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Abstract

This dissertation comprises three essays that examine misspecification issues in high

dimensional econometrics and asset pricing. The first two essays theoretically diagnose the

misdetection risk of the number of factors in high dimensional factor models and propose

procedures for correcting such misspecification. In particular, the second essay extends

the first one, which focuses on over-detection, to under-detection so that it formulates a

non-asymptotic bound on the overall misdetection probability of the number of factors and

decides the optimal penalization to minimize its upper bound. The third essay revisits the

Recovery theorem of Ross (2015) on the identification of the physical probability distribution

of stock returns. It suggests a novel procedure for applying the theorem to the Gaussian affine

term structure but empirically verifies that the physical probability is falsely identified by the

Recovery theorem. From such misspecification, however, we learn that term premia can be

decomposed into nearly constant short-term premia regarding transitory shocks and highly

volatile long-term premia regarding martingale shocks. This result finally demonstrates that

long-term risk matters for asset pricing.
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Chapter 1

Introduction

This dissertation examines misspecification issues in two contexts: (i) signal (or equiva-

lently factor) detection in high dimensional factor models and (ii) the identification of the

physical probability distribution of stock returns in the asset pricing literature.

The first essay revisits the panel information criteria (IC ) proposed by Bai and Ng (2002),

which is a popular estimator for the number of factors in high dimensional factor models,

and studies its over-detection risk in finite samples. First, we analyze the finite sample

performance of IC by computing the over-detection probability bound. In particular, we

specify the asymptotic over-detection condition of IC in terms of eigenvalues coming from

pure noise and then derive the computable formula for a non-asymptotic upper bound on

the overestimation probability by adopting random matrix theory. We show that unless

the sample size is sufficiently large, the overestimation probability is not negligible even

for the case in which factors have strong explanatory power. Second, we show that for

small sample sizes the over-detection risk of IC is significantly reduced by the degrees of

freedom adjustment in the penalty of the original criteria. Finally, we propose modified

information criteria (MIC ) as a practical guide to improving the finite sample performance

of IC. Simulations show that our MIC outperforms IC for the case with weakly serially or

cross-sectionally correlated errors as well as i.i.d. errors.

The second essay examines the misdetection risk of the panel information criteria (IC )

proposed by Bai and Ng (2002) for detecting the number of factors in high dimensional factor

models and examines the optimal penalty to minimize an upper bound on the misdetection
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probability of the IC estimator in finite samples. This study extends the first chapter, which

analyzed the finite sample performance of the IC estimator regarding its over-detection risk,

to the comprehensive misdetection risk considering under-detection risk as well. We derive

the computable formula for a non-asymptotic upper bound on the misdetection probability

by employing recent results from random matrix theory. Using the formula, we analyze the

misdetection risk of the IC estimator and achieve the minimum upper bound of the misde-

tection probability by finding the optimal weight for the penalty function. Our numerical

examples suggest that modified criteria with the optimized penalization improve the finite

sample performance of the original IC estimator.

In my third essay, we revisit the Recovery theorem on the identification of the physical

probability distribution of stock returns, proposed by Ross (2015). First, its applicability in

fixed-income markets is considered. We suggest a new procedure for applying the Recovery

theorem to the Gaussian affine term structure. As a result, we can recover a particular

probability distribution and decompose forward rates into the investors’ short-rate expec-

tations and term premia under this recovered probability measure. Next, the reliability of

the Recovery theorem is examined. In particular, we study its misspecification issue in line

with the claim of misspecified recovery by Borovička, Hansen, and Scheinkman (2015). Our

empirical result verifies that what Ross really recovers is not the physical probability but the

long-term risk-neutral probability which absorbs compensation for exposure to permanent

shocks. In consequence, we can decompose forward term premia into nearly constant short-

term risk premia associated with transitory shocks and highly volatile long-term risk premia

corresponding to permanent shocks. Finally, we find that a secular decline in forward rates is

mostly attributed to investors’ short-rate expectations under the long-term risk-neutral prob-

ability measure, and all important variations in term premia can be captured by long-term

risk premia. Concisely, long-term risk matters for asset pricing.

2



Chapter 2

On the Over-detection Probability of the Number of Factors
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2.1 Introduction

This chapter examines the issue of the misdetection of the number of factors in large

dimensional panels. Our analysis focuses on a popular estimator for the number of factors

based on a model selection problem, the panel information criteria (IC ) proposed by Bai and

Ng (2002). In particular, we address the following questions: (i) how to diagnose the over-

detection risk of the IC estimator theoretically, and (ii) how to improve the finite sample

performance of IC when its misdetection risk is not negligible.

To diagnose the over-detection risk of the IC estimator, we formulate and compute

the upper bound on the probability of overdetecting the number of factors by adopting

theoretical results from random matrix theory (e.g., Geman, 1980; Tracy and Widom, 1996;

Johnstone, 2001; Baik, Arous, and Péché, 2005; Baik and Silverstein, 2006; Ledoux, 2007;

Paul, 2007; Karoui, 2008; Ma, 2012). Our analysis is inspired by the digital signal processing

literature regarding signal detection analysis (e.g., Kritchman and Nadler, 2009; Nadler,

2008, 2010). To increase the precision of the estimate in finite samples, we improve the

penalty for overfitting of the original criteria by adjusting degrees of freedom for the number

of factors. This approach is motivated by previous studies on model selection criteria (e.g.,

Ng and Perron, 2005; Nadler, 2010).

Large dimensional datasets contain not only important signals but also irrelevant distur-

bances, namely noise. The beauty of factor analysis such as principal components analysis

(PCA) is to provide an efficient data reduction device for big data analysts. That is, when

the true number of factors is given, PCA reduces a large number of variables to a small num-

ber of factors while preserving most of the information in the original data; however, the true

number of factors is unknown in large factor models and consequently should be estimated.

Thus, if the estimate of factor numbers is misspecified, the benefits of data reduction can

be undermined. Specifically, when the number of factors is overestimated, users suffer from

the loss of degrees of freedom. In this regard, Onatski (2015) examined the consequences

of the misspecified number of factors for the loss of asymptotic efficiency in the principal

4



components estimator.

Such misspecification is particularly an issue in small samples. Several researchers have

already proposed asymptotically consistent estimators for the number of factors (e.g., Bai

and Ng, 2002; Kritchman and Nadler, 2009; Onatski, 2010, 2012; Ahn and Horenstein, 2013;

Choi and Jeong, 2013; Harding, 2013); however, their estimators tend to over or under detect

the number of factors to some extent in finite samples. Bai and Ng (2002) provided simula-

tion evidence for the misdetection of their IC estimator. Besides, a few simulation studies

show that misspecification is likely to get worse if errors are serially or/and cross-sectionally

correlated, or if the explanatory power of the factors does not strongly dominate the ex-

planatory power of the idiosyncratic components (e.g., Onatski, 2010; Greenaway-McGrevy,

Han and Sul, 2012; Ahn and Horenstein, 2013). On the other hand, there is no computable

guidance on how frequently misspecification occurs subject to different sample sizes. As a

consequence, it is theoretically unknown how to improve the finite sample performance of

existing estimators.

In this chapter, we derive the computable formula for an upper bound on the over-

detection probability of the IC estimator by employing some results from random matrix

theory. By using this formula, we can analyze the detection performance of the IC estimator

in finite samples. This chapter provides practical users with the numerical examples of over-

detection probability bounds subject to various sample sizes and numbers of factors. These

examples show that when the sample size is not sufficiently large, there exists a non-negligible

overestimation risk even for the case in which each factor has a nontrivial contribution to

variation in the data. Moreover, this chapter provides practitioners with a practical guide

to correcting such misspecification. We show that the degrees of freedom adjustment in

the penalty term of the original IC criteria leads to improved penalization for overfitting

and consequently decreases the overestimation probability substantially. The over-detection

probability bounds of such modified criteria are also measured by our formula. The results

indicate that for the case with i.i.d. errors, our modified estimator performs better than the

5



original IC estimator when the sample size is small. Moreover, Monte Carlo simulations show

that it also outperforms the IC estimator in the presence of weak serial or cross-sectional

correlation, or both in the error components.

The rest of the chapter is organized as follows. In Section 2.2, we describe our factor

model and assumptions. Section 2.3 introduces the panel information criteria (IC ) for the

number of factors of Bai and Ng (2002) and proposes its eigenvalue representation. Section

2.4 presents an asymptotic expression for the overestimation probability of the IC estimator.

Section 2.5 reviews recent results from random matrix theory as mathematical preliminaries.

We derive the computable formula for an upper bound on the overestimation probability and

analyze the detection performance of IC for finite values of both dimensions in Section 2.6.

Section 2.7 proposes a modified estimator and shows its better performance in small samples

via Monte Carlo simulations as well as theoretical computations. Section 2.8 provides a

summary and discussion. All the proofs are given in the Appendix.

A word on notation. Ordinary limits are denoted by → while almost sure convergence,

also known as convergence with probability one (w.p.1), is denoted by
a.s−→. Convergence in

distribution is denoted by
d−→. Orders of magnitude for a sequence converging in probability

are denoted by Op and op. tr(A) is the trace of a matrix A. The transpose operator is denoted

by a prime symbol as in A
′
. Ip denotes the identity matrix of order p. An estimate of a

parameter ϑ is denoted by ϑ̂. x ∼ D means that a random variable x has the probability

distribution D. The Gaussian distribution with mean µ and covariance Σ is denoted by

N (µ,Σ) while the Chi-squared distribution with n degrees of freedom is denoted by χ2(n).

i.i.d. means that a random variable is independent and identically distributed. ln denotes a

natural logarithm. Pr(X) is the probability of an event X.

6



2.2 Model

2.2.1 Large Dimensional Factor Model

In this chapter, we study the following standard factor model as described in Bai and

Ng (2002). Let xit be the real-valued observed data for the i-th cross-section unit at time

t, for i = 1, . . . , p, and t = 1, . . . , n. Note that we denote the cross-sectional and temporal

dimensions of the data by p and n, respectively, instead of N and T , to be consistent with

the literature on random matrix theory. Consider the factor representation of the data of

the form

xit = λ′ift + eit, (2.2.1)

where ft is an r × 1 vector of the factors, λi is an r × 1 vector of factor loadings, and r is

the true number of factors. λ′ift is the common component and eit is the idiosyncratic error.

Factors, factor loadings and the idiosyncratic components are not observable. Moreover, the

true number of factors is unknown beforehand.

In vector notation, (2.2.1) can be written as a p-dimension time series with n observations:

xt
(p×1)

= Λ
(p×r)

ft
(r×1)

+ et
(p×1)

, (2.2.2)

where xt = (xit, . . . , xpt)
′ is a p× 1 vector of real-valued cross-section observations at time t,

Λ = (λ1, . . . , λp)
′ is a p×r factor loading matrix composed of r linearly independent vectors,

and et = (eit, . . . , ept)
′ is a p-dimensional real-valued vector.

In matrix notation, the model is given by

X
(p×n)

= Λ
(p×r)

F ′
(r×n)

+ e
(p×n)

, (2.2.3)

where X = (x1, . . . , xn), F = (f1, . . . , fn)′, and e = (e1, . . . , en).

7



Assumptions First, suppose that ft is the zero mean random vector and independent

of et. Both ft and λi have positive definite covariance matrices ΣF and ΣΛ, respectively,

so that each is of full rank, r. These assumptions imply that each factor has a nontrivial

contribution to variance of xt as in Bai and Ng (2002).

Next, for technical reasons, we assume that the errors eit are independently and identically

normally distributed, where σ is the unknown noise variance. Throughout this chapter,

we assume σ = 1 without loss of generality since the overestimation probability bound is

eventually given by the ratio of eigenvalues and consequently σ terms are cancelled out in

this ratio.

The assumption of the i.i.d. errors enables us to employ some results from random matrix

theory in order to derive the overestimation probability bound of the IC estimator. Random

matrix theory studies the limiting behaviors of the eigenvalues and eigenvectors of the sample

covariance matrix in a large dimensional framework. Especially, of all theoretical results

from random matrix theory, a result on the non-asymptotic exponential bound of the largest

eigenvalue is necessary for our study; however, it has been established only for Gaussian

i.i.d. errors (see Section 2.5). To the best of our knowledge, such a result is not currently

available for the more general covariance structure of the idiosyncratic terms. This chapter

is not the first to assume i.i.d. errors in the literature on large dimensional factor models.

For example, by using random matrix theory under the assumption of Gaussian i.i.d. errors,

Onatski (2007) studied on the estimation of large factor models with weak factors, and Moon

and Weidner (2015) analyzed large dimensional panels with unknown number of factors as

interactive fixed effects. Moreover, this assumption is not too restrictive since it is sufficient

enough to capture the main idea of large factor models. In the presence of strong factors, all

important variations in the data should be captured by factors; hence, empirical studies on

large factor models with strong factors do not typically specify the complicated correlation

structure of the idiosyncratic terms (Harding, 2013). As a consequence, i.i.d. errors, along

with strong factors, enable us to focus on the over-detection risk rather than the under-

8



detection risk of the IC estimator. While some of the techniques employed in our over-

detection analysis are likely to be used to analyze the underestimation probability of IC as

well, the under-detection risk is beyond the scope of this chapter.

In contrast, Bai and Ng (2002) allow for weak serial and cross-sectional dependence in

the idiosyncratic components. In this regard, we examine the possibility that our theoret-

ical result based on random matrix theory is extended to the case with the more general

covariance structure of the error terms. First, we sketch the idea of how to formulate the

overestimation probability bound for the case with non-i.i.d. errors; however, we leave a

rigorous solution for future research while describing nontrivial difficulties (see Section 2.6).

Next, we explore the finite sample performance of our modified criteria in the presence of

weak correlation in the error terms through a Monte Carlo simulation study. The results

show that the modified criteria lead to better performance even for the case with weakly

serially or/and cross-sectionally correlated errors (see Section 2.7).

Third, for discussions related to random matrix theory, we consider the joint limit asymp-

totics where both n and p approach infinity simultaneously subject to p
n
→ c, for c ∈ [0,∞).

It is standard in the literature on large dimensional random matrices. By this assumption,

sample eigenvalues corresponding to the error components remain bounded. Even though

we assume the population eigenvalues of the error components to be bounded, their sample

eigenvalues will diverge to infinity when p increases faster than n (Onatski, 2005).

Lastly, the true number of factors r is fixed regardless of n and p. The fixed r is generally

assumed in the literature on the detection of the number of factors (e.g., Bai and Ng, 2002;

Onatski, 2010, 2012; Ahn and Horenstein, 2013; Choi and Jeong, 2013; Harding, 2013).

2.2.2 Spiked Population Covariance Model

This subsection delineates the model structure by using the eigenvalue decomposition.

Let us decompose p eigenvalues of the population covariance matrix of xt into two parts:

(i) one coming from the systemic component and (ii) the other coming from the error terms.

9



Under the assumptions mentioned above, the population covariance matrix can be written

as Σ = Ψ+Ω, where Ψ is the covariance matrix of the common component and Ω is the error

covariance matrix. Let {ψj}rj=1 denote r eigenvalues of Ψ which have non-zero finite values

for all j with a decreasing order, that is, ψ1 ≥ ψ2 ≥ . . . ≥ ψr > 0. Besides, p eigenvalues of

Ω are each equal to one since σ = 1. Then, p population eigenvalues of Σ are

(ψ1 + 1, ψ2 + 1, . . . , ψr + 1, 1, 1, . . . , 1). (2.2.4)

Similarly, in the unknown basis B of Rp, the population covariance matrix Σ takes a diagonal

form

B′ΣB = diag (ψ1, . . . , ψr, 0, . . . , 0) + Ip, (2.2.5)

where B is a p-dimensional orthogonal matrix, that is, a p×p matrix composed of p eigenvec-

tors corresponding to the eigenvalues of the population covariance matrix, Σ. The literature

on random matrix theory refers to a covariance structure like (2.2.5) as a spiked population

covariance model (Johnstone, 2001; Baik and Silverstein, 2006).

Note that while each factor has a nontrivial contribution to the data, the idiosyncratic

term is an irrelevant disturbance so that it does not affect the data systematically. In this

sense, ft and et can be referred to as signals and noise, respectively, as in the literature

on signal processing. Throughout this chapter, these insightful terms – signals and noise

– are more often used than factors and errors. Thus, the eigenvalues of Ψ can be called

noise-free population signal eigenvalues because Ψ is of rank r, while the eigenvalues of Ω

are considered as pure noise eigenvalues.

Now, let Sn denote the sample covariance matrix of the n observations xt from the model

(2.2.2),

Sn =
1

n

n∑
t=1

xtx
′
t, (2.2.6)

which is a p× p matrix with n samples of p-dimensional mean zero vectors, and let {`j}pj=1

denote its eigenvalues, which are decreasingly ordered, `1 ≥ `2 ≥ . . . ≥ `p. For later use, we

10



also define a tail statistic by the ratio of the (r+ 1)th largest eigenvalue of Sn to the average

of its last p− r eigenvalues:

Up−r =
`r+1

Tp−r
p−r

, (2.2.7)

where Tp−r is the sum of the last p− r eigenvalues of Sn (i.e., Tp−r =
∑p

j=r+1 `j). Especially

when r = 0, the denominator equals the average trace of Sn (i.e., 1
p
Tp = 1

p
tr(Sn)). Note

that Up−r does not depend on the unknown noise variance, σ. Hence, as aforementioned, we

assume σ = 1 without loss of generality.

2.3 Detection of the Number of Factors

2.3.1 IC estimator

Bai and Ng (2002) set up the detection of the number of factors as a model selection

problem. They proposed the panel information criteria (IC ) as follows:

IC(k) = lnS(k) + k ·G(p, n), (2.3.1)

where k is an arbitrary number such that k < min{p, n}, G(p, n) denotes the penalty function

for overfitting, and S(k) is the sum of squared residuals divided by pn such that

S (k) =
1

pn

p∑
i=1

n∑
t=1

(xit − λ̃i
′k
f̃t
k
)2. (2.3.2)

f̃t
k

and λ̃i
′k

denote estimated factors and loadings by the principal components method given

the number of factors k, respectively. Then, the estimator for the true number of factors (IC

estimator) is obtained by minimizing (2.3.1), namely that

k̂
IC

= arg min
0≤k≤kmax

IC(k),

11



where kmax is a bounded integer which is a maximum possible number of factors prespecified

by users such that r ≤ kmax. The IC estimator was proven to be consistent, namely that

lim
n,p→∞

Pr(k̂
IC

= r) = 1,

if (1) G(p, n)→ 0 and (2) C2
pnG(p, n)→∞ as n, p→∞, where Cpn = min{√p,

√
n}. That

is, in the joint limit n, p→∞, the probability limit with which this model selection criterion

selects the true number of factors converges to one if the penalty factor asymptotically con-

verges to zero at an appropriate rate. Also, Bai and Ng propose specific formulations of the

penalty factor to be used in practice: G1(p, n) =
(
p+n
pn

)
ln
(

pn
p+n

)
, G2(p, n) =

(
p+n
pn

)
lnC2

pn,

and G3(p, n) =
lnC2

pn

C2
pn

. Finally, they consider the following three criteria associated with three

penalty terms:

IC1(k) = lnS(k) + k ·G1(p, n) = lnS(k) + k ·
(
p+ n

pn

)
ln

(
pn

p+ n

)
; (2.3.3)

IC2(k) = lnS(k) + k ·G2(p, n) = lnS(k) + k ·
(
p+ n

pn

)
lnC2

pn; (2.3.4)

IC3(k) = lnS(k) + k ·G3(p, n) = lnS(k) + k ·
lnC2

pn

C2
pn

. (2.3.5)

Eigenvalue representation In this chapter, we work with random matrix theory to

derive the upper bound on the overestimation probability of IC. To do so, the first step is

to represent IC in terms of eigenvalues. If A is a square p× p matrix, then the trace of A is

the same as the sum of the eigenvalues of A. Using this fact, IC (2.3.1) can be rewritten as

follows:

Lemma 2.1. Let {`j}pj=1 denote p eigenvalues of a sample covariance matrix of the n ob-

servations xt defined in (2.2.6), which are decreasingly ordered, `1 ≥ `2 ≥ . . . ≥ `p. Then,

the panel information criteria (2.3.1) as proposed in Bai and Ng (2002) can be written as

IC(k) = ln

(
1

p

p∑
j=k+1

`j

)
+ k ·G(p, n), (2.3.6)
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where k is an arbitrary number such that k < min{p, n}, and G(p, n) is the penalty function

for overfitting.

As a result, IC is written in terms of only the last (p − k) sample eigenvalues without

the first k sample eigenvalues.

2.3.2 Overestimation of the IC estimator

In what follows, we specify a mathematical condition for the overestimation of IC and

its over-detection probability in terms of only the last (p − r) sample eigenvalues based on

Lemma 2.1. This chapter particularly focuses on the situation when IC overestimates the

true number of factors by exactly one factor rather than multiple factors. Here we give a

brief discussion on this approach. First, the theoretical part of this chapter assumes that

the explanatory power of signals is strong and errors are i.i.d; therefore, we focus on the

analysis of over-detection performance rather than under-detection performance. Next, the

population eigenvalues are assumed to be decreasingly ordered. Under the same assump-

tion, various studies based on random matrix theory investigate the ratio or difference of

two adjacent sample eigenvalues to propose a consistent estimator for the true number of

factors, see Onatski (2010), and Ahn and Horenstein (2013). It implies that a difference

in the explanatory power of two adjoining factors governs the detection performance of the

estimator. We also consider various works which studied the signal detection performance

of the classical information criteria such as the Akaike information criterion (e.g., Zhang,

Wong, and Reilly, 1989; Nadler, 2010). It was shown that overestimation by exactly one

signal dominates the misdetection risk of the information criteria.

For conceptual simplicity, suppose that the criterion (2.3.6) is minimized at r+1, where r

is the true number of factors. Then, since the IC estimator, k̂
IC

, is defined as the minimizer

of IC(k) over a range of values for k, the IC estimator overdetects the true number of

factors by exactly one factor, namely that k̂
IC

= r + 1. We hence specify a condition for
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overestimation by one factor:

4 IC(1) = IC(r)− IC(r + 1) > 0, (2.3.7)

where IC(r) = ln
(

1
p

∑p
j=r+1 `j

)
+ r · G(p, n) and IC(r + 1) = ln

(
1
p

∑p
j=r+2 `j

)
+ (r + 1) ·

G(p, n). Correspondingly, the overestimation probability of IC is specified as follows:

Lemma 2.2. Suppose that IC (2.3.6) is minimized at r + 1, where r is the true number

of factors. Let {`j}pj=1 denote the eigenvalues of a sample covariance matrix, Sn, of the n

observations xt defined in (2.2.6), which are decreasingly ordered, `1 ≥ `2 ≥ . . . ≥ `p. Also,

we denote by Tp−r the sum of the last p− r eigenvalues of Sn. Then, the IC estimator over-

estimates the true number of factors by exactly one factor if 4IC(1) > 0 with 4IC(1) given

by (2.3.7). Thus, the probability with which the number of factors would be overestimated by

exactly one factor takes the form

Pr (4IC(1) > 0) = Pr

(
ln

Tp−r
Tp−r−1

−G(p, n) > 0

)
, (2.3.8)

where Tp−r =
∑p

j=r+1 `j, Tp−r−1 =
∑p

j=r+2 `j, and G(p, n) is the penalty function of IC.

To apply random matrix theory to our analysis, the next step is to express a condition

(2.3.7) for the overestimation of IC and its overestimation probability (2.3.8) in terms of

pure noise sample eigenvalues. Eventually, they will be represented by a tail statistic (2.2.7)

which is a function of pure noise eigenvalues. Before moving on, we can show that (2.3.8) is

easily approximated by a tail statistic using the log inequality, log(1−x) ≤ −x for x ∈ [0, 1).

That is,

Pr

(
`r+1

Tp−r
> G(p, n)

)
(2.3.9)

since ln
(

Tp−r
Tp−r−1

)
= − ln

(
Tp−r−1

Tp−r

)
= − ln

(
1− `r+1

Tp−r

)
≥ `r+1

Tp−r
. Both (2.3.8) and (2.3.9) imply

that the overestimation probability is defined in terms of only the last p − r eigenvalues of

the sample covariance matrix; that is, it is not a function of the first r eigenvalues of Sn.
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This implication is essential for this chapter because the probability limit of (2.3.9) can be

analyzed by using results from random matrix theory regarding the limiting behaviors of

eigenvalues coming from pure noise components. It should be noted, however, that `r+1 and

Tp−r are not truly coming from pure noise. Since the space spanned by the signal–plus–noise

subspace eigenvectors contains both signals and noise, `r+1 contains not only contributions

of noise but also those of signals and the interactions between signals and noise (for details,

see Nadler, 2008, Theorem 2.1, p. 2802). Thus, the above argument (2.3.9) is given only

for illustrative purposes, but it is not good enough for our analysis based on random matrix

theory, regardless of how good the approximation is.

In the next section, we derive a more suitable expression for the overestimation probability

to employ random matrix theory. It can be written in terms of the pure noise eigenvalues

by constructing a Wishart matrix whose entries are Gaussian i.i.d. noise.

2.4 Overestimation Probability

Following Nadler (2008, 2010), this section shows that the overestimation probability

(2.3.8) can be asymptotically specified by p−r pure noise eigenvalues which are independent

of r signal eigenvalues. Theoretically, p − r pure noise eigenvalues can be identified as the

eigenvalues of a p− r dimensional Wishart matrix with identity covariance matrix. Here we

first define related terms and introduce preliminary results.

Definition 2.1. Wishart matrix (Silverstein, 1985; Johnstone, 2001): Let A denote a

p × n matrix whose At are i.i.d. N (0,ΣA) random vectors, and let H = 1
n
AA′. Then, the

random matrix H is commonly referred to as a Wishart matrix, and nH = AA′ is said to

have the Wishart distribution, Wp(n,ΣA). For the null case in which ΣA = Ip, H is especially

referred to as a Wishart matrix with identity covariance matrix.

Furthermore, one can obtain the following result based on the standard distribution

theory, which states that the squared norm of n standard normally distributed variables has
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the Chi-squared distribution with n degrees of freedom.

Remark 2.1. (Rao, 1973, p. 534) Under Definition 2.1, let nH ∼ Wp(n,ΣA). Let Y be any

p×1 fixed vector such that Y ′At ∼ N (0, σ2), where σ2 = Y ′ΣAY . Then, nY ′HY ∼ σ2 ·χ2(n).

Remark 2.1 can be extended to the following result:

Remark 2.2. Suppose nH ∼ Wp(n,ΣA). Let aj denote the j-th eigenvalue of H, and let Y

denote a p× 1 eigenvector corresponding to aj such that Y ′At ∼ N (0, 1). Then, by Remark

2.1, aj ∼ χ2(n)/n and
∑p

j=1 aj ∼ χ2(np)/n. Also, E(aj) = 1, V ar(aj) = 2/n, E(
∑p

j=1 aj) =

p, and V ar(
∑p

j=1 aj) = 2p/n so that aj = 1 +Op(
√

1/n) and
∑p

j=1 aj = p+Op(
√
p/n).

As seen before, B′ΣB = diag(ψ1 + 1, . . . , ψr + 1, 1, . . . , 1), where B = (b1, . . . , bp) is an

orthogonal matrix which diagonalizes the population covariance matrix, Σ. For j = 1, . . . , p,

each column bj is the eigenvector corresponding to the j-th population eigenvalue of Σ. Now,

let us consider a new p-dimensional matrix B̃ = (b1, . . . , br, d̃r+1, . . . , d̃p) whose vectors are

linearly independent. As before, the first r column vectors, {bi}ri=1, are the r eigenvectors

corresponding to the first r population eigenvalues, {ψi + 1}ri=1. On the other hand, the last

p− r column vectors, {d̃j}pj=r+1, diagonalize the lower right sub-matrix of B̃′SnB̃. Then, in

the basis B̃, Sn has the following form:

B̃′SnB̃ =



ρ11 · · · ρ1r

...
. . .

... L′

ρr1 · · · ρrr
˜̀
r+1 Ø

L
. . .

Ø ˜̀
p


. (2.4.1)

In matrix (2.4.1), {ρii}ri=1 are sample variances in the directions bi corresponding to the

first r population eigenvalues, that is, ρii = b′i
(

1
n

∑n
t=1 xtx

′
t

)
bi such that ρii ∼

(
ψi+1
n

)
χ2(n).

Next, {˜̀j}pj=r+1 are the p − r diagonal elements of a lower right sub-matrix in (2.4.1), that

is, ˜̀j = d̃′j
(

1
n

∑n
t=1 xtx

′
t

)
d̃j). In the basis B̃, this lower right sub-matrix is given by the
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projection of Sn onto the only noise subspace, which is independent of the projection of Sn

onto the signal subspace; therefore, it does not contain any signal contributions. Accordingly,

this p−r dimensional sub-matrix is considered as the random realization of a Wishart matrix

with identity covariance matrix, and its diagonal elements are considered as the sample

eigenvalues of this Wishart matrix; that is, pure noise eigenvalues. Thus, ˜̀j ∼ χ2(n)/n

by Remark 2.2. Meanwhile, another sub-matrix L contains the interaction terms between

signals and noise. If we denote by ηij each element of L, then ηij = d̃′j
(

1
n

∑n
t=1 xtx

′
t

)
bi for

i = 1, . . . , r and j = r + 1, . . . , p.

So far, we have identified pure noise eigenvalues, {˜̀j}pj=r+1. Now, we rewrite (2.3.8) in

terms of ˜̀j. O’leary and Stewart (1990) refer to matrices such as (2.4.1) as arrow-head

matrices; especially, they consider such matrices with one element of ρ in the upper left

sub-matrix, that is, the case with r = 1. They derived the explicit formula for computing

the eigenvalues and eigenvectors of symmetric arrow-head matrices, which is a function of

ρ, η and ˜̀ (O’leary and Stewart, 1990, Theorem 2.1; Nadler, 2008, p.2807). Also, Nadler

(2010) extended their results to the case with r > 1. We obtain an approximate expansion

for `j by employing results from the literature mentioned above.

Lemma 2.3. Consider the model (2.2.2). Let {ψi}ri=1 denote the first r eigenvalues of the

p-by-p population covariance matrix such that ψ1 ≥ ψ2 ≥ . . . ≥ ψr > 0, and ψi = O(1).

Let {`j}pj=r+1 denote the last p − r eigenvalues of a sample covariance matrix, Sn, of the n

observations xt defined in (2.2.6), which are decreasingly ordered, `r+1 ≥ `r+2 ≥ . . . ≥ `p.

Also, as described in matrix (2.4.1), ρii, ˜̀j and ηij denote the i-th sample variance, the j-th

sample eigenvalue of a Wishart matrix with identity covariance matrix, and an interaction

term between signals and noise, respectively. Then, as n→∞, `j is represented in terms of
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ρii, ˜̀j and ηij as follows:

`j = ˜̀
j −

1

n

r∑
i=1

(
√
n ηij)

2

ρii − ˜̀j + op

(
1

n

)
(2.4.2)

= ˜̀
j

(
1− Mr

n
−
√
r

n
Zj

)
+ op

(
1

n

)
, (2.4.3)

where Mr =
∑r

i=1
ψi+1
ψi

, Zj = 1√
r

∑r
i=1

ψi+1
ψi

(κ2
ij − 1), and κij =

√
n ηij

(ρii ˜̀j)1/2
.

Indeed, the sum of the last p− r sample eigenvalues, Tp−r, is represented by

Tp−r = T̃p−r

(
1− Mr

n
−
√
r

n

1

T̃p−r

p∑
j=r+1

˜̀
jZj

)
+ op

(
1

n

)
, (2.4.4)

where T̃p−r =
∑p

j=r+1
˜̀
j.

Lemma 2.3 shows that the j-th sample eigenvalue, `j, is approximately the same as the

product of the j-th pure noise eigenvalue, ˜̀j, and additional terms which contain signal

eigenvalues and the interaction terms. Now we obtain the first contribution of this chapter

based on this result. Our asymptotic expression for the overestimation probability of IC is

explicitly identified by only pure noise eigenvalues so that it is asymptotically independent

of signal eigenvalues.

Theorem 2.1. Let W be a (p− r)× (p− r) Wishart matrix with identity covariance matrix.

The largest eigenvalue of W is denoted by `1(W ), and the sum of p − r eigenvalues of W

is denoted by Tr(W ). Assuming that IC (2.3.6) is minimized at r + 1, where r is the true

number of factors, the IC estimator overestimates the true number of factors by exactly

one factor. Then, under the conditions of the Lemma 2.3, asymptotically as n → ∞, the

overestimation probability of IC in the presence of r factors is given by

Pr(4IC(1) > 0) = Pr

(
`1(W )

Tr(W )
− ξn,p > 0

)
+Op

(
1

n

)
, (2.4.5)

where ξn,p = −1 +
√

1 + 2G(p, n), and G(p, n) is the penalty function of IC.
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Note that since a p− r dimensional lower right sub-matrix of (2.4.1) is considered as the

random realization of W , the largest eigenvalue of W , `1(W ), is equivalent to the first pure

noise eigenvalue, ˜̀r+1. Also, Tr(W ) is equivalent to the sum of pure noise eigenvalues, T̃p−r.

Hitherto, we derived the asymptotic expression for the overestimation probability of IC in

terms of a tail statistic with only pure noise eigenvalues independent of the signal eigenvalues.

The following sections explore the second contribution of this chapter – namely, determining

a non-asymptotic upper bound on the over-detection probability in finite samples. This

analysis is highly related to random matrix theory since the overestimation probability (2.4.5)

can be pinned down by using the limiting distribution of the largest eigenvalue of a Wishart

matrix with identity covariance matrix.

2.5 Mathematical Preliminaries

The main tools used in our analysis are recent results from random matrix theory re-

garding the largest eigenvalue of a pure noise matrix. In this section, we review the idea

and relevant results of random matrix theory. In a concise manner, random matrix theory

is sort of special limiting laws to deal with high dimensional statistics. It is well known

that classical limit theorems for a fixed dimension (large n with fixed p) are not sufficient

enough to analyze large dimensional panels (large n and large p); specifically, the sample

covariance matrix is no longer a good approximation to the population covariance matrix

when the population size is large and comparable with the sample size (for details, see Baik

and Silverstein, 2006; Bai and Silverstein, 2010). In addition, as Anderson (2003) showed,

as n → ∞ with fixed p, the largest eigenvalue of the sample covariance matrix is consis-

tent for the largest eigenvalue of the population covariance matrix; however, it is no longer

true in large dimensions (Geman, 1980; Johnstone, 2001). For this reason, new theorems

are required to study a random covariance matrix and corresponding eigenvalues in a large

dimensional framework; as a response, random matrix theory provides such new limiting

laws.
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Random matrix theory typically digs into the following topics: (i) the joint distribution of

all eigenvalues of a Wishart matrix; (ii) the distribution of its extreme eigenvalues, especially

the largest one and the smallest one; and more recently, (iii) a non-asymptotic bound on the

largest eigenvalue of a Wishart matrix for finite values of p and n. Now, we summarize the

main results of random matrix theory. By definition 2.1 and Remark 2.2, let H = AA′/n

denote a p × p Wishart matrix with identity covariance matrix, where A is a p × n matrix

with real valued Gaussian i.i.d. entries, and let aj denote the j-th sample eigenvalue with a

decreasing order, for j = 1, . . . , p.

First, Geman (1980) showed that in the joint limit n, p → ∞, with p
n
→ c 6 1, the

empirical distribution of eigenvalues given by Fp(h) converges to a non-random distribution

function F (h), which has the support of [(1−
√
c)2, (1 +

√
c)2] with a probability one. Then,

the largest eigenvalue of H converges to the upper bound on the support of the limiting

distribution with a probability one. That is, for any real h,

Fp(h) =
1

p
{number of aj ≤ h} a.s−→ F (h),

and a density is given by f(h) = 1
2πhc

√
(β − h)(h− α) for α ≤ h ≤ β, where α = (1−

√
c)2

and β = (1 +
√
c)2. Then,

a1
a.s−→ (1 +

√
c)2. (2.5.1)

Johnstone (2001) derived the limiting distribution of the largest eigenvalue of a real-

valued Wishart matrix with identity covariance matrix. Specifically, call

n1 = max{n, p} − 1, p1 = min{n, p},

µon,p =
1

n
(
√
n1 +

√
p1)2,

σon,p =
1

n
(
√
n1 +

√
p1)

(
1
√
n1

+
1
√
p1

)1/3

,

and TWβ is the Tracy-Widom distribution of order β, it was shown that in the joint limit
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n, p→∞ with p
n
→ c ∈ (0,∞), the distribution of the largest eigenvalue of H converges to

a Tracy-Widom distribution
a1 − µon,p
σon,p

d−→ TW1, (2.5.2)

where TW1 is the Tracy-Widom distribution of order 1 corresponding to real-valued obser-

vations. Also, for any real h, it can be written as

Pr

(
a1 − µn,p
σn,p

≤ h

)
→ TW1(h), (2.5.3)

where TW1(h) is the Tracy-Widom CDF which is defined in terms of the Airy function (for

details, see Tracy and Widom, 1996; Johnstone, 2001). The above result is applied for both

situations in which n ≥ p as well as n < p.

