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Abstract 

 In this dissertation, the scale-dependency of hydrologic responses due to changing climate and 

regime shifts of large-scale circulation patterns and their teleconnection patterns were evaluated 

using long-term precipitation and discharge records in sub-basins with no development, and 

extensive development and riverine impoundments of the Merrimack River watershed. The 

Merrimack (New Hampshire-Massachusetts) is a 13,000 km2 forested (67%) watershed located 

in the northeastern United States. The overarching goal of this dissertation was to assess 

hydrologic responses to the potential effects of changing climate in sub-basins experiencing a 

range of development in order to help guide sustainable water management in the Merrimack 

River watershed and other northeastern basins. The objective of this research was to integrate 

hydroclimatic observations across basin size and anthropogenic disturbances (i.e. river regulation 

and land development) to understand the dynamic of hydrologic alterations under a changing 

climate. 

 This dissertation consists of three research phases. In phase I, I assessed the interacting 

hydrologic responses to changing climate, watershed physical characteristics, river regulation, 

and land development under dry, average, and wet hydrologic conditions using long-term 

precipitation and discharge data of the Merrimack River watershed. I found that the effects of 

basin scale were limited to high (exceedance probability of less than 15%) and low (exceedance 

probability of greater than 60%) discharge events and were expressed as lagged discharge in 

larger sub-basins and earlier discharge in smaller headwater catchments. Annual discharge 

responded to increases in annual precipitation regardless of river regulation or land development. 

In general, the temporal trends showed greater decreasing trends in discharge under dry and 



II 

greater increasing trends in discharge under wet hydrologic conditions compared to average 

years. 

 In phase II, I explored the effects of Atlantic Multi-decadal Oscillation (AMO: metric of Sea 

Surface Temperature anomalies of the North Atlantic Ocean typically over 0-80°N) and North 

Atlantic Oscillation (NAO: metric of Sea-Level Pressure anomalies over the Atlantic sector 20°-

80°N, 90°W-40°E) regime shifts on hydrologic responses to evaluate whether the intensified 

inter-annual variability in discharge is explained by natural climate cycles. I focused on AMO 

and NAO regime shifts of the early 1950s, 1970s, and 2000s and the effects on hydrology of the 

Merrimack River watershed. AMO regime shifts were strongly synchronized and preceded both 

precipitation and discharge across all study sites by one to two years, while NAO regime shifts 

indicated weaker associations. I found that all responses tended towards greater extremes from 

each regime shift to the next. Across many different ecological discharge indicators, high 

percentile values increased across regimes, while low percentile values decreased between 

regimes (with a few exceptions). 

 In phase III, I evaluated the potential for discharge estimation considering annual or seasonal 

AMO and NAO teleconnection patterns with precipitation and discharge. When AMO was 

extremely positive (greater than 0.2), the magnitudes of annual precipitation and discharge 

correlation coefficients with AMO were obscured by river regulation or land development. In 

contrast, during the extreme negative phase of AMO (less than -0.2), river regulation and land 

development amplified the effects of changing climate on precipitation and discharge variations. 

AMO was positively associated with precipitation and discharge, while NAO showed a negative 

linkage. AMO positive phase was correspondent with average-to-wet discharge conditions at 

headwater catchments. When basin scale increased, confidence in the estimation of discharge 



III 

conditions decreased for downstream developed sub-basins compared to headwater undisturbed 

catchments. 

 The results from this research indicated that the Merrimack River watershed is expected to 

experience increases in discharge in the future and changing in timing and the seasonal 

distribution of this discharge; therefore development should be avoided on flood plains. 

Furthermore, the current reservoir storage capacity in the Merrimack should be improved in 

order to accommodate excess water input and minimize flood damage. Future research should 

target changes in the magnitude and timing of high discharge events in order to develop 

adaptation strategies for aging hydraulic infrastructure in the region. This dissertation will 

provide information for watershed planners and managers to inform future sustainable water use 

in the Merrimack River watershed and other northeastern basins. 

 

 

 



IV 

The interacting hydrologic responses to changing climate, watershed 

physical characteristics, river regulation, and land development in the 

northeastern United States 

 

By: 

Rouzbeh Berton 

B.Sc., Zanjan University, Zanjan, Iran, 2003 

M.Sc., Sharif University of Technology, Tehran, Iran, 2006 

 

DISSERTATION 

Submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Civil Engineering 

 

 

Syracuse University 

May 2017 

 

 



V 

 

 

 

 

Copyright © Rouzbeh Berton 2017 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 



vi 

Acknowledgements 

 I would like to express my heartfelt gratitude and appreciation to my advisor Professor Charles 

T. Driscoll who gave me the freedom to pursue my own topic of interest for my research while 

providing me incredible scientific and financial support. Dr. Driscoll takes time to listen to his 

students and this is best reflected in his brilliant comments, feedback, and questions he poses to 

them. He is able to balance the students’ weaknesses with their strengths. He is fully aware of the 

obstacles faced by the international students when they write in a language other than their own. 

In order not to undermine a student’s confidence, he simply points out an error with a simple 

comment: “this is not clear”. He gives students total freedom to develop their own ideas and 

ways to achieve them rather than imposing his own methods. I have learnt a great deal from Dr. 

Driscoll but two in particular are lifetime lessons. First is not to personalize things and second is 

not to force people to do things the way you want it done. He is and will always remain one of 

the most influential people in my life. 

 I would like to thank Syracuse University and the Department of Civil and Environmental 

Engineering for the PhD admission and for the assistantship awards. I would extend my gratitude 

to the National Science Foundation Long Term Ecological Research (NSF-LTER) program for 

their financial support in conducting the current research and the travel expenses which allowed 

me to present my findings at local, regional, and national conferences. 

 I would definitely like to thank each and every one of my committee members, Dr. Paul 

Barten, Dr. Christa Kelleher, Dr. John Campbell, Dr. David Chandler, and Dr. Jane Read for 

their constructive feedback and suggestions which have substantially improved the quality of my 

research. I was blessed to have such a knowledgeable and passionate committee which never 



vii 

refused to assist me and devoted their time in order to ease my progress. Without their help and 

support the completion of this dissertation would not have been possible. 

 I would like to thank Dr. Raymond Letterman, my teaching and research mentor who accepted 

me as his TA and with whom I had the honor of working on the NYC Water Project. I am also 

grateful for his continued support. I would like to thank Dr. Svetoslava Todorova, a great 

teaching and research mentor, who nominated me for the “2014-2015 Outstanding Teaching 

Assistant Award (OTA)” and Dr. Sam Salem, the Department Chair, for the endorsement of my 

nomination. I want to extend my gratitude to whom recommended me to graduate school for the 

OTA award, Dr. Douglas Call, Dr. Raymond Letterman, Dr. Andria Costello Staniec, and two of 

my undergraduate students Siavash Bashiriyeh and Katayoun Mokhtarzadeh. I would also like to 

thank Dr. Cliff Davidson and Dr. Chris Johnson for their help and support. I would definitely 

like to thank Dr. Ataei, Dr. Steinberg, Dr. Condon, and Dr. Salem for providing me with 

teaching assistantship position during my last semester studying at Syracuse University. 

 Since arriving in the United States in August 2009, I have got to know many great people 

whose knowledge and experience have tremendously helped me to adapt to the new culture and 

overcome my homesickness. I would specifically like to thank my very best friend Dr. Ali 

Goshayeshi who has treated me like one of his own family members. I cherish every moment of 

our great friendship and value his support and encouragement not only during my PhD program 

but through the many difficult moments in my life. I would also like to express my gratitude to 

my very best and special friend Niki Ashouri who has given me tremendous emotional and 

mental support throughout the last year of my PhD study. 

 I would also like to thank our dearest family friend, Touria Ghaffari for her true friendship and 

great support during my PhD study. In addition, I would like to express my great appreciation to 



viii 

my best friends Dr. Ebrahim Soltani, Dr. Kaveh Zamani, Dr. Mehrzad Boroujerdi, and Dr. 

Siamak Malek Mohammadi for their encouragements towards pursuing my dreams. I specially 

want to thank Fariba Rahmanzadeh, the Assistant Director of Slutzker Center for International 

Services at Syracuse University, for her help, support, and mainly for her true friendship. 

 Special thanks to my conversation partners Jina Kim, Justin Freedman, Laura Thompson, and 

Savannah Janette Siu for their friendship and helping me improve my language skills while 

enjoying the intellectual conversations with them. I am greatly thankful to CIE Department staff, 

Elizabeth Buchanan, Maureen Hale, Mickey Hunter, Heather Kirkpatrick, Mary Margaret 

Koppers, Linda Lowe, and Mario Montesdeoca for their kindness, patience, help, and support. In 

addition, I had the honor of working with the staff of graduate school Dr. Peg De Furia, Kathleen 

M. Joyce, Shawn Loner, Terrie Monto, and Glenn Wright and I would like to thank them all for 

their friendship and support. 

 Finally, I would like to express my deepest gratitude to those who have been my pillars of 

strength, to the ones whose unconditional love, emotional and mental support have always 

helped me to fulfill my dreams; to my dear mother Mahyar, to my dear father Naser, and to my 

dear lovely sister Anousheh. Their encouragement founded in me the motivation to pursue and 

complete this degree. I dedicate this dissertation to Mayhar, Naser, and Anousheh. 

 

 

 

 



ix 

 

To my dear parents and sister 

 

 

 



x 

Table of contents 

1- INTRODUCTION .................................................................................................................... 1 

1-1- OBJECTIVES AND HYPOTHESES .......................................................................................... 3 

2- LITERATURE REVIEW ........................................................................................................ 7 

2-1- THE EFFECTS OF CHANGING CLIMATE ON HYDROLOGIC RESPONSE .................................... 7 
2-2- THE EFFECTS OF LARGE-SCALE CIRCULATION PATTERNS REGIME SHIFTS ON HYDROLOGIC 

RESPONSE ................................................................................................................................... 12 
2-3- OPPORTUNITIES FOR DISCHARGE PREDICTION WITH RESPECT TO VARIATIONS IN SYNOPTIC-
SCALE PHENOMENA .................................................................................................................... 16 

3- STUDY SITE .......................................................................................................................... 18 

3-1- GENERAL INFORMATION .................................................................................................. 18 
3-2- GEOLOGY AND SOIL ORDER ............................................................................................. 19 
3-3- LAND USE/COVER TYPES AND HISTORICAL TRENDS ......................................................... 20 

4- MATERIAL AND METHODS ............................................................................................. 28 

4-1- DATA .............................................................................................................................. 28 
4-1-1- Precipitation and discharge data ............................................................................ 28 
4-1-2- Atlantic Multi-decadal Oscillation (AMO) data ..................................................... 29 
4-1-3- North Atlantic Oscillation (NAO) data ................................................................... 29 
4-1-4- Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO) data
 ................................................................................................................................. 30 
4-1-5- Data transformation................................................................................................ 31 

4-2- METHODS ........................................................................................................................ 33 
4-2-1- Hydrologic flow conditions ..................................................................................... 33 
4-2-2- Flow duration and flow distribution curves ............................................................ 33 
4-2-3- Mann-Kendall trend test and Sen’s slope estimate ................................................. 34 
4-2-4- Multivariate statistical analysis .............................................................................. 35 
4-2-5- Regime shift detection method ................................................................................ 38 
4-2-6- Indicators of hydrologic alteration (IHA) and range of variability approach (RVA) 
 ................................................................................................................................. 40 
4-2-7- t-Test ....................................................................................................................... 41 
4-2-8- Pearson correlation coefficient ............................................................................... 42 
4-2-9- Hydrologic flow conditions, relative frequency of occurrence and probability ..... 42 

5- CHANGING CLIMATE INCREASES DISCHARGE AND ATTENUATES ITS 
SEASONAL DISTRIBUTION IN THE NORTHEASTERN UNITED STATES ................ 44 

5-1- RESULTS .......................................................................................................................... 45 
5-1-1- Flow duration curves (FDCs) ................................................................................. 45 



xi 

5-1-2- Flow distribution curves (FDiCs) ........................................................................... 48 
5-1-3- Temporal variations of discharge magnitude ......................................................... 50 
5-1-4- Temporal variations of discharge timing ................................................................ 53 
5-1-5- Spatial patterns in discharge variation................................................................... 56 

5-2- DISCUSSION ..................................................................................................................... 56 
5-2-1- Clusters inferred by principal component analysis (PCA) ..................................... 56 
5-2-2- Flow duration curves (FDCs) ................................................................................. 58 
5-2-3- Flow distribution curves (FDiCs) ........................................................................... 59 
5-2-4- Significance of basin-scale study ............................................................................ 61 
5-2-5- Influence of record length ....................................................................................... 62 
5-2-6- Linkage of discharge with precipitation ................................................................. 63 
5-2-7- Temporal variations of discharge magnitude ......................................................... 64 
5-2-8- Temporal variations of discharge timing ................................................................ 66 

5-3- A FOCUSED EVALUATION OF THE INTERACTIVE EFFECTS OF CHANGING CLIMATE AND 

LAND DEVELOPMENT .................................................................................................................. 68 
5-3-1- Introduction............................................................................................................. 68 
5-3-2- Key physical attributes of study sub-basins ............................................................ 69 
5-3-3- Climatographs......................................................................................................... 73 
5-3-4- Cumulative double mass curve ............................................................................... 84 
5-3-5- Flow duration and flow distribution curves ............................................................ 89 

5-4- SUMMARY AND CONCLUDING REMARKS .......................................................................... 92 

6- THE RESPONSES OF ECOLOGICAL DISCHARGE INDICATORS TO REGIME 
SHIFTS OF ATLANTIC MULTI-DECADAL OSCILLATION AND NORTH ATLANTIC 
OSCILLATION IN THE NORTHEASTERN UNITED STATES ........................................ 95 

6-1- RESULTS .......................................................................................................................... 96 
6-1-1- Regime shift points .................................................................................................. 96 
6-1-2- Synchrony in regime shifts across records ........................................................... 100 
6-1-3- Flow duration curves (FDCs) ............................................................................... 100 
6-1-4- Hydrologic alteration index (HAI) for ecological indices associated with discharge 
 ............................................................................................................................... 103 

6-1-4-1- HBEF catchments .............................................................................................. 103 
6-1-4-2- Small-scale Merrimack sub-basins .................................................................... 104 
6-1-4-3- Intermediate-scale Merrimack sub-basins ......................................................... 104 
6-1-4-4- Large-scale Merrimack sub-basins .................................................................... 105 

6-2- DISCUSSION ................................................................................................................... 108 
6-2-1- Major difference between regime shift and phase change.................................... 108 
6-2-2- Sensitivity analysis of regime shift detection method ........................................... 108 
6-2-3- AMO and NAO regime shifts ................................................................................ 109 
6-2-4- PDO and ENSO regime shifts ............................................................................... 109 
6-2-5- Precipitation and discharge regime shifts ............................................................ 110 



xii 

6-2-6- Lagged hydrologic response to AMO and NAO variations .................................. 111 
6-2-7- Flow duration curves (FDCs) ............................................................................... 112 
6-2-8- Teleconnectivity of AMO and NAO with discharge .............................................. 113 
6-2-9- Frequency of high percentile discharge ............................................................... 115 
6-2-10- Low discharge percentile ...................................................................................... 116 
6-2-11- Baseflow ................................................................................................................ 116 
6-2-12- Dates of minimum and maximum discharge events .............................................. 117 
6-2-13- Effects of river regulation and land development ................................................. 117 

6-3- SUMMARY AND CONCLUDING REMARKS ........................................................................ 118 

7- THE NEAR-TERM PREDICTION OF DROUGHT AND FLOODING CONDITIONS 
IN THE NORTHEASTERN UNITED STATES BASED ON EXTREME PHASES OF 
ATLANTIC MULTI-DECADAL OSCILLATION AND NORTH ATLANTIC 
OSCILLATION ........................................................................................................................ 121 

7-1- RESULTS ........................................................................................................................ 122 
7-1-1- Normalized annual/seasonal discharge in extreme phases of AMO and NAO .... 122 
7-1-2- The annual/seasonal correlations of precipitation and discharge with AMO and 
NAO ............................................................................................................................... 124 
7-1-3- Relative frequency of occurrence and probability ................................................ 133 

7-2- DISCUSSION ................................................................................................................... 140 
7-2-1- Undisturbed catchments opposed to regulated and/or developed sub-basins ...... 140 
7-2-2- Statistical significance .......................................................................................... 141 
7-2-3- Lag time ................................................................................................................ 141 
7-2-4- AMO teleconnection patterns with discharge ....................................................... 142 
7-2-5- NAO teleconnection patterns with discharge ....................................................... 143 
7-2-6- Interactive AMO and NAO teleconnection patterns with discharge .................... 143 

7-3- SUMMARY AND CONCLUDING REMARKS ........................................................................ 144 

8- SYNTHESIS AND SUGGESTIONS FOR FUTURE RESEARCH ................................ 147 

9- REFERENCES ..................................................................................................................... 153 

10- CURRICULUM VITAE .................................................................................................... 172 

 
 
 
 
 



xiii 

List of tables 

TABLE  3-1- THE DESCRIPTION OF THE HBEF CATCHMENTS AND THE MERRIMACK SUB-BASINS. 
THE REFERENCE (R), REGULATED (RG), AND DEVELOPED (D) SUB-BASINS ARE ALSO 

IDENTIFIED. THE MERRIMACK RIVER WATERSHED LAND COVER IS PRESENTED BASED ON THE 

2006 NATIONAL LAND COVER DATABASE INFORMATION. ..................................................... 23 

TABLE  5-1- THE MODIFIED MANN-KENDALL TREND TEST AND SEN’S SLOPE ESTIMATE OF 

PRECIPITATION AND DISCHARGE MAGNITUDE FOR THE HBEF CATCHMENTS AND THE 

MERRIMACK SUB-BASINS FOR THE PERIOD OF RECORD AND HYDROLOGIC FLOW CLASSES OF 

DRY, AVERAGE, AND WET YEARS (ANALYSES WERE PERFORMED ON CUMULATIVE ANNUAL 

PRECIPITATION AND DISCHARGE IN MM/WY). THE KEY TO SITE ID IS PRESENTED IN TABLE  3-1.
 ............................................................................................................................................... 52 

TABLE  5-2- THE MODIFIED MANN-KENDALL TREND TEST AND SEN’S SLOPE ESTIMATE OF 

DISCHARGE TIMING FOR THE HBEF CATCHMENTS AND THE MERRIMACK SUB-BASINS FOR THE 

PERIOD OF RECORD AND HYDROLOGIC FLOW CLASSES OF DRY, AVERAGE, AND WET YEARS 

(ANALYSES WERE PERFORMED ON THE QUARTER DATES OF NORMALIZED CUMULATIVE 

ANNUAL DISCHARGE IN %). NEGATIVE (POSITIVE) TRENDS REPRESENT EARLIER (LATER) 

DISCHARGE TIMING DATES. THE KEY TO SITE ID IS PRESENTED IN TABLE  3-1. THE NUMBER OF 

YEARS OF DATA IN EACH CLASS IS PRESENTED IN TABLE  5-1. ................................................. 55 

TABLE  5-3- THE KEY PHYSICAL CHARACTERISTICS OF THE REPRESENTATIVE STUDY SITES (SMITH: 
FOREST, SQUANNACOOK: SUBURBAN, AND SHAWSHEEN: URBAN) ALONG WITH HYDROMETRIC 

INFORMATION, DISCHARGE CORRELATION COEFFICIENTS, AND DISCHARGE TIMING DATES FOR 

AVERAGE, WET, AND DRY HYDROLOGIC CONDITIONS. ............................................................ 72 

TABLE  7-1- THE STATISTICALLY SIGNIFICANT (P-VALUE≤0.2) SCENARIOS WHERE THE MEAN 

STANDARDIZED ANNUAL/SEASONAL DISCHARGES WERE DIFFERENT BETWEEN THE EXTREME 

PHASES OF AMO AND NAO. ................................................................................................ 123 

TABLE  7-2- THE PERCENTAGE OF SIGNIFICANT CORRELATION COEFFICIENTS WITHIN THE GROUPS 

OF HBEF CATCHMENTS AND MERRIMACK SMALL, INTERMEDIATE, AND LARGE SUB-BASINS (P-
VALUE≤0.2). ......................................................................................................................... 127 

 

 



xiv 

List of figures 

FIGURE  3-1A- THE MERRIMACK RIVER WATERSHED: DAMS, GAUGING STATIONS, STREAMS, AND 

TOPOGRAPHY ARE INDICATED (SHADED RELIEF FOR NORTHEASTERN U.S. AND CANADA, 
NORTH ATLANTIC LCC, 2016 ACCESSIBLE AT HTTP://BIT.LY/2LMBYXS). THE KEY TO THE 

SITE ID NUMBER IS PRESENTED IN TABLE  3-1 (A LARGER VERSION OF THE LAND COVER MAP 

APPEARS ON THE NEXT PAGE, FIGURE  3-1B). YELLOW DOTS REPRESENT HBEF CATCHMENTS 

(0.1-0.8 KM
2). SMALL-SCALE SUB-BASINS (ID: 13, 15, 18, AND 20; 33-166 KM

2) ARE 

DISTINGUISHED BY GREEN DOTS, WHILE INTERMEDIATE-SCALE (ID: 9, 10, 14, 16, AND 19; 222-
818 KM

2) AND LARGE-SCALE SUB-BASINS (ID: 11, 12, 17, AND 21; 1220-11450 KM
2) ARE 

MARKED BY RED AND BLACK DOTS, RESPECTIVELY. ............................................................... 26 

FIGURE  3-2B- THE MERRIMACK RIVER WATERSHED: DAMS, GAUGING STATIONS, STREAMS, AND 

LAND COVER CLASSIFICATION ARE INDICATED (NATIONAL LAND COVER DATABASE, 2006 

ACCESSIBLE AT HTTP://BIT.LY/2K8JNLU). THE KEY TO THE SITE ID NUMBER IS PRESENTED IN 

TABLE  3-1. ............................................................................................................................. 27 

FIGURE  4-1- THE MONTHLY TIME SERIES OF: A) AMO WITH EXTREME POSITIVE (≥ 0.2) AND 

NEGATIVE (≤ -0.2) PHASES B) NAO WITH EXTREME POSITIVE (≥ 0.5) AND NEGATIVE (≤ -0.5) 

PHASES. WATER YEAR BEGINS AT OCTOBER 1ST
 AND ENDS AT SEPTEMBER 30TH. ................... 32 

FIGURE  4-2- PCA PERFORMED ON DISCHARGE QUANTITY AND TIMING TRENDS FOR THE PERIOD OF 

RECORD. TWO SEPARATE CLUSTERS OF HBEF REFERENCE CATCHMENTS AS WELL AS THE 

MERRIMACK REFERENCE, REGULATED, AND/OR DEVELOPED SUB-BASINS WERE IDENTIFIED. 
THE THREE DISTINCT SUB-GROUPS INSIDE EACH CLUSTER REVEAL THE SCALE-DEPENDENCY OF 

CHANGES IN THE HYDROLOGIC RESPONSE. THE KEY TO THE SITE ID IS PRESENTED IN TABLE 

 3-1. ......................................................................................................................................... 37 

FIGURE  5-1- FLOW DURATION CURVES (FDCS) FOR THE PERIOD OF RECORD COMPARING A) THREE 

SUB-GROUPS BASED ON DRAINAGE AREA WITHIN THE HBEF CLUSTER; B) HBEF REFERENCE 

CATCHMENTS WITH MERRIMACK REFERENCE, REGULATED, AND/OR DEVELOPED SUB-BASINS; 
AND C) THREE SUB-GROUPS BASED ON DRAINAGE AREA WITHIN THE MERRIMACK CLUSTER, I.E. 
SMALL-SCALE SUB-BASINS (ID: 13-18-20-15, 33-166 KM

2); INTERMEDIATE-SCALE SUB-BASINS 

(ID: 19-16-9-10-14, 222-818 KM
2); AND LARGE-SCALE SUB-BASINS (ID: 21-17-12-11, 1220-

11450 KM
2). THE IMPACTS OF CHANGING CLIMATE ON DISCHARGE VARIATION FROM RIVER 

REGULATION AND/OR DEVELOPMENT AS WELL AS THE IMPACTS OF DRAINAGE AREA COULD BE 

DIFFERENTIATED AT CERTAIN EXCEEDANCE PROBABILITIES INDICATED BY SOLID ARROWS ON 

THE FDCS. THE KEY TO THE SITE ID IS PRESENTED IN TABLE  3-1. ......................................... 47 

FIGURE  5-2- FLOW DISTRIBUTION CURVES (FDICS) FOR THE PERIOD OF RECORD COMPARING A) 

THREE SUB-GROUPS BASED ON DRAINAGE AREA WITHIN THE HBEF CLUSTER; B) HBEF 

REFERENCE CATCHMENTS WITH MERRIMACK REFERENCE, REGULATED, AND/OR DEVELOPED 

SUB-BASINS; AND C) THREE SUB-GROUPS BASED ON DRAINAGE AREA WITHIN THE MERRIMACK 

CLUSTER I.E. SMALL-SCALE SUB-BASINS (ID: 13-18-20-15, 33-166 KM
2); INTERMEDIATE-



xv 

SCALE SUB-BASINS (ID: 19-16-9-10-14, 222-818 KM
2); AND LARGE-SCALE SUB-BASINS (ID: 

21-17-12-11, 1220-11450 KM
2). THE TYPICAL SNOWMELT PERIOD IN THE REGION STARTS 

FROM LATE-MARCH (DAY 180) THROUGH EARLY MAY (DAY 220) MARKED BY SHADED 

RIBBONS ON THE FDICS. THE KEY TO THE SITE ID IS PRESENTED IN TABLE  3-1. .................... 49 

FIGURE  5-3A: MEASURED RAINFALL (NOAA), ESTIMATED SNOWMELT, CALCULATED HAMON 

PET, AND MEASURED DISCHARGE (USGS), MM/DAY, FOR SMITH RIVER NEAR BRISTOL (USGS 

01078000), NEW HAMPSHIRE, OCTOBER 1ST
 1969-SEPTEMBER 30TH

 1970 (WY 1970). THE 

LABELS ON THE PLOT ARE CORRESPONDENT TO INFLECTION POINTS ON CUMULATIVE DOUBLE 

MASS CURVES OF AVERAGE YEAR PRESENTED ON FIGURE  5-6A AND –B. ................................ 75 

FIGURE  5-4A: MEASURED RAINFALL (NOAA), ESTIMATED SNOWMELT, CALCULATED HAMON 

PET, AND MEASURED DISCHARGE (USGS), MM/DAY, FOR SMITH RIVER NEAR BRISTOL (USGS 

01078000), NEW HAMPSHIRE, OCTOBER 1ST
 1975-SEPTEMBER 30TH

 1976 (WY 1976). THE 

LABELS ON THE PLOT ARE CORRESPONDENT TO INFLECTION POINTS ON CUMULATIVE DOUBLE 

MASS CURVES OF WET YEAR PRESENTED ON FIGURE  5-7A AND –B. ......................................... 78 

FIGURE  5-5A: MEASURED RAINFALL (NOAA), ESTIMATED SNOWMELT, CALCULATED HAMON 

PET, AND MEASURED DISCHARGE (USGS), MM/DAY, FOR SMITH RIVER NEAR BRISTOL (USGS 

01078000), NEW HAMPSHIRE, OCTOBER 1ST
 1988-SEPTEMBER 30TH

 1989 (WY 1989). THE 

LABELS ON THE PLOT ARE CORRESPONDENT TO INFLECTION POINTS ON CUMULATIVE DOUBLE 

MASS CURVES OF DRY YEAR PRESENTED ON FIGURE  5-8A AND –B. ......................................... 81 

FIGURE  5-6A-C: CUMULATIVE DOUBLE MASS CURVE OF 1970 REPRESENTING AVERAGE 

HYDROLOGIC DISCHARGE CONDITION. THE DATES AND DISCHARGE CONDITIONS 

CORRESPONDING WITH INFLECTION POINTS CAN BE FOUND ON FIGURE  5-3A-C. ..................... 86 

FIGURE  5-7A-C: CUMULATIVE DOUBLE MASS CURVE OF 1976 REPRESENTING WET HYDROLOGIC 

DISCHARGE CONDITION. THE DATES AND DISCHARGE CONDITIONS CORRESPONDING WITH 

INFLECTION POINTS CAN BE FOUND ON FIGURE  5-4A-C. .......................................................... 87 

FIGURE  5-8A-C: CUMULATIVE DOUBLE MASS CURVE OF 1989 REPRESENTING DRY HYDROLOGIC 

DISCHARGE CONDITION. THE DATES AND DISCHARGE CONDITIONS CORRESPONDING WITH 

INFLECTION POINTS CAN BE FOUND ON FIGURE  5-5A-C. .......................................................... 88 

FIGURE  5-9A-C: FLOW DURATION CURVES (FDCS) OF THREE REPRESENTATIVE SUB-BASINS OF 

DIFFERENT LAND COVER (FOREST, SUBURBAN, URBAN) FOR AVERAGE (1970), WET (1976), AND 

DRY (1989) HYDROLOGIC CONDITIONS. .................................................................................. 90 

FIGURE  5-10A-C: FLOW DISTRIBUTION CURVES (FDICS) OF THREE REPRESENTATIVE SUB-BASINS 

OF DIFFERENT LAND COVER (FOREST, SUBURBAN, URBAN) FOR AVERAGE (1970), WET (1976), 
AND DRY (1989) HYDROLOGIC CONDITIONS............................................................................ 91 

