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ABSTRACT

We are living in an increasingly networked world with sensing networks of varying shapes and

sizes: the network often comprises of several tiny devices (or nodes) communicating with each

other via different topologies. To make the problem even more complicated, the nodes in the

network can be unreliable due to a variety of reasons: noise, faults and attacks, thus, providing

corrupted data. Although the area of statistical inference has been an active area of research in the

past, distributed learning and inference in a networked setup with potentially unreliable compo-

nents has only gained attention recently. The emergence of big and dirty data era demands new

distributed learning and inference solutions to tackle the problem of inference with corrupted data.

Distributed inference networks (DINs) consist of a group of networked entities which acquire

observations regarding a phenomenon of interest (POI), collaborate with other entities in the net-

work by sharing their inference via different topologies to make a global inference. The central

goal of this thesis is to analyze the effect of corrupted (or falsified) data on the inference per-

formance of DINs and design robust strategies to ensure reliable overall performance for several

practical network architectures. Specifically, the inference (or learning) process can be that of de-

tection or estimation or classification, and the topology of the system can be parallel, hierarchical

or fully decentralized (peer to peer).

Note that, the corrupted data model may seem similar to the scenario where local decisions

are transmitted over a Binary Symmetric Channel (BSC) with a certain cross over probability,

however, there are fundamental differences. Over the last three decades, research community

has extensively studied the impact of transmission channels or faults on the distributed detection

system and related problems due to its importance in several applications. However, corrupted

(Byzantine) data models considered in this thesis, are philosophically different from the BSC or

the faulty sensor cases. Byzantines are intentional and intelligent, therefore, they can optimize

over the data corruption parameters. Thus, in contrast to channel aware detection, both the FC and



the Byzantines can optimize their utility by choosing their actions based on the knowledge of their

opponent’s behavior. Study of these practically motivated scenarios in the presence of Byzantines

is of utmost importance, and is missing from the channel aware detection and fault tolerant detec-

tion literature. This thesis advances the distributed inference literature by providing fundamental

limits of distributed inference with Byzantine data and provides optimal counter-measures (using

the insights provided by these fundamental limits) from a network designer’s perspective. Note

that, the analysis of problems related to strategical interaction between Byzantines and network

designed is very challenging (NP-hard is many cases). However, we show that by utilizing the

properties of the network architecture, efficient solutions can be obtained. Specifically, we found

that several problems related to the design of optimal counter-measures in the inference context

are, in fact, special cases of these NP-hard problems which can be solved in polynomial time.

First, we consider the problem of distributed Bayesian detection in the presence of data falsifi-

cation (or Byzantine) attacks in the parallel topology. Byzantines considered in this thesis are those

nodes that are compromised and reprogrammed by an adversary to transmit false information to

a centralized fusion center (FC) to degrade detection performance. We show that above a certain

fraction of Byzantine attackers in the network, the detection scheme becomes completely inca-

pable (or blind) of utilizing the sensor data for detection. When the fraction of Byzantines is not

sufficient to blind the FC, we also provide closed form expressions for the optimal attacking strate-

gies for the Byzantines that most degrade the detection performance. Optimal attacking strategies

in certain cases have the minimax property and, therefore, the knowledge of these strategies has

practical significance and can be used to implement a robust detector at the FC.

In several practical situations, parallel topology cannot be implemented due to limiting factors,

such as, the FC being outside the communication range of the nodes and limited energy budget of

the nodes. In such scenarios, a multi-hop network is employed, where nodes are organized hierar-

chically into multiple levels (tree networks). Next, we study the problem of distributed inference

in tree topologies in the presence of Byzantines under several practical scenarios. We analytically

characterize the effect of Byzantines on the inference performance of the system. We also look at



the possible counter-measures from the FC’s perspective to protect the network from these Byzan-

tines. These counter-measures are of two kinds: Byzantine identification schemes and Byzantine

tolerant schemes. Using learning based techniques, Byzantine identification schemes are designed

that learn the identity of Byzantines in the network and use this information to improve system

performance. For scenarios where this is not possible, Byzantine tolerant schemes, which use

game theory and error-correcting codes, are developed that tolerate the effect of Byzantines while

maintaining a reasonably good inference performance in the network.

Going a step further, we also consider scenarios where a centralized FC is not available. In

such scenarios, a solution is to employ detection approaches which are based on fully distributed

consensus algorithms, where all of the nodes exchange information only with their neighbors. For

such networks, we analytically characterize the negative effect of Byzantines on the steady-state

and transient detection performance of conventional consensus-based detection schemes. To avoid

performance deterioration, we propose a distributed weighted average consensus algorithm that is

robust to Byzantine attacks. Next, we exploit the statistical distribution of the nodes’ data to devise

techniques for mitigating the influence of data falsifying Byzantines on the distributed detection

system. Since some parameters of the statistical distribution of the nodes’ data might not be known

a priori, we propose learning based techniques to enable an adaptive design of the local fusion or

update rules.

The above considerations highlight the negative effect of the corrupted data on the inference

performance. However, it is possible for a system designer to utilize the corrupted data for net-

work’s benefit. Finally, we consider the problem of detecting a high dimensional signal based on

compressed measurements with secrecy guarantees. We consider a scenario where the network

operates in the presence of an eavesdropper who wants to discover the state of the nature being

monitored by the system. To keep the data secret from the eavesdropper, we propose to use coop-

erating trustworthy nodes that assist the FC by injecting corrupted data in the system to deceive the

eavesdropper. We also design the system by determining the optimal values of parameters which

maximize the detection performance at the FC while ensuring perfect secrecy at the eavesdropper.
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CHAPTER 1

INTRODUCTION

1.1 Distributed Inference Networks

Distributed inference networks (DINs) have attracted much recent attention due to a variety of

applications in civilian and military domains. These include distributed spectrum sensing (DSS),

traffic and environment monitoring, medical monitoring, power networks, localization and surveil-

lance, etc. DINs employ a group of spatially distributed sensing entities that collaborate to sense

and make inferences about a given phenomenon of interest (POI). In the traditional framework of

centralized inference networks, nodes transmit raw observations to a fusion center (FC) where a

global inference is made. These transmissions are not attractive in practice as raw observations re-

quire a large bandwidth (or energy) for reliable reception at the FC. Therefore, in DINs, the nodes

transmit compressed summaries which are obtained by processing original observations (e.g., us-

ing a quantizer or other “transmission function”) prior to transmission to the FC. The FC uses a

fusion rule to integrate the received information/data to make a global inference about the POI.
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1.2 Motivation

In DINs, a large number of inexpensive and less reliable nodes that can provide dense coverage are

used to provide a balance between cost and functionality. The inference performance of such sys-

tems strongly depends on the reliability of nodes in the network. Further, the distributed nature of

such systems makes them quite vulnerable to different types of attacks. Designing robust inference

systems against attacks is of utmost importance. While there are several practical challenges one

faces while inferring based on observations/information from multiple nodes in DINs, this thesis

focuses on the class of challenges associated with the presence of corrupted information. We focus

on the causes of corrupted data from the nodes and, without any loss of generality, refer to such

nodes as adversaries. These causes can be divided into three types: 1) channel noise, 2) faulty

sensors, and 3) malicious attackers. The major focus of this thesis is on the cause (3) where an

adversary intentionally injects corrupted data to degrade the inference performance of the system.

In recent years, security issues of such distributed networks are increasingly being studied

within the networking, signal processing and information theory communities. In general, there

are two kinds of attacks in an inference network: 1) active attacks, and 2) passive attacks. An active

attack is a network exploit in which an adversary attempts to make changes to data to degrade the

system performance. On the other hand, in passive attacks, an unauthorized party monitors the

network and sometimes observes the transmission of the authorized nodes. The purpose of such

eavesdroppers is to gain information about the POI without modifying any data. Note that, passive

attacks are often activities in preparation for active attacks.

One typical active attack on distributed inference networks is a Byzantine attack. While Byzan-

tine attacks (originally proposed by [58]) may, in general, refer to many types of malicious behav-

ior, our focus in this thesis is on data corruption attacks. In this type of attack, an attacker may

send corrupt (erroneous) data to the FC to degrade inference performance. In this thesis, we refer to

such a data corruption attacker as a Byzantine and the data thus generated is referred to as Byzan-

tine data. As an application to distributed detection with Byzantine data, consider the problem of

distributed spectrum sensing when some participants attack a cognitive radio network (CRN) by
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sending falsified data to the FC. In this context, Byzantine nodes can affect decisions at the FC

by reporting false data. This might result in a collision of secondary users with the primary user

(PU) (if a busy PU is wrongly detected as idle) or in spectrum wastage (if an idle PU is detected as

busy). For distributed estimation, consider the impact of Byzantine data on the state estimation in

power grids. Here an adversary may take control of some of the meters and launch a man-in-the-

middle (MiM) attack by substituting actual measurements with falsified data. If undetected, state

estimates at the FC will be altered and subsequent decisions using state estimates are affected.

Similarly, a typical passive attack on DINs is an eavesdropping attack. The motive of an eaves-

dropper (Eve) is to compromise the secrecy of a given inference network. For instance, some of

the nodes within a cognitive radio network (CRN) may take advantage of the FC’s inferences and

may compete against the CRN in using the primary user’s channels without paying any partici-

pation costs to the network moderator. Although the presence of malicious nodes is the focus of

this thesis, there are other related security challenges such as jamming and Sybil attacks that are

relevant to the problems considered in this thesis but are not considered here.

1.3 Literature Survey

Detection, classification, or estimation of certain events, targets, or phenomena, in a region of

interest, is an important application of inference networks. In a conventional parallel topology

framework, the objective is usually to find efficient quantization rules for the nodes and efficient

inference rule for the FC, which maximize the global performance at the FC (for a comprehensive

survey, see [105] and references therein). Several aspects of such a framework are studied [105]:

network topology, decision rules, effect of wireless channels, effect of spatio-temporal dependence,

etc. Most of the initial work focused on the design of local sensor decision rules and optimal fu-

sion rule at the FC [9, 17, 52, 57, 65, 100, 104, 110, 113, 115]. The advancement of wireless sensor

networks (WSNs) renewed interest in this area along with new research challenges: wireless chan-

nels [13, 15], network topologies [2, 96], sensor resource management [4, 5, 43, 83], correlated
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observations [12, 24, 41, 95], etc. The effect of wireless channels can be addressed by analyz-

ing the system under the channel-aware formulation [15, 76]. Note that, in general, the problem

of designing optimal inference rules is computationally expensive (NP-hard) [102]. However, in

a distributed detection framework, under the assumption of conditional independence, the opti-

mal decision rule for each node takes the form of a likelihood ratio test with a suitably chosen

threshold [14]. Further, it has been shown that the use of identical thresholds is asymptotically

optimal [103]. Under the assumption of identical thresholds, several authors have considered the

problem of designing optimal decision rules in the past [92, 125].

In contrast to the distributed detection problem, in a classification problem, each decision is

usually represented by log2M information bits, where M is the number of classes to be distin-

guished. The problem of classification using log2M information bits has been studied for parallel

topology [6]. Due to bandwidth constraints, it is desirable that the local node decisions are sent

to the FC with as few bits as possible. To overcome this problem, distributed classification has

been proposed in which the local nodes make 1-bit (rather than log2M bit) local decisions and

send them to the FC [117, 126, 129]. The FC then uses the local decisions collectively and makes

a global inference about the underlying phenomenon.

In [39, 90], the authors consider the problem of parameter estimation in a parallel topology.

Received signal strength based methods have been proposed which employ least-squares or max-

imum likelihood (ML) based parameter estimation techniques. These techniques are not suitable

for power and bandwidth constrained networks. To overcome these drawbacks, distributed pa-

rameter estimation using quantized measurements has been addressed in [73, 86, 87]. Similar

to the problem of distributed detection, system design issues of distributed estimation have also

been addressed only in certain scenarios, such as in [109], where it has been shown that identical

quantizers are optimal under certain conditions. In [107], coding theory based iterative schemes

were proposed for target localization using a parallel topology where at every iteration, the FC

solves an M -ary hypothesis testing problem and decides the region of interest for the next iter-

ation. There also have been limited attempts to address distributed inference problems in tree
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networks [30, 47, 48, 99, 128]. In all but the simplest cases, optimal strategies in tree based net-

works are difficult to derive. Most of the work on tree networks focuses on person-by-person

optimal (PBPO) strategies [47, 48, 99, 128].

While there is vast literature on distributed inference, work reported on distributed inference

with Byzantine data is still limited, and is the focus of this thesis. This research problem is moti-

vated from the popular Byzantine generals problem [58] as discussed next.

1.3.1 Byzantine Generals Problem

In 1982, Lamport et al. presented the so-called Byzantine generals problem as follows [58]: “a

group of generals of the Byzantine army camped with their troops around an enemy city. Com-

municating only by messengers, the generals must agree upon a common battle plan. However,

one or more of them may be traitors who will try to mislead the others. The problem is to find

an algorithm to ensure that the loyal generals will reach agreement.” This problem is similar in

principle to the problem considered in this thesis. The authors [58] gave a sharp characterization

of the power of the Byzantine generals. It was shown that if the fraction of Byzantine generals is

less than 1/3, there is a way for the loyal generals to reach a consensus agreement, regardless of

what the Byzantine generals do. If the fraction is above 1/3, consensus can no longer be guaran-

teed. There are many diverse behaviors that a Byzantine entity may engage in, such as a sensor

may lie about connectivity, flood network with false traffic, attempt to subjugate control informa-

tion, falsely describe opinions of another node (e.g., peer to peer), or capture a strategic subset of

devices and collude.

Next, we review the Byzantine generals problem in the context of distributed inference in

different topologies [112]. Researchers have typically focused on two basic parts of this problem.

In the first set of works, the problem is analyzed from the attacker’s perspective and optimal attack

strategies are derived that result in deterioration of the network’s performance [49, 51, 66, 70, 85,

111]. They have modeled the potential attack strategies and optimized over the attack space to

determine the optimal attack by the adversary. The second set of works focused on analysis from
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the network’s perspective to determine the counter-attack strategies to protect the network from

these Byzantine attacks [19, 32, 37, 85, 106, 111].

1.3.2 Distributed Inference with Byzantines in Parallel Topologies

Although distributed detection has been a very active field of research in the past, security problems

in distributed detection networks have gained attention only very recently. In [66], the authors con-

sidered the problem of distributed detection in the presence of Byzantines for a parallel topology

under the Neyman-Pearson (NP) setup and determined the optimal attacking strategy which mini-

mizes the detection error exponent. This approach based on Kullback-Leibler divergence (KLD) is

analytically tractable and yields approximate results in non-asymptotic cases. They also assumed

that the Byzantines know the true hypothesis, which obviously is not satisfied in practice but does

provide a bound. In [85], the authors analyzed the same problem in the context of collaborative

spectrum sensing under Byzantine Attacks. They relaxed the assumption of perfect knowledge of

the hypotheses by assuming that the Byzantines determine the knowledge about the true hypothe-

ses from their own sensing observations. Schemes for Byzantine node identification in parallel

topology have been proposed in [19, 85, 93, 106].

Note that, the Byzantine attack model is similar to the scenario where local decisions are trans-

mitted over a Binary Symmetric Channel (BSC) with a certain cross over probability. There are

several papers that address the impact of transmission channels or faults on the distributed detec-

tion system and related problems [15,22,64,116]. However, Byzantine attacks are philosophically

different from the BSC or the faulty sensor case. Byzantine attacks are intentional and, therefore,

the attacker can optimize over the attack parameters. Thus, in contrast to channel aware detec-

tion, both the FC and the Byzantines can optimize their utility by choosing their actions based on

the knowledge of their opponent’s behavior. Study of these practically motivated scenarios in the

presence of Byzantines is missing from the channel aware detection and fault tolerant detection

literature because of the philosophical difference between these approaches.

All the approaches discussed so far consider distributed detection with Byzantines in an NP
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setup for parallel topologies. To the best of our knowledge, the problem of distributed Bayesian

detection with Byzantines has not been considered in the past. Further, the problem of distributed

inference in tree networks with Byzantines has not received any attention. Due to the complexity

of inference in tree networks as compared to the parallel topology, these problems have been

left unexplored by researchers. In this thesis, we take some first steps toward addressing these

problems.

1.3.3 Distributed Inference with Byzantines in Decentralized Topolo-

gies

Thus far, research on detection in the presence of Byzantine attacks has predominantly focused

on addressing these attacks under the centralized model in which information is available at the

FC [66, 69, 85, 106]. A few attempts have been made to address the security threats in “average”

consensus-based detection schemes in recent research [59, 62, 97, 121–123]. Most of these ex-

isting works on countering Byzantine or data falsification attacks in distributed networks rely on

a threshold for detecting Byzantines. The main idea is to exclude nodes from the neighbors list

whose state information deviates significantly from the mean value. In [123] and [121], two dif-

ferent defense schemes against data falsification attacks for distributed consensus-based detection

were proposed. In [123], the scheme eliminates the state value with the largest deviation from the

local mean at each iteration step and, therefore, it can only deal with the situation in which only

one Byzantine node exists. Note that, it excludes one state value even if there is no Byzantine node.

In [121], the vulnerability of distributed consensus-based spectrum sensing was analyzed and an

outlier detection algorithm with an adaptive threshold was proposed. The authors in [62] proposed

a Byzantine mitigation technique based on adaptive local thresholds. This scheme mitigates the

misbehavior of Byzantine nodes and tolerates the occasional large deviation introduced by honest

users. It adaptively reduces the corresponding coefficients so that the Byzantines are eventually

isolated from the network.

Excluding the Byzantine nodes from the fusion process may not be the best strategy from the
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network’s perspective. As shown in [106] in the context of distributed detection with one-bit mea-

surements under a centralized model with an FC, an intelligent way to improve the performance of

the network is to use the information of the identified Byzantines to the network’s benefit. More

specifically, learning-based techniques have the potential to outperform the existing exclusion-

based techniques. In this thesis, we pursue such a design philosophy in the context of raw data

fusion in decentralized networks based on weighted average consensus algorithms. Byzantines can

attack weighted average consensus algorithms in two ways: 1) nodes falsify their initial data, and

2) nodes falsify their weight values. To the best of our knowledge, the susceptibility and protection

of weighted average consensus-based detection schemes has not been considered in the literature.

In this thesis, we take some first steps toward addressing the problem of robust consensus-based

detection in the presence of Byzantine attacks.

1.4 Research Methodology

Analysis of networked inference systems is much more challenging compared to classical infer-

ence systems which ignore how the data is generated. In a distributed inference network both the

adversary and the FC have several degrees of freedom which makes the problem complicated. In

this thesis, we study the problem of distributed inference with Byzantine data from both attacker’s

and network designer’s perspective. Note that, finding the optimal attacking strategies is the first

step toward designing a robust distributed detection system in a holistic manner.

1.4.1 Analysis from Adversary’s Perspective

From Byzantines’ perspective, one problem of interest is to characterize the degree to which they

can affect the inference performance of DINs. We are interested in the minimum fraction of Byzan-

tine nodes that make the detection no better than merely based on prior information without using

any data referred to as blinding the network. We refer to the fraction of Byzantines in the network

as the attack power of the Byzantines and minimum power to blind the FC as critical power. Some



9

important questions from a Byzantines’ perspective to answer are:

• How does network topology affect this critical power? In other words, which network archi-

tectures are more susceptible to Byzantine attacks?

• Can we analytically characterize the critical power in different networks?

• If the power of the adversary is less than this critical value, what should be the optimal

attacking strategy of the adversary?

• Further, in a heterogeneous inference network, which resources/nodes should a cost con-

strained adversary attack to maximize its profit?

While these questions are difficult to answer in general, some insights can be obtained by

utilizing tools from hypothesis testing, game theory, information theory, and machine learning.

1.4.2 Analysis from Network Designer’s Perspective

The previous discussion addresses the issue of inference from corrupted data from the adversary’s

perspective. However, one needs to look at the possible countermeasures from the network de-

signer’s perspective to protect the network from these Byzantines. We follow the methodology

suggested by Claude Shannon in his unpublished manuscript of 1956 titled “Reliable Machines

from Unreliable Components” [89] which considers the problem of designing reliable machines

from unreliable components. He suggests that there are typically three methods to improve sys-

tem reliability: 1) improve individual system components, 2) use of error-correction codes, and

3) complete system redesign. As seen later in the thesis, complete redesign corresponds to a total

change in the inference architecture. Problem of optimal network structure design which is robust

to Byzantines is solved in a distributed inference context. System components are improved either

by identifying the local malicious nodes and using them for further inference and/or improving

the performance of global detector by implementing the optimal fusion rule. Although the cause
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of unreliable information is different for faulty sensors and Byzantines, the effect is the same: er-

rors in the data. Therefore, coding-theory ideas are used to correct these errors and improve the

inference performance.

1.5 Outline of the Thesis and Contributions

The central goal of this thesis is to analyze the performance of distributed inference networks

with potentially corrupted data and design strategies to ensure reliable inference performance for

several practical network topologies. The inference process can involve detection or estimation or

classification, and the topology of the system can be parallel, hierarchical or fully decentralized

(peer to peer). The thesis is divided in two parts. In the first part, we study the negative effect of

corrupted data on inference performance and propose some counter-measures. In the second part

of the thesis, we show the positive effect of the friendly data corruption on secrecy performance

of the system. We design schemes to intelligently use the corrupted data to improve the secrecy

performance of DINs.

An overview of the general model is provided in Chapter 2; literature review and background

material needed for the later chapters of the thesis is also presented. In the first part of the thesis,

we study the problem of distributed inference with corrupted data for different topologies such

as parallel topology (Chapter 3), tree topology (Chapters 4, 5 and 6), and peer to peer topology

(Chapter 7). Next, in the second part of the thesis, we look into the positive effect of corrupted

data on the secrecy performance of inference networks in Chapter 8. For each of these chapters,

we follow the research methodology described in Sec. 1.4. First, we study the effect of corrupted

data on inference performance to determine their impact on the overall performance of the system.

Then, using these insights, we propose efficient counter-measures and design robust inference

systems by 1) learning and using Byzantines’ parameters, 2) using error-correction codes, and 3)

redesigning network architecture. Finally, the thesis is concluded in Chapter 9 with a summary of

results presented in this thesis and future research directions.
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Chapter 2: Background

The general system model considered in this thesis is described in Chapter 2 and the taxonomy

corresponding to this generalized model is presented. Literature corresponding to this structure

is reviewed. Some specific tools used in the development of this thesis are also discussed in this

chapter.

Chapter 3: Distributed Detection with Byzantine Data: Parallel Topology

In this chapter, we consider the case of a parallel network performing a detection task using binary

quantized data. We consider malicious sensors called Byzantines and investigate the distributed

detection problem under a Bayesian framework. The problem of distributed detection is formulated

as a binary hypothesis test at the FC based on 1-bit data sent by the sensors. The expression for

minimum attacking power required by the Byzantine is derived. We analyze the problem under

different practical scenarios where the FC and the Byzantines may or may not have knowledge of

their opponent’s strategies and derive results for both asymptotic and non-asymptotic cases. It is

found that asymptotics based results do not hold under several non-asymptotic scenarios.

In several practical situations, a parallel topology cannot be implemented due to several factors,

such as, the FC being outside the communication range of the nodes and limited energy budget of

the nodes. In such cases, a multi-hop network is employed, where nodes are organized hierarchi-

cally into multiple levels (tree networks). Next, in this thesis, we study the problem of distributed

inference in tree topologies in the presence of Byzantines under several practical scenarios. We

analytically characterize the effect of Byzantines on the inference performance of the system.

Chapter 4: Distributed Detection with Unlabeled Byzantine Data: Tree Topology

In this chapter, we consider the problem of distributed detection in tree topologies in the presence

of Byzantines. It is assumed that the packet IDs (or source IDs) are not forwarded in the tree

to save energy (unlabeled data). We show that when more than a certain fraction of individual

node decisions are falsified, the decision fusion scheme becomes completely incapable. We also
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look at the possible counter-measures from the FC’s perspective to protect the network from these

Byzantines. We formulate the robust topology design problem as a bi-level program and provide

an efficient algorithm to solve it, which is guaranteed to find an optimal solution, if one exists.

Chapter 5: Distributed Detection with Labeled Byzantine Data: Tree Topology

Similar to Chapter 4, the problem of distributed detection in tree networks in the presence of

Byzantines is considered. However, the assumption of unlabeled data is relaxed, thus, the FC is

aware of the source IDs. In such scenarios, closed form expressions for optimal attacking strate-

gies that minimize the miss detection error exponent at the FC are obtained. Further, we study the

problem of designing optimal distributed detection parameters. Next, we model the strategic inter-

action between the FC and the attacker as a Leader-Follower (Stackelberg) game. This formulation

provides a methodology for predicting attacker and defender (FC) equilibrium strategies, which is

used to implement the optimal detector. Finally, a reputation based scheme to identify Byzantines

is proposed and its performance is analytically evaluated.

Chapter 6: Distributed Inference in the Presence of Faults: Tree Topology

In the framework considered in this chapter, distributed nodes make a 1-bit local decision regarding

a phenomenon before sending it to the FC via intermediate nodes. We propose the use of coding

theory based techniques to solve fault tolerant distributed inference problem in such structures.

Data fusion at nodes as well as at the FC is implemented via error correcting codes. In this context,

we analyze the performance for a given code matrix and also design the optimal code matrices

at every level of the tree. We address the problems of distributed classification and distributed

estimation separately and develop schemes to perform these tasks in tree networks. We show

that the proposed schemes are asymptotically optimal under certain conditions. Fault-tolerance

capability of the scheme is verified using simulation results.

Note that, the detection schemes considered above rely on a centralized FC where a global

decision is made. However, in many scenarios, a FC may not be available. Going a step further,
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we next consider the problem of distributed detection with Byzantines in peer to peer network.

Chapter 7: Distributed Detection with Byzantine Data: Peer to Peer Topology

This chapter considers the problem of signal detection in distributed networks in the presence of

data falsification (Byzantine) attacks in peer to peer networks. Detection approaches considered

in the paper are based on fully distributed consensus algorithms, where all of the nodes exchange

information only with their neighbors in the absence of a fusion center. For such networks, we first

characterize the negative effect of Byzantines on the steady-state and transient detection perfor-

mance of conventional consensus-based detection algorithms. To avoid performance deterioration,

we propose a distributed weighted average consensus algorithm that is robust to Byzantine attacks.

We show that, under reasonable assumptions, the global test statistic for detection can be com-

puted locally at each node using our proposed consensus algorithm. Next, we exploit the statistical

distribution of the nodes’ data to devise techniques for mitigating the influence of data falsifying

Byzantines on the distributed detection system. Since some parameters of the statistical distribu-

tion of the nodes’ data might not be known a priori, we propose learning based techniques to enable

an adaptive design of the local fusion or update rules. Our scheme differs from (and outperforms)

all existing work on Byzantine mitigation that are based on exclusion strategies [62, 97, 121–123],

where the only defense is to identify and exclude the attackers from the consensus process.

Previous chapters highlight the negative effect of corrupted data or data falsification on the

inference performance of the system. However, it is possible for a system designer to utilize the

corrupted data for network’s benefit. Motivated from this fact, in Chapter 8, we study the positive

use of the falsified data to improve the secrecy performance of the system.

Chapter 8: Compressive Detection with an Eavesdropper: Exploiting Corrupted data to Im-

prove Secrecy Performance

In this chapter, we consider the problem of detecting a high dimensional signal based on com-

pressed measurements with physical layer secrecy guarantees. First, we propose a collaborative
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compressive detection (CCD) framework to compensate for the performance loss due to compres-

sion with a single sensor. Next, we consider a scenario where the network operates in the presence

of an eavesdropper who wants to discover the state of nature being monitored by the system. To

keep the data secret from the eavesdropper, we propose to use cooperating trustworthy nodes that

assist the FC by injecting corrupted data to deceive the eavesdropper. Further, we design optimal

measurement matrices to obtain compressed data at distributed nodes so that the detection perfor-

mance of the network is maximized while guaranteeing a certain level of secrecy. We solve the

measurement matrix design problem for three different scenarios: a) the signal is known, b) the

signal lies in a low dimensional subspace, and c) the signal is sparse. We show that the secrecy

performance of the system can be improved by using optimized measurement matrices along with

artificial noise injection based techniques.

Chapter 9: Conclusion

In this chapter, we first recapitulate the main ideas and results presented in the thesis. Then some

directions for extending the thesis are given that are derived from the general formulations of

problems and solution methodologies presented in the thesis.

1.6 Summary of Contributions

Tables 1.1 and 1.2 summarizes the contributions of the thesis. The contributions of the thesis can

be split into two broad parts: 1) derivation of fundamental limits of distributed inference with

Byzantine data in parallel, tree and peer to peer topologies, and 2) design of optimal counter-

measures using the insights provided by these fundamental limits.

Bibliographic Note

Most of the research work appearing in this thesis has either already been published or is in several

stages of publication at various venues. The relationship between these chapters and the publica-
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Table 1.1: Fundamental Limits of Distributed Inference with Byzantine Data

Architecture Degrees of Freedom Blinding Condition Critical Power

Parallel Number of nodes B out of N
B

N
≥ 1

P1,0 + P0,1

1/2

(Unique)

Tree with un-
labeled data

Set {Bk}Kk=1 out of {Nk}Kk=1

K∑
k=1

(
Bk

Nk

∑K
i=kNi

)
≥ N

2

N1

2
∑K

k=1Nk

(Non-unique)

Tree with la-
beled data

Set {Bk}Kk=1 out of {Nk}Kk=1

k∑
j=1

Bj

Nj

≥ 1

2
, ∀k N1

2
∑K

k=1Nk

(Unique)

Peer to Peer Number of nodes B out of N
B

N
≥ ησ2

2∆
1/N

(Non-unique)

Table 1.2: Proposed Byzantine Mitigation Schemes

Architecture System Component
Improvement

Error Correcting Codes System Redesign

Parallel Optimal fusion rule Special case of tree with
depth 1

Joint optimization of fusion
rule and sensor thresholds

Tree Optimal fusion rule Distributed fusion using
ECC

Robust topology design

Reputation based identifi-
cation scheme

Peer to Peer Adaptive fusion rule Not considered Robust consensus protocol for
decentralized fusion

Learning based identifi-
cation scheme
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CHAPTER 2

BACKGROUND

As discussed in the previous chapter, distributed inference has been extensively studied by various

authors over the past few decades. In the context of distributed inference with multiple sensors in

a sensor network, a good survey can be found in [105], and references therein. However, limited

work has focused on the case when these nodes are potentially unreliable and provide corrupt data.

In this chapter, we present a quick background required for this thesis. In Sec. 2.1, we describe the

general system model of the problems addressed in this thesis followed by taxonomy in Sec. 2.2.

Some asymptotic performance metrics for distributed detection used in this thesis are presented in

Sec. 2.3. Some background material is presented in Sec. 2.4 which is helpful in understanding the

schemes proposed in the later chapters.

2.1 General Architecture

The generalized system model followed in this thesis comprises of a group of networked nodes

which acquire observations regarding a phenomenon of interest (POI), collaborate with other nodes

by sharing their local inference via different network topologies to make a global inference. These

nodes can be honest or unreliable. For example, there may be some nodes that are providing

false information. Some nodes can be genuinely interested in providing the right information
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Fig. 2.1: (a) Parallel topology. (b) Tree topology. (c) Decentralized topology.

but due to erroneous sensing provide some unreliable information. Similarly, some nodes could

be imperfect, or even faulty (e.g., stuck-at faults). Nodes are also prone to malicious attacks and

could, therefore, be attacked by an external adversary and re-programmed to send flipped or altered

versions of information. Note that, DINs can be organized in different topologies depending on

the arrangement of nodes and existence of the FC. In most of the practical scenarios, DINs employ

the following topologies

2.1.1 Network Topologies

Parallel Topology

Parallel topology, as depicted in Fig. 2.1(a), comprises of N nodes and a centralized FC. As de-

scribed above, nodes collect the information simultaneously, carry out local processing and trans-

mit the processed data directly to the FC where the final inference is made regarding the POI. Note

that, nodes carry out local computation/processing independently without collaborating with each

other.

Tree or Multi-hop Topology

Tree topology with depth K (greater than 1) comprises of Nk nodes at level k ∈ {1, · · · , K}, and

a FC at the root (or level 0) of the tree (see Fig. 2.1(b)). Observations are acquired and processed

by leaf nodes at Level K and sent to their parent nodes, each of which may fuse all the messages it
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receives with its own measurement (if any) and then forwards the new message to its parent node at

the next level. This process takes place throughout the tree, culminating at the root (or FC) where

the global inference is made. In this way, information from each node is aggregated at the FC sent

via multi-hop paths.

Decentralized or Peer to Peer Topology

In a decentralized (or peer to peer topology), a centralized FC is not available. Network topology

in such scenarios is modeled as a directed graph G(V,E) with |V | = N nodes (see Fig. 2.1(c)).

The set of communication links in the network correspond to the set of edges E, where an edge

exists if and only if there is a communication link between nodes to directly communicate with

each other. In order to reach a global inference, peer-to-peer local information exchange schemes

(e.g., consensus, gossip algorithm and diffusion) are employed where each node communicates

only with its neighbors according to a pre-specified local fusion rule.

2.2 Taxonomy

We discuss some preliminaries for the distributed detection problem which is the major focus of

this thesis.

2.2.1 Distributed Detection

Consider two hypothesesH0 (signal is absent) andH1 (signal is present). Also, consider a network

comprised of a FC and a set of N nodes, which faces the task of determining which of the two

hypotheses is true. The nodes observe the phenomenon, carry out local computations to decide

the presence or absence of the phenomenon, and then send their local decisions to the FC that

yields a final decision after processing the local decisions. Observations at the nodes are assumed

to be conditionally independent and identically distributed given the hypothesis. We consider the

communication channels to be error-free. Next, we describe the modus operandi of the nodes and
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the FC in detail.

2.2.2 Modus Operandi of the Nodes

In this thesis, we consider that observations at the nodes are independent and identically distributed

conditioned on the hypothesis. Based on the observations, each node i makes a one-bit local

decision vi ∈ {0, 1} regarding the absence or presence of the phenomenon using the likelihood

ratio test
p
(1)
Y i (yi)

p
(0)
Y i (yi)

vi=1

≷
vi=0

λ, (2.1)

where λ is the identical threshold1 used at all the sensors and p(k)Y i (yi) is the conditional probability

density function (PDF) of observation yi under the hypothesis Hk. Each node i, after making its

one-bit local decision vi, sends ui ∈ {0, 1} to the FC, where ui = vi if i is a reliable node, but for

an unreliable node i, ui need not be equal to vi. We denote the probabilities of detection and false

alarm of each node i in the network by Pd = P (vi = 1|H1) and Pf = P (vi = 1|H0), respectively,

which hold for both reliable nodes as well as unreliable nodes.

2.2.3 Data Corruption model

In this thesis, we consider a probabilistic model for the data corrupting Byzantines. If a node

is reliable(honest), then it transmits its own decision without altering it. However, a Byzantine

node, in order to undermine the network performance, may alter its decision prior to transmission.

In this thesis, we assume that each Byzantine decides to attack independently relying on its own

observation and decision regarding the presence of the phenomenon. We define the following

strategies PH
j,1, PH

j,0 and PB
j,1, P

B
j,0 (j ∈ {0, 1}) for the honest and Byzantine nodes, respectively:

Honest nodes:

PH
1,1 = 1− PH

0,1 = PH(x = 1|y = 1) = 1 (2.2)

PH
1,0 = 1− PH

0,0 = PH(x = 1|y = 0) = 0 (2.3)

1It has been shown that the use of identical thresholds is asymptotically optimal [14].
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Byzantine nodes:

PB
1,1 = 1− PB

0,1 = PB(x = 1|y = 1) (2.4)

PB
1,0 = 1− PB

0,0 = PB(x = 1|y = 0) (2.5)

where PH(x = a|y = b) (PB(x = a|y = b)) is the probability that an honest (Byzantine) node

sends a to the FC when its actual local decision is b.

2.2.4 Binary Hypothesis Testing at the Fusion Center

There are different hypothesis testing methods adopting various design rules in the literature. Here,

we discuss two widely adopted hypothesis testing methods, i.e., the Bayesian test and the Neyman-

Pearson test.

Bayesian Test

Here we focus on a Bayesian detection problem where the performance criterion at the FC is the

probability of error. The FC receives decision vector, u = [u1, · · · , uN ], from the nodes and makes

the global decision about the phenomenon by considering the maximum a posteriori probability

(MAP) rule which is given by

P (H1|u)
H1

≷
H0

P (H0|u)

or equivalently,
P (u|H1)

P (u|H0)

H1

≷
H0

P0

P1

.

Since the ui’s are independent of each other, the MAP rule simplifies to a K-out-of-N fusion rule.

Neyman-Pearson Test

In many practical situations, the prior probabilities are unknown or difficult to estimate. In this

case, the Neyman- Pearson (NP) test is introduced to maximize the probability of detection, while

maintaining the probability of false alarm to be lower than a certain acceptable value. With simple
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mathematical derivations, the resulting test is performed as follows

P (u|H1)

P (u|H0)

H1

≷
H0

λ

where λ is the detection threshold calculated based on the maximum acceptable probability of false

alarm.

2.3 Asymptotic Performance Metrics

In several cases, detection performance at the FC cannot be analyzed easily for the non-asymptotic

regime. To gain insights into the performance, one can consider the asymptotic regime and employ

the error exponents to be the network performance metric that characterizes detection performance.

2.3.1 Neyman-Pearson Case: Kullback-Leibler divergence (KLD)

Using Stein’s lemma [23], we know that the Kullback-Leibler divergence (KLD) represents the best

error exponent of the missed detection error probability in the NP setup. For a fixed false alarm

probability, PF ≤ δ, the missed detection probability for an optimal NP detector asymptotically

behaves as

lim
N→∞

1

N
logPM = −D(H0∥H1)

where N is the number of samples used for detection and D(H0∥H1) =
∑

j∈{0,1} π
k
j,0 log

πk
j,0

πk
j,1

is

the Kullback-Leibler divergence (KLD) and πj0 and πj1 are the conditional probabilities of ui = j

given H0 and H1, respectively. A direct consequence of this statement is that PM decays, as N

grows to infinity, exponentially, i.e.,

PM ≈ f(N)e−D(H0∥H1),
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where f(N) is a slow-varying function compared to the exponential, such that lim
N→∞

1
N
log f(N) =

0. Therefore, given a number of observations, the detection performance depends exclusively

on the KLD between the hypotheses. We can conclude that the larger the KLD is, the less is

the likelihood of mistaking H0 with H1 and, therefore, KLD can be used as a surrogate for the

probability of missed detection during system design for a large network.2

2.3.2 Bayesian Case: Chernoff Information

Similarly, the Chernoff information represents the best error exponent of the error probability in

the Bayesian setup. Formally, if u is a random vector having N statistically independent and

identically distributed components, uis, under both hypotheses, the optimal detector results in

error probability that obeys the asymptotics

lim
N→∞

lnPE

N
= −C(π1,1, π1,0), (2.6)

where the Chernoff information C is defined as

C = max
0≤t≤1

− ln(
∑

j∈{0,1}

πt
j0π

1−t
j1 ). (2.7)

πj0 and πj1 are the conditional probabilities of ui = j given H0 and H1, respectively.

2.4 Background Material: Distributed Classification Fusion

using Error-Correcting Codes (DCFECC)

In [117], the authors proposed the DCFECC scheme for M -ary distributed classification using

binary quantized local data for a parallel topology network. The idea behind the DCFECC scheme

is to select a binary code matrix C to determine the local decision rules at the nodes, and to

2Kullback-Leibler divergence based detection approaches perform reasonably well even for a small size network
as observed in [31, 66, 88, 98] .
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perform fault-tolerant fusion at the FC. For a network with N nodes trying to distinguish among

M hypotheses, the code matrix C is anM×N binary matrix. Each row of C corresponds to one of

theM possible hypothesesH1, · · · , HM and each column represents the binary decision rule of the

corresponding node. Given this code matrix, the node j sends its binary decision uj ∈ {0, 1} to the

FC. After receiving the binary decisions u = (u1, · · · , uN) from local nodes, the final classification

decision is made at the FC using minimum Hamming distance based fusion given by:

Decide Hm where

m = argmin
1≤l≤M

dH(u, rl), (2.8)

where dH(x,y) is the Hamming distance between x and y, and rl = (cl1, · · · , clN) is the lth

row of C which corresponds to hypothesis Hl. The tie-break rule is to randomly pick a row of

the code matrix C from those with the smallest Hamming distance to the received vector u. The

performance of the scheme depends on the code matrix C since it is used for designing the local

decision rules as well as for the fusion rule at the FC. Several approaches to design the matrix C,

e.g., based on simulated annealing and cyclic column replacement, were presented in [117].

For example, consider the code matrix used by a parallel network of N = 7 nodes performing

an (M = 4)-ary classification problem

C =



1 0 0 0 1 0 1

0 0 1 0 0 0 0

1 0 1 1 0 1 0

0 1 1 1 1 1 1


.

When the true hypothesis is H1 corresponding to the first row, all the nodes are supposed to send

the first element of their column. However, due to imperfect observations at the nodes, consider the

case when the FC receives the vector [1110101]. The FC evaluates the Hamming distance between

this received vector and each of the rows resulting in the Hamming distance values (2, 4, 5, 3).

Therefore, it decides the hypothesis corresponding to the first row, H1, as the true hypothesis.
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CHAPTER 3

DISTRIBUTED BAYESIAN DETECTION

WITH CORRUPTED DATA: PARALLEL

TOPOLOGY

3.1 Introduction

In this chapter, we consider the problem of distributed Bayesian detection in the presence of Byzan-

tines in the parallel network. It is assumed that a fraction of the nodes in the network are compro-

mised and reprogrammed by an adversary to transmit false information to the fusion center (FC)

to degrade detection performance. The problem of distributed detection is formulated as a binary

hypothesis test at the FC based on 1-bit data sent by the sensors. The expression for minimum at-

tacking power required by the Byzantines to blind the FC is obtained. More specifically, we show

that above a certain fraction of Byzantine attackers in the network, the detection scheme becomes

completely incapable of utilizing the sensor data for detection. First, by employing Chernoff infor-

mation as our performance metric, we analyze the problem and derive results for the asymptotic

case. In practice, the FC and the Byzantines will optimize their utility by choosing their actions

based on the knowledge of their opponent’s behavior. This motivates us to address the question:
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Table 3.1: Different scenarios based on the knowledge of the opponent’s strategies

Cases Attacker has the knowledge of the FC’s strategies FC has the knowledge of Attacker’s strategies

Case 1 No No

Case 2 Yes No

Case 3 Yes Yes

Case 4 No Yes

what are the optimal attacking/defense strategies given the knowledge of the opponent’s strategies?

Study of these practically motivated questions requires non asymptotic analysis, which is system-

atically studied in this chapter. By assuming the error probability to be our performance metric,

we analyze the problem in the non asymptotic regime. Observe that, the probability of error is a

function of the fusion rule, which is under the control of the FC. This gives us an additional degree

of freedom to analyze the Byzantine attack under different practical scenarios where the FC and

the Byzantines may or may not have knowledge of their opponent’s strategies. (For a description

of different scenarios see Table 3.1). It is found that asymptotics-based results do not hold under

several non-asymptotic scenarios. More specifically, when the FC does not have knowledge of

attacker’s strategies, results for the non-asymptotic case are different from those for the asymptotic

case. However, if the FC has complete knowledge of the attacker’s strategies and uses the optimal

fusion rule to make the global decision, results obtained for this case are the same as those for the

asymptotic case. Knowledge of the behavior of the attacker in the non-asymptotic regime enables

the analysis of many related questions, such as the design of the optimal detector (fusion rule) and

effects of strategic interaction between the FC and the attacker.

The rest of the chapter is organized as follows. Section 3.2.1 introduces our system model,

including the Byzantine attack model. In Section 3.3, we provide the closed form expression for

the critical power above which the FC becomes blind. In Section 3.4, we conduct the asymptotic

analysis of the distributed Bayesian detection with Byzantine data. Next, we discuss our results

based on non-asymptotic analysis of the distributed Bayesian detection system with Byzantine
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data for different scenarios. In Section 3.5, we analyze the problem when Byzantines do not have

any knowledge about the fusion rule used at the FC. Section 3.6 discusses the scenario where

Byzantines have the knowledge about the fusion rule used at the FC, but the FC does not know the

attacker’s strategies. Next in Section 3.7, we extend our analysis to the scenario where both the FC

and the attacker have the knowledge of their opponent’s strategies and act strategically to optimize

their utilities. Finally, Section 3.9 concludes the chapter.

3.2 Preliminaries

3.2.1 System Model

Consider two hypotheses H0 (signal is absent) and H1 (signal is present). Also, consider a parallel

network (see Figure 2.1(a)), comprised of a central entity (known as the Fusion Center (FC)) and a

set of N sensors (nodes), which faces the task of determining which of the two hypotheses is true.

Prior probabilities of the two hypotheses H0 and H1 are denoted by P0 and P1, respectively. The

sensors observe the phenomenon, carry out local computations to decide the presence or absence

of the phenomenon, and then send their local decisions to the FC that yields a final decision after

processing the local decisions. Observations at the nodes are assumed to be conditionally inde-

pendent and identically distributed. A Byzantine attack on such a system compromises some of

the nodes which may then intentionally send falsified local decisions to the FC to make the final

decision incorrect. We assume that a fraction α of the N nodes which observe the phenomenon

have been compromised by an attacker. Based on the observations, each node i makes a one-bit

local decision vi ∈ {0, 1} regarding the absence or presence of the phenomenon using the likeli-

hood ratio test as given in (2.1). Each node i, after making its one-bit local decision vi, sends ui to

the FC, where ui = vi if i is an uncompromised (honest) node, but for a compromised (Byzantine)

node i, ui need not be equal to vi. we assume that each Byzantine decides to attack independently

relying on its own observation and decision regarding the presence of the phenomenon. Specifi-

cally, we employ the Byzantine data model as given in Sec. 2.2.3. The strategies are denoted by
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PH
j,1, P

H
j,0 and PB

j,1, P
B
j,0 (j ∈ {0, 1}) for the honest and Byzantine nodes, respectively. The FC

receives decision vector, u = [u1, · · · , uN ], from the nodes and makes the global decision about

the phenomenon by considering the maximum a posterior probability (MAP) rule. Since the uis

are independent of each other, the MAP rule simplifies to a K-out-of-N fusion rule [104]. The

global false alarm probability QF and detection probability QD are then given by1

QF =
N∑

i=K

 N

i

 (π1,0)
i(1− π1,0)N−i (3.1)

and

QD =
N∑

i=K

 N

i

 (π1,1)
i(1− π1,1)N−i, (3.2)

where πj0 and πj1 are the conditional probabilities of ui = j given H0 and H1, respectively.

Specifically, π1,0 and π1,1 can be calculated as

π1,0 = α(P1,0(1− Pf ) + (1− P0,1)Pf ) + (1− α)Pf (3.3)

and

π1,1 = α(P1,0(1− Pd) + (1− P0,1)Pd) + (1− α)Pd, (3.4)

where α is the fraction of Byzantine nodes.2

The local probability of error as seen by the FC is defined as

Pe = P0π1,0 + P1 (1− π1,1) (3.5)

1These expressions are valid under the assumption that α < 0.5. Later in Section 3.7, we will generalize our result
for any arbitrary α.

2The proposed analysis can be easily extended to the noisy channel case. For example, let us consider the Binary
Symmetric Channel with crossover probabilities given by ( ˆP1,0, ˆP0,1). Now, the conditional probability π1,1 as given
in (3.4) changes to:

π1,1 = α(1− ˆP0,1)[(1− P0,1)Pd + P1,0(1− Pd)] + α ˆP1,0[P0,1Pd + (1− P1,0)(1− Pd)]

+(1− α)[(1− ˆP0,1)Pd + ˆ1, 0(1− Pd)]

and similarly the expression for π1,0 can be obtained. Using these expressions, the proposed analysis can be extended
to the noisy case (BSC).
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and the system wide probability of error at the FC is given by

PE = P0QF + P1 (1−QD) . (3.6)

Notice that, the system wide probability of error PE is a function of the parameter K, which is

under the control of the FC, and the parameters (α, Pj,0, Pj,1) are under the control of the attacker.

The FC and the Byzantines may or may not have knowledge of their opponent’s strategy. In

this chapter, we will analyze the problem of detection with Byzantine data under several different

scenarios in the following sections. First, we will determine the minimum fraction of Byzantines

needed to blind the decision fusion scheme.

3.3 Critical Power to Blind the Fusion Center

In this section, we determine the minimum fraction of Byzantine nodes needed to make the FC

“blind” and denote it by αblind. We say that the FC is blind if an adversary can make the data that

the FC receives from the sensors such that no information is conveyed. In other words, the optimal

detector at the FC cannot perform better than simply making the decision based on priors.

Lemma 3.3.1. In Bayesian distributed detection, the minimum fraction of Byzantines needed to

make the FC blind is αblind = 0.5.

Proof. In the Bayesian framework, we say that the FC is ’blind’, if the received data u does not

provide any information about the hypotheses to the FC. That is, the condition to make the FC

blind can be stated as

P (Hi|u) = P (Hi) for i = 0, 1 (3.7)
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It can be seen that (3.7) is equivalent to

P (Hi|u) = P (Hi)

⇔ P (Hi)P (u|Hi)

P (u)
= P (Hi)

⇔ P (u|Hi) = P (u).

