

control variables on the Own Venue are consistent with our initial predictions.  

  EDGE - A EDGE - X NASDAQ BATS - Z 
  Aver. Sig. 5% Aver. Sig. 5% Aver. Sig. 5% Aver. Sig. 5% 
Own  
Venue 

Lag 1 Hidden 
Executions 
 

0.057 58 0.039 60 0.066 71 0.077 70 

All Executions 
 0.139 68 0.145 75 0.255 76 0.302 75 

Fleeting  
Submissions 
 

-0.002 51 0.046 50 0.133 52 0.062 55 

Lag 1 Fleeting 
Submissions 0.002 25 0.018 41 0.170 33 0.026 33 

Super 
Book 

All Executions 
 0.013 62 0.013 71 0.016 62 0.058 75 

Fleeting 
Submissions 
 

0.049 56 0.017 57 0.012 58 0.046 58 

Lag 1 Fleeting 
Submissions 0.011 15 0.002 29 -0.003 25 0.020 28 

Table 9: Regression Analysis of Signaling Hypothesis. This table presents the results for the empirical study of the relation 
between hidden executions and fleeting liquidity submissions inside the spread. For each of the eighty-five stocks we run the 
four regressions described in Equation 1, one for each of the four venues available in our dataset. For each venue, we then 
report the average value of each coefficient across stocks and the number of stocks that have that coefficient significant at a 5% 
level. The model includes a set of parameters that describe the state of the signaling venue, called the Own Venue, and one for 
the Super Book, that represents the competing market. Super Book parameters are computed using aggregations of executions 
(hidden and visible) and submissions (fleeting and non) across venues. For the Own Venue parameters, Lag 1 Hidden Executions 
is the number of hidden executions divided by the total number of executions in the previous time interval. All Executions is the 
number of all executions divided by the number of all limit order submissions; Fleeting Submissions is the number of fleeting 
limit orders submitted inside the spread divided by the total number of order submissions. Lag 1 Fleeting Submissions is the 
lagged value of Fleeting Submissions. The Super Book parameters are defined in the same way as their Own Book counterparts 
but are computed by aggregating executions and submissions across venues. Hence, for example, the Super Book parameters 
for EDGE-A are computed by aggregating the executions and the submissions on EDGE-X, NASDAQ and BATS-Z.  

The only exception is the effect of the concurrent signal on hidden executions on EDGE-A. A 

possible explanation for this contradicting result is that EDGE-A is the only inverted pricing 

venue in our sample. As shown in Table 6, EDGE-A is the only venue that actually charges a fee 

when a hidden order is executed while on every other venue, a hidden order execution 

generates a rebate. This implies that, holding all else equal, EDGE-A is the least convenient 
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venue for hidden orders, implying that it might not be the most attractive target venue for this 

type of orders. The negative sign suggests that unless a signal is generated on EDGE-A, little 

hidden order flow is initially sent to this venue. Hence, posting fleeting orders inside the spread 

will not result in concurrent executions since there would not be any hidden orders to begin 

with. Third, overall market activity on the Super Book, proxied by the total number of 

executions, has a positive effect on hidden executions on the signaling venue: this is consistent 

with our initial assumption that executions will spill over across trading venues. Finally, the 

result for the lag one strength of the signal on the Super Book are definitely surprising. In fact, 

only for the NASDAQ, when the strength of the signal increases on the competing venues, this 

results in less hidden order submissions on the NASDAQ. For every other venue, when fleeting 

submissions increase on the competing market, that results in more hidden executions on the 

signaling venue as well. In order to better understand why that could be the case, and 

contradict our initial assumptions, it is important to realize that the NASDAQ is present in the 

Super Book of every trading venue, with the exception of the NASDAQ’s. Given the dominant 

role of the NASDAQ (in terms of executions and order submissions) in our dataset, this result 

can be explained in the context of competition between exchanges. If the priority for a trader 

who submits a hidden order is execution, then the NASDAQ could be the first choice when 

routing their orders since it has the largest proportion of executions (hence, the largest 

proportion of market orders that serve as  potential counter parties) out of the four venues. 

However, if other market participants signal their willingness to trade against hidden orders on 

other exchanges, then BATS-Z and EDGE-X become preferable as they offer higher rebates than 

the NASDAQ. It is important to note that if the NASDAQ is the first choice for a trader 
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submitting a hidden order, this also implies a higher competition to attain a superior queue 

placement at the top of the hidden order queue, which in turn decreases the probability of 

execution for the hidden order. This mechanism could explain the opposite coefficients for the 

past signal on the Super Book: when the non-NASDAQ venues signal to attract hidden orders, it 

results in part of the hidden order flow being diverted away from the NASDAQ, hence reducing 

future hidden order executions on that venue. On the other hand, when the signaling increases 

on the NASDAQ, hidden order submitters decide to continue to divert part of their order flow 

to other venues to try to increase their probability of execution by avoiding placing a hidden 

order in a poor position in the hidden order queue. 

In conclusion, the regression results summarized in Table 9 provide empirical evidence 

supporting the signaling hypothesis proposed by Hasbrouck and Saar (2009). This suggests that 

a co-ordination problem between traders could be behind the phenomena of fleeting liquidity 

inside the spread confirming the authors’ initial intuition: to the best of our knowledge, this is 

the first empirical test for their hypothesis. Moreover, our findings for the control variables on 

the Own Book are in line with our initial assumptions and are consistent with the extant 

literature, while those for the Super Book variables describe the competing nature of the four 

trading venues and reinforce some of the conclusions drawn from our preliminary findings in 

Table 2. 

5.1 Robustness Check  
 

Our choice of using a one second aggregation level for the empirical analysis of the signaling 

hypothesis was determined by the decision to use a one second cut off value to define a 
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fleeting order. In fact, if we assume that a fast, impatient trader needs up to one second to 

analyze and react to changing market conditions, a similar reaction time might be expected 

when assessing, and reacting to, the intensity of the fleeting liquidity signal. However, previous 

studies have hypothesized a two second cut off value in order to identify the order flow 

generated by fast, impatient traders. Hence, as a robustness check, we have re-run the entire 

empirical analysis using the alternative aggregation time of two seconds and we present our 

results in Table 10. 

  EDGE - A EDGE - X NASDAQ BATS - Z 
  Aver. Sig. 5% Aver. Sig. 5% Aver. Sig. 5% Aver. Sig. 5% 
Own  
Venue 

Lag 1 Hidden 
Executions 0.064 60 0.049 70 0.065 71 0.081 77 

All Executions 0.107 69 0.162 82 0.298 83 0.365 84 
Fleeting 
Submissions -0.005 50 0.051 58 0.035 58 0.049 61 

Lag 1 Fleeting 
Submissions 0.002 20 0.021 39 0.186 30 0.038 33 

Super 
Book 

All Executions 0.017 60 0.017 69 0.009 62 0.071 81 
Fleeting 
Submissions 0.094 61 0.030 56 0.015 56 0.074 58 

Lag 1 Fleeting 
Submissions 0.003 25 0.002 22 -0.005 18 0.018 21 

Table 10: Regression Analysis of Signaling Hypothesis: Two Second Aggregation Time. This table presents the results for the 
empirical study of the relation between hidden executions and fleeting liquidity submissions inside the spread. For each of the 
eighty-five stocks we run the four regressions described in Equation 1, one for each of the four venues available in our dataset. 
For each venue, we then report the average value of each coefficient across stocks and the number of stocks that have that 
coefficient significant at a 5% level. The model includes a set of parameters that describe the state of the signaling venue, called 
the Own Venue, and one for the Super Book, that represents the competing market. Super Book parameters are computed 
using aggregations of executions (hidden and visible) and submissions (fleeting and non) across venues. For the Own Venue 
parameters, Lag 1 Hidden Executions is the number of hidden executions divided by the total number of executions in the 
previous time interval. All Executions is the number of all executions divided by the number of all limit order submissions; 
Fleeting Submissions is the number of fleeting limit orders submitted inside the spread divided by the total number of order 
submissions. Lag 1 Fleeting Submissions is the lagged value of Fleeting Submissions. The Super Book parameters are defined in 
the same way as their Own Book counterparts but are computed by aggregating executions and submissions across venues. 
Hence, for example, the Super Book parameters for EDGE-A are computed by aggregating the executions and the submissions 
on EDGE-X, NASDAQ and BATS-Z. 

All of the coefficients for the parameters describing the effect of changes on the Own Venue 

and the Super Book have the same direction and magnitude as those in the main study reported 

in Table 9. Moreover, the number of stocks that have those specific coefficients significant at a 
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5% is, roughly, the same across the two aggregation times. It is interesting to point out that the 

results for the Super Book parameters on the NASDAQ and, in the specific, those for the Lag one 

of the strength of the signal, are also consistent with those reported in Table 9. This suggest that 

the dynamics of the interaction between trading venues are robust to the choice of aggregation 

time and reinforces our conclusions on how the fleeting liquidity submitted inside the spread 

could serve a signaling purpose. 

6 Fragmentation and Fleeting Liquidity 
 

In this section, we elaborate on our main thesis that adverse changes in the placement of the 

orders submitted by fast, impatient traders are behind the phenomenon of fleeting liquidity 

and propose a methodology to test it. We argue that fast, impatient traders, which previous 

studies have associated with fleeting liquidity, represent a subgroup of traders interested in 

attaining a quick execution. In order to attain such quick execution, their orders need to be 

placed as close as possible to the top of the Limit Order Book. However, the introduction of 

Rule 611 from Reg-NMS, discussed in detail in Section 2.3, resulted in the aggregation of all the 

Limit Orders Books across exchanges, creating one large queue for each side of the market. A 

consequence of such aggregation is that the actual placement of a Limit Order in the overall 

queue to execution does not depend anymore solely from its position in the Limit Order Book 

of the exchange where it was submitted: rather, it will also require accounting for the 

outstanding depth on all the remaining venues as well. This considerably increases the difficulty 

of correctly assessing the placement of an outstanding limit order, given that it requires to 

monitor the evolution of every trading venue in the US National Market System. However, we 
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believe that fast, impatient traders have both the financial and computational resources 

necessary to actively monitor all trading venues and correctly determine to position of their 

limit orders. Hence, we argue that fast, impatient traders react to changes that occur on all 

trading venues, when these result in a worse queue placement for their orders. This suggests 

that the determinants of fleeting liquidity should be looked for in events that occur on venues 

other than the one where the orders are submitted. 

In the spirit of Ranaldo (2004) and Hasbrouck and Saar (2009), we look at the cancellation 

determinants of fleeting orders through a logistic regression5 model. In order to test our 

hypothesis, we evaluate two nested regression models: in the first model, called the partial 

model, we study the cancellation determinants by using solely variables that describe the 

change in the state of the limit order book in which the order is submitted. In the second one, 

called the full model, we add a matching set of variables that describe the change in the state of 

the other trading venues as well. If our assumption is correct and fast, impatient traders do 

monitor the state of all trading venues, then we would expect a significant improvement in the 

goodness of fit from the partial model to the full one. 

6.1 Variable Definition  

The predictor variables (determinants) used in our study reflect our focus on understanding 

how fast, impatient traders react to events that alter the placement of their limit orders. Our 

approach is to follow the changes in the key features of the order book during the lifetime of 

the order, hence between its submission and ultimate cancellation or execution. To begin with, 

                                                           
5 For a detailed explanation of the methodology we recommend the excellent book “Applied Logistic Regression” 
by Hosmer, Lemeshow and Sturdivant (3rd Edition, April 2013). 
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we will look at changes in the relative price of the order. The relative price of an order identifies 

the distance of the limit order from the best price. If, for example, a limit order is submitted at 

the best price, the highest bid or lowest ask, then the relative price is zero. If the limit order is 

submitted at the second best price, then it will have relative price equal to one, and so forth. 

Hence, higher values for the relative price indicate orders that are submitted at deeper portions 

of the limit order book, while smaller ones, orders that are closer to the market. It is important 

to clarify that the relative price does not tell us how many cents is the order away from the 

market, rather how many price levels are there between the order and the market. Hence, an 

order that has relative price equal to one could be several cents away from the market but still 

be at the next best price after the market, with no queues of orders in between the two. 

Changes in the relative price of an order quantify the change in the number of queues, or price 

levels, of limit orders that precede the outstanding order. An increase in relative price suggests 

that new aggressive queues have appeared in the limit order book with the potential of 

delaying the execution of our order as more limit orders, at more favorable prices, need to be 

executed before ours does.  

A second variable that we use to measure the change in the placement of an outstanding limit 

order is the amount of shares that precede it. In fact, for an order to fall behind in the queue to 

execution, it is not necessary for a new, more aggressive price level to appear: if new orders are 

submitted in front of ours at pre-existing price levels, that could still delay the execution of the 

order as more liquidity needs to be cleared before our order can be executed. Hence, an 

increase in the volume ahead of the order, could suggest a potential delay in execution. In 

order to account for the differences in stock characteristics, we standardize the change in 
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volume ahead by the total amount of shares submitted on that side of the book at the top five 

price levels, which allow us to compare correctly the results for different stocks.  

Given the nature of our study, which aims at explaining the cancellation determinants of 

fleeting liquidity, we include a number of control variables that are known to affect the decision 

to cancel an order. The first control variable is outstanding depth imbalance, as research points 

to the fact that it is a good signal of future price movements. If the market moves away from 

the order this implies that the best Bid and Ask are moving farther away from it. This suggests 

that need to re-price the limit orders as the fundamental value of the assets has now changed 

compared to submission (with the link between the state of the order book and limit order 

placement strategies discussed in Cao, Hansch and Wang (2008), Hollifield, Miller and Sandas 

(2004), Ranaldo (2004) and Parlour (1998)). As in Cao, Hansch and Wang (2009), we measure 

the depth imbalance at the top five price levels of the limit order book with an own-opposite 

perspective rather than a buy-sell one. To expand, this measure of depth imbalance will capture 

the extent of the imbalance between the side on which the order is submitted and the opposite 

one rather than the imbalance between the buy and sell side. Such approach is necessary given 

that what is relevant for our analysis is to know whether prices might move away or towards an 

outstanding limit order rather than, simply, whether they might increase or decrease. This way 

of measuring the change relative to the opposite side captures the dynamics of limit order 

books better in our view. 

