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Abstract

The observation of structures consistent with charmonium-pentaquark states de-

caying to J/ψp in Λ0
b → J/ψK−p decays is presented. The data sample analyzed

corresponds to an integrated luminosity of 3 fb−1 acquired with the LHCb detector

from 7 and 8 TeV pp collisions. An amplitude analysis was performed which uti-

lized all six kinematic degrees of freedom in the decay. It was shown that adequate

descriptions of the data are unattainable with only K−p resonances in the ampli-

tude model. For satisfactory fits of the data, it was found to be necessary to include

two J/ψp resonances, with each having significances of over 9 standard deviations.

One has a mass of 4449.8 ± 1.7 ± 2.2 MeV and a width of 39 ± 5 ± 16 MeV,

while the second is broader, with a mass of 4380 ± 8 ± 29 MeV and a width of

205±18±87 MeV. The JP assignments could not be uniquely determined, though

there is a preference for one to have spin 3/2 and the other spin 5/2 with an oppo-

site parity to the first. The data sample was also inspected in a model-independent

way for the presence of J/ψp or J/ψK− contributions. It was demonstrated at more

than 9 standard deviations that the data cannot be described with K−p contribu-

tions alone, and that J/ψp contributions play a dominant role in this incompati-

bility. These model-independent results support the model-dependent evidence for

P+
c → J/ψp charmonium-pentaquark states provided by the amplitude analysis.
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1 Introduction

The existence of hadrons beyond the conventional quark-antiquark (qq̄) mesons and three-

quark baryons (qqq) have been hypothesized since the birth of the quark model. In fact,

the possibility of mesons with quark content qqq̄q̄ and baryons with quark content qqqqq̄

was explicitly mentioned in the original papers published by Gell-Mann [1] and Zweig [2]

back in 1964. Such qqq̄q̄ mesons are commonly referred to as tetraquarks, and qqqqq̄

baryons are commonly referred to as pentaquarks. At the time, only the lighter mass

quarks (u, d, s) were known, and searches for “exotic” mesons and baryons consisting of

these light quarks are almost as old as the quark model itself. While there have been

several claims of finding such states, there has been no lasting experimental evidence for

the existence of exotic hadrons with only light valence quarks.

Pentaquarks searches have focused mainly on the baryons with strangeness quantum

number equal to +1. Such states can’t be accommodated by only three quarks, and

so are unambiguously identifiable as pentaquark states. These states were looked for in

a number of kaon-nuclean scattering experiments, and various partial wave analyses of

the data reported possible pentaquark resonances, denoted at the time as Z baryons.

For a review of these measurements, see the 1976 Particle Data Group (PDG) status

summary [3]. Despite these early hints at pentaquarks, there was still nothing conclusive

when, in 1992, the PDG’s review called for higher standards of proof and predicted it

would take another 20 years to sort out whether or not these states exist [4].

Interest in pentaquarks waned for a period. However, there were theoretical predic-

tions made [5, 6] suggesting that a Z baryon could be found at 1530 MeV with a width

of less than 15 MeV.1 While there was no statistically significant evidence of any pen-

taquarks at this mass, the data were not able to rule them out as, being only 100 MeV

above the K+p threshold, there were challenges from requiring a low-momentum K+

beam. Thus, the mass was low enough that it could have evaded searches. Such a nar-

row state was also attractive in terms of experimental detectability, as broader states are

much more easily able to hide under backgrounds. A second wave of interest in pen-

1Natural units with c = 1 are used throughout this dissertation
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taquarks came, and a number of claims of evidence for this state, referred to as the Θ+

particle, proceeded to come out around the same time. While only a very brief summary

is given here, a more thorough review of the history can be found at Ref. [7]. The first

four experiments which reported evidence are listed in Table 1. Note the agreement in

Table 1: The first four experiments with positive evidence for the Θ+ [7].

Experiment Reaction Mass (GeV) Significance
LEPS [8] γC → K+K−X 1.54±0.01 4.6σ
DIANA [9] K+Xe→ K0

SpX 1.539±0.002 4.4σ
CLAS [10] γd→ K+K−pn 1.542±0.005 (5.2±0.6)σ
SAPHIR [11] γp→ K0

SK
+n 1.540±0.004 4.8σ

mass, and how high of significances are claimed. Searches for other pentaquarks were

also carried out, and indeed claims were made that they were found, as well. However,

the Θ+ and other candidates all suffered similar fates. Many of the claims were contro-

versial, and were contradicted by other experiments. Ultimately, no candidates survived

searches from higher statistics analyses. Currently there is no obvious explanation of

the positive results, as it is extremely unlikely all these signals appearing at the same

mass were results of statistical fluctuations. Possibly, this may be a case of “pathological

science” [12]. Regardless, the 2006 pentaquark update by the PDG ended with a rather

pessimistic note, stating that “The conclusion that pentaquarks in general, and the θ+,

in particular, do not exist, appears compelling” [13].

Though the exotic baryon searches have gone poorly and caused much controversy, the

exotic meson searches have found some success in recent years. In particular, an abun-

dance of charmonium- and bottomonium-like tetraquark candidates have been found,

which are often referred to as XYZ states. This is not the place to give a full review,

so just a few examples will be mentioned. The first instance was the X(3872), which

was discovered by Belle [14], and had its quantum numbers uniquely determined by

LHCb [15, 16]. Similarly, the Z(4430)+ state was discovered by Belle [17, 18] and con-

firmed by LHCb [19, 20]. Evidence for the X(4140) in B+ → J/ψφK+ decays was origi-

nally published by CDF [21]. LHCb recently confirmed this state (although with a much

larger width) along with three other J/ψφ resonances, all of whose quantum numbers
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were also measured [22, 23]. The history of these states is much more complicated and

interesting, and the recent LHCb publications can be consulted for an overview [22, 23].

The natures of all these tetraquark candidates are still unclear, and some of them may

not be resonances at all, but a result of rescattering of known mesons. The presence

of tetraquarks would not mandate the presence of pentaquarks, though the existence

of strong tetraquark candidates lends support to the hypothesis that pentaquarks exist.

That the strongest tetraquark candidates have only appeared in recent years, and contain

heavy quarks is certainly note-worthy. It could be that more pentaquark candidates with

heavy quark content will be showing up, as more copious amounts of heavy baryons are

being produced at the LHC.

In this dissertation, the observation of J/ψp resonances consistent with pentaquark

states in Λ0
b → J/ψK−p decays is presented. 2 This decay mode was first observed and

reported by LHCb in the precision measurement of the Λ0
b lifetime [24]. In fact, it was

through this analysis, and not a dedicated pentaquark search, that these structures were

first seen, though it was not known at the time what they were. The observed invariant

mass distribution of the K−p system (mKp) and J/ψp system (mJ/ψp) in Λ0
b → J/ψK−p

decays are both shown in Fig. 1. The observed structures in the mKp distribution proceed
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Figure 1: The (a) mKp and (b) mJ/ψp for the background-subtracted Λ0
b → J/ψK−p

candidates. The solid (red) histogram shows the phase space expectations.

through the Feynman diagram shown in Fig. 2(a). These are expected, and correspond

2Charge-conjugate states are implied throughout this dissertation.
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to conventional resonances. The prominent peak shown in the mJ/ψp system is not ex-

pected, and is indicative of a pentaquark resonance. This decay would proceed through

the Feynman diagram shown in Fig. 2(b), with the prospective pentaquark state denoted

by Pc to reflect the cc quark pair. While the structure in mJ/ψp is quite striking, the

Figure 2: Feynman diagrams for (left) Λ0
b → J/ψΛ∗ and (right) Λ0

b → PcK
− decay.

history of pentaquark searches has made it clear that caution should be practiced when

making claims about new candidates, and so great effort has gone into studying these

signals. Two complementary analyses which demonstrate that the observed structures

can’t be the result of conventional sources have been performed. The first analysis is

a six-dimensional amplitude analysis which, in addition to showing the data can’t be

described by known conventional resonances, resulted in the announcement of the ob-

servation of the pentaquark candidates, Pc(4380) and Pc(4450). The second analysis

assessed in a model-independent way the compatibility of the data with the hypothesis

that only conventional components are present. It demonstrated with high significance

that the data isn’t compatible with this hypothesis, and did so without making any as-

sumptions about the number of conventional resonant or nonresonant components, nor

about their lineshapes, masses, widths, or possible interference patterns. The first and

second analyses resulted in the publications of Ref. [25] and Ref. [26], respectively. Both

of these will be presented in this dissertation.

