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Abstract

The flow around a circular cylinder, a canonical bluff body, has been extensively studied
in the literature to determine the mechanisms that cause the formation of vortices in the
cylinder wake. Understanding of these mechanisms has led to myriad attempts to control
the vortices either to mitigate the oscillating forces they cause, or to augment them in
order to enhance mixing in the near-wake. While these flow control techniques have been
effective at low Reynolds numbers, they generally lose effectiveness or require excessive
power at Reynolds numbers commonly experienced in practical applications. For this
reason, new methods for identifying the locations of vortices and their shedding time could
increase the effectiveness of the control techniques. In the current work, two-dimensional,
two-component velocity data was collected in the wake of a circular cylinder using a planar
digital particle image velocimetry (DPIV) measurement system at Reynolds numbers of
9,000 and 19,000. This experimental data, as well as two-dimensional simulation data at a
Reynolds number of 150, and three-dimensional simulation data at a Reynolds number of
400, is used to calculate the finite-time Lyapunov exponent (FTLE) field. The locations
of Lagrangian saddles, identified as non-parallel intersections of positive and negative-
time FTLE ridges, are shown to indicate the timing of von Kármán vortex shedding in
the wake of a circular cylinder. The Lagrangian saddle found upstream of a forming
and subsequently shedding vortex is shown to clearly accelerate away from the cylinder
surface as the vortex begins to shed. This provides a novel, objective method to determine
the timing of vortex shedding. The saddles are impossible to track in real-time, however,
since future flow field data is needed for the computation of the FTLE fields. In order to
detect the Lagrangian saddle acceleration without direct access to the FTLE, the saddle
dynamics are connected to measurable surface quantities on a circular cylinder in cross-
flow. The acceleration of the Lagrangian saddle occurs simultaneously with a maximum
in lift in both numerical cases, and with a minimum in the static pressure at a location
slightly upstream of the mean separation location in the numerical cases, as well as the
experimental data at a Reynolds number of 19,000. This allows the von Kármán vortex
shedding time, determined objectively by the acceleration of the Lagrangian saddle away
from the circular cylinder, to be detected by a minimum in the static pressure at one
location on the cylinder, a quantity that can be measured in real-time using available
pressure sensors. These results can be used to place sensors in optimal locations on bluff
bodies to inform closed-loop flow control algorithms of the timing of von Kármán vortex
shedding.



Lagrangian Visualization and Real-Time Identification

of the Vortex Shedding Time in the Wake of a Circular

Cylinder

by

Matthew P. Rockwood

B.S. Clarkson University, August 2011
M.S. Syracuse University, December 2012

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

MECHANICAL AND AEROSPACE ENGINEERING

AT

SYRACUSE UNIVERSITY

May 2017



Copyright © Matthew Rockwood 2017

All Rights Reserved



Acknowledgements

I would like to take this opportunity to thank all of the people that helped me complete

this work. First and foremost, my wife Danica, whose unwavering support has kept me

motivated through periods of travel, working long hours, and frustration when progress

was slow. I would also like to thank my parents for their guidance throughout my time

in school, as well as serving as great roles models in STEM.

I would like to thank my advisor, Dr. Melissa Green, for giving me the opportunity

to be her first graduate student. I enjoyed helping build the Green Fluids Laboratory

from empty rooms to functional spaces full of exciting research. I especially appreciate

her giving me the freedom to pursue topics of interest in my research, while also pointing

me in the direction of useful results. I would like to thank Dr. John Dannenhoffer, Dr.

Jacques Lewalle, and Dr. Mark Glauser for all their assistance with research questions,

and for their helpful feedback during my thesis proposal.

I would like to thank all of the past and present students at Syracuse University who

assisted me in my work. I would like to thank past graduate students Dr. Patrick Shea,

Dr. Zachary Berger, and Dr. Christopher Ruscher. They provided guidance on data

collection, analysis methods, and writing papers, and I can’t thank them enough for all

the advice they gave. I am especially thankful to Dr. Patrick Shea for all of his assistance

early on in graduate school, for teaching me how to collect data using PIV, and helping

me set up experiments. I would like to thank all of the past and current members of the

Green Fluids Laboratory for all of their help and support. I would like to thank past

undergraduate researchers Jacob Morrida, Ranbir Dhillon, and Evan Hyde for assisting

with data collection and analysis. In particular, I would like to thank Yangzi Huang and

Justin King. Our many conversations about our work have expanded my perspective and

strengthened my research. I would also like to thank them for helping to keep things fun

along the way.

I am indebted to Dr. Kunihiko Taira’s research group at Florida State University

for providing large quantities of high quality numerical data for me to analyze. I would

like to thank Phillip Munday and Robert Reger (advised by Dr. Louis Cattafesta) for

iv



providing me with the datasets that I used as the basis for all of my work. I would like

to especially thank Yiyang Sun for taking the time to set up and run a three-dimensional

simulation that took valuable time away from her own work to provide invaluable data

for my analysis. I would also like to thank Dr. Kunihiko Taira for his assistance on

papers and advice on research.

I would like to thank the staff in the Mechanical and Aerospace Engineering Office,

particularly Kristin Shapiro, Kathy Datthyn-Madigan, Kelly Jarvi and Linda Lowe, for

their help with all of the paperwork associated with getting through graduate school. I

would like to thank John Banas, Dick Chave, and Bill Dossert in the Engineering Machine

Shop for all of their help designing and machining the equipment I used throughout my

time at SU. Special thanks to Dick Chave for his fantastic work on the two-piece aluminum

cylinder I used in the final portion of my research.

This work was supported by AFOSR Award No. FA9550-14-1-0210, and the Syracuse

University Fellowship Program.

v



Contents

1 Introduction 1

1.1 Circular Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Bluff Body Vortex Shedding . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Force and Pressure Measurements . . . . . . . . . . . . . . . . . . 8

1.1.3 Control of von Kármán Vortex Shedding . . . . . . . . . . . . . . 10

1.2 Vortex Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Eulerian Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Lagrangian Techniques . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Setup 19

2.1 Water Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Model Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 𝑅𝑒 = 9, 000 Cylinder . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 𝑅𝑒 = 19, 000 Cylinder . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Measurement and Data Acquisition Systems . . . . . . . . . . . . . . . . 22

2.3.1 PXIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Pressure Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Particle Image Velocimetry System . . . . . . . . . . . . . . . . . 26

2.4 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Freestream Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Two-dimensional Simulation at 𝑅𝑒 = 150 . . . . . . . . . . . . . 31

vi



2.6.2 Three-dimensional Simulation at 𝑅𝑒 = 400 . . . . . . . . . . . . 31

3 Analysis Techniques 33

3.1 Wake Visualization Techniques . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Eulerian Q criterion . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Lagrangian Finite-time Lyapunov Exponent . . . . . . . . . . . . 36

3.1.4 Lagrangian Saddles . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Pressure Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Phase-Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . . 47

3.3.2 Pressure Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Phase-Averaging Comparison . . . . . . . . . . . . . . . . . . . . 49

3.4 Three-Dimensional Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Flow Visualization Study . . . . . . . . . . . . . . . . . . . . . . . 56

4 Results 58

4.1 Wake Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 𝑅𝑒 = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 𝑅𝑒 = 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.3 𝑅𝑒 = 9, 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.4 𝑅𝑒 = 19, 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.5 Comparison Among Cases . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Lagrangian Saddle Locations . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 𝑅𝑒 = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 𝑅𝑒 = 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.3 𝑅𝑒 = 9, 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.4 𝑅𝑒 = 19, 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.5 Comparison Among Cases . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 𝐶𝑝 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



4.3.2 Lift and Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.3 Fluctuating 𝐶𝑝 vs. 𝜃 and vortex shedding time . . . . . . . . . . . 87

5 Concluding Remarks 91

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . 93

Appendices 95

A PIV Uncertainty 96

B Comparison Between 𝑅𝑒 = 9, 000 and 𝑅𝑒 = 10, 000 Velocity Data 98

C Code Used 101

C.1 Fortran 90 codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.2 MATLAB codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C.3 Fieldview code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 106

viii



List of Figures

1-1 Strouhal-Reynolds number relationship from Fey et al. (1998). . . . . . . 2

1-2 Flow visualization of the von Kármán vortex street from Van Dyke (1982). 2

1-3 Flow visualization of mode A and B shedding from Williamson (1996).

Flow is from bottom to top. Vortices are colored by fluorescein dye (green). 4

1-4 Flow schematics in the vicinity of the critical point from Achenbach (1968).

The separation location is marked by 𝜑𝑠. . . . . . . . . . . . . . . . . . . 6

1-5 Streamlines in the wake of a circular cylinder showing the transition from

the steady separation bubble to the unsteady separation bubble. Cross-

hatch indicates an instantaneous alleyway of fluid. Adapted from Perry

et al. (1982). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1-6 Filament-line sketch showing entrainment (a and b) and reverse flow (c)

during vortex formation from Gerrard (1966). . . . . . . . . . . . . . . . 8

1-7 Pressure and r.m.s. lift coefficients with varying 𝑅𝑒. . . . . . . . . . . . . 10

2-1 Experimental system for the 𝑅𝑒 = 9, 000 case. . . . . . . . . . . . . . . . 20

2-2 Experimental system for the 𝑅𝑒 = 19, 000 case. . . . . . . . . . . . . . . 22

2-3 𝑅𝑒 = 19, 000 pressure transducer. . . . . . . . . . . . . . . . . . . . . . . 23

2-4 Pressure calibration curve for the Omega PX409-10WDDU10V transducer

used in the 𝑅𝑒 = 9, 000 case. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2-5 Pressure calibration curve for the ADInstruments SPR-524 transducer

used in the 𝑅𝑒 = 19, 000 case, phase-averaging channel. . . . . . . . . . . 25

ix



2-6 Location of cylinder (green), pressure tap (red), PIV camera one (solid

black box), and PIV camera two (dashed black box) for 𝑅𝑒 = 9, 000 ex-

perimental setup as viewed from above the water tunnel. . . . . . . . . . 27

2-7 Location of cylinder (green), PIV camera one (solid boxes), and PIV cam-

era two (dashed boxes) for 𝑅𝑒 = 19, 000 experimental setup as viewed

from above the water tunnel. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3-1 Variation in 𝑄 minimum contour for 𝑅𝑒 = 19, 000. All values above the

specified contour are colored black. . . . . . . . . . . . . . . . . . . . . . 35

3-2 Lagrangian particle evolution around a Lagrangian saddle at 𝑅𝑒 = 150.

Particles with values above 0.75𝐹𝑇𝐿𝐸𝑚𝑎𝑥 are black, other particles are

colored by their initial location. . . . . . . . . . . . . . . . . . . . . . . . 42

3-3 𝑅𝑒 = 9, 000 pressure power spectral density and sample signal. . . . . . . 44

3-4 𝑅𝑒 = 19, 000 pressure power spectral density for channels located at (a)

70° and (b) 180°. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-5 𝑅𝑒 = 19, 000 pressure transducer fluctuating voltage before (black) and

after (red) the application of a Wiener filter. . . . . . . . . . . . . . . . . 46

3-6 𝑅𝑒 = 9, 000 POD phase-averaging bins. . . . . . . . . . . . . . . . . . . . 48

3-7 Sample filtered signal (black), averaged signal (red), and PIV snapshot

location (red asterisk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3-8 Phase angles found by POD (black x’s) and pressure signal (red o’s). . . 50

3-9 Comparison of 𝑄 (grey), nFTLE (red), and pFTLE (blue) results for dif-

ferent phase-averaging techniques at 𝑅𝑒 = 9, 000. . . . . . . . . . . . . . 51

3-10 Streamlines of Hill’s spherical vortex at 𝑦/𝑟 = 0. . . . . . . . . . . . . . . 53

3-11 nFTLE for Hill’s spherical vortex at 𝑦/𝑟 = 0.0 (a) Full nFTLE (b) Con-

strained nFTLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3-12 nFTLE for Hill’s spherical vortex at 𝑦/𝑟 = 0.32 (a) Full nFTLE (b) Con-

strained nFTLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3-13 nFTLE for Hill’s spherical vortex at 𝑦/𝑟 = 0.64 (a) Full nFTLE (b) Con-

strained nFTLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



3-14 Correlation values between full and constrained nFTLE for Hill’s spherical

vortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3-15 Comparison of 𝑄 (grey), nFTLE (red), and pFTLE (blue) results for full

and constrained FTLE calculations for a circular cylinder simulation at

𝑅𝑒 = 400. The green box indicates the Lagrangian saddle, and the black

arrow indicates the region of high FTLE error due to out-of-plane velocities

caused by streamwise-oriented vortices. . . . . . . . . . . . . . . . . . . . 56

3-16 Fluorescein dye flow visualization on a circular cylinder at 𝑅𝑒 = 9, 000. . 57

4-1 Wake visualization for 𝑅𝑒 = 150 with 𝑄 criterion (gray contours), nFTLE

ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian

saddle is located inside of the green box. . . . . . . . . . . . . . . . . . . 59

4-2 𝑅𝑒 = 400 three-dimensional wake structure at 𝑡/𝑇 = 0.80 with cylinder in

grey, and an isosurface of 𝑄 at 𝑄 = 0.017𝑄𝑚𝑎𝑥. . . . . . . . . . . . . . . 62

4-3 𝑅𝑒 = 400 three-dimensional effects for 𝑧/𝐷 = 3.72 plane at 𝑡/𝑇 = 0.80

with cylinder in grey, and 𝑄 = 0.003𝑄𝑚𝑎𝑥 contour in black. . . . . . . . . 63

4-4 Wake visualization for full 𝑅𝑒 = 400 with 𝑄 criterion (gray contours),

nFTLE ridges (red), pFTLE ridges (blue), and cylinder (green). The

Lagrangian saddle is located inside of the green box. . . . . . . . . . . . . 64

4-5 Wake visualization for constrained 𝑅𝑒 = 400 with 𝑄 criterion (gray con-

tours), nFTLE ridges (red), pFTLE ridges (blue), and cylinder (green).

The Lagrangian saddle is located inside of the green box. . . . . . . . . . 66

4-6 Wake visualization for 𝑅𝑒 = 9, 000 with 𝑄 criterion (gray contours), nF-

TLE ridges (red), pFTLE ridges (blue), and cylinder (green). The La-

grangian saddle is located inside of the green box. The black arrow indi-

cates the nFTLE ridge which is splitting the top and bottom half of the

wake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4-7 Wake visualization for 𝑅𝑒 = 19, 000 with 𝑄 criterion (gray contours),

nFTLE ridges (red), pFTLE ridges (blue), and cylinder (green). The

Lagrangian saddle is located inside of the green box. . . . . . . . . . . . . 70

xi



4-8 Wake visualization for 𝑅𝑒 = 19, 000 with 𝑄 criterion (gray contours),

nFTLE ridges (red), pFTLE ridges (blue), and cylinder (green). The

Lagrangian saddle is located inside of the green box. . . . . . . . . . . . . 71

4-9 Wake comparison across all cases with 𝑄 criterion (gray contours), nFTLE

ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian

saddle is located inside of the green box. . . . . . . . . . . . . . . . . . . 72

4-10 𝑅𝑒 = 150 Lagrangian saddle and vortex tracks. . . . . . . . . . . . . . . . 74

4-11 𝑅𝑒 = 400 three-dimensional nFTLE ridges at 𝑡/𝑇 = 0.72. . . . . . . . . . 76

4-12 𝑅𝑒 = 400 Lagrangian saddle tracks. . . . . . . . . . . . . . . . . . . . . . 77

4-13 𝑅𝑒 = 9, 000 Lagrangian saddle tracks. . . . . . . . . . . . . . . . . . . . . 78

4-14 𝑅𝑒 = 19, 000 Lagrangian saddle track. . . . . . . . . . . . . . . . . . . . . 79

4-15 Lagrangian saddle tracks across all cases. . . . . . . . . . . . . . . . . . . 80

4-16 Numerical 𝐶𝑝 distributions. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4-17 𝑅𝑒 = 150 force coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4-18 𝑅𝑒 = 150 circulation for two different areas. . . . . . . . . . . . . . . . . 85

4-19 𝑅𝑒 = 150 circulation areas used. . . . . . . . . . . . . . . . . . . . . . . . 85

4-20 𝑅𝑒 = 400 fluctuating sectional force coefficients for 𝑧/𝐷 = 3.72. . . . . . 87

4-21 Fluctuating 𝐶𝑝 for a range of 𝜃. . . . . . . . . . . . . . . . . . . . . . . . 89

B-1 Mean spanwise vorticity (𝜔), streamwise velocity (𝑢), and transverse ve-

locity (𝑣) contours for 𝑅𝑒 = 9, 000 (left) and 𝑅𝑒 = 10, 000 (right). . . . . 99

B-2 Phase-averaged vorticity (𝜔), streamwise velocity (𝑢), and transverse ve-

locity (𝑣) contours for 𝑅𝑒 = 9, 000 (left) and 𝑅𝑒 = 10, 000 (right). . . . . 100

xii



List of Tables

2.1 Change in sensitivity and voltage bias from from pre-calibration to post-

calibration for the six ADInstruments SPR-524 transducers used in the

𝑅𝑒 = 19, 000 case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Freestream quality information. . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Minimum 𝑄 thresholds for plotting. . . . . . . . . . . . . . . . . . . . . . 35

3.2 FTLE integration time and plotting threshold. . . . . . . . . . . . . . . . 40

3.3 Lagrangian saddle location uncertainties. . . . . . . . . . . . . . . . . . . 41

4.1 Slopes and vortex convection speed found from Lagrangian saddle tracks. 80

xiii



Chapter 1

Introduction

1.1 Circular Cylinder

A bluff body is a non-streamlined object where significant portions of the body experience

separated flow when immersed in a moving fluid. Circular cylinders in cross-flow are a

canonical bluff body for the study of flow separation and vortex shedding, and have been

the focus of research for over 100 years. The vortex shedding process causes the bluff body

to experience oscillating forces, which can decrease the longevity of structures built with

a non-streamlined cross-section. Vortex shedding can also be beneficial as an unsteady

bluff body wake can increase mixing rates for reacting flows and heat exchangers. For

a wide range of flow regimes, the complex three-dimensional wake produced by flow

around a circular cylinder has proven to be a challenging problem to fully understand and

control. Research has focused on topics ranging from the characterization of the vortex

dynamics, analysis of the transition from the steady separation bubble to unsteady vortex

shedding, stability analysis, analysis of the fluctuating forces, and attempts to control

various aspects of the vortex shedding and flow separation. While an understanding

of flow separation and vortex shedding can be applied to many flows, such as aircraft

wings at high angles of attack, wind turbine blades, combustion, and turbomachinery,

the specific understanding of flow around a circular cylinder also has direct importance

in the design of smokestacks, oil risers, and long suspended cables.
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Figure 1-1: Strouhal-Reynolds number relationship from Fey et al. (1998).

Figure 1-2: Flow visualization of the von Kármán vortex street from Van Dyke (1982).

1.1.1 Bluff Body Vortex Shedding

Many researchers have studied the wake of a circular cylinder in an attempt to gain a full

understanding of the physics that causes the formation and shedding of vortices. The

primary non-dimensional parameter that governs the wake behavior of a circular cylinder

is the Reynolds number, 𝑅𝑒, which is defined as

𝑅𝑒 =
𝑈∞𝐷

𝜈
, (1.1)

where 𝑈∞ is the free stream velocity, 𝐷 is the cylinder diameter, and 𝜈 is the kinematic

viscosity of the working fluid. When the Reynolds numbers is at 𝒪(1), the flow stays

fully attached around the circular cylinder, but as 𝑅𝑒 is increased to 𝒪(10) a steady
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separation bubble develops immediately downstream of the circular cylinder. Once 𝑅𝑒

reaches a value around 47 (the actual value is dependent on surface roughness and free

stream turbulence) the steady separation bubble begins to oscillate and breaks down

into an unsteady laminar wake characterized by vortices being shed alternatively from

the upper and lower portions of the cylinder in the classic von Kármán vortex street

(Von Kármán and Rubach, 1912). The non-dimensional frequency associated with the

von Kármán vortices is the Strouhal number, St, which is defined as

𝑆𝑡 =
𝑓𝐷

𝑈∞
, (1.2)

where 𝑓 is the von Kármán vortex shedding frequency, 𝐷 is the cylinder diameter, and

𝑈∞ is the free stream velocity. Fey et al. (1998) studied the relationship between 𝑆𝑡 and

𝑅𝑒, and a plot from their study is shown in figure 1-1, where they used 𝑆𝑟 to indicate

the Strouhal number. While there is large variation in the Strouhal number across the

range of Reynolds numbers plotted, there is a nearly constant Strouhal number of 0.21

between the Reynolds numbers of 500 and 5,000.

The von Kármán vortices formed in the cylinder wake have alternating signs of vortic-

ity associated with their respective shear layer, and induce oscillating forces on the cylin-

der that can lead to structural fatigue (Baarholm et al., 2006; Tognarelli et al., 2008). An

example of the von Kármán vortex street from Van Dyke (1982) is shown in figure 1-2.

The von Kármán vortex street persists through a large range of 𝑅𝑒, with evidence being

found up to 𝑅𝑒 = 8.4× 106 (Roshko, 1961). Coutanceau and Defaye (1991) present clear

visualizations of the cylinder wake over a range of 𝑅𝑒, and Williamson (1996) contains

a thorough description of the changes in the vortex wake as 𝑅𝑒 is increased, which is

summarized below.

Once the Reynolds number is increased to about 190, the previously fully two-

dimensional laminar wake begins to be affected by three-dimensional turbulence, which

causes spanwise variation in the von Kármán vortices as well as the formation of streamwise-

oriented vortices. These streamwise vortices have a spanwise wavelength of three diam-

eters, and are referred to as mode A shedding (Williamson, 1996). As 𝑅𝑒 is increased

3



(a) Mode A shedding at 𝑅𝑒 = 200. (b) Mode B shedding at 𝑅𝑒 = 270.