The second control variable is relative spread, defined as the ratio of quoted spread over mid-

price, and it proxies for changes in information asymmetry. A number of theoretical and 

empirical papers (Handa and Schwartz (1996), Handa, Schwartz and Tiwari (2000), Foucault 
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(1999), Ranaldo (2004), Hasbrouck and Saar (2002) and Cao, Hansch and Wang (2009)) find that 

relative spread is a significant determinant of order flow and limit order aggressiveness. In fact, 

if information asymmetry increases on a trading venue, than that means that there is a higher 

risk of trading against an informed trader. In order to account for this increase in risk, traders 

need to adjust their limit prices accordingly so that they become indifferent to whether their 

counter party is informed or not. 

Finally, in light of the findings of recent empirical and theoretical models (most recently, van 

Kervel (2015) or Baldauf and Mollner (2014)) suggesting that cancellations and executions are 

used by market participants as proxies for the arrival of new information, we look at the 

number of limit order executions and cancellations that occur during the lifetime of a limit 

order. In order to account correctly for varying intensity of market activity, we standardize the 

number of executions and cancellations reported during the lifetime of the order by the 

average number of executions and cancellations that have occurred during a certain look-back 

period. In our study, we set the look-back period to be equal to five times the lifetime of the 

order, unless such period exceeds the duration of regular trading hours, in which case it 

extends only until the beginning of regular trading on each exchange.  

Our methodology is related to the models of limit order cancellation (and execution) suggested 

by Hasbrouck and Saar (2009), Lo, MacKinlay and Zhang (2002), Ellul, Holden, Jain and Jennings 

(2007), Ranaldo (2004) or Cao, Hansch and Wang (2008) but our specification differs from the 

above in two key aspects. First, in these studies the predictors measure the change in the state 

of the limit order book between the moment of cancellation and the previous limit order book 

event. This essentially describes the change in the state of the market in the instant prior to the 
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order’s cancellation. However, we believe that it is more appropriate if the predictors relate the 

state of the book at the moment of cancellation to that at submission as we argue that traders 

actively monitor each order through its lifetime. In fact, if we want to make a case for a change 

in relative spread as a cancellation determinant, it is more appropriate to assume that a trader 

would want to revise his order if the relative spread has changed considerably compared to 

what it was at submission, when the limit price was set, rather than what it was at the previous 

limit order book event. Similarly, if a trader is concerned with a potential delay in execution, as 

a result of an increase in relative price, it is more reasonable to assume that the limit order 

would be revised if the relative price changes considerably from what it was at submission 

rather than what it was in the previous limit order book event. We feel that defining the 

predictors this way has three major advantages: first, it is closer to capturing the decision 

process of a trader who is more likely to benchmark the present state of the market against 

that at submission. Second, it allows to make the most of the granularity of the data by 

measuring the totality of the changes that have occurred in the market during the lifetime of 

the order rather than just those that have occurred in the instant prior to cancellation. Finally, it 

reduces the risk of introducing a considerable amount of noise in our analysis by not relating 

order revision decisions to, potentially, noisy high frequency limit order book events. The only 

variables that are not defined as differences, between submission and cancellation, are the 

number of cancellations and executions that occur during the lifetime of the limit order. These 

two measures, however, by construction compare the extent of market activity during the 

lifetime of the order to that in a given look-back period hence already capture changing market 

activity during the life of the limit order.  
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A second major difference in our approach is the inclusion of multiple venues. To the best of 

our knowledge, no previous study on order flow dynamics has investigated cancellation 

determinants that go beyond the venue where the order is submitted. Yet, the regulatory 

changes brought by Reg-NMS have created interconnected markets in which limit order book 

events across all trading venues affect the placement of every order. Hence, we expect the 

dynamics of any given order book to be affected by the events occurring on the competing 

venues. Such setting requires the active monitoring of all trading venues, which considerably 

increases the complexity of the problem. Our solution to reducing the dimensionality of the 

problem is to rebuild, for each limit order, the limit order book in which it is submitted, which 

we will call the Own Book, and the one resulting from the aggregation of the remaining three 

venues, which we will call the Super Book. This means that, for example, given a limit order 

submitted on the NASDAQ, we rebuild the limit order book for that venue and another one for 

the order book resulting from the aggregation of all the limit orders submitted on the two 

EDGEs and on BATS-Z. Such setup allows me to account correctly for the presence of multiple 

trading venues without assigning a separate set of variables for each venue, which would result 

in an explosion of the number of variables to be considered. It also allows me to represent 

correctly the perspective of a trader who can always compare the state of his venue to that of 

the competing ones. Once the two limit order books are generated, we will use one set of 

variables to describe the changes in the state of Own Book and another one to describe the 

changes in the Super Book.  
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6.2 Super Book Variables Vs Own Book Variables  

When studying the changes that occur in the state of the Super Book during the lifetime of the 

order, we need to distinguish between two different objectives. On one hand, we need to 

quantify the change in the placement of the order, which means that we need to study how 

have the Super Book’s volume ahead and relative price changed since submission. This can be 

done by simply comparing the Super Book’s values at cancellation to those at submission and it 

is the same approach that we use to quantifying the changes in order placement on the Own 

Book. On the other hand, we need to represent the perspective of the trader who actively 

monitors and compares the limit order book where his order is submitted to the competing 

market. Hence, it is important that the Super Book parameters that describe the changes in 

depth imbalance and relative spread capture the relation between the two books. To that 

extent we are interested in knowing how, for example, the relative spread on the Super Book 

relates to that on the Own Book and whether this relation has changed during the lifetime of 

the order. Hence, for those two Super Book variables we want to go beyond knowing whether 

the value has increased or decreased during the lifetime of the order: we want to know 

whether it has moved in the same direction as that on the Own Book and whether the change 

had the same magnitude. To attain this, we carefully re-define these two Super Book variables 

so to always benchmark the state of the Super Book to that of the Own Book. In the specific, we 

still look at the difference between cancellation and submission but instead of using the actual 

values of the Super Book’s depth imbalance and relative spread, we use their relative values, 

obtained by comparing the state of the Super Book to the Own Book. Hence, for example, if the 

Super Book’s relative spread at submission is 0.0061 while at cancellation is 0.0065, and if the 
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relative spread on the Own Book is 0.0062 at submission and 0.0064 at cancellation, then the 

change in Own Book’s relative spread is defined as 0.0064 − 0.0062 = 0.0002 while that on 

the Super Book’s is (0.0065 − 0.0064) − (0.0061 − 0.0062) = 0.0002. Such set up allows me 

to say that, during the lifetime of the order (we) the relative spread on the Own Book has 

increased and that (ii) the relative spread on the Super Book has also increased and that the 

magnitude of the change is larger than that on the Own Book. Thus, we can say that, compared 

to the Own Book, the relative spread on the Super Book is higher at cancellation than what it 

was at submission. In general, for the Super Book variables, a positive sign means that that 

Super Book characteristic has increased during the lifetime of the order, when compared to the 

Own Book. Table 11 summarizes the definitions of all the predictors in our logistic regression.  
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Own Book Variables 
Notation Variable Definition 
  
ΔRelative Price =  𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝑃𝑃𝑃𝑃𝑡𝑡𝐻𝐻𝐷𝐷𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂 − 𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝑃𝑃𝑃𝑃𝑡𝑡𝐻𝐻𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂    

  
ΔVolume Ahead 
 

=  𝑉𝑉𝑉𝑉𝐴𝐴𝐹𝐹𝑡𝑡𝐷𝐷 𝐴𝐴ℎ𝐷𝐷𝑅𝑅𝐵𝐵𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂 − 𝑉𝑉𝑉𝑉𝐴𝐴𝐹𝐹𝑡𝑡𝐷𝐷 𝐴𝐴ℎ𝐷𝐷𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂 , where 𝑉𝑉𝑉𝑉𝐴𝐴𝐹𝐹𝑡𝑡𝐷𝐷 𝐴𝐴ℎ𝐷𝐷𝑅𝑅𝐵𝐵𝐵𝐵=
𝑉𝑉𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆
𝑇𝑇𝐶𝐶𝑆𝑆5

  
and where Volume is number of shares in front of order, while Top5 is total number of shares at top 5 price levels on same side of book. 

  
ΔDepthImbalance =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂 −  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂 ,  where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷𝐵𝐵 =  𝑇𝑇𝐶𝐶𝑆𝑆5𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑇𝑇𝐶𝐶𝑆𝑆5𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑇𝑇𝐶𝐶𝑆𝑆5𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑇𝑇𝐶𝐶𝑆𝑆5𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
∗ 10 

and  𝐵𝐵𝑉𝑉𝐷𝐷5𝑂𝑂𝑂𝑂𝑂𝑂 (𝑂𝑂𝑆𝑆𝑆𝑆𝐶𝐶𝐴𝐴𝐵𝐵𝑡𝑡𝑆𝑆) is the aggregate depth at top 5 price levels on the same (opposite) side of the book 
 

  
ΔRelativeSpread =  𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂 −  𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂, where 𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵𝐵𝐵 = 2 ∗ (Best Ask𝑂𝑂 – Best Bid𝑂𝑂)

(Best Ask𝑂𝑂 + Best Bid𝑂𝑂)
 

  
Cancellations Number of cancellations occurring on the own Book during the lifetime of the limit order standardized by the average number of cancellations 

that have occurred in a look-back period (equal to five times the lifetime of the order or until the beginning of regular trading). 
  
Executions Number of executions occurring on the own Book during the lifetime of the limit order standardized by the average number of executions that 

have occurred in a look-back period (equal to five times the lifetime of the order or until the beginning of regular trading). 



55 
 

Super Book Variables 
Notation Variable Definition 
  
ΔS.Relative Price =  𝐹𝐹.𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝑃𝑃𝑃𝑃𝑡𝑡𝐻𝐻𝐷𝐷𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂 − 𝐹𝐹.𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝑃𝑃𝑃𝑃𝑡𝑡𝐻𝐻𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂     

  
ΔS.Volume Ahead 
 

=  𝐹𝐹.𝑉𝑉𝑉𝑉𝐴𝐴𝐹𝐹𝑡𝑡𝐷𝐷 𝐴𝐴ℎ𝐷𝐷𝑅𝑅𝐵𝐵𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂 − 𝐹𝐹.𝑉𝑉𝑉𝑉𝐴𝐴𝐹𝐹𝑡𝑡𝐷𝐷 𝐴𝐴ℎ𝐷𝐷𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂, where 𝐹𝐹.𝑉𝑉𝑉𝑉𝐴𝐴𝐹𝐹𝑡𝑡𝐷𝐷 𝐴𝐴ℎ𝐷𝐷𝑅𝑅𝐵𝐵𝐵𝐵=
𝑆𝑆.𝑉𝑉𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆.𝑇𝑇𝐶𝐶𝑆𝑆5

  
and where S.Volume is number of shares in front of order on Super Book, while S.Top5 is total number of shares at top 5 price levels on same side 
of Super Book. 

  
ΔS.DepthImbalance = (𝐹𝐹.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂 −  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂) − (𝐹𝐹.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂 −  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂),  where 

𝐹𝐹.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷𝐵𝐵 =  𝑆𝑆.𝑇𝑇𝐶𝐶𝑆𝑆5𝑂𝑂𝑂𝑂𝑂𝑂−𝑆𝑆.𝑇𝑇𝐶𝐶𝑆𝑆5𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝑆𝑆.𝑇𝑇𝐶𝐶𝑆𝑆5𝑂𝑂𝑂𝑂𝑂𝑂+𝑆𝑆.𝑇𝑇𝐶𝐶𝑆𝑆5𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

∗ 10 

and 𝐹𝐹.𝐵𝐵𝑉𝑉𝐷𝐷5𝑂𝑂𝑂𝑂𝑂𝑂 (𝑂𝑂𝑆𝑆𝑆𝑆𝐶𝐶𝐴𝐴𝐵𝐵𝑡𝑡𝑆𝑆) is the aggregate depth at top 5 price levels on the same (opposite) side of the book 
 

  
ΔS.RelativeSpread = (𝐹𝐹.𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂 − 𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐶𝐶𝑂𝑂) −  (𝐹𝐹.𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂 − 𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐶𝐶𝑂𝑂), where 

𝐹𝐹.𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵𝐵𝐵 = 2 ∗ (𝑆𝑆.Best Ask𝑂𝑂 – 𝑆𝑆.Best Bid𝑂𝑂)
(𝑆𝑆.Best Ask𝑂𝑂 + 𝑆𝑆.Best Bid𝑂𝑂)

 

  
S.Cancellations Number of cancellations occurring on the Super Book during the lifetime of the limit order standardized by the average number of cancellations 

that have occurred in a look-back period (equal to five times the lifetime of the order or until the beginning of regular trading). 
  