Prior to the aforementioned pentaquark candidate studies, work was done on the

analysis of semileptonic decays of the Bc meson. As this does not fit into the main

narrative of this dissertation, it is briefly summarized in Appendix N.
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2 The Quark Model

2.1 Overview

The quantum field theory of the strong interaction, Quantum Chromodynamics (QCD),

describes the interactions between quarks and gluons. Within it, hadrons are viewed as

being made of valence quarks and a “sea” of gluons and quark-antiquark pairs. The quark

model, proposed independently in 1964 by Murray Gell-Mann [1] and George Zweig [2],

is a successful scheme for classifying hadrons in terms of their valence quarks and anti-

quarks. While the complete picture is more complicated, the valence quarks determine

the quantum numbers of the hadron, and the quark model has been tremendously suc-

cessful in predicting properties of hadrons. From this point, when the quark content is

spoken of, it can be assumed that it refers to the valence quark content.

There are 6 flavors of quarks: up (u), down (d), charm (c), strange (s), top (t), bottom

(b). Each has spin 1/2 and has positive parity (P). Additionally, they carry an electric

charge of either −1/3 or 2/3, as specified in Table 2. The quark masses [27] are also

listed, where it can be seen that the u, d, and s quarks are all significantly lighter than

the c, b, and t quarks. Thus these two groups are often referred to as the light and heavy

quarks, respectively. Each flavor also has an associated flavor quantum number, with the

sign of this quantum number following the sign of the electric charge. The flavor quantum

numbers of each species of quark are also listed in Table 2. These quantum numbers are

conserved quantities in the strong interaction3. There is also an antiquark for each of the

quark flavors, which of course carries all the opposite quantum numbers.

In Table 2, the flavor quantum numbers for the up and down quarks are the third

components of a quantum number called “isospin”. Both the up and down quarks have

total isospin I = 1/2. While isospin is just a more specific case of the larger flavor

symmetry which is conserved by the strong interaction, the similarity of the up and down

quark masses makes representing their flavor quantum numbers with isospin be useful. In

particular, this makes the strong interaction be approximately invariant under rotations

3This is an important point in this analysis, when it comes to determining the minimum quark content
of the Pc states in the Pc → J/ψp decay.
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Table 2: Quarks and their mass [27], charge (Q), and flavor quantum numbers: third
isospin component (Iz), charmness (C), strangeness (S), topness (T), bottomness (B)

Name Mass ( MeV) Q (e) Iz C S T B
First Generation

up (u) 2.3+0.7
−0.5 +2/3 +1/2 0 0 0 0

down (d) 4.8+0.5
−0.3 −1/3 −1/2 0 0 0 0

Second Generation
charm (c) 1275± 25 +2/3 0 +1 0 0 0
strange (s) 95± 5 −1/3 0 0 −1 0 0

Third Generation
top (t) 173210± 510± 710 +2/3 0 0 0 +1 0

bottom (b) 4180± 30 −1/3 0 0 0 0 −1

in isospin space. Isospin symmetry was originally proposed by Werner Heisenberg to

explain the nearly degenerate masses of the uud proton and udd. It has since become a

useful tool for classifying hadrons and predicting behavior of decays involving particles

which carry isospin. While isospin actually has nothing to do with spin, the mathematical

formalism used to describe it is very similar. Indeed, isospin is an approximate SU(2)

symmetry. This symmetry can be extended to SU(3) symmetry with the inclusion of the

s quark, though this symmetry is badly broken due to the significantly heavier s quark

mass. Further extensions with the heavier quarks are even more badly broken and are

essentially useless.

Quarks carry the color charge, which is exchanged via interactions with gluons. In

contrast to the electric charge, the color charge can take three different values: red, green,

and blue. Antiquarks then carry the anti-colors: anti-red, anti-green, anti-blue. QCD is

invariant under rotations in color space, leading to an exact SU(3) color symmetry. The

color charge adds in such a way that the combined addition of all three colors results in

a colorless net charge, i.e. it is white. Similarily all three anticolors added together are

white, and a color added with its anticolor is white. Due to a feature of QCD called color

confinement, isolated color charged particles do not exist by themselves in nature. That

is, quarks are never found by themselves, and are only found in combinations in which

the total composite particle is colorless.

Another quantum number of the quarks called “baryon” number (B) is useful for
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classifying the types of colorless hadrons which can be built. Each quark has B = +1/3,

and each antiquark has B = −1/3. Baryon number is also a conserved quantity, and were

it not for its role in classifying hadrons, it would be more suitably referred to as quark

number. The simplest ways to obtain a colorless composite state would be to combine a

quark and an antiquark with the respective anticolor, or three quarks of different color.

These two possibilities have B = 0 and B = 1, and are referred to as mesons and baryons,

respectively. There are of course other configurations which lead to B = 0 and B = 1,

and these are the subject of the next subsection.

2.2 Exotic Hadrons

While the simplest colorless combinations of quarks are the qq and qqq configurations,

which correspond to the conventional mesons and hadrons, there is no known reason

within QCD why other combinations should not exist. Nature tends to prefer the simplest

ways to do things, and in the present discussion this is clearly manifested in that these

configurations of mesons and baryons dominate the known hadrons. However, unless

something is strictly forbidden, nature will also utilize all possibilites, even if it is only

some small fraction of the time. Unless there is something prohibiting their existence,

colorless configurations of quarks beyond the conventional hadrons ought to exist.

As was mentioned in the introduction, quark combinations beyond the conventional

ones have been hypothesized since the quark model was first proposed [1, 2]. It should

be noted that since the development of QCD, other types of exotic particles consisting

of bound states of valence gluons (“glueballs”) or hybrid states with both valence quarks

and gluons have been hypothesized. The proposal of such states is based on the fact

that gluons carry the very charge to which they couple. The rest of this dissertation,

however, will only mention the “multi-quark” exotic hadron candidates of exotic mesons

and exotic baryons, which include most prominently the qqqq tetraquarks, and the qqqqq

pentaquarks, respectively.

Following the original suggestion that such configurations of quarks might exist, a

quantitative model for tetraquarks was developed in 1976 [28], and the idea was soon
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expanded upon to include pentaquarks [29,30]. The name pentaquark itself wasn’t coined

until 1987 [31]. Throughout the years, a number of theoretical predictions for various

states consisting of light quarks have been made, for which all experimental searches have

failed. To some degree, their production is expected to be suppressed with regards to the

conventional hadrons. Furthermore, multiquark states which consist of only light quarks

may also have broad widths, which would make their identification be experimentally

difficult. The fairly recent arrival of several tetraquark candidates with heavy quark

content has also been taken as possible evidence that heavy quarks play an important

role in having stable multiquark states [32–34]. It should also be noted that the internal

structure of exotic hadrons is an active area of research. There are a number of models

which have been proposed, which cover a range of internal structures. For example,

there are tightly bound states, in which all quarks are contained within the same color

confinement volume, and there are loosely bound states in which conventional hadrons

are bound by meson exchange. This is a topic which will be revisited in Sec. 26, and is

in need of experimental input.
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3 Detector Description