Karoui (2008) generalized results in Johnstone (2001) to the following: (i) with the same

centering and scaling, (2.5.2) still holds when p
n

or n
p
→ 0; (ii) further, (2.5.2) holds for the

τ largest eigenvalues, where τ is a fixed integer such that τ > 1; and (iii) the Tracy-Widom

approximation is reasonable even when one of the dimensions is small. Although the generic

rate of convergence of the left side of (2.5.3) to TW1(h) is O(min{n, p}−1/3), small modifi-

cations in a centering parameter µon,p and a scaling parameter σon,p lead to O(min{n, p}−2/3)

errors. Along the line of Karoui (2008), Ma (2012) particularly suggested that in the joint

limit n, p→∞ with p
n
→ c ∈ [0,∞],

∣∣∣∣Pr

(
a1 − µn,p
σn,p

≤ h

)
− TW1(h)

∣∣∣∣ = O(min{n, p}−2/3), (2.5.4)

with modified centering and scaling parameters:
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µn,p =
1

n

(√
n− 1

2
+

√
p− 1

2

)2

;

σn,p =
1

n

(√
n− 1

2
+

√
p− 1

2

) 1√
n− 1

2

+
1√
p− 1

2

1/3

.

Recently, Nadler (2011) applied the above results to a tail statistic. Let U denote the ratio

of the largest sample eigenvalue of H to the average of its p eigenvalues (i.e., U = p · a1/Tp).

Then, in the joint limit n, p → ∞ with p
n
≥ 0, the distribution of U also converges to the

TW distribution:

U − µn,p
σn,p

d−→ TW1. (2.5.5)

The convergence rate to the TW distribution is also known as O(min{n, p}−2/3). Intuitively,

the asymptotic property of U is equivalent to a1 in the sense that the denominator of U has

a negligible remainder with respect to that of a1 because a1 = 1 + O(1/
√
n) and Tp/p =

1 + O(1/
√
np). Building on this result, we can show that in the joint limit n, p → ∞ with

p
n
≥ 0, the overestimation probability of IC given by Theorem 2.1 is also approximated by

the TW distribution. Especially, for the case with no signal,

Pr(4IC(1) > 0) = Pr

(
`1(W )

Tr(W )
> ξn,p

)
−→ 1− TW1(h), (2.5.6)

where `1(W )/Tr(W ) = Up/p, and h = (p · ξn,p − µn,p)/σn,p .

In this chapter, however, we analyze the detection performance of IC by providing an

explicit non-asymptotic bound on the overestimation probability rather than the above ap-

proximate analysis. Our analysis relies strongly on the results in Ledoux (2007). Ledoux

provided the following non-asymptotic bound on the largest eigenvalue of a Wishart matrix

with identity covariance matrix. For some constant M > 0, ε > 0, and n ≥ 1,
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Pr
(
a1 ≥ (1 +

√
c̄)2 + ε

)
≤M exp

(
−nmin{ε, ε3/2}/M

)
, (2.5.7)

where c̄ = p/n for finite values n and p (Ledoux, 2007, Proposition 2.2). As an extension of

(2.5.7), Kritchman and Nadler (2009) and Nadler (2010) showed that for all values of n and

p,

Pr
(
a1 ≥ (1 +

√
c̄)2 + ε

)
≤ exp (−nJ

LAG
(ε)) , (2.5.8)

where

J
LAG

(ε) =

x∫
1

(x− y)
(1 + c̄)y + 2

√
c̄

(y +B)2

dy√
y2 − 1

with c̄ = p/n, x = 1 + (ε/2
√
c̄), and B = (1 + c̄)/2

√
c̄.

Note that all the above results are stated for the case with no signal. Nonetheless, these

results can be generalized to the case where r signals exist. In particular, the largest (r+1)th

eigenvalue in our spiked covariance model defined in (2.2.5) asymptotically follows the TW

distribution with parameters: n and p − r (Baik and Silverstein, 2006; Paul, 2007; Karoui,

2008). (2.5.8) can be also applied to a spiked covariance model with r signals (Kritchman

and Nadler, 2009); in this case, c̄ is adjusted to (p− r)/n.

2.6 Non-asymptotic Bound on Overestimation Probability

2.6.1 Main Result

In this section, we finally derive a non-asymptotic bound on the overestimation proba-

bility of IC based on previous discussions. Specifically, by applying a result from random

matrix theory (2.5.8) to our expression of the overestimation probability of IC (2.4.5), we

provide the following theorem:

Theorem 2.2. Consider the model (2.2.2) and the panel information criteria (IC) defined

in (2.3.1). Suppose that the IC estimator overestimates the true number of factors by exactly

one factor, namely that IC is minimized at r + 1. Then, for finite values of n and p, a
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non-asymptotic upper bound on the overestimation probability of IC by exactly one factor is

given by

Pr(4IC(1) > 0) ≤ exp

(
−(p− r)s2

4

)
+ (2.6.1)

exp

(
−4n

3
(c̄)1/4

(
(p− r)

(
1− s√

n

)
ξn,p − (1 +

√
c̄)2

)3/2
)
.

This non-asymptotic bound is appropriate for any positive value of s chosen by a user

such that

√
n− 1

ξn,p
√
p− r

(
3 +
√
c̄+

1√
c̄

)
< s <

√
n− 1

ξn,p
√
p− r

(
2 +
√
c̄+

1√
c̄

)
, (2.6.2)

where c̄ = p−r
n

and ξn,p = −1 +
√

1 + 2G(p, n). Also, (2.6.1) holds for all the formulations

of the penalty function G(p, n) which are specified in (2.3.3), (2.3.4), and (2.3.5).

Theorem 2.2 provides users with a simple diagnostic tool for the misspecification of the

number of factors. It discloses numerically how maximally overestimation occurs so long

as users know the temporal and cross-sectional size of the data. Recall that c̄ and ξn,p are

functions of n and p. Also, the appropriate value of s depends on n and p. In practice, the

user can choose the value of s such that it can minimize the upper bound defined in (2.6.1)

as long as it satisfies (2.6.2).

Remarks on the case with non-i.i.d. errors As aforementioned, results on the

deviation inequalities of the largest eigenvalue from random matrix theory, which are shown

in (2.5.7) and (2.5.8), are currently only available for the case with Gaussian i.i.d. errors.

Moreover, results from Nadler (2010), which are used to obtain Lemma 2.3 and Theorem 2.1,

are also only feasible under the assumption of the Gaussian i.i.d. error components. In the

presence of weak serial and cross-sectional dependence, a different approach is hence needed

to analyze a bound on the over-detection probability; however, there are nontrivial hurdles.

Although a rigorous solution is beyond the scope of this chapter, we instead sketch some
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ideas and difficulties for future research.

1. Consider a specific covariance structure as proposed in Ma (2003) and Stein (2005), a

spatio-temporal covariance model: e = R
1/2
p UQ

1/2
n . U is a p × n matrix whose entries

are Gaussian i.i.d. Also, a p×p matrix Rp and an n×n matrix Qn are positive definite

matrices capturing cross-sectional and serial correlation in e, respectively. This model

has been used in previous studies on signal detection (e.g., Onatski, 2010; Ahn and

Horenstein, 2013; Harding, 2013)

2. Let ψτ (A) denote the τ -th eigenvalue of a matrix A with a decreasing order. For i, j =

1, . . . , p and t, s = 1, . . . , n, if Rp and Qn are symmetric toeplitz matrices with entries of

ρ
|i−j|
R and ρ

|t−s|
Q , respectively, then asymptotic bounds on their extreme eigenvalues are

known in the literature (Grenander and Szegö, 1958, p.147–154; Gray, 2006, Lemma

4.1): as n, p → ∞, ψ1(Rp) →
1+ρ

R

1−ρ
R

, ψp(Rp) →
1−ρ

R

1+ρ
R

, ψ1(Qn) → 1+ρ
Q

1−ρ
Q

, and ψn(Qn) →
1−ρ

Q

1+ρ
Q

.

3. Since Theorem 2.1 is no longer applicable, we instead consider (2.3.9), Pr
(
`r+1

Tp−r
> Gp,n

)
,

where the inequality is only a necessary condition for overestimation by exactly one fac-

tor. Some known results on eigenvalue inequalities may be used to derive a bound on

the probability that this necessary condition holds (e.g., Anderson and Gupta, 1963,

Corollary 2.2.1; Rao, 1963, p.64; Horn and Johnson, 1991, Theorem 3.3.16).

By following the above steps, we could formulate an expression for the overestimation

probability bound in terms of asymptotic bounds on the extreme eigenvalues of Rp, Qn and

U , when there is no signal. Note that, however, this bound may not be fine enough since

the approximation error seems to be quite large. It could be attributed to (i) quite loose

eigenvalue-inequalities used in our analysis or/and (ii) the fact that we derived a probability

bound associated with only a necessary condition. Besides, this bound was only available for

the case with no signal. Finally, more acceptable solutions are left for future work. Potential
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improvements might be attained by using tighter eigenvalue-inequalities or by analyzing a

more acceptable expression for the overestimation condition.

2.6.2 Detection Performance of the IC estimator

The finite sample performance of the IC estimator has been studied by Monte Carlo

simulations in the literature. It was shown that IC tends to overdetect the true number of

factors for the case with relatively small sample sizes. For example, the experiments of Bai

and Ng (2002) showed that the over-detection risk is non negligible for the case with small

sample sizes (n, p) ∈ {(10, 50), (10, 100), (20, 100), (100, 10), (100, 20)} when factors are not

sufficiently strong, and such overdetection occurs for both cases with weakly correlated errors

and Gaussian i.i.d. errors. There are additional simulation studies, which obtained the same

results, allowing the presence of weak factors and weak correlation in the error components

(e.g., Ahn and Horenstein, 2013; Onatski, 2010). In the above simulation studies, however,

the results for the case with strong factors and i.i.d. Gaussian errors were not reported.

Accordingly, in this subsection, we theoretically analyze the finite sample performance of

the IC estimator for the case with strong factors and i.i.d. Gaussian errors. Using Theorem

2.2, we compute non-asymptotic upper bounds on the overestimation probability of the IC

estimator corresponding to various sample sizes and estimated numbers of factors. In each

case, an appropriate positive number s was chosen by minimizing an upper probability bound

on the interval (2.6.2). Main results are presented in Table 2.1. Each cell displays an upper

bound on the overestimation probability of the IC estimator corresponding to each value of

n, p and k̂
IC

, and the choice of a penalty function. Following the experiments of Bai and

Ng (2002), we consider small sample sizes such that max{n, p} ∈ {50, 60, 75, 100, 200} and

min{n, p} ∈ {10, 15, 20, 25, 50}. In a few cases, an upper bound was not available since there

was no positive value of s which satisfied (2.6.2).

Table 2.1 shows that for quite a few cases with small sample sizes, the computed bounds

on the overestimation probability of the IC estimator are not negligible, say over 50%. This
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Table 2.1: Detection Performance of the IC estimator (I.I.D. Errors)

r = 0 r = 1 r = 2

(n, p) IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

(50,10) 1.0256 0.4403 n.a 1.8276 1.0309 n.a n.a 1.9685 n.a

(50,15) 0.1139 0.0068 1.1898 0.3620 0.0376 n.a 0.8541 0.1615 n.a

(50,20) 0.0049 0.0000 1.0724 0.0210 0.0002 1.5879 0.0768 0.0014 n.a

(60,10) 0.6247 0.2070 1.1891 1.1934 0.8002 n.a n.a 1.5334 n.a

(60,15) 0.0211 0.0011 0.6127 0.1082 0.0093 1.0661 0.4056 0.0605 1.8685

(60,20) 0.0003 0.0000 0.3195 0.0021 0.0000 0.7165 0.0124 0.0002 1.0746

(75,10) 0.1975 0.0555 0.6697 0.8808 0.4054 1.3870 1.8811 1.1264 n.a

(75,15) 0.0012 0.0000 0.0720 0.0128 0.0009 0.3259 0.0939 0.0114 0.9460

(75,20) 0.0000 0.0000 0.0115 0.0000 0.0000 0.0577 0.0006 0.0000 0.2243

(100,10) 0.0185 0.0045 0.0870 0.2529 0.0953 0.6738 1.0892 0.7881 1.7878

(100,15) 0.0000 0.0000 0.0007 0.0002 0.0000 0.0107 0.0049 0.0005 0.1061

(200,10) 0.0000 0.0000 0.0000 0.0002 0.0000 0.0008 0.0410 0.0185 0.1039

(10,50) 0.7059 0.1788 n.a 0.7705 0.2153 n.a 0.8330 0.2573 n.a

(15,50) 0.0318 0.0006 1.0039 0.0445 0.0010 1.0170 0.0616 0.0016 1.0616

(20,50) 0.0006 0.0000 0.9576 0.0011 0.0000 1.0074 0.0020 0.0000 1.0318

(10,60) 0.2728 0.0468 0.9433 0.3137 0.0581 0.9753 0.3588 0.0717 0.9978

(15,60) 0.0019 0.0000 0.3084 0.0029 0.0000 0.3675 0.0042 0.0000 0.4335

(20,60) 0.0000 0.0000 0.1403 0.0000 0.0000 0.1830 0.0000 0.0000 0.2355

(10,75) 0.0335 0.0038 0.2680 0.0405 0.0049 0.3013 0.0487 0.0063 0.3374

(15,75) 0.0000 0.0000 0.0083 0.0000 0.0000 0.0111 0.0000 0.0000 0.0147

(20,75) 0.0000 0.0000 0.0007 0.0000 0.0000 0.0010 0.0000 0.0000 0.0015

(10,100) 0.0003 0.0000 0.0051 0.0004 0.0000 0.0062 0.0005 0.0000 0.0074

(15,100) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(10,200) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: This table reports an upper bound on the overestimation probability of the IC estimator,
Pr(4IC(1) > 0) defined in Theorem 2.1, subject to the true number of factors r ∈ {0, 1, 2} and the
choice of panel information criteria. Upper bounds are computed by the formula (2.6.1) depending on
various sample sizes (n, p). We consider sample sizes (n, p) such that max{n, p} ∈ {50, 60, 75, 100, 200}
and min{n, p} ∈ {10, 15, 20, 25, 50}. Three different panel information criteria, IC1(k), IC2(k) and
IC3(k), are defined in (2.3.3), (2.3.4) and (2.3.5), respectively. If a probability bound is less than
1.0× 10−4, we simply put a zero. In some cases, we report an upper bound which is larger than one
because it helps compare the magnitude of over-detection risks. “n.a” (“Not Applicable”) indicates
that an appropriate positive number of s which satisfies (2.6.2) is not available in this case.

result says that even when the explanatory power of factors are strong and the error com-

ponents are i.i.d, the over-detection risk is not negligible for the case with small samples.

Hence, it provides additional evidence of the overdetection of IC for finite samples. In addi-
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Table 2.1 (Continued)

r = 3 r = 4 r = 5

(n, p) IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

(50,15) 1.2309 0.5168 n.a n.a 1.0344 n.a n.a 1.8167 n.a

(50,20) 0.2339 0.0082 n.a 0.5758 0.0384 n.a 1.0259 0.1461 n.a

(50,25) 0.0115 0.0000 n.a 0.0406 0.0002 n.a 0.1240 0.0011 n.a

(60,15) 1.0016 0.2808 n.a 1.6445 0.8549 n.a n.a 1.4372 n.a

(60,20) 0.0585 0.0017 1.7174 0.2173 0.0114 n.a 0.6127 0.0615 n.a

(60,25) 0.0010 0.0000 1.1721 0.0055 0.0000 1.8839 0.0251 0.0002 n.a

(75,15) 0.4475 0.0941 1.6053 1.0719 0.4816 n.a n.a 1.1159 n.a

(75,20) 0.0052 0.0001 0.6488 0.0359 0.0015 1.1068 0.1810 0.0140 1.9739

(75,25) 0.0000 0.0000 0.2084 0.0002 0.0000 0.5469 0.0016 0.0000 1.0368

(100,15) 0.0654 0.0110 0.5898 0.4660 0.1346 1.3252 1.2246 0.7908 n.a

(100,20) 0.0000 0.0000 0.0220 0.0010 0.0000 0.1442 0.0137 0.0008 0.6050

(200,15) 0.0000 0.0000 0.0000 0.0007 0.0001 0.0072 0.0547 0.0179 0.2643

(10,50) 0.8911 0.3052 n.a 0.9420 0.3592 n.a 0.9820 0.4192 n.a

(15,50) 0.0841 0.0026 1.1854 0.1134 0.0041 1.4509 0.1509 0.0065 1.8413

(20,50) 0.0034 0.0000 1.1129 0.0058 0.0000 1.3208 0.0097 0.0000 1.6985

(10,60) 0.4078 0.0879 1.0044 0.4608 0.1073 1.0159 0.5173 0.1301 1.0502

(15,60) 0.0062 0.0001 0.5059 0.0090 0.0002 0.5837 0.0129 0.0003 0.6653

(20,60) 0.0000 0.0000 0.2987 0.0000 0.0000 0.3733 0.0002 0.0000 0.4590

(10,75) 0.0585 0.0080 0.3764 0.0699 0.0101 0.4180 0.0832 0.0128 0.4623

(15,75) 0.0000 0.0000 0.0195 0.0000 0.0000 0.0255 0.0001 0.0000 0.0332

(20,75) 0.0000 0.0000 0.0023 0.0000 0.0000 0.0035 0.0000 0.0000 0.0051

(10,100) 0.0006 0.0000 0.0089 0.0007 0.0000 0.0108 0.0009 0.0000 0.0129

(15,100) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(10,200) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: This table reports an upper bound on the overestimation probability of the IC estimator,
Pr(4IC(1) > 0) defined in Theorem 2.1, subject to the true number of factors r ∈ {3, 4, 5} and the
choice of panel information criteria. If a probability bound is less than 1.0 × 10−4, we simply put a
zero. In some cases, we report an upper bound which is larger than one because it helps compare the
magnitude of over-detection risks. “n.a” (“Not Applicable”) indicates that an appropriate positive
number of s which satisfies (2.6.2) is not available in this case.

tion, Figure 2.1 plots an upper bound on the overestimation probability of the IC estimator

for the cases with p = 15 and increasing n from 50 to 200, while Figure 2.2 depicts the

cases with n = 10 and increasing p from 50 to 200. For each value of r ∈ {0, 1, 2, 3, 4, 5},

each panel compares the performances of three different panel information criteria: IC1(k),

IC2(k), and IC3(k).

In these Figures, we can see that the findings from Table 2.1 are true for all the formula-
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Figure 2.1: Detection Performance of the IC estimator (I.I.D. Errors, n > p)

Note: This plots an upper bound on the overestimation probability of the IC estimator, Pr(4IC(1) > 0)
defined in Theorem 2.1. A bound is computed by the formula (2.6.1). We consider the true number of factors

r ∈ {0, 1, 2, 3, 4, 5} such that r = k̂
IC
− 1. We only present the case with p = 15 and increasing sample sizes

from 50 to 200 (Note, when r = 5, the maximum number of n is set to 500). Each panel compares the
detection performances of three different panel information criteria, IC1(k), IC2(k) and IC3(k) which are
defined in (2.3.3), (2.3.4) and (2.3.5), respectively.

tions of the penalty function. When we choose G3(p, n) as a penalty function, or equivalently

when we use IC3(k), however, upper bounds on the overestimation probability are particu-

larly high. On the other hand, we obtain much lower bounds for the case with G2(p, n) than
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Figure 2.2: Detection Performance of the IC estimator (I.I.D. Errors, p > n)

Note: This plots an upper bound on the overestimation probability of the IC estimator, Pr(4IC(1) > 0)
defined in Theorem 2.1. A bound is computed by the formula (2.6.1). We consider the true number of factors

r ∈ {0, 1, 2, 3, 4, 5} such that r = k̂
IC
− 1. We only present the case with n = 10 and increasing p from 50 to

200. Each panel compares the detection performances of three different panel information criteria, IC1(k),
IC2(k) and IC3(k) which are defined in (2.3.3), (2.3.4) and (2.3.5), respectively.

other formulations. Such performance differences can be explained as follows. In finite sam-

ples, p+n
pn

> 1
p

and ln p > ln
(

pn
p+n

)
; therefore, G3(p, n) < G2(p, n), and G1(p, n) < G2(p, n).

It implies that
(

pn
p+n

)
provides a small-sample correction to the asymptotic convergence rate
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of p so that G2(p, n) is a higher penalty for overfitting (Bai and Ng, 2002). Consequently,

IC2(k) yields the lowest overestimation probability among three panel information criteria;

however, such differences become negligible as the sample size grows.

We can also see that the overestimation probability given the sample size tends to in-

crease as the number of factors r grows. As Nadler (2010) pointed out, the reason stems

from a decrease in the effect of the error components. Recall that we assume k̂
IC

= r+1. As

r increases so that k̂
IC

increases as well, the dimension of a noise subspace p− k̂
IC

shrinks;

consequently, the effect of the idiosyncratic components weakens, whereas the relative ex-

planatory power of signals is likely to be overly inflated.

Obviously, when the sample size is not sufficiently small, we obtain nearly zero upper

bound (not reported here). In particular, when n is greater than 200, we obtain practically

zero overestimation probability bounds, say less than 10−5 in most cases.

2.7 Modified Information Criteria

2.7.1 Improved Penalty for Overfitting

In this section, we provide a practical guide for users who may worry about the overde-

tection of IC in their empirical research. We demonstrate here that a simple modification

of IC (called modified criteria), which gives an increase in the penalty for overfitting, leads

to a negligible over-detection risk in finite samples and consequently a substantial improve-

ment of detection performance. First, by using Theorem 2.2, we compute theoretical upper

bounds on the overestimation probability of the modified criteria. As a consequence, we

show the better performance of the modified criteria than IC for the case with Gaussian

i.i.d. errors. Next, via Monte Carlo simulations, we also analyze the detection performance

of the modified criteria for the case with weak serial or/and cross-sectional dependence of

the error terms.

As seen before, the IC estimator often results in a non-negligible overestimation proba-
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bility for the case with small samples. Obviously, this result raises an interesting question

of how to make this over-detection risk negligible. Here is a clue to the answer. As Hallin

and Lǐska (2007) and Ahn and Horenstein (2013) pointed out, the penalty function defined

by Bai and Ng (2002) is not unique since it is only required to satisfy certain asymptotic

conditions for the consistency of the IC estimator; for example, any fixed scalar multiple of

G(p, n) still satisfies the asymptotic conditions. Their finite sample properties are different,

however, due to a scalar multiple. Such notions imply that we can improve the finite sample

performance of IC by simply modifying its penalty term while preserving its asymptotic

consistency. Nadler (2010) applied this idea to the Akaike information criterion (AIC) for

signal detection; specifically, after the original penalty term in the criterion is multiplied by

an arbitrary constant, this modified AIC yields better performance.

This chapter adopts a different approach to improve the penalty for overfitting. In our

modified criteria, degrees of freedom in the penalty term are adjusted for the number of

factors because the effective dimension is p − k rather than p in the presence of a strictly

positive number of factors. Our approach is in line with Ng and Perron (2005) on the sen-

sitivity of model selection criteria to sample sizes and degrees of freedom in finite samples.

They consider different penalty terms by various degrees of freedom adjustments; as a con-

sequence, they show that the lag-length selected by the AIC or the Bayesian information

criterion (BIC) is quite sensitive to degrees of freedom adjustments. Since there has been

no definitive guide for such an adjustment, Ng and Perron (2005) instead provide a practi-

cal guide for practitioners through extensive experiments. In particular, they consider the

following adjustments: p− k, p− 2k, and p− kmax. In fact, they also consider the case in

which the sum of squared residuals is adjusted for degrees of freedom; that is, the sum of

squared residuals is divided by (p− k)n, (p− 2k)n, or (p− kmax)n rather than pn. In our

study, however, the latter option is not considered since the formula for the overestimation

probability bound of IC given by (2.6.1) is not affected by the denominator of S(k) defined

in (2.3.2).
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Recall the original IC given by (2.3.1) as proposed by Bai and Ng (2002),

IC(k) = lnS(k) + k ·G(p, n),

where k is an arbitrary number (k < min{p, n}), and S(k) is the sum of squared residuals is

divided by pn. G(p, n) is the penalty function which has three different forms: G1(p, n) =(
p+n
pn

)
ln
(

pn
p+n

)
; G2(p, n) =

(
p+n
pn

)
lnC2

pn; and G3(p, n) =
lnC2

pn

C2
pn

, where Cpn = min{√p,
√
n}.

Now, we denote by MIC our modified panel information criteria. Then, MIC has the form

MIC(k) = lnS(k) + k ·mG(p, n, k), (2.7.1)

where mG(p, n, k) is a new penalty factor which modifies G(p, n) by degrees of freedom

adjustment. Moreover, the modified estimator for the true number of factors (hereafter,

MIC estimator) is defined as the minimizer of MIC(k) over a range of values for k, namely

that

k̂
MIC

= arg min
0≤k≤kmax

MIC(k). (2.7.2)

To sum up, the only difference between IC and MIC is a penalty function. For this reason,

a non-asymptotic bound on the overestimation probability of MIC is the same as that of IC

except for a penalty function. Under the conditions in Theorem 2.2, it is given by

Pr(4MIC(1) > 0) ≤ exp

(
−(p− r)s2

4

)
+ (2.7.3)

exp

(
−4n

3
(c̄)1/4

(
(p− r)

(
1− s√

n

)
ξ̃n,p,k − (1 +

√
c̄)2

)3/2
)
,

where c̄ = p−r
n

and ξ̃n,p,k = −1 +
√

1 + 2 ·mG(p, n, k). Obviously, this bound is appropriate

for any positive value of s chosen by a user such that

√
n− 1

ξ̃n,p,k
√
p− r

(
3 +
√
c̄+

1√
c̄

)
< s <

√
n− 1

ξ̃n,p,k
√
p− r

(
2 +
√
c̄+

1√
c̄

)
.
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In particular, we consider the following modified penalty function which has obviously

three different choices corresponding to three original penalty terms.

Definition 2.2 (Modified penalty function). Let mG(p, n, k) denote a modified penalty

function. It has three different choices given by

mG1(p, n, k) =

(
N + n

Nn

)
ln

(
pn

p+ n

)
; (2.7.4)

mG2(p, n, k) =

(
N + n

Nn

)
lnC2

pn; (2.7.5)

mG3(p, n, k) =
lnC2

pn

C2
Nn

, (2.7.6)

where N = p − αk > 0 with a fixed strictly positive integer α, Cpn = min{p, n}, and

CNn = min{N, n}.

Note that the above modified penalty function is designed in order to provide a small-

sample correction to the original IC estimator while preserving its consistency. Our degrees

of freedom adjustment leads to an increase in the penalty term of the original IC. mG(p, n, k)

is higher than G(p, n) when k > 0 since we have N+n
Nn

> p+n
pn

. Note that mG3(p, n, k) gives a

higher penalty than G3(p, n) only when n > N .

Finally, we define the modified panel information criteria, MIC, in relation to the above

three modified penalty terms:

MIC1(k) = lnS(k) + k ·mG1(p, n, k); (2.7.7)

MIC2(k) = lnS(k) + k ·mG2(p, n, k); (2.7.8)

MIC3(k) = lnS(k) + k ·mG3(p, n, k). (2.7.9)

Here we explore in more detail some properties of our modified penalty function. First,

mG(k) is strictly convex in k. For given n and p, mG(k) is a twice differentiable function of

k, and its second derivative is non negative on the interval [0, kmax]. The strict convexity
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of the penalty and the squared error loss leads to the strictly convex optimization problem

(2.7.2) so that a unique solution (a global minimum) exists. Second, α governs the magnitude

of improved penalization. A large α leads to an increase in the penalty for overfitting, given

fixed n, p and k. Lastly, our modified penalty factor also satisfies the asymptotic conditions

for the consistency of the estimator: (i) mG(p, n, k)→ 0, and (ii) C2
pn ·mG(p, n, k)→∞ as

n, p → ∞ because k is fixed regardless of n and p. Thus, the MIC estimator is consistent,

namely that limn,p→∞ Pr(k̂
MIC

= r) = 1.

2.7.2 Detection Performance of the MIC estimator

Now, as a counterpart to the performance analysis of the IC estimator in Section 2.6.2,

we examine the finite sample performance of the MIC estimator by using the formula for

a non-asymptotic bound on the overestimation probability of MIC given by (2.7.3). Note

that this theoretical analysis is only feasible for the case with Gaussian i.i.d. errors. In the

next section, we perform more general analyses allowing the serially or/and cross-sectionally

correlated error components through Monte Carlo experiments.

First, for the case with n > p = 15, Figure 2.3 and 2.4 compare the detection perfor-

mances of the original IC and the modified criteria, MIC, given the true number of factors

r ∈ {1, 2, 3, 4, 5, 6} and kmax = 8. Here we consider three different versions of MIC cor-

responding to the choice of a penalty function: MIC1, MIC2, and MIC3. As depicted in

these Figures, MIC yields much lower overestimation probabilities than IC in all cases. In

particular, Figure 2.3 considers MIC with α = 1 (N = p−k), while Figure 2.4 considers MIC

with α = 2 (N = p− 2k) which leads to a higher penalty for overfitting. Consequently, the

overestimation probability falls more substantially in Figure 2.4 than in Figure 2.3 across all

choices of penalty terms and various numbers of factors. Moreover, as r grows (so that k̂
IC

increases), the performance improvement becomes significant. Especially for the case with

r ≥ 3, it results in nearly zero probabilities. Even for the case with r ∈ {1, 2}, upper bounds

fall below 50%. As the sample size increases, however, the difference between IC and MIC
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Figure 2.3: Performance Comparison between MIC (α = 1) and IC (I.I.D. Errors, n > p)

Note: This compares an upper bound on the overestimation probability of the IC estimator computed by
(2.6.1) with that of the MIC estimator computed by (2.7.3). For the analysis of MIC estimator, we set
α = 1. We only present the case of p = 15 subject to r ∈ {1, 2, 3, 4, 5, 6} which is the true number of factors
and increasing sample sizes from 50 to 200. (Note, when r ∈ {5, 6}, the maximum number of n is 500).
Each panel plots the performances of three different original criteria, IC1(k), IC2(k) and IC3(k) which are
defined in (2.3.3), (2.3.4) and (2.3.5), respectively, along with the performances of three different modified
criteria, MIC1(k), MIC2(k) and MIC3(k) which are defined in (2.7.7), (2.7.8) and (2.7.9), respectively.

becomes negligible since the original IC already yields sufficiently low probability bounds of

overestimation for the case with large sample sizes.

Second, for the case with p > n = 10, Figure 2.5 compares the detection performances of
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Figure 2.4: Performance Comparison between MIC (α = 2) and IC (I.I.D. Errors, n > p)

Note: This compares an upper bound on the overestimation probability of the IC estimator computed by
(2.6.1) with that of the MIC estimator computed by (2.7.3). For the analysis of MIC estimator, we set
α = 2. We only present the case of p = 15 subject to r ∈ {1, 2, 3, 4, 5, 6} which is the true number of factors
and increasing sample sizes from 50 to 200. (Note, when r ∈ {5, 6}, the maximum number of n is 500).
Each panel plots the performances of three different original criteria, IC1(k), IC2(k) and IC3(k) which are
defined in (2.3.3), (2.3.4) and (2.3.5), respectively, along with the performances of three different modified
criteria, MIC1(k), MIC2(k) and MIC3(k) which are defined in (2.7.7), (2.7.8) and (2.7.9), respectively.
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Figure 2.5: Performance Comparison between MIC (α = 3) and IC (I.I.D. Errors, p > n)

Note: This compares an upper bound on the overestimation probability of the IC estimator computed by
(2.6.1) with that of the MIC estimator computed by (2.7.3). For the analysis of MIC estimator, we set
α = 3. We only present the case of n = 10 subject to r ∈ {1, 2, 3, 4, 5, 6} which is the true number of factors
and increasing p from 50 to 200. Each panel plots the performances of two different original criteria, IC1(k)
and IC2(k) which are defined in (2.3.3) and (2.3.4), respectively, along with the performances of two different
modified criteria, MIC1(k) and MIC2(k) which are defined in (2.7.7) and (2.7.8), respectively.

IC and MIC with α = 3, given the true number of factors r ∈ {1, 2, 3, 4, 5, 6} and kmax = 8.