Figure 1-3: Flow visualization of mode A and B shedding from Williamson (1996). Flow
is from bottom to top. Vortices are colored by fluorescein dye (green).
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to 250, the wavelength of the streamwise vortices gradually decreases to one diameter,

which is referred to as mode B shedding. Mode A and B shedding can be seen in fig-

ure 1-3 from Williamson (1996). The vortex formation distance, which is the distance

downstream that the von Kármán vortices form behind the cylinder, gradually increases

with increasing Reynolds number for this range of Reynolds numbers between 190 and

1,000. At the same time, the location that the wake transitions from laminar flow to tur-

bulent flow gradually moves upstream, as shown by the dye flow visualizations of Gerrard

(1978). Once 𝑅𝑒 reaches 500, this transition has reached the edge of the formation region

just behind the cylinder, resulting in the breakup of the coherent streamwise vortices re-

ferred to as mode A and B shedding (Gerrard, 1978). As 𝑅𝑒 is further increased beyond

1,000, the formation distance begins to decrease with increasing Reynolds number, and

two-dimensional Kelvin-Helmholtz instabilities begin forming in the shear layers (Braza

et al., 1986).

The wake of the circular cylinder undergoes a critical transition when the Reynolds

number reaches 200,000, which is when the wake turbulent transition point reaches the

boundary layer on the circular cylinder (Williamson, 1996). This is characterized by a

large decrease in both drag and wake size behind the cylinder due to the formation of a

separation bubble when the turbulent separated flow reattaches to the cylinder surface.

The wake size decreases due to a smaller portion of the cylinder experiencing separated

flow, as shown in the schematic in figure 1-4. The drag decreases because the pressure

recovers to a higher value upstream of the separation due to the increased amount of

attached flow, as seen in figure 1-7(a). The flow then separates significantly further

along the cylinder body than in the laminar separation case. At 𝑅𝑒 > 1, 000, 000 the

entire boundary layer has become fully turbulent, resulting in the disappearance of the

separation bubble, and the flow remains attached along the majority of the cylinder

surface. Achenbach (1968) contains several nice schematics of the mean flow over a range

of Reynolds numbers bounding this critical point at 𝑅𝑒 = 200, 000, shown in figure 1-4,

as well as pressure and skin friction measurements. The results presented in the current

work span 150 < 𝑅𝑒 < 19, 000, and therefore encompass the majority of the von Kármán

vortex shedding regimes.
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(a) 𝑅𝑒 = 100, 000. (b) 𝑅𝑒 = 260, 000.

(c) 𝑅𝑒 = 850, 000. (d) 𝑅𝑒 = 3, 600, 000.

Figure 1-4: Flow schematics in the vicinity of the critical point from Achenbach (1968).
The separation location is marked by 𝜑𝑠.

The physical mechanism that causes the initial transition in the cylinder wake from

a steady separation bubble to unsteady vortex shedding at 𝑅𝑒 = 47 has been analyzed

and discussed thoroughly in the literature. Triantafyllou et al. (1986) found that an

absolute instability in the near wake created a self-sustaining motion of fluid just behind

the cylinder that allowed fluid to enter the separation bubble in an alternating periodic

manner. This absolute instability determines the shedding frequency of the vortices by

controlling the rate at which the fluid enters the separation bubble. Using experimentally-

obtained instantaneous streamlines, it was found that the unsteady separation bubble

was penetrated by fluid from alternating shear layers (Perry et al., 1982). Inside the

separation bubble, vortex sheets underwent multiple folds that led to the vortex roll-

up. Figure 1-5, from Perry et al. (1982), shows a sketch of the transition from a steady

separation bubble to the oscillating separation bubble that leads to the formation of

von Kármán vortices. The interaction between the two sides of the cylinder wake was

further studied by placing a small “control” cylinder in the shear layer on one side of the

wake (Strykowski and Sreenivasan, 1990). When the control cylinder was implemented

at Reynolds numbers below 100, the shear layer interactions were inhibited in the wake
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Figure 1-5: Streamlines in the wake of a circular cylinder showing the transition from
the steady separation bubble to the unsteady separation bubble. Cross-hatch indicates
an instantaneous alleyway of fluid. Adapted from Perry et al. (1982).

just downstream of the main cylinder, and the vortex shedding was effectively eliminated.

Researchers have also investigated what mechanism perpetuates the formation of the

von Kármán vortices once the shedding is fully developed in the cylinder wake. The

formation of these vortices behind a circular cylinder at Reynolds numbers below 350

is thought to be due to the presence of high shear near the downstream portion of the

cylinder along with the induced velocity field caused by the momentum deficit (Griffin,

1995). As the vortex grows, its induced velocity begins to pull fluid from the opposing

shear layer into the region between the forming vortex and the cylinder surface (Gerrard,

1966). A figure from Gerrard (1966) illustrating this concept is shown in figure 1-6.

Since this fluid is from the opposite shear layer, it has oppositely-signed vorticity, and

separates the vortex from the region of momentum deficit just behind the cylinder. Once

the vortex begins to move downstream from the cylinder, it no longer has access to the

strong shear that formed it, halting the increase in vortex strength that was present

during formation. Many attempts to mitigate the vortex shedding focus on disrupting

the transfer of vorticity from one side of the wake to the other, as shown by the use of
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Figure 1-6: Filament-line sketch showing entrainment (a and b) and reverse flow (c)
during vortex formation from Gerrard (1966).

splitter plates (Roshko, 1954), or by forcing the vortices to shed before they become large

enough to entrain vorticity from the opposite shear layer (Jukes and Choi, 2009).

More recently, studies have focused on the stability analysis of the cylinder wake.

A low-dimensional dynamical systems approach using an incompressible potential flow

model of the cylinder wake found that when 𝑅𝑒 < 47, vorticity perturbations on the wake

symmetry line decayed, but when 𝑅𝑒 ≥ 47, vorticity perturbations located outside of the

separation bubble on the symmetry line grew and caused oscillations in the separation

bubble (Tang and Aubry, 1997). A numerical study investigating the wake oscillation at

𝑅𝑒 > 47 found that any small, localized vorticity disturbance propagated both up and

downstream. When the disturbance reached the cylinder, it caused oscillation leading to

the global instability (Takemoto and Mizushima, 2010). These two studies demonstrated

that once the Reynolds number is above 47, any small perturbation in the flow field,

regardless of its location, will cause the steady separation bubble to begin oscillating in

an unsteady manner, leading to the formation of von Kármán vortices. Therefore, it is

highly unlikely that the initial formation of the von Kármán vortices can be prevented

as 𝑅𝑒 is increased above 47, but attempts have been made to suppress the vortices at a

variety of 𝑅𝑒 using other methods.

1.1.2 Force and Pressure Measurements

The analysis of the unsteady forces acting on a circular cylinder in cross-flow is crucial

for the design and control of hydrodynamic and aerodynamic structures (Blevins, 1977).

The mean and fluctuating static pressure distribution on a circular cylinder over a range
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of Reynolds numbers has been extensively investigated in the literature, and has yielded

a large quantity of information on the influence that vortices have on bluff bodies. The

fluctuating lift force is of particular interest since it is primarily induced by the von

Kármán vortices (Norberg, 1986). A review by Norberg (2003) details numerous studies

that investigated the fluctuating lift on a circular cylinder using pressure taps in various

configurations. The distribution of the non-dimensional coefficient of pressure, 𝐶𝑝, is

often used to compare the results obtained at different 𝑅𝑒. 𝐶𝑝 is defined as

𝐶𝑝 =
𝑝− 𝑝∞
0.5𝜌𝑈2

∞
, (1.3)

Where 𝑝 is the static pressure on the cylinder surface, 𝑝∞ is the freestream static pressure,

𝜌 is the freestream density, and 𝑈∞ is the freestream velocity. An example of various mean

𝐶𝑝 distributions plotted versus the angular distance along the cylinder from the upstream

stagnation point, 𝜃, can be seen in figure 1-7(a). The mean 𝐶𝑝 distribution is used to find

the base pressure coefficient (mean 𝐶𝑝 at 𝜃 = 180°), the mean separation location, and the

overall distribution of pressure on the cylinder surface. The mean separation location is

found at the inflection point in the 𝐶𝑝 distribution within the region of increasing 𝐶𝑝 that

occurs after it reaches its minimum (Zdravkovich, 1997). The time-dependent pressure

distribution on the cylinder is often integrated to calculate the lift and drag forces, but

other techniques to find the lift force without fully resolving the pressure distribution

exist, and are discussed thoroughly in Norberg (2003). These include techniques such as

cross-correlations between pressure taps at two arbitrary locations, and comparing the

pressure values at 𝜃 = ±90. Figure 1-7(b) displays the variation of the root mean square

(r.m.s.) coefficient of lift for a range of Reynolds numbers. There is large variation in

the r.m.s. lift coefficient with the highest fluctuating lift located around 𝑅𝑒 = 250 and

between 20,000 and 200,000.

The location of the mean separation point is of particular interest in the current study,

as the pressure signal just upstream of this location experiences the largest fluctuations

due to the von Kármán vortices, and therefore is the location at which a pressure tap is

generally placed if used for phase-averaging (Perrin et al., 2007). Nishimura and Taniike
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(a) 𝐶𝑝 curves for various 𝑅𝑒 from Roshko
(1961).

(b) R.m.s. lift coefficient vs. Reynolds number
from Norberg (2003).

Figure 1-7: Pressure and r.m.s. lift coefficients with varying 𝑅𝑒.

(2001) investigated the relationship between fluctuating lift and the stagnation and sep-

aration point locations. They found that the von Kármán vortices forming downstream

of the cylinder affected the pressure distribution on the entire surface of the circular

cylinder, even upstream of the separation point. They also found that the upstream

stagnation point and the separation point move 180° out of phase from each other along

the cylinder surface.

1.1.3 Control of von Kármán Vortex Shedding

Flow control techniques can be broadly classified as passive, open-loop active, or closed-

loop active. Passive techniques generally rely on a permanent change in the geometry

such as a surface pattern to change the flow physics. Open-loop active techniques either

add or subtract momentum from the fluid in a prescribed manner, which can include

continuous, periodic, or aperiodic application of the control system. Closed-loop active

techniques add or subtract momentum from the fluid by an amount determined from

an algorithm that uses sensors in the system, such as pressure transducers, for feedback.

Multiple investigations have explored the control of bluff body vortex shedding with active
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or passive flow control techniques, and a few representative publications are summarized

here.

A passive attempt to affect the cylinder near-wake involved attaching longitudinally

oriented o-rings to the cylinder (Lim and Lee, 2004). This study realized a drag reduction

of 9% at 𝑅𝑒 = 120, 000, which was attributed to the elongation of the vortex formation

region. The addition of v-cut microgrooves aligned in the streamwise direction instead of

o-rings on the cylinder surface created a 7.6% drag reduction at 𝑅𝑒 = 3, 600, but a 4.2%

drag increase at 𝑅𝑒 = 36, 000 (Lee et al., 2005). An open-loop active technique used syn-

thetic jets to create local separation bubbles on circular cylinders at Reynolds numbers of

500 and 3,900, and produced a reduction in drag coefficient of approximately 12% (Cata-

lano et al., 2002). Alternatively, low power electro-hydrodynamic actuators were shown

to affect the time-averaged separation location on the cylinder surface at 𝑅𝑒 = 2, 500

when the flow was perturbed steadily, but at Reynolds numbers of the order of 50,000

they had a minimal effect (Artana et al., 2003). Changing the location of the separation

point was shown to also affect the magnitude of the oscillating forces experienced by the

cylinder. Another control method used dielectric barrier discharge plasma actuators to

add momentum to the flow in the vicinity of the separation point on the cylinder surface

in an open-loop pulsed manner (Jukes and Choi, 2009). This method achieved a drag

reduction of 32% at 𝑅𝑒 = 15, 000, but required 50 times more power than was saved.

A combination of steady windward suction and steady leeward blowing was numerically

shown to effectively eliminate the oscillatory forces on the cylinder at Reynolds numbers

up to 1,000 (Dong et al., 2008). A closed-loop control scheme enabled increased mixing

in the simulated flow around a square cylinder when wall-tangential velocity sensors were

correlated with Lagrangian separation locations, and wall-tangential velocity actuators

were driven to increase the shear layer interaction in the downstream wake (Wang et al.,

2003). While several techniques have shown adequate control of the von Kármán vor-

tex shedding at low Reynolds numbers, for Reynolds numbers encountered in practical

applications, 𝒪(106), the current techniques require a prohibitive amount of power or

lose their effectiveness. The research outlined in this dissertation seeks to obtain a new

phenomenological representation of the shedding mechanism that contains flow physics
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that are easier to manipulate than previous attempts.

1.2 Vortex Identification

Although studies on vortex dynamics have been carried out for over a hundred years, a

widely-accepted, objective definition of a vortex and its boundaries remains an open ques-

tion. Techniques used to define vortices are broken down into Eulerian and Lagrangian

analyses. Eulerian vortex identification techniques use the instantaneous velocity field

and its gradients to identify regions that contain vortices, while Lagrangian vortex iden-

tification techniques calculate scalar quantities based on particle trajectories using mul-

tiple velocity fields to determine which regions of the flow are dynamically distinct. A

combination of Eulerian and Lagrangian techniques have been found to be useful when

studying the cylinder near-wake and flow separation (Rockwood et al., 2016; Miron and

Vétel, 2015; Miron et al., 2015).

1.2.1 Eulerian Techniques

Many Eulerian vortex criteria identify the coherent structures by a local swirling motion,

which has the presence of closed or spiral streamlines or pathlines in a suitable reference

frame. The 𝑄 criterion, developed by Hunt et al. (1988), identifies regions as vortices if

the norm of the local rate of rotation tensor is dominant over the norm of the local rate

of strain, and is discussed further in section 3.1.1. Several Eulerian criteria other than

𝑄 have been used in similar analyses previously, but do not yield distinctly dissimilar

results, and for this work the 𝑄 criterion is chosen for simplicity and for consistency with

similar studies in the literature. The 𝛥 criterion proposed by Chong et al. (1990) defines

vortices as regions where the velocity gradient has complex eigenvalues, which occurs in

when there is are locally spiraling streamlines. The 𝜆2 criterion (Jeong and Hussain, 1995)

defines vortices as regions where the second eigenvalue of S2+𝛺2 is negative, where S is

the symmetric rate of strain tensor, and 𝛺 is the anti-symmetric rate of rotation tensor.

This condition guarantees a pressure minimum at the vortex core in three-dimensional

flows. The swirl criterion proposed by Zhou et al. (1999) defines a vortex as regions
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with a positive value of 𝜆2
𝑐𝑖 above a certain percentage of its global maximum. 𝜆𝑐𝑖 is the

imaginary component of the complex eigenvalue of the velocity gradient tensor. This

criterion is a more stringent version of the 𝛥 criterion mentioned above, that requires

the imaginary eigenvalue to have a certain magnitude to be considered within a vortex.

Graftieaux et al. (2001) defined a scalar function 𝛤1 by using the topology of the velocity

field to yield the center of the vortex core. Another common method of studying vortices

involves the calculation of their circulation. Circulation is a spatially integrated scalar

quantity that is a measure of the flux of vorticity through an area boundary, and can

be used as a measure of the strength of the vortex. The implementation of circulation

and 𝑄 in this work is explained in more detail in section 3.1. Some examples of studies

comparing the different Eulerian vortex identification techniques can be found in Haller

(2005); Dubief and Delcayre (2000), and Chakraborty et al. (2005).

A large body of past work has analyzed vortex structures using Eulerian criteria.

Braza et al. (1986) developed an early simulation of the cylinder wake that studied the

merging of the shear layer vortices at 𝑅𝑒 = 1, 000 using vorticity and pressure contours,

and determined that they form main eddies to the von Kármán vortex path. Perrin

et al. (2006) analyzed turbulence statistics in the cylinder near wake, and used the rate

of rotation tensor to determine vortex locations. Onoue and Breuer (2016) used swirl

strength to identify the leading and trailing edge vortices shed from a pitching panel,

and attributed changes to the leading edge vortex structure to changes in the plate pitch

rate. Adrian et al. (2000) used swirl strength and Galilean transformations to visualize

vortices in a shear layer where quantities like vorticity fail to accurately locate coherent

vortices. Kriegseis et al. (2013) used vorticity contours to determine the location of the

leading edge, trailing edge, and tip vortices for a pitching airfoil and found that the

shear layer feeding velocity had a larger impact on the vortex characteristics than the

more commonly used Reynolds number. Dabiri and Gharib (2004) used streamlines and

vorticity in a frame of reference convecting with vortex rings to study their formation

and entrainment. While these techniques can quickly identify regions of the flow that

contain coherent structures, they generally require a suitable frame of reference and

a carefully selected threshold, and therefore are not objective methods for detecting
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coherent structures.

1.2.2 Lagrangian Techniques

Lagrangian vortex identification methods define a scalar field at a certain time by using

the final locations of particle trajectories that have been initialized at the given time and

integrated over a prescribed duration of time. One commonly used technique requires

the calculation of the finite-time Lyapunov exponent (FTLE) field (Haller, 2001), which

has proven to be a powerful tool for the purposes of identifying and tracking coherent

structures in complex vortex-dominated fluid flows. This method has been used for both

periodic (Green et al., 2011; Bourgeois et al., 2012; Kourentis and Konstantinidis, 2011;

Miron and Vétel, 2015) and aperiodic (Beron-Vera et al., 2008; Blazevski and Haller,

2014; O’Farrell and Dabiri, 2014; Mulleners and Raffel, 2011; du Toit and Marsden,

2010) flow fields, and can be implemented using velocity field data from both numerical

simulations and experiments if the proper spatial and temporal resolution of the data is

available.

Ridges of high FTLE values locate transport boundaries which separate dynamically

distinct regions of fluid whose material remains distinct over a certain length of time. The

details of this technique are further discussed in section 3.1.3. Maximizing ridges of the

scalar FTLE field have often been defined as Lagrangian coherent structure (LCS), as they

are the simplest representation of attracting and repelling material surfaces that can be

calculated from velocity data, but there are some shortcomings to using this technique to

detect LCS as discussed by Allshouse and Peacock (2015). These shortcomings include

the sensitivity of the FTLE calculation to the computational grid resolution, and the

requirement of additional analysis to determine if the FTLE ridges identify shear or

hyperbolic LCS. FTLE and LCS analyses have been applied to study unsteady wakes

behind a pitching panel (Green et al., 2011), oceanic eddies (Beron-Vera et al., 2008),

aortic valve jets (Shadden et al., 2010), fluid transport of translating and flapping wings

(Eldredge and Chong, 2010), and hurricanes (du Toit and Marsden, 2010). As mentioned

previously, FTLE analysis enabled increased mixing in simulated flow around a square

cylinder when combined with a closed-loop control scheme (Wang et al., 2003). The
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current study uses FTLE to gain additional understanding of the underlying flow physics

in order to inform the future application of similar strategies to those used by Wang et al.

(2003) to alter the shedding dynamics.

FTLE, like many Lagrangian methods, requires the evaluation of the Cauchy-Green

strain tensor, which is constructed at each time from the gradient of the flow map across

the domain of interest initialized at that time. The flow map is a one-to-one mapping of

the initial material points to their final spatial locations over the time of interest. The

calculation of the Cauchy-Green strain tensor requires adequate spatial and temporal

resolution of velocity fields in order to ensure accurate particle trajectories (Allshouse and

Peacock, 2015). The effect of the velocity field spatial resolution, noise, and smoothing

on FTLE fields has been investigated by Olcay et al. (2010), who found that poor spatial

resolution in the velocity field had a significant impact on the location of the FTLE

ridges. Several studies have been conducted on the effect of the velocity field spatial and

temporal resolution in ocean flows (Beron-Vera, 2010; Keating et al., 2011; Hernández-

Carrasco et al., 2011; Poje et al., 2010), and found that flows with unresolved small

scale energetic motion can have large errors in the FTLE field, and therefore should be

used with caution. Keating et al. (2011) determined the temporal resolution needed at

different velocity field spatial resolutions in order to ensure particle trajectories would

not overshoot small scale structures.

Many techniques have been introduced that implement a variety of theories to ensure

the accuracy of the FTLE ridges or LCS. The variational theory method proposed by

Haller (2011) found an exact relationship between the LCS and the invariants of the

Cauchy-Green strain tensor that allowed for LCS to be defined as the locally strongest

attracting or repelling material surfaces. In an attempt to rectify errors in the flow map

caused by the low number of trajectories common to oceanic flows, Allshouse and Thif-

feault (2012) developed a method to detect coherent structures using a three-dimensional

braid structure constructed from two-dimensional trajectories. This braid structure was

then used to detect non-growing topological rings that enclosed invariant regions. Fur-

ther investigation of these types of rings determined that in two-dimensional turbulent

flows these coherent Lagrangian vortices can travel through the flow without being de-
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stroyed (Haller and Beron-Vera, 2012, 2013). In real flows, such as large scale oceanic

flows, these coherent vortices can persist over long periods of time and can collect sur-

face material such as garbage or oil into a persistently concentrated region. This type

of analysis has since been extended to three-dimensional unsteady flows in an investiga-

tion of hyperbolic and elliptic transport barriers (Blazevski and Haller, 2014). A new

technique looking to increase the accuracy of the flow map calculation for experimen-

tal data used tracer particles from time-resolved particle image velocimetry (PIV) and

particle-tracking velocimetry (PTV) to calculate many incremental flow maps that were

then compiled together (Raben et al., 2014). While this increased the accuracy of the

flow map, it still relied on having adequate spatial and temporal resolution as well as

dimensional support for particle tracking.