This dissertation uses data collected from proton-proton collisions with the LHCb detec-

tor. The proton-proton collisions are provided by the Large Hadron Collider, for which

a very brief overview will be given. Next, the LHCb Experiment and the components of

the detector will be discussed. A more detailed description of the detector can be found

at Ref. [35], and its performance in Run 1 is presented in Ref. [36]

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC), located at the European Organization for Nuclear

Research (CERN) on the France-Switzerland border, is the world’s highest energy par-

ticle accelerator. It was constructed to be capable of colliding beams of protons at a

center-of-mass energy of up to
√
s = 14 TeV. An overview of the collider, which spans

a 27-kilometer ring, is given in Fig. 3. The acceleration to the collision energy occurs

in a number of steps, utilizing accelerators from previous experiments. The linear parti-

cle accelerator, LINAC2, delivers 50 MeV protons into the Proton Synchotron Booster

(PBS), where they are further accelerated to 1.4 GeV. The next step is the Proton

Synchotron (PS) followed by the Super Proton Synchotron (SPS), where they reach en-

ergies of 26 GeV and 450 GeV, respectively. After the SPS, the protons are injected into

the main LHC rings, where two proton beams move in opposite directions in separate

beampipes. The beampipes are kept at ultrahigh vacuum, and the protons are accelerated

and guided by strong magnetic fields maintained by superconducting magnets operating

at −271.3◦C. The beams which circulate the collider are not actually continuous, but

spaced in bunches of roughly 1011 protons each. Each bunch is separated in time by

about 25 ns, leading to a bunch-crossing rate of 40MHz. The beams will circulate and

collide at predesignated points for several hours until the proton bunches grow depleted.

After a certain point, the beams are dumped and replenished beams are reaccelerated.

While the main use of the machine is for proton-proton collisions, it also receives limited

use for proton-lead and lead-lead collisions.
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Figure 3: Layout of CERN’s accelerator complex and LHC experiments. [37]

There are four interaction points along the collider, where the beams are made to

collide. Located at these four large interaction points are the large LHC experiments.

The CMS [38] and ATLAS [39] experiments are general-purpose detectors, which cover a

wide range of goals, such as studying the Higgs Boson and searching for physics beyond the

Standard Model. ALICE [40] collects heavy ion collision data in order to study strongly

interacting matter at extreme energy densities, for purposes such as understanding color

confinement in QCD. Finally, LHCb [35] was designed for precision measurements of CP

violation and bottom and charm quark decays.

While the machine is capable of colliding beams at
√
s = 14 TeV, it has not yet done

so. In 2011, it ran at 7 TeV, and in 2012 it was increased to 8 TeV. The data collected

during 2011-2012 constitutes the Run 1 data set, which this dissertation is based off of.

During this period, LHCb collected ∼ 3 fb−1 of data. This is considerably less than the

25 fb−1 collected by both ATLAS and CMS, for reasons which will be described in the

next section. Note that after two years of maintenance and upgrades, the LHC began

collisions again in 2015 and reached 13 TeV collisions for the first time.

3.2 The LHCb Experiment

The LHCb detector is a single-arm forward spectrometer, designed for precision mea-

surement of CP violation and of bottom and charm quark decays. An overview of the
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detector is shown in Fig. 4, and each of the subdetector systems will be summarized in

the following sections. The angular acceptance is 10-300 mrad in the magnet bending

Figure 4: Overview of the LHCb detector. [35]

plane, and up to 250 mrad in the vertical plane, corresponding to a pseudorapidity range

of 1.8 < η < 4.9. This particular geometry of the detector was chosen as the production

of b and b̄ quarks at LHC energies is such that their directions will tend to be along the

beam line. The polar angles of the b and b̄-hadrons produced for
√
s = 8 TeV collisions

are shown in Fig. 5, as predicted from Pythia [41] simulations.

The detector was designed to operate at a luminosity of L = 2×1032cm−2s−1, in com-

parison to the LHC’s design maximum luminosity of 1034cm−2s−1. A lower luminosity is

used essentially to make for less “busy” events. Higher luminosities mean more interac-

tions per bunch crossing, which results in a larger number of points where proton-proton

collisions take place. A proton-proton collision point is referred to as a primary vertex,

and the identification of primary vertices is essential in many analyses in order to accu-

rately reconstruct the paths of decaying particles. A high number of primary vertices in

an event makes it much more difficult to identify the primary vertex from which a particle

originated. The higher track multiplicity events, which would result from more collisions,

would also make event reconstruction more difficult. Finally, operating at lower lumi-

nosities also limits the radiation damage and detector occupancy. To achieve the lower

luminosity, a method referred to as “luminosity leveling” is used. This is done by shifting

the beams relative to each other, effectively changing the area of the beam overlap so as
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Figure 5: Display of bb production angles as simulated with PYTHIA8. The LHCb
acceptance is shown in red.

to achieve a lower luminosity. As the number of proton bunches goes down, the beams

can be made to overlap more in small increments so that the luminosity is also kept

constant.

3.3 Tracking

The tracking system makes use of the Vertex Locater (VELO), dipole magnet, and track-

ing stations. There are four tracking stations, which are referred to as the TT, T1, T2,

and T3. The TT is placed directly upstream from the magnet, while the rest are down-

stream. Figure 6 shows the interplay of the different tracking elements in reconstructing

different types of tracks. The tracking system plays critical roles in the LHCb detector.

Reconstructed tracks allow for determing the locations of primary or secondary vertices.

They also allow for determining the bending of charged particles in the magnetic field,

which allows for measuring the particle’s momentum and charge. Reconstructed tracks

are also essential for gathering information from the other subdetectors. The different

tracking components will now be discussed.
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Figure 6: Schematic of the tracking components with different types of track definitions.
The main B-field component (By) as a function of the z coordinate is plotted above. [36]

3.3.1 Vertex Locater

The Vertex Locater (VELO) immediately surrounds the interaction point and is used

to obtain precise measurement of track coordinates near the interaction region. This

is crucial for reconstructing the production and decay vertices of b and c-hadrons, and

for measuring the impact parameter of particles with respect to the primary vertices.

Detached vertices also play an important role in the High Level Trigger, which is to be

discussed in Sec. 3.5.2.

The VELO consists of 2× 21 silicon modules placed along the beam in stations, and

enclosing the beampipe. They are arranged such that tracks inside the acceptance of the

detector cross at least three stations. An overview is given in Fig. 7. The stations located

farthest upstream and labeled “pileup VETO stations” were envisioned to be used to

veto events with a large number of primary vertices, though they have instead been used

for luminosity measurements. The radial distance from the beampipe is smaller than

the aperture required during the injection of the proton beams, and so the stations are
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required to be retractable, as shown with the open and closed configurations in Fig. 7.

Each of the stations has two semicircular silicon strip sensors which are mounted back-

to-back, and measure the cylindrical coordinates (r, φ) of a track. For this purpose, each

station has two types of sensors consisting of silicon strips which separately determine the

two coordinates. The radial sensors are arranged in constant radii and centered around

the beam axis, while the φ sensors are straight and arranged nearly radially around

the module. Figure 7 also shows the arrangement of the r and φ sensors. The particular

VELO station then returns the z-coordinate of a particular point in the track, completing

the 3 dimensional measurement of a track point.

Figure 7: On top is an overview of the VELO as seen in the (x, z) plane. The bottom two
figures show the front face of the modules in the (x, y) plane, for both open and closed
positions. [35]

3.3.2 Dipole Magnets

A dipole magnet is used for the measurement of the momentum of charged particles. It

consists of two separate aluminum coils, shaped like a saddle and mounted symmmet-

rically in a window-frame magnetic yoke. An overview of the magnet can be seen in

Fig. 8. The magnetic field is vertically oriented (in the y-direction), and covers ±250

mrad vertically and ±300 mrad horizontally. The integrated magnetic field for tracks

of 10 m in length is 4 Tm. In order to obtain the desired momentum resolution, the

integrated magnetic field must be known with a precision on the order of 10−4. This pre-
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cision was achieved using arrays of Hall probes, with which the components of the field

were measured in a fine grid spanning from the interaction point to the RICH2 detector.