S.Executions Number of executions occurring on the Super Book during the lifetime of the limit order standardized by the average number of executions that 

have occurred in a look-back period (equal to five times the lifetime of the order or until the beginning of regular trading). 
Table 11: Definition of Predictors for Study on Cancellation Determinants. We define two matching sets of predictors: one, to characterize the change in the state of the limit 
order book in which the order is submitted and another one for the change in the state of the competing market, resulting from the aggregation of the remaining three venues 
and called the Super Book. Δ stands for the difference in the value of the variable between the moment of cancellation and the moment of submission of the order while the S. 
prefix refers to the variables describing the state of the Super Book. Relative Price quantifies the number of price levels between the limit order and the market. A value of 0, 
means that the order is submitted at the most aggressive price, a value of 1 means that the order is at the second best price and there is only one queue of orders in front of it, 
and so forth. Volume Ahead quantifies the number of shares that belong to limit orders that are in front of the order. This includes orders that are at the same price but were 
submitted at an earlier time, and all orders at better prices. Depth Imbalance captures the extent of the imbalance in the outstanding depth between the side of the order and 
the opposite one. Using an Own/Opposite approach instead of a Bid/Ask one to study depth imbalance allows to represent correctly our intention to use this parameter to 
understand if traders expect prices to move away or towards the order rather than, simply, if prices will increase or decrease. Relative Spread proxies for the level of information 
asymmetry and is defined as the ratio of quotes spread and mid-price. Finally, Cancellations and Executions measure changes in market activity, which proxy for the arrival of 
new information, by looking at the number of cancellations and executions that occur during the lifetime of the order. To account for different levels of market activity across 
stocks, these two measures are standardized by the number of cancellations and executions that occur during a look back period. 
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6.3 Data Cleaning 

Given our focus on the determinants of cancellation of outstanding limit orders, after rebuilding 

the limit order books we exclude from the logistic regression analysis all the messages that 

indicate the submission of a new limit order. This serves a twofold purpose: first, it allows to 

reduce considerably the sample size, second it mitigates the risk of potential biases due to the 

violation of the independence assumption of the observations. In fact, logistic regression 

requires each observation to be independent yet, dependence may occur if the same order has 

an entry (submission) and an exit (by cancellation or execution) message.  

We also exclude from the analysis all orders submitted more than ten price levels away from 

the best bid or ask of each order book, since there is very limited theoretical framework 

available to explain the dynamics of orders submitted this far away from the market. Based on 

the distribution of fleeting order flow across price levels, reported in Table 8, we find such 

decision affects only a very small portion of orders but should allow to eliminate possible 

sources of pure noise in the data.  

Finally, given the substantial difference between regular and after-hours trading, we only 

include in our study those limit orders that are submitted during regular trading hours and 

when markets are not locked or crossed.  

In conclusion, the sample used in the logistic regression analysis is comprised of only those 

messages that describe the execution or the cancellation of those limit orders that are 

submitted within ten relative price levels from the best price on each order book, during 

regular trading hours when markets are not locked or crossed. 
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6.4 Preliminary Analysis 

Before investigating the determinants of limit order cancellations, we look at the average 

values of the predictors for the two possible outcomes: execution and cancellation. In fact, if 

the average values of the predictors are the same across the two outcomes that would cast 

some doubt on the ability of our model to discriminate between them. The results are 

presented in Table 12. 

Starting with fleeting orders, we see that there appears to be a significant difference in the 

average values of the predictors between the two outcomes. On the Own Book, fleeting orders 

that attain execution do so after clearing more volume ahead of them than those that are 

cancelled. In fact, the average value for the change in the standardized volume ahead for orders 

that are executed and cancelled are, respectively, -0.196 and -0.018. The negative signs suggest 

that in both cases there is less volume ahead of the order when it leaves the book than at 

submission, which must be true in the case of an execution given that there can be no volume 

ahead of the order as, at that moment, it must be at the top of the queue. On the other hand, if 

we look at the change in relative price, we see that fleeting orders that are executed do so after 

reducing their distance from the market while those that are cancelled are actually further 

away at cancellation than they were at submission. This result manages to reconcile the 

apparently contradicting finding from the change in volume ahead: fleeting orders that are 

cancelled might clear some volume ahead of them but still end up falling behind in the 

execution queue, as prices appear to have moved away from them. These results suggest that a 

cancellation determinant for a fleeting order could be the lack of progress in its path to 

execution, consistent with the assumption that fleeting orders are submitted by impatient 
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traders who prioritize a quick execution. A similar conclusion appears to be substantiated by 

the results for the number of executions and cancellations on the Own Book: compared to 

orders that are executed, those that are cancelled exist during periods of lower (higher) market 

activity when measured by the number of executions (cancellations) that occur during the 

lifetime of the order. Given that limit orders can be executed only if they are matched by 

incoming Market Orders, a less active market, as measured by the number of executions, might 

suggest to an impatient trader a delay in execution, causing him to cancel his orders. 

Similar conclusions hold if we compare the average values for the two outcomes of fleeting 

orders by looking at the variables that describe the changes in the Super Book. However, an 

interesting remark can be made if we focus on volume ahead: fleeting orders that are cancelled 

have, an average, more volume ahead of them at cancellation than they had at submission. This 

is not the case for those that attain execution. This information provides a more complete 

picture of the changes that occur in the market during the lifetime of the order and might help 

better understand the decision to cancel a fleeting order. In fact, based on the variables that 

describe the state of the Own Book, it appeared that cancelled fleeing orders cleared a 

considerable amount of volume ahead of them before cancellation. However, if we now look at 

the broader picture and look at the changes that have occurred in the Super Book, we see that 

these orders have actually fallen behind in the overall queue since there is now more volume in 

front of them, even though this volume is on other venues.  

A first conclusion that we can make based on the results in Table 12 is that our set of variables 

can accurately capture the key differences between fleeting orders that are executed and those 

that are cancelled. Moreover, we also find first evidence to support the claim that only by 
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accounting for the changes in the Super Book we are able to explain correctly the dynamics of 

fleeting liquidity.   

 Fleeting Orders Non-Fleeting Orders 
 Execution Cancellation Execution Cancellation 
Own Book      
ΔRelative Price -0.021 0.102 -0.258 0.242 
ΔVolume Ahead -0.196 -0.018 -0.277 0.002 
ΔDepth Imbalance -0.730 -0.342 -0.500 -0.208 
ΔRelative Spread -0.006 -0.003 -0.006 -0.003 
Number of Exec. 0.863 0.166 1.369 0.778 
Number of Canc. 2.006 2.285 1.236 1.398 
Super Book     
ΔS.Relative Price -0.019 0.065 -0.275 0.188 
ΔS.Volume Ahead -0.002 0.015 -0.056 0.072 
ΔS.Depth Imbalance 0.615 0.277 0.376 0.144 
ΔS.Relative Spread 0.007 0.004 0.005 0.003 
S.Number of Exec. 1.263 0.603 3.426 3.067 
S.Number of Canc. 2.823 2.801 1.340 1.562 

Table 12: Average Values of Predictors Across Order Types and Outcomes. In the upper portion, we present the average values 
for the predictors describing the state of the order book in which the limit order resides (the Own Book) while in the lower 
portion we present those for the book resulting from the aggregation of the three remaining competing venues (the Super 
Book). Δ(S.)Relative Price refers to the change in the Own (Super) book’s relative price between the moment of cancellation and 
submission; Δ(S.)Volume Ahead refers to the change in the number of shares preceding the order on the Own (Super) book 
between the moment of cancellation and submission; Δ(S.) Depth Imbalance refers to the (relative) change in the own (Super) 
book’s depth imbalance between the moment of cancellation and submission; Δ(S.) Relative Spread refers to the (relative) 
change in the own (Super) book’s relative spread between the moment of cancellation and submission; (S.) Number of Exec, 
and (S.) Number of Canc. refer to the average number of executions and cancellations, respectively, that have occurred on the 
own (Super) book during the lifetime of the order.  

Another interesting comparison that can be made from Table 12 is the one between fleeting 

and non-fleeting orders. For both executions and cancellations there are significant differences 

between the two order types, confirming previous findings suggesting that a distinction 

between the two is, in fact, meaningful. If we look at the average change in the Relative Spread 

and Volume Ahead on both books, we see that fleeting orders, during their lifetime, change 

their position in the queue by much less than non-fleeting ones. This is suggests that these 

orders must have been priced more aggressively than their non-fleeting counterparts which is 

consistent with our previous findings reported in Table 8 and with the impatient nature of the 
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traders who submitted them. Also, if we look at the changes in market activity, we see that 

fleeting orders appear to exist during periods of lower activity when measured by the number 

of executions, and heightened activity when measured by the number of cancellations. These 

differences indicate that fast, impatient traders could employ very different trading strategies 

from their slower and more patient counterparts, suggesting that the timing of events could be 

an important differentiator between the two. These results support the case made by 

Hasbrouck and Saar (2009) that it is possible to distinguishing between the two types of traders 

based on the order flow they generate and bodes well for our future analysis. 

Finally, an interesting observation can be made when comparing the average values of depth 

imbalance and relative spread on the Own Book to those on the Super Book. For these two 

predictors, the averages have similar magnitudes but have opposite signs. A possible 

explanation for this result could lay in the fact that these two Super Book variables are built to 

benchmark the changes in the Super Book against those on the Own Book. Values that are close 

in magnitude but with opposite signs, suggest that the Super Book has remained fairly stable 

during the lifetime of the order. In fact, given a certain change on the Own Book, if no change at 

all were to occur on the Super Book, then the Super Book variables would have exactly the same 

values as those on the Own Book but with opposite sign. This would have been the case since, 

relative to the Own Book, the Super Book would have changed by the same amount but in the 

opposite direction. Given that in our case the values have opposite signs but are also slightly 

smaller, this suggests that the Super Book has also changed during the lifetime of the order but, 

albeit, by a considerably smaller degree. This is not surprising given that the Super Book is the 
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result of the aggregation of the three remaining trading venues, which should give a much 

more stable limit order book than the one specific to the venue where the order is submitted. 

In conclusion, the results in Table 12 confirm that, in line with the findings of Hasbrouck and 

Saar (2009), a distinction between fleeting and non-fleeting orders is meaningful. Moreover, 

the results point to the fact that the timing of the limit order book events could be an 

important differentiator between order types and suggests that fast and slow traders could be 

employing very different trading strategies. Finally, the differences between fleeting orders that 

attain execution and those that are cancelled, indicate that our variables are able to capture 

the critical differences between the two outcomes and can be used to study the cancellation 

determinants for these orders.  

6.5 Empirical Results  

We begin now our study of the cancellation determinants of fleeting liquidity. The data that is 

analyzed here is in the form of panels with panel level information not expected to vary much 

over time. Therefore, we follow here the standard econometric approach. First, we construct 

models that account for the variation over time and the resulting estimates of the model 

parameters are then related to panel level information. Thus, the time-varying and cross-

sectional aspects are labeled as within-variation and between-variation. For each stock, the 

influence of trading characteristics is related to cancellation probabilities, which we call 

studying with-in variation and the estimates for each stock are then regressed on stock-level 

variables such as market capitalization or price which are labeled as studying between 

variation.  
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6.5.1 Within Variation 
 

In this section we test the hypothesis that adverse changes in order placement are behind the 

phenomenon of fleeting liquidity. Recall our reasoning that fast, impatient traders are 

interested in attaining a quick execution and that in order to attain it, they need to place their 

orders as close as possible to the top of the Limit Order Book. However, the introduction of 

Rule 611 from Reg-NMS, resulted in the aggregation of all the Limit Orders Books across 

exchanges which means that the placement of a Limit Order in the overall queue to execution 

depends now from the shape of every Limit Order Book. Hence, we argue that fast, impatient 

traders react to changes that occur on all trading venues, when these result in a worse queue 

placement for their outstanding orders.  

To test this hypothesis, we carry out an analysis of the cancellation determinants of fleeting 

orders. To be specific, we investigate how limit order book events, such as changes in the 

relative price, volume ahead, outstanding depth imbalance or relative spread, and changing 

market condition, proxied by the number of executions and cancellations, affect the probability 

of a cancellation. In our study, we use two logistic regression models: in the first one, called the 

partial model, we use only the variables that describe the state of the limit order book in which 

the order is submitted. In the second one, called the full model, we add a matching set of 

variables describing the state of the Super Book. 

If we denote with 𝜋𝜋 the probability of observing the cancellation of a limit order, the logistic 

regression equation for the partial model is: 
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𝐴𝐴𝑉𝑉𝐹𝐹 �
𝜋𝜋

1 − 𝜋𝜋
� = 𝛽𝛽0 + 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂 × 𝛥𝛥𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝑃𝑃𝑃𝑃𝑡𝑡𝐻𝐻𝐷𝐷 + 𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂 × 𝛥𝛥𝑉𝑉𝑉𝑉𝐴𝐴𝐹𝐹𝑡𝑡𝐷𝐷 𝐴𝐴ℎ𝐷𝐷𝑅𝑅𝐵𝐵 

+𝛽𝛽3
𝑂𝑂𝑂𝑂𝐻𝐻 × 𝛥𝛥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷 + 𝛽𝛽4

𝑂𝑂𝑂𝑂𝐻𝐻 × 𝛥𝛥𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵 

+ 𝛽𝛽5𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑁𝑁𝐹𝐹𝑡𝑡𝐹𝐹𝐷𝐷𝑃𝑃 𝑉𝑉𝑜𝑜 𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻. +𝛽𝛽6𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑁𝑁𝐹𝐹𝑡𝑡𝐹𝐹𝐷𝐷𝑃𝑃 𝑉𝑉𝑜𝑜 𝐶𝐶𝑅𝑅𝐻𝐻𝐻𝐻.   ( 2 ) 

while the equation for the full model builds on the partial one by adding the set of predictors 

describing the state of the Super Book. Hence is given by: 

𝐴𝐴𝑉𝑉𝐹𝐹 �
𝜋𝜋

1 − 𝜋𝜋
� = 𝐷𝐷𝑅𝑅𝑃𝑃𝐷𝐷𝑡𝑡𝑅𝑅𝐴𝐴 𝑡𝑡𝑉𝑉𝐵𝐵𝐷𝐷𝐴𝐴 + 𝛽𝛽1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝛥𝛥𝐹𝐹. 𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝑃𝑃𝑃𝑃𝑡𝑡𝐻𝐻𝐷𝐷 + 𝛽𝛽2
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝛥𝛥𝐹𝐹. 𝑉𝑉𝑉𝑉𝐴𝐴𝐹𝐹𝑡𝑡𝐷𝐷 𝐴𝐴ℎ𝐷𝐷𝑅𝑅𝐵𝐵 

+𝛽𝛽3
𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑃𝑃 × 𝛥𝛥𝐹𝐹.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷 + 𝛽𝛽4

𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑃𝑃 × 𝛥𝛥𝐹𝐹.𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵 

+𝛽𝛽5
𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹.𝑁𝑁𝐹𝐹𝑡𝑡𝐹𝐹𝐷𝐷𝑃𝑃 𝑉𝑉𝑜𝑜 𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻. +𝛽𝛽6

𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹.𝑁𝑁𝐹𝐹𝑡𝑡𝐹𝐹𝐷𝐷𝑃𝑃 𝑉𝑉𝑜𝑜 𝐶𝐶𝑅𝑅𝐻𝐻𝐻𝐻.  ( 3 ) 

If our assumption is correct that fast, impatient traders actively monitor all trading venues in 

order to correctly determine to position of their limit orders, then we would expect a significant 

improvement in the goodness of fit of the full model over the partial one. Moreover, given the 

choice of predictors, and in light of our objective of determining the effect of changes in queue 

placement on the cancellation probability of a fleeting order, we can hypothesize the following 

effect of our predictors on the cancellation probability: 

1. An increase in relative price on either the Own Book or the Super Book, should increase 

the probability of observing a cancellation since it would signal that the order is falling 

behind as a result of new, more aggressive orders appearing in the market. 