Thus, the FC becomes blind if the probability of receiving a given vector u is independent of the

hypothesis present. In such a scenario, the best that the FC can do is to make decisions solely

based on the priors, resulting in the most degraded performance at the FC. Now, using the condi-

tional i.i.d. assumption, under which observations at the nodes are conditionally independent and

identically distributed, condition (3.7) to make the FC blind becomes π1,1 = π1,0. This is true only

when

α[P1,0(Pf − Pd) + (1− P0,1)(Pd − Pf )] + (1− α)(Pd − Pf ) = 0.

Hence, the FC becomes blind if

α =
1

(P1,0 + P0,1)
. (3.8)

α in (3.8) is minimized when P1,0 and P0,1 both take their largest values, i.e., P1,0 = P0,1 = 1.

Hence, αblind = 0.5.

Next, we investigate how the Byzantines can launch an attack optimally considering that the

parameter (K) is under the control of the FC. The detection performance at the FC in the pres-

ence of the Byzantines, however, cannot be analyzed easily for the non-asymptotic case. To gain

insights into the degree to which an adversary can cause performance degradation, we consider the

asymptotic regime, so that error probabilities may be approximated using large deviation analysis.
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3.4 Asymptotic Analysis of Optimal Byzantine Attack

In this section, we look at the asymptotic scenario where the number of nodes in the network

is large. In this setting, the asymptotic performance is measured in terms of the Chernoff infor-

mation [20]. Chernoff information C between two joint distributions of statistically independent,

identically distributed random variables is the sum of the marginal Chernoff information C. Since

we assume that the nodes’ observations are independent, Chernoff information can be expressed as

C = NC. From now onwards, we only look at the marginal Chernoff information and refer to it as

the Chernoff information, since minimization or maximization of C is equivalent to minimization

or maximization of the marginal Chernoff informations C.

From the Byzantine attacker’s point of view, our goal is to find P1,0 and P0,1 that minimize

Chernoff information C for a given value of α. Observe that, when α ≥ 0.5, Chernoff information

can be minimized by simply making posterior probabilities equal to prior probabilities (we discuss

this in more detail later in the section). However, for α < 0.5, a closed form expression for

Chernoff information is needed to find P1,0 and P0,1 that minimize C. To obtain the closed form

expression of Chernoff information, the solution of an optimization problem is required: max
0≤t≤1

−

ln(
∑

j∈{0,1} π
t
j0π

1−t
j1 ). Next, we find a closed form expression for the Chernoff information when

α < 0.5.

3.4.1 Closed Form Expression for the Chernoff Information when α <

0.5

In this subsection, we derive a closed form expression for the Chernoff information, when α <

0.5.3 Observe that the problem of finding the optimal t∗ is equivalent to

min
0≤t≤1

ln(
∑

j∈{0,1}

πt
j0π

1−t
j1 ) (3.9)

3Similar results can be derived for α ≥ 0.5.
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which is a constrained minimization problem. To find t∗, we first perform unconstrained mini-

mization (no constraint on the value of t) and later show that the solution of the unconstrained

optimization problem is the same as the solution of the constrained optimization problem. In other

words, the optimal t∗ is the same for both cases.

By observing that logarithm is an increasing function, the optimization problem as given in

(3.9) is equivalent to

min
t
[πt

1,0π
1−t
1,1 + (1− π1,0)t(1− π1,1)1−t]. (3.10)

Now, performing the first derivative, we have

d

dt
[πt

1,0π
1−t
1,1 + (1− π1,0)t(1− π1,1)1−t]

= π1,1

(
π1,0
π1,1

)t

ln

(
π1,0
π1,1

)
+ (1− π1,1)

(
1− π1,0
1− π1,1

)t

ln

(
1− π1,0
1− π1,1

)
. (3.11)

The first derivative (3.11) is set to zero to find the critical points of the function:

(
(1/π1,0)− 1

(1/π1,1)− 1

)t

=
ln(π1,1/π1,0)

ln((1− π1,0)/(1− π1,1))

(
π1,1

1− π1,1

)
. (3.12)

After some simplification, t∗ which satisfies (3.12) turns out to be

t∗ =

ln

(
ln(π1,1/π1,0)

ln((1− π1,0)/(1− π1,1))
π1,1

1− π1,1

)
ln

(
(1/π1,0)− 1

(1/π1,1)− 1

) . (3.13)

To determine whether the critical point is a minimum or a maximum, we perform the second

derivative test. Since

d2

d2t
[πt

1,0π
1−t
1,1 + (1− π1,0)t(1− π1,1)1−t]

= π1,1

(
π1,0
π1,1

)t(
ln
π1,0
π1,1

)2

+ (1− π1,1)
(
1− π1,0
1− π1,1

)t(
ln

1− π1,0
1− π1,1

)2

(3.14)
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is greater than zero, t∗ as given in (3.13) minimizes (3.10). Since 0 ≤ t∗ ≤ 1 (See proof in

Appendix A.1), t∗ as given in (3.13) is also the solution of (3.9).

3.4.2 Minimization of Chernoff Information

First, we minimize Chernoff information for α < 0.5. Later in the section, we generalize our

results for any arbitrary α. We formally state the problem as

minimize
P1,0,P0,1

− ln(
∑

j∈{0,1}

πt∗

j0π
1−t∗

j1 )

subject to 0 ≤ P1,0 ≤ 1

0 ≤ P0,1 ≤ 1

Since logarithm is an increasing function, Problem 3.4.2 is equivalent to the following problem:

maximize
P1,0,P0,1

πt∗

1,0π
1−t∗

1,1 + (1− π1,0)t
∗
(1− π1,1)1−t∗

subject to 0 ≤ P1,0 ≤ 1

0 ≤ P0,1 ≤ 1

where α < 0.5 and t∗ is as given in (3.13).

Let us denote C̃ = πt∗
1,0π

1−t∗

1,1 + (1− π1,0)t
∗
(1− π1,1)1−t∗ . Observe that, maximization of C̃ is

equivalent to the minimization of Chernoff information C. Next, in Lemma 3.4.1 we present the

properties of Chernoff information C (for the case when α < 0.5) with respect to (P1,0, P0,1) that

enable us to find optimal attacking strategies in this case.

Lemma 3.4.1. Let α < 0.5 and assume that the optimal t∗ is used in the expression for the Chernoff

information. Then, the Chernoff information, C, is a monotonically decreasing function of P1,0 for

a fixed P0,1. Conversely, the Chernoff information is also a monotonically decreasing function of

P0,1 for a fixed P1,0.

Proof. See Appendix A.2.
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Next, using Lemma 3.4.1, we present the optimal attacking strategies P1,0 and P0,1 that mini-

mize the Chernoff information, C, for 0 ≤ α ≤ 1.

Theorem 3.4.2. Optimal attacking strategies, (P ∗
1,0, P

∗
0,1), which minimize the Chernoff informa-

tion are

(P ∗
1,0, P

∗
0,1)

 (p1,0, p0,1) if α ≥ 0.5

(1, 1) if α < 0.5
,

where, (p1,0, p0,1) satisfy α(p1,0 + p0,1) = 1.

Proof. The minimum value of C is zero and it occurs when π1,1 = π1,0. By (3.3) and (3.4),

π1,1 = π1,0 implies

α(P1,0 + P0,1) = 1. (3.15)

From (3.15), when α ≥ 0.5, the attacker can always find flipping probabilities that make the

Chernoff information equal to zero. When α = 0.5, P1,0 = P0,1 = 1 is the optimal strategy. When

α > 0.5, any pair which satisfies P1,0 + P0,1 =
1
α

is the optimal strategy. However, when α < 0.5,

(3.15) can not be satisfied or in other words Byzantines can not make C = 0 since π1,1 can not be

made equal to π1,0. By Lemma 3.4.1, when α < 0.5, the optimal attacking strategy, (P1,0, P0,1),

that minimizes the Chernoff information is (1, 1).

Next, to gain insight into Theorem 3.4.2, we present illustrative examples that corroborate our

results.

3.4.3 Illustrative Examples

In Figure 3.1(a), we plot the Chernoff information as a function of (P1,0, P0,1) for (Pd = 0.6, Pf =

0.4) and α = 0.4. It can be observed that for a fixed P0,1 (P1,0), the Chernoff information C is

a monotonically decreasing function of P1,0, P0,1 (as has been shown in Lemma 3.4.1). In other

words, when α = 0.4, the attacking strategy, (P1,0, P0,1), that minimizes the Chernoff information

C is (1, 1).
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Fig. 3.1: (a) Chernoff information as a function of (P1,0, P0,1) for α = 0.4. (b) Chernoff
information as a function of (P1,0, P0,1) for α = 0.8.

Similarly, in Figure 3.1(b), we consider the scenario when the fraction of Byzantines in the

network is α = 0.8. It can be seen from Figure 3.1(b) that the minimum value of the Chernoff

information in this case is C = 0. Notice that, the attacking strategy, (P1,0, P0,1) that makes C = 0

is not unique in this case. It can be verified that any attacking strategy which satisfies P1,0+P0,1 =

1
0.8

would make C = 0. Thus, results presented in Figures 3.1(a) and 3.1(b) corroborate our

theoretical result presented in Theorem 3.4.2.

Next, we investigate how the Byzantines can launch an attack optimally considering that the

parameter (K) is under the control of the FC. By assuming error probability to be our performance

metric, we analyze the non-asymptotic regime. Observe that the probability of error is dependent

on the fusion rule. This gives us an additional degree of freedom to analyze the Byzantine attack

under different scenarios where the FC and the Byzantines may or may not have knowledge of

their opponent’s strategies.
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3.5 Optimal Attacking Strategies without the knowledge

of Fusion Rule

In practice, the Byzantine attacker may not have the knowledge about the fusion rule, i.e., the value

of K, used by the FC. In such scenarios, we obtain the optimal attacking strategy for Byzantines

by maximizing the local probability of error as seen by the FC, which is independent of the fusion

rule K. We formally state the problem as

maximize
P1,0,P0,1

P0π1,0 + P1(1− π1,1)

subject to 0 ≤ P1,0 ≤ 1

0 ≤ P0,1 ≤ 1

To solve the problem, we analyze the properties of the objective function, Pe = P0π1,0 + P1(1 −

π1,1), with respect to (P1,0, P0,1). Notice that

dPe

P1,0

= P0α(1− Pf )− P1α(1− Pd) (3.16)

and
dPe

P0,1

= −P0αPf + P1αPd. (3.17)

By utilizing monotonicity properties of the objective function with respect to P1,0 and P0,1 ((3.16)

and (3.17)), we present the solution of the Problem 3.5 in Table 3.2. Notice that, when Pd

Pf
< P0

P1
<

1−Pd

1−Pf
, both (3.16) and (3.17) are less than zero. Pe then becomes a strictly decreasing function of

P1,0 as well as P0,1. Hence, to maximize Pe, the attacker needs to choose (P1,0, P0,1) = (0, 0).

However, the condition Pd

Pf
< P0

P1
< 1−Pd

1−Pf
holds iff Pd < Pf and, therefore, is not admissible.

Similar arguments lead to the rest of results given in Table 3.2. Note that, if there is an equality

in the conditions mentioned in Table 3.2, then the solution will not be unique. For example,(
dPe

P0,1

= 0

)
⇔
(
P0

P1

=
1− Pd

1− Pf

)
implies that the Pe is constant as a function of P0,1. In other

words, the attacker will be indifferent in choosing the parameter P0,1 because any value of P0,1 will
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Table 3.2: Soultion Of Maximizing Local Error Pe Problem

P1,0 P0,1 Condition

0 0 Pd

Pf
< P0

P1
< 1−Pd

1−Pf

0 1 Pd

Pf
> P0

P1
< 1−Pd

1−Pf

1 0 Pd

Pf
< P0

P1
> 1−Pd

1−Pf

1 1 Pd

Pf
> P0

P1
> 1−Pd

1−Pf
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Fig. 3.2: (a) Pe as a function of (P1,0, P0,1) when P0 = P1 = 0.5. (b) Pe as a function of
(P1,0, P0,1) when P0 = 0.1, P1 = 0.9.

result in the same probability of error.

Next, to gain insight into the solution, we present illustrative examples that corroborate our

results.

3.5.1 Illustrative Examples

In Figure 3.2(a), we plot the local probability of error Pe as a function of (P1,0, P0,1) when (P0 =

P1 = 0.5). We assume that the local probability of detection is Pd = 0.8 and the local probability

of false alarm is Pf = 0.1 such that Pd

Pf
= 8, 1−Pd

1−Pf
= .2222, and P0

P1
= 1. Clearly, Pd

Pf
> P0

P1
> 1−Pd

1−Pf

and it implies that the optimal attacking strategy is (P1,0, P0,1) = (1, 1), which can be verified from
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Figure 3.2(a).

In Figure 3.2(b), we study the local probability of error Pe as a function of the attacking strategy

(P1,0, P0,1) when (P0 = 0.1, P1 = 0.9). We assume that the local probability of detection is

Pd = 0.8 and the local probability of false alarm is Pf = 0.1 such that Pd

Pf
= 8, 1−Pd

1−Pf
= .2222, and

P0

P1
= .1111. Clearly, Pd

Pf
> P0

P1
< 1−Pd

1−Pf
implies that the optimal attacking strategy is (P1,0, P0,1) =

(0, 1), which can be verified from Figure 3.2(b). These results corroborate our theoretical results

presented in Table 3.2.

In the next section, we investigate the scenario where Byzantines are aware of the fusion rule

K used at the FC and can use this knowledge to provide false information in an optimal manner

to blind the FC. However, the FC does not have the knowledge of Byzantine’s attacking strategies

(α, Pj,0, Pj,1) and does not optimize against Byzantine’s behavior. Since majority rule is a widely

used fusion rule [46, 92, 125], we assume that the FC uses the majority rule to make the global

decision.

3.6 Optimal Byzantine Attacking Strategies with Knowl-

edge of Majority Fusion Rule

In this section, we investigate optimal Byzantine attacking strategies in a distributed detection

system, with the attacker having knowledge about the fusion rule used at the FC. However, we

assume that the FC is not strategic in nature, and uses a majority rule, without trying to optimize

against the Byzantine’s behavior. We consider both the FC and the Byzantine to be strategic in

Section 3.7. The performance criterion at the FC is assumed to be the probability of error PE .

For a fixed fusion rule (K∗), which, as mentioned before, is assumed to be the majority rule

K∗ = ⌈N+1
2
⌉, PE varies with the parameters (α, Pj,0, Pj,1) which are under the control of the
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attacker. The Byzantine attack problem can be formally stated as follows:

maximize
Pj,0,Pj,1

PE(α, Pj,0, Pj,1)

subject to 0 ≤ Pj,0 ≤ 1

0 ≤ Pj,1 ≤ 1.

(3.18)

For a fixed fraction of Byzantines α, the attacker wants to maximize the probability of error PE by

choosing its attacking strategy (Pj,0, Pj,1) optimally. We assume that the attacker is aware of the

fact that the FC is using the majority rule for making the global decision. Before presenting our

main results for Problem 3.18, we make an assumption that will be used in the theorem.

Assumption 3.6.1. We assume that α < min{(0.5− Pf ), (1− (m/Pd))},4 where m = N
2N−2

.

A consequence of this assumption is π1,1 > m, which can be shown as follows. By (3.4), we

have

π1,1 = α(P1,0(1− Pd) + (1− P0,1)Pd) + (1− α)Pd

= αP1,0(1− Pd)− αPdP0,1 + Pd

≥ −αPdP0,1 + Pd ≥ Pd(1− α) > m. (3.19)

Eq. (3.19) is true because α < min{(0.5 − Pf ), (1 − (m/Pd))} ≤ (1 − (m/Pd)). Another

consequence of this assumption is π1,0 < 0.5, which can be shown as follows. From (3.3), we have

π1,0 = α(P1,0(1− Pf ) + (1− P0,1)Pf ) + (1− α)Pf

= αP1,0 − αPf (P1,0 + P0,1) + Pf

≤ α+ Pf < 0.5. (3.20)

4Condition α < min{(0.5 − Pf ), (1 − (m/Pd))}, where m = N
2N−2 > 0.5, suggests that as N tends to infinity,

m =
N

2N − 2
tends to 0.5. When Pd tends to 1 and Pf tends to 0, the above condition becomes α < 0.5.
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Eq. (3.20) is true because α < min{(0.5− Pf ), (1− (m/Pd))} ≤ (0.5− Pf ).

Next, we analyze the properties of PE with respect to (P1,0, P0,1) under our assumption that

enables us to find the optimal attacking strategies.

Lemma 3.6.2. Assume that the FC employs the majority fusion rule K∗ and α < min{(0.5 −

Pf ), (1− (m/Pd))}, where m = N
2N−2

. Then, for any fixed value of P0,1, the error probability PE

at the FC is a quasi-convex function of P1,0.

Proof. A function f(P1,0) is quasi-convex if, for some P ∗
1,0, f(P1,0) is non-increasing for P1,0 ≤

P ∗
1,0 and f(P1,0) is non-decreasing for P1,0 ≥ P ∗

1,0. In other words, the lemma is proved if
dPE

dP1,0

≤

0 (or
dPE

dP1,0

≥ 0) for all P1,0, or if for some P ∗
1,0,

dPE

dP1,0

≤ 0 when P1,0 ≤ P ∗
1,0 and dPE

dP1,0
≥ 0 when

P1,0 ≥ P ∗
1,0. First, we calculate the partial derivative of PE with respect to P1,0 for an arbitrary K

as follows:
dPE

dP1,0

= P0
dQF

dP1,0

− P1
dQD

dP1,0

. (3.21)

The detailed derivation of
dPE

dP1,0

is given in Appendix A.5 and we present a summary of the main

results below.

dQF

dP1,0

= α(1− Pf )N

 N − 1

K − 1

 (π1,0)
K−1 (1− π1,0)N−K , (3.22)

dQD

dP1,0

= α(1− Pd)N

 N − 1

K − 1

 (π1,1)
K−1 (1− π1,1)N−K , (3.23)

and

dPE

dP1,0

= −P1α(1− Pd)N

 N − 1

K − 1

 (π1,1)
K−1 (1− π1,1)N−K

+ P0α(1− Pf )N

 N − 1

K − 1

 (π1,0)
K−1 (1− π1,0)N−K . (3.24)
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dPE

dP1,0

given in (3.24) can be reformulated as follows:

dPE

dP1,0

= g (P1,0, K, α)
(
er(P1,0,K,α) − 1

)
, (3.25)

where

g (P1,0, K, α) = N

 N − 1

K − 1

P1α(1− Pd)(π1,1)
K−1(1− π1,1)N−K (3.26)

and

r (P1,0, K, α) = ln

(
P0

P1

1− Pf

1− Pd

(
π1,0
π1,1

)(K−1)(
1− π1,0
1− π1,1

)(N−K)
)

= ln
P0

P1

1− Pf

1− Pd

+ (K − 1) ln
π1,0
π1,1

+ (N −K) ln
1− π1,0
1− π1,1

. (3.27)

It can be seen that g (P1,0, K, α) ≥ 0 so that the sign of dPE

dP1,0
depends only on the value of

r (P1,0, K, α). To prove that PE is a quasi-convex function of P1,0 when the majority rule K∗

is used at the FC, it is sufficient to show that r (P1,0, K
∗, α) is a non-decreasing function. Differ-

entiating r (P1,0, K
∗, α) with respect to P1,0, we get

dr (P1,0, K
∗, α)

dP1,0

= (K∗−1)
(
α(1− Pf )

π1,0
− α(1− Pd)

π1,1

)
+(N−K∗)

(
α(1− Pd)

1− π1,1
− α(1− Pf )

1− π1,0

)

= (K∗ − 1)α

(
1− Pf

π1,0
− 1− Pd

π1,1

)
− (N −K∗)α

(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
. (3.28)

It can be shown that
dr (P1,0, K

∗, α)

dP1,0

> 0 (see Appendix A.4) and this completes the proof.

Quasi-convexity of PE over P1,0 implies that the maximum of the function occurs on the cor-

ners, i.e., P1,0 = 0 or 1 (may not be unique). Next, we analyze the properties of PE with respect

to P0,1.

Lemma 3.6.3. Assume that the FC employs the majority fusion rule K∗ and α < min{(0.5 −

Pf ), (1 − (m/Pd))}, where m = N
2N−2

. Then, the probability of error PE at the FC is a quasi-
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convex function of P0,1 for a fixed P1,0.

Proof. For a fixed P1,0, we have

(π1,0)
′ = dπ1,0/dP0,1 = α(−Pf ). (3.29)

By a similar argument as given in Appendix A.5, for an arbitrary K we have

dPE

dP0,1

= P1αPdN

 N − 1

K − 1

 (π1,1)
K−1 (1− π1,1)N−K

− P0αPfN

 N − 1

K − 1

 (π1,0)
K−1 (1− π1,0)N−K . (3.30)

dPE

dP0,1

given in (3.30) can be reformulated as follows:

dPE

dP0,1

= g (P0,1, K, α)
(
er(P0,1,K,α) − 1

)
, (3.31)

where

g (P0,1, K, α) = N

 N − 1

K − 1

P0αPf (π1,0)
K−1(1− π1,0)N−K (3.32)

and

r (P0,1, K, α) = ln

(
P1

P0

Pd

Pf

(
π1,1
π1,0

)(K−1)(
1− π1,1
1− π1,0

)(N−K)
)

= ln
P1

P0

Pd

Pf

+ (K − 1) ln
π1,1
π1,0

+ (N −K) ln
1− π1,1
1− π1,0

. (3.33)

It can be seen that g (P0,1, K, α) ≥ 0 such that the sign of
dPE

dP0,1

depends on the value of r (P0,1, K, α).

To prove that PE is a quasi-convex function of P1,0 when the majority ruleK∗ is used at the FC, it is

sufficient to show that r (P0,1, K
∗, α) is a non-decreasing function. Differentiating r (P0,1, K

∗, α)
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with respect to P0,1, we get

dr (P0,1, K
∗, α)

dP0,1

= (K∗ − 1)

(
αPf

π1,0
− αPd

π1,1

)
+ (N −K∗)

(
αPd

1− π1,1
− αPf

1− π1,0

)
(3.34)

= (N −K∗)α

(
Pd

1− π1,1
− Pf

1− π1,0

)
− (K∗ − 1)α

(
Pd

π1,1
− Pf

π1,0

)
. (3.35)

In the following, we show that
dr (P0,1, K

∗, α)

dP0,1

> 0, (3.36)

i.e., r (P0,1, K
∗, α) is non-decreasing. It is sufficient to show that

(N −K∗)

(
Pd

1− π1,1
− Pf

1− π1,0

)
> (K∗ − 1)

(
Pd

π1,1
− Pf

π1,0

)
. (3.37)

First, we consider the case when there are an even number of nodes in the network and majority

fusion rule is given by K∗ =
N

2
+ 1. Since 0 ≤ π1,0 < π1,1 ≤ 1 and N ≥ 2, we have

(
1− 2

N

)
π1,1π1,0

(1− π1,1)(1− π1,0)
> −1

⇔
(
1− 2

N

)[
1

1− π1,1
− 1

1− π1,0

]
>

[
1

π1,1
− 1

π1,0

]
⇔

[(
1− 2

N

)
1

1− π1,1
− 1

π1,1

]
>

[(
1− 2

N

)
1

1− π1,0
− 1

π1,0

]
. (3.38)

Using the fact that
Pd

Pf

> 1, π1,1 > N
2N−2

, and K∗ =
N

2
+ 1, (3.38) becomes

Pd

Pf

[(
1− 2

N

)
1

1− π1,1
− 1

π1,1

]
>

[(
1− 2

N

)
1

1− π1,0
− 1

π1,0

]
⇔

(
1− 2

N

)
Pd

1− π1,1
− Pd

π1,1
>

(
1− 2

N

)
Pf

1− π1,0
− Pf

π1,0

⇔ (N −K∗)

(
Pd

1− π1,1
− Pf

1− π1,0

)
> (K∗ − 1)

(
Pd

π1,1
− Pf

π1,0

)
. (3.39)

Next, we consider the case when there are odd number of nodes in the network and majority
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fusion rule is given by K∗ =
N + 1

2
. By using the fact that π1,0

π1,1
>

Pf

Pd
, it can be seen that the

right-hand side of (3.39) is nonnegative. Hence, from (3.39), we have

(
N

2
− 1

)(
Pd

1− π1,1
− Pf

1− π1,0

)
>
N

2

(
Pd

π1,1
− Pf

π1,0

)
⇔

(
N − 1

2

)(
Pd

1− π1,1
− Pf

1− π1,0

)
>

(
N − 1

2

)(
Pd

1− π1,1
− Pf

1− π1,0

)
⇔ (N −K∗)

(
Pd

1− π1,1
− Pf

1− π1,0

)
> (K∗ − 1)

(
Pd

π1,1
− Pf

π1,0

)
.

This completes our proof.

Theorem 3.6.4. (1, 0), (0, 1), or (1, 1) are the optimal attacking strategies (P1,0, P0,1) that max-

imize the probability of error PE , when the majority fusion rule is employed at the FC and

α < min{(0.5− Pf ), (1− (m/Pd))}, where m = N
2N−2

.

Proof. Lemma 3.6.2 and Lemma 3.6.3 suggest that one of the corners is the maximum of PE

because of quasi-convexity. Note that (0, 0) cannot be the solution of the maximization problem

since the attacker does not flip any results. Hence, we end up with three possibilities: (1, 0), (0, 1),

or (1, 1).

Next, to gain insights into Theorem 3.6.4, we present illustrative examples that corroborate our

results.

3.6.1 Illustrative Examples

In Figure 3.3(a), we plot the probability of error PE as a function of the attacking strategy (P1,0, P0,1)

for an even number of nodes, N = 10, in the network. We assume that the probability of detection

is Pd = 0.8, the probability of false alarm is Pf = 0.1, prior probabilities are (P0 = 0.4, P1 = 0.6),

and α = 0.37. Since α < min{(0.5 − Pf ), (1 − (m/Pd))}, where m = N
2N−2

, quasi-convexity

can be observed in Figure 3.3(a). Figure 3.3(b) shows the probability of error PE as a function

of attacking strategy (P1,0, P0,1) for odd number of nodes, N = 11, in the network. Similarly,

quasi-convexity can be observed in Figure 3.3(b).



47

0

0.5

1

00.20.40.60.81
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P1,0
P0,1

P
ro

ba
bi

lit
y 

of
 E

rr
or

 P
E

(a)

0

0.5

1

0
0.20.4

0.60.81
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P1,0P0,1

P
ro

ba
bi

lit
y 

of
 E

rr
or

 P
E

(b)

Fig. 3.3: (a) PE as a function of (P1,0, P0,1) for N = 10. (b) PE as a function of (P1,0, P0,1) for
N = 11.

It is evident from Figures 3.3(a) and 3.3(b) that the optimal attacking strategy (P1,0, P0,1) is

either of the following three possibilities: (1, 0), (0, 1), or (1, 1). These results corroborate our

theoretical results presented in Theorem 3.6.4.

Observe that the results obtained for this case are not the same as the results obtained for the

asymptotic case (Please see Theorem 3.4.2). This is because the asymptotic performance measure

(i.e., Chernoff information) is the exponential decay rate of the error probability of the “optimal

detector”. In other words, while optimizing over Chernoff information, one implicitly assumed

that the optimal fusion rule is used at the FC.

Next, we investigate the case where the FC has the knowledge of attacker’s strategies and uses

the optimal fusion rule K∗ to make the global decision. Here, the attacker tries to maximize its

worst case probability of error min
K
PE by choosing (P1,0, P0,1) optimally.

3.7 Optimal Byzantine Attacking Strategies with Strategy-

aware FC

In this section, we analyze the scenario where the FC has the knowledge of attacker’s strategies

and uses the optimal fusion rule K∗ to make the global decision. The Byzantine attack problem
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can be formally stated as follows:

maximize
Pj,0,Pj,1

PE(K
∗, α, Pj,0, Pj,1)

subject to 0 ≤ Pj,0 ≤ 1

0 ≤ Pj,1 ≤ 1,

(3.40)

where K∗ is the optimal fusion rule. In other words, K∗ is the best response of the FC to the

Byzantine attacking strategies. Next, we find the expression for the optimal fusion rule K∗ used at

the FC.

3.7.1 Optimal Fusion Rule

First, we design the optimal fusion rule assuming that the local sensor threshold λ and the Byzan-

tine attacking strategy (α, P1,0, P0,1) are fixed and known to the FC.

Lemma 3.7.1. For a fixed local sensor threshold λ and α <
1

P0,1 + P1,0

, the optimal fusion rule is

given by

K∗
H1

≷
H0

ln
[
(P0/P1) {(1− π1,0)/(1− π1,1)}N

]
ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]

. (3.41)

Proof. Consider the maximum a posteriori probability (MAP) rule

P (u|H1)

P (u|H0)

H1

≷
H0

P0

P1

.

Since the uis are independent of each other, the MAP rule simplifies to

N∏
i=1

P (ui|H1)

P (ui|H0)

H1

≷
H0

P0

P1

.

Let us assume that K∗ out of N nodes send ui = 1. Now, the above equation can be written as

πK∗
1,1 (1− π1,1)N−K∗

πK∗
1,0 (1− π1,0)N−K∗

H1

≷
H0

P0

P1

.
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Taking logarithms on both sides of the above equation, we have

K∗ lnπ1,1 + (N −K∗) ln(1− π1,1)−K∗ ln π1,0 − (N −K∗) ln(1− π1,0)
H1

≷
H0

ln
P0

P1

⇔ K∗[ln(π1,1/π1,0) + ln((1− π1,0)/(1− π1,1))]
H1

≷
H0

ln
P0

P1

+N ln((1− π1,0)/(1− π1,1))

⇔ K∗
H1

≷
H0

ln
P0

P1

+N ln((1− π1,0)/(1− π1,1))

[ln(π1,1/π1,0) + ln((1− π1,0)/(1− π1,1))]
(3.42)

⇔ K∗
H1

≷
H0

ln
[
(P0/P1) {(1− π1,0)/(1− π1,1)}N

]
ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]

,

where (3.42) follows from the fact that, for π1,1 > π1,0 or equivalently, α <
1

P0,1 + P1,0

, [ln(π1,1/π1,0)+

ln((1− π1,0)/(1− π1,1))] > 0.

The probability of false alarm QF and the probability of detection QD for this case are as given

in (3.1) and (3.2) with K = ⌈K∗⌉. Next, we present our results for the case when the fraction of

Byzantines α >
1

P0,1 + P1,0

.

Lemma 3.7.2. For a fixed local sensor threshold λ and α >
1

P0,1 + P1,0

, the optimal fusion rule is

given by

K∗
H0

≷
H1

ln
[
(P1/P0) {(1− π1,1)/(1− π1,0)}N

]
[ln(π1,0/π1,1) + ln((1− π1,1)/(1− π1,0))]

. (3.43)

Proof. This can be proved similarly as Lemma 3.7.1 and using the fact that, for π1,1 < π1,0 or

equivalently, α >
1

P0,1 + P1,0

, [ln(π1,0/π1,1) + ln((1− π1,1)/(1− π1,0))] > 0.

The probability of false alarm QF and the probability of detection QD for this case can be

calculated to be

QF =

⌊K∗⌋∑
i=0

 N

i

 (π1,0)
i(1− π1,0)N−i (3.44)

and

QD =

⌊K∗⌋∑
i=0

 N

i

 (π1,1)
i(1− π1,1)N−i. (3.45)
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Next, we analyze the property of PE with respect to Byzantine attacking strategy (P1,0, P0,1)

that enables us to find the optimal attacking strategies.

Lemma 3.7.3. For a fixed local sensor threshold λ, assume that the FC employs the optimal

fusion rule ⌈K∗⌉, 5 as given in (3.41). Then, for α ≤ 0.5, the error probability PE at the FC

is a monotonically increasing function of P1,0 while P0,1 remains fixed. Conversely, the error

probability PE at the FC is a monotonically increasing function of P0,1 while P1,0 remains fixed.

Proof. Observe that, for a fixed λ, PE(⌈K∗⌉) is a continuous but not a differentiable function.

However, the function is non differentiable only at a finite number (or infinitely countable number)

of points because of the nature of ⌈K∗⌉. Now observe that, for a fixed fusion rule K, PE(K) is

differentiable. Utilizing this fact, to show that the lemma is true, we first find the condition that

a fusion rule K should satisfy so that PE is a monotonically increasing function of P1,0 while

keeping P0,1 fixed (and vice versa) and later show that ⌈K∗⌉ satisfies this condition. From (3.25),

finding those K that satisfy
dPE

dP1,0

> 06 is equivalent to finding those value of K that make

r (P1,0, K, α) > 0

⇔ ln
P0

P1

1− Pf

1− Pd

+ (K − 1) ln
π1,0
π1,1

+ (N −K) ln
1− π1,0
1− π1,1

> 0

⇔ K <

ln
P0

P1

+N ln
(1− π1,0)
(1− π1,1)

+ ln
1− Pf

1− Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
. (3.46)

Similarly, we can find the condition that a fusion ruleK should satisfy so that PE is a monotonically

increasing function of P0,1 while keeping P1,0 fixed. From (3.31), finding those K that satisfy

5Notice that, K∗ might not be an integer.
6Observe that, for α < 0.5, the function g (P1,0,K

∗, α) = 0 (as given in (3.26)) only under extreme conditions
(i.e., P1 = 0 or Pd = 0 or Pd = 1). Ignoring these extreme conditions, we have g (P1,0,K

∗, α) > 0.
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dPE

dP0,1

> 0 is equivalent to finding those K that make

r (P0,1, K, α) > 0

⇔ ln
P1

P0

Pd

Pf

+ (K − 1) ln
π1,1
π1,0

+ (N −K) ln
1− π1,1
1− π1,0

> 0

⇔ K >

ln
P0

P1

+N ln
(1− π1,0)
(1− π1,1)

+ ln
Pf

Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
. (3.47)

From (3.46) and (3.47), we have

A =

ln
P0

P1
+N ln

(1− π1,0)
(1− π1,1)

+ ln
1− Pf

1− Pd
− ln

π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
> K >

ln
P0

P1
+N ln

(1− π1,0)
(1− π1,1)

+ ln
Pf

Pd
− ln

π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
= B.

(3.48)

Next, we show that the optimal fusion rule ⌈K∗⌉ given in (3.41) is within the region (A,B). First

we prove that ⌈K∗⌉ > B by showing K∗ > B. Comparing K∗ given in (3.41) with B, K∗ > B iff

0 > ln
Pf

Pd

− ln
π1,0
π1,1

. (3.49)

Since Pd > Pf , to prove (3.49) we start from the inequality

(1− Pd)

Pd

<
(1− Pf )

Pf

⇔ αP1,0(1− Pd) + Pd(1− P0,1α)

Pd

<
αP1,0(1− Pf ) + Pf (1− P0,1α)

Pf

⇔ π1,1
Pd

<
π1,0
Pf

⇔ 0 > ln
Pf

Pd

− ln
π1,0
π1,1

.
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Now, we show that A > ⌈K∗⌉. Observe that,

A > ⌈K∗⌉

⇔
ln

1− Pf

1− Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
> ⌈K∗⌉ −K∗.

Hence, it is sufficient to show that

ln
1− Pf

1− Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
> 1 > ⌈K∗⌉ −K∗.

1 > ⌈K∗⌉ −K∗ is true from the property of the ceiling function. By (A.27), we have

1− Pf

1− Pd

>
1− π1,0
1− π1,1

⇔ ln
1− Pf

1− Pd

> ln
1− π1,0
1− π1,1

⇔ ln
1− Pf

1− Pd

− ln
π1,0
π1,1

> ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]

⇔
ln

1− Pf

1− Pd

− ln
π1,0
π1,1

ln [{π1,1(1− π1,0)}/{π1,0(1− π1,1)}]
> 1

which completes the proof.

Based on Lemma 3.7.3, we present the optimal attacking strategies for the case when the FC

has the knowledge regarding the strategies used by the Byzantines.

Theorem 3.7.4. The optimal attacking strategies, (P ∗
1,0, P

∗
0,1), which maximize the probability of

error, PE(⌈K∗⌉), are given by

(P ∗
1,0, P

∗
0,1)

 (p1,0, p0,1) if α > 0.5

(1, 1) if α ≤ 0.5

where (p1,0, p0,1) satisfies α(p1,0 + p0,1) = 1.
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Proof. Note that, the maximum probability of error occurs when the posterior probabilities are

equal to the prior probabilities of the hypotheses. That is,

P (Hi|u) = P (Hi) for i = 0, 1. (3.50)

Now using the result from (3.8), the condition can be simplified to

α(P1,0 + P0,1) = 1. (3.51)

Eq. (3.51) suggests that when α ≥ 0.5, the attacker can find flipping probabilities that make

PE = min{P0, P1}. When α = 0.5, P1,0 = P0,1 = 1 is the optimal attacking strategy and when

α > 0.5, any pair which satisfies P1,0 + P0,1 =
1

α
is optimal. However, when α < 0.5, (3.51)

cannot be satisfied. In this case, by Lemma 3.7.3, for α < 0.5, (1, 1) is an optimal attacking

strategy, (P1,0, P0,1), which maximizes probability of error, PE(⌈K∗⌉).

Next, to gain insight into Theorem 3.7.4, we present illustrative examples that corroborate our

results.

3.7.2 Illustrative Examples

In Figure 3.4, we plot the minimum probability of error as a function of attacker’s strategy (P1,0, P0,1),

where PE is minimized over all possible fusion rules K. We consider a N = 11 node network,

with the nodes’ detection and false alarm probabilities being 0.6 and 0.4, respectively. Prior prob-

abilities are assumed to be P0 = 0.4 and P1 = 0.6. Observe that, the optimal fusion rule as given

in (3.41) changes with attacker’s strategy (P1,0, P0,1). Thus, the minimum probability of error

minK PE is a non-differentiable function. It is evident from Figure 3.4(a) that (P1,0, P0,1) = (1, 1)

maximizes the probability of error, PE(⌈K∗⌉). This corroborates our theoretical results presented

in Theorem 3.7.4, that for α < 0.5, the optimal attacking strategy, (P1,0, P0,1), that maximizes the

probability of error, PE(⌈K∗⌉), is (1, 1).
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Fig. 3.4: Minimum probability of error (minK PE) analysis. (a) minK PE as a function of

(P1,0, P0,1) for α = 0.4. (b) minK PE as a function of (P1,0, P0,1) for α = 0.8.

In Figure 3.4(b) we consider the scenario where α = 0.8 (i.e., α > 0.5). It can be seen that the

attacking strategy (P1,0, P0,1), that maximizes minK PE is not unique in this case. It can be verified

that any attacking strategy which satisfies P1,0 +P0,1 =
1
0.8

will make minK PE = min{P0, P1} =

0.4. This corroborates our theoretical results presented in Theorem 3.7.4.

Observe that the results obtained for this case are consistent with the results obtained for the asymp-

totic case. This is because the optimal fusion rule is used at the FC and the asymptotic performance

measure (i.e., Chernoff information) is the exponential decay rate of error probability of the “opti-

mal detector”, and thus, implicitly assumes that the optimal fusion rule is used at the FC.

When the attacker does not have the knowledge of the fusion rule K used at the FC, from

an attacker’s perspective, maximizing its local probability of error Pe is the optimal attacking

strategy. The optimal attacking strategy in this case is either of the three possibilities: (P1,0, P0,1) =

(0, 1) or (1, 0) or (1, 1) (see Table 3.2). However, the FC has knowledge of the attacking strategy

(α, P1,0, P0,1) and thus, uses the optimal fusion rule as given in (3.41) and (3.43).
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3.8 Joint Optimization of Fusion Rule and Sensor Thresh-

old

In this section, we present a procedure to find the optimal fusion rule and local sensor threshold

pair (K∗, λ∗) that minimizes the probability of error PE given a fixed Byzantine strategy α when

(P1,0, P0,1) = (1, 1). This scheme is particularly important in the scenario where Byzantine attack-

ers are performing a man-in-the-middle attack and do not have access to the local sensor threshold.

We first show that when using the optimal fusion rule (K∗), PE is a quasi-convex function of the

local sensor threshold (λ) under a certain condition.

Lemma 3.8.1. For the optimal K and any fixed α (α < 0.5), PE is a quasi-convex function of λ, if

(d/dλ) (λ−1Pd/Pfa) ≤ 0.7

Proof. A function f(λ) is quasi-convex if, for some λ∗, f(λ) is non-increasing for λ ≤ λ∗ and

f(λ) is non-decreasing for λ ≥ λ∗. In other words, the lemma is proved if dPE/dλ ≤ 0 (or

dPE/dλ ≥ 0) for all λ, or if for some λ∗, dPE/dλ ≤ 0 when λ ≤ λ∗ and dPE/dλ ≥ 0 when

λ ≥ λ∗. Hence, we calculate the partial derivative of PE with respect to λ. Using the property of

ROC’s that dPd/dPfa = λ, the fact that dπ11/dπ10 = λ, we get

dPE

dλ
= π0

dQF

dλ
− π1

dQD

dλ

= −π1λ (π10)′N

 N − 1

K − 1

 (π11)
K−1 (1− π11)N−K

+ π0 (π10)
′N

 N − 1

K − 1

 (π10)
K−1 (1− π10)N−K

(3.52)

where, (π10)′ = dπ10/dλ = (1 − 2α)[dPfa/dλ] ≤ 0. The inequality follows from the fact that

x ≤ 0.5 and dPfa/dλ ≤ 0. Following an approach similar to [125], [71], we rewrite the above

equation as follows.
dPE

dλ
= g (λ,K, α)

(
er(λ,K,α) − 1

)
(3.53)

7Various noise distributions satisfy (d/dλ)
(
λ−1Pd/Pfa

)
≤ 0 [71].
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where

g = N

 N − 1

K − 1

π0(−π10)′(π10)K−1(1− π10)N−K (3.54)

and

r = ln

(
λπ1
π0

(
π11
π10

)(K−1)(
1− π11
1− π10

)(N−K)
)

(3.55)

Now it can be seen that g (λ,K, α) ≥ 0. This implies that the sign of dPE/dλ depends on the

value of r (λ,K, α). The proof is complete if we show that r (λ,K, x) is either always positive or

negative, or there exists a λ∗ such that r (λ,K, α) ≤ 0 for all λ ≤ λ∗ and r (λ,K, x) ≥ 0 for all

λ ≥ λ∗. Substituting K∗ =
ln[(π0/π1){(1−π10)/(1−π11)}N ]
ln[{π11(1−π10)}/{π10(1−π11)}] in equation (3.55), and dropping K from

r (λ,K, x) for ease of notation we get r(λ, α) = lnλ− ln (π11/π10). Differentiating r (λ, α) with

respect to λ, we get
dr(λ, α)

dλ
=

1

λ
+

1

π11

[
π11
π10
− λ
]
dπ10
dλ

(3.56)

In the following, we show that r(·) is non-decreasing. Substituting π11, π10, dπ10/dλ in dr(λ, α)/dλ ≥

0,
α

1− 2α
+ Pfa +

Pfa + α/(1− 2α)

Pd + α/(1− 2α)

(
−λ2dPfa

dλ

)
≥ −λdPfa

dλ
,

and Pfa/Pd ≤ (Pfa + α/(1− 2α)) / (Pd + α/(1− 2α)) since Pfa/Pd ≤ 1. Therefore, it suffices

to show that

Pfa + λ

(
−λdPfa

dλ

)
Pfa

Pd

≥ −λdPfa

dλ
. (3.57)

The inequality above is equivalent to the condition in the lemma.

From (3.53), it can be seen that if r(K,λ∗, α) = 0 for some λ∗ then (PE)
′ = 0 at λ∗ and because

PE is quasi-convex for the optimal fusion rule K∗, it is minimized for λ = λ∗. For the optimal

fusion ruleK∗, r(K,λ, α) = 0 has a unique positive root and there exist efficient algorithms, which

utilize the quasi-convex nature of the problem, to find an optimum (K∗, λ∗) pair that minimizes

Pe [80].



57

3.9 Discussion

We considered the problem of distributed Bayesian detection with Byzantine data, and charac-

terized the power of attack analytically. For distributed detection for a binary hypothesis testing

problem, the expression for the minimum attacking power above which the ability to detect is com-

pletely destroyed was obtained. We showed that when there are more than 50% of Byzantines in

the network, the data fusion scheme becomes blind and no detector can achieve any performance

gain over the one based just on priors. The optimal attacking strategies for Byzantines that de-

grade the performance at the FC were obtained. It was shown that the results obtained for the

non-asymptotic case are consistent with the results obtained for the asymptotic case only when the

FC has the knowledge of the attacker’s strategies, and thus, uses the optimal fusion rule. However,

results obtained for the non-asymptotic case, when the FC does not have knowledge of attacker’s

strategies, are not the same as the results obtained for the asymptotic case.
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CHAPTER 4

DISTRIBUTED DETECTION WITH

UNLABELED BYZANTINE DATA: TREE

TOPOLOGY

4.1 Introduction

In the previous chapter, the problem of distributed detection in parallel topology was discussed

in the presence of Byzantine attacks and the optimal attack strategies were analyzed for the at-

tacker who intends to deteriorate the performance of the detection task at the FC. Even though

the parallel topology has received significant attention, there are many practical situations where

parallel topology cannot be implemented due to several factors, such as, the FC being outside the

communication range of the nodes and limited energy budget of the nodes [60]. In such cases,

a multi-hop network is employed, where nodes are organized hierarchically into multiple levels

(tree networks). With intelligent use of resources across levels, tree networks have the potential to

provide a suitable balance between cost, coverage, functionality, and reliability. Some examples

of tree networks include wireless sensor and military communication networks. For instance, the

IEEE 802.15.4 (Zigbee) specifications [3] and IEEE 802.22b [40] can support tree-based topolo-
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gies.

In this chapter, we address the problem of distributed detection in perfect a-ary tree networks

in the presence of Byzantine attacks (data falsification attacks). Well structured (or regular) topolo-

gies such as a-ary tree topologies are commonly picked by network designers for their simplicity

and, therefore, easier network management. For some practical examples of such networks, one

may refer to [61] (and references within). Perfect a-ary tree topologies are widely used in peer

to peer systems [53]. Also notice that, designing optimal tree topology for various performance

metrics is computationally not feasible. In such scenarios, perfect a-ary topologies provide mathe-

matical tractability and valuable insights into the solution. For previous works on perfect a-ary tree

networks, please see [34], [42], [77]. We assume that the cost of attacking nodes at different levels

is different and analyze the problem under this assumption. We obtain the expression for minimum

attacking power required by the Byzantines to blind the fusion center (FC). More specifically, we

show that when more than a certain fraction of individual node decisions are falsified, the decision

fusion scheme becomes completely incapable. We also look at the problem from the network de-

signer’s (FC) perspective. More specifically, we formulate the robust tree topology design problem

as a bi-level program and provide an efficient algorithm to solve it, which is guaranteed to find an

optimal solution, if one exists.

The rest of the chapter is organized as follows. Section 4.2 introduces our system model. In

Section 4.3, we study the problem from Byzantine’s perspective and provide closed form expres-

sions for optimal attacking strategies. In Section 4.4, we formulate the robust topology design

problem as a bi-level program and provide an efficient algorithm to solve it in polynomial time.

Finally, Section 4.5 concludes the chapter.

4.2 System Model

We consider a distributed detection system with the topology of a perfect a-tree T (K, a) rooted

at the FC. A perfect a-tree is an a-ary tree in which all the leaf nodes are at the same depth
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and all the internal nodes have degree ‘a’. T (K, a) has a set N = {Nk}Kk=1 of transceiver

nodes, where |Nk| = Nk = ak is the total number of nodes at level (or depth) k. We assume

that the depth of the tree is K > 1 and the number of children is a ≥ 2. The total number of

nodes in the network is denoted as
∑K

k=1Nk = N . B = {Bk}Kk=1 denotes the set of Byzantine

nodes with |Bk| = Bk, where Bk is the set of Byzantines at level k. The set containing the

number of Byzantines residing at levels 1 ≤ k ≤ K is defined as an attack configuration, i.e.,

{Bk}Kk=1 = {|Bk|}Kk=1. Notice that, for the attack configuration {Bk}Kk=1, the total number of

corrupted paths (or paths containing Byzantine nodes) from Level k to the FC are
∑k

i=1Bi
Nk

Ni
,

where Bi
Nk

Ni
gives the total number of covered1 nodes at level k by Bi Byzantines at level i. If

we denote αk = Bk

Nk
, then,

∑k
i=1 Bi

Nk
Ni

Nk
=
∑k

i=1 αi is the fraction of decisions coming from Level k

that encounter a Byzantine. In practice, nodes operate with very limited energy and, therefore, it

is reasonable to assume that the packet IDs (or source IDs) are not forwarded in the tree to save

energy. Moreover, even in cases where the packet IDs (or source IDs) are forwarded, notice that the

packet IDs (or source IDs) can be tempered too, thereby preventing the FC to be deterministically

aware of the source of a message. Therefore, we consider that the FC looks at messages coming

from nodes in a probabilistic manner and considers each received bit to originate from nodes at

level k with certain probability βk ∈ [0, 1]. This also implies that, from the FC’s perspective,

received bits are identically distributed. For a T (K, a),

βk =
ak

N
.