The polarity of the magnet is also able to be reversed, which is important for studies of

detector asymmetry which have an impact on CP violation measurements.

Figure 8: An overview of the dipole magnet [35]

3.3.3 Silicon Tracker

The Silicon Tracker (ST) consists of the Tracker Turicensis (TT), located upstream from

the magnet, and the Inner Tracker (IT), located downstream from the magnet. Both

components use silicon microstrip sensors with a strip pitch of about 200 µm. The TT

covers the full acceptance of the detector, while the IT covers a 120 cm wide and 40

cm high cross-shaped area in the center of the three downstream tracking stations. The

four ST stations consist of four detection layers which are placed in an (x − u − v − x)

arrangment, in which the outer layers have vertical strips, and the second and third layers

have strips rotated by a stereo angle of −5◦ and +5◦, respectively. The TT is especially

useful in reconstructing long lived particles that are not detected by the VELO, as well

as low momentum tracks which will be bent out of the acceptance by the magnet. The

IT tracker helps in reconstructing tracks which have passed through the magnetic field

and lie near the beam axis.
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The basic building blocks of the TT layers are half modules, which cover half of the

acceptance and are joined together end-to-end in order to create the full module. The

half modules are made up of seven silicon sensors, which are organized into either two or

three readout sectors, depending on the proximity to the beampipe. The read-out sectors

have one, two, three, or four sensors bonded together, such that the sectors closer to the

beampipe, which encounter the higher particle flux, have the lower number of sensors

bonded together. The space above and below the beampipe are each covered by a half

module, and the regions to the sides are covered by rows of seven full modules in the

first two layers and eight full modules in the last two layers. To avoid acceptance gaps,

adjacent modules are staggered by about 1 cm in z to allow overlap by a few millimeters

in x. For the u and v layers, individual modules are rotated by the respective stereo

angle. An overview of the third layer can be seen in Fig 9.

Figure 9: Layout of the third TT detection layer. Different readout sectors are indicated
by different shadings. [35]

The three IT stations consist of four detector boxes arranged around the beampipe, as

in Fig. 10. A detector box contains four detection layers which are arranged in the same

(x − u − v − x) configuration as the TT. Each of the detection layers has seven silicon

modules. Acceptance gaps are avoided by having adjacent modules staggered by 4 mm

in the z direction and an overlap by 3 mm in the x direction. The modules in the top

and bottom boxes consist of a single silicon sensor, while the modules in the side boxes
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consist of two silicon sensors. An x detection layer of the second IT station is shown in

Fig. 11.

Figure 10: Layout of the four detector boxes of an IT station arranged around the
beampipe. [35]

Figure 11: Layout of a second IT station detection layer. [35]

3.3.4 Outer Tracker

The Outer Tracker (OT) is a drift time detector, which is built around the IT and

outwards to cover the full acceptance. It consists of three gas-tight straw-tube stations,

positioned at T1, T2, and T3. An overview of the OT stations and their relation to the

ST is shown in Fig. 12.

Each station is built out of four layers, having the same (x− u− v − x) arrangement

as the ST. Each of the modules then contains two staggered layers of drift-tubes with

inner diameters of 4.9 mm, as shown in Fig. 13. The counting gas is chosen as a mixture

of Argon (70%) and CO2 (30%). This mixture guarantees a drift time below 50 ns, and

a drift-coordinate resolution of about 200 µm.
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Figure 12: The three OT stations (light blue) surrounding the three IT stations (purple),
along with the TT (purple) [35]

Figure 13: A cross section view of a straw-tubes module [35]

3.4 Particle identification

Particle identification is crucial to many of the analyses done at LHCb. It is performed by

two Ring-Imaging Chernkov (RICH) detectors, calorimeters, and a muon system. Using

the combined information from all systems, probablities of being different particle species

are assigned.

3.4.1 RICH

The ability to separate hadrons from each other is very important, and is provided through

the RICH detectors. These utilize the fact that a charged particle moving through a
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dielectric medium will emit electrogmagnetic radiation if its speed is greater than the

phase velocity of light in the medium. The radiation is emitted in a cone, and the

opening angle at which these photons are radiated, θc, depends on the speed of light

c, the refractive index n of the material, and the particle’s velocity v, via the relation

cos θc = c
nv

. Knowledge of the particle’s momentum from the other subdetectors then

allows for the prediction of the velocity for different particle types, which allows for the

calculation of θc for different hypotheses. These can then be compared to the measured

value.

The momentum spectrum is typically softer for particles with larger polar angles,

and the spectrum is harder for particles with smaller polar angles. It is important to

be able to cover a wide momentum range, and thus two RICH detectors are used which

utilize different radiator materials which are chosen to be better suited for the targeted

momentum spectrum. The RICH 1 lies upstream of the magnet in order to detect low

momentum particles and covers the full LHCb acceptance. It uses aerogel and C4F10

radiators, and covers a momentum range of 1− 60 GeV. RICH 2 is located downstream

of the magnet and has a more limited angular acceptance of ∼ ±15 mrad to ±120 mrad

(horizontal) and ±100 mrad (vertical). This covers the regions where high momentum

particles are expected. It uses a CF4 radiator, and covers a momentum range of ∼

15− 100 GeV. The Cherenkov angles obtained for the radiator material used in the two

detectors for a range of momentum values are show in Fig. 14.

For both RICH detectors, a combination of spherical and flat mirrors are used to

focus the radiated light and reflect the image out of the acceptance. RICH 1 utitlizes a

vertical optical layout, whereas RICH 2 has a horizontal layout. These layouts can be

seen in Fig. 15. Hybrid Photon Detectors (HPDs) are used to detect the photons in a

wavelength range of 200−600 nm. In order to permit operation of the HPDs in magnetic

fields up to 50 mT, they are surrounded by external iron shields and placed in MuMetal

cylinders.
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Figure 14: The Cherenkov angle dependence on particle momentum shown for the differ-
ent RICH radiators [35].

3.4.2 Calorimeters

The calorimeter system is located upstream of the RICH 2, and between the first and

second muon stations. It provides the transverse energy of hadron, electron, and photon

candidates for the first trigger level, to be described in Sec. 3.5. It is also used for

the identification of electrons, photons, and hadrons, as well as measurements of their

positions. Moving from upstream to downstream, the calorimeter system consists of

a scintillating pad detector (SPD), a pre-shower (PS), an electromagnetic calorimeter

(ECAL), and a hadronic calorimter (HCAL). All of the components use scintillating

materials in order to detect showers as particles pass through. The scintillation light

is then transmitted to a photo-multiplier by wavelength-shifting fibers. The different

detectors are segmented in the x − y plane, with higher channel density nearer to the

beampipe. This segmentation can be seen in Fig. 16. The segmentation of the HCAL

into two zones with larger sizes is due to the dimensions of hadronic showers.

The SPD/PS detector consists of two nearly identical planes of high granularity scin-

tillator pads separated by a lead converter. Since no showers are initiated before the SPD,

it will only detect charged tracks. On the other hand, electromagnetic showers can be cre-

ated in the lead converter and detected in the PS. Thus backgrounds from neutral pions

can be reduced by checking for hits in the SPD. In order to reduce the background from
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Figure 15: (left) Sideview of the RICH 1 detector and (right) top view of the RICH 2
detector [35].

charged pions, longitudinal segmentation of electromagnetic shower detection is needed,

which is provided by the PS followed by the ECAL.

The ECAL and HCAL are both sampling calorimeters. The ECAL records the rest

of the electromagnetic shower after the PS. It uses alternating 4 mm thick scintillator

and 2 mm thick lead absorber layers over a distance of 42 cm, and contains the full

electromagnetic shower. The HCAL also uses a 4 mm thick scintillator, but with a

thicker 16 mm iron absorber layer. The scintillating tiles run parallel to the beam axis.