Several techniques have been proposed that attempt to move away from using the

Cauchy-Green strain tensor directly. One such method uses distinguished trajectories

that can reveal both hyperbolic and non-hyperbolic flow regions in time-dependent flows

(Rempel et al., 2013). These trajectories are used to find both the stable and unstable

manifolds in the same calculation. The function “M” defined by these trajectories is less

sensitive to integration time than the standard FTLE calculation and does not use the

Cauchy-Green strain tensor, but still relies on accurate tracking of particle trajectories.

The finite-size Lyapunov exponent (FSLE) has also been used to extract LCS, but in

order to extract true LCS, the FSLE must meet a stringent set of requirements that

increases the difficulty of the calculation (Karrasch and Haller, 2013). The calculation

of the FSLE field also relies on accurate integration of particle trajectories, and relies on

adequate spatial and temporal resolution (Hernández-Carrasco et al., 2011; Poje et al.,

2010). A method proposed by Leung (2011) and Leung (2013) relies on partial differ-

ential equations and Eulerian data to predict the FTLE field instead of using particle

trajectories and the Cauchy-Green strain tensor. While this method may eliminate the

need for accurate particle trajectory information, it has yet to be implemented in flows

that are not simple kinematic models. A method proposed by Froyland et al. (2010) uses

probabilistic methods to study the evolution of probability densities to find the regions

that remain coherent and relatively non-dispersive. Haller et al. (2016) conducted an
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in-depth review of many of the currently utilized Lagrangian techniques for identifying

vortices.

In this work we define a Lagrangian saddle as the intersection of the positive and

negative-time FTLE ridges, which are discussed in detail in section 3.1.3. These La-

grangian saddles are critical points in the flow, and their locations have been shown to

contain useful information about vortices and their behavior. In particular, the emer-

gence of saddles was shown to accompany the birth of secondary hairpin vortices in a

turbulent channel direct numerical simulation (Green et al., 2010). Also, in an FTLE

analysis of two-component PIV data in the wake of a low aspect ratio trapezoidal pitch-

ing panel, the wake breakdown was observed to occur at the streamwise location where

two independent Lagrangian saddles merged (Green et al., 2011). The location of the La-

grangian saddles has been found to contain information about vortices shed from pitching

plates (Huang and Green, 2015), pitching airfoils (Mulleners and Raffel, 2012), and cir-

cular cylinders (Rockwood et al., 2016). Previous FTLE results have been presented for

the flow around a circular cylinder for both experimental and numerical data (Rockwood

et al., 2014; Rockwood and Green, 2015, 2016; Kourentis and Konstantinidis, 2011; Lei

et al., 2015; Miron and Vétel, 2015).

1.3 Motivation

While a large body of research has been dedicated to understanding, detecting, and

controlling the von Kármán vortices shed from bluff bodies, there is still no objective

method to define the shedding time of a vortex, or to relate this information to real-time

sensors that could be used to inform closed-loop flow control. The goal of the research

presented in this dissertation is to objectively identify and track the behavior of the

von Kármán vortices shedding from a circular cylinder, and to relate this information

to a sensor on the cylinder surface that could be used in real-time to inform closed-loop

flow control on whether the vortex is forming, shedding, or separated from the cylinder.

Previous attempts in the literature to determine the coherent structures, or vortices, in

the wake of bluff bodies primarily used Eulerian techniques which require a subjective
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threshold to determine the vortex locations.

As part of this work, it was found that the locations of Lagrangian saddles could

be used to determine the behavior of von Kármán vortices in the near-wake region for

numerical data at 𝑅𝑒 = 100 (Rockwood et al., 2016). The speed at which these saddles

moved away from the cylinder changes dramatically between the forming, shedding, and

convecting portions of the vortex shedding process, and provided a clear method for

identifying the time of vortex shedding. While this result was helpful for determining

whether a vortex was forming or shedding in the wake of bluff bodies, it does not lend itself

to direct implementation in flow control applications as the FTLE ridges require extensive

computational time and future information to calculate. In the research presented here,

Lagrangian flow structures are related to the static pressure on the cylinder surface, a

quantity that is easily and cheaply measurable with pressure transducers.

The static pressure distribution on the cylinder surface can be measured in real-

time, enabling it to be used as an input for a closed-loop flow control algorithm. By

investigating the changes in the cylinder static pressure distribution as the Lagrangian

saddle accelerates away from the cylinder, pressure fluctuations in specific regions are

compared with the Lagrangian saddle lift-off time. In this way, relating the Lagrangian

saddle location to a quantity that is measurable in real-time allows phenomenological

changes of the flow topology to be determined on the fly. The flow field could then be

specifically manipulated with surface flow control techniques in a real-time closed-loop

control system.

The wake behind a circular cylinder was visualized using Eulerian and Lagrangian

techniques, and the Lagrangian saddles were tracked for two-dimensional numerical data

at 𝑅𝑒 = 150, three-dimensional numerical data at 𝑅𝑒 = 400, and two-dimensional exper-

imental data at 𝑅𝑒 = 9, 000 and 𝑅𝑒 = 19, 000. The force history was compared to the

vortex shedding time for the two-dimensional numerical data at 𝑅𝑒 = 150, and the three-

dimensional numerical data at 𝑅𝑒 = 400. The static pressure distribution on the cylinder

surface was linked to the vortex shedding time for the two-dimensional numerical data at

𝑅𝑒 = 150, the three-dimensional numerical data at 𝑅𝑒 = 400, and the two-dimensional

experimental data at 𝑅𝑒 = 19, 000.
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Chapter 2

Setup

This chapter contains details on the experimental setup, test conditions, and equipment

used. It also provides information on the numerical simulations that were used to generate

the velocity fields in the two numerical cases presented.

2.1 Water Tunnel

Two experimental investigations were conducted at the Syracuse University Flow Visu-

alization Laboratory located at the Syracuse Center of Excellence. An ELD 505-24"

closed-loop water tunnel with a 2560 gallon volume was used to conduct experiments

including particle image velocimetry (PIV), static pressure measurements, and flow visu-

alization. The 2.4 m long test section has a square-cross section with a width of 0.61 m.

The tunnel was designed to be run with acrylic covers placed on the top surface of the

test section, fully enclosing the tunnel. Due to apparatus constraints, the experiments

were run without the covers to allow for physical access to the top surface of the tunnel.

A 30 hp motor was used to drive the water tunnel at speeds from 40 mm/s to 1 m/s.
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Figure 2-1: Experimental system for the 𝑅𝑒 = 9, 000 case.

2.2 Model Configuration

2.2.1 𝑅𝑒 = 9, 000 Cylinder

In the 𝑅𝑒 = 9, 000 experimental case, PIV velocity fields were collected simultaneously

with static pressure at a location 70° from the upstream stagnation point. A vertically-

aligned rigid PVC circular cylinder with an outside diameter of 60 mm and a wall thick-

ness of 3.9 mm was used. This resulted in a blockage of 0.01, which has a minimal

effect on the von Kármán vortex shedding (Zdravkovich, 1997). The cylinder was fixed

above the test section water height with a vibration-damping u-bolt, and placed flush

against the bottom of the test section. A thin ring of duct tape was applied along the

bottom of the cylinder to decrease the risk of the cylinder scratching the test section.

The aspect ratio, or ratio between the submerged span and diameter of the cylinder,

was 10. A static pressure tap with an inside diameter of 2.5 mm was located 70° from

the upstream stagnation point, at a location halfway along the submerged span of the

cylinder. The pressure tap location slightly upstream of the expected separation point

was chosen to ensure the signal was dominated by the von Kármán vortices (Perrin et al.,

2007). This pressure signal was used for phase-averaging. 6.8 m of flexible Masterkleer

PVC tubing with an inner diameter of 2.5 mm ran from the pressure tap to an Omega

PX409-10WDDU10V wet-dry differential pressure transducer located outside of the test

section. Figure 2-1 shows the cylinder, the associated tubing, and the u-bolt.
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2.2.2 𝑅𝑒 = 19, 000 Cylinder

In the 𝑅𝑒 = 19, 000 experimental case, PIV velocity fields were collected simultaneously

with the static pressure distribution at one spanwise plane, and the static pressure at a

location 70° from the upstream stagnation point. A vertically aligned two-piece aluminum

6061 circular cylinder with an outside diameter of 89 mm and a wall thickness of 6.4 mm

was used. This resulted in a blockage of 0.146. The top 0.3 m of the cylinder was out of

the water, and was inserted into a polycarbonate sleeve with a slip fit to allow the cylinder

to rotate when needed without changing its location in the tunnel. The sleeve was fixed

in two locations with vibration-damping u-bolts to ensure there was no movement of

the cylinder during testing. Figure 2-2 contains two images showing the experimental

setup for this case. The top section of the cylinder contained a circumferential ring of 5

pressure taps, each with a 1.9 mm diameter, located 25.4 mm above the cut between the

two sections of the cylinder. These taps were placed in 45° increments from 0° to 180°.

The bottom section of the cylinder contained one pressure tap with a 1.9 mm diameter,

located 25.4 mm below the cut between the two cylinder sections, and 50.8 mm below

the circumferential ring of pressure taps. The two portions of the cylinder were precision

machined to slide together tightly while still allowing one section to rotate independent

of the other. A thin coating of petroleum jelly was applied to the contact surface between

the two sections of the cylinder before each test to keep them from binding together. The

bottom portion of the cylinder was attached to the test section floor with a suction cup

to keep its location fixed. A Tuohy-Borst adapter was affixed into each pressure tap with

two part epoxy, and sanded to be flush to the cylinder outer diameter. An ADInstruments

SPR-524 pressure transducer was inserted into each adapter during data collection. The

adapters were then sealed, keeping any fluid from escaping the pressure measurement

region into the interior of the cylinder. Figure 2-3 displays an image of the transducer

and the adapter. The cylinder aspect ratio was 6.7, which is significantly lower than

the aspect of ratio of 10 used in the other experimental setup. Szepessy and Bearman

(1992) showed that if 𝑅𝑒 = 𝒪(104), there are minimal changes in the fluctuating lift and

shedding frequency even when aspect ratio is decreased to 1. At 𝑅𝑒 = 𝒪(105), aspect
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(a) Cylinder in test configuration. (b) Cylinder mounting apparatus.

Figure 2-2: Experimental system for the 𝑅𝑒 = 19, 000 case.

ratio begins to have a larger effect. The cylinder was sandblasted with #20 grit glass

beads, and then painted with a Krylon ultra-flat black paint to minimize laser reflections.

The cylinder was changed from PVC (𝑅𝑒 = 9, 000 case) to aluminum 6061 to allow for

precision machining of the joined section and multiple pressure taps, create a uniform

surface roughness, and for a decrease in the likelihood of irreversible dents on the outer

surface. The diameter was increased between cases so the Tuohy-Borst adapters could fit

on the interior of the cylinder, and to increase the magnitude of the pressure fluctuations.

2.3 Measurement and Data Acquisition Systems

2.3.1 PXIe

A National Instruments PXIe system was used to sample the pressure signals and record

the timing of the PIV snapshots. A PXIe-1078 chassis housed the PXIe-6363 multifunc-

tion DAQ card that was connected to a terminal block for voltage measurements. The

PXIe-6363 has 32 analog inputs that can be sampled up to 1 megasamples per second

when using multiple channels with 16-bit resolution. The PXIe system was run using a
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(a) SPR-524 pressure transducer. (b) SPR-524 inside of a Tuohy-Borst adapter.

Figure 2-3: 𝑅𝑒 = 19, 000 pressure transducer.

Real-Time LabVIEW environment operating on a standalone PC.

2.3.2 Pressure Systems

𝑅𝑒 = 9, 000

An Omega PX409-10WDDU10V wet-dry differential pressure transducer was used to ac-

quire static pressure measurements on the circular cylinder. Voltage data was collected

at 3 kHz by the PXIe system detailed above, with a sensitivity of 3.9 mV/Pa. The trans-

ducer was calibrated using a twelve-point calibration, where the height of the pressure

transducer relative to the water surface level was varied using a manual traverse. Cali-

bration was run before (‘pre’ case) and after (‘post’ case) each set of testing, generally

separated by about 11 hours. The intrinsic polyfit command in Matlab was used to

determine the linear relationship between voltage and pressure using a least-squares fit,

and sample before and after calibration curves are shown in figure 2-4. The sensitivity

varied by 0.1% from ‘pre’ to ‘post’ in the 𝑅𝑒 = 9, 000 case shown, and the voltage bias

varied by 12%.

𝑅𝑒 = 19, 000

An ADInstruments SPR-524 pressure transducer was used with an ADInstruments PCU-

2000 signal conditioner, which output a voltage that was sampled at 2 kHz by the PXIe

system detailed above. The sensitivity of the system was 0.08 mV/Pa. The SPR-524 sys-
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Figure 2-4: Pressure calibration curve for the Omega PX409-10WDDU10V transducer
used in the 𝑅𝑒 = 9, 000 case.

tem contains a small pressure sensor on the end of a 1.2 mm diameter straight catheter,

with a submersible distance of 100 cm. This system is more commonly used to measure

pressures for cardiovascular flows in rabbits. The ADInstruments system was imple-

mented in favor of the Omega transducer detailed above to avoid the large amount of

tubing that can reduce the dynamic response of pressure measurements. The small size

of the SPR-524 allowed the pressure transducer to be inserted to within a couple of mil-

limeters from the outside surface of the cylinder in the pressure taps, but the decrease

in sensitivity required an increase in 𝑅𝑒 in order to allow for large enough pressure fluc-

tuations for accurate phase-averaging. Each of the six transducers were calibrated using

a three-point calibration procedure before and after all of the experimental data was

collected. This procedure used a syringe to manually adjust the air pressure to each

transducer individually, and an analog pressure sensor was used to determine the pres-

sures. The calibration required the transducers to be removed from the cylinder, so this

calibration could not be done once the cylinder was placed in the water tunnel. Due to

concerns about maintaining an exact cylinder location between runs, the 𝑅𝑒 = 19, 000

cylinder was not removed from the tunnel in between test cases, which meant the calibra-

tion could only be carried out before and after all of the experimental data was collected.

The total time between the two calibrations was 36 hours. The intrinsic polyfit command
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Figure 2-5: Pressure calibration curve for the ADInstruments SPR-524 transducer used
in the 𝑅𝑒 = 19, 000 case, phase-averaging channel.

in Matlab was used to determine the linear relationship between voltage and pressure

using a least-squares fit, and the before and after calibration curves for channel 6, which

was the channel used for phase-averaging, is shown in figure 2-5. The variation in sen-

sitivity and voltage bias across all channels between the ‘pre’ and ‘post’ calibrations is

shown in table 2.1.

Channel Sensitivity Variation Voltage Bias Variation

1 -1.5% -21%

2 -4.8% -16%

3 -4.4% -16%

4 -4.6% 2.7%

5 -3.0% -1.4%

6 -1.2% -4.5%

Mean -3.3% -9.4%

Standard Deviation 1.5% 9.6%

Table 2.1: Change in sensitivity and voltage bias from from pre-calibration to post-
calibration for the six ADInstruments SPR-524 transducers used in the 𝑅𝑒 = 19, 000
case.
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2.3.3 Particle Image Velocimetry System

Particle image velocimetry (PIV) uses image cross-correlations to determine the move-

ment of illuminated particles between two images separated by a prescribed amount of

time. The change in distance is calculated in small portions of the domain, called in-

terrogation areas. The change in distance in each interrogation area, determined by

the cross-correlation peak, is divided by the time between each image to determine the

velocity vector for that interrogation area. The full area or volume of interest is gen-

erally illuminated by one or more lasers, and the particle size, material, and coating

vary depending on application. In water, plastic or hollow glass spheres are commonly

used. Both experimental setups used Dantec Dynamics DynamicStudio software, and

were calibrated using a Dantec two-dimensional calibration plate 200 mm × 200 mm in

size. The plate contained solid dots with a 5 mm constant spacing. The pixel (px) to

mm ratio was determined by measuring the scale factor across the calibration plate. The

DynamicStudio adaptive correlation analysis technique was used to calculate the veloc-

ity vectors using the single-image/dual-frame technique. This technique used 64× 64 px

initial interrogation areas, and the results from this initial calculation were then used to

inform the final interrogation windows, which were 16×16 px. The interrogation window

offset was determined using central differencing, and spurious vectors were identified if

they exceeded an acceptance factor of 0.1, which were then replaced using a 3 × 3 px

moving average with 3 iterations. The acceptance factor is a measure of how large a

velocity gradient is allowed in the neighborhood of each vector. An estimation of the

error in the PIV velocity vector calculations in shown in Appendix A.

𝑅𝑒 = 9, 000

To measure the flow field around the smaller diameter PVC cylinder at 𝑅𝑒 = 9, 000,

Dantec polyamid particles with a diameter of 20.0 µm were used to seed the flow, and

two Gemini Nd-Yag 200-15 laser at 532 nm were used to illuminate the flow in a single

spanwise-constant plane aligned with the pressure tap. Two 1.3 megapixel HiSense PIV

cameras were used to capture image pairs at a rate of 4 Hz. Each camera had a measure-

ment window of 1280×1024 px with a spatial resolution of 4.8 px/mm, which provided a
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Figure 2-6: Location of cylinder (green), pressure tap (red), PIV camera one (solid black
box), and PIV camera two (dashed black box) for 𝑅𝑒 = 9, 000 experimental setup as
viewed from above the water tunnel.

field of view of approximately 267×213 mm. A final interrogation window size of 16×16

px was selected in DynamicStudio with an overlap of 50%, resulting in a 160×128 vector

field. This yielded a grid spacing of 8 px or 1.7 mm, which is about 0.03𝐷. 3000 image

pairs were captured by the two cameras simultaneously with a streamwise overlap of 37%,

and the resulting instantaneous velocity vector fields were stitched together by bilinearly

interpolating onto a common grid within both domains. The cameras were then moved

to a location downstream of the cylinder to increase the total field of view with a 5%

overlap in the streamwise direction, and the process was repeated. A schematic of the

data domain is shown in figure 2-6. The stitched velocity fields at each downstream

location were phase-averaged into 18 phases per period using two different methods to

increase the temporal resolution of the data for the Lagrangian calculations. The phase-

averaging methods are described in detail in section 3.3. The phase-averaged results were

then stitched together using bilinear interpolation which resulted in a full field of view

of 396× 198 mm, or (𝑥/𝐷, 𝑦/𝐷) ∈ [−2, 4.6]× [−1.5, 1.8], with 265× 133 vectors.

𝑅𝑒 = 19, 000

To measure the flow field around the larger diameter aluminum cylinder at 𝑅𝑒 = 19, 000,

Potter Industries particles with a mean diameter of 11.7 µm were used to seed the flow,

and a Quantel Evergreen EVG00200 laser at 532 nm was used to illuminate the flow in

a single spanwise-constant plane aligned with the circumferential array of pressure taps.

A mirror was used to reflect the laser sheet into the shadow cast by the cylinder. Two

1.3 megapixel HiSense PIV cameras were used to capture image pairs at a rate of 4 Hz.

Each camera had a measurement window of 1280 × 1024 px with a spatial resolution
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Figure 2-7: Location of cylinder (green), PIV camera one (solid boxes), and PIV camera
two (dashed boxes) for 𝑅𝑒 = 19, 000 experimental setup as viewed from above the water
tunnel.

of 4.9 px/mm, which provided a field of view of approximately 262 × 209 mm. A final

interrogation window size of 16×16 px was selected in DynamicStudio with an overlap of

50%, resulting in a 159× 127 vector field. This yielded a grid spacing of 8 px or 1.6 mm,

which is about 0.02𝐷. 3300 image pairs were captured by the two cameras simultaneously

with an 11% overlap in the transverse direction, and the mean brightness field for each

camera was subtracted from each respective image to increase the signal to noise ratio.

The resulting instantaneous velocity vector fields were stitched together by bilinearly

interpolating onto a common grid within both domains. The cameras were moved to

two different locations downstream using a Dantec 9041T031 one-dimensional traverse,

each with a 13% overlap in the streamwise direction. The camera locations are shown

in figure 2-7. The stitched velocity fields were then phase-averaged into 24 phases per

period using the a static pressure tap that was kept at a location 70° from the upstream

stagnation point. More phases were used in this case compared to the 𝑅𝑒 = 9, 000 case

to increase the temporal resolution of the final results. The number of PIV snapshots

taken was increased to ensure each phase-averaged velocity field converged. The three

phase-averaged windows of data were then stitched together using bilinear interpolation,

resulting in a final field of view of 577×354 mm, or (𝑥/𝐷, 𝑦/𝐷) ∈ [−1.9, 4.6]× [−2.0, 2.0],

with 413× 254 vectors.
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2.4 Test Conditions

Data at multiple 𝑅𝑒 was collected for each experimental case presented in this disserta-

tion. For both cases, the static pressure was measured for a duration encompassing each

PIV run.

𝑅𝑒 = 9, 000

The 𝑅𝑒 = 9, 000 setup was run at freestream velocities corresponding to Reynolds num-

bers of 5,000 to 10,000 in increments of 1,000. Cases with 𝑅𝑒 < 9, 000 did not have strong

enough fluctuations in pressure to allow for accurate phase-averaging, so 𝑅𝑒 = 9, 000 was

chosen as the case presented in this dissertation. The 𝑅𝑒 = 10, 000 case was also valid,

but was nearly identical to the 𝑅𝑒 = 9, 000 data, so it is not shown for brevity. Sam-

ples results are shown in Appendix C for comparison. The experimental setup for this

case utilized a camera centered below the circular cylinder. The bottom of the cylinder

blocked a small circular portion of the field of view of the camera since the PIV object

plane was further away than the bottom of the cylinder, resulting in a ring of no ve-

locity data around the cylinder. This restricted the near-cylinder FTLE calculation for

this data (far case), so another supplemental set of data (near case) was collected with

cameras slightly offset from the cylinder to allow for the resolution of the near-cylinder

region. This supplemental dataset only used one laser, so a shadow existed on one side

of the cylinder, and no velocity information was acquired in that region. The FTLE

field was calculated for each dataset independent of the other, and the datasets were

not stitched together between the separate experiments. Results from these datasets are

shown in figure 4-6.