4.2.1 Distributed detection in a tree topology

We consider a binary hypothesis testing problem with the two hypotheses H0 (signal is absent)

and H1 (signal is present). Each node i at level k acts as a source in that it makes a one-bit local

decision vk,i ∈ {0, 1} and sends uk,i to its parent node at level k − 1, where uk,i = vk,i if i is an

1Node i at level k′ covers all its children at levels k′ + 1 ≤ k ≤ K and the node i itself and, therefore, the total

number of covered nodes by Bk′ , Byzantine at level k′, is
Bk′

Nk′
.
∑K

i=k′ Ni.
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uncompromised (honest) node, but for a compromised (Byzantine) node i, uk,i need not be equal

to vk,i. It also receives the decisions uk′,j of all successors j at levels k′ ∈ [k + 1, K], which

are forwarded to i by its immediate children. It forwards2 these received decisions along with

uk,i to its parent node at level k − 1. If node i is a Byzantine, then it might alter these received

decisions before forwarding. We assume error-free communication channels between children and

the parent nodes. We denote the probabilities of detection and false alarm of a honest node i at

level k by PH
d = P (vk,i = 1|H1, i /∈ Bk) and PH

fa = P (vk,i = 1|H0, i /∈ Bk), respectively.

Similarly, the probabilities of detection and false alarm of a Byzantine node i at level k are denoted

by PB
d = P (vk,i = 1|H1, i ∈ Bk) and PB

fa = P (vk,i = 1|H0, i ∈ Bk), respectively.

We consider the mathematical model presented in 2.2.3 for the Byzantine attack. If a node is

honest, then it forwards its own decision and received decisions without altering them. However,

a Byzantine node, in order to undermine the network performance, may alter its decision as well

as received decisions from its children prior to transmission. We define the following strategies

PH
j,1, P

H
j,0 and PB

j,1, P
B
j,0 (j ∈ {0, 1}) for the honest and Byzantine nodes, respectively, where

P (x = a|y = b) is the probability that a node sends a to its parent when it receives b from its child

or its actual decision is b. Furthermore, we assume that if a node (at any level) is a Byzantine then

none of its ancestors are Byzantines; otherwise, the effect of a Byzantine due to other Byzantines on

the same path may be nullified (e.g., Byzantine ancestor re-flipping the already flipped decisions

of its successor). This means that any path from a leaf node to the FC will have at most one

Byzantine. Thus, we have,
∑K

k=1 αk ≤ 1 since the average number of Byzantines along any path

from a leaf to the root cannot be greater than 1.

The Byzantine attacker always wants to degrade the detection performance at the FC as much

as possible; in contrast, the FC wants to maximize the detection performance. In this work, we

employ the Kullback-Leibler divergence (KLD) [56] D(πj,1||πj,0) to be the network performance

metric that characterizes detection performance.

For a K-level network, distributions of received decisions at the FC zi, i = 1, .., N , under
2For example, IEEE 802.16j mandates tree forwarding and IEEE 802.11s standardizes a tree-based routing proto-

col.
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P (zi = j|H0) =

[
K∑
k=1

βk

(
k∑

i=1

αi

)]
[PB

j,0(1− PB
fa) + PB

j,1P
B
fa]

+

[
K∑
k=1

βk

(
1−

k∑
i=1

αi

)]
[PH

j,0(1− PH
fa) + PH

j,1P
H
fa] (4.1)

P (zi = j|H1) =

[
K∑
k=1

βk

(
k∑

i=1

αi

)]
[PB

j,0(1− PB
d ) + PB

j,1P
B
d ]

+

[
K∑
k=1

βk

(
1−

k∑
i=1

αi

)]
[PH

j,0(1− PH
d ) + PH

j,1P
H
d ] (4.2)

H0 and H1 are given by (4.1) and (4.2), respectively. In order to make the analysis tractable, we

assume that the network designer attempts to maximize the KLD of each node as seen by the FC.

On the other hand, the attacker attempts to minimize the KLD of each node as seen by the FC.

Next, we explore the optimal attacking strategies for the Byzantines that most degrade the

detection performance by minimizing KLD.

4.3 Optimal Byzantine Attack

As discussed earlier, the Byzantine nodes attempt to make their KL divergence as small as possible.

Since the KLD is always non-negative, Byzantines attempt to choose P (z = j|H0) and P (z =

j|H1) such that KLD is zero. In this case, an adversary can make the data that the FC receives

from the nodes such that no information is conveyed. This is possible when

P (z = j|H0) = P (z = j|H1) ∀j ∈ {0, 1}. (4.3)

Substituting (4.1) and (4.2) in (4.3), the condition to make the KLD = 0 for a K-level network

can be expressed as

PB
j,1 − PB

j,0 =

∑K
k=1[βk(1−

∑k
i=1 αi)]∑K

k=1[βk(
∑k

i=1 αi)]]

PH
d − PH

fa

PB
d − PB

fa

(PH
j,0 − PH

j,1). (4.4)
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We have

PB
0,1 − PB

0,0 =

∑K
k=1[βk(1−

∑k
i=1 αi)]∑K

k=1[βk(
∑k

i=1 αi)]]

PH
d − PH

fa

PB
d − PB

fa

= −(PB
1,1 − PB

1,0). (4.5)

Hence, the attacker can degrade detection performance by intelligently choosing (PB
0,1, P

B
1,0), which

are dependent on αk, for k = 1, · · · , K. Observe that,

0 ≤ PB
0,1 − PB

0,0

since
∑k

i=1 αi ≤ 1 for k ≤ K. To make KLD = 0, we must have

PB
0,1 − PB

0,0 ≤ 1

such that (PB
j,1, P

B
j,0) becomes a valid probability mass function. Notice that, when PB

0,1 − PB
0,0 > 1

there does not exist any attacking probability distribution (PB
j,1, P

B
j,0) that can make KLD = 0.

In the case of PB
0,1 − PB

0,0 = 1, there exists a unique solution (PB
1,1, P

B
1,0) = (0, 1) that can make

KLD = 0. For the PB
0,1 − PB

0,0 < 1 case, there exist an infinite number of attacking probability

distributions (PB
j,1, P

B
j,0) which can make KLD = 0.

By further assuming that the honest and Byzantine nodes are identical in terms of their detec-

tion performance, i.e., PH
d = PB

d and PH
fa = PB

fa, the above condition to blind the FC reduces

to ∑K
k=1[βk(1−

∑k
i=1 αi)]∑K

k=1[βk(
∑k

i=1 αi)]]
≤ 1

which is equivalent to
K∑
k=1

[βk(1− 2(
k∑

i=1

αi))] ≤ 0. (4.6)

Recall that αk = Bk

Nk
and βk = Nk∑K

i=1 Ni
. Substituting αk and βk into (4.6) and simplifying the

result, we have the following proposition.

Proposition 4.3.1. In a tree network with K levels, there exists an attacking probability distri-

bution (PB
0,1, P

B
1,0) that can make KLD = 0, and thereby blind the FC, if and only if {Bk}Kk=1
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satisfy
K∑
k=1

(
Bk

Nk

K∑
i=k

Ni

)
≥ N

2
. (4.7)

Dividing both sides of (4.7) by N , the above condition can be written as
∑K

k=1 βk
∑k

i=1 αi ≥

0.5. This implies that to make the FC blind, 50% or more nodes in the network need to be covered

by the Byzantines. Observe that, Proposition 4.3.1 suggests that there exist multiple attack con-

figurations {Bk}Kk=1 that can blind the FC. Also notice that, some of these attacking sets require

Byzantines to compromise less than 50% of the nodes in the network. For example, attacking half

of the nodes at Level 1 (i.e., B1 = N1

2
<< N

2
) cover 50% of the nodes in the network and, there-

fore, the FC becomes blind. This implies that in the tree topology Byzantines have more degrees

of freedom to blind the FC as compared to the parallel topology.

Next, to explore the optimal attacking probability distribution (PB
0,1, P

B
1,0) that minimizesKLD

when (4.6) does not hold, we explore the properties of KLD.

First, we show that attacking with symmetric flipping probabilities is the optimal strategy in

the region where the attacker cannot blind the FC. In other words, attacking with P1,0 = P0,1 is the

optimal strategy for the Byzantines. For analytical tractability, we assume PH
d = PB

d = Pd and

PH
fa = PB

fa = Pfa in further analysis.

Lemma 4.3.2. In the region where the attacker cannot blind the FC, the optimal attacking strategy

comprises of symmetric flipping probabilities. More specifically, any non zero deviation ϵi ∈ (0, p]

in flipping probabilities (PB
0,1, P

B
1,0) = (p− ϵ1, p− ϵ2), where ϵ1 ̸= ϵ2, will result in increase in the

KLD.

Proof. Let us denote, P (z = 1|H1) = π1,1, P (z = 1|H0) = π1,0 and t =
∑K

k=1 βk
∑k

i=1 αi.

Notice that, in the region where the attacker cannot blind the FC, the parameter t < 0.5. To

prove the lemma, we first show that any positive deviation ϵ ∈ (0, p] in flipping probabilities

(PB
1,0, P

B
0,1) = (p, p − ϵ) will result in an increase in the KLD. After plugging in (PB

1,0, P
B
0,1) =
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(p, p− ϵ) in (4.1) and (4.2), we get

π1,1 = t(p− Pd(2p− ϵ)) + Pd (4.8)

π1,0 = t(p− Pfa(2p− ϵ)) + Pfa. (4.9)

Now we show that the KLD, D, is a monotonically increasing function of the parameter ϵ or in

other words,
dD

dϵ
> 0.

dD

dϵ
= π1,1

(
π′
1,1

π1,1
−
π′
1,0

π1,0

)
+ π′

1,1 log
π1,1
π1,0

+ (1− π1,1)
(

π′
1,0

1− π1,0
−

π′
1,1

1− π1,1

)
− π′

1,1 log
1− π1,1
1− π1,0

(4.10)

where
dπ1,1
dϵ

= π′
1,1 = tPd and

dπ1,0
dϵ

= π′
1,0 = tPfa and t is the fraction of covered nodes by the

Byzantines. After rearranging the terms in the above equation, the condition
dD

dϵ
> 0 becomes

1− π1,1
1− π1,0

+
Pd

Pfa

log
π1,1
π1,0

>
π1,1
π1,0

+
Pd

Pfa

log
1− π1,1
1− π1,0

. (4.11)

Since Pd > Pfa and t < 0.5, π1,1 > π1,0. It can also be proved that
Pfa

Pd

π1,1
π1,0

< 1. Hence, we have

1 + (π1,1 − π1,0) >
Pfa

Pd

π1,1
π1,0

⇔ (π1,1 − π1,0)
[
1 + (π1,1 − π1,0)
π1,1(1− π1,0)

]
>
Pfa

Pd

π1,1
π1,0

[
π1,1 − π1,0
π1,1(1− π1,0)

]
⇔

[
1− π1,0 − (1− π1,1)

1− π1,0
+

(π1,1 − π1,0)
π1,1

]
>
Pfa

Pd

[
π1,1
π1,0
− 1− π1,1

1− π1,0

]
⇔ 1− π1,1

1− π1,0
+

Pd

Pfa

(
1− π1,0

π1,1

)
>
π1,1
π1,0

+
Pd

Pfa

(
1− π1,1
1− π1,0

− 1

)
. (4.12)

To prove that (4.11) is true, we apply the logarithm inequality (x− 1) ≥ log x ≥ x− 1

x
, for x > 0

to (4.12). First, let us assume that x =
π1,1
π1,0

. Now, using the logarithm inequality we can show that

log
π1,1
π1,0
≥ 1− π1,0

π1,1
. Next, let us assume that x =

1− π1,1
1− π1,0

. Again, using the logarithm inequality
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it can be shown that
[
1− π1,1
1− π1,0

− 1

]
≥ log

1− π1,1
1− π1,0

. Using these results and (4.12), one can prove

that condition (4.11) is true.

Similarly, we can show that any non zero deviation ϵ ∈ (0, p] in flipping probabilities (PB
1,0, P

B
0,1) =

(p− ϵ, p) will result in an increase in the KLD, i.e.,
dD

dϵ
> 0, or

π1,1
π1,0

+
1− Pd

1− Pfa

log
1− π1,1
1− π1,0

>
1− π1,1
1− π1,0

+
1− Pd

1− Pfa

log
π1,1
π1,0

. (4.13)

Since Pd > Pfa and t < 0.5, π1,1 > π1,0. It can be proved that
1− π1,1
1− π1,0

>
1− Pd

1− Pfa

. Hence, we

have

1− π1,1
1− π1,0

>
1− Pd

1− Pfa

[1− (π1,1 − π1,0)] (4.14)

⇔ 1− π1,1
π1,0(1− π1,0)

>
1− Pd

1− Pfa

[
1− (π1,1 − π1,0)

π1,0

]
⇔ 1

π1,0(1− π1,0)
>

1− Pd

1− Pfa

[
1− (π1,1 − π1,0)
π1,0(1− π1,1)

]
⇔ 1

π1,1 − π1,0

[
π1,1
π1,0
− 1− π1,1

1− π1,0

]
>

1− Pd

1− Pfa

[
1

π1,0
+

1

1− π1,1

]
(4.15)

⇔ π1,1
π1,0
− 1− π1,1

1− π1,0
>

1− Pd

1− Pfa

[
π1,1 − π1,0

π1,0
+
π1,1 − π1,0
1− π1,1

]
(4.16)

⇔ π1,1
π1,0

+
1− Pd

1− Pfa

[
1− 1− π1,0

1− π1,1

]
>

1− π1,1
1− π1,0

+
1− Pd

1− Pfa

[
π1,1
π1,0
− 1

]
. (4.17)

To prove that (4.13) is true, we apply the logarithm inequality (x − 1) ≥ log x ≥ x− 1

x
, for

x > 0 to (4.17). First, let us assume that x =
1− π1,1
1− π1,0

. Now, using the logarithm inequality we

can show that log
1− π1,1
1− π1,0

≥ 1 − 1− π1,0
1− π1,1

. Next, let us assume that x =
π1,1
π1,0

. Again, using the

logarithm inequality it can be shown that
[
π1,1
π1,0
− 1

]
≥ log

π1,1
π1,0

. Using these results and (4.17),

one can prove that condition (4.13) is true. Condition (4.11) and (4.13) imply that any non zero

deviation ϵi ∈ (0, p] in flipping probabilities (PB
0,1, P

B
1,0) = (p− ϵ1, p− ϵ2) will result in an increase

in the KLD.
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In the next theorem, we present a closed form expression for the optimal attacking probability

distribution (PB
j,1, P

B
j,0) that minimizes KLD in the region where the attacker cannot blind the FC.

Theorem 4.3.3. In the region where the attacker cannot blind the FC, the optimal attacking strat-

egy is given by (PB
0,1, P

B
1,0) = (1, 1).

Proof. Observe that, in the region where the attacker cannot blind the FC, the optimal strategy

comprises of symmetric flipping probabilities (PB
0,1 = PB

1,0 = p). The proof is complete if we

show that KLD, D, is a monotonically decreasing function of the flipping probability p.

Let us denote, P (z = 1|H1) = π1,1 and P (z = 1|H0) = π1,0. After plugging in (PB
0,1, P

B
1,0) =

(p, p) in (4.1) and (4.2), we get

π1,1 = t(p− Pd(2p)) + Pd (4.18)

π1,0 = t(p− Pfa(2p)) + Pfa. (4.19)

Now we show that the KLD, D, is a monotonically decreasing function of the parameter p or in

other words,
dD

dp
< 0. After plugging in π′

1,1 = t(1−2Pd) and π′
1,0 = t(1−2Pfa) in the expression

of
dD

dp
and rearranging the terms, the condition

dD

dp
< 0 becomes

(1− 2Pfa)

(
1− π1,1
1− π1,0

− π1,1
π1,0

)
+ (1− 2Pd) log

(
1− π1,0
1− π1,1

π1,1
π1,0

)
< 0 (4.20)

Since Pd > Pfa and t < 0.5, we have π1,1 > π1,0. Now, using the fact that
1− Pd

1− Pfa

>
1− 2Pd

1− 2Pfa

and (4.15), we have

1

π1,1 − π1,0

[
π1,1
π1,0
− 1− π1,1

1− π1,0

]
>

1− 2Pd

1− 2Pfa

[
1

π1,0
+

1

1− π1,1

]
⇔ π1,1

π1,0
+

1− 2Pd

1− 2Pfa

[
1− 1− π1,0

1− π1,1

]
>

1− π1,1
1− π1,0

+
1− 2Pd

1− 2Pfa

[
π1,1
π1,0
− 1

]
. (4.21)

Applying the logarithm inequality (x − 1) ≥ log x ≥ x− 1

x
, for x > 0 to (4.21), one can prove

that (4.20) is true.
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Fig. 4.1: KL distance vs Flipping Probabilities when Pd = 0.8, Pfa = 0.2, and the fraction of
covered nodes by the Byzantines is t = 0.4

Next, to gain insights into the solution, we present some numerical results in Figure 4.1 that cor-

roborate our theoretical results. We plot KLD as a function of the flipping probabilities (PB
1,0, P

B
0,1).

We assume that the probability of detection is Pd = 0.8, the probability of false alarm is Pfa = 0.2

and the fraction of covered nodes by the Byzantines is t = 0.4. It can be seen that the optimal at-

tacking strategy comprises of symmetric flipping probabilities and is given by (PB
0,1, P

B
1,0) = (1, 1),

which corroborate our theoretical result presented in Lemma 4.3.2 and Theorem 4.3.3.

Next, we explore some properties of the KLD with respect to the fraction of covered nodes t in

the region where the attacker cannot blind the FC, i.e., t < 0.5.

Lemma 4.3.4. D∗ = min
(PB

j,1,P
B
j,0)
D(πj,1||πj,0) is a continuous, decreasing and convex function of frac-

tion of covered nodes by the Byzantines t =
∑K

k=1[βk(
∑k

i=1 αi)] in the region where the attacker

cannot blind the FC (t < 0.5).

Proof. The continuity of D(πj,1||πj,0) with respect to the involved distributions implies the conti-

nuity ofD∗. To show thatD∗ is a decreasing function of t, we use the fact that argmin
(PB

0,1,P
B
1,0)

D(πj,1||πj,0)

is equal to (1, 1) for t < 0.5 (as shown in Theorem 4.3.3). After plugging (PB
0,1, P

B
1,0) = (1, 1) in

the KLD expression, it can be shown that the expression for the derivative of D with respect to

t,
dD

dt
, is the same as (4.20). Using the results of Theorem 4.3.3, it follows that

dD

dt
< 0 and,
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therefore, D∗ is a monotonically decreasing function of t in the region where t < 0.5. The con-

vexity of D∗ follows from the fact that D∗(πj,1||πj,0) is convex in πj,1 and πj,0, which are affine

transformations of t (Note that, convexity holds under affine transformation).

It is worth noting that Lemma 4.3.4 suggests that by minimizing/maximizing the fraction of

covered nodes t, the FC can maximize/minimize the KLD. Using this fact, from now onwards we

will consider fraction of covered nodes t in lieu of the KLD in further analysis in the chapter.

Next, to gain insights into the solution, we present some numerical results in Figure 4.2 that

corroborate our theoretical results. We plot min
(PB

j,1,P
B
j,0)

KLD as a function of the fraction of covered

nodes. We assume that the probabilities of detection and false alarm are Pd = 0.8 and Pfa = 0.2,

respectively. Notice that, when 50% of the nodes in the network are covered, KLD between the

two probability distributions becomes zero and FC becomes blind. It can be seen that D∗ is a

continuous, decreasing and convex function of the fraction of covered nodes t in the region t < 0.5,

which corroborate our theoretical result presented in Lemma 4.3.4.

Until now, we have explored the problem from the attacker’s perspective. In the rest of the

chapter, we look into the problem from a network designer’s perspective and propose a technique

to mitigate the effect of the Byzantines. More specifically, we explore the problem of designing a

robust tree topology considering the Byzantine to incur a cost for attacking the network and the FC
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to incur a cost for deploying (including the cost of protection, etc.) the network. The FC (network

designer) tries to design a perfect a-ary tree topology under its cost budget constraint such that the

system performance metric, i.e., KLD is maximized. Byzantines, on the other hand, are interested

in attacking or capturing nodes to cause maximal possible degradation in system performance,

with the cost of attacking or capturing nodes not to exceed the attacker’s budget. This problem can

be formulated as a bi-level programming problem where the upper and the lower level problems

with conflicting objectives belong to the leader (FC) and the follower (Byzantines), respectively.

4.4 Robust Topology Design

In this problem setting, it is assumed that there is a cost associated with attacking each node in the

tree (which may represent resources required for capturing a node or cloning a node in some cases).

We also assume that the costs for attacking nodes at different levels are different. Specifically, let ck

be the cost of attacking any one node at level k. Also, we assume ck > ck+1 for k = 1, · · · , K − 1,

i.e., it is more costly to attack nodes that are closer to the FC. Observe that, a node i at level k

covers (in other words, can alter the decisions of) all its successors and node i itself. It is assumed

that the network designer or the FC has a cost budget Cnetwork
budget and the attacker has a cost budget

Cattacker
budget . Let Pk denote the number of nodes covered by a node at level k. We refer to Pk as the

“profit" of a node at level k. Notice that, Pk =
∑K

i=k+1 Ni

Nk
+ 1.

Notice that, in a tree topology, Pk can be written as

Pk = ak × Pk+1 + 1 for k = 1, ..., K − 1, (4.22)

where Pk is the profit of attacking a node at level k, Pk+1 is the profit of attacking a node at level

k + 1 and ak is the number of immediate children of a node at level k. For a perfect a-ary tree

ak = a, ∀k and Pk = aK−k+1−1
a−1

. The FC designs the network, such that, given the attacker’s

budget, the fraction of covered nodes is minimized, and consequently a more robust perfect a-ary

tree in terms of KLD (See Lemma 4.3.4) is generated.
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4.4.1 Robust Perfect a-ary Tree Topology Design

Since the attacker aims to maximize the fraction of covered nodes by attacking/capturing {Bk}Kk=1

nodes within the cost budget Cattacker
budget , the FC’s objective is to minimize the fraction of covered

nodes by choosing the parameters (K, a) optimally in a perfect a-ary tree topology T (K, a) under

its cost budgetCnetwork
budget . This situation can be interpreted as a Bi-level optimization problem, where

the first decision maker (the so-called leader) has the first choice, and the second one (the so-called

follower) reacts optimally to the leader’s selection. It is the leader’s aim to find such a decision

which, together with the optimal response of the follower, optimizes the objective function of the

leader. For our problem, the upper level problem (ULP) corresponds to the FC who is the leader

of the game, while the lower level problem (LLP) belongs to the attacker who is the follower.

We assume that the FC has complete information about the attacker’s problem, i.e., the objective

function and the constraints of the LLP. Similarly, the attacker is assumed to be aware about the

FC’s resources, i.e., cost of deploying the nodes {ck}Kk=1. Next, we formalize our robust perfect

a-ary tree topology problem as follows:

minimize
(K, a)∈Z+

∑K
k=1(a

K−k+1 − 1)Bk

a(aK − 1)

subject to amin ≤ a ≤ amax

K ≥ Kmin

K∑
k=1

ak ≥ Nmin

K∑
k=1

cka
k ≤ Cnetwork

budget

maximize
Bk∈Z+

∑K
k=1(a

K−k+1 − 1)Bk

a(aK − 1)

subject to
K∑
k=1

ckBk ≤ Cattacker
budget

Bk ≤ ak,∀ k = 1, 2, . . . , K

(4.23)
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where Z+ is the set of non-negative integers, amin ≥ 2 and Kmin ≥ 2. The objective function

in ULP is the fraction of covered nodes by the Byzantines
∑K

k=1 PkBk∑K
k=1 Nk

, where Pk = aK−k+1−1
a−1

and∑K
k=1Nk = a(aK−1)

a−1
. In the constraint amin ≤ a ≤ amax, amax represents the hardware constraint

imposed by the Medium Access Control (MAC) scheme used and amin represents the design con-

straint enforced by the FC. The constraint on the number of nodes in the network
∑K

k=1 a
k ≥ Nmin

ensures that the network satisfies pre-specified detection performance guarantees. In other words,

Nmin is the minimum number of nodes needed to guarantee a certain detection performance. The

constraint on the cost expenditure
∑K

k=1 cka
k ≤ Cnetwork

budget ensures that the total expenditure of the

network designer does not exceed the available budget.

In the LLP, the objective function is the same as that of the FC, but the sense of optimization

is opposite, i.e., maximization of the fraction of covered nodes. The constraint
∑K

k=1 ckBk ≤

Cattacker
budget ensures that the total expenditure of the attacker does not exceed the available budget.

The constraints Bk ≤ ak, ∀k are logical conditions, which prevent the attacker from attacking

non-existing resources.

Notice that, the bi-level optimization problem, in general, is an NP-hard problem [8]. In fact,

the optimization problem corresponding to LLP is the packing formulation of the Bounded Knap-

sack Problem (BKP) [27], which itself, in general, is NP-hard. Next, we discuss some properties

of our objective function that enable our robust topology design problem to have a polynomial time

solution.

Lemma 4.4.1. In a perfect a-ary tree topology, the fraction of covered nodes
∑K

k=1 PkBk∑K
k=1 Nk

by the

attacker with the cost budget Cattacker
budget for an optimal attack is a non-decreasing function of the

number of levels K in the tree.

Proof. Let us denote the optimal attack configuration for a K level perfect a-ary tree topology

T (K, a) by {B1
k}Kk=1 and the optimal attack configuration for a perfect a-ary tree topology with

K + 1 levels by {B2
k}K+1

k=1 given the cost budget Cattacker
budget . To prove the lemma, it is sufficient to

show that
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∑K+1
k=1 P

2
kB

2
k∑K+1

k=1 Nk

≥
∑K

k=1 P
2
kB

1
k∑K+1

k=1 Nk

≥
∑K

k=1 P
1
kB

1
k∑K

k=1Nk

, (4.24)

where P 1
k is the profit of attacking a node at level k in a K level perfect a-ary tree topology and

P 2
k is the profit of attacking a node at level k in a K + 1 level perfect a-ary tree topology.

First inequality in (4.24) follows due to the fact that {B1
k}Kk=1 may not be the optimal attack

configuration for topology T (K + 1, a). To prove the second inequality observe that, an increase

in the value of parameter K results in an increase in both the denominator (number of nodes in the

network) and the numerator (fraction of covered nodes). Using this fact, let us denote

∑K
k=1 P

2
kB

1
k∑K+1

k=1 Nk

=
x+ x1
y + y1

(4.25)

with x =
∑K

k=1 P
1
kB

1
k with P 1

k =
aK−k+1 − 1

a− 1
, y =

∑K
k=1Nk =

a(aK − 1)

a− 1
, x1 =

∑K
k=1(B

1
ka

K−k+1)

is the increase in the profit by adding one more level to the topology and y1 = aK+1 is the increase

in the number of nodes in the network by adding one more level to the topology .

Note that
x+ x1
y + y1

>
x

y
if and only if

x

y
<
x1
y1

(4.26)

where x, y, x1, and y1 are positive values. Hence, it is sufficient to prove that

aK+1
∑K

k=1

(
B1

k

ak

)
−
∑K

k=1B
1
k

a(aK − 1)
≤
∑K

k=1(B
1
ka

K−k+1)

aK+1
.

The above equation can be further simplified to



74

2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

Parameter ’K’

F
ra

ct
io

n 
of

 c
ov

er
ed

 n
od

es
 ’t

’

Fig. 4.3: Fraction of nodes covered vs Parameter K when a = 2, K is varied from 2 to 9,

[c1, · · · , c9] = [52, 48, 24, 16, 12, 8, 10, 6, 4], and Cattacker
budget = 50

K∑
k=1

(
B1

k

ak

)
≤

K∑
k=1

(
B1

k

a

)

which is true for all K ≥ 1.

Next, to gain insights into the solution, we present some numerical results in Figure 4.3 that

corroborate our theoretical results. We plot the fraction of covered nodes by the Byzantines as

a function of the total number of levels in the tree. We assume that a = 2 and vary K from 2

to 9. We also assume that the cost to attack nodes at different levels are given by [c1, · · · , c9] =

[52, 48, 24, 16, 12, 8, 10, 6, 4] and the cost budget of the attacker is Cattacker
budget = 50. For each

T (K, 2), we find the optimal attack configuration {Bk}Kk=1 by an exhaustive search. It can be seen

that the fraction of covered nodes is a non-decreasing function of the number of levels K, which

corroborate our theoretical result presented in Lemma 4.4.1.

Next, we explore some properties of the fraction of covered nodes with parameter a for a per-

fect a-ary tree topology. Before discussing our result, we define the parameter amin as follows.

For a fixed K and attacker’s cost budget Cattacker
budget , amin is defined as the minimum value of a for

which the attacker cannot blind the network or cover 50% or more nodes. So we can restrict our
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analysis to amin ≤ a ≤ amax. Notice that, the attacker cannot blind all the trees T (K, a) for which

a ≥ amin and can blind all the trees T (K, a) for which a < amin.

Lemma 4.4.2. In a perfect a-ary tree topology, the fraction of covered nodes
∑K

k=1 PkBk∑K
k=1 Nk

by an

attacker with cost budget Cattacker
budget in an optimal attack is a decreasing function of parameter a for

a perfect a-ary tree topology for a ≥ amin ≥ 2.

Proof. As before, let us denote the optimal attack configuration for a K level perfect a-ary tree

topology T (K, a) by {B1
k}Kk=1 and the optimal attack configuration for a perfect (a+1)-ary tree

topology T (K, a + 1) by {B2
k}Kk=1 given the cost budget Cattacker

budget . To prove the lemma, it is

sufficient to show that

∑K
k=1 P

2
kB

2
k∑K

k=1N
2
k

<

∑K
k=1 P

1
kB

2
k∑K

k=1N
1
k

≤
∑K

k=1 P
1
kB

1
k∑K

k=1N
1
k

(4.27)

where N1
k is the number of nodes at level k in T (K, a), N2

k is the number of nodes at level k

in T (K, a + 1), P 1
k is the profit of attacking a node at level k in T (K, a) and P 2

k is the profit of

attacking a node at level k in T (K, a + 1). Observe that, an interpretation of (4.27) is that the

attacker is using the attack configuration {B2
k}Kk=1 to attack T (K, a). However, one might suspect

that the set {B2
k}k=K

k=1 is not a valid solution. More specifically, the set {B2
k}k=K

k=1 is not a valid

solution in the following two cases:

1. min(B2
k, N

1
k ) = N1

k for any k: For example, if N1
1 = 4 for T (K, 4) and B2

1 = 5 for T (K, 5)

then it will not be possible for the attacker to attack 5 nodes at level 1 in T (K, 4) because the total

number of nodes at level 1 is 4. In this case, {B2
k}Kk=1 might not be a valid attack configuration for

the tree T (K, a).

2. {B2
k}k=K

k=1 is an overlapping set3 for T (K, a): For example, for T (2, 3) if B2
1 = 2 and B2

2 = 4,

3We call Bk and Bk+x are overlapping, if the summation of Bk+x
k and Bk+x is greater than Nk+x, where Bk+x

k

is the number of nodes covered by the attack configuration Bk at level k + x. In a non-overlapping case, the attacker
can always arrange nodes {Bk}Kk=1 such that each path in the network has at most one Byzantine.
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then, B2
1 and B2

2 are overlapping. In this case, {B2
k}Kk=1 might not be a valid attack configuration

for the tree T (K, a).

However, both of the above conditions imply that the attacker can blind the network with

Cattacker
budget (See Appendix A.6), which cannot be true for a ≥ amin, and, therefore, {B2

k}Kk=1 will

indeed be a valid solution. Therefore, (4.27) is sufficient to prove the lemma.

Notice that, the second inequality in (4.27) follows due to the fact that {B2
k}Kk=1 may not be

the optimal attack configuration for topology T (K, a). To prove the first inequality in (4.27), we

first consider the case where attack configuration {B2
k}k=K

k=1 contains only one node, i.e., B2
k = 1

for some k, and show that P 2
k∑K

k=1 N
2
k

<
P 1
k∑K

k=1 N
1
k

. Substituting P 1
k =

aK−k+1 − 1

a− 1
for some k and∑K

k=1N
1
k =

a(aK − 1)

a− 1
in the left side inequality of (4.27), we have

(a)K−k+1 − 1

(a)((a)K − 1)
>

(a+ 1)K−k+1 − 1

(a+ 1)((a+ 1)K − 1)
.

After some simplification, the above condition becomes

(a+ 1)K+1[(a)K−k+1 − 1]− (a)K+1[(a+ 1)K−k+1 − 1]

+(a)[(a+ 1)K−k+1 − 1]− (a+ 1)[(a)K−k+1 − 1] > 0. (4.28)

In Appendix A.7, we show that

(a)[(a+ 1)K−k+1 − 1]− (a+ 1)[(a)K−k+1 − 1] > 0 (4.29)

and

(a+ 1)K+1[(a)K−k+1 − 1]− (a)K+1[(a+ 1)K−k+1 − 1] ≥ 0. (4.30)

From (4.30) and (4.29), condition (4.28) holds.
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Fig. 4.4: Fraction of nodes covered vs Parameter a when K = 6, parameter a is varied from 3 to
11, [c1, · · · , c9] = [52, 48, 24, 16, 12, 8, 10, 6, 4], and Cattacker

budget = 50

Since we have proved that

P 2
k∑K

k=1N
2
k

<
P 1
k∑K

k=1N
1
k

for all 1 ≤ k ≤ K,

to generalize the proof for any arbitrary attack configuration {B2
k}Kk=1 we multiply both sides of

the above inequality with B2
k and sum it over all 1 ≤ k ≤ K inequalities. Now, we have

∑K
k=1 P

2
kB

2
k∑K

k=1N
2
k

<

∑K
k=1 P

1
kB

2
k∑K

k=1N
1
k

.

Next, to gain insights into the solution, we present some numerical results in Figure 4.4 that

corroborate our theoretical results. We plot the fraction of covered nodes by the Byzantines as a

function of the parameter a in the tree. We assume that the parameter K = 6 and vary a from 3

to 11. We also assume that the cost to attack nodes at different levels are given by [c1, · · · , c9] =

[52, 48, 24, 16, 12, 8, 10, 6, 4] and the cost budget of the attacker is Cattacker
budget = 50. For each

T (6, a) we find the optimal attack configuration {Bk}Kk=1 by an exhaustive search. It can be seen

that the fraction of covered nodes is a decreasing function of the parameter a, which corroborate



78

our theoretical result presented in Lemma 4.4.2.

Note that, while deriving the results in Lemma 4.4.1 and Lemma 4.4.2 we have made no addi-

tional assumptions on how the attack configuration {Bk}Kk=1 is obtained, so that the two lemmas

would still hold even if the cost of deploying a node (cnetwork
k ) is different from the cost of attacking

(cattackerk ) it. Further, as noted in the chapter, Lemma 4.4.1 and Lemma 4.4.2 suggest that the solu-

tion of the upper level problem, i.e., (K, a), is independent of the solution of lower level problem,

i.e., {Bk}Kk=1. In other words, even if cnetwork
k ̸= cattackerk , the proposed solution approach would

still hold.

Next, based on the above Lemmas we present an algorithm which can solve our robust perfect

a-ary tree topology design problem (bi-level programming problem) efficiently.

4.4.2 Algorithm for solving Robust Perfect a-ary Tree Topology Design

Problem

Based on Lemma 4.4.1 and Lemma 4.4.2, we present a polynomial time algorithm for solving

the robust perfect a-ary tree topology design problem. Observe that, the robust network design

problem is equivalent to designing perfect a-ary tree topology with minimum K and maximum a

that satisfy network designer’s constraints. In Algorithm 4.1, we start with the solution candidate

(Kmin, amax). First, the algorithm finds the largest integer (amax − l), l ≥ 0 that satisfies the

cost expenditure constraint. If this value violates the hardware constraint, i.e., (amax − l) < amin,

we will not have any feasible solution which satisfies the network designer’s constraints. Next, the

algorithm checks if (Kmin, (amax−l)) satisfies the total number of nodes constraint. If it does, this

will be the solution for the problem, otherwise, we increase Kmin by one, i.e., Kmin ← Kmin + 1.

Now, we have a new solution candidate (Kmin + 1, (amax − l)) and the algorithm solves the

problem recursively in this manner.

This procedure greatly reduces the complexity because we do not need to solve the lower level

problem in this case. Next, we prove that Algorithm 4.1 indeed yields an optimal solution.
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Algorithm 4.1 Robust Perfect a-ary Tree Topology Design

Require: ck > ck+1 for k = 1, ..., K − 1

1: K ← Kmin; a← amax

2: if
(∑K

k=1 cka
k > Cnetwork

budget

)
then

3: Find the largest integer a− ℓ, ℓ ≥ 0, such that
∑K

k=1 ck(a− ℓ)k ≤ Cnetwork
budget

4: if (a− ℓ < amin) then

5: return (ϕ, ϕ)

6: else

7: a← a− ℓ

8: end if

9: end if

10: if
(∑K

k=1 a
k ≥ Nmin

)
then

11: return (K, a)

12: else

13: K ← K + 1

14: return to Step 2

15: end if
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Lemma 4.4.3. Robust Perfect a-ary Tree Topology Design algorithm (Algorithm 4.1) yields an

optimal solution (K∗, a∗), if one exists.

Proof. Assume that the optimal solution exists. Let us denote by (K∗, a∗), the optimal solution

given by Algorithm 4.1. The main idea behind our proof is that any solution (K, a) with K ≥ K∗

and a ≤ a∗ cannot perform better than (K∗, a∗) as suggested by Lemma 4.4.1 and Lemma 4.4.2.

This property implies that the search should start with the smallest possible K and simultaneously

the largest a, i.e., (Kmin, amax).

Notice that, our algorithm searches for the feasible solution with the smallest K and the largest

a. Any feasible solution (K, a) satisfies the following two conditions:

1.
∑K

k=1 cka
k ≤ Cnetwork

budget ;

2.
∑K

k=1 a
k ≥ Nmin.

By Lemma 4.4.2, if (K, a) is a feasible solution, then (K, a′) with a′ < a will not be a better

solution than (K, a). Hence, for a given K, Step 3 only locates the solution with largest a for a

given K. Furthermore, if both (K, a) and (K ′, a′) satisfy Condition 1 and K < K ′, then a ≥ a′.

Hence, for a given K, the largest a in the current iteration satisfying Condition 1 cannot be larger

than the a found in the previous iteration. This verifies that ℓ ≥ 0 is a sufficient condition to find

the largest a in Step 3.

Next, we prove that Algorithm 4.1 stops when the first feasible solution has been found. That

is, the first feasible solution found by the algorithm is (K∗, a∗). Let (K1, a1) be the first feasible

solution found by Algorithm 4.1. It can be observed from the algorithm that K∗ ≥ K1 since the

algorithm increases K from its smallest possible value and has not found a feasible solution until

K = K1. It is clear that the next feasible solution (K, a) must have K > K1 and a ≤ a1, since,

the algorithm increases K and it satisfies Condition 1. As suggested by Lemma 4.4.1 and Lemma

4.4.2, (K, a) cannot be a better solution than (K1, a1). Hence, K∗ = K1 and (K1, a1) is equal to

(K∗, a∗).
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budget = 400000,Cattacker

budget =
50 and Nmin = 1400

It can be seen that if there is no solution, then the algorithm will return (∅, ∅). This is due to

the fact that if a − ℓ < amin, then no a can satisfy Condition 1 for current and further iterations.

Hence, the algorithm terminates and returns (∅, ∅).

Next, to gain insights into the solution, we present some numerical results in Figure 4.5

that corroborate our theoretical results. We plot the min
P1,0,P0,1

KLD for all the combinations of

parameter K and a in the tree. We vary the parameter K from 2 to 10 and a from 3 to 11.

We also assume that the costs to attack nodes at different levels are given by [c1, · · · , c10] =

[52, 50, 25, 24, 16, 10, 8, 6, 5, 4], and cost budgets of the network and the attacker are given

by Cnetwork
budget = 400000, Cattacker

budget = 50, respectively. The node budget constraint is assumed to be

Nmin = 1400. For each T (K, a), we find the optimal attack configuration {Bk}Kk=1 by an exhaus-

tive search. All the feasible solutions are plotted in red and unfeasible solutions are plotted in blue.

Notice that, T (Kmin, amax) which is T (2, 11) is not a feasible solution and, therefore, if we use

Algorithm 4.1 it will try to find the feasible solution which has minimum possible deviation from

T (Kmin, amax). It can be seen that the optimal solution T (3, 11) has minimum possible deviation

from the T (Kmin, amax), which corroborate our algorithm.
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4.5 Discussion

In this chapter, we have considered distributed detection in perfect a-ary tree topologies in the pres-

ence of Byzantines, and characterized the power of attack analytically. We provided closed-form

expressions for minimum attacking power required by the Byzantines to blind the FC. We obtained

closed form expressions for the optimal attacking strategies that minimize the detection error ex-

ponent at the FC. We also looked at the possible counter-measures from the FC’s perspective to

protect the network from these Byzantines. We formulated the robust topology design problem as

a bi-level program and provided an efficient algorithm to solve it.
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CHAPTER 5

DISTRIBUTED DETECTION WITH LABELED

BYZANTINE DATA: TREE TOPOLOGY

5.1 Introduction

In the previous chapter, we studied the problem of distributed detection in perfect tree networks

(all intermediate nodes in the tree have the same number of children) with Byzantines under the

assumption that the FC does not know which decision bit is sent from which node and assumes each

received bit to originate from nodes at depth k with a certain probability. Under this assumption,

the attacker’s aim was to maximize the false alarm probability for a fixed detection probability.

When the number of nodes is large, by Stein’s lemma [23], we know that the error exponent of the

false alarm probability can be used as a surrogate for the false alarm probability. Thus, the optimal

attacking strategy was obtained by making the error exponent of the false alarm probability at the

FC equal to zero, which makes the decision fusion scheme completely incapable (blind). Some

counter-measures were also proposed to protect the network from such Byzantines.

In contrast to the previous chapter, in this chapter, the problem of distributed detection in reg-

ular tree networks1 with Byzantines is addressed in a more practical setup where the FC has the

1For a regular tree, intermediate nodes at different levels are allowed to have different degrees, i.e., number of
children.
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knowledge of which bit is transmitted from which node. Note that, in practice, the FC knows which

bit is transmitted from which node, e.g., using MAC schemes2, and can utilize this information to

improve system performance. Next, for the analysis of the optimal attack, we consider nodes resid-

ing at different levels of the tree to have different detection performance. We also allow Byzantines

residing at different levels of the tree to have different attacking strategies and, therefore, provide a

more general and comprehensive analysis of the problem as compared to the previous chapter. We

also study the problem from the network designer’s perspective. We model the strategic interaction

between the FC and the attacker as a Leader-Follower (Stackelberg) game and identify attacker and

defender (FC) equilibrium strategies. The knowledge of these equilibrium strategies can later be

used to implement the optimal detector at the FC. Based on the information regarding which bit is

transmitted from which node, we propose schemes to mitigate the effect of the Byzantines. More

specifically, we propose a simple yet efficient reputation based scheme, which works even if the

FC is blinded, to identify Byzantines in tree networks and analytically evaluate its performance.

The rest of the chapter is organized as follows. Section 5.2 introduces the system model. In

Section 5.3, we study the problem from Byzantine’s perspective and provide closed form expres-

sions for optimal attacking strategies. In Section 5.4, we investigate the problem of designing

optimal distributed detection parameters in the presence of Byzantines. In Section 5.5, we model

the strategic interaction between the FC and the attacker as a Leader-Follower (Stackelberg) game

and find equilibrium strategies. In Section 5.6, we introduce an efficient Byzantine identification

scheme and analyze its performance. Finally, Section 5.7 concludes the chapter.

5.2 System Model

We consider a distributed detection system organized as a regular tree network rooted at the FC.

For a regular tree, all the leaf nodes are at the same level (or depth) and all the intermediate nodes

at level k have degree ak. The regular tree is assumed to have a set N = {Nk}Kk=1 of transceiver

2In practice, one possible way to achieve this is by using the buffer-less TDMA MAC protocol, in which, distinct
non-overlapping time slots are assigned (scheduled) to the nodes for communication.
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nodes, where |Nk| = Nk is the total number of nodes at level k. We assume that the depth of the tree

is K > 1 and ak ≥ 2. The total number of nodes in the network is denoted as N =
∑K

k=1Nk and

B = {Bk}Kk=1 denotes the set of Byzantine nodes with |Bk| = Bk, where Bk is the set of Byzantines

at level k. The set containing the number of Byzantines residing at each level k, 1 ≤ k ≤ K, is

referred to as an attack configuration, i.e., {Bk}Kk=1 = {|Bk|}Kk=1.

We consider a binary hypothesis testing problem with two hypotheses H0 (signal is absent)

and H1 (signal is present). Under each hypothesis, it is assumed that the observations Yk,i at each

node i at level k are conditionally independent. Each node i at level k acts as a source in the sense

that it makes a one-bit (binary) local decision vk,i ∈ {0, 1} regarding the absence or presence of

the signal using the likelihood ratio test (LRT). We denote the probabilities of detection and false

alarm of a node at level k by P k
d = P (vk,i = 1|H1) and P k

fa = P (vk,i = 1|H0), respectively, which

are functions of λk and hold for both Byzantines and honest nodes. After making its one-bit local

decision vk,i ∈ {0, 1}, node i at level k sends uk,i to its parent node at level k−1, where uk,i = vk,i

if i is an honest node, but for a Byzantine node i, uk,i need not be equal to vk,i. Node i at level k

also receives the decisions uk′,j of all successors j at levels k′ ∈ [k+1, K], which are forwarded to

node i by its immediate children, and forwards them to its parent node at level k − 1. We assume

error-free communication between children and the parent nodes.

Next, we present a mathematical model for the Byzantine attack as defined in 2.2.3. We denote

the strategies PH
j,1(k), P

H
j,0(k) and PB

j,1(k), P
B
j,0(k) (j ∈ {0, 1} and k = 1, · · · , K) for the honest

and Byzantine nodes at level k, respectively, where Pk(x = a|y = b) is the conditional probability

that a node at level k sends a to its parent when it receives b from its child or its actual decision is b.

For notational convenience, we use (P k
1,0, P

k
0,1) to denote the flipping probability of the Byzantine

node at level k. Furthermore, we assume that if a node (at any level) is a Byzantine, then none of

its ancestors and successors are Byzantine (non-overlapping attack configuration); otherwise, the

effect of a Byzantine due to other Byzantines on the same path may be nullified (e.g., Byzantine

ancestor re-flipping the already flipped decisions of its successors). This means that every path

from a leaf node to the FC will have at most one Byzantine. Notice that, for the attack configuration
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{Bk}Kk=1, the total number of corrupted paths (i.e., paths containing a Byzantine node) from level

k to the FC are
∑k

i=1Bi
Nk

Ni
, where Bi

Nk

Ni
is the total number of nodes covered3 at level k by the

presence of Bi Byzantines at level i. If we denote αk = Bk

Nk
, then,

∑k
i=1 Bi

Nk
Ni

Nk
=
∑k

i=1 αi is the

fraction of decisions coming from level k that encounter a Byzantine along the way to the FC.

For a large network, due to the law of large numbers, one can approximate the probability that

the FC receives the flipped decision x̄ of a given node at level k when its actual decision is x as

βk
x̄,x =

∑k
j=1 αjP

j
x̄,x, x ∈ {0, 1}.

We consider the distributed detection problem under the Neyman-Pearson (NP) criterion. The

FC receives decision vectors, [z1, · · · , zK], where zk for k ∈ {1, · · · , K} is a decision vector with

its elements being z1, · · · , zNk
, from the nodes at different levels of the tree. Then the FC makes

the global decision about the phenomenon by employing the LRT. Due to system vulnerabilities,

some of the nodes may be captured by the attacker and reprogrammed to transmit false information

to the FC to degrade detection performance. We assume that the only information available at the

FC is the probability βk
x̄,x, which is the probability with which the data coming from level k has

been falsified. Using this information, the FC calculates the probabilities πk
j,0 = P (zi = j|H0, k)

and πk
j,1 = P (zi = j|H1, k), which are the distributions of received decisions zi originating from

level k and arriving to the FC under hypotheses H0 and H1. The FC makes its decision regarding

the absence or presence of the signal using the following likelihood ratio test

K∏
k=1

(
πk
1,1

πk
1,0

)sk
(
1− πk

1,1

1− πk
1,0

)Nk−sk
H1

≷
H0

η (5.1)

where sk is the number of decisions that are equal to one and originated from level k, and the

threshold η is chosen in order to minimize the missed detection probability (PM) while keeping

the false alarm probability (PF ) below a fixed value δ.4

3Node i at level k′ covers (or can alter the decisions of) all its children at levels k′ + 1 to K and itself. In other
words, the total number of covered nodes is equivalent to the total number of corrupted paths (i.e., paths containing a
Byzantine node) in the network.

4This type of problem setup is important, for instance, in Cognitive Radio Networks (CRN). In order to coexist
with the primary user (PU), secondary users (SUs) must guarantee that their transmissions will not interfere with the
transmission of the PU who have higher priority to access the spectrum.
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Next, we derive a closed form expression for the optimal missed detection error exponent

for tree networks in the presence of Byzantines, which will later be used as a surrogate for the

probability of missed detection.

Proposition 5.2.1. For aK level tree network employing the detection scheme as given in (5.1), the

asymptotic detection performance (i.e., N1 →∞) can be characterized using the missed detection

error exponent given below

D =
K∑
k=1

Nk

 ∑
j∈{0,1}

πk
j,0 log

πk
j,0

πk
j,1

 . (5.2)

Proof. Let Z = [Z1, · · · ,ZN1 ] denote the received decision vectors from the nodes at level 1,

where Zi is the decision vector forwarded by the node i at level 1 to the FC. Observe that, Zi

for i = 1 to N1 are independent and identically distributed (i.i.d.). Therefore, using Stein’s

lemma [23], when N1 →∞, the optimal error exponent for the detection scheme as given in (5.1)

is the Kullback-Leibler divergence (KLD) [56] between the distributions P (Z|H0) and P (Z|H1).