The interaction length of the HCAL is not large enough to contain the full hadronic

shower, and thus it can only provide an estimate of the hadron energy.

Figure 16: The Lateral segmentation of the SPD/PS and ECAL (left) and the HCAL
(right), for a quarter of the detector front. The cell dimensions listed in the left are given
for the ECAL. [35]
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3.4.3 Muon system

The muon system is capable of providing fast information for high-pT muon triggers,

as well as muon identification information for the higher-level trigger and use in offline

analysis. Many of the analyses, including the one presented in this dissertation, greatly

rely on these capabilities.

A side view of the muon system is shown in Fig. 17. It consists of five rectangular

stations placed along the beam axis, and denoted by M1 through M5. The acceptance

of the muon system is 20-306 mrad in the bending plane, and 16-258 mrad in the non-

bending plane. Stations M2 through M5 are located downstream from the calorimeters,

and have 80 cm thick iron absorbers placed between them. These help to only let through

muons, and require muons with momentum of at least 6 GeV to traverse the five stations.

The M1 station is placed upstream from the calorimeters in order to improve the pT

measurements available to the trigger.

Figure 17: Side view of the muon system [35]
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A muon detector is partitioned into rectangular logical pads with varying dimensions

which will define the x, y resolution. The logical pads make point measurements of the

tracks, and provide a binary yes/no signal to the trigger processor and DAQ. The M1

through M3 stations have higher spatial resolution in the bending plane, and define

the track direction. The last two stations have worse resolution, and are mainly for

identifying penetrating particles. The stations are split up into regions R1 through R4,

with increasing distance from the beampipe, as shown in Fig. 18. The linear dimensions

of the regions, as well as the segmentation of each region into “chambers”, scales as

1:2:4:8. With this configuration, the particle flux and channel occupancy are predicted to

be approximately the same in the four regions. The chambers in the different regions also

have different segmentations into the logical pads, and this is shown for the M1 chambers

in Fig. 18 as well. While the x, y spatial resolution deteriorates far from the beam axis,

it is anyway limited by the increase of multiple scattering at large angles.

Figure 18: (left) The front view of a quadrant of a muon station, with each rectangle
representing one chamber. (right) The division of four chamber types into logical pads
for station M1. Stations M2 and M3 have double the pad columns per chamber, and M4
and M5 have half. The number of pad rows per chamber is the same for all stations [35]

Multi-wire proportional chambers (MWPC) are used for all regions except for R1

of station M1, which uses triple Gas Electron Multiplier (GEM) detectors. The use of

GEMs is due to their high radiation tolerance, which is necessary in this region. In the

MWPCs, the gas used is an Ar/CO2/CF4 mixture in a 40/55/5 proportion. The same

mixture is used in the GEM detectors, but with a 45/15/40 proportion.
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3.5 Trigger System

For the nominal instantaneous luminosity of 2 × 1032cm−2s−1, the rate of events with

collisions that produce at least two charged particles with enough VELO and T1-T3 hits

to allow for their reconstruction is roughly 10 MHz. These events are referred to as

visible interactions, and it is not possible to save them all to disk. In fact, the rate at

which events can be written to storage is about 2-5kHz. The necessary reduction in rate

is achieved by the trigger system, which attempts to select only interesting events. An

intial reduction down to 1 MHz comes from the Level-0 (L0) hardware trigger, which uses

custom electronics and runs synchronously with the 40 MHz bunch crossing frequency.

This is followed by a software-based High Level Trigger (HLT), which runs asynchronously

on a processor farm and reduces the rate to the desired range. More details will be given

on each stage in the following sections.

3.5.1 L0 Trigger

The L0 trigger is responsible for reducing the rate to 1 MHz, at which information from the

entire detector can be read out and used. It is divided into three independent triggers: the

L0-Calorimeter trigger, the L0-Muon trigger, and the L0-PileUp trigger. The L0-PileUp

trigger was originally meant to reject events with several visible interactions. However,

as the experiment is running with a higher average number of visible interactions per

bunch crossing than was expected, events with pile-up are not rejected. The L0-PileUp

trigger is instead being used for luminosity measurements.

The L0-Calorimeter trigger brings together information from the different calorimeter

components. The transverse energy ET which is deposited in the calorimeters is calculated

in clusters of 2×2 cells. Three types of candidates are defined. An L0Hadron candidate is

the highest ET HCAL cluster, with the ET of the matched ECAL cluster also associated

with it. An L0Photon candidate is constructed from the highest ET ECAL cluster, which

also has 1 or 2 PS hits and no hits in the corresponding SPD cells. An L0Electron

candidate is the same as the L0Photon, but instead requiring that there is an SPD hit

in the cell matching the PS cell. If an event has any of these candidates with ET above
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some set threshold, the L0 trigger is fired. The L0-Calorimeter trigger is also used to

reject events which would take too much processing time in the HLT by vetoing events

which have a number of SPD hits above some threshold. The ET and number of SPD hit

thresholds are given in Table 3.

Table 3: Typical minimum pT or ET values given in GeV and maximum number of SPD
hits used for different types of candidates in the Run 1 L0 trigger.

pT or ET SPD
Candidate 2011 2012 2011/2012

single muon 1.48 1.76 600
dimuon pT1 × pT2 (1.30)2 (1.60)2 900

hadron 3.50 3.70 600
electron 2.50 3.00 600
photon 2.50 3.00 600

The L0-Muon trigger looks for the two highest pT tracks in each quadrant of the

muon stations. Measurements of the pT with a resolution of 25% can be obtained by

the first two stations. The trigger is fired if either the largest value pT1 is greater than

some threshold, or the product of the two highest values pT1 × pT2 is greater than some

threshold. Values used for these thresholds are given in Table 3.

The L0 Decision Unit (L0DU), collects all the information from the calorimeter, muon,

and pile-up trigger systems at 40 MHz. The various trigger decisions are logically OR-ed

to deliver the L0 decision. The decision is sent to the Readout Supervisor, which makes

the final decision of whether to accept an event or not. The output rate from the L0 is

approximately 400 kHz for muon triggers, 500 kHz for hadron triggers, and 150 kHz for

electron/photon triggers. Note that the different triggers will have an overlap of about

10%.

3.5.2 HLT

The HLT runs on the events passing the L0 trigger, and thus recieves events at a 1 MHz

rate. It is software based, and consists of C++ applications running on CPUs comprising

the Event Filter Farm. The HLT has access to all of the data available in each event.

Thus, if given enough computing resources, it could execute offline selection algorithms.
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However, given the limited CPU resources, the HLT attempts to reject the bulk of the

uninteresting events by using only part of the full event data. An approximate flow

diagram of the trigger sequences is shown in Fig. 19. The HLT is split into two steps,

Figure 19: A flow diagram of trigger sequences. [35]

HLT1 followed by HLT2. A partial reconstruction is done in HLT1, and the complete

event is reconstructed in HLT2.

VELO tracks are reconstructed for all events entering the HLT1, as the offline VELO

reconstruction algorithm for performing a full 3D pattern recognition is sufficiently fast.

Vertices are constructed from a minimum of five intersecting VELO tracks, and any ver-

tex within a 300 µm radius of the mean pp-interaction position is considered to be a

primary vertex. Not all VELO tracks are passed through the “forward tracking” algo-

rithm, which looks for matching hits in the tracking stations. Only tracks which have a

significant impact parameter with respect to all primary vertices or which match muon

chamber hits are passed through the forward tracking. Furthermore, the algorithm is

only performed for events that triggered an L0 muon trigger. The forward track search

also has a minimum momentum requirement which varied from 3 to 6 GeV in Run 1,

and VELO tracks without matching muon hits had a minimum pT requirement which

varied from 0.5 to 1.25 GeV. The reconstructed forward tracks are fitted with a Kalman

filter using a simplified detector geometry and also fewer iterations relative to the offiline

usage. Tracks identified as muons are further purified using a basic muon identification

algorithm.