FIGURE  6-1- ANNUAL TIME SERIES OF: A) ATLANTIC MULTI-DECADAL OSCILLATION INDEX 

(AMO); B) NORTH ATLANTIC OSCILLATION INDEX (NAO); C) PACIFIC DECADAL 

OSCILLATION INDEX (PDO); D) EL NIÑO–SOUTHERN OSCILLATION INDEX (ENSO 3.4). THE 



xvi 

DATES OF SIGNIFICANT SHIFTS IN THE LONG-TERM MEAN ARE INDICATED. WATER YEAR BEGINS 

AT OCTOBER 1ST
 AND ENDS AT SEPTEMBER 30TH. ................................................................... 98 

FIGURE  6-2- THE REGIME SHIFT POINTS OF PRECIPITATION AND DISCHARGE FOR THE HBEF 

CATCHMENTS AND MERRIMACK SUB-BASINS. THE GRAY BARS INDICATE PERIOD OF 

STREAMFLOW RECORDS WHEREAS THE TIMES OF THE SHIFTS ARE REPRESENTED BY SQUARE 

(PRECIPITATION), AND PLUS (DISCHARGE). THE SHIFTS IN PRECIPITATION AND DISCHARGE ARE 

IN SYNCHRONOUS WITH 1-2 YEARS EARLIER REGIME SHIFTS IN AMO OR NAO. THE KEY TO 

THE SITE ID IS PRESENTED IN TABLE  3-1. THE HBEF CATCHMENTS (1-8) AND THE 

MERRIMACK SUB-BASINS (9-21) ARE ORDERED BY DRAINAGE AREA FROM SMALLEST TO 

LARGEST. THE SELECTED SHIFT POINTS FOR FURTHER ANALYSES ON DISCHARGE VARIATION 

ARE INDICATED FOR HBEF CATCHMENTS AND MERRIMACK SUB-BASINS DIFFERENTIATED BY 

SCALE. .................................................................................................................................... 99 

FIGURE  6-3- FDCS AND THEIR DIFFERENCES BEFORE AND AFTER THE REGIME SHIFTS IN: A-E) THE 

HBEF CATCHMENTS WITH TWO SHIFTS OF 1973 AND 2004 (ID: 1-8); B-F) THE MERRIMACK 

SMALL-SCALE SUB-BASINS WITH TWO SHIFTS OF 1972 AND 2005 (ID: 13-18-20-15, 33-166 

KM
2); C-G) THE MERRIMACK INTERMEDIATE-SCALE SUB-BASINS WITH THREE SHIFTS OF 1952, 

1972, AND 2003 (ID: 19-16-9-10-14, 222-818 KM
2); D-H) THE MERRIMACK LARGE-SCALE 

SUB-BASINS WITH THREE SHIFTS OF 1951, 1972, AND 2004 (ID: 21-17-12-11, 1220-11450 

KM
2). THE KEY TO THE SITE ID IS PRESENTED IN TABLE  3-1. THE RANGES FOR SIMILAR 

DIFFERENCES ACROSS REGIMES ARE ALSO INDICATED. ......................................................... 102 

FIGURE  6-4- HYDROLOGIC ALTERATION INDEX (HAI) FOR MONTHLY DISCHARGE MAGNITUDE, 
ANNUAL DISCHARGE DURATION AND TIMING FOR: A) THE HBEF CATCHMENTS WITH TWO 

SHIFTS OF 1973 AND 2004 (ID: 1-8); B) THE MERRIMACK SMALL-SCALE SUB-BASINS WITH TWO 

SHIFTS OF 1972 AND 2005 (ID: 13-18-20-15, 33-166 KM
2); C) THE MERRIMACK 

INTERMEDIATE-SCALE SUB-BASINS WITH THREE SHIFTS OF 1952, 1972, AND 2003 (ID: 19-16-
9-10-14, 222-818 KM

2); D) THE MERRIMACK LARGE-SCALE SUB-BASINS WITH THREE SHIFTS OF 

1951, 1972, AND 2004 (ID: 21-17-12-11, 1220-11450 KM
2). THE HAI INDEX COMPARES THE 

FREQUENCY OF THE 10TH
 (LOW) AND 90TH

 (HIGH) PERCENTILES OF DISCHARGE INDICATORS 

BEFORE AND AFTER THE REGIME SHIFTS. THE KEY TO THE SITE ID IS PRESENTED IN TABLE  3-1.
 ............................................................................................................................................. 107 

FIGURE  7-1- THE MEAN CORRELATION COEFFICIENTS OF PRECIPITATION AND DISCHARGE WITH 

AMO, NAO AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS: A) AMO≥0.2, B) AMO≤-0.2, C) 

NAO≥0.5 AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND UPPER LIMITS OF 95% 

CONFIDENCE INTERVALS. ...................................................................................................... 128 

FIGURE  7-2- THE MEAN CORRELATION COEFFICIENTS OF PRECIPITATION AND DISCHARGE WITH 

AMO, NAO AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS FOR THE HBEF CATCHMENTS: A) 

AMO≥0.2, B) AMO≤-0.2, C) NAO≥0.5 AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND 

UPPER LIMITS OF 95% CONFIDENCE INTERVALS. ................................................................... 129 



xvii 

FIGURE  7-3- THE MEAN CORRELATION COEFFICIENTS OF PRECIPITATION AND DISCHARGE WITH 

AMO, NAO AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS FOR THE MERRIMACK SMALL-
SCALE SUB-BASINS (ID: 13-18-20-15, 33-166 KM

2): A) AMO≥0.2, B) AMO≤-0.2, C) NAO≥0.5 

AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND UPPER LIMITS OF 95% CONFIDENCE 

INTERVALS. ........................................................................................................................... 130 

FIGURE  7-4- THE MEAN CORRELATION COEFFICIENTS OF PRECIPITATION AND DISCHARGE WITH 

AMO, NAO AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS FOR THE MERRIMACK 

INTERMEDIATE-SCALE SUB-BASINS (ID: 9-10-14-16-19, 222-818 KM
2): A) AMO≥0.2, B) 

AMO≤-0.2, C) NAO≥0.5 AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND UPPER LIMITS 

OF 95% CONFIDENCE INTERVALS. ......................................................................................... 131 

FIGURE  7-5- THE MEAN CORRELATION COEFFICIENTS OF PRECIPITATION AND DISCHARGE WITH 

AMO, NAO AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS FOR THE MERRIMACK LARGE-
SCALE SUB-BASINS (ID: 11-12-17-21, 1220-11450 KM

2): A) AMO≥0.2, B) AMO≤-0.2, C) 

NAO≥0.5 AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND UPPER LIMITS OF 95% 

CONFIDENCE INTERVALS. ...................................................................................................... 132 

FIGURE  7-6- THE 95% CONFIDENCE BAND FOR OCCURRENCE PROBABILITY OF DRY, AVERAGE, AND 

WET DISCHARGE CONDITIONS AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS: A) AMO≥0.2, B) 

AMO≤-0.2, C) NAO≥0.5 AND ≤-0.5. ................................................................................... 135 

FIGURE  7-7- THE OCCURRENCE PROBABILITY OF DRY, AVERAGE, AND WET DISCHARGE 

CONDITIONS AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS FOR THE HBEF CATCHMENTS: A) 

AMO≥0.2, B) AMO≤-0.2, C) NAO≥0.5 AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND 

UPPER LIMITS OF 95% CONFIDENCE INTERVALS. ................................................................... 136 

FIGURE  7-8- THE OCCURRENCE PROBABILITY OF DRY, AVERAGE, AND WET DISCHARGE 

CONDITIONS AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS FOR THE MERRIMACK SMALL-
SCALE SUB-BASINS (ID: 9-10-14-16-19, 222-818 KM

2): A) AMO≥0.2, B) AMO≤-0.2, C) 

NAO≥0.5 AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND UPPER LIMITS OF 95% 

CONFIDENCE INTERVALS. ...................................................................................................... 137 

FIGURE  7-9- THE OCCURRENCE PROBABILITY OF DRY, AVERAGE, AND WET DISCHARGE 

CONDITIONS AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS FOR THE MERRIMACK 

INTERMEDIATE-SCALE SUB-BASINS (ID: 9-10-14-16-19, 222-818 KM
2): A) AMO≥0.2, B) 

AMO≤-0.2, C) NAO≥0.5 AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND UPPER LIMITS 

OF 95% CONFIDENCE INTERVALS. ......................................................................................... 138 

FIGURE  7-10- THE OCCURRENCE PROBABILITY OF DRY, AVERAGE, AND WET DISCHARGE 

CONDITIONS AT ZERO-, ONE-, OR TWO- YEAR/SEASON LAGS FOR THE MERRIMACK LARGE-
SCALE SUB-BASINS (ID: 11-12-17-21, 1220-11450 KM

2): A) AMO≥0.2, B) AMO≤-0.2, C) 

NAO≥0.5 AND ≤-0.5. ERROR BARS REPRESENT THE LOWER AND UPPER LIMITS OF 95% 

CONFIDENCE INTERVALS. ...................................................................................................... 139 



1 

1- Introduction 

 In this dissertation, I address three problems in the field of water resources and hydrological 

studies: 1- How climate change signals manifested through changes in river discharge, vary from 

small headwater reference catchments to downstream regulated or developed sub-basins; 2- How 

regime shifts in AMO and NAO phenomena may influence the frequency of extreme discharge 

events; and 3- How discharge and hydrologic conditions change in response to teleconnection of 

AMO and NAO. 

 The analyses of hydrological indicators may shed light on the open-ended question of whether 

the long-term trends are true signals of climate change or they are just “noise” or natural climatic 

variability (Peters et al., 2013). The long-term hydroclimatological records of reference 

headwater reaches in experimental watersheds have been utilized to quantify the effects of 

changing climate (Gallart et al., 2011; Hatcher and Jones, 2013; Nayak et al., 2010; Reba et al., 

2011; Viviroli et al., 2011). Initial studies have mostly focused on small headwater catchments 

rather than large developed or regulated downstream sub-basins (Whitfield et al., 2012). 

Although they are inherently complex, the study of hydrologic changes throughout large basins 

provides an opportunity to understand the scale-dependency of the potential response to climate 

change. Consequently, research is needed to extend the work of the long-term ecological 

research (LTER) program on undisturbed headwater catchments to larger downstream basins 

influenced by river regulation, forest conversion, and land development (LTHERS: Long-Term 

Human Environmental Research Stations) (Jones et al., 2012; Wilbanks and Kates, 1999). 

 Two common measures of long-term shifts in the Northeast climate are the Atlantic Multi-

decadal Oscillation (AMO) and North Atlantic Oscillation (NAO) (Armstrong et al., 2013; 

Bradbury et al., 2003, 2002a, 2002b; Kingston et al., 2007; Mazouz et al., 2013; Peng et al., 
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2013; Smith et al., 2010; Tootle et al., 2005). While the mechanisms associated with the NAO 

and AMO are well studied, the effects of the AMO and NAO on patterns of discharge across 

basin scales and levels of disturbances are less clear. As discharge integrates the effects of 

temperature and precipitation variations over a seasonal time scale, the primary characteristics of 

discharge provide valuable information regarding the response of water resources to changing 

climate (McCabe and Wolock, 2014). The study of the influence of AMO and NAO regime 

shifts on basin hydrology may determine whether the intensified inter-annual variability in 

discharge is explained by natural climate cycles. Discharge may exhibit a lagged relationship 

with AMO and NAO. Monitoring the variations of annual/seasonal AMO and NAO can provide 

information on how discharge may vary in the years/seasons that follow. 

 The overarching goal of this dissertation is to assess hydrologic responses to the potential 

effects of changing climate in a complex watershed, which varies from relatively undisturbed 

forested headwaters to highly developed downstream reaches, in order to improve understanding 

of future water resources availability in the northeastern United States. This research is focused 

on climate change effects study of the Merrimack, a 13,000 km2 forested watershed which drains 

mostly New Hampshire (NH) and northern Massachusetts (MA) and is the fourth largest basin in 

New England. I exploit monthly estimates of precipitation and temperature from the Parameter-

elevation Regressions on Independent Slopes Model (PRISM) (Daly, 2004), discharge data from 

21 stations in the US Geological Survey (USGS) and Hubbard Brook Experimental Forest 

(HBEF) gauge networks, and monthly AMO and NAO indices from the National Center for 

Atmospheric Research (NCAR) (Hurrell, 2015; Trenberth et al., 2015). Several approaches and 

tools were utilized to accomplish the objectives in three research phases. The three phases of this 

dissertation are: 1) assessment of the scale-dependency of discharge response to climate variation 
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for dry, average, and wet years, and considering land development and river regulation in the 

Merrimack River watershed (NH-MA); 2) exploration of the influence of AMO and NAO 

regime shifts on basin hydrology; and 3) estimation of future hydrologic discharge conditions 

considering the teleconnection patterns of AMO and NAO with discharge. 

 

1-1- Objectives and hypotheses 

 The objectives of this research are to: 

1- Assess temporal discharge responses to climate variation using long-term precipitation and 

discharge data and considering sub-basin area and development; 

2- Evaluate the potential influences of AMO and NAO regime shifts on the magnitude and 

timing of high and low percentiles of discharge; and 

3- Determine the probability for extreme discharge conditions (i.e., dry and wet years/seasons) 

which coincide with the extreme positive and negative phases of AMO or NAO. 

 A review of the literature on recent findings on climate effects and anthropogenic impacts on 

water resources has led me to develop the following hypotheses for my PhD research (Chapter 5-

7): 

Hypothesis 1 (Chapter 5): Regional analyses of hydrology in northeastern United States have 

shown increases in discharge and shift in its timing due to long-term climate variations 

associated with increases in precipitation, decreases in snowpack accumulation, and greater 

winter rainfall. In the Merrimack River watershed, total annual discharge has increased with a 

shift toward earlier spring peak and higher summer discharges. However, the pattern of 

discharge response is not uniform across years, i.e. more discharge decrement in drier and 

more discharge increment in wetter years is anticipated compared to historical patterns. 
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Hypothesis 2 (Chapter 5): The temporal and spatial responses of discharge to climate change 

are dependent on hydrological and hydraulic alterations along with the scale of the basin. In 

developed reaches of the Merrimack River watershed, changes in discharge metrics are less 

clear compared to headwater regions due to the attenuation of the climate signals by basin 

size, river regulation, and/or percentage of development. 

Hypothesis 3 (Chapter 6): There were early 1970s hydroclimatic regime shifts in the 

northeastern United States consistent with AMO and NAO regime shifts. Variations in the 

magnitude and frequency of high and low discharge events for the Merrimack River 

watershed are associated with regime shifts in both AMO and NAO depending on basin size, 

river regulation, and/or development. 

Hypothesis 4 (Chapter 7): Summer and winter discharge anomalies in the northeastern United 

States are associated with extreme phases of NAO index. In the Merrimack River watershed, 

discharge anomalies indicate annual/seasonal lagged teleconnection patterns with variations 

in extreme positive and negative phases of both AMO and NAO which are attenuated by basin 

size, river regulation, and/or development. 

 

 In Chapter 2, I provide a review of relevant literature for the dissertation. In Chapter 3, I 

provide a brief description of the Merrimack River watershed. In Chapter 4, I describe the 

materials and methods used in this dissertation.  

 To test these hypotheses, I have developed the following approaches to the dissertation: 

1- I examine trends in precipitation and metrics of discharge quantity and timing in dry, average, 

and wet years distinguished by discharge anomalies along with the consideration of serial 

correlation that exists in these hydrologic flow classes. I use multivariate statistical analyses to 
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discover how discharge may vary with regards to geomorphology of the Merrimack River 

watershed in addition to land use/cover characteristics. By including regulated and developed 

sub-basins, I am able to explore how land disturbance and river regulation influence riverine 

responses to changing climate (Chapter 5); 

2- I examine regime shift points of the annual time series of AMO, NAO, precipitation, and 

discharge corresponding to catchments of varying sizes and levels of human development. I 

evaluate differences in discharge record between periods of regime shifts. I evaluate variations in 

the frequencies of low and high extreme values for several indicators of hydrologic alteration, 

including the monthly discharge magnitude, duration, and timing indicators before and after the 

AMO and NAO regime shifts (Chapter 6); and 

3- I compare differences in discharge conditions during extreme positive and negative phases of 

AMO and NAO. I examine annual and seasonal correlations between precipitation and discharge 

and the extreme phases of AMO and NAO at zero-, one-, or two- year/season lags. I introduce a 

simple, but novel approach to estimate a confidence band for near-term prediction of extreme dry 

and wet discharge conditions with regards to the extreme phases of AMO and NAO (Chapter7). 

 In phase I (Chapter 5), I assessed the scale-dependency of the hydrologic responses to 

changing climate using long-term precipitation and discharge records for the Merrimack River 

watershed, and considering watershed physical characteristics, river regulation, and land 

development. In phase II (Chapter 6), I explored the influences of AMO and NAO regime shifts 

on hydrologic responses of the Merrimack reference headwater catchments compared to 

downstream developed sub-basins to evaluate whether the intensified inter-annual variability in 

discharge is explained by the natural climate cycle. In phase III (Chapter 7), I evaluated the 

potential to estimate discharge in response to annual and seasonal AMO and NAO 
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teleconnection patterns. The final chapter (Chapter 8) of this dissertation provides synthesis of 

the major findings of my research and their applications followed by suggestions for future work. 
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2- Literature review 

2-1- The effects of changing climate on hydrologic response 

 Recently a better understanding of the physical processes governing the interactions among the 

land surface, ocean, and atmosphere has helped scientists improve projections of the response of 

watershed hydrology to future changes in climate (Jung et al., 2012; Pourmokhtarian et al., 2016, 

2012). Increases in greenhouse gas emissions due to human activities are projected to increase 

global mean air temperature by 2-3°C at the end of the 21st century (Collins et al., 2013). 

Although climate change is generally thought to be attended by more frequent extreme 

hydrological events (Armstrong et al., 2012; Collins, 2009; Karl and Knight, 1998; Madsen and 

Willcox, 2012; O’Gorman and Schneider, 2009; Vose et al., 2012), this conclusion is still 

debated and remains highly variable by region (Dominguez et al., 2012; Jianting Zhu et al., 

2012; Kiktev et al., 2003; Matonse and Frei, 2013; Melillo et al., 2014; Pryor et al., 2009; 

Tebaldi et al., 2006; Wang et al., 2013). 

 Historical observations along with future climate projections for the northeastern United States 

have shown the influence of increases in temperature on the quantity, timing, and phase of 

precipitation (Bates et al., 2008; Hayhoe et al., 2007; Huntington et al., 2009). Based on climate 

projections for the 21st century, the northeastern United States is expected to undergo increases 

in winter (1.4 to 6.7°C) and summer (0.8 to 7.8°C) temperatures (Pourmokhtarian et al., 2016, 

2012) and increases in annual precipitation (~100 mm) (Campbell et al., 2011; Hayhoe et al., 

2007; Pourmokhtarian et al., 2016). These changes are predicted to cause less snow 

accumulation, earlier peak flow, attenuated spring flows, increasing summer precipitation and 

evapotranspiration which could either increase or decrease summer base flows, respectively 
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(Campbell et al., 2011; Frumhoff et al., 2007; Hayhoe et al., 2007; Huntington and Billmire, 

2014). 

 Changes in seasonal and annual temperature, evapotranspiration, precipitation, and discharge 

can have important consequences on ecosystem structure and function (Peters et al., 2013). 

Among those variables, discharge can be an appropriate indicator for changing climate since it is 

the net result of spatial and temporal variations in both precipitation and evapotranspiration. 

Human disturbances such as water withdrawal and reservoir storage are also affecting discharge 

and streamflow regimes (Dingman, 2015). In order to study climate and human influences on 

watershed hydrology, appropriate discharge indicators are needed to effectively characterize 

hydrologic variations (Beveridge et al., 2012; Poff et al., 1997; Richter et al., 1996). 

 The appropriate indicator should provide information on discharge magnitude, timing, 

duration, frequency, or rate of change according to research questions. To date, approximately 

two hundred streamflow indicators have been introduced to explain various aspects of discharge 

variations in water research and management (Gao et al., 2009; Kennard et al., 2010). It would 

be useful to develop a consensus on a subset of these two hundred possibilities to clearly identify 

independent indicators that are sufficient to address water research and management questions 

without redundancy (Beveridge et al., 2012; Olden and Poff, 2003). 

 Indicators of discharge quantity and timing are important criteria in water resources planning 

and management and in-stream water rights (Black et al., 2005). Such broad hydrometric 

indicators can be supplemented by metrics such as discharge anomaly to parse data records by 

wet, and dry years (Genz and Luz, 2012). Extreme wet and dry conditions are determined by 

how far the discharge responses are deviated from the long-term mean. Moreover, methods 

including the range of variability approach (RVA) (Richter et al., 1997) and the standardized 
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precipitation index (SPI) (McKee et al., 1993) use standard deviation to establish the limits of the 

analyses. 

 The long-term hydroclimatological records of reference headwater reaches in experimental 

catchments have been utilized to quantify the effects of changing climate (Gallart et al., 2011; 

Hatcher and Jones, 2013; Nayak et al., 2010; Reba et al., 2011; Viviroli et al., 2011). The 

analyses of hydrological indicators may shed light on the open-ended question of whether long-

term trends are true signals or just “noise” or natural climatic variability (Peters et al., 2013). For 

example, Campbell et al., (2011) observed an increase in annual water yield and changes in flow 

timing at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire (NH) response to 

recent changes in climate. Increases in precipitation, decreases in snowpack accumulation, and 

decreases in evapotranspiration were identified as major potential drivers of long-term 

hydrologic changes at the HBEF and at the broader scale, of the northeastern United States 

(Campbell et al., 2011; Huntington and Billmire, 2014). 

 At the river basin scale, the hydrologic response to climate change can be confounded by land 

cover/use change, urbanization, and/or river regulation (Frans et al., 2013; Jiang et al., 2007; 

Kim et al., 2013; Lindström and Bergström, 2004). Land use/cover change and urbanization can 

affect precipitation since forty percent of annual land precipitation globally comes from 

transpiration (Dingman, 2015). Highly irrigated regions have been shown to generate 

disproportionate quantities of local precipitation (DeAngelis et al., 2010). In contrast, 

deforestation decreases evapotranspiration and consequently can reduce humidity (de la Crétaz 

and Barten, 2007). The existence of either natural or manmade reservoirs increase storage and 

increases in evaporation from the lake surface thus may increase precipitation for downwind 

areas (Degu et al., 2011). 
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 Urbanization may change hydrologic response since the surface temperature of developed 

regions is typically higher than the undeveloped sites due to the higher rate of solar radiation 

absorbed by buildings and impervious surfaces (de la Crétaz and Barten, 2007). The urban “heat 

island effect” is also enhanced by industrial and motorized vehicles emissions. The increases in 

temperature can contribute to increase convective uplift, leading to increased precipitation 

downwind of the city center (Dingman, 2015). Urban development can increase the magnitude of 

total precipitation by 9-17% as well as the frequency of heavy rainfall (>25 mm) (Changnon, 

1981; Huff and Changnon, 1973; Knight and Davis, 2009; Villarini et al., 2011). The 

enhancements of temperature and precipitation in urbanized regions have the potential to 

increase summer discharge, groundwater recharge, and sewer flow (Huff, 1977). Additionally, 

the growing season can be extended and water quality can be degraded (e.g., warmer streamflow 

decreases dissolved oxygen concentration and adversely affects aquatic life) (de la Crétaz and 

Barten, 2007; Solecki et al., 2005). 

 Although it is inherently complex, the study of hydrologic changes throughout large basins 

provides an opportunity to understand the scale-dependency of the potential response to climate 

change. Initial studies have mostly focused on small headwater catchments rather than large 

developed or regulated downstream sub-basins (Whitfield et al., 2012). Hence, the potential for 

urban development to influence watershed hydrologic response becomes an interesting topic for 

research. Consequently, research is needed to extend the work of the Long-Term Ecological 

Research (LTER) program on undisturbed headwater catchments to larger downstream basins 

influenced by river regulation, forest conversion, and land development (LTHERS: Long-Term 

Human Environmental Research Stations) (Jones et al., 2012; Wilbanks and Kates, 1999). This 
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research could help to compare the influence of anthropogenic activities on hydrologic responses 

to the potential effects of changing climate. 
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2-2- The effects of large-scale circulation patterns regime shifts on hydrologic response 

 Over the conterminous United States, changing climate is altering hydrology in a variety of 

ways. This includes changes to the type of winter precipitation, the timing and volume of spring 

peak discharge, the magnitude of summer low discharge, and changes in evapotranspiration 

(Campbell et al., 2011; Collins et al., 2013; Déry and Wood, 2004; Frumhoff et al., 2007; 

Hidalgo et al., 2009; Huntington et al., 2009; Huntington and Billmire, 2014; Kam and Sheffield, 

2016; Mauget, 2003). Many studies have quantified these hydrologic alterations, but drivers of 

change are still uncertain. In particular, there is no consensus on whether long-term variations in 

patterns of discharge are the result of long-term climate cycles, and how these long-term climate 

cycles propagate through basins with varying sizes and biophysical and development 

characteristics (Bradbury et al., 2003; Hannaford and Marsh, 2006, 2008; Ishak et al., 2013; 

Panda et al., 2013; Seager et al., 2011). 

 Two common measures of long-term shifts in the Northeast climate are the Atlantic Multi-

decadal Oscillation (AMO) and North Atlantic Oscillation (NAO) (Armstrong et al., 2013; 

Bradbury et al., 2003, 2002a, 2002b; Kingston et al., 2007; Mazouz et al., 2013; Peng et al., 

2013; Smith et al., 2010; Tootle et al., 2005). The AMO is an index of Sea Surface Temperature 

(SST) anomalies with phase changes approximately every 30 to 40 years (Enfield et al., 2001; 

Gray, 2004; Kerr, 2000). Mechanistically, the AMO phase change interferes with the 

Thermohaline circulation, a current of warm surface water connecting the Southern Hemisphere 

to the North Atlantic (Deser et al., 2010). When AMO is extremely positive (negative), it slows 

down (speeds up) the oceanic circulation (Collins et al., 2014; Roller et al., 2016), directly 

altering SST. The SST variations over the tropical Atlantic Ocean induced by AMO can 

influence tropical cyclone activity (Roller et al., 2016) and bring warm, moist air into the eastern 
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US leading to extreme precipitation in the region (Roller et al., 2016). The positive phase of 

AMO modulated by the sign of PDO (Pacific Decadal Oscillation) is often associated with 

reduced annual rainfall over the most of the US noticeably for droughts in the 1930s and 1950s, 

and in particular, over the eastern Mississippi basin (Enfield et al., 2001; Kavvada et al., 2013; 

Luce et al., 2016; McCabe et al., 2004). Conversely, water surplus in the Mississippi basin may 

be due to the negative phase of AMO (Enfield and Cid-Serrano, 2006; Rogers and Coleman, 

2003). In the upper Missouri River basin and the Great Basin, the positive (negative) AMO 

phase is correspondent to less (more) extreme precipitation, while in the lower Colorado River 

Basin more (less) extreme precipitation occurs (Peng et al., 2013). Inland basins experience drier 

conditions during the AMO negative phase whereas coastal basins have more winter 

precipitation and coastal storms (Bradbury et al., 2003, 2002b). 

 The NAO index represents Sea-Level Pressure (SLP) anomalies and has positive and negative 

phases that may last between 3 and 10 years (Hurrell et al., 2003; Visbeck et al., 2001). The 

NAO phase change may affect the location, frequency, and intensity of storm tracks (developed 

in the western Atlantic due to cyclones formation resulting from contrasting heat capacity of the 

land and ocean) in the northeastern US (Hurrell, 1995; Serreze et al., 1997). When the NAO is 

positive, the pressure gradient between Icelandic low and Azores high is large with a dominant 

low-pressure system (Bradbury et al., 2002a). In the Northeast, positive NAO index is associated 

with increases in temperature and annual precipitation and favors more winter rainfall than 

snowfall (Bradbury et al., 2003, 2002a; Collins, 2009; Hurrell, 1995; Kingston et al., 2007; Lins 

and Slack, 1999; Mazouz et al., 2013). When NAO phase is negative, the pressure gradient 

between the Icelandic Low and the Azores High is small (Hurrell, 1995). When the Icelandic 

Low is abnormally high, the jet stream over Greenland and meridional flow is frequently blocked 
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(north-south meridian) in the North Atlantic region (Bradbury et al., 2002a), facilitating a cold 

trough, a southward shift in the polar front jet (Roller et al., 2016) and polar air penetration along 

the Northeast Coast. The associated low air temperatures, increased snowfall, more frequent 

coastal storms including nor’easters, and alterations to both winter and summer streamflow are 

well documented (Armstrong et al., 2013; Bradbury et al., 2002a, 2002b; Collins, 2009; Durkee 

et al., 2008; Hartley and Keables, 1998; Hurrell, 1995; Kingston et al., 2007, 2007; Marshall et 

al., 2001; Roller et al., 2016; Steinschneider and Brown, 2011). A prolonged negative NAO is 

often attended by increased streamflow along the Northeast coast and decreased runoff in inland 

basins (Bradbury et al., 2002b; Steinschneider and Brown, 2011). 

 While the mechanisms associated with the NAO and AMO are well studied, their influence on 

patterns of discharge across basin scales and levels of disturbances is less clear. As discharge 

integrates the effects of temperature and precipitation variations over a seasonal time scale, the 

primary characteristics of discharge provide valuable information regarding the response of 

water resources to changing climate (McCabe and Wolock, 2014). The discharge response may 

also differ depending on catchment properties (e.g. basin size, soil depths and type, vegetation, 

channel slope, topographic index, drainage density) (McGrane et al., 2014; Razavi and 

Coulibaly, 2013; Sawicz et al., 2014; Sivakumar et al., 2013) in addition to anthropogenic 

disturbances (e.g. land development, river regulations including dams and reservoirs) (Poff et al., 

2015). To best study the effects of AMO and NAO regime shifts on watershed hydrology, a set 

of indicators should be chosen that clearly represent the primary characteristics of discharge. 