Here we consider the cases in which MIC1 and MIC2 are used. Obviously, MIC3 is not

considered here since mG3 = G3 when N > n. Figure 2.5 shows that MIC yields lower
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Table 2.2: Performance Comparison between MIC (α = 2) and IC (I.I.D. Errors, n > p)

r = 1 r = 2

(n, p) IC1 IC2 IC3 MIC1 MIC2 MIC3 IC1 IC2 IC3 MIC1 MIC2 MIC3

(50,10) 1.8276 1.0309 n.a 0.3581 0.0962 0.7882 n.a 1.9685 n.a 0.0351 0.0069 0.0611

(50,15) 0.3620 0.0376 n.a 0.0290 0.0014 0.4882 0.8541 0.1615 n.a 0.0042 0.0002 0.0558

(50,20) 0.0210 0.0002 1.5879 0.0013 0.0000 0.4350 0.0768 0.0014 n.a 0.0002 0.0000 0.0652

(60,10) 1.1934 0.8002 n.a 0.1210 0.0291 0.3186 n.a 1.5334 n.a 0.0060 0.0011 0.0109

(60,15) 0.1082 0.0093 1.0661 0.0034 0.0001 0.0932 0.4056 0.0605 1.8685 0.0003 0.0000 0.0049

(60,20) 0.0021 0.0000 0.7165 0.0000 0.0000 0.0462 0.0124 0.0002 1.0746 0.0000 0.0000 0.0031

(75,10) 0.8808 0.4054 1.3870 0.0189 0.0041 0.0575 1.8811 1.1264 n.a 0.0004 0.0000 0.0007

(75,15) 0.0128 0.0009 0.3259 0.0001 0.0000 0.0043 0.0939 0.0114 0.9460 0.0000 0.0000 0.0000

(75,20) 0.0000 0.0000 0.0577 0.0000 0.0000 0.0006 0.0006 0.0000 0.2243 0.0000 0.0000 0.0000

(100,10) 0.2529 0.0953 0.6738 0.0006 0.0001 0.0021 1.0892 0.7881 1.7878 0.0000 0.0000 0.0000

(100,15) 0.0002 0.0000 0.0107 0.0000 0.0000 0.0000 0.0049 0.0005 0.1061 0.0000 0.0000 0.0000

(200,10) 0.0002 0.0000 0.0008 0.0000 0.0000 0.0000 0.0410 0.0185 0.1039 0.0000 0.0000 0.0000

r = 3 r = 4

(n, p) IC1 IC2 IC3 MIC1 MIC2 MIC3 IC1 IC2 IC3 MIC1 MIC2 MIC3

(50,15) 1.2309 0.5168 n.a 0.0003 0.0000 0.0018 n.a 1.0344 n.a 0.0000 0.0000 0.0000

(50,20) 0.2339 0.0082 n.a 0.0000 0.0000 0.0041 0.5758 0.0384 n.a 0.0000 0.0000 0.0000

(50,25) 0.0115 0.0000 n.a 0.0000 0.0000 0.0100 0.0406 0.0002 n.a 0.0000 0.0000 0.0005

(60,15) 1.0016 0.2808 n.a 0.0000 0.0000 0.0000 1.6445 0.8549 n.a 0.0000 0.0000 0.0000

(60,20) 0.0585 0.0017 1.7174 0.0000 0.0000 0.0000 0.2173 0.0114 n.a 0.0000 0.0000 0.0000

(60,25) 0.0010 0.0000 1.1721 0.0000 0.0000 0.0001 0.0055 0.0000 1.8839 0.0000 0.0000 0.0000

(75,15) 0.4475 0.0941 1.6053 0.0000 0.0000 0.0000 1.0719 0.4816 n.a 0.0000 0.0000 0.0000

(75,20) 0.0052 0.0001 0.6488 0.0000 0.0000 0.0000 0.0359 0.0015 1.1068 0.0000 0.0000 0.0000

(75,25) 0.0000 0.0000 0.2084 0.0000 0.0000 0.0000 0.0002 0.0000 0.5469 0.0000 0.0000 0.0000

(100,15) 0.0654 0.0110 0.5898 0.0000 0.0000 0.0000 0.4660 0.1346 1.3252 0.0000 0.0000 0.0000

(100,20) 0.0000 0.0000 0.0220 0.0000 0.0000 0.0000 0.0010 0.0000 0.1442 0.0000 0.0000 0.0000

(200,10) 1.0508 0.7857 1.2705 0.0000 0.0000 0.0000 n.a n.a n.a 0.0003 0.0003 0.0003

Note: This table compares an upper bound on the overestimation probability of the IC estimator computed by
(2.6.1) with that of the MIC estimator computed by (2.7.3) depending on various sample sizes (n, p) such that n > p.
For the analysis of MIC estimator, we set α = 2. We consider sample sizes (n, p) such that n ∈ {50, 60, 75, 100, 200}
and p ∈ {10, 15, 20, 25, 50}, but a few cases which show negligible probability bounds are not reported here. Three
different panel information criteria of the original IC, IC1(k), IC2(k) and IC3(k), are defined in (2.3.3), (2.3.4) and
(2.3.5), respectively. Three different panel information criteria of the MIC, MIC1(k), MIC2(k) and MIC3(k), are
defined in (2.7.7), (2.7.8) and (2.7.9), respectively. If a probability bound is less than 1.0 × 10−4, we simply put a
zero. In some cases, we report an upper bound which is larger than one because it helps compare the magnitude
of over-detection risks. “n.a” (“Not Applicable”) indicates that an appropriate positive number of s which satisfies
(2.6.2) is not available in this case.
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Table 2.3: Performance Comparison between MIC (α = 3) and IC (I.I.D. Errors, p > n)

r = 1 r = 2

(n, p) IC1 IC2 IC3 MIC1 MIC2 MIC3 IC1 IC2 IC3 MIC1 MIC2 MIC3

(10,50) 0.7705 0.2153 n.a 0.6859 0.1734 n.a 0.8330 0.2573 n.a 0.6579 0.1646 n.a

(15,50) 0.0445 0.0010 1.0170 0.0276 0.0005 1.0170 0.0616 0.0016 1.0616 0.0228 0.0004 1.0616

(20,50) 0.0011 0.0000 1.0074 0.0005 0.0000 1.0074 0.0020 0.0000 1.0318 0.0003 0.0000 1.0318

(10,60) 0.3137 0.0581 0.9753 0.2688 0.0469 0.9753 0.3588 0.0717 0.9978 0.2616 0.0462 0.9978

(15,60) 0.0029 0.0000 0.3675 0.0018 0.0000 0.3675 0.0042 0.0000 0.4335 0.0016 0.0000 0.4335

(20,60) 0.0000 0.0000 0.1830 0.0000 0.0000 0.1830 0.0000 0.0000 0.2355 0.0000 0.0000 0.2355

(10,75) 0.0405 0.0049 0.3013 0.0342 0.0040 0.3013 0.0487 0.0063 0.3374 0.0346 0.0042 0.3374

(15,75) 0.0000 0.0000 0.0111 0.0000 0.0000 0.0111 0.0000 0.0000 0.0147 0.0000 0.0000 0.0147

(20,75) 0.0000 0.0000 0.0010 0.0000 0.0000 0.0010 0.0000 0.0000 0.0015 0.0000 0.0000 0.0015

(10,100) 0.0004 0.0000 0.0062 0.0003 0.0000 0.0062 0.0005 0.0000 0.0074 0.0003 0.0000 0.0074

(15,100) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(10,200) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

r = 3 r = 4

(n, p) IC1 IC2 IC3 MIC1 MIC2 MIC3 IC1 IC2 IC3 MIC1 MIC2 MIC3

(10,50) 0.8911 0.3052 n.a 0.6203 0.1523 n.a 0.9420 0.3592 n.a 0.5717 0.1364 n.a

(15,50) 0.0841 0.0026 1.1854 0.0178 0.0003 1.1854 0.1134 0.0041 1.4509 0.0129 0.0002 1.4509

(20,50) 0.0034 0.0000 1.1129 0.0002 0.0000 1.1129 0.0058 0.0000 1.3208 0.0000 0.0000 1.3208

(10,60) 0.4078 0.0879 1.0044 0.2509 0.0446 1.0044 0.4608 0.1073 1.0159 0.2364 0.0421 1.0159

(15,60) 0.0062 0.0001 0.5059 0.0013 0.0000 0.5059 0.0090 0.0002 0.5837 0.0011 0.0000 0.5837

(20,60) 0.0000 0.0000 0.2987 0.0000 0.0000 0.2987 0.0000 0.0000 0.3733 0.0000 0.0000 0.3733

(10,75) 0.0585 0.0080 0.3764 0.0345 0.0042 0.3764 0.0699 0.0101 0.4180 0.0341 0.0043 0.4180

(15,75) 0.0000 0.0000 0.0195 0.0000 0.0000 0.0195 0.0000 0.0000 0.0255 0.0000 0.0000 0.0255

(20,75) 0.0000 0.0000 0.0023 0.0000 0.0000 0.0023 0.0000 0.0000 0.0035 0.0000 0.0000 0.0035

(10,100) 0.0006 0.0000 0.0089 0.0004 0.0000 0.0089 0.0007 0.0000 0.0108 0.0004 0.0000 0.0108

(15,100) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(10,200) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: This table compares an upper bound on the overestimation probability of the IC estimator computed by
(2.6.1) with that of the MIC estimator computed by (2.7.3) depending on various sample sizes (n, p) such that p > n.
For the analysis of MIC estimator, we set α = 3. We consider sample sizes (n, p) such that n ∈ {10, 15, 20, 25, 50}
and p ∈ {50, 60, 75, 100, 200}, but a few cases which show negligible probability bounds are not reported here. Three
different panel information criteria of the original IC, IC1(k), IC2(k) and IC3(k), are defined in (2.3.3), (2.3.4) and
(2.3.5), respectively. Three different panel information criteria of the MIC, MIC1(k), MIC2(k) and MIC3(k), are
defined in (2.7.7), (2.7.8) and (2.7.9), respectively. If a probability bound is less than 1.0 × 10−4, we simply put a
zero. In some cases, we report an upper bound which is larger than one because it helps compare the magnitude
of over-detection risks. “n.a” (“Not Applicable”) indicates that an appropriate positive number of s which satisfies
(2.6.2) is not available in this case.
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overestimation probabilities than IC ; especially, upper bounds decrease more sharply as the

number of factors increases. For the case with r ≥ 5, upper bounds fall below 50%. Similarly

to the case with n > p, the performance improvement becomes negligible as p increases.

More detailed results are reported in Table 2.2 for the case with n > p and α = 2 while

Table 2.3 for the case with p > n and α = 3. By and large, our modified criteria helps users

control over-detection risk when the sample size is small.

2.7.3 Simulation Study

Our performance analysis based on the computable formula for a probability bound is

no longer feasible in the presence of serially or/and cross-sectionally correlated error terms.

Thus, here we investigate the small sample performance of the MIC estimator for the cases

with more general error covariance structures through Monte Carlo simulations.

For our simulation exercises, we generate 1, 000 replications of data produced by the

following data-generating process:

xit =
r∑
j=1

λijfjt +
√
θeit;

eit =

√
1− ρ2

1 + 2Jβ2
εit; εit = ρεi,t−1 + υit +

J∑
j 6=0, j=−J

βυi−j,t, (2.7.10)

where λij and υit are all drawn from N (0, 1). The factors fjt are drawn from normal dis-

tributions with zero means. The same data generating process has been used in Bai and

Ng (2002) and Onatski (2010). The magnitude of serial correlation is governed by ρ, and

the magnitude of cross-sectional correlation is specified by β. As in Onatski (2010), we set

J = 8 so that each cross-section unit is correlated with the 16(= 2J) adjacent cross-section

units. Further, as in Ahn and Horenstein (2013), we normalize the idiosyncratic components

eit so that their variances are equal to 1. The parameter θ controls the relative strength of

noise to a signal. When var(fjt) = 1, θ is the same as the inverse of the signal to noise ratio

(SNR) of each factor since θ = var(
√
θ eit)/var(fjt). Thus, we can change SNRs of all factors
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by only adjusting the value of θ while fixing variances of factors at 1. Following previous

studies, we consider four different correlation structure of the idiosyncratic components: (A)

i.i.d. errors (ρ = β = 0); (B) weakly serially correlated errors (ρ = 0.5 and β = 0); (C)

weakly cross-sectionally correlated errors (ρ = 0 and β = 0.2); and (D) both weakly serially

and cross-sectionally correlated errors (ρ = 0.3 and β = 0.1). Moreover, in this simulation

study, we consider an n-dimension system with p cross-sectional observations as in Bai and

Ng (2002).

Our simulation consists of two experiments with different levels of SNR. The first ex-

periment is to examine the finite sample performance of the MIC estimator in the presence

of sufficiently strong factors. In particular, we consider the case in which all factors have

strong explanatory power by setting θ = 0.2 (SNR=5). Further, we also investigate how the

covariance structure of errors affects the detection performance of the MIC estimator. In

the second experiment, we consider relatively weaker factors. We set θ = 1 (SNR=1) which

implies that the factors explain exactly 50% variation in the data. The effect of correlation

structure is also examined. For all experiments, kmax is set to 8, and we use the original

IC1 estimator and its modified version, MIC1. As shown in Section 2.6, IC1 yields moderate

overestimation probability bounds compared to other extreme cases: IC2, and IC3. Here we

consider IC1 as a representative case to check the performance improvement of our modified

criteria. Moreover, the performances of IC1 and MIC1 are compared with those of other

leading estimators: the ED estimator proposed by Onatski (2010), and the ER and GR

estimators proposed by Ahn and Horenstein (2013). To analyze detection performances, we

report root mean squared errors (RMSEs) of each estimator from 1, 000 simulated datasets.

Without loss of generality, we only report results for r = 3.

Figure 2.6 and 2.7 report the results from the first part of simulations. Three factors

(r = 3) are drawn from N (0, 1), and θ is fixed at 0.2. Thus, all factors have SNRs equal

to 5. First, Figure 2.6 depicts cases in which p > n; in particular, n ∈ {15, 25} and

p ∈ {25, 50, 75, 100, 125, 150, 175, 200}. For each n, Panel A shows the results from the data
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generated with i.i.d. errors. Although the performance of the IC estimator is not too bad,

the performance of the MIC1 estimator (α = 0.5) is much better than the IC1 estimator;

especially for the data with p ≥ 50, the MIC1 estimator shows perfect accuracy. Moreover,

the MIC1 estimator performs equally to or better than the ER, GR and ED estimators. For

each n, Panels B, C and D report the results from the data with weakly serially or/and cross-

sectionally correlated errors. Compared with Panel A for i.i.d. errors, here MIC1 is more

penalized by setting α = 1.7 for the data with n = 15 while α = 3 for the data with n = 25.

We can see that correlation in the idiosyncratic errors reduces the precision of the IC1

estimator, while the MIC1 estimator remains very good in most cases. RMSEs of the MIC1

estimator are much lower than those of the IC1 estimator. In addition, the performance of

MIC1 is generally better than that of the ED estimator while being comparable to those of

the ER and GR estimators.

Figure 2.7 considers cases where n > p; particularly, n ∈ {25, 50, 75, 100, 125, 150, 175, 200}

and p ∈ {15, 25}. Similarly to the case with p > n, the MIC1 estimator (α = 2) outperforms

other estimators and shows perfect accuracy for the data with n ≥ 50 when errors are i.i.d.

(Panel A). Moreover, for the case with weak serial correlation (Panel B) as well as with

both weak serial and cross-sectional correlation (Panel D), the MIC1 estimator (α = 3)

outperforms the IC1 and ED estimators while performing equally to or slightly less than

the ER and GR estimators. For the case with cross-sectionally correlated errors (Panel C),

however, RMSEs of the MIC1 estimator are larger than for other cases in Panels A, B and

D; particularly, the detection performance of MIC1 gets worse as n grows. Such a tendency

is also observed in the performance of the IC1 and ED estimators, while RMSEs of the

MIC1 estimator are still lower than those of the IC1 and ED estimators for the data with

small n. Comparing Panels B and C, it seems that the performances of the MIC1, IC1 and

ED estimators are more sensitive to cross-sectional correlation than serial correlation. Ahn

and Horenstein (2013) reported the similar result from their simulation study.
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Figure 2.6: Effects of Error Covariance Structure (Three-factor Model, θ = 0.2, p > n)

(1) θ = 0.2, p > n = 15

(2) θ = 0.2, p > n = 25
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Figure 2.7: Effects of Error Covariance Structure (Three-factor Model, θ = 0.2, n > p)

(1) θ = 0.2, n > p = 15

(2) θ = 0.2, n > p = 25
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Figure 2.8 and 2.9 report the results from the second part of simulations. Here three

factors (r = 3) are drawn from N (0, 1), and θ is fixed at 1 so that we consider lower SNRs

equal to 1. As depicted in Figure 2.8 for the cases with p > n, the MIC1 (α = 1.5) estimator

clearly outperforms the IC1 and ED estimators when the idiosyncratic components are

weakly correlated (Panels B, C and D). Comparing these cases to the case with i.i.d. errors

(Panel A), we can see that correlation in the idiosyncratic terms substantially worsens the

quality of the IC1 estimator. The accuracy of the MIC1 estimator remains very good,

however. It is not much affected by the covariance structure of errors. Also, for each n the

MIC1 estimator generally performs equally to or better than the ER and GR estimators.

Further, the cases with n > p are shown in Figure 2.9. We set α = 1 for the case with

i.i.d. errors (Panel A) while α = 3 for the case with correlated errors (Panels B, C and D).

For each p, the performance of MIC1 estimator is comparable to, if not better than, those

of the ED, ER and GR estimators. The only exception is the case with cross-sectionally

correlated errors (Panel C) in which the MIC1 estimator selects the number of factors with

less precision and its RMSE gets larger as n increases. Like the cases with strong factors

(Figure 2.7), it appears that the performances of the MIC1, IC1 and ED estimators are more

sensitive to cross-sectional correlation than serial correlation. Even for this case, RMSEs of

the MIC1 are much lower than those of IC1 when the sample size remains small.

Lastly, we consider an additional experiment where the temporal dimension of the data is

comparable to their cross-sectional size; particularly, n = p ∈ {50, 75, 100, 125, 150, 175, 200}

(Figure 2.10). The results remain the same as those of previous experiments, regardless of

values of θ ∈ {1, 0.2}. Except for the case with cross-sectionally correlation (Panel C), the

MIC1 estimator clearly outperforms the IC1 and ED estimators while its performance being

comparable to, if not better than, those of the ER and GR estimators.
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Figure 2.8: Effects of Error Covariance Structure (Three-factor Model, θ = 1, p > n)

(1) θ = 1, p > n = 15

(2) θ = 1, p > n = 25
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Figure 2.9: Effects of Error Covariance Structure (Three-factor Model, θ = 1, n > p)

(1) θ = 1, n > p = 15

(2) θ = 1, n > p = 25
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Obviously, when we use IC2 and MIC2, instead of IC1 and MIC1, for our simulations,

we can obtain more precise estimates from both criteria; however, the main results remain

the same and thus are not reported here. In particular, IC2 still overestimates the number of

factors when the sample size is small, and MIC2 clearly outperforms IC2 even when errors

are weakly correlated. Further, the performance of MIC2 gets closer to, if not better than,

those of the ER and GR estimators, and it becomes less sensitive to the cross-sectional

correlation of the error terms.

The Monte Carlo experiments from Bai and Ng (2002), Onatski (2010), and Ahn and

Horenstein (2013) did not report the simulation results for the case with sufficiently strong

factors. Rather, Bai and Ng (2002) especially noted that the IC estimator is expected to

yield precise estimates of the true number of factors in such a case; however, our simulations

show that the IC estimator does not perform well even for the case with strong factors when

the sample size is small. Further, we see that weakly correlated errors significantly reduce the

precision of the estimates. Overall, the results from our simulations show that our proposed

criteria, MIC, improve the finite sample performance of the original IC estimator even for

the weakly serially or/and cross-sectionally correlated error components, regardless of the

relative size of n and p. Moreover, by adjusting α for the relative strength of signals to noise,

the MIC estimator can yield comparable performance to, if not better than, those of the

ED, ER and GR estimators, unless the idiosyncratic components are only cross-sectionally

correlated with large population size.

Since this chapter focuses on the over-detection risk of IC, the main goal of the proposed

MIC estimator is to reduce the upper probability bound of over-detection. But also, MIC is

likely to worsen the under-detection of the number of factors at the same time because our

modification leads to a higher penalty for over-fitting than the original criteria. When we

consider simulation results showing a significant improvement in the overall performance of

MIC, however, we can conjecture that deteriorating under-detection risk might be dominated

by decreasing over-detection risk.
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Figure 2.10: Effects of Error Covariance Structure (Three-factor Model, n = p)

(1) θ = 1, n = p

(2) θ = 0.2, n = p
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2.8 Conclusion

The detection of the number of factors is a prerequisite for factor analysis. This chapter

studies the detection performance of the IC estimator proposed by Bai and Ng (2002).

First, we derive the computable formula for a theoretical upper bound on the over-detection

probability of the IC estimator. More specifically, we pin down the expression for the

overestimation condition of IC in terms of pure noise eigenvalues, and then we analyze a

non-asymptotic bound on the overestimation probability by employing the results on the

limiting behavior of the largest pure noise eigenvalue from random matrix theory.

Next, using this computable formula, we analyze the detection performance of the IC

estimator. We compute overestimation probability bounds subject to various sample sizes

and numbers of factors, and the choice of a penalty function. These numerical examples

show that the IC estimator often overestimates the number of factors for the case with small

sample sizes even when factors have strong explanatory power. Accordingly, this chapter

provides a theoretical prediction for the overestimation probability of the IC estimator;

specifically, users may use our computable formula as a diagnostic tool for misspecification.

Moreover, we show that the improved penalty for overfitting by degrees of freedom ad-

justment can reduce the overestimation probability of the IC estimator substantially in small

samples. As a consequence, we propose a modified estimator, MIC, as a practical guide to

improving the finite sample performance. Our performance analysis using the computable

formula for the overestimation probability bound demonstrates that our MIC estimator im-

proves the accuracy of the original IC estimator for the case with Gaussian i.i.d. errors. In

addition, via Monte Carlo simulations, we show that the MIC estimator outperforms the IC

estimator even for the case with the weakly serially or/and cross-sectionally correlated error

terms. Furthermore, comparing the MIC estimator and other leading estimators such as the

ER and GR estimators of Ahn and Horenstein (2013), and the ED estimator of Onatski

(2010), we see that the MIC estimator generally performs well unless the error components

are only cross-sectionally correlated.
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Several interesting extensions are left for future research. One of them is to generalize

our theoretical upper bound on the overestimation probability of the IC estimator to the

cases with the more general covariance structure of errors. We have briefly sketched some

ideas in this chapter, but it remains to be studied further. Another interesting topic is to

study the large r asymptotics of the IC estimator in which the true number of factors can

increase with the sample size and to examine its misspecification risk. Moreover, our analysis

might be extended to general model selection criteria for factor models. For example, Choi

and Jeong (2013) derived several criteria for large factor models based on the AIC and the

BIC. So far as any criterion is represented by pure noise eigenvalues, our method might be

applied.

Lastly, this chapter focused on the analysis of the over-detection risk based on random

matrix theory. In a similar fashion, we will examine the overall misdetection risk of the IC

estimator by extending our analysis to the case with under-detected factors and eventually

discuss the optimal rule for detecting the number of factors in the second chapter.
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Appendix

A.2.1. Proof of Lemma 2.1

Proof. Let us assume that the number of factors are known as k. ft and λi can be estimated

by the principal components method under the normalization of Λ̃′Λ̃
p

= Ik (for details, see

Bai and Ng, 2002). That is, the principal components estimator Λ̃ =
√
pBn, where Bn is the

p× k matrix composed of the eigenvectors corresponding to k eigenvalues of Sn. And given

Λ̃, we get f̃t = (Λ̃′Λ̃)
−1

Λ̃′xt. Then, from (2.3.2),

S (k) =
1

pn

n∑
t=1

(xt − Λ̃f̃t)
′(xt − Λ̃f̃t)

=
1

pn

n∑
t=1

x′t(Ip − PΛ̃
)xt

=
1

p
tr

(
1

n

n∑
t=1

xtx
′
t

)
− 1

p2
tr

(
Λ̃′

(
1

n

n∑
t=1

xtx
′
t

)
Λ̃

)

=
1

p
tr

(
1

n

n∑
t=1

xtx
′
t

)
− 1

p
tr

(
B′n

(
1

n

n∑
t=1

xtx
′
t

)
Bn

)

=
1

p

p∑
j=1

`j −
1

p

k∑
j=1

`j

=
1

p

p∑
j=k+1

`j,

where P
Λ̃

= Λ̃(Λ̃′Λ̃)
−1

Λ̃′.

A.2.2. Proof of Lemma 2.3

Proof. See Nadler (2010) for the proof of (2.4.2). Here, we prove (2.4.3).

Recall ρii = b′i
(

1
n

∑n
t=1 xtx

′
t

)
bi, ˜̀j = d̃′j

(
1
n

∑n
t=1 xtx

′
t

)
d̃j, and ηij = d̃′j

(
1
n

∑n
t=1 xtx

′
t

)
bi.

By Remark 2.1 and 2.2, we can see that ρii = (ψi + 1) (1 +Op (1/
√
n)) and ˜̀

j = 1 +

Op (1/
√
n). Also, we can write ηij = (ρii˜̀j)1/2 1

n

∑n
t=1 αtβt, where αt = (b′ixt)/(ρ

1/2
ii

) and
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βt = (x′td̃j)/(
˜̀1/2
j ). Further, let us define κij =

√
n ηij

(ρii ˜̀j)1/2
= 1√

n

∑n
t=1 αtβt. Then, we get

1

n

r∑
i=1

(
√
n ηij)

2

ρii − ˜̀j =
1

n

r∑
i=1

(
ρii ˜̀j
ρii − ˜̀j

)
κ2
ij.

Note that αt and βt are independent of each other due to the orthogonality between bi

and d̃j. And E(αt) = 0, E(|αt|2) = 1, and E(αtαs) = 0 for t 6= s since bi, the i-th

eigenvector of Σ, is fixed and independent of signals and noise random realizations. Similarly,

E(βt) = 0, E(|βt|2) = 1, and E(βtβs) = 0 for t 6= s. Also, by definition, 1
n

∑n
t=1 αtβt is the

sample correlation coefficient between the projection of the data onto a fixed direction bi and

its projection onto the orthogonal direction d̃j. Thus, assuming i.i.d. Gaussian errors and

factors, as n→∞, κij = 1√
n

∑n
t=1 αtβt has the limiting distribution N (0, 1) (see Anderson,

2003, Theorem 4.2.4)1. Hence, κij = Op(1).

Consequently, for ψi = O(1), as n→∞ we have

1

n

r∑
i=1

(
√
n ηij)

2

ρii − ˜̀j = ˜̀
j

(
1

n

r∑
i=1

(
ψi + 1

ψi
+Op

(
1√
n

))
κ2
ij

)

= ˜̀
j

(
1

n

r∑
i=1

ψi + 1

ψi
+

√
r

n

1√
r

r∑
i=1

ψi + 1

ψi

(
κ2
ij − 1

))
+Op

(
1

n3/2

)

because ρii
ρii− ˜̀

j
=

(ψi+1)(1+Op(1/
√
n))

ψi(1+Op(1/
√
n))

.

1 If corr(n) is the sample correlation coefficient of a sample of n from a normal distribution with correlation

ρ, then
√
n(corr(n)−ρ)

1−ρ2 has the limiting distribution N (0, 1).
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A.2.3. Proof of Theorem 2.1

Proof. From Lemma 2.3, we get (2.4.3) and (2.4.4). Now, if we insert them into (2.3.8), then

we get

4IC(1) = lnTp−r − lnTp−r−1 −G(p, n)

= ln T̃p−r − ln T̃p−r−1 −G(p, n) + ln

(
1− Mr

n
−
√
r

n

1

T̃p−r

p∑
j=r+1

˜̀
jZj

)

− ln

(
1− Mr

n
−
√
r

n

1

T̃p−r−1

p∑
j=r+2

˜̀
jZj

)
. (2.8.1)

First, M(r)
n

is negligible. Note that Mr = O(r) since Mr =
∑r

i=1
ψi+1
ψi

and ψi = O(1).

Next, we show that Zj = Op(1). As shown in the proof of Lemma 2.3, as n → ∞, κij =

1√
n

∑n
t=1 αtβt has the limiting distribution N (0, 1); hence, κij = Op(1). Also, since κ2

ij ∼

χ2(1), V ar(κ2
ij) = E ((|κij|2 − 1)2) = O(1). In Lemma 2.3, the zero mean random variable

Zj = 1√
r

∑r
i=1

ψi+1
ψi

(κ2
ij − 1). Recall that vectors in B̃ = (b1, . . . , br, d̃r+1, . . . , d̃p) are linearly

independent of each other. Furthermore, from ψi = O(1) and E ((|κij|2 − 1)2) = O(1), we

get

E

∣∣∣∣∣ 1√
r

r∑
i=1

ψi + 1

ψi
(κ2

ij − 1)

∣∣∣∣∣
2

=
1

r

r∑
i=1

r∑
h=1

ψi + 1

ψi

ψh + 1

ψh
E
(
(|κij|2 − 1)2

)
≤
(
ψ1 + 1

ψ1

)2
1

r

r∑
i=1

E
(
(|κij|2 − 1)2

)
= O(1),

i.e., E(|Zj|2) = O(1) so that Zj = Op(1) (see Jiang, 2010, Theorem 3.1).

Now, we approximate (C.1) by the Taylor expansion. Note that 1
p−r T̃p−r = Op(1),

1
p−r
˜̀
p−r = Op(

1
p−r ), and 1

p−r
∑p

j=r+1
˜̀
jZj =

∑p
j=r+1Op(

1
p−r )Op(1) = Op(1) by Remark 2.2,

and Jiang (2010, Lemma 3.12). Then,
√
r
n

1

T̃p−r

∑p
j=r+1

˜̀
jZj is sufficiently small for large n as
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follows:

√
r

n

1

T̃p−r

p∑
j=r+1

˜̀
jZj =

√
r

n

(
p− r
T̃p−r

)
1

p− r

p∑
j=r+1

˜̀
jZj =

√
r

n
Op(1)Op(1) = Op

(√
r

n

)
,

and similarly
√
r
n

1

T̃p−r−1

∑p
j=r+2

˜̀
jZj = Op

(√
r
n

)
. Therefore, by the Taylor expansion we can

get

ln

(
1− Mr

n
−
√
r

n

1

T̃p−r

p∑
j=r+1

˜̀
jZj

)
− ln

(
1− Mr

n
−
√
r

n

1

T̃p−r−1

p∑
j=r+2

˜̀
jZj

)

≈ −
√
r

n

1

T̃p−r

p∑
j=r+1

˜̀
jZj +

√
r

n

1

T̃p−r−1

p∑
j=r+2

˜̀
jZj. (2.8.2)

Finally, using (C.2), (C.1) can be rewritten as

4 IC(1) ≈ ln T̃p−r − ln T̃p−r−1 −
√
r

n
Z −G(p, n), (2.8.3)

where √
r

n
Z =

√
r

n

1

T̃p−r

(˜̀
r+1Zr+1

)
−
√
r

n

1

T̃p−r

˜̀
r+1

T̃p−r−1

(
p∑

j=r+2

˜̀
jZj

)
= I + II.

However,
√
r
n
Z is asymptotically negligible with respect to G(p, n). More precisely, for I

term,

√
r

n

1

T̃p−r

(˜̀
r+1Zr+1

)
=

√
r

n

(
p− r
T̃p−r

)( ˜̀
r+1

p− r

)
Zr+1

=

√
r

n
Op(1)Op

(
1

p− r

)
Op(1) = Op

( √
r

n(p− r)

)
,
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and for II term,

√
r

n

1

T̃p−r

˜̀
r+1

T̃p−r−1

(
p∑

j=r+2

˜̀
jZj

)
=

√
r

n

(
p− r
T̃p−r

)( ˜̀
r+1

p− r

)(
p− r − 1

T̃p−r−1

)∑p
j=k+2

˜̀
jZj

p− r − 1

=

√
r

n
Op(1)Op

(
1

p− r

)
Op(1)Op(1) = Op

( √
r

n(p− r)

)
,

while G3(p, n) = O (ln p/p), for example. Thus, up to an op
(

1
n

)
error term, (2.3.8) can be

approximately equivalent to

4 IC(1) ≈ ln T̃p−r − ln T̃p−r−1 −G(p, n). (2.8.4)

As a result, the approximate expression of 4IC(1) does not include any signal contribution

or interaction between signals and noise.

Now, let us define ξ =
˜̀
r+1

T̃p−r
so that ξ < 1. Then, (C.4) can be written as

4IC(1) ≈ ln T̃p−r − ln
(
T̃p−r − ˜̀r+1

)
−G(p, n)

= ln ˜̀r+1 − ln ξ − ln

(˜̀
r+1

ξ
− ˜̀r+1

)
−G(p, n)

= ln ˜̀r+1 − ln ξ − ln ˜̀r+1 − ln
1− ξ
ξ
−G(p, n)

= − ln(1− ξ)−G(p, n). (2.8.5)

Also, because ξ < 1, we can say

4 IC(1) ≈ ξ +
ξ2

2
−G(p, n) + o(ξ3) (2.8.6)

by the Taylor approximation.

Finally, the number of factors is overestimated by exactly one factor if 4IC(1) > 0 in
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(C.6). Let ξn,p−r denote a solution for

ξ +
1

2
ξ2 −G(p, n) = 0;

that is, ξn,p−r = −1 +
√

1 + 2G(p, n). As a result, if ˜̀r+1 > T̃p−r · ξn,p−r, then 4IC(1) > 0

because ˜̀r+1 = T̃p−r · ξ.

Note that ˜̀r+1, T̃p−r, and ξn,p−r are the same as `1(W ), Tr(W ), and ξn,p, respectively.

A.2.4. Proof of Theorem 2.2

Part 1.

Proof. Consider the average of the sample eigenvalues of a (p− r)× (p− r) Wishart matrix,

W . By Remark 2.1, Tr(W )
p−r =

∑p
j=r+1

˜̀
j

p−r ∼
χ2
n(p−r)
n(p−r) . Let s be some positive number. Then we

can write

Pr(4IC > 0) = Pr

(
4IC > 0

⋂ Tr(W )

p− r
≤ 1− s√

n

)
+ Pr

(
4IC > 0

⋂ Tr(W )

p− r
> 1− s√

n

)
.

Also, by Theorem 2.1, we obtain the following inequality:

Pr(4IC > 0) ≤ Pr

(
χ2
n(p−r)

n(p− r)
≤ 1− s√

n

)
+ Pr

(
`1(W )

Tr(W )
> ξn,p

⋂ Tr(W )

p− r
> 1− s√

n

)

≤ Pr

(
χ2
n(p−r)

n(p− r)
≤ 1− s√

n

)
+ Pr

(
`1(W ) > (p− r)

(
1− s√

n

)
ξn,p

)
= I + II.

Part 2.
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Proof. Using the following lemma regarding a Chi-squared inequality (Johnstone and Lu,

2009, Appendix, A.2), the upper bound of I in part 1 can be obtained as follows.

Lemma 2.4. (Johnstone and Lu, 2009)

Pr
(
χ2
v ≤ v(1− ε)

)
≤ exp

(
−vε2

4

)
, 0 ≤ ε < 1.

Thus, setting v = n(p− r) and ε = s√
n
, we get

I = Pr

(
χ2
n(p−r)

n(p− r)
≤ 1− s√

n

)
= Pr

(
χ2
n(p−r) ≤ n(p− r)

(
1− s√

n

))
≤ exp

(
−(p− r)s2

4

)
.

Part 3.

Proof. Now, let us derive the upper bound of II in part 1. As already seen in Section 2.5

(2.5.8), Ledoux (2007)’s result can be applied to our model as follows.

Lemma 2.5. By Ledoux (2007, Proposition 2.2), we get

Pr
(
`1(W ) ≥ (1 +

√
c̄)2 + ε

)
≤ exp (−nJ

LAG
(ε)) , (2.8.7)

where

J
LAG

(ε) =

x∫
1

(x− y)
(1 + c̄)y + 2

√
c̄

(y +B)2

dy√
y2 − 1

, (2.8.8)

with c̄ = p−r
n

, x = 1 + ε
2
√
c̄
, and B = 1+c̄

2
√
c̄
. Then, by setting ε = (p − r)

(
1− s√

n

)
ξnp −(

1 +
√
c̄
)2
, the following inequality should hold:

II = Pr

(
`1(W ) > (p− r)

(
1− s√

n

)
ξn,p

)
≤ exp (−nJ

LAG
(ε)) . (2.8.9)
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Now, let us derive the explicit expression of (D.3).

n · J
LAG

(ε) = n

x∫
1

(x− y)
(1 + c̄)y + 2

√
c̄

(y +B)2

dy√
y2 − 1

= n

x∫
1

(x− y)√
y2 − 1

(1 + c̄)y + 2
√
c̄(

2y
√
c̄+ c̄+ 1

)2
(1/4c̄)

dy

= 4(p− r)
x∫

1

y(x− y)√
y2 − 1

(
(1 + c̄)y + 2

√
c̄

y(2y
√
c̄+ c̄+ 1)2

)
︸ ︷︷ ︸

III

and

III =
(1 + c̄) y + 2

√
c̄

(1 + c̄)2y + 4
√
c̄(1 + c̄)y2 + 4c̄y3

= 1− c̄(1 + c̄)y + 4
√
c̄(1 + c̄)y2 + 4c̄y3 − 2

√
c̄

(1 + c̄)2y + 4
√
c̄(1 + c̄)y2 + 4c̄y3

= 1−
√
c̄

(√
c̄(1 + c̄)y + 4(1 + c̄)y2 + 4

√
c̄y3 − 2

(1 + c̄)2y + 4
√
c̄(1 + c̄)y2 + 4c̄y3

)
︸ ︷︷ ︸

IV

.

By Jiang (2010, p. 54)’s Lemma 3.6 and Example 3.3,

IV =
y(c̄)3/2 + 4y2c̄+ (4y3 + y)(c̄)1/2 + 4y2 − 2

y(c̄)2 + 4y2(c̄)3/2 + (4y3 + 2y)c̄+ 4y2(c̄)1/2 + y
= O(1)

as c̄→∞, while IV = o(1) as c̄→ 0. Thus, especially for large n, we get

n · J
LAG

= 4(p− k)

x∫
1

y(x− y)√
y2 − 1

(
1 +O

(√
p− r
n

))
dy (2.8.10)
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and

x∫
1

y(x− y)√
y2 − 1

dy = x

x∫
1

y√
y2 − 1

dy −
x∫

1

y2√
y2 − 1

dy

=
1

2

(
1 +

ε

2
√
c̄

)√
ε2

4c̄
+

ε√
c̄
− 1

2
ln

(
1 +

ε

2
√
c̄

+

√
ε2

4c̄
+

ε√
c̄

)

=
1

4

(
1 +

δ

2

)√
δ(δ + 4)− 1

2
ln

(
1 +

δ

2
+

1

2

√
δ(δ + 4)

)
︸ ︷︷ ︸

V

,

where ε = δ
√
c̄ = δ

√
p−r
n

. Furthermore, let us define q = δ
2

+ 1
2

√
δ(δ + 4). Then, by the

Taylor expansion,

V = ln (1 + q) = q − 1

2
q2 +

1

3
q3 − 1

4
q4 +

1

5
q5 · · · .