Inclusive beauty and charm trigger lines require a single quality track candidate,
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which satisfies a pT threshold of around 1.6-1.7 GeV and is sufficiently displaced from

the primary vertex with an impact parameter greater than ∼ 0.1 mm. These lines account

for a large fraction of the HLT1 output rate. Inclusive one-track triggers for electron or

photon candidates found in the L0 trigger also exist with reduced thresholds.

Single muon trigger lines are also used for quality tracks which match hits in the

muon chambers, satisfy pT > 1 GeV, and are displaced from the primary vertex. A

variation of this muon line exists for for muon candidates with pT > 4.8 GeV and no

primary vertex separation requirement. Dimuon triggers require either mass requirements

of mµµ > 2.5 GeV and no displacement requirement, or a displacement requirement

without a mass requirement.

Additional trigger lines consist of dedicated lines for events with high pT electrons,

proton pairs, displaced vertices, and high ET jets. Finally, a number of technical trigger

lines exist for luminosity and beam-gas measurements.

The rate after HTL1 is small enough that forward tracking algorithms can be ran

for all VELO tracks subject to the requirements of p > 3 GeV and pT > 0.3 GeV.

Muon identification is done with the offline algorithm, and electrons are identified by

associating tracks to ECAL clusters. Photon and neutral pion candidates are also built

from the calorimeter clusters created in the L0 trigger.

A large contribution to the output rate comes from the “topological” trigger lines.

These are designed for partially reconstrcted b-hadron decays, and cover all such de-

cays with at least two charged final state particles and a displaced vertex. The tracks

are selected based on their track fit χ2 per degree of freedom, impact parameter, and

muon/electron identification. Vertices for two, three, or four body decays are built with

tracks which satisfy a distance of closest approach (DOCA) requirement. An n-body

combination of the tracks can have requirements on
∑
|pT |, pmin

T , the invariant mass,

DOCA, impact parameter to the primary vertex, and flight distance.

There are several lines for selecting events with one or two muons. Single muon

candidates can be selected if the candidate passes a tight pT > 10 GeV requirement, or if

it is a quality track, displaced from the primary vertex, and with a transverse momentum
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satisfying pT > 1.3 GeV. Dimuon candidates without a mass requirement can be selected

if the vertex is sufficiently separated from the primary vertex. There are a number of J/ψ

trigger lines for dimuon pairs satisfying |mJ/ψ − mµµ| < 100. There are two “prompt”

lines which have no requirements for detachment from the primary vertex, one with a

pT > 2 GeV requirement and the other with no pT requirement, but only passing a fraction

of events. There is also a detached line, which requires separation of the J/ψ candidate

from the primary vertex.

There is a huge rate for cc pairs to be produced in the LHCb acceptance, and so tight,

exclusive trigger lines are used for selecting charm particles. A number of trigger lines

are used for a variety of D-meson and Λ+
c decays.

Additional lines also exist for a large number of exclusive lines, as well as lines ded-

icated to decays with electrons or photons in the final state, electroweak measurements,

jets, etc.. A number of technical lines are also used for things such as monitoring and

luminosity measurements.

Events which pass the HLT2 trigger requirements are then written to disk. The data is

later processed with more accurate alignment and calibrations of the sub-detectors. Note

that since the HLT is fully implemented in software, it is very flexible and evolves in

order to adapt to the data and changing priorities, or the evolution of the reconstruction

and selection software.
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4 Data samples and event selection

This section will detail the selection criteria which Λ0
b → J/ψK−p candidates were re-

quired to fulfill. The Λ0
b signal, and two-body invariant mass distributions will then be

shown. Some preliminary considerations on the structures observed in the mass distribu-

tions will also be given.

4.1 Event selection

The data sample corresponds to the ∼ 3.0 fb−1 of pp collision data collected during

Run 1 with the LHCb detector. Along with the data sample, 2 × 106 Λ0
b → J/ψpK−

Monte Carlo (MC) events are used that were generated uniformly in decay phase space

with J/ψ → µ+µ− decays required to occur within the LHCb acceptance. The events

are generated using Pythia [41] with a special LHCb parameter tune [42]. The LHCb

detector simulation is based on Geant4 [43], and is described in Ref. [44]. The simulated

signal sample is passed through the reconstruction and selection procedure, after which

the number of surviving events is about 10 times larger than the number of signal events

found in data. This MC sample is used for many purposes throughout this analysis, such

as parametrizing the reconstruction and selection efficiency and performing integrations.

A quick explanation of the types of criteria which the selected events must pass will

be given in order to give a brief overview and to set the notation. Particle identification

is crucial to this analysis, and uses information from several parts of the detector, as was

discussed in the section cover the description of the detector (Sec. 3). Likelihoods are

formed for the various hypotheses of a particle belonging to a certain species, i.e. proton,

kaon, pion, muon. Likelihood ratio test variables are then formed, e.g. DLL(p − π) is

the log of the likelihood ratio of the proton and the pion hypotheses. Often times it is

desired for a track to either point towards or away from the pp interaction point, or the

primary vertex (PV). For example, the Λ0
b in this analysis should come from a PV. On

the other hand the proton should come from the decay vertex of the Λ0
b , which is often

well-separated from the PV due to the weak decay of the Λ0
b allowing it to travel an
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appreciable distance before decaying. Meanwhile, there are many protons coming from

the PV, and so it is desirable to select protons which don’t point to the PV. A variable

which is often used for this purpose is χ2
IP which is the χ2 of the impact parameter (IP)

from the PV. When multiple tracks are required to form a vertex, cuts are applied to

ensure that they actually are consistent with forming a vertex together. This is performed

with a χ2 of the vertex: χ2
vtx. This cut is usually normalized by the number of degrees

of freedom (ndf). Similarily, the χ2 per degree of freedom from the track fit, χ2
trk/ndf, is

used to ensure that quality tracks are selected by quantifying how well a reconstructed

trajectory matches measured hits in the detector.

The selection of the J/ψ candidates will now be discussed. Each of the opposite

signed muons is required to have a transverse momentum pT > 550 MeV, an χ2
IP > 4, a

DLL(µ± − π±) > 0, and a χ2
trk/ndf < 4. The two muons are combined to form a J/ψ

candidate, which has its own set of selection criteria. The J/ψ candidate is required to

be separated from the PV, which is enforced by selecting candidates with a decay length

significance χ2 with respect to the PV of greater than 3. The two muons must form a good

vertex together, through the χ2
vtx/ndf < 16 requirement. Finally, only (µ+µ−) candidates

are taken which are in the invariant mass window of −48 < mµ+µ− −mJ/ψ < 43 MeV,

where the asymmetry in the window is to account for final-state electromagnetic radiation.

Candidate µ+µ− combinations are constrained to the J/ψ mass for subsequent use in event

selection.

The above requirements give a clean J/ψ sample which is then combined with a p

and a K− track. Each of these tracks is required to satisfy pT > 250 MeV, χ2
IP > 9, and

χ2
trk/ndf < 4. In terms of particle identification, the K− must satisfy DLL(K − π) > 0

and DLL(p−K) < 3, while the p must satisfy DLL(p− π) > 10 and DLL(p−K) > 3.

In the track reconstruction, during the pattern recognition, pseudo-random combinations

of hits can form a track. These are refered to as ghosts, and the probability of a track

being from a ghost is required to be less than 0.2. It is also required that the K−

and p tracks are consistent with forming a vertex, via the direction of closest approach

χ2 < 16 requirement. The full Λ0
b candidate must satisfy the following requirements:

30



χ2
IP < 25, χ2

vtx/ndf < 10, and having a flight distance of over 1.5 mm. Further, the cosine

of the angle between the Λ0
b momentum vector and the vector between the PV and Λ0

b

decay vertex must be greater than 0.999 (DIRA> 0.999). The selection criterion are

summarized in Table 4.