2. An increase in the volume ahead on either the Own Book or the Super Book, should 

increase the probability of observing a cancellation. In fact, this would signal that new 

orders are appearing at more aggressive, but pre-existing, prices levels increasing the 

outstanding depth that needs to be executed before the order does. 
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3. An increase in depth imbalance on the Own Book and on the Super Book should increase 

the probability of observing a cancellation since it could signal future adverse price 

movements. 

4. An increase in relative spread on the Own Book should increase the probability of 

observing a cancellation since traders would have to re-price their orders in order to 

account for a higher risk of trading against an informed trader. On the other hand, an 

increase on the Super Book should have the opposite effect since it would make the 

competing venues worse than the one in which the orders resides making it less likely 

that a fast trader would want to cancel his order in order to resubmit it on another, 

competing venue. 

5. An increase in market activity (proxied by the number of executions and cancellations) on 

both the Own Book and the Super Book should increase the cancellation probability since 

market participants would have to revise the limit prices of their outstanding orders to 

account for the arrival of new information. 

In Table 13, we report the median values of the regression coefficients obtained from running 

eighty-five individual logistic regressions, one per stock. We also report the number of stocks 

that have each predictor significant at a 5% level. Several interesting remarks can be made from 

the results of the partial model. First and foremost, we see that for, respectively, 77 and 60 

stocks, an increase in the relative price or volume ahead increases the probability of observing 

a cancellation. This result supports our hypothesis that when the placement of an order 

deteriorates as a result of the arrival of new orders, than this increases the probability that this 

order will be cancelled by the fast, impatient trader. Second, we see that an increase in the 
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depth imbalance also increases the likelihood of a cancellation. This is consistent with the 

extant literature (Cao, Hansch and Wang (2008), Hollifield, Miller and Sandas (2004), Ranaldo 

(2004) and Parlour (1998)) on the use of depth imbalance as a signal of future price movements 

and confirms that a fast, impatient trader will cancel his orders if he believes that prices might 

be moving away from him. Finally, we find that an increase in the relative spread positively 

affects the probability of a cancellation. This is in line with previous studies (Ellul, Holden, Jain 

and Jennings (2007) or Ranaldo (2004)) and is consistent with the notion that relative spread is 

used, by market participants, as proxy for the level of information asymmetry in the order 

book.  

  P(Cancellation | Fleeting Order) 
  Coefficient Sig. 5%  Coefficient Sig. 5%  
Own 
Venue 
Variables 

Δ.Relative Price 0.5731 77 0.7899 77 
Δ.Volume Ahead 0.0001 60 0.0001 49 
Δ. Depth 
Imbalance 

0.0001 71 0.0001 63 

Δ. Relative Spread 16.9070 70 5.3477 51 
Number of Exec. -0.2046 83 -0.2030 81 
Number of Canc. 0.0191 55 0.0215 57 

Super-
Book 
Variables 

ΔS.Relative Price 

 

0.9463 63 
ΔS.Volume Ahead 0.0001 39 
ΔS.Depth 
Imbalance 

0.0001 42 

ΔS.Relative 
Spread 

-19.2683 51 

S.Number of Exec. -0.0248 72 
S.Number of Canc. 0.0002 56 

Table 13: Logistic Regression Results on Cancellation Determinants. In the first two columns, we report the results for the 
partial model which uses solely the predictors that define the state of the venue on which the order is submitted; in the next 
two columns, we present the results for the full model which includes the predictors describing the state of the Super Book as 
well. For each model, we present the median value of the coefficients computed across all eighty-five stocks and the number of 
stocks that have that predictors significant at a 5% level. Δ(S.)Relative Price refers to the change in the relative price on the Own 
(Super) Book between the moment of cancellation and submission; Δ(S.)Volume Ahead refers to the change in the volume in 
front of the order on the Own (Super) Book between the moment of cancellation and submission; Δ(S.) Depth Imbalance refers 
to the (relative) change in the own (Super) book’s depth imbalance between the moment of cancellation and submission; Δ(S.) 
Relative Spread refers to the (relative) change in the own (Super) book’s relative spread between the moment of cancellation 
and submission; (S.) Number of Exec, and (S.) Number of Canc. refer to the average number of executions and cancellations, 
respectively, that have occurred on the own (Super) book during the lifetime of the order.  
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What is surprising, however, are the two coefficients for the effect of changes in the number of 

executions and cancellations on the probability of cancellation. To be specific, it is surprising 

that more executions lead to a decrease in the probability of cancellation as significant 

theoretical and empirical evidence (starting from Easley and O’Hara (1992) and, more recently, 

van Kervel (2015)) suggests that market participants associate intense trading with a higher risk 

of information asymmetry. The result is even more puzzling if compared to the fact that a more 

active market, when measured by the number of cancellations, has the opposite, and expected, 

effect. A possible explanation for the negative coefficient of executions is that, from the 

perspective of an impatient trader who is waiting for execution, an increase in the arrival of 

market orders is actually desirable as it increases the flow of those orders that can be matched 

against his outstanding order. Hence, an increase in executions can lead an impatient trader to 

stay put and wait for execution as it can imply a short execution time. Fast traders, on the other 

hand, can interpret cancellations as a signal that other market participants are revising their 

limit prices in anticipation of the arrival of new information, especially if such cancellations are 

made by other fast, impatient traders. A good way of testing this hypothesis would be to make 

a distinction in our analysis between fleeting and non-fleeting cancellations. In any case, 

interpreting the opposing coefficients of executions and cancellations on the Own Book 

presents a number of challenges and suggests that it might be necessary to revise the definition 

of the two proxies in order to disentangle the conflicting results.  

The results for the full model, obtained by adding the second set of regressors that describes 

the dynamics of the competing venues, present some interesting findings. First, the addition of 

the second set of predictors does not affect the sign or magnitude of the predictors from the 
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Own Book. This is definitely very encouraging given that our argument is that monitoring the 

Super Book allows the fast, impatient traders to assess more accurately the position of an order 

rather than provide a completely different perspective on Limit Order Book dynamics. Hence, 

we find encouraging that the dynamics of the Own Book are correctly modeled by both the 

partial and the full model. Second, we see that an increase in relative price or volume ahead on 

the Super Book has the same effect on the probability of cancellation as an increase on the Own 

Book. This is definitely the most interesting result as it provides strong empirical evidence to 

support our claim that because of the implementation of Reg-NMS, and of Rule 611 in the 

specific, fast and impatient traders cancel their orders as a result of events that occur on other 

venues, when such events negatively affect the overall queue placement of their orders. In fact, 

given that Reg-NMS aggregates all the limit order books across exchanges, the effect of a 

change in relative price or volume ahead on the Super Book has to be the same as a similar 

change on the Own Book. Moreover, this result supports the hypothesis that fast, impatient 

traders actively monitor all trading venues after order submission since only by doing so they 

are able to correctly asses the placement of their orders.  

Third, the direction of the coefficient for relative spread is in line with our stated hypothesis 

about the competing nature between venues, which is a result from our initial assumption that 

fast, impatient traders compare the state of their target venue to that of the rest of the market. 

In fact, we notice that when a trader observes an increase in relative spread on the competing 

venues, compared to that on his own venue, he is less likely to cancel his order as his venue is 

“better” than the competing ones in terms of the level of information asymmetry. This means 
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that there is no advantage in revising and resubmitting the order to another venue as it would 

be exposed to a higher risk of being picked off by an informed trader.   

Fourth, the effect of an increase in executions and cancellations on the Super Book is the same 

one as that on the Own Book. Once again, we see that increased market activity, when proxied 

by the number of executions (cancellations), results in a lower (higher) probability of 

cancellation. The result for the Super Book cancellations is consistent with the idea that market 

participants perceive them as events that carry new information regardless of where they occur 

and will adjust their outstanding limit orders accordingly. On the other hand, the fact that 

executions occurring on the Super Book still have a negative effect on the probability of 

observing a cancellation on another venue, could signify that fast, impatient traders anticipate 

that the increased market activity on the overall market will, eventually, spill over to their own 

venue as well. This, in turn, would lead to a higher probability of execution due to the increased 

market order flow.  

Finally, the result for the Super Book’s depth imbalance is also consistent with our initial 

assumptions. In fact, in light of the relation between depth imbalance and future price 

movements, we expected an increase in the probability of cancellation when the depth 

imbalance on the same side of the Super Book increases, as that could signal the need to chase 

a running price.  

In conclusion, our results for the study of the cancellation determinants are consistent with our 

initial assumptions. We find evidence that fast, impatient traders actively monitor all trading 

venues in order to determine correctly the placement of their orders and that they react to 
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events that negatively affect the placement of their orders, regardless of the venue. Moreover, 

our results suggest that, after order submission, fast, impatient traders actively compare the 

state of their target venue, to that of the competing market, and evaluate the possibility of 

resubmitting the order onto a better venue. 

We now focus on the goodness of fit of the two models. If our assumption were correct that 

fast, impatient traders relay on events occurring on all major trading venues in order to assess 

the correct placement of an order, then we would expect a considerable improvement in the 

goodness of fit of the model when switching from the partial to the full one.   

In the first two columns of Table 14, we report the average value, and the standard deviation, 

for the goodness of fit of the full model for the eighty-five stocks in our sample. In the following 

two columns we report the average change, and the standard deviation of the changes, in the 

goodness of fit when we switch from the partial model to the full one (hence, the change in 

goodness of fit when we add the second set of regressors describing the state of the Super 

Book). First, the average goodness of fit of the full model indicates that it is able to describe 

fairly well the probability of observing a fleeting cancellation. However, the rather high values 

for the standard deviations also suggest that the model fits considerably better some stocks 

rather than others, indicating that fast, impatient traders could prefer some stocks to others. If 

we look now at the changes in the goodness of fit resulting from the addition of the second sets 

of variables we see that, on average, there is a considerable improvement in the fit of the 

model. Most measures indicate an 18% improvement in predicting the probability of observing 

a cancellation when we add the information generated on the competing venues. This result, 

once again, strongly supports our initial research hypothesis that fast, impatient traders, 
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actively monitor all trading venues in order to determine correctly the placement of their 

orders and that they react to events that negatively affect the placement of their orders, 

regardless of the venue. However, we feel that such conclusion is warranted not only because 

of the substantial improvement in the goodness of fit of the model, but also because of the 

number of stocks in our sample that have the events that occur in the Super Book as significant 

cancellation determinants, as previously shown in Table 13.  

 Goodness of Fit 
(Full model) 

Change in Goodness of Fit 
(Partial => Full) 

 Mean  Std. Dev Mean  Std. Dev 
McFadden 7.9% 7.6% 18% 27.4% 
Cox Snell 2.5% 2.9% 17.9% 27.3% 
Nagelkerke 9% 8.6% 17.9% 27.3% 
McKelvey Zavoina 16.1% 16.7% 39.2% 111% 
Effron 3.1% 5.2% 24.8% 62.8% 
Corrected AIC 337,927 568,073 -1% 1.4% 
Residual Deviance 337,901 568,073 -1% 1.3% 

Table 14: Summary of Goodness of Fit of Partial and Full Models. In the first two columns, we present the mean and standard 
deviation of the distribution of the goodness of fit for the two models for the eighty-five stocks in our sample. In the next two 
columns, we present the mean and standard deviation of the change in goodness of fit, when switching from the partial to the 
full mode, for the eighty-five stocks in our sample.  

In the final step of our analysis, we test the initial claim, made in section 6, that it is more 

appropriate to compute the predictors as differences in the state of the limit order book 

between cancellation and submission rather than as differences between cancellation and the 

previous limit order book event (as done so far in the literature). In order to test this claim we 

re-run the entire analysis on the cancellation determinants of fleeting liquidity using the 

traditional way of computing the predictors.  If our claim were correct, we would expect such 

model to have a considerably worse fit than the initial one. The results in Table 15, report the 

change in goodness of fit, for both the partial and full model, when switching from the old way 

of computing the predictors to the new one proposed in our study. We find that for both 
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models there is a considerable improvement when switching from the traditional way to the 

new one. In fact, with the exception of one measure, all others show a considerable 

improvement in fit, confirming our initial claim that to correctly capture the perspective of a 

fast trader, we need to benchmark the changes in the limit order book against the state at 

submission rather that the state at the previous limit order book event. 