From this expansion, we get the following inequality; that is, for q ≥ 0,

ln(1 + q) ≤ q − 1

2
q2 +

1

3
q3. (2.8.11)

These inequalities are quite intuitive. Let g(q) = ln(1 + q) − q + 1
2
q2 − 1

3
q3. Then g(q) is a

non-increasing function because g(q)′ = 1
1+q
− 1 + q − q2 = − q3

1+q
≤ 0, for all q ≥ 0. Thus,

g(q) ≤ g(0) so that ln(1 + q) ≤ q − q2

2
+ q3

3
.

As seen in (2.5.7) and (2.5.8), the non-asymptotic bound of the largest eigenvalue of W

can be also defined as follows:

Pr
(
`1(W ) ≥ (1 +

√
c̄)2 + ε

)
≤M exp

(
−nmin{ε, ε3/2}/M

)
,

and also

Pr
(
`1(W ) ≥ (1 +

√
c̄)2 + ε

)
≤ exp (−nJ

LAG
(ε)) .
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We can check that J
LAG(ε) ≥ ε3/2/M . From (D.5), we get

V = ln

(
1 +

δ

2
+

1

2

√
δ(δ + 4)

)
≤ δ

2
+

1

2

√
δ(δ + 4)− 1

2

(
δ

2
+

1

2

√
δ(δ + 4)

)2

+
1

3

(
δ

2
+

1

2

√
δ(δ + 4)

)3

.

When ε is a sufficiently small, δ < 1 can be a reasonable restriction because ε = δ
√
c̄.

Therefore, we can obtain the following inequality:

x∫
1

y(x− y)√
y2 − 1

dy ≥ 1

4

(
1 +

δ

2

)√
δ(δ + 4)

− 1

2

(
δ

2
+

1

2

√
δ(δ + 4)− 1

2

(
δ

2
+

1

2

√
δ(δ + 4)

)2

+
1

3

(
δ

2
+

1

2

√
δ(δ + 4)

)3
)

=
1

6
δ
√
δ(δ + 4) + o(δ2) ≥ δ3/2

3
.

Using this result, we get

n · J
LAG
≥ 4(p− r)

3
δ3/2 = ε3/2/M. (2.8.12)

Consequently, (D.6) is compatible with (2.5.7).

Finally, we get

II = Pr

(
`1(W ) > (p− r)

(
1− s√

n

)
ξn,p

)
≤ exp

(
−4(p− r)

3
δ3/2

)
. (2.8.13)

Moreover, since ε = (p− r)
(

1− s√
n

)
ξn,p −

(
1 +
√
c̄
)2

, we can get

δ =
ε√
c̄

=
√
n(p− r)

(
1− s√

n

)
ξn,p −

1√
c̄
− 2−

√
c̄.
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Then,

4(p− r)
3

δ3/2 =
4n

3
(c̄)1/4

(
ξn,p(p− r)

(
1− s√

n

)
− (1 +

√
c̄)2

)3/2

.

Thus, from (D.7), we finally obtain

II ≤ exp

(
−4n

3
(c̄)1/4

(
ξn,p(p− r)

(
1− s√

n

)
− (1 +

√
c̄)2

)3/2
)
. (2.8.14)

Part 4.

Proof. In addition, the term in parenthesis in (D.8) should be positive. Thus,

s <
√
n− 1

ξn,p
√
p− r

(√
n

p− r
+ 2 +

√
p− r
n

)
(2.8.15)

should hold. Also, throughout this proof, we assume δ < 1 in the sense that ε is small. That

is,

δ =
√
p− r

(√
n− s

)
ξn,p −

√
n

p− r
− 2−

√
p− r
n

< 1.

Thus, the following inequality should hold:

s >
√
n− 1

ξn,p
√
p− r

(√
n

p− r
+ 3 +

√
p− r
n

)
. (2.8.16)

Hence, from (D.9) and (D.10), Theorem 2.2 holds for any value of s such that

√
n− 1

ξn,p
√
p− r

(
3 +
√
c̄+

1√
c̄

)
< s <

√
n− 1

ξn,p
√
p− r

(
2 +
√
c̄+

1√
c̄

)
. (2.8.17)
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Chapter 3

On the Misdetection Probability of the Number of Factors and

the Optimized Penalization in Finite Samples
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3.1 Introduction

This chapter analyzes the finite sample performance of the panel information criteria

(IC ) proposed by Bai and Ng (2002) for detecting the number of factors and proposes

modified criteria to improve its performance. To do so, we derive the computable formula

for a non-asymptotic upper bound on the misdetection probability of IC and determine the

optimal penalty for overfitting which leads to the minimum upper bound of the misdetection

probability.

The IC estimator is a leading estimation procedure to determine the number of strong

factors in large dimensional factor models. It is well known, however, the IC estimator

tends to over or under detect the number of factors in finite samples and especially its

misdetection worsens when the explanatory power of the factors does not strongly dominate

the explanatory power of the idiosyncratic components. A few Monte Carlo studies provided

evidence for such misdetection (Bai and Ng, 2002; Onatski, 2010; Greenaway-McGrevy,

Han and Sul, 2012; Ahn and Horenstein, 2013). Moreover, we have partly analyzed this

misdetection risk by computing the theoretical probability bound of overdetection in the

previous working paper (Kao and Oh, 2017), or Chapter 2 in this dissertation.

In large dimensional panel data analysis, the misdetected true number of factors causes

serious problems. In particular, when the number of factors is overestimated, users suffer

from the loss of degrees of freedom. In this regard, Onatski (2015) examines the consequences

of the misspecified factors for the loss of asymptotic efficiency in the principal components es-

timator. The under-detection of factors is also critical. Moon and Weidner (2015) show that

in a linear panel regression model with unknown number of factors, the limiting distribution

of the least squares estimator for the regression coefficients is independent of the estimated

number of factors only if it is not underestimated. Byun and Schmidt (2016) study the

effects of misspecified factors in the Fama-French factor models. Their result implies that

the underestimated number of factors may cause seemingly contradictory empirical asset

pricing results from the literature, such as negative and statistically insignificant risk-return
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trade-off.

A major issue that should be resolved to improve the finite sample performance of IC is

a non-unique penalty function in the criteria (Hallin and Lǐska, 2007; Ahn and Horenstein,

2013). In particular, any scalar multiple of the penalty function prespecified by Bai and Ng

(2002) is still asymptotically valid for consistent estimation for the number of factors and

consequently, there are asymptotically many possible choices for the penalty for overfitting.

Its finite sample performance, however, depends on the magnitude of such a multiplicative

weight for the penalty. Hence, it is a crucial matter in finite samples to decide what the

optimal penalty function is.

To provide an answer to the above question, we first derive the computable formula

for an upper bound on the misdetection probability of IC by employing some results from

random matrix theory, under certain conditions where such a bound exists. To do so,

we revisit our initial work which presented a non-asymptotic upper bound on the over-

detection probability of IC and showed that when the sample size is not sufficiently large,

there exists a non-negligible overestimation risk even for the case with strong factors (see

Chapter 2). The current chapter extends the previous results to the under-detection risk

of IC. In the end, we can diagnose its comprehensive misdetection risk in finite samples

by computing non-asymptotic upper bounds on the misdetection probability of IC. Our

numerical examples show that the under-detection probability of IC is non-negligible if the

eigenvalue corresponding to the least influential factor is not sufficiently larger than a certain

threshold, which is known as the asymptotic limit of detection of factors in random matrix

theory. It implies that a threshold for finite samples may be larger than the asymptotic limit

of detection.

Next, in order to find the optimal penalty in finite samples, we consider the modified ver-

sion of the original criteria whose penalty function is multiplicatively weighted by a positive

constant. Let us call such modified criteria the weighted information criteria (WIC ). Then,

by computing the misdetection probability bounds of WIC subject to the choice of a weight,
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we determine the optimal weight for the penalty which leads to the minimum probability

bound of misdetection. Finally, we show that the misdetection risk of IC can be controlled

by the user.

Random matrix theory plays a key role in this study. In our earlier study (Chapter

2 in this dissertation), we have already introduced some preliminary results regarding the

limiting behavior of the largest eigenvalue of a pure noise matrix (e.g., Geman, 1980; Tracy

and Widom, 1996; Johnstone, 2001; Baik, Arous, and Péché, 2005; Baik and Silverstein,

2006; Ledoux, 2007; Paul, 2007; Karoui, 2008; Ma, 2012). Besides, in this chapter we employ

additional results concerning the phase transition behavior of the least influential factor. Our

analysis is also inspired by signal detection analysis in the digital signal processing literature

(e.g., Kritchman and Nadler, 2009; Nadler, 2008, 2010).

This chapter is organized as follows. In Section 3.2, we describe our factor model and

assumptions. Section 3.3 introduces the panel information criteria (IC ) of Bai and Ng (2002).

Section 3.4 presents asymptotic expressions for the over- and under-detection probabilities of

the IC estimator. As mathematical preliminaries, recent results from random matrix theory

are reviewed in Section 3.5. Section 3.6 derives the computable formula for an upper bound

on the misdetection probability of IC and analyzes its performance for finite values of p and

n such that n > p. Section 3.7 proposes the optimal penalty in the panel information criteria

and shows numerical examples which support the better finite sample performance of our

proposed method. Concluding remarks are given in Section 3.8, and all the proofs are given

in the Appendix.

A word on notation. Ordinary limits are denoted by→ while convergence in distribution

is denoted by
d−→. Orders of magnitude for a sequence converging in probability are denoted

by Op and op. The transpose operator is denoted by a prime symbol as in A
′
. Ip denotes

the identity matrix of order p. An estimate of a parameter ϑ is denoted by ϑ̂. x ∼ D means

that a random variable x has the probability distribution D. The Gaussian distribution with

mean µ and covariance Σ is denoted by N (µ,Σ) while the Chi-squared distribution with n
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degrees of freedom is denoted by χ2(n). i.i.d. means that a random variable is independent

and identically distributed. ln denotes a natural logarithm. Pr(X) is the probability of an

event X.

3.2 Model

The current chapter studies the same large dimensional factor model as described in

Chapter 2. Let xit be the real-valued observed data for the i-th cross-section unit at time

t, for i = 1, . . . , p, and t = 1, . . . , n. Note that we denote the cross-sectional and temporal

dimensions of the data by p and n, respectively. Consider the factor representation of the

data of the form

xit = λ′ift + eit, (3.2.1)

where ft is an r × 1 vector of the factors, λi is an r × 1 vector of factor loadings, and r is

the true number of factors. λ′ift is the common component and eit is the idiosyncratic error.

Factors, factor loadings and the idiosyncratic components are not observable. Moreover, the

true number of factors is unknown beforehand.

In vector notation, (3.2.1) can be written as a p-dimension time series with n observations:

xt
(p×1)

= Λ
(p×r)

ft
(r×1)

+ et
(p×1)

, (3.2.2)

where xt = (xit, . . . , xpt)
′ is a p-dimensional vector of real-valued cross-section observations at

time t, Λ = (λ1, . . . , λp)
′ is a p× r factor loading matrix composed of r linearly independent

vectors, and et = (eit, . . . , ept)
′ is a p-dimensional real-valued vector. In matrix notation, the

model is given by

X
(p×n)

= Λ
(p×r)

F ′
(r×n)

+ e
(p×n)

, (3.2.3)

where X = (x1, . . . , xn), F = (f1, . . . , fn)′, and e = (e1, . . . , en).

As in the previous Chapter 2, the following assumptions are imposed on the model. First,
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suppose that ft is the zero mean random vector and independent of et. Both ft and λi have

positive definite covariance matrices ΣF and ΣΛ, respectively, so that each is of full rank,

r. These assumptions imply that each factor has a nontrivial contribution to variance of xt

as in Bai and Ng (2002). For discussions related to random matrix theory, both the sample

size and the dimension of the observations are allowed to approach infinity simultaneously

with finite ratio. By this assumption, sample eigenvalues corresponding to errors remain

bounded (Onatski, 2005). Moreover, the true number of factors is fixed regardless of n

and p, as generally assumed in the literature (e.g., Bai and Ng, 2002; Onatski, 2010, 2012;

Ahn and Horenstein, 2013; Choi and Jeong, 2013; Harding, 2013). Lastly, the idiosyncratic

components are independently and identically normally distributed, where σ is the unknown

noise variance. We set σ = 1 without loss of generality since an upper bound on the

misdetection probability of IC is eventually given by the ratio of eigenvalues so that σ terms

are cancelled out in this ratio.

In this chapter, we consider homogeneous uncorrelated errors for technical reasons; in

particular, it enables us to employ some results from random matrix theory in order to derive

the misdetection probability bound of IC. Of all theoretical results from random matrix

theory, a result on the asymptotic behavior of the eigenvalues of a sample covariance matrix

is necessary for our study; however, it has been established only for Gaussian i.i.d. errors.

For a detailed discussion on the pertinence of the i.i.d. assumption to this chapter, see our

prior study as well as a few papers on the signal detection analysis (e.g., Onatski, 2007;

Moon and Weidner, 2015; Harding, 2013).

Concerning random matrix theory, we interpret our model with respect to a spiked popula-

tion covariance model introduced by Johnstone (2001), where all the population eigenvalues

are one except for a few eigenvalues which are larger than one. Under the assumptions

mentioned above, the population covariance matrix can be written as Σ = Ψ + Ω, where Ψ

is the covariance matrix of the common component and Ω is the error covariance matrix. In

line with the assumption that the common factors have non-trivial effects on data, consider
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the j-th non-zero finite population eigenvalue of Ψ, denoted by ψj and sorted in a decreasing

order ψ1 ≥ ψ2 ≥ . . . ≥ ψr > 0. Besides, p eigenvalues of Ω are each equal to one since σ = 1.

Then, the population covariance matrix Σ can be diagonalized to have the form

B′ΣB = diag (ψ1, . . . , ψr, 0, . . . , 0) + Ip, (3.2.4)

where B is a p-dimensional orthogonal matrix composed of p eigenvectors corresponding to

the eigenvalues of the population covariance matrix, Σ. Obviously, p population eigenvalues

of Σ are

(ν1, ν2, . . . , νr, 1, 1, . . . , 1), (3.2.5)

where νj = ψj + 1 for all j = 1, . . . , r.

We denote by Sn the sample covariance matrix of the n observations xt from the model

(3.2.2),

Sn =
1

n

n∑
t=1

xtx
′
t, (3.2.6)

which is a p× p matrix with n samples of p-dimensional mean zero vectors. We denote the

eigenvalues of Sn by {`j}pj=1 with a decreasing order `1 ≥ `2 ≥ . . . ≥ `p.

Note that while each factor has a nontrivial contribution to the data, the idiosyncratic

term is an irrelevant disturbance so that it does not affect the data systematically. In this

sense, ft and et can be referred to as signals and noise, respectively, as in the literature

on signal processing. Then, the eigenvalues of Ψ can be called noise-free population sig-

nal eigenvalues because Ψ is of rank r, while the eigenvalues of Ω are considered as pure

noise eigenvalues. Accordingly, the first r sample eigenvalues are roughly considered to be

associated with signals, while the remaining p− r sample eigenvalues roughly correspond to

noise.
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3.3 Detection of the Number of Factors

3.3.1 IC estimator

Bai and Ng (2002) set up their estimation procedure for the number of factors as a model

selection problem. They proposed the panel information criteria (IC ) as follows:

IC(k) = lnS(k) + k ·G(p, n), (3.3.1)

where k is an arbitrary number such that k < min{p, n}, G(p, n) denotes the penalty function

for overfitting, and S(k) is the sum of squared residuals divided by pn such that

S (k) =
1

pn

p∑
i=1

n∑
t=1

(xit − λ̃i
′k
f̃t
k
)2. (3.3.2)

f̃t
k

and λ̃i
′k

denote estimated factors and loadings by the principal components method given

the possible number of factors k, respectively. Then, the estimator for the true number of

factors (IC estimator) is obtained by minimizing (3.3.1), namely that

k̂
IC

= arg min
0≤k≤kmax

IC(k), (3.3.3)

where kmax is a bounded integer which is a maximum possible number of factors prespecified

by users such that r ≤ kmax. The IC estimator was proven to be consistent, namely that

lim
n,p→∞

Pr(k̂
IC

= r) = 1, (3.3.4)

if (1) G(p, n)→ 0 and (2) C2
pnG(p, n)→∞ as n, p→∞, where Cpn = min{√p,

√
n}. That

is, in the joint limit n, p→∞, the probability limit with which this model selection criterion

selects the true number of factors converges to one if the penalty factor asymptotically con-

verges to zero at an appropriate rate. Also, Bai and Ng propose specific formulations of the
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penalty factor to be used in practice: G1(p, n) =
(
p+n
pn

)
ln
(

pn
p+n

)
, G2(p, n) =

(
p+n
pn

)
lnC2

pn,

and G3(p, n) =
lnC2

pn

C2
pn

. Finally, they consider the following three criteria associated with three

penalty terms:

IC1(k) = lnS(k) + k ·G1(p, n) = lnS(k) + k ·
(
p+ n

pn

)
ln

(
pn

p+ n

)
; (3.3.5)

IC2(k) = lnS(k) + k ·G2(p, n) = lnS(k) + k ·
(
p+ n

pn

)
lnC2

pn; (3.3.6)

IC3(k) = lnS(k) + k ·G3(p, n) = lnS(k) + k ·
lnC2

pn

C2
pn

. (3.3.7)

As in our previous study, IC defined in (3.3.1) can be rewritten in terms of sample

eigenvalues. It is the first step for applying random matrix theory to our research topic.

Consider the following eigenvalue representation of IC :

IC(k) = ln

(
1

p

p∑
j=k+1

`j

)
+ k ·G(p, n). (3.3.8)

For a short proof, see Appendix A.2.1 of Chapter 2.

3.3.2 Misdetection of the IC estimator

In what follows, we specify a mathematical condition for the misdetection of IC and its

misdetection probability in terms of sample eigenvalues based on the eigenvalue represen-

tation of IC, (3.3.8). The current chapter focuses on the situation when IC over or under

detects the true number of factors by exactly one factor rather than multiple factors. Read-

ers can check the detail of this premise in our prior study (see Chapter 2, Section 2.3.2).

Here we simply assume that misdetection by one signal dominates the overall performance

of the information criteria as in Nadler (2010).

First, for the case in which the IC estimator overselects the true number of factors, the

result has already provided in Chapter 2 (Lemma 2.2). Suppose that the criterion (3.3.1) is

minimized at ro + 1, where ro is the true number of factors. It means that the IC estimator
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overdetects the true number of factors by one factor, namely that k̂
IC

= ro + 1. Hence, a

condition for overestimation by one factor is specified as

4 IC(1) = IC(ro)− IC(ro + 1) > 0. (3.3.9)

Consequently, the overestimation probability of IC is specified as follows:

Lemma 3.1. (Overestimation of the IC estimator) Consider the model (3.2.2). Sup-

pose that IC (3.3.1) is minimized at ro + 1, where ro is the true number of factors. Let

{`j}pj=1 denote the eigenvalues of a sample covariance matrix, Sn defined in (3.2.6), which

are decreasingly ordered, `1 ≥ `2 ≥ . . . ≥ `p. Also, we denote by Tp−ro the sum of the last

p− ro eigenvalues of Sn. Then, the IC estimator overestimates the true number of factors by

exactly one factor if 4IC(1) > 0 with 4IC(1) given by (3.3.9). Thus, the probability with

which the number of factors would be overestimated by exactly one factor takes the form

Pr (4IC(1) > 0) = Pr

(
ln

Tp−ro
Tp−ro−1

−G(p, n) > 0

)
, (3.3.10)

where Tp−ro =
∑p

j=ro+1 `j, Tp−ro−1 =
∑p

j=ro+2 `j.

This chapter also specifies a condition for underdetection and a corresponding probability.

Let ru denote the true number of factors when underestimation occurs by exactly one factor.

It implies that a criterion function (3.3.1) is minimized at ru − 1, namely that k̂
IC

= ru − 1.

Thus, a condition for underestimation by one factor is described as

4 IC(−1) = IC(ru − 1)− IC(ru) < 0. (3.3.11)

Then, a corresponding underdetection probability is specified as follows:

Lemma 3.2. (Underestimation of the IC estimator) Consider the model (3.2.2).

Suppose that IC (3.3.1) is minimized at ru − 1, where ru is the true number of factors. Let
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{`j}pj=1 denote the eigenvalues of a sample covariance matrix, Sn defined in (3.2.6), which

are decreasingly ordered, `1 ≥ `2 ≥ . . . ≥ `p. Also, we denote by Tp−ru the sum of the last

p−ru eigenvalues of Sn. Then, the IC estimator underestimates the true number of factors by

exactly one factor if 4IC(−1) < 0 with 4IC(−1) given by (3.3.11). Thus, the probability

with which the number of factors would be underestimated by exactly one factor takes the

form

Pr (4IC(−1) < 0) = Pr

(
ln
Tp−ru+1

Tp−ru
−G(p, n) < 0

)
, (3.3.12)

where Tp−ru+1 =
∑p

j=ru
`j and Tp−ru =

∑p
j=ru+1 `j.

Moreover, an upper bound for (3.3.12) is obtained by using the log inequality; that is,

Pr (4IC(−1) < 0) ≤ Pr

(
`ru
Tp−ru

− G(p, n)

1−G(p, n)
< 0

)
. (3.3.13)

A simple proof : Since ln(1 + x) ≥ x
1+x

for all x > −1, ln Tp−ru+1

Tp−ru
= ln

(
1 + `ru

Tp−ru

)
≥ `ru

Tp−ru+1
.

Moreover, we can show that Pr
(

`ru
Tp−ru+1

< G(p, n)
)

= Pr
(

`ru
Tp−ru

< G(p,n)
1−G(p,n)

)
.

Comment Let us simply denote by r the true number of factors throughout this chapter

if it is not necessary to distinguish between ro and ru. As shown above, Lemma 3.1 implies

that the over-detection probability is defined in terms of only the last p − r eigenvalues of

Sn. Likewise, in Lemma 3.2, the representation of the under-detection probability involves

the last p− r eigenvalues of Sn. The difference is that the expression for the overestimation

probability is not a function of the first r sample eigenvalues, while the expressions for

the underestimation probability and its upper bound, (3.3.13), contain the r-th sample

eigenvalue. This `r corresponds to the least influential factor since {`j}pj=1 are sorted in a

decreasing order.

Accordingly, the limiting behaviors of the r-th sample eigenvalue related to a signal

and the last (p − r) sample eigenvalues related to noise are primary concerns to derive

the probability limits of (3.3.10) and (3.3.13). Fortunately, random matrix theory provides
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us with related results. Regretfully, such results are only obtained for the eigenvalues of

a pure noise covariance matrix. It should be noted, however, that `r+1 and Tp−r are not

truly coming from pure noise. Since the space spanned by the signal–plus–noise subspace

eigenvectors contains both signals and noise, `r+1 contains not only contributions of noise but

also those of signals and the interactions between signals and noise (for details, see Nadler,

2008, Theorem 2.1). Hence, both (3.3.10) and (3.3.13) are not good enough for our analysis

based on random matrix theory.

As in our prior study, now we derive more suitable expressions for the overestimation

and underestimation probabilities, which are written in terms of pure noise eigenvalues, to

employ random matrix theory.

3.4 Misdetection Probability

Our approach motivated by Nadler (2008, 2010) has been already introduced in the

previous study to rewrite (3.3.10) in terms of pure noise eigenvalues. For more details, see

Lemma 2.3 and Theorem 2.1 in Chapter 2. In the current chapter, we will show that an

upper bound for the under-detection probability, (3.3.13), can be asymptotically identified

in terms of pure noise eigenvalues as well. First, let us clarify related terms and introduce

preliminary results.

Definition 3.1. Wishart matrix (Silverstein, 1985; Johnstone, 2001): Let A denote a

p × n matrix whose At are i.i.d. N (0,ΣA) random vectors, and let H = 1
n
AA′. Then, the

random matrix H is commonly referred to as a Wishart matrix, and nH = AA′ is said to

have the Wishart distribution, Wp(n,ΣA). For the null case in which ΣA = Ip, H is especially

referred to as a Wishart matrix with identity covariance matrix.

Obviously, in the absence of signals, n times our sample covariance matrix, nSn, follows

the null case of the Wishart distribution with parameters n and p. Here we further consider

our spiked covariance model with r signals in the context of a Wishart matrix. As seen
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before, B′ΣB = diag(ν1, . . . , νr, 1, . . . , 1), where B = (b1, . . . , bp) is a p-dimensional orthog-

onal matrix whose each column bj is the eigenvector corresponding to the j-th eigenvalue

of the population covariance matrix, Σ. Now, let us consider a new p-dimensional matrix

B̃ = (b1, . . . , br, d̃r+1, . . . , d̃p) whose vectors are linearly independent. In particular, {d̃j}pj=r+1

are the last p − r column vectors which diagonalize the lower right sub-matrix of B̃′SnB̃.

Then, in the basis B̃, Sn has the following form:

B̃′SnB̃ =



ρ11 · · · ρ1r

...
. . .

... L′

ρr1 · · · ρrr ˜̀
r+1 Ø

L
. . .

Ø ˜̀
p


. (3.4.1)

In matrix (3.4.1), ρii is the i-th sample variance in the directions bi corresponding to the

i-th population eigenvalue, that is, ρii = b′i
(

1
n

∑n
t=1 xtx

′
t

)
bi such that ρii ∼

(
ψi+1
n

)
χ2(n).1

Next, {˜̀j}pj=r+1 are the p− r diagonal elements of a lower right sub-matrix in matrix (3.4.1),

that is, ˜̀j = d̃′j
(

1
n

∑n
t=1 xtx

′
t

)
d̃j. In the basis B̃, this lower right sub-matrix is given by the

projection of Sn onto the only noise subspace, which is independent of the projection of Sn

onto the signal subspace; therefore, it does not contain any signal contributions. Accordingly,

this p−r dimensional sub-matrix is considered as the random realization of a Wishart matrix

with identity covariance matrix, and its diagonal elements are considered as the sample

eigenvalues of this Wishart matrix, that is, pure noise eigenvalues. Thus, ˜̀j ∼ χ2(n)/n.2

Meanwhile, another sub-matrix L contains the interaction terms between signals and noise.

If we denote by ηij each element of L, then ηij = d̃′j
(

1
n

∑n
t=1 xtx

′
t

)
bi for i = 1, . . . , r and

j = r + 1, . . . , p.

1By Rao (1973, p. 534), let nH ∼ Wp(n,ΣA) and Y denote any p × 1 fixed vector such that Y ′At ∼
N (0, σ2), where σ2 = Y ′ΣAY . Then, nY ′HY ∼ σ2χ2(n).

2 Let aj denote the j-th eigenvalue of H and Y denote the corresponding p × 1 eigenvector such that
Y ′At ∼ N (0, 1). Then, aj ∼ χ2(n)/n and

∑p
j=1 aj ∼ χ2(np)/n. Accordingly, E(aj) = 1, V ar(aj) = 2/n,

E(
∑p
j=1 aj) = p, and V ar(

∑p
j=1 aj) = 2p/n. Finally, aj = 1 +Op(1/

√
n) and

∑p
j=1 aj = p+Op(

√
p/n).
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So far, we have identified pure noise sample eigenvalues, {˜̀j}pj=r+1. Now, we rewrite

(3.3.10) and (3.3.13) in terms ˜̀j, based on the previous literature such as O’leary and Stewart

(1990, Theorem 2.1), Nadler (2008, p. 2807) and Nadler (2010). First, Theorem 3.1 below

identifies the asymptotic expression for the overestimation probability regarding only pure

noise eigenvalues; consequently, it is asymptotically independent of the signal eigenvalue.

For the detailed proof, see Chapter 2 (Appendix A.2.3).

Theorem 3.1. (Overestimation Probability of IC) Let W be a p − ro dimensional

Wishart matrix with identity covariance matrix. The largest eigenvalue of W is denoted by

`1(W ), and the sum of p − ro eigenvalues of W is denoted by Tr(W ). Assuming that IC

(3.3.1) is minimized at ro + 1, where ro is the true number of factors, the IC estimator

overestimates the true number of factors by exactly one factor. Then, asymptotically as

n→∞, the overestimation probability of IC in the presence of ro factors is given by

Pr(4IC(1) > 0) = Pr

(
`1(W )

Tr(W )
− ξn,p > 0

)
+Op

(
n−1
)
, (3.4.2)

where ξn,p = −1 +
√

1 + 2G(p, n), and G(p, n) is the penalty function of IC.

Note that since a p − ro dimensional lower right sub-matrix of (3.4.1) is considered as

the random realization of W , the largest eigenvalue of W , `1(W ), is equivalent to the first

pure noise eigenvalue, ˜̀ro+1. Also, Tr(W ) is equivalent to the sum of pure noise eigenvalues,

T̃p−ro .

In a similar fashion, we can present the asymptotic expression for the under-detection

probability of IC in terms of (i) p − ru pure noise eigenvalues and (ii) the ruth sample

eigenvalue corresponding to the least influential signal.

Theorem 3.2. (Underestimation Probability of IC) Consider a p − ru dimensional

Wishart matrix with identity covariance matrix denoted by W . Its largest eigenvalue is

denoted by `1(W ), and the sum of eigenvalues is denoted by Tr(W ). Assuming that IC

(3.3.1) is minimized at ru − 1, where ru is the true number of factors, the IC estimator
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underestimates the true number of factors by exactly one factor. Then, asymptotically as

n → ∞, an upper bound for the underestimation probability of IC in the presence of ru

factors is given by

Pr(4IC(−1) < 0) ≤ Pr

(
`ru

Tr(W )
− ϑp,n < 0

)
+Op

(
n−1
)
, (3.4.3)

where ϑp,n = G(p, n)/(1−G(p, n)), and G(p, n) is the penalty function of the IC estimator.

Hitherto, we derived the asymptotic expressions for the overestimation and underesti-

mation probabilities of IC in terms of pure noise eigenvalues and the least influential signal

eigenvalue. In what follows, we determine a non-asymptotic upper bound on the misdetec-

tion probability in finite samples. This analysis is highly related to random matrix theory

since the over-detection and under-detection probabilities as presented in Theorem 3.1 and

3.2 can be pinned down by using the limiting distributions of the sample eigenvalues of a

Wishart matrix.

3.5 Mathematical Preliminaries: Random Matrix Theory

The main tools used in our analysis are recent results from random matrix theory regard-

ing the asymptotic behaviors of the eigenvalues of the sample covariance matrix when both

the sample size and the dimension of the observations approach infinity such that their ratio

converges to a finite value. Some general results from random matrix theory were summa-

rized in our initial paper. See Chapter 2, and for further details Geman (1980), Johnstone

(2001), Karoui (2008), Nadler (2011) and Ma (2012). In this section, we mainly focus on

relevant results to this chapter.

As in Definition 3.1, let H = AA′/n denote a p× p Wishart matrix, where A is a p× n

matrix with real valued Gaussian i.i.d. entries, and let aj denote the j-th sample eigenvalue

with a decreasing order, for j = 1, . . . , p.
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3.5.1 Null Case: Wishart matrix with identity covariance matrix

First, we consider the null case in which a p×p Wishart matrix H has identity covariance

matrix. Let us consider the joint limit n, p → ∞ with p
n
→ c ∈ [0,∞). Here we introduce

the almost sure limit of the largest eigenvalue of H, its limiting distribution, and its non-

asymptotic bound for finite values of p and n.

Geman (1980), along with extensions of Baik and Silverstein (2006) and Paul (2007),

showed that a1 converges to (1 +
√
c)2 with a probability one. Regarding the limiting distri-

bution of a1, Johnstone (2001), Karoui (2008) and Ma (2012) suggested that the distribution

of a1 converges to a Tracy-Widom distribution with O(min{n, p}−2/3) errors. In particular,

call

µn,p =
1

n

(√
n− 1/2 +

√
p− 1/2

)2

,

σn,p =
1

n

(√
n− 1/2 +

√
p− 1/2

)( 1√
n− 1/2

+
1√

p− 1/2

)1/3

,

and TW1 is the Tracy-Widom distribution of order 1 for real-valued observations, it holds

a1 − µn,p
σn,p

d−→ TW1. (3.5.1)

Also, for any real h, it can be written as

∣∣∣∣Pr

(
a1 − µn,p
σn,p

≤ h

)
− TW1(h)

∣∣∣∣ = O(min{n, p}−2/3), (3.5.2)

where TW1(h) is the Tracy-Widom CDF which is defined in terms of the Airy function (for

details, see Tracy and Widom, 1996; Johnstone, 2001). The above result is applied for both

situations in which n ≥ p as well as n < p. It is known that this Tracy-Widom approximation

is reasonable even when one of the dimensions is small.

Next, for finite values of n and p, Ledoux (2007, Proposition 2.2), Kritchman and Nadler
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(2009), and Nadler (2010) provided the following result:

Remark 3.1. For some constant M > 0, ε > 0, and n ≥ 1,

Pr
(
a1 ≥ (1 +

√
c̄)2 + ε

)
≤M exp

(
−nmin{ε, ε3/2}/M

)
, (3.5.3)

where c̄ = p/n for finite values n and p. As an extension of (3.5.3),

Pr
(
a1 ≥ (1 +

√
c̄)2 + ε

)
≤ exp (−nJ

LAG
(ε)) , (3.5.4)

where

J
LAG

(ε) =

x∫
1

(x− y)
(1 + c̄)y + 2

√
c̄

(y +B)2

dy√
y2 − 1

with x = 1 + (ε/2
√
c̄), and B = (1 + c̄)/2

√
c̄.

This chapter strongly relies on the above result since we analyze the finite-sample property

of IC by providing an explicit non-asymptotic bound on the misdetection probability rather

than the approximate analysis by using (3.5.2).

Note that all the above results are stated for the case with no signal. Nonetheless, these

results can be generalized to the case with r signals. In particular, the largest (r + 1)th

diagonal element of B̃′SnB̃ defined in (3.4.1) or equivalently the largest eigenvalue of a p− r

dimensional matrix H (i.e., a1) asymptotically converges to (1 +
√
c̄)2 almost surely, where

c̄ = (p − r)/n, and a1 asymptotically follows the TW distribution with parameters n and

p − r (Baik and Silverstein, 2006; Paul, 2007; Karoui, 2008; Kritchman and Nadler, 2009).

Remark 3.1 can be also applied to a spiked covariance model with r signals (Kritchman and

Nadler, 2009); in this case, c̄ is adjusted to (p− r)/n as well.

3.5.2 Non-null Case: Spiked covariance model with i.i.d. samples

Now we consider a Wishart matrix with the non-null population covariance matrix (ΣA 6=

Ip). This can be considered as a spiked model described in (3.2.4) in which the eigenvalues
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of the population covariance matrix are all one except for a few eigenvalues which are larger

than one. In line with random matrix theory, here we deal with n observations which are

independently and identically distributed.

Baik et al. (2005), along with refinements done in Baik and Silverstein (2006) and Paul

(2007), examine the almost sure limit of signal eigenvalues in the presence of noise and

their asymptotic distribution when n, p → ∞ simultaneously with finite ratio. First, the

following result is about the almost sure limit of the j-th largest sample eigenvalue of a

spiked covariance matrix.

Remark 3.2. (Paul, 2007, Theorem 1 and 2) Consider i.i.d. observations {At}nt=1 from p

variate real Gaussian distribution with zero mean and covariance ΣA = diag(ν1, . . . , νr, 1, . . . , 1)

so that the j-th population eigenvalue is denoted by νj. Suppose that {νj}rj=1 are sorted in

a decreasing order and νj has multiplicity one. Let aj denote the j-th sample eigenvalue

for j = 1, . . . , r. In the joint limit n, p → ∞ with p
n
→ c ∈ (0, 1), the j-th largest sample

eigenvalue satisfies

aj −→


(1 +

√
c)2 if νj ≤ 1 +

√
c,

νj

(
1 +

c

νj − 1

)
if νj > 1 +

√
c

almost surely.

Note that Paul (2007) obtained the above result only for the case with real i.i.d. Gaussian

samples and c ∈ (0, 1). In addition, Paul assumed that the r-th population eigenvalue is

simple. In contrast, Baik and Silverstein (2006, Theorem 1.2 and 1.3) extended the above

result to a spiked model for a general class of i.i.d. samples which are either real or complex

and are not necessarily Gaussian, as well as to the cases where c ∈ [1,∞) (i.e., p ≥ n) and

the r-th population eigenvalues are of higher multiplicity.