The summation term in (5.2) follows from the additive property of the KLD for independent dis-

tributions.

Note that, (5.2) can be compactly written as
∑K

k=1NkDk(π
k
j,1||πk

j,0) with Dk(π
k
j,1||πk

j,0) being

the KLD between the data coming from node i at level k under H0 and H1. The FC wants to

maximize the detection performance, while, the Byzantine attacker wants to degrade the detection

performance as much as possible which can be achieved by maximizing and minimizing the KLD,

respectively. Next, we explore the optimal attacking strategies for the Byzantines that degrade the

detection performance most by minimizing the KLD.
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5.3 Optimal Byzantine Attack

Since the KLD is always non-negative, Byzantines attempt to choose P (zi = j|H0, k) and P (zi =

j|H1, k) such that Dk = 0, ∀k. This is possible when

P (zi = j|H0, k) = P (zi = j|H1, k) ∀j ∈ {0, 1}, ∀k. (5.3)

Notice that, πk
j,0 = P (zi = j|H0, k) and πk

j,1 = P (zi = j|H1, k) can be expressed as

πk
1,0 = βk

1,0(1− P k
fa) + (1− βk

0,1)P
k
fa (5.4)

πk
1,1 = βk

1,0(1− P k
d ) + (1− βk

0,1)P
k
d . (5.5)

with βk
1,0 =

∑k
j=1 αjP

j
1,0 and βk

0,1 =
∑k

j=1 αjP
j
0,1. Substituting (5.4) and (5.5) in (5.3) and after

simplification, the condition to make the D = 0 for a K-level network becomes
∑k

j=1 αj(P
j
1,0 +

P j
0,1) = 1, ∀k.

Notice that, when
∑k

j=1 αj < 0.5, there does not exist any attacking probability distribution

(P j
0,1, P

j
1,0) that can make Dk = 0, and, therefore, the KLD cannot be made zero. In the case of∑k

j=1 αj = 0.5, there exists a unique solution (P j
0,0, P

j
1,0) = (1, 1), ∀j that can make Dk = 0,

∀k. For the
∑k

j=1 αj > 0.5 case, there exist infinitely many attacking probability distributions

(P j
0,1, P

j
1,0) which can make Dk = 0, ∀k. Thus, we have the following result.

Lemma 5.3.1. In a tree network withK levels, the minimum number of Byzantines needed to make

the Kullback-Leibler divergence (KLD) between the distributions P (Z|H0) and P (Z|H1) equal to

zero (or to make Dk = 0, ∀k) is given by B1 =
⌈
N1

2

⌉
.

Proof. The proof follows from the fact that the condition
∑k

j=1 αj = 0.5, ∀k, is equivalent to

α1 = 0.5, αk = 0, ∀k = 2, · · · , K.

Next, we explore the optimal attacking probability distribution (P k
0,1, P

k
1,0) that minimizes

Dk when
∑k

j=1 αj < 0.5, i.e., in the case where the attacker cannot make D = 0. To ana-

lyze the problem, first we investigate the properties of Dk with respect to (P k
0,1, P

k
1,0) assuming
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(P j
0,1, P

j
1,0), 1 ≤ j ≤ k− 1 to be fixed. We show that attacking with symmetric flipping probabili-

ties is the optimal strategy in the region where the attacker cannot make Dk = 0. In other words,

attacking with P k
1,0 = P k

0,1 is the optimal strategy for the Byzantines.

Lemma 5.3.2. In the region where the attacker cannot make Dk = 0, i.e., for
∑k

j=1 αj < 0.5,

the optimal attacking strategy comprises of symmetric flipping probabilities (P k
0,1 = P k

1,0 = p). In

other words, any non zero deviation ϵi ∈ (0, p] in flipping probabilities (P k
0,1, P

k
1,0) = (p−ϵ1, p−ϵ2),

where ϵ1 ̸= ϵ2, will result in an increase in Dk.

Proof. Please see Appendix A.8.

In the next theorem, we present the solution for the optimal attacking probability distribution

(P k
j,1, P

k
j,0) that minimizes Dk in the region where the attacker cannot make Dk = 0.

Theorem 5.3.3. In the region where the attacker cannot make Dk = 0, i.e., for
∑k

j=1 αj < 0.5,

the optimal attacking strategy is given by (P k
0,1, P

k
1,0) = (1, 1).

Proof. Observe that, in the region where the attacker cannot make Dk = 0, the optimal strategy

comprises of symmetric flipping probabilities (P k
0,1 = P k

1,0 = p). The proof is complete if we show

that Dk is a monotonically decreasing function of the flipping probability p.

After plugging in (P k
0,1, P

k
1,0) = (p, p) in (5.4) and (5.5), we get

πk
1,1 = [βk−1

1,0 (1− P k
d ) + (1− βk−1

0,1 )P k
d ] + [αk(p− P k

d (2p)) + P k
d ] (5.6)

πk
1,0 = [βk−1

1,0 (1− P k
fa) + (1− βk−1

0,1 )P k
fa] + [αk(p− P k

fa(2p)) + P k
fa]. (5.7)

Now we show that Dk is a monotonically decreasing function of the parameter p or in other words,
dDk

dp
< 0. After plugging in πk′

1,1 = αk(1 − 2P k
d ) and πk′

1,0 = αk(1 − 2P k
fa) in the expression of

dDk

dp
and rearranging the terms, the condition

dDk

dp
< 0 becomes

(1− 2P k
d )

(
1− πk

1,0

1− πk
1,1

−
πk
1,0

πk
1,1

)
+ (1− 2P k

fa) log

(
1− πk

1,1

1− πk
1,0

πk
1,0

πk
1,1

)
< 0 (5.8)
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Since P k
d > P k

fa and βk
x̄,x < 0.5, we have πk

1,1 > πk
1,0. Now, using the fact that

1− P k
d

1− P k
fa

>
1− 2P k

d

1− 2P k
fa

and (A.51), we have

1− 2P k
d

1− 2P k
fa

[
1− πk

1,0

1− πk
1,1

−
πk
1,0

πk
1,1

]
< (πk

1,1 − πk
1,0)

[
1

πk
1,1

+
1

1− πk
1,0

]
(5.9)

⇔ 1− 2P k
d

1− 2P k
fa

[
1− πk

1,0

1− πk
1,1

−
πk
1,0

πk
1,1

]
+

[
πk
1,0

πk
1,1

− 1

]
< 1−

1− πk
1,1

1− πk
1,0

. (5.10)

Applying the logarithm inequality (x−1) ≥ log x ≥ x− 1

x
, for x > 0 to (5.10), one can prove

that (5.8) is true.

Next, to gain insights into the solution, we present some numerical results in Figure 5.1. We

plot Dk as a function of the flipping probabilities (P k
1,0, P

k
0,1). We assume that the probability of

detection is P k
d = 0.8, the probability of false alarm is P k

fa = 0.2, and the probability that the bit

coming from level k encounters a Byzantine is
∑k

j=1 αj = 0.4. We also assume that P k
0,1 = P0,1

and P k
1,0 = P1,0,∀k. It can be seen that the optimal attacking strategy comprises of symmetric

flipping probabilities and is given by (P k
0,1, P

k
1,0) = (1, 1), which corroborates our theoretical result

presented in Lemma 5.3.2 and Theorem 5.3.3.

We have shown that, for all k,

Dk(P
k
0,1, P

k
1,0) ≥ Dk(1, 1). (5.11)

Now, by multiplying both sides of (5.11) by Nk and summing it over all K we can show that the

KLD, D, is minimized by (P k
0,1, P

k
1,0) = (1, 1), for all k, in the region

K∑
k=1

αk < 0.5.

Now, we explore some properties of Dk with respect to
∑k

j=1 αj in the region where the at-

tacker cannot make Dk = 0, i.e., for
∑k

j=1 αj < 0.5. This analysis will later be used in exploring

the problem from the network designer’s perspective.

Lemma 5.3.4. D∗
k = min

(Pk
j,1,P

k
j,0)
Dk(π

k
j,1||πk

j,0) is a continuous, decreasing and convex function of
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Fig. 5.1: KLD Dk vs. flipping probabilities when P k
d = 0.8, P k

fa = 0.2, and the probability that
the bit coming from level k encounters a Byzantine is

∑k
j=1 αj = 0.4.

∑k
j=1 αj for

∑k
j=1 αj < 0.5.

Proof. The continuity of Dk(π
k
j,1||πk

j,0) with respect to the involved distributions implies the con-

tinuity of D∗
k. To show that D∗

k is a decreasing function of t =
∑k

j=1 αj , we use the fact that

arg min
(Pk

0,1,P
k
1,0)

Dk(π
k
j,1||πk

j,0) is equal to (1, 1) for
∑k

j=1 αj < 0.5 (as shown in Theorem 5.3.3). After

plugging (P k
0,1, P

k
1,0) = (1, 1), ∀k, in the KLD expression, it can be shown that

dDk

dt
< 0. Hence,

D∗
k is a monotonically decreasing function of

∑k
j=1 αj for

∑k
j=1 αj < 0.5. The convexity of D∗

k

follows from the fact that D∗
k(π

k
j,1||πk

j,0) is convex in πk
j,1 and πk

j,0, which are affine transformations

of
∑k

j=1 αj (Note that, convexity holds under affine transformation).

It is worth noting that Lemma 5.3.4 suggests that minimization/maximization of
∑k

j=1 αj is

equivalent to minimization/maximization of Dk. Using this fact, one can consider the probability

that the bit coming from level k encounters a Byzantine (i.e., t =
∑k

j=1 αj) in lieu of Dk for

optimizing the system performance.

Next, to gain insights into the solution, we present some numerical results in Figure 5.2. We

plot min
(Pk

j,1,P
k
j,0)
Dk as a function of the probability that the bit coming from level k encounters a

Byzantine, i.e., t. We assume that the probabilities of detection and false alarm are P k
d = 0.8 and

P k
fa = 0.2, respectively. Notice that, when t = 0.5, Dk between the two probability distributions
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j,0)

Dk vs probability that the bit coming from level k encounters a Byzantine for

P k
d = 0.8 and P k

fa = 0.2.

becomes zero. It is seen that D∗
k is a continuous, decreasing and convex function of the fraction of

covered nodes, t, for t < 0.5, which corroborates our theoretical result presented in Lemma 5.3.4.

Until now, we have explored the problem from the attacker’s perspective. In the rest of the

chapter, we look into the problem from a network designer’s perspective and propose techniques

to mitigate the effect of Byzantines. First, we study the problem of designing optimal distributed

detection parameters in a tree network in the presence of Byzantines.

5.4 System Design in the Presence of Byzantines

For a fixed attack configuration {Bk}Kk=1, the detection performance at the FC is a function of the

local detectors used at the nodes in the tree network and the global detector used at the FC. This

motivates us to study the problem of designing detectors, both at the nodes at different levels in a

tree and at the FC, such that the detection performance is maximized. More specifically, we are

interested in answering the question: How does the knowledge of the attack configuration {Bk}Kk=1

affect the design of optimal distributed detection parameters?

By Stein’s lemma [23], we know that in the NP setup for a fixed false alarm probability, the

missed detection probability of the optimal detector can be minimized by maximizing the KLD.
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For an optimal detector at the FC, the problem of designing the local detectors can be formalized

as follows:

max
{Pk

d ,Pk
fa}

K
k=1

K∑
k=1

Nk

∑
j∈{0,1}

P (zi = j|H0, k) log
P (zi = j|H0, k)

P (zi = j|H1, k)
. (5.12)

The local detector design problem as given in (5.12) is a non-linear optimization problem.

Furthermore, it is difficult to obtain a closed form solution for this problem. Next, we show that

likelihood ratio tests remain optimal (under the conditional independence assumption) even in the

presence of Byzantines and optimal decision rule for each node is independent of Byzantines’

parameters.5 To solve the problem, we need to find the pairs {P k
d , P

k
fa}Kk=1 which maximize the

objective function as given in (5.12). However, P k
d and P k

fa are coupled and, therefore, cannot

be optimized independently. Thus, we first analyze the problem of maximizing the KLD for a

fixed P k
fa. We assume that P k

fa = yk and P k
d = yk + xk. Next, we analyze the properties of

KLD with respect to xk, i.e., (P k
d − P k

fa) in the region where attacker cannot blind the FC, i.e.,

for
∑k

j=1 αj < 0.5, in order to study the local detector design problem. Notice that, in the region∑k
j=1 αj ≥ 0.5, Dk = 0 and optimizing over local detectors does not improve the performance.

Lemma 5.4.1. For a fixed P k
fa = yk, when

∑k
j=1 αj < 0.5, the KLD, D, as given in (5.2) is a

monotonically increasing function of xk = (P k
d − P k

fa).

Proof. To prove this, we calculate the partial derivative of D with respect to xk. By substituting

P k
fa = yk and P k

d = yk + xk into (5.2), the partial derivative of D with respect to xk can be

calculated as
5In other words, under the assumption of conditional independence, an optimal decision rule for each node takes

the form of a likelihood ratio test (LRT), with a suitably chosen threshold. In turn, optimization over the set of all
thresholds can yield the desired solution.
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∂D

∂xk
= Nk

∂

∂xk

[
πk
1,0 log

πk
1,0

πk
1,1

+ (1− πk
1,0) log

1− πk
1,0

1− πk
1,1

]

⇔ ∂D

∂xk
= Nkπ

k′

1,1

(
1− πk

1,0

1− πk
1,1

−
πk
1,0

πk
1,1

)
,

where πk
1,0 and πk

1,1 are as given in (5.4) and (5.5), respectively and πk′
1,1 = (1−βk

0,1−βk
1,0). Notice

that,

(
1− πk

1,0

1− πk
1,1

−
πk
1,0

πk
1,1

)
> 0

⇔ πk
1,1 > πk

1,0.

Thus, the condition to make
∂D

∂xk
> 0 simplifies to

πk′

1,1 > 0⇔ 1 > (βk
0,1 + βk

1,0) (5.13)

Substituting the values of βk
1,0 and βk

1,1, the above condition can be written as:

k∑
j=1

αjP
j
1,0 +

k∑
j=1

αjP
j
0,1 < 1 (5.14)

⇔
k∑

j=1

αj(P
j
1,0 + P j

0,1) < 1 (5.15)

The above condition is true for any 0 ≤ P j
0,1, P

j
1,0 ≤ 1 when

∑k
j=1 αj < 0.5. This completes the

proof.

Lemma 5.4.1 suggests that one possible solution to maximizeD is to choose the largest possible

xk constrained to 0 ≤ xk ≤ 1 − yk. The upper bound results from the fact that {P k
d , P

k
fa}Kk=1 are

probabilities and, thus, must be between zero and one. In other words, the solution is to maximize

the probability of detection for a fixed value of probability of false alarm. In detection theory,
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it is well known that the likelihood ratio based test is optimum for this criterion. Thus, under the

conditional independence assumption, the likelihood ratio based test as given in (5.1) is optimal for

local nodes, even in the presence of Byzantines, and the optimal operating points {P k∗
d , P k∗

fa}Kk=1

are independent of the Byzantines’ parameters {αk}Kk=1.

The above result has the following important consequences: 1) search space is reduced from

any arbitrary detector to likelihood ratio based detectors, 2) the threshold in the LRT can be opti-

mized without any prior knowledge about the Byzantines’ parameters {αk}Kk=1. We further explore

the problem from the network designer’s (FC) perspective. In our previous analysis, we have as-

sumed that the attack configuration {Bk}Kk=1 is known and shown that the optimal local detector is

independent of {αk}Kk=1. However, notice that the KLD is the exponential decay rate of the error

probability of the optimal detector. In other words, while optimizing over KLD, we implicitly

assumed that the optimal detector, which is a likelihood ratio based detector, is used at the FC.

Taking logarithm on both sides of (5.1), the optimal decision rule simplifies to

K∑
k=1

[ak1sk + ak0(Nk − sk)]
H1

≷
H0

log η (5.16)

where the optimal weights are given by ak1 = log
πk
1,1

πk
1,0

and ak0 = log
1−πk

1,1

1−πk
1,0

. To implement the

optimal detector, the FC needs to know the optimal weights akj , which are functions of {αk}Kk=1. In

the next section, we are interested in answering the question: Is it possible for the FC to predict the

attack configuration {Bk}Kk=1 in the tree? The knowledge of this attack configuration can be used

for determining the optimal detector at the FC to improve the system performance. Notice that,

learning/estimation based techniques can be used on data to determine the attack configuration.

However, the FC has to acquire a large amount of data coming from the nodes over a long period

of time to accurately estimate {Bk}Kk=1.

In the next section, we propose a novel technique to predict the attack configuration by consid-

ering the following scenario: The FC, acting first, commits to a defensive strategy by deploying

the defensive resources to protect the tree network, while the attacker chooses its best response or
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attack configuration after surveillance of this defensive strategy. Both, the FC and the Byzantines

have to incur a cost to deploy the defensive resources and attack the nodes in the tree network,

respectively. We consider both the FC and the attacker to be strategic in nature and model the

strategic interaction between them as a Leader-Follower (Stackelberg) game. This formulation

provides a framework for identifying attacker and defender (FC) equilibrium strategies, which can

be used to implement the optimal detector. The main advantage of this technique is that the equi-

librium strategies can be determined a priori and, therefore, there is no need to observe a large

amount of data coming from the nodes over a long period of time to accurately estimate {Bk}Kk=1.

5.5 Stackelberg Game for Attack Configuration Prediction

Problems

We model the strategic interaction between the FC and the attacker as a Leader-Follower (Stackel-

berg) game. We assume that the FC has to incur a cost for deploying the network and the Byzantine

has to incur a cost6 for attacking the network. It is assumed that the network designer or the FC

has a cost budget Cnetwork
budget and the attacker has a cost budget Cattacker

budget
7. More specifically, the FC

wants to allocate the best subset of defensive resources (denoted as {c̃k}Kk=1)8 from a set of avail-

able defensive resources C = (c1, · · · , cn) (arranged in a descending order, i.e., c1 ≥ c2 · · · ≥ cn),

where n ≥ K, complying with its budget constraint Cnetwork
budget to different levels of the tree network.

After the FC allocates the defensive resources or budget to different levels of the tree network, an

attacker chooses an attack configuration, {Bk}Kk=1 complying with his budget constraint Cattacker
budget

6Due to variations in hardware complexity and the level of tamper-resistance present in nodes residing at different
levels of the tree, the resources required to capture and tamper nodes at different levels may be different and, therefore,
nodes have varying costs of being attacked.

7In this chapter, we assume that the attacker budget Cattacker
budget is such that

K∑
k=1

αk < 0.5, i.e., the attacker cannot

makeDk = 0, ∀k. Notice that, if the attacker can makeDk = 0 for some k = l, then, it can also makeDk = 0, ∀k ≥
l. Also, Dk = 0 implies that πk

1,1 = πk
1,0 and, therefore, the weights (ak1 , a

k
0) in (5.16) are zero. In other words, the

best the FC can do in the case when Dk = 0, ∀k ≥ l is to ignore or discard the decisions of the nodes residing at level
k ≥ l. This scenario is equivalent to using the tree network with (l − 1) levels for distributed detection.

8Let c̃k denote the resources deployed or budget allocated by the FC to protect or deploy a node at level k.
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to maximally degrade the performance of the network.

Next, we formalize the Stackelberg game as a bi-level optimization problem. For our problem,

the upper level problem (ULP) corresponds to the FC who is the leader of the game, while the

lower level problem (LLP) belongs to the attacker who is the follower.

maximize
{c̃k}Kk=1∈C

D({c̃k}Kk=1)

subject to
K∑
k=1

c̃kNk ≤ Cnetwork
budget

minimize
Bk∈Z+

D({Bk}Kk=1)

subject to
K∑
k=1

c̃kBk ≤ Cattacker
budget

0 ≤ Bk ≤ Nk,∀ k = 1, 2, . . . , K

(5.17)

where Z+ is the set of non-negative integers. Notice that the bi-level optimization problem, in

general, is an NP-hard problem. In fact, the LLP is a variant of the packing formulation of the

bounded knapsack problem with a non-linear objective function. This is, in general, NP-hard.

Using existing algorithms, cost set {c̃k}Kk=1 and attack configuration {Bk}Kk=1 can be determined

at the cost of computational efficiency. In this chapter, we identify a special case of the above

problem which can be solved in polynomial time to determine the equilibrium strategies. To solve

the bi-level optimization problem, we first solve the LLP assuming the solution of the ULP to

be some fixed (c̃1, · · · , c̃K). This approach will give us a structure of the optimal {Bk}Kk=1 for

any arbitrary {c̃k}Kk=1. Next, using the structure of the optimal {Bk}Kk=1, the bi-level optimization

problem simplifies to finding the solution {c̃k}Kk=1 of the ULP. Finally, we present a polynomial

time algorithm to solve the bi-level optimization problem, i.e., to find {c̃k}Kk=1 and, thus, {Bk}Kk=1.

Next, we discuss the relationships that enable our problem to have a polynomial time solution.
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We define profit P (S) of an attack configuration S = {Bk}Kk=1 as follows9

P (S) = D(ϕ)−D(S) = D(ϕ)−D({Bk}Kk=1),

where D(ϕ) is the KLD when there are no Byzantines in the network and D(S) = D({Bk}Kk=1) is

the KLD with {Bk}Kk=1 Byzantines in the tree network. Next, we define the concept of dominance

which will be used later to explore some useful properties of the optimal attack configuration

{Bk}Kk=1.

Definition 5.5.1. We say that a set S1 dominates another set S2 if

P (S1) ≥ P (S2) and C(S1) ≤ C(S2), (5.18)

where P (Si) andC(Si) denote the profit and cost incurred by using set Si, respectively. If in (5.18),

P (S1) > P (S2), S1 strictly dominates S2 and if P (S1) = P (S2), S1 weakly dominates S2.

To solve the bi-level optimization problem, we first solve the LLP assuming the solution of

the ULP to be some fixed (c̃1, · · · , c̃K). We refer to LLP as a maximum damage Byzantine attack

problem. Observe that, knowing that the FC chooses (c̃1, · · · , c̃K), the LLP can be reformulated

as follows:

minimize
Bk∈Z+

K∑
k=1

NkDk({Bi}ki=1)

subject to
K∑
k=1

c̃kBk ≤ Cattacker
budget

0 ≤ Bk ≤ Nk, ∀k = 1, · · · , K.

Next, we discuss the relationships that enable our maximum damage Byzantine attack problem

to admit a polynomial time solution.

9In this section, we assume that the optimal operating point, i.e., (P k∗
d , P k∗

fa ), is the same for all the nodes in the tree
network. It has been shown that the use of identical thresholds is asymptotically optimal for parallel networks [103].
We conjecture that this result is valid for tree networks as well and employ identical thresholds.
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5.5.1 Analysis of the Optimal Attack Configuration

In this section, we identify a special case of the bounded knapsack problem (LLP) which can be

solved in polynomial time. More specifically, we show that if the set of defensive resources C =

(c1, · · · , cn) satisfy the cost structure cmax ≤
(

min
k∈{1,··· ,K−1}

Nk+1

Nk

)
× cmin

10 or c1 ≤ min
k
ak × cn,

then, the optimal solution {Bk}Kk=1 exhibits the properties given in the lemma below.

Lemma 5.5.2. Given aK level tree network with cost structure satisfying cmax ≤
(

min
k∈{1,··· ,K−1}

Nk+1

Nk

)
×

cmin, the best response of an attacker with cost budget Cattacker
budget is {Bk}Kk=1 with

B1 =
⌊
Cattacker

budget

c̃1

⌋
and the remaining elements of Bk for 2 ≤ k ≤ K can be calculated recursively.

Proof. Please see Appendix A.9.

It can also be shown that the solution {Bk}Kk=1 will be non-overlapping and unique under the

condition that the attacker cannot make Dk = 0, ∀k.

5.5.2 Bi-Level Optimization Algorithm

Based on Lemma 5.5.2, in this section we will present a polynomial time algorithm to solve the

bi-level optimization problem, i.e., to find {c̃k}Kk=1 and {Bk}Kk=1. Using the cost structure cmax ≤(
min
k

Nk+1

Nk

)
×cmin, the attack configuration {Bk}Kk=1 as given in Lemma 5.5.2 can be determined

in a computationally efficient manner. Due to the structure of the optimal {Bk}Kk=1, the bi-level

optimization problem simplifies to finding the solution {c̃k}Kk=1 of the ULP.

To solve this problem, we use an iterative elimination approach. We start by listing all
(
n
K

)
combinations from the set C, denoted as, S = {si}

(n
K)

i=1 . Without loss of generality, we assume that

the elements of si = {ci1, · · · , ciK} are arranged in descending order, i.e., cik ≥ cik+1,∀k. Notice

10Notice that, in the case of the perfect M -ary tree networks, the proposed cost structure simplifies to cmax ≤
M × cmin.
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that, all these
(
n
K

)
combinations will satisfy cik ≤

Nk+1

Nk
cik+1, because

cik ≤ cmax ≤ min
j

Nj+1

Nj

cmin ≤ min
j

Nj+1

Nj

cik+1 ≤
Nk+1

Nk

cik+1.

Next, we discard all those subsets si from S which violate the network designer’s cost budget

constraint. If the set S is empty, then there does not exist any solution for the ULP. Otherwise, the

problem reduces to finding the subset si which maximizes the KLD. To find the subset si which

maximizes the KLD, using the dominance relationship we start with assigning the cost c̃1 = min
k∈s

ck1,

where s has the elements which are solutions of argmin
i

⌊
Cattacker

budget

ci1

⌋
. Next, we discard all those

subsets si from S which do not have c̃1 as their first element and solve the problem recursively.

The pseudo code of the polynomial time algorithm to find {c̃k}Kk=1 and {Bk}Kk=1 is presented

as Algorithm 5.1.

5.5.3 An Illustrative Example

Let us consider a two-level network with N1 = 6 and N2 = 12. We assume that C = {4, 3, 2},

Cnetwork
budget = 60 and Cattacker

budget = 11. Next, we solve the bi-level optimization problem. Observe that,

costs satisfy c1 ≤ 2× c3. So the algorithm chooses the solution of the ULP as (c̃1 = 4, c̃2 = 3) and

the solution of the LLP as (B1 =
⌊
11
4

⌋
= 2, B2 =

⌊
11−2×4

3

⌋
= 1). To corroborate these results,

in Figure 5.3, we plot the min
P1,0,P0,1

KLD for all combinations of the parameters B1 and B2 in the

tree. We vary the parameter B1 from 0 to 6 and B2 from 0 to 12. All the feasible solutions are

plotted in red and unfeasible solutions are plotted in blue. Figure 5.3 corroborates the results of

our algorithm.

Notice that, the attack configuration {Bk}Kk=1 is the set containing the number of Byzantines

residing at different levels of the tree. However, the FC cannot identify the Byzantines in the

network. Also, notice that when the adversary attacks more than 50% of the nodes at level 1, the

decision fusion scheme becomes completely incapable. In these scenarios, where the FC is blind,

the knowledge of attack configuration will not incur any performance benefit. Next, we present a
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Algorithm 5.1 Bi-Level Optimization Algorithm

Require: C = {ck}nk=1 with cmax ≤
(
min
j

Nj+1

Nj

)
× cmin

1: S ← All K out of n combinations {si}
(n
K)

i=1 with elements of si arranged in decreasing order

2: for i = 1 to
(
n
K

)
do

3: if
K∑
k=1

cik ×Nk > Cnetwork
budget then

4: S ← S/si

5: end if

6: end for

7: if S is an empty set then

8: return (ϕ, ϕ)

9: else

10: for k = 1 to K do

11: c̃k = min
j∈s

cjk where s has elements which are solutions of argmin
i

⌊
Cattacker

budget

cik

⌋
12: Bk ←

⌊
Cattacker

budget

c̃k

⌋
13: Cattacker

budget ← (Cattacker
budget − c̃kBk)

14: end for

15: return ({c̃k}Kk=1, {Bk}Kk=1)

16: end if
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Fig. 5.3: min KLD vs. attack configuration (B1, B2) for Pd = 0.9, Pfa = 0.1.

reputation-based Byzantine identification/mitigation scheme, which works even when the network

is blind, in order to improve the detection performance of the network. We propose a simple yet

efficient Byzantine identification scheme and analyze its performance.

5.6 An Efficient Byzantine Identification Scheme

In this section, we propose and analyze a Byzantine identification scheme to be implemented at

the FC.

5.6.1 Byzantine Identification Scheme

We assume that the FC has the knowledge of the attack model and utilizes this knowledge to

identify the Byzantines. The FC observes the local decisions of each node over a time window T ,

which can be denoted by (k, i) = [u1(k, i), . . . , uT (k, i)] for 1 ≤ i ≤ Nk at level 1 ≤ k ≤ K. We

also assume that there is one honest anchor node with probability of detection PA
d and probability

of false alarm PA
fa present and known to the FC. We employ the anchor node to provide the gold

standard which is used to detect whether or not other nodes are Byzantines. The FC can also

serve as an anchor node when it can directly observe the phenomenon and make a decision. We

denote the Hamming distance between the reports of the anchor node and an honest node i at
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level k over the time window T by dAH(k, i) = ||UA − UH(k, i)||, that is the number of elements

that are different between UA and UH(k, i). Similarly, the Hamming distance between reports

of the anchor node and a Byzantine node i at level k over the time window T is denoted by

dAB(k, i) = ||UA − UB(k, i)||. Since the FC is aware of the fact that Byzantines might be present

in the network, it compares the Hamming distance of a node i at level k to a threshold ηk, ∀i, ∀k

(a procedure to calculate ηk is discussed later in the chapter), to make a decision to identify the

Byzantines. In tree networks, a Byzantine node alters its decision as well as received decisions

from its children prior to transmission in order to undermine the network performance. Therefore,

solely based on the observed data of a node i at level k, the FC cannot determine whether the data

has been flipped by the node i itself or by one of its Byzantine parent node. In our scheme, the

FC makes the inference about a node being Byzantine by analyzing the data from the node i as

well as its predecessor nodes’ data. FC starts from the nodes at level 1 and computes the Hamming

distance between reports of the anchor node and the nodes at level 1. FC declares node i at level 1

to be a Byzantine if and only if the Hamming distance of node i is greater than a fixed threshold η1.

Children of identified Byzantine nodes C(B1) are not tested further because of the non-overlapping

condition. However, if a level 1 node is determined not to be a Byzantine, then, the FC tests its

children nodes at level 2. The FC declares node i at level k, for 2 ≤ k ≤ K, to be a Byzantine

if and only if the Hamming distance of node i is greater than a fixed threshold ηk and Hamming

distances of all predecessors of node i is less than equal to their respective thresholds ηj .

In this way, it is possible to counter the data falsification attack by isolating Byzantine nodes

from the information fusion process. The probability that a Byzantine node i at level k is isolated

at the end of the time window T , is denoted as P iso
B (k, i).

5.6.2 Performance Analysis

As mentioned earlier, local decisions of the nodes are compared to the decisions of the anchor node

over a time window of length T . The probability that an honest node i at level k makes a decision
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that is different from the anchor node is given by

PAH
diff (k, i)

= P (uAi = 1, uHk,i = 0, H0) + P (uAi = 0, uHk,i = 1, H0)

+P (uAi = 1, uHk,i = 0, H1) + P (uAi = 0, uHk,i = 1, H1)

= P0[(P
k
fa + PA

fa)− 2P k
faP

A
fa] + P1[(P

k
d + PA

d )− 2P k
d P

A
d ]

.
= P0[P

AH
diff (k, i, 0)] + P1[P

AH
diff (k, i, 1)] .

where the prior probabilities of the two hypotheses H0 and H1 are denoted by P0 and P1, respec-

tively. The probability that a Byzantine node i at level k sends a decision different from that of the

anchor node is given by

PAB
diff (k, i)

= P (uAi = 1, uBk,i = 0, H0) + P (uAi = 0, uBk,i = 1, H0)

+P (uAi = 1, uBk,i = 0, H1) + P (uAi = 0, uBk,i = 1, H1)

= P0[P
A
faP

k
fa + (1− PA

fa)(1− P k
fa)] + P1[P

A
d P

k
d + (1− PA

d )(1− P k
d )]

.
= P0[P

AB
diff (k, i, 0)] + P1[P

AB
diff (k, i, 1)] .

The difference between the reports of a node and the anchor node under hypothesis l ∈ {0, 1}

(i.e., dAI (k, i, l), I ∈ {H,B}) is a Bernoulli random variable with mean PAH
diff (k, i, l) for honest

nodes and PAB
diff (k, i, l) for Byzantines. FC declares node i at level k to be a Byzantine if and only

if the Hamming distance of node i is greater than a fixed threshold ηk and Hamming distances of

all predecessors of node i are less than equal to their respective thresholds ηj . The probability that

a Byzantine node i at level k is isolated at the end of the time window T can be expressed as
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P iso
B (k, i) = P [(dAB(k, i) > ηk), (d

A
H(k − 1, i) ≤ ηk−1), · · · , (dAH(1, i) ≤ η1)]

=
∑

l∈{0,1}

Pl

[
P [dAB(k, i, l) > ηk]

k−1∏
m=1

P [dAH(m, i, l) ≤ ηm]

]

=
∑

l∈{0,1}

Pl

 T∑
j=ηk+1

(
T

j

)
(PAB

diff (k, i, l))
j(1− PAB

diff (k, i, l))
T−j

k−1∏
m=1

 ηm∑
j=0

(
T

j

)
(PAH

diff (m, i, l))
j(1− PAH

diff (m, i, l))
T−j

 .
For large T , by using the normal approximation, we get

P iso
B (k, i) =

∑
l∈{0,1}

Pl

Q
 ηk − TPAB

diff (k, i, l)√
(TPAB

diff (k, i, l)(1− PAB
diff (k, i, l)))

 k−1∏
m=1

Q

 TPAH
diff (m, i, l)− ηm√

(TPAH
diff (m, i, l)(1− PAH

diff (m, i, l)))

 .
This can be written recursively as follows

P iso
B (k + 1, i) =

∑
l∈{0,1}

Pl

[
(1− b(k, l))

(
a(k + 1, l)

a(k, l)

)
P iso
B (k, i, l)

]
, (5.19)

with P iso
B (k, i)

.
=
∑

l∈{0,1}

Pl[P
iso
B (k, i, l)], and

a(k, l) = Q

 ηk − TPAB
diff (k, i, l)√

(TPAB
diff (k, i, l)(1− PAB

diff (k, i, l)))

 ,

b(k, l) = Q

 ηk − TPAH
diff (k, i, l)√

(TPAH
diff (k, i, l)(1− PAH

diff (k, i, l)))

 .

One can choose ηk such that the isolation probability of honest nodes at level k based solely on its

data under the hypothesis Hl (i.e., b(k, l)) is constrained to some value δk << 0.5. In other words,

we choose ηk such that max
l∈{0,1}

b(k, l) = δk, i.e.,

ηk = Q−1(δk)
√
TPAH

diff (k, i, l
∗)(1− PAH

diff (k, i, l
∗)) + TPAH

diff (k, i, l
∗) (5.20)

where l∗ = argmax
l
b(k, l). Now, the expression for a(k, l) can be written as
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a(k, l) = Q

Q−1(δk)
√
PAH
diff (k, i, l

∗)(1− PAH
diff (k, i, l

∗)) +
√
T (PAH

diff (k, i, l
∗)− PAB

diff (k, i, l))√
PAB
diff (k, i, l)(1− PAB

diff (k, i, l))


Now using the fact that max

l
PAH
diff (k, i, l) < min

l
PAB
diff (k, i, l), it can be shown that (PAH

diff (k, i, l
∗)−

PAB
diff (k, i, l)) < 0, ∀i and, therefore, lim

T→∞
a(k, l) = 1.

Lemma 5.6.1. For a K level tree network, for our proposed Byzantine identification scheme, the

asymptotic (i.e., T → ∞) probability that a Byzantine node i at level k + 1, for 1 ≤ k ≤ K − 1,

is isolated is lower-bounded by,
k∏

j=2

(1− δj).

Proof. Notice that, lim
T→∞

a(k, l) = 1. The asymptotic performance of the proposed scheme can be

analyzed as follows:

lim
T→∞

P iso
B (k + 1, i) =

∑
l∈{0,1}

Pl lim
T→∞

[
(1− b(k, l))

(
a(k + 1, l)

a(k, l)

)
P iso
B (k, i, l)

]
≥ (1− δk)

∑
l∈{0,1}

Pl lim
T→∞

[
P iso
B (k, i, l)

]
=

k∏
j=2

(1− δj).

Notice that, the parallel network topology is a special case of the tree network topology with

K = 1. For K = 1, our scheme can identify all the Byzantines with probability one because

lim
T→∞

P iso
B (1, i) = lim

T→∞

∑
l∈{0,1}

Pl[a(1, l)] = 1. When K > 1, we can choose ηk appropriately such

that Byzantines can be identified with a high probability.

Next, to gain insights into the solution, we present some numerical results in Figure 5.4 that

corroborate our theoretical results. We consider a tree network withK = 5 and plot P iso
B (k, i), 1 ≤
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Fig. 5.4: Isolation probability P iso
B (k, i) vs. time window T .

k ≤ 5, as a function of the time window T . We assume that the operating points (P k
d , P

k
fa), 1 ≤ k ≤

5, for the nodes at different levels are given by [(0.8, 0.1), (0.75, 0.1), (0.6, 0.1), (0.65, 0.1), (0.6, 0.1)]

and for anchor node (PA
d , P

A
fa) = (0.9, 0.1). We also assume that the hypotheses are equi-probable,

i.e., P0 = P1 = 0.5, and the maximum isolation probability of honest nodes at level k based solely

on its data is constrained by δk = 0.01,∀k. It can be seen from Figure 5.4 that in a span of only

T = 25 time windows, our proposed scheme isolates/identifies almost all the Byzantines in the

tree network.

5.7 Discussion

In this chapter, we considered the problem of optimal Byzantine attacks on distributed detection

mechanism in tree networks. We analyzed the performance limit of detection performance with

Byzantines and obtained the optimal attacking strategies that minimize the detection error expo-

nent. The problem was also studied from the network designer’s perspective. It was shown that the

optimal local detector is independent of the Byzantine’s parameter. Next, we modeled the strategic

interaction between the FC and the attacker as a Leader-Follower (Stackelberg) game and attacker

and defender (FC) equilibrium strategies were identified. We also proposed a simple yet efficient

scheme to identify Byzantines and analytically evaluated its performance.
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CHAPTER 6

FAULT TOLERANT DISTRIBUTED

INFERENCE: TREE TOPOLOGY

6.1 Introduction

Detection, classification, or estimation of certain events, targets, or phenomena, in a region of

interest, is an important application of inference networks. As discussed in Chapter 1, there have

been limited attempts to address distributed inference problems in tree networks [30, 47, 48, 99,

128]. In all but the simplest cases, optimal strategies in tree based networks are difficult to derive.

Most of the work on tree networks focuses on person-by-person optimal (PBPO) strategies [47,

48, 99, 128]. Also, the above works address the problem of distributed detection in tree networks

while, to the best of our knowledge, the problem of distributed estimation in tree networks has not

received any attention. Due to the complexity of classification and estimation in tree networks as

compared to detection, these problems have been left unexplored by researchers.

In this chapter, we take a first step to address the distributed inference (classification and esti-

mation) problems in tree networks by developing an analytically tractable framework, proposing

efficient algorithms and carrying out asymptotic analysis to characterize performance. We pro-

pose the use of coding-theory based techniques to solve the problem of fault tolerant distributed
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inference (both classification and estimation) in tree networks. Next, we propose computationally

efficient algorithms for designing the optimal code matrices used in these schemes. We also study

the asymptotic inference performance of our schemes for two different classes of tree networks:

fixed height tree networks and fixed degree tree networks, and prove the asymptotic optimality

of the proposed schemes under certain conditions. Finally, we also show the robustness of the

coding-theory proposed schemes using simulations.

The remainder of the chapter is organized as follows. In Section 6.2, we describe the system

architecture and present a brief overview of Distributed Classification Fusion using Error Correct-

ing Codes (DCFECC) scheme [117] which serves as a foundation for the schemes presented in

this chapter. We propose our basic coding scheme for distributed classification in tree networks in

Section 6.3. The performance of the proposed scheme in the asymptotic regime is also analyzed.

We present some numerical results to gain insights into the solution. We extend this scheme for

distributed estimation in tree networks in Section 6.4 by formulating the estimation problem as

a sequence of M -ary classification problems. The performance of the proposed scheme in the

asymptotic regime is analyzed and some numerical results are presented. We also provide a tech-

nique for optimal region splitting for distributed estimation. Finally, we conclude our chapter in

Section 6.5 with some discussion on possible future work.

6.2 Preliminaries

6.2.1 General Network Architecture

Consider a perfect tree, T (K, N), rooted at the FC. Nodes at level k, for 1 ≤ k ≤ K − 1, are

referred to as intermediate nodes and nodes at the last level of the tree, i.e., k = K, are called

the leaf nodes. In a perfect tree, all the intermediate nodes have an equal number of immediate

successors and all leaf nodes are at the same depth. The number of such immediate successors N

is referred to as the degree of the tree.

We assume that the network is designed to infer about a particular phenomenon. Each node j
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at level k performs two basic operations:

• Depending on the task, senses data regarding the phenomenon and/or collects data from its

successors at level k + 1, denoted by Sk+1(j).

• Compresses the data available at node j about the phenomenon and transmits a 1-bit version

to its predecessor at level k − 1, denoted by P k−1(j).

Local observation of node j at level k is denoted as ykj . Received data vector at node j of level

k from its successors Sk+1(j) at level k + 1 is denoted as vk
j ∈ {0, 1}N . After processing the

data at the node according to a processing model (Please see Figure 6.1), every node j at level k

sends its one-bit local decision ukj ∈ {0, 1} to its immediate predecessor. This processing model is

designed based on the inference problem considered, i.e., Figure 6.2 for classification or Figure 6.5

for estimation. Finally, the FC receives the inference vector u1 = (u11, · · · , u1N) ∈ {0, 1}N and

fuses this data to infer about the underlying phenomenon. In our analysis, we consider error-free

links in the network. However, we do provide some simulation results for the case where there are

erroneous links, to examine the robustness of the proposed schemes.

Given a tree network, our objective is to find the appropriate processing scheme for nodes at all

levels depending on the inference problem considered. DCFECC scheme as explaind in Sec. 2.4

(originally proposed for parallel topology in [117]) which serves as the mathematical basis for the

ideas proposed in this chapter.

6.3 Distributed Classification in Tree Networks

In this section, we consider the problem of distributed classification in tree networks. We model

the classification problem as an M -ary hypotheses testing problem. Let Hl, where l = 1, · · · ,M

and M ≥ 2, denote the M hypotheses1. The a priori probabilities of these M hypotheses are

denoted by Pr(Hl) = Pl, for l = 1, · · · ,M .

1In order to distinguish among the M hypotheses using binary decisions, we assume that N ≥ log2M .
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/ vݕ Data Processor

Fig. 6.1: Data processing for distributed inference at node j at level k. Here ykj and vk
j are the

inputs and ukj ∈ {0, 1} is the output of the process at node j.

6.3.1 Proposed Scheme

We assume that under each hypothesisHl, every leaf node j acts as a source and makes an indepen-

dent and identically distributed (i.i.d.) observation yKj . After processing the observations locally,

every leaf node j sends its local decision2 uKj ∈ {0, 1} according to a transmission mapping τKj (·)

to its immediate predecessor PK−1(j). Each intermediate node j at level k receives the decision

vector consisting of local decisions made by its immediate successors Sk+1(j) at level k+1, which

can be expressed as vk
j = uk+1 = (uk+1

1 , · · · , uk+1
N ). After fusing this data using fusion rule fk

j (·),

this intermediate node j at level k makes a classification decision ykj ∈ {1, · · · ,M}. Then, it sends

a 1-bit version of this decision, ukj ∈ {0, 1}, according to its transmission mapping τ kj (·) to its im-

mediate predecessor P k−1(j). Finally, the FC receives the decision vector u1 = (u11, · · · , u1N) and

fuses this data to decide the underlying hypothesis. The proposed scheme builds on the DCFECC

scheme (Section 2.4). To summarize, each node j at level k, for 1 ≤ k ≤ K − 1, performs two

basic operations (Please see Figure 6.2):

• Collects data from its successors Sk+1(j) and fuses their data using fusion rule fk
j (·) to

locally decide the hypothesis, denoted by ykj .

• Compresses the decision ykj at node j about the hypothesis and transmits a 1-bit version ukj

to its predecessor P k−1(j) using the transmission mapping τ kj (·).
2In this context, “decision" is a binary quantized value determined by the processing model.
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Fig. 6.2: Data processing for distributed classification at node j at level 1 ≤ k ≤ K − 1. Here

vk
j ∈ {0, 1}N , ykj ∈ {1, · · · ,M}, and ukj ∈ {0, 1}. Therefore, the mappings are fk

j : {0, 1}N →
{1, · · · ,M} and τ kj : {1, · · · ,M} → {0, 1}

For the leaf nodes (level K), there are no successors and, therefore, only the second operation

needs to be performed. And, for the FC (level ‘0’), only the first operation needs to be performed.

Each of the functions fk
j (·) and τ kj (·) depend on the code matrix used at level k. By appealing

to symmetry, we assume that each node at the same level k, uses an identical code matrix Ck for

transmission to its predecessor and Ck+1 for fusion of data from its successors. We start with the

design of transmission mapping τKj (·) of the leaf nodes. When the leaf nodes use code matrix CK

for transmission, the probability of misclassification at level K − 1 is given by [117]

PK−1
e =

∑
i,l

∫
yK

PlP (u
K
1 = i1|yK1 )× · · · × P (uKN = iN |yKN )p(yK|Hl)ψ

K
i,l , (6.1)

where i = [i1, · · · , iN ] ∈ {0, 1}N is a realization of the received codeword uK, yK =

[yK1 , · · · , yKN ] are the local observations of leaf nodes, and ψK
i,l is the cost associated with a global

decision Hl at level K − 1 when the received vector from level K is i. This cost is:

ψk
i,l =


1− 1

ϱ
if i is in the decision region of Hl

1 otherwise.
(6.2)

for k = K, where ϱ is the number of decision regions corresponding to a received codeword i. In

other words, it is the number of rows of code matrix CK which have the same minimum Hamming

distance with the received codeword i. Usually this value is 1, however ϱ can be greater than one
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when there is a tie at the node at level K − 1 and in those cases, the tie-breaking rule is to choose

one of them randomly.

Employing a person-by-person optimization approach, we can find the local transmission map-

ping of the leaf nodes as follows [117]:

uKj = τKj (yKj ) =


0, if

∑
l p(y

K
j |Hl)Ajl < 0

1, otherwise
, (6.3)

where A = {Ajl} is the weight matrix whose values3 are given by,

Ajl =
∑

i1,··· ,ij−1,ij+1,··· ,iN

PlP (u
K
1 = i1|Hl)× · · · × P (uKj−1 = ij−1|Hl)P (u

K
j+1 = ij+1|Hl)

× · · · × P (uKN = iN |Hl)× [ψK
i1,··· ,ij−1,0,ij+1,··· ,iN ,l − ψK

i1,··· ,ij−1,1,ij+1,··· ,iN ,l]. (6.4)

For 1 ≤ k ≤ K − 1, the local classification decision ykj ∈ {1, · · · ,M} made using the data

from the successors Sk+1(j) is discrete and, therefore, the transmission mapping τ k(·) is straight-

forward and is given as follows:

ukj = τ kj (y
k
j ) = ckykj j

, if 1 ≤ k ≤ K − 1. (6.5)

In other words, the one-bit decision ukj is the element of Ck corresponding to ykj th row and

jth column. For every intermediate node, the fusion rule fk
j (·) is the minimum Hamming distance

fusion rule as given in (2.8). Therefore, the performance of the scheme depends on the minimum

Hamming distance of the code matrices. Let dkmin be the minimum Hamming distance of the

code matrix Ck. Pseudo code of the proposed scheme for distributed classification is presented as

Algorithm 6.1.

3We refer the reader to [117] for further details.
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Algorithm 6.1 Distributed Classification in Tree Networks

Require: N ≥ log2M , code matrices Ck for k = 1, · · · , K

1: Every leaf node j acquires an observation yKj

2: Process yKj using (6.3) and send uKj ∈ {0, 1} according to code matrix CK

3: for each intermediate node j at level k = K − 1 to 1 do

4: Collect uk+1 = (uk+1
1 , · · · , uk+1

N )

5: Fuse uk+1 using Ck+1 to make a classification decision ykj ∈ {1, · · · ,M}

6: Send 1-bit version of the classification decision ukj ∈ {0, 1} according to code matrix Ck to

intermediate predecessor

7: end for

8: FC collects and fuses u1 using code matrix C1 to decide underlying hypothesis

In the remainder of this section, we derive the error expressions at intermediate nodes which

will later be used for the design of code matrices at every level.

Proposition 6.3.1. The probability of misclassification P k−1
e at level k−1 due to the data received

from level k and using code matrix Ck = {ckmj} (1 ≤ k ≤ K − 1, 1 ≤ m ≤M , 1 ≤ j ≤ N ) is:

P k−1
e =

∑
i,l

Pl

N∏
j=1

[
(2ij − 1)

M∑
m=1

ckmjP
k
ml + (1− ij)

]
ψk
i,l, (6.6)

where i = [i1, · · · , iN ] ∈ {0, 1}N is the realization of the received codeword uk, matrix P k =

{P k
ml} is the confusion matrix of the local decisions at level k, and ψk

i,l is the cost associated with

a global decision Hl at level k − 1 when the received vector from level k is i. This cost is given by

(6.2).