These primary characteristics, identified as descriptors of ‘the natural flow regime’ (Poff et al., 

1997), include magnitude (important in water resources studies and water quality problems), 

timing (crucial in determination of discharge distribution throughout the water year, soil 
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moisture availability, and water quality), frequency and duration (significant impacts on 

ecosystem structure and function) (Beveridge et al., 2012; Gao et al., 2009; Hurd et al., 1999; 

Kennard et al., 2010; Olden and Poff, 2003; Poff et al., 1997; Richter et al., 2006, 1996). In this 

research, I quantify changes in discharge using the indicators of hydrologic alteration (IHA), a 

suite of metrics that quantify the primary ecological characteristics of discharge (Richter et al., 

1997, 1996). 

 With respect to both discharge and precipitation, several shifts have been observed across the 

northeastern US, including a prominent shift in the magnitude and frequency of records during 

the early 1970s which have been attributed to regime shifts of several large-scale circulation 

patterns primarily AMO and NAO (Armstrong et al., 2012; Collins, 2009; Douglas and Fairbank, 

2011; Hodgkins, 2010; Huntington et al., 2009; Mauget, 2003; McCabe and Wolock, 2002; Rice 

and Hirsch, 2012; Villarini and Smith, 2010). In this study, I use time series of AMO, NAO, 

precipitation, and discharge to identify regime shifts with a sequential step-change detection 

algorithm (Rodionov, 2004). This algorithm allows detection of multiple regime shift points 

beyond the well-studied hydroclimatic shift in the Northeast during the 1970s. The relationships 

of AMO and NAO with discharge responses may not be synchronous, as these indices (AMO, in 

particular) are affected by the delayed thermal memory of the ocean as opposed to climate 

system (Bradbury et al., 2002a; Hartley and Keables, 1998; Karnauskas et al., 2009; Roller et al., 

2016). This research could help investigate how ecological discharge indicators may respond 

with lags to regime shifts associated with changes in AMO and NAO regimes in the northeastern 

US. 
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2-3- Opportunities for discharge prediction with respect to variations in synoptic-scale 

phenomena 

 Teleconnection often refers to the contradictory seasonal variations which occur 

simultaneously (connected) in regions that are thousands of kilometers apart (tele) (Hurrell et al., 

2003); for instance a cold winter with considerable snowfall in the Northeast vs. a mild winter in 

Europe with abundant rainfall due to variations in Atlantic circulation patterns. Since 

atmospheric and oceanic circulation patterns control variations in air temperature and 

precipitation, changes in discharge over the Northeast may be teleconnected to changes in AMO 

or NAO (Seager et al., 2012). Although the nature of variations in AMO and NAO is stochastic, 

determining a possible level of predictability is of great interest (Gillett et al., 2002). The 

increasing trend in northern hemisphere land and sea surface temperatures over the past 40 years 

is believed to be teleconnected to NAO variations (Gillett et al., 2002; Hurrell, 1996; Thompson 

et al., 2000).  

 The NAO is the well studied teleconnection index due to its impacts on the hydroclimate of 

the northern hemisphere (Armstrong et al., 2013, 2012; Gillett et al., 2002; Hoerling et al., 2001; 

Hurrell et al., 2003; King and Kucharski, 2006; Lu et al., 2004; Osborn, 2011; Rind et al., 2005a, 

2005b; Sutton and Hodson, 2003). Most research on NAO teleconnection patterns focus on 

summer and winter seasons when the deviation of SST and SLP are greatest (Gillett et al., 2002). 

Generally, the variations in NAO are unpredictable, so NAO explains only a portion of the 

climate variability over the North Atlantic (Gillett et al., 2002). For instance, NAO explained up 

to 31% of winter temperature variations in the Northern Hemisphere for the 1950-2000 period 

(Gillett et al., 2002). Nevertheless, the positive trends in both NAO and precipitation trends since 

1960 over the Atlantic Ocean may indicate increasing prediction strength (Gillett et al., 2002). 
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 Coleman and Budikova (2013) found a teleconnection pattern between summer discharge 

anomalies in the Northeast and extreme phases of NAO up to three seasons in advance. I 

hypothesize that the temporal annual or seasonal changes in dry and wet discharge events could 

be explained by variations in the extreme phases of AMO and NAO together, which to the best 

of my knowledge has never been addressed. In this study, differences in discharge conditions 

during extreme positive and negative phases of AMO and NAO are compared, and annual and 

seasonal correlations between precipitation and discharge and the extreme phases of AMO and 

NAO are examined at zero-, one-, or two- year/season lags (total of 15 scenarios). In this study, I 

introduce a simple, but novel approach to estimate a confidence band for near-term prediction of 

wet, average, and dry discharge conditions from the historic relative frequency of occurrence 

with regards to the extreme phases of AMO and NAO. This research could help to investigate 

the teleconnection patterns of AMO and NAO with precipitation and discharge variations in 

order to understand the implications for future water resources management in the northeastern 

US. 
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3- Study site 

3-1- General information 

 The Merrimack River watershed encompasses almost 13,000 km2 of New Hampshire (NH) 

and northeastern Massachusetts (MA) (Figure  3-1). The Merrimack River watershed is under the 

influence of subarctic climate in the north (White Mountain area), with humid continental 

climate with either warm (coastal) or hot (inland) summers (Köppen climate classification). Over 

the period of 1904 to 2014, the mean annual precipitation (PRISM) and discharge (US 

Geological Survey: USGS, ID: 17, Table  3-1) (October 1st through September 30th) are 1060 mm 

(±167) and 772 mm (±158), respectively. For the same period, the mean monthly minimum and 

maximum temperatures are -0.6°C (±9.3) and 12.3°C (±10.4) at Plymouth NH (PRISM). 

 The dominant land cover in the Merrimack River watershed is forest (67%), with developed 

regions comprising 16% of the area mainly in downstream regions, i.e. southern NH and 

northern MA (Figure  3-1, Table  3-1). The headwaters of the Merrimack River watershed also 

include the Hubbard Brook Experimental Forest (HBEF), where long-term hydroclimatic 

information are available for climate change studies at small catchment scales. The total 

impervious surface area in the Merrimack watershed is less than 3%. However, in urbanized 

areas in the southern portion of the watershed, total impervious are is greater than 9% (Xian et 

al., 2011), at or near the threshold that is often associated with substantial changes in localized 

streamflow (de la Crétaz and Barten, 2007). Population density is approximately 160 

people/km2, with most of population concentrated in southern NH and northern MA (US Census 

Bureau 2010). 

 The Merrimack River originates at the confluence of Pemigewasset River and the 

Winnipesaukee River in Franklin, NH (Figure  3-1) and flows for 185 km before it discharges 
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into the Atlantic Ocean at Newburyport, MA (Executive Office of Environmental Affairs, The 

Commonwealth of Massachusetts, 2001). The difference between the highest and the lowest (sea 

level) elevation in the watershed is 914 m. The Merrimack River is highly regulated with 41 

major dams operating for hydropower generation, flood control, recreation, and/or navigation 

(Figure  3-1). The overall water withdrawal is approximately 2.5 million cubic meters per day 

(659 million gallons per day) mostly for public supply (59% of total withdrawal) and 

thermoelectric demand (34% of total withdrawal) (Water Demand Analysis on Merrimack River 

Watershed, 2001). 

 Within the Merrimack River watershed, I focus on 21 sites with a range of less than a square 

kilometer drainage area up to 11,450 km2 (Figure  3-1, Table  3-1). Ten reference catchments have 

minimal land disturbance with no impoundment or river regulation. The remaining gauges 

represent sub-basins with a history of hydraulic control and land cover/use change including 

local urbanization (Table  3-1). 

 

3-2- Geology and soil order 

 New England has been mostly formed by volcanic island arcs in the geologic eras of 

Ordovician (485.4 million years ago or Mya), Silurian (443.8 Mya), and Devonian (419.2 Mya) 

(Skehan, 2001). The bedrock is heavily metamorphosed and igneous (Olcott, 1995). The 

overlying layer is generally glacial conglomerates which are composed of limestone, sandstone, 

shale, and granite. Limestone (0.032-189 m/yr), sandstone (0.0095-189 m/yr), shale 

(3×10 0.063 m/yr), and granite (3×10 -0.0032 m/yr) indicate low hydraulic conductivity 

(Heath, 1983). The long range for hydraulic conductivity is mainly due to secondary porosity. 
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 The Merrimack watershed is geologically formed during the Ordovician period while the 

upstream orogenesis processes began from the end of Ordovician period and continued into the 

Devonian and the Silurian eras. The hydrography of the Merrimack watershed is largely 

determined by the glaciations of the Appalachian Mountains of NH (de la Crétaz and Barten, 

2007). 

 The average depth of the saturated zone (groundwater table) below the soil surface in the 

upstream, middle reaches, and downstream regions of the Merrimack varies with the range of 0-

5, 0.5-11, and 0-20 meters, respectively (for downstream regions located in NH the range is 7-20 

meters while for northern MA the range varies between 0-5 meters) (USGS Groundwater Watch 

Information). 

 The upstream soil order of the Merrimack is Spodosols while downstream regions are mostly 

covered by Entisols and Histosols. Spodosols are acidic well-drained soils developed in under 

hardwood or coniferous forests in cool, wet climate (largely unsuitable for agriculture). Entisols 

and Histosols are deposited soils developed in regions with wet growing season (more than 400 

mm of rain during 80% of the growing season) (Brady and Weil, 2008; de la Crétaz and Barten, 

2007). 

 

3-3- Land use/cover types and historical trends 

 The upstream of the Merrimack River watershed is part of the Northeastern Highlands 

ecoregion with relatively low population density (McMahon et al., 2001). The Northeastern 

Highlands ecoregion is mostly covered by northern hardwood and spruce-fir forests (Gallant et 

al., 2004). Open high hills could be recognizable over the northern New Hampshire, while low 
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ridges are more typical landscape features in the central and southwest portions of the state 

(Gallant et al., 2004; Skehan, 2001). 

 The historical pattern of forest conversion to farmland was largely ended by the mid-1800s; the 

farm lands were subsequently abandoned (in the late-1800s and early-1900s) and quickly 

returned to forested conditions (de la Crétaz and Barten, 2007; Drummond and Loveland, 2010; 

Hart, 1968). Logging was relatively common in western Maine and northern New Hampshire; 

small-scale agriculture and tourism were prevalent in other parts of the Merrimack River 

watershed (Kambly, 2006). The grand total change per decade among all land use/cover classes 

for the Northeastern Highlands ecoregion has risen from 2.3% (±1.3%) in late 1970s to 6.2% 

(±2.4%) in early-2000s; the average annual rate of change increased from 0.3 in early-1970s to 

0.8 in late-1990s (Kambly, 2006). 

 Although there is 4% decrease in forested land since 1970s, it still covers 80% of the lands in 

the ecoregion (Loveland and Acevedo, 2006). Developed lands have increased from 1.8% in 

early 1970s to 2.3% in early 2000s (i.e., almost 30% change in the percent of developed lands) 

(Soulard and Sleeter, 2012). For the 30-yr period (1973-2000), 41% of forested lands were 

mechanically disturbed; one-third of the mechanically disturbed lands naturally restored into 

grassland/shrubland; one-fifth of grassland/shrubland reforested again (Kambly, 2006). Only 2% 

of the forested lands were turned into developed regions (Drummond and Loveland, 2010; 

Sleeter et al., 2013). 

 The southernmost portion of the Merrimack River watershed is part of the Northeastern coastal 

zone (McMahon et al., 2001). Similar to the highlands ecoregion, hardwood forest is still 

dominant with limited coastal/inland wetland (Auch, 2006). Development has been increased 

from 23% to 27% in the period of 1973-2000 (17% net change) due to 50% increases in the 
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population (Loveland et al., 1999; Vogelmann et al., 2001). Development has resulted in a 4% 

loss in forest cover from 1973 to 2000 (Drummond and Loveland, 2010; Loveland and Acevedo, 

2006; Sleeter et al., 2013; Soulard and Sleeter, 2012). 

 The land use/cover trends for the Merrimack River watershed over the period of 1973-2000 

closely follow the general patterns for the northeastern United States. There is a net 3.5-4.8% 

decrease in the Merrimack forested area for the period of 1973-2000; In the meanwhile, 

downstream urbanized regions have experienced an increase in development rate for 4.8-6.2% 

(Loveland et al., 1999; Loveland and Acevedo, 2006). The overall rate of land cover/land use 

change for the Merrimack River watershed is higher in upstream regions (8.8-14.4%) than 

downstream developed regions (4.1-8.7%) (Gallant et al., 2004; Loveland et al., 2002). 
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Table  3-1- The description of the HBEF catchments and the Merrimack sub-basins. The reference (R), regulated (RG), and developed (D) sub-basins are also 
identified. The Merrimack River watershed land cover is presented based on the 2006 National Land Cover Database information. 

ID The description of study sites 
Latitude 

Longitude 

Gauge 
datum 

(m) 

Drainage 
area 
(km2) 

Slope 
(%) 

Land cover (% of total) Period 
of 

record 

Mean 
annual 

precipitation 
(mm/WY) 

Mean 
annual 

discharge 
(mm/WY) Forested Developed Other* 

1 HBEF-WS1 (R) 
43.95 
-71.73 

488 0.1 18.6 98.7 0.4 0.8 
1957 
2011 

1350 863 

2 HBEF-WS2 (R) 
43.95 
-71.72 

503 0.2 18.5 98.7 0.4 0.8 
1958 
2011 

1351 958 

3 HBEF-WS3 (R) 
43.95 
-71.72 

527 0.4 12.1 98.7 0.4 0.8 
1959 
2011 

1355 863 

4 HBEF-WS4 (R) 
43.95 
-71.73 

442 0.4 15.6 98.7 0.4 0.8 
1961 
2011 

1389 920 

5 HBEF-WS5 (R) 
43.95 
-71.73 

488 0.2 15.4 98.7 0.4 0.8 
1965 
2011 

1421 916 

6 HBEF-WS6 (R) 
43.95 
-71.74 

549 0.1 15.8 98.7 0.4 0.8 
1965 
2011 

1453 944 

7 HBEF-WS7 (R) 
43.93 
-71.77 

619 0.8 12.4 98.7 0.4 0.8 
1966 
2011 

1486 978 

8 HBEF-WS8 (R) 
43.93 
-71.76 

610 0.6 14.0 98.7 0.4 0.8 
1970 
2011 

1496 961 

9 Assabet River at Maynard, MA (RG-D): 
Occasional diurnal fluctuation at low flow 
by mills upstream; greater regulation prior 
to 1969. Since 1962, high flow affected by 
retarding reservoirs and, since 1970, 
occasional release at low flow by these 
reservoirs. 

42.43 
-71.45 

43 300 5.9 47.5 35.2 17.4 
1942 
2011 

1144 585 

10 Concord River below R Meadow Brook, at 
Lowell, MA (RG-D): Low flow regulated 
by mills upstream. Daily discharge includes 
undiverted water from 92.6 mi2 in basins of 
Sudbury River and Lake Cochituate. Prior 
to December 1961, diversion upstream for 
use by city of Lowell. 

42.64 
-71.30 

21 795 5 40.7 41.7 17.7 
1938 
2011 

1126 756 

11 Merrimack River BL Concord River at 
Lowell, MA (RG-D): Daily discharge 
includes water released from 210 mi2 in 
basins of Sudbury and Nashua Rivers and 
Lake Cochituate. Flow regulated by power 
plants, by Franklin Falls Reservoir since 
1942, and by Squam, Newfound, 
Winnipesaukee, Winnisquam, and other 
lakes and reservoirs upstream. 

42.65 
-71.30 

2 11450 --- 68.4 19.6 12.0 
1924 
2011 

1118 620 
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Table 3-1- Continued 

ID The description of study sites 
Latitude 

Longitude 

Gauge 
datum 

(m) 

Drainage 
area 
(km2) 

Slope 
(%) 

Land cover (% of total) Period 
of 

record 

Mean 
annual 

precipitation 
(mm/WY) 

Mean 
annual 

discharge 
(mm/WY) Forested Developed Other* 

12 Merrimack River near Goffs Falls, below 
Manchester, NH (RG-D): Records 
generally good except those for 
estimated daily discharges which are 
generally poor. Flow regulated by power 
plants, by Franklin Falls Reservoir since 
1942, and by Squam, Newfound, 
Winnipesaukee, Winnisquam, and other 
lakes and reservoirs upstream. 

42.95 
-71.46 

33 8008 --- 77.0 13.1 9.9 
1938 
2011 

1053 612 

13 Nashoba Brook near Action, MA (D): 
Records good except those for estimated 
daily discharge, which are poor. 
Occasional regulation since 1967 by 
pond upstream. 

42.51 
-71.40 

47 33 2.4 45.8 35.3 18.9 
1964-
2011 

1156 564 

14 Nashua River at East Pepperell, MA 
(RG-D): Extremes and daily discharge 
include water released while diverting 
flow of Nashua River for use of Boston 
metropolitan district and water diverted 
into basin from Ware River Basin since 
1955 for municipal use of Fitchburg. 
Prior to October 1981, water diverted 
around station through plant of James 
River–Pepperell Co. was added to daily 
figures. Flow regulated by power plant 
immediately upstream. 

42.67 
-71.58 

52 818 10 55.7 24.6 19.7 
1936-
2011 

1138 657 

15 North Nashua River at Fitchburg, MA 
(RG-D): Flow regulated by mills and 
reservoirs upstream. Flow affected by 
diversions for municipal use. 

42.58 
-71.79 

120 166 --- 56.4 34.5 9.1 
1973-
2011 

1198 675 

16 North Nashua River near Leominster, 
MA (RG-D): Flow regulated by mills, 
reservoirs, and waste-water treatment 
plants upstream. Flow affected by 
diversions from 2.1 mi2 above outlet of 
Ashby Reservoir for municipal use. Prior 
to Dec. 15, 2006, gage located 0.5 mi 
upstream old mill dam at different 
datum. 

42.50 
-71.72 

81 285 --- 54.4 32.3 13.3 
1936-
2010 

1164 645 
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Table 3-1- Continued 

ID The description of study sites 
Latitude 

Longitude 

Gauge 
datum 

(m) 

Drainage 
area 
(km2) 

Slope 
(%) 

Land cover (% of total) Period 
of 

record 

Mean 
annual 

precipitation 
(mm/WY) 

Mean 
annual 

discharge 
(mm/WY) Forested Developed Other* 

17 Pemigewasset River at Plymouth, NH 
(R): For water years 2014 and 2015, 
records good except estimated daily 
discharges which are poor. Stage-
discharge relationship at times is affected 
by variable slope. Some diurnal 
fluctuation during period 1940-52 caused 
by power plants upstream. 

43.76 
-71.69 

139 1611 --- 91.7 4.1 4.2 
1904-
2011 

1046 770 

18 Shawsheen River near Wilmington, MA 
(RG-D): Diversion upstream at times 
each year since 1973 for municipal 
supply of Burlington. 

42.57 
-71.21 

25 95 --- 17.1 73.2 9.7 
1965-
2011 

1181 579 

19 Smith River near Bristol, NH (R): For 
water years 2014 and 2015, records good 
except estimated daily discharges which 
are fair. Prior to 1954, some diurnal 
fluctuation caused by small mill 
upstream; greater fluctuation prior to 
1941. 

43.57 
-71.75 

137 222 --- 87.1 3.7 9.3 
1919-
2011 

1063 595 

20 Squannacook River near West Groton, 
MA (RG-D): Occasional regulation at 
low flow by mill upstream; regulation 
greater prior to 1961. Entire flow from 
2.16 mi2 upstream from outlet of Ashby 
Reservoir diverted for municipal supply 
of Fitchburg except for occasional 
periods of spill. 

42.63 
-71.66 

74 165 5.1 76.5 10.0 13.5 
1950-
2011 

1172 627 

21 Winnipesaukee River at Tilton, NH (RG-
D): For water years 2014 and 2015, 
records good. Flow regulated by power 
plants prior to 1967 and by 
Winnipesaukee (station 01080000), 
Winnisquam 4.5 mi upstream, 
Wentworth, Merrymeeting, and other 
lakes upstream. 

43.44 
-71.59 

135 1220 --- 62.3 27.9 9.9 
1938-
2011 

1083 534 
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Figure  3-1a- The Merrimack River watershed: Dams, gauging stations, streams, and topography are 
indicated (Shaded relief for northeastern U.S. and Canada, North Atlantic LCC, 2016 accessible at 
http://bit.ly/2lmbYXS). The key to the site ID number is presented in Table  3-1 (A larger version of the 
land cover map appears on the next page, Figure  3-1b). Yellow dots represent HBEF catchments (0.1-0.8 
km2). Small-scale sub-basins (ID: 13, 15, 18, and 20; 33-166 km2) are distinguished by green dots, while 
intermediate-scale (ID: 9, 10, 14, 16, and 19; 222-818 km2) and large-scale sub-basins (ID: 11, 12, 17, 
and 21; 1220-11450 km2) are marked by red and black dots, respectively. 
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Figure  3-2b- The Merrimack River watershed: Dams, gauging stations, streams, and land cover 
classification are indicated (National Land Cover Database, 2006 accessible at http://bit.ly/2k8JNLU). 
The key to the site ID number is presented in Table  3-1. 
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4- Material and methods 

4-1- Data 

4-1-1- Precipitation and discharge data 

 Monthly estimates of precipitation and temperature for the catchments and sub-basins 

considered in this study were obtained from the Parameter-elevation Regressions on Independent 

Slopes Model (PRISM) (Daly, 2004). The monthly precipitation information (in mm) was 

derived from PRISM based on the geographic location of each gauging station. Subsequently, 

annual precipitation was computed by integrating monthly values over the water year (Oct 1st to 

Sep 30th). 

 Discharge data were obtained from 21 stations in the US Geological Survey (USGS) and 

HBEF gauge networks. The USGS currently operates 37 gauge stations within the Merrimack 

River watershed, of which 13 have continuous and sufficient discharge records. In this study, I 

used records of more than 30 years duration (median record length: 55 years) of which the 

earliest began in 1904 (Table  3-1) to evaluate both short- and long-term responses of discharge 

to climate variation and development. 

 Two USGS gauges (ID No. 17 and 19) represent reference catchments (Table  3-1) with 

minimal land disturbance and no artificial diversions or storage (Slack and Landwehr, 1992). 

The remaining gauges represent sub-basins with histories of hydraulic control and/or land 

development. Discharge data for each gauge were normalized by drainage area and expressed as 

depth in mm. Annual water yield was calculated by integrating instantaneous discharge rates for 

the “water year” extending from October 1st to September 30th in order to minimize the variation 

in watershed storage when the transpiration is limited or negligibly small and, consequently, soil 

moisture and groundwater storage reach their annual maxima (Dingman, 2015). 
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 The HBEF is located at the headwater region of the Merrimack River watershed and has high 

quality long-term measurements of hydroclimatological variables. Precipitation and discharge 

data of catchments within the HBEF (Campbell, 2013a, 2013b) complement the USGS stations 

located elsewhere in the Merrimack watershed. Four catchments at the HBEF (WS 3, 6, 7, and 8) 

serve as reference sites for changing climate studies. Four other HBEF catchments (WS 1, 2, 4, 

and 5) were experimentally manipulated to assess the effects of anthropogenic interventions 

(Table  3-1). HBEF catchments are small (<1 km2) relative to Merrimack sub-basins (33-11450 

km2) (http://www.hubbardbrook.org/ and http://waterwatch.usgs.gov/). 

 

4-1-2- Atlantic Multi-decadal Oscillation (AMO) data 

 The AMO is an index of Sea Surface Temperature (SST) anomalies typically averaged over 

0-80°N in the North Atlantic Ocean (Enfield et al., 2001; Kerr, 2000). As mentioned earlier, the 

AMO phase changes approximately every 30 to 40 years with potential impacts on both ocean 

and atmospheric circulation (Delworth and Mann, 2000; Enfield et al., 2001; Kavvada et al., 

2013; Vianna and Menezes, 2013). The AMO has been observed through instrumentation since 

1856 (Enfield et al., 2001) and is calculated from the Kaplan monthly SST dataset (Kaplan et al., 

1998, 1997). I use annual water year AMO values averaged from monthly AMO indices 

provided by National Center for Atmospheric Research (NCAR) for the period of 1857 to 2014 

(Trenberth et al., 2015). 

 

4-1-3- North Atlantic Oscillation (NAO) data 

 The principal component-based (PC-based) index of NAO is the time series of the leading 

Empirical Orthogonal Function (EOF) of Sea-Level Pressure (SLP) anomalies over the Atlantic 
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sector (20°-80°N, 90°W-40°E) (Hurrell et al., 2003). The NAO index quantifies atmospheric 

mass transfer between the high pressure center at Azores Island and low pressure at Iceland 

(Peng et al., 2013; Visbeck et al., 2001). As previously mentioned, the NAO positive or negative 

phases may last 3 to 10 years (Hurrell et al., 2003) which correspond to changes in wind speed 

and direction that affects heat and moisture transport between land and ocean (Hurrell, 1995; 

Roller et al., 2016). 

 The NAO index information is also provided by NCAR. NAO has been observed by 

instrumentation since 1899 (Armstrong et al., 2012). Since the centers of atmospheric troughs 

and ridges change throughout the year, PC-based NAO may better represent variations in SLP of 

the Atlantic than station-based NAO (Hurrell et al., 2003). Monthly NAO values were averaged 

over the water year to calculate the mean annual NAO (WY 1900-2014) (Hurrell, 2015). 

 

4-1-4- Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO) data 

 While the primary focus of this manuscript is AMO and NAO, I also assessed shift points in 

PDO and ENSO, but there has been no general agreement on the impact of Pacific 

teleconnection patterns on Northeast hydroclimate. Indices of PDO and ENSO are provided by 

US National Oceanic and Atmospheric Administration (NOAA). PDO has been observed by 

instrumentation since 1855 (Mantua et al., 1997), while ENSO has been recorded since 1871 

(Rayner et al., 2003). Mean annual water year values of PDO and ENSO values were calculated 

for water years 1855-2014 and 1871-2014, respectively. 
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4-1-5- Data transformation 

 Discharge data from each study site were divided by drainage area and expressed as depth in 

mm. The temporal scales of this study were annual (water year: Oct 1st to Sep 30th) as well as 

seasonal (spring: March-April-May, summer: June-July-August, fall: September-October-

November, and winter: December-January-February). Since I wanted to investigate how much of 

the abnormality in precipitation and discharge could be explained by variation in SST and SLP 

anomalies, I computed the standardized monthly precipitation and discharge as follows 

(Coleman and Budikova, 2013): 

 
 

,
,

m y m
m y

m

log X X log X
Anomaly

STDEV log X


  (Equation 1)

 

where ,m ylog X  is a monthly log-transformed value for water year “y”,  mX log X  is the long-

term average of all the log-transformed monthly values, and  mSTDEV log X  is the standard 

deviation of all the log-transformed values. 

 In order to isolate natural from forced variability and to emphasize extreme events, 

information regarding the neutral phases of AMO and NAO ( 0.5 0.5x       ) were 

removed and the extreme positive and negative phases were defined as half the standard 

deviation of the long-term mean (positive phase: 0.5x    ; negative phase: 0.5x    ) 

Coleman and Budikova (2013). Considering the long-term mean and standard deviation, I 

defined the extreme positive (negative) phase of AMO as greater (less) than 0.2 (-0.2). The 

extreme positive (negative) phase of NAO would consist of values greater (less) than 0.5 (-0.5) 

(Figure  4-1). 
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Figure  4-1- The monthly time series of: a) AMO with extreme positive (≥ 0.2) and negative (≤ -0.2) phases b) NAO with extreme positive (≥ 0.5) 
and negative (≤ -0.5) phases. Water year begins at October 1st and ends at September 30th. 
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4-2- Methods 

4-2-1- Hydrologic flow conditions 

 Discharge anomaly is a metric to distinguish among hydrologic flow classes (Genz and Luz, 

2012). In this approach, annual cumulative discharge data are normalized by annual total and 

classified as dry, average, or wet based on the deviation from the long-term mean annual 

discharge, with one standard deviation as the criteria for differentiating hydrologic flow classes 

(Genz and Luz, 2012). Streamflow anomaly is computed as follows: 

Anomaly = (Qi − Qm) / σ (Equation 2)

where Qi is the annual discharge (mm/WY) in year i; Qm is the long-term mean annual discharge 

(mm/WY); and σ is the standard deviation (mm/WY). For this study, the three distinct 

hydrologic discharge conditions of dry (anomaly < –0.5), average (–0.5 < anomaly < 0.5), and 

wet (anomaly > 0.5) years are established based on discharge anomaly (Genz and Luz, 2012). 

 

4-2-2- Flow duration and flow distribution curves 

 A Flow Duration Curve (FDC) shows the relationship between discharge and its exceedance 

probability (Vogel and Fennessey, 1994). FDC links the magnitude and frequency of the 

discharge and represents the probability that discharge equals or exceeds a given value 

(Smakhtin, 2001). The FDCs developed in this study help to differentiate the discharge responses 

to different regimes of AMO and NAO in addition to changing climate, river regulation, and 

development for catchments and sub-basins spanning a wide range of drainage areas. 

 A Flow Distribution Curve (FDiC) shows the relationship between the cumulative discharge 

passing a stream gauge and the day of water year. The quarter-flow (i.e., 25%) dates of 

cumulative annual discharge are convenient metrics of flow distribution, and the shift in timing 
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of quarter discharge date is commonly used to identify differences among streams or among 

years for an individual stream (Burn, 2008; Court, 1962; Hodgkins et al., 2003; Hodgkins and 

Dudley, 2006, 2005; Moore et al., 2007; Regonda et al., 2005; Stewart et al., 2004). In this study, 

variations in the quarter- (25%), half- (50%), and three-quarter (75%) of annual discharge dates 

are evaluated under changing climate, river regulation, and development for catchments and sub-

basins with varying drainage areas. 