Consider the model (3.2.2) with r signals and n i.i.d. samples {xt}nt=1. Our spiked model,

(3.2.4), has the first r population eigenvalues, {νj}rj=1, are larger than one (i.e., νj = 1+ψj for
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j = 1, . . . , r), while the remaining p−r population eigenvalues each equal to one. By Remark

3.2, if ψr ≤
√
c, then the corresponding r-th sample eigenvalue, `r, converges to (1 +

√
c)2

almost surely. Note that this limit is the same as the almost sure limit of the largest pure

noise eigenvalue of a Wishart matrix with identity covariance matrix as shown in the null case

before. In contrast, if ψr >
√
c, `r converges to a different limit. This result implies that in

the joint limit n, p→∞, the r-th largest signal (i.e., the least influential signal) is detectable

only if its explanatory power represented by the corresponding population eigenvalue must

be larger than a threshold,
√
c. Hence, this threshold is deemed as the asymptotic limit

of detection denoted by ψ
DET

as in Kritchman and Nadler (2009). On the other hand, if

the least influential signal is weak such that ψr ≤ ψ
DET

, then `r corresponding to this weak

signal converges to the same limit of the last p−r sample eigenvalues corresponding to noise;

consequently, such a weak signal is not well separated from noise asymptotically.

Next, by following Paul (2007, Theorem 1 and 2) and Kritchman and Nadler (2009), we

recap another result regarding the distributional limit of the r-th sample eigenvalue associ-

ated with the strong r-th signal whose population eigenvalue is larger than the asymptotic

limit of detection.

Remark 3.3. Consider i.i.d. observations {At}nt=1 from p variate real Gaussian distribution

with zero mean and covariance ΣA = diag(ν1, . . . , νr, 1, . . . , 1). Let νj and aj denote the

j-th population eigenvalue and the j-th sample eigenvalue sorted in a decreasing order for

j = 1, . . . , r, respectively. Suppose that νr > 1 +
√
c and that νr has multiplicity one. Then,

in the joint limit n, p → ∞ with p
n
→ c ∈ (0, 1), the limiting distribution of the r-th largest

sample eigenvalue is Gaussian,

√
n(ar − π(νr))

d−→ N (0, σ2(νr)), (3.5.5)

where π(νr) = νr

(
1 + c̄

νr−1

)
, σ2(νr) = 2ν2

r

(
1− c̄

(νr−1)2

)
, and c̄ = p−r

n
.

Note that the above result has been also extended to complex i.i.d. Gaussian samples
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and the higher multiplicity of vj (e.g., Baik et al., 2005; Baik and Silverstein, 2006). Remark

3.3 says that if the r-th signal population eigenvalue is larger than the asymptotic limit

of detection, ψ
DET

=
√
c, or concisely if the r-th signal is sufficiently strong, then the

corresponding sample eigenvalue satisfies an asymptotic normality. This result will be used

directly to derive a non-asymptotic upper bound on the underestimation probability of IC

in the presence of r strong signals. In contrast, Baik and Silverstein (2006) show that

if ψr ≤ ψ
DET

, the r-th sample eigenvalue asymptotically follows the same Tracy-Widom

distribution as the largest sample eigenvalue of a Wishart matrix with identity covariance

matrix (i.e., the largest pure noise sample eigenvalue) as described in (3.5.1).

To sum up, these two remarks imply that if the non-unit eigenvalues of a Wishart matrix

are close to one, their sample eigenvalues show a similar asymptotic behavior to pure noise

eigenvalues as if the population covariance matrix is the identity matrix. On the contrary,

if the non-unit eigenvalues are quite distinct from one (i.e., νj > 1 + ψ
DET

), corresponding

sample eigenvalues have a different asymptotic property. Such asymptotic behaviors are

referred to as a phase transition phenomenon in the literature.

3.6 Upper Bound on Misdetection Probability

This section finally examines a non-asymptotic bound on the misdetection probability of

IC. We derive each bound for overdetection and underdetection separately.

3.6.1 Non–asymptotic Bound on Overestimation Probability

Here we recap a result regarding a non-asymptotic upper bound on the over-detection

probability from our previous study. By applying Remark 3.1 to (3.3.10), Chapter 2 (Theo-

rem 2.2) provided the following result.

Theorem 3.3. Consider the model (3.2.2) in the presence of ro signals and the panel in-

formation criteria (IC) defined in (3.3.1). Suppose that the IC estimator overestimates the
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true number of factors by exactly one factor, namely that IC is minimized at ro + 1. Then,

a non-asymptotic upper bound on the overestimation probability of IC by exactly one factor

is given by

Pr(4IC(1) > 0) ≤ exp

(
−(p− ro)s2

o

4

)
+ (3.6.1)

exp

(
−4n

3
(c̄o)

1/4

(
(p− ro)

(
1− so√

n

)
ξn,p − (1 +

√
c̄o)

2

)3/2
)
,

for finite values of n and p. This bound is appropriate for any positive value of so chosen by

a user such that

√
n− 1

ξn,p
√
p− ro

(
3 +
√
c̄o +

1√
c̄o

)
< so <

√
n− 1

ξn,p
√
p− ro

(
2 +
√
c̄o +

1√
c̄o

)
, (3.6.2)

where c̄o = p−ro
n

and ξn,p = −1 +
√

1 + 2G(p, n). Also, (3.6.1) holds for all the formulations

of the penalty function G(p, n) which are specified in (3.3.5), (3.3.6), and (3.3.7).

Theorem 3.3 provides users with a simple diagnostic tool for the overdetection of the

number of factors. It discloses numerically how maximally overestimation occurs so long

as users know the temporal and cross-sectional size of the data. Recall that c̄ and ξn,p are

functions of n and p. Also, the appropriate value of so depends on n and p. In practice, the

user can choose the value of so such that it can minimize the upper bound defined in (3.6.1)

as long as it satisfies (3.6.2).

Our prior work analyzed the over-detection performance of IC and provided numerical

examples for practical users, by computing upper bounds on the over-detection probability

according to finite values of n, p and k̂
IC

, and the choice of G(p, n). Examples showed that

when sample sizes are small, the over-detection risk is not negligible even in the presence of

strong factors and the i.i.d. error components. Those findings were true for all the formu-

lations of the penalty function; however, when we choose G2(p, n) as a penalty function, or

equivalently when we use IC2(k), we obtain the lowest bounds. On the other hand, upper
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bounds are particularly high when we employ G3(p, n). Such differences become negligible

as the sample size grows.

Also, we saw that the overestimation probability given the sample size tends to increase

as the estimated number of factors becomes larger. As the dimension of a noise subspace

(p − k̂
IC

) shrinks, the effect of the idiosyncratic components weakens, whereas the relative

explanatory power of signals is likely to be overly inflated. Obviously, when sample sizes

are sufficiently large, we obtained nearly zero upper bounds. For more detailed results, see

Table 2.1 and Figure 2.1 in Chapter 2.

3.6.2 Non–asymptotic Bound on Underestimation Probability

Now, we newly derive the computable formula for a non-asymptotic upper bound on

the under-detection probability of IC by exactly one factor and also provide the numerical

examples for practical users. The following theorem is derived from Remark 3.3.

Theorem 3.4. Consider a dataset of n i.i.d. real Gaussian samples {xt}nt=1 from the model

(3.2.2) in the presence of ru signals with a population covariance Σ = diag(ν1, . . . , νru , 1, . . . , 1),

where νj is sorted in a decreasing order for j = 1, . . . , ru. Suppose that the IC estimator un-

derestimates the true number of factors by exactly one factor, namely that IC is minimized

at ru − 1. Further, suppose that νru > 1 +
√
c and that νru has multiplicity one. Then, for

any value of su ∈ [0, 2
√
n), a non-asymptotic upper bound on the underestimation probability

of IC by exactly one factor is given by

Pr(4IC(−1) < 0) ≤ exp

(
−3(p− ru)s2

u

16

)
+ Fn(z), (3.6.3)

where

Fn(z) =


1− 2φ(z)√

4 + z2 + z
if z ≥ 0,

2φ(−z)√
2 + z2 − z

if z < 0

(3.6.4)
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by setting φ(z) = 1√
2π
e−z

2/2, and

z =

√
n

σ(νru)

(
(p− ru)

(
1 +

su√
n

)
ϑn,p − π(νru)

)
,

with π(νru) = νru

(
1 + c̄u

νru−1

)
, σ2(νru) = 2ν2

ru

(
1− c̄u

(νru−1)2

)
, c̄u = p−ru

n
, and ϑn,p = G(p,n)

(1−G(p,n)
.

(3.6.3) holds for all the formulations of the penalty function G(p, n) which are specified in

(3.3.5), (3.3.6), and (3.3.7).

Theorem 3.4 can be used to diagnose the underestimation risk of IC if users know sample

sizes and the population eigenvalue of the least influential signal. The appropriate positive

value of su can be chosen such that it can minimize (3.6.3) as long as su ∈ [0, 2
√
n).

3.6.3 Numerical Examples of Under-detection Probability Bounds

This subsection analyzes the under-detection performance of the IC estimator in the

presence of strong factors and provides its numerical examples for practical users. In par-

ticular, we use Theorem 3.4 to compute upper bounds on the under-detection probability

subject to the sample size and the estimated number of factors, the choice of a penalty term,

and the population eigenvalue corresponding to the least influential factors. In each case,

su in (3.6.3) was chosen by minimizing an upper probability bound such that su ∈ [0, 2
√
n).

Main results are illustrated in Figure 3.1 and 3.2.

Figure 3.1 shows how an upper bound on the underestimation probability of IC varies

with the ruth population eigenvalue, νru . First, we can see that even when factors have

nontrivial contributions to variation in the data and the error components are i.i.d, the

underestimation probability is not negligible for the case with small sample sizes. As νru

becomes larger, however, an upper bound on the underestimation probability decreases.

These findings suggest the finite-sample implication of a phase transition phenomenon

predicted by random matrix theory. Although the least influential signal is strong so that

ψru > ψ
DET

, the underestimation risk of IC is still not negligible unless the ruth eigenvalue
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Figure 3.1: Under-detection of the IC estimator (p = 10)

Note: This plots an upper bound on the underestimation probability of the IC estimator, Pr(4IC(−1) < 0)
defined in Theorem 3.4. A bound is computed by the formula (3.6.3). We consider the true number of factors

ru ∈ {1, 4} such that ru = k̂
IC

+ 1. We only present the case with (n, p) ∈ {(100, 10), (200, 10)} and the
increasing ruth population eigenvalue from 1.4 to 6.4. Each panel compares the under-detection probability
bounds of three different panel information criteria, IC1(k), IC2(k) and IC3(k) which are defined in (3.3.5),
(3.3.6) and (3.3.7), respectively.

is sufficiently larger than the asymptotic limit of detection. For example, in the left upper

panel for (ru, n, p) = (1, 100, 10), the upper bound on the underestimation probability is still

over 90% when ψru = 0.4 > ψ
DET
≈ 0.3. An upper bound is under 50% only after ψru ≈ 2.0.

It implies that for finite samples, the ruth factor might not be detected with high probability

if the explanatory power of the signal does not sufficiently dominate the explanatory power

of the error components. That is, even though Remark 3.2 and 3.3 is asymptotically true,

we might need a much larger threshold for small sample sizes in order that the signal can be

clearly separated from noise and consequently well detected.

The above interpretation is consistent with theoretical results in the previous literature.
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Figure 3.2: Under-detection of the IC estimator (IC2)

Note: This plots an upper bound on the underestimation probability of the IC estimator, Pr(4IC(−1) < 0)
defined in Theorem 3.4. A bound is computed by the formula (3.6.3). We only present the case with the true

number of factors ru = 2 such that ru = k̂
IC

+1. We consider p ∈ {10, 30} and the increasing ruth population
eigenvalue from 1.4 to 6.4. Each panel compares the under-detection probability bounds of IC2(k), defined
in (3.3.6), according to different sample sizes, n ∈ {100, 150, 200, 250}.

Ahn and Horenstein (2013), Onatski (2010) and Harding (2013) studied the limiting behavior

of sample eigenvalues when signals are not sufficiently strong. They argued if the explanatory

power of ruth signal does not strongly dominate that of noise, it is difficult to separate

eigenvalues into signals and noise in small sample sizes.

Next, comparing the left panels and the right panels in Figure 3.1, we can see that the

under-detection probability falls as the estimated number of factors increases, given the

sample size and νru . This can be explained by the shrinkage of a noise subspace p − k̂
IC

which leads to the decreasing effect of the idiosyncratic components.

Moreover, the above findings hold for all the formulations of the penalty function. How-

ever, when we choose G3(p, n) as a penalty function, or equivalently when we use IC3(k),

upper bounds on the underestimation probability are lower than any other cases. On the

other hand, the IC2 estimator yields a higher underestimation probability bound. This is

the opposite of a result for over-detection.

Figure 3.2 describes how the underestimation probability varies with n and p. First,

as the sample size (n) increases, an upper bound on the underestimation probability falls

given νru . Second, for the data with larger population size (p), we obtain a higher upper
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bound given νru . It is closely related to a phase transition phenomenon. Obviously, since

ψ
DET

(=
√
c) increases with p, a larger νru is required for the ruth signal to be detected as

p grows. More precisely, since the cumulative effect of p − ru noise components grows with

p, the ruth signal may not be clearly distinguished from noise components as p increases.

Monte Carlo studies in the literature support our finding as well. For example, Harding

(2013, Table 1) reports the finite sample performance of the IC estimator under Gaussian

i.i.d. factors and errors, and it shows that even when factors are strong, the true number of

factors is more likely to be underestimated with larger p.

3.7 Optimized Penalization for Detecting the Number of Factors

So far, we have identified non-asymptotic bounds on the over- and under-detection prob-

abilities of the IC estimator. In this section, we will address the second question about the

optimal penalty. To do so, we first present a non-asymptotic upper bound on the overall

misdetection probability of the IC estimator by merging Theorem 3.3 and 3.4. Then, we can

find the optimal weight for the penalty function which leads to the minimum bound of the

misdetection probability. Before proceeding, we briefly introduce our idea for the optimal

penalty.

3.7.1 Optimal Penalty for overfitting

As shown in the previous section, the IC estimator has a non-negligible over-detection

probability in small sample sizes, and it also has a non-negligible under-detection probability

especially when signals are not sufficiently strong. These results raise an interesting question

of how to reduce or, more rigorously, how to minimize the misdetection probability of the

IC estimator preserving its consistency.

Here is a clue to the answer to this question. As Hallin and Lǐska (2007) and Ahn and

Horenstein (2013) pointed out, the penalty function defined by Bai and Ng (2002) is not

unique since it is only required to satisfy certain asymptotic conditions for the consistency
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of the IC estimator. For example, we can consider any positive constant (w) and refer to

w · G(p, n) as a weighted penalty function. Then, this weighted penalty still satisfies the

asymptotic conditions: (i) w · G(p, n) → 0 and ii) C2
pn · w · G(p, n) → ∞ as n, p → ∞

because w is fixed regardless of n and p. However, the finite sample performance of the

panel information criteria with this weighted penalty is affected by the magnitude of w so

that it will be different from the performance of the original IC. Nadler (2010) employed a

similar idea and modified the Akaike information criterion (AIC) by multiplying its original

penalty term by an arbitrary constant; however, Nadler focused on only the overestimation

probability of AIC and did not provide a theoretical guidance on how to choose this constant.

This chapter develops the above idea so that we can deal with both over- and under-

detection risk and finally propose the optimal weight for the penalty which minimizes the

overall misdetection risk. In particular, if w > 1, a weighted penalty function yields a higher

penalty for overfitting; consequently, the overestimation probability reduces in finite sam-

ples, whereas the underestimation probability worsens to some extent. On the other hand,

if w < 1, a weighted factor lessens the penalty for overfitting; hence, it would mitigate the

underestimation risk, while it is likely to aggravate the overestimation risk. As a conse-

quence, a change in w leads to a trade-off between the over- and under-detection risk of the

information criteria. By using this trade-off, we can determine the optimal weight (w∗) for

the penalty factor such that it minimizes the sum of non-asymptotic upper bounds on the

over-detection and under-detection probabilities.

3.7.2 Weighted Information Criteria and Misdetection Probability

Now, we present the computable formula for a non-asymptotic upper bound on the

misdetection probability of the original IC estimator by one factor. Recall that the true

number of factors is denoted by ro for overestimation cases while ru for underestimation

cases. As mentioned before, each case is defined for the situation when the IC estimator

over or under detects by only one factor; that is, k̂
IC

= ro + 1 or ru − 1.
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Here we denote by Pr(4IC 6= 0) the probability that the true number of factors is

misdetected by one factor. Then, it is the sum of (3.3.10) and (3.3.12) since these two events

are mutually exclusive:

Pr(4IC 6= 0) = Pr(4IC(1) > 0) + Pr(4IC(−1) < 0) . (3.7.1)

Combining Theorem 3.3 and 3.4, we can accordingly formulate a non-asymptotic upper

bound on the misdetection probability of IC as follows:

Corollary 3.5. (Non-asymptotic bound on the misdetection probability of IC)

Consider a dataset of n i.i.d real Gaussian samples {xt}nt=1 from the model (3.2.2) in the

presence of r signals with a spiked population covariance matrix defined in (3.2.4); that is,

Σ = diag(ν1, . . . , νr, 1, . . . , 1), where νj is sorted in a decreasing order for j = 1, . . . , r.

Suppose that the IC estimator over or under estimates the true number of factors by exactly

one factor. Let ro denote the true number of factors for the case of overestimation by one

factor and ru denote the true number of factors for the case of underestimation by one

factor. Further, for the case of underestimation, suppose that νru > 1 +
√
c and that νru has

multiplicity one. Then, a non-asymptotic upper bound on the misdetection probability of IC

by exactly one factor is given by

Pr(4IC 6= 0) ≤ exp

(
−4n

3
(c̄o)

1/4

(
(p− ro)

(
1− so√

n

)
ξn,p − (1 +

√
c̄o)

2

)3/2
)

+

exp

(
−(p− ro)s2

o

4

)
+ exp

(
−3(p− ru)s2

u

16

)
+ Fn(z), (3.7.2)

where c̄o, ξn,p and F (z) are those defined in Theorem 3.3 and 3.4. This non-asymptotic

bound is appropriate for any positive value of su ∈ [0, 2
√
n) and so which satisfies (3.6.2).

Next, we define modified criteria by considering a weighted penalty factor, w · G(p, n).

Let us call this modified version of IC the weighted panel information criteria and denote it
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by WIC. Then, WIC has the form

WIC(k, w) = lnS(k) + kw ·G(p, n), (3.7.3)

where k is an arbitrary number (k < min{p, n}), w is a fixed positive scalar and S(k) is the

sum of squared residuals is divided by pn. G(p, n) is the penalty function which has three

different forms: G1(p, n) =
(
p+n
pn

)
ln
(

pn
p+n

)
; G2(p, n) =

(
p+n
pn

)
lnC2

pn; and G3(p, n) =
lnC2

pn

C2
pn

,

where Cpn = min{√p,
√
n}. In relation to three formulations of the penalty factor, we

consider three criteria:

WIC1(k, w) = lnS(k) + kw ·G1(p, n); (3.7.4)

WIC2(k, w) = lnS(k) + kw ·G2(p, n); (3.7.5)

WIC3(k, w) = lnS(k) + kw ·G3(p, n). (3.7.6)

Since the only difference between IC and WIC is a weight for G(p, n), a non-asymptotic

upper bound on the misdetection probability of WIC can be directly obtained from Corollary

3.5.

Corollary 3.6. (Non-asymptotic bound on the misdetection probability of WIC)

Consider the weighted panel information criteria (3.7.3), denoted by WIC. Under the con-

ditions and notations in Corollary 3.5, a non-asymptotic upper bound on the misdetection

probability of WIC by exactly one factor is given by

Pr(4WIC 6= 0) ≤ exp

(
−4n

3
(c̄o)

1/4

(
(p− ro)

(
1− so√

n

)
ξ̈n,p − (1 +

√
c̄o)

2

)3/2
)

+

exp

(
−(p− ro)s2

o

4

)
+ exp

(
−3(p− ru)s2

u

16

)
+ Fn(z̈)

=Pub(4WIC 6= 0), (3.7.7)

where ξ̈n,p =
√

1 + 2w ·G(p, n) − 1 and z̈ =
√
n

σ(νru )

(
(p− ru)

(
1 + su√

n

)
ϑ̈n,p − π(νru)

)
, with
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ϑ̈n,p = w·G(p,n)
1−w·G(p,n)

. Also, c̄o, π(·), σ2(·) and F (·) are those defined in Theorem 3.3 and 3.4.

This bound is appropriate for any positive value of su ∈ [0, 2
√
n) and so which satisfies

√
n− 1

ξ̈n,p
√
p− ro

(
3 +
√
c̄o +

1√
c̄o

)
< so <

√
n− 1

ξ̈n,p
√
p− ro

(
2 +
√
c̄o +

1√
c̄o

)
. (3.7.8)

Note that Corollary 3.6 is the same as Corollary 3.5 except for ξ̈n,p and z̈ which are defined

in terms of w · G(p, n), not G(p, n). Finally, we can find the optimal weight (w∗) for the

penalty for overfitting by minimizing an upper bound on the misdetection probability of WIC

presented in Corollary 3.6, given sample sizes, the least influential population eigenvalue νru ,

and the choice of a penalty function. That is,

w∗ = arg min
w>0

Pub(4WIC 6= 0). (3.7.9)

Let us conclude this subsection by considering a signal detection procedure in line with

(3.7.9), which leads to the minimum upper bound of the misdetection probability of the

number of factors. That is,

k̂
WIC

= arg min
0≤k≤kmax

WIC(k, w∗), (3.7.10)

where kmax is a bounded integer which is a maximum possible number of factors prespecified

by users and w∗ is the optimal weight for the penalty for overfitting defined in (3.7.9). A

possible algorithm for this estimation procedure is conjectured as follows:

1. Estimate the number of factors k̂
IC

by the IC estimator. Set ru = k̂
IC

+ 1 and

ro = k̂
IC
− 1.

2. Given ru and ro, find w∗ which minimizes (3.7.7).

3. Given w∗, estimate the number of factors k̂
WIC

based on (3.7.10).

The empirical validity of this estimation procedure is left for a future study.
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3.7.3 Numerical Examples of the Optimized Penalization

As a counterpart to the performance analysis of IC in Section 3.6, here we examine the

finite sample performance of WIC by computing its non-asymptotic bound on the misde-

tection probability given by (3.7.7). Moreover, we can see how the optimal weight for the

penalty is determined given νru , n, p, and the choice of a penalty term.

First, Figure 3.3 illustrates the detection performance of WIC for different weights and

the choice of a penalty term. Without loss of generality, we report results for the data

with k̂
IC

= 4, νru = 3.8 and (n, p) ∈ {(100, 10), (200, 10)}. Obviously, when w = 1, WIC

is the same as IC. As predicted theoretically, we see that as w becomes larger, the over-

detection probability bound of WIC falls, whereas the under-detection probability bound

of WIC increases. Due to this trade-off, we can achieve the minimum upper bound of the

misdetection probability by adjusting w. Comparing this minimum bound with the upper

bound for the original IC when w = 1, we can see that detection performance is substantially

improved. For example, the left panels show that when we use WIC1, an upper bound on

the misdetection probability is minimized at w∗ ≈ 1.4, and consequently it decreases from

100% at w = 1 to around 10%. Obviously, comparing the left and right panels, we can see

that as the sample size (n) increases, the misdetection probability decreases given w, and a

smaller weight is needed to achieve the minimum bound.

Figure 3.4 considers the cases with a lower ruth population eigenvalue (νru = 2.8). Com-

paring the left panels in this figure to the right panels of Figure 3.3, we can see that as the

strength of a signal becomes weaker, under-detection risk worsens so that an upper bound

on the misdetection probability increases given w. The previous findings in Figure 3.3 are

still supported, however. By adjusting a weight for the penalty, we can obtain a minimum

bound so that an upper bound on the misdetection probability decreases substantially from

at least 80% for IC2 to less than 10% (Left panels). In addition, comparing the left and right

panels, we can see that as the population size (p) increases, the overestimation probability

decreases while the underestimation probability increases as discussed before.
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Figure 3.3: Performance of the WIC estimator and Optimal Weight (k̂IC = 4, νru = 3.8)

Note: This plots upper bounds on the over- (top panels), under- (middle panels), and overall mis-detection
(bottom panels) probabilities of the WIC estimator, Pr(4WIC 6= 0) defined in Corollary 3.6. A bound is

computed by the formula (3.7.7). We consider the true number of factors ru = 5 such that ru = k̂
IC

+ 1 and

ro = 3 such that ro = k̂
IC
− 1, respectively. We only present the case with (n, p) ∈ {(100, 10), (200, 10)} and

the ruth population eigenvalue νru = 3.8. Each panel compares the misdetection probability bounds of three
different panel information criteria, WIC1(k), WIC2(k) and WIC3(k) which are defined in (3.7.4), (3.7.5)
and (3.7.6), respectively.

To explore in more detail the effect of the signal strength to misdetection risk and the

optimal weight, Figure 3.5 depicts the cases with much lower eigenvalues of the least in-

fluential signal (ψru = 0.8 in the left panels and ψru = 1.0 in the right panels). Although

98



Figure 3.4: Performance of the WIC estimator and Optimal Weight (k̂IC = 4, νru = 2.8)

Note: This plots upper bounds on the over- (top panels), under- (middle panels), and overall mis-detection
(bottom panels) probabilities of the WIC estimator, Pr(4WIC 6= 0) defined in Corollary 3.6. A bound is

computed by the formula (3.7.7). We consider the true number of factors ru = 5 such that ru = k̂
IC

+ 1 and

ro = 3 such that ro = k̂
IC
− 1, respectively. We only present the case with (n, p) ∈ {(200, 10), (200, 20)} and

the ruth population eigenvalue νru = 2.8. Each panel compares the misdetection probability bounds of three
different panel information criteria, WIC1(k), WIC2(k) and WIC3(k) which are defined in (3.7.4), (3.7.5)
and (3.7.6), respectively.

ruth signal eigenvalues are larger than the asymptotic limit of detection in both cases, the

under-detection probability bound of IC (i.e., the upper bound at w = 1) is still high. This

is consistent with our previous finding in Section 3.6; that is, unless the strength of a signal
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Figure 3.5: Effect of Signal Strength to Detection Performance and Optimal Weight

Note: This plots upper bounds on the over- (top panels), under- (middle panels), and overall mis-detection
(bottom panels) probabilities of the WIC estimator, Pr(4WIC 6= 0) defined in Corollary 3.6. A bound is

computed by the formula (3.7.7). We only present the case with (n, p) = (200, 10) and k̂
IC

= 3. We consider
two cases: (i) νru = 1.8 (left three panels) and (ii) νru = 2.0. (right three panels). Each panel compares
the misdetection probability bounds of three different panel information criteria, WIC1(k), WIC2(k) and
WIC3(k) which are defined in (3.7.4), (3.7.5) and (3.7.6), respectively.

strongly dominates that of noise, the under-detection risk of IC would not be negligible.

Besides, in this case, even after we adjust a weight for the penalty, a resulting performance

may not be significantly improved. For example, when we achieve a minimum bound at the

optimal weight, an upper bound is still over 60% in the right panels and over 90% in the left
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panels.

3.8 Concluding Remarks

This study builds on our earlier work, Kao and Oh (2017) or Chapter 2 in this dissertation,

which studied the over-detection risk of the IC estimator proposed by Bai and Ng (2002) and

proposed a practical method to reduce its over-detection probability in finite samples. In

this chapter, we extend the previous results to the under-detection risk of the IC estimator

so that we formulate an upper bound on the overall misdetection probability and finally

find the optimal penalty function of the information criteria to minimize a misdetection

probability bound in finite samples.

Recent results from random matrix theory still play a key role in this chapter. For this

reason, our theoretical results hold under certain (somewhat idealistic) conditions which are

required to apply random matrix theory to this chapter. Regretfully, a phase transition

phenomenon concerning the limiting distribution of the least influential signal eigenvalue

is currently available only for the i.i.d. samples and the case of n > p. Also, the limiting

behavior of the largest pure noise eigenvalue is only known for the case with homogeneous

uncorrelated noise.

In this regard, there remain interesting extensions for future research. Obviously, one

of topics is to extend our result to more general settings such as heterogeneous factors and

unknown noise structure, and to the data with p > n. Another interesting topic is to study

our topics regarding the situation when the true number of factors increases with the sample

size. Lastly, we remark that our approach introduced in this chapter can also be applied to

general model selection criteria for detecting the number of factors models.
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Appendix

A.3.1. Proof of Theorem 3.1

Proof. See Appendix A.2.3 of Chapter 2.

A.3.2. Proof of Theorem 3.2

Proof. Recall that the true number of factors for the case with under-detection by one

factor is denoted by ru. For simplicity, here we omit the subscript u. In Chapter 2, the

proof of Theorem 2.1 (Appendix A.2.3) shows that 1
p−r T̃p−r = Op(1), M(r)

n
is negligible and

√
r
n

1

T̃p−r

∑p
j=r+1

˜̀
jZj is sufficiently small for large n; that is, Op

(√
r
n

)
. Moreover, from Lemma

2.3 in Chapter 2, we get Tp−r = T̃p−r

(
1 +Op

(√
r
n

))
. This result shows Tp−r approximates

the trace of a Wishart matrix with identity covariance matrix, Tr(W ), up to op(1/n) error

term.

A.3.3. Proof of Theorem 3.3

Proof. See Appendix A.2.4 of Chapter 2.

A.3.4. Proof of Theorem 3.4

Part 1.

Proof. For simplicity, here we omit the subscript u in ru. Consider the average of the sample

eigenvalues of a (p− r)× (p− r) Wishart matrix, W . Then, Tr(W )
p−r =

∑p
j=r+1

˜̀
j

p−r ∼
χ2
n(p−r)
n(p−r) (see

Footnote 2). Let s be some positive number. Then we can write

Pr(4IC(−1) < 0) = Pr

(
4IC(−1) < 0

⋂ Tr(W )

p− r
< 1 +

s√
n

)
+ Pr

(
4IC(−1) < 0

⋂ Tr(W )

p− r
≥ 1 +

s√
n

)
.
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Also, by Theorem 3.2, we obtain the following inequality:

Pr (4IC(−1) < 0) ≤ Pr

(
`r

T̃p−r
< ϑn,p

⋂ T̃p−r
p− r

< 1 +
s√
n

)
+ Pr

(
χ2
n(p−r)

n(p− r)
≥ 1 +

s√
n

)

≤ Pr

(
`r < (p− r)

(
1 +

s√
n

)
ϑn,p

)
+ Pr

(
χ2
n(p−r)

n(p− r)
≥ 1 +

s√
n

)

= I + II .

Part 2.

Proof. Using the following lemma regarding a Chi-squared inequality (Johnstone and Lu,

2009, Appendix, A.2), the upper bound of II in part 1 can be obtained as follows.

Lemma 3.3. (Johnstone and Lu, 2009)

Pr
(
χ2
v ≥ v(1 + ε)

)
≤ exp

(
−3vε2

16

)
, 0 ≤ ε < 1/2.

Thus, setting v = n(p− k) and ε = s√
n
, we get

II = Pr

(
χ2
n(p−r) ≥ n(p− r)

(
1 +

s√
n

))
≤ exp

(
−3(p− r)s2

16

)
,

for s ∈ [0, 2
√
n ) since Lemma 3.3 holds when ε ∈ [0, 1/2).

Part 3.

Proof. Now, let us derive the upper bound of I in part 1. By Remark 3.3, the `r asymp-

totically follows the Gaussian distribution as n, p → ∞. that is,
√
n(`r−π(νr))
σ(νr)

d→ N (0, 1).
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Thus,

I = Pr

(
`r < (p− r)

(
1 +

s√
n

)
ϑn,p

)
= Pr

(
N(0, 1) <

√
n

σ(νr)

(
(p− r)

(
1 +

s√
n

)
ϑn,p − π(νr)

))
= Pr (N(0, 1) < z) = Φ(z),

where Φ denotes the standard Gaussian density function.

Consider the following result regarding inequalities for Mills’ ratio (1 − Φ)/φ, where φ

denote the standard Gaussian distribution function, φ(z) = 1√
2π
e−z

2/2.

Lemma 3.4. (Birnbaum, 1942; Komatu, 1955)

2φ(x)√
4 + x2 + x

≤ 1− Φ(x) ≤ 2φ(x)√
2 + x2 + x

for x ≥ 0.

By the above lemma, if z ≥ 0, then

Φ(z) ≤ 1− 2φ(z)√
4 + z2 + z

.

On the other hand, when z < 0,

Φ(z) ≤ 2φ(−z)√
2 + z2 − z

.
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Chapter 4

Misspecified Recovery and Recovery of the Long-term Risk:

Evidence from the Gaussian Affine Term Structure
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4.1 Introduction

This paper examines the applicability of the Recovery theorem proposed by Ross (2015)

to fixed-income markets in the framework of an affine Gaussian dynamic term structure

model, and further explores the issue of what the Recovery theorem actually recovers. The

Recovery theorem claimed that the investors’ true expectations (or equivalently, the physical

probability distribution of stock returns) can be recovered from only state prices without pre-

specifying any parameters for risk aversion, and consequently the stochastic discount factor

(SDF), which captures an agent’s risk aversion, can be identified simultaneously.

Ross’s claim has been followed by numerous theoretical extensions and empirical applica-

tions to equity markets (e.g., Carr and Yu, 2012; Tsui, 2013; Spears, 2013; Martin and Ross,

2013; Tran and Xia, 2014; Audrino, Huitema, and Ludwig, 2015; Walden, 2017). To the best

of our knowledge, however, there are only a few studies on its application to fixed-income

markets (Aydin and Yildirim, 2015; Qin, Linetsky, and Nie, 2016).

For equity markets, the Recovery theorem is appealing. As Ross (2015) mentioned, there

has been a theoretical hurdle to using market prices to forecast future asset returns. To

identify the physical probability distribution of future returns from asset prices, we need to

specify investors’ risk aversion embedded in the SDF since any asset is priced by the risk-

neutral probability measure which absorbs risk aversion; however, the agent’s risk aversion is

not directly observable. For this reason, existing studies have specified the physical probabil-

ity distribution by imposing parameter-restrictions on risk aversion, or they have forecasted

asset returns by using historical market returns or survey data. In contrast, Ross (2015)

develops a theory of how to infer the physical probability from the risk-neutral probability,

without placing restrictions on risk aversion.

For fixed-income markets, on the other hand, there exists a large literature on estima-

tion for investors’ interest rates expectations under the physical probability measure from

zero-coupon bond prices. Especially when we consider an affine term structure model, var-

ious estimation methods have been provided relying on model specifications. For example,
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Kalman filter estimation is available when the state variables are unobservable. Also, simu-

lated maximum likelihood or quasi-maximum likelihood can be employed when the likelihood

function is unknown (Piazzesi, 2010; Duffee and Stanton, 2012). In a Gaussian framework,

a standard maximum likelihood estimation is feasible (Joslin, Singleton, and Zhu, 2011;

Wright, 2011; Bauer, Rudebusch, and Wu, 2012, 2014).

In the above estimation procedures, it is well known that highly persistent interest rates

lead to a critical identification issue, small-sample bias (Kim and Orphanides, 2012; Bauer

et al., 2012; Bauer, 2016). When the sample size is small, the mean reversion coefficient in

the state dynamics under the physical probability measure tends to be over estimated. Much

of the literature has dealt with this issue. For example, Kim and Orphanides (2012) used

survey data, whereas Joslin, Priebsch, and Singleton (2014) imposed parameter restrictions

on risk aversion. Also, Bauer et al. (2012) proposed a statistical method for correcting bias.

But still, how to precisely estimate the physical probability in affine term structures is an on-

going issue. Hence, it is worth considering the Recovery theorem as a different identification

approach for fixed-income markets.

The results of Ross (2015), if true, could be attributed to the future information contained

in state prices; that is, investors’ expectations on future interest rates across different possible

states. The state price is the price in the current state of the Arrow-Debreu security that

pays off a dollar for sure if a certain state is realized in the next period. In this sense, we may

hypothesize (as Ross did) that if the state prices are fully identified even for unrealized states,

such additional future (and also cross-sectional) information helps identify the investors’ true

beliefs.