𝑅𝑒 = 19, 000

The 𝑅𝑒 = 19, 000 setup was run at freestream velocities corresponding to Reynolds

numbers of 13,000 to 22,000 in increments of 3,000. Cases with 𝑅𝑒 < 19, 000 had smaller

pressure fluctuations, which increased the likelihood of errors in the phase angle found

from the phase-averaging algorithm. The 𝑅𝑒 = 22, 000 case caused the water tunnel

impeller to scrape the return pipe at times, so it was not considered. At each 𝑅𝑒, the

cylinder section containing the circumferential pressure taps was rotated twice in 15°
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increments to increase the angular resolution of the pressure measurements from 45° to

15° spanning a range from 0° to 210° from the upstream stagnation point.

2.5 Freestream Quality

Freestream two-component PIV data was collected at each experimental Reynolds num-

ber to determine the mean and standard deviation of the velocity components, and the

turbulence intensity. Turbulence intensity was calculated as:

𝐼 =

√︁
1
3

(︀
𝑢′2
𝑥 + 𝑢′2

𝑦 + 𝑢′2
𝑧

)︀√︀
𝑈2
𝑥 + 𝑈2

𝑦 + 𝑈2
𝑧

(2.1)

where 𝑢′2
𝑥 is the r.m.s. of the x-component (streamwise) of the fluctuating velocity, and 𝑈𝑥

is the x-component of the mean flow. Y-component (transverse in experiments) values

were not measured, but were assumed to be equivalent to the measured z-component

(spanwise) values. The results are shown in table 2.2. The turbulence intensity was high

in the 𝑅𝑒 = 9, 000 case, which causes the pressure to decrease around a large portion of

the cylinder. As turbulence intensity increases, the flow tends to stay attached to the

cylinder, resulting in a higher mean separation angle (Batham, 1973). In the time between

the 𝑅𝑒 = 9, 000 and 𝑅𝑒 = 19, 000 experiments, blemishes on the interior surface of the

water tunnel were repaired, which likely helped reduce the turbulence intensity. The

upstream screens that generate small scales of turbulence were cleaned more frequently

in the 𝑅𝑒 = 19, 000 case during data collection, which likely contributed to the smaller

turbulence intensity as well.

Approximate 𝑅𝑒 𝑈 [mm/s] 𝜎 [mm/s] 𝐼 Exact 𝑅𝑒

9,000 (151,0.2,0.2) (2.52,0.52,0.52) 11% 9,069

19,000 (218,0.8,0.8) (0.76,0.22,0.22) 2.3% 19,303

Table 2.2: Freestream quality information.
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2.6 Numerical Simulations

Circular cylinder flow velocity and surface static pressure data were generated by two nu-

merical simulations run by collaborators at Florida State University. A two-dimensional

simulation was run at 𝑅𝑒 = 150, and a three-dimensional simulation was run at 𝑅𝑒 = 400.

2.6.1 Two-dimensional Simulation at 𝑅𝑒 = 150

Data from a simulation generated by Robert Reger, advised by Drs. Taira and Cattafesta,

used the CharLES solver developed by Cascade Technologies to simulate the flow in the

cylinder near-wake and near the surface (Khalighi, Nichols, Lele, Ham and Moin, 2011).

CharLES employs a second order finite volume method in space and a third order Runge-

Kutta scheme in time. The coefficients of pressure, lift, and drag matched well with a

similar simulation conducted by Inoue and Hatakeyama (2002). The code used an 𝑟, 𝜃 O-

grid mesh with a constant 𝛥𝜃 = 0.725∘ and an increasing 𝛥𝑟/𝐷 from 0.005 to 0.6 as the

distance from the cylinder increased. The domain extended 200 diameters in the radial

direction, and the velocity data generated on this grid was interpolated onto a uniform

𝑥, 𝑦 grid using bicubic interpolation with a coordinate transformation developed by Zingg

and Yarrow (1989) to simplify the FTLE particle integration. Bicubic interpolation

requires the value and derivatives of velocity (or other function of interest) to be known

at each grid point surrounding the location of interest. Bicubic interpolation preserves

the derivative information, resulting in a smoothly varying function in space. The data

had a temporal resolution of 55 velocity files for each von Kármán vortex shedding period.

2.6.2 Three-dimensional Simulation at 𝑅𝑒 = 400

A three-dimensional direct numerical simulation (DNS) was performed by Yiyang Sun,

advised by Dr. Taira, for a spanwise-periodic circular cylinder flow at 𝑅𝑒 = 400 using

the high-fidelity incompressible flow solver, Cliff (CharLES software package) (Khalighi,

Nichols, Lele, Ham and Moin, 2011; Khalighi, Ham, Moin, Lele and Schlinker, 2011; Bres

et al., 2012). The solver uses a finite-volume method to solve the Navier–Stokes equations

on structured or unstructured grids with second-order spatial and temporal schemes. The
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simulation utilized an unstructured grid which was refined around the cylinder surface

and wake region. The total number of grid points was approximately 16 million with an

overall computational domain size of (𝑥/𝐷, 𝑦/𝐷, 𝑧/𝐷) ∈ [−10, 30] × [−15, 15] × [0, 2𝜋].

At the inlet, uniform flow with free-stream velocity v/𝑈∞ = (1, 0, 0) was prescribed. At

the outlet, a convective outflow condition was specified to allow wake structures to leave

without disturbing the near-field flows. The slip condition was applied on the remaining

far-field boundaries. The velocity data generated by this simulation was interpolated

onto a uniform 𝑥, 𝑦, 𝑧 grid using two different techniques to simplify the FTLE particle

integration. The structured brick grid in the near cylinder region was interpolated using

bicubic interpolation with a coordinate transformation (Zingg and Yarrow, 1989). The

unstructured triangular prism grid in the wake region was interpolated using barycentric

interpolation. Barycentric interpolation determines the function value at a point on the

interior of a triangle by determining the weighting of the function values at the vertices

using area coordinates. The data has a temporal resolution of 25 velocity files per period.
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Chapter 3

Analysis Techniques

This chapter details the techniques used to visualize the vortex cores, track their move-

ment, analyze the acquired pressure signals, phase-average the velocity fields collected

using PIV, and study the errors related to using two-dimensional PIV for Lagrangian

calculations in a three-dimensional flow field.

3.1 Wake Visualization Techniques

The circular cylinder wake was visualized using both the Eulerian 𝑄 criterion and the La-

grangian finite-time Lyapunov exponent (FTLE). These quantities were calculated using

the numerically and experimentally-obtained velocity fields. Calculating 𝑄 was compu-

tationally cheap, and simple to implement. The FTLE calculation was more complex

and computationally expensive than 𝑄, but yielded quantative results that provided a

distinctly different perspective of the flow physics.

3.1.1 Eulerian Q criterion

The Eulerian criterion employed to visualize the vortex cores was the𝑄 criterion proposed

by Hunt et al. (1988). The velocity gradient tensor, ∇𝑢, can be decomposed into the

symmetric rate of strain tensor, S, and the anti-symmetric rate of rotation tensor, 𝛺:

∇𝑢 = S+𝛺, (3.1)

33



where 𝑆 = 1
2
[∇𝑢 + (∇𝑢)𝑇 ] and 𝛺 = 1

2
[∇𝑢− (∇𝑢)𝑇 ]. The 𝑄 criterion is defined as the

difference between the magnitudes of the rate of rotation and rate of strain tensors as

shown in equation 3.2.

Q =
1

2
[||𝛺||2 − ||𝑆||2], (3.2)

where || · || represents the Euclidean or Frobenius norm. Positive 𝑄 values describe

vortices as regions where the norm of the rate of rotation tensor is dominant over the

norm of the rate of strain tensor, and 𝑄 is the second invariant of the velocity gradient

tensor.

The 𝑄 criterion has several shortcomings as reviewed by Haller (2005). While the 𝑄

criterion is Galilean invariant, or unaffected by translations of the frame of reference, it

can lead to misrepresentation of vortices when rotating or accelerating frames of reference

are used. This criterion can find vortex cores effectively, but a subjective threshold, such

as a percentage of the maximum value, is often defined as the boundary of the vortex in

practical implementation. In flows with low levels of turbulence or noise, an appropriate

threshold is often simple to determine, but becomes more difficult to determine in complex

flows, especially in three-dimensional turbulence. When noise is present in the velocity

field, the spatial gradients used to calculate the 𝑄 criterion magnify the errors caused by

the noise significantly, resulting in inherently noisy 𝑄 results for experimental datasets.

Table 3.1 contains the plotting thresholds for 𝑄 for each set of results, and figure 3-1

displays how the wake visualization changes with varying 𝑄 thresholds. When 𝑄 = 0

is used (figure 3-1(a)) the data is noisy, especially in the vicinity of the vortex farthest

downstream in the domain. While the general locations of the vortices and shear layer

can be seen, it is difficult to determine where the edges of the vortices are. When 1%

or 3% of 𝑄𝑚𝑎𝑥 is used (figures 3-1(b) and 3-1(c)), the noise is reduced, and the von

Kármán vortices can be seen more clearly. If the threshold is set higher, for example 5%

of 𝑄𝑚𝑎𝑥 (figure 3-1(d)), the shear layer begins to appear broken in the region between the

shedding vortex and the top surface of the cylinder, at the location marked with a black

arrow. This is an example of how the chosen 𝑄 threshold can affect the interpretation

of results. 1% of 𝑄𝑚𝑎𝑥 was chosen in the experimental cases to remove a small amount
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(a) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.73 with 𝑄𝑚𝑖𝑛 =
0.

(b) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.73 with 𝑄𝑚𝑖𝑛 =
0.01𝑄𝑚𝑎𝑥.

(c) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.73 with 𝑄𝑚𝑖𝑛 =
0.03𝑄𝑚𝑎𝑥.

(d) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.73 with 𝑄𝑚𝑖𝑛 =
0.05𝑄𝑚𝑎𝑥.

Figure 3-1: Variation in 𝑄 minimum contour for 𝑅𝑒 = 19, 000. All values above the
specified contour are colored black.

of the noise generated from inaccuracies in the PIV velocity field, while still retaining as

much of the 𝑄 field as possible.

𝑅𝑒 𝑄 Threshold

150 𝑄 = 0

400 𝑄 = 0

9,000 0.01𝑄𝑚𝑎𝑥

19,000 0.01𝑄𝑚𝑎𝑥

Table 3.1: Minimum 𝑄 thresholds for plotting.

3.1.2 Circulation

Circulation was used as a metric of vortex strength by measuring the vorticity flux into

a prescribed area defined by the boundaries of the vortex. In the case of a circular

cylinder, the vorticity flux is caused by the transport of vorticity generated in the shear
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layer along the cylinder surface into the forming vortex. Circulation is defined, utilizing

Stoke’s theorem, as:

−𝛤 =

∮︁
𝜕𝐴

𝑢 · 𝑑𝑠 =

∫︁∫︁
𝐴

𝜔 · 𝑑𝐴, (3.3)

where 𝜕𝐴 is the boundary of area 𝐴, 𝑢 is the velocity field, 𝜔 is the vorticity, 𝑑𝑠 is

aligned tangent to an infinitesimal portion of the boundary, and 𝑑𝐴 is the normal vector

to an infinitesimal portion of the area. When calculating circulation, especially when

comparing values over time, special care must be taken to consider the circulation inside

a consistently defined area. There is no clear definition of the boundary that should used

to determine the correct area for all circulation calculations. This is further complicated if

a shear layer is feeding the vortex, as the boundary between the vortex and the shear layer

is unclear and often defined in a subjective or application-specific manner. Generally, a

bounding box is drawn large enough to encompass the entire vortex while still eliminating

as much of any nearby, but distinct, regions of vorticity as possible, such as a feeding

shear layer (Ringuette et al., 2007).

3.1.3 Lagrangian Finite-time Lyapunov Exponent

The finite-time Lyapunov exponent was initially introduced by Haller (2001), where he

extracted Lagrangian coherent structures as maximizing ridges of the scalar finite-time

Lyapunov exponent (FTLE) field. The FTLE calculation is initialized by computation-

ally creating a fine grid of particle trajectories in the domain at the time of interest, 𝑡0.

Particle trajectories are then advected in time using a fourth-order Runge-Kutta inte-

grator until the integration time, 𝜏 , is reached. With (𝑥0, 𝑡0) representing the trajectory

initial location and time, and 𝑥(𝑡0 + 𝜏,𝑥0, 𝑡0) representing the trajectory final location

at time, 𝑡0 + 𝜏 , the coefficient of expansion, 𝜎𝜏 , is defined as:

𝜎𝜏 (𝑥0, 𝑡0) = 𝜆max

(︂[︂
𝜕𝑥(𝑡0 + 𝜏,𝑥0, 𝑡0)

𝜕𝑥0

]︂* [︂
𝜕𝑥(𝑡0 + 𝜏,𝑥0, 𝑡0)

𝜕𝑥0

]︂)︂
, (3.4)
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where * is the matrix transpose operator, and 𝜎𝜏 is the largest eigenvalue (𝜆max ) of the

Cauchy-Green strain tensor, the quantity within the parentheses. The Cauchy-Green

strain tensor is a quantification of the deformation of a infinitesimally small fluid volume

element. It is used commonly in finite strain theory, but is seeing increased use in the

dynamical systems and fluid dynamics communities, and is used to calculate the FTLE

as follows:

𝐹𝑇𝐿𝐸𝜏 (𝑥0, 𝑡0) =
1

2𝜏
log𝜎𝜏 (𝑥0, 𝑡0). (3.5)

This defines FTLE as a measure of the maximum rate of separation among particles that

were initially separated by a finitely small distance around each trajectory initialization

point, 𝑥0. If a group of particles travel together, for example in a uniform flow, the

local FTLE value is small. If the particles are on either side of a material transport

boundary, their trajectories will diverge over time, causing the local FTLE value to be

high. In order to integrate the particle trajectories, sufficiently resolved velocity data for

the spatial domain and temporal range of interest must be available. Maximal ridges of

FTLE are extracted using a fixed threshold of FTLE. The FTLE ridges visualize invariant

manifolds in both periodic and aperiodic flows. These manifolds are co-dimension one

structures (two-dimensional surfaces in three-dimensional domains, and one-dimensional

lines in two-dimensional domains) that are invariant under perturbations of the surround-

ing flow field. They advect with the local flow velocity, and by definition have no mass

or momentum flux across their surface.

When the FTLE trajectories are integrated in forward time, for example in the two-

dimensional flow, the resulting FTLE ridges denote repelling material lines, and are

referred to as pFTLE ridges. The FTLE trajectories can also be integrated backwards

in time. Fluid trajectories that are repelled from a region when integrated in negative

time are attracted to that region when advected in positive time, resulting in attracting

material lines, referred to as nFTLE ridges. FTLE ridges are generally referred to as lines

since they are often plotted on two-dimensional planes, even in three-dimensional flow

fields. In a three-dimensional FTLE field, the regions of high FTLE are surfaces, and the

plotted FTLE ridges are the intersection of these surfaces and the plane of interest. For
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both positive and negative FTLE, the scalar fields are defined at 𝑡0, and are calculated

using the flow map in both positive and negative time from that starting time for pFTLE

and nFTLE fields, respectively. To calculate the FTLE fields at a later time, for example

at the next phase of velocity data, 𝑡1, a new grid of trajectories initialized at 𝑡1 must be

considered, although others have used the previously computed flow maps specifically to

enable an increase in the efficiency of computing many FTLE fields in a common time

range (Brunton and Rowley, 2010). The FTLE ridges can be computationally advected

through the domain (Haller and Sapsis, 2011), but this would be an unstable calculation,

so in the current work new FTLE calculations are performed for each starting time. Ridge

extraction algorithms have been developed that decrease the difficulty and error in the

ridge advection process, but these algorithms are still sensitive to the spatial resolution of

the velocity field (Lipinski and Mohseni, 2010; Allshouse and Peacock, 2015). FTLE ridge

advection is unstable when advecting attracting ridges backwards in time, or repelling

ridges forward in time, since any location not perfectly on the ridge will rapidly move

away from the ridge by definition. If both FTLE ridges were calculated over the same

time window, the nFTLE ridge will have been initialized at the end of the time window,

and the pFTLE ridge will have been initialized at the beginning of the time window.

Therefore, one of the ridges would have to be advected in its unstable direction in order

to plot the ridges at the same instant in time (Haller, 2015).

Because the FTLE field yields the attracting and repelling material lines in the flow,

they are used to outline the flow structures by showing the transport boundaries between

dynamically distinct regions in the flow field. The 𝑄 criterion only visualizes the vortex

cores, so the ability to visualize the transport boundaries around the vortices objectively

provides additional insight into the vortex dynamics, such as entrainment, especially when

studying the interactions among coherent structures. FTLE has been demonstrated to

be robust to velocity field errors that are small in magnitude or short in duration (Haller,

2002). Due to the Lagrangian nature of the FTLE calculation, small or short duration

errors in the velocity field do not have a significant effect on the overall motion of the

particles. For example, if an FTLE ridge is located between a vortex and the freestream,

small errors in the individual particle integrations will have no effect on whether the
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particles end up in the vortex or far downstream. Large errors could cause a particle to

travel from one distinct region of the flow field to the other, but the errors would have to

be persitently large at multiple spatial locations to cause enough particles to travel across

the FTLE ridge to misrepresent its location. Having poor spatial or temporal resolution

can have a significant negative effect on the exact FTLE ridge location in some cases,

but noise had little effect on the mean location of the FTLE ridge (Olcay et al., 2010).

In order to be considered material lines or surfaces, the FTLE should move with

the local flow velocity with no mass flux across them. Calculations were performed to

check this using the method developed by Shadden et al. (2005) to determine the mass

flux across the FTLE in our results for the 𝑅𝑒 = 150 numerical case. This method

determined mass flux by integrating a measure of the ridge sharpness multiplied by the

difference between the rotation rate of the FTLE ridge and the Eulerian velocity field

along the ridge. The magnitude of the flux was determined to be about 1% of the

local mass flux magnitude, but the values were calculated on the discrete computational

grid, as opposed to directly on the FTLE ridge. For this reason, 1% was considered

a conservative estimate, and the magnitude of normal flux across the FTLE ridge is

considered small enough to be negligible.

When plotting FTLE ridges, a certain threshold of the maximum FTLE value in the

field is chosen, but this threshold only affects the plotted thickness of the ridges. The

location of the ridge does not change, unlike the way changing the 𝑄 threshold can change

the size and shape of the region considered a vortex. Values of the FTLE threshold for

plotting and the integration time in terms of the von Kármán vortex shedding period,

𝑇 , are shown for the studied cases in table 3.2. The 𝑅𝑒 = 400 case had a shorter

integration time due to limits in the available data, but previous studies have shown that

the minimum required integration time for cylinder flows is 0.5𝑇 , and any value above

that just serves to further refine the FTLE ridges (Rockwood et al., 2016; Kourentis and

Konstantinidis, 2011; Bourgeois et al., 2012).
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𝑅𝑒 FTLE Threshold Integration Time

150 0.67FTLE𝑚𝑎𝑥 2.0𝑇

400 0.67FTLE𝑚𝑎𝑥 1.5𝑇

9,000 0.67FTLE𝑚𝑎𝑥 2.0𝑇

19,000 0.60FTLE𝑚𝑎𝑥 2.0𝑇

Table 3.2: FTLE integration time and plotting threshold.

3.1.4 Lagrangian Saddles

The nFLTE and pFTLE ridges are attracting and repelling material lines or surfaces,

respectively, so their intersections are topological saddle points or lines in the flow in

a Lagrangian sense. These Lagrangian saddles are not always found from traditional

Eulerian detection techniques such as plotted streamlines (Miron and Vétel, 2015). This

failure of Eulerian methods can be due to the chosen reference frame, or due to unsteady

separation behavior. A study was performed on the 𝑅𝑒 = 150 data to ensure the particles

in the vicinity of the saddle exhibit saddle-like movement (attraction along one direction

with repulsion along another direction) in the Lagrangian sense, especially since the

positive time movement occurs over a different “dynamical system” (time window) than

the negative time movement.

The behavior of material particles initially located in the vicinity of a Lagrangian

saddle is shown in figure 3-2 for the 𝑅𝑒 = 150 case. Each quadrant of particles around

the saddle is assigned one solid color, and any particles found near an FTLE ridge

(FTLE≥ 0.75FTLE𝑚𝑎𝑥) are colored black. There is a clear motion of particles away

from the pFTLE ridge (top left to bottom right in figure 3-2(a)) and along the nFTLE

ridge (top right to bottom left in figure 3-2(a)), which agrees with the expected behav-

ior of particles in the vicinity of a Lagrangian saddle. This is further observed in the

thickening of the black region initially containing particles near the pFTLE ridge as the

nearby particles are repelled away, and a narrowing of the black region initially contain-

ing particles near the nFTLE ridge as the particles are attracted closer. This trend holds

over the entire integration time. While this study was not conducted for the other cases

presented, the Lagrangian saddle persists for the entire period of FTLE calculations for
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all cases. This persistence implies that the saddles are indeed Lagrangian saddles for

initial times considered since the same dynamics are found for each FTLE calculation,

and the validation of the 𝑅𝑒 = 150 saddle served to further confirm this.

Following the Lagrangian saddles associated with vortices has revealed vortex dy-

namics such as the location of wake breakdown in the study of the wake of a trapezoidal

pitching panel (Green et al., 2011), and the shedding of the leading edge vortex for a

pitching plate (Huang and Green, 2015) and a pitching airfoil (Mulleners and Raffel,

2012). In general, multiple Lagrangian saddles can be found along a vortex-bounding

FTLE ridge, even in relatively simple flows such as the von Kármán vortex street behind

a circular cylinder. Tracking any of the Lagrangian saddles can indicate the motion of the

vortex, but in the results presented in this dissertation, only the locations of the saddle

found upstream of the forming and shedding vortex have been observed to be related to

the vortex shedding time.