 

4-2-3- Mann-Kendall trend test and Sen’s slope estimate 

 The Mann-Kendall (MK) trend test was proposed by (Mann, 1945) and developed by (Kendall, 

1975) as a nonparametric distribution free statistical test to detect monotonic temporal trends in 

hydroclimatological parameters such as precipitation, discharge, and temperature (Helsel and 

Hirsch, 1992). The magnitude of a trend is often computed by Sen’s method, which is a 

nonparametric median-based slope estimate of a hydroclimatological parameter (Sen, 1968). 

 The performance of trend tests could be questioned when applied to the entire period of record 

because they disregard long-term persistence, that is, the structural shift in the time series of a 

variable (Cohn and Lins, 2005). On the other hand, when the period of record is subdivided, the 

number of observations for each hydrologic class decreases relative to the entire record. This 

approach will decline the power of analysis and will increase the probability of type II error (fail 

to reject the null hypothesis of “no trend” when the trend actually exists) (Yue and Pilon, 2004). 

 Although it is recommended to use at least 15 to 25 years of discharge record in order to 

evaluate spatiotemporal variations in metrics of hydrologic indicators (Genz and Luz, 2012; 

Kennard et al., 2010; Lins and Slack, 2005), MK can be used to examine trends in series with at 

least four data points (Gilbert, 1987). As noted earlier, I selected gauged sites with more than 30 
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years of data in order to have at least a decade of information when annual discharge data were 

parsed into three hydrologic flow classes of dry, average, and wet. In this study, spatiotemporal 

trends in annual discharge magnitude and timing are analyzed as well as trends in three distinct 

hydrologic flow classes of dry, average, and wet years. Both perspectives of examining the 

period of record and hydrologic flow classes have been used to provide insight into the 

hydrologic response to climate variation and development (Genz and Luz, 2012). 

 The discharge trends in each class of dry, average, and wet years could be computed with MK 

analysis and Sen’s slope estimate since the unequally-spaced information in each hydrologic 

flow class resembles “missing at random (MAR)” approach which is designed to study specific 

class of information at a time (Osborne, 2013). Because of the potential influence of antecedent 

hydrologic conditions on the current flow regime (i.e., the “carry over” effect of a dry year 

following a dry year), a modified version of the MK and Sen’s method is used with the 

consideration of serial correlation among consecutive years with similar hydrologic flow 

condition (Yue and Wang, 2002). Trend analyses are performed with Microsoft® Excel 

2007/XLSTAT©-Pro (Version 2.01, 2015, Addinsoft, Inc., Brooklyn, NY, USA). The software 

employs the methodology proposed by (Yue and Wang, 2002) to consider serial correlation for 

MK analysis and Sen’s slope estimate. 

 

4-2-4- Multivariate statistical analysis 

 Multivariate statistics is a procedure identifying the representative factors among a set of 

independent variables that best explain a dependent variable (Izenman, 2008). Multivariate 

statistical methods used in this study include Cluster Analysis (CA) (Hartigan, 1975), Linear 
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Canonical Discriminant Analysis (LCDA) (Hotelling, 1936), Principal Component Analysis 

(PCA) (Hotelling, 1933; Pearson, 1901), and Factor Analysis (FA) (Spearman, 1904). 

 CA is used to place similar objects into one representative group; LCDA, PCA, and FA 

methods are generating independent (orthogonal) linear combinations of the original variables 

which can explain the highest amount of variation among the data (Izenman, 2008). For 

example, Olden and Poff, (2003) used PCA to find the sets of independent hydrologic indicators 

that could best explain the variability across streams in a region with diverse climate and 

geological conditions. 

 I used multivariate statistical methods to evaluate spatial correlation of discharge metrics 

among the reference and regulated/developed categories. The reference category consists of eight 

study catchments from HBEF and two sub-basins from the Merrimack watershed. There are 

eleven gauged sub-basins within the Merrimack watershed with different levels of disturbance, 

including river regulation and/or land development. All multivariate statistical analyses were 

performed with SAS statistical analysis program (SAS Institute Inc., Cary, NC, USA- Version 

9.2, 2009). 

 The initial multivariate statistical analyses of magnitude and timing trends in the Merrimack 

streamflow records showed two distinct clusters of results (i.e., a group of HBEF reference 

catchments as well as a group of the Merrimack reference, regulated and/or developed sub-

basins) (Figure  4-2). Therefore, I used the drainage area along with current land cover/use 

condition to make significant statistical inferences and comparisons of discharge trends among 

the HBEF reference catchments and the developed sub-basins in other downstream portions of 

the Merrimack watershed. 
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 Furthermore, inside each cluster, three distinct sub-groups can be identified (Figure  4-2). 

Catchments 1 and 3, catchments 2 and 5, and catchments 4, 6, 7, and 8 formed three HBEF sub-

groups related to differences in elevation, slope, and aspect. Within the Merrimack cluster, sub-

groups are clearly distinguished by drainage area as: small-scale sub-basins 13, 15, 18, and 20 

(33-166 km2), intermediate-scale sub-basins 9, 10, 14, 16, and 19 (222-818 km2), and large-scale 

sub-basins 11, 12, 17, and 21 (1220-11450 km2). The small and large sub-groups are clearly 

distinguished by PCA but the intermediate sub-groups in both HBEF and Merrimack clusters 

have overlaps with either the small or large sub-groups. See Table  3-1 and Figure  3-1 for the 

identification and location of these catchments and sub-basins. 

 

Figure  4-2- PCA performed on discharge quantity and timing trends for the period of record. Two 
separate clusters of HBEF reference catchments as well as the Merrimack reference, regulated, and/or 
developed sub-basins were identified. The three distinct sub-groups inside each cluster reveal the scale-
dependency of changes in the hydrologic response. The key to the site ID is presented in Table  3-1. 
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4-2-5- Regime shift detection method 

 The regime shift detection method described by (Rodionov, 2004) identifies discontinuities in 

the time series of a variable. A step-change or regime shift is a transition in the time series of a 

variable from one state (regime) to either higher or lower state (Rodionov, 2015). The shift 

occurs when the long-term average of a variable over a new regime becomes significantly 

different from the long-term average of an initial regime (Rodionov, 2005, 2004). This method is 

a sequential analysis which does not require pre-assumptions about the timing of shifts. 

Moreover, it is able to detect multiple shifts over the time series of a variable. 

 Rodionov (2004) suggested the following algorithm to detect regime shifts. First, a cut-off 

length is defined for regimes lasting L years or longer within the time series of the variable X. 

Next, the difference (diff) between the long-term mean values of two successive regimes is 

calculated and the statistical significance of the difference is examined with the Student’s t-test: 

⁄  (Equation 3) 

where t is a t-distribution parameter with 2L-2 degrees of freedom at α level of significance,  

average of the variances of all L-year regimes in the period of record (the assumption of equal 

variance for both regimes). Following this, the mean value of variable X is calculated for the first 

regime (i.e. ̅ ). A shift to regime R2 is expected when Xi (i=L+1) exceeds the ̅ ̅

 range. If Xi does not exceed ̅ , ̅  is recalculated and the next Xi is considered. 

Otherwise, Xi is a candidate for the beginning date of a new regime R2. 

 If a shift is detected, the Regime Shift Index (RSI) is calculated as: 

, ∑ ∗⁄  , m=0, 1, …, L-1 (Equation 4) 

∗ ̅  (for up shift) or ∗ ̅  (for down shift).  
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The shift point is not confirmed when RSI is less than zero. In this case, RSI should set to be zero 

for Xi. Next, an additional time step is added, a new value for ̅  is calculated, and the shift is 

again evaluated using the method specified above. When a shift is confirmed (RSI>0), the actual 

mean value is calculated for the new regime ̅ . Finally, a new regime R3 can be detected that 

begins from year i=j+1. 

 The software for implementing this algorithm is freely available for download 

(http://www.beringclimate.noaa.gov/regimes/). The algorithm also includes a procedure for 

removing the impact of serial correlation (red noise) on regime shift point detection, known as 

the IP4 (Inverse Proportionality with 4 corrections) procedure (Rodionov, 2006). I chose a 

confidence level of α= 0.1 for the analysis. In the implementation of this software, I considered 

different cut-off lengths (L=5, 10-40 with 10-year increments) to detect regimes of five years or 

longer. I also considered cut-off lengths of L=3 to avoid missing NAO regimes that may last 

three years or longer. No new shift points emerged besides those already detected with cut-off 

length of five years or greater. 

 I used the regime shift detection method described above to determine change points across 

time series of precipitation and discharge at each of 21 study sites. I also applied this regime shift 

detection method for AMO over the period 1857 to 2014 and NAO over the period 1900 to 2014. 

To test whether detected regime shift points were an artifact of record length, I applied the 

method to the entire time series mentioned above and to AMO and NAO records shortened to the 

length of each discharge record. 
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4-2-6- Indicators of hydrologic alteration (IHA) and range of variability approach (RVA) 

 In this section, I introduce two concepts, the IHA and RVA, which I used to evaluate changes 

in ecological discharge indicators across different climatic regimes. I assessed changes in 

discharge using IHA, a suite of metrics that quantify the primary ecological characteristics of 

discharge (Richter et al., 1997, 1996). This suite of indicators has previously been used to 

evaluate the responses of ecological discharge indicators to regime shifts (step changes) due to 

impoundment, river regulation, or urban development (Black et al., 2005; Fernández et al., 2012; 

Martin et al., 2012; Poff et al., 1997; Richter et al., 1996). The pre-regime shift observations 

were utilized as a reference to determine the extent of discharge alteration after the step-change 

(Richter et al., 1997). The indicators of hydrologic alteration include the following metrics: 

 Monthly magnitudes of discharge: Monthly discharge was computed from a summation 

of daily average values, normalized by the drainage area expressed as mm/month. The 

monthly water availability is an important metric for water resource analysis and water 

quality problems. 

 Baseflow index: The baseflow index was calculated as the mean of all the annual 24-hr 

low discharge values normalized by the total mean of natural log-transformed discharge 

(Poff and Ward, 1989). Baseflow index provides valuable information for aquatic 

ecosystems, mainly due to the importance of baseflow on summer streamflow 

temperature (Hodgkins and Dudley, 2011). 

 No flow days: The number of zero days was the sum of zero discharge days. The 

increases in the number of zero days can result in water stress to plants largely during the 

growing season. 
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 The dates of maximum and minimum discharge: The annual water year day number for 

maximum or minimum discharge (IHAs, Ver. 7.1, 2009). Changes in dates of minimum 

and maximum discharge are critical to the life cycle of river habitats (Poff et al., 2010). 

 To explore the effects of shifts in AMO and NAO on extreme discharge responses, I 

employed the range of variability approach to calculate water year ecological discharge 

indicators during each regime. The RVA considers either the standard deviation of the mean 

(parametric analysis) or the percentile of the median (non-parametric analysis) to define the 

natural range of variability for a discharge indicator (Richter et al., 1997). The frequency of 

events may change from pre- to post-regime shift period which can be quantified HAI (Richter et 

al., 1997, 1996). The HAI evaluates the extent of change in high (“ x   ” or “ %Mdn ile  ”) 

and low (“ x   ” or “ %Mdn ile  ”) RVA boundaries for a discharge indicator. A positive 

(negative) HAI demonstrates the increase (decrease) in frequency of a discharge indicator from 

the pre-shift to the post-shift regime with a maximum value of infinity (with a minimum value of 

-1) (IHAs, Ver. 7.1, 2009; Richter et al., 1997, 1996). In this study, I defined the 10th and 90th 

percentiles as low and high RVA boundaries, respectively (i.e. 40 %Mdn th ile ). I quantified 

HAI values for each of the indicators listed above between concurrent regime shifts across all 

Merrimack sub-basins. 

 

4-2-7- t-Test 

 The group t-test was performed to verify the hypothesis that mean standardized discharge was 

different between the AMO and NAO extreme phases. The test followed the Cochran 

approximation (Cochran and Cox, 1950) which assumes that the distribution of normalized 

discharge for extreme phases of AMO or NAO has unequal variance. The uniformly most 
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powerful unbiased (UMPU) confidence intervals were computed considering the equal-tailed 

95% confidence limit. The t-test was performed with the SAS statistical analysis program (SAS 

Institute Inc., Cary, NC, USA- Version 9.2, 2009). 

 

4-2-8- Pearson correlation coefficient 

 The correlation coefficients were computed with the SAS statistical analysis program (SAS 

Institute Inc., Cary, NC, USA- Version 9.2, 2009). Pearson, Spearman, and Kendall procedures 

were utilized to assess the correlations of AMO and NAO with precipitation and discharge. The 

correlation coefficients were determined for HBEF catchments (ID: 1-8, drainage area of 0.1-0.8 

km2) and small (ID: 13, 15, 18, and 20, drainage area of 33-166 km2), intermediate (9, 10, 14, 16, 

and 19, drainage area of 222-818 km2), and large (11, 12, 17, and 21, drainage area of 1220-

11450 km2) Merrimack sub-basins (Berton et al., 2016). The Merrimack sub-basins had various 

levels of development and/or river regulation which were not linked to basin scale. 

 

4-2-9- Hydrologic flow conditions, relative frequency of occurrence and probability 

 Cumulative discharge data were classified as dry, average, and wet based on one standard 

deviation distance from the long-term mean (Genz and Luz, 2012). For this study, the three 

distinct hydrologic flow classes of dry (anomaly < -0.5), average (-0.5 < anomaly < 0.5), and wet 

(anomaly > 0.5) years were established based on discharge anomaly. 

 In order to define discharge conditions corresponding to AMO and NAO extreme phases, I 

developed a discharge time series for each study site for annual and seasonal temporal scales. I 

identified the extreme positive and negative phases of AMO and NAO on an annual and seasonal 

discharge time series and determined if the condition of discharge corresponded with the AMO 
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or NAO phases. The relative frequency of the annual or seasonal wet, average, and dry discharge 

events were calculated by dividing the number of specific events by the total number of 

outcomes. 

 Relative frequency could be an unbiased estimator of probability. For instance, the coin toss 

experiment does not necessarily return an equal frequency of heads and tails. The outcome is a 

set of random numbers which when sorted from largest to smallest, asymptotically would reach 

50%, the theoretical probability of having a head or a tail. Utilizing that concept, I found the 

relative frequency of having a wet, average, or dry year among the HBEF catchments and the 

Merrimack sub-basins. For each basin scale group, the relative frequencies were ordered in 

descending value and an exponential decay function was regressed through the historic relative 

frequency of occurrence for wet, average, and dry discharge events with regards to the extreme 

phases of AMO and NAO. While the function was decaying, the tail asymptotically merged into 

and stabilized at the theoretical probability of the event. In order to reduce the uncertainty, a 95% 

confidence band was computed which contained the actual but unknown probability of the 

population. 
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5- Changing climate increases discharge and attenuates its seasonal distribution in the 

northeastern United States 

 The objective of this chapter is to assess temporal streamflow responses of the Merrimack 

watershed to changes in climate using long-term precipitation and discharge data under 

conditions of limited and extensive development. I examine trends in precipitation and metrics of 

discharge quantity and timing in dry, average, and wet years distinguished by discharge 

anomalies along with the consideration of serial correlation that exist in hydrologic flow classes. 

I use multivariate statistical analyses to discover how discharge may vary with regards to 

geomorphology of the Merrimack watershed in addition to land use/cover characteristics. By 

including regulated and developed sub-basins, I am able to explore the relationship of climate 

change effects and land development impacts. This approach builds upon earlier studies that 

focused on undisturbed headwater catchments. This analysis also provides preliminary 

information for water managers and policy makers to reexamine the efficiency of engineering 

resilience of the Merrimack watershed in terms of water supply, dam operation rules, and 

potential dam removal under non-stationary climate and ongoing development. 

 The results of this chapter are presented in three separate sections. First, I assess the effects of 

climate variation, river regulation, and land development on flow duration curves (FDCs) and 

flow distribution curves (FDiCs). Second, I present the results of the modified Mann-Kendall 

analyses and Sen’s slope estimates for the quantity and timing indicators of annual discharge. In 

this section, I include an analysis by hydrologic flow classes within each discharge record. Third, 

I employ multivariate statistical methods to assess patterns of historical discharge trends at the 

HBEF catchments and the Merrimack sub-basins associated with geomorphology or land 

use/cover characteristics. I also discuss the scale-dependency of the results generated by the PCA 
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analyses. I will close the discussion with a focused analysis on the interactive effects of changing 

climate and land development. This analysis represents hydroclimatic information for selective 

study sites at a daily time scale differed by hydrologic discharge classes in order to closely 

examine the effects of changing climate from land development (i.e. river regulation and/or 

urbanization). 

 

5-1- Results 

5-1-1- Flow duration curves (FDCs) 

 The FDCs are compared for the sub-groups within the HBEF cluster (Figure  5-1a), the cluster 

of HBEF versus the cluster of Merrimack (Figure  5-1b), and the sub-groups within the 

Merrimack cluster (Figure  5-1c). The exceedance probabilities (EPs) marked on FDCs represent 

the conditions where the impacts of changing climate, river regulation, or development are 

distinguishable. Differences among the three sub-groups of catchments within the HBEF only 

emerged under high discharges with exceedance probabilities less than 15% (Figure  5-1a). The 

discharge magnitude increased with increases in drainage area. 

 Discharge quantity responses to climate variation are differentiated from both river regulation 

and development on Figure  5-1b. The area-normalized discharge magnitude was greater at the 

HBEF catchments compared to the Merrimack sub-basins. The FDC of the Merrimack reference 

sub-basins (ID: 17, 19) can be distinguished from the regulated and developed sub-basins (ID: 9-

21 excluding 17, 19) at high discharge values with EP less than 20%. 

 The influence of drainage area on the response of the Merrimack sub-basins to climate 

variation, river regulation, and development are indicated on Figure  5-1c. The size of Merrimack 

sub-basins slightly affected discharges with EP less than 15% and greater than 60%. For 
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discharges with EP less than 15%, the response of small sub-basins (ID: 13, 15, 18, 20) were 

distinct compared to the intermediate and the large sub-basins. When EP was greater than 60%, 

the highest values of low discharge conditions are found in the largest sub-basins (ID: 11, 12, 17, 

21). 
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Figure  5-1- Flow Duration Curves (FDCs) for the period of record comparing a) three sub-groups 
based on drainage area within the HBEF cluster; b) HBEF reference catchments with Merrimack 
reference, regulated, and/or developed sub-basins; and c) three sub-groups based on drainage area 
within the Merrimack cluster, i.e. small-scale sub-basins (ID: 13-18-20-15, 33-166 km2); 
intermediate-scale sub-basins (ID: 19-16-9-10-14, 222-818 km2); and large-scale sub-basins (ID: 21-
17-12-11, 1220-11450 km2). The impacts of changing climate on discharge variation from river 
regulation and/or development as well as the impacts of drainage area could be differentiated at 
certain exceedance probabilities indicated by solid arrows on the FDCs. The key to the site ID is 
presented in Table  3-1. 
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5-1-2- Flow distribution curves (FDiCs) 

 Similar comparisons were developed for FDiCs for HBEF catchments and the Merrimack sub-

basins (Figure  5-2). From the three sub-groups of catchments within the HBEF, catchments with 

the largest drainage areas showed the latest discharge timing dates contrary to small catchments 

with earlier timing dates (Figure  5-2a). As the drainage area increased, the differences in 

discharge timing dates increased from 3 days in the timing-25% to 10 days for the timing-75%. 

 The comparisons of discharge timing dates among the HBEF catchments and the Merrimack 

sub-basins revealed no consistent scale- or size-dependent patterns (Figure  5-2b). The HBEF 

catchments showed earlier discharge timing-25% and -75%, while the timing date of 50% annual 

discharge occurred earlier for the Merrimack sub-basins. The larger Merrimack reference sub-

basins (ID: 17, 19) showed the latest discharge timing dates compared to the smaller HBEF 

catchments and the Merrimack developed sub-basins. 

 The influences of drainage area on discharge timing dates for the Merrimack sub-basins were 

similar to that observed for HBEF catchments (Figure  5-2c). The largest sub-basins showed later 

discharge timing dates, while the smallest sub-basins had earliest timing dates. As the drainage 

area increased, the differences in discharge timing dates increased from 5 days in the timing-25% 

to 15 days for the timing-50% then decreased 14 days for the timing-75%. 
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 Day of the water year 
(October 1st as day “0”- September 30th as day “365”) 

Figure  5-2- Flow Distribution Curves (FDiCs) for the period of record comparing a) three sub-groups 
based on drainage area within the HBEF cluster; b) HBEF reference catchments with Merrimack 
reference, regulated, and/or developed sub-basins; and c) three sub-groups based on drainage area 
within the Merrimack cluster i.e. small-scale sub-basins (ID: 13-18-20-15, 33-166 km2); intermediate-
scale sub-basins (ID: 19-16-9-10-14, 222-818 km2); and large-scale sub-basins (ID: 21-17-12-11, 
1220-11450 km2). The typical snowmelt period in the region starts from late-March (Day 180) through 
early May (Day 220) marked by shaded ribbons on the FDiCs. The key to the site ID is presented in 
Table  3-1. 
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5-1-3- Temporal variations of discharge magnitude 

 The modified Mann-Kendall (MK) analyses showed significant (p-value≤0.05) positive trends 

for precipitation and discharge for the HBEF catchments and the Merrimack sub-basins over the 

period of record (Table  5-1). Long-term increases in mean annual discharge (1 to 7 mm/WY) 

were consistent with increases in mean annual precipitation (1 to 7 mm/WY) throughout the 

Merrimack River watershed (Table  5-1). 

 The modified MK analyses indicated significant long-term trends in discharge for 44% of 

hydrologic flow class records. Sen’s slope estimates for the average hydrologic flow class 

generally followed the same pattern as those for the period of record but at lesser magnitude. For 

example, annual discharge increased for 3 mm/WY on average for the period of record, while the 

average hydrologic flow class showed a mean positive trend of 2 mm/WY. Moreover, the 

directions (±) of Sen’s slopes for hydrologic flow classes were sometimes different than those for 

the entire period of record (Table  5-1). Whereas discharge trends for the period of record were 

all positive, the numbers of negative trends were greater for dry than for average or wet 

hydrologic flow classes. 

 Relative to the period of record, discharge quantity trends were steeper for extreme hydrologic 

flow classes (dry and wet) at 42% of the HBEF catchments and 26% of the Merrimack sub-

basins (Table  5-1). In the dry hydrologic flow class, negligibly small mean increases of 1 

mm/WY in annual discharge was calculated at the Merrimack sub-basins (Table  5-1); In 

contrast, the HBEF catchments showed greater positive and negative trends in annual discharge 

albeit the small mean slope of change was positive (2 mm/WY). The modified MK and Sen’s 

slope estimate for the HBEF wet hydrologic flow class showed mean increases in discharge for 8 
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mm/WY, while the mean slope of increase was much less (2 mm/WY) for the Merrimack sub-

basins (Table  5-1). 

 The mean precipitation and discharge responses to changing climate decreased with increases 

in the HBEF catchments’ drainage areas. In addition, within the Merrimack watershed, trends in 

precipitation and discharge due to changing climate, river regulation, and development decreased 

with increases in drainage area. The smaller HBEF catchments responded more strongly to 

changing climate than the Merrimack reference sub-basins. River regulation and land 

development lessened the relative effects of changing climate except for the wet hydrologic flow 

class. 
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Table  5-1- The modified Mann-Kendall trend test and Sen’s slope estimate of precipitation and discharge magnitude for the HBEF catchments 
and the Merrimack sub-basins for the period of record and hydrologic flow classes of dry, average, and wet years (Analyses were performed on 
cumulative annual precipitation and discharge in mm/WY). The key to site ID is presented in Table  3-1. 

ID 
Drainage area 

(km2)** 

Precipitation trends  Discharge trends 

Period of record  Period of record Dry Average Wet 
Sen’s slope 
(mm/WY) 

No. of 
years 

 Sen’s slope 
(mm/WY) 

No. of 
years 

Sen’s slope 
(mm/WY) 

No. of 
years 

Sen’s slope 
(mm/WY) 

No. of 
years 

Sen’s slope 
(mm/WY) 

No. of 
years 

1    0.1 6.1* 55  6.7* 55 2.4 18 0.9 22 12.7* 15 

3    0.4 5.6* 53  5.5* 53 7.6* 17 6.6* 21 5.8* 15 

2    0.2 5.6* 54  3.1* 54 10.0* 15 1.6* 23 11.2* 16 

5    0.2 5.2* 47  4.7* 47 -1.2 17 2.7 17 2.6 13 

6    0.1 5.0* 47  5.5* 47 -0.0 18 4.7* 17 14.3* 12 

4    0.4 6.7* 51  5.3* 51 4.5* 16 2.2 24 0.2 11 

8    0.6 4.4* 42  3.8* 42 -5.4* 16 1.4 14 8.5* 12 

7    0.8 5.2* 46  3.5* 46 -4.5 15 3.0* 18 6.2* 13 

13 

S
m

al
l-

sc
al

e 

33 6.7* 48  2.2* 48 2.3 13 0.3 19 -1.1 16 

18 95 5.3* 47  3.4* 47 4.1 14 6.3* 18 5.1* 15 

20 165 2.0* 62  2.3* 62 -0.5 17 1.9 25 1.7 20 

15 166 1.2 39  2.5 39 -0.9 11 2.9* 15 -2.3 13 

19 

In
te

rm
ed

ia
te

 
-s

ca
le

 

222 2.6* 93  1.0* 93 0.6* 31 0.3 35 4.1* 27 

16 285 2.5* 75  2.5* 75 -1.7 22 0.2 30 -1.4* 23 

9 300 3.3* 70  3.0* 70 1.4 20 0.8 27 0.1 23 

10 795 3.3* 74  4.1* 74 0.2 25 1.4 25 2.3* 24 

14 818 2.7* 76  2.7* 76 -0.5 24 2.9* 28 0.7 24 

21 

L
ar

ge
-

sc
al

e 

1220 2.7* 74  1.3* 74 4.0* 21 -0.1 34 3.5* 19 

17 1611 1.5* 108  0.8* 108 -0.5 31 0.3 46 3.4* 20 

12 8008 1.6* 74  1.8* 74 4.2* 23 0.6 27 3.6* 24 

11 11450 2.4* 88  2.3* 88 0.5 26 -0.2 36 1.1* 26 

* Statistically significant trend p-value≤0.05). 
** The HBEF catchments and the Merrimack sub-basins are ordered by drainage area from smallest to largest. 
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5-1-4- Temporal variations of discharge timing 

 I present variations in the metrics of discharge timing first for the period of record and then, in 

finer detail, for records subdivided by hydrologic flow classes (Table  5-2). The timing date of 

25% annual discharge occurred 0.2 to 1 days/WY earlier (p-value ≤0.05) at 86% of the HBEF 

catchments and the Merrimack sub-basins. Similarly, the date of 50% discharge occurred 0.1 

days/WY earlier and 75% discharge was delayed by 0.1 days/WY on average. The shifts to 

earlier and later flow timing dates for 50% and 75% of annual discharge were only significant (p-

value ≤0.05) at 67% and 43% of the HBEF catchments and the Merrimack sub-basins, 

respectively. While statistically significant, the small change in timing may be related to the use 

of an annual time step. Especially on small experimental catchments, a monthly or daily time 

step could reveal substantially larger climate change effects. This working hypothesis could be 

tested in a subsequent study. 

 For the average hydrologic flow class at the HBEF catchments, the mean dates of 25%, 50%, 

and 75% discharge significantly shifted earlier by 2.5 days/WY, 1.1 days/WY, and 1.1 days/WY, 

respectively (Table  5-2). The Merrimack sub-basins evinced statistically significant (earlier) 

mean timing dates of 25% and 75% annual discharge for 0.9 days/WY and 0.6 days/WY, 

respectively for the average flow class. The later flow timing date of 50% annual discharge (0.1 

days/WY) was also significant (p-value ≤0.05) at 70% of the Merrimack sub-basins. 

 Similar to discharge quantity, the magnitude and direction of discharge timing trends may 

differ from the entire record when considering extreme hydrologic flow classes. Results for the 

dry hydrologic flow class showed a consistent pattern of later discharge timing dates of 2.2 

days/WY and 0.4 days/WY for 25% and 75% discharge at the HBEF reference catchments, 

respectively. The earlier flow timing date 50% of annual discharge (1.2 days/WY) was only 
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significant (p-value ≤0.05) at 25% of the HBEF catchments. The dates of 25% and 75% 

discharge for the Merrimack sub-basins shifted earlier by 1.0 days/WY and 0.1 days/WY, 

respectively. The later flow timing date 50% of annual discharge (0.1 days/WY) was only 

significant (p-value ≤0.05) at 38% of the Merrimack sub-basins. 

 The wet hydrologic flow class showed significantly earlier (later) mean timing dates of 25% 

(75%) discharge of 2.4 days/WY (0.9 days/WY) for both the HBEF catchments and the 

Merrimack sub-basins. The significantly earlier timing at the HBEF catchments for 75% 

discharge timing date (2.7 days/WY on average) was in contrast with the significant mean later 

timing date (1.3 days/WY) at the Merrimack sub-basins. 

 The mean magnitude of trends in the 25% and 50% discharge timing dates related to changing 

climate increased with increases in drainage area at the HBEF catchments. In addition, the mean 

magnitude of 25% discharge timing trends for the Merrimack sub-basins due to changing 

climate, river regulation, and development increased with increases in drainage area, with the 

exception of the timing dates of 50% and 75% annual discharge which indicated no specific 

patterns. The discharge timing dates at the HBEF catchments responded more strongly to 

changing climate than the Merrimack reference sub-basins. The confounding effects of river 

regulation and land development appear to have muted the signal of changing climate only for 

the timing dates of 50% and 75% annual discharge except for the wet hydrologic flow class. 
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Table  5-2- The modified Mann-Kendall trend test and Sen’s slope estimate of discharge timing for the HBEF catchments and the Merrimack sub-
basins for the period of record and hydrologic flow classes of dry, average, and wet years (Analyses were performed on the quarter dates of 
normalized cumulative annual discharge in %). Negative (positive) trends represent earlier (later) discharge timing dates. The key to site ID is 
presented in Table  3-1. The number of years of data in each class is presented in Table  5-1. 