Proof. If ukj denotes the bit sent by the node j at level k and the global decision is made using the

Hamming distance criterion:

P k−1
e =

∑
i,l

PlP (u
k = i|Hl)ψ

k
i,l. (6.7)
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Since local decisions are conditionally independent, P (uk = i|Hl) =
∏N

j=1 P (u
k
j = ij|Hl). Fur-

ther,

P (ukj = ij|Hl) = ijP (u
k
j = 1|Hl) + (1− ij)P (ukj = 0|Hl)

= (1− ij) + (2ij − 1)P (ukj = 1|Hl)

= (1− ij) + (2ij − 1)
M∑

m=1

ckmjP (y
k
j = m|Hl)

= (1− ij) + (2ij − 1)
M∑

m=1

ckmjP
k
ml

where ykj is the local classification decision made by node j after collecting data from its

successors Sk+1(j) at level k + 1. The desired result follows.

Note that this suggests that the probability of misclassification at level k − 1 is dependent on

the confusion matrix at level k. These can be derived easily as follows:

P k
ml

∆
=P (decide Hm at level k|Hl is true) = 1−

∑
i

p(uk = i|Hl)ψ
k+1
i,m (6.8)

From these expressions, we can observe that there is a recursive structure, where the probability

of misclassification at level k is dependent on the confusion matrix of level k + 1. Therefore, the

performance at the FC depends on all the code matrices in a recursive manner. As mentioned

before, we propose a simpler approach by assuming that each node of the same level uses the same

code matrix which is designed by optimizing on a person-by-person sequential basis. We start

with the code design at level K − 1 to fuse data from level K. This is designed by optimizing

the expression in (6.1). Once we have designed the optimal code matrix at this level, we derive

the corresponding confusion matrix from (6.8), which is used to design the code matrix at the next

level by optimizing the expression in (6.6). Following this method, we can design all the code

matrices. Note that each of these optimizations can be performed offline using approaches such as
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simulated annealing or cyclic-column replacement [117]. In the following subsection, we analyze

our scheme in the asymptotic regime and show that the scheme is asymptotically optimal.

6.3.2 Asymptotic Optimality

We study the asymptotic classification performance of our scheme for two different classes of

tree networks. The first one is the class of fixed height trees in which the height of the tree, K,

is assumed to be fixed while the second is the class of fixed degree trees in which the degree of

the tree, N , is assumed to be fixed. More specifically, we study the classification performance

of minimum Hamming distance fusion in fixed height tree networks when the number of nodes

tends to infinity and in fixed degree tree networks when the height of the tree tends to infinity.

We first provide the following bound on the misclassification probability at the FC which will be

used to prove the asymptotic optimality. Let Qk
m be the probability of misclassifying hypothesis

Hm at level k and define qkmax
∆
=max1≤m≤M Qk

m. Note that for levels 0 ≤ k ≤ K − 1, we have

Qk
m = 1 − P k

mm where P k
ml are the elements of the confusion matrix. For k = K, QK

m = 1 −

Pr(decide Hm at level K|Hm is true).

Proposition 6.3.2. In a perfect tree structure T (K,N) employing the proposed scheme, the mis-

classification probability at the FC, P 0
e , is bounded as follows

P 0
e ≤

[
qKmax

] K∏
k=1

dkmin

ak
, (6.9)

if qKmax <
1
2

and

dkmin ≥
2(M − 2)

[1− 4qkmax(1− qkmax)]− (1/ak)[(2/qkmax)− 2]
, ∀k, (6.10)

where ak is a parameter which satisfies the following condition

ak >
2(1− qkmax)

qkmax − 4(qkmax)
2(1− qkmax)

,∀k. (6.11)
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Proof. Pleas see Appendix A.10.

The results obtained in Proposition 6.3.2 show that the misclassification probability for mini-

mum Hamming distance fusion can be upper-bounded by a quantity determined by the minimum

Hamming distance of the code matrices (dkmin, ∀k), and the largest local classification error among

all hypotheses (qkmax, ∀k). Also, note that the parameter ak in (6.9) can be chosen appropriately to

make the bound tighter. For example, if ak is chosen such that

qkmax(2M − 2) + 2(1− qkmax)

qkmax − 4(qkmax)
2(1− qkmax)

> ak >
2(1− qkmax)

qkmax − 4(qkmax)
2(1− qkmax)

,∀k,

then, (dk/ak) > 1,∀k, and we have

P 0
e ≤

[
qKmax

]∏K
k=1(d

k
min/ak) ≤

[
qKmax

](dKmin/aK)
.

As a consequence, for fixed height trees, the decoding error of the proposed scheme vanishes as

dKmin approaches infinity which happens when N →∞. Also, for fixed degree trees, the decoding

error of the proposed scheme vanishes as K approaches infinity. These results can be summarized

in the following theorem:

Theorem 6.3.3. Under conditions (6.10) and (6.11), the proposed coding theory based distributed

classification scheme is asymptotically optimal, for both classes of tree networks: fixed height tree

networks and fixed degree tree networks, as long as the probabilities of correct local classification

for all hypotheses of the leaf nodes are greater than one half.

The conditions required for the above theorem depend on the minimum Hamming distance dkmin

of the code matrices used at each level and can be interpreted as follows: the proposed scheme is

optimal when the minimum Hamming distance of the code matrices is “large enough" to ensure

that perfect classification is made at every level of the tree. When the rows of the code matrices are

well separated due to large minimum Hamming distance, the proposed scheme can handle more

errors and have good performance.
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Also, observe that these results imply that when (6.10) and (6.11) are satisfied, there is no

loss in asymptotic performance when all the nodes at level k, for k = 1, · · · , K, use identical

transmission mapping and identical fusion rules.

6.3.3 Simulation Results

In this section, we evaluate the performance of the proposed scheme using simulations. Consider

a tree network T (3, 7) consisting of a total Ntotal = 400 nodes, including the FC. The leaf nodes

sense the environment to identify among four (M = 4) equally likely hypotheses. As discussed

before, we assume that all the leaf node measurements are independent and identically distributed.

Under each hypothesis, the probability density function is assumed to be Gaussian distribution

with the same variance (σ2 = 1) but with different means 0, s, 2s, and 3s respectively. The signal-

to-noise power ratio (SNR) of observations at each local node is given by 20 log10 s. The code

matrices are designed using the scheme described in Section 6.3.1 and simulated annealing for

optimization. The designed code matrices used at different levels of the tree are found to be

C1 = [11, 8, 9, 9, 3, 9, 12] (6.12)

C2 = [7, 6, 3, 12, 12, 9, 14] (6.13)

C3 = [3, 8, 14, 12, 9, 12, 9] (6.14)

where the code matrix is represented by a vector of M -bit integers. Each integer mj represents

a column of any arbitrary code matrix C and can be expressed as mj =
∑M

l=1 clj . For example, the

integer 9 in column 5 of C3 represents c315 = 1, c325 = 0, c335 = 0, and c345 = 1.

In Figure 6.3, we plot the final probability of misclassification at the FC with varying SNR val-

ues. Note that this probability of misclassification is empirically found by performingNmc = 5000

Monte-Carlo runs. As we can observe, the performance of the scheme improves with increasing

SNR and approaches 0 as early as 5dB.
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Fig. 6.3: Probability of misclassification versus SNR

Also, in order to show the benefits of fusion, we have provided the misclassification probability

values at the intermediate nodes in Table 6.1. It can be seen from Table 6.1 that the misclassification

probability decreases with each level showing the benefits of fusion at every level.

Table 6.1: Misclassification probability at intermediate nodes for a 3-level tree

SNR (in dB) Level 2 Level 1 Level 0 (FC)
-10 0.585 0.5137 0.493
-5 0.5057 0.4062 0.3072
0 0.3371 0.1991 0.0662
5 0.138 0.03826 0.0022

Since the proposed scheme is based on error-correcting codes, it can also tolerate some errors

in data. These errors could be due to various reasons: presence of a faulty node [117], presence of

imperfect links between levels [16], or presence of a malicious node sending falsified data [108].

In order to check the fault-tolerance capability of the scheme, we have simulated the case when

the links between the levels are binary symmetric channels with crossover probabilities β = 0.05

and β = 0.14. As shown in Figure 6.3, the proposed scheme still performs reasonably well even in

the presence of imperfect data due to non-ideal channels modeled as binary symmetric channels.

Building on these results, in the following section, we address the parameter estimation prob-

lem in tree based networks. More specifically, we break the parameter estimation problem into a

sequence ofM -ary decision making problems, and each of theseM -ary decision making problems
4The code design here is based on the channel-unaware approach where the code is designed for ideal channels.
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is solved using a technique similar to the distributed classification scheme of the previous section.

6.4 Distributed Parameter Estimation in Tree Networks us-

ing Iterative Classification

Consider a distributed parameter estimation problem where the goal is to estimate a random scalar

parameter θ at the FC. The parameter θ has a prior probability density function (pdf) pθ(θ) where

θ ∈ Θ. We propose a scheme to estimate the parameter θ using iterative classification. By doing so,

we break the parameter estimation problem into a sequence of M -ary decision making problems.

This is essentially a process of iterative rejection of unlikely objects where the most undesirable

options are discarded and the scope of options is progressively narrowed down until exactly one

option is left.

6.4.1 Proposed Scheme

We consider a distributed estimation system with the topology of a perfect tree, T (K, N), rooted

at the FC. We model the parameter estimation problem as an M -ary hypotheses testing problem.

Our scheme is iterative in which at every iteration 1 ≤ s ≤ K, the parameter space is split into M

regions and an M -ary hypothesis test is performed at the level (K+1− s) of the tree to determine

the parameter space for the next level in the tree. The optimal splitting of the parameter space

at every iteration can be determined offline (which will be explained later in the chapter in Sec-

tion 6.4.3). For now, we assume that the MK final regions and their corresponding representation

points are known. Let Hk
l , where l = 1, · · · ,M and M ≥ 2, denote the M hypotheses5 being

tested at level k. Figure 6.4 shows an example of parameter space splitting when pθ(·) is standard

Gaussian, and M = K = 2. Every node at level k = 2 first performs a classification task to

determine if the parameter θ is positive or negative (differentiate between hypotheses H2
1 and H2

2 ).

After a decision is made, the nodes at level k = 1, ‘zoom’ into the decided hypothesis, say H2
1 ,

5As before, we assume that N ≥ log2M .
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and perform a classification task to determine if θ belongs to hypothesis H2
1 or H1

2 . In this manner,

the FC at level ‘0’ eventually decides the true hypothesis, among the MK hypotheses, where θ

belongs.

Fig. 6.4: An example of splitting of parameter space.

The a priori probabilities of the MK hypotheses are denoted by Pr(Hk
l ) = P k

l , for l =

1, · · · ,M and k = 1, · · · , K. P k
l depends on pθ(·) and the region corresponding to Hk

l . We

assume that every node j′ at level k + 1 acts as a source and makes a conditionally independent

and identically distributed (i.i.d.) observation yk+1
j′ , conditioned under each hypothesis Hk

l . After

processing the observations locally, every node sends its local decision uk+1
j′ ∈ {0, 1} according

to a transmission mapping τ k+1(·) to its immediate predecessor P k(j′). Each intermediate node

j at level k receives the decision vector vk
j consisting of local decisions made by its immediate

successors Sk+1(j) at level k+1. Intermediate nodes at level k, through collaboration6 and fusion,

decide on the result of the M -ary hypotheses test as the new parameter space for them.

The scheme builds on the DCFECC scheme proposed for distributed classification. Each node

6In collaboration phase, node j at level k shares vk
j (the data collected from its successors Sk+1(j)) with other

nodes at level k. In this chapter, we assume that nodes do not compress vk
j for collaboration and, therefore, after

collaboration phase receive the data vk =
[
vk
1 , · · · ,vk

N

]
∈ {0, 1}Nk

.



122

࢜
݊

݂ݕݑ ߬Collaboration 
࢜

Sensing

Zoomed

Search Space  v   v

Fig. 6.5: Data processing for distributed estimation at node j at level 1 ≤ k ≤ K − 1. Here,

vk
j ∈ {0, 1}N , vk ∈ {0, 1}Nk , ykj ∈ R, and ukj ∈ {0, 1}. Therefore, the mappings are fk

j :

{0, 1}Nk → {1, · · · ,M} and τ kj : R→ {0, 1}.

j at level k, for 1 ≤ k ≤ K − 1 performs four basic operations (Please see Figure 6.5):

• Collects data from its successors Sk+1(j) and collaborates with other nodes at level k.

• Decides the new parameter space (hypotheses to test) by fusing data using fusion rule fk
j (·).

• Acquires observation ykj and performs hypothesis testing to determine the new parameter

space.

• Compresses the observation at node j about the hypothesis (new parameter space) and trans-

mits a 1-bit version to the predecessor P k−1(j) using the transmission mapping τ kj (·).

For the leaf nodes (level K), there are no successors and, therefore, only the third and fourth

operations need to be performed. The FC (level ‘0’) collects data from its successors and makes

the final decision regarding the region where θ belongs. Given a tree network, our objective is

to find efficient transmission mappings and fusion rules for nodes at all levels, to maximize the

estimation performance at the FC.

Remark: There are three major differences between the scheme proposed here for distributed

estimation in tree networks and the scheme proposed in Section 6.3 for distributed classification in

tree networks:

• In the scheme proposed here, every node acts as a source node and senses the phenomenon

while for the classification problem in Section 6.3, only the leaf nodes act as source nodes

and intermediate nodes act only as relay nodes.
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• In Section 6.3, each node performs the same classification task, or in other words, the set of

classes are the same. On the other hand, in the scheme proposed here, the parameter space

is ‘zoomed’ at every level, which changes the corresponding classes to be tested.

• An important step in the scheme proposed in this section is the collaboration step which is

not required for the classification problem of Section 6.3.

By appealing to symmetry, we assume that each node at the same level k, uses an identical

code matrix Ck for transmission to its predecessor and Ck+1 for fusion of data from its successors.

Each of the functions fk
j (·) and τ kj (·) depend on the code matrix used at level k. Although the

performance metric in this framework is the Mean Square Error (MSE), it is difficult to obtain a

closed form representation for MSE. Therefore, typically, one uses the bounds on MSE to charac-

terize the performance of the estimator. Here, we use an analytically tractable metric to analyze the

performance of the proposed scheme which is the probability of misclassification of the parameter

region. It is an important metric when the final goal of the parameter estimation task is to find

the approximate region or neighborhood where the parameter lies rather than the true value of the

parameter itself. Since the final region could be one of the MK regions, a metric of interest is the

probability of ‘zooming’ into the correct region. In other words, it is the probability that the true

value of the parameter and the estimated value of the parameter lie in the same region.

Now, we design the transmission mapping τ kj (·) of nodes at level k. Notice that the final region

of the estimated value of the parameter is the same as the true value of the parameter, if and only if

we ‘zoom’ into the correct region at every iteration of the proposed scheme. Thus, when the nodes

at level k use code matrix Ck for transmission, the probability of misclassification at level k− 1 is

given by the following proposition.

Proposition 6.4.1. The probability of misclassification P k−1
e at level k−1 due to the data received

from level k and using code matrix Ck = {ckmj} (1 ≤ k ≤ K, 1 ≤ m ≤M , 1 ≤ j ≤ Nk) is
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P k−1
e = 1−

K∏
t=k

[
1−

∑
i,l

∫
yt

P t
l P (u

t
1 = i1|yt1)× · · · × P (utNt = iNt |ytNt)p(yt|H t

l )ψ
t
i,l

]
, (6.15)

where i = [i1, · · · , iNt ] ∈ {0, 1}Nt
is the realization of the received codeword ut, yt =

[yt1, · · · , ytNt ] are the local observations of nodes at level t, matrix P t = {P t
ml} is the confusion

matrix of the local decisions at level t, and ψt−1
i,l is the cost associated with a global decision H t−1

l

at level t− 1 when the received vector from level t is i. This cost is:

ψt
i,l =


1− 1

ϱ
if i is in decision region of H t

l

1 otherwise.
(6.16)

where as before ϱ is the number of decision regions corresponding to a received codeword i. In

other words, it is the number of rows of code matrix Ct which have the same minimum Hamming

distance with the received codeword i. P t
l is the prior probability of hypothesis H t

l at level t.

Proof. Note that a correct decision is made at level k − 1 if and only if the decision at all levels

from t = k to t = K are correct. Therefore, using (6.1) in a recursive manner at every level of the

tree, we get the desired result.

From (6.15), we can observe that the performance at the FC depends on all the code matrices in

a recursive manner. In this chapter, we employ a simpler approach by assuming that code matrices

are designed by optimizing on a person-by-person basis. The code matrix at each level is designed

using an approach similar to that of a parallel topology. Note that each of these optimizations can

be performed offline using approaches such as simulated annealing or cyclic-column replacement

[117].

Employing a person-by-person optimization approach, we can find the local transmission map-
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ping of the nodes at level k as follows:

ukj = τ kj (y
k
j ) =


0, if

∑
l p(y

k
j |Hk

l )A
k
jl < 0

1, otherwise
, (6.17)

where Ak = {Ak
jl} is a weight matrix whose values are given by,

Ak
jl =

∑
i1,··· ,ij−1,ij+1,··· ,iNk

P k
l P (u

k
1 = i1|Hk

l )× · · · × P (ukj−1 = ij−1|Hk
l )P (u

k
j+1 = ij+1|Hk

l )

× · · · × P (uKNk = iNk |Hk
l )× [ψk

i1,··· ,ij−1,0,ij+1,··· ,iNk ,l
− ψk

i1,··· ,ij−1,1,ij+1,··· ,iNk ,l
]. (6.18)

For every intermediate node, the fusion rule fk
j (·) is the minimum Hamming distance fusion

rule as given in (2.8). Therefore, the performance of the scheme depends on the minimum Ham-

ming distance of the code matrices. Let dkmin be the minimum Hamming distance of the code

matrix Ck.

Pseudo code of the proposed scheme for distributed estimation is presented as Algorithm 6.2.

In the remainder of this section, we analyze our scheme in the asymptotic regime and show

that the scheme is asymptotically optimal.

6.4.2 Asymptotic Optimality

As before, we study the asymptotic performance of our scheme for two different classes of tree

networks, fixed height trees and fixed degree trees. We also analyze the scenarios where both

the number of nodes and the height of the tree tend to infinity. We first provide the following

bound on the misclassification probability at the FC which will be used to prove the asymp-

totic optimality. Let Qk
m be the probability of misclassifying hypothesis Hk

m at level k and define

qkmax
∆
=max1≤m≤M Qk

m. For k = 1, · · · , K, QK
m = 1− Pr(decide Hk

m at level K|Hk
m is true).
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Algorithm 6.2 Distributed Estimation in Tree Networks

Require: N ≥ log2M , code matrices Ck for k = 1, · · · , K

1: Every leaf node j acquires an observation yKj and performs hypothesis test to determine new

parameter space

2: Process yKj using (6.17) and send uKj ∈ {0, 1} according to code matrix CK

3: for each intermediate node j at level k = K − 1 to 1 do

4: Collect vk
j and collaborate with other nodes at level k to acquire vk =

[
vk
1, · · · ,vk

N

]
5: Decide new parameter space by fusing vk using Ck+1

6: Acquire ykj and perform hypothesis test to determine new parameter space

7: Process ykj using (6.17) and send ukj ∈ {0, 1} according to code matrix Ck

8: end for

9: FC collects and fuses u1 using code matrix C1 to decide the region where θ belongs

10: Estimate θ̂ is given by the representation point of the final decision region

Proposition 6.4.2. In a perfect tree structure T (K,N) employing the proposed scheme, if qkmax <

1
2
, the misclassification probability at the FC, P 0

e , is bounded as follows

P 0
e ≤ 1−

K∏
k=1

[
1− (M − 1)(4qkmax(1− qkmax))

dkmin
2

]
. (6.19)

Proof. Please See Appendix A.11.

As a consequence of Proposition (6.4.2), for fixed height trees, the probability of ‘zooming’ into

the incorrect region of the proposed scheme vanishes as dkmin approaches infinity which happens

when N →∞.
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lim
N→∞

P 0
e

≤ lim
N→∞

[
1−

K∏
k=1

(
1− (M − 1)(4qkmax(1− qkmax))

dkmin
2

)]

=

[
1−

K∏
k=1

lim
N→∞

(
1− (M − 1)(4qkmax(1− qkmax))

dkmin
2

)]

= 1−
K∏
k=1

[
1− (M − 1) lim

N→∞

(
(4qkmax(1− qkmax))

dkmin
2

)]

= 1−
K∏
k=1

[1− (M − 1)0]

= 0.

Hence, the overall detection probability becomes ‘1’ as the degree of the treeN goes to infinity.

This shows that the proposed scheme asymptotically attains perfect region detection probability for

bounded height tree networks if qkmax < 1/2 ∀k = 1, · · · , K. Notice that perfect region detection

probability does not imply that the estimation error will vanish. It just provides a coarse estimate

of the parameter. For estimation error to vanish, MK → ∞, which can be achieved by letting K

approach infinity.

However, for fixed degree trees, misclassification error of the proposed scheme need not vanish

as K approaches infinity.

lim
K→∞

P 0
e

≤ lim
K→∞

[
1−

K∏
k=1

(
1− (M − 1)(4qkmax(1− qkmax))

dkmin
2

)]

=

[
1− lim

K→∞

K∏
k=1

(
1− (M − 1)(4qkmax(1− qkmax))

dkmin
2

)]

For misclassification error to vanish, every term in the product should vanish, which obviously
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is not true for the above equation.

These results can be summarized as the following theorem:

Theorem 6.4.3. The proposed iterative classification scheme for distributed parameter estimation

in tree based networks is asymptotically optimal (when both the degree N and number of levels K

simultaneously approach infinity), as long as the probabilities of correct local classification for all

hypotheses at each node is greater than one half.

Remark: Note that, while for distributed classification, we have shown that the proposed

scheme is asymptotically optimal if either N or K tend to infinity, for the distributed estima-

tion case, we have proved that the scheme is asymptotically optimal when both N and K tend to

infinity.

Next, we address the remaining aspect of the scheme which is the discretization of the contin-

uous parameter space to perform estimation as iterative classification.

6.4.3 Optimal Splitting of the Parameter Space

As mentioned before, the scheme splits the parameter space Θ into MK regions. Therefore, the

MSE between the true parameter value θ and the FC’s estimate θ̂ is affected by two factors: the

quantization of the continuous region Θ intoMK discrete points and the probability of misclassify-

ing the region where the true parameter belongs. In Section 6.4.2, we showed that the probability

of misclassification can be made to tend to zero by using a large sensor network. Therefore, in

order to minimize the MSE, we need to minimize the error due to the quantization of Θ into MK

points. This optimal splitting depends on the prior pdf pθ(·) and can be determined by using ideas

from rate distortion theory [23]. As mentioned in [23], the optimal regions for quantization are

given by Voronoi regions and the reconstruction points should minimize the conditional expected

distortion over their respective assignments. One of the most popular algorithms used to determine

these regions is the Llyod-Max algorithm [63, 67]. This algorithm is iterative where we start with

an initial set of reconstruction points which are typically chosen at random. It then repeatedly

executes the following steps until convergence:
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• Compute the optimal set of reconstruction regions (Voronoi regions) and

• Find the set of optimal reconstruction points for these regions (centroid of the Voronoi re-

gions).

In this chapter, we use this algorithm which is performed offline and, therefore, is not a computa-

tional issue.

6.4.4 Simulation Results

In this section, we provide simulation results to evaluate the performance of the proposed scheme.

As before, consider a tree network T (3, 7) consisting of a total Ntotal = 400 nodes, including the

FC. The observation at each node is Gaussian distributed with unknown mean θ and variance σ2.

This unknown parameter θ is uniformly distributed in (0, θmax) where the region size is varied by

varying the maximum value θmax. At each level, the nodes perform an M -ary classification where

M = 4. Therefore, there are a total of MK = 43 = 64 possible estimates of θ. Since the parameter

is uniformly distributed, the optimal splitting is uniform quantization into MK regions with the

mid-points of the regions as the corresponding representation. Due to the complexity in designing

the optimal matrix of size 4 × 343 for transmission at level 3 (due to collaboration, each node at

level 2 has data of all nodes at level 3), we employ a sub-optimal approach by concatenating the

optimal code matrix of size 4 × 7. For level 3, it is concatenated 49 times, and for transmission

at level 2, it is concatenated 7 times. The smaller code matrix of size 4 × 7 is designed using the

simulated annealing approach.

In Figure 6.6, we plot the mean square error (MSE) between the true value of θ and its estimate

θ̂ at the FC7 as a function of θmax when σ2 = 1. This value of MSE is empirically found by

performing Nmc = 5000 Monte-Carlo runs. As we can observe, the performance of the scheme

gets worse with increasing region size. This is because, when the range of θ is increased while

the total number of possible estimates remains fixed, the error due to quantization increases. Since

7As discussed before, this estimate is one of the MK discrete points representing the quantized regions (centroids
of the Voronoi regions, please see Section 6.4.3).
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Fig. 6.6: MSE as a function of the range of θ

the proposed scheme is based on error-correcting codes, it can tolerate some errors in data. As

mentioned before, these errors could be due to various reasons. We have also simulated the case

when the links between the levels are modeled as binary symmetric channels with crossover prob-

ability β = 0.1. As shown in Figure 6.6, the proposed scheme is quite robust to the presence of

imperfect data arising due to non-ideal channels modeled as binary symmetric channels. As al-

luded to before, this robustness in performance is due to the use of error-correcting codes. Similar

observations can be made from Figure 6.7 where we plot MSE of the proposed estimation scheme

as a function of observation variance σ2 when θmax = 32.
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6.5 Discussion

In this chapter, we considered the general framework of distributed inference in tree networks.

We proposed an analytically tractable scheme to solve these problems and proved the asymptotic

optimality of the proposed schemes. For the classification problem, when the number of hypothe-

ses is M = 2, the proposed scheme is a majority-vote scheme for distributed detection in tree

networks. Also, note that since the proposed scheme uses error-correcting codes, it works well

even in scenarios with unreliable data. It should be pointed out that the proposed scheme is not

limited to wireless sensor networks, although the application of wireless sensor networks has been

considered in this chapter. The DCFECC scheme has been found to be applicable to a number of

other applications including the paradigm of crowdsourcing. We believe that one can use these

results to address several other applications involving tree structures.
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CHAPTER 7

DISTRIBUTED DETECTION WITH

CORRUPTED DATA: PEER TO PEER

TOPOLOGY

7.1 Introduction

In the previous chapters, the problem of distributed inference in corrupted data in the parallel and

tree topology was studied. It was assumed that there exists a centralized FC to fuse the data and

to make a global decision. However, in many scenarios, a centralized FC may not be available or

the FC may become an information bottleneck causing degradation of system performance, po-

tentially leading to system failure. Also, due to the distributed nature of future communication

networks, and various practical constraints, e.g., absence of the FC, transmit power or hardware

constraints and dynamic nature of the wireless medium, it may be desirable to employ alternate

peer-to-peer local information exchange in order to reach a global decision. One such decentral-

ized approach for peer-to-peer local information exchange and inference is the use of a consensus

algorithm. This chapter considers the problem of signal detection in distributed networks in the

presence of data falsification (Byzantine) attacks. Detection approaches considered in the chapter
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are based on fully distributed consensus algorithms, where all of the nodes exchange information

only with their neighbors in the absence of a fusion center. For such networks, we first characterize

the negative effect of Byzantines on the steady-state and transient detection performance of con-

ventional consensus-based detection algorithms. To avoid performance deterioration, we propose

a distributed weighted average consensus algorithm that is robust to Byzantine attacks. We show

that, under reasonable assumptions, the global test statistic for detection can be computed locally

at each node using our proposed consensus algorithm. We exploit the statistical distribution of the

nodes’ data to devise techniques for mitigating the influence of data falsifying Byzantines on the

distributed detection system. Since some parameters of the statistical distribution of the nodes’

data might not be known a priori, we propose learning based techniques to enable an adaptive

design of the local fusion or update rules.

The rest of the chapter is organized as follows. In Sections 7.2 and 7.3, we introduce our

system model and Byzantine attack model, respectively. In Section 7.4, we study the security

performance of weighted average consensus-based detection schemes. In Section 7.5, we pro-

pose a protection mechanism to mitigate the effect of data falsification attacks on consensus-based

detection schemes. Finally, Section 7.6 concludes the chapter.

7.2 System model

Consider two hypotheses H0 (signal is absent) and H1 (signal is present). Also, consider N nodes

organized in an undirected graph G which faces the task of determining which of the two hy-

potheses is true. We model the network topology as an undirected graph G = (V,E), where

V = {v1, · · · , vN} represents the set of nodes in the network with |V | = N . The set of commu-

nication links in the network correspond to the set of edges E, where (vi, vj) ∈ E, if and only if

there is a communication link between vi and vj so that, vi and vj can directly communicate with
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each other. The adjacency matrix A of the graph is defined as

aij =

 1 if (vi, vj) ∈ E,

0 otherwise.

The neighborhood of a node i is defined as

Ni = {vj ∈ V : (vi, vj) ∈ E}, ∀i ∈ {1, 2, · · · , N}.

The degree di of a node vi is the number of edges in E which include vi as an endpoint, i.e.,

di =
∑N

j=1 aij .

The degree matrix D is defined as a diagonal matrix with diag(d1, · · · , dN) and the Laplacian

matrix L is defined as

lij =

 di if j = i,

−aij otherwise.

In other words, L = D − A. As an illustration, consider a network with six nodes trying to

reach consensus (see Figure 2.1(c)). The degree matrix for this network is given by D =

diag(1, 3, 2, 4, 1, 1). The adjacency matrix A for this network is given by

A =



0 1 0 0 0 0

1 0 1 1 0 0

0 1 0 1 0 0

0 1 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0


.
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Therefore, the Laplacian matrix L = D − A for this network is given by

L =



1 −1 0 0 0 0

−1 3 −1 −1 0 0

0 −1 2 −1 0 0

0 −1 −1 4 −1 −1

0 0 0 −1 1 0

0 0 0 −1 0 1


.

The consensus-based distributed detection scheme usually contains three phases: sensing, infor-

mation fusion, and decision making. In the sensing phase, each node acquires the summary statistic

about the phenomenon of interest. In this chapter, we adopt the energy detection method so that

the local summary statistic is the received signal energy. Next, in the information fusion phase,

each node communicates with its neighbors to update their state values (summary statistic) and

continues with the consensus iteration until the whole network converges to a steady state which

is the global test statistic. Finally, in the decision making phase, nodes make their own decisions

about the presence of the phenomenon using this global test statistic. In the following each of these

phases is described in more detail.

7.2.1 Sensing Phase

We consider an N -node network using the energy detection scheme [28]. For the ith node, the

sensed signal zti at time instant t is given by

zti =

 nt
i, under H0

ζis
t + nt

i under H1,

where ζi is the deterministic gain corresponding to the sensing channel, st is the deterministic

signal at time instant t, nt
i is AWGN, i.e., nt

i ∼ N (0, σ2
i ) (whereN denotes the normal distribution)

and independent across time. Each node i calculates a summary statistic Yi over a detection interval

of M samples, as
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Yi =
∑M

t=1 |zti |2

where M is determined by the time-bandwidth product [28]. Since Yi is the sum of the squares of

M i.i.d. Gaussian random variables, it can be shown that Yi

σ2
i

follows a central chi-square distribu-

tion with M degrees of freedom (χ2
M) under H0, and, a non-central chi-square distribution with M

degrees of freedom and parameter ηi under H1, i.e.,

Yi
σ2
i

∼

 χ2
M , under H0

χ2
M(ηi) under H1

where ηi = Es|ζi|2/σ2
i is the local SNR at the ith node and Es =

∑M
t=1 |st|2 represents the sensed

signal energy over M detection instants. Note that the local SNR is M times the average SNR at

the output of the energy detector, which is Es|ζi|2
Mσ2

i
.

7.2.2 Information Fusion Phase

In this section, we give a brief introduction to conventional consensus algorithms [75]. and explain

how consensus is reached using the following two steps.

Step 1: All nodes establish communication links with their neighbors, and broadcast their

information state, xi(0) = Yi.

Step 2: Each node updates its local state information by a local fusion rule (weighted combi-

nation of its own value and those received from its neighbors) [75]. We denote node i’s updated

information at iteration k by xi(k). Node i continues to broadcast information xi(k) and update its

local information state until consensus is reached. This process of updating information state can

be written in a compact form as

xi(k + 1) = xi(k) +
ϵ

wi

∑
j∈Ni

(xj(k)− xi(k)) (7.1)

where ϵ is the time step and wi is the weight given to node i’s information. Using the notation

x(k) = [x1(k), · · · , xN(k)]T , network dynamics can be represented in the matrix form as,
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x(k + 1) = Wx(k)

where, W = I − ϵ diag(1/w1, · · · , 1/wN)L is referred to as a Perron matrix. The consensus

algorithm is nothing but a local fusion or update rule that fuses the nodes’ local information state

with information coming from neighbor nodes, and it is well known that every node asymptotically

reaches the same information state for arbitrary initial values [75].

7.2.3 Decision Making Phase

The final information state x∗ after reaching consensus for the above consensus algorithm will

be the weighted average of the initial states of all the nodes [75] or x∗ =
∑N

i=1wiYi/
∑N

i=1wi,

∀i. Average consensus can be seen as a special case of weighted average consensus with wi =

w, ∀i. After the whole network reaches a consensus, each node makes its own decision about the

hypothesis using a predefined threshold λ1

Decision =

 H1 if x∗ > λ

H0 otherwise

where weights are given by [127]

wi =
ηi/σ

2
i∑N

i=1 ηi/σ
2
i

. (7.2)

In the rest of the chapter, Λ =
∑N

i=1wiYi/
∑N

i=1wi is referred to as the final test statistic.

Next, we discuss Byzantine attacks on consensus-based detection schemes and analyze the

performance degradation of the weighted average consensus-based detection algorithms due to

these attacks.
1In practice, parameters such as threshold λ and consensus time step ϵ are set off-line based on well know tech-

niques [75]. In this chapter, these parameters are assumed known and setting the parameters is not considered.
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7.3 Attacks on Consensus based Detection Algorithms

When there are no adversaries in the network, we noted in the last section that consensus can be

reached to the weighted average of arbitrary initial values by having the nodes use the update strat-

egy x(k + 1) = Wx(k) with an appropriate weight matrix W . However, suppose, that instead

of broadcasting the true summary statistic Yi and applying the update strategy (7.1), some nodes

(referred to as Byzantines) deviate from the prescribed strategies. Accordingly, Byzantines can at-

tack in two ways: data falsification (nodes falsify their initial data or weight values) and consensus

disruption (nodes do not follow the update rule given by (7.1)). More specifically, Byzantine node

i can do the following

Data falsification: xi(0) = Yi +∆i, or wi is changed to w̃i

Consensus disruption: xi(k + 1) = xi(k) +
ϵ

wi

∑
j∈Ni

(xj(k)− xi(k)) + ui(k),

where (∆i, w̃i) and ui(k) are introduced at the initialization step and at the update step k, respec-

tively. The attack model considered above is extremely general, and allows Byzantine node i to

update its value in a completely arbitrary manner (via appropriate choices of (∆i, w̃i), and ui(k), at

each time step). An adversary performing consensus disruption attack has the objective to disrupt

the consensus operation. However, consensus disruption attacks can be easily detected because of

the nature of the attack. Furthermore, the identification of consensus disruption attackers has been

investigated in the past literature (e.g., see [78,94]) where control theoretic techniques were devel-

oped to identify disruption attackers in a ‘single’ consensus iteration. However, these techniques

cannot identify the data falsification attacker due to philosophically different nature of the problem.

Also, notice that, by knowing the existence of such an identification mechanism, a smart adversary

will aim to disguise itself while degrading the detection performance. In contrast to disruption at-

tackers, data falsification attackers are more capable and can manage to disguise themselves while

degrading the detection performance of the network by falsifying their data. Susceptibility and

protection of consensus strategies to data falsification attacks has received scant attention, and this
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is the focus of our work. Our main focus2 here is on the scenarios where an attacker performs

a data falsification attack by introducing (∆i, w̃i) during initialization. We exploit the statistical

distribution of the initial values and devise techniques to mitigate the influence of Byzantines on

the distributed detection system. Our approach for data falsification attacks on consensus-based

detection systems complements the techniques proposed in [78, 94] that are mainly focused on

consensus disruption attacks.

7.3.1 Data Falsification Attack

In data falsification attacks, attackers try to manipulate the final test statistic (i.e., Λ =
∑N

i=1wiYi/
∑N

i=1wi)

in a manner so as to degrade the detection performance. We consider a network with N nodes that

uses Algorithm (7.1) for reaching consensus. Weight wi, given to node i’s data Yi in the final test

statistic, is controlled or updated by node i itself while carrying out the iteration in (7.1). So by

falsifying initial values Yi or weights wi, the attackers can manipulate the final test statistic. De-

tection performance will be degraded because Byzantine nodes can always set a higher weight to

their manipulated information. Thus, the final statistic’s value across the whole network will be

dominated by the Byzantine node’s local statistic that will lead to degraded detection performance.

Next, we define a mathematical model for data falsification attackers. We analyze the degra-

dation in detection performance of the network when Byzantines falsify their initial values Yi for

fixed arbitrary weights w̃i.

7.3.2 Attack Model

The objective of Byzantines is to degrade the detection performance of the network by falsifying

their data (Yi, wi). We assume that Byzantines have an advantage and know the true hypothesis.

Under this assumption, we analyze the detection performance of the data fusion schemes which

yields the maximum performance degradation that the Byzantines can cause, i. e., worst case de-

2Later, we also come up with a robust distributed weighted average consensus algorithm which allows the detection
of consensus disruption attack while mitigating the effect of data falsification attacks.
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tection performance. We consider the case when weights of the Byzantines have been tampered by

setting their value at w̃i and analyze the effect of falsifying the initial values Yi. Now a mathemat-

ical model for a Byzantine attack is presented. Byzantines tamper with their initial values Yi and

send Ỹi such that the detection performance is degraded.

Under H0:

Ỹi =

 Yi +∆i with probability Pi

Yi with probability (1− Pi)

Under H1:

Ỹi =

 Yi −∆i with probability Pi

Yi with probability (1− Pi)

where Pi is the attack probability and ∆i is a constant value which represents the attack

strength, which is zero for honest nodes. As we show later, Byzantine nodes will use a large

value of ∆i so that the final statistic’s value is dominated by the Byzantine node’s local statistic

leading to a degraded detection performance. We use deflection coefficient [54] to characterize

the security performance of the detection scheme due to its simplicity and its strong relationship

with the global detection performance. Deflection coefficient of the global test statistic is de-

fined as: D(Λ) =
(µ1 − µ0)

2

σ2
(0)

, where µk = E[Λ|Hk], k = 0, 1, is the conditional mean and

σ2
(k) = E[(Λ−µk)

2|Hk], k = 0, 1, is the conditional variance. The deflection coefficient is closely

related to performance measures such as the Receiver Operating Characteristics (ROC) curve [54].

In general, the detection performance monotonically increases with an increasing value of the

deflection coefficient. We define the critical point of the distributed detection network as the min-

imum fraction of Byzantine nodes needed to make the deflection coefficient of the global test

statistic equal to zero (in which case, we say that the network becomes blind) and denote it by

αblind. We assume that the communication between nodes is error-free and our network topol-

ogy is fixed during the whole consensus process and, therefore, consensus can be reached without

disruption [75].

In the next section, we analyze the security performance of consensus-based detection schemes
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µ0 =

N1∑
i=1

[
Pi

w̃i∑
w
(Mσ2i +∆i) + (1− Pi)

w̃i∑
w
Mσ2i

]
+

N∑
i=N1+1

[
wi∑
w
Mσ2i

]
(7.3)

µ1 =

N1∑
i=1

[
Pi

w̃i∑
w
((M + ηi)σ

2
i −∆i) + (1− Pi)

w̃i∑
w
(M + ηi)σ

2
i

]
+

N∑
i=N1+1

[
wi∑
w
(M + ηi)σ

2
i

]
(7.4)

σ2(0) =

N1∑
i=1

(
w̃i∑
w

)2 [
Pi(1− Pi)∆

2
i + 2Mσ4i

]
+

N∑
i=N1+1

(
wi∑
w

)2

2Mσ4i (7.5)

in the presence of data falsifying Byzantines as modeled above. This analysis will be useful in

revealing some quantitative relationships to judge the degradation of the detection performance

with data falsifying Byzantines.

7.4 Performance Analysis of Consensus-based Detection Al-

gorithms

In this section, we analyze the effect of data falsification attacks on conventional consensus-based

detection algorithms.

First, we characterize the effect of Byzantines on the steady-state performance of the consensus-

based detection algorithms and determine αblind.

Without loss of generality, we assume that the nodes corresponding to the first N1 indices

i = 1, · · · , N1 are Byzantines and the remaining nodes corresponding to indices i = N1+1, · · · , N

are honest nodes. Let us define w = [w̃1, · · · , w̃N1 , wN1+1 · · · , wN ]
T and

∑
w =

∑N1

i=1 w̃i +∑N
i=N1+1wi.

Lemma 7.4.1. For data fusion schemes, the condition to blind the network or equivalently to make

the deflection coefficient zero is given by
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Fig. 7.1: Deflection Coefficient as a function of attack parameters P and ∆.

N1∑
i=1

w̃i(2Pi∆i − ηiσ2
i ) =

N∑
i=N1+1

wiηiσ
2
i .

Proof. Please see Appendix A.12.

Note that, when wi = w̃i = z, ηi = η, σi = σ, Pi = P,∆i = ∆, ∀i, the blinding condition

simplifies to
N1

N
=

1

2

ησ2

P∆
.

Next, to gain insights into the solution, we present some numerical results in Figure 7.1.

We plot the deflection coefficient of the global test statistic as a function of attack parameters

Pi = P,∆i = ∆,∀i. We consider a 6-node network with the topology given by the undirected

graph shown in Figure 2.1(c) deployed to detect a phenomenon. Nodes 1 and 2 are considered to be

Byzantines. Sensing channel gains of the nodes are assumed to be h = [0.8, 0.7, 0.72, 0.61, 0.69, 0.9]

and weights are given by (7.2). We also assume that M = 12, Es = 5, and σ2
i = 1, ∀i. Notice

that, the deflection coefficient is zero when the condition in Lemma 7.4.1 is satisfied. Another

observation to make is that the deflection coefficient can be made zero even when only two out

of six nodes are Byzantines. Thus, by appropriately choosing attack parameters (P,∆), less than

50% of data falsifying Byzantines can blind the network.

Next, using the probability of detection and the probability of false alarm as measures of detec-

tion performance, we investigate the degradation of transient detection performance of consensus

algorithms with Byzantines. More specifically, we analyze the detection performance of the data
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fusion scheme, denoted as x(t+ 1) = W tx(0), as a function of consensus iteration t by assuming

that each node makes its local decision using the information available at the end of iteration t.

For analytical tractability, we assume that Pi = P, ∀i. We denote by wt
ji the element of matrix

W t in the jth row and ith column. Using these notations, we calculate the probability of detection

and the probability of false alarm at the jth node at consensus iteration t. For clarity of exposition,

we first derive our results for a small network with two Byzantine nodes and one honest node (see

Appendix A.13). Due to the probabilistic nature of the Byzantine’s behavior, it may behave as an

honest node with a probability (1−P ). Let S denote the set of all combinations of such Byzantine

strategies:

S = {{b1, b2}, {h1, b2}, {b1, h2}, {h1, h2}} (7.6)

where by bi we mean that Byzantine node i behaves as a Byzantine and by hi we mean that

Byzantine node i behaves as an honest node. LetAs ∈ U denote the indices of Byzantines behaving

as an honest node in the strategy combination s, then, from (7.6) we have

U = {A1 = {}, A2 = {1}, A3 = {2}, A4 = {1, 2}}

U c = {Ac
1 = {1, 2}, Ac

2 = {2}, Ac
3 = {1}, Ac

4 = {}}

where {} is used to denote the null set. Let us use ms to denote the cardinality of subset As ∈ U .

Using these notations, we generalize our results for any arbitrary N .

Lemma 7.4.2. The test statistic of node j at consensus iteration t, i.e., Λ̃t
j =

∑N1

i=1w
t
jiỸi +∑N

i=N1+1w
t
jiYi is a Gaussian mixture with PDF

f(Λ̃t
j|Hk) =

∑
As∈U

PN1−ms(1− P )msϕ

(
(µk)As +

N∑
i=N1+1

wt
ji(µ1k)i,

N∑
i=1

(wt
ji(σ1k)i)

2

)

with (µk)As =
∑

u∈As

wt
ju(µ1k)j +

∑
u∈Ac

s

wt
ju(µ2k)j .

The performance of the detection scheme in the presence of Byzantines can be represented in
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terms of the probability of detection and the probability of false alarm of the network.

Proposition 7.4.3. The probability of detection and the probability of false alarm of node j at

consensus iteration t in the presence of Byzantines can be represented as

P t
d(j) =

∑
As∈U

PN1−ms(1− P )msQ

λ− (µ1)As
−
∑N

i=N1+1 w
t
ji(µ11)i√∑N

i=1(w
t
ji(σ11)i)

2

 and

P t
f (j) =

∑
As∈U

PN1−ms(1− P )msQ

λ− (µ0)As −
∑N

i=N1+1 w
t
ji(µ10)i√∑N

i=1(w
t
ji(σ10)i)

2

 ,

where λ is the threshold used for detection by node j.

Next, to gain insights into the results given in Proposition 7.4.3, we present some numerical

results in Figures 7.2 and 7.3. We consider the 6-node network shown in Figure 2.1(c) where

the nodes employ the consensus algorithm 7.1 with ϵ = 0.6897 to detect a phenomenon. Nodes

1 and 2 are considered to be Byzantines. We also assume that ηi = 10, σ2
i = 2, λ = 33 and

wi = 1. Attack parameters are assumed to be (Pi,∆i) = (0.5, 6) and w̃i = 1.1. To characterize the

transient performance of the weighted average consensus algorithm, in Figure 7.2(a), we plot the

probability of detection as a function of the number of consensus iterations without Byzantines,

i.e., (∆i = 0, w̃i = wi). Next, in Figure 7.2(b), we plot the probability of detection as a function of

the number of consensus iterations in the presence of Byzantines. It can be seen that the detection

performance degrades in the presence of Byzantines. In Figure 7.3(a), we plot the probability of

false alarm as a function of the number of consensus iterations without Byzantines, i.e., (∆i =

0, w̃i = wi). Next, in Figure 7.3(b), we plot the probability of false alarm as a function of the

number of consensus iterations in the presence of Byzantines. From both Figures 7.2 and 7.3, it

can be seen that the Byzantine attack can severely degrade transient detection performance.

From the discussion in this section, we can see that Byzantines can severely degrade both the

steady-state and the transient detection performance of conventional consensus-based detection

algorithms. As mentioned earlier, a data falsifying Byzantine i can tamper its weight wi as well

as its sensing data Yi to degrade detection performance. One approach to mitigate the effect of
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Fig. 7.2: (a) Probability of detection as a function of consensus iteration steps. (b) Probability of

detection as a function of consensus iteration steps with Byzantines.
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Fig. 7.3: (a) Probability of false alarm as a function of consensus iteration steps. (b) Probability

of false alarm as a function of consensus iteration steps with Byzantines.

sensing data falsification is to assign weights based on the quality of the data. In other words, a

lower weight can be given to the data of the node identified as a Byzantine. However, to implement

this approach one has to address the following two issues.

First, in the conventional weighted average consensus algorithm, weight wi given to node i’s

data is controlled or updated by the node itself (see discussion in Section 7.3.1). Thus, a Byzantine

node can always set a higher weight to its manipulated information and the final statistics will be

dominated by the Byzantine nodes’ local statistic that will lead to degraded detection performance.

It will be impossible for any algorithm to detect this type of malicious behavior, since any weight

that a Byzantine chooses for itself is a legitimate value that could also have been chosen by a node
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that is functioning correctly. Thus, in the conventional consensus algorithms weight manipulation

cannot be detected and therefore, conventional consensus algorithms cannot be used in the presence

of an attacker.

Second, as will be seen later, the optimal weights given to nodes’ sensing data depend on the

following unknown parameters: identity of the nodes, which indicates whether the node is honest

or Byzantine, and underlying statistical distribution of the nodes’ data.

In the next section, we address these concerns by proposing a learning based robust weighted

average consensus algorithm.

7.5 A Robust Consensus Based Detection Algorithm

In order to address the first issue discussed in Section 7.4, which is the optimal weight design,

we propose a consensus algorithm in which the weight for node i’s information is controlled (or

updated) by the neighbors of node i rather than by node i itself. Note that, networks deploying such

an algorithm are more robust to weight manipulation because if a Byzantine node j wants to assign

an incorrect weight to the data of its neighbor i in the global test statistic, it has to ensure that all the

neighbors of node i put the same incorrect weight as node j. Furthermore, the proposed algorithm

enables the detection of weight-manipulating Byzantines (in contrast to conventional consensus

algorithms). The attack can be treated as a consensus disruption attack and weight manipulation

can be detected, unless all the neighbors of honest nodes are Byzantines.3

7.5.1 Distributed Algorithm for Weighted Average Consensus

In this section, we address the following questions: does there exist a distributed algorithm that

solves the weighted average consensus problem while satisfying the condition that weights must be

controlled (or updated) by neighborsNi of node i rather than by node i itself? If such an algorithm

exists, then, what are the conditions or constraints for the algorithm to converge?