While the FTLE calculation is robust to small scale errors in the velocity fields, there

is a finite amount of uncertainty in the location of the Lagrangian saddle related to the

discrete grid used. When the Lagrangian saddle is located, the exact point chosen is the

location of maximum combined FTLE values at the pFTLE and nFTLE intersection.

The intersection of the two ridges is a two-dimensional area in space, so the exact center

location is difficult to locate due to the use of a discrete grid. The uncertainty is on

the order of two grid points on the FTLE grid. These uncertainty values are shown in

table 3.3.

𝑅𝑒 Saddle Location Uncertainty (2𝛥𝑥/𝐷)

150 0.010

400 0.009

9,000 0.005

19,000 0.006

Table 3.3: Lagrangian saddle location uncertainties.
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(a) 𝑡/𝑇 = 0.75. (b) 𝑡/𝑇 = 0.82.

(c) 𝑡/𝑇 = 0.89. (d) 𝑡/𝑇 = 0.96.

Figure 3-2: Lagrangian particle evolution around a Lagrangian saddle at 𝑅𝑒 = 150.
Particles with values above 0.75𝐹𝑇𝐿𝐸𝑚𝑎𝑥 are black, other particles are colored by their
initial location.
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3.2 Pressure Signal Processing

Static pressure data was collected as voltages by the PXIe system described previously.

In the raw signal, the amplitude of the fluctuations in pressure due to the formation and

shedding of von Kármán vortices was on the same order as the noise levels in the signal,

most notably so in the 𝑅𝑒 = 19, 000 case due to limitations in the available pressure

transducer sensitivity. Because of this, the experimental pressure signals were filtered

using a Wiener filter to reduce the noise in the voltage signals. A Wiener filter uses

a minimum mean square error estimator to reduce the noise. The filter required an

estimation of the noise and the signal, which are approximated using the power spectral

density by smoothly extrapolating the noise spectrum throughout the range of frequencies

(Press et al., 2007). A curve is then approximated through the portion of the power

spectral density that contains the signal. These curves are used to construct the optimal

filter. In both cases, the noise was approximated as all values in the power spectral

density above 0.75 Hz, and the signal was treated as all frequencies less than 0.75 Hz.

0.75 Hz was located at the high frequency limit of the von Kármán vortex shedding

frequency peak in all power spectral density plots, so was used as the limit of the signal

of interest. See figures 3-3(a) and 3-4 for power spectral densities. This process reduced

the noise significantly in both experimental cases. A low-pass filter was not used during

the data collection process, so there is some high frequency fold over into the signal, but

the power at these frequencies is at least 3 orders of magnitude lower than the power at

the von Kármán shedding frequency across all cases, so its effect is minimal.

𝑅𝑒 = 9, 000

Pressure data was collected for the 𝑅𝑒 = 9, 000 case at a sampling frequency of 3 kHz for

300 seconds per run, for 30 runs. The observed von Kármán vortex shedding frequency

was 0.53 Hz, which corresponded to a Strouhal number of 0.21 using the cylinder diameter

as the wake width. This number is slightly higher than the commonly reported 𝑆𝑡 = 0.205

for this Reynolds number (Fey et al., 1998). This is likely due to the non-parallel von

Kármán vortex shedding present with the current experimental setup. The signal was

oversampled by a factor of 1500 in order to allow for noise reduction in the phase-
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(b) Pressure transducer fluctuating voltage be-
fore (black) and after (red) the application of a
Wiener filter.

Figure 3-3: 𝑅𝑒 = 9, 000 pressure power spectral density and sample signal.

averaging analysis. The block-averaged power spectral density of the raw signal is shown

in figure 3-3(a) where the averaging occurred across 90 blocks. A low number of blocks

was used to preserve the low frequency resolution around the 0.53 Hz von Kármán vortex

shedding frequency. The pressure tap located at 70° is dominated by the von Kármán

shedding frequency as expected. An example section of the fluctuating voltage signal

before and after the application of the Wiener filter is shown in figure 3-3(b). The noise

reduction had the greatest effect near the peak voltages, which increased the accuracy of

the phase-averaging algorithm.

𝑅𝑒 = 19, 000

Pressure data was collected for the 𝑅𝑒 = 19, 000 case at a sampling frequency of 2 kHz for

300 seconds per run, for 6 runs. The observed von Kármán vortex shedding frequency was

0.53 Hz, which corresponded to a Strouhal number of 0.21 using the cylinder diameter as

the wake width. This number is higher than the commonly reported 𝑆𝑡 = 0.19 for this

Reynolds number (Fey et al., 1998). This is likely due to the non-parallel von Kármán

vortex shedding present with the current experimental setup, and blockage effects. Figure

23.19 of Zdravkovich (1997) shows that an increase in blockage from 0.071 to 0.141 causes

the Strouhal number to increase from about 0.20 to 0.22. The cases used to determine

the relationship between 𝑅𝑒 and 𝑆𝑡 in the literature used end plates to ensure the von
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Figure 3-4: 𝑅𝑒 = 19, 000 pressure power spectral density for channels located at (a) 70°
and (b) 180°.

Kármán vortices shed parallel to the circular cylinder. The signal was oversampled by

a factor of 1000 in order to allow for noise reduction in the phase-averaging analysis.

The block-averaged power spectral density of the raw signal for two different pressure

tap locations is shown in figure 3-4, where the averaging occurred across 18 blocks. A

low number of blocks had to be used to preserve the low frequency resolution around

the 0.53 Hz von Kármán vortex shedding frequency. The time spent collecting PIV

snapshots simultaneously with pressure was optimized, resulting in a significantly lower

number of blocks being available in this case compared to the 𝑅𝑒 = 9, 000 case. The

𝑅𝑒 = 19, 000 case contained 13% of the number of pressure data points collected in the

𝑅𝑒 = 9, 000 case. The pressure tap located at 70° is dominated by the von Kármán

shedding frequency as expected. The pressure tap located at 180° was expected to have

a frequency associated with the drag, which oscillates at twice the von Kármán shedding

frequency, as is seen here (Nishimura and Taniike, 2001). Little evidence of the von

Kármán shedding frequency exists, and a large peak exists at 1.03 Hz, roughly double

the von Kármán shedding frequency. An example section of the fluctuating voltage signal

before and after the application of the Wiener filter is shown in figure 3-5. The noise

reduction had a significant effect on the clarity of the signal in this case, dramatically

reducing the noise.
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Figure 3-5: 𝑅𝑒 = 19, 000 pressure transducer fluctuating voltage before (black) and after
(red) the application of a Wiener filter.

3.3 Phase-Averaging

Phase-averaging was utilized to increase the temporal resolution of the experimentally

obtained velocity fields, which were collected at 4 Hz due to limitations of the equipment.

It also allowed for the stitching of multiple windows of velocity data that were collected

at different times to increase the spatial domain size. Phase-averaging was conducted

on the 𝑅𝑒 = 9, 000 case using both snapshot proper orthogonal decomposition (POD)

applied to the PIV velocity fields, and with the simultaneous static pressure signal at a

fixed location. Phase-averaging was applied to the 𝑅𝑒 = 19, 000 case using the pressure

signal in an identical manner to the 𝑅𝑒 = 9, 000 case. Both techniques were described and

compared by Perrin et al. (2007), who found that both techniques performed adequately

for a single window of PIV data, however the pressure signal technique overestimated the

contribution of the random fluctuations in the velocity field to the turbulent shear stress

due to the finite lag time between the pressure signal and the velocity fluctuations. This

means that the pressure signal technique yielded errors in the phase angle calculation

since there were more random fluctuations in each phase-averaged velocity field than

in the phase-averaged fields calculated using POD. In the work presented here, both

techniques yielded similar results, but challenges arose when trying to use the POD

technique for phase-averaging between multiple downstream locations. A comparison

between the two techniques is provided below.
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3.3.1 Proper Orthogonal Decomposition

The snapshot Proper Orthogonal Decomposition (POD) technique developed by Sirovich

(1987) was used to decompose the velocity fields collected by PIV into spatial eigenmodes

and temporal coefficients on an energy basis. Snapshot POD uses the two-time correlation

tensor, 𝐶(𝑡, 𝑡′), which is defined as:

𝐶(𝑡, 𝑡′) =
1

𝑇𝑠

∫︁
𝒟

3∑︁
𝑖=1

𝑢𝑖(𝑥, 𝑡)𝑢𝑖(𝑥, 𝑡
′)𝑑𝑥, (3.6)

where 𝑇𝑠 is the total number of PIV velocity fields (snapshots), 𝒟 represents the spatial

domain of the PIV velocity fields, and 𝑢𝑖(𝑥, 𝑡) is the fluctuating velocity field. The

two-time correlation tensor is then used in the integral eigenvalue problem:

∫︁
𝑇𝑠

𝐶(𝑡, 𝑡′)𝑎𝑛(𝑡
′)𝑑𝑡′ = 𝜆(𝑛)𝑎𝑛(𝑡), (3.7)

where 𝑎𝑛(𝑡) are the temporal coefficients, and 𝜆(𝑛) are the eigenvalues, or the amount of

energy contained in the 𝑛th mode. Spatial eigenmodes, 𝜑(𝑛), are calculated from:

𝜑(𝑛)(𝑥) =
1

𝑇𝑠𝜆(𝑛)

∫︁
𝑇𝑠

𝑎𝑛(𝑡)𝑢𝑖(𝑥, 𝑡)𝑑𝑡. (3.8)

The modes are then sorted by decreasing energy (eigenvalue), and a representation of

the velocity fields using a certain number of modes can be calculated from:

𝑢𝑖(𝑥, 𝑡) =
𝑁∑︁

𝑛=1

𝑎𝑛(𝑡)𝜑
(𝑛)
𝑖 (𝑥), (3.9)

where 𝑁 is the total number of modes used.

In periodic flows, POD modes are found to occur in pairs that represent the orthogonal

components of the harmonics of the vortex shedding process (Oudheusden et al., 2005).

In the 𝑅𝑒 = 9, 000 case, the first two modes contained approximately 30% of the total

energy of the flow and were associated with the convection of the von Kármán vortices.

Figure 3-6 shows the the temporal coefficients of the first two modes normalized by their

energy, where each x is the location of 𝑎2 versus 𝑎1 for a velocity field. The variation in
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Figure 3-6: 𝑅𝑒 = 9, 000 POD phase-averaging bins.

the radius of the circle is thought to be caused by variations in the periodicity of the von

Kármán vortex shedding which are induced by turbulence and small-scale fluctuations

(Oudheusden et al., 2005). In order to phase-average this data, velocity fields were

organized into bins with a width of 20 degrees to define each phase, which are colored

in figure 3-6. The full velocity fields associated with the temporal coefficients in each

bin were averaged to produce one phase-averaged velocity field per bin. This technique

requires large enough spatial windows of data to allow for accurate calculation of the POD

modes within each window (camera location) of data. When this technique is performed

at multiple spatial locations that will be stitched together, the phases need to be aligned

to ensure they are representing the same physical phase of data in both locations. This

was done by comparing the wake structures of the phase-averaged velocity fields between

each spatial location using 𝑄, while varying the phase bias in the POD phase angle for

one location until the two spatial locations appeared to be at the same phase. This

process is inexact and time consuming, and was the reason this technique was not used

in the 𝑅𝑒 = 19, 000 case.

3.3.2 Pressure Signal

The periodic pressure signal related to the von Kármán vortices is commonly used to

phase-average velocity fields generated from PIV for circular cylinder flows. In both
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experimental cases, the triggering signal for the first PIV laser flash (Q-switch) was used

as the timing of the velocity field acquisition. The phase-averaging code determined the

phase angle of each velocity field by determining the phase of the coincident pressure

signal at the time the velocity field was acquired. This was done by locating two peaks

and a trough for the pressure signal in the region encompassing the timing of the velocity

field of interest. If the peak-to-peak period of the signal section was more than 20%

greater or less than the average period of the von Kármán vortex shedding, the period

was considered irregular and that velocity field was discarded. 20% was chosen to allow

for variations in the period that are present in experimental results at this Reynolds

number. Periods more than 20% different were primarily due to errors in the peak

finding algorithm. The phase angle was calculated based on the velocity field’s relative

time between the two peaks in the pressure signal. The exact phase of the pressure signal

peak was difficult to determine as some noise was still present in the pressure signal after

filtering, so the signal was averaged over a certain number of points in each case. For the

𝑅𝑒 = 9, 000 case, the block size for averaging was 100 resulting in a final signal resolution

of 30 Hz, and for the 𝑅𝑒 = 19, 000 case, the block size for averaging was 99, resulting

in a final signal resolution of 20 Hz. This technique greatly improved the accuracy of

the peak finding algorithm, even though it reduced the time resolution, and allowed for

phase angle calculations using this technique. An example of the filtered signal, averaged

signal, and PIV snapshot location are shown in figure 3-7. The phase angles associated

with each velocity field are then placed within phase bins in a similar manner to the

POD phase-averaging described above. The 𝑅𝑒 = 9, 000 case used 20° bins, resulting in

18 phases per period, and the 𝑅𝑒 = 19, 000 case used 15° bins, resulting in 24 phases per

period.

3.3.3 Phase-Averaging Comparison

Figure 3-8 shows the phase angles found by both the POD and pressure signal phase-

averaging techniques for a portion of the 𝑅𝑒 = 9, 000 data. The POD technique consis-

tently finds the correct phase, as seen by the constant 2𝜋/𝑇 slope of each line, but while

the pressure signal technique generally finds approximately the same slope, it is often
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Figure 3-7: Sample filtered signal (black), averaged signal (red), and PIV snapshot loca-
tion (red asterisk).
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Figure 3-8: Phase angles found by POD (black x’s) and pressure signal (red o’s).
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(a) POD. (b) Pressure signal.

Figure 3-9: Comparison of 𝑄 (grey), nFTLE (red), and pFTLE (blue) results for different
phase-averaging techniques at 𝑅𝑒 = 9, 000.

shifted slightly above or below the line from the POD technique in each period. This is

likely due to errors in the peak finding algorithm discussed above. If both of the peaks

were found to be shifted one point off from the correct peak in the same direction, this

would cause an error of 6° in the found phase angle. Since the peaks could be found

incorrectly in either direction by a couple of points on the 30 or 20 Hz averaged signals

due to high levels of noise, this can lead to errors close to one bin width in magnitude.

While errors in the phase angle of this magnitude can cause some velocity fields to be

placed in the wrong phase-averaging bin, the errors are minimized during the averag-

ing process, as the number of samples is high 𝒪(100), and the majority of the files will

be in the correct bin. There will be a small increase in the random fluctuations away

from the true phase-averaged velocity field, as discussed by Perrin et al. (2007), but this

small increase in error does not affect the FTLE field in a significant manner, as seen

in figure 3-9. The only clear difference between the wake structure in between the two

techniques is the loss of coherence in the vortex furthest downstream (to the right) found

by 𝑄 in the pressure signal case. Since the FTLE results were not significantly effected

by the use of the pressure signal technique, it was implemented in favor of the POD

technique to avoid the inaccurate and time consuming phase lag determination between

multiple spatial locations. When only one window of PIV data is in consideration, the

POD technique is recommended.
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3.4 Three-Dimensional Effects

While methods to find the FTLE ridges from experimental data are both possible and

promising using existing techniques, there is still considerable work to be done to address

how the accuracy of Lagrangian scalar fields can be established. For many complex three-

dimensional flows, three-component velocity fields covering a sufficiently large, three-

dimensional portion of the fluid domain over a sufficient period of time are rarely available

due to time and system cost constraints.

If velocity information is only available on one plane of data in a three-dimensional

flow field, significant errors in the FTLE trajectory calculations can arise. Unpublished

work found that the orientation of the coherent structures relative to the FTLE plane

can cause errors in a two-dimensional FTLE calculation. When the vorticity vector is

aligned nearly perpendicular to the FTLE plane, the vortex induced velocity is primarily

in the plane, but if the vorticity vector is aligned in a non-perpendicular fashion it induces

large out-of-plane velocities that are not captured in a two-dimensional FTLE calculation.

Even if three-component velocity information is available in one plane, the particles that

are advected out of the plane cannot be followed, and therefore can not be used in the

FTLE calculation.

In order to quantify the degradation of FTLE as a function of the local vortex angle,

the simple example of Hill’s spherical vortex was used. This flow is an analytical solution

to Euler’s equation that allows for easy calculations of local vortex angle and FTLE

boundaries for a single vortex. The velocity field is defined by Hill (1894) and results in a

spherical vortex ring with a prescribed radius. The equations defining the velocities inside

and outside of the Hill’s spherical vortex are shown below, where 𝛼 = 2 and the vortex

radius, 𝑟, is 1. While the spherical vortex is technically two-dimensional (axisymmetric),

it provides a systematic change in vortex angle in rectangular space. The freestream flow

is in the negative 𝑧-direction, and planes of data at constant 𝑦 were studied. In each

constant 𝑦 plane, two cores are visible in the intersection of the vortex ring. Figure 3-10

shows the 𝑦/𝑟 = 0 plane with streamlines highlighting the two cores. At 𝑦/𝑟 = 0, these

vortex cores are perpendicular to the plane. As the plane of computation shifts (𝑦/𝑟 > 0),
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Figure 3-10: Streamlines of Hill’s spherical vortex at 𝑦/𝑟 = 0.

the out of plane vorticity angle at the vortex core, which starts at 90∘, begins to decrease

as the vortices start to tilt into the plane.

Inside vortex

𝑢 = 𝛼𝑥𝑧/5, (3.10)

𝑣 = 𝛼𝑦𝑧/5, (3.11)

𝑤 = (𝛼/5)
(︀
𝑟2 − 𝑧2 − 2𝑥2 − 2𝑦2

)︀
, (3.12)

Outside vortex

𝑢 = 𝛼𝑟5𝑥𝑧/
[︁
5
(︀
𝑥2 + 𝑦2 + 𝑧2

)︀(5/2)]︁
, (3.13)

𝑣 = 𝛼𝑟5𝑦𝑧/
[︁
5
(︀
𝑥2 + 𝑦2 + 𝑧2

)︀(5/2)]︁
, (3.14)

𝑤 =
−𝛼𝑟2

{︁[︁
2 (𝑥2 + 𝑦2 + 𝑧2)

(5/2)
]︁
− 2𝑟3𝑧2 + 𝑟3𝑦2

}︁
15

[︁
(𝑥2 + 𝑦2 + 𝑧2)(5/2)

]︁ , (3.15)

To investigate the effect of only having one plane of data in a three-dimensional flow,

both full and constrained FTLE calculations were conducted in planes parallel to the free

stream. The full three-dimensional velocity data domain was used for the full nFTLE
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calculation, while for the constrained nFTLE case, out-of-plane velocity (𝑣) was set to

zero as a model of planar PIV, so the trajectories used to calculate the constrained FTLE

were limited to the data plane. A few examples of the full and constrained nFTLE fields

are shown in figures 3-11, 3-12, and 3-13. A two-dimensional cross correlation between

the full and constrained FTLE fields with no spatial shift was performed to determine

how close the constrained FTLE was to the correct results. Figure 3-14 displays the

FTLE correlation values as a function of vortex core angle through the plane. When the

vorticity vector is aligned perpendicular to the plane of interest at the midsection of the

sphere (90∘ out-of-plane vorticity angle), the out-of-plane velocity is identically zero, so

the constrained FTLE is identical to that of the full FTLE, as represented by the unity

correlation value. As the vorticity vector becomes less perpendicular to the plane, the

error in the constrained FTLE increases, resulting in a lower correlation. At 𝑦/𝑟 = 0.64,

where the vortex core angle is 48∘ from the plane surface, the correlation is only 53%.

Figure 3-11: nFTLE for Hill’s spherical vortex at 𝑦/𝑟 = 0.0 (a) Full nFTLE (b) Con-
strained nFTLE

Figure 3-12: nFTLE for Hill’s spherical vortex at 𝑦/𝑟 = 0.32 (a) Full nFTLE (b) Con-
strained nFTLE

A similar study was conducted using the three-dimensional 𝑅𝑒 = 400 numerical data.

The full FTLE calculation allowed the particles to advect throughout the full three-
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Figure 3-13: nFTLE for Hill’s spherical vortex at 𝑦/𝑟 = 0.64 (a) Full nFTLE (b) Con-
strained nFTLE
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Figure 3-14: Correlation values between full and constrained nFTLE for Hill’s spherical
vortex.

dimensional domain, but the constrained FTLE treated the spanwise velocity component

as identically zero, fixing the particles to the plane. The results of this study are seen in

figure 3-15. While there are some differences in the two FTLE fields, the main features of

interest for this study in the vicinity of the von Kármán vortices are similar. This is to be

expected, as the out of plane velocity in those regions is low due to the alignment of the

vortices perpendicular to the plane. The location with a large amount of error is the region

just downstream of the lower vortex, marked with a black arrow in each image, where

a streamwise-orientated vortex induces a large amount of out of plane velocity. Most

importantly, the Lagrangian saddle (green box) behavior is nearly identical between the

two cases, indicating that planar PIV results will be sufficient for the Lagrangian saddle

calculations, even at Reynolds numbers where three-dimensional effects are present. More

details comparing the two cases are shown in section 4.1.2.
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(a) Full FTLE. (b) Constrained FTLE.

Figure 3-15: Comparison of 𝑄 (grey), nFTLE (red), and pFTLE (blue) results for full
and constrained FTLE calculations for a circular cylinder simulation at 𝑅𝑒 = 400. The
green box indicates the Lagrangian saddle, and the black arrow indicates the region of
high FTLE error due to out-of-plane velocities caused by streamwise-oriented vortices.