Change in Fit from Old to New (our) Variables 
 Mean  
 Partial  Full 
McFadden 67% 57% 
Cox Snell 66% 57% 
Nagelkerke 66% 57% 
McKelvey Zavoina -14% -14% 
Effron 19% 53% 
Corrected AIC -2% -2% 
Residual Deviance -2% -2% 

Table 15: Effect of definition of predictors on goodness of fit. The table presents the average change in the goodness of fit of 
both the partial and full models, when the analysis on the cancellation determinants is performed with our novel approach to 
computing the values of the predictors. We propose that the cancellation determinants should be computed by comparing the 
state of the limit order book at cancellation to that at submission rather than to the state in the previous limit order book 
event, as used in the extant literature.   

In conclusion, the study on the goodness of fit of the two models provides strong empirical 

evidence for our initial assumptions. Switching from the partial model to the full one, allows to 

considerably improve the ability of the model to predict the cancellation of a fleeting order. 

This suggests that, to understand correctly fleeting liquidity dynamics it is necessary to monitor 

the changes that occur on all trading venues and interpret them in terms of their effect on the 

placement of the order. This supports our claim that fast, impatient traders actively monitor all 

trading venues after order submission to correctly asses the path to execution of their orders. 

Such approach has become necessary because of the implementation of Rule 611, which 

extends price priority across all trading venues in the National Market System, de facto, 

aggregating in one large queue the liquidity submitted across all trading venues. Finally, the 
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results for the change in fit when switching from the old way of computing the predictors to the 

new one proposed in our study, supports the claim that such approach is necessary to better 

replicate the perspective of a fast, impatient trader and to limit the amount of noise introduced 

in the measures.   

6.5.2 Between Variation 
 

As the results in Table 13 and Table 14 suggest, there are significant stock level differences in 

the estimated coefficients. We find that not all stocks are sensitive to all predictors and that not 

all of them react in the same way to the addition of the second set of regressors describing the 

state of the Super Book. We believe that this variation can be explained, in part, by stock level 

characteristics. In fact, if our model is supposed to describe the actions of fast, impatient 

traders we would expect it to work best for those stocks that are preferred by such traders. 

Anecdotal evidence suggests that fast, impatient traders prefer stocks that are (we) very liquid, 

(ii) actively traded, (iii) with low risk and (iiii) low price. In fact, the impatient nature of the 

traders implies that they would prefer to trade in stocks that allow them to trade large 

quantities in a short period of time. On the other hand, their fast nature, hence their speed 

advantage over the other market participants, implies that they can successfully engage in 

trading strategies based on making a small profit on each trade, sometimes as small as the 

rebate paid by the trading venue, as long as such trade is repeated multiple times. Hence, they 

would prefer as little uncertainty as possible and they would rather trade in cheap stocks since 

rebates are paid per number of shares traded and not per dollar value. We will use market 

capitalization to proxy for the level of liquidity of a stock, turnover as a measure of trading 

activity, volatility and market beta as measures of risk along with the price level of a stock. The 
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values of these stock characteristics are computed using monthly data from CRSP and 

COMPUSTAT for years 2009 and 2010.  

We will carry out this second stage analysis by looking at the effect of stock level characteristics 

on the logistic regression coefficients since this should allow me to understand the mediation 

effect that these characteristics have on the role of the predictors as cancellation determinants. 

Given that each regression coefficient in Equation 3 has an associated standard error, we need 

to incorporate this in the analysis and use a weighted linear regression approach. The resulting 

second level regression is of the form   

𝛽𝛽𝐵𝐵
𝑂𝑂𝑂𝑂𝑂𝑂/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛽𝛽0 + 𝛽𝛽1 × 𝐴𝐴𝑉𝑉𝐹𝐹(𝑀𝑀𝐶𝐶𝐴𝐴𝑃𝑃𝐵𝐵) + 𝛽𝛽2 × 𝐴𝐴𝑉𝑉𝐹𝐹(𝑃𝑃𝑃𝑃𝑡𝑡𝐻𝐻𝐷𝐷𝐵𝐵) 

                                                          + β3 × 𝐵𝐵𝐹𝐹𝑃𝑃𝐻𝐻𝑉𝑉𝑅𝑅𝐷𝐷𝑃𝑃𝐵𝐵 + β4 × 𝑉𝑉𝑉𝑉𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝐴𝐴𝑡𝑡𝐷𝐷𝑉𝑉𝐵𝐵 +  β5 × 𝐵𝐵𝐷𝐷𝐷𝐷𝑅𝑅𝐵𝐵              ( 4 ) 

for 𝑡𝑡 = 1, … , 85 and with weights 𝑂𝑂𝐵𝐵 =  1
𝐴𝐴𝑂𝑂
2 . 

If our assumptions about the type of stocks preferred by fast, impatient traders are indeed 

correct, we expect to find that stock level characteristics are significant determinants of all 

regression coefficients and that they can explain a substantial portion of their variation.  

From the results in Table 16 we can see that stock level characteristics are, indeed, significant 

for a number of regressors. Market capitalization is a significant, and mostly positive, 

determinant of almost every regression coefficient. The only exceptions are Number of 

Cancellations on both the Own and the Super Book and the Volume Ahead on the Own Book. 

What this means is that for stocks with high market capitalization, whether a fast, impatient 

trader decides to cancel an order or not, will mostly depend from changes in Relative Price, 

Depth Imbalance and Relative Spread on the Own Book and in Volume Ahead, Depth Imbalance 
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and Number of Executions on the Super Book. On the other hand, Stock Price is also a 

significant, but mostly negative, determinant of almost every coefficient, with the exception of 

Number of Executions and Number of Cancellations on the Super Book. In this case, the results 

suggest that for low priced stocks, the decision to cancel a fleeting order will be driven by 

changes in Relative Price, Volume Ahead, Depth Imbalance, Relative Spread and Number of 

Cancellations on the Own Book and by changes in Volume Ahead on the Super Book. Turnover is 

a significant determinant of Relative Price, Depth Imbalance, Relative Spread and Number of 

Cancellations on the Own Book but is not significant for any of the Super Book coefficients. 

Surprisingly, market beta is significant for only Depth Imbalance, on both books, and for the 

Number of Executions on the Super Book, while Volatility is significant for Relative Price and 

Number of Cancellations on the Own Book and Depth Imbalance and Number of Executions on 

the Super Book. 

If we now look at the extent of the variation of each coefficient explained by stock 

characteristics we see that it varies considerably ranging from -1.6% of the Number of 

Cancellations on the Super Book to a surprising 96.8% for the Depth Imbalance on the Own 

Book. Overall, the adjusted R-squares are pretty high for most of the coefficients and confirm 

that stock level characteristics can explain a good portion of the variations observed in the 

study of the cancellation determinants reported in Table 13 and in Table 14.   

In conclusion, the results for the second stage analysis reported in Table 16 provide empirical 

evidence to support the claim that stock level characteristics can explain some of the in-sample 

variation observed in the study of fleeting liquidity determinants. 
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  log(MCAP) Turnover Volatility beta log(Price) Adj-𝑅𝑅2 
Own  
Venue 
Variables 

Δ.Relative Price 0.004* 0.03* -0.06268* -0.005 -0.018* 56.3% 
Δ.Volume Ahead 0.00001 0.00001 -0.00001 -0.00001 -0.00001* 18.7% 
Δ.Depth 
Imbalance 0.00001* 0.00007* -0.00002 -0.0001* -0.00001* 96.8% 

Δ.Relative Spread 8.164* 45.025* -90.576 16.458 -18.32* 26.0% 
Number of Exec. -0.014* -0.025 0.011 0.006 0.02* 22.5% 
Number of Canc. 0.00005 0.0009* -0.005* 0.0005 -0.0005* 31.0% 

Super-
Book 
Variables 

ΔS.Relative Price -0.006* -0.011 0.004 -0.0006 0.011* 56.7% 
ΔS.Volume 
Ahead 0.00001* 0.00001 0.00001 0.00001 -0.00001* 58.8% 

ΔS.Depth 
Imbalance 0.00001* -0.00001 0.00002* -0.0001* 0.000002* 74.6% 

ΔS.Relative 
Spread -7.622* -8.935 27.794 -8.296 8.34* 41.4% 

S.Number of 
Exec. 0.0009* -0.003 0.006* 0.004* 0.0005 36.5% 

S.Number of 
Canc. -0.00001 -0.0001 0.0004 -0.0001 0.00001 -1.6% 

Table 16: Effect of Stock Characteristics on Logistic Regression Coefficients. The table reports the results of the second stage 
regression analysis, used to investigate the assumption that stock level characteristics can explain the variation observed in the 
study of the cancellation determinants of fleeting liquidity. Given that each regression coefficient from the study of the 
cancellation determinants has an associated standard error, we need to incorporate this in the second stage analysis and use a 
weighted linear regression approach. Equation 4 is the resulting second level regression. The values for the stock characteristics 
are computed using monthly data from CRSP and COMPUSTAT for years 2009 and 2010. Market capitalization proxies for the 
level of liquidity of a stock, turnover is a measure of trading activity, while volatility and market beta are measures of risk. The 
star indicates significance at 5%.  

Our findings suggest that stock characteristics determine what limit order book changes are 

most relevant for fast, impatient traders and point to the fact that not all market changes will 

be relevant cancellation determinants for all stocks. 

7 Overbooking and Order Clustering 
 

In this second part of our study, we examine how fast, impatient traders have learned to make 

the most of recent technological developments and how they leverage their speed advantage.  

In fact, a number of recent theoretical studies, most notably van Kervel (2015) and Baldauf and 

Mollner (2015), posit that if a sub group of traders enjoy a systematic speed advantage over the 

other market participants, this allows them to anticipate the order flow of the slower traders. 
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We argue that, if that is the case, this should allow them to leverage the availability of multiple 

trading venues and engage in an “overbooking” trading strategy, based on the simultaneous 

submission of multiple limit orders across different exchanges with the objective of executing 

only one of them. In fact, such trading strategy would allow them to increase their probability 

of execution, reduce execution time, and could be effectively implemented by them thanks to 

their speed advantage, which allows them to quickly cancel the remaining orders, avoiding over 

execution.  

In order to test this hypothesis, we first develop a procedure to identify those orders submitted 

simultaneously by the same trader, and we call them clustered orders. Such first step is 

necessary since our data does not provide me with any information about the identity of the 

order submitter, making it impossible to match directly individual orders to specific traders. 

Then, we carry out an analysis of the nature and composition of these clusters of limit orders 

and we compare their performance to remaining orders. Finally, we investigate when such 

trading strategy is most effective and we test the notion that they belong to the same cluster. 

7.1 Cluster Construction 
 

One of the key contributions of this study is the identification of a new type of trading strategy, 

based on the ability of certain traders to engage in multi-venue trading by leveraging their 

speed and technological advantage. In their theoretical studies, van Kervel (2015) and Baldauf 

and Mollner (2015) suggest that fast traders can exploit their ability to anticipate the other 

market participants by submitting Market Orders against stale quotes. In fact, as soon as new 

price-altering information arrives in the market, fast traders can react to it before anybody else 
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does and execute against orders that belong to the slower market participants who have not 

yet re-priced them. Following the same spirit and the empirical evidence suggesting that 

traders use, in their trading strategies, a mix of market and limit orders, we posit that some 

fast, impatient traders can benefit from submitting simultaneously limit orders across 

exchanges with the objective of executing only one. In fact, the simultaneous submission on 

multiple venues allows them to attempt execution on several trading venues rather than on 

only one, which should allow them to reduce execution time and increasing execution 

probability. On the other hand, their ability to anticipate the other market participants should 

allow them to cancel the outstanding orders as soon as the desired execution of one is attained, 

reducing their risk of over execution. 

In order to identify those limit orders that are part of a multi-venue trading strategy employed 

by a fast trader, we define two limit orders as submitted simultaneously if they verify the 

following conditions: 

• They are submitted on the same side of the book. 

• They have the same price. 

• They have the same size. 

• They are submitted on different venues. 

• They are submitted at most 50 milliseconds apart. 

• They are cancelled or executed at most 50 milliseconds apart. 

These conditions reflect the critical assumption that the simultaneous submission of multiple 

limit orders on multiple venues is aimed at increasing the probability of execution, or 
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decreasing the execution time, of one of the orders rather than all of them. In this sense, our 

approach should not be confused with the practice of splitting one large parent order into 

multiple smaller child orders, which has at its core the objective of executing all of the orders 

rather than only one. Under this assumption, it is obvious that the trader who submits such a 

cluster of orders is indifferent between which of the orders attains execution, hence all of the 

orders in the same cluster must be identical. This assumption explains why we impose the 

condition that orders that belong to the same cluster must be on the same side of the book, 

have the same price and the same size. Given that the orders are submitted across 

exchanges, we cannot have, inside the same cluster, multiple orders on the same venue, as 

that does not serve the purpose of the cluster. Finally, the last two conditions are set in order 

to enforce the “simultaneous” aspect of order submission: if a trader submits a cluster of 

orders, it is possible that due to network latencies and delays in the matching engine, these 

orders will not appear in the limit order books at exactly the same time. Hence, we allow for a 

delay of up to 50 milliseconds, which is consistent with an upper bound reported for latencies 

in those years. Similarly, since the purpose of the cluster is the execution of one order, rather 

than all of them, if a cluster is no longer needed all of the orders will be simultaneously 

cancelled. Once again, attaining immediate, simultaneous cancellation of all orders might not 

be possible due to delays and network latencies hence, we allow for a 50 milliseconds delay 

in the report of these events. 
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7.2 Cluster Analysis 
 

7.2.1 Introductory Findings 
 

We run the clustering procedure on the eighty-five stocks in our sample and carry out an 

introductory analysis on cluster size and composition. As reported in Table 17, we find over 

nineteen million clusters of limit orders in our sample. The most common cluster (69.3%) is the 

one made of two limit orders (hence, of two limit orders submitted on two distinct venues) 

while clusters made up of orders submitted on all four venues are rather uncommon (6.2%). 