Another group of articles, however, argues that Ross recovered something different from

the physical probability measure (Borovička, Hansen, and Scheinkman, 2015; Bakshi, Chabi-

Yo, and Gao, 2015; Qin and Linetsky, 2016). This claim is based on theoretical results from

the literature on the SDF decomposition (e.g., Alvarez and Jermann, 2005; Hansen and

Scheinkman, 2009; Hansen, 2012; Bakshi and Chabi-Yo, 2012). By extracting a martingale
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component, which represents risk aversion to permanent shocks, from the SDF, the authors

found that the Recovery theorem can recover the physical probability only when a martingale

component is one. They also showed, however, that such a degenerating martingale is implau-

sible both theoretically and empirically. In particular, Borovička, Hansen, and Scheinkman

(2015, hereafter BHS ) referred to this claim as “misspecified recovery.” Also, BHS (2015)

identified the probability measure recovered by Ross (2015) as another risk-adjusted proba-

bility measure which absorbs risk compensation for exposure to only permanent shocks, and

referred to it as the long-term risk-neutral probability measure.

The contributions of this paper are as follows. First, we show how to implement the Re-

covery theorem in an affine Gaussian dynamic term structure model (hereafter GDTSM ). We

use a finite-state Markov-chain approximation method developed by Gospodinov and Lkhag-

vasuren (2014) to construct state prices and the risk-neutral state transition probabilities.

We then recover a certain probability measure (called the recovered probability measure) by

the Perron-Frobenius theorem. In addition, we estimate a GDTSM and further decompose

forward rates into interest rate expectations and term premia under the recovered probabil-

ity measure. Note that while this paper was being prepared, we were aware that Aydin and

Yildirim (2015) had applied the Recovery theorem to a GDTSM with the US data; however,

this paper uses an international panel dataset (10 countries) and our procedure is robust to

the highly persistent factors and the number of states.

Second, we find empirical evidence that the Recovery theorem infers the long-term risk-

neutral probability while misspecifying the physical probability as claimed in BHS (2015).

Our approach is distinguished from the previous research such as Alvarez and Jermann (2005,

hereafter AJ ) which studied the variance bound on the martingale component of the SDF.

This paper instead formulates a condition for equality between the physical and recovered

probabilities in terms of forward term premia as well as the market prices of risk. In detail, by

using the SDF decomposition and the change of measure, we specify the connection of term

premia under the physical probability measure and the recovered probability measure, and
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estimate term premia (and risk prices as well) under each probability measure so that we can

directly compare those estimates. Consequently, we find that “misspecified recovery” can be

rejected only if term premia regarding permanent shocks are zero so that term premia under

the physical measure equal those under the long-term risk-neutral measure. Our empirical

results showed, however, term premia corresponding to permanent shocks (referred to as

long-term risk premia) are substantially different from zero.

There are additional findings. Term premia and interest rates expectations under the

recovered long-term risk-neutral probability measure are very similar to those under the risk-

neutral measure. This empirical similarity supports theoretical predictions in BHS (2015)

and Qin et al. (2016). Next, by using the decomposition of forward rates under each prob-

ability measure, we finally decompose overall term premia into nearly constant short-term

risk premia corresponding to transitory shocks and highly volatile long-term risk premia as-

sociated with permanent shocks. Correspondingly, we find that the secular downward trend

and volatility of forward rates are mostly attributed to investors’ interest rate expectations

under the long-term risk-neutral probability measure, and all important variations in overall

term premia are captured by long-term risk premia. Concisely, long-term risk matters for

asset pricing.

The rest of the paper is organized as follows. Section 4.2 delineates our GDTSM and

summarizes how standard GDTSM analysis identifies the physical and risk-neutral proba-

bility measures. By following a conventional method, we analyze our GDTSM to provide

a benchmark against which the reliability of the Recovery theorem can be tested. In Sec-

tion 4.3, after reviewing the Recovery theorem of Ross (2015), we show how to apply it to a

GDTSM. Section 4.4 investigates the misspecification issue of the Recovery theorem. In Sec-

tion 4.5, we conduct empirical studies to recover the probability measure and to analyze our

GDTSM under the recovered probability measure. As a result, we provide empirical evidence

on “misspecified recovery” and decompose term premia into the long-term and short-term

components. The implications of long-term risk premia are also examined. Section 4.6 is
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summary and discussion.

A word on notation. The transpose operator is denoted by a prime symbol as in A
′
.

x ∼ D means that a random variable x has the probability distribution D. The Gaussian

distribution with mean µ and covariance σ2 is denoted by N (µ, σ2). i.i.d. means that a

random variable is independent and identically distributed. The remaining notations and

symbols are defined in the body of the paper.

4.2 Term Structure Model and Estimation

4.2.1 Model Specification

This paper studies an affine Gaussian dynamic term structure model in a discrete-time

framework developed by Ang and Piazzesi (2003) which is subsumed under the admissible

affine class (Duffie and Kan, 1996; Dai and Singleton, 2000). We consider only yields as the

state variables, whereas Ang and Piazzesi (2003) combined macro-economic variables with

yield factors. Eventually, bond prices, yields and forward rates are all affine in yield factors,

and the prices of risk are time-varying.

4.2.1.1 Affine Gaussian Dynamic Term Structure

First, we set up the state dynamics. Let Xt denote an N -dimensional vector of unob-

servable state variables; Xt = (Xt,1, . . . , Xt,N)
′
. Suppose that Xt follows a Gaussian VAR(1)

process under the physical probability measure denoted by P. We then write the P state

dynamics as follows:

Xt+1 = µ+ ΦXt + Σεt+1, (4.2.1)

where µ is an N × 1 vector, Φ is an N ×N matrix, an N × 1 vector εt ∼ N (0, IN), and Σ is

an N ×N lower triangular matrix such that ΣΣ
′
= V .

Next, one-period interest rates denoted by rt are assumed to be affine in all latent state
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variables; hence, a short rate equation is defined as

rt = δ0 + δ
′

1Xt, (4.2.2)

where δ0 is a scalar and δ1 is an N -vector. An observable short interest rate rt is thought of

as the one-period yield denoted by y
(1)
t .

Third, as the standard results from much of the literature, the SDF is defined as

St+1

St
= exp

(
−rt −

1

2
λ
′

tλt − λ
′

tεt+1

)
, (4.2.3)

where an N × 1 vector λt denotes the market prices of risk that measure the additional

expected return required per unit of risk from each of the shocks in εt. λt is parametrized as

the affine process of latent state variables:

λt = Σ−1(λ0 + λ1Xt), (4.2.4)

for an N × 1 vector λ0 and an N × N matrix λ1. Our GDTSM assumes a constant Σ.

Considering that term premia are the product of the prices of risk (λt) and the quantities

of risk (Σ), a non-zero matrix λ1 causes the market prices of risk and term premia to be

time-varying. As Piazzesi (2010) pointed out, such a risk-price specification is a special case

of the essentially affine class defined by Duffee (2002) which allows maximal flexibility to the

prices of risk (i.e., no restriction on λ0 and λ1) so that a risk price varies independently of a

factor volatility.

A key restriction behind the SDF is the no-arbitrage assumption that guarantees the

existence of an equivalent martingale measure (or equivalently the risk-neutral measure)

denoted by Q. Suppose that we have a probability space (Ω,F ,P), where Ω is a sample

space and F is a set of events, and a filtration Ft defined for 0 ≤ t ≤ T , where T is a fixed

final time. Further, consider a nonnegative random variable ξ satisfying E(ξ) = 1, where E

114



denotes the expectation under the P measure. We then define the Q measure as

Q(A) =

∫
A

ξ(α)dP(α) for all A ∈ F . (4.2.5)

Here ξ converts the P measure to the Q measure such that EQ(Z) = E(Zξ) for any random

variable Z, where EQ denotes the expectation under the Q measure. In the literature,

ξ is referred to as the Radon-Nikodym derivative of Q with respect to P and written as

ξ = dQ/dP. Also, the Radon-Nikodym derivative process is defined as ξt = E(ξ|Ft) which

is a martingale, or simply ξt = Et(ξ), where Et denotes the conditional expectation under

the P measure. Correspondingly, we have EQ
t (Zt+1) = Et(ξt+1Zt+1)/ξt, where EQ

t denotes

the conditional expectation under the Q measure.

Under the Q measure, the price of any asset (Vt), which does not pay any dividends at

time t + 1, satisfies Vt = EQ
t (exp(−rt)Vt+1); that is, asset prices are the expected values of

their payoffs discounted at the riskless rate, where the conditional expectation is computed

by the Q measure. Suppose that ξt+1 follows the log-normal process:

log ξt+1 = log ξt −
1

2
λ
′

tλt − λ
′

tεt+1, (4.2.6)

and define the SDF as St+1/St = exp(−rt)ξt+1/ξt. Substituting (4.2.2) for rt, we can obtain

(4.2.3). Under the Q measure, the price of a τ -period zero-coupon bond at time t is

P
(τ)
t = Et

(
St+1

St
· P (τ−1)

t+1

)
= Et

(
e−rt · ξt+1

ξt
· P (τ−1)

t+1

)
= EQ

t

(
e−

∑τ−1
h=0 rt+h

)
. (4.2.7)

By our risk-price specification (4.2.4), the dynamics of latent state variables under the Q

measure (referred to as the Q dynamics) also follows a Gaussian VAR(1) process:

Xt+1 = µQ + ΦQXt + ΣεQt+1, (4.2.8)
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where µQ = µ − λ0, ΦQ = Φ − λ1, and εQt ∼ N (0, IN) (for details, see Appendix A.4.2).

Obviously, when λt is a vector of zeros for all t, the P and Q measures are identical. Note

that the state vector Xt follows a time-homogeneous stationary Markov process under the

Q measure. The stationarity assumption corresponds well with empirical properties of the

yield curve (Bauer et al., 2012, p. 457).

As Duffie and Kan (1996) showed, the state dynamics (4.2.1) with a risk-price spec-

ification (4.2.4), a short rate equation (4.2.2), and the Radon-Nikodym derivative (4.2.5)

together form an affine Gaussian dynamic term structure with N latent factors, and conse-

quently model-implied bond prices are exponential affine functions of the state variables:

P
(τ)
t = exp

(
Āτ + B̄

′

τXt

)
, (4.2.9)

where loadings (a constant Āτ and an N × 1 vector B̄τ ) follow the difference equations:

Āτ+1 = Āτ + B̄
′

τµ
Q +

1

2
B̄
′

τΣΣ
′
B̄τ − δ0, B̄

′

τ+1 = B̄
′

τΦ
Q − δ′1, (4.2.10)

with Ā0 = 0 and B̄0 = 0 so that Āτ = Āτ (µ
Q,ΦQ, δ0, δ1,Σ) and B̄τ = B̄τ (Φ

Q, δ1). This

implies that for determining loadings and bond pricing, only the Q dynamics matters. For

the derivation of difference equations, see Cochrane and Piazzesi (2005). Similarly, the

continuously compounded yield on a τ -period zero-coupon bond at time t is also affine in

Xt:

y
(τ)
t = −1

τ
logP

(τ)
t = Aτ +B

′

τXt, (4.2.11)

whereAτ = −Āτ/τ andBτ = −B̄τ/τ so thatAτ = Aτ (µ
Q,ΦQ, δ0, δ1,Σ) andBτ = Bτ (Φ

Q, δ1).

Again, loadings only depend on parameter estimates and the error covariance V in the Q

dynamics of the state variables. We also write yield equations (4.2.11) for n different ma-

turities as the following n-dimensional vector form. Letting (τ1, τ2, . . . , τn) denote the set of

fixed maturities such that N < n and yt = (y
(τ1)
t , . . . , y

(τn)
t )

′
denote the corresponding set of
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yields, we have

yt = A+BXt, (4.2.12)

where an n × 1 vector A = (Aτ1 , . . . , Aτn)
′
, and an n × N matrix B = (Bτ1 , . . . , Bτn)

′
.

Moreover, the log forward rates at time t for loans starting at t+ τj and maturing at t+ τk

is given by

f
(τj ,τk)
t = − 1

τk − τj

(
logP

(τj)
t − logP

(τk)
t

)
=

1

τk − τj

(
τk · y(τk)

t − τj · y
(τj)
t

)
. (4.2.13)

As long as we are not living in a risk-neutral world, λt is not a zero vector and P 6= Q so

that bond yields should include premia to compensate risk-averse investors for exposure to

risk such as uncertainty about future inflation which may erode the value of nominal bonds.

Such term premia (ytpt) are hence defined as the difference between the risk-adjusted yields

(yt) and the hypothetical yields (ỹt) that would prevail if investors were risk-neutral. That

is,

ytp
(τ)
t = y

(τ)
t − ỹ

(τ)
t . (4.2.14)

As in (4.2.11), y
(τ)
t is measured by the risk-neutral probability measure. In the literature,

ỹ
(τ)
t is often referred to as risk-neutral rates as if P = Q. Following Bauer et al. (2012) and

Bauer (2016), risk-neutral rates can be calculated by using parameter estimates for the P

state dynamics:

ỹ
(τ)
t = Ãτ + B̃

′

τXt, Ãτ = −1

τ
Aτ (µ,Φ, δ0, δ1,Σ), B̃τ = −1

τ
Bτ (Φ, δ1). (4.2.15)

Put differently, ytp
(τ)
t = y

(τ)
t − 1

τ

∑τ−1
h=0Ety

(1)
t+h − Jensen ′s inequality term (Cochrane,

2009). Since the Jensen’s term is modest at maturities of ten years or less, risk-neutral rates

can be closely approximated by the average of short-term interest rate expectations over the

life of the bond; that is, 1
τ

∑τ−1
h=0Ety

(1)
t+h, where the expectation is computed by the P measure

(Piazzesi, 2010; Gürkaynak and Wright, 2012). In this sense, ỹ
(τ)
t is also referred to as the
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short-rate expectations under P. It reflects investors’ expectations about real interest rates

and inflation (Wright, 2011).

Similarly, the τj- to τk-year forward term premia (ftpt) are defined as differences between

far-ahead forward rates (ft) and risk-neutral forward rates (f̃t):

ftp
(τj ,τk)
t = f

(τj ,τk)
t − f̃ (τj ,τk)

t , (4.2.16)

where f̃
(τj ,τk)
t = 1

τk−τj

(
τkỹ

(τk)
t − τj ỹ

(τj)
t

)
.

4.2.1.2 GDTSM with observable yield factors: JSZ representation

The state variables (Xt) are not directly observed; however, they can be inferred from

observable yields. For example, as Duffie and Kan (1996) proposed, we can take yields

themselves as latent factors by simply inverting the linear relationship (4.2.12). We adopt

a different approach to this paper as in Joslin et al. (2011). They developed the JSZ rep-

resentation of a canonical GDTSM where factors are represented as the first N principal

components of yields such that N < n. These observable yield factors are denoted by Pt

and follow a VAR(1) process. First, recall the dynamics of the latent state variables. In

mean-reverting process forms, we can rewrite (4.2.1) and (4.2.8) as

∆Xt+1 = µ+KXt + Σεt+1, (4.2.17)

∆Xt+1 = µQ +KQXt + ΣεQt+1, (4.2.18)

rt = δ0 + δ
′

1Xt, (4.2.19)

where K = Φ − IN , KQ = ΦQ − IN and the model is stationary under the Q measure. By

allowing measurement errors, the observed yields take the following form as

y
(τ)o

t = y
(τ)
t + εt = Aτ (Θ

Q) +Bτ (Θ
Q)
′
Xt + εt, (4.2.20)
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where y
(τ)o

t with the superscript ‘o’ denotes observed yields, y
(τ)
t denotes model implied

yields, ΘQ = (µQ, KQ,Σ, δ0, δ1) is the set of parameters relevant for a bond pricing, and εt

denotes measurement errors with the conditional normal distribution P θτ for some θτ ∈ Θτ

and independent of Xt.

Now, we replace latent factors (Xt) by observed yield factors (Pt). Suppose that Pt ≡

W ′yt for an n×N matrix W with full rank N . Denote by Wn an n× n orthogonal matrix

whose columns are standardized eigenvectors of the matrix Var(yt). W becomes its sub-

matrix with the first N eigenvectors, and Pt is the first N principal components of yields.

As long as Pt is measured without error, the JSZ representation has the following unique

and observationally equivalent representation to (4.2.17), (4.2.18) and (4.2.19) (Joslin et al.,

2011, Theorem 1):

∆Pt+1 = µP +KPPt + ΣPεt+1, (4.2.21)

∆Pt+1 = µQ
P +KQ

PPt + ΣPε
Q
t+1, (4.2.22)

rt = ρ0 + ρ
′

1Pt, (4.2.23)

where ΣP = (W ′BΣΣ′B′W )1/2. The parameter space of the P dynamics is ΘP
P ≡ (µP , KP ,ΣP).

Meanwhile, Joslin et al. (2011, Proposition 2) showed that (µQ
P , K

Q
P , ρ0, ρ1) are functions of

the following Q parameters: (i) rQ∞, the long-run mean of short rates, (ii) φQ, the eigen-

values of ΦQ = KQ + IN . Thus, the parameters of the Q dynamics of Pt are fully char-

acterized by ΘQ
P ≡ (φQ, rQ∞,ΣP). To sum up, the JSZ representation is parametrized by

ΘP ≡ (φQ, rQ∞, µP , KP ,ΣP).

From Pt ≡ W ′yt and (4.2.12), we have

Pt = AW (ΘQ) +BW (ΘQ)Xt, (4.2.24)

where anN×1 vectorAW = W
′
(Aτ1 , . . . , Aτn)

′
and anN×N matrixBW = W

′
(Bτ1 , . . . , Bτn)

′
.

Assume that BW is invertible so that Pt contains the same information as Xt. Even after
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the change of variables, a short rate and a bond price are unchanged. This is called the

invariant transform by Dai and Singleton (2000). Now, we can express yields as an affine

function of Pt as

yt = AP(ΘQ,W ) +BP(ΘQ,W )Pt, (4.2.25)

where AP = (IN −B(W ′B)−1W ′)A and BP = B(W ′B)−1. These loadings satisfy W ′AP = 0

and W ′BP = IN so that the yields coming out of the model are identical to those going into

the model as the state variables. This is called the internal consistency by Duffee (2011).

Lastly, we impose normalizations for econometric identification as in Joslin et al. (2011).

Under the Q stationary process of Xt, (i) KQ is invertible so that there is no zero eigenvalue

and its eigenvalues are real and distinct, and (ii) µQ = 0, δ0 = rQ∞ and δ1 = ι where ι is a

vector of ones.

4.2.2 Estimation

4.2.2.1 MLE under the separation property

Since risk factors inferred from yields are now observable and the density of yields is

known to be Gaussian, a maximum likelihood (ML) is feasible to estimate the state dynamics

and a system of yield equations. As long as yield factors (Pt) are observed without error, the

conditional density of observed yields would be factorized into the product of the conditional

density of the measurement error of (4.2.20) and the conditional density of Pt as follows:

f(yot |yot−1; Θ) = f(yot |Pt; φQ, rQ∞,ΣP , P
θn)× f(Pt|Pt−1; KP , µP ,ΣP). (4.2.26)

The first term (referred to as Q likelihood) corresponds to the cross-sectional dependence

between yields and yield factors in (4.2.25), while the second term (referred to as P likelihood)

is associated with the time series of yield factors in (4.2.21).

Joslin et al. (2011) showed that ordinary least squares (OLS) recovers the ML estimates

of the P likelihood, and the conditional covariance matrix of yield factors (ΣP) is independent
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of the OLS estimates of (KP , µP). Note that the P parameters, (KP , µP), are not involved

in the Q likelihood. The Q likelihood, on the other hand, is determined by the no-arbitrage

restriction on cross-sectional relationships among yields. Given N yield factors, hence, the

yield curve can be constructed by specifying (rQ∞, φ
Q,ΣP) which are estimated independently

of the OLS P estimates. Joslin et al. (2011) referred to this result as the separation property.

Such a complete separation between the P and Q likelihoods is feasible since the maximally

flexible GDTSM does not impose any restriction on the market prices of risk.

This separation property makes estimations much easier. By OLS, we first estimate

time series P parameters (µP , KP), independently of the Q likelihood. By using these P

estimates as starting values, we obtain the ML estimates of Q parameters from cross-sectional

relationships. Since the Q likelihood is characterized by a low-dimensional parameter space

(φQ, rQ∞), the estimation speed in the exact ML can be greatly improved. This estimation

method is referred to as JSZ two-step procedures hereafter.

4.2.2.2 Bias correction

Although ML estimation is feasible, it suffers from a small-sample bias due to the high

persistence of factors, which leads to an upward bias in the estimated mean-reversion process

(Bauer et al., 2012, 2014). Actually, much of the literature showed that the first principal

component, which is called the level factor, is very persistent. Further, in conventional term

structure analyses, a sample length is relatively short due to the concern about structural

changes and the zero lower bound of interest rates (Wright, 2011; Bauer, 2016).

As seen in (4.2.15), short-rate expectations are computed by using the parameter esti-

mates of the P dynamics and therefore inaccurate estimates for the P parameters falsify the

decomposition of forward rates. In small samples, the estimated persistence is much lower

than it should be. Short-rate expectations under P (i.e., risk-neutral rates) quickly revert

to mean and hence are too stable over time. Consequently, a secular decline in yields is

affected by the behavior of term premia much more than by the behavior of short-rate ex-
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pectations. To address this issue, additional information can be considered as a supplement

to small samples; for example, the survey forecasts of short-term interest rates as in Kim

and Orphanides (2012). Such information, however, is neither always available nor reliable

(Bauer et al., 2014). An alternative is to impose restrictions on risk-price parameters so that

cross-sectional information can help specify time series of the factor dynamics (Cochrane

and Piazzesi, 2009; Joslin et al., 2014). As Bauer (2016) pointed out, however, there is the

model uncertainty of how to choose restrictions. Further, Bauer et al. (2012, p. 455) argued

that bias is still large even with restrictions on risk prices.

This paper instead considers a statistical method proposed by Bauer et al. (2012) for

correcting a small-sample bias. Their method, which is called an indirect inference estimator,

can be conducted consistently with JSZ two-step procedures. First, they correct bias in the

OLS estimates of time series P parameters. To correct bias in the P parameters, they find

data-generating VAR parameters from repeated simulations which give a mean of the OLS

estimator equal to the actual OLS estimates obtained from the data. After that, they obtain

the ML estimates of cross-sectional Q parameters in the normal fashion. It is referred to as

BC two-step procedures hereafter.

4.2.3 Empirical Study

For later use, we analyze our GDTSM by ML estimation as described above. Observable

factors (Pt) are the first three principal components of yields (N = 3) and priced without

error. Such a three-factor (yields only) GDTSM is common in the literature because the first

three principal components explain almost all of the total variation in yields (Litterman and

Scheinkman, 1991). As in Joslin et al. (2011), the measurement errors of yields are taken to

be an i.i.d. process, and normalizations for identification are also imposed. Our estimations

are implemented on two tracks. First, we conduct JSZ two-step procedures. Resulting

estimates are called JSZ estimates. Next, we implement BC two-step procedures by using

an indirect inference estimator as described in Bauer et al. (2012). Resulting estimates are
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called BC estimates.

4.2.3.1 Previous Studies

Joslin et al. (2011) estimated the three-factor GDTSM of the US zero-coupon bond yields

based on their JSZ representation. They changed latent state variables into observable

yield factors which are the linear combinations of yields (yields-only model).1 In contrast,

assuming that the state variables are directly observable, Wright (2011) estimated GDTSMs

across ten countries by adding two macro factors: inflation and output growth (macro-factor

model). Wright also decomposed forward rates into term premia and risk-neutral rates by

using his international panel dataset.

Further, Bauer et al. (2012, 2014) revisited those studies. After correcting bias, they

observed that the estimated risk-neutral rates are highly volatile and show distinct downward

trends, while Wright (2011) obtained nearly flat risk-neutral rates so that corresponding

term premia parallel the fitted forward rates. Decreasing risk-neutral rates corresponds with

empirical evidence showing downward trends in the expectations of inflation and the survey

forecast of short-rates over time (Wright, 2011; Kim and Orphanides, 2012). In this sense,

Bauer et al. (2012, 2014) argued that bias correction yields more plausible implications on

the decomposition of forward rates.

4.2.3.2 Data

We use the international panel dataset constructed by Wright (2011). It consists of

continuously compounded nominal yields on zero-coupon bonds at maturities from 3 months

to 10 years in increments of a quarter across 10 countries: Australia, Canada, Germany,

Japan, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United

States. Although the original dataset was constructed at a monthly frequency over the

1 Joslin et al. (2011) considered various specifications depending on how to model the linear combinations
of yields in empirical studies (see Ch.5). The first three principal components of yields are one of their
specifications.
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Table 4.1: Three-factor GDTSM Estimation (US data)

P Q
µP ΦP eig(ΦP) rQ∞ φQ ΣP

0.0177 0.9402 -0.0194 -0.9163 0.9155 0.0917 0.9710 0.0202 0 0

(0.0118) (0.0377) (0.1348) (0.7055) (0.0058) (0.0077) (0.0018)

JSZ -0.0078 -0.0061 0.9087 1.2268 0.8190 0.9238 0.0031 0.0056 0

(0.0034) (0.0111) (0.0395) (0.2068) (0.0158) (0.0009) (0.0004)

0.0022 0.0099 -0.0088 0.6479 0.7624 0.4347 -0.0016 -0.0003 0.0016

(0.0014) (0.0045) (0.0160) (0.0837) (0.0938) (0.0002) (0.0002) (0.0001)

0.0115 0.9975 -0.0044 -1.0369 0.9862 0.0924 0.9711 0.0209 0 0

(0.0121) (0.0389) (0.1389) (0.7271) (0.0060) (0.0077) (0.0018)

BC -0.0099 0.0011 0.9388 1.1823 0.9094 0.9237 0.0032 0.0056 0

(0.0035) (0.0111) (0.0389) (0.2083) (0.0158) (0.0010) (0.0005)

0.0027 0.0041 -0.0045 0.6881 0.7288 0.4349 -0.0017 -0.0004 0.0016

(0.0014) (0.0045) (0.0162) (0.0848) (0.0937) (0.0002) (0.0003) (0.0001)

Note: µP , rQ∞, and ΣP are reported on an annual basis (by multiplying 4). ΦP is (I3 +KP), where KP is the mean-reversion
coefficient matrix in (4.2.21). φQ here is reported by one plus the ordered eigenvalues of the mean-reversion coefficient matrix;
that is eig(I3 + KQ) in (4.2.18). Asymptotic standard errors for parameters are reported in parentheses on an annual basis
(by multiplying 4).

period from January 1990 to May 2009, we use aggregated data at the quarterly frequency

from 1Q, 1990 to 1Q, 2009 as in Bauer et al. (2014). Thus, time t is measured in quarters,

and short rates are defined as three-month interest rates.

4.2.3.3 Results

For comparison purposes, we replicate most analyses in Wright (2011) and Bauer et

al. (2014) on a five-factor (macro-factor) GDTSM with observable state variables. Note that

their model specifications are different from our three-factor GDTSM (yields-only model with

unobservable state variables); however, our main findings are consistent with their empirical

results.

First, Table 4.1 presents the parameter estimates of the state dynamics under both the P

and Q measures for the US data. The coefficient estimates show that there is a very persistent

factor, a less persistent but still highly persistent factor, and the last mean-reverting factor.

In the Q dynamics, there is not a large gap between JSZ and BC estimates. Under the P

measure, however, BC two-step procedures yield much higher persistence than JSZ two-step
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Table 4.2: Estimation – Summary Statistics for Ten Countries

Max Eig(ΦP) IRF Half-life Volatility 4(90-91/08-09)

RMSE(%) P Q P Q P Q forw frn ftp forw frn ftp

US JSZ 0.052 0.9155 0.9710 0.16 0.60 9.00 27.00 1.25 0.03 1.24 -387 -4 -382

BC 0.052 0.9862 0.9711 0.76 0.60 49.00 27.00 1.25 0.84 0.94 -387 -239 -147

Japan JSZ 0.025 0.9262 0.9873 0.27 0.83 12.00 63.00 1.77 0.28 1.61 -473 -81 -393

BC 0.025 0.9844 0.9873 0.72 0.83 35.00 63.00 1.77 1.47 1.64 -473 -398 -76

Germany JSZ 0.043 0.9715 0.9737 0.54 0.66 23.00 32.00 1.48 0.93 0.88 -407 -279 -127

BC 0.043 0.9997 0.9737 0.96 0.66 - 32.00 1.48 2.09 1.35 -407 -614 207

UK JSZ 0.074 0.9528 0.9929 0.27 0.86 9.00 98.00 2.12 0.40 1.72 -568 -110 -458

BC 0.074 0.9959 0.9929 0.67 0.86 97.00 98.00 2.12 1.43 0.69 -568 -386 -182

Canada JSZ 0.043 0.9546 0.9973 0.34 0.82 12.00 200.00 1.98 0.41 1.59 -628 -137 -491

BC 0.043 0.9883 0.9973 0.72 0.82 51.00 200.00 1.98 1.26 0.88 -628 -424 -204

Norway JSZ 0.031 0.7668 0.9999 0.00 0.30 5.00 9.00 0.59 0.00 0.60 n.a n.a n.a

BC 0.031 0.9157 0.9999 0.25 0.30 12.00 9.00 0.59 0.30 0.48 n.a n.a n.a

Sweden JSZ 0.040 0.9504 0.9999 0.33 0.99 12.00 - 2.18 0.47 1.71 n.a n.a n.a

BC 0.040 0.9982 0.9999 0.90 0.99 - - 2.18 1.91 0.28 n.a n.a n.a

Switzerland JSZ 0.055 0.9262 0.9892 0.30 0.55 13.00 30.00 1.14 0.40 0.96 -259 -97 -162

BC 0.055 0.9917 0.9892 0.86 0.55 52.00 30.00 1.14 2.09 1.81 -259 -477 218

Australia JSZ 0.040 0.9252 1.0000 0.17 1.00 7.00 - 2.27 0.15 2.12 -623 -42 -581

BC 0.040 0.9804 1.0000 0.55 1.00 26.00 - 2.27 0.75 1.52 -623 -211 -412

NZ JSZ 0.022 0.8911 0.9997 0.10 0.80 6.00 - 1.55 0.08 1.48 -476 -24 -452

BC 0.022 0.9587 0.9998 0.40 0.80 16.00 - 1.55 0.51 1.08 -476 -161 -315

Note: (i) RMSE is the root mean squared of fitting errors computed by the square root of the average squared difference between
the actual forward rates and the fitted rates from JSZ and BC two-step procedures. It is averaged across all quarters and all
maturities. It is measured in annualized percentage points (4× 100). (ii) IRF is the impulse-response function at horizon of five
years of the first yield factor to a level shock. (iii) Half-life is the horizon (quarters) at which the IRF falls first below 0.5. If
a computed half-life is larger than 50 years, we do not report it. (iv) The “Volatility” columns report the standard deviations
of the fitted five- to ten-year forward rates denoted by forw, those of risk-neutral rates (three-month interest rate expectations
under the P measure) denoted by frn, and those of corresponding term premia denoted by ftp. (v) The last three columns show
changes in forw, frn, and ftp computed by the difference between the mean of observations from 1990:III to 1991:III (the early
part of the sample) and from 2008:I to 2009:I (the late part of the sample.) We report in basis points. We do neither report
Sweden whose observations starts from Dec. 1992. nor Norway whose observations starts from Jan. 1998.

procedures (for the remaining countries, see Table A.4.1 in Appendix).

Table 4.2 also reports summary statistics for all countries. Both JSZ and BC estimates

produce the same cross-sectional fits and fitting errors are small. The persistence of yield

factors is variously measured by the maximum eigenvalue of the coefficient matrix of the

factor dynamics, the impulse response function and the half-life. The high persistence of

factors shown in Table 4.2 corresponds well with empirical evidence that interest rates have

a large permanent component (Cochrane and Piazzesi, 2009; Piazzesi, 2010). Under the Q

measure, JSZ and BC estimates yield almost identical statistics. In fact, bias correction does
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not affect the parameter estimates of the Q dynamics because the second-step ML estimation

of the Q parameters is separated from the first-step estimation of the P parameters while bias

correction is conducted only in the first-step estimation. Under the P measure, contrarily,

all of the statistics for persistence estimated by BC two-step procedures are much higher

than those estimated by JSZ two-step procedures. This means that, after bias correction,

the persistence of the P dynamics sharply increases and moves toward the persistence of the

Q dynamics across all countries so that BC estimates reflect the actual persistence of the P

dynamics more reasonably.

Next, as described in (4.2.15), we decompose five- to ten-year forward rates into risk-

neutral rates and term premia for ten countries. The “Volatility” columns in Table 4.2

report the volatilities of three components measured by the standard deviations. Comparing

estimates from JSZ and BC two-step procedures, we can see that the volatility of the fitted

forward rates does not change after bias correction since they are priced by the Q measure.

On the other hand, the volatility of risk-neutral rates varies substantially across JSZ and BC

two-step procedures since they are computed by the P parameter estimates. The increasing

persistence of the P dynamics after bias correction renders risk-neutral rates more volatile.

Moreover, the last three columns in Table 4.2 report the change from the early sample

period to the late sample period of each component. Before correcting bias, the decline

in risk-neutral rates can explain only a small portion of the decline in forward rates, and

consequently term premia contribute to most of the secular trend in forward rates (excepting

Germany). After bias correction, however, the majority of a secular decline in forward rates

can be attributed to decreasing risk-neutral yields, rather than to term premia.

In Appendix, we depict the historical evolutions of risk-neutral rates and term premia.

Figure A.4.1 shows the fitted five- to ten-year forward rates and the estimated risk-neutral

rates. For all countries, the fitted forward rates exhibit a secular decline over the sample

period. For the case of risk-neutral rates, BC estimates yield a distinct downward trend,

whereas JSZ estimates produce a stable process. Figure A.4.2 illustrates corresponding
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forward term premia as well. Due to changes in risk-neutral rates after bias correction, the

movement of term premia also changes. Specifically, term premia from BC estimates no

longer parallel the fitted forward rates but reveal a more counter-cyclical behavior: rising

during recessions while falling during expansions.

To sum up, our results reproduce nearly all of the empirical findings in Wright (2011)

and Bauer et al. (2012, 2014). We conclude this section by introducing one concern about

BC estimates. As Bauer et al. (2012, 2014) pointed out, BC two-step procedures suffer

from estimation uncertainty which is shown by the wide confidence intervals around BC

risk-neutral rates in Figure A.4.1.

4.3 Recovery Theorem in the Gaussian Affine Term Structure

Now, we review the Recovery theorem for equity markets proposed by Ross (2015) and

examine its applicability to fixed-income markets in the context of a GDTSM.

4.3.1 Recovery Theorem (Ross, 2015)

In Section 4.2, we delineated how standard GDTSM analyses identify the P and Q mea-

sures. Due to a separation property, the P measure is estimated by using time series data

while the Q measure is estimated by using cross-sectional observations. They are only linked

by the market prices of risk a posteriori.

On the other hand, Ross (2015) claimed that the P measure and the corresponding SDF

can be recovered simultaneously from only the state prices. Note that Ross referred to his

recovered probability as the subjective probability under the assumption of the existence of

a representative agent and further equated it with the physical probability. A few papers

argued that, however, the Recovery theorem does not necessarily recover the investors’ ex-

pectations of future interest rates under the P measure. We will investigate what Ross really

recovered in Section 4.4. For the moment, we set this issue aside. Instead, we refer to it

as the recovered probability measure denoted by L. Also, letting P̂ denote the recovered
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transition probability matrix, we distinguish it from the physical transition probability matrix

denoted by P and the risk-neutral transition probability matrix denoted by P̃ .

As in Ross (2015), we consider discrete-time and finite states that follow a time-homogeneous

Markov process. Ross assumed the no-arbitrage restriction and a complete market as well.