ID 

Drainage 
area 

(km2)** 

 Timing 25%- Sen’s slope 
(days/WY) 

 Timing 50%- Sen’s slope 
(days/WY) 

 Timing 75%- Sen’s slope 
(days/WY) 

 Period of 
record Dry Average Wet  

Period of 
record Dry Average Wet  

Period of 
record Dry Average Wet 

1  0.1  -0.3* 0.1 -0.1 -1.7*  -0.1 0.2 0.3 0.7  0.3* 0.5* 0.3 -0.5 

3  0.4  -0.3* 1.8 -1.1* -2.4*  -0.2* 0.1 -0.8* 0.7  0.2* 1.0* -0.6* 0.7 

2  0.2  -0.6* -1.0 -0.4 -4.1*  -0.3* -0.1 -0.7* -1.3*  0.0 0.6* -0.2 -2.7* 
5  0.2  -0.4* 2.0* -3.2* -4.1*  -0.2* 0.1 -1.6* 0.1  -0.1* 0.4 -1.5* -0.9 

6  0.1  -0.5* 3.0* -4.6* -4.3*  -0.2* 0.1 -1.4* 0.2  0.0 0.3 -1.6* -0.1 

4  0.4  -0.6* 2.1 -1.7* -4.9*  -0.2* 0.0 -0.9* 0.4  0.0 0.5 -0.7* -0.4 

8  0.6  -0.8* 0.1 -0.7 -5.0*  -0.3* -1.4* 0.0 0.2  0.1 -0.2 -0.4 0.4 

7  0.8  -0.7* 1.7* -1.8* -4.6*  -0.3* -1.0* -1.2* 0.1  0.1 -0.4* 0.1 0.1 

13 

S
m

al
l-

sc
al

e 

33  -0.4* -0.5 -0.3 -0.2  0.1 1.5* 0.7* 0.4  0.2* 2.6 0.3 0.6 

18 95  -0.2 -1.4 -1.2* 1.4*  0.2* 1.1 0.2 2.8*  0.3* 0.8 -0.4 3.3* 

20 165  -0.1 0.6 0.1 0.5  0.0 -0.4 0.4* -0.2  0.2* 0.8* 0.2 0.6* 

15 166  0.2 -0.6 1.0 0.6  0.2* 1.4 1.6* -0.4  0.2 -1.0 0.3 2.0* 

19 

In
te

rm
ed

ia
te

-
sc

al
e 

222  -0.2* -0.3 0.2 -2.0*  -0.1* 0.2* -0.4* -0.2*  0.1* 0.3* -0.1 0.5* 

16 285  -0.3* -0.6 -0.7* -0.3  0.0 -0.4* 0.1 -0.5*  -0.1 -0.3 0.0 -0.4 

9 300  -0.3* -1.0* -0.8* 1.0*  0.0 -0.1 0.1 0.7*  0.1 0.3 -0.3 1.2* 

10 795  -0.2* -0.2* -0.2 0.1  0.0 0.1 0.5* 0.0  0.1 0.4 0.3 0.0 

14 818  -0.3* -0.7 -0.2 -0.1  0.0 -0.2 0.0 0.3  0.1 0.0 -0.2 1.2* 

21 

L
ar

ge
-

sc
al

e 

1220  -0.3* 0.2 -0.3 -2.0*  -0.2* 0.0 -0.6* 0.0  -0.2* -1.2* -0.9* 1.3* 

17 1611  -0.4* -1.6* -0.8* -1.0*  -0.1* -0.3* -0.2* -0.3  0.0* -0.3* -0.3* 0.3* 

12 8008  -0.4* -1.2* -0.2 -1.7*  -0.1* 0.0 -0.6* -0.3  0.0 -0.1 -0.5* 0.3 

11 11450  -0.3* -0.3 -0.3 -0.3*  -0.1* -0.3* -0.2* -0.1  0.0 -0.2 0.0 0.2 

* Statistically significant trend (p-value≤0.05). 
** The HBEF catchments and the Merrimack sub-basins are ordered by drainage area from smallest to largest. 
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5-1-5- Spatial patterns in discharge variation 

 I performed principal component analysis (PCA) on discharge quantity and timing trends over 

the period of record and within hydrologic flow classes. PCA inferred results from the 16-by-16 

correlation matrix, i.e., one discharge quantity and three discharge timing indicators (total of four 

indicators) for the period of record (Figure  4-2) and the three hydrologic flow classes (not 

shown). The loadings of hydrologic indicators on each Principal Component (PC) were used to 

evaluate the importance of the metrics in explaining patterns of discharge variations at the HBEF 

catchments and the Merrimack sub-basins (Olden and Poff, 2003). 

 The first and the second PC together explained 72% of the variations in the discharge quantity 

trends data. For both reference catchments and developed sub-basins, trends for the period of 

record and for the dry hydrologic flow classes were relatively more important and had higher 

loadings on PC1 and PC2. For trends in discharge timing, PC1 and PC2 explained 67% of the 

variation in hydrologic trends data. For both reference catchments and developed sub-basins, 

trends of annual and wet discharge timing-50% were relatively more important and had higher 

loadings on PC1 and PC2. 

 

5-2- Discussion 

5-2-1- Clusters inferred by principal component analysis (PCA) 

 The PCA results would imply a more coherent physical meaning with the greater degree of 

variation the dependent variables explained. Consequently, the interpretation of PCA results is 

challenging (Hamel et al., 2015; Jolliffe, 2002). The PCA analysis results (Figure  4-2) indicated 

two distinct groups of the HBEF catchments and the Merrimack sub-basins clustered based on 
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drainage area. However, the sub-clusters within each group did not show a concise pattern with 

reference to the physical characteristics of a basin. 

 Within HBEF cluster, catchments with similar precipitation trends mainly grouped together 

(Table  5-1). Catchments 1 and 3 shared similar aspect, elevation range, mean annual 

precipitation, and mean annual water yield with different drainage areas and slopes. These 

catchments (1 and 3) are far removed from catchments 2, 4, 5, and 6 whereas they all shared the 

same aspect. This path may suggest part of the variation (28%) among discharge trends that PCA 

analyses were not able to explain. 

 Catchments 2 and 5 formed a reasonable cluster since they had similar drainage area, slope, 

aspect, elevation range, mean annual precipitation, mean annual water yield, and an extreme 

treatment (clear-cut harvesting). The third sub-cluster consisted of catchments 4, 6, 7, and 8 

shared relatively similar slopes, mean annual precipitation, and mean annual water yield, while 

differed in drainage area and aspect. 

 At HBEF, the physical characteristics of catchments did not affect the high association between 

precipitation and discharge (r=0.96, p-value<0.05) due to steep slope, low storage volume (the 

granite bedrock and till avert deep seepage), and wet soil condition. Throughout the Merrimack 

River watershed where the correlation between precipitation and discharge declined (r= 0.85, p-

value<0.0001), hydrologic responses were affected by basin’s drainage area, elevation gradient, 

storage, and land use/cover along with river regulation and urbanization. 

 A closer look at Figure  4-2 revealed that the sub-basins with similar precipitation trends were 

clustered together. The reference sub-basin 17 is located near the developed sub-basin 12 which 

both shared similar precipitation trends (Table  5-1). The reference sub-basin 19 is adjacent to 

developed sub-basins 11, 14, and 16 and their precipitation trends are similar as well (Table  5-1). 
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 The comparison of discharge trends for a reference sub-basin (ID: 19, Table  5-1) and a 

developed sub-basin (ID: 16, Table  5-1) which show the significant precipitation trends over the 

period of record, led me to conclude that in the absence of a reservoir to attenuate stormflow 

from an urbanized area, increases in discharge at a developed sub-basin could be twice that of a 

reference sub-basin with similar rates of precipitation increase. 

 

5-2-2- Flow duration curves (FDCs) 

 With respect to PCA results, the FDCs of HEBF catchments were slightly different from the 

other sub-basins at high discharge rates (Figure  5-1a). The differences in discharge response for 

catchments “4, 6-8” from catchments “1, 2, 3, 5” could be due to greater drainage area, steeper 

slope, storage, and elevation range. When averaged, HBEF hydrologic response indicated 

distinct patterns from the Merrimack sub-basins especially under high and low discharge 

conditions (Figure  5-1b). Part of the differences could be explained by differences in 

precipitation type (i.e., the proportion of rain and snow), magnitude, duration, and frequency at 

higher elevations (orographic effect) in the headwater catchments in addition to river regulation 

and land development in developed sub-basins (Dingman, 2015; Smith et al., 2011). 

 River regulation and land development have the potential to accelerate or attenuate annual 

discharge patterns driven by climate variation. River regulation makes streamflow less time-

variable in addition to lessen peak discharge signals (Grill et al., 2015). Increases in impervious 

surfaces alters the contribution of groundwater to discharge from 95% in forested catchments to 

20% in urbanized basins with stormwater collection systems (de la Crétaz and Barten, 2007). 

The urban heat island effect has the potential to increase ET and thereby decreases discharge 

(McGrane, 2016). On the other hand, urbanization can increase the magnitude of total 
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precipitation (9-17%) as well as the frequency of heavy rainfall (>25 mm) (Changnon, 1981; 

Huff and Changnon, 1973; Knight and Davis, 2009; Villarini et al., 2011). 

 The greater drainage area and milder slopes of the Merrimack sub-basins than HBEF 

catchments have moderated the high discharge response (Figure  5-1b). Changes in land/use 

cover, river regulation, and urban development has offsetting effects suggesting the response of 

reference sub-basin 17 and 19 was similar to Merrimack developed sub-basins for medium-to-

low discharge events. The higher baseflow at HBEF may have different drivers such as larger 

summer storms due to orographic effects at higher elevations or decreases in ET (Campbell et 

al., 2011; Smith et al., 2011). Other reasons include steep slope, thin and highly permeable soil, 

and limited residence time of soil water with respect to evapotranspiration. 

 Within the Merrimack (Figure  5-1c), increases in drainage area and decreases in forested lands 

would be expected to increased high discharge rates (de la Crétaz and Barten, 2007). The 

response is moderated by surface water storage such as Lake Winnipesaukee that impounds large 

quantities of water (approximately 2.3 billion cubic meters) with regulated releases into the 

Merrimack River. The influences of drainage area on low discharge values (EP greater than 

60%) were much more noticeable at the downstream Merrimack sub-basins where the thick 

glacial deposits provided more subsurface flow, more permeability, and more groundwater 

storage and recharge to the streams (Figure  5-1c). 

 

5-2-3- Flow distribution curves (FDiCs) 

 In the northeastern United States, seasonal variations in precipitation, temperature, and 

evapotranspiration govern changes in seasonal discharge quantity and timing (Hodgkins and 

Dudley, 2005). The discharge timing variations are directly linked to rainfall and snowmelt 
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events. The snowmelt period usually begins from March and may extend, in some years, until 

early-May (Dingman, 2015). Spring discharge is driven by both spring precipitation and 

snowmelt discharge with the latter being sensitive to energy balance and air temperature changes 

(Hodgkins et al., 2003). 

 Over 25 years starting from 1976, March through May air temperatures have increased in New 

England (Hodgkins et al., 2003); meanwhile, annual snow to precipitation ratio has decreased 

over the past 50 years (through 2000) due to decreases in snowfall and increasing rainfall 

(Huntington et al., 2004). These phenomena have caused earlier snowmelt and when 

accompanied by spring rainfall, change the quantity and timing of spring discharge (Frumhoff et 

al., 2007). 

 After the snowmelt period (late-March through early-May), the distribution of discharge has 

become more uniform throughout the year in the Merrimack River watershed (Figure  5-2) 

because the attenuation of spring discharge has been roughly counterbalanced by increases in 

rainfall during spring and summer. The larger available storage in the larger HBEF catchments 

(ID: 4, 6, 7, 8) slightly moved the discharge timing later for a week compared to smaller HBEF 

catchments (ID: 1, 2, 3, 5) (Figure  5-2a). The contribution of storage to later discharge timing 

became more pronounced after the snowmelt period and the beginning of the growing season. 

 The effect of climate change on spring discharge generation was stronger than the impacts of 

development. The spring season is when stored water in reservoirs is typically at an annual 

maximum, demand for water and hydropower is low, and spillway or regulated releases are 

substantial. The earlier discharge timing of 25% for HBEF catchments compared to the 

Merrimack sub-basins are best explained by comparative watershed size, presence or absence of 

reservoirs, and total basin storage (Figure  5-2b). Water is transported faster in mountainous 
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watersheds and streams relative to coastal sites due to differences in precipitation intensity and 

duration, higher elevation gradients, and differences in geology—shallow glacial till over 

crystalline rock (Nippgen et al., 2016). The larger Merrimack sub-basins with mild slope, more 

storage, and regulated streams released water up to a month later compared to HBEF catchments 

(Figure  5-2b). 

 The earlier discharge timing 50% at the regulated and developed sub-basins could be due to the 

effects of flood control dams and the type (rain versus snow) and magnitude of precipitation at 

lower elevation sites. Six flood control dams located in New Hampshire (Blackwater Dam in 

Webster, Edward MacDowell Lake in Peterborough, Franklin Falls Dam in Franklin, Hopkinton-

Everett Lakes in Hopkinton, Otter Brook Lake in Keene, and Surry Mountain Lake in Surry) 

have changed the natural flow regime of the Merrimack streams (Figure  5-2b). 

 The reservoir water level of a flood control dam is drawn down to a minimum storage before 

the peak annual discharge associated with snowmelt in order to be able to effectively mitigate 

spring flooding. Less snow accumulation (orographic effect) and earlier snowmelt (higher 

temperature) at low elevation developed sub-basins contributed to the earlier discharge timing-

50%. Regulated release from the flood control dams along with more storage at larger sub-basins 

typically meant the discharge timing-75% occurred for almost a week later compared to the 

unregulated HBEF headwater catchments (Figure  5-2b). As noted earlier, larger sub-basins with 

more storage and milder slopes contributed to a later discharge timing date (Figure  5-2c). 

 

5-2-4- Significance of basin-scale study 

 The uncertainties regarding the hydrologic assessment of a watershed under changing climate 

include, but are not limited to, the highly variable nature of hydrologic events (both intra- and 
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inter-annual variation), large-scale teleconnectivity of hydrologic processes, and study scale 

since many hydrologic processes are well characterized at the experimental watershed scale (e.g., 

HBEF) but exceedingly difficult to model at the river basin scale with mixed land use (Dingman, 

2015; Montanari et al., 2009; NRC, 2008). Nevertheless, in the context of studies showing either 

no trends in precipitation for the Northeast (Velpuri and Senay, 2013) or finding significant 

positive trends (Frumhoff et al., 2007; Huntington et al., 2009; Huntington and Billmire, 2014) 

coupled with large decadal variability in precipitation (Hayhoe et al., 2007), a large basin-scale 

assessment of hydrologic response to climate variation should be of interest. 

 

5-2-5- Influence of record length 

 In order to evaluate spatiotemporal variations in metrics of hydrologic indicators, at least 15-25 

years of discharge record is required (Genz and Luz, 2012; Kennard et al., 2010; Lins and Slack, 

2005). The decreased sample size challenged the ability to return significant trends for 

catchments with short records and for extreme hydrologic flow classes with little representation. 

It was obvious that longer data records had the greater likelihood of showing statistically 

significant trends in the Merrimack River watershed especially when data were parsed into 

hydrologic flow classes. 

 If the numbers of dry, average, and wet years were similar, the study sites would need to have 

at least 45 years of data. This criterion would cause a 38% loss in information; therefore I 

decided to retain study sites with at least a decade of information in each hydrologic flow class. 

Since catchments with short period of records increased the likelihood of misleading results 

across a region (Kundzewicz, Z.W. and Robson, A., 2000), the decreased number of 

observations in each hydrologic flow class (compared to the period of record) is clearly a 
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limitation to this study. Consequently, it may be advisable to include samples with less than 15 

years of information in recent but not long-term hydrologic flow response assessment. 

 

5-2-6- Linkage of discharge with precipitation 

 Increases in precipitation rate and duration vary greatly from one basin to another (Barry and 

Chorley, 1987). The irregularities in spatial and temporal variations of precipitation may be due 

to orographic effect or localized convective storm events (Dingman, 2015), and not necessarily a 

changing climatic regime. Even extreme rainfall events could be generated by orographic effects 

(Smith et al., 2011). For central New England, changes in elevation are responsible for almost 

80% of spatial variation in precipitationwith consequent effects on low, mean, and high 

discharge conditions (Dingman, 1981; Dingman et al., 1988). 

 The discharge response to changes in precipitation can vary differently for headwater 

catchments from downstream developed sub-basins partially due to the storage of water 

associated with aquifers, lakes, and manmade reservoirs along with urbanization. When storage 

is low, discharge response is more sensitive to variations in precipitation rather than 

evapotranspiration. As the basin storage increases, discharge becomes more responsive to 

variations in both precipitation and temperature (with corresponding increases in 

evapotranspiration). The existence of a reservoir in a watershed reduces, by design, the time 

variability of streamflow, increases the residence time of water in rivers (from 15 days to 1-2 

months), and increases evaporation in the region (Dingman, 2015). 

 In the small reference catchments of the HBEF with no river regulation or land development 

and state-of-the-science instrumentation, Hamburg et al., (2013) found very high correlation 

coefficient between precipitation and discharge (r=0.96). The Merrimack sub-basins have 
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drainage areas two orders of magnitude larger than the HBEF catchments. Although river 

regulation and land development in the Merrimack watershed have lessened the correlation 

between precipitation and discharge (r= 0.85, p-value<0.0001), this relation is still impressive in 

view of the challenges of open channel flow measurements and the development of robust rating 

curves (discharge versus water level). 

 I found small, yet significant positive trends (p-value ≤0.05) for annual precipitation at the 

Merrimack River watershed (4 mm/WY on average) for records with median length of 55 years 

of which the earliest began in 1904. Hamburg et al. (2013) assessed precipitation data for WS3 

and WS7 at the HBEF over the period of 1958 to 2005 and found insignificant trends in 

precipitation (p-value≤0.1). However, Campbell et al., (2011) extended the record to 2008 and 

found significant increases of 3 mm/WY in precipitation (p-value≤0.05). My results for the 

HBEF discharge were consistent with Campbell et al., (2011) demonstrating how sensitive 

Mann-Kendall trend test and Sen’s slope estimate are to the length of record, serially correlated 

data, and the particular attributes of the dataset. 

 

5-2-7- Temporal variations of discharge magnitude 

 Seasonal trends in precipitation alone do not forecast seasonal discharge variations because 

runoff generation is highly dependent on antecedent soil conditions and cumulative 

evapotranspiration (Ivancic and Shaw, 2015). For New England, annual maximum discharge 

typically occurs in the spring for northern high elevation basins while fall events are more typical 

of southern coastal and developed regions (Magilligan and Graber, 1996). For Merrimack, 

snowmelt period (late-March through early-May) had a lower contribution (24%) to annual 

discharge in the wet hydrologic flow class compared to the contribution of 32% in the dry 
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hydrologic flow class. Under wet climate conditions (i.e., increased soil wetness) summer 

rainfall had a larger relative influence than spring precipitation and snowmelt on annual water 

yield than the dry and average conditions. 

 All the significant discharge trends (p-value ≤0.05) for the period of record were positive and 

consistent across the Merrimack River watershed (Table  5-1). The average hydrologic discharge 

class also followed the same pattern as the period of record with two exceptions (sub-basins 11 

and 21) mainly due to river regulation. The Merrimack reference sub-basins with larger drainage 

areas (ID: 17, 19) showed smaller trends (resiliency to climate forcing which could be due to 

more storage), while the smaller catchments at HBEF exhibited greater discharge trends (on 

average five times greater). 

 Although annual discharge increased for all study catchments over their entire period of 

records, more of the negative discharge trends were evident over dry hydrologic flow class while 

stronger positive trends were observed in wet hydrologic flow class. Mean annual discharge 

decreased at 38% of the HBEF catchments and the Merrimack sub-basins (mostly forested) 

under the dry hydrologic flow class despite the increases in mean annual precipitation. The 

positive discharge trends during dry periods across the Merrimack River watershed were in 

agreement with 4% increases in global river discharge for each 1 °C increases in air temperature 

(Gedney et al., 2006); the differences in response indicate that other drivers such as land 

cover/use change rather than changes in evapotranspiration can control discharge variation 

especially during dry periods (Vose et al., 2012). 
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5-2-8- Temporal variations of discharge timing 

 In the Northeast, simultaneous snowmelt and rainfall events in spring generally result in 

maximum discharge. The seasonality index (Is) for precipitation in the Northeast is 10% which 

implies the low degree of seasonality (Dingman, 2015). Although precipitation is evenly 

distributed throughout the year, the discharge seasonal distribution is non-uniform. One-fourth of 

discharge is concentrated in only one month of spring (simultaneous snowmelt and rainfall 

events). In contrast, only about one-tenth of the annual discharge occurs in summer months of 

June-August. Summer rain events are typically moderated by the cumulative effect of 

evapotranspiration and associated increases in available soil water storage (de la Crétaz and 

Barten, 2007; Dingman, 2015). 

 Quantification of the available water yield at particular times of the year is important for water 

planners. Annual and seasonal center of the volume dates are useful flow timing indicators for 

most stream types (Hodgkins et al., 2003, 2005; Hodgkins and Dudley, 2005). I defined the day 

of the year when 25%, 50%, and 75% of annual flow discharged from the catchment outlet. 

Earlier timing dates of 25% annual discharge (December through February) occurred at smaller-

scale catchments and sub-basins within the Merrimack River watershed mainly due to earlier 

snowmelt as a result of increases in winter temperature (Hodgkins and Dudley, 2006). 

 The timing date for 50% of annual discharge is a robust metric of the spring discharge 

especially when the date is close to the centroid of the snowmelt hydrograph (Burn, 2008; Court, 

1962; Moore et al., 2007; Regonda et al., 2005; Stewart et al., 2004). The timing date for 50% of 

annual discharge occurs sometime between days 170-190 (March-April) in the Northeast (Beck 

et al., 2015). Hodgkins and Dudley, (2006) reported earlier occurrence of winter-spring 

streamflow for 0.1 days/yr in the northeastern United States in the period of 1913-2002. 
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Hodgkins et al. (2003) and Hodgkins and Dudley (2005) reported 1-2 weeks earlier flow timing 

date of 50% discharge day (from January 1 to May 31, average 68 years of discharge record from 

1903 to 2000) in New England. Hamburg et al., (2013) found 0.2 days/year (WS3, 1958–2005) 

to 0.3 days/year (WS7, 1966–2005) earlier spring flow center-of-volume date (CVD) at the 

HBEF. Results for the Pemigewasset River at Plymouth showed 0.19 days/year earlier CVD 

(1904-2004). Campbell et al., (2011) reported earlier spring CVD for 0.2 to 0.5 days/WY at 

HBEF and insignificant trends in the fall CVD (1969-2008).  

 In the Merrimack River watershed, the timing date of 50% discharge day generally occurred 

between March and April. Spring snowmelt and precipitation controlled the variations of the 

timing date of 50% discharge day. Winter rainfall (especially in January) will exacerbate the 

earlier timing date for 50% of annual discharge since January rainfall and temperature are 

positively associated (Hodgkins et al., 2003). The effect of climate change on spring discharge 

generation was stronger than development effect, which likely is due to stored water in reservoirs 

during the spring season and then regulated release afterwards through control structures. The 

timing date of 75% discharge day occurred sometime between May and July. Development had 

less impact on flow timing over the summer season. Summer rainfall controlled the variation in 

the timing date of 75% discharge day for both the HBEF catchments and the Merrimack sub-

basins. 
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5-3- A focused evaluation of the interactive effects of changing climate and land 

development 

5-3-1- Introduction 

 In this section, I examined hydroclimatic information at a daily time scale for dry, average, and 

wet hydrologic conditions to closely assess the effects of changing climate from anthropogenic 

disturbances (i.e. river regulation and/or land development). I made comparisons among the 

gauged sub-basins in the Merrimack River watershed to find the most representative sub-basins 

to examine urbanization effects relative to a forested reference sub-basin. For instance, the 

hydrologic response of a reference catchment at HBEF was compared to Pemigewasset, a larger 

reference sub-basin located at downstream region of HBEF. HBEF catchments have drainage 

areas that range from 0.1-0.8 km2, while three sub-basins used for more detailed analyses have 

drainage areas averaging 161 km2. Due to considerable differences in drainage area, the 

differences in HBEF hydrologic response were distinctively larger than Pemigewasset 

inappropriate either for a useful comparison or to explore the contribution of development in 

discharge variations. 

 Consequently, the selection was narrowed down to three study sites of equivalent size i.e. 

Smith (ID: 19, forest, area=222 km2), Squannacook (ID: 20, suburban, area=165 km2), and 

Shawsheen (ID: 18, urban, area=95 km2). In this experimental comparison, Smith was the 

forested reference sub-basin located at upstream regions of the Merrimack, while Squannacook 

and Shawsheen were treatment sub-basins located at downstream developed areas. Smith, 

Squannacook, and Shawsheen had 3, 10, and 73 percent of developed land, respectively. 

Moreover, Squannacook was used to be a rural area with newly urban development; Shawsheen 

was an older residential sub-basin with recently suburban development. 
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 At an annual time scale the discharge response may exhibit similar amplitudes, whereas in 

daily time-step the amplitudes may be much different. Therefore, the effects of land use/cover 

differences could be more evident at a daily time scale. The daily temporal scale analyses were 

made with climatographs (Figure  5-3 to Figure  5-5), double mass curves (Figure  5-6 to Figure 

 5-8), flow duration curves (Figure  5-9), and flow distribution curves (Figure  5-10) for three 

distinct hydrologic discharge conditions of average (1970), wet (1976), and dry (1989) years. 

 The differences in hydrologic responses of reference sub-basin were compared and contrasted 

with the other two treatment sites in terms of percentage of development and hydrologic 

condition. Generally, 5-10% impervious surfaces is the threshold of hydrologic change in 

developed areas (de la Crétaz and Barten, 2007). Since average year may better represent the 

overall hydrologic responses, it became the focus of the analyses of hydrologic conditions. 

 The results were presented in three sections. First, the correlation coefficients of daily 

discharge magnitude along with discharge timing characteristics were compared and contrasted 

with regards to key physical attributes of the study sites (Table  5-3). Second, the climatographs 

were compared and contrasted for the reference sub-basin with two treatment sites in the 

representative dry, average, and wet years. Finally, I performed similar comparisons on double 

mass curves, flow duration curves, and flow distribution curves. 

 

5-3-2- Key physical attributes of study sub-basins 

 The key physical attributes of representative study sites are presented in Table  5-3 along with 

hydrometric information, discharge correlation coefficients, and discharge timing dates for 

average, wet, and dry hydrologic conditions. Shawsheen (urban) has a mild slope (less than 15%) 

compared to Smith (forest) and Squannacook (suburban) in addition to having the lowest mean 
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basin elevation. Shawsheen and Squannacook have the base flow index greater than 0.35 which 

indicates a larger groundwater contribution to surface flow in treatment sub-basins. Shawsheen 

has shorter flow paths and a more rapid flow response than the other study sites due to greater 

drainage density (Table  5-3). 

 Generally, it was expected to observe more precipitation at higher altitudes due to orographic 

effects. However, annual precipitation values for treatment sites were greater than reference sub-

basin located at higher altitude. This may be due to stronger influence of coastal lows on 

climatology of Squannacook and Shawsheen than orographic effects on precipitation generating 

mechanisms at Smith (Collins et al., 2014). On the other hand, urban development can also 

increase precipitation for 9-17% at treatment sites due to heat island effect on the formation of 

local convective storms (Changnon, 1981; Huff, 1977; Huff and Changnon, 1973; Knight and 

Davis, 2009; Villarini et al., 2011). 

 With increases in the percentage of development, the interactive effects of changing climate 

and land development became more complex. The hydrologic responses of suburban and urban 

(treatment) sub-basins were consistently different from the reference forested sub-basin using a 

high-resolution daily time step for the analyses (Table  5-3). In 1970 with average hydrologic 

discharge condition, increases in developed land from 3% (Smith) to 10% (Squannacook) 

resulted in 29% differences in hydrologic response. In contrast, there was only 12% difference in 

discharge response of two treatment sites which was pronounced in wet year (18%) and became 

even more noticeable in dry year (23%). 

 During the dry year, besides a high ET rate, the unsaturated soil conditions increased residence 

time of soil moisture, potentially offsetting the effects of impervious surfaces on discharge 

increment. Therefore, the correlation coefficients were higher in dry year compared to average 
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and wet years. In contrast, during the wet year there was enough moisture available to increase 

subsurface flow and groundwater flow rates after evaporative demands were met. Consequently, 

the differences in hydrologic response due to development became more pronounced and the 

correlation coefficients declined. 

 Discharge timing dates at treatment sub-basins were distinctive from the forested reference 

sub-basin, especially in relation to median discharge timing date for the entire hydrologic 

conditions of average, wet, and dry year. Due to lower winter temperature, more snow 

accumulation, and higher ET rate in growing season, a longer period was required for a certain 

volume of annual water yield discharged from the forested sub-basin. The earlier discharge 

timing dates of suburban and urban sub-basins could be the reflection of higher winter 

temperature, less snowpack, lower ET rate, and more impervious surfaces. 
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Table  5-3- The key physical characteristics of the representative study sites (Smith: forest, Squannacook: suburban, and Shawsheen: urban) 
along with hydrometric information, discharge correlation coefficients, and discharge timing dates for average, wet, and dry hydrologic 
conditions. 