This could be explained by the fact that in our sample of four exchanges, one of them, EDGE-A, 

is an inverted pricing venue in which a trader is charged a fee for posting a limit order rather 

than given a rebate. This implies that EDGE-A could be seen as a venue of last resort for a limit 

order trader who would prefer to submit his order on any of the other three trading venues. It 

is also interesting to note that the most common cluster is that of size two rather than three. 

This suggests that simply submitting a limit order on each venue might not be cost effective and 

indicates that there must be an additional cost associated with submitting a cluster of limit 

orders rather than a just a single one. 

Size of Cluster 2 3 4 Total 
Number of 
Clusters 13,634,367 4,827,785 1,225,165 19,687,317 

Percentage 69.3 24.5 6.2 100 
Table 17 Cluster Size Statistics. In the top row of the table, we report the number of clusters by size, while in the bottom one 
the percentage that cluster size represents. The size of the cluster is the number of limit orders that make up the cluster: given 
that each limit order in a cluster must be submitted at a different exchange, the size of the cluster also tells how many 
exchanges are used in a cluster. 

A careful analysis of cluster’s composition, reported in Table 18, shows how the most common 

cluster (31.3%) is the one made up of one limit order submitted on BATS-Z (“Z”) and another 
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one on the NASDAQ (“Q”). This is not surprising since these two exchanges are, respectively, 

the most convenient one, fee and rebate structure wise, and the one with highest market 

share. A rather distant second (17.2%) is the cluster made up of three limit orders sent to the 

NASDAQ (“Q”), BATS-Z (“Z”) and EDGE-X (“K”). Then, two clusters of size two follow: one with 

orders sent to EDGE-X (“K”) and BATS-Z (“Z”), and the other with orders sent to EDGE-X (“K”) 

and the NASDAQ (“Z”), which make up, respectively, 14.2% and 10.6% of the total. Not 

surprisingly, very few clusters include limit orders send to EDGE-A (“J”): the most common 

cluster that includes this venue is the one made up of limit orders submitted to all four 

exchanges (6.2%) while all other possible venue combinations that include EDGE-A are 

considerably less frequently used. The results in Table 18 confirm that EDGE-A, given its fee 

and rebate structure that makes it the only “Inverted-Pricing” venue in our sample, might be 

considered as a venue of last resort, since it is not a frequent target for clusters of limit orders. 

JKQ JQZ JKZ JK JZ JQ JKQZ KQ KZ KQZ QZ 
1.6% 2.7% 3.0% 3.8% 3.8% 5.6% 6.2% 10.6% 14.2% 17.2% 31.3% 

Table 18: Venue Composition of Clusters. The table presents the percentage of clusters submitted to each possible combination 
of exchanges. The NASDAQ is denoted by “Q”, BATS-Z by “Z”, EDGE-X by “K” and EDGE-A by “J”. For example, a value of 6.2% 
for venue composition “QZKJ” means that only 6.2% of clusters is made up of 4 limit orders submitted on each of the 4 possible 
exchanges. 
 

We further investigate cluster composition by looking at a breakdown by venue. In the top row 

of Table 19, we see how the NASDAQ appears in 31.7% of all clusters and BATS-Z in 33.1% of 

them. On the other hand, EDGE-A is the least common venue appearing in only 11.3% of 

clusters. It is also interesting to look at what proportion of the entire limit order flow on each 

exchange belongs to some cluster. In the bottom row of Table 19, we see that EDGE-X is the 

venue with the highest proportion of clustered limit orders since 26.3% of all the submitted 

limit orders belong to some cluster. On the other hand, only 13.1% of all limit orders submitted 
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to the NASDAQ are clustered while on average, across all venues, 20.2% of all limit orders in our 

sample belong to a cluster. The low proportion of clustered limit orders on the NASDAQ can be 

explained by the fact that the NASDAQ is the venue with the largest market share, both in 

terms of limit order submission and execution. Hence, even though the NASDAQ is one of the 

most common venues when submitting a cluster of limit orders, given the large volume of limit 

orders submitted there, the overall proportion of clustered orders is still fairly small. These 

results suggest that clusters of limit orders are a significant component of the entire order flow, 

consistent with the empirical evidence pointing to an extensive presence of algorithmic traders 

in today’s equity market, and underlines the need to better understand its dynamics. 

Venue J K Q Z Total 
Proportion 11.3% 23.9% 31.7% 33.1% 100.0% 
Proportion of 
Limit Orders in 
Clusters 

20.0% 33.7% 13.1% 26.3% 20.2% 

Table 19: Cluster Composition by Venue. In the upper portion of the table, we report the proportion of clusters that include a 
limit order submitted to each specific venue. In the lower portion, we report the proportion of limit orders on each venue that 
belong to a cluster. Finally, in the last column we report the proportion of clustered limit orders across all exchanges. The 
NASDAQ is denoted by “Q”, BATS-Z by “Z”, EDGE-X by “K” and EDGE-A by “J”. 

It is also important to better understand whether any significant differences between the limit 

orders that belong to a cluster and their non-clustered counterparts exist. In fact, it is 

reasonable to assume that, just like for the case of fleeting and non-fleeting orders, clusters are 

used by traders who have very different trading strategies and objectives than the classic 

patient liquidity supplier, hence they should also be significantly different from the rest of the 

limit order flow. 

We investigate the submission patterns for the two order types and present the results in Table 

20. We see that, on average, clusters are priced more aggressively than the other orders. In 
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fact, 72.4% of clusters are submitted at prices that are better than, or at, the Best Bid or Ask 

compared to 63.7% for non-clustered orders. This difference in order aggressiveness becomes 

even more evident if we look at the break down by relative price: the proportion of clustered 

orders that are price improving is 16.2% while that for the rest of the orders is only 9.1%. This 

higher aggressiveness of clustered orders over their non-clustered counterparts is not 

surprising considering that the entire purpose of submitting a cluster is to increase the 

probability of execution and reduce execution time. Hence, submitting a cluster far away from 

the market would have a limited effect on the probability of execution while it would still 

involve a cost in order to be implemented. It is interesting to point out that the results in Table 

20 are consistent with those in Table 8 that compared fleeting orders to non-fleeting ones. In 

both cases, we see that the order flow generated by fast, impatient traders is considerably 

more aggressive than that of the order market participants and, in both cases, it is consistent 

with the actions of traders who prioritizes a quick execution over everything else. Overall, the 

results in Table 20 confirm that clustered limit orders are more similar in nature to fleeting 

orders rather than non-fleeting ones and that they could be used by traders with similar trading 

strategies.  

 Price 
Improving 

At best Bid or 
Ask 

Between 2nd 
and 5th 

Between 6th 
and 10th 

Deeper 

Cluster 16.2% 56.2% 22.7% 3.7% 1.2% 
Non-Cluster 9.1% 54.6% 26.6% 5.4% 4.3% 

Table 20: Order Aggressiveness Statistics. Each row of the table presents the submission statistics for the two types of limit 
orders: clustered and non-clustered. Each column identifies a different portion of the limit order book, based on the relative 
price. “Price Improving” refers to limit orders that, when submitted, set a new best Bid or Ask, hence improve the previous best 
price. “At best Bid or Ask” refers to orders submitted at the current best price. “Between 2nd and 5th“ refers to orders 

submitted between the 2nd and 4th best price in the book. “Between 6th and 10th“ refers to orders submitted between the 6th 
and 10th most aggressive price on each side. “Deeper” identifies all orders submitted further away than the 10th price level from 
the market. 



83 
 

In conclusion, the results of this introductory analysis allow to make a number of interesting 

remarks. First, the analysis of cluster size and composition suggests that submitting a cluster of 

limit orders might be considerably more expensive than a simple single-order submission and 

that submitting an order on each of the trading venues might not be cost effective. Second, it 

also suggests that EDGE-A is seen as a venue of last resort, given that its fee and rebate 

structure is set to charge a fee when submitting an order rather than paying a rebate. On the 

other hand, the results for the study of order aggressiveness find that clusters of limit orders 

are considerably more aggressive than their non-clustered counterparts, suggesting that the 

two might be used by traders with very different trading strategies and objectives. Moreover, 

our results further indicate that clusters of limit orders are more similar in nature to fleeting 

orders, confirming our initial assumption that the overbooking trading strategy can be 

effectively implemented only by this sub group of traders as a result of their speed advantage 

over the other market participants.  

7.2.2 Performance of Clustered Orders   
 

In this part of our analysis we investigate the benefits of an overbooking trading strategy over a 

simple single-venue submission. In fact, even though the speed advantage of fast, impatient 

traders reduces considerably their risk of over execution they still need to account for a higher 

cost associated with such strategy as suggested by the results in Table 17, Table 18 and Table 

19.  The higher cost associated with this trading strategy can be explained by the fact that 

submitting multiple orders on multiple exchanges implies the need to monitor multiple venues, 

which certainly leads to the need for additional computational and financial resources. 

Moreover, even though over execution risk is certainly reduced it cannot be entirely 
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eliminated. In order to investigate the performance of clustered orders, we look at the 

execution times and probabilities of these orders and at the quality of these executions, 

measured by the realized spread as in Sofianos and Yousefi (2010). This analysis should allow 

me to explore two possible advantages derived from the implementation of a multi-venue 

trading strategy: higher probability of execution or the possibility of making the most of short-

term, favorable price movements, thanks to a lower execution time. 

In the first step of our analysis we look at the probability of execution across order types and 

present our results in Table 21. We find that, on average, 8.3% of all clusters lead to an 

execution while only 4.5% of orders do. This higher probability of execution for clusters of limit 

orders could be the result of the more aggressive nature of these orders, as suggested in Table 

20. Hence, to investigate this possibility, we break down the execution probabilities by relative 

price. Limit orders submitted at prices better than the best price have the same probability of 

execution: 16.1% for both clusters and non-clustered orders. This is not surprising and it simply 

indicates that an aggressive limit order will have a higher probability of execution in virtue of its 

position at the top of the queue. This also confirms a very intuitive result that higher order 

aggressiveness leads to increased probability of execution. An important difference between 

the two order types is in the probability of execution of orders that are submitted at the best 

price: clusters are far more likely to be executed than normal orders, with a probability of 

execution of 9.5% compared to only 5.2%. This result suggests that a cluster of limit orders is an 

effective tool to increase the probability of execution without having to compete, and hence 

increase, the relative price of the order. In fact, increasing the aggressiveness of an order result 

in a worse price for the trader who submits it, reducing the potential profit generated by each 
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trade. Hence, a trader who submits a limit order would like to attain an execution at the least 

aggressive price possible and the results in Table 21 suggest that a cluster of limit orders is an 

effective tool in order to do so. 

The execution probabilities for orders submitted beyond the best price are very low across both 

order types. 

 Price 
Improving 

At best Bid 
or Ask 

Between 2nd 
and 5th 

Between 6th 
and 10th 

Deeper Across all 
Price Levels 

Cluster 16.1% 9.5% 1.0% 0.7% 1.3% 8.3% 
Non- Cluster 16.1% 5.2% 0.6% <0.1% <0.1% 4.5% 

Table 21: Execution Probabilities of Limit Orders. Each row of the table presents the execution probabilities for the two types of 
limit orders: clustered and non-clustered. Each column identifies a different portion of the limit order book, based on the 
relative price. “Price Improving” refers to limit orders that, when submitted, set a new best Bid or Ask, hence improve the 
previous best price. “At best Bid or Ask” identifies orders submitted at the current best price. “Between 2nd and 5th“ refers to 

orders submitted between the 2nd and 4th best price in the book. “Between 6th and 10th“ refers to orders submitted between 
the 6th and 10th most aggressive price on each side. “Deeper” identifies all orders submitted further away than the 10th price 
level from the market. Finally,” Across All Price Levels” present the overall execution probability across all price levels. 

A second potential advantage of an overbooking trading strategy based on the submission of 

a cluster of limit orders, could be the possibility of making the most of short-lived and short-

term favorable price movements. If that were the case, clusters of limit orders would have 

to have shorter execution times than their non-clustered counterparts, and would have to 

be submitted prior to favorable price movements. To test these hypotheses, we look at the 

average execution time across order types and we compare their quality of executions, 

measured by the realized spread. 

We start by looking at the average execution times across order type and, as reported in Table 

22, we find that non-clustered limit orders have rather long execution times with, on average, 

over 5 minutes and 15 seconds before attaining execution. On the other hand, clusters have an 

average execution time of only 2 minutes, 19 seconds and 610 milliseconds, which suggests 
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that traders who use clusters of limit orders are able to reduce by more than half their 

execution time. This confirms a second key advantage of a trading strategy based on the 

simultaneous submission of multiple limit orders across exchanges: faster executions.  

 Average Execution Time (milliseconds) 

Clusters 139,610 

Non-Clustered Orders 315,690 

Table 22: Average Execution Time Across Order Type. Each row of the table presents the execution times for the two types of 
limit orders: clustered and non-clustered. Execution times are measured in milliseconds and quantify the time between order 
submission and execution. 

We now compare the quality of the executions across order type by looking at the realized 

spread. Our approach is in line with the work of Sofianos and Yousefi (2010) and Battalio, 

Corwin and Jennings (2016) and is based on the assumption that the quality of an execution 

can be measured by looking at the price movement following the execution. In fact, the higher 

the price increase (drop) after a buy (sell) limit order is executed the better for the order 

submitter since it means that the he was able to buy (sell) his shares right before a price 

increase (drop). The opposite is true if a buy (sell) limit order is executed right before a price 

drop (increase). 

For every execution we compute the realized spread by comparing the mid-price five minutes 

after the execution to what it was at the moment of the execution: in the specific, for an 

executed buy limit order, we compute the difference between the future mid-price and the 

execution mid-price, while for a sell limit order, we multiply such difference by -1. Such 

definition allows to standardize the measure across the two sides of the book, and state that 

larger values for the realized spread imply higher quality of execution, regardless of side.  
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The results for the realized spread in Table 23 find no significant difference in the quality of the 

executions between the two order types, with clusters of limit orders having slightly higher 

average realized spreads: 251 compared to 249. This suggests that even though clusters of 

orders allow to decrease the execution time, this doesn’t translate in better executions. 