Table 4: Selection criteria for Λ0
b → J/ψK−p candidates. Not listed are the BDTG

requirement and b-hadron vetos.

Selection variables Requirements
All tracks χ2/ndf < 4

Muon PID DLL(µ− π) > 0
pT of muon > 550 MeV
J/ψ vertex χ2 < 16
J/ψ χ2/ndf DLS > 3
J/ψ mass window −48 < m(µ+µ−)−m(J/ψ ) < 43 MeV
pT of hadron > 250 MeV
Hadron χ2

IP > 9
K− ID DLL(K − π) > 0 and DLL(p−K) < 3
p ID DLL(p− π) > 10 and DLL(p−K) > 3

Clone track rejection on hadron Ghost probability < 0.2
pK− vertex DOCA χ2 < 16
Λ0
b χ

2
IP < 25

Λ0
b vertex χ2/ndf < 10

Λ0
b flight distance > 1.5 mm
Λ0
b pointing DIRA> 0.999

Despite the excellent particle identification provided by the LHCb detector, particles

are still misidentified. It is thus necessary to worry about decays from other b-hadrons

feeding into the Λ0
b mass range due to one of the final-state hadrons being misidentified.

In particular, the B0
s → J/ψK−K+ decay with the K+ misidentified as a p, as well as the

B0 → J/ψK−π+ decay with the π+ misidentified as a p, can both feed into the Λ0
b mass

range. Contributions from these decays can be checked for by reassigning the proton

track as either a kaon or a pion, and then calculating either the mJ/ψK−K+ or mJ/ψK−π+

invariant mass. The candidate is then vetoed if the calculated mJ/ψK−K+ or mJ/ψK−π+

falls within 30 MeV of the B0
s or B0, respectively. This procedure effectively removes

reflections from these potential backgrounds. More details, and the effect of the veto, can

be seen in Appendix A.

The final background reduction is performed using a multivariate classifier. Specifi-
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cally, a Boosted Decision Tree (BDT), using gradient boosting, was employed. Hereafter

it will be referred to as the BDTG, reflecting the particular boosting algorithm. Muon

identification is used in the BDTG via one of the variables being the smaller value of the

two discriminants DLL(µ+ − π+) and DLL(µ− − π−) in the candidate. Two variables

pertain to the K− and p tracks: the smaller value of χ2
IP(K) and χ2

IP(p), along with

their scalar pT sum. The rest of the variables are for the full Λ0
b candidate. One such

variable is the DIRA variable, which is already required to be greater than 0.999: the

cosine of the angle between the Λ0
b momentum vector and the vector from the primary

vertex to the Λ0
b decay vertex. In addition the χ2

IP, flight distance, pT, and χ2
vtx of the

Λ0
b candidate are used. A detailed discussion of the training and variables used can be

found in Appendix C.

As was mentioned, the MC sample goes through this full selection criteria, including

the BDTG. A caveat to this is that no selections are actually applied to the MC for the

hadron particle identification. It is well-known that the simulation procedure mismodels

this, and so instead of explicitly cutting on the variables, data-driven methods are used

to apply weights to the MC which statistically replicate the effect of applying these

cuts. The selected MC events must also receive corrections resulting from mismodeling

of the kinematics of the decay, which are also applied via further event weights. The full

weighting procedure is described in Appendix B.

4.2 The Λ0
b → J/ψpK− signal

The mJ/ψpK distribution for events which have passed the full selection criteria are shown

in Fig 20. The combinatorial background is modeled with an exponential function and

the Λ0
b signal shape is parameterized by a double-sided Hypatia function [45], where

the radiative tail parameters are fixed to the Monte Carlo prediction. The fit returns

nsig = 27546±176 Λ0
b → J/ψpK− signal events, with the Λ0

b peak having a mass and width

of M0 = 5620.77± 0.04 MeV and σ = 7.54± 0.05 MeV, respectively. The background is

smooth and small, contributing only 5.4% of events with the mass range M0 ± 2σ.

The Dalitz plot [46] for the K−p and J/ψp systems, showing the distribution over the
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Figure 20: The invariant mass spectrum of J/ψpK− combinations, fit with a double-
sided Hypatia function to model the signal and an exponential function to model the
background.

(m2
Kp,m

2
J/ψp) plane, is shown in Fig. 21 for all candidates which lie within 15 MeV of the

Λ0
b signal peak. The most prominent feature is a distinct vertical band clearly seen in

the pK− system near 2.3 GeV2 and corresponding to the Λ(1520). Further inspection

shows other vertical bands, also corresponding to other Λ excitations (hereafter denoted

Λ∗). These are all expected and are conventional resonances. However there is a distinct

horizontal band near 19.5 GeV2 which is not expected, as a resonance in the J/ψp system

would correspond to a pentaquark.

The Dalitz plots of (m2
Kp,m

2
J/ψK) and (m2

J/ψp,m
2
J/ψK) are shown in Fig. 22. For

(m2
Kp,m

2
J/ψK), there are no clear horizontal bands which would indicate a resonance in

the J/ψK− system. These would indicate an exotic tetraquark contribution, and are

not expected to be present, since there are no known tetraquark candidates decaying

to J/ψK−. Similarily, there are no horizontal bands seen in the (m2
J/ψp,m

2
J/ψK) plane.

There is however a vertical band, again indicating the presence of something in the J/ψp

system near 19.5 GeV2. One might have also noted that there a diagonal band in the
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Figure 21: The (m2
Kp,m

2
J/ψp) plane for candidates within ±15 MeV of the Λ0

b mass.

(m2
Kp,m

2
J/ψK) plane. It can be seen in a side-by-side comparison that it covers the same

m2
J/ψK range as the vertical band in the (m2

J/ψp,m
2
J/ψK) plane, thus indicating that the

diagonal band is the result of activity in the J/ψp system. This is similar to how the

conventional K−p resonances reflect into the (m2
J/ψp,m

2
J/ψK) plane as a diagonal band.
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Figure 22: The (m2
Kp,m

2
J/ψK) (left) and (m2

J/ψp,m
2
J/ψK) (right) planes for candidates

within ±15 MeV of the Λ0
b mass.

Figure 23 shows the individual distributions of the three invariant masses: mKp, mJ/ψp,

and mJ/ψK . The background has been subtracted using the sPlot technique [47] (see also

Sec 6.3 for more details). Shown in the same figures are the expectations from the MC

sample, which represents the expectations for phase space events after going through the
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reconstruction and selection procedure. As was seen in the Dalitz plots, there is a rich

spectrum of resonances in the K−p system. There is also a prominent peak in mJ/ψp,

corresponding to the unexpected structure seen in the J/ψp system. Clearly, there is

significant deviation of mJ/ψK from the phase space expectations as well. However the

Dalitz plot distributions show that this is likely due to the activity in the K−p and J/ψp

systems reflecting into the J/ψK− system.
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Figure 23: The (a) mKp, (b) mJ/ψp, and (c) mJ/ψK distributions for the background-
subtracted Λ0

b → J/ψK−p candidates. The solid (red) histogram shows the phase space
expectations.

4.3 Preliminary Considerations

The Dalitz plots and mass projections all indicate that there is activity in the J/ψp

system, for which pentaquarks are one possible explanation. However, given the history

of past pentaquark searches, making such a claim is not something to be taken lightly.
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It is worth noting that this situation is significantly different from the past cases, as the

statistics are much better. From examining the structure in the mJ/ψp distribution, it is

easy to convince oneself that this is not the result of statistical fluctuations. It is also

worth noting that this structure was not being sought after, and that it was observed by

multiple LHCb teams which were using their own data selection criteria after the original

sighting. Still, there are a number of considerations that should be investigated before

bringing pentaquarks into the picture.