 Study sites’ physical characteristics 
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Area 
Gauge 

elevation 
Mean basin 

elevation Storage 

Main 
channel 
length 

Drainage 
density 

Stream 
slope 

Base 
flow 
index Forested Developed 

Study site (%) (%) (km2) (m ASL) (m) (%) (km) (1/km) (%)  
Smith --- --- --- 87 --- --- --- 4 222 137 384 4 35 0.16 0.4 0.457 
Squannacook 89 86 83 77 5 8 10 10 165 74 261 5 24 0.15 0.8 0.547 
Shawsheen 40 35 33 17 44 49 57 73 95 25 48 7 18 0.19 0.1 0.506 
           
 1970 (average hydrologic discharge condition) 
 Precipitation Discharge Correlation coefficients Discharge timing dates (day of the WY) 
 mm/WY mm/WY Smith Squannacook Shawsheen 25% 50% 75% 
Smith 950 610 1 0.71 0.61 92 182 204 
Squannacook 1229 707 --- 1 0.88 90 141 191 
Shawsheen 1363 696 --- --- 1 87 133 189 
         
 1976 (wet hydrologic discharge condition) 
Smith 1241 800 1 0.54 0.34 87 179 221 
Squannacook 1231 727 --- 1 0.82 63 131 179 
Shawsheen 1233 782 --- --- 1 69 125 188 
         
 1989 (dry hydrologic discharge condition) 
Smith 967 483 1 0.81 0.66 176 199 227 
Squannacook 1094 556 --- 1 0.77 106 199 245 
Shawsheen 1138 368 --- --- 1 130 195 239 
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5-3-3- Climatographs 

 A climatograph is constructed with water balance parameters for a watershed of interest. In this 

study, the climatograph indicates measured rainfall (NOAA), estimated snowmelt, calculated 

Hamon PET, and measured discharge (USGS) in mm/day for three representative sites (Figure 

 5-3 to Figure  5-5). For the calculation of snowmelt contribution to discharge, a range of melt-rate 

coefficient (0.1 to 2 mm/°C) was tested iteratively to determine the best-fit value (Anderson, 

1973). At melt-rate coefficient of 1 mm/°C, discharge responses were synchronized with total 

rainfall and snowmelt for all three study sites. 

 The climatographs indicated that land cover/land use effects had larger influences on the 

hydrologic response of sub-basins (of similar size subjected to comparable weather conditions) 

than inter-annual variations in precipitation, air temperature, and PET (Figure  5-3a-c). Peak 

discharge events likely occurred in February and April in Smith (forest) and Squannacook 

(suburban) with equal or less than 10% developed lands. At Shawsheen (urban), due to higher 

percentage of development and urban heat island effect, there was a secondary peak discharge 

period in December. For all three sub-basins, regardless of percentage of development, peak 

discharge mechanism was rain-on-snowmelt processes occurring mostly during March and April. 

 Unlike the considerable influence on peak discharge events, the percentage of development did 

not indicate a significant effect on low discharge conditions that began in June and continued 

towards October (Figure  5-3a-c). In contrast, potential evapotranspiration was affected by 

urbanization. Potential evapotranspiration increases beginning in March, reaching its peak value 

during the growing season in June and July (4-5 mm/day) then declining to 1-0.5 mm/day in 

November. For Shawsheen (urban), PET extended into early-December as a consequence of 

higher temperature in urbanized regions. 
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 Compared to an average year, wet year peak discharge events mainly were concentrated in 

April for Smith (forest), while Squannacook (suburban) and Shawsheen (urban) peak discharge 

events occurred in February (Figure  5-4a-c). The upstream river regulations in the wet year 

moderated and spread peak discharge values over a longer period i.e. February through April. 

However, due to higher percentage of development, Shawsheen indicated annual peak discharge 

value twice as great as Squannacook. Low discharge events in a wet year, for treatment sub-

basins, began in June and lasted only through September instead of October in average year. 

 In dry hydrologic condition, peak discharge events still occurred in April for the reference sub-

basin (Smith); however besides the typical June-October low discharge season, there was a 

secondary low discharge season began from October and continued until March during the 

period of snow accumulation (Figure  5-5a-c). As the developed area increased, the snowmelt 

period became shorter during dry conditions (March only) mainly due to less snow accumulation 

and earlier snowmelt. The secondary low discharge period for treatment sites did not last as long 

as the reference sub-basin (Smith) and only occurred during December. Generally moving from 

north to south of the Merrimack, snow had prominent effects on Smith discharge response while 

both Squannacook (suburban) and Shawsheen (urban) responses appeared to be more strongly 

influenced by rain-on-snowmelt mechanisms. 
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Figure  5-3a: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for Smith River 
near Bristol (USGS 01078000), New Hampshire, October 1st 1969-September 30th 1970 (WY 1970). The labels on the plot are correspondent to 
inflection points on cumulative double mass curves of average year presented on Figure  5-6a and –b. 
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Figure  5-3b: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for 
Squannacook River near West Groton (USGS 01096000), Massachusetts, October 1st 1969-September 30th 1970 (WY 1970). The labels on the 
plot are correspondent to inflection points on cumulative double mass curves of average year presented on Figure  5-6a and –c. Note: Y-axis 
truncated to 50 mm (February 3rd 1970 = 51 mm; April 2nd 1970 = 60 mm). 
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Figure  5-3c: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for Shawsheen 
River near Wilmington (USGS 01100600), Massachusetts, October 1st 1969-September 30th 1970 (WY 1970). The labels on the plot are 
correspondent to inflection points on cumulative double mass curves of average year presented on Figure  5-6b and –c. Note: Y-axis truncated to 
50 mm (April 2nd 1970 = 68 mm). 
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Figure  5-4a: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for Smith River 
near Bristol (USGS 01078000), New Hampshire, October 1st 1975-September 30th 1976 (WY 1976). The labels on the plot are correspondent to 
inflection points on cumulative double mass curves of wet year presented on Figure  5-7a and –b. 
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Figure  5-4b: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for 
Squannacook River near West Groton (USGS 01096000), Massachusetts, October 1st 1975-September 30th 1976 (WY 1976). The labels on the 
plot are correspondent to inflection points on cumulative double mass curves of wet year presented on Figure  5-7a and –c. 
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Figure  5-4c: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for Shawsheen 
River near Wilmington (USGS 01100600), Massachusetts, October 1st 1975-September 30th 1976 (WY 1976). The labels on the plot are 
correspondent to inflection points on cumulative double mass curves of wet year presented on Figure  5-7b and –c. Note: Y-axis truncated to 50 
mm (July 29th 1976 = 64 mm). 
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Figure  5-5a: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for Smith River 
near Bristol (USGS 01078000), New Hampshire, October 1st 1988-September 30th 1989 (WY 1989). The labels on the plot are correspondent to 
inflection points on cumulative double mass curves of dry year presented on Figure  5-8a and –b. 
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Figure  5-5b: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for 
Squannacook River near West Groton (USGS 01096000), Massachusetts, October 1st 1988-September 30th 1989 (WY 1989). The labels on the 
plot are correspondent to inflection points on cumulative double mass curves of dry year presented on Figure  5-8a and –c. Note: Y-axis truncated 
to 50 mm (November 1st 1988= 56 mm; August 13th 1989 = 61 mm). 
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Figure  5-5c: Measured rainfall (NOAA), estimated snowmelt, calculated Hamon PET, and measured discharge (USGS), mm/day, for Shawsheen 
River near Wilmington (USGS 01100600), Massachusetts, October 1st 1988-September 30th 1989 (WY 1989). The labels on the plot are 
correspondent to inflection points on cumulative double mass curves of dry year presented on Figure  5-8b and –c. Note: Y-axis truncated to 50 
mm (November 1st 1988= 76 mm; August 13th 1989 = 53 mm). 
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5-3-4- Cumulative double mass curve 

 A double mass curve is a traditional method used to detect differences in hydrologic response 

of watersheds with different land cover/use (Gao et al., 2011). A cumulative plot of two sites is 

linear when hydrological or watershed conditions remain consistent over time. If external forces 

affect a system of interest, inflection points in the slope of a mass curve can be observed (Searcy 

et al., 1960). The double mass curves of the reference sub-basin with two treatment sub-basins 

showed inflection points mostly corresponding with the peak discharge events (Figure  5-6 to 

Figure  5-8 and Figure  5-3 to Figure  5-5). This problem indicates the more pronounced effect of 

development (impervious surfaces and overland flow) on high rather than low discharge events. 

 The cumulative discharge located above or below the 1:1 line indicated the strength of the 

hydrologic response for that particular sub-basin over the other. For instance, for 1970 as a 

representative of average hydrologic condition, the double mass curves of Smith (forest) against 

suburban (Squannacook) and urban (Shawsheen) sub-basins were located below 1:1 line which 

indicated that the interactive effects of climate and development on treatment sites were greater 

than the effect of changing climate alone on reference sub-basin (Figure  5-6a and -b). When the 

two treatment sub-basins were compared, the one with higher percentage of development 

indicated a stronger response until the end of snowmelt season in April-May (Figure  5-6c). Later 

during summer and fall, the suburban site indicated stronger response to both climate and 

development than urban sub-basin probably due to overriding effects of ET during the growing 

season. 

 The differences in hydrologic response of forested sub-basin with treatment sub-basins were 

more noticeable under wet and dry discharge conditions emphasized by more inflection points on 

double mass curves (Figure  5-7 and Figure  5-8). In general, the superimposed effects of 
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changing climate and land development were greater than the individual control of changing 

climate on hydrologic response mainly during the high discharge seasons i.e. winter through 

spring. The overriding effect of ET for both forested and less developed sub-basins forced 

greater response to changing climate than interactive effects of climate and development mainly 

in summer and in dry hydrologic condition. 
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Figure  5-6a-c: Cumulative double mass curve of 1970 representing average hydrologic discharge 
condition. The dates and discharge conditions corresponding with inflection points can be found on 
Figure  5-3a-c. 
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Figure  5-7a-c: Cumulative double mass curve of 1976 representing wet hydrologic discharge condition. 
The dates and discharge conditions corresponding with inflection points can be found on Figure  5-4a-c. 
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Figure  5-8a-c: Cumulative double mass curve of 1989 representing dry hydrologic discharge condition. 
The dates and discharge conditions corresponding with inflection points can be found on Figure  5-5a-c. 

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

Sm
it

h
 (

ID
: 

1
9
, 

fo
re

st
)

Squannacook (ID: 20, suburban)

a) Cumulative double mass curve (WY 1989, dry HyC)
1:1

Cumulative discharge (mm)

S14-F12

S16-F14

S15-F13

S17-F15

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

Sm
it

h
 (

ID
: 

1
9
, 

fo
re

st
)

Shawsheen (ID: 18, urban)

b) Cumulative double mass curve (WY 1989, dry HyC)
1:1

Cumulative discharge (mm)

U15-F16

U16-F17

U17-F13

U20-F19

U18-F14

U19-F18

U21-F20

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

Sq
u
a

n
n

a
co

o
k

 (
ID

: 
2
0
, 

su
b

u
rb

)

Shawsheen (ID: 18, urban)

c) Cumulative double mass curve (WY 1989, dry HyC)
1:1

Cumulative discharge (mm)

U16-S18

U21-S20

U22-S19



89 

5-3-5- Flow duration and flow distribution curves 

 With more impervious surfaces, theoretically, one should expect higher high and lower low 

discharge events, while river regulation may moderate both high and low discharge conditions. 

Only in wet hydrologic condition when enough water was available for saturating soil and ET, as 

the percentage of developed lands increased, the high discharge events for Shawsheen (urban) 

became greater than both Squannacook (suburban) and Smith (Forest). It appears that decreases 

in groundwater recharge for urban site was more pronounced under wet hydrologic conditions, 

therefore Shawsheen low discharge events were lower than Squannacook and Smith (Figure 

 5-9b). 

 As shown in the comparative analyses, the relative effect of land development on hydrologic 

response to climate change is complex. The hydrologic responses of the suburban and urban sub-

basins were relatively close as shown by the flow duration and flow distribution curves for 

average, wet, and dry hydrologic conditions using a high-resolution daily time step for analyses. 

Most of the watersheds in the northeastern US are characterized by a mix of forest, agricultural 

and urban land cover/use. The wide-range of differences in land covers, i.e. relative proportions 

and spatial distribution can result different hydrologic responses with complex ecological effects, 

which may challenge watershed water management strategies. 
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Figure  5-9a-c: Flow duration curves (FDCs) of three representative sub-basins of different land cover 
(forest, suburban, urban) for average (1970), wet (1976), and dry (1989) hydrologic conditions. 
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Figure  5-10a-c: Flow distribution curves (FDiCs) of three representative sub-basins of different land 
cover (forest, suburban, urban) for average (1970), wet (1976), and dry (1989) hydrologic conditions. 
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5-4- Summary and concluding remarks 

 I assessed trends in stream hydrologic responses of the Merrimack River watershed due to 

climate variation, river regulation, land development and differences in drainage area. Historical 

precipitation and discharge data along with current land cover information were used to analyze 

metrics of discharge quantity and timing. Applying modified Mann-Kendall trend test and Sen’s 

slope estimate over the period of record for each catchment failed to consider the impacts of 

different climate regimes within the time frame of the analysis; therefore, the data record was 

parsed among hydrologic discharge classes of dry, average, and wet years. 

 Increases in mean annual discharge (1 to 7 mm/WY) were consistent with increases in mean 

annual precipitation (1 to 7 mm/WY) throughout the Merrimack River watershed. Discharge 

varied differently among hydrologic discharge classes, i.e. more of the negative discharge trends 

were evident over dry years, while stronger pronounced positive trends were observed in wet 

years. The scale of the Merrimack sub-basins affected both high (exceedance probability of less 

than 15%) and low (exceedance probability of greater than 60%) discharge events. The greater 

drainage area, milder slopes, and surface water storages of the Merrimack sub-basins compared 

to HBEF catchments have moderated discharge response to changing climate likely due to land 

development. In the absence of a reservoir to attenuate stormflow from an urbanized area, 

increases in discharge at a developed sub-basin could be twice that of a reference sub-basin with 

similar rates of precipitation increase. 

 Generally moving from north to south of the Merrimack, snow had prominent effects on 

discharge response while the responses of southern sub-basins appeared to be more strongly 

influenced by rain-on-snowmelt mechanisms. The earlier timing dates of 25% and 50% annual 

discharge in winter and spring accompanied by later timing date of 75% annual discharge clearly 
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indicated a shift towards earlier snowmelt and a likely subsequent low summer baseflow which 

were known as climate change footprints on hydrologic response in the northeastern United 

States. The sub-basins with the largest drainage areas showed the latest discharge timing dates, 

while smallest sub-basins indicated the earliest discharge timing dates. 

 With increases in the percentage of development, the interactive effects of changing climate 

and land development became more complicated since at an annual time scale the discharge 

response may exhibit similar amplitudes, whereas in daily time-step the amplitudes may be much 

different. Land cover/land use effects had larger influences on the hydrologic response of sub-

basins (of similar size subjected to comparable weather conditions) than inter-annual variations 

in precipitation, air temperature, and potential evapotranspiration. Unlike the considerable 

influence on peak discharge events, the percentage of development did not indicate a significant 

effect on low discharge conditions. 

 In general, the superimposed effects of changing climate and land development were greater 

than the individual control of changing climate on hydrologic response mainly during the high 

discharge seasons i.e. winter through spring. The overriding effect of evapotranspiration for both 

forested and less developed sub-basins forced greater response to changing climate than 

interactive effects of climate and development mainly in summer and in dry hydrologic 

discharge condition. 

 As shown in the comparative analyses, the relative effect of land development on hydrologic 

response to climate change is complex. Most of the watersheds in the northeastern US are 

characterized by a mix of forest, agricultural and urban land cover/use. The wide-range of 

differences in land covers (i.e. relative proportions and spatial distribution) can result different 

hydrologic responses with complex ecological effects, which may challenge watershed water 
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management strategies. The results for the two extreme hydrologic flow classes, which showed 

greater decreasing trends in discharge under dry and greater increasing discharge trends under 

wet hydrologic conditions compared to average flow class, provide strategic information for 

water managers and policy makers to reexamine the engineering resilience of the Merrimack in 

terms of the water storage, dam operation rules, and potential dam removal under non-stationary 

climate and ongoing development. 

 In this phase of the dissertation, analysis showed that compared to headwater undisturbed 

catchments, discharge responses in downstream developed sub-basins due to changing climate 

were either amplified (by increases in precipitation due to urban heat island effects, more 

impervious surfaces, shorter flow path, greater drainage density, decreases in ET) or masked (by 

milder slope, more surface and groundwater storage, regulated streams). The interactive effects 

of changing climate and development were greater than changing climate alone mainly during 

high discharge seasons. Moreover, the temporal trends showed greater decreasing trends in 

discharge under dry and greater increasing trends in discharge under wet hydrologic conditions 

compared to average years. 

 The results from this chapter have been partially published as: Berton, R., Driscoll, C.T., 

Chandler, D.G., 2016. Changing climate increases discharge and attenuates its seasonal 

distribution in the northeastern United States. Journal of Hydrology: Regional Studies 5, 164–

178. doi:10.1016/j.ejrh.2015.12.057. Another publication is under preparation as: Berton, R., 

Driscoll, C.T., Barten, P.K., Campbell J.L., 2017. Climate change and land use effects on 

streamflow discharge and timing. 
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6- The responses of ecological discharge indicators to regime shifts of Atlantic Multi-

decadal Oscillation and North Atlantic Oscillation in the northeastern United States 

 The objective of this chapter is to evaluate potential linkages between regime shifts in climate 

circulation patterns, including the AMO and NAO, with precipitation and discharge magnitude 

and timing indicators. I specifically address two objectives: (1) when do regime shifts in AMO, 

NAO, precipitation, and discharge for Merrimack sub-basins occur, and are they synchronous?; 

(2) how do these synchronous shifts affect ecological indicators of discharge? I examine regime 

shift points of the annual time series of AMO, NAO, precipitation and discharge corresponding 

to catchments of varying sizes and levels of human development. Next, I evaluate differences in 

discharge record between periods of regime shifts using discharge indicators with important 

implications for water quantity and quality management. This approach builds upon earlier 

studies that focused on the early 1970s hydroclimate regime shifts which were in agreement with 

AMO and NAO regime shifts. This investigation provides a compelling opportunity for studying 

hydrological regime shifts associated with changes in AMO and NAO regimes in the 

northeastern US. This approach will inform how ecological discharge indicators may respond to 

regime shifts in large-scale climate circulation patterns, an outcome that will provide information 

for watershed planners and managers to inform future sustainable water use in the Merrimack 

River watershed and other northeastern basins. 

 The results of this chapter are presented in three separate sections. I first provide analysis of 

‘regime shift points’ for AMO, NAO, precipitation, and discharge time series for each study site. 

Second, I divide the data record into pre- and post- regime shift periods to contrast any 

differences in hydrologic response across regimes. The magnitude and frequency of discharge 

are compared via FDCs for the HBEF catchments and Merrimack sub-basins with similar regime 
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shift points. Finally, I evaluate variations in the frequencies of extreme values for several 

indicators of hydrologic alteration, including the monthly discharge magnitude, duration, and 

timing indicators across regime shifts in the early 1950s, 1970s, and 2000s. For these analyses, 

the study sites are categorized based on drainage area from small headwater HBEF catchments to 

the Merrimack’s small-, intermediate-, and large-scale sub-basins, many of which have a history 

of hydraulic control and/or land development. 

 

 

6-1- Results 

6-1-1- Regime shift points 

 For the AMO record (1857-2014), the regime shift detection method found a total of eight 

regime shifts. Regime durations ranged from eight to 38 years, with a median length of 13 years 

(Figure  6-1a). Before 1970, regime shifts in AMO occurred approximately every 30 years, while 

after 1970 the regime duration decreased to seventeen years or less. It appears that long-term 

oscillations of AMO shifted to a shorter duration after the 1970s with greater magnitudes of 

positive and negative states (Figure  6-1a). The AMO index for 1971-1979 was more negative 

compared to the 1902-1931 period. Likewise, AMO for the period of 2002-2014 was more 

positive compared to the regime of 1931-1964 (Figure  6-1a). 

 Across the NAO record (1900-2014), I identified four regime shifts, with regime durations 

between eight and 52 years and a median length of 20 years (Figure  6-1b). After 1970, the 

regime duration decreased to eight years. The regime of 1951-1972 was strongly negative 

compared to the recent regime of 1996-2014, while the positive NAO regime of 1989-1996 was 

anomalously higher than 1972-1989 regime (Figure  6-1b). 
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 I found nine regime shifts in the PDO record (1855-2014), with regime durations between 

seven and 23 years and a median length of 16 years (Figure  6-1c). The PDO regimes were 

mostly negative (7 regimes) with three slightly positive regimes. However, ENSO exhibited five 

slightly different regimes of ten to 82 years duration (median of 18 years). The ENSO mean state 

remained negative across all regimes (Figure  6-1d). 

 The most common shift points shared across AMO, NAO, precipitation, and discharge 

records are shown in Figure  6-2 alongside record lengths for the HBEF catchments and 

Merrimack sub-basins. Both precipitation and discharge records have common regime shift 

points in 1951-1952 (29% of study sites), 1972-1973 (57% of study sites) and 2003-2004 (81% 

of study sites). The discharge regime shifts of 1973 and 2004 were common among all HBEF 

catchments (Figure  6-2). The small-scale sub-basins showed shifts in 1972 and 2005. The 

intermediate-scale sub-basins showed shifts in 1952, 1972, and 2003. Finally, the large-scale 

sub-basins showed three shifts in 1951, 1972, and 2004. Note that only one of the small sub-

basins had a record that extended before 1950. 
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Figure  6-1- Annual time series of: a) Atlantic Multi-decadal Oscillation index (AMO); b) North 
Atlantic Oscillation index (NAO); c) Pacific Decadal Oscillation index (PDO); d) El Niño–
Southern Oscillation index (ENSO 3.4). The dates of significant shifts in the long-term mean are 
indicated. Water year begins at October 1st and ends at September 30th. 
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Figure  6-2- The regime shift points of precipitation and discharge for the HBEF catchments 
and Merrimack sub-basins. The gray bars indicate period of streamflow records whereas the 
times of the shifts are represented by square (precipitation), and plus (discharge). The shifts in 
precipitation and discharge are in synchronous with 1-2 years earlier regime shifts in AMO or 
NAO. The key to the site ID is presented in Table  3-1. The HBEF catchments (1-8) and the 
Merrimack sub-basins (9-21) are ordered by drainage area from smallest to largest. The 
selected shift points for further analyses on discharge variation are indicated for HBEF 
catchments and Merrimack sub-basins differentiated by scale. 
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6-1-2- Synchrony in regime shifts across records 

 I focus my analyses on regime shifts common to AMO, NAO, precipitation, and discharge. 

These include correspondence of the 1951-1952, 1972-1973, and 2003-2004 shifts in 

precipitation and discharge with the 1951 shift in AMO, the 1972 and 1973 shifts in AMO and 

NAO, and the 2002 shift in AMO, respectively. No concurrent regime shifts in precipitation or 

discharge existed for the AMO regime shifts of 1979, 1987, and 1995 or the NAO shifts of 1977, 

1989, and 1996. Also, there were no regime shifts in PDO or ENSO synchronous with either 

AMO and NAO or precipitation and discharge (Figure  6-1c-d). 

 

6-1-3- Flow duration curves (FDCs) 

 To investigate the scale-dependency of hydrologic response to different regime shifts, I 

compared FDCs for HBEF catchments and Merrimack sub-basins prior-to and following regime 

shifts of 1950s, 1970s, and 2000s (Figure  6-3a-d). I represented the differences of FDCs between 

two selected periods to better depict discharge responses to distinct discharge regimes (Figure 

 6-3e-h). Generally, for the same exceedance probability (EP), the magnitude of discharge was 

greater for the period of 2004-2014 compared to other periods. The high discharge events (EP 

less than 20%) exhibited greater discharge before 1952 than 2004-2014 only at large-scale sub-

basins of the Merrimack (Figure  6-3d). 

 The FDCs were averaged over all HBEF catchments and presented for each distinct regime to 

facilitate comparison and avoid redundancy (Figure  6-3a). Differences in FDCs across regimes 

were most distinct at high discharge values (EP less than 10%), while they were similar for 

intermediate discharge events with EP between 30-40% (Figure  6-3e). In the range of EP 10-
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80%, the 2005-2012 period was characterized by greater high discharge values compared to the 

other regimes. 

 The discharge shifts in the small-scale sub-basins (33-166 km2) of the Merrimack (Figure 

 6-3b) were less distinctive than the HBEF catchments (Figure  6-3a). The 2006-2014 

meteorology yielded greater high discharge values (EP < 10%) than the 1973-2005 regime 

(Figure  6-3f). The high discharge values (EP < 10%) for 2006-2014 were almost identical to pre-

1973 discharge events (Figure  6-3b). For small-scale developed and/or regulated sub-basins, 

intermediate and low discharges (EP > 10%) were similar across regime shifts (Figure  6-3f). 

 The intermediate-scale sub-basins (222-818 km2) were most different at high and low 

discharge events and most similar at intermediate discharge events (EP 10-60%; Figure  6-3c and 

Figure  6-3g). The responses of large-scale sub-basins (1220-11450 km2) to different discharge 

regimes were confounded by Lake Winnipesaukee, a regulated sub-basin with considerable 

storage (even prior to 1949 when the Lakeport dam replaced by a concrete structure) in the 

headwater region of the Merrimack (Figure  6-3d). Intermediate-to-low discharge events (20% < 

EP < 65%) changed with the same rate for regimes pre-1952, 1952-1972 and 1973-2004. The 

most variable responses to different meteorological conditions could be identified for high and 

low discharge events (EP < 20% and EP > 65%). 
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Figure  6-3- FDCs and their differences before and after the regime shifts in: a-e) the HBEF catchments with two 
shifts of 1973 and 2004 (ID: 1-8); b-f) the Merrimack small-scale sub-basins with two shifts of 1972 and 2005 (ID: 
13-18-20-15, 33-166 km2); c-g) the Merrimack intermediate-scale sub-basins with three shifts of 1952, 1972, and 
2003 (ID: 19-16-9-10-14, 222-818 km2); d-h) the Merrimack large-scale sub-basins with three shifts of 1951, 1972, 
and 2004 (ID: 21-17-12-11, 1220-11450 km2). The key to the site ID is presented in Table  3-1. The ranges for similar 
differences across regimes are also indicated. 
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6-1-4- Hydrologic alteration index (HAI) for ecological indices associated with discharge 

 Hydrological and ecological discharge indicators provide information on the availability of 

water resources and most importantly the environmental components of discharge that affect 

ecosystem structure and function. Using RVA, I analyzed the extent of change in the frequency 

of high and low percentiles of these indicators, calculated per year, before and after the regime 

shifts in AMO and NAO. The HAI associated with 90th percentile discharge (less frequent 

discharge events) and 10th percentile discharge (more frequent discharge events) are shown for 

each indicator and each set of sub-basins in Figure  6-4. The HAI compared responses during the 

most extreme years across each regime, and values were calculated for concurrent periods of 

time. 

 

6-1-4-1- HBEF catchments 

 After the two major shifts of the 1970s and the 2000s in AMO or NAO regimes, HBEF 

catchments showed increased high percentile monthly discharge for October (HAI = 3.3), 

December, January, May, August, and September (Figure  6-4a). In contrast, the frequencies of 

low percentile discharge decreased (maximum change in October discharge, HAI=-2.0) with the 

exception of April (HAI=4.6) and May (HAI=0.7). For November, February-April, and June, the 

1970s shift changed the frequency of high discharge percentile in a different direction than the 

2000s. The 2000s shift decreased the frequency of the low discharge percentile contrasting with 

the 1970s shift. 

 After the 1970s and the 2000s shifts, the HBEF catchments experienced increases in the 

frequency of high percentile number of zero days (HAI=1.1) and baseflow index (HAI=0.1), 

along with a later date of minimum flow (HAI=0.5) and an earlier date of maximum flow 
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(HAI=-0.2) (Figure  6-4a). Unlike baseflow index (HAI=-0.5), the frequencies of low percentile 

date of minimum discharge (the earliest of the early dates of minimum discharge, HAI=1.5), and 

date of maximum discharge (HAI=3.5) increased. Neither the 1970s nor the 2000s regime shifts 

altered the frequencies of low percentile number of zero days. 

 

6-1-4-2- Small-scale Merrimack sub-basins 

 Within the Merrimack small-scale sub-basins (33-166 km2), the frequencies of high (low) 

percentile monthly discharge values increased (decreased) after shifts in the 1970s and 2000s, 

except for April and May (February, April, and September) (Figure  6-4b). Changes to high 

percentile monthly discharge were greater after the 2000s shift than the 1970s shift except for 

January and May. The greatest increase and decrease in the frequency of high (low) percentile 

discharge occurred in January (April) and April (December), respectively (Figure  6-4b). 

 The cumulative effects of 1970s and 2000s shifts at the small-scale sub-basins of the 

Merrimack have led to increases in the frequencies of high percentile of baseflow index 

(HAI=1.4) and date of maximum discharge (HAI=1.2) (Figure 5b). In contrast, the frequency of 

high percentile date of minimum discharge decreased (HAI=-0.1), while no impacts were evident 

on number of zero days (Figure  6-4b). Apart from the baseflow index (HAI=0.4), the frequencies 

of low percentile date of minimum and date of maximum discharge have decreased (HAI=-0.6). 