3Weight manipulating Byzantines can be easily identified by techniques such as those given in [78, 94].
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We consider a network of N nodes with a fixed and connected topology G(V,E). Next, we

state Perron-Frobenius theorem [38], which will be used later for the design and analysis of our

robust weighted average consensus algorithm.

Theorem 7.5.1 ( [38]). Let W be a primitive non-negative matrix with left and right eigenvectors

u and v, respectively, satisfying Wv = v and uTW = uT . Then limk→∞W k = vuT

vTu
.

Using the above theorem, we take a reverse-engineering approach to design a modified Perron

matrix Ŵ which has the weight vector w = [w1, w2, · · · , wN ]
T , wi > 0, ∀i as its left eigenvector

and 1⃗ as its right eigenvector corresponding to eigenvalue 1. From the above theorem, if the

modified Perron matrix Ŵ is primitive and non-negative, then a weighted average consensus can

be achieved. Now, the problem boils down to designing such a Ŵ which meets our requirement

that weights are controlled (or updated) by the neighbors Ni of node i rather than by node i itself.

For this purpose, we propose a modified Perron matrix Ŵ = I−ϵ(T⊗L) whereL is the original

graph Laplacian,⊗ is element-wise matrix multiplication operator, and T is a transformation given

by

[T ]ij =


∑

j∈Ni

wj

lii
if i = j

wj otherwise.

Observe that, the above transformation T satisfies the condition that weights are controlled (or

updated) by neighborsNi of node i rather than by node i itself. Based on the above transformation

T , we propose our distributed consensus algorithm:

xi(k + 1) = xi(k) + ϵ
∑
j∈Ni

wj(xj(k)− xi(k)).

Note that, the form of our update equation is different from the conventional update equation. Let

us denote the modified Perron matrix by Ŵ = I − ϵL̂, where L̂ = T ⊗ L.

We then explore the properties of the modified Perron matrix Ŵ and show that it satisfies the

requirements of the Perron-Frobenius theorem [38]. These properties will later be utilized to prove

the convergence of our proposed consensus algorithm.
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Lemma 7.5.2. Let G be a connected graph with N nodes. Then, the modified Perron matrix

Ŵ = I − ϵ(T ⊗ L), with 0 < ϵ < 1

max
i

∑
j∈Ni

wj

satisfies the following properties.

1. Ŵ is a nonnegative matrix with left eigenvector w and right eigenvector 1⃗ corresponding to

eigenvalue 1;

2. All eigenvalues of Ŵ are in a unit circle;

3. Ŵ is a primitive matrix4.

Proof. Notice that, Ŵ 1⃗ = 1⃗− ϵ(T ⊗L)⃗1 = 1⃗ and wT Ŵ = wT − ϵwT (T ⊗L) = wT . This implies

that Ŵ has the left eigenvector w and the right eigenvector 1⃗ corresponding to eigenvalue 1. To

show that Ŵ = I + ϵT ⊗ A− ϵT ⊗D is non-negative, it is sufficient to show that: w > 0, ϵ > 0

and max
i

∑
j∈Ni

ϵ wj ≤ 1, ∀i. Since w is the left eigenvector of L̂ and w > 0, Ŵ is non-negative if

and only if

0 < ϵ ≤ 1

max
i

∑
j∈Ni

wj

.

To prove part 2), notice that all the eigenvectors of Ŵ and L̂ are the same. Let γj be the jth

eigenvalue of L̂, then, the jth eigenvalue of Ŵ is λj = 1 − ϵγj . Now, part 2) can be proved by

applying Gershgorin theorem [38] to the modified Laplacian matrix L̂.

To prove part 3), note that G is strongly connected and, therefore, Ŵ is an irreducible ma-

trix [38]. Thus, to prove that Ŵ is a primitive matrix, it is sufficient5 to show that Ŵ has a

single eigenvalue with maximum modulus of 1. In [75], the authors showed that when 0 < ϵ <

max
i

∑
j ̸=i

aij , the original Perron matrix W has only one eigenvalue with maximum modulus 1 at its

spectral radius. Using a similar logic, Ŵ is a primitive matrix if

0 < ϵ < 1

max
i

∑
j∈Ni

wj

.

4A matrix is primitive if it is non-negative and its mth power is positive for some natural number m.
5An irreducible stochastic matrix is primitive if it has only one eigenvalue with maximum modulus.
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Theorem 7.5.3. Consider a network with fixed and strongly connected undirected topologyG(V,E)

that employs the distributed consensus algorithm

xi(k + 1) = xi(k) + ϵ
∑
j∈Ni

wj(xj(k)− xi(k))

where

0 < ϵ < 1

max
i

∑
j∈Ni

wj

.

Then, consensus is reached asymptotically with x∗ =
∑N

i=1 wixi(0)∑n
i=1 wi

,∀i.

Proof. A consensus is reached asymptotically, if the limit lim
k→∞

Ŵ k exists. According to Perron-

Frobenius theorem [38], this limit exists for primitive matrices. Note that, 1⃗ = [1, · · · , 1]T and w

are right and left eigenvectors of the primitive nonnegative matrix Ŵ respectively. Thus, from [38]

x∗ = lim
k→∞

x(k) = lim
k→∞

(Ŵ )kx(0)

x∗ = 1⃗
wTx(0)

wT 1⃗

x∗ = 1⃗

∑N
i=1wixi(0)∑n

i=1wi

Next, to gain insights into the convergence property of the proposed algorithm, we present some

numerical results in Figure 7.4. We consider the 6-node network shown in Figure 2.1(c) where the

nodes employ the proposed algorithm (with ϵ = 0.3) to reach a consensus. Next, we plot the up-

dated state values at each node as a function of consensus iterations. We assume that the initial data

vector is x(0) = [5, 2, 7, 9, 8, 1]T and the weight vector is w = [0.65, 0.55, 0.48, 0.95, 0.93, 0.90]T .

Note that, the parameter ϵ satisfies the condition mentioned in Theorem 7.5.3. Figure 7.4 shows

the convergence of the proposed algorithm iterations. It is observed that within 20 iterations con-

sensus has been reached on the global decision statistics, the weighted average of the initial values

(states).
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Fig. 7.4: Convergence of the network with a 6-nodes (ϵ = 0.3).

In the proposed consensus algorithm, weights given to node i’s data are updated by neighbors

of the node i rather than by node i itself which addresses the first issue discussed in Section 7.4.

7.5.2 Adaptive Design of the Update Rules based on Learning of Nodes’

Behavior

Next, to address the second issue discussed in Section 7.4, we exploit the statistical distribution of

the sensing data and devise techniques to mitigate the influence of Byzantines on the distributed

detection system. We propose a three-tier mitigation scheme where the following three steps are

performed at each node: 1) identification of Byzantine neighbors, 2) estimation of parameters of

identified Byzantine neighbors, and 3) adaptation of consensus algorithm (or update weights) using

estimated parameters.

We first present the design of distributed optimal weights for the honest/Byzantine nodes as-

suming that the identities of the nodes are known. Later we will explain how the identity of nodes

(i.e., honest/Byzantine) can be determined.

Design of Distributed Optimal Weights in the Presence of Byzantines

In this subsection, we derive closed form expressions for the distributed optimal weights which

maximize the deflection coefficient. First, we consider the global test statistic Λ =
∑N1

i=1 w
B
i Ỹi+

∑N
i=N1+1 w

H
i Yi∑

w
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where
∑
w =

∑N1

i=1w
B
i +

∑N
i=N1+1w

H
i and obtain a closed form solution for optimal centralized

weights. Then, we extend our analysis to the distributed scenario. Let us denote by δBi , the cen-

tralized weight given to the Byzantine node and by δHi , the centralized weight given to the Honest

node. By considering δBi = wB
i /
∑
w and δHi = wH

i /
∑
w, the optimal weight design problem

can be stated formally as:

max
{δBi }N1

i=1,{δHi }Ni=N1+1

(µ1 − µ0)
2

σ2
(0)

s.t.
N1∑
i=1

δBi +
N∑

i=N1+1

δHi = 1

where µ1, µ0 and σ2
(0) are given in (7.3), (7.4) and (7.5), respectively. The solution of the above

problem is presented in the next lemma.

Lemma 7.5.4. Optimal centralized weights which maximize the deflection coefficient are given as

δBi =
wB

i

N1∑
i=1

wB
i +

N∑
i=N1+1

wH
i

,

δHi =
wH

i

N1∑
i=1

wB
i +

N∑
i=N1+1

wH
i

where wB
i =

(ηiσ
2
i − 2Pi∆i)

∆2
iPi(1− Pi) + 2Mσ4

i

and wH
i =

ηi
2Mσ2

i

.

Proof. The above results can be obtained by setting the derivative of the deflection coefficient

equal to zero and solving the equation. Note that, the constraint is trivially satisfied by normalizing

the obtained weights as the value of deflection coefficient is unchanged after normalization.

The optimality of the weights in Lemma 7.5.4 can also be verified by upper bounding the

expression of deflection coefficient using the Cauchy-Schwarz inequality and observing that this

upper bound is achieved by the weights in Lemma 7.5.4.
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Remark 1. Distributed optimal weights can be chosen as wB
i and wH

i . Thus, the value of the

global test statistic (or final weighted average consensus) is the same as the optimal centralized

weighted combining scheme6.

Next, to gain insights into the solution, we present some numerical results in Figure 7.5 that

corroborate our theoretical results. We assume that M = 12, ηi = 3, σ2
i = 0.5 and the attack

parameters are (Pi,∆i) = (0.5, 9). In Figure 7.5, we compare our proposed weighted average

6Note that, weights wB
i can be negative and in that case convergence of the proposed algorithm is not guaranteed.

However, this situation can be dealt off-line by adding a constant value to make wB
i ≥ 0 and changing the threshold λ

accordingly. More specifically, by choosing a constant c such that
(
wB

i + c
xi(0)

)
≥ 0, ∀i and λ← λ+ βc where β is

the number of nodes with wB
i < 0.
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consensus-based detection scheme with the equal gain combining scheme7 and the scheme where

Byzantines are excluded from the fusion process. It can be clearly seen from the figure that our

proposed scheme performs better than the rest of the schemes.

Next, in Figure 7.6, we plot the probability of detection of the proposed scheme as a function

of the attack strength ∆ for Pi = 1. The threshold λ is chosen to constrain the probability of

false alarm below a constant δ = 0.01. Also, we assume that M = 12, ηi = 10, σ2
i = 6. It can

be seen from the figure that the worst detection performance is when the deflection coefficient

is zero which also implies that the attacker is not providing any information or is excluded from

the data fusion process. The reason for this is that when the deflection coefficient is non-zero,

the information provided by the attacker is also non-zero which is being utilized by the proposed

scheme to improve the detection performance.

Notice that, the optimal weights for the Byzantines are functions of the attack parameters

(Pi, ∆i), which may not be known to the neighboring nodes in practice. In addition, the pa-

rameters of the honest nodes might also not be known. Therefore, we propose a technique to learn

or estimate these parameters. We then use these estimates to adaptively design the local fusion rule

which are updated after each learning iteration.

Identification, Estimation, and Adaptive Fusion Rule

The first step at each nodem is to determine the identity (I i ∈ {H,B}) of its neighboring nodes i ∈

Nm . Notice that, if node i is an honest node, its data under hypothesis Hk is normally distributed

N ((µ1k)i, (σ1k)
2
i ). On the other hand, if node i is a Byzantine node, its data under hypothesisHk is

a Gaussian mixture which comes fromN ((µ1k)i, (σ1k)
2
i ) with probability (αi

1 = 1− Pi) and from

N ((µ2k)i, (σ2k)
2
i ) with probability αi

2 = Pi. Therefore, determining the identity (I i ∈ {H,B}) of

neighboring nodes i ∈ Nm can be posed as a hypothesis testing problem:

7In the equal gain combining scheme, all the nodes (including Byzantines) are given the same weight.
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I0 (I
i = H) : Yi is generated from a Gaussian distribution under each hypothesis Hk;

I1 (I
i = B) : Yi is generated from a Gaussian mixture distribution under each hypothesis Hk.

Node classification can then be achieved using the maximum likelihood decision rule:

f(Yi| I0)
H

≷
B

f(Yi| I1) (7.7)

where f(Yi | Il) is the probability density function (PDF) of Yi under each hypothesis Il.

However, the parameters of the distributions are not known. Next, we propose a technique to

learn these parameters. For an honest node i, the parameters to be estimated are ((µ1k)i, (σ1k)
2
i )

and for Byzantines the unknown parameter set to be estimated is θ = {αi
j, (µjk)i, (σjk)

2
i }, where

k = {0, 1}, j = {1, 2} and i = 1, · · · , Nm, for Nm neighboring nodes. These parameters are

estimated by observing the data over multiple learning iterations. In each learning iteration t, each

node in the network employs the data coming from their neighbors for D detection intervals to

learn their respective parameters. It is assumed that each node has the knowledge of the past D

hypothesis test results (or history) through a feedback mechanism.8 Also, notice that the learning

is done in a separate learning phase and is not a part of consensus iterations.

First, we explain how the unknown parameter set for the distribution under the null hypothesis

(I0) can be estimated. Let us denote the data coming from an honest neighboring node i as Yi(t) =

[y0i (1), · · · , y0i (D1(t)), y
1
i (D1(t) + 1), · · · , y1i (D)] where D1(t) denotes the number of times H0

occurred in learning iteration t and yki denotes the data of node i when the true hypothesis was Hk.

To estimate the parameter set, ((µ1k)i, (σ1k)
2
i ), of an honest neighboring node, one can employ a

maximum likelihood based estimator (MLE). We use ((µ̂1k)i(t), (σ̂1k)
2
i (t)) to denote the estimates

at learning iteration t, where each learning iteration consists of D detection intervals. The ML

8Note that, there exist several applications where this assumption is valid, e.g., cognitive radio networks, sensor
networks, etc. Also, the proposed method can be extended to the scenarios where the knowledge of the true hypothesis
is not available at the cost of analytical tractability.
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(σ̂10)
2
i (t+ 1) =

t∑
r=1

D1(r)[(σ̂10)
2
i (t) + ((µ̂10)i(t+ 1)− (µ̂10)i(t))

2] +
D1(t+1)∑

d=1

[y0i (d)− (µ̂10)i(t+ 1)]2

t+1∑
r=1

D1(r)

(7.8)

(σ̂11)
2
i (t+1) =

t∑
r=1

(D −D1(r))[(σ̂11)
2
i (t) + ((µ̂11)i(t+ 1)− (µ̂11)i(t))

2] +
D−D1(t+1)∑

d=1

[y1i (d)− (µ̂11)i(t+ 1)]2

t+1∑
r=1

(D −D1(r))

(7.9)

estimate of ((µ1k)i, (σ1k)
2
i ) can be written in a recursive form:

(µ̂10)i(t+ 1) =

t∑
r=1

D1(r)

t+1∑
r=1

D1(r)

(µ̂10)i(t) +
1

t+1∑
r=1

D1(r)

D1(t+1)∑
d=1

y0i (d) (7.10)

(µ̂11)i(t+ 1) =

t∑
r=1

(D −D1(r))

t+1∑
r=1

(D −D1(r))

(µ̂11)i(t) +
1

t+1∑
r=1

(D −D1(r))

D∑
d=D1(t+1)

y1i (d) (7.11)

where expressions for (σ̂10)2i and (σ̂11)
2
i are given in (7.8) and (7.9), respectively. Observe that,

by writing these expressions in a recursive manner, we need to store only D data samples at any

given learning iteration t, but effectively use all tD data samples to determine the estimates.

Next, we explain how the unknown parameter set for the distribution under the alternate hy-

pothesis (I1) can be estimated. Since the data is distributed as a Gaussian mixture, we employ the

expectation-maximization (EM) algorithm to estimate the unknown parameter set for Byzantines.

Let us denote the data coming from a Byzantine neighbor i as Ỹi(t) = [ỹ0i (1), · · · , ỹ0i (D1(t)), ỹ
1
i (D1(t)+

1), · · · , ỹ1i (D)] where D1(t) denotes the number of times H0 occurred in learning iteration t and

ỹki denotes the data of node i when the true hypothesis was Hk. Let us denote the hidden variable

as zj with j = {1, 2} or (Z = [z1, z2]). Now, the joint conditional PDF of ỹki and zj , given the
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parameter set, can be calculated to be

P (ỹki (d), zj|θ) = P (zj|ỹki (d), θ)P (ỹki (d)|(µjk)i, (σjk)
2
i )

= αi
jP (ỹ

k
i (d)|(µjk)i, (σjk)

2
i )

In the expectation step of EM, we compute the expectation of the log-likelihood function with

respect to the hidden variables zj , given the measurements Ỹi, and the current estimate of the

parameter set θl. This is given by

Q(θ, θl) = E[logP (Ỹi, Z|θ)|Ỹi, θ
l]

=
2∑

j=1

D1(t)∑
d=1

log[αi
jP (ỹ

0
i (d)|(µj0)i, (σj0)

2
i )P (zj|ỹ0i (d), θl)]

+
2∑

j=1

D∑
d=D1(t)+1

log[αi
jP (ỹ

1
i (d)|(µj1)i, (σj1)

2
i )P (zj|ỹ1i (d), θl)]

where

P (zj|ỹki (d), θl) =
αi
j(l)P (ỹ

k
i (d)|(µjk)i(l), (σjk)

2
i (l))

2∑
n=1

αi
n(l)P (ỹ

k
i (d)|(µnk)i(l), (σnk)2i (l))

. (7.12)

In the maximization step of the EM algorithm, we maximize Q(θ, θl) with respect to the pa-

rameter set θ so as to compute the next parameter set:

θl+1 = argmax
θ

Q(θ, θl).
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First, we maximize Q(θ, θl) subject to the constraint
2∑

j=1

αi
j = 1. We define the Lagrangian L as

L = Q(θ, θl) + λ

(
2∑

j=1

αi
j − 1

)
.

Now, we equate the derivative of L to zero:

d

dαi
j

L = λ+

D1(t)∑
d=1

P (zj|ỹ0i (d), θl)

αi
j

+

D∑
d=D1(t)+1

P (zj|ỹ1i (d), θl)

αi
j

= 0.

Multiplying both sides by αi
j and summing over j gives λ = −D. Similarly, we equate the

derivative of Q(θ, θl) with respect to (µjk)i and (σk)
2
i to zero. Now, an iterative algorithm for all

the parameters is

αi
j(l + 1) =

1

D

D1(t)∑
d=1

P (zj|ỹ0i (d), θl) +
D∑

d=D1(t)+1

P (zj|ỹ1i (d), θl)

 (7.13)

(µj0)i(l + 1) =

D1(t)∑
d=1

P (zj|ỹ0i (d), θl)ỹ0i (d)

D1(t)∑
d=1

P (zj|ỹ0i (d), θl)
(7.14)

(µj1)i(l + 1) =

D∑
d=D1(t)+1

P (zj|ỹ1i (d), θl)ỹ1i (d)

D∑
d=D1(t)+1

P (zj|ỹ1i (d), θl)
(7.15)

(σj0)
2
i (l + 1) =

2∑
j=1

D1(t)∑
d=1

P (zj|ỹ0i (d), θl)(ỹ0i (d)− (µj0)i(l + 1))2

2∑
j=1

D1(t)∑
d=1

P (zj|ỹ0i (d), θl)
(7.16)

(σj1)
2
i (l + 1) =

2∑
j=1

D∑
d=D1(t)+1

P (zj|ỹ1i (d), θl)(ỹ1i (d)− (µj1)i(l + 1))2

2∑
j=1

D∑
d=D1(t)+1

P (zj|ỹ1i (d), θl)
(7.17)
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In the learning iteration t, let the estimates after the convergence of the above algorithm be

denoted by θ̂(t) = {α̂i
j(t), (µ̂jk)i(t), (σ̂jk)

2
i (t)}. These estimates are then used as the initial values

for the next learning iteration t+ 1 that uses a new set of D data samples.

After learning the unknown parameter set under I0 and I1, node classification can be achieved

using the following maximum likelihood decision rule:

f̂(Yi| I0)
H

≷
B

f̂(Yi| I1) (7.18)

where f̂(·) is the PDF based on estimated parameters.

Using the above estimates and node classification, the optimal distributed weights for honest

nodes after learning iteration t can be written as

wH
i (t) =

(µ̂11)i(t)− (µ̂10)i(t)

(σ̂10)2i (t)
. (7.19)

Similarly, the optimal distributed weights for Byzantines after learning iteration t can be written

as

wB
i (t) =

2∑
j=1

α̂i
j(t)[(µj1)i(t)− (µ̂j0)i(t)]

α̂i
1(t)α̂

i
2(t) ((µ̂10(t))i − (µ̂20(t))i)

2 +
(
α̂i
1(t) (σ̂10)

2
i (t) + α̂i

2(t) (σ̂20)
2
i (t)

) (7.20)

Next, we present some numerical results in Figure 7.7 to evaluate the performance of our

proposed scheme. Consider the scenario where 6 nodes organized in an undirected graph (as

shown in Figure 2.1(c)) are trying to detect a phenomenon. Node 1 and node 2 are considered to

be Byzantines. We assume that ((µ10)i, (σ10)
2
i ) = (3, 1.5), ((µ11)i, (σ11)

2
i ) = (4, 2) and the attack

parameters are (Pi,∆i) = (0.5, 9). In Figure 7.7, we plot ROC curves for different number of

learning iterations. For every learning iteration, we assume that D1 = 10 and D = 20. It can

be seen from Figure 7.7 that within 4 learning iterations, detection performance of the learning

based weighted gain combining scheme approaches the detection performance of weighted gain
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Fig. 7.7: ROC for different learning iterations

combining with known optimal weight based scheme.

Note that, the above learning based scheme can be used in conjunction with the proposed

weighted average consensus-based algorithm to mitigate the effect of Byzantines.

7.6 Discussion

In this chapter, we analyzed the security performance of conventional consensus-based algorithms

in the presence of data falsification attacks. We showed that above a certain fraction of Byzantine

attackers in the network, existing consensus-based detection algorithm are ineffective. Next, we

proposed a robust distributed weighted average consensus algorithm and devised a learning tech-

nique to estimate the operating parameters (or weights) of the nodes. This enables an adaptive

design of the local fusion or update rules to mitigate the effect of data falsification attacks. We

demonstrated that the proposed scheme, which uses the information of the identified Byzantines to

network’s benefit, outperforms exclusion based approaches where the only defense is to identify

and exclude the attackers from the consensus process.
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CHAPTER 8

COMPRESSIVE DETECTION WITH AN

EAVESDROPPER: POSITIVE EFFECT OF

CORRUPTED DATA IN SECRECY

PERFORMANCE

8.1 Introduction

Previous chapters highlighted the negative effect of corrupted data or data falsification on the in-

ference performance of the system. However, it is possible for a system designer to utilize the

corrupted data for network’s benefit. Motivated by this fact, in this chapter, we study the positive

use of falsified data to improve the secrecy performance of a distributed inference system. In this

chapter, we are interested in solving the problem of detecting a high dimensional signal based on

compressed measurements. To solve an inference problem where some prior information about the

signal is available, a customized measurement scheme could be implemented such that the optimal

inference performance is achieved for the particular signal. As an example, for a signal detection

problem where the signal of interest is known, the optimal design is the matched filter which is de-
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pendent on the signal itself. However, it is possible that the signal that we wish to infer about may

evolve over time. Thus, we are often interested in universal or agnostic design. A few attempts

have been made in this direction to address problems of inference in the Compressive Signal Pro-

cessing (CSP) literature recently [25, 36, 119]. CSP techniques are universal and agnostic to the

signal structure and provide deterministic guarantees for a wide variety of signal classes.

The authors in [10, 25, 29] considered the deterministic signal detection problem in the com-

pressed measurement domain where the performance limits of detection with compressed mea-

surements were investigated. For signals that are not necessarily sparse, it was shown that a certain

performance loss occurs due to compression when compared to the optimal test that acquires orig-

inal measurements using the traditional measurement scheme. For stochastic signals, the compres-

sive detection problem (i.e., detecting stochastic signals in the compressed measurement domain)

was considered in [118, 119]. Both works focused only on compressive detection of ‘zero-mean’

stochastic signals based on observations corrupted by additive noise. Closed form expressions

were derived for performance limits and performance loss due to compression was characterized

analytically. A signal classification problem based on compressed measurements was considered

in [26] where the authors developed a manifold based model for compressive classification. The

authors in [35, 36] studied the performance of compressive sampling in detection and classifica-

tion setups and introduced the generalized restricted isometry property that states that the angle

between two vectors is preserved under random projections. Sparse event detection by sensor

networks under a CS framework was considered in [68]. The problem of detection of spectral

targets based on noisy incoherent projections was addressed in [55]. Schemes for the design and

optimization of projection matrices for signal detection with compressed measurements have been

proposed in [7, 114].

As mentioned earlier, CSP techniques are universal and agnostic to the signal structure and,

therefore, are attractive in many practical applications. Despite its attractiveness to solve high

dimensional inference problems, CSP suffers from a few major drawbacks which limit its appli-

cability in practice. A CS based measurement scheme incurs a certain performance loss due to
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compression when compared to the traditional measurement scheme while detecting non sparse

signals. This can be seen as the price one pays for universality in terms of inference performance.

In this chapter, we propose a collaborative compressive detection (CCD) framework to compensate

for the performance loss due to compression. The CCD framework comprises of a group of spa-

tially distributed nodes which acquire vector observations regarding the phenomenon of interest.

Nodes send a compressed summary of their observations to the Fusion Center (FC) where a global

decision is made. In this setup, we characterize the trade-off between dimensionality reduction in a

universal CS based measurement scheme and the achievable performance. It is worthwhile to point

out that, in contrast to [118, 119] where compressive detection of ‘zero-mean’ stochastic signals

was considered, we study a more general problem where the stochastic signals can have ‘non zero-

mean’. Note that, some of the existing results can be seen as a special case of analytical results

derived in this chapter. For both the cases, we show that for a fixed signal to noise ratio (SNR), if

the number of collaborating nodes is greater than (1/c), where 0 ≤ c ≤ 1 is the compression ratio,

the loss due to compression can be recovered.

In a CCD framework, the FC receives compressive observation vectors from the nodes and

makes the global decision about the presence of the signal vector. The transmissions by the nodes,

however, may be observed by an eavesdropper. The secrecy of a detection system against eaves-

dropping attacks is of utmost importance [21]. In a fundamental sense, there are two motives for

any eavesdropper (Eve), namely selfishness and maliciousness, to compromise the secrecy of a

given inference network. For instance, some of the nodes within a cognitive radio network (CRN)

may selfishly take advantage of the FC’s inferences and may compete against the CRN in using

the primary user’s channels without paying any participation costs to the network moderator. In

another example, if the radar decisions are leaked to a malicious aircraft, the adversary aircraft can

maliciously adapt its strategy against a given distributed radar network accordingly so as to remain

invisible to the radar and in clandestine pursuit of its mission. Therefore, in the recent past, there

has been a lot of interest in the research community in addressing eavesdropping attacks on infer-

ence networks. Recently, a few attempts have been made to address the problem of eavesdropping
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threats on distributed detection networks [44]. However, a similar study in a CSP framework is

missing from the literature.

Next, we investigate the CCD problem when the network operates in the presence of an eaves-

dropper who wants to discover the state of the nature being monitored by the system. While secrecy

issues with CS based measurement schemes have been considered in [1, 82, 84], our work is con-

siderably different. In contrast to [1, 82, 84], where performance limits of secrecy of CS based

measurement schemes were analyzed (under different assumptions), we look at the problem from

a practical perspective. We pursue a more active approach where the problem of optimal system

design with secrecy guarantees is studied in an optimization setup. More specifically, we propose

to use cooperating trustworthy nodes that assist the FC by injecting corrupted data to deceive the

eavesdroppers to improve the secrecy performance of the system.1 The addition of corrupted data

to node transmissions is a data falsification scheme that is employed to mislead the eavesdropper.

We consider the problem of determining optimal system parameters which maximize the detection

performance at the FC, while ensuring perfect secrecy at the eavesdropper. In the process of de-

termining optimal system parameters, we seek the answer to the question: Does compression help

in improving the secrecy performance of the system? At first glance, it seems intuitive that com-

pression should always improve the secrecy performance. However, we show that this argument is

not necessarily true. In fact, secrecy performance of the system is independent of the compression

ratio in the perfect secrecy regime.

The rest of the chapter is organized as follows. Section 8.2 presents the observation model and

the problem formulation. In Section 8.3, performance of collaborative compression detection is

analyzed for both deterministic and random signal cases. In Section 8.4, we investigate the problem

where the network operates in the presence of an eavesdropper and propose corrupted data injection

techniques to improve secrecy performance. In Section 8.5, we study the problem of determining

optimal system parameters which maximize the detection performance at the FC, while ensuring

perfect secrecy at the eavesdropper. Concluding remarks and possible future directions are given

1Artificial noise injection is a popular technique to guarantee secrecy in a wireless communication system [33,72].
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Fig. 8.1: Collaborative Compressive Detection Network

in Section 8.7.

8.2 Collaborative Compressive Detection

8.2.1 Observation Model

Consider two hypotheses H0 (signal is absent) and H1 (signal is present). Also, consider a parallel

network, comprised of a central entity (known as the FC) and a set ofN nodes, which faces the task

of determining which of the two hypotheses is true (see Figure 8.1). Prior probabilities of the two

hypothesesH0 andH1 are denoted by P0 and P1, respectively. The nodes observe the phenomenon

(high dimensional signal), carry out local compression (low dimensional projection), and then send

their local summary statistic to the FC. The FC makes a final decision after processing the locally

compressed observations.

For the ith node observed signal, ui can be modeled as

H0 : ui = vi

H1 : ui = s+ vi
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where ui is the P × 1 observation vector, s is either deterministic or random Gaussian signal

vector (not necessarily sparse) to be detected. Specifically let s ∼ N (µ, α−1IP ) and additive noise

vi ∼ N (0, β−1IP ) where x ∼ N (µ,Σ) denotes that the vector x is distributed as multivariate

Gaussian with mean vector µ and the covariance matrix Σ, and IP is the P × P identity matrix.

Note that, the deterministic signal can be considered as a special case of the random signal s with

variance α−1 = 0. Observations at the nodes are assumed to be conditionally independent and

identically distributed.

Each node sends a M -length (< P ) compressed version yi of its P -length observation ui to

the FC. The collection of M -length universally sampled observations is given by, yi = ϕui, where

ϕ is an M × P projection matrix, which is assumed to be the same for all the nodes, and yi is the

M × 1 compressed observation vector (local summary statistic).

Under the two hypotheses, the local summary statistic is

H0 : yi = ϕvi

H1 : yi = ϕs+ ϕvi.

The FC receives compressed observation vectors, y = [y1, · · · , yN ], from the nodes via error free

communication channels and makes the global decision about the phenomenon.

8.2.2 Binary Hypothesis Testing at the Fusion Center

We consider the detection problem in a Bayesian setup where the performance criterion at the FC

is the probability of error. The FC makes the global decision about the phenomenon by considering

the likelihood ratio test (LRT) which is given by

N∏
i=1

f1(yi)

f0(yi)

H1

≷
H0

P0

P1

. (8.1)

Notice that, under the two hypotheses we have the following probability density functions (PDFs):
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f0(yi) =
exp(−1

2
yTi (β

−1ϕϕT )−1yi)

|β−1ϕϕT |1/2(2π)M/2
, (8.2)

f1(yi) =
exp(−1

2
(yi − ϕµ)T ((α−1 + β−1)ϕϕT )−1(yi − ϕµ))
|(α−1 + β−1)ϕϕT |1/2(2π)M/2

. (8.3)

After plugging in (8.2) and (8.3) in (8.1) and taking logarithms on both sides, we obtain an

equivalent test that simplifies to

α−1

β−1

N∑
i=1

yTi (ϕϕ
T )−1yi + 2

N∑
i=1

yTi (ϕϕ
T )−1µ

H1

≷
H0

λ

where λ = (α−1 + β−1)
[
2 log P0

P1
+NM log

(
1 + α−1

β−1

)]
+N(ϕµ)T (ϕϕT )−1ϕµ.

For simplicity, we assume that P0 = P1. The test statistic for the collaborative compressive detector

can be written in a compact form as

Λ(y) =
α−1

β−1

N∑
i=1

Λ1(yi) + 2
N∑
i=1

Λ2(yi) (8.4)

where Λ1(yi) = yTi (ϕϕ
T )−1yi and Λ2(yi) = yTi (ϕϕ

T )−1µ.

We would like to point out that the test statistic for the deterministic signal and random signal

with zero mean cases can be seen as a special case of the above test statistic. More specifically,

for the deterministic signal s, the test statistic is given by Λ(y) =
N∑
i=1

Λ1(yi) and for the zero

mean random signal the test statistic is given by Λ(y) =
N∑
i=1

Λ2(yi) which is consistent with [45]

and [119].
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8.3 Performance Analysis of Collaborative Compressive De-

tection

First, we look at the deterministic signal case and characterize the performance of the collaborative

compressive detector.

8.3.1 Case I: Deterministic Signal

The optimal test at the FC can be written in a compact form as

N∑
i=1

yTi (ϕϕ
T )−1ϕs

H1

≷
H0

λ,

with λ = N
2
sTϕT (ϕϕT )−1ϕs. The decision statistic for the collaborative compressive detector is

given as

Λ(y) =
N∑
i=1

yTi (ϕϕ
T )−1ϕs. (8.5)

We analytically characterize the performance of the collaborative compressive detector in terms of

the probability of error which is defined as

PE =
1

2
PF +

1

2
(1− PD)

where, PF = P (Λ(y) > λ|H0) and PD = P (Λ(y) > λ|H1) is the probability of false alarm and

the probability of detection, respectively. To simplify the notations, we define

P̂ = ϕT (ϕϕT )−1ϕ

as the orthogonal projection operator onto row space of ϕ. Using this notation, it is easy to show

that
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Λ(y) ∼

 N (0, β−1N∥P̂ s∥22), under H0

N (N∥P̂ s∥22, β−1N∥P̂ s∥22) under H1

where ∥P̂ s∥22 = sTϕT (ϕϕT )−1ϕs.

Using techniques in [79], the probability of error can be calculated to be

PE = Q

(
1

2

√
N

β−1
∥P̂ s∥2

)
(8.6)

where Q(x) = 1√
2π

∫∞
x

exp(−u2

2
) du.

Next, we derive the modified deflection coefficient (first proposed in [81]) of the system and

show its monotonic relationship with the probability of error as given in (8.6). The modified

deflection coefficient provides a good measure of the detection performance since it characterizes

the variance-normalized distance between the centers of two conditional PDFs. Notice that, for

the deterministic signal case, yi is distributed under the hypothesis Hj as, yi ∼ N (µi
j,Σ

i
j). The

modified deflection coefficient D(y) can be obtained to be

D(y) =
N∑
i=1

(µi
1 − µi

0)
T (Σi

1)
−1(µi

1 − µi
0)

= N
∥P̂ s∥22
β−1

.

The monotonic relationship between PE as given in (8.6) andD(y) can be observed by noticing

that

PE = Q

(√
D(y)

2

)
.

Later in the chapter, we will use the modified deflection coefficient to characterize the detection

performance of the system.

Notice that, the detection performance is a function of the projection operator P̂ . In general,

this performance could be either quite good or quite poor depending on the random projection

matrix ϕ. Next, we provide bounds on the performance of the collaborative compressive detector
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using the concept of ϵ-stable embedding.2

Definition 8.3.1. Let ϵ ∈ (0, 1) and S,X ⊂ RP . We say that a mapping ψ is an ϵ-stable embedding

of (S,X ) if

(1− ϵ) ∥s− x∥22 ≤ ∥ψs− ψx∥22 ≤ (1 + ϵ) ∥s− x∥22,

for all s ∈ S and x ∈ X .

Using this concept, we state our result in the next theorem.

Theorem 8.3.2. Suppose that
√

P
M
P̂ provides an ϵ-stable embedding of (S, {0}). Then for any

deterministic signal s ∈ S, the probability of error of the collaborative compressive detector

satisfies

Q

(
√
1 + ϵ

√
N

2

√
M

P

∥s∥2√
β−1

)
≤ PE ≤ Q

(
√
1− ϵ

√
N

2

√
M

P

∥s∥2√
β−1

)
.

Proof. By our assumption that
√

P
M
P̂ provides an ϵ-stable embedding of (S, {0}), we know that

√
1− ϵ ∥s∥2 ≤

√
P

M
∥P̂ s∥2 ≤

√
1 + ϵ ∥s∥2. (8.7)

Combining (8.7) with (8.6), the result follows.

For small values of ϵ, PE can be approximated as

PE ≈ Q

(√
N

2

√
M

P

∥s∥2√
β−1

)
.

The above expression tells us in a precise way how much information we lose by using low

dimensional projections rather than the signal samples themselves. It also tells us how many nodes

are needed to collaborate to compensate for the loss due to compression. More specifically, if

N ≥ 1
c
, where c = M

P
is defined as the compression ratio at each node, the loss due to compression

2To construct linear mappings that satisfy an ϵ-stable embedding property is beyond the scope of this work. We
refer interested readers to [25].
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Fig. 8.2: Prob. of error as a function of number of nodes and compression ratio c = M/P for
SNR = 3dB

can be recovered. Notice that, for a fixed M , as the number of collaborating nodes approaches

infinity, i.e., N → ∞, the probability of error vanishes. On the other hand, to guarantee PE ≤ δ,

parameters M, P and N should satisfy

cN ≥ 4

SNR
(Q−1(δ))2

where SNR =
∥s∥22
β−1 .

To corroborate our theoretical results, in Figure 8.2 we present the behavior of PE with re-

spect to collaboration and compression. We plot PE as a function of the number of nodes N

and compression ratio c. We assume that SNR = 3dB. It can be seen from Figure 8.2 that PE

is a monotonically decreasing function of c and N , and, therefore, the performance loss due to

compression can be compensated by exploiting spatial diversity or collaboration.

In order to more clearly illustrate the behavior of PE with respect to compression and collabo-

ration, we also establish the following corollary of Theorem 8.3.2 using the Chernoff Bound.

Corollary 8.3.3. Suppose that
√

P
M
P̂ provides an ϵ-stable embedding of (S, {0}). Then for any

deterministic signal s ∈ S, we have

PE ≤
1

2
exp

(
−1

8
cN
∥s∥22
β−1

)
.
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Corollary 8.3.3 suggests that the error probability vanishes exponentially fast as we increase

either the compression ratio c or the number of collaborating nodes N .

Next, we extend the above analysis to the case where the signal of interest is a random signal

such that s ∼ N (µ, α−1IP ).

8.3.2 Case II: Random Signal with Arbitrary Mean

Let the signal of interest be s ∼ N (µ, α−1IP ) with an arbitrary µ. Then, the collaborative com-

pressive detector is given by

α−1

β−1

N∑
i=1

yTi (ϕϕ
T )−1yi + 2

N∑
i=1

yTi (ϕϕ
T )−1µ

H1

≷
H0

λ (8.8)

where λ = (α−1 + β−1)
[
NM log

(
1 + α−1

β−1

)]
+ N(ϕµ)T (ϕϕT )−1ϕµ. Note that, the test statistic

is of the form
N∑
i=1

[
yTi Ayi + 2bTyi

]
with A = α−1

β−1 (ϕϕ
T )−1 and b = (ϕϕT )−1ϕµ. In general, it

is difficult to find the PDF of such an expression in a closed form. It is worthwhile to point out

that, in contrast to [118, 119] where compressive detection of ‘zero-mean’ stochastic signals was

considered, we study a more general problem where the stochastic signals can have ‘non zero-

mean’. Using existing tools as given in [79], it is not possible to obtain a closed form performance

analysis of the test (8.8).

Next, we state a Lemma from [74], which will be used to derive the distribution of the test

statistic in a closed form.

Lemma 8.3.4 ( [74]). Let A be a symmetric matrix and x ∼ N (µ, V ), where V is positive definite

(hence nonsingular). The necessary and sufficient condition that xTAx + 2bTx + c follows a

noncentral chi-squared distribution X 2
k (δ) with k degrees of freedom and noncentrality parameter

δ is that
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A

. .

bT

V [A : b] =

A b

bT c

 (8.9)

in which case k is the rank of A and δ = µTAµ+ 2bTµ+ c.

Next, using Lemma 8.3.4 we state the following proposition.

Proposition 8.3.5. For a P×P symmetric and idempotent matrix S and ui ∼ N (µ, σ2IP ), the test

statistic of the form uTi Aui+2bTui+c withA = 1
σ2S, bT = 1

σ2 z
TS and c = 1

σ2 z
TSz follows a non-

central chi-squared distribution X 2
k (δ) where k = Rank(S) and δ = 1

σ2

(
µTSµ+ 2zTSµ+ zTSz

)
for any arbitrary P × 1 vector z.

Proof. To prove the proposition, it is sufficient to show that the above mentioned A, b and c satisfy

condition (8.9) in Lemma 8.3.4 for any arbitrary P × 1 vector z. Notice that, S satisfies the

following properties: symmetric ST = S and idempotent S2 = S. Thus,


A

. .

bT

V [A : b] =


1
σ2S

. . . . . .

1
σ2 z

TS

 [σ2IP
] [ 1

σ2
S

...
1

σ2
Sz

]

=


P̂

. . . .

zTS


[
1

σ2
S

...
1

σ2
Sz

]

=

 1
σ2SS

1
σ2SSz

1
σ2 z

TSS 1
σ2 z

TSSz


=

A b

bT c


Thus, the test statistic follows a noncentral chi-squared distribution X 2

k (δ) where k = Rank(S)

and δ = 1
σ2

(
µTSµ+ 2zTSµ+ zTSz

)
for any arbitrary z.
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Fig. 8.3: Prob of error (Pe) analysis when (α−1, β−1) = (1, 20) and P = 100. (a) Pe with varying

((c, N)) when µ = 0. (b) Pe with varying ((c, N)) when µ = 10−3.

Note that, the collaborative compressive detector is given by:

α−1

β−1

N∑
i=1

yTi (ϕϕ
T )−1yi + 2

N∑
i=1

yTi (ϕϕ
T )−1µ

H1

≷
H0

λ.

Now, using the fact that yi = ϕui and rearranging the terms, we get

N∑
i=1

[
uTi P̂ ui + 2

β−1

α−1
µT P̂ ui +

(
β−1

α−1

)2

µT P̂µ

]
H1

≷
H0

τ

where P̂ = ϕT (ϕϕT )−1ϕ and τ = β−1

α−1λ+N
(

β−1

α−1

)2
µT P̂µ. Note that, the FC does not have access

to ui and the above test statistic is used only for deriving the PDF of the original test statistic.

Theorem 8.3.6. For a projection matrix P̂ = ϕT (ϕϕT )−1ϕ and ui ∼ N (µ, σ2
kIP ) under the hy-

pothesis Hk, the test statistic

Λ(y) =
N∑
i=1

[
uTi P̂ ui + 2

β−1

α−1
µT P̂ ui +

(
β−1

α−1

)2

µT P̂µ

]
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has the following distribution

Λ(y)

σ2
k

∼

 X 2
NM(δ0), under H0

X 2
NM(Nδ1) under H1

where σ2
0 = β−1, σ2

1 = α−1 + β−1 and X 2
NM(δk) denotes noncentral chi-square distribution with

NM degrees of freedom and parameters δ0 = 0 and δ1 =
||P̂ µ||22
α−1

(
1 + β−1

α−1

)
.

Proof. Let us denote the test static by Λ(y) =
N∑
i=1

Λ(yi) with

Λ(yi) =

[
uTi P̂ ui + 2

β−1

α−1
µT P̂ ui +

(
β−1

α−1

)2

µT P̂µ

]
.

Now notice that, Λ(yi)

σ2
k

is of the form uTi Aui + 2bTui + c with A = P̂
σ2
k
, bT = zT P̂

σ2
k

, z = β−1

α−1µ

and c = zT P̂ z
σ2
k

. Also note that, the projection matrix P̂ = ϕT (ϕϕT )−1ϕ is both symmetric and

idempotent with rank(P̂ ) = M . As a result, using Proposition 8.3.5 and the fact that Λ(y)

σ2
k

is

the sum of N I.I.D. chi-squared random variables Λ(yi)

σ2
k

, the result in the Theorem 8.3.6 can be

derived.

If NM is large enough, using the central limit theorem, the following approximations hold

Λ(y)

σ2
k

∼

 N (NM, 2NM), under H0

N ((NM +Nδ1), 2(NM +Nδ1) under H1

where δ1 =
||P̂ µ||22
α−1

(
1 + β−1

α−1

)
. As a result, we have

PF = P

(
Λ(y)

β−1
>

τ

β−1
|H0

)
= Q

( τ
β−1 −NM√

2NM

)



175

and

PD = P

(
Λ(y)

α−1 + β−1
>

τ

α−1 + β−1
|H1

)
= Q

(
τ

α−1+β−1 −NM −Nδ1√
2(NM +Nδ1)

)

where τ = β−1

α−1λ + N
(

β−1

α−1

)2
||P̂µ||22, λ = (α−1 + β−1)

[
NM log

(
1 + α−1

β−1

)]
+ N ||P̂ µ||22 and

δ1 =
||P̂ µ||22
α−1

(
1 + β−1

α−1

)
.

The detection performance of the system is a function of the projection operator P̂ . Next, we

provide approximations to the performance of the collaborative compressive detector using the

concept of ϵ-stable embedding of the mean µ.

Theorem 8.3.7. Suppose that
√

P
M
P̂ provides an ϵ-stable embedding of (U , {0}). Then for any

random signal s ∼ N (µ, α−1IP ) with µ ∈ U , the probability of error of the collaborative com-

pressive detector can be approximated as

PE =
1

2
Q
(√

cNτ0

)
+

1

2

(
Q
(√

cNτ1

))

where τ0 =
√

P
2

(
(1 + τ−1)

(
log (1 + τ) +

∥µ∥22
α−1P

)
− 1
)

, τ1 =
√

P+δ′1
2

(
1−

τ−1

(
P log(1+τ)+

∥µ∥22
α−1

)
P+δ′1

)
with δ′1 =

∥µ∥22
α−1 (1 + τ−1) and τ = α−1

β−1 .

Proof. By our assumption that
√

P
M
P̂ provides an ϵ-stable embedding of (U , {0}), we know that

√
1− ϵ ∥µ∥2 ≤

√
P

M
∥P̂µ∥2 ≤

√
1 + ϵ ∥µ∥2. (8.10)

In other words, for large values of NM the following approximation holds: ∥P̂µ∥22 ≈ M
P
∥µ∥22 =

c∥µ∥22. The proof follows from the fact that Q(x) = 1−Q(−x) and by plugging in

PF = Q
(√

cNτ0

)
(8.11)
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and

PD = Q
(
−
√
cNτ1

)
(8.12)

in the equation PE =
1

2
PF +

1

2
(1− PD), the results stated in the theorem can be derived.

Note that, (−τ1) ≤ τ0 and, therefore, PD ≥ PF . Similar to the deterministic signal case, ifN ≥

c−1 the loss due to compression with a single node can be recovered in collaborative compressive

detection for the random signal case as well. For a fixed M , as the number of collaborating nodes

approaches infinity, i.e., N →∞, the probability of error vanishes. We would like to point out that

by plugging in µ = 0 in the above expressions, results for the zero mean signal case can be derived

(which are consistent with [118, 119]).

To gain insights into Theorem 8.3.7, we present some illustrative examples that corroborate

our results. In Figure 8.3(a) we plot the probability of error PE as a function of the number of

nodes N and compression ratio c. We assume that the signal of interest is s ∼ N (0, IP ) and

noise vi ∼ N (0, 20IP ), with the original length of the signal being P = 100. It can be seen from

the figure that PE is a monotonically decreasing function of (c,N). In Figure 8.3(b), we plot the

probability of error PE as a function of (c,N) when the signal of interest is s ∼ N (µ, IP ) with

∥µ∥22 = 10−3. Similar to Figure 8.3(a), PE decreases monotonically with (c,N), however, with a

much faster rate. In order to formally illustrate this behavior of PE , we also establish the following

corollary of Theorem 8.3.7.

Corollary 8.3.8. Suppose that
√

P
M
P̂ provides an ϵ-stable embedding of (U , {0}). Then for any

random signal s ∼ N (µ, α−1IP ) with µ ∈ U , the error probability PE of the collaborative com-

pressive detector satisfies

PE ≤
1

4
exp

(
−cN

2
τ 20

)
+

1

4
exp

(
−cN

2
τ 21

)
.

Proof. To prove the corollary, we first show that both τ0 and τ1 as given in Theorem 8.3.7 are

positive. Let us denote by τk(µ = 0) the expression when µ = 0 is plugged in the expression for

τk for k ∈ {0, 1}. Then, it can be shown that τk ≥ τk(µ = 0) for k ∈ {0, 1}. Now, a sufficient
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condition for τk > 0 is τk(µ = 0) > 0 for k ∈ {0, 1}. The condition for τ0(µ = 0) > 0 and

τ1(µ = 0) > 0 to be true can be written as

1

1 + β−1

α−1

< log

(
1 +

α−1

β−1

)
<
α−1

β−1
.

The above condition can be shown to be true by applying the logarithm inequality τ
1+τ

< log(1 +

τ) < τ with τ = α−1

β−1 . Now using the Chernoff bound (i.e., Q(x) ≤ 1
2
exp(−x2

2
) for x > 0), it can

be shown that

PE ≤
1

4
exp

(
−cN

2
τ 20

)
+

1

4
exp

(
−cN

2
τ 21

)
.