Let θi denote the current state and θj a state in the future. For one period, the state price

is priced by

q(θi, θj) = e−r(θi) p̃(θi, θj), (4.3.1)

where q(θi, θj) is the state price and r(θi) is the one-period interest rate in state θi. Also

p̃(θi, θj) is each element of P̃ which is the state transition probability from θi to θj under the

Q measure. For multi-periods, the forward risk-neutral transition probability for going from

state θi to θj in T − t1 periods can be defined as

p̃(θi, θj, T − t1) =
∑
θ

p̃(θi, θ, t2 − t1) p̃(θ, θj, T − t2), (4.3.2)

where the summation is over all the possible intermediate states (θ) at time t2 for t1 ≤ t2 ≤ T .

This transition is time-homogeneous so that it does not depend on calendar time but the

time interval. Then, we have the state price for the transition from θi at any time t to θj at

T such that

q(θi, θj, t, T ) = e−r(θi)(T−t) p̃(θi, θj, T − t). (4.3.3)

For simplicity, we let p̃(θi, θj) = p̃ij, r(θi) = ri, and q̃(θi, θj) = q̃ij, where i, j denote

current and future states, respectively. To consider the change of measure from Q to L, we

define the Radon-Nikodym derivative of L with respect to Q as ζij = p̂ij/p̃ij, where p̂ij is

each element of P̂ . We then find that

qij = e−ri(T−t) p̃ij = e−ri(T−t) p̂ij/ζij = ŝij p̂ij, (4.3.4)

where ŝij is the SDF associated with the L measure such that ŝij = qij/p̂ij = e−ri(T−t)/ζij.
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Ross (2015) imposed several restrictions to identify both ŝij and p̂ij simultaneously from

qij in (4.3.4). The transition-independent SDF is one of them. In particular, Ross considered

an example of an inter-temporal model with an additively time-separable preference of a

representative agent and derived the SDF as its equilibrium solution. The resulting SDF

is the product of a constant time-discount rate (ς) and the marginal rate of substitution

between future and current consumption:

ŝ(θi, θj) = ς
h(θj)

h(θi)
, (4.3.5)

where h(θi) is the marginal utility of consumption in state θi (or equivalently, a pricing

kernel). Thus, the above SDF does not depend on the intermediate path between initial and

final states. Obviously, the state price is expressed as

qij = ŝij p̂ij = ς
hj
hi
p̂ij, (4.3.6)

where ŝij = ŝ(θi, θj) and hi = h(θi). In matrix notation, (4.3.6) can be written as

DQ = ςP̂D and P̂ = ς−1DQD−1, (4.3.7)

where Q is the state-price matrix and D is a diagonal matrix whose each diagonal element is

hi. Note that the sum of each row in Q is the current value in each current state of a dollar

for sure in the future; that is,
∑

j qij = e−ri .

Generally, Q alone is not enough to identify the recovered transition probability (P̂ ) and

the SDF separately. Let m∗ denote the total number of states. In (4.3.7), we have only

m∗2 equations with (m∗2 + m∗ + 1) unknowns: m∗2 probabilities, m∗ pricing kernels, and a

constant discount rate. Under the assumption of the irreducible transition matrix, however,

Ross (2015) could solve the above system of equations by using the Perron-Frobenius theorem

(hereafter PF theorem). Let us consider a characteristic function for a given square matrix
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A such that AV = ΓV , where Γ is a diagonal matrix whose non-zero elements are the

eigenvalues of A, and V is a matrix composed of corresponding eigenvectors. The PF theorem

says that if A is non-negative and irreducible, there exists a unique positive real eigenvalue

which is referred to as the perron root, and all other eigenvalues are smaller in absolute value.

Moreover, a corresponding unique positive eigenvector is called the perron vector, and there

are no strictly positive eigenvectors except for positive multiples of the perron vector (Meyer,

2000, p. 673). In layman’s terms, A is irreducible if there is always at least one path such

that any state j can be attainable from any state i in finite steps. For a formal definition,

see Jiang (2010, p. 325).

Since P̂ is a stochastic matrix, P̂ e = e where e is a vector of ones. Consequently, we have

P̂ e = e = ς−1DQD−1e and QD−1e = ςD−1e. (4.3.8)

Equivalently,

Qv = ςv, (4.3.9)

where v = D−1e. If Q is irreducible, the discount rate ς is the same as the perron root of Q,

and v is the perron vector whose elements vi = 1/hi. Thus, if state prices are known, we can

recover a certain probability density (p̂ij) and a corresponding SDF (ŝij) from the following

equations:

ŝij = ς(vi/vj) and p̂ij = qij/ŝij. (4.3.10)

It is worth highlighting that the state-price matrix should be fully specified over all

parallel universes to solve (4.3.10). Obviously, most states are neither realized nor observable

however. To address this issue in equity markets, Ross (2015, Section V) described how to

compute state prices for unrealized states by using option prices. Regretfully, this method

is not always feasible and it is very complicated for the case with a multi-dimensional state

space (Ross and Martin, 2013, p. 14). Alternatively, Ross and Martin (2013) sidestepped

this issue by connecting the perron root and the perron vector to the yield and the return
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on the long bond with an infinite maturity, respectively; however, there still remains the

question of how well a long but finite bond can approximate the infinitely long bond.

4.3.2 Application of the Recovery Theorem in GDTSMs

Our GDTSM is in line with the framework of Ross (2015). Under no arbitrage, the state

dynamics is described as a time-homogeneous stationary Markov chain. Also, a complete

market assumption is acceptable since the fixed-income derivatives market is one of the most

developed derivatives markets (Ross and Martin, 2013).

To apply the Recovery theorem to GDTSMs, we start from the Q state dynamics rather

than consider utility maximization as in Ross (2015). Due to the specific structure of the Q

dynamics, we can obtain the risk-neutral state transition probability matrix (P̃ ) from the

true data-generating process under the Q measure by using Markov-chain approximations.

Then, the state-price matrix (Q) can be constructed from a risk-neutral pricing equation

(4.3.1). Our method for specifying Q is different from those proposed by Ross and Martin

(2013) and Ross (2015) for equity market applications. Lastly, if Q is non-negative and

irreducible, we can recover the transition probability matrix (P̂ ) and the corresponding SDF

by using the PF theorem.

4.3.2.1 Step 1: Construction of the risk-neutral probability transition matrix

In this subsection, we introduce a finite-state Markov approximation method to obtain

the risk-neutral transition probability matrix (P̃ ) from the estimated Q state dynamics.

Since our results are significantly affected by the accuracy of approximation, we choose an

appropriate method for our model specification carefully.

A finite-state Markov-chain approximation method Tauchen (1986a) proposed

a finite-state Markov-chain approximation to univariate (AR) and vector autoregressions

(VAR) with a diagonal error covariance matrix such that a generated discrete state-space

Markov process can closely replicate the underlying stationary dynamics of the state vari-
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ables. The method needs to select discrete values which each state variable can take (also

called grid points) and constructs time-homogeneous state transition probabilities based on

the distribution of the underlying process. The accuracy of this method is very sensitive to

the number of grid points (m∗). Tauchen argued that the method can yield better approxi-

mations as m∗ becomes larger so that the state space becomes finer. Note that Aydin and

Yildirim (2015) employed the method of Terry and Knotek (2011) which extends Tauchen’s

method to a VAR with a non-diagonal error covariance matrix.

Follow-up studies show that Tauchen’s method and its extension do not perform well when

a VAR process is highly persistent; in particular, the accuracy remains poor even though

the number of grid points increases sharply (Floden, 2008; Kopecky and Suen, 2010; Farmer

and Toda, 2015). This might be ascribed to the fact that Tauchen targeted only the first

conditional moment of the underlying process (Gospodinov and Lkhagvasuren, 2014, p. 846).

Considering highly persistent factors in GDTSMs, Tauchen’s method seems inappropriate

for our study. Besides, it is infeasible in practice. When we set a state space much finer

to improve the accuracy of approximation in the presence of highly persistent factors, the

process is very time consuming and computer memory may be insufficient to deal with a

large-dimensional transition matrix.

As a response, Rouwenhorst (1995) developed an alternative method that approximates

both the conditional mean and variance of the underlying AR process. Gospodinov and

Lkhagvasuren (2014) extended it to a VAR process with a diagonal error covariance matrix.

In a highly persistent VAR process, Rouwenhorst’s method and its extension (hereafter GL

method) outperform Tauchen’s method even without increasing the number of grid points.

For example, when the largest eigenvalue of the coefficient matrix of the Q state dynamics

is close to unity, the Tauchen’s method needs at least 25 grid points for each dimension in

order to be comparable to the GL method with 5 grid points in terms of approximation

quality (Kopecky and Suen, 2010; Galindev and Lkhagvasuren, 2010; Farmer and Toda,

132



2015). The GL method also reduces the computing time substantially.2 More importantly,

the GL method produces irreducible state-price matrices for all countries in our empirical

study. In contrast, when we use the method of Terry and Knotek (2011), we fail to obtain

irreducible matrices for most countries except for the UK and the US. For these reasons, we

employ the GL method in our empirical study.

Application of the GL method Recall our trivariate VAR(1) process of yield factors

under the Q measure. For simplicity, we suppress the P subscripts here:

Pt+1 = µQ + ΦQPt + ΣεQt+1, (4.3.11)

where Pt = (P1,t,P2,t,P3,t)
′, µQ is a 3 × 1 vector, ΦQ is a 3 × 3 matrix, a 3 × 1 vector

εt ∼ N (0, I3) and Σ is a 3 × 3 lower triangular matrix such that ΣΣ
′

= V . Under sta-

tionarity, the largest eigenvalue of ΦQ is less than 1. Since V is not necessarily diagonal,

we transform (4.3.11) to a VAR with a diagonal error covariance matrix by a linear trans-

formation described in Tauchen (1986b). In detail, letting Yt = C−1(Pt − (I − ΦQ)−1µQ),

A = C−1ΦQC, and ηt = C−1ΣεQt , we have

Yt+1 = AYt + ηt+1, (4.3.12)

where ηt ∼ i.i.d. N (0,Ω), C is a 3 × 3 lower triangular matrix, and Ω is a 3 × 3 diagonal

matrix such that V = CΩC
′
.

Let Ỹt denote the approximate discrete-valued vector of Yt. Now, we construct grid

points for each element of Ỹt. We denote each element by Ỹk,t and its grid points by Ȳgk

for k = 1, 2, 3 and g = 1, 2, . . . ,mk. That is, for any k, Ỹk,t takes one of mk discrete values

which are sorted in a decreasing order Ȳ1
k < Ȳ2

k < . . . < Ȳmkk . For simplicity, we assume that

2 In our empirical study of the three-factor GDTSM using the US data, the computing time of the GL
methods with 21 grid points for each dimension (that is, the total number of grid points is 213 = 9261) is
138 minutes. However, the method of Terry and Knotek takes 4, 220 minutes (We use Matlab on a 1.7 GHz
Intel Core i5 with 4GB DDR3).

133



each yield factor has the same number of grid points; that is, m = mk for all k. These m

grid points are given by equally spaced points. Specifically,

Ȳgk = −σyk(m− 1)1/2 + 2σyk(g − 1)/(m− 1)1/2

for g = 1, 2, . . . ,m, where σyk = var(Yk,t). At time t, the entire system will be in one of

m3 = m∗ states; that is, Ỹt takes one of m∗ vectors denoted by Ȳ i for i = 1, 2, . . . ,m∗. Next,

we consider the time-homogeneous individual transition probability defined as

p̃k(i, g) = Pr(Ỹk,t = Ȳ g
k | Ỹt−1 = Ȳ i)

such that
∑m

g=1 p̃k(i, g) = 1. To generate a Markov chain process which can replicate an

underlying process closely, the GL method targets the first and second conditional moments

of Yt by minimizing the distance of the following moment conditions:

(i)
m∑
g=1

p̃k(i, g)Ȳ g
k − ϕk(i) and (ii)

m∑
g=1

p̃k(i, g)
(
Ȳ g
k − ϕk(i)

)2 − ϑ2
k,

where ϑ2
k is the k-th diagonal element of Ω, and ϕk(i) denotes the expected value of process

Yk,t+1, conditional on Yt = Ȳ i. Letting lk be an integer-valued function for any k such that

Ỹk,t = Ȳ lk(i)
k when the system is in state i at time t, it holds that ϕk(i) =

∑3
h=1 ak,hȲ

lh(i)
h ,

where a
k,h

is each element of A in (4.3.12).

Next, we obtain the m∗-dimensional risk-neutral transition probability matrix (P̃ ) whose

each element is the probability that Ỹt will be in a future state j conditional on a current

state i. Since ηt are independent, each element of P̃ is the product of individual transition

probabilities: p̃ij =
∏3

k=1 p̃k(i, lk(j)) for i, j = 1, 2, . . . ,m∗. So far, we construct the discrete

values of a transformed process (Yt) and the transition probability matrix (P̃ ). Lastly, we

can back up the grid points of Pt by a reverse transformation.
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Remark 1. Quality of Markov-chain approximation As in the literature, we obtain

the VAR parameters via simulations based on the transition probabilities and also obtain the

parameters from direct simulations of the underlying VAR. Then, we compare the signs and

magnitudes of their means. Much of the literature usually focuses on the difference in two

decimal points (Tauchen, 1986a; Terry and Knotek, 2011; Gospodinov and Lkhagvasuren,

2014). For details, see Section 4.5.

4.3.2.2 Step 2: Construction of the state-price matrix

Let (z1, z2, . . . , zm
∗
) denote a set of m∗ discrete-valued 3 × 1 vectors for Pt. For one

period, we can write a short rate equation and a risk-neutral pricing equation as follows. For

i, j = 1, . . . ,m∗,

ri = ρ0 + ρ′1z
i; (4.3.13)

qij = e−ri p̃ij, (4.3.14)

where ρ0 is a constant, ρ1 is a 3× 1 vector, and ri is the one-period interest rate in state i.

Moreover, p̃ij is the risk-neutral transition probability obtained by the GL method and qij

is the one-period state price. Then, from (4.3.14), we can compute the state-price matrix.

For example, if m = 9 so that m∗ = 729, we need to construct a 729× 729 matrix Q:

q1,1 q1,2 · · · q1,729

q2,1 q2,2 · · · q2,729

...
...

. . .
...

q728,1 q728,2 · · · q728,729

q729,1 q729,2 · · · q729,729


=



e−r1 · p1,1 e−r1 · p1,2 · · · e−r1 · p1,729

e−r2 · p2,1 e−r2 · p2,2 · · · e−r2 · p2,729

...
...

. . .
...

e−r728 · p728,1 e−r728 · p728,2 · · · e−r728 · p728,729

e−r729 · p729,1 e−r729 · p729,2 · · · e−r729 · p729,729


, (4.3.15)

where

ri = ρ0 +
[
ρ1,1 ρ1,2 ρ1,3

] zi1

zi2

zi3

 . (4.3.16)
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Remark 2. Irreducibility of the state-price matrix To apply the PF theorem, Q

should be irreducible. To check the irreducibility, we use the result from Berman and Plem-

mons (1979, Theorem 2.1.3) and Meyer (2000, Lemma 8.3.5): If an r×r non-negative matrix

A is irreducible, then (Ir + A)r−1 should be strictly positive.

4.3.2.3 Step 3: Application of the Perron-Frobenius theorem

As described in Section 4.3.1, we identify the recovered probability transition matrix (P̂ )

by the PF theorem. Suppose that Q is irreducible. Then, from (4.3.6) we have

p̂ij = ς−1(vj/vi) · qij, (4.3.17)

where vi is the i-th element of the perron vector of Q and ς is the corresponding perron root.

Golub and Loan (2013, p. 373) showed that the power method is useful to find the

perron vector of a non-negative and irreducible matrix. By iteratively computing the powers

of a matrix, the power method approximates a dominant eigenpair (ς, v), where ς is the

dominant eigenvalue that is larger in absolute value than all of the other eigenvalues and v

is the dominant positive eigenvector associated with ς. For details, see Meyer (2000, p. 533)

and Golub and Loan (2013, p. 366).

4.3.2.4 Step 4: State dynamics under the recovered probability measure

To analyze a GDTSM with respect to the L measure, we need to estimate the factor

dynamics under the L measure. First, we posit the following trivariate VAR(1) process

under the L dynamics:

Pt+1 = µL + ΦLPt + ΣεLt+1, (4.3.18)

where µL is a 3 × 1 vector, ΦL is a 3 × 3 matrix, Σ is a 3 × 3 lower triangular matrix such

that ΣΣ
′

= V , and εLt ∼ N (0, I3). Also, we consider the following process which can be
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generated by the GL method:

P̃t+1 = µ̈L + Φ̈LP̃t + Σ̈εLt+1 = BLWt + Σ̈εLt+1, (4.3.19)

where µ̈L is a 3 × 1 vector, Φ̈L is a 3 × 3 matrix, and Σ̈ is a 3 × 3 lower triangular matrix

such that Σ̈Σ̈
′
= V̈ .

(4.3.19) can be estimated as in Tauchen (1986a). Letting a 3× 4 matrix BL = (µ̈L, Φ̈L)

and a 4× 1 vector Wt = (1, P̃ ′t)
′
, we have BL = [EL(P̃t+1W

′
t )][E

L(WtW
′
t )]
−1, where the ex-

pectation can be computed by the recovered transition probability. For details, see Appendix

A.4.3.

4.4 Recovery Theorem Revisited

In this section, we summarize the claim of “misspecified recovery” in BHS (2015) and

examine this misspecification issue regarding our affine Gaussian dynamic term structure.

BHS argued that the L measure is not necessarily same as the P measure. Further, they de-

fined the L measure as the long-term risk-neutral probability measure because it absorbs only

the martingale component of the SDF (or equivalently, investors’ risk aversion to permanent

shock).

4.4.1 Misspecified Recovery: Recovery of Long-term Risk-neutral Measure

To figure out what the Recovery theorem really recovers, we review the results from AJ

(2005) regarding the SDF decomposition under a discrete-time and finite-state stationary

Markov process. The literature has carried out similar analyses in a continuous-time frame-

work (e.g., Hansen and Scheinkman, 2009; Christensen, 2014; BHS, 2015; Qin and Linetsky,

2016; Qin and Linetsky, 2017).
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Let St denote a pricing kernel. AJ (2005) proposed the following decomposition:

St = STt S
P
t with Et(S

P
t+1) = SPt , (4.4.1)

where STt is the transitory component of a pricing kernel and SPt is the permanent component

which is a martingale. Correspondingly, the one-period SDF (st,t+1 = St+1/St) is factorized

as

st,t+1 = sTt,t+1 · sPt,t+1 with Et(s
P
t,t+1) = 1, (4.4.2)

where sTt,t+1 = STt+1/S
T
t and sPt,t+1 = SPt+1/S

P
t are the transitory and permanent components

of the SDF, respectively. According to AJ (2005, Proposition 3), the transitory component

of the SDF is the same as the inverse of the long-bond return (sTt,t+1 = 1/R∞t,t+1).3 Thus, the

long-term bond can be priced by sTt,t+1 such that E(sTt,t+1R
∞
t,t+1) = 1 (Bakshi and Chabi-Yo,

2012, p. 193).

Recall the PF theorem that yields Qv = ςv (4.3.9) and a pricing equation (4.2.7). Then,

we get

Et(st,t+1vt+1) = ςvt so that Et(st,t+1vt+1/ςvt) = 1. (4.4.3)

For details, see Hansen and Scheinkman (2009, Proposition 6.2) and BHS (2015, Problem

4.1). Considering that the permanent component is a martingale, each component of the

SDF can be defined as follows:

sPt,t+1 = ς−1st,t+1
vt+1

vt
; (4.4.4)

sTt,t+1 = ς
vt
vt+1

. (4.4.5)

Denote a current state by i and a future state by j. For a single period, the state price

3 According to AJ (2005), the long-bond return (R∞t,t+1) is the gross return from holding a bond maturing

at an infinite horizon from time t to t + 1. That is, R∞t,t+1 ≡ limτ→∞Rτt,t+1 = limτ→∞
Vt+1(1t+τ )
Vt(1t+τ )

, where

Vt(1t+τ ) is the current price of a bond maturing at time t+ τ .
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is priced under the P measure such that

qij = sij pij = sTij s
P
ij pij, (4.4.6)

where pij is the physical probability and sij is the associated SDF. sij is referred to as the

original SDF hereafter. Also, as shown in (4.3.1), the state price is priced under the Q

measure such that

qij = s̃ij p̃ij = e−ri p̃ij, (4.4.7)

where p̃ij is the risk-neutral probability. Moreover, we can write p̃ij = qij/q̄i such that∑
j p̃ij = 1, where q̄i =

∑
j qij = e−ri . Here the resulting one-period SDF (s̃ij = e−ri)

is independent of any tomorrow state j, which implies that all possible tomorrow states j

are discounted equally. Consequently, risk adjustment (excepting a time discount factor)

is absent from the SDF under the Q measure; rather, it is absorbed in the corresponding

risk-neutral probability.

(4.4.6) and (4.4.7) imply that the SDF should be defined subject to the given probability

measure. By the SDF decomposition, we can define another probability measure and the

corresponding SDF:

qij = sTij s
P
ij pij︸ ︷︷ ︸

= sTij · p̂ij, (4.4.8)

where p̂ij = sPij pij. Also, from (4.4.5) we can see that

sTij = ς
vi
vj

= ŝij, (4.4.9)

where ŝij is the recovered SDF by the Recovery theorem defined in (4.3.10). Thus, (4.4.9)

implies that the recovered SDF is nothing but the transitory component of the original
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SDF. For example, ŝij can be trend-stationary (BHS, 2015, p. 2). On the other hand, the

permanent component (sPij) is absorbed in the recovered probability (p̂ij).

Let us examine the above decomposition in detail. The Recovery theorem actually iden-

tifies ŝij and p̂ij, not sij and pij. In fact, since p̂ij = sPij pij, the L measure absorbs risk com-

pensation for exposure to only permanent shocks (or equivalently, the martingale component

of sij). In this sense, BHS (2015) referred to the L measure as the long-term risk-neutral

probability measure so that it can be distinguished from the Q measure which absorbs overall

risk aversion except for a time discount factor. Consequently, the difference between the P

and Q measures reflects all of risk adjustments, while the difference between the P and L

mirrors risk compensation for exposure to only the long-term components of risk.

Although the Q and L measures are distinguishable by definitions, we can find their

similarity as well. Both probability measures are adjusted by investors’ risk aversion in

different degrees: The Q measure absorbs compensation regarding overall risk, while the

L measure absorbs compensation regarding long-term (martingale) risk. Since it is known

that the behavior of the original SDF is dominated by its martingale component (AJ, 2005;

Bakshi and Chabi-Yo, 2012), these two measures are not much different from each other.

BHS (2015, p. 28) provided empirical examples of the similarity between Q and L. Both are

clearly distinct from the P measure, however. Qin et al. (2016, Section 5) showed that the Q

and L measures produce almost identical forecasts, while the forecast under the P measure

is clearly distinguished from them.

Particularly, if interest rates are constant, Q is identical with L. In this case, the row

sums of Q are identical so that riskfree rates are state-independent and Qe = exp(−r̄)e. By

the PF theorem, e and exp(−r̄) are the perron vector and the perron root of Q, respectively.

Also, Q = exp(−r̄)P̂ since P̂ e = e, and consequently it follows that L = Q. Ross (2015,

Theorem 2) interpreted this result as P = Q since he equated P with L. In our GDTSM,

however, interest rates are not deterministic since they are affine in yield factors.

The question still remains: Under what circumstances can the Recovery theorem recover
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the physical probability measure? Obviously, from SDF decompositions (4.4.6) and (4.4.8),

we can see that p̂ij = pij holds if sPij = 1. Since sPij is a martingale component, it can be

considered as the Radon-Nikodym derivative for the change of measure from P to L; that is,

sPij = p̂ij/pij. To sum up, we can say that P = L only if this Radon-Nikodym derivative is

unity, or equivalently only if the permanent component is degenerate. As shown in (4.4.6), a

degenerating martingale component implies that the original SDF is transition-independent

since sij = sTij = ς(vi/vj). It follows that sij = ŝij. Consequently, p̂ij = pij.

The literature has examined the reliability of a degenerating martingale component.

First, AJ (2005) argued that sPij = 1 is not the case. They theoretically showed that when

sPij is unity, a return on the long bond maturing at an infinite horizon should be higher

than any other assets; however, their empirical studies provided counter-evidence that bond

returns with a sufficiently long maturity are much lower than those of equity indexes. For

more details, see Qin and Linetsky (2017, p. 303) and BHS (2015, Section 4.3). Second,

Bakshi and Chabi-Yo (2012), along with AJ (2005), questioned sPij = 1 by showing that the

lower bound of the permanent component of the original SDF is substantially more volatile

than that of the transitory component. In addition, AJ (2005, p. 2004) and BHS (2015,

Example 2.2) also presented recursive preferences as an example of the SDF which has a

non-trivial martingale component. To sum up, sufficient theoretical and empirical evidence

implies that the degeneracy of a martingale component is an implausible restriction and

hence P 6= L generally.

Suppose that we equate L with P even though a martingale component is not negligible.

Then, the misspecified P measure misleads us about risk premia and investors’ short-rate

expectations. For example, as BHS (2015) and Qin and Linetsky (2016) pointed out, the

L measure makes the long-term risk-return tradeoffs degenerate because assets are priced

under the L measure as if long-term risk premia were zero even in the presence of long-term

shocks (e.g., stochastically growing cash flows). Such degeneracy is not likely to hold under

the true P measure.
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4.4.2 GDTSM under the Long-term Risk-neutral Probability Measure

Now, we analyze our GDTSM under the long-term risk-neutral probability measure (L)

by using the SDF decomposition and the change of measure.

4.4.2.1 Long-term risk-neutral dynamics

As described in Section 4.2.1, we start with a probability space (Ω,F ,P) and a filtration

Ft, defined for 0 ≤ t ≤ T , where T is a fixed final time. X = {Xt : t ∈ T} is an N -

dimensional stationary Markov process. Recall our state dynamics under the P measure

(4.2.1):

Xt+1 = µ+ ΦXt + Σεt+1,

where εt ∼ N (0, IN). εt represents a source of risk from unknown shocks at time t. Also,

our Q state dynamics (4.2.8) is

Xt+1 = µQ + ΦQXt + ΣεQt+1,

where µQ = µ− λ0, ΦQ = Φ− λ1, and εQt ∼ N (0, IN).

We can consider the change of measure from P to L by using the martingale component

of the original SDF as the Radon-Nikodym derivative of L with respect to P; that is, SP =

dL/dP. As in Section 4.3.1, we also consider the Radon-Nikodym derivative of L with

respect to Q for the change of measure from Q to L; that is, ζ = dL/dQ. Then, we have

that EL
t (Zt+1) = Et(S

P
t+1Zt+1)/SPt = EQ

t (ζt+1Zt+1)/ζt for any random variable Zt+1, where

EL
t is the conditional expectation under the L measure.

As seen before, we can represent the price of a τ -period zero-coupon bond at time t as

follows:

P
(τ)
t = Et

(
St+1

St
P

(τ−1)
t+1

)
= Et

(
SPt+1

SPt

STt+1

STt
P

(τ−1)
t+1

)
= EL

t

(
STt+1

STt
P

(τ−1)
t+1

)
. (4.4.10)
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Also, recall the Radon-Nikodym derivative of Q with respect to P from Section 4.2; that is,

ξ = dQ/dP. Then, in line with (4.2.7) and (4.3.4), we find the relation among three different

probability measures:

P
(τ)
t = Et

(
e−rt

ξt+1

ξt
P

(τ−1)
t+1

)
= EQ

t

(
e−rt P

(τ−1)
t+1

)
= EL

t

(
e−rt

ζt
ζt+1

P
(τ−1)
t+1

)
. (4.4.11)

Consequently, the SDF associated with the L measure is defined as

ŝt,t+1 = STt+1/S
T
t = exp(−rt) ζt/ζt+1. (4.4.12)

Recall the log-normal process for ξ, (4.2.6): log ξt+1 = log ξt − 1
2
λ
′
tλt − λ

′
tεt+1, where λt

represents the market prices of risk, given by λt = Σ−1(λ0 + λ1Xt) as in (4.2.4). Similarly,

suppose that ζt, which is a martingale under the Q measure, follows the log-normal process:

log ζt+1 = log ζt −
1

2
λL
′

t λ
L
t − λL

′

t ε
Q
t+1, (4.4.13)

where λLt = Σ−1(λL0 +λL1Xt). We then recover the L dynamics of the state variables by using

Girsanov’s theorem (for details of the proof, see Appendix A.4.4). The L state dynamics

also follows a Gaussian VAR(1) process:

Xt+1 = µL + ΦLXt + ΣεLt+1, (4.4.14)

where εLt ∼ N (0, IN),

µL = µQ − λL0 , and ΦL = ΦQ − λL1 . (4.4.15)

Also, as seen before, µQ = µ− λ0 and ΦQ = Φ− λ1. By Girsanov’s theorem, we have

εQt+1 = εt+1 + λt and εLt+1 = εQt+1 + λLt . (4.4.16)
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It follows that εLt+1 = εt+1 +(λt+λLt ). Further, suppose that SPt , which is a martingale under

the P measure, follows the log-normal process:

logSPt+1 = logSPt −
1

2
ω
′

tωt − ω
′

tεt+1, (4.4.17)

where ωt is the prices of risk related to permanent shocks since SP is only the martingale

component of a pricing kernel. In this sense, we refer to it as the prices of long-term risk

hereafter. In detail, since SP = ζ · ξ, the following equation holds by the Itô product rule:

λt = ωt − λLt . (4.4.18)

This implies that −λLt is defined as the difference between the overall market prices of risk

(λt) and the prices of long-term risk (ωt). In this sense, −λLt can be considered as the market

prices of risk associated with transitory shocks.

Note that, from (4.4.18), we see that when λt = −λLt for all t, ωt is a vector of zeros.

In this case, from (4.4.17) the martingale component of the original SDF is degenerate

(sPt,t+1 = 1), and consequently the P and L measures become identical. This mathematical

result is consistent with the previous literature mentioned before.

4.4.2.2 Decomposition of yields and term premia

Under the L dynamics (4.3.19), we can decompose yields into investors’ interest rate

expectations and term premia. Basically, this analysis can be conducted in the same way as

in Section 4.2; however, each component should be interpreted differently.

Recall the decomposition of yields under the P measure, (4.2.14):

y
(τ)
t = ỹ

(τ)
t + ytp

(τ)
t . (4.4.19)

ỹ
(τ)
t , which is investors’ short-rate expectations under the P measure, is referred to as P
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risk-neutral rates. Also, ytp
(τ)
t is risk premia corresponding to overall shocks since y

(τ)
t is

priced under the Q measure which entirely absorbs the original SDF.

Likewise, yields can be decomposed under the L measure such that

yt = yLt + ytpLt . (4.4.20)

For simplicity, the τ superscripts are suppressed here. yLt can be interpreted as the hypo-

thetical yields as if our real world is governed by the L measure which absorbs risk premia

corresponding with only permanent shocks. In this regard, we refer to yLt as the long-term

risk-neutral rates (or equivalently, investors’ short-rate expectations under the L measure).

On the other hand, ytpLt is defined as the difference between yt and yLt . Also, from (4.4.19)

and (4.4.20), we have

ytpLt = ytpt − (yLt − ỹt). (4.4.21)

Obviously, the difference in parentheses is the long-term risk compensation since yLt absorbs

risk compensation for exposure to permanent shocks, whereas ỹt does not capture any risk

compensation. Thus, ytpLt can be also defined as the difference between compensation for

overall risk exposure and that for long-term risk exposure. In this sense, we refer to ytpLt as

short-term risk premia.

Let ytpωt denote the long-term risk compensation; that is, yLt − ỹt = ytpt − ytpLt . Then,

we have the following relation between long-term risk-neutral rates and P risk-neural rates:

yLt = ỹt + ytpωt . (4.4.22)

We refer to ytpωt as long-term risk premia hereafter. Recall that we calculated ỹt by using the

P parameter estimates in Section 4.2.1. Similarly, we can compute yLt by using the parameter
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estimates of the L dynamics:

y
(τ)L
t = AL

τ +BL′
τ Xt, AL

τ = −1

τ
Aτ (µ

L,ΦL, δ0, δ1,Σ), BL
τ = −1

τ
Bτ (Φ

L, δ1). (4.4.23)

Obviously, we also get

ytpt = ytpLt + ytpωt . (4.4.24)

Thus, overall term premia are decomposed into short-term risk premia and long-term risk

premia.

Note that the implication of (4.4.22) is consistent with that of (4.4.18). If long-term risk

premia are zero, long-term risk-neutral rates and P risk-neutral rates are identical so that

P = L. Equivalently, since risk premia are the product of the market prices of risk and the

quantity of risk, when the market prices of long-term risk are zero in (4.4.18), we have P = L

as well.

In a similar fashion to yield decompositions, we can conduct forward rates decompositions

as follows. For simplicity, the (τj, τk) superscripts are suppressed here.

ft = f̃t + ftpt, ft = fL
t + ftpLt and fL

t = f̃t + ftpωt . (4.4.25)

We refer to f̃t as P risk-neutral forward rates, ftpt as forward term premia, fL
t as long-term

risk-neutral forward rates, ftpωt as long-term forward term premia, and ftpLt as short-term

forward term premia (i.e., ftpLt = ftpt − ftpωt ).

4.5 Empirical Results

In Section 4.2.3, we analyzed GDTSMs for ten countries by estimating the P and Q state

dynamics and decomposing five- to ten-year forward rates into overall term premia and P

risk-neutral rates.

Now, we extend this analysis to a new world governed by the long-term risk-neutral
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probability measure (L). First, we recover a state dynamics under the L measure as described

in Section 4.3.2. Second, as discussed in Section 4.4.2, forward term premia are extracted

from forward rates under the L measure. Lastly, we identify what the Recovery theorem

really recovers and how three different probability measures (P, Q and L) are linked with

one another.

In this section, under a stationary assumption, we exclude six countries from a panel

dataset, in which the Q state dynamics has a nearly unit root; specifically, the largest

eigenvalue of ΦQ
P is larger than 0.99 (see Table A.4.1). Excluded countries are Australia,

Canada, New Zealand, Norway, Sweden and the UK.

4.5.1 Recovered State Dynamics

By using the GL method, the underlying Q dynamics is approximated by a discrete-state

stationary Markov process. We choose mk = 9 for all k so that m∗ = 729. Gospodinov and

Lkhagvasuren (2014) showed that the GL method with a moderate number of grid points

(e.g., mk = 9) provides a very precise approximation of the underlying process even for

highly persistent data. Another example is Farmer (2014), which also used the GL method

with 9 grid points along each dimension to estimate the shadow-rate term structure model.

We obtain a set of discrete-valued 3×1 vectors (z1, z2, . . . , z729), and a 729×729 risk-neutral

transition probability matrix (P̃ ).

As described in Remark 1, we check the accuracy of the GL method. First, we generate

time series for 10, 000 time periods with a burn-in period of 1, 000 based on grid points

and P̃ . Also, we directly simulate a sequence of length 10, 000 with a burn-in period of

1, 000 based on the underlying VAR process. After repeating each simulation 1, 000 times,

we calculate the mean of the estimated parameters. Then we compare the mean estimates

obtained from two experiments. Table A.4.2 in Appendix reports the result of our quality

check. Differences between parameter estimates are very small across all countries. They

are nearly identical up to two decimal points.
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Table 4.3: Estimation of the L Dynamics of Yield Factors

µL ΦL Σ

µ̈L (s.e) Φ̈L (s.e) Σ̈ (s.e ×103)

0.0035 (0.013) 1.0071 0.1941 -0.8020 (0.042) (0.151) (0.789) 0.0217 0 0 (0.076)

US -0.0039 (0.004) -0.0278 0.9459 0.8018 (0.013) (0.046) (0.242) 0.0007 0.0066 0 (0.017) (0.007)

0.0060 (0.002) 0.0190 -0.0205 0.3652 (0.006) (0.022) (0.116) -0.0007 -0.0015 0.0027 (0.008) (0.003) (0.002)

0.0006 (0.004) 0.9767 0.1257 -0.5382 (0.021) (0.154) (0.612) 0.0139 0 0 (0.032)

Japan -0.0008 (0.001) 0.0085 0.9900 0.5424 (0.007) (0.050) (0.198) 0.0015 0.0042 0 (0.008) (0.003)

0.0012 (0.001) -0.0053 -0.0436 0.6883 (0.004) (0.030) (0.118) -0.0022 -0.0001 0.0016 (0.006) (0.002) (0.001)

0.0018 (0.007) 0.9720 0.1901 -0.7274 (0.026) (0.128) (0.406) 0.0161 0 0 (0.042)

Ger. -0.0016 (0.003) 0.0049 0.9588 0.6781 (0.009) (0.045) (0.145) 0.0006 0.0057 0 (0.011) (0.005)

0.0025 (0.002) -0.0037 -0.0178 0.5600 (0.006) (0.030) (0.095) -0.0017 -0.0014 0.0031 (0.008) (0.003) (0.002)

0.0008 (0.008) 0.9258 0.2745 0.6059 (0.026) (0.175) (0.496) 0.0154 0 0 (0.038)

Switz. -0.0006 (0.003) 0.0226 0.9104 -0.4983 (0.009) (0.061) (0.174) 0.0008 0.0053 0 (0.010) (0.005)

-0.0009 (0.002) 0.0019 0.0055 0.8407 (0.005) (0.033) (0.094) 0.0007 0.0013 0.0025 (0.005) (0.002) (0.001)

Note: This table reports the parameter estimates of the discretized VAR(1) process (4.3.18) under the L measure, which is induced from the GL
method with mk = 9 for all k, and standard errors. All the estimates are reported on an annual basis (by multiplying 4).