 

6-1-4-3- Intermediate-scale Merrimack sub-basins 

 For the intermediate-scale sub-basins (222-818 km2), the frequencies of high percentile 

monthly discharge values increased after the shifts of 1950s, 1970s, and 2000s most notably in 

October (HAI=3.2) (Figure  6-4c). The alterations in the frequencies of low percentile monthly 
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discharge decreased after the three shifts except for April, July, and September; the greatest 

decrease occurred in December and February (HAI=-1.4). There were no consistent patterns on 

the dominancy of each shift on monthly discharge alteration. 

 After the 1950s, 1970s, and 2000s shifts at the Merrimack intermediate-scale sub-basins, the 

magnitude of high percentile baseflow index (HAI=1.8) and date of maximum discharge 

(HAI=0.7) increased except for date of minimum discharge (HAI=-0.5) (Figure  6-4c). On the 

other hand, the frequencies of low percentile date of minimum discharge (HAI=-0.01) and date 

of maximum discharge (HAI=-0.4) decreased, while baseflow index increased (HAI=2.2). No 

consistent patterns were observed on the dominancy of each shift on the alteration of discharge 

duration or timing indices. 

 

6-1-4-4- Large-scale Merrimack sub-basins 

 The Merrimack large-scale sub-basins (1220-11450 km2) experienced increases in both low 

and high discharge percentiles after each shift, contrasting the decreases in the frequency of low 

percentile December through March discharges (Figure  6-4d). The greatest alteration in the 

frequency of high percentile discharge was evident in March (HAI=4.5). The frequency of low 

percentile discharge exhibited the greatest change in December (HAI=-2.0), April (HAI=1.3), 

and September (HAI=1.3). The 1951 (2004) shift notably affected June through October low 

(high) discharge percentile compared to 1972 and 2004 shifts (1951 and 1972 shifts). 

 These sub-basins also exhibited decreases in the highest percentiles for the baseflow index 

(HAI=-0.6) and earlier date of minimum discharge (HAI=-0.8). In contrast, the frequency of high 

percentile of date of maximum discharge increased (HAI=0.5) while no impacts were evident on 

number of zero days (Figure  6-4d). The frequencies of low percentile baseflow index (HAI=5.1) 
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and date of minimum discharge (HAI=0.3) have increased except date of maximum discharge 

(HAI=-1.0). The number of zero days did not indicate any alteration in the frequency of high or 

low discharge percentiles. 
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Figure  6-4- Hydrologic alteration index (HAI) for monthly discharge magnitude, annual discharge duration and timing for: a) the HBEF catchments with two 
shifts of 1973 and 2004 (ID: 1-8); b) the Merrimack small-scale sub-basins with two shifts of 1972 and 2005 (ID: 13-18-20-15, 33-166 km2); c) the Merrimack 
intermediate-scale sub-basins with three shifts of 1952, 1972, and 2003 (ID: 19-16-9-10-14, 222-818 km2); d) the Merrimack large-scale sub-basins with three 
shifts of 1951, 1972, and 2004 (ID: 21-17-12-11, 1220-11450 km2). The HAI index compares the frequency of the 10th (low) and 90th (high) percentiles of 
discharge indicators before and after the regime shifts. The key to the site ID is presented in Table  3-1. 
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6-2- Discussion 

6-2-1- Major difference between regime shift and phase change 

 I found that the mean state (regime) of AMO and NAO indices have changed periodically 

with the median lengths of 13 and 20 years, respectively (Figure  6-1a-b). AMO has cool 

(negative) and warm (positive) phases that may persist for 20-40 years, while NAO is dominated 

by phase changes of up to every 10 years (Kaplan et al., 1998, 1997; Kavvada et al., 2013; 

Vianna and Menezes, 2013). The comparison of regime shift and phase change durations 

revealed that AMO had higher frequency regimes than its phase duration, while the NAO phase 

change occurred twice as frequently as its regime change. Note the median regime shift length 

should not be mistaken with AMO or NAO classic phase duration. The shift in the long-term 

average values (mean state) of AMO or NAO index may occur even within the same phase. For 

example, there has been no phase change in AMO since 1995 (positive phase), however, a 

regime shift was evident in 2002 moving to the stronger positive regime (Figure  6-1a). 

 

6-2-2- Sensitivity analysis of regime shift detection method 

 The regime shift detection method required an initial estimate for regime duration (L, cut-off 

length) at a specified confidence level (α). I found that increasing the cut-off length improved the 

ability to detect regimes with even slight changes in the mean state of a variable. I also found 

that by changing the confidence level from 0.05 to 0.1, short duration regimes were indicated 

(Rodionov, 2004). Consequently, with L=5, 10-40 years with decadal increments and α=0.1, 

more regimes were identified (Figure  6-1 and Figure  6-2). When the time series was prewhitened 

and serial correlation was removed, the identified shifts indicated that the variations observed in 
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the time series were more than a reflection of red noise and may be provoked by external forcing 

(Hsieh et al., 2005; Rodionov, 2006; Rudnick and Davis, 2003). 

 

6-2-3- AMO and NAO regime shifts 

 The method performed well in detecting the well-studied 1970s AMO and NAO regime shifts 

in the northeastern US (Armstrong et al., 2012; Collins, 2009; Douglas and Fairbank, 2011; 

Hodgkins, 2010; Huntington et al., 2009; Mauget, 2003; McCabe and Wolock, 2002; Rice and 

Hirsch, 2012; Villarini and Smith, 2010). When the serial correlation among data along with cut-

off length greater than 10 years were considered, I identified additional hydrologic changes in 

the Merrimack River watershed in the early 1950s and 2000s (Figure  6-2). 

 The 1950s shift was only identified for intermediate- and large-scale sub-basins in the 

Merrimack which have longer periods of record. The 1950s shift corresponded to greater winter 

snowfall regime in New England stimulated by changes in the state of NAO (Hartley and 

Keables, 1998). The 1996 shifts in NAO increased the Atlantic tropical storm activities that 

eventually triggered warmer SST in the 5-10 years that followed (the early 2000s shift in AMO) 

(Delworth et al., 2016). The three shifts of 1950s, 1970s, and 2000s in AMO and/or NAO left 

consistent traces on precipitation and discharge regimes in the Merrimack River watershed 

(Figure  6-2). 

 

6-2-4- PDO and ENSO regime shifts 

 Several studies have documented teleconnection patterns between large-scale climate 

circulations and hydrologic response in the northeastern US (e.g. Armstrong et al., 2012, 2013, 

Bradbury et al., 2002a, 2002b, 2003). Over New England, Ning and Bradley (2014) found that 
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variations in annual precipitation could be mostly explained by AMO and NAO rather than PDO 

or ENSO. The correlation coefficients (ρ) between the time series of the second dominant EOF 

and the large-scale climate circulation patterns indicated stronger associations of AMO (ρ=0.24) 

and NAO (ρ=0.20) with precipitation variations compared to PDO (ρ=0.07) or ENSO (ρ=0.06) 

(Ning and Bradley, 2014). 

 The strengths of PDO and ENSO teleconnection patterns with the Northeast hydroclimate 

remain uncertain (Bradbury et al., 2003; Kuss and Gurdak, 2014; Nalley et al., 2016; Ning and 

Bradley, 2014; Ropelewski and Halpert, 1986; Schubert et al., 2016; Steinschneider and Lall, 

2016; Tootle et al., 2005). In order to examine whether the Pacific large-scale climate circulation 

patterns had an influence on Merrimack hydroclimate, I also analyzed PDO and ENSO regime 

shifts (Figure  6-1c-d). PDO (1897-1910-1926-1943-1949-1957-1977-1999-2008) and ENSO 

(1887-1896-1977-1990-2011) shift points did not coincide with the Merrimack precipitation or 

discharge regime shifts. 

 

6-2-5- Precipitation and discharge regime shifts 

 At HBEF catchments, there were two consistent shifts of 1973 and 2004 (catchments 2, 6, 7, 

and 8 also indicated a shift in 1973 for α = 0.2). The shift points for the entire Merrimack sub-

basins were less consistent than HBEF catchments. The 1950s, 1970s, and 2000s shifts in 

precipitation and discharge were associated with AMO variations, while NAO was only linked to 

the 1970s shift. Thus, I concluded that the patterns of AMO variations have closer 

correspondences to the hydrologic responses of the Merrimack than patterns of NAO (Figure 

 6-2). 
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 As indicated by my findings, AMO (1964-1979-1995) or NAO (1989-1996) shifts may not 

have affected precipitation and discharge regimes over the entire Merrimack River watershed. 

Only one shift in precipitation was detected (1996; synchronized with NAO regime shift) in only 

40% of the study sites (8 out of 21). As precipitation and discharge are highly correlated in the 

Merrimack River watershed (Berton et al., 2016), I anticipated it would not be possible to detect 

shifts for discharge, which my results confirmed (Figure  6-2). 

 The 1960s discharge shift detected in the intermediate-scale sub-basins of Merrimack was 

likely induced by river regulation (Table  3-1). While land use/cover change and urban 

development could also affect the hydrologic response (Sarmiento, 2010) and confuse discharge-

teleconnection patterns (Sheldon and Burd, 2014), I found the regime point detection algorithm 

was able to identify this shift despite the effects of upstream retention by a reservoir (moderate 

stormflow and maintain higher low discharge events; study site ID: 9) and drinking/municipal 

water withdrawals (decrease discharge volume; study sites ID: 10, 14, and 16). 

 

6-2-6- Lagged hydrologic response to AMO and NAO variations 

 Due to large heat capacity, ocean thermal memory is much longer than the climate system 

(Karnauskas et al., 2009). Therefore, there may often be a lag time between oceanic indices 

regime shifts and changes in precipitation or discharge regimes (Kalra and Ahmad, 2009; Nalley 

et al., 2016; Roller et al., 2016). However, the physical processes during a lag between climate 

processes and hydrologic responses remain unclear and poorly characterized (Dickinson et al., 

2014). The most probable physical explanation for lags could be the effects of climate circulation 

patterns on antecedent conditions such as soil moisture, storage, and groundwater that affect the 

mechanisms of runoff generation (Maurer et al., 2004; Sheldon and Burd, 2014). Given that 
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Merrimack is a groundwater importer watershed [the ratio of annual river flow/(P-ET) is 1.5-1.6 

>1] (Schaller and Fan, 2009), the physical interpretation for lags is easier to justify for 

downstream regulated/developed sub-basins with more mild slope and storage than headwater 

undisturbed catchments with steep slopes and limited storage (Roller et al., 2016). 

 Lag times of 1-2 years in downstream sub-basins may be explained by changes to 

groundwater storage (Figure  6-2). For example, the lag time between precipitation and ground 

water levels ranged from 3 to 16 years on the North Atlantic Coastal Plain (Kuss and Gurdak, 

2014). The Merrimack bedrock is mainly composed of limestone (0.032-189 m/yr), sandstone 

(0.0095-189 m/yr), shale (3×10 -0.063 m/yr), and granite (3×10 -0.0032 m/yr) with low 

hydraulic conductivity (Heath, 1983). When upstream study sites experience either dry or wet 

hydrologic conditions, similar conditions were observed in downstream regulated or developed 

sub-basins after a 1-2 year delay (Berton et al., 2016). Therefore, the slow groundwater discharge 

could explain the 1-2 years lagged hydrologic response of the downstream developed sub-basins 

of the Merrimack to AMO and NAO variations compared to upstream undisturbed catchments 

(Figure  6-2). Quantifying a lag time could provide an opportunity for discharge prediction with 

respect to oceanic indices’ regime shifts to help inform watershed management (Coleman and 

Budikova, 2013; Steinschneider and Brown, 2011). 

 

6-2-7- Flow duration curves (FDCs) 

 The FDCs of different climate regimes were noticeably distinctive for HBEF headwater 

catchments compared to the Merrimack sub-basins (Figure  6-3a-d). The recent (2005-2012) 

increases in high discharge percentiles were greater for HBEF undisturbed catchments (Figure 

4a) than Merrimack regulated and/or developed sub-basins (Figure  6-3b-d). This pattern may be 
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due to increases in the intensity of precipitation rather than magnitude (Hoerling et al., 2016; 

Karl and Knight, 1998; Wuebbles et al., 2014), which would generate large high discharge 

events (Luce et al., 2016). The higher discharge events in upstream undisturbed catchments were 

modulated by river regulation and storage at downstream developed sub-basins; therefore, FDCs 

in these sub-basins are similar through time. 

 I note that the behavior of discharge at the Merrimack River watershed is highly dependent on 

basin scale (Figure  6-3e-h). Small-scale sub-basins indicated dissimilarities only for high 

discharge events (Figure  6-3f), while both high and low discharge events differed in the 

intermediate- and large-scale sub-basins (Figure  6-3g-h). The pattern is in contrast with the 

tendency for decreases in the variations of high and low discharge events with increases in basin 

scale (Wood et al., 1988). In large basins (>1000 km2) with more ground and surface water 

storage, the probability of extreme discharge events due to extreme precipitation decreases 

compared to small catchments (Ivancic and Shaw, 2015). Unlike river regulation, land 

development results in changes in extreme discharge events due to increases to impervious 

surfaces (de la Crétaz and Barten, 2007). This dissimilarity in responses under high and low 

discharge conditions may provide a plausible explanation for the inconsistent response to 

extreme events in regulated and/or developed sub-basins (Berton et al., 2016; Brandes et al., 

2005; DeWalle et al., 2000; Eng et al., 2013; Homa et al., 2013; Konrad and Booth, 2002; 

Lerner, 2002; Poff et al., 2006; Rose and Peters, 2001). 

 

6-2-8- Teleconnectivity of AMO and NAO with discharge 

 Physical linkages can be made between large-scale Atlantic circulations and high percentile 

discharge variations in the northeastern US (Bradbury et al., 2002c; Collins, 2009; Kingston et 
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al., 2007; Tootle et al., 2005). In the early 1970s, increases in high flow percentiles were 

associated with a shift to stronger negative AMO (cold SST in North Atlantic) (Mauget and 

Cordero, 2014). As sea surface temperature decreased, near-surface air temperature cooled and 

therefore sea-level pressure increased (Mazouz et al., 2013). Cold SST anomalies were linked to 

less inland precipitation and greater coastal winter snow storms (due to colder surface air) in the 

northeastern US (Bradbury et al., 2003). During this period, the positive NAO and negative 

AMO phases invigorated the Icelandic Low that moved cold Arctic air to the west region of 

Iceland and Greenland and favored low temperature in winter and early spring in New England 

(Hurrell, 1996, 1995). In the Merrimack River watershed, low temperatures led to late snow melt 

and therefore longer duration high discharge events and maintained higher baseflow conditions 

(Mazouz et al., 2013). 

 After the 2000s regime shift (Figure  6-2), positive AMO and NAO regimes corresponded to 

more frequent high discharge conditions in New England (Kingston et al., 2007). An increase in 

winter rainfall due to the prevailing positive NAO regime (post-1970s) likely exacerbated high 

discharge events in the Merrimack River watershed (Armstrong et al., 2013; Collins, 2009; 

Hannaford and Marsh, 2008; Hurrell et al., 2003). High discharge events within the Merrimack 

were mainly generated by coastal lows (nor’easters storms) through rain-on-snowmelt events 

(Collins et al., 2014; Villarini, 2016). Although NAO and discharge are positively correlated in 

New England (Armstrong et al., 2012; Bradbury et al., 2002a; Kingston et al., 2007; Mazouz et 

al., 2013; Steinschneider and Brown, 2011), other factors such as atmospheric circulation, snow 

hydrology, and basin storage likely affect the relationship of discharge with teleconnection 

patterns (Coleman and Budikova, 2013; Kingston et al., 2007) leading to a diverse set of 

discharge responses. 
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6-2-9- Frequency of high percentile discharge 

 In the Merrimack River watershed, the high percentile of discharge exhibited seasonal 

variation (Figure  6-4). At the HBEF catchments and Merrimack sub-basins, I found increases in 

the frequency of high percentile discharge for summer (Jun-Aug), fall (Sep-Nov), and winter 

(Dec-Feb) were greater than spring (Mar-May) regardless of drainage area, river regulation, 

and/or development after the regime shifts (Figure  6-4). Although precipitation is fairly evenly 

distributed throughout the water year in New England (Huntington et al., 2009; Karl and Knight, 

1998; Magilligan and Graber, 1996), there was stronger association between extreme 

precipitation and discharge events in rain-on-snowmelt season (Mar-May) than other seasons 

(Frei et al., 2015). Consequently, changes in hydrologic responses could be attributed to an 

increase in the ratio of winter rain to snow, earlier loss of winter snow pack, and increases in 

potential evapotranspiration for the non-snowpack season in agreement with previous climate 

change studies performed on the Northeast (Berton et al., 2016; Campbell et al., 2011; Frei et al., 

2015; Hodgkins and Dudley, 2005; Huntington et al., 2004). 

 The changes in summer and fall precipitation were more noticeable across New England. 

However, perhaps in part due to higher potential evapotranspiration and less soil moisture 

availability during the growing season, the increases in cold months precipitation have had more 

influence on discharge variation (Hoerling et al., 2016). As the intensity of summer precipitation 

increased, the antecedent soil moisture condition and snowpack have become relatively less 

important contributing factors to runoff generation (Fang and Pomeroy, 2016; Frei et al., 2015). 

Increases in the magnitude of fall and winter precipitation across conterminous United States 

(Ivancic and Shaw, 2015; Luce et al., 2016), while accompanied by lower evapotranspiration 

rate, could generate more extreme discharge events. Earlier peak discharge (Hodgkins et al., 
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2003; Hodgkins and Dudley, 2006), along with frozen soil in winter (acts as an impervious 

surface), compel a shift in high percentile discharge events from late spring towards early spring 

and late winter in the Merrimack River watershed (Figure  6-4). 

 

6-2-10- Low discharge percentile 

 The frequency of low percentile monthly discharges decreased in summer, fall, and winter in 

the Merrimack River watershed (Figure  6-4). Karl and Knight (1998) reported increases in the 

low discharge quantiles over the Northeast due to increases in the upper 10th percentile of daily 

precipitation, which is consistent with our results for low discharge conditions at HBEF 

catchments and Merrimack sub-basins (Figure  6-4). More frequent spring low discharge 

conditions in spite of increases in spring rainfall (Karl and Knight, 1998; Lins and Slack, 2005) 

may be due to positive trends in groundwater withdrawal (Konikow, 2015; Sadri et al., 2016), 

increases in evapotranspiration as atmospheric demand increases in the Northeast (Huntington 

and Billmire, 2014; Poshtiri and Pal, 2016; Sadri et al., 2016), or earlier loss of snowpack linked 

to higher winter temperature (Hodgkins and Dudley, 2006). However, the effects of river 

regulation and land development on low discharge events are spatially variable (Kam and 

Sheffield, 2016). For instance, Sadri et al. (2016) found positive trend for low discharge 

conditions in upstream of the Merrimack (0.2 m3/sec.yr, 1951-2005) and negative trends for 

downstream regions (-0.2 m3/sec.yr, 1951-2005). 

 

6-2-11- Baseflow 

 In the Merrimack River watershed, the baseflow index, representing the contribution of sub-

surface flow to stream networks, increased at upstream reference catchments (Figure  6-4a) 
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unlike downstream regulated and/or developed sub-basins (Figure  6-4b-d). Small headwater 

catchments are more affected by decreases in baseflow than downstream regions because of 

limited groundwater supply to first order streams compared with larger rivers (Ficklin et al., 

2016; Knouft and Chu, 2015). On the other hand, enhanced baseflow increases water yield and 

discharge variability of downstream basins (Ficklin et al., 2016). Consequently, variation in 

baseflow places headwater streams at greater risks for alterations in ecosystem structure and 

function than downstream sub-basins. 

 

6-2-12- Dates of minimum and maximum discharge events 

 The frequency of high percentile date of minimum discharge increased with increases in 

drainage area, implying a shift in lowest discharge events towards the end of the summer (Figure 

 6-4). This pattern is likely as a result of increases in summer precipitation over the Northeast 

(Campbell et al., 2011; Frumhoff et al., 2007; Hayhoe et al., 2007; Huntington and Billmire, 

2014). The frequency of high percentile date of maximum discharge has decreased (moved 

earlier) with increases in sub-basins size (Figure  6-4). This result is in agreement with earlier 

timing of spring peak discharge due to earlier snowmelt (Frumhoff et al., 2007). 

 

6-2-13- Effects of river regulation and land development 

 The variations in the percentage of development and type of regulation within small-, 

intermediate-, and large-scale sub-basins may raise concern regarding the scale-dependency of 

my results (Figure  6-4b-d). In order to address this limitation, I selected three representative sites 

with distinct percentages of land development; the Smith sub-basin (ID: 19, 4% developed, 

forest; small sub-basin, upstream), the Squannacook basin (ID: 20, 10% developed, suburban; 
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small sub-basin, middle reach) and the Shawsheen basin (ID: 18, 73% developed, urban; 

intermediate sub-basin, downstream). The individual responses of these sub-basins to external 

forcing were well-matched with the mean response. For the Smith sub-basin, there were several 

inconsistencies with the mean response mainly for discharge timing and duration indicators. 

 Based on the responses of these basins given the variability in the level of regulation or 

human impact, I propose the following interpretation for watershed management. For the Smith 

sub-basin (forest), positive trends in annual precipitation across the Merrimack (Berton et al., 

2016) suggest that management practices should focus on measures to prevent flooding in 

summer, fall, and winter. Early snowmelt and peak discharge in spring also raises concerns 

regarding drought conditions at late spring and summer. In the Squannacook sub-basin 

(suburban), current operating rules regulating upstream water resources may not be adapted to 

year-round high discharge events along with longer duration of low discharge conditions in fall. 

In the Shawsheen sub-basin (urban), I found extremes in high and low discharge events were 

increasing (e.g., higher discharge becoming higher, lower discharge becoming lower). Given 

these highly variable discharge magnitudes, management practices should focus on measures to 

mitigate against flooding and drought. A shift toward more extreme discharge events specifically 

after the 2000s regime shifts requires adaptive management policies for the Merrimack River 

watershed in an era of changing climate. 

 

6-3- Summary and concluding remarks 

 I utilized precipitation and discharge data of the Merrimack River watershed to provide 

information on the potential influence of AMO and NAO regime shifts on precipitation and 

discharge time series as well as ecological discharge indicators. Using the regime shift detection 



119 

method, I identified several regime shifts, including a recent hydrologic regime shift in the 

Merrimack River watershed in the early 2000s. Finally, I used the HAI concept (Richter et al., 

1997, 1996) to assess the differences in the high and low discharge percentiles of several 

ecological discharge indicators prior-to and post AMO or NAO shifts of the early 1950s, 1970s, 

and 2000s. 

 In the Merrimack River watershed (for the period of record), I found that precipitation and 

discharge indicated three consistent shifts in the early 1950s, 1970s, and 2000s which were 

teleconnected to AMO or NAO regime shifts with 1-2 year lag time (Figure  6-2). AMO regime 

shifts were strongly synchronized and preceded both precipitation and discharge across all study 

sites by 1 to 2 years, while NAO regime shifts indicated weaker associations. The synchrony of 

these shift points suggest that teleconnection patterns exist between the oceanic indices and 

changes to hydrologic regimes across the Merrimack River watershed. 

 The comparison of FDCs among different meteorological regimes revealed that the 

differences in high and low discharge conditions were scale dependent (Figure  6-3). As the area 

of the sub-basins increased, the differences in discharge response increased for extreme 

discharge events. I found that all responses tended towards greater extremes from each regime 

shift to the next. Across many different indicators, high percentile values increased across 

regimes, while low percentile values decreased across regimes (with a few exceptions). Many of 

the greatest differences in discharge responses were evident at small-scale unregulated 

catchments, suggesting that regime shifts of large-scale climate circulation patterns may affect 

water availability for ecosystems. 

 While I noted that climate change and anthropogenic disturbances such as river regulation or 

land development may have counteracting effects on discharge variations (DeWalle et al., 2000), 
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I found moderated hydrologic responses between regimes for FDCs and ecological indicators as 

the drainage area increased. As I saw in this study, the spatial complexity of hydrologic 

responses to changing climate necessitates a reevaluation of large-scale water management 

decisions at both large and local scales. Increases in extreme discharge conditions may require 

adaptive redesign for current infrastructure and preventive water management in smaller sub-

basins responding to changing climate regimes (Demaria et al., 2016). 

 Analysis from this phase of the dissertation revealed that AMO regime shifts were strongly 

synchronized and occurred one to two years before both precipitation and discharge across all 

study sites, while NAO regime shifts exhibited weaker associations. All hydrologic responses 

tended towards greater extremes from each regime shift to the next. Many of the largest 

differences in discharge responses were evident at small-scale unregulated catchments, while the 

responses became more complex and muted with the drainage area increases and watershed 

development. 

 The results from this chapter have been prepared for publication as: Berton, R., Driscoll, C.T., 

Chandler, D.G., Kelleher, C., 2017. The responses of ecological discharge indicators to regime 

shifts of Atlantic Multi-decadal Oscillation and North Atlantic Oscillation in the northeastern 

United States. Submitted to the Hydrological Sciences Journal, Revised and Ready to Resubmit. 
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7- The near-term prediction of drought and flooding conditions in the Northeastern 

United States based on extreme phases of Atlantic Multi-decadal Oscillation and North 

Atlantic Oscillation 

 The objective of this chapter is to identify hydroclimatic teleconnection patterns between 

variations in Atlantic circulation patterns with seasonal precipitation and discharge anomalies in 

the northeastern United States. This research provides the opportunity to study the teleconnection 

between hydrologic variables and large-scale climate circulation patterns in addition to how 

those patterns may become obscured by human disturbances such as river regulation or urban 

development. In this study, I compare differences in discharge conditions during extreme 

positive and negative phases of AMO and NAO. I examine annual and seasonal correlations 

between precipitation and discharge and the extreme phases of AMO and NAO at zero-, one-, or 

two- year/season lags. I introduce a simple, but novel approach to estimate a confidence band for 

near-term prediction of extreme dry and wet discharge conditions with regards to the extreme 

phases of AMO and NAO. This approach builds upon earlier studies that focused on seasonal 

discharge prediction in undisturbed reference catchments with respect to NAO variations in the 

northeastern US. This investigation will help inform Merrimack water managers to develop 

adaptation strategies for aging hydraulic infrastructure in the region to accommodate excess 

water input and minimize flood damage. 

 The results of this chapter are presented in three separate sections. First, I assess whether the 

differences in normalized discharge were statistically significant between the extreme phases of 

AMO or NAO. Second, I present the annual and the seasonal correlation coefficients of 

precipitation and discharge with the extreme phases of AMO and NAO. Third, I determine the 

relative frequency of occurrence for extreme discharge conditions i.e. dry and wet events in 
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regards to the extreme phases of AMO and NAO. The relative frequencies were employed to 

estimate the probability of occurrence for dry or wet discharge conditions 1-2 years/seasons 

ahead. All analyses were performed with zero-, one-, or two- year (season) lags given to AMO 

and NAO. 

 

7-1- Results 

7-1-1- Normalized annual/seasonal discharge in extreme phases of AMO and NAO 

 I investigated the AMO and NAO teleconnection patterns with discharge in annual and 

seasonal temporal scales (2 5 scenarios) including 0-2 years/seasons lag time given to AMO 

and NAO (3 scenarios, total of 30). I looked for signals that could be observed in headwater 

catchments (the research scientists’ concern) and then transitioned towards downstream sub-

basins (the water resources managers’ concern). In order to be considered as predictive, the 

discharge lagged response had to be evident among HBEF and large sub-basins or HBEF and the 

entire Merrimack River watershed. AMO and NAO are large-scale circulation patterns; 

therefore, their footprints on the hydrology of the Merrimack should be observable in both the 

HBEF catchments and the Merrimack sub-basins. 

  The results of t-tests to determine if the mean normalized annual and seasonal discharges were 

different between extreme positive and negative phases of AMO and NAO, are described in 

Table  7-1. I examined three levels of significance (0.05, 0.1, 0.2). At p-value≤0.2, the common 

scenarios among either HBEF and large sub-basins or HBEF and the entire Merrimack River 

watershed were revealed. A group of study sites (HBEF and small, intermediate, and large-scale 

sub-basins) was considered to have a significant pattern when at least two study sites within the 

group showed statistically significant results. 
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 The relationship of discharge response to AMO and NAO with a time lag may provide 

opportunities to predict discharge conditions in advance and inform management actions. These 

relationships are identified by an asterisk (*) in Table  7-1 and will be introduced as predictive 

scenarios hereafter. There were three scenarios corresponding to AMO with time lags in which 

discharge conditions may be predictable throughout the year and throughout the Merrimack 

River watershed (current year, fall, and winter discharge conditions predicted by previous year, 

summer, and spring AMO, respectively). Only summer discharge could be predicted by previous 

winter NAO (2 seasons lag time). 

 

Table  7-1- The statistically significant (p-value≤0.2) scenarios where the mean standardized annual/seasonal 
discharges were different between the extreme phases of AMO and NAO. 