3.4.1 Flow Visualization Study

Due to the potential for errors in the experimental FTLE calculations, which used a sin-

gle plane of two-component velocity data, a three-dimensional flow visualization study of

the near-wake was conducted for the 𝑅𝑒 = 9, 000 case. This study sought to determine

if the von Kármán vortices were nearly perpendicular to the PIV plane. The surface of

the cylinder was painted with highly concentrated fluorescein dye, and then immersed

into still water. A continuous wave laser operating at 473 nm, which was near the peak

excitation wavelength of fluorescein, was used to illuminate the fluorescein as it was en-

trained into the von Kármán vortices after the flow was introduced. A 12 megapixel color

camera was used to capture images. The high freestream velocity and three-dimensional

turbulence resulted in the majority of the dye being removed from the cylinder surface

soon after the transient effects due to starting the water tunnel died out, making it dif-

ficult to capture high contrast images of the wake structure. The 𝑅𝑒 = 19, 000 case was

not included in this study, as the further increase in Reynolds number would degrade the

clarity of images produced by this technique.

Two representative images are presented in figure 3-16. In both images the flow is

traveling from left to right, with the cylinder mounted vertically on the left side of each
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Figure 3-16: Fluorescein dye flow visualization on a circular cylinder at 𝑅𝑒 = 9, 000.

image. The view is from the side of the water tunnel, and the fluorescing green regions are

the von Kármán vortices that contain the fluorescein dye. There is significant variation

between the angular distribution of the spanwise vortices between different images. The

angle of the vortex also varies along the span of the vortex, and is affected by the end

conditions (Williamson, 1989). Near the floor of the water tunnel and at the free surface,

the vortex core angle drops as low as 70°, but in each case the angle of the vortex at the

centerline is nearly 90°. This relationship held true over several, 𝒪(10), flow visualization

runs. The images selected are representative of all of the runs, and were chosen based on

their dye clarity. The planar PIV data was collected at the tunnel centerline at a cylinder

spanwise constant plane. Since the out of plane vortex core angle is approximately 90°

in this plane, it is assumed that the errors in the FTLE results due to three-dimensional

effects are minimal.
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Chapter 4

Results

In this chapter the results obtained for the four cases previously described are presented.

The various sections focus on visualization of the wake using𝑄 and FTLE, the Lagrangian

saddle locations, and the relationship between the wake, the Lagrangian saddles, and the

static pressure on the cylinder surface.

4.1 Wake Visualization

The wake of a circular cylinder is visualized using the Eulerian 𝑄 criterion and the

Lagrangian finite-time Lyapunov exponent (FTLE), which were calculated using the

experimentally and numerically generated velocity fields. Visualizations of the wake for

each of the four Reynolds numbers studied is shown below. The figures focus on the

portion of the shedding period that includes the formation and shedding of one of the

two von Kármán vortices shed each period and its associated Lagrangian saddle from the

upper shear layer.

4.1.1 𝑅𝑒 = 150

The near-wake region behind the circular cylinder at 𝑅𝑒 = 150 is visualized at six instants

in time in figure 4-1, chosen to highlight the Lagrangian saddle shedding process. Flow is

from left to right, and the cylinder is shown in green. The development of the von Kármán
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(a) 𝑅𝑒 = 150 wake at 𝑡/𝑇 = 0.16. Red “X” high-
lights the vortex of interest.

(b) 𝑅𝑒 = 150 wake at 𝑡/𝑇 = 0.33. The red arrow
indicates the gap in FTLE ridges where the shear
layer is entrained into the forming vortex.

(c) 𝑅𝑒 = 150 wake at 𝑡/𝑇 = 0.49. (d) 𝑅𝑒 = 150 wake at 𝑡/𝑇 = 0.65.

(e) 𝑅𝑒 = 150 wake at 𝑡/𝑇 = 0.84. The black
arrow highlights the pFTLE ridge that separates
the shear layer from the shed vortex.

(f) 𝑅𝑒 = 150 wake at 𝑡/𝑇 = 1.0. The red arrow
shows the new vortex that is beginning to form.
The black arrow highlights the splitting pFTLE
ridge.

Figure 4-1: Wake visualization for 𝑅𝑒 = 150 with 𝑄 criterion (gray contours), nFTLE
ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian saddle is located
inside of the green box.

59



vortex street can be seen as the dark grey regions of 𝑄 that are shed in an alternating

pattern from the top and bottom half of the cylinder. The FTLE ridges can be seen in

blue (repelling ridge, pFTLE) and red (attracting ridge, nFTLE), and the vortex cores are

identified as regions where 𝑄 > 0 with grey contours. The colorbar for 𝑄 is kept identical

throughout the figure. The Lagrangian saddle of interest, found at the intersection of the

nFTLE and pFTLE ridges just upstream of the clockwise-rotating vortex (marked with

a red “X”) forming and shedding from the upper surface of the cylinder , is indicated by

the green box. The attracting nFTLE ridges (red) wrap around the outside boundaries

of the vortices as they form, separate, and convect downstream. The repelling pFTLE

ridges (blue) form the boundaries between vortices, between forming vortices and the

cylinder surface, and between vortices and the freestream flow.

In figure 4-1(b) the forming vortex is entraining fluid from the shear layer through a

gap between the nFTLE and pFTLE ridges, marked with a red arrow. The Lagrangian

saddle is located close to the cylinder, where it remains as the vortex continues to grow in

size. In figure 4-1(c), the vortex is now in the process of shedding from the cylinder. The

Lagrangian saddle lifts away from the cylinder surface at this time, and the gap between

the FTLE ridges sweeps around the vortex to its downstream side. By 𝑡/𝑇 = 0.84

(figure 4-1(e)) the upstream side of the vortex is fully-enclosed by the FTLE ridges, and

has separated from the shear layer. This separation can be seen from the pFTLE ridge

that crosses the downstream edge of the shear layer (black arrow), separating it from

the vortex. The Lagrangian saddle is now in a location between the shear layer and the

vortex. Figure 4-1(f) shows the continued evolution of the flow, as another vortex begins

to form from the shear layer above the cylinder, marked with a red arrow. The pFTLE

ridge associated with the Lagrangian saddle can now be seen splitting into multiple ridges,

marked with a black arrow. One of the ridges will remain in roughly its current location,

and will separate the forming vortex from the downstream portions of the flow, while

the other branch of the ridge will continue downstream containing the Lagrangian saddle

associated with the shed vortex.
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4.1.2 𝑅𝑒 = 400

Figure 4-2 displays the three-dimensional wake structure for the 𝑅𝑒 = 400 case. Figure 4-

2(a) shows a dark grey isosurface at 𝑄 = 0.017𝑄𝑚𝑎𝑥, with the cylinder shown in light

grey for reference. The 𝑄 threshold was increased from 𝑄 > 0 to 𝑄 = 0.017𝑄𝑚𝑎𝑥 to keep

portions of the wake from being obscured by structures with low 𝑄 magnitudes. Flow is

from the bottom left to the top right (+𝑥 direction). The von Kármán vortices can be

seen as bands of high 𝑄 that are roughly parallel to the cylinder, and mode B vortices

can be seen as the thin strings of streamwise-oriented 𝑄-isosurfaces between the von

Kármán vortices. The mode B vortices are more clearly highlighted in the subsequent

figures where the 𝑄-isosurface is colored by the magnitude of each component of vorticity.

The streamwise and transverse (𝑥 and 𝑦, respectively) components of vorticity highlight

the mode B vortices in figures 4-2(b) and 4-2(c), and the spanwise (𝑧) component of

vorticity highlights the von Kármán vortices in figure 4-2(d). More details of the wake

structure can be identified by investigating spanwise-constant cross-sections, which allow

for comparison between this case and the cases with only planar data.

Figure 4-3 shows the three components of vorticity, as well as the out-of-plane velocity

in a spanwise-constant plane at 𝑧/𝐷 = 3.72, a location that was chosen to intersect with

a mode B vortex. In the figure, a black contour is included at 𝑄 = 0.003𝑄𝑚𝑎𝑥 as

a reference for the vortex locations. The contour was selected just above 0 to more

clearly outline the von Kármán vortices. Figure 4-3(a) shows the spanwise component

of vorticity, which is concentrated in the von Kármán vortices as expected. Figure 4-

3(a) also shows a small region of negatively signed vorticity on the downstream surface

of the cylinder. This is indicative of the transverse flow (downward) induced by the

positively-signed forming vortex near the cylinder. Figures 4-3(b) and 4-3(c) show the

streamwise and transverse component of vorticity, respectively, and are concentrated in

the mode B vortices between the von Kármán vortices. The out-of-plane velocity shown

in figure 4-3(d) is mainly concentrated on the top and bottom of the mode B vortices,

where the streamwise-oriented vortices induce large out-of-plane motions. As discussed

in section 3.4, the constrained FTLE breaks down in this region, but the area upstream
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(a) Three-dimensional wake structure visualized
by an isosurface at 𝑄 = 0.017𝑄𝑚𝑎𝑥.

(b) 𝑄 colored by streamwise vorticity 𝜔𝑥 [rad/s].

(c) 𝑄 colored by transverse vorticity 𝜔𝑦 [rad/s]. (d) 𝑄 colored by spanwise vorticity 𝜔𝑧 [rad/s].

Figure 4-2: 𝑅𝑒 = 400 three-dimensional wake structure at 𝑡/𝑇 = 0.80 with cylinder in
grey, and an isosurface of 𝑄 at 𝑄 = 0.017𝑄𝑚𝑎𝑥.

of the von Kármán vortices where the Lagrangian saddle is located remains accurate due

to minimal out-of-plane velocity.

FTLE ridges in the near-wake region at 𝑅𝑒 = 400 for a spanwise-constant plane

located at 𝑧/𝐷 = 3.72 are shown in figure 4-4. At this Reynolds number the flow is

three-dimensional, but a two-dimensional slice of the full FTLE field is presented to

allow for ease of visualization and comparison to other cases. The full three-dimensional

velocity data domain is still used for the FTLE particle integration. The grey 𝑄 contours

highlighting the vortex cores capture the von Kármán vortices as in the 𝑅𝑒 = 150 case,

but they also show the mode B vortices (green arrow in figure 4-4(a)) in between the von

Kármán vortices. Due to the complex movement of the particles as they are advected

out of the plane by the induced out-of-plane velocity, there are more ridges in the FTLE

field compared to the two-dimensional results at 𝑅𝑒 = 150. The alleyway of entraining

fluid that feeds the forming vortex from the shear layer is not as apparent in figures 4-

4(a), but there are multiple lobes enclosed by pFTLE ridges that demarcate regions of
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(a) Spanwise vorticity 𝜔𝑧 [rad/s]. (b) Streamwise vorticity 𝜔𝑥 [rad/s].

(c) Transverse vorticity 𝜔𝑦 [rad/s]. (d) Out-of-plane velocity normalized by
freestream velocity 𝑤/𝑈∞

Figure 4-3: 𝑅𝑒 = 400 three-dimensional effects for 𝑧/𝐷 = 3.72 plane at 𝑡/𝑇 = 0.80 with
cylinder in grey, and 𝑄 = 0.003𝑄𝑚𝑎𝑥 contour in black.
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(a) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.16. The green
arrow indicates a mode B vortex. The magenta
asterisk and red arrow highlight a lobe that is be-
ing entrained into the forming vortex.

(b) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.32. The magenta
asterisk and red arrow highlight a lobe that is be-
ing entrained into the forming vortex.

(c) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.48. (d) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.68.

(e) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.84. The black
arrow highlights the splitting pFTLE ridge.

(f) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 1.0. The black arrow
highlights the splitting pFTLE ridge.

Figure 4-4: Wake visualization for full 𝑅𝑒 = 400 with 𝑄 criterion (gray contours), nFTLE
ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian saddle is located
inside of the green box.
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fluid that will be fed into the forming vortex from the shear layer. This can be seen

during the vortex formation process in figures 4-4(a) and 4-4(b) where one of the lobes is

marked with a magenta asterisk and a red arrow. The Lagrangian saddle is close to the

cylinder surface in figure 4-4(a), but can be seen moving away from the cylinder slightly

in figure 4-4(b), and more clearly in figure 4-4(c) onward. As the vortex sheds and begins

to convect downstream, the core region where 𝑄 > 0 begins to lose coherence. This is

likely due to stretching of the vortex by three-dimensional effects. The splitting of the

pFTLE ridge (marked by a black arrow) can be seen in figures 4-4(e) and 4-4(f), with

the ridge splitting into multiple ridges at this Reynolds number, as opposed to the two-

dimensional case where the ridge only split in two. This is indicative of more complex

interactions between different portions of the flow, and can be seen in the more complex

FTLE field throughout the wake.

Figure 4-5 displays the results for the 𝑅𝑒 = 400 constrained FTLE case, which is

used to mimic the effects of having only planar velocity data. This is planar FTLE

where the out-of-plane velocity values were set to zero during the particle advection,

artificially constraining them to the plane of interest. The three-dimensional 𝑄 values

are plotted for comparison to the full three-dimensional FTLE case shown in figure 4-4.

The FTLE ridges still bound the vortex cores found by 𝑄, but much of the complexity

that was seen in figure 4-4 no longer exists. This case looks more similar to the two-

dimensional 𝑅𝑒 = 150 case shown in figure 4-1. Interestingly, the alleyways that allowed

the shear layer to feed the forming vortex in the 𝑅𝑒 = 150 case are still not present

in this case, instead exhibiting the lobed feeding (magenta asterisk and red arrow in

figures 4-5(a) and 4-5(b)) from the shear layer that was seen in the full 𝑅𝑒 = 400 FTLE

case. The Lagrangian saddle behavior is nearly identical between the full and constrained

cases at 𝑅𝑒 = 400, and the main inaccuracies in the FTLE field occur in the vicinity

of the streamwise oriented vortices, as expected. The main focus of this work is the

identification and tracking of the Lagrangian saddles in the near-wake region, so the

inaccuracies near the streamwise oriented vortices were not of major concern as the flow

between the forming and shedding von Kármán vortices and the cylinder has minimal

out-of-plane velocity.
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(a) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.16. The magenta
asterisk and red arrow highlight a lobe that is be-
ing entrained into the forming vortex.

(b) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.32. The magenta
asterisk and red arrow highlight a lobe that is be-
ing entrained into the forming vortex.

(c) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.48. (d) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.68.

(e) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 0.84. (f) 𝑅𝑒 = 400 wake at 𝑡/𝑇 = 1.0.

Figure 4-5: Wake visualization for constrained 𝑅𝑒 = 400 with 𝑄 criterion (gray contours),
nFTLE ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian saddle
is located inside of the green box.
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4.1.3 𝑅𝑒 = 9, 000

(a) 𝑅𝑒 = 9, 000 wake at 𝑡/𝑇 = 0.17. (b) 𝑅𝑒 = 9, 000 wake at 𝑡/𝑇 = 0.33.

(c) 𝑅𝑒 = 9, 000 wake at 𝑡/𝑇 = 0.50. (d) 𝑅𝑒 = 9, 000 wake at 𝑡/𝑇 = 0.67.

(e) 𝑅𝑒 = 9, 000 wake at 𝑡/𝑇 = 0.83. (f) 𝑅𝑒 = 9, 000 wake at 𝑡/𝑇 = 1.0.

Figure 4-6: Wake visualization for 𝑅𝑒 = 9, 000 with 𝑄 criterion (gray contours), nFTLE
ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian saddle is located
inside of the green box. The black arrow indicates the nFTLE ridge which is splitting
the top and bottom half of the wake.

Experimental results at 𝑅𝑒 = 9, 000 are shown in figure 4-6. Figures 4-6(a), 4-

6(b), and 4-6(c) are from the supplemental case where only the near wake region was

captured in an attempt to obtain Lagrangian saddle data that was missing from the initial

𝑅𝑒 = 9, 000 case. Only one laser was available at the time so the cylinder shadow region

below the cylinder, marked with a black “s”, was not illuminated. Due to this, all nFTLE
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values below the approximate centerline of the flow should be disregarded, since they

are advected into the shadow region where there is no velocity information, resulting

in incorrect results. A threshold of 𝑄 = 0.01𝑄𝑚𝑎𝑥 was used to highlight the vortex

cores, while removing some of the erroneous regions caused by noise in the experimental

data. Even with the increased 𝑄 threshold, there is still a significant amount of noise

in the 𝑄 values, especially in regions farther downstream. Experimental data has larger

amounts of noise than numerical data which is amplified by the spatial derivatives used

in the calculation of 𝑄, but the downstream dependency is likely also related to the larger

variation in vortex position and coherence due to three-dimensional effects as the vortices

convect downstream. The black circle located inside of the green cylinder is the location

of the pressure tap used to measure the static pressure for phase-averaging. The white

ring surrounding the cylinder in figures 4-6(d), 4-6(e), and 4-6(f) is the region obscured

by the bottom of the cylinder during the larger window (far) PIV experiments.

The Lagrangian saddle upstream of the shedding vortex can be seen in throughout

figure 4-6, and the pFTLE ridge can be seen splitting in figure 4-6(f). The overall

structure of the FTLE ridges is similar to that of the constrained 𝑅𝑒 = 400 case, even with

the missing portion of the domain. The Lagrangian saddle can be seen near the cylinder

in figure 4-6(a), and then moving away from the cylinder before traveling downstream

with the vortex in subsequent images. There is an nFTLE ridge that separates the top

and bottom halves of the wake marked with a black arrow. This nFTLE ridge provides

the justification for the validity of the top half of the FTLE results in the near case with

a shadow below the cylinder (figures 4-6(a) through 4-6(c)). In the negative-time particle

integration used for the nFTLE ridge calculation, the particles are advected backwards

in time, so they travel upstream for most locations in the flow field. When these particles

move into the shadow region with no velocity information, they remain there. Recalling

that the FTLE ridges reveal material lines, this causes the majority of the particles

that were initialized below the wake-splitting nFTLE ridge to advect to nearly the same

location, resulting in low FTLE values. The particles above the wake-splitting nFTLE

ridge are advected around the top surface of the cylinder, so they avoid the shadow region

below the cylinder. Therefore, these trajectories are not subject to the same inaccuracy,
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and the nFTLE ridge calculation for this portion of the flow field is still correct.

4.1.4 𝑅𝑒 = 19, 000

A main concern of the 𝑅𝑒 = 19, 000 dataset was to fully resolve the flow around the

circular cylinder, as well as to capture a large enough portion of the downstream domain

to allow for accurate pFTLE calculations. Capturing the near-cylinder velocity fields

allows for the visualization of the Lagrangian saddle behavior during the vortex formation

process, and the downstream data allows for large enough separation to occur between

FTLE particles before they leave the domain in the pFTLE calculation. Figure 4-7

shows that the overall FTLE and 𝑄 structure is very similar to the constrained 𝑅𝑒 = 400

FTLE, as well as the 𝑅𝑒 = 9, 000 experimental case. The vortex feeding process through

multiple lobes of pFTLE can again be seen during the vortex formation process in the top

shear layer in figures 4-7(a) and 4-7(b) where a lobe is marked with a magenta asterisk

and a red arrow. The splitting of the pFTLE ridge can be seen in figure 4-7(e) (black

arrow), but the downstream pFTLE ridge is not visualized in figure 4-7(f) as it is below

the plotting threshold. Figure 4-8 displays the image in figure 4-7(f) compared with a

visualization of the wake with the pFTLE threshold lowered to 0.45FTLE𝑚𝑎𝑥. This shows

that pFTLE ridge still exists, but is weaker than the ridges further upstream due to its

proximity to the downstream boundary of the velocity domain. The particle integration

for the pFTLE calculation advects the particles forward in time, resulting in particles

leaving the downstream edge of the data window. When particles exit the window,

they are advected by the freestream velocity only, so they do not separate any further,

resulting in artificially low pFTLE values for particles initialized near the downstream

data boundary compared to particles that were integrated through a larger part of the

domain. The lower pFTLE threshold was not used in other images because it reduces

the clarity of the wake visualization in the region just downstream of the cylinder.

One major difference between the numerical and experimental results is the location

of the nFTLE ridge that is within the separated shear layer upstream of the forming

vortex. In the numerical cases (figures 4-1 and 4-4) where the mean separation location,

𝜃𝑠, was greater than 90° this ridge traveled nearly parallel to the freestream flow. In
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(a) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.17. The ma-
genta asterisk and red arrow highlight a lobe that
is being entrained into the forming vortex.

(b) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.32. The ma-
genta asterisk and red arrow highlight a lobe that
is being entrained into the forming vortex.

(c) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.48. (d) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.65.

(e) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.82. The black
arrow highlights the splitting pFTLE ridge.

(f) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.98.

Figure 4-7: Wake visualization for 𝑅𝑒 = 19, 000 with 𝑄 criterion (gray contours), nFTLE
ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian saddle is located
inside of the green box.
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(a) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 1.0 with pFTLE
threshold of 0.60FTLE𝑚𝑎𝑥.

(b) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 1.0 with pFTLE
threshold of 0.45FTLE𝑚𝑎𝑥.

Figure 4-8: Wake visualization for 𝑅𝑒 = 19, 000 with 𝑄 criterion (gray contours), nFTLE
ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian saddle is located
inside of the green box.

the experimental 𝑅𝑒 = 19, 000 case, the separation angle is around 85° and the nFTLE

ridge travels significantly further away from the wake centerline at an angle that is nearly

tangent to the cylinder surface at the separation point. The Lagrangian saddle moves

with this ridge, resulting in an increase in the distance away from the cylinder for the

𝑅𝑒 = 19, 000 saddle track compared to the other cases where the nFTLE ridge is nearly

parallel to the freestream flow near the separation location. This is discussed in more

detail in section 4.2.