 Average Realized Spread 
Cluster 251 
Non-Cluster  249 

Table 23: Average Realized Spread Across Order Types. Each row of the table presents the average realized spread for the two 
types of limit orders: clustered and non-clustered. Realized spreads are computed by comparing the mid-price five minutes 
after the execution to that at the moment of the execution: in the specific, for an executed buy limit order, the realized spread 
is the difference between the future mid-price and the execution mid-price, while for a sell limit order, we multiply such 
difference by -1. This definition allows to standardize the measure across the two sides of the book, and say that larger values, 
imply higher quality of executions regardless of side. 

In conclusion, our analysis of the performance of clusters of limit orders allows to identify two 

key advantages of an overbooking strategy: increased probability of execution and considerable 

reduction of execution time. These advantages are particularly relevant for traders who aim to 

attain a quick execution, such as the fast, impatient traders who we argue are behind clustered 

orders, and explain why traders engage in this type of strategy given its higher cost and risk. 

Our analysis, however, does not find any evidence suggesting that the ability to attain a quicker 

execution can be used to make the most of short-term favorable price movements. In fact, the 

realized spread of clustered executions is not significantly different from that of normal orders, 

which implies that the two order types attain executions of similar quality.  

7.2.3 In-Sample Variation of Cluster Performance 
 

In the last part of the empirical analysis of clustered orders, we look at whether the 

overbooking trading strategy is equally effective for all stocks in our sample. In light of our 

findings on fleeting liquidity, and keeping in mind that clusters of limit orders are also 
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submitted by the same type of traders who prioritize a quick execution, we expect 

overbooking to be particularly effective for those stocks in which there is a high level of 

competition for a favorable queue position. In fact, as we have seen in Section 6, if a fast, 

impatient trader wants to attain a quick execution he needs to secure a favorable queue 

placement for his orders. If, however, he wants to trade a very desirable stock, he might 

face a very high degree of competition for such spot, and attaining it might prove either too 

hard or very time consuming. It is in such case that the ability of a trader to engage in a 

multi-venue trading strategy based on the simultaneous submission of a cluster of limit 

orders might prove especially helpful in allowing him to increase his probability of execution 

and bypassing the competition for the top of queue placement.  

We also expect overbooking to be particularly effective in improving execution probability 

for stocks that have a significant extent of execution fragmentation. In fact, if a stock has the 

majority of trades occurring on one trading venue only, submitting multiple limit orders 

across multiple exchanges might not bring any significant improvements in execution 

probability. On the other hand, if a stock has executions that occur in large numbers on 

multiple exchanges, submitting a cluster of orders might considerably increase the 

probability of finding a matching incoming market order. 

To test our hypothesis on how execution fragmentation and competition for superior queue 

placement affect the effectiveness of the overbooking trading strategy, we carry out a 

regression analysis on the determinants of the difference in the execution probability 

between clustered and non-clustered limit orders. In order to test our hypothesis that 

clusters of limit orders are particularly helpful when trading stocks with high competition for 
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a favorable queue placement we include, as independent variable, the proportion of fleeting 

orders out of total order flow. In fact, for a given stock, a higher proportion of fleeting 

liquidity indicates that there are more fast, impatient traders trying to attain a quick 

execution, hence a larger number of traders fighting for a favorable queue placement. On 

the other hand, in order to test the role of execution fragmentation, we build a 

fragmentation measure that quantifies the level of fragmentation of executions across 

exchanges. The measure is a Herfindahl index in which high values indicate a stock with high 

concentration of executions around one specific exchange, implying that most of the 

executions occur on one venue only. The control variables that we use in this study are in line 

with those used in Section 6, and represent stock level characteristics that account for the in-

sample difference reported in Table 2. In the specific, we look at how the average market 

cap, turnover (computed as the ratio of traded stocks against all outstanding), closing price 

and market beta of the stock affect the change in execution probability. The values of these 

independent variables are obtain by looking at historical monthly data for 2009 and 2010 and 

are collected from CRSP and COMPUSTAT.  

The resulting regression model will be of the form 

𝐷𝐷𝑡𝑡𝑜𝑜𝑜𝑜.𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻.𝑃𝑃𝑃𝑃𝑉𝑉𝐹𝐹𝐵𝐵 =  𝛽𝛽0 +  𝛽𝛽𝑀𝑀𝐶𝐶𝐴𝐴𝑀𝑀 × 𝑀𝑀𝑅𝑅𝑃𝑃𝐴𝐴𝐷𝐷𝐷𝐷 𝐶𝐶𝑅𝑅𝐷𝐷𝐵𝐵 +  𝛽𝛽𝑇𝑇𝑂𝑂 × 𝐵𝐵𝐹𝐹𝑃𝑃𝐻𝐻 𝑂𝑂𝑅𝑅𝐷𝐷𝑃𝑃𝐵𝐵 
                                   + 𝛽𝛽𝑀𝑀𝑆𝑆𝐵𝐵𝐶𝐶𝑆𝑆 × log (𝑃𝑃𝑃𝑃𝑡𝑡𝐻𝐻𝐷𝐷𝐵𝐵) + 𝛽𝛽𝑆𝑆𝑆𝑆𝑡𝑡𝐶𝐶 × 𝑀𝑀𝑅𝑅𝑃𝑃𝐴𝐴𝐷𝐷𝐷𝐷 𝐵𝐵𝐷𝐷𝐷𝐷𝑅𝑅𝐵𝐵 
                                   + 𝛽𝛽𝐹𝐹𝑆𝑆𝐶𝐶𝐹𝐹𝑆𝑆.𝐼𝐼𝑂𝑂𝐵𝐵𝑆𝑆𝐼𝐼 × 𝐹𝐹𝑃𝑃𝑅𝑅𝐹𝐹𝑡𝑡𝐷𝐷𝐻𝐻𝐷𝐷𝑅𝑅𝐷𝐷𝑡𝑡𝑉𝑉𝐻𝐻 𝐼𝐼𝐻𝐻𝐵𝐵𝐷𝐷𝐻𝐻𝐵𝐵 

                                                       + 𝛽𝛽𝐹𝐹𝐶𝐶𝑆𝑆𝑆𝑆𝑡𝑡𝐵𝐵𝑂𝑂𝐹𝐹 × 𝐹𝐹𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐻𝐻𝐹𝐹𝐵𝐵 +  𝜀𝜀𝐵𝐵                                                             ( 5 ) 

for we = 1, …, 85. 

The regression results are presented in Table 24 and provide some interesting insights. First, we 

see that among all control variables only price is significant: in the specific, it is a significant and 

negative determinant of the change in execution probability. This means that the lower the 
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price of a stock, the higher the benefit of an overbooking trading strategy. There is no clear 

answers as to why that would be the case even after controlling for fragmentation and 

proportion of fleeting orders and it is also somewhat surprising that none of the other control 

variables is significant. Second, we see that the proportion of fleeting order flow is a significant 

and positive determinant of change in execution probability. This means that stocks with a high 

proportion of fleeting liquidity are those that benefit the most from the submission of a cluster 

of limit orders since the difference in execution probability between clusters and non-clustered 

orders increases. Given that the proportion of fleeting liquidity proxies for the extent of 

competition for superior queue placement, this result confirms our assumption that 

overbooking works best for stocks in which there is considerable competition for attaining an 

advantageous queue placement. Finally, the significant and negative coefficient for the 

fragmentation index is consistent with our assumption that clustering limit orders is especially 

useful for those stocks that have very fragmented executions. In fact, the closer the coefficient 

is to 1, the less fragmented are the executions. 

 Estimated Coefficients t-statistic 
Market Cap 0.0000 -1.2820 
Turnover -0.0033 -0.2320 
Price -0.0002* -2.5520 
Market Beta -0.0100 -1.3760 
Fragmentation Index -0.1018* -2.1100 
Fleeting Orders 0.0704* 2.2980 

Table 24: Cluster Performance Regression Results. The table present the regression results for the study of the determinants of 
the difference in execution probability between clustered and non-flustered orders. In the specific, for each stock we look at 
how changes in the proportion of fleeting liquidity, that proxies for the level of competition for superior queue placement, and 
in the level of execution fragmentation, affect the improvement in execution probability obtained when switching from a 
simple single-venue trading strategy to overbooking. The control variables used in this study are in line with those used in 
Section 6 for the study of the cancellation determinants of fleeting liquidity and represent stock level characteristics that 
account for the in-sample difference reported in Table 2. In the specific we look at how the average market cap, average stock 
turnover (computed as the ratio of traded stocks against all outstanding), average closing price and market beta affect the 
change in execution probability between the two order types. The values of the control variables are obtain by looking at 
historical monthly data for 2009 and 2010, collected from CRSP and COMPUSTAT. (*) denotes those coefficients significant at 
5% level. 
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Hence, a negative coefficient implies that when execution fragmentation increase hence, when 

the fragmentation coefficient goes to zero, the benefit of submitting a cluster of orders over a 

single one increases. In conclusion, our analysis of the in-sample variation of cluster 

performance, confirms our assumptions about which stocks benefit the most from a trading 

strategy based on the simultaneous submission of multiple orders across multiple trading 

venues. In fact, we find empirical evidence that a cluster of limit orders is able to attain a 

significantly higher execution probability than normal orders when used for stocks with high 

competition for superior queue placement and with highly fragmented executions. These 

results are, once again, consistent with the notion that fast, impatient traders who prioritize 

quick execution are behind this type of trading strategy and that when obtaining a favorable 

queue placement is not possible, or just too time consuming, switching to overbooking can be 

particularly effective. 

7.3 Testing Cluster Existence  
 

The clustering procedure that we use to determine whether two limit orders are submitted 

simultaneously is necessary since the data does not provide any identification information 

about who submits the limit orders. Hence, it is not possible for me to match directly individual 

orders to specific traders. In this section, we test our assumption that orders that belong to the 

same cluster are, indeed, part of the same simultaneous submission. In order to do so, we use 

the fact that clusters of limit orders are submitted to attain the execution of one of the orders 

rather than all of them. If that is the case, we should find evidence that when the first order in a 

cluster attains execution, then the others are cancelled.  
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The testing procedure is based on running a logistic regression on the cancellation 

determinants of the limit orders that belong to a cluster. The variable of interest is a dummy 

variable that signals whether there has been an execution in a cluster: in the specific, it will be 

set to one if the first order in the cluster is executed and zero otherwise. If our clustering 

procedure and assumptions about the purpose of a cluster are correct, we expect the dummy 

variable to be a positive and significant determinant of clustered order cancellations. This 

would mean that if the first order in a cluster attains execution, then this increases the 

probability of observing a cancellation for the remaining orders in that cluster. Given that we 

believe that clusters of limit orders are submitted by fast, impatient traders, we use the same 

two sets of control variables from our study of the cancellation determinants of fleeting 

liquidity: one set will control for the changes in the state of the limit order book in which the 

order is submitted, while the other for those occurring in the Super Book6. Consistent with our 

results from that study, reported in Table 13, we expect that an increase in depth imbalance on 

either the Own Book or the Super Book will increase the probability of cancellation since such 

market change signals that prices might be about to move away from the cluster of orders. In 

light of the findings on the cancellation determinants of fleeting liquidity, we expect that an 

increase in market activity, measured by the number of executions, on either the Own Book or 

the Super Book will decrease the probability of a cancellation. In fact, from the perspective of 

an impatient trader who is waiting for execution, an increase in the arrival of market orders is 

actually desirable as it increases the flow of those orders that can be matched against his 

                                                           
6 For a more detailed explanation on the definition and purpose of the four control variables, please see Section 
6.1 and Section 6.2. 
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outstanding order. Hence, an increase in executions can lead an impatient trader to stay put 

and wait for execution. On the other hand, an increase in market activity when measured by 

the number of cancellations will increase the probability of observing an order cancellation 

since market participants use such measure as a proxy for the arrival of new information. One 

key difference between the expected results for this study and those from the fleeting liquidity 

cancellation determinants should be in the effect of changes in the relative spread on the Super 

Book. In fact, in the previous study, we argued that fast, impatient traders actively monitor all 

trading venues after order submission, comparing the state of their venue to that of the 

competing market. This implied that when the competing venues are worse than the one in 

which the order is submitted than, fast, impatient traders would not have any incentive to 

resubmit their orders to those other exchanges. Hence, we found that an increase in relative 

spread on the Super Book decreased the cancellation probability of a fleeting order. In this case, 

however, given that we deal with a cluster of limit orders submitted on multiple exchanges, an 

increase in relative spread on the Super Book implies that even though the relative spread is 

increasing on a different venue, that is still a venue in which one of the remaining orders from 

the cluster resides. Hence, this means that the increase in information asymmetry occurring on 

the Super Book is still going to affect one of the orders from the cluster and we should expect 

that such increase will have the same effect on the probability of a cancellation as if the 

increase occurred on the venue were the order is submitted. Hence, we expect an increase in 

relative spread on the Own Book and the Super Book to increase the probability of a 

cancellation.   
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In order to study the cancellation determinants of clustered orders, we run one logistic 

regression per stock in our sample, which results in a total of eighty-five regressions. The final 

regression equation is of the form  

𝐴𝐴𝑉𝑉𝐹𝐹 �
𝜋𝜋

1 − 𝜋𝜋
� = 𝛽𝛽0 + 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂 × 𝛥𝛥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷 + 𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂 × 𝛥𝛥𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵 

      +𝛽𝛽3
𝑂𝑂𝑂𝑂𝐻𝐻 × 𝑁𝑁𝐹𝐹𝑡𝑡𝐹𝐹𝐷𝐷𝑃𝑃 𝑉𝑉𝑜𝑜 𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻. +𝛽𝛽4

𝑂𝑂𝑂𝑂𝐻𝐻 × 𝑁𝑁𝐹𝐹𝑡𝑡𝐹𝐹𝐷𝐷𝑃𝑃 𝑉𝑉𝑜𝑜 𝐶𝐶𝑅𝑅𝐻𝐻𝐻𝐻. 