 Discharge 
AMO Annual Spring Summer Fall Winter 

no lag HBEF, Large 
HBEF, Small, 
Intermediate 

HBEF HBEF, Large ---- 

1 year/season lag HBEF, Large* HBEF ---- 
HBEF, Small, 
Intermediate, 

Large* 
HBEF 

2 years/seasons lag ---- ---- 
Intermediate, 

Large 
HBEF HBEF, Large* 

NAO  

no lag ---- ---- HBEF ---- 
HBEF, Small, 
Intermediate, 

Large 

1 year/season lag ---- ---- 
Intermediate, 

Large 
---- 

Small, 
Intermediate 

2 years/seasons lag ---- Small HBEF, Large* Small ---- 
*Since climate circulation patterns act at large spatial scales, the differences in discharge should be 
significant throughout the entire basins’ scales. Therefore, bold scenarios marked by asterisks could be 
tested for the potential discharge prediction opportunities. 
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7-1-2- The annual/seasonal correlations of precipitation and discharge with AMO and NAO 

 The percentages of statistically significant correlations (p-value≤0.2) for predictive scenarios 

are presented in Table  7-2. The magnitude of correlation coefficients for AMO and NAO with 

precipitation and discharge are shown in Figure  7-1 (only predictive scenarios). The 95% 

confidence intervals for correlations in Figure  7-1 were computed based on the number of sites 

within four categories of the HBEF headwater catchments (ID: 1-8, drainage area of 0.1-0.8 km2) 

and small (ID: 13, 15, 18, and 20, drainage area of 33-166 km2), intermediate (9, 10, 14, 16, and 

19, drainage area of 222-818 km2), and large (11, 12, 17, and 21, drainage area of 1220-11450 

km2) Merrimack sub-basins (Berton et al., 2016). Unlike Spearman’s rho and Kendall tau, 

Pearson’s correlation statistics suggested consistent spatial patterns throughout the Merrimack 

River watershed; therefore it was chosen to illustrate the results of the analyses. If the mean 

standardized discharge was statistically different in the extreme phases of AMO or NAO, 

compared with the strength of Pearson’s correlation coefficients, may indicate the potential of 

discharge prediction relating to AMO and NAO variations. 

 When AMO was equal to or greater than 0.2, the magnitudes of annual correlation 

coefficients were obscured by river regulation or land development. AMO was positively 

associated with precipitation and discharge for HBEF catchments (annual-1 year lag, 

rprecipitation=+0.8, rdischarge=+0.6), while the strength of the relationship declined to rprecip, dis=+0.5 

for large sub-basins of the Merrimack (Figure  7-1a). NAO was negatively correlated with annual 

precipitation and discharge (annual-1 year lag, rprecip=-0.5, rdis=-0.4) at HBEF, whereas weak 

correlations were evident for large regulated or developed sub-basins (Figure  7-1a). Seasonal 

correlations (i.e. fall-1 season lag and winter-2 seasons lag) did not vary greatly among different 

basin-scales with river regulation or land development. 
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 When AMO was extremely positive, the summer NAO (summer-1 lag) was more informative 

than the annual NAO (Figure  7-2a to Figure  7-5a). The strongest correlation of AMO and NAO 

with precipitation and discharge was observed at HBEF catchments (Figure  7-2a). AMO and 

precipitation showed a strong positive correlation (annual-1 year lag, rprecip=+0.8, Figure  7-1a), 

while NAO showed a strong negative correlation with precipitation and discharge (fall-2 seasons 

lag, rprecip, dis=-0.8, Figure  7-2a). 

 Unlike extreme positive AMO, when AMO was extremely negative (≤-0.2), river regulation 

and land development amplified the impacts of changing climate on precipitation and discharge 

variations in annual 1 year-lag and fall 1 season lag scenarios (Figure  7-1b). AMO and NAO 

were negatively correlated with precipitation and discharge at both the annual and seasonal time-

scales. There was no apparent basin-scale effect on the strength of correlations during the 

negative phase of AMO. The NAO signals became stronger in the negative phase of AMO 

compared to its positive phase (Figure  7-1b). The strongest correlations of AMO with 

precipitation and discharge were observed in the HBEF catchments (Figure  7-2b), and 

intermediate (Figure  7-4b) and large (Figure  7-5b) Merrimack sub-basins (rprecip=-0.5 and rdis=-

0.4). For NAO, the strongest correlation with precipitation and discharge occurred in the large 

sub-basins of the Merrimack (annual 1 year-lag, r=-0.3, Figure  7-1b). Winter NAO was strongly 

associated with spring precipitation and discharge at HBEF catchments (spring-1 season lag, 

rprecip=+0.5 and rdis=+0.4, Figure  7-2b). 

 During extreme positive or negative phases of NAO, there were no consistent patterns 

associated with precipitation and discharge variations even though the magnitude or direction of 

the correlation coefficients were different for HBEF catchments compared to the Merrimack 

large sub-basins (Figure  7-1c). Alternatively, the NAO interactions with AMO highlighted some 
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associations. During the positive phase of NAO, winter AMO was negatively correlated with 

summer precipitation and discharge in HBEF catchments (summer-2 seasons lag, rprecip=-0.2 and 

rdis=-0.3, Figure  7-1c). When NAO was extremely negative, winter AMO was positively 

correlated with summer precipitation and discharge in HBEF catchments (summer-2 seasons lag, 

rprecip=+0.5 and rdis=+0.2, Figure  7-1c). 

 The effects of basin-scale on either strength or direction of correlations were clearly 

identifiable between HBEF and large-scale sub-basins (Figure  7-1c). The strongest correlations 

occurred in the small-scale sub-basins when NAO was extremely positive; fall AMO was 

strongly correlated with spring precipitation and discharge (spring-2 seasons lag, rprecip=-0.8 and 

rdis=-0.9, Figure  7-3c). Positive fall NAO showed a strong linkage with winter precipitation 

(winter-1 season lag, rprecip=+0.5, Figure  7-3c), while negative fall NAO was strongly correlated 

with spring discharge (spring-2 seasons lag, rdis=-0.6, Figure  7-3d). 
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Table  7-2- The percentage of significant correlation coefficients within the groups of HBEF catchments and 
Merrimack small, intermediate, and large sub-basins (p-value≤0.2). 

 Annual- 1 year lag Fall- 1 season lag Winter-2 seasons lag 
AMO≥0.2 HBEF Large HBEF Small Intermediate Large HBEF Large 

AMO:Precipitation 100 100 0 0 0 25 25 0 
AMO:Discharge 75 100 0 0 0 0 25 25 
NAO:Precipitation 50 0 0 0 0 0 0 25 
NAO:Discharge 25 0 0 0 0 0 0 0 

AMO≤-0.2         
AMO:Precipitation 50 75 0 0 20 25 0 0 
AMO:Discharge 37.5 0 0 0 0 0 0 0 
NAO:Precipitation 0 25 0 25 20 0 0 0 
NAO:Discharge 0 50 0 0 0 0 12.5 0 

    
  Summer- 2 seasons lag  

NAO≥0.5   HBEF   Large   
AMO:Precipitation   0   0   
AMO:Discharge   25   0   
NAO:Precipitation   0   25   
NAO:Discharge   0   0   

NAO≤-0.5         
AMO:Precipitation   100   0   
AMO:Discharge   37.5   0   
NAO:Precipitation   25   50   
NAO:Discharge   0   0   
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Figure  7-1- The mean correlation coefficients of precipitation and discharge with AMO, NAO at zero-, 
one-, or two- year/season lags: a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars represent 
the lower and upper limits of 95% confidence intervals. 
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Figure  7-2- The mean correlation coefficients of precipitation and discharge with AMO, NAO at zero-, one-, or two- year/season lags for the 
HBEF catchments: a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars represent the lower and upper limits of 95% confidence 
intervals. 
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Figure  7-3- The mean correlation coefficients of precipitation and discharge with AMO, NAO at zero-, one-, or two- year/season lags for the 
Merrimack small-scale sub-basins (ID: 13-18-20-15, 33-166 km2): a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars represent the 
lower and upper limits of 95% confidence intervals. 
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Figure  7-4- The mean correlation coefficients of precipitation and discharge with AMO, NAO at zero-, one-, or two- year/season lags for the 
Merrimack intermediate-scale sub-basins (ID: 9-10-14-16-19, 222-818 km2): a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars 
represent the lower and upper limits of 95% confidence intervals. 
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Figure  7-5- The mean correlation coefficients of precipitation and discharge with AMO, NAO at zero-, one-, or two- year/season lags for the 
Merrimack large-scale sub-basins (ID: 11-12-17-21, 1220-11450 km2): a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars represent 
the lower and upper limits of 95% confidence intervals. 
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7-1-3- Relative frequency of occurrence and probability 

 The probability of having wet, average, and dry years in HBEF catchments and Merrimack 

sub-basins is shown in Figure  7-6. When AMO was extremely positive (≥0.2), the probabilities 

of average and wet discharge conditions in HBEF catchments were as high as 61% and 58%, 

respectively and the chance of having dry discharge conditions was as low as 12% (Figure  7-6a). 

After the extreme positive summer AMO, the fall (fall-1 season lag) and winter (winter-2 

seasons lag) discharge conditions were wet (HBEF catchments and Merrimack sub-basins). As 

the basin scale increased, the probability of wet, average, and dry discharge conditions decreased 

(Figure  7-6a). 

 During the extreme negative phase of AMO (≤-0.2) in HBEF catchments, the previous year’s 

negative AMO caused wet discharge (annual-1 year lag, 40%) and average annual discharge 

conditions (annual-1 year lag, 55%) (Figure  7-6b). Negative summer AMO coincided with dry 

discharge conditions in the fall (fall-1 season lag, as high as 56% in HBEF catchments). The 

probability of wet, average, and dry discharge conditions decreased as drainage area increased 

(Figure  7-6b). 

 When winter NAO was extremely positive (≥0.5) in HBEF catchments, average and wet 

summer discharge conditions were probable 46% and 40% of the time, respectively (summer-2 

seasons lag, Figure  7-6c). The chance of having dry discharge conditions in summer (summer-2 

seasons lag) was 20-36%. The extreme negative phase of NAO (≤-0.5) mostly corresponded to 

average rather than dry or wet discharge conditions (Figure  7-6c). Negative winter NAO could 

be an indicative of average spring discharge conditions (spring-1 seasons lag, 47%) and dry 

summer discharge conditions (summer-2 seasons lag, 43%). Similar to the extreme negative 
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phase of AMO, as the drainage area increased, the probability of having wet, average, and dry 

discharge conditions diminished (Figure  7-6c). 
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Figure  7-6- The 95% confidence band for occurrence probability of dry, average, and wet discharge 
conditions at zero-, one-, or two- year/season lags: a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. 
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Figure  7-7- The occurrence probability of dry, average, and wet discharge conditions at zero-, one-, or two- year/season lags for the HBEF 
catchments: a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars represent the lower and upper limits of 95% confidence intervals. 
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Figure  7-8- The occurrence probability of dry, average, and wet discharge conditions at zero-, one-, or two- year/season lags for the Merrimack 
small-scale sub-basins (ID: 9-10-14-16-19, 222-818 km2): a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars represent the lower and 
upper limits of 95% confidence intervals. 
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Figure  7-9- The occurrence probability of dry, average, and wet discharge conditions at zero-, one-, or two- year/season lags for the Merrimack 
intermediate-scale sub-basins (ID: 9-10-14-16-19, 222-818 km2): a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars represent the 
lower and upper limits of 95% confidence intervals. 
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Figure  7-10- The occurrence probability of dry, average, and wet discharge conditions at zero-, one-, or two- year/season lags for the Merrimack 
large-scale sub-basins (ID: 11-12-17-21, 1220-11450 km2): a) AMO≥0.2, b) AMO≤-0.2, c) NAO≥0.5 and ≤-0.5. Error bars represent the lower 
and upper limits of 95% confidence intervals. 
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7-2- Discussion 

7-2-1- Undisturbed catchments opposed to regulated and/or developed sub-basins 

 Climate change studies have mostly been performed on reference catchments (Falcone, 2011; 

Falcone et al., 2010), although human-impacted sub-basins are usually larger and have longer 

hydrologic data records (Hannaford and Buys, 2012). In order to assess the scale-dependency of 

teleconnection patterns, the hydrologic information of developed sub-basins with a range of 

drainage areas should be used, albeit with caution (Hannaford et al., 2013; Viviroli et al., 2012). 

 In the undisturbed catchments of the HBEF with no streamflow controls or land disturbance 

and state-of-the-science instrumentation, Hamburg et al., (2013) reported strong association 

between precipitation and discharge (r=0.96). The Merrimack sub-basins have drainage areas 2-3 

orders of magnitude larger than the HBEF catchments. River regulation and land development in 

the Merrimack River watershed have weakened the association between precipitation and 

discharge (r= 0.85, p-value<0.0001) (Berton et al., 2016). 

 When the correlation of precipitation-discharge declined towards the Merrimack downstream 

sub-basins, development overwhelmed the impacts of the extreme positive phase of AMO on 

discharge patterns, while the extreme negative phase of AMO was amplified in developed sub-

basins (Figure  7-1). The irregularities in spatial and temporal variations of precipitation due to 

orographic effect or localized convective storm events (Barry and Chorley, 1987; Dingman, 

2015) may also obscure teleconnection patterns. For central New England, changes in elevation 

are responsible for almost 80% of spatial variation in precipitation consequently with effects 

on low, mean, and high discharge conditions (Dingman, 1981; Dingman et al., 1988). 
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7-2-2- Statistical significance 

 I chose a p-value less than 0.2 to check the statistical significance of the mean normalized 

annual and seasonal discharges between the extreme positive and negative phases of AMO and 

NAO (Table  7-1). This may raise concern on the detection of noise over the actual signal. 

Although lower p-values can certify the detection of signal over noise (Yuan and Martinson, 

2000), it should also be considered that the notion of statistical significance becomes less 

important in studying obscure climate phenomena (Cohn and Lins, 2005; Koutsoyiannis and 

Montanari, 2007). For instance, if it takes a certain amount of time for a region to respond to an 

external forcing, it will take much longer for a basin to show a detectable signal (Hansen and 

Stone, 2015). Therefore, statistically insignificant signals observed at smaller scale studies 

should be taken into account as they can become significant in the near future with updated 

information and improved understanding of little-known systems. 

 

7-2-3- Lag time 

 The ocean has a much longer thermal memory than the climate system due to its large heat 

capacity (Karnauskas et al., 2009). Therefore, there would be a lag time between changes in the 

state of oceanic indices and the effects on the state of precipitation or discharge (Roller et al., 

2016). Alternatively, the morphology of a basin (i.e. soil type, discharge path distance, discharge 

path gradient, or basin scale) may cause a delay in discharge response to climate variations 

(Armstrong et al., 2013; McGuire et al., 2005). In addition, there is a chance that the lag-time 

may have statistical meaning that does not match with the physical hydrologic processes (Roller 

et al., 2016). 
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 The importance of finding a lagged linkage between AMO and NAO with discharge is not 

limited to predictive opportunities. Relationships including annual or seasonal time lags in the 

Merrimack River watershed can provide enough time for local organizations to take preventive 

measurements against flooding or drought conditions. According to the results of this study, the 

Merrimack River watershed would likely experience a greater than average discharge condition 

in the near-term future; therefore, development should be avoided on flood plains (Figure  7-6). 

In case of dry conditions (AMO≤-0.2, fall-1 season lag and NAO≤-0.5, summer-2 seasons lag), 

water conservation measures such as artificial groundwater recharge, reducing water leakage 

from pipe distribution systems, and reducing water withdrawals should be considered (Enfield 

and Cid-Serrano, 2006). 

 

7-2-4- AMO teleconnection patterns with discharge 

 Discharge variability in North America is highly influenced by AMO variation (McCabe et 

al., 2008), especially in the fall (Kavvada et al., 2013). Studies across the conterminous United 

States have found an association of the AMO positive phase with dry conditions for basins 

farther from the coast (Enfield et al., 2001; Kavvada et al., 2013). The impacts of local micro 

climate may challenge the validity of regional findings. For instance, in the Merrimack River 

watershed, the extreme positive AMO in summer requires special attention as it may manifest in 

wet fall and winter discharge conditions (Figure  7-7 to Figure  7-10). 

 The AMO negative phase was linked to more winter precipitation and coastal storms 

specifically for coastal regions (Bradbury et al., 2003, 2002c; Enfield and Cid-Serrano, 2006). 

The extreme negative phase of AMO in the Merrimack River watershed mostly corresponded 

with wet-to-average discharge conditions, while dry conditions were observed at sub-basins near 
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to coastal areas. Wet conditions may necessitate the reevaluation of hydraulic structures to 

determine whether they are adequate to sustain a changing climate. 

 

7-2-5- NAO teleconnection patterns with discharge 

 Positive NAO favors more winter rainfall in New England (Bradbury et al., 2003). When 

winter NAO was extremely positive, due to increases in winter rainfall, summer discharge in the 

Merrimack experienced average condition (suumer-2 seasons lag). Over the Northeast, negative 

winter NAO and its intra-seasonal variability have been shown to increase snowfall (Bradbury et 

al., 2002b; Hartley and Keables, 1998; Kingston et al., 2007) and decrease summer discharge 

(Bradbury et al., 2002a; Collins, 2009; Durkee et al., 2008). However, these patterns were not 

evident for the Merrimack River watershed, where discharge conditions remained wet to average 

(Figure  7-6c). A wet spring at the Merrimack River watershed as a result of negative winter 

NAO (spring-1 season lag) was inconsistent with studies by Bradbury et al. (2002b) and Hartley 

and Keables (1998) who suggested that negative NAO corresponded to more snowfall and colder 

temperatures in the Northeast. 

 

7-2-6- Interactive AMO and NAO teleconnection patterns with discharge 

 In the northeastern United States, NAO has been found to be correlated with hydroclimatic 

variables (Armstrong et al., 2012; Bradbury et al., 2002a, 2002b; Mazouz et al., 2013). Winter 

NAO has been positively linked to spring and summer SSTs which may be responsible for warm 

season discharge variations in the Connecticut River Basin (Steinschneider and Brown, 2011). In 

this study, the interactive AMO and NAO teleconnection with precipitation and discharge in the 
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Merrimack River watershed indicated that teleconnection patterns could be confounded by 

season, lag time, basin size, and phases of AMO or NAO. 

 A positive NAO phase along with a negative phase of AMO led to low temperatures in 

eastern Canada which was linked to delayed, more frequent, and longer duration spring peak 

discharge (Hurrell, 1996, 1995; Mazouz et al., 2013). In the Merrimack River watershed, 

positive winter NAO (≥0.5) and negative winter AMO (≤-0.2) resulted in wet to average 

discharge conditions in spring (spring-1 season lag, Figure  7-7b-c to Figure  7-10b-c). When 

winter AMO was extremely negative, summer discharge was in dry-to-average condition in 

HBEF and became dry as the basin size increased (summer-2 seasons lag, Figure  7-7b to Figure 

 7-10b). 

 

7-3- Summary and concluding remarks 

 I studied the linkage between AMO and NAO with both annual and seasonal discharge 

variations. I looked for potential opportunities to predict discharge conditions with respect to 

extreme phases of AMO or NAO. I studied NAO teleconnectivity to summer discharge 

variations in the northeastern United States using the approach of Coleman and Budikova (2013) 

in order to verify their findings for the Merrimack River watershed. In addition to NAO, I 

evaluated whether AMO was annually or seasonally associated with discharge variations. 

 The mean annual and seasonal standardized discharges were different for the extreme positive 

and negative phases of AMO (≥0.2, ≤-0.2) and NAO (≥0.5, ≤-0.5). Statistically significant 

scenarios (denoted by asterisk (*) in Table  7-1) were chosen to study the correlation coefficients 

of AMO and NAO with precipitation and discharge especially with regards to basin size. The 

impacts of basin size on teleconnection patterns were clear under the extreme positive phase of 
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AMO. When AMO was greater than 0.2, the magnitude of annual correlation coefficients were 

obscured by river regulation or land development. In contrast, during the extreme negative phase 

of AMO, river regulation and land development amplified the impacts of changing climate on 

precipitation and discharge variations. AMO was positively associated with precipitation and 

discharge, while NAO showed negative linkage (Figure  7-1). 

 There were interactive AMO and NAO teleconnection patterns with discharge. The AMO 

phase change did not affect the direction of NAO correlations with precipitation or discharge, but 

amplified the hydrologic response to NAO signals. When NAO was greater than 0.5, a negative 

link between NAO and AMO with precipitation and discharge could be identified, while the 

extreme negative phase of NAO indicated both positive and negative associations with either 

precipitation or discharge (Figure  7-1). 

 When AMO was extremely positive (≥0.2), the probabilities of average and wet discharge 

conditions in HBEF catchments were as high as 61% and 58%, respectively (Figure  7-6). During 

the extreme negative phase of AMO (≤-0.2), the probability of having extreme dry and wet 

discharge conditions increased (Figure  7-6b). Negative summer AMO was related to dry 

discharge conditions in the fall (fall-1 season lag, as high as 56% in HBEF catchments). When 

winter NAO was extremely positive (≥0.5) in HBEF catchments, average and wet summer 

discharge conditions were probable 46% and 40% of the time, respectively (summer-2 seasons 

lag, Figure  7-6c). The negative winter NAO requires special attention as it may manifest in a 

probability of dry summer discharge conditions of up to 43%. As the basin scale increased, 

confidence in the prediction of discharge conditions decreased compared to headwater 

catchments. 
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 The results from this research indicated that the Merrimack River watershed is expected to 

experience increases in discharge along with changes in discharge timing and its seasonal 

distribution in the future; therefore development should be avoided on flood plains. Furthermore, 

the current reservoir storage capacity in the Merrimack should be improved in order to 

accommodate excess water input and minimize flood damage. Future research should target 

changes in the magnitude and timing of high discharge events in order to develop adaptation 

strategies for aging hydraulic infrastructure in the region. 

 This phase of the dissertation showed that when AMO was in an extreme positive phase 

(drought condition), the magnitude of seasonal precipitation and discharge correlation 

coefficients with AMO were obscured by river regulation or land development. In contrast, 

during the extreme negative phase of AMO (wet condition), river regulation and land 

development amplified the effects of changing climate on precipitation and discharge variation. 

As the basin scale increases, confidence in the estimation of discharge conditions decreases for 

downstream developed sub-basins compared to headwater undisturbed catchments. 

 The results from this chapter have been prepared for publication as: Berton, R., Driscoll, C.T., 

Adamowski, J.F., 2017. The near-term prediction of drought and flooding conditions in the 

northeastern United States with regard to extreme phases of AMO and NAO. Submitted to the 

Journal of Hydrology, Under Review. 
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8- Synthesis and suggestions for future research 

 Historical observations along with future climate projections for the northeastern United States 

have shown the influence of increases in temperature on the quantity, timing, and phase of 

precipitation (Bates et al., 2008; Hayhoe et al., 2007; Huntington et al., 2009). These changes 

will likely affect watershed hydrology manifested in less snow accumulation, earlier peak flow, 

attenuated spring flows, increasing summer precipitation and evapotranspiration which could 

either increase or decrease summer base flows, respectively (Campbell et al., 2011; Frumhoff et 

al., 2007; Hayhoe et al., 2007; Huntington and Billmire, 2014). The overall findings of this 

dissertation confirm the above hydrologic alterations as responses to changing climate, which 

can have important consequences on ecosystem structure and function. 

 For this research, I exploited precipitation and discharge information for 21 study sites of 

varying sizes and levels of human development located in the northeastern United States. The 

variability among study sites characteristics provided me the opportunity to examine how 

hydrologic response to changing climate may differ with basin scale, land cover, and land 

development. As discharge integrates the effects of temperature and precipitation variation over 

a seasonal time scale, the primary characteristics of discharge provide valuable information 

regarding the response of water resources to changing climate (McCabe and Wolock, 2014). In 

this study, the changes in discharge magnitude and timing trends across the Merrimack River 

watershed indicated that, at headwater undisturbed catchments, discharge responses due to 

changing climate were either amplified (by increases in precipitation due to urban heat island 

effects, more impervious surfaces, shorter flow path, greater drainage density, decreases in ET) 

or masked (by milder slope, more surface and groundwater storage, regulated streams) at 

downstream developed sub-basins. 
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 As mentioned earlier, many studies have quantified hydrologic alterations in the Northeast, 

but drivers of these changes are still uncertain. In particular, there is no consensus on whether 

long-term variations in patterns of discharge are the result of long-term climate cycles, and how 

these long-term climate cycles propagate through basins with varying drainage areas and 

characteristics (Bradbury et al., 2003; Hannaford and Marsh, 2006, 2008; Ishak et al., 2013; 

Panda et al., 2013; Seager et al., 2011). Two common measures of long-term shifts in the 

Northeast climate are AMO and NAO (Armstrong et al., 2013; Bradbury et al., 2003, 2002a, 

2002b; Kingston et al., 2007; Mazouz et al., 2013; Peng et al., 2013; Smith et al., 2010; Tootle et 

al., 2005). While the mechanisms associated with the NAO and AMO are well studied, their 

influence on patterns of discharge across basin scales and levels of disturbances is less clear. In 

this research, I indicated that AMO and NAO had lagged teleconnection patterns with seasonal 

discharge which may either be amplified (by land development) or obscured (by river regulation) 

at downstream developed sub-basins compared to headwater undisturbed catchments. Moreover, 

the lagged teleconnectivity can provide potential opportunities to estimate extreme discharge 

conditions. These estimates can help water managers and policy makers to develop adaptive 

redesign for aging hydraulic infrastructure and improve future water management to address 

non-stationarity (Demaria et al., 2016). 

 In phase I of my dissertation, I assessed the scale-dependency of interacting hydrologic 

responses to changing climate, watershed physical characteristics, river regulation, and land 

development. The results indicated that magnitude and direction of hydrologic responses can 

differ under dry (dry years became drier) and wet (wet years became wetter) hydrologic 

conditions compared to average years. Additionally, this phase provided a high-resolution daily 

time step analysis to closely examine the effects of changing climate under different conditions 
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of watershed development (i.e. river regulation and/or land development). I found that the effects 

of basin scale were limited to high and low discharge events and were expressed as lagged 

discharge in larger sub-basins and earlier discharge in smaller catchments. Annual discharge 

responded to increases in annual precipitation regardless of river regulation or land development. 

The greater drainage area, milder slopes, and surface water storage of the down slope Merrimack 

sub-basins have moderated discharge responses to changing climate compared to headwater 

catchments (HBEF). The earlier timing dates of 25% and 50% annual discharge in winter and 

spring accompanied by later timing date of 75% annual discharge clearly indicated a shift 

towards earlier snowmelt and a likely subsequent low summer baseflow which have been 

previously established as climate change footprints on hydrologic responses in the northeastern 

United States. In general, the superimposed effects of changing climate and land development 

were greater than the effects of changing climate alone on hydrologic response mainly during the 

high discharge seasons (i.e., winter through spring). The findings of this research phase 

highlights that differences in land cover (i.e. relative proportions and spatial distribution), result 

different hydrologic responses with complex ecological effects, which will likely confound 

watershed water management strategies. 

 In phase II of this dissertation (Chapter 6), I explored the effects of AMO and NAO regime 

shifts on hydrologic responses to evaluate whether the intensified inter-annual variability in 

discharge is explained by natural climate cycles. The results indicated that AMO regime shifts 

were strongly synchronized and preceded both precipitation and discharge by one to two years 

across all study sites, while NAO regime shifts indicated weaker associations. I found that all 

responses tended towards greater extremes from each regime shift to the next. Across many 

different ecological discharge indicators, high percentile values of these indicators increased 
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across regimes, while low percentile values decreased across regimes (with a few exceptions). 

Many of the largest differences in discharge responses were evident at small-scale unregulated 

catchments, suggesting that regime shifts of large-scale climate circulation patterns may affect 

water availability for headwater ecosystems. While I noted that climate change and human 

development such as river regulation or urbanization may have counteracting effects on 

discharge variations (DeWalle et al., 2000), I found moderated hydrologic responses between 

regimes for FDCs and ecological indicators as the drainage area increased. This study indicates 

that spatial complexity of hydrologic responses to changing climate necessitates a reevaluation of 

large-scale water management decisions at both large and local scales. Increases in extreme 

discharge conditions highlight the necessity of an adaptive redesign for current infrastructure and 

preventive water management in smaller sub-basins responding to changing climate regimes 

(Demaria et al., 2016). 

 In phase III of this dissertation (Chapter 7), I evaluated the potential to estimate discharge 

considering annual or seasonal AMO and NAO teleconnection patterns. The results indicated 

that AMO positive phase was correspondent with average-to-wet discharge conditions at 

headwater catchments. I found that when AMO was in an extreme positive phase (drought 

condition), the magnitude of seasonal precipitation and discharge correlation coefficients with 

AMO were obscured by river regulation or land development. In contrast, during the extreme 

negative phase of AMO (wet condition), river regulation and land development amplified the 

effects of changing climate on precipitation and discharge variation. AMO was positively 

associated with precipitation and discharge, while NAO showed a negative linkage. The negative 

phase of summer AMO caused dry conditions in the following fall mostly in the headwater 

catchments. The positive winter NAO led to average-to-wet discharge condition in the 
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subsequent summer, while the negative phase corresponded with dry discharge condition in the 

following summer. When the basin scale increased, confidence in the estimation of discharge 

conditions decreased for downstream developed sub-basins compared to headwater undisturbed 

catchments. This study indicates that under greater-than-average discharge conditions in the 

future, the current reservoir storage capacity should be improved in order to accommodate excess 

water input and minimize flood damage. 

 The results of this dissertation provide valuable insights on how climate change signals may 

vary from headwater catchments to downstream sub-basins due to differences in catchment 

properties, in addition to land development and river regulation, including dams and reservoirs. 

However, there are still many areas of uncertainty in the hydrological understanding of the 

response of complex watersheds to changing climate, and how watershed development 

influences those patterns. The subsequent research suggestions could provide improved 

assessments of climate change effects on watershed hydrology: 

 Developed a web-based screening model to monitor trends in air temperature, discharge, 

and precipitation over years of record, dry-average-wet years, and regime shifts; 

 Use a Bayesian approach to project future trends from historical information; 

 Conduct a cross-region comparison of different basins to verify the validity of these 

findings for regions with different climatic conditions; 

 Study the impacts of disconnected compared to connected impervious surfaces on 

hydrologic response for this study representative sub-basins with different levels of urban 

development; 
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 Study the effects of groundwater on buffering the climate and anthropogenic drivers on 

surface water hydrology; 

 Study nonlinear teleconnection patterns of AMO and NAO with precipitation and 

discharge; 

 Study the possible effects of Pacific Decadal Oscillation (PDO) and El Niño Southern 

Oscillation (ENSO) indices on the hydrological processes of the Northeast in high-

resolution seasonal and monthly time steps; 
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