4.1.5 Comparison Among Cases

Figure 4-9 displays each case at approximately the same time in the shedding period. The

timing of the numerical and experimental data sets were matched by visually comparing

the scaled downstream wake organization. At this instant in time, across all cases, the

vortex is in the process of shedding and the Lagrangian saddle is accelerating away

from the cylinder. This time was chosen since it displays the similarities and differences

between the cases clearly. There are many similarities between the different results, even

across the range of Reynolds numbers presented. The Lagrangian saddle is located off the

cylinder surface, between the shed vortex and the cylinder. There is a pFTLE ridge that
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(a) 𝑅𝑒 = 150 wake at 𝑡/𝑇 = 0.73.

(b) 𝑅𝑒 = 400 full wake at 𝑡/𝑇 = 0.72. (c) 𝑅𝑒 = 400 constrained wake at 𝑡/𝑇 = 0.72.

(d) 𝑅𝑒 = 9, 000 wake at 𝑡/𝑇 = 0.72. (e) 𝑅𝑒 = 19, 000 wake at 𝑡/𝑇 = 0.73.

Figure 4-9: Wake comparison across all cases with 𝑄 criterion (gray contours), nFTLE
ridges (red), pFTLE ridges (blue), and cylinder (green). The Lagrangian saddle is located
inside of the green box.
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separates the shear layer from the shed vortex (not visible in the 𝑅𝑒 = 9, 000 case), which

is splitting into multiple ridges. There are also some clear differences across the cases,

mostly related to the location of the vortices and Lagrangian saddle, and the detail in

the FTLE field. While each image is at roughly the same phase in the shedding process,

the exact Lagrangian saddle location varies greatly from case to case. In the 𝑅𝑒 = 150,

𝑅𝑒 = 9, 000, and 𝑅𝑒 = 19, 000 cases, the Lagrangian saddle is located relatively close

to the cylinder surface, between 0.5𝐷 and 0.7𝐷 downstream of the cylinder center. For

both𝑅𝑒 = 400 cases, the Lagrangian saddle is significantly further downstream, about 1𝐷

downstream of the cylinder center. This is related to the formation length of the vortices.

𝑅𝑒 = 400 has the largest formation length across the cases, meaning that the vortices roll-

up further downstream. The FTLE fields in the 𝑅𝑒 = 150, and constrained 𝑅𝑒 = 400

cases are simpler, and contain fewer ridges than the other cases. In two-dimensional

calculations, any out-of-plane movements of the FTLE particles during integration are not

calculated, resulting in fewer regions that are dynamically distinct, and therefore fewer

FTLE ridges. While the experimental results also used a two-dimensional calculation,

they are at a significantly higher Reynolds number, and the turbulent fluctuations present

in the wake increase the complexity of the FTLE field.

4.2 Lagrangian Saddle Locations

In each case, the location of the Lagrangian saddle found upstream of the vortex forming

and shedding from the top half of the circular cylinder was tracked manually. The saddle

track in time provides valuable insight into the shedding time of the von Kármán vortices

for each of the cases investigated.

4.2.1 𝑅𝑒 = 150

In the numerical two-dimensional 𝑅𝑒 = 150 case, the vortex center was tracked using the

maximum 𝑄 value inside of the vortex core. Figure 4-10 displays the resulting track of the

vortex center compared with the track of the Lagrangian saddle. The non-dimensional

distance on the y-axis is measured from the location (𝑥/𝐷, 𝑦/𝐷) = (0, 𝑅), where 𝑅 is the
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Figure 4-10: 𝑅𝑒 = 150 Lagrangian saddle and vortex tracks.

cylinder radius. This location was used as the origin of the distance measurement across

all cases. The change in the location of the vortex center shows that as the vortex forms

and sheds, there is a gradual increase in the distance away from the top of the cylinder

with no clear indication as to when the vortex sheds. In contrast, as the vortex forms,

the corresponding Lagrangian saddle remains nearly stationary near the cylinder surface.

As the vortex sheds, the saddle lifts off and accelerates away from the cylinder surface at

the time highlighted by the vertical dash-dot line in figure 4-10. This will be referred to

as the vortex shedding time throughout this section, but formally, this is the beginning of

the vortex shedding portion of the period. There is no singular time at which the vortex

sheds, and the marked time indicates that the shedding is beginning.

A solid red line is fit to the near-zero motion of the saddle (red diamonds) at early

times in the vortex shedding period, while the vortex is still attached and forming. The

equation of this line was found by using a least-squares linear fit, and maximizing the

𝑅2 value by varying the number of Lagrangian saddle locations considered. The slopes

for each case are reported in section 4.2.5. Near 𝑡/𝑇 = 0.44, the saddle accelerates away

from the cylinder surface, which is observed as the departure of the red diamonds from

the solid red line. While there is no direct objective criterion for determining when the

Lagrangian saddle has departed from the line, a consistent distance of 0.015𝑑/𝐷 above
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the solid line was used as the threshold for each case to determine if the Lagrangian

saddle had shed. Once the Lagrangian saddle begins to accelerate, it will begin to move

away from the cylinder at a higher speed than during vortex formation, which is seen by

the saddle track increasing its slope in figure 4-10. The threshold value was set as low as

possible, but still high enough to avoid the Lagrangian saddle location uncertainty. In

contrast to the Lagrangian saddle acceleration, there is no distinct change in the speed of

the vortex center found by the maximum 𝑄 value. Around 𝑡/𝑇 = 0.90, the vortex center

has reached a constant velocity as it convects downstream. At the same time, the saddle

finishes accelerating to its final velocity, shown by a dashed red line, which matches the

speed of the vortex center. While the trace of the saddle location shows a dramatic change

in slope, the trace of the vortex center has only a subtle continuous change in slope. Since

this change in slope is small and based on instantaneous velocity field gradients, it would

be sensitive to errors in the velocity field in experimental or three-dimensional data. In

fact, the vortex center location cannot be located accurately in the current work using 𝑄

for the three-dimensional numerical or two-dimensional experimental flows. In the three-

dimensional case at 𝑅𝑒 = 400, the vortex loses coherence as seen in figure 4-4(a), causing

the track of maximum 𝑄 inside of the vortex to move erratically. The experimental cases

have too much noise to accurately determine the location of maximum 𝑄 automatically

from the velocity field. There are several maxima of various magnitudes clustered around

the central portion of the vortex core.

4.2.2 𝑅𝑒 = 400

Figure 4-11(a) displays the three-dimensional nFTLE field in the wake of the circular

cylinder at 𝑅𝑒 = 400. The nFTLE ridges wrap around the vortices visualized by the

𝑄 isosurface in figure 4-2(a). A zoomed-in portion of the 𝑅𝑒 = 400 three-dimensional

FTLE field is shown in figure 4-11(a). There is a distinct wavelength along the cylinder

span present in the nFTLE field in the near-cylinder region shown in the figure, so the

Lagrangian saddle behavior was investigated along 1.5𝐷 of the span to see how the

saddle tracks varied. The analyzed tracks fall between the two transparent black planes

in figure 4-11(a). This region contains 17 𝑧/𝐷 planes, and about two of the nFTLE
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(a) Cylinder wake nFTLE ridges (red) and cylin-
der (grey).

(b) Zoomed in cylinder wake nFTLE ridges (red)
and cylinder (grey).

Figure 4-11: 𝑅𝑒 = 400 three-dimensional nFTLE ridges at 𝑡/𝑇 = 0.72.

wavelengths. Figure 4-12(a) shows the Lagrangian saddle tracks for each 𝑧/𝐷 plane across

this portion of the span. While there is some variation in the exact Lagrangian saddle

location with span, all of the tracks follow the same trend in described in section 4.2.1

for the 𝑅𝑒 = 150 two-dimensional case. There is an initially slow movement of the

Lagrangian saddle as the vortex forms, before a rapid acceleration as the vortex sheds.

Eventually, the saddle settles onto the vortex convection speed.

Figure 4-12(b) displays the Lagrangian saddle tracks at 𝑧/𝐷 = 3.72 for the full and

constrained FTLE cases. While there are large differences in the physics between the

two cases, their Lagrangian saddle tracks are nearly identical, lending validity to our

experimental results when using two-dimensional data to approximate the Lagrangian

saddle behavior in a three-dimensional wake dominated by vortices aligned perpendicular

to the FTLE plane. Figure 4-12(c) displays the mean Lagrangian saddle track for the 𝑧/𝐷

locations considered. Error bars indicate one standard deviation, which is minimal until

well after the vortex has shed from the cylinder. The mean track is used for comparison

to the other cases, as well as the determination of the shedding time as it is simpler to

analyze, but was still calculated from the three-dimensional variation of the Lagrangian

saddle tracks. The shedding time for this case occurs at 𝑡/𝑇 = 0.36, which is 0.08𝑇

earlier than the 𝑅𝑒 = 150 case, but still reasonably close.
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(a) Variation in Lagrangian saddle tracks along span
(𝛥𝑧/𝐷 = 1.5).
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(b) Full vs. constrained Lagrangian saddle tracks for
plane at 𝑧/𝐷 = 3.72.
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(c) Mean Lagrangian saddle track with error bars of
1𝜎.

Figure 4-12: 𝑅𝑒 = 400 Lagrangian saddle tracks.
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Figure 4-13: 𝑅𝑒 = 9, 000 Lagrangian saddle tracks.

4.2.3 𝑅𝑒 = 9, 000

The Lagrangian saddle tracks for the 𝑅𝑒 = 9, 000 case is shown in figure 4-13. The

closed diamond magenta saddles that are closer to the cylinder are from the supplemental

dataset used to resolve the near cylinder region. The two sets of data fit together well,

with the near wake saddle locations transitioning well into the far wake locations. The

Lagrangian saddle is essentially fixed as the vortex is forming in this case, and there is

a clear acceleration away from the initial speed as the vortex sheds. The shedding time

for this case occurs at 𝑡/𝑇 = 0.44, approximately the same as the 𝑅𝑒 = 150 case.

4.2.4 𝑅𝑒 = 19, 000

The Lagrangian saddle track for the 𝑅𝑒 = 19, 000 case is shown in figure 4-14. Due to the

nFTLE ridge arcing away from the wake centerline, the initial speed of the Lagrangian

saddle is higher than the other cases during the vortex formation. In the other cases, the

movement of the Lagrangian saddle is primarily in the streamwise direction, along the

nFTLE ridge. In this case, the arcing of the nFTLE ridge adds a transverse component

of movement to the saddle trace, increasing the total distance from the measurement

location. There is still a clear acceleration of the vortex, and the shedding time for this

case is 𝑡/𝑇 = 0.61.
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Figure 4-14: 𝑅𝑒 = 19, 000 Lagrangian saddle track.

4.2.5 Comparison Among Cases

The Lagrangian saddle tracks across all cases are shown in figure 4-15. The timing (x-

axis) of the numerical and experimental data sets were matched by visually comparing the

scaled downstream wake organization, so there is some uncertainty associated with the

x-axis locations for comparison among the cases. While there are considerable differences

in the shedding time (vertical dash-dot line) and Lagrangian saddle speed during vortex

formation across the four cases, the qualitative behavior of the saddles is similar. There

is always a relatively low speed of the Lagrangian saddle during the vortex formation

followed by a clear acceleration of the saddle before it eventually settles onto the vortex

convection speed. There are some visual differences in the final slopes of the convecting

portion of the Lagrangian saddle movement. The slopes of these lines are scaled by a

factor of 𝑇/𝐷 due to the scaling of the data for comparison, so the slopes were multi-

plied by 𝐷/𝑇𝑈∞ to scale the convection speed of the vortices by the freestream velocity.

The Lagrangian saddle slopes and corrected speeds are shown in table 4.1. Formation

slope refers to the slope of the line drawn through the Lagrangian saddles during vortex

formation, saddle formation speed is the formation slope multiplied by 𝐷/𝑇𝑈∞, and con-

vection slope refers to the slope of the line drawn through the Lagrangian saddles during

vortex convection. While there is considerable variation amongst the cases, the values
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Figure 4-15: Lagrangian saddle tracks across all cases.

are reasonable according to Norberg and Sunden (1987), who stated that depending on

the distance downstream, the vortex convection speed scaled by the freestream speed will

vary between 0.5 and 0.75 as 𝑥/𝐷 increases from the formation length to 3.0 for a flow

at 𝑅𝑒 = 20, 000. While the 𝑅𝑒 = 400 case is at a significantly higher value for vortex

convection speed in the near-wake region than the other cases, this may be due to the

large difference in Reynolds number.

𝑅𝑒 Formation
slope

Saddle formation
speed

Convection
slope

Vortex convection
speed 𝑢𝑣/𝑈∞

150 0.31 0.06 3.1 0.56

400 0.77 0.16 3.8 0.78

9,000 0.07 0.02 2.5 0.52

19,000 0.80 0.17 3.0 0.65

Table 4.1: Slopes and vortex convection speed found from Lagrangian saddle tracks.
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4.3 Pressure

The mean and fluctuating coefficient of pressure distributions are studied for the cases at

Reynolds numbers of 150, 400, and 19,000. The mean coefficient of pressure distribution

is used to estimate the separation location, and the fluctuating coefficient of pressure

distribution is investigated in the vicinity of the vortex shedding time.

4.3.1 𝐶𝑝 Distributions

The mean coefficient of pressure (𝐶𝑝) distribution is used to determine the mean sep-

aration location of the flow around a circular cylinder, as well as to make comparisons

among cases with different Reynolds numbers. The 𝐶𝑝 distributions for 𝑅𝑒 = 150 and

𝑅𝑒 = 400 are shown in figure 4-16. The values for 𝑅𝑒 = 400 are for the 𝑧/𝐷 portion

of the cylinder discussed section 4.2.2. There is little variation in 𝐶𝑝 along the cylinder

span, with the largest magnitude of variation occurring in the angular region higher than

130°. A zoomed in portion of the 𝐶𝑝 distribution is shown in figure 4-16(c) to illustrate

the small amount of variation along the span. The high 𝐶𝑝 value at 0° in both cases is

due to the mean stagnation point, and the 𝐶𝑝 value decreases with increasing angular

location as the flow accelerates around the cylinder surface. 𝐶𝑝 reaches a minimum near

80° in each case before the flow begins to decelerate. This deceleration of the flow leads

to flow separation, which occurs at the inflection point during the 𝐶𝑝 increase. The mean

separation point is at 115° for the 𝑅𝑒 = 150 case and at 94° for the 𝑅𝑒 = 400 case.

While the 𝐶𝑝 distribution was calculated for the 𝑅𝑒 = 19, 000 case, the large change in

the voltage bias throughout the testing procedure and extreme sensitivity of the coeffi-

cient of pressure to the exact pressure values rendered the 𝐶𝑝 distribution invalid. The

fluctuating coefficient of pressure distribution was not effected by this error, since the

error was solely in the mean value at each location. The mean pressure at each location,

and the error associated with it, is removed when the fluctuating coefficient of pressure

distribution is calculated.
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(a) 𝑅𝑒 = 150.
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(b) 𝑅𝑒 = 400.
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(c) 𝑅𝑒 = 400, zoomed in to show spanwise vari-
ation.

Figure 4-16: Numerical 𝐶𝑝 distributions.
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4.3.2 Lift and Circulation

When the instantaneous pressure distribution is integrated around the entire cylinder,

the fluctuating lift and drag forces can be determined by decomposing the resultant forces

into their streamwise (drag) and transverse (lift) components. This calculation is done

to study the variation in the lift and drag, and how they relate to the vortex shedding

time for the two numerical cases. Circulation is another commonly used analysis tool

for studying vortex shedding, and is calculated around a von Kármán vortex for the

𝑅𝑒 = 150 case for comparison.

The timing of the Lagrangian saddle acceleration provides a clear indication of when

the vortex sheds from a wake dynamics perspective, but further insight can be gained by

comparing the shedding time with the fluctuating lift and drag experienced by the cylin-

der and the circulation of the shedding vortex. The fluctuating lift coefficient per unit

span on the cylinder (𝐶 ′
𝐿 = 𝐿′/(0.5𝜌∞𝑈2

∞𝐷)) was found by integrating the instantaneous

static pressure distribution on the cylinder surface and calculating the fluctuating force

component per unit span in the vertical direction, 𝐿′. The fluctuating drag coefficient

per unit span was calculated using the same method, but instead used the horizontal

component of the force. Results from this calculation are displayed in figure 4-17, where

it is observed that the maximum fluctuating coefficient of lift is approximately 0.5, which

agrees with previously published work (Inoue and Hatakeyama, 2002). The vortex shed-

ding time inferred from the Lagrangian saddle lift off (𝑡/𝑇 = 0.44) is shown in figure 4-17

by the vertical dash-dot line. This time indicates the initial shedding of the vortex, and

here is shown to correspond to the maximum fluctuating lift. After this time the vortex

begins convecting downstream, so it has a decreased effect on the cylinder pressure dis-

tribution. There is a maximum in fluctuating drag just after the vortex begins to shed,

indicating that the vortex has a lingering effect on the pressure distribution near the

downstream (𝜃 = 180°) portion of the cylinder, which is closer to the vortex.

Vortex separation and shedding can be described as a process in which the shear

layer stops feeding circulation to the forming vortex, and the vortex does not pinch-off

until it reaches its maximum circulation (Ringuette et al., 2007). The time to maximum
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(a) 𝑅𝑒 = 150 fluctuating coefficient of lift.
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(b) 𝑅𝑒 = 150 fluctuating coefficient of drag.

Figure 4-17: 𝑅𝑒 = 150 force coefficients.

circulation of a forming vortex has been referred to as the formation time (Rosenfeld et al.,

1998), and there is evidence that there may be a universal range of formation times in

the vicinity of 4, for flow fields such as piston-generated vortex rings (Rosenfeld et al.,

1998), pitching flat plates (Milano and Gharib, 2005), circular cylinders started from rest

(Jeon and Gharib, 2004), and biological flows such as jellyfish propulsion (Dabiri, 2009).

The circulation of the vortex forming and shedding from the upper cylinder surface was

calculated using two different areas, and is shown in figure 4-18 for comparison with the

lift history and Lagrangian shedding time. The first bounding box for the circulation was

determined by locating the distance from the vortex center to the contour of 0.01𝑄𝑚𝑎𝑥

in the downstream and transverse (down in figure 4-19) directions, and using that as the

distance to the respective rectangular box boundary in each direction. This bounding

box enclosed the boundaries of the vortex, defined by 0.01𝑄𝑚𝑎𝑥, and cut out the majority

of the shear layer when the vortex was near the cylinder, as shown by the green box in

figure 4-19. This was done intentionally to avoid the variable effect of the shear layer as

the vortex and corresponding circulation area travel downstream. The circulation values,

shown by the green triangles in figure 4-18, are smaller than those found by Green and

Gerrard (1993). When the circulation area is made large enough to include the majority

of the shear layer, the value for maximum circulation is above 1.0, and is comparable

to Green and Gerrard (1993). This is shown with the red box in figure 4-19, and the
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Figure 4-18: 𝑅𝑒 = 150 circulation for two different areas.

(a) 𝑡/𝑇 = 0.29. (b) 𝑡/𝑇 = 0.58. (c) 𝑡/𝑇 = 0.78.

Figure 4-19: 𝑅𝑒 = 150 circulation areas used.

resulting time-history of circulation in this area is shown as the red open circular symbols

in figure 4-18. These results demonstrate the dependence of the circulation calculation

on the size and shape of the bounding box.

Figure 4-18 shows that the times of maximum circulation (𝑡/𝑇 = 0.65 and 𝑡/𝑇 = 0.73)

are later than the shedding time found by the Lagrangian saddle departure (𝑡/𝑇 = 0.44).

It is interesting to note that by including more of the shear layer, the time of peak

circulation is even later after the peak in lift. It is difficult to determine the exact time at

which the shear layer stops feeding the vortex using a quantity such as the 𝑄 criterion,

as the contours are determined by a user selected threshold. An integrated calculation

of circulation shows when the shear layer stops feeding the vortex more clearly, but

while this information is useful for understanding the flow physics, it is still not a good

method for determining the shedding time of the vortex due to its reliance on user-defined
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boundaries and its propensity to include portions of nearby shear layers. Tracking the

Lagrangian saddle acceleration is not subject to the same user decisions about calculation

area or thresholds, and is shown here to correspond with the extrema in vertical force.

The fluctuating sectional coefficients of lift and drag for 𝑧/𝐷 = 3.72 in the 𝑅𝑒 = 400

case are shown in figure 4-20. Figure 4-20(a) shows a similar trend to that found in

figure 4-17(a), with the positive lift force increasing as the vortex induces low pressure

along the upper surface of the cylinder as it grows in size and strength. The vortex

shedding time found by the Lagrangian saddle corresponds to the time one phase after

the maximum value in the fluctuating lift force. This small discrepancy between the

maximum lift and the vortex shedding time may be related to the increased formation

distance, or inaccuracy in the determination of the vortex shedding time. The fluctuating

drag also reaches its maximum near the vortex shedding time, but slightly after the

vortex begins to shed. The jump in 𝐶 ′
𝐿 and 𝐶 ′

𝐷 that occurs around 𝑡/𝑇 = 0.55 is due

to the FTLE and pressure data available for the Lagrangian saddle and 𝐶 ′
𝐿 calculations,

respectively. The continuous period of data that was available encompassed the formation

and shedding of a vortex from the lower surface of the cylinder. During that period, a

formed vortex shed from the top half of the cylinder near the beginning of the period,

and a new vortex formed from the top shear layer near the end of the period. Since the

previous investigation focused on the vortex forming and shedding from the top half of

the vortex, the available period of data was cut in half, and then the two portions were

switched in time. By doing that, the period of data begins with the formation of the

vortex from the top shear layer, then leads to the shedding and convection of this vortex,

as in the other cases. Due to this rearrangement of the data files, the original period’s

final and initial data files are now in the middle of the rearranged shedding period. Since

this is a fully three-dimensional flow, the final flow field and the initial flow field are not

identical, but they are close enough that the difference in lift and saddle locations are

not egregious. Conversely, a full sequential set of 1.5𝑇 was used for the calculation of

each FTLE field.
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(a) 𝑅𝑒 = 400 fluctuating sectional coefficient of
lift.
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(b) 𝑅𝑒 = 400 fluctuating sectional coefficient of
drag.