Next, we construct a 729 × 729 state-price matrix (Q) by using the one-period (three-

month) interest rates and grid points as in Section 4.3.2.2. Moreover, we confirm that Q is

non-negative and irreducible for all four countries as described in Remark 2. In what follows,

we obtain the perron root and perron vector of the irreducible Q by employing the power

method and compute the recovered state transition probability matrix (P̂ ). Eventually, we

estimate the L dynamics of the state variables as described in Section 4.3.2.4. Table 4.3

reports parameter estimates for the L dynamics.

For a robustness check, we increase the number of grid points along each dimension up

to mk = 21 (m∗ = 9261) and repeat the same steps as above. Gospodinov and Lkhagva-

suren (2014) noted that in a highly persistent multivariate process, adjusting the number

of grid points is not always the best approach to improve approximation quality due to the

cross-correlations between factors. In fact, our results with a larger number of grid points

(mk = 21) are not much different from our baseline results with mk = 9 (see Table A.4.2 in

Appendix). In addition, we employ the method of Terry and Knotek (2011) as an alternative

to the GL method; however, we fail to obtain irreducible Q matrices for all countries, except

for the US. Even though we adjust the number of grid points between mk = 3 and 27, the

method of Terry and Knotek keeps producing reducible matrices.
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Table 4.4: Comparisons of Summary Statistics w.r.t. Different Probability Measures

Max Eig(ΦP) IRF Half-life Volatility 4(90-91/08-09)

Q P(BC) L Q P(BC) L Q P(BC) L ft f̃t fL
t ft f̃t fL

t

US 0.9711 0.9862 0.9708 0.60 0.76 0.59 27.00 49.00 26.00 1.25 0.84 1.17 -387 -239 -367

Japan 0.9873 0.9844 0.9831 0.83 0.72 0.76 63.00 35.00 47.00 1.77 1.47 1.54 -473 -398 -424

Ger. 0.9737 0.9997 0.9718 0.66 0.96 0.64 32.00 - 30.00 1.48 2.09 1.39 -407 -614 -387

Switz. 0.9892 0.9917 0.9851 0.55 0.86 0.52 30.00 52.00 23.00 1.14 2.09 1.03 -259 -477 -236

Note: (i) Each statistic under P and Q is computed using BC estimates. (ii) IRF is the impulse-response function at horizon of
five years of the first yield factors to a level shock. (iii) Half-life is the horizon (quarters) at which the IRF falls first below 0.5. If
a computed half-life is larger than 50 years, we do not report it. (iv) The “Volatility” columns report the standard deviations of
risk-neutral prices and short-rate expectations under different measures. (v) The last three columns show changes from 1990-1991
to 2008-2009 which are computed by the difference between the mean of observations from 1990:III to 1991:III (the early part of
the sample) and from 2008:I to 2009:I (the late part of the sample.) We report in basis points. As defined in (4.4.25), ft is the

fitted five- to ten-year forward rates, f̃t is P risk-neutral forward rates, and fL
t is long-term risk-neutral forward rates.

4.5.2 GDTSM Analysis under the Recovered Probability Measure

To figure out the implications of our recovery results, Table 4.4 reports summary statis-

tics of the estimated state dynamics under three different probability measures: the physical

measure P, the risk-neutral measure Q, and the recovered measure L. For the P and Q

measures, we only report statistics obtained from BC two-step procedures since the P per-

sistence obtained from JSZ two-step procedures would not reflect reasonable persistence as

shown in Section 4.2. Note that statistics under the Q measure remain the same regardless

of bias correction.

Across various measures of persistence (the largest eigenvalue of ΦP , the impulse response

function, and the half-life), we can see that the L measure produces very similar statistics

to the Q measure, while the P measure yields very different statistics from the Q measure

(excepting Japan). This is consistent with previous studies which provide theoretical and

empirical evidence on the similarity between the Q and L measures (see Section 4.4.1). This

similarity can be found in the “Volatility” columns as well. The volatilities of long-term risk-

neutral forward rates (fL
t ) are very similar to those of forward rates (ft), while they differ

greatly from those of P risk-neutral rates (f̃t). It implies that the movement of the fitted

forward rates can be explained better by long-term risk-neutral rates than by P risk-neutral

rates. Moreover, we can see the same result across all countries in terms of the changes from
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Figure 4.1: Decomposition of Forward Rates – Fitted/Risk-neutral/Long-term Risk-neutral

Note: This figure plots the five- to ten-year fitted forward rates, P risk-neutral forward rates (short-term
interest rate expectations) estimated by BC two-step procedures, and long-term risk-neutral forward rates
estimated by the Recovery theorem.

the early to late sample periods of each component.

Figure 4.1 depicts the historical evolutions of the fitted five- to ten-year forward rates,

P risk-neutral forward rates obtained by BC estimates, and long-term risk-neutral forward

rates. There are distinct downward trends in long-term risk-neutral forward rates as shown in

the fitted forward rates as well; more precisely, both are nearly parallel to each other. Thus,

long-term risk-neutral rates contribute extensively to the secular declining trend and volatil-

ity of the fitted forward rates. Comparing them with P risk-neutral forward rates, however,

we can see significant differences with respect to level and slope. Across all countries, a gap

between the fitted forward rates and long-term risk-neutral forward rates (ft− fL
t ) is pretty

small relative to a gap between the fitted forward rates and P risk-neutral rates (ft − f̃t).

Consequently, the former, which implies short-term forward term premia (ftpLt ), should be
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Figure 4.2: Decomposition of Forward Term Premia – ftpt, ftp
ω
t , and ftpLt

Note: This figure plots the five- to ten-year fitted forward rates and the corresponding term premia that are
estimated by JSZ two-step procedures and BC two-step procedures across 10 countries. For each country,
the recession periods are indicated by shaded area. Without loss of generality, actual forward rates are
omitted, since fitting errors are small.

smaller and flatter than the latter, which captures overall forward term premia (ftpt).

Our empirical findings coincide very well with theoretical results from the previous

literature: (i) the similarity between Q and L, and (ii) the argument of “misspecified

recovery”(P 6= L). Concisely, the recovered investors’ expectations from the Recovery the-

orem are inconsistent with the investors’ true (physical) expectations; rather, the recovered

expectations represent investors’ expectations adjusted by their aversion to long-term risk.

4.5.3 Long-term Risk Premia

Now, we examine term premia in detail. As described in Section 4.4.2, we compute

forward term premia by the difference between the fitted forward rates and P risk-neutral

forward rates estimated from BC two-step procedures (ftpt = ft − f̃t). Also, short-term
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forward term premia is computed by the difference between the fitted forward rates and long-

term risk-neutral forward rates (ftpLt = ft − fL
t ). Lastly, we obtain long-term forward term

premia (ftpωt ), which compensate risk-averse investors for exposure to permanent shocks,

from the term premia decomposition (4.4.24).

Figure 4.2 depicts the historical evolutions of ft, ftpt, ftp
L
t , and ftpωt . First, overall

term premia (ftpt) and long-term forward term premia (ftpωt ) are highly volatile over the

sample period. Such high volatilities of ftpt and ftpωt are very plausible in the sense that

long-term forward term premia contain a martingale component in the original SDF (or

equivalently, risk compensation corresponding to permanent shocks), and this martingale

component dominates the overall behavior of the original SDF. On the other hand, short-

term forward term premia (ftpLt ) are nearly constant and very stable over time. This is

because ftpLt is risk compensation associated with only transitory shock, or equivalently it

contains the transitory component of the original SDF.

Second, overall term premia (ftpt) and long-term forward term premia (ftpωt ) almost par-

allel each other. Contrarily, short-term forward term premia (ftpLt ) are clearly distinguished

from them. In addition, ftpLt is relatively small in level, and its magnitude is not much

different across countries, while ftpt varies considerably across countries. All of these results

imply that overall term premia are mostly attributed to long-term premia, while short-term

premia do not significantly affect overall term premia.

Finally, we can easily confirm L 6= P over the sample period. In Figure 4.2, we can see

clearly that ftpωt is extremely volatile and very far from zero for most of the period. Also,

ftpLt is much different from ftpt in level and volatility. The misspecified P measure (actually,

the L measure) mislead us about term premia. In this case, term premia (ftpLt ) are neither

as sizable nor time-varying as they should be under the true P measure.

We can also examine whether or not L 6= P in terms of the market prices of risk. In

Section 4.4, we theoretically show that if ωt is a vector of zeros, the L measure is identical

with the P measure. From (4.4.18), a 3× 1 zero vector ωt implies that λt = −λLt , where λt
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Figure 4.3: Market Prices of Risk Factors

United States

Japan

Germany

Switzerland

Note: This figure plots the historical evolutions of each component of the market price of overall risk denoted
by λt, the price of the long-term risk denoted by ωt, and their difference denoted by λLt .

is a 3× 1 vector of the market prices of overall risk, and −λLt is a 3× 1 vector of risk prices

associated with transitory shocks (difference between λt and ωt). Figure 4.3 depicts the

historical evolutions of each element of λt, ωt, and −λLt for all countries. The each element

153



of ωt is highly volatile and much far away from zero over the sample period. λt and −λLt are

significantly different from each other across all countries in level and slope. Overall, our

empirical result supports L 6= P; that is, the Recovery theorem fails to identify the physical

probability measure.

4.6 Concluding Remarks

In this paper, we revisit the Recovery theorem proposed by Ross (2015). In particular,

its relevancy and reliability are examined in the framework of the affine Gaussian dynamic

term structure model.

First, we apply the Recovery theorem to GDTSM. Using an international panel dataset,

a certain probability measure (L) is recovered from state prices constructed by the finite-

state Markov-chain approximation method of Gospodinov and Lkhagvasuren (2014), and the

state dynamics under the L measure is estimated. Also, under the L measure, forward rates

are decomposed into investors’ short-rate expectations and term premia. For a benchmark

against which the Recovery theorem can be tested, we estimate the physical probability

measure (P) and a corresponding state dynamics under the P measure by a conventional

maximum likelihood estimation with bias correction. The forward rates decomposition is

also conducted under the P measure.

Second, we provide strong evidence showing that the Recovery theorem misspecifies the

physical probability measure. We verify the identity between our L measure and the long-

term risk-neutral measure defined by BHS (2015). Meanwhile, we find the conditions for

P = L in terms of risk premia as well as the market prices of risk. Our empirical result

shows that investors’ short-rate expectations and term premia under the P measure are

substantially different from those under the L measure. Moreover, we characterize term

premia under L as the short-term premia associated with transitory shocks; hence, long-term

risk premia corresponding to permanent (martingale) shocks can be extracted from overall

risk premia. Our empirical result shows that short-term risk premia are nearly constant
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over time, while long-term risk premia are highly volatile and almost parallel overall term

premia. Consequently, the secular downward trend and volatility of forward rates are mostly

attributed to investors’ short-rate expectations under the long-term risk-neutral probability

measure, and all important variations in overall term premia can be captured by long-term

risk premia. Our result demonstrates that long-term risk matters for asset pricing.

Several extensions are left for future research. As mentioned before, there exists the

statistical uncertainty around the point estimates of the P parameters estimated from BC

two-step procedures. Since P estimates are used as a benchmark, we can seek to validate

our result by using alternative estimation procedures or under different model specifications

in the GDTSM literature; for example, we may consider the minimum-chi-square estimation

of Hamilton and Wu (2012), the use of survey data as additional information as in Kim and

Orphanides (2012), risk-parameter restrictions by Bauer (2016), and macro-factor models

by Joslin et al. (2014) and Creal and Wu (2015). Next, although a fully specified state-price

matrix is necessary for the application of Recovery theorem, it is not practically easy in

equity markets. Thus, it is worth checking whether or not a Markov approximation method

employed in our fixed-income market study is applicable to equity markets. Moreover, we can

examine policy implications on long-term risk premia and investors’ long-term risk-neutral

expectations.
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Appendix

A.4.1. Girsanov’s Theorem in a Discrete-time Specification

Let us define an N × 1 vector εt ∼ N (0, IN) on a probability space (Ω,F ,P), where P is

the physical probability measure. Let Wt denote the column vector (W1,t,W2,t, . . . ,WN,t)
′.

We define an N -dimensional discrete-time Brownian Motion: W0 = 0 and Wt =
∑T

t=1 εt,

for t = 1, 2, . . . , T . Equivalently, εt = Wt − Wt−1; that is, ε are the increments to W .

We then find that {Wt}Tt=0 is a martingale under P and a Markov process as well (Shreve,

2004, Theorem 3.3.4 and 3.5.1). Likewise, let Ŵt denote a Brownian Motion under another

probability measure, P̂.

Define the random variable Z as

Zt = exp

(
T∑
t=1

−γtεt −
T∑
t=1

1

2
||γt||2

)
,

where || · || denotes the Euclidean norm such that ||γt|| =
(∑N

j=1 γ
2
j,t

)1/2

for j = 1, 2, . . . , N ,

and γt is called the market prices of risk which are the unit prices of bearing exposure to the

increment of Wt. Also, consider

ε̂t+1 = εt+1 + γt,

where ε̂t = Ŵt − Ŵt−1. More precisely, ε̂t = (ε̂1,t, ε̂2,t, . . . , ε̂N,t)
′ and ε̂j,t+1 = εj,t+1 + γj,t.

Then, setting Z = Z(T ), E(Z) = 1 and the process Ŵt is an N -dimensional discrete-time

Brownian Motion under the P̂ measure given by

P̂(A) =

∫
A

Z(α)dP(α), for all A ∈ F .

We say Z is the Radon-Nikodym derivative of P̂ with respect to P, and write it as

Z =
dP̂
dP
.

156



Using this Radon-Nikodym derivative, we can find the following relation between two dif-

ferent expectations: the expectation under the original P measure denoted by E(X) and

the expectation under the new probability measure (P̂) denoted by Ê(X). For any random

variable X, we have

Ê(X) = E(XZ).

(Shreve, 2004, Theorem 5.2.3 and Theorem 5.4.1; Duffie, 2010, Ch.6).

A.4.2. Risk-neutral dynamics/ Change of measure

Recall (4.2.1). Consider the dynamics of latent factors under the physical measure (P):

Xt+1 = µ+ ΦXt + Σεt+1,

where εt ∼ N (0, IN). The Radon-Nikodym derivative process is given by

ξt+1

ξt
= exp

(
−1

2
λ
′

tλt − λ
′

tεt+1

)

as in (4.2.6). As defined in (4.2.3), the one-period stochastic discount factor is defined as

St+1

St
= exp(−rt)

ξt+1

ξt
= exp

(
−rt −

1

2
λ
′

tλt − λ
′

tεt+1

)
.

Also, the market prices of risk are given by λt = Σ−1(λ0 + λ1Xt) in (4.2.4).

By Shreve (2004, Lemma 5.22) and our risk-price specification, we can derive the con-

ditional moment generating function of a multivariate normal distribution as follows: Since

EQ(Y |Fs) = 1
ξs
E(Y ξt|Fs) for 0 ≤ s ≤ t ≤ T , where Y is an Ft-measurable random variable,
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we get

EQ (exp(u′Xt+1)|Xt) =
1

ξt
E(exp(u′Xt+1) · ξt+1|Xt)

= E

[
exp

(
u′Xt+1 −

1

2
λ
′

tλt − λ
′

tεt+1

)
|Xt

]
= E

[
exp

(
u′(µ+ ΦXt + Σεt+1)− 1

2
λ
′

tλt − λ
′

tεt+1

)
|Xt

]
= exp

(
u′(µ+ ΦXt − Σλt) +

1

2
u′ΣΣ′u

)
= exp

(
u′(µ− λ0 + (Φ− λ1)Xt) +

1

2
u′ΣΣ′u

)
.

Then, the above result implies that the Q dynamics of Xt is

Xt+1 = µQ + ΦQXt + ΣεQt+1,

where εQt ∼ N (0, IN),

µQ = µ− λ0, and ΦQ = Φ− λ1.

Moreover, by the Girsanov’s theorem, we have εQt+1 = εt+1 + λt and the volatility of the

state vector (Σ) stays the same under both measures. For the same analysis in a continuous-

time specification, see Shreve (2004, p. 213), Piazzesi (2010, p. 702) and Duffie (2010, Ch.6

and Appendix D).

A.4.3. Parameter estimates of the recovered state dynamics

First, obtain the moments of the discretized Markov process P̃t = (P̃1,t, P̃2,t, P̃3,t)
′
. The

conditional mean of P̃k,t+1 given a current state i is defined as

EL(P̃k,t+1|P̃k,t = zik) =
∑m∗

j=1 p̂ijz
j
k = Z̄

(i)
k ,

for k = 1, 2, 3, i, j = 1, 2, . . . ,m∗, and where Z̄
(i)
k denotes the conditional mean of P̃k,t+1.

Next, the unconditional moments can be defined using the stationary distribution, π, of a

finite-state Markov-chain process as follows:
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EL(P̃k,t) =
∑m∗

j=1 πjz
j
k = Z̄k,

V arL(P̃k,t) =
∑m∗

j=1 πj(z
j
k − Z̄k)2,

CovL(P̃k,t, P̃h,t) =
∑m∗

j=1 πj(z
j
k − Z̄k)(z

j
h − Z̄h),

for k, h = 1, 2, 3, where Z̄k denotes the unconditional mean of P̃k,t, and πj is the j-th

element of an m∗ × 1 vector of π that satisfies πj =
∑m∗

i=1 πi · p̂ij (Jiang, 2010, p. 324).

Moreover, we can obtain additional moments as follows:

EL(P̃2
k,t) =

∑m∗

j=1 πj(z
j
k)

2 = Z̄2
k ,

EL(P̃k,tP̃h,t) =
∑m∗

j=1 πjz
j
kz

j
h,

EL(P̃k,t+1P̃k,t) =
∑m∗

j=1 πjz
j
k

∑m∗

l=1 p̂jlz
l
k =

∑m∗

j=1 πjz
j
kZ̄

(j)
k ,

EL(P̃k,t+1P̃h,t) =
∑m∗

j=1 πjz
j
h

∑m∗

l=1 p̂jlz
l
k =

∑m∗

j=1 πjz
j
hZ̄

(j)
k ,

for k, j = 1, 2, 3, and i, j, l = 1, 2, . . . ,m∗.

Next, we can estimate parameters induced by L measure fromB = [EL(P̃t+1W
′
t )][E

L(WtW
′
t )]
−1,

where

EL(WtW
′

t ) =



∑m∗

j=1 πj
∑m∗

j=1 πjz
j
1

∑m∗

j=1 πjz
j
2

∑m∗

j=1 πjz
j
3∑m∗

j=1 πjz
j
1

∑m∗

j=1 πj(z
j
1)2

∑m∗

j=1 πjz
j
1z
j
2

∑m∗

j=1 πjz
j
1z
j
3∑m∗

j=1 πjz
j
2

∑m∗

j=1 πjz
j
2z
j
1

∑m∗

j=1 πj(z
j
2)2

∑m∗

j=1 πjz
j
2z
j
3∑m∗

j=1 πjz
j
3

∑m∗

j=1 πjz
j
3z
j
1

∑m∗

j=1 πjz
j
3z
j
2

∑m∗

j=1 πj(z
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A.4.4. Long-term Risk-neutral dynamics/ Change of measure

As shown in Appendix A.4.2, we derive the conditional moment generating function of a

multivariate normal distribution as follows:

Since EQ(Y |Fs) = 1
ξs
E(Y ξt|Fs) and EL(Y |Fs) = 1

ζs
EQ(Y ζt|Fs) for 0 ≤ s ≤ t ≤ T , where

Y is an Ft-measurable random variable, we get

EL (exp(u′Xt+1)|Xt) =
1

ζt
EQ (exp(u′Xt+1) · ζt+1|Xt)

=
1

ζt

1

ξt
E (exp(u′Xt+1) · ξt+1ζt+1|Xt)

= E

[
exp

(
u′Xt+1 −

1

2
(λ
′

tλt + λL
′

t λ
L
t )− λ′tεt+1 − λL

′

t ε
Q
t+1

)
|Xt

]
= E

[
exp

(
u′(µ+ ΦXt)−

1

2
(λ
′

tλt + λL
′

t λ
L
t )− λL′t λt + (u′t − λL

′

t )εt+1

)
|Xt

]
= exp

(
u′(µ+ ΦXt − Σλt − ΣλLt ) +

1

2
u′ΣΣ′u

)
= exp

(
u′
(
µ− λ0 − λL0 + (Φ− λ1 − λL1 )Xt

)
+

1

2
u′ΣΣ′u

)
.

Then, the above result implies that the L dynamics of Xt is

Xt+1 = µL + ΦLXt + ΣεLt+1,

where µL = µQ − λL0 and ΦL = ΦQ − λL0 since µQ = µ− λ0 and ΦQ = Φ− λ1. Moreover, by

the Girsanov’s theorem, we have εLt+1 = εQt+1 + λLt , where εLt ∼ N (0, IN). The volatility of

the state vector (Σ) remains the same under different measures.

Next, recall

dL
dP

=
dL
dQ
· dQ
dP

, or equivalently SP = ζ · ξ,

and the instantaneous volatility process of each martingale is defined as:

dξt
ξt

= −λtdWt,
dζt
ζt

= −λLt dW
Q
t , and

dSPt
SPt

= −ωtdWt,
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where Wt and WQ
t are Brownian motions under P and under Q, respectively. Then, by the

Itô product rule, we can obtain

−ωtdWt = −λtdWt − λLt dW
Q
t + λtdWt · λLt dW

Q
t

= −λtdWt − λLt (dWt + λtdt) + λtλ
L
t dWt(dWt + λtdt)

= −(λt + λLt )dWt.
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Figure A.4.1: Decomposition of Forward Rates – Fitted Rates/Risk-neutral Rates

Note: This figure plots the five- to ten-year fitted forward rates and risk-neutral rates (short-term interest rate
expectations under the physical probability measure) that are estimated by JSZ two-step procedures and BC
two-step procedures across 10 countries. Without loss of generality, actual forward rates are omitted, since
fitting errors are small. Shaded area show bootstrapped 90 percent confidence intervals for BC risk-neutral
rates.
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Figure A.4.2: Decomposition of Forward Rates – Term Premia

Note: This figure plots the five- to ten-year fitted forward rates and the corresponding term premia that are
estimated by JSZ two-step procedures and BC two-step procedures across 10 countries. For each country,
the recession periods are indicated by shaded area. Without loss of generality, actual forward rates are
omitted, since fitting errors are small.
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Table A.4.1: Three-Factor GDTSM Estimation

P Q
µP ΦP eig(ΦP) r∞ φ ΣP

0.0040 0.9438 -0.1753 0.7071 0.9262 0.0643 0.9873 0.0123 0 0
Japan JSZ 0.0015 0.0060 0.8915 0.4652 0.9262 0.8720 0.0013 0.0041 0

0.0003 0.0068 0.0064 0.3886 0.3728 0.8131 -0.0017 -0.0002 0.0014
0.0036 0.9867 -0.1525 0.6045 0.9844 0.0649 0.9873 0.0131 0 0

BC -0.0002 0.0023 0.9738 0.4591 0.9844 0.8720 0.0012 0.0043 0
0.0005 0.0014 0.0071 0.4339 0.4262 0.8129 -0.0017 -0.0002 0.0015
0.0011 0.9686 0.0245 0.0829 0.9715 0.0698 0.9737 0.0147 0 0

Germany JSZ 0.0028 -0.0058 0.9101 0.4963 0.9265 0.9382 0.0008 0.0056 0
-0.0001 0.0067 0.0133 0.5725 0.5532 0.5850 -0.0015 -0.0012 0.003
-0.0002 0.9977 0.0120 0.0293 0.9997 0.0701 0.9737 0.0152 0 0

BC 0.0007 -0.0030 0.9493 0.5021 0.9810 0.9382 0.0008 0.0056 0
-0.0003 0.0039 0.0241 0.6220 0.5883 0.5850 -0.0015 -0.0012 0.0031
0.0067 0.9304 -0.1922 -0.6330 0.9528 0.0317 0.9929 0.0183 0 0

United Kingdom JSZ -0.0035 0.0030 0.8889 -0.6902 0.8166 0.8793 -0.0002 0.0071 0
-0.0017 0.0115 0.0355 0.7307 0.8166 0.5442 -0.0025 0.0007 0.0027
0.0033 0.9700 -0.1790 -0.6423 0.9959 0.0334 0.9929 0.0193 0 0

BC -0.0001 -0.0051 0.9320 -0.6662 0.8492 0.8795 0.0000 0.0072 0
-0.0009 0.0065 0.0246 0.7725 0.8492 0.5440 -0.0025 0.0007 0.0028
0.0048 0.9258 -0.1283 0.2709 0.9546 0.1691 0.9973 0.0210 0 0

Canada JSZ -0.0004 -0.0171 0.8401 -0.7038 0.7626 0.8814 0.0018 0.0070 0
0.0006 0.0087 0.0213 0.4809 0.5296 0.6154 -0.0023 0.0011 0.0028
0.0016 0.9745 -0.0805 0.2389 0.9883 0.1726 0.9973 0.0220 0 0

BC 0.0007 -0.0127 0.8895 -0.6580 0.8517 0.8814 0.0019 0.0071 0
0.0011 0.0041 0.0127 0.5298 0.5538 0.6154 -0.0023 0.0011 0.0029
0.0157 0.9397 -0.5647 -1.5244 0.7668 2.3751 0.9999 0.0211 0 0

Norway JSZ -0.0301 0.0279 0.5350 -0.0808 0.7668 0.8374 -0.0026 0.0075 0
0.0093 0.0183 0.0326 0.6030 0.5604 0.6992 -0.0008 -0.0007 0.0031
0.0032 1.0061 -0.5896 -1.4684 0.9157 2.5269 0.9999 0.0214 0 0

BC -0.0205 0.0130 0.6305 -0.1410 0.7031 0.8374 -0.0027 0.0075 0
0.0074 0.0123 0.0166 0.6826 0.7031 0.6993 -0.0009 -0.0007 0.0031

-0.0015 0.9485 -0.4044 -0.5490 0.9504 2.7754 0.9999 0.0213 0 0
Sweden JSZ -0.0049 0.0072 0.7805 -0.6217 0.7858 0.8122 -0.0013 0.0065 0

0.0007 0.0066 0.0654 0.7320 0.7858 0.8171 -0.0025 -0.0001 0.0023
-0.0045 0.9874 -0.4074 -0.6007 0.9982 4.1959 0.9999 0.0206 0 0

BC -0.0014 -0.0023 0.8333 -0.6098 0.8186 0.8089 -0.0009 0.0065 0
0.0011 0.0031 0.0533 0.7719 0.8186 0.8201 -0.0022 0.0000 0.0024
0.0082 0.9508 -0.1240 0.1630 0.9262 0.0775 0.9892 0.0144 0 0

Switzerland JSZ 0.0037 0.0052 0.8454 -0.3666 0.9262 0.8467 0.0007 0.0051 0
0.0001 -0.0033 -0.0415 0.6277 0.5721 0.8467 0.0004 0.0013 0.0023
0.0050 0.9963 -0.0978 0.1541 0.9917 0.0780 0.9892 0.0151 0 0

BC 0.0005 0.0027 0.9322 -0.3702 0.9917 0.8467 0.0006 0.0052 0
0.0003 -0.0008 -0.0416 0.7045 0.6500 0.8467 0.0004 0.0012 0.0024
0.0190 0.8932 -0.1974 -0.1236 0.9252 0.0117 1.0000 0.0176 0 0

Australia JSZ 0.0018 -0.0142 0.8290 -0.6296 0.6452 0.8526 -0.0002 0.0064 0
-0.0002 0.0074 0.0387 0.4903 0.6452 0.7221 -0.0028 -0.0007 0.0021
0.0097 0.9511 -0.1797 -0.0730 0.9804 0.0159 1.0000 0.0182 0 0

BC 0.0046 -0.0196 0.8880 -0.6258 0.8088 0.8532 -0.0002 0.0064 0
0.0014 0.0004 0.0253 0.5076 0.5575 0.7237 -0.0028 -0.0004 0.0024
0.0254 0.8962 -0.0824 -0.8029 0.8911 0.7837 0.9997 0.0180 0 0

New Zealand JSZ -0.0019 0.0060 0.8107 -0.8676 0.8058 0.8359 0.0006 0.0087 0
0.0023 0.0065 -0.0004 0.3098 0.3198 0.5645 -0.0003 0.0004 0.0035
0.0127 0.9580 -0.0938 -0.7610 0.9587 1.1973 0.9998 0.0211 0 0

BC 0.0014 0.0005 0.8711 -0.8661 0.8819 0.8360 0.0000 0.0082 0
0.0023 0.0038 -0.0104 0.3639 0.3524 0.5639 -0.0007 0.0005 0.0035

Note: µP , rQ∞, and ΣP are reported on an annual basis (by multiplying 4). ΦP is (I3 + KP), where KP is the mean-reversion
coefficient matrix in (4.2.21). φQ here is reported by one plus the ordered eigenvalues of the mean-reversion coefficient matrix; that
is eig(I3 +KQ) in (4.2.18).
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Table A.4.2: Accuracy of the GL’s Markov Approximation method

US Japan Germany Switzerland

m = 9
a. true 0.005 -0.004 0.006 0.001 -0.001 0.001 0.002 -0.002 0.002 0.001 -0.001 -0.001

µQ
P b. markov 0.005 -0.004 0.006 0.002 -0.001 0.001 0.003 -0.001 0.002 0.002 -0.001 -0.001

c. direct 0.005 -0.004 0.006 0.001 -0.001 0.001 0.002 -0.001 0.002 0.001 -0.001 -0.001
a. true 1.010 0.202 -0.842 0.979 0.139 -0.594 0.973 0.197 -0.747 0.926 0.290 0.631

-0.029 0.954 0.829 0.009 1.003 0.568 0.005 0.962 0.682 0.023 0.914 -0.502
0.019 -0.021 0.365 -0.005 -0.047 0.690 -0.004 -0.019 0.561 0.002 0.006 0.843

b. markov 1.008 0.200 -0.818 0.979 0.137 -0.569 0.972 0.195 -0.736 0.925 0.289 0.626

ΦQ
P -0.028 0.949 0.813 0.009 0.995 0.548 0.005 0.960 0.679 0.023 0.913 -0.502

0.019 -0.021 0.364 -0.005 -0.047 0.687 -0.004 -0.018 0.560 0.002 0.006 0.842
c. direct 1.010 0.202 -0.843 0.979 0.139 -0.595 0.973 0.197 -0.747 0.926 0.290 0.631

-0.029 0.954 0.828 0.009 1.002 0.567 0.005 0.962 0.682 0.023 0.914 -0.503
0.019 -0.021 0.365 -0.005 -0.047 0.690 -0.004 -0.019 0.561 0.002 0.006 0.842

a. true 0.407 0.063 -0.033 0.150 0.016 -0.021 0.215 0.011 -0.022 0.209 0.010 0.006
0.063 0.041 -0.007 0.016 0.019 -0.003 0.011 0.032 -0.008 0.010 0.026 0.007

-0.033 -0.007 0.005 -0.021 -0.003 0.005 -0.022 -0.008 0.013 0.006 0.007 0.007
b. markov 0.501 0.077 -0.041 0.251 0.027 -0.035 0.334 0.018 -0.035 0.309 0.015 0.009

ΣP × 103 0.077 0.053 -0.009 0.027 0.024 -0.005 0.018 0.034 -0.009 0.015 0.030 0.008
-0.041 -0.009 0.009 -0.035 -0.005 0.010 -0.035 -0.009 0.015 0.009 0.008 0.008

c. direct 0.407 0.063 -0.033 0.150 0.016 -0.021 0.215 0.011 -0.022 0.209 0.010 0.006
0.063 0.041 -0.007 0.016 0.019 -0.003 0.011 0.032 -0.008 0.010 0.026 0.007

-0.033 -0.007 0.005 -0.021 -0.003 0.005 -0.022 -0.008 0.013 0.006 0.007 0.007

m = 21
a. true 0.005 -0.004 0.006 0.001 -0.001 0.001 0.002 -0.002 0.002 0.001 -0.001 -0.001

µQ
P b. markov 0.005 -0.004 0.006 0.001 -0.001 0.001 0.002 -0.001 0.002 0.001 -0.001 -0.001

c. direct 0.005 -0.004 0.006 0.001 -0.001 0.001 0.002 -0.001 0.002 0.001 -0.001 -0.001
a. true 1.010 0.202 -0.842 0.979 0.139 -0.594 0.973 0.197 -0.747 0.926 0.290 0.631

-0.029 0.954 0.829 0.009 1.003 0.568 0.005 0.962 0.682 0.023 0.914 -0.502
0.019 -0.021 0.365 -0.005 -0.047 0.690 -0.004 -0.019 0.561 0.002 0.006 0.843

b. markov 1.010 0.202 -0.843 0.979 0.139 -0.595 0.973 0.197 -0.747 0.926 0.291 0.629

ΦQ
P -0.029 0.954 0.828 0.009 1.003 0.567 0.005 0.962 0.681 0.023 0.914 -0.503

0.019 -0.021 0.365 -0.005 -0.047 0.690 -0.004 -0.019 0.561 0.002 0.006 0.842
c. direct 1.010 0.202 -0.843 0.979 0.139 -0.595 0.973 0.197 -0.747 0.926 0.290 0.631

-0.029 0.954 0.828 0.009 1.002 0.567 0.005 0.962 0.682 0.023 0.914 -0.503
0.019 -0.021 0.365 -0.005 -0.047 0.690 -0.004 -0.019 0.561 0.002 0.006 0.842

a. true 0.407 0.063 -0.033 0.150 0.016 -0.021 0.215 0.011 -0.022 0.209 0.010 0.006
0.063 0.041 -0.007 0.016 0.019 -0.003 0.011 0.032 -0.008 0.010 0.026 0.007

-0.033 -0.007 0.005 -0.021 -0.003 0.005 -0.022 -0.008 0.013 0.006 0.007 0.007
b. markov 0.418 0.064 -0.034 0.179 0.019 -0.025 0.240 0.013 -0.025 0.230 0.011 0.006

ΣP × 103 0.064 0.041 -0.007 0.019 0.019 -0.004 0.013 0.032 -0.008 0.011 0.026 0.007
-0.034 -0.007 0.007 -0.025 -0.004 0.007 -0.025 -0.008 0.013 0.006 0.007 0.007

c. direct 0.407 0.063 -0.033 0.150 0.016 -0.021 0.215 0.011 -0.022 0.209 0.010 0.006
0.063 0.041 -0.007 0.016 0.019 -0.003 0.011 0.032 -0.008 0.010 0.026 0.007

-0.033 -0.007 0.005 -0.021 -0.003 0.005 -0.022 -0.008 0.013 0.006 0.007 0.007

Note: This table presents the results of the accuracy check for the GL method with respect to two different number of grid points
along each dimension, m = 9 and 21. (a) “true” represents the coefficients in the underlying data generating process of yield factors
under the Q measure, and (b) “markov” represents the induced mean estimates from the GL method. (c) “direct” represents the
mean estimates obtained from the direct simulation of the underlying VAR(1). Consistently, µQ

P , ΦQ
P , and ΣP are reported on an

annual basis (by multiplying 4).
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