The above expression suggests that PE vanishes exponentially fast as we increase either the com-

pression ratio c or the number of collaborating nodes N .

Next, we consider the problem where the network operates in the presence of an eavesdropper

who wants to discover the state of the nature being monitored by the system. The FC’s goal

is to implement the appropriate countermeasures to keep the data regarding the presence of the

phenomenon secret from the eavesdropper.

8.4 Collaborative Compressive Detection in the Presence

of an Eavesdropper

In a collaborative compressive detection framework, the FC receives compressed observation vec-

tors, y = [y1, · · · , yN ], from the nodes and makes the global decision about the presence of the

random signal vector3 s ∼ N (µ, α−1IP ) with µ ̸= 0. The transmissions of the nodes, however,

may be observed by an eavesdropper who also wants to discover the state of the phenomenon (see

Figure 8.4). To keep the data regarding the presence of the phenomenon secret from the eaves-

3In rest of the chapter, we will consider only the random signal detection case. Deterministic signal can be seen as
a special case of random signal s with variance α−1 = 0 and results for the deterministic signal case can be obtained
by plugging in α−1 = 0 in corresponding expressions for the random signal case.
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Fig. 8.4: Collaborative Compressive Detection Network in the Presence of an Eavesdropper

dropper, we propose to use cooperating trustworthy nodes that assist the FC by injecting corrupted

data to mislead the eavesdroppers to improve the secrecy performance of the system.

8.4.1 Artificial Noise Injection Model

It is assumed that B out of N nodes (or α fraction of the nodes) inject corrupted data according to

the model given next. Nodes tamper with their data yi and send ỹi in the following manner:

Under H0:

ỹi =


ϕ(vi +Wi) with probability P 0

1

ϕ(vi −Wi) with probability P 0
2

ϕvi with probability (1− P 0
1 − P 0

2 )

Under H1:

ỹi =


ϕ(s+ vi +Wi) with probability P 1

1

ϕ(s+ vi −Wi) with probability P 1
2

ϕ(s+ vi) with probability (1− P 1
1 − P 1

2 )

where the signal s is assumed to be distributed as s ∼ N (µ, α−1IP ) and Wi is the corrupted

data injected in the system which is distributed as AWGN Wi ∼ N (Di, γ
−1IP ) with Di = κµ.
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The parameter κ > 0 represents the corrupted data strength, which is zero for non corrupted

data injecting nodes. Also note that, the values of (P 0
1 , P

0
2 ) and (P 1

1 , P
1
2 ) are system dependent.

For example, under the assumption that the noise injecting nodes have perfect knowledge of the

hypothesis, we have P 0
1 = 1 and P 1

2 = 1. In other scenarios, values of (P 0
1 , P

0
2 ) and (P 1

1 , P
1
2 )

are constrained by the local detection capability of the nodes. However, it is reasonable to assume

that (P 0
1 > P 0

2 ) and (P 1
1 < P 1

2 ) because under hypothesis H0 the tampered value should be high

and under H1 the tampered value should be low to degrade the performance at the eavesdropper.

We assume that the observation model and corrupted data parameters (i.e., κ and γ−1) are known

to both the FC and the eavesdropper. The only information unavailable at the eavesdropper is the

identity of the noise injecting nodes (Byzantines) and considers each node i to be Byzantine with

a certain probability α.

8.4.2 Binary Hypothesis Testing in the Presence of an Eavesdropper

The FC can distinguish between yi and ỹi. Notice that, ỹi is distributed under the hypothesis H0

as a multivariate Gaussian mixture N (P 0
k , µ̃0

i, Σ̃0
i
) which comes from N (ϕDi, (γ

−1 + β−1)ϕϕT )

with probability P 0
1 , fromN (−ϕDi, (γ

−1 + β−1)ϕϕT ) with probability P 0
2 and fromN (0, (γ−1 +

β−1)ϕϕT ) with probability (1 − P 0
1 − P 0

2 ). Similarly, under the hypothesis H1 it is distributed as

multivariate Gaussian mixture N (P 1
k , µ̃1

i, Σ̃1
i
) which comes from N (ϕ(µ + Di), (α

−1 + γ−1 +

β−1)ϕϕT ) with probability P 1
1 , from N (ϕ(µ −Di), (α

−1 + γ−1 + β−1)ϕϕT ) with probability P 1
2

and fromN (ϕµ, (α−1+γ−1+β−1)ϕϕT ) with probability (1−P 1
1 −P 1

2 ). The FC makes the global

decision about the phenomenon by considering the likelihood ratio test (LRT) which is given by

B∏
i=1

f1(ỹi)

f0(ỹi)

N∏
i=B+1

f1(yi)

f0(yi)

H1

≷
H0

P0

P1

(8.13)

where B/N = α. The eavesdropper is assumed to be unaware of the identity of the noise injecting

Byzantines and considers each node i to be Byzantine with a certain probability α. Thus, the

distribution of the data ŷi at the eavesdropper under hypothesis Hj can be approximated as IID
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multivariate Gaussian mixture with the same Gaussian parametersN (µ̃j
i, Σ̃j

i
) as above, however,

with rescaled mixing probabilities (αP j
1 , αP

j
2 , 1−αP

j
1−αP

j
2 ). The eavesdropper makes the global

decision about the phenomenon by considering the likelihood ratio test (LRT) which is given by

N∏
i=1

f1(ŷi)

f0(ŷi)

H1

≷
H0

P0

P1

. (8.14)

Analyzing the performance of the likelihood ratio detector in (8.13) and (8.14) in a closed form

is difficult in general. Thus, we use the modified deflection coefficient [81] in lieu of the probability

of error of the system. Deflection coefficient reflects the output signal to noise ratio and widely

used as a surrogate for system performance while optimizing the performance of detection systems.

As stated earlier, the modified deflection coefficient is defined as

D(yi) = (µi
1 − µi

0)
T (Σi

1)
−1(µi

1 − µi
0)

where µi
j and Σi

j are the mean and the covariance matrix of yi under the hypothesisHj , respectively.

Using these notations, the modified deflection coefficient at the FC can be written as

D(FC) = BD(ỹi) + (N −B)D(yi).

Dividing both sides of the above equation by N , we get

DFC = αD(ỹi) + (1− α)D(yi)

where DFC = D(FC)
N

and will be used as the performance metric as a surrogate for the probability

of error. Similarly, the modified deflection coefficient at the eavesdropper can be written as

DEV =
D(EV )

N
= D(ŷi).
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Fig. 8.5: Modified Deflection Coefficient analysis. (a) DFC with varying c and κ. (b) DEV with

varying c and κ.

8.5 System Design with Physical Layer Secrecy Guarantees

Notice that, both DFC and DEV are functions of the compression ratio c and corrupted data in-

jection parameters (α,Wi) which are under the control of the FC. This motivates us to obtain the

optimal values of system parameters under a physical layer secrecy constraint. The problem can

be formally stated as:

maximize
c,α,Wi

αD(ỹi) + (1− α)D(yi)

subject to D(ŷi) ≤ τ

(8.15)

where c = M/P is the compression ratio. We refer to D(ŷi) ≤ τ , where τ ≥ 0, as the physical

layer secrecy constraint which reflects the secrecy performance of the system. The case where

τ = 0, or equivalently D(ŷi) = 0, is referred to as the perfect secrecy constraint. In the wiretap

channel literature, it is typical to consider the maximum degree of information achieved by the

main user (FC), while the information of the eavesdropper is exactly zero. This is commonly

referred to as the perfect secrecy regime [120]. Next, we derive closed form expressions of the

modified deflection coefficients at both the FC and the eavesdropper.
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Fig. 8.6: Modified Deflection Coefficient analysis. (a) DFC with varying α and κ. (b) DEV with

varying α and κ.

8.5.1 Performance Analysis of Collaborative Compressive Detection with

an Eavesdropper

A Closed Form Expression of the Modified Deflection Coefficient at the FC

As stated earlier, the modified deflection coefficient at the FC is

DFC = αD(ỹi) + (1− α)D(yi).

Using (8.2) and (8.3), it can be shown that

D(yi) =
∥P̂ µ∥22

α−1 + β−1
,

where P̂ = ϕT (ϕϕT )ϕ.

Next, to derive D(ỹi), observe that ỹi is distributed as a multivariate Gaussian mixture with

µ̃i
0 = (P 0

1 − P 0
2 )ϕDi

µ̃i
1 = (P 1

1 − P 1
2 )ϕDi + ϕµ

Σ̃i
1 = σ2ϕϕT +

3∑
j=1

P 1
j (µ̃

i
1(j)− µ̃i

1)(µ̃
i
1(j)− µ̃i

1)
T
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where µ̃i
1(1) = ϕ(µ + Di), µ̃i

1(2) = ϕ(µ − Di), µ̃i
1(3) = ϕµ, P 1

3 = 1 − P 1
1 − P 1

2 and

σ2 = (α−1 + β−1 + γ−1). After some simplification, it can be shown that

Σ̃i
1 = σ2ϕϕT + Pt[ϕDiD

T
i ϕ

T ]

where Pt = P 1
1 + P 1

2 − (P 1
1 − P 1

2 )
2. Also, notice that Σ̃i

1 is of the form A + bbT . Now, using the

Sherman-Morrison formula [91], its inverse can be obtained to be

(Σ̃i
1)

−1 =
(ϕϕT )−1

σ2
− Pt(ϕϕ

T )−1ϕDiD
T
i ϕ

T (ϕϕT )−1

σ4 + σ2PtDT
i ϕ

T (ϕϕT )−1ϕDi

(8.16)

with σ2 = (α−1 + β−1 + γ−1).

Also,

(µ̃i
1 − µ̃i

0) = ϕµ− PbϕDi (8.17)

where Pb = (P 0
1 − P 0

2 ) + (P 1
2 − P 1

1 ). Using (8.16), (8.17) and the fact that Di = κµ where κ is

referred to as the noise strength, the modified deflection coefficient D(ỹi) can be derived to be4

D(ỹi) = (1− Pbκ)
2∥P̂ µ∥22

σ2
− Ptκ

2(1− Pbκ)
2∥P̂ µ∥42
σ2rb

(8.18)

where rb = σ2 + Ptκ
2∥P̂µ∥22 and σ2 = (α−1 + β−1 + γ−1).

Proposition 8.5.1. Suppose that
√

P
M
P̂ provides an ϵ-stable embedding of (U , {0}). Then the

modified deflection coefficient at the FC for any µ ∈ U can be approximated as

DFC ≈ α
(1− Pbκ)

2

κ2Pt + c−1 σ2

∥µ∥22

+ (1− α)c ∥µ∥
2
2

σ2 − γ−1
(8.19)

where

Pb = (P 0
1 − P 0

2 ) + (P 1
2 − P 1

1 ), Pt = P 1
1 + P 1

2 − (P 1
1 − P 1

2 )
2 and σ2 = (α−1 + β−1 + γ−1).

Proof. Using the fact that
√

P
M
P̂ provides an ϵ-stable embedding of (U, {0}), for any µ ∈ U ,

4For µ = 0, DFC ≈ α P 2
b

Pt+
σ2

∥P̂d∥

where Di = d,∀i.
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D(yi) and D(ỹi) can be approximated as

D(yi) =
M

P

∥µ∥22
σ2 − γ−1

D(ỹi) =
M

P

∥µ∥22
σ2

(1− Pbκ)
2

(
1− M

P

∥µ∥22
rb

κ2Pt

)

where rb = σ2 + Ptκ
2∥P̂ µ∥22 and σ2 = (α−1 + β−1 + γ−1). Plugging in the above values in

DFC = αD(ỹi) + (1− α)D(yi) yields the desired result.

A Closed Form Expression of the Modified Deflection Coefficients at the Eavesdropper

As stated earlier, the modified deflection coefficient of the eavesdropper is

DEV = D(ŷi).

Next, to derive D(ŷi), observe that ŷi is distributed as a multivariate Gaussian mixture with

µ̂i
0 = α(P 0

1 − P 0
2 )ϕDi

µ̂i
1 = α(P 1

1 − P 1
2 )ϕDi + ϕµ

Σ̂i
1 = σ2ϕϕT +

3∑
j=1

p1j(µ̂
i
1(j)− µ̂i

1)(µ̂
i
1(j)− µ̂i

1)
T

with µ̂i
1(1) = ϕ(µ + Di), µ̂i

1(2) = ϕ(µ − Di), µ̂i
1(3) = ϕµ, p11 = αP 1

1 , p12 = αP 1
2 , p13 =

1− α(P 1
1 − P 1

2 ) and σ2 = (α−1 + γ−1 + β−1). Using these values, we state our result in the next

proposition.5

Proposition 8.5.2. Suppose that
√

P
M
P̂ provides an ϵ-stable embedding of (U , {0}). Then, the

modified deflection coefficient at the eavesdropper for any µ ∈ U can be approximated as

5For µ = 0, DEV ≈ (αPb)
2

αPE
t + σ2

∥P̂d∥

where Di = d,∀i.
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DEV ≈
(1− αPbκ)

2

ακ2PE
t + c−1 σ2

∥µ∥22

(8.20)

where

Pb = (P 0
1 − P 0

2 ) + (P 1
2 − P 1

1 ), P
E
t = P 1

1 + P 1
2 − α(P 1

1 − P 1
2 )

2 and σ2 = (α−1 + β−1 + γ−1).

Proof. The proof is similar to that of Proposition 8.5.1 and is, therefore, omitted.

In general, there is a trade-off between the detection performance and the secrecy performance

of the system. To gain insights into this trade-off, in Figure 8.5 we plot the modified deflection

coefficient, both at the FC and at the eavesdropper, as a function of compression ratio (c) and

noise strength (κ) when α = 0.3, P 0
1 = P 1

2 = 0.8, P 0
2 = P 1

1 = 0.1 and ∥µ∥22
σ2 = 3. Next,

in Figure 8.6 we plot the modified deflection coefficient, both at the FC and at the eavesdropper,

as a function of the fraction of corrupted data injecting nodes (α) and noise strength (κ) when

P 0
1 = P 1

2 = 0.8, P 0
2 = P 1

1 = 0.1 and M
P

∥µ∥22
σ2 = 3. It can be seen from Figure 8.5 and Figure 8.6

that DFC and DEV do not exhibit nice properties (monotonicity or convexity) with respect to the

system parameters and, therefore, it is not an easy task to design the system parameters under an

arbitrary physical layer secrecy constraint. Also notice that, a specific case where the eavesdropper

is completely blind deserves particular attention. This is referred to as the perfect secrecy regime,

i.e., DEV = 0. In the next subsection, we explore the problem of system design in a holistic

manner in the perfect secrecy regime. More specifically, we are interested in analyzing the behavior

of the modified deflection coefficient, both at the FC and at the eavesdropper, as a function of

compression ratio (c =M/P ) and corrupted data injection parameters (α,Wi).

8.5.2 Optimal System Design Under Perfect Secrecy Constraint

The goal of the designer is to maximize the detection performance DFC , while ensuring perfect

secrecy at the eavesdropper, i.e., τ = 0. The system design problem (8.15) under perfect secrecy

constraint reduces to:
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maximize
c,α,Wi

αD(ỹi) + (1− α)D(yi)

subject to D(ŷi) = 0

(8.21)

where c is the compression ratio and (α, Wi) are the corrupted data injection parameters. This re-

duction of the search space, which arises as a natural consequence of the perfect secrecy constraint,

has the additional benefit of simplifying the mathematical analysis. Next, we explore the answer

to the question: Does compression help in improving the secrecy performance of the system?

Does Compression Help?

We first consider the case where αPbκ ̸= 1. In this regime, for fixed values of α, Pb and κ, the

modified deflection coefficient, both at the FC and the eavesdropper, is a monotonically increasing

function of the compression ratio. In other words, dDFC

dc
> 0 and dDEV

dc
> 0. This suggests that

compression improves the secrecy performance at the expense of detection performance. More

specifically, the FC would decrease the compression ratio until the physical layer secrecy constraint

is satisfied. As a consequence, it will result in performance loss at the FC due to compression. In

other words, there is a trade-off between the detection performance and the secrecy performance

of the system. Observe that, DEV = 0 if and only if αPbκ = 1 (ignoring the extreme conditions

such as c = 0 or κ = ∞) and, in this regime, DFC is a monotonically increasing function of

the compression ratio c and DEV is independent of the compression ratio c. These results are

summarized in the the following proposition.

Proposition 8.5.3. In the perfect secrecy regime (i.e., αPbκ = 1), DFC is a monotonically in-

creasing function of the compression ratio c and DEV is independent of the compression ratio c.

When αPbκ ̸= 1, the modified deflection coefficient, both at the FC and the eavesdropper, is a

monotonically increasing function of the compression ratio.

As mentioned above, in the perfect secrecy regime DEV is independent of the compression

ratio c and the network designer can fix c = cmax, where the value of cmax may be dependent
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Fig. 8.7: Modified Deflection Coefficient as a function of α and compression ratio c = M/P for
SNR = 5dB in perfect secrecy regime.

on the application of interest. The system design problem under perfect secrecy constraint can be

reformulated as

argmax
α,Wi

DFC(cmax, κ = 1/(Pbα)). (8.22)

Next, we analyze the behavior of the DFC(cmax, κ = 1/(Pbα)) as a function of corrupted data

injection parameters (α,Wi).

Optimal Artificial Noise Injection Parameters

Proposition 8.5.4. In the high signal to noise ratio regime (defined as ∥µ∥22
σ2 >

P 2
b

Pt
where σ2 =

(α−1 + γ−1 + β−1)), the modified deflection coefficient at the FC, DFC , is a monotonically de-

creasing function of the fraction of data falsifying nodes (0 < α ≤ 1) under the perfect secrecy

constraint.

Proof. Deflection coefficient at the FC under the perfect secrecy constraint can be expressed as

DFC(cmax, κ = 1/(Pbα)) =
α(1− 1

α
)2

Pt

α2P 2
b
+ 1

D

+ (1− α)D + (1− α)D1

with D = cmax
∥µ∥22
σ2 and D1 =

cmax∥µ∥22γ−1

σ2(α−1 + β−1)
. Now, deriving the derivative of DFC with respect
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to α results in
dDFC

dα
=
PtP

2
bD

2(1− 4α+ α2)−DP 4
b α

2 − P 2
t D

3

(PtD + α2P 2
b )

2
−D1.

Next, we show that dDFC

dα
< 0.

First, let us define F (α) = x + α2 1
x
− (1 + α2). It is easy to show that F (α) is a decreasing

function of α if x > 1. This also implies that F (α) > 0 if and only if F (α = 1) > 0⇔ (x+ 1
x
) > 2.

Note that, (x + 1
x
) > 2, which follows from the fact that arithmetic mean is greater than the

geometric mean. Having shown that F (α) > 0, we return back to showing that dDFC

dα
< 0. We

start with the inequality

x+ α2 1

x
− (1 + α2) > 0

⇔ x+ α2 1

x
> (1 + α2)

⇒ 4α

(1 + α2)
+

x

(1 + α2)
+

α2

(1 + α2)

1

x
> 1

Now, if we plug in x = D Pt

P 2
B

in the above inequality and rearrange the terms we get

PtP
2
bD

2(1− 4α + α2)−DP 4
b α

2 − P 2
t D

3

(PtD + α2P 2
b )

2
< 0

which is true if x = D Pt

P 2
B
> 1.

Notice that, Proposition 8.5.3 suggests that to maximize the modified deflection coefficient

DFC under the perfect secrecy constraint (8.21), the network designer should choose the value

of α as low as possible under the constraint that α > 0 and accordingly increase κ to satisfy

αPbκ = 1. In practice, αmin may be dependent on the application of interest.

Next, to gain insights into Propositions 8.5.3 and 8.5.4, we present some illustrative examples

that corroborate our results. In Figure 8.7, we plot DFC as a function of fraction of noise injection

nodes α and compression ratio c in the perfect secrecy regime when P 0
1 = P 1

2 = 0.8, P 0
2 = P 1

1 =
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Fig. 8.8: Modified Deflection Coefficient as a function of γ−1 in perfect secrecy regime.

0.1 and ∥µ∥22
σ2 = 5dB. It can be seen from the figure thatDFC is a monotonically increasing function

of c and a monotonically decreasing function of α.

Next, we analyze the behavior of DFC as a function of corrupted data variance γ−1. This

analysis will help us in determining the optimal corrupted data injection parameters.

Proposition 8.5.5. In the high signal to noise ratio regime (defined as ∥µ∥22
σ2 >

P 2
b

Pt
where σ2 =

(α−1 + γ−1 + β−1)) with perfect secrecy constraint (i.e., αPbκ = 1), the optimal corrupted data

is a deterministic signal with value µ
αminPb

, i.e., fWi
(wi) = δ(wi − µ

αminPb
).

Proof. The proof follows from Proposition 8.5.4 and the fact that DFC is a monotonically decreas-

ing function of the variance γ−1 of the corrupted data, i.e., dDFC

dγ−1 < 0.

In Figure 8.8, we plot the modified deflection coefficient at the FC as a function of the variance

of the corrupted data when P 0
1 = P 1

2 = 0.8, P 0
2 = P 1

1 = 0.1 and (c, α) = (0.2, 0.3). We assume

that the signal of interest is s ∼ N (µ, IP ) with ∥µ∥22 = 5 and noise vi ∼ N (0, 10IP ). It can be

seen that DFC is a monotonically decreasing function of the corrupted data variance γ−1. This

observation implies that the optimal corrupted data is a deterministic signal. Using these results,

the solution of the optimization problem (8.21) is summarized in the following theorem.
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Theorem 8.5.6. To maximize the modified deflection coefficient at the FC under the perfect secrecy

constraint, the network designer should choose c = cmax, α = αmin and deterministic corrupted

data with value µ
αminPb

.

Notice that, Theorem 8.5.6 suggests that to maximize the modified deflection coefficient DFC

under the perfect secrecy constraint (8.21), the network designer should choose the value of α as

low as possible under the constraint that α > 0 and accordingly increase κ to satisfy αPbκ = 1.

Also, the optimal corrupted data is a deterministic signal with value µ
αminPb

, i.e., fWi
(wi) = δ(wi−

µ
αminPb

).

8.6 Measurement Matrix Design for Compressive Detec-

tion with Secrecy Guarantees

The random measurement scheme employed in CCD provides universality for a wide variety of

signal classes, but it fails to exploit the signal structure that may be known a priori. To improve

performance, optimization of the measurement scheme can be performed by exploiting the signal

structure. In this section, we investigate the problem from a design perspective and consider the

problem of measurement matrix design with secrecy guarantees in an optimization framework We

show that the performance of the CCD framework can be significantly improved by using opti-

mized measurement matrices (which exploit the underlying signal structure) along with corrupted

data injection based techniques. More specifically, we design optimal measurement matrices which

maximize the detection performance of the network while guaranteeing a certain level of secrecy

considering three different scenarios: 1) signal of interest s is known, 2) s lies in low dimensional

subspace, and 3) s is sparse.
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8.6.1 Problem Formulation

We use the deflection coefficient as the detection performance metric in lieu of the probability of

error of the system. Deflection coefficient reflects the output signal to noise ratio and is widely

used in optimizing the performance of detection systems. The deflection coefficient at the ith node

is defined as

D(yi) = (µi
1 − µi

0)
T (Σi

0)
−1(µi

1 − µi
0)

where µi
j and Σi

j are the mean and the covariance matrix of yi under the hypothesisHj , respectively.

Using these notations, the deflection coefficient at the FC can be written as D(FC) = BD(ỹi) +

(N − B)D(yi). Dividing both sides of the above equation by N , we get DFC = αD(ỹi) + (1 −

α)D(yi) where DFC = D(FC)/N and will be used as the performance metric. Similarly, the

deflection coefficient at the eavesdropper can be written as DEV = D(EV )/N = D(ŷi). Notice

that both DFC and DEV are functions of the measurement matrix ϕ and noise injection parameters

(α, γ) which are under the control of the FC. This motivates us to design the optimal measurement

matrix for fixed noise injection parameters (α, γ) under a physical layer secrecy constraint. The

problem can be formally stated as:

maximize
ϕ

αD(ỹi) + (1− α)D(yi)

subject to D(ŷi) ≤ τ

(8.23)

where τ ≥ 0, is referred to as the physical layer secrecy constraint which reflects the security

performance of the system. Earlier in the chapter, we have derived the expressions for DFC and

DEV . Using those expressions (8.23) reduces to:

maximize
ϕ

α(1− Pbγ)
2

γ2Pt +
σ2

∥P̂ s∥22

+ (1− α)∥P̂ s∥
2
2

σ2

subject to
(1− αPbγ)

2

γ2PE
t + σ2

∥P̂ s∥22

≤ τ

(8.24)
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where P̂ = ϕT (ϕϕT )−1ϕ, Pb = (P 0
1 − P 0

2 ) + (P 1
2 − P 1

1 )

Pt = P 0
1 + P 0

2 − (P 0
1 − P 0

2 )
2 and

PE
t = α(P 0

1 + P 0
2 − α(P 0

1 − P 0
2 )

2) matrix. Next, we solve (8.24) under various assumptions on

the signal structure (e.g., known, low dimensional or sparse).

8.6.2 Optimal Measurement Matrix Design with Physical Layer Secrecy

Guarantees

First, we explore some properties of the deflection coefficient at the FC, DFC , and at the eaves-

dropper, DEV , which will be used to simplify the measurement matrix design problem.

Proposition 8.6.1. Deflection coefficient both at the FC and the Eve is a monotonically increasing

function of DH =
∥P̂ s∥22
σ2 .

Proof. The proof follows from the fact that both dDFC

dDH
> 0 and dDEV

dDH
> 0.

The above observation leads to the following equivalent optimal measurement matrix design

problem for compressive detection:

maximize
ϕ

δ = ∥P̂ s∥22

subject to ∥P̂ s∥22 ≤
σ2

(1−αPbγ)2

τ
− γ2PE

t

(8.25)

for any arbitrary signal s. Note that, for the random measurement matrix δr = ∥P̂ s∥22 = M
N
∥s∥22 [25].

The factor M/N can be seen as the performance loss due to compression as the random measure-

ment matrix fails to exploit the signal structure that may be known a priori. To improve perfor-

mance, we consider the optimization of the measurement matrix by exploiting the signal structure

while guaranteeing a certain level of secrecy. We show that any arbitrary secrecy constraint can be

guaranteed by properly choosing the measurement matrix.
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Known Signal Detection

First, we consider the case where s is known.

Lemma 8.6.2. When s is known, the optimal value of the objective function of (8.25), is given by

δ∗ = min

(
∥s∥22, σ2

(1−αPbγ)
2

τ
−γ2PE

t

)
.

Proof. The proof follows from the fact that P̂ is an orthogonal projection operator, thus, ∥P̂ s∥22 ≤

∥s∥22.

Let us denote the singular value decomposition of ϕ = U [πM , 0]V
T where U is an M ×M

orthonormal matrix, [πM , 0] is an M ×N diagonal matrix and V is an N ×N orthonormal matrix.

Now, the optimal ϕ which achieves δ∗ is characterized in the following lemma.

Lemma 8.6.3. When s is known, the optimal ϕ which achieves δ∗ in (8.25) is given by ϕ∗ =

U [πM , 0](V
∗R)T where U and diagonal πM > 0 are totally arbitrary,

R =


cos θ 0 sin θ

0 I 0

− sin θ 0 cos θ

 ,

θ is the parameter which controls the level of secrecy such that θ = 0 if ∥s∥22 ≤ σ2

(1−αPbγ)
2

τ
−γ2PE

t

, and,

θ = cos−1

√
σ2/∥s∥22

(1−αPbγ)
2

τ
−γ2PE

t

, otherwise. V ∗ = [v∗1, · · · , v∗N ] is any orthonormal matrix satisfying

v∗i ⊥ s, ∀i > M .

Proof. To prove the lemma, notice that

∥P̂ s∥2 = sTV

 IM 0

0 0

V T s =
M∑
i=1

s̃2i ≤ ∥s∥22

where s̃ = V T s. The upper bound or equality in the above equation can be achieved if and only

if s̃i = 0, ∀i > M . The corresponding optimal measurement matrix for this case is characterized

by ϕ∗ = U [πM , 0]V
T where the orthonormal U and diagonal πM > 0 are totally arbitrary, while
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V = [v1, · · · , vN ], as seen above, has to be an orthonormal matrix satisfying vi ⊥ s, ∀i > M .

Now, the matrix (V R) is a orthonormal matrix for any orthonormal V and observe that the optimal

V ∗ as given in the lemma is also orthonormal. Thus, for optimal ϕ∗, we have

∥P̂ s∥2 = sTV ∗R

 IM 0

0 0

 (V ∗R)T s = cos2 θ∥s∥22.

Next, using the definition of θ, the results in the lemma can be derived.

If we define Proju(w) = uTw
uTu

u and W = [w1, · · · , wN ] with w1 = s and wk as any linearly

independent set of vectors, one possible solution for V ∗ in a closed form is: V ∗ = [v1, · · · , vN ],

where vk = uk

∥uk∥2
and uk = wk −

∑k−1
j=1 Projuj

(wk). Note that, without physical layer secrecy

constraint (or when θ = 0) the optimal value of the objective function is ∥s∥22. Thus, there is no

performance loss due to compression. With physical layer secrecy constraint, θ serves as a tuning

parameter to guarantee a certain level of secrecy. This approach provides the optimal measurement

matrix with a secrecy guarantee for a known s. However, in certain practical scenarios we do not

have an exact knowledge of s. Next, we consider the cases where s is not completely known.

Low Dimensional Signal Detection

In this subsection, we consider the case where s is not completely known but is known to lie in a

low dimensional subspace and design ϕ so that the detection performance at the FC is maximized

while ensuring a certain level of secrecy at the eavesdropper. We assume that s resides in a K-

dimensional subspace where K < N . That is to say, s can be expressed as s = Dβ where D is

an N × K matrix, whose columns are orthonormal, and β is the K × 1 signal vector. Without

loss of generality, we assume that ∥β∥22 = 1. Next, we look at the following two cases: 1) D can

be designed, 2) D is fixed and known. For both the cases, we assume that β is deterministic but

unknown and find ϕ which maximizes the worst case detection performance. Formally, for the

case where D is a design parameter, the problem can be stated as
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max
ϕM×N

max
DN×K

min
βK×1

δ = ∥P̂Dβ∥22

subject to ∥β∥22 = 1, ∥P̂Dβ∥22 ≤ ∆

(8.26)

where ∆ = σ2

(1−αPbγ)
2

τ
−γ2PE

t

.

We state the Courant-Fischer theorem which will be used to solve the above optimization prob-

lem.

Theorem 8.6.4. (Courant-Fischer [38]) Let A be a symmetric matrix with eigenvalues λ1 ≥ · · · ≥

λN and S denote the any j-dimensional linear subspace of CN . Then,

max
S: dim(S)=j

min
x∈S

xTAx

xTx
= λj.

Lemma 8.6.5. When s lies in a low dimensional signal subspace, the optimal value of the objective

function of (8.26) is given by δ∗ = min (∥β∥22,∆) if K ≤M , and δ∗ = 0, otherwise.

Proof. Using Courant-Fischer theorem, we can show that the problem (8.26) without a physical

layer secrecy constraint is equivalent to max
ϕM×N

λk(P̂ ). Now, the proof follows by observing that P̂

is the orthogonal projection operator and its eigenvalues are given by λi = 1 for i = 1 to M and

λi = 0 for i =M + 1 to N .

Next, we assume that K ≤ M and characterize the optimal measurement matrix ϕ∗ and the

optimal subspace D∗.

Lemma 8.6.6. When s = Dβ and K ≤ M , the optimal (ϕ∗, D∗) which achieves δ∗ should satisfy

the following condition: for any arbitrary ϕ = U [πM , 0]V
T where V = [v1, · · · , vN ], the optimal

D∗ = cos θD with D = [v1, · · · , vK ].

Proof. Note that for optimal (ϕ∗, D∗), we have
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∥P̂ s∥2 = βT (D∗)TV ∗

 IM 0

0 0

 ((D∗)TV ∗)Tβ

= βT

[
cos θIK 0

] IM 0

0 0


 cos θIK

0

 β
= (cos θ)2

min(K,M)∑
i=1

(βi)
2

Observe min
β

min(K,M)∑
i=1

(βi)
2 = ∥β∥22 if min(K,M) = K and 0, otherwise. Using the definition

of θ, δ∗ can be achieved.

The above lemma can be interpreted as follows: for any fixed ϕ, one can chooseD accordingly,

so that the upper bound δ∗ can be achieved. Next, we look at the case where D is fixed and we

only optimize measurement matrix ϕ. Observe that,

max
ϕ

min
β
∥P̂Dβ∥22 ≤ max

ϕ
max
D

min
β
∥P̂Dβ∥22 = ∥β∥22.

For a fixedD, the optimal value δ∗ of the problem (8.26) serves as an upper bound. To simplify the

problem, we introduce an (N × N) matrix P to guarantee secrecy in the system. In other words,

yi = ϕPui where P is determined to guarantee physical layer secrecy. Next, we find ϕ for which

this upper bound is achievable for a fixed D and P to secrecy.

Lemma 8.6.7. For the low dimensional signal case yi = ϕPswith s = Dβ whereD = [d1, · · · , dK ]

is orthonormal, the optimal measurement matrix (ϕ∗, P ∗), is given by P ∗ = cos θIN×N and

ϕ∗ = U [πM , 0](V
∗)T where the orthonormal U and diagonal πM > 0 are totally arbitrary, while

V ∗ = [v1, · · · , vN ] is such that vi = di for i = 1 to K and vi for i = K + 1 to N are such that V

forms an orthonormal basis.

Proof. The proof is similar to Lemma 8.6.6, thus, omitted.



197

For both the cases, where D can be designed and where D is fixed and known, without secrecy

constraint the optimal value of the objective function is ∥s∥22. Thus, there is no performance loss

due to compression. With secrecy constraint, θ serves as a tuning parameter to guarantee a certain

level of secrecy.

Sparse Signal Detection

In this section, we assume that s is K-sparse in the standard canonical basis and ∥s∥22 = 1. Also,

the exact number of the nonzero entries in s, their locations, and their values are assumed to be

unknown. We design ϕ which maximizes the worst case detection performance by employing a

lexicographic optimization approach6. Formally, the problem is

max
ϕM×N

min
s
∥P̂ s∥22

subject to ∥s∥22 = 1, ∥s∥0 = K,

∥P̂ s∥22 ≤ ∆, ϕ ∈ AK−1

(8.27)

where AK−1 is the set of solutions to the above optimization problem for sparsity level K − 1 and

∆ is defined in (8.26).

Lemma 8.6.8. There is no performance loss while solving the problem (8.27) if we restrict our

solution space to be matrices on the Stiefel manifold St(M,N), where

St(M,N) := {ϕ ∈ RM×N : ϕϕT = I}.

Proof. The proof follows from the observation that πM = IM for frames ϕ = U [πM , 0]V
T in

Stiefel manifold and the value of ∥P̂ s∥22 is independent of πM and U .

Next, we limit our focus on Stiefel manifolds and establish an upper bound on the value of

the objective function in (8.27) for different sparsity levels. Later we find measurement matrices

which can achieve this upper bound.
6We first find a set of solutions that are optimal for a k1-sparse signal. Then, within this set, we find a subset of

solutions that are also optimal for (k1 + 1)-sparse signals. This approach is known as a lexicographic optimization.
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Lemma 8.6.9. For the sparsity levelK = 1, the optimal value of the objective function of (8.27) is

min
(
M
N
,∆
)
. For the sparsity level K ≥ 2, an upper bound on the value of the objective function

is given by min
(
M
N
(1− µ),∆

)
, where µ =

√
N−M

M(N−1)
.

Proof. The proof is similar to Theorem 1 and Theorem 3 as given in [124], thus, omitted.

Lemma 8.6.10. The optimal measurement matrix (ϕ∗, P ∗), for the K sparse signal case yi = ϕPs

is given by:

• For the sparsity level K = 1, ϕ∗ is a uniform tight frame with norm values equal to
√
M/N

and P ∗ = cos θIN×N ,

• For the sparsity level K ≥ 2, ϕ∗ is an equiangular tight frame with norm values equal to√
M/N and P ∗ = cos θIN×N .

Proof. Proof follows from the definition of uniform (or equiangular) tight frames [11] and obser-

vation that the upper bounds in the Lemma 8.6.9 can be reached only by these frames.

Note that, without physical layer secrecy constraint (i.e., θ = 0), our results reduce to the ones

in [124]. With physical layer secrecy constraint, similar to previous cases, θ serves as a tuning

parameter to guarantee an arbitrary level of secrecy. Also, it is shown that a real equiangular

tight frame can exist only if N ≤ M(M + 1)/2, and a complex equiangular tight frame requires

N ≤ M2 [101]. When M and N do not satisfy this condition, the bound in Lemma 8.6.9 can not

be achieved and one can employ a heuristic or algorithmic approach [7].

8.7 Discussion

We considered the problem of collaborative compressive detection under a physical layer secrecy

constraint. First, we proposed the collaborative compressive detection framework and showed that

through collaboration the loss due to compression when using a single node can be recovered.

Second, we studied the problem where the network operates in the presence of an eavesdropper.
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We proposed the use of corrupted data injection techniques to improve secrecy performance. We

also considered the problem of determining optimal system parameters which maximize the detec-

tion performance at the FC, while ensuring perfect secrecy at the eavesdropper. Optimal system

parameters with perfect secrecy guarantees were obtained in a closed form. Finally, we designed

optimal measurement matrices to obtain compressed data at distributed nodes so that the detection

performance of the network is maximized while guaranteeing a certain level of secrecy. We solved

the measurement matrix design problem for three different scenarios: a) the signal is known, b) the

signal lies in a low dimensional subspace, and c) the signal is sparse. We showed that the secrecy

performance of the system can be improved by using optimized measurement matrices along with

corrupted data injection based techniques.
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CHAPTER 9

CONCLUSION

9.1 Summary

In this thesis, the problem of accomplishing reliable inference from corrupted data was addressed.

The general methodology for this was to first analyze the effect of data corrupting agents on infer-

ence for several practical network architectures and quantify their effect on the global performance

of the network. It was found that as the network becomes more decentralized the susceptibility

of the network to corrupted data increases. Moreover, in the case of Byzantine attacks, an adver-

sary requires only few (≤ 50%) malicious nodes to bring down the distributed inference system.

The second step was to design schemes that are robust to such corrupted information from these

agents in parallel, tree and peer to peer architectures. We followed the methodology suggested by

Claude Shannon in his unpublished manuscript of 1956 titled “Reliable Machines from Unreliable

Components” [89] which considers the problem of designing reliable machines from unreliable

components. We employed three methods to improve system reliability: 1) improve individual

system components, 2) use of error-correction codes, and 3) complete system redesign. These

schemes used machine learning, game-theoretic and coding-theoretic approaches to improve the

individual performance of the agents and/or correct the errors from them at the global agents.

Specific contributions of this thesis are listed below.
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In Chapter 3, we considered the problem of distributed Bayesian detection with Byzantine

data, and characterized the power of attack analytically. For distributed detection under binary

hypotheses, the expressions of the minimum attacking power to blind the FC was obtained. We

showed that when there are more than 50% of Byzantines in the network, the data fusion scheme

becomes blind and no detector can achieve any performance gain over the one based just on priors.

The optimal attacking strategies for Byzantines that degrade the performance at the FC were ob-

tained. Both, asymptotic and non-asymptotic cases were considered. It was shown that the results

obtained for the non-asymptotic case are consistent with the results obtained for the asymptotic

case only when the FC has the knowledge of the attacker’s strategies, and thus, uses the optimal

fusion rule. However, results obtained for the non asymptotic case, when the FC does not have

knowledge of attacker’s strategies, are not the same as the results obtained for the asymptotic case.

It was also shown that the optimal attacking strategies in several cases have minimax property and,

therefore, can be used to implement the optimal robust detector.

In Chapter 4, we considered the problem of distributed detection in perfect a-ary tree topologies

in the presence of unlabeled Byzantine data, and characterized the power of attack analytically.

We provided closed-form expressions for minimum attacking power required by the Byzantines

to blind the FC. We obtained closed form expressions for the optimal attacking strategies that

minimize the detection error exponent at the FC. We also looked at the possible counter-measures

from the FC’s perspective to protect the network from these Byzantines. We formulated the robust

topology design problem as a bi-level program and provided an efficient algorithm to solve it.

In Chapter 5, we considered the problem of optimal Byzantine attacks on distributed detec-

tion mechanism in tree networks. We analyzed the performance limit of detection performance

with Byzantines and obtained the optimal attacking strategies that minimize the detection error

exponent. The problem was also studied from the network designer’s perspective. It was shown

that the optimal local detector is independent of the Byzantine’s parameter. Next, we modeled the

strategic interaction between the FC and the attacker as a Leader-Follower (Stackelberg) game and

attacker and defender (FC) equilibrium strategies were identified. We also proposed a simple yet
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efficient scheme to identify Byzantines and analytically evaluated its performance. There are still

many interesting questions that remain to be explored in the future work such as analysis of the

problem for arbitrary network topologies. The case where Byzantines collude in several groups

(collaborate) to degrade the detection performance can also be investigated.

In Chapter 6, we considered the general framework of distributed inference problem in tree

networks. We proposed an analytically tractable scheme to solve these problems and proved the

asymptotic optimality of the proposed schemes. For the classification problem, when the number

of hypotheses is M = 2, the proposed scheme is a majority-vote scheme for distributed detection

in tree networks. Also, note that since the proposed scheme uses error-correcting codes, it works

well even in scenarios with unreliable data. It should be pointed out that the proposed scheme is

not limited to wireless sensor networks, although the application of wireless sensor networks has

been considered in this paper. The DCFECC scheme has been found to be applicable to a number

of other applications including the paradigm of crowdsourcing. We believe that one can use these

results to address several other applications involving tree structures.

In Chapter 7, we analyzed the security performance of conventional consensus-based algo-

rithms in the presence of data falsification attacks. We showed that above a certain fraction of

Byzantine attackers in the network, existing consensus-based detection algorithm are ineffective.

Next, we proposed a robust distributed weighted average consensus algorithm and devised a learn-

ing technique to estimate the operating parameters (or weights) of the nodes. This enables an

adaptive design of the local fusion or update rules to mitigate the effect of data falsification at-

tacks.

In Chapter 8, We considered the problem of collaborative compressive detection under a physi-

cal layer secrecy constraint. First, we proposed the collaborative compressive detection framework

and showed that through collaboration the loss due to compression when using a single node can

be recovered. Second, we studied the problem where the network operates in the presence of

an eavesdropper. We proposed the use of artificial noise injection techniques to improve secrecy

performance. We also considered the problem of determining optimal system parameters which
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maximize the detection performance at the FC, while ensuring perfect secrecy at the eavesdrop-

per. Optimal system parameters with perfect secrecy guarantees were obtained in a closed form.

Further, we designed measurement matrices with secrecy guarantees for signal detection purposes.

It was shown that the optimal design depends on the nature of the signal to be detected. Further,

we showed that the detection performance of the system can be improved while guaranteeing a

certain level of secrecy by using optimized measurement matrices along with friendly corrupted

data injecting nodes.

9.2 Future Directions

There are a number of interesting future directions for research. Some specific future work that

extends the work in different chapter is first discussed below.

In Chapter 3, the model where the Byzantines’ sole aim is to disable the network and make

the FC blind to the information sent by the local sensors was considered. This formulation results

in a mathematical utility function which only contains the condition that approaches ‘0’. For this

formulation, it has been found that the optimal attack for the Byzantines is to always flip their local

result with probability ‘1’. One interesting problem is the analysis of ‘Smart’ Byzantines (or covert

Byzantines [50]) which, besides aiming at disabling the network, also aim at protecting themselves

from being detected. This analysis needs a mathematical formulation, where along with the utility

function containing the ‘blinding’ aspect of Byzantines, there is an additional constraint defining

the covertness of Byzantines from being identified. This would be an interesting problem as it is a

more realistic scenario where malicious sensors would try to hide their malicious behavior.

In Chapter 4 and Chapter 5, the problem of distributed detection in regular tree networks in

the presence of Byzantines was considered. By modeling the strategic interaction between the FC

and the attacker as a Leader-Follower (Stackelberg) game, attacker and defender (FC) equilibrium

strategies were identified. There are still many interesting questions that remain to be explored

in the future work such as utilizing more practical game theoretic models such as imperfect and
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incomplete information games. Also, the analysis of the problem for non-regular topologies is

worth exploring. The case where Byzantines collude in several groups (collaborate) to degrade the

detection performance can also be investigated.

In Chapter 6, the use of error-correcting codes was considered for the distributed inference

problem. However, some of the results were restrictive as they hold only under certain assumptions.

In the future, one can extend this work by relaxing these assumptions. One can also extend this

work to the case of target tracking when the target’s location changes with time and the sensor

network’s aim is to track the target’s motion. The proposed schemes provide an insight on M -ary

search trees and show that the idea of coding-based schemes can also be used for other signal

processing applications. For example, the application involving ‘search’ such as rumor source

localization in social networks.

In Chapter 7, security performance of conventional consensus-based algorithms in the presence

of data falsification attacks was analyzed. A robust distributed weighted average consensus algo-

rithm and a learning technique to estimate the operating parameters (or weights) of the nodes were

devised. This enabled an adaptive design of the local fusion or update rules to mitigate the effect of

data falsification attacks. In the future, an analysis of the problem for time varying topologies can

be done. Note that, some analytical methodologies used in this paper are certainly exploitable for

studying the attacks in time varying topologies. Other questions such as the optimal topology so as

to result in the fastest convergence rate and the problem with covert data falsification attacks with

a smart adversary who disguises himself from the proposed detection scheme while accomplishing

its attack can also be investigated. Also, in this thesis, we have assumed that the hypothesis does

not change during the consensus iterations. One interesting direction to consider in the future is to

study the problem where hypotheses are allowed to change during the information fusion phase.

In Chapter 8, we considered the problem of collaborative compressive detection under a physi-

cal layer secrecy constraint. We proposed the use of corrupted data injection techniques to improve

secrecy performance. We also considered the problem of determining optimal system parameters

which maximize the detection performance at the FC, while ensuring perfect secrecy at the eaves-
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dropper. In the future work, an analysis of the problem in scenarios where the perfect secrecy

constraint is relaxed is worth exploring. Note that, some analytical methodologies used in this

paper are certainly exploitable for studying more general detection problems such as detection of

non Gaussian signals in correlated noise. Other questions such as the case where communication

channels are noisy can also be investigated.

Note that, high dimensional inference problem was motivated from the fact that the “big data"

era requires a redesign of inference networks to handle high dimensional data. However, in most of

the cases, while the data is of high-dimension, the information provided by them can be recovered

efficiently from a low dimensional space. There is a need to redesign existing architectures of net-

works using concepts from low-dimensional signal processing while being robust to the external

and internal attacks by malicious users such as the ones in [112]. Due to the presence of poten-

tial unreliable agents, one has to also take into consideration the robustness of the systems while

developing such large-scale systems. This thesis demonstrated the utility of statistical learning

techniques and tools from coding theory to achieve reliable performance from corrupted data.
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APPENDIX A

APPENDIX

A.1 Proof of 0 ≤ t∗ ≤ 1

First, we show that t∗ ≤ 1. We start from the following equality:

π1,1
π1,0
− 1 =

(
1− π1,0
π1,0

− 1− π1,1
π1,0

)
=

1− π1,0
π1,0

(
1− 1− π1,1

1− π1,0

)
. (A.1)

By applying the logarithm inequality 1− 1

x
< ln(x) < (x− 1), ∀x > 0, to (A.1), we have

ln
π1,1
π1,0

<
π1,1
π1,0
− 1

=
1− π1,0
π1,0

(
1− 1− π1,1

1− π1,0

)
≤ 1− π1,0

π1,0
ln

1− π1,0
1− π1,1

.
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Now,

ln
π1,1
π1,0
≤ 1− π1,0

π1,0
ln

1− π1,0
1− π1,1

⇔ ln(π1,1/π1,0)

ln((1− π1,0)/(1− π1,1))
π1,1

1− π1,1
≤ (1/π1,0)− 1

(1/π1,1)− 1

⇔
ln

(
ln(π1,1/π1,0)

ln((1− π1,0)/(1− π1,1))
π1,1

1− π1,1

)
ln

(
(1/π1,0)− 1

(1/π1,1)− 1

) ≤ 1

⇔ t∗ ≤ 1.

Next, we show that t∗ ≥ 0. First we prove that the denominator of t∗ is nonnegative. Since

π1,1 > π1,0 for Pd > Pf and α < 0.5, we have

π1,1 > π1,0 (A.2)

⇔ (1/π1,0)− 1

(1/π1,1)− 1
≥ 1 (A.3)

⇔ ln

(
(1/π1,0)− 1

(1/π1,1)− 1

)
≥ 0. (A.4)

Next we prove that the numerator of t∗ is also nonnegative, and then t∗ is nonnegative. We start

from the following equality:

1− π1,0
π1,1

=

(
1− π1,0
π1,1

− 1− π1,1
π1,1

)
=

1− π1,1
π1,1

(
1− π1,0
1− π1,1

− 1

)
. (A.5)

By applying the logarithm inequality 1− 1

x
< ln(x) < (x− 1), ∀x > 0, to (A.5), we have

ln
π1,1
π1,0

> 1− π1,0
π1,1

=
1− π1,1
π1,1

(
1− π1,0
1− π1,1

− 1

)
≥ 1− π1,1

π1,1
ln

1− π1,0
1− π1,1

.
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Now,

ln
π1,1
π1,0
≥ 1− π1,1

π1,1
ln

1− π1,0
1− π1,1

⇔ ln(π1,1/π1,0)

ln((1− π1,0)/(1− π1,1))
π1,1

1− π1,1
≥ 1

⇔ ln

(
ln(π1,1/π1,0)

ln((1− π1,0)/(1− π1,1))
π1,1

1− π1,1

)
≥ 0.