Figure 4-20: 𝑅𝑒 = 400 fluctuating sectional force coefficients for 𝑧/𝐷 = 3.72.

4.3.3 Fluctuating 𝐶𝑝 vs. 𝜃 and vortex shedding time

While the coefficient of lift has a maximum at or near the vortex shedding time, it can

be prohibitive to instrument a surface with enough pressure taps to accurately calculate

lift on-the-fly. A force transducer could measure the lift, but is impractical to implement

in real world applications. For this reason, the distribution of the fluctuating coefficient

of pressure on the cylinder surface was investigated to determine if the time-evolution

of the surface pressure at any location had a distinctive feature at the liftoff time of

the Lagrangian saddle. Figure 4-21 displays the time history of fluctuating coefficient

of pressure at multiple angular locations along the cylinder surface for the three cases

with available pressure data. The fluctuating coefficient of pressure is calculated by

subtracting the mean from the total coefficient of pressure at each location. This allows

the variation of pressure at multiple angular locations to be easily compared on a common

set of axes, and avoids any errors in the 𝐶𝑝 calculation for the experimental case. The

vertical dash-dot line in each figure indicates the time at which the Lagrangian saddle,

and therefore the vortex, begins to shed from the cylinder. As the angular location

increases from the region near the upstream stagnation point (0°) the magnitude of the

pressure fluctuations increases, with the peak fluctuation magnitude at the region just

upstream of the mean separation location in each case. The mean separation location
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(𝜃𝑠) is 115° for the 𝑅𝑒 = 150 case, 94° for the 𝑅𝑒 = 400 case, and about 85° for the

𝑅𝑒 = 19, 000 case. The peak fluctuations occurred at 100°, 80°, and 75°, respectively.

These large fluctuations are due to the von Kármán vortices, and are the justification for

installing the phase-averaging pressure taps in this location in the experiments.

In the 𝑅𝑒 = 150 and 𝑅𝑒 = 400 cases, the pressure upstream of the mean separation

locations reaches its minimum after the shedding time of the vortex for angular locations

much lower than the mean separation location. For an angular location approximately

15° upstream of the mean separation location there is a minimum in pressure as the

Lagrangian saddle begins to shed. Angular locations further along the cylinder surface

from this point reach their pressure minimum at a time earlier than the vortex shedding

time. This relationship implies that these regions could be targeted with pressure taps to

inform closed-loop flow control applications on the behavior of the von Kármán vortices.

The region just upstream of the von Kármán vortices has a large, consistent signal from

the von Kármán vortices and can be relied on to provide useful information for flow

control.

The 𝑅𝑒 = 19, 000 case yields a slightly different result. While the trend of the

minimum pressure value occurring at earlier times in the period as angular location

increases still holds, the location 15° upstream of the mean separation location no longer

has a minimum in pressure at the time of vortex shedding. The mean separation location

for this case is near 85°, so the 75° pressure tap was expected to have its minimum in

pressure very close to the vortex shedding time. While this is only 10° upstream of the

mean separation location, it is the location closest to 15° that was available. Instead, the

75° location has a minimum in pressure 0.1𝑇 earlier than the vortex shedding time.

There are a number of small errors, as well as some physical differences in the flow

field that likely contributed to this discrepancy. There is always finite error in the velocity

fields acquired from PIV, although the FTLE calculation is relatively insensitive to these,

as explained in section 3.1.3. There may be some phase-averaging inaccuracies due

to using a pressure tap that is offset from the PIV plane for phase averaging. While

this offset is constant for both the pressure and PIV data, there may be some phase-

averaging errors due to a non-constant phase shift along the span. There are also some
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(a) 𝑅𝑒 = 150, numerical. 𝜃𝑠 = 115°.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Non-dimensional time [t/T]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

F
lu

ct
ua

tin
g 

C
p

20o

40o

60o

80o

100o

(b) 𝑅𝑒 = 400, numerical. 𝜃𝑠 = 94°.
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(c) 𝑅𝑒 = 19, 000, experimental. 𝜃𝑠 = 85°.

Figure 4-21: Fluctuating 𝐶𝑝 for a range of 𝜃.
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physical changes in the flow between the 𝑅𝑒 = 400 case and the 𝑅𝑒 = 19, 000 case. In

the 𝑅𝑒 = 19, 000 case there are three-dimensional structures in the flow on the scale

of the shear layer vortices, and the von Kármán vortices are not shedding parallel to

the cylinder. While much of this is averaged out by the phase-averaging process, the

combination of the three-dimensional effects and the phase-averaging inaccuracies due to

the non-constant phase lag between the PIV measurement plane and the pressure signal

measurement location for phase-averaging are the likely culprits of this finite lag time

between the minimum pressure time at the 75° location and the vortex shedding time.

More extensive testing at a variety of Reynolds numbers with a modified geometry would

be required to conclusively determine the reason for the difference between the cases.
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Chapter 5

Concluding Remarks

The locations of Lagrangian saddles found from finite-time Lyapunov exponent (FTLE)

fields were used to determine an objective vortex shedding time for circular cylinder

wakes. The FTLE field calculation used both experimentally and numerically generated

velocity fields over a range of Reynolds numbers from 150 to 19,000. The vortex shedding

time was compared to the cylinder lift, vortex circulation, and cylinder static pressure

distribution to determine the best method for detecting this vortex shedding time using

widely available sensors.

5.1 Conclusions

An investigation into the flow around a circular cylinder using both numerically and

experimentally generated velocity data found that the FTLE field yielded new insight into

the dynamics of the von Kármán vortices shed in the near-wake region. While traditional

Eulerian techniques, such as the 𝑄 criterion, have proven useful for locating vortex cores

in a range of two-dimensional and three-dimensional flow fields, the Lagrangian FTLE

objectively locates transport boundaries in the flow field, yielding new insight on the

changes in the structure of the flow field as the von Kármán vortices form and shed in

the cylinder wake. An FTLE analysis allowed for the identification of fluid packets being

entrained into a forming vortex, and the conditions under which the upper and lower

portions of the cylinder wake remain distinct from one another, even several diameters
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downstream. Lagrangian saddles were located from the intersections of positive-time and

negative-time FTLE ridges, and tracking their location determined that a Lagrangian

saddle accelerates away from the cylinder surface at the shedding time of the associated

vortex. This shedding time was compared with the shedding time determined by the force

history and the vortex circulation. The force history agreed well with the Lagrangian

saddle shedding time in the numerical cases, as a maximum in lift force occurred at or very

near the vortex shedding time found by the Lagrangian saddle. The vortex circulation

maxima occurred at times that did not correspond to the vortex shedding time, instead

the maximum circulation values occurred significantly later in the shedding process.

While the Lagrangian saddle dynamics elucidate the physical dynamics of vortex

trajectories, they cannot directly be determined in real-time. To address this, the time-

resolved static pressure distribution on a circular cylinder was used to find a relationship

between the pressure on the cylinder surface and the behavior of the Lagrangian saddles.

Across two-dimensional and three-dimensional simulation data, the surface static pressure

15° upstream of the mean separation point was found to reach its minimum just as the

vortex was shed from the cylinder, indicated by the Lagrangian saddle beginning to

accelerate away from the cylinder surface. A similar relationship was found from two-

dimensional results generated experimentally, but the minimum in pressure occurred

0.1𝑇 earlier than the vortex shedding time found by the Lagrangian saddle, and was

measured at a location 10° upstream of the mean separation location. This relationship

makes possible the detection of vortex shedding, described objectively by the Lagrangian

saddle motion, simply using common sensors at or around a particular angular location.

Some current closed-loop flow control methods already use pressure to inform control

algorithms, but the minimum in pressure at a specific location has not been previously

linked to an objective vortex shedding time, which is realizable by tracking the Lagrangian

saddle found from intersections of FTLE ridges. Data acquired from a few specifically

placed pressure sensors could then be used to inform closed-loop flow control around

bluff bodies, deploy high-lift devices to prevent stall, or to inform fuel injection levels in

a mixing application.

92



5.2 Recommendations for Future Work

While the current body of work determined a method to detect the location and evo-

lution of von Kármán vortices in the wake of a circular cylinder, there is still further

understanding that could be gained from the continuation of this research. There is still

uncertainty about the lag between the pressure minimum and the vortex shedding time

in the experimental results. Is it a physical change due to the increase in Reynolds num-

ber, or is it merely caused by an accumulation of experimental errors? Further work to

improve the phase-averaging algorithm could help reduce these experimental errors, but

another study using sensors with higher sensitivity at a range of other Reynolds number

would be necessary to truly determine if the lag was physical. Another method that could

help reduce the errors from the current analysis procedure would be to use a PIV system

with a higher resolution in both space and time. A higher temporal resolution, greater

than about 12 Hz, would allow for the abandonment of the phase-averaging scheme en-

tirely, and allow for the FTLE fields to be calculated directly from time-resolved PIV

velocity fields. An increase in spatial resolution would also improve the FTLE fields,

as it would allow for more accurate flow map calculations, as well as further refinement

of the cylinder boundary, and the velocities close to the wall. Pressure sensors with a

higher sensitivity are not available for measurements in water, but measurements could

be conducted in a low-speed wind tunnel, allowing for the application of a larger variety

of pressure transducers, including smaller transducers that would allow for an increased

angular resolution in the pressure distribution. This could also open up a different range

of Reynolds numbers that could be used to further verify the current results. Additional

numerical studies at Reynolds numbers closer to the experimental Reynolds numbers

could also help answer the question about the finite lag between the minimum pressure

upstream of the mean separation location and the time of vortex shedding found by

the Lagrangian saddle. Numerical simulations at Reynolds numbers on the order of a

few thousand require a highly resolved three-dimensional grid to capture the small-scale

turbulent fluctuations, resulting in a long computation time, so our collaborators were

unable to provide us with simulation data near the experimental Reynolds numbers.
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The next steps in the current research would be to integrate the current results into

a closed-loop flow control system. The first step would be to implement the system in

a numerical simulation to determine effective control strategies using the vortex shed-

ding time and its relationship with the static pressure distribution. Suction and blowing

systems would affect the pressure distribution on the cylinder, and could cause the La-

grangian saddle and associated von Kármán vortex to shed earlier or later, depending

on whether a reduction or enhancement of vortex shedding was desired. These systems

would be most effective at changing the separation location on the cylinder surface, which

could be used to vary the frequency and size of the von Kármán vortices. Ultimately, an

experimental study using numerically-effective techniques would allow the control tech-

niques to be tested across multiple Reynolds numbers to determine if they could improve

upon the current state of the art in flow control.
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Appendix A

PIV Uncertainty

Errors in the exact location of PIV particles can have a significant effect on the velocity

vectors calculated using cross-correlations. These errors can arise from multiple sources,

such as particle image diameter, particle image displacement, background noise, and

flow gradients as discussed in Raffel et al. (2013). In the current analysis, 16× 16 pixel

interrogation areas were used to calculate the instantaneous velocity vector fields, and the

particle image diameter was 2 pixels. Each of the following errors are r.m.s. uncertainties

calculated using the simulation results provided in Chapter 5.5 of Raffel et al. (2013).

The error in the particle location based on the particle image diameter is 0.06 pixels.

The amount of time between each image pair was chosen such that the mean distance

traveled by the PIV particles in the domain was approximately 4 pixels. While Raffel

et al. (2013) does not contain information on a particle displacement errors for a 16× 16

pixel interrogation area, the 4 pixel displacement for a 32×32 pixel interrogation area was

assumed to be the most similar, and the error related to that displacement is 0.02 pixels.

A conservative estimate of the background noise error for a 32 × 32 pixel interrogation

area is 0.03 pixels, assuming that the background noise could be approximated as white

noise with a magnitude 10% or less of the image dynamic range.

The largest source of error in the current results is due to the velocity gradients present

in the flow field. The wakes of bluff bodies experiencing vortex shedding contain regions

with high velocity gradients, with the largest magnitudes present in the separated shear

layer. The maximum velocity difference between two neighboring velocity vectors was
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0.050 m/s in the 𝑅𝑒 = 9, 000 case, and 0.097 m/s in the 𝑅𝑒 = 19, 000 case. The gradients

were calculated to be 0.18 pixels per pixel and 0.24 pixels per pixel, respectively. These

gradients caused errors of 0.6 pixels and 1.0 pixel. In regions outside of the shear layer,

the gradients were significantly lower in both cases, resulting in errors on the order of

0.08 pixels or lower in the rest of the flow field. The total error in pixel location for the

𝑅𝑒 = 9, 000 case was 0.19 pixels in the shear layer, and less than 0.11 pixels in the rest

of the flow field. The particle location error magnitude for the 𝑅𝑒 = 19, 000 case was 1.0

pixel in the shear layer, and 0.11 pixels for the rest of the flow field. When these errors

are divided by the 4 pixel movement of the particles, the velocity vector error for the

𝑅𝑒 = 9, 000 case is 4.8% inside of the shear layer, and 2.8% or lower in the rest of the

flow field. For the 𝑅𝑒 = 19, 000 case, the error in the velocity vector is 25% inside of the

shear layer, and 2.8% or lower in the rest of the velocity field.

While a maximum velocity error of 25% is significant, it is important to consider that

this error is highly localized to the narrow shear layer region in the cylinder wake. Only a

few velocity vectors are subject to an error of this magnitude, and the simulated particles

used in the FTLE calculation would only experience one of these erroneous vectors at one

time in the particle integration, which would not have a large effect on the final particle

location. Another reason this error is not of great concern is that the FTLE ridges in the

shear layers are nearly parallel to the freestream flow. Since the largest velocity gradients

are in the freestream component of velocity, the large errors would also be isolated to

that component, making it nearly impossible for an error to be large enough to “push”

one of the FTLE particles across the FTLE ridge into a dynamically different region of

the flow, resulting in an incorrect FTLE ridge location.
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Appendix B

Comparison Between 𝑅𝑒 = 9, 000 and

𝑅𝑒 = 10, 000 Velocity Data

The wake behind a circular cylinder undergoes minimal changes between 𝑅𝑒 = 9, 000

and 𝑅𝑒 = 10, 000. Mean and phase-averaged vorticity and velocity fields are shown in

this appendix to display the similarities between the two cases. The cylinder diameter

was the same for each case, so the freestream velocity was increased from 151 mm/s to

168 mm/s. The mean vorticity (𝜔), streamwise velocity (𝑢), and transverse velocity (𝑣)

fields are shown in figure B-1. There is an increase in the overall magnitude of streamwise

velocity from 𝑅𝑒 = 9, 000 to 𝑅𝑒 = 10, 000, but the mean vorticity and velocity fields are

nearly identical otherwise.

Phase-averaged vorticity and velocity fields at the same phase are shown in figure B-2.

The overall structure of the flow is similar between the two cases. The formation length,

or distance downstream that the vortices form is slightly lower in the 𝑅𝑒 = 10, 000 case,

which is noticeable in the location the negatively-signed von Kármán vortex is forming

in figures B-2(a) and B-2(b). In the 𝑅𝑒 = 10, 000 case, the von Kármán vortex is slightly

closer to the cylinder as it forms. The difference in formation length over this range of

Reynolds numbers is minimal, and has little effect on the overall wake structure. Other

than the slight change in vortex location due to the decreased formation length, the

vorticity and velocity fields are nearly identical, and the Lagrangian saddle behavior is

assumed to be approximately the same.
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(f) 𝑅𝑒 = 10, 000 mean 𝑣.

Figure B-1: Mean spanwise vorticity (𝜔), streamwise velocity (𝑢), and transverse velocity
(𝑣) contours for 𝑅𝑒 = 9, 000 (left) and 𝑅𝑒 = 10, 000 (right).
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(e) 𝑅𝑒 = 9, 000 phase-averaged 𝑣.
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(f) 𝑅𝑒 = 10, 000 phase-averaged 𝑣.

Figure B-2: Phase-averaged vorticity (𝜔), streamwise velocity (𝑢), and transverse velocity
(𝑣) contours for 𝑅𝑒 = 9, 000 (left) and 𝑅𝑒 = 10, 000 (right).
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Appendix C

Code Used

MATLAB and Fortran 90 were used extensively for the calculation of FTLE fields, phase-

averaging, velocity field stitching, and analysis of the resulting data. Fieldview was used

to generate wake visualization images. All codes used are available on http://greenfluids.syr.edu/,

and a list of the files and a short description for each is included below.

C.1 Fortran 90 codes

General codes

1. intprog.f90: Top-level code to integrate trajectories and calculate FTLE fields.

2. grid.f90: Read in input parameters and set up FTLE grid.

3. inout.f90: All input and output subroutines.

4. ftlecalc.f90: Particle integration, FTLE calculation, and velocity field interpolation.

5. Makefile: File used to compile all modules at once.

6. ftle.inp: Input parameters, usually located in a subfolder.

𝑅𝑒 = 150 specific codes

1. dataconvert.f90: Converts data from 2D structured cylindrical grid to a 2D struc-

tured rectangular grid.
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𝑅𝑒 = 400 specific codes

1. dataconvert.f90: Organizes connectivity data from Tecplot for interpolation.

2. zonebin.f90: Organizes cells from numerical simulation into “zones” based on their

spatial location in the 3D unstructured grid.

3. interpset.f90: Determines interpolation constants for the 3D unstructured grid.

4. velinterp.f90: Interpolates velocity files from 3D unstructured grid onto 3D struc-

tured rectangular grid.

C.2 MATLAB codes

General codes

1. avgu_new.m: Calculates mean 𝑢 and 𝑣 velocity and standard deviation. Plots 𝑢,

𝑣, and vorticity.

2. saddlefind_ftle.m: Visualizes pFTLE+nFTLE field for locating Lagrangian saddles

at the intersection of ridges.

3. saddleanalysis_ExpNum.m: Contains Lagrangian saddle locations for all cases.

Plots Lagrangian saddle traces.

𝑅𝑒 = 150 specific codes

1. ForceCalc.m: Calculates coefficients of lift and drag over a period of pressure data.

Plots 𝐶𝐿 and 𝐶𝐷.

2. SaddlePressureCorrelation.m: Calculates mean, instantaneous, and fluctuating co-

efficient of pressure distributions. Plots the above distributions.

3. CirculationCalc.m: Calculates circulation for two different vortex areas. Plots cir-

culation results.
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4. saddle_traj_plots_good.m: Reads in trajectories from FTLE code (fortran) and

colors them in the vicinity of the saddle point. Plots the particle evolution in the

vicinity of a Lagrangian saddle.

𝑅𝑒 = 400 specific codes

1. velconvert.m: Reads in wake data from numerical simulation, and converts it to

ASCII velocity data.

2. PressureAnalysis.m: Calculates mean and fluctuating coefficient of pressure distri-

butions, and lift and drag coefficients. Plots the above distributions and values.

3. saddleanalysis.m: Contains Lagrangian saddle locations along a portion of the span

for 3D FTLE, and saddle locations for 1 constrained FTLE plane. Plots saddle

traces.

𝑅𝑒 = 9, 000 specific codes

1. PhaseAnglePlot.m: Generates phase angle plot for comparison between POD and

pressure phase-averaging techniques.

2. PressureAnalysis_wcalibration.m: Determines calibration curve. Calculates aver-

age power spectral density, and Wiener filter. Filters the pressure data to remove

noise. Plots calibration curve, power spectral density, and filtered data example.

3. PIVtriggerPull_Re09k.m: Reads in filtered pressure data and PIV trigger voltage

signal. Determines phase angle of each velocity field and phase-averages data.

4. PODanalysis09k.m: Uses proper orthogonal decomposition to determine phase an-

gle and phase-averages data.

5. cyl_windowstitching_wlinfit_1_2015.m: Reads in two PIV generated velocity

fields and stitches them together.

6. cylUSwDS_Press_windowstitching_11_2014.m: Stitches together windows from

different downstream locations that were previously stitched with
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cyl_windowstitching_wlinfit_1_2015.m code. This is for data phase-averaged

with pressure signal.

7. cyl_windowstitchingUSDS_wlinfit_1_2015.m: Stitches together windows from

different downstream locations that were previously stitched with

cyl_windowstitching_wlinfit_1_2015.m code. This is for data phase-averaged

with POD.

8. TurbIntensityCalc.m: Adapted from avgu_new.m code to also calculate turbulence

intensity from freestream data.

𝑅𝑒 = 19, 000 specific codes

1. CalConstants.m: Calculates calibration constants for six simultaneously sampled

channels.

2. PressureFilteringRe19k.m: Using Wiener filter to reduce noise in the pressure sig-

nal. Plots power spectral density plot and noise reduction example.

3. PressPhaseAveraging_Re19k.m: Phase averages velocity data using pressure signal.

Plots phase angle plot.

4. PressSignalPhaseAveraging_Re19k_new.m: Calculates mean and fluctuating co-

efficient of pressure distributions. Plots the distributions and the phase angles.

Also plots radial coefficient of pressure versus spatial location of Lagrangian saddle

plots.

5. cyl_stitching_USp30_10_2016.m: Stitches upstream window of velocity data from

PIV.

6. cyl_stitching_DS1_10_2016.m: Stitches first downstream window of velocity data

from PIV.

7. cyl_stitching_DS2_10_2016.m: Stitches second downstream window of velocity

data from PIV.
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8. cyl_stitching_USp30toDS1_10_2016.m: Stitches upstream and first downstream

stitched velocity fields together after phase-averaging.

9. cyl_stitching_USp30andDS1toDS2_10_2016.m: Stitches the second downstream

phase-averaged velocity fields with the rest of the domain.

C.3 Fieldview code

General code

1. ImageGen_Close.fvx Uses a formatting restart file to generate images with the

same formatting for a number of data files.
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