                                                      +𝛽𝛽5
𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑃𝑃 × 𝛥𝛥𝐹𝐹.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝐼𝐼𝑡𝑡𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅𝐻𝐻𝐻𝐻𝐷𝐷 + 𝛽𝛽6

𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑃𝑃 × 𝛥𝛥𝐹𝐹.𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡𝑅𝑅𝐷𝐷 𝐹𝐹𝐷𝐷𝑃𝑃𝐷𝐷𝑅𝑅𝐵𝐵  

                                                      +𝛽𝛽7
𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹.𝑁𝑁𝐹𝐹𝑡𝑡𝐹𝐹𝐷𝐷𝑃𝑃 𝑉𝑉𝑜𝑜 𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻. +𝛽𝛽8

𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑃𝑃 × 𝐹𝐹.𝑁𝑁𝐹𝐹𝑡𝑡𝐹𝐹𝐷𝐷𝑃𝑃 𝑉𝑉𝑜𝑜 𝐶𝐶𝑅𝑅𝐻𝐻𝐻𝐻.  

                                                      +𝛽𝛽9 × 𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻𝐹𝐹𝐷𝐷𝑡𝑡𝑉𝑉𝐻𝐻 𝐷𝐷𝐹𝐹𝑡𝑡𝑡𝑡𝑉𝑉                                                                                         ( 6 ) 

for we = 1, …, 85. 

In Table 25, we report the results of the regression analysis and present the median values of 

the regression coefficients obtained when running the eighty-five individual logistic regressions 

and the number of stocks that have each predictor significant at a 5% level. Two important 

remarks can be made: first, the control variables are significant for the majority of the stocks, 

with numbers ranging from thirty-seven up to sixty-one. Moreover, the directions of the 

coefficients are consistent with our initial assumptions about the effect that changes in the 

state of the Own Book and Super Book will have on the cancellation probability of a cluster of 

limit orders. Second, the Execution Dummy is positive and significant for almost every stock. 

This means that after the execution of the first order in the cluster, the probability of 

cancellation for the remaining orders increases. This result validates our clustering procedure 

since it provides empirical evidence that the orders that belong to the same cluster depend of 

each others. Moreover, it also confirms our initial assumption that the objective of this trading 

strategy, based on the simultaneous submission of multiple orders across different exchanges is 
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the execution of one order, rather than all of them. In fact, after the first order in the cluster is 

executed, the probability of a cancellation of the remaining orders in the cluster increases 

considerably. 

 
 

Probability of Cluster 
Cancellation  

  Coefficient Sig. 5%  
Own Venues 
Variables 

Δ. Depth 
Imbalance 

0.0001 56 

 Δ. Relative Spread 75.60443 42 
 Number of Exec. -0.06677 59 
 Number of Canc. 0.02026 48 
Super-Book 
Variables 

ΔS.Depth 
Imbalance 

0.00003 49 

 ΔS.Relative Spread 18.22075 37 
 S.Number of Exec. -0.00707 61 
 S.Number of Canc. 0.00072 41 
 Execution Dummy 2.01042 72 

Table 25: Cluster Existence Logistic Regression. In this table, we report the results for study on the cancellation determinants of 
clustered orders, necessary to test the existence of a cluster. In the first column, we present the median value of the 
coefficients computed across all eighty-five stocks while in the second one we state the number of stocks that have that 
predictors significant at a 5% level. Execution Dummy is the variable of interest and is a dummy variable that signals whether 
there has been an execution in a cluster: in the specific, it is set to one if the first order in the cluster is executed and zero 
otherwise. Δ(S.) Depth Imbalance refers to the (relative) change in the own (Super) book’s depth imbalance between the 
moment of cancellation and submission; Δ(S.) Relative Spread refers to the (relative) change in the own (Super) book’s relative 
spread between the moment of cancellation and submission; (S.) Number of Exec, and (S.) Number of Canc. refer to the 
average number of executions and cancellations, respectively, that have occurred on the own (Super) book during the lifetime 
of the order. 

8 Conclusions 
 

In our study, we address the effect of recent regulatory and technological changes on trading dynamics, 

which have not only transformed how the equity market functions but also how market participants 

interact with it and between each other’s. We build on previous research that finds that algorithmic 

traders can be characterized as fast, impatient traders who prioritize a quick execution and we study 

their trading patterns. We investigate how the implementation of Reg-NMS has affected the behavior of 

fast, impatient traders and explore whether the order flow generated by such traders is consistent with 

the puzzling phenomenon of fleeting liquidity. We then investigate whether fast, impatient traders 
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are able to leverage their speed advantage and turn market fragmentation in their favor by 

implementing a trading strategy based on the simultaneous submission of multiple orders across 

exchanges.  

We begin our analysis by testing the signaling hypothesis proposed in Hasbrouck and Saar 

(2009) to explain the fleeting liquidity submitted inside the spread. We find evidence of a 

positive relation between the submission of fleeting liquidity inside the spread and the 

execution of hidden orders, supporting their claim the fleeting liquidity submitted inside the 

spread can serve a signaling purpose to attract the attention of traders to a specific venue.  

We then test our assumption that the implementation of Reg-NSM, combined with the 

impatient nature of algorithmic traders, can explain the dynamics of fleeting liquidity submitted 

inside the book, rather than only that submitted inside the spread. We find evidence that fast, 

impatient traders actively monitor all trading venues in order to correctly asses the position of 

their orders and that they react to market events on every venue if they negatively affect the 

placement of their orders.  

Finally, following a number of recent theoretical studies, we investigate how fast, impatient 

traders exploit their ability to anticipate the order flow of other, slower market participants. We 

find evidence that they are able to successfully engage in an overbooking trading strategy 

based on the simultaneous submission of limit orders across different exchange. Such strategy 

allows them to increase their probability of execution, reduce execution time and is particularly 

helpful when used for stocks that have a high degree of competition for a favorable queue 

placement.  



97 
 

References 

 

Amihud, Yakov, Beni Lauterbach, and Haim Mendelson. "The value of trading 

consolidation: Evidence from the exercise of warrants." Journal of Financial and 

Quantitative Analysis 38, no. 04 (2003): 829-846. 

Baldauf, Markus, and Joshua Mollner. "High-frequency trading and market 

performance." (2015). 

Barclay, Michael J., and Terrence Hendershott. "Liquidity externalities and adverse 

selection: Evidence from trading after hours." The Journal of Finance 59, no. 2 (2004): 

681-710. 

Battalio, Robert H. "Third Market Broker‐Dealers: Cost Competitors or Cream 

Skimmers?." The Journal of Finance 52, no. 1 (1997): 341-352. 

Battalio, Robert, Shane A. Corwin, and Robert Jennings. "Can Brokers Have It All? On 

the Relation between Make‐Take Fees and Limit Order Execution Quality." The Journal 

of Finance 71, no. 5 (2016): 2193-2238. 

Bennett, Paul, and Li Wei. "Market structure, fragmentation, and market 

quality." Journal of Financial Markets 9, no. 1 (2006): 49-78. 

Biais, Bruno. "Price formation and equilibrium liquidity in fragmented and centralized 

markets." The Journal of Finance 48, no. 1 (1993): 157-185. 

Bloomfield, Robert, Maureen O’hara, and Gideon Saar. "The “make or take” decision in 

an electronic market: Evidence on the evolution of liquidity." Journal of Financial 

Economics 75, no. 1 (2005): 165-199. 



98 
 

Boehmer, Beatrice, and Ekkehart Boehmer. "Trading your neighbor’s ETFs: 

Competition or fragmentation?." Journal of Banking & Finance 27, no. 9 (2003): 1667-

1703. 

Cao, Charles, Oliver Hansch, and Xiaoxin Wang. "Order placement strategies in a pure 

limit order book market." Journal of Financial Research 31, no. 2 (2008): 113-140. 

Cao, Charles, Oliver Hansch, and Xiaoxin Wang. "The information content of an open 

limit‐order book." Journal of futures markets 29, no. 1 (2009): 16-41. 

Cebiroglu, Gökhan, and Ulrich Horst. "Optimal order exposure and the market impact of 

limit orders." (2013). 

Chowdhry, Bhagwan, and Vikram Nanda. "Multimarket trading and market 

liquidity." Review of financial studies 4, no. 3 (1991): 483-511. 

Chowdhry, Bhagwan, and Vikram Nanda. "Multimarket trading and market 

liquidity." Review of financial studies 4, no. 3 (1991): 483-511. 

Cont, Rama, and Arseniy Kukanov. "Optimal order placement in limit order markets." 

(2013). 

Ellul, Andrew, Craig W. Holden, Pankaj Jain, and Robert Jennings. "Order dynamics: 

Recent evidence from the NYSE." Journal of Empirical Finance 14, no. 5 (2007): 636-

661. 

Fong, Kingsley YL, Peter L. Swan, and Ananth Madhavan. "Why do markets fragment? 

A panel-data analysis of off-exchange trading." (2001). 



99 
 

Foucault, Thierry, and Albert J. Menkveld. "Competition for order flow and smart order 

routing systems." The Journal of Finance 63, no. 1 (2008): 119-158. 

Gajewski, Jean-François, and Carole Gresse. "Centralised order books versus hybrid 

order books: A paired comparison of trading costs on NSC (Euronext Paris) and SETS 

(London Stock Exchange)." Journal of Banking & Finance 31, no. 9 (2007): 2906-2924. 

Hasbrouck, Joel, and Gideon Saar. "Technology and liquidity provision: The blurring of 

traditional definitions." Journal of financial Markets 12, no. 2 (2009): 143-172. 

Handa, Puneet, and Robert A. Schwartz. "How best to supply liquidity to a securities 

market." The Journal of Portfolio Management 22, no. 2 (1996): 44-51. 

Handa, Puneet, Robert A. Schwartz, and Ashish Tiwari. "Not held orders: evidence on 

the value of order timing in an equity market." (2000). 

Hendershott, Terrence, and Haim Mendelson. "Crossing networks and dealer markets: 

competition and performance." The Journal of Finance 55, no. 5 (2000): 2071-2115. 

Hendershott, Terrence, Charles M. Jones, and Albert J. Menkveld. "Does algorithmic 

trading improve liquidity?." The Journal of Finance 66, no. 1 (2011): 1-33. 

Hoffmann, Peter. "A dynamic limit order market with fast and slow traders." Journal of 

Financial Economics 113, no. 1 (2014): 156-169. 

Hollifield, Burton, Robert A. Miller, and Patrik Sandås. "Empirical analysis of limit order 

markets." The Review of Economic Studies 71, no. 4 (2004): 1027-1063. 

Kaniel, Ron, and Hong Liu. "So what orders do informed traders use?." The Journal of 

Business 79, no. 4 (2006): 1867-1913. 



100 
 

Lo, Andrew W., A. Craig MacKinlay, and June Zhang. "Econometric models of limit-

order executions." Journal of Financial Economics 65, no. 1 (2002): 31-71. 

Mendelson, Haim. "Consolidation, fragmentation, and market performance." Journal of 

Financial and Quantitative Analysis 22, no. 02 (1987): 189-207. 

O’Hara, Maureen. "High frequency market microstructure." Journal of Financial 

Economics 116, no. 2 (2015): 257-270. 

O'Hara, Maureen, and Mao Ye. "Is market fragmentation harming market 

quality?." Journal of Financial Economics 100, no. 3 (2011): 459-474. 

Pagano, Marco. "Trading volume and asset liquidity." The Quarterly Journal of 

Economics 104, no. 2 (1989): 255-274. 

Parlour, Christine A. "Price dynamics in limit order markets." Review of Financial 

Studies 11, no. 4 (1998): 789-816. 

Ranaldo, Angelo. "Order aggressiveness in limit order book markets." Journal of 

Financial Markets 7, no. 1 (2004): 53-74. 

Sofianos, George and Ali Yousefi, “Smart routing: Good fills, bad fills and venue 

toxicity”. Goldman Sachs Equity Execution Strategies Street Smart 40 (2000): 1-9. 

Stoll, Hans R. "Market fragmentation." Financial Analysts Journal (2001): 16-20. 

Van Kervel, Vincent. "Competition for order flow with fast and slow traders." Review of 

Financial Studies (2015): hhv023. 

 

 



101 
 

 

 

 

 

 

Vita 
 

Name of the author: Krzysztof Herman  

Place of Birth: Warsaw, Poland 

 

Undergraduate School Attended: Universita di Bologna, 
Bologna, Italy 

Degrees Awarded: B.Sc Mathematics 
 


	Trading Dynamics in a Fragmented Market
	Recommended Citation

	Abstract
	Title Page
	Copyright notice
	Acknowledgements
	1 Introduction
	2 Market Structure, Superior Queue Placement and Reg-NMS
	2.1 Market Structure
	2.2 Superior Queue Placement
	2.3 Regulation National Market System

	3 Literature Review
	4 Data
	4.1 Sample Summary Statistics
	4.2 Fleeting Liquidity Summary Statistics

	5 Signaling Hypothesis
	5.1 Robustness Check

	6 Fragmentation and Fleeting Liquidity
	6.1 Variable Definition
	6.2 Super Book Variables Vs Own Book Variables
	6.3 Data Cleaning
	6.4 Preliminary Analysis
	6.5 Empirical Results
	6.5.1 Within Variation
	6.5.2 Between Variation


	7 Overbooking and Order Clustering
	7.1 Cluster Construction
	7.2 Cluster Analysis
	7.2.1 Introductory Findings
	7.2.2 Performance of Clustered Orders
	7.2.3 In-Sample Variation of Cluster Performance

	7.3 Testing Cluster Existence

	8 Conclusions
	References
	Vita