A.2 Proof of Lemma 3.4.1

To show that, for the optimal t∗ and α < 0.5, Chernoff information, C, is monotonically decreas-

ing function of P1,0 while keeping P0,1 fixed is equivalent to showing that C̃, is monotonically

increasing function of P1,0 while keeping P0,1 fixed. Differentiating both sides of C̃ with respect

to P1,0, we get

dC̃

P1,0

= πt∗

1,0π
(1−t∗)
1,1

(
dt∗

P1,0

ln
π1,0
π1,1

+ (1− t∗)
π′
1,1

π1,1
+ t∗

π′
1,0

π1,0

)
+ (1− π1,0)t

∗
(1− π1,1)(1−t∗)

(
dt∗

P1,0

ln
1− π1,0
1− π1,1

− (1− t∗)
π′
1,1

1− π1,1
− t∗

π′
1,0

1− π1,0

)

In the above equation,

dt∗

P1,0
=

(
ln
π1,1
π1,0

+ ln
1− π1,0
1− π1,1

)(
G′

G
+
π′
1,1

π1,1
+

π′
1,1

1− π1,1

)
−
(
lnG+ ln

π1,1
1− π1,1

)(
π′
1,1

π1,1
−
π′
1,0

π1,0
+

π′
1,1

1− π1,1
−

π′
1,0

1− π1,0

)
(
ln
π1,1
π1,0

+ ln
1− π1,0
1− π1,1

)2

where G =
ln(π1,1/π1,0)

ln((1− π1,0)/(1− π1,1))
and

G′

G
=

ln
1− π1,0
1− π1,1

(
π′
1,1

π1,1
−
π′
1,0

π1,0

)
− ln

π1,1
π1,0

(
π′
1,1

1− π1,1
−

π′
1,0

1− π1,0

)
ln
π1,1
π1,0

ln
1− π1,0
1− π1,1

.
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Let us denote a1 = lnG+ ln(π1,1/(1− π1,1)), a2 = ln(π1,1/π1,0)+ ln((1− π1,0)/(1− π1,1)), b1 =

(π′
1,1/π1,1)+(π′

1,1/(1−π1,1)), b2 = (π′
1,0/π1,0)+(π′

1,0/(1−π1,0)), c1 = πt∗
1,0π

1−t∗

1,1 ln(π1,1/π1,0), c2 =

(1−π1,0)t
∗
(1−π1,1)1−t∗ ln((1−π1,0)/(1−π1,1)), d1 = ((1−t∗)(π′

1,1/π1,1)+t
∗(π1,0/π1,0))π

t∗
1,0π

1−t∗

1,1

and d2 = ((1 − t∗)(π′
1,1/(1 − π1,1)) + t∗(π1,0/(1 − π1,0)))(1 − π1,0)t

∗
(1 − π1,1)1−t∗ . Now, C̃, is

monotonically increasing function of P1,0 while keeping P0,1 fixed if

a1[b1c1 + b2c2] + a2[−(G′/G)c1 + b1c2] + a22d1 > a1[b1c2 + b2c1] + a2[−(G′/G)c2 + b1c1] + a22d2

⇔ a22(d1 − d2) > (c1 − c2)(a1(b2 − b1) + a2((G
′/G) + b1))

⇔ a22(d1 − d2) > 0

where the last inequality follows from the fact that (c1 − c2) = 0 as given in (3.12).

Now, to show that
dC̃

P1,0

> 0 is equivalent to show that (d1 − d2) > 0. In other words,

t∗(1−Pf )

[(
π1,1
π1,0

)1−t∗

−
(
1− π1,1
1− π1,0

)1−t∗
]
+(1− t∗)(1−Pd)

[(
π1,0
π1,1

)t∗

−
(
1− π1,0
1− π1,1

)t∗
]
> 0.

(A.6)

Note that,

[(
π1,1
π1,0

)1−t∗

−
(
1− π1,1
1− π1,0

)1−t∗
]
≥ 0;

[(
π1,0
π1,1

)t∗

−
(
1− π1,0
1− π1,1

)t∗
]
≤ 0.

Hence, (A.6) can be simplified to,

1− Pf

1− Pd

>

(1− t∗)

[(
1− π1,0
1− π1,1

)t∗

−
(
π1,0
π1,1

)t∗
]

t∗

[(
π1,1
π1,0

)1−t∗

−
(
1− π1,1
1− π1,0

)1−t∗
] . (A.7)

Similarly, for the optimal t∗ and α < 0.5, Chernoff information, C, is monotonically decreasing
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function of P0,1 while keeping P1,0 fixed if (d1 − d2) > 0, which is equivalent to show that,

t∗(−Pf )

[(
π1,1
π1,0

)1−t∗

−
(
1− π1,1
1− π1,0

)1−t∗
]
+ (1− t∗)(−Pd)

[(
π1,0
π1,1

)t∗

−
(
1− π1,0
1− π1,1

)t∗
]
> 0.

(A.8)

Furthermore, (A.8) can be simplified to

Pf

Pd

<

(1− t∗)

[(
1− π1,0
1− π1,1

)t∗

−
(
π1,0
π1,1

)t∗
]

t∗

[(
π1,1
π1,0

)1−t∗

−
(
1− π1,1
1− π1,0

)1−t∗
] . (A.9)

Combining (A.7) and (A.9), the condition to make Lemma 3.4.1 true becomes

Pf

Pd

<

(1− t∗)

[(
1− π1,0
1− π1,1

)t∗

−
(
π1,0
π1,1

)t∗
]

t∗

[(
π1,1
π1,0

)1−t∗

−
(
1− π1,1
1− π1,0

)1−t∗
] <

1− Pf

1− Pd

. (A.10)

Note that right hand inequality in (A.10) can be rewritten as

(
1

t∗
− 1

)[(
1− π1,0
1− π1,1

)t∗

−
(
π1,0
π1,1

)t∗
]
<

1− Pf

1− Pd

[(
π1,1
π1,0

)1−t∗

−
(
1− π1,1
1− π1,0

)1−t∗
]

⇔
(
1

t∗
− 1

)[(
1− π1,0
1− π1,1

)t∗

−
(
π1,0
π1,1

)t∗
]
<

1− Pf

1− Pd

[(
π1,1
π1,0

)(
π1,0
π1,1

)t∗

−
(
1− π1,1
1− π1,0

)(
1− π1,0
1− π1,1

)t∗
]

⇔
(
1− π1,0
1− π1,1

)t∗ [
1− Pf

1− Pd

(
1− π1,1
1− π1,0

)
+

(
1

t∗
− 1

)]
<

(
π1,0
π1,1

)t∗ [
1− Pf

1− Pd

(
π1,1
π1,0

)
+

(
1

t∗
− 1

)]
⇔

(
(1/π1,0)− 1

(1/π1,1)− 1

)t∗ [
1− Pf

1− Pd

(
1− π1,1
1− π1,0

)
+

(
1

t∗
− 1

)]
<

[
1− Pf

1− Pd

(
π1,1
π1,0

)
+

(
1

t∗
− 1

)]
.

Using the result from (3.12), the above equation can be written as

ln(π1,1/π1,0)

ln

(
(1− π1,0)
(1− π1,1)

) ( π1,1
1− π1,1

)
<

[
1− Pf

1− Pd

(
π1,1
π1,0

)
+

(
1

t∗
− 1

)]
[
1− Pf

1− Pd

(
1− π1,1
1− π1,0

)
+

(
1

t∗
− 1

)] .
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Using the fact that G =
ln(π1,1/π1,0)

ln

(
(1− π1,0)
(1− π1,1)

) , we get

G <

[
1− Pf

1− Pd

(
1

π1,0

)
+

(
1

t∗
− 1

)(
1

π1,1

)]
[
1− Pf

1− Pd

(
1

1− π1,0

)
+

(
1

t∗
− 1

)(
1

1− π1,1

)] .

After some simplification the above condition can be written as

1− Pf

1− Pd

[
G

1− π1,0
− 1

π1,0

]
<

(
1

t∗
− 1

)[
1

π1,1
− G

1− π1,1

]
⇔

(
1− Pf

1− Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[π1,0(G+ 1)− 1] <

(
1

t∗
− 1

)
[1− π1,1(G+ 1)]

1

t∗
[π1,1(G+1)−1] <

(
1− Pf

1− Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1−π1,0(G+1)]+[π1,1(G+1)−1]. (A.11)

Notice that, in the above equation

π1,1(G+ 1) ≥ 1 and π1,0(G+ 1) ≤ 1 (A.12)

or equivalently
1− π1,1
π1,1

≤ G ≤ 1− π1,0
π1,0

. The second inequality in (A.12) follows from the

fact that ln
(
π1,1
π1,0

)
≥ ln

(
1−π1,0

1−π1,1

) 1− π1,1
π1,1

. Using logarithm inequality, we have ln

(
π1,1
π1,0

)
≥(

1− π1,0
π1,1

)
=

(
1− π1,1
π1,1

)(
1− π1,0
1− π1,1

− 1

)
≥ ln

(
1− π1,0
1− π1,1

)
1− π1,1
π1,1

. Similarly, to show that

the second inequality in (A.12) is true we show ln

(
π1,1
π1,0

)
≤ ln

(
1− π1,0
1− π1,1

)
1− π1,0
π1,0

. Using loga-

rithm inequality, ln
(
π1,1
π1,0

)
≤
(
π1,1
π1,0
− 1

)
=

(
1− π1,0
π1,0

)(
1− 1− π1,1

1− π1,0

)
≤ ln

(
1− π1,0
1− π1,1

)
1− π1,0
π1,0

.

Using these results we can then write (A.11) in the form below,

[π1,1(G+ 1)− 1](
1− Pf

1− Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1− π1,0(G+ 1)] + [π1,1(G+ 1)− 1]

< t∗
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⇔ 1(
1− Pf

1− Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1− π1,0(G+ 1)]

[π1,1(G+ 1)− 1]
+ 1

< t∗. (A.13)

Similarly, the left hand side inequality in (A.10) can be written as,

Pf

Pd

[(
π1,1
π1,0

)1−t∗

−
(
1− π1,1
1− π1,0

)1−t∗
]
<

(
1

t∗
− 1

)[(
1− π1,0
1− π1,1

)t∗

−
(
π1,0
π1,1

)t∗
]

⇔ Pf

Pd

[(
π1,1
π1,0

)(
π1,0
π1,1

)t∗

−
(
1− π1,1
1− π1,0

)(
1− π1,0
1− π1,1

)t
]
<

(
1

t∗
− 1

)[(
1− π1,0
1− π1,1

)t∗

−
(
π1,0
π1,1

)t∗
]

⇔
(
π1,0
π1,1

)t [
Pf

Pd

(
π1,1
π1,0

)
+

(
1

t∗
− 1

)]
<

(
1− π1,0
1− π1,1

)t [
Pf

Pd

(
1− π1,1
1− π1,0

)
+

(
1

t∗
− 1

)]
⇔

[
Pf

Pd

(
π1,1
π1,0

)
+

(
1

t∗
− 1

)]
<

(
(1/π1,0)− 1

(1/π1,1)− 1

)t∗ [
Pf

Pd

(
1− π1,1
1− π1,0

)
+

(
1

t∗
− 1

)]
.

Using the results from (3.12), the above equation can be written as,

[
Pf

Pd

(
π1,1
π1,0

)
+

(
1

t∗
− 1

)]
[
Pf

Pd

(
1− π1,1
1− π1,0

)
+

(
1

t∗
− 1

)] < ln(π1,1/π1,0)

ln

(
(1− π1,0)
(1− π1,1)

) ( π1,1
1− π1,1

)
.

Lets denote G =
ln(π1,1/π1,0)

ln

(
(1− π1,0)
(1− π1,1)

) , we get

[
Pf

Pd

(
1

π1,0

)
+

(
1

t∗
− 1

)(
1

π1,1

)]
[
Pf

Pd

(
1

1− π1,0

)
+

(
1

t∗
− 1

)(
1

1− π1,1

)] < G.

After some simplification the above condition can be written as,

(
1

t∗
− 1

)[
1

π1,1
− G

1− π1,1

]
<
Pf

Pd

[
G

1− π1,0
− 1

π1,0

]
⇔

(
1

t∗
− 1

)
[1− π1,1(G+ 1)] <

(
Pf

Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[π1,0(G+ 1)− 1]

⇔
(
Pf

Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1− π1,0(G+ 1)] + [π1,1(G+ 1)− 1] <

1

t∗
[π1,1(G+ 1)− 1].
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Using (A.12), the condition can be written as

t∗ <
[π1,1(G+ 1)− 1](

Pf

Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1− π1,0(G+ 1)] + [π1,1(G+ 1)− 1]

t∗ <
1(

Pf

Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1− π1,0(G+ 1)]

[π1,1(G+ 1)− 1]
+ 1

. (A.14)

Now from (A.13) and (A.14), Lemma 3.4.1 is true if

A =
1(

1− Pf

1− Pd

)(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1− π1,0(G+ 1)]

[π1,1(G+ 1)− 1]
+ 1

< t∗ <
1

Pf

Pd

(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1− π1,0(G+ 1)]

[π1,1(G+ 1)− 1]
+ 1

= B.

(A.15)

Next we show that, the optimal t∗ is with in the region (A,B). Using the results from (A.28), we

start from the inequality

Pf

Pd

π1,1
π1,0

< 1 <
1− Pf

1− Pd

1− π1,1
1− π1,0

⇔ Pf

Pd

π1,1
π1,0

[1− π1,0(G+ 1)]

[π1,1(G+ 1)− 1]
<

1− π1,0(G+ 1)

π1,1(G+ 1)− 1
<

1− Pf

1− Pd

1− π1,1
1− π1,0

[1− π1,0(G+ 1)]

[π1,1(G+ 1)− 1]

Let us denote, Y =

(
π1,1
π1,0

)(
1− π1,1
1− π1,0

)
[1− π1,0(G+ 1)]

[π1,1(G+ 1)− 1]
, then the above condition can be writ-

ten as,

Pf

Pd

Y
1− π1,0
1− π1,1

<
1− π1,0(G+ 1)

π1,1(G+ 1)− 1
<

1− Pf

1− Pd

Y
π1,0
π1,1

(A.16)

Next, we use the log inequality,
x− 1

x
< ln(x) < (x − 1), ∀x > 0, to derive further results. Let
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us focus our attention to the left hand side inequality in (A.16)

Pf

Pd

Y
1− π1,0
1− π1,1

<
1− π1,0(G+ 1)

π1,1(G+ 1)− 1

⇔ PfY

[
Gπ1,1
1− π1,1

− 1

]
< Pd

[
1− Gπ1,0

1− π1,0

]
⇔ PfY ln

(
G

π1,1
1− π1,1

)
< Pdln

(
1

G

1− π1,0
π1,0

)
(A.17)

Now, let us focus our attention to the right hand side inequality in (A.16)

1− π1,0(G+ 1)

π1,1(G+ 1)− 1
<

1− Pf

1− Pd

Y
π1,0
π1,1

⇔ (1− Pd)

(
1− π1,0
Gπ1,0

− 1

)
< (1− Pf )Y

(
1− 1− π1,1

Gπ1,1

)
⇔ (1− Pd)ln

(
1

G

1− π1,0
π1,0

)
< (1− Pf )Y ln

(
G

π1,1
1− π1,1

)
(A.18)

Now using the results from (A.17) and (A.18), we can deduce that

(
Pf

Pd

)
Y <

ln

(
1

G

1− π1,0
π1,0

)
ln

(
G

π1,1
1− π1,1

) <

(
1− Pf

1− Pd

)
Y

⇔ 1

1 +

(
1− Pf

1− Pd

)
Y

<
1

1 +

ln

(
1

G

1− π1,0
π1,0

)
ln

(
G

π1,1
1− π1,1

)
<

1

1 +

(
Pf

Pd

)
Y

(A.19)

which is true from the fact that for a > 0, b > 0,
1

1 + a
<

1

1 + b
iff b < a. Next, observe that, t∗ as

given in (3.13) can be written as

t∗ =

ln

(
G

π1,1
1− π1,1

)
ln

(
(1/π1,0)− 1

(1/π1,1)− 1

) =

ln(G) + ln

(
π1,1

1− π1,1

)
ln

(
π1,1
π1,0

)
+ ln

(
1− π1,0
1− π1,1

) .
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Observe that, ln
(
G

π1,1
1− π1,1

)
≥ 0 and ln

(
1

G

1− π1,0
π1,0

)
≥ 0 or equivalently

(
G

π1,1
1− π1,1

)
≥ 1

and
(
1

G

1− π1,0
π1,0

)
≥ 1 from (A.12). Now,

t∗ =
1

1 +

ln

(
π1,1
π1,0

)
+ ln

(
1− π1,0
1− π1,1

)
− ln(G)− ln

(
π1,1

1− π1,1

)
ln(G) + ln

(
π1,1

1− π1,1

)
=

1

1 +

ln

(
1

G

1− π1,0
π1,0

)
ln

(
G

π1,1
1− π1,1

)
.

Which along with (A.19) implies that

1

1 +

(
1− Pf

1− Pd

)
Y

< t∗ <
1

1 +

(
Pf

Pd

)
Y

or in other words, A < t∗ < B. This completes our proof.

A.3 Sensitivity to Imperfect Knowledge

In this section, we discuss the sensitivity of system performance to imperfect knowledge regarding

the fraction of Byzantines α in the network and the prior probability of hypotheses, i.e., (P0, P1).

We limit the analysis to a couple of illustrative examples.

In many practical scenarios, the value of the fraction of Byzantines α in the network might

not be known a-priori. In such scenarios, α may be estimated (learned) by observing decisions

at the FC over a fixed duration. Next, we present a rather simple estimation procedure and some

numerical results to corroborate our claim.

We assume that Pd = 0.8, Pf = 0.2 and the fraction of Byzantines is α = 0.2 with (P1,0, P0,1) =

(1, 1). Based on the received decisions under hypothesis H1, the FC can estimate α̂ as follows:

α̂ =
Pd − π1,1
2Pd − 1

,
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Fig. A.1: Estimation of the fraction of Byzantines as a function of N = 10n when the true value
of α = 0.2.
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Fig. A.2: Error probability in the presence of imperfect knowledge of P0.
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where π1,1 is the fraction of 1’s received at the FC. In Figure A.1, we plot the value of estimated α

at the FC as a function of the number of decisions at the FC, i.e., N = 10n.

It can be seen from Figure A.1 that the estimated α approaches the true value of α as the

number of decisions N at the FC increases.

Next, we look at the sensitivity of the performance of the detection scheme to the uncertainty

regarding the prior probability of hypotheses, i.e., (P0, P1). Sensitivity of the performance of the

scheme to the uncertainty of parameter values is a model mismatch problem. In general, finding the

analytical expressions for performance degradation due to model mismatch is a difficult problem,

thus, we limit our analysis to numerical results. However, one can expect that the performance of

the scheme will improve as the estimated parameter values approach their true value.

In Figure A.2, we plot the probability of error as the value of P0 at the FC is varied from 0.1 to

0.9 when the actual value of P0 is 0.4, N = 10 and (Pd, Pf ) = (0.8, 0.1) with (P1,0, P0,1) = (1, 1).

Note that, the error probability is minimum when the estimated P0 is equal to the actual P0.

A.4 Proof of
dr (P1,0, K

∗, α)

dP1,0
> 0

Differentiating both sides of r (P1,0, K
∗, α) with respect to P1,0, we get

dr (P1,0, K
∗, α)

dP1,0

= (K∗ − 1)α

(
1− Pf

π1,0
− 1− Pd

π1,1

)
− (N −K∗)α

(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
.

In the following we show that
dr (P1,0, K

∗, α)

dP1,0

> 0 (A.20)

i.e., r (P1,0, K
∗, α) is non-decreasing. Observe that in the above equation,

(1− Pf )

π1,0
>

(1− Pd)

π1,1
. (A.21)
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To show that the above condition is true, we start from the inequality

Pd > Pf (A.22)

⇔ Pd

1− Pd

>
Pf

1− Pf

(A.23)

⇔ αP1,0 + (1− P0,1α)
Pd

1− Pd

> αP1,0 + (1− P0,1α)
Pf

1− Pf

(A.24)

⇔ αP1,0(1− Pd) + Pd(1− P0,1α)

(1− Pd)
>
αP1,0(1− Pf ) + Pf (1− P0,1α)

(1− Pf )
(A.25)

⇔ π1,1
(1− Pd)

>
π1,0

(1− Pf )
(A.26)

⇔ (1− Pf )

π1,0
>

(1− Pd)

π1,1
(A.27)

Similarly, it can be shown that

1− π1,1
1− Pd

>
1− π1,0
1− Pf

(A.28)

Now from (A.21) and (A.28), to show that
dr (P1,0, K

∗, α)

dP1,0

> 0 is equivalent to show that

(K∗ − 1)

(
1− Pf

π1,0
− 1− Pd

π1,1

)
> (N −K∗)

(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
(A.29)

Next, we consider two different cases, first when there are odd number of nodes in the network and

second when there are even number of nodes in the network.

Odd Number of Nodes: When there are odd number of nodes in the network, the majority fusion

rule is K∗ = (N + 1)/2. In this case (A.29) is equivalent to show that

(
N − 1

2

)(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

(
N − 1

2

)(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
. (A.30)
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To show that the above condition is true, we start from the following inequality

(1− π1,0)(1− π1,1)
π1,0π1,1

> −1

⇔
[

1

π1,0
− 1

π1,1

]
>

[
1

1− π1,0
− 1

1− π1,1

]
⇔

[
1

π1,0
− 1

1− π1,0

]
>

[
1

π1,1
− 1

1− π1,1

]

Since
1− Pf

1− Pd

> 1, π1,0 < 0.5 (consequence of our assumption) and N ≥ 2, the above condition is

equivalent to

1− Pf

1− Pd

[
1

π1,0
− 1

1− π1,0

]
>

[
1

π1,1
− 1

1− π1,1

]
⇔

(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
⇔

(
N − 1

2

)(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

(
N − 1

2

)(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
(A.31)

which implies that
dr (P1,0, K

∗, α)

dP1,0

> 0 for odd number of nodes case. Next, we consider the even

number of nodes case.

Even Number of Nodes: Now, we consider the case when there are even number of nodes in the

network and majority fusion rule is given by K∗ =
N

2
+1. Condition (A.29) is equivalent to show

that

(
N

2

)(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

(
N

2
− 1

)(
1− Pf

1− π1,0
− 1− Pd

1− π1,1

)
.

Which follows from the fact that

(
N

2

)(
1− Pf

π1,0
− 1− Pd

π1,1

)
>

(
N

2
− 1

)(
1− Pf

π1,0
− 1− Pd

π1,1

)

and the result given in (A.30). This completes our proof.



220

A.5 Calculating partial derivative of PE w.r.t. P1,0

First, we calculate the partial derivative of QF with respect to P1,0. Notice that,

QF =
N∑

i=K∗

 N

i

 (π1,0)
i(1− π1,0)N−i (A.32)

π1,0 = α(P1,0(1− Pf ) + (1− P0,1)Pf ) + (1− α)Pf (A.33)

(π1,0)
′ = dπ1,0/dP1,0 = α(1− Pf ). (A.34)

Differentiating both sides of (A.32) with respect to P1,0, we get

dQF

dP1,0
=

 N

K∗

 (K∗(π1,0)
K∗−1(π1,0)

′(1− π1,0)N−K∗
− (π1,0)

K∗
(N −K∗)(1− π1,0)N−K∗−1(π1,0)

′)

+

 N

K∗ + 1

 ((K∗ + 1)(π1,0)
K∗

(π1,0)
′(1− π1,0)N−K∗−1 − (π1,0)

K∗+1(N −K∗ − 1)

( 1− π1,0)N−K∗−2(π1,0)
′) + · · ·+

 N

N

 (N(π1,0)
N−1(π1,0)

′ − 0)

= (π1,0)
′(π1,0)

K∗−1(1− π1,0)N−K∗

[ N

K∗

(K∗ − π1,0
1− π1,0

(N −K∗)

)

+

 N

K∗ + 1

((K∗ + 1)
π1,0

1− π1,0
− (N −K∗ − 1)

(
π1,0

1− π1,0

)2
)

+ · · ·

]

= (π1,0)
′(π1,0)

K∗−1(1− π1,0)N−K∗

[ N

K∗

 (K∗ − π1,0
1− π1,0

(N −K∗))

+
π1,0

1− π1,0

 N

K∗ + 1

((K∗ + 1)− (N −K∗ − 1)
π1,0

1− π1,0

)
+ · · ·

]

= (π1,0)
′(π1,0)

K∗−1(1− π1,0)N−K∗

[ N

K∗

K∗ +

[
− π1,0

1− π1,0

 N

K∗

 (N −K∗)

+
π1,0

1− π1,0

 N

K∗ + 1

 (K∗ + 1)

]
+ · · ·

]
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Since,

 N

K∗

 K∗

N
=

 N − 1

K∗ − 1

, the above equation can be written as

dQF

dP1,0

= (π1,0)
′(π1,0)

K∗−1(1− π1,0)N−K∗

[ N − 1

K∗ − 1

N

+
π1,0

1− π1,0

{ N

K∗ + 1

 (K∗ + 1)−

 N

K∗

 (N −K∗)

}
+ · · ·

]
. (A.35)

Notice that, for any positive integer t

(
π1,0

1− π1,0

)t


 N

K∗ + t

 (K∗ + t)−

 N

K∗ + t− 1

 (N −K∗ − t+ 1)

 = 0. (A.36)

Using the result from (A.36), (A.35) can be written as

dQF

dP1,0

= (π1,0)
′(π1,0)

K∗−1(1− π1,0)N−K∗


 N − 1

K∗ − 1

N +
π1,0

1− π1,0
[0] + · · ·+ [0]


⇔ dQF

dP1,0

= α(1− Pf )N

 N − 1

K∗ − 1

 (π1,0)
K∗−1 (1− π1,0)N−K∗

.

Similarly, the partial derivative of QD w.r.t. P1,0 can calculated to be

dQD

dP1,0

= α(1− Pd)N

 N − 1

K∗ − 1

 (π1,1)
K∗−1 (1− π1,1)N−K∗

.

A.6

We want to show that the set {Bk}Kk=1 can blind the FC if any of following two cases is true.

1. min(Bk, Nk) = Nk for any k,
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2. {Bk}k=K
k=1 is an overlapping set

In other words, set {Bk}Kk=1 covers 50% or more nodes. Let us denote by k̃, the k for which

min(Bk, Nk) = Nk (there can be multiple such k). Then {Bk}Kk=1 satisfies

∑K
k=1 PkBk∑K
k=1Nk

≥ Pk̃Bk̃∑K
k=1Nk

≥ Pk̃Nk̃∑K
k=1Nk

≥ PKNK∑K
k=1Nk

. (A.37)

Similarly, let us assume Bk′ and Bk̃ are overlapping with k̃ = k′ + x (there can be multiple

overlapping k). Then {Bk}Kk=1 satisfies

∑K
k=1 PkBk∑K
k=1Nk

≥ Pk̃Bk̃ + Pk′Bk′∑K
k=1Nk

≥ Pk̃Nk̃∑K
k=1Nk

≥ PKNK∑K
k=1Nk

. (A.38)

Observe that, to prove our claim it is sufficient to show that

PKNK∑K
k=1Nk

≥ 0.5⇔ PKNK ≥
N

2
. (A.39)

Using the fact that for a Perfect a-ary tree PK = 1, NK = aK and N = a(aK−1)
a−1

the condi-

tion (A.39) becomes

2× aK ≥ a(aK − 1)

a− 1
. (A.40)

When a ≥ 2, we have

a× aK ≥ 2× aK

⇔ a+ aK+1 ≥ 2× aK

⇔ 2× aK+1 − 2× aK ≥ aK+1 − a

⇔ 2× aK ≥ a(aK − 1)

a− 1
.
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Hence, (A.39) holds and this completes our proof.

A.7

We skip the proof of (4.29) and only focus on the proof of (4.30). To show

(a+ 1)K+1[(a)K−k+1 − 1]− (a)K+1[(a+ 1)K−k+1 − 1] ≥ 0 for a ≥ 2

is equivalent to show

aK+1[(a− 1)K−k+1 − 1]− (a− 1)K+1[aK−k+1 − 1] ≥ 0 for a ≥ 3

which can be simplified to

(a(a− 1))K−k+1[ak − (a− 1)k] ≥ [aK+1 − (a− 1)K+1]. (A.41)

Using binomial expansion, (A.41) becomes

(a(a− 1))K−k+1[ak−1 + (a− 1)ak−2 + · · ·+ (a− 1)k−1] ≥

[aK + (a− 1)aK−1 + · · ·+ (a− 1)K−1a+ (a− 1)K ]

⇔ (a− 1)K−k+1[aK + (a− 1)aK−1 + · · ·+ (a− 1)k−1aK−k+1]︸ ︷︷ ︸
k terms

≥

[aK + (a− 1)aK−1 + · · ·+ (a− 1)k−1aK−k+1]︸ ︷︷ ︸
k terms

+

[(a− 1)kaK−k + · · ·+ (a− 1)K−1a+ (a− 1)K ]︸ ︷︷ ︸
K-k+1 terms

⇔ ((a− 1)K−k+1 − 1)[aK + · · ·+ (a− 1)k−1aK−k+1] ≥

[(a− 1)kaK−k + · · ·+ (a− 1)K−1a+ (a− 1)K ]. (A.42)
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Since a ≥ 3, we have ((a− 1)K−k+1 − 1) ≥ (K − k + 1) ≥ 1. Hence,

((a− 1)K−k+1 − 1)[aK + · · ·+ (a− 1)k−1aK−k+1] ≥

((a− 1)K−k+1 − 1)aK ≥ [(a− 1)kaK−k + · · ·+ (a− 1)K ]︸ ︷︷ ︸
K-k+1 terms

(A.43)

and (A.42) holds.

A.8 Proof of Lemma 4.3.2

To prove the lemma, we first show that any positive deviation ϵ ∈ (0, p] in flipping probabilities

(P k
1,0, P

k
0,1) = (p, p− ϵ) will result in an increase in Dk. After plugging in (P k

1,0, P
k
0,1) = (p, p− ϵ)

in (5.4) and (5.5), we get

πk
1,0 = [βk−1

1,0 (1− P k
fa) + (1− βk−1

0,1 )P k
fa] + [αk(p− P k

fa(2p− ϵ)) + P k
fa] (A.44)

πk
1,1 = [βk−1

1,0 (1− P k
d ) + (1− βk−1

0,1 )P k
d ] + [αk(p− P k

d (2p− ϵ)) + P k
d ]. (A.45)

Now we show that Dk is a monotonically increasing function of the parameter ϵ or in other words,
dDk

dϵ
> 0.

dDk

dϵ
= πk

1,0

(
πk′
1,0

πk
1,0

−
πk′
1,1

πk
1,1

)
+ πk′

1,0 log
πk
1,0

πk
1,1

+ (1− πk
1,0)

(
πk′
1,1

1− πk
1,1

−
πk′
1,0

1− πk
1,0

)
− πk′

1,0 log
1− πk

1,0

1− πk
1,1

(A.46)

where
dπk

1,1

dϵ
= πk′

1,1 = αkP
k
d and

dπk
1,0

dϵ
= πk′

1,0 = αkP
k
fa. After rearranging the terms in the above

equation, the condition
dDk

dϵ
> 0 becomes

1− πk
1,0

1− πk
1,1

+
P k
fa

P k
d

log
πk
1,0

πk
1,1

>
πk
1,0

πk
1,1

+
P k
fa

P k
d

log
1− πk

1,0

1− πk
1,1

. (A.47)
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Since P k
d > P k

fa and βk
x̄,x < 0.5, πk

1,1 > πk
1,0. It can also be proved that

P k
d

P k
fa

πk
1,0

πk
1,1

> 1. Hence, we

have

1 + (πk
1,0 − πk

1,1) <
P k
d

P k
fa

πk
1,0

πk
1,1

⇔ (πk
1,0 − πk

1,1)[1 + (πk
1,0 − πk

1,1)] >
P k
d

P k
fa

πk
1,0

πk
1,1

(πk
1,0 − πk

1,1)

⇔ (πk
1,0 − πk

1,1)

[
1 + (πk

1,0 − πk
1,1)

πk
1,0(1− πk

1,1)

]
>

P k
d

P k
fa

πk
1,0

πk
1,1

[
πk
1,0 − πk

1,1

πk
1,0(1− πk

1,1)

]

⇔ (πk
1,0 − πk

1,1)

[
1

1− πk
1,1

+
1

πk
1,0

]
>

P k
d

P k
fa

[
πk
1,0 − πk

1,0π
k
1,1 + πk

1,0π
k
1,1 − πk

1,1

πk
1,1(1− πk

1,1)

]

⇔

[
1− πk

1,1 − (1− πk
1,0)

1− πk
1,1

+
(πk

1,0 − πk
1,1)

πk
1,0

]
>

P k
d

P k
fa

[
πk
1,0

πk
1,1

−
1− πk

1,0

1− πk
1,1

]

⇔
1− πk

1,0

1− πk
1,1

+
P k
fa

P k
d

(
1−

πk
1,1

πk
1,0

)
>
πk
1,0

πk
1,1

+
P k
fa

P k
d

(
1− πk

1,0

1− πk
1,1

− 1

)
. (A.48)

To prove that (A.47) is true, we apply the logarithm inequality (x − 1) ≥ log x ≥ x− 1

x
, for

x > 0 to (A.48). First, let us assume that x =
πk
1,0

πk
1,1

. Now using the logarithm inequality we can

show that log
πk
1,0

πk
1,1

≥ 1 −
πk
1,1

πk
1,0

. Next, let us assume that x =
1− πk

1,0

1− πk
1,1

. Now using the logarithm

inequality it can be shown that

[
1− πk

1,0

1− πk
1,1

− 1

]
≥ log

1− πk
1,0

1− πk
1,1

. Using these results and (A.48),

one can prove that condition (A.47) is true.

Similarly, we can show that any non zero deviation ϵ ∈ (0, p] in flipping probabilities (P k
1,0, P

k
0,1) =

(p− ϵ, p) will result in an increase in Dk, i.e.,
dDk

dϵ
> 0, or

πk
1,0

πk
1,1

+
1− P k

fa

1− P k
d

log
1− πk

1,0

1− πk
1,1

>
1− πk

1,0

1− πk
1,1

+
1− P k

fa

1− P k
d

log
πk
1,0

πk
1,1

. (A.49)

Since P k
d > P k

fa and βk
x̄,x < 0.5, πk

1,1 > πk
1,0. It can also be proved that

1− πk
1,0

1− πk
1,1

<
1− P k

fa

1− P k
d

.
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Hence, we have

1− πk
1,0

1− πk
1,1

<
1− P k

fa

1− P k
d

[
1− (πk

1,0 − πk
1,1)
]

(A.50)

⇔
1− πk

1,0

πk
1,1(1− πk

1,1)
<

1− P k
fa

1− P k
d

[
1− (πk

1,0 − πk
1,1)

πk
1,1

]

⇔ 1

πk
1,1(1− πk

1,1)
<

1− P k
fa

1− P k
d

[
1− (πk

1,0 − πk
1,1)

πk
1,1(1− πk

1,0)

]

⇔ 1

πk
1,0 − πk

1,1

[
πk
1,0 − πk

1,0π
k
1,1 + πk

1,0π
k
1,1 − πk

1,1

πk
1,1(1− πk

1,1)

]
<

1− P k
fa

1− P k
d

[
1− (πk

1,0 − πk
1,1)

πk
1,1(1− πk

1,0)

]

⇔ 1

πk
1,0 − πk

1,1

[
πk
1,0

πk
1,1

−
1− πk

1,0

1− πk
1,1

]
<

1− P k
fa

1− P k
d

[
1

πk
1,1

+
1

1− πk
1,0

]
(A.51)

⇔
πk
1,0

πk
1,1

−
1− πk

1,0

1− πk
1,1

>
1− P k

fa

1− P k
d

[
πk
1,0 − πk

1,1

πk
1,1

+
πk
1,0 − πk

1,1

1− πk
1,0

]
(A.52)

⇔
πk
1,0

πk
1,1

−
1− πk

1,0

1− πk
1,1

>
1− P k

fa

1− P k
d

[
πk
1,0 − πk

1,1

πk
1,1

+
1− πk

1,1 − (1− πk
1,0)

1− πk
1,0

]

⇔
πk
1,0

πk
1,1

+
1− P k

fa

1− P k
d

[
1−

1− πk
1,1

1− πk
1,0

]
>

1− πk
1,0

1− πk
1,1

+
1− P k

fa

1− P k
d

[
πk
1,0

πk
1,1

− 1

]
. (A.53)

To prove that (A.49) is true, we apply the logarithm inequality (x − 1) ≥ log x ≥ x− 1

x
, for

x > 0 to (A.53). First, let us assume that x =
1− πk

1,0

1− πk
1,1

. Now using the logarithm inequality we

can show that log
1− πk

1,0

1− πk
1,1

≥ 1 −
1− πk

1,1

1− πk
1,0

. Next, let us assume that x =
πk
1,0

πk
1,1

. Now using the

logarithm inequality it can be shown that

[
πk
1,0

πk
1,1

− 1

]
≥ log

πk
1,0

πk
1,1

. Using these results and (A.53),

one can prove that condition (A.49) is true.

A.9 Proof of Lemma 5.5.2

To prove Lemma 5.5.2, it is sufficient to show that:

1. KLD is a monotonically decreasing function of Bk, and,
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2. Attacking parent nodes is a strictly dominant strategy.

Lemma 5.3.4 suggests that the KLD is a monotonically decreasing function of Bk in the region

where attacker cannot make Dk = 0 and, therefore, (1) is proved. Next, we show that attacking

parent nodes is a strictly dominant strategy. In other words, given a cost budget Cattacker
budget , it is more

profitable for an attacker to attack the parent nodes. Observe that the KLD at level k is a function

of Byzantines’ parameter (B1, · · · , Bk). Thus, we denote it as Dk(B1, · · · , Bk).

In order to prove that attacking parent nodes is a strictly dominant strategy, it is sufficient to

show that the attack configuration S1 = (B1, · · · , Bj, Bj+1, · · · , BK) strictly dominates the attack

configuration S2 = (B1, · · · , Bj−δ, Bj+1+δ
Nj+1

Nj
, · · · , BK) for δ ∈ {1, · · · , Bj}. In other words,

we want to show that P (S1) > P (S2) and C(S1) ≤ C(S2). From the cost inequality it follows that

C(S1) ≤ C(S2) because cmax ≤ (min
k
Nk+1/Nk) × cmin ⇒ c̃j ≤ (Nj+1/Nj) × c̃j+1. Also, note

that if the attack configuration S1 strictly dominates the attack configuration S2, then, it will also

strictly dominate any attack configuration S̃2 with S̃2 = (B1, · · · , Bj − δ, Bj+1 + δγ, · · · , BK),

where γ ≤ Nj+1

Nj
. Next, we show that P (S1) > P (S2).

SinceDj(B1, · · · , Bj−1, Bj) < Dj(B1, · · · , Bj−1, Bj−δ), for δ ∈ {1, · · · , Bj}, ∀j, it follows

that

Dj(B1, · · · , Bj−1, Bj) < Dj(B1, · · · , Bj−1, Bj − δ)

⇔
j∑

k=1

Dk(B1, · · · , Bk) <

j−1∑
k=1

Dk(B1, · · · , Bk) +Dj(B1, · · · , Bj−1, Bj − δ)

⇔
K∑
k=1

Dk(B1, · · · , Bk) <

j−1∑
k=1

Dk(B1, · · · , Bk) +Dj(B1, · · · , Bj−1, Bj − δ)

+
K∑

k=j+1

Dk(B1, · · · , Bj − δ, Bj+1 + δ
Nj+1

Nj

, Bj+2, · · · , Bk),
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where the last inequality follows from the fact that Bj

Nj
+

Bj+1

Nj+1
=

Bj−δ

Nj
+

Bj+1+
Nj+1
Nj

δ

Nj+1
and,

therefore,

Dk(B1, · · · , Bj, Bj+1, · · · , Bk) = Dk(B1, · · · , Bj − δ, Bj+1 +
Nj+1

Nj

δ, · · · , Bk).

This implies that the set S1 strictly dominates the set S2. From the results in Lemma 5.3.4, it is

seen that the profit is an increasing function of the attack nodes. Lemma 5.3.4 in conjunction with

the fact that attacking parent nodes is a strictly dominant strategy implies Lemma 5.5.2.

A.10

To prove the proposition, we start with the inequality (6.10)

dkmin ≥
2(M − 2)

[1− 4qkmax(1− qkmax)]− (1/ak)[(2/qkmax)− 2]
(A.54)

=⇒ dkmin

2

(
1− 4qkmax(1− qkmax)

)
≥ (M − 2) +

dkmin

ak

(
1

qkmax

− 1

)
(A.55)

=⇒ dkmin

2
log

(
1

4qkmax(1− qkmax

)
≥ log(M − 1) +

dkmin

ak
log

1

qkmax

(A.56)

=⇒
[
qkmax

] dkmin
ak ≥ (M − 1)

[√
4qkmax(1− qkmax)

]dkmin

(A.57)

where (A.55) is true because ak satisfies (6.11), and (A.56) can be proved by applying the

logarithm inequality: (x− 1) ≥ log x ≥ x− 1

x
, for x > 0. Now, for k = 1, · · · , K
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Qk−1
m = Pr(decision at level k − 1 ̸= Hm | Hm)

≤ Pr(dk(uk, ckm) ≥ min
1≤l≤M, l ̸=m

dk(uk, ckl ) | Hm)

≤
M∑
l=1
l̸=m

Pr(dk(uk, ckm) ≥ dk(uk, ckl ) | Hm)

≤
M∑
l=1
l̸=m

[√
4Qk

mm(1−Qk
mm)

]dk(ckl ,ckm)

(A.58)

≤ (M − 1)
[√

4qkmax(1− qkmax)
]dkmin

(A.59)

≤
[
qkmax

] dkmin
ak . (A.60)

Note that (A.58) is true when Qk
m < 1

2
as shown in [18], which holds when (6.10) and (6.11)

are true. Using the above results, the average probability of error can be bounded as follows.

P 0
e =

M∑
m=1

PmPr(decision at the FC ̸= Hm | Hm)

≤
M∑

m=1

Pm

[
q1max

] d1min
a1

=
[
q1max

] d1min
a1

Now, since Q1
m ≤ [q2max]

d2min
a2 ∀m, we have q1max ≤ [q2max]

d2min
a2 . Continuing in this manner, we get

P 0
e ≤

[
qKmax

]∏K
k=1

dkmin
ak .
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A.11

To prove the proposition, we first establish the following set of inequalities (Please see (A.58)-

(A.60))

M∑
m=1

P k
mPr(decision at level k − 1 ̸= Hk

m | Hk
m)

≤
M∑

m=1

P k
mPr(d

k(uk, ckm) ≥ min
1≤l≤M, l ̸=m

dk(uk, ckl ) | Hk
m)

≤
M∑

m=1

P k
m

M∑
l=1
l̸=m

Pr(dk(uk, ckm) ≥ dk(uk, ckl ) | Hk
m)

≤
M∑

m=1

P k
m

M∑
l=1
l̸=m

[√
4Qk

mm(1−Qk
mm)

]dk(ckl ,ckm)

≤ (M − 1)
[√

4qkmax(1− qkmax)
]dkmin

.

Therefore,

M∑
l=1

P k
mPr(decision at level k − 1 ̸= Hk

m | Hk
m)

≤ (M − 1)
[√

4qkmax(1− qkmax)
]dkmin

⇔
M∑
l=1

P k
mPr(decision at level k − 1 = Hk

m | Hk
m)

≥ 1− (M − 1)
[√

4qkmax(1− qkmax)
]dkmin

.

Now,
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P 0
e = 1−

K∏
k=1

M∑
l=1

P k
mPr(decision at level k − 1 = Hk

m | Hk
m)

≤ 1−
K∏
k=1

[
1− (M − 1)(4qkmax(1− qkmax))

dkmin
2

]
.

A.12

The local test statistic Yi has the mean

meani =

 Mσ2
i if H0

(M + ηi)σ
2
i if H1

and the variance

V ari =

 2Mσ4
i if H0

2(M + 2ηi)σ
4
i if H1.

The goal of Byzantine nodes is to make the deflection coefficient as small as possible. Since the

Deflection Coefficient is always non-negative, the Byzantines seek to makeD(Λ) = (µ1 − µ0)
2

σ2
(0)

=

0. The conditional mean µk = E[Λ|Hk] and conditional variance σ2
(0) = E[(Λ − µ0)

2|H0] of the

global test statistic, Λ = (
∑N1

i=1 w̃iỸi +
∑N

i=N1+1wiYi)/(
∑
w), can be computed and are given

by (7.3), (7.4) and (7.5), respectively. After substituting values from (7.3), (7.4) and (7.5), the

condition to make D(Λ) = 0 becomes

N1∑
i=1

w̃i(2Pi∆i − ηiσ2
i ) =

N∑
i=N1+1

wiηiσ
2
i
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A.13

Note that, for sufficiently large M (in practice M ≥ 12), the distribution of Byzantine’s data Ỹi

given Hk is a Gaussian mixture which comes fromN ((µ1k)i, (σ1k)
2
i ) with probability (1−P ) and

from N ((µ2k)i, (σ2k)
2
i ) with probability P , and

(µ10)i =Mσ2
i , (µ20)i =Mσ2

i +∆i

(µ11)i = (M + ηi)σ
2
i , (µ21)i = (M + ηi)σ

2
i −∆i

(σ10)
2
i = (σ20)

2
i = 2Mσ4

i , and (σ11)
2
i = (σ21)

2
i = 2(M + 2ηi)σ

4
i .

Now, the probability density function (PDF) of xtji = wt
jiỸi conditioned on Hk can be derived as

f(xtji|Hk) = (1− P )ϕ(wt
ji(µ1k)i, (w

t
ji(σ1k)i)

2)

+ Pϕ(wt
ji(µ2k)i, (w

t
ji(σ2k)i)

2) (A.61)

where ϕ(x|µ, σ2) (for notational convenience denoted as ϕ(µ, σ2)) is the PDF of X ∼ N (µ, σ2)

and ϕ(x|µ, σ2) = 1
σ
√
2π
e−(x−µ)2/2σ2

.

Now, for the three node case, the transient test statistic Λ̃t
j = wt

j1Ỹ1 + wt
j2Ỹ2 + wt

j3Y3, is

a summation of independent random variables. The conditional PDF of X t
ji = wt

jiỸi is given

in (A.61). Notice that, PDF of Λ̃t
j is the convolution (∗) of f(xtj1) = (1 − P )ϕ(µ1

1, (σ
1
1)

2) +

Pϕ(µ2
1, (σ

2
1)

2), f(xtj2) = (1− P )ϕ(µ1
2, (σ

1
2)

2) + Pϕ(µ2
2, (σ

2
2)

2)) and f(xtj3) = ϕ(µ1
3, (σ

1
3)

2).

f(ztj) = f(xtj1) ∗ f(xtj2) ∗ f(xtj3)

f(ztj) = [(1− P )ϕ(µ1
1, (σ

1
1)

2) + Pϕ(µ2
1, (σ

2
1)

2)]∗

[(1− P )ϕ(µ1
2, (σ

1
2)

2) + Pϕ(µ2
2, (σ

2
2)

2)] ∗ ϕ(µ1
3, (σ

1
3)

2)
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= (1− P )2[ϕ(µ1
1, (σ

1
1)

2) ∗ ϕ(µ1
2, (σ

1
2)

2) ∗ ϕ(µ1
3, (σ

1
3)

2)]

+(P )2[ϕ(µ2
1, (σ

2
1)

2) ∗ ϕ(µ2
2, (σ

2
2)

2)) ∗ ϕ(µ1
3, (σ

1
3)

2)]

+P (1− P )[ϕ(µ2
1, (σ

2
1)

2) ∗ ϕ(µ1
2, (σ

1
2)

2) ∗ ϕ(µ1
3, (σ

1
3)

2)]

+(1− P )P [ϕ(µ1
1, (σ

1
1)

2) ∗ ϕ(µ2
2, (σ

2
2)

2) ∗ ϕ(µ1
3, (σ

1
3)

2)]

Now, using the fact that convolution of two normal PDFs ϕ(µi, σ
2
i ) and ϕ(µj, σ

2
j ) is again normally

distributed with mean (µi + µj) and variance (σ2
i + σ2

j ), we can derive the results below.

f(ztj) = (1− P )2[ϕ(µ1
1 + µ1

2 + µ1
3, (σ

1
1)

2 + (σ1
2)

2 + (σ1
3)

2)]

+P 2[ϕ(µ2
1 + µ2

2 + µ1
3, (σ

2
1)

2 + (σ2
2)

2 + (σ1
3)

2)]

+P (1− P )[ϕ(µ2
1 + µ1

2 + µ1
3, (σ

2
1)

2 + (σ1
2)

2 + (σ1
3)

2)]

+(1− P )P [ϕ(µ1
1 + µ2

2 + µ1
3, (σ

1
1)

2 + (σ2
2)

2 + (σ1
3)

2)].
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