It is important to check whether or not the peaking structure could be the result of

decays from other b-hadrons. As stated earlier all Bs → J/ψK−K+ and B0 → J/ψK−π+

decays were explicitly vetoed. Another possible source could be decays from some higher

mass state such as Ξ−b → J/ψK−pπ−. To check this, the event selection was repeated as

before, but requiring also that a π forms a vertex with the J/ψK−p. It is required that the

π satisfy DLLK(π) > −10, χ2
IP > 9, pT > 250 MeV, and have a Ghost probability< 0.2.

Further, the new J/ψK−pπ− vertex must satisfy χ2
vtx < 30 (with 7 degrees of freedom).

Figure 24 shows the mJ/ψK−pπ− versus mJ/ψK−p distribution for the selected events. The

dark vertical band corresponds to the Λ0
b → J/ψK−p decays. With no visible structures

in the (J/ψK−pπ−) system, there is no evidence for contributions from Ξ−b or any other

higher mass state.
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Figure 24: m(J/ψK−pπ−) versus m(J/ψK−p) for selected J/ψpKπ combinations.

Additionally, it was carefully checked that the peaking structure could not be the
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result of any fake tracks which were artificially created by the track reconstruction proce-

dure. Also, efficiency effects from the selection criteria would not create such a structure.

This can be seen from the distribution of the phase space MC after the selection (Fig. 23);

there were no such structures created. The efficiency over the Dalitz plane can also be

seen ahead in Fig. 31. Various sanity checks were also performed. For example, the data

set was split in various ways, to check for consistency and any unexpected effects. In

Fig. 25, the mJ/ψp distribution is shown for data taken in the year 2011, along with data

taken in the year 2012 split by the polarity of the magnet during data taking. All three

are consistent with each other. Also shown is the data split into separate P+
c → J/ψp

and P−c → J/ψp samples. No visible differences are observed.

Figure 25: (left) Comparison of mJ/ψp for data taken in 2011 magnet up and down, 2012
magnet up, and 2012 magnet down. (right) Comparison of mJ/ψp for separate P+

c → J/ψp
and P−c → J/ψp samples.

All tests and checks performed indicate that the unexpected structures are the result

of real physics effects present in true Λ0
b → J/ψK−p decays. However, before concluding

that the structure is from activity in the J/ψp system, it is necessary to rule out the

possibility it is a result of reflections from K−p contributions. Despite the narrowness of

the peak, it is still important to check whether or not interferring K−p resonances are

capable of creating the observed features. In order to do this, an amplitude analysis is

performed. Later, the same question is approached in a model-independent way.
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5 Amplitude analysis formalism

An amplitude analysis allows for testing whether or not interferring Λ∗ resonances are

responsible for the peaking structure seen in the mJ/ψp distribution. If it is shown they

are not responsible, an amplitude analysis will also allow for testing if the inclusion of

Pc → J/ψp decays in the amplitude model can reproduce the structure. It then would

allow for determining any Pc parameters. In this analysis, the helicity formalism is used

to parametrize the decay dynamics, and the Isobar approximation is used to sum up

Breit-Wigner amplitudes from all contributing resonances. The full Λ0
b → J/ψK−p,

J/ψ → µ+µ− decay chain is studied in order to maximize sensitivity. Analyzing the data

in the full set of dimensions which completely specify the decay also helps avoid biases

due to non-uniform efficiency.

In this section, a brief outline is given of the helicity formalism and the notation

which will be used in the rest of the section. The matrix element for the Λ0
b → Λ∗ψ,

Λ∗ → K−p, ψ → µ+µ− decay sequence is then derived4, followed by the matrix element

for the Λ0
b → P+

c K
−, P+

c → ψp, ψ → µ+µ− decay sequence. These decay sequences

are hereafter referred to as the Λ∗ and Pc decay chains, respectively. The coherent

combination of the matrix elements for these two decay chains, so as to obtain a correct

description of their intereference, is also shown. Finally, a discussion of the relationship

of the helicity and LS couplings is presented, along with how it can be utilized to reduce

the number of parameters which need to be determined from the data.

5.1 Helicity formalism and notation

For each two-body decay A → B C, a coordinate system is set up in the rest frame of

A, with ẑ being5 the direction of quantization for its spin. This coordinate system is

denoted as (x
{A}

0 , y
{A}

0 , z
{A}

0 ), where the superscript “{A}” means “in the rest frame of

A”, while the subscript “0” means the initial coordinates. For the first particle in the

4For the rest of this section J/ψ is denoted as ψ.
5The “hat” symbol denotes a unit vector in a given direction.
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decay chain (Λ0
b), the choice of these coordinates is arbitrary.6 However, once defined,

these coordinates must be used consistently between all decay sequences described by the

matrix element. For subsequent decays, e.g. B → DE, the choice of these coordinates is

already fixed by the transformation from the A to the B rest frames, as discussed below.

Helicity is defined as the projection of the spin of the particle onto the direction of its

momentum, and is denoted as λ.

In using the helicity formalism, a transformation is required which aligns the z axis

of the initial coordinate system with the direction of momentum of one of the daughter

particles, e.g. the B. The physical meaning of the transformation will be made clear later.

A generalized rotation operator can be formulated in three-dimensional space, R(α, β, γ),

that uses Euler angles. Applying this operator results in a sequence of rotations: first

by the angle α about the ẑ0 axis, followed by the angle β about the rotated ŷ1 axis and

then finally by the angle γ about the rotated ẑ2 axis. The subscript on the axes is used

to specify the rotations which have already been performed on the coordinates. The

spin eigenstates of particle A, |JA,mA〉, in the (x
{A}

0 , y
{A}

0 , z
{A}

0 ) coordinate system can

be expressed in the basis of its spin eigenstates, |JA,m′A〉, in the rotated (x
{A}

3 , y
{A}

3 , z
{A}

3 )

coordinate system with the help of Wigner’s D−matrices

|JA,mA〉 =
∑
m′A

D JA
mA,m

′
A

(α, β, γ)∗ |JA,m′A〉, (1)

where

D J
m,m′(α, β, γ)∗ = 〈J,m|R(α, β, γ)|J,m′〉∗ = eimα d Jm,m′(β) eim

′γ, (2)

and where the small-d Wigner matrix contains known functions of β that depend on

J,m,m′. To achieve the rotation of the original ẑ
{A}

0 axis onto the B momentum (~p
{A}
B ),

it is sufficient to rotate by α = φ
{A}
B , β = θ

{A}
B , where φ

{A}
B , θ

{A}
B are the azimuthal and

polar angles of the B momentum vector in the original coordinates i.e. (x̂
{A}

0 , ŷ
{A}

0 , ẑ
{A}

0 ).

This is depicted in Fig. 26, where the quantization axis for the spin of A is its momentum

6When designing an analysis to be sensitive (or insensitive) to a particular case of polarization, the
choice is not arbitrary, but this does not change the fact that one can quantize the Λ0

b spin along any
well-defined direction. The Λ0

b polarization may be different for different choices.
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in some initial reference frame. As the third rotation is not necessary, the convention

γ = 0 is chosen.7 The angle θ
{A}
B is usually called “the A helicity angle”, thus to simplify

the notation it is denoted as θA. Also in the spirit of compact notation, φ
{A}
B is denoted

as φB. These angles can be determined from8

φB = atan2
(
p
{A}
B y, p

{A}
B x

)
= atan2

(
ŷ
{A}

0 · ~p {A}B , x̂
{A}

0 · ~p {A}B

)
= atan2

(
(ẑ
{A}

0 × x̂ {A}0 ) · ~p {A}B , x̂
{A}

0 · ~p {A}B

)
, (3)

cos θA = ẑ
{A}

0 · p̂ {A}B . (4)

where p
{A}
B i denotes the i-th component of the momentum vector (of particle B in the

rest frame of A).

Angular momentum conservation in the decay requires m′A = m′B + m′C = λB − λC

(since ~p
{A}
C points in the opposite direction to ẑ

{A}
3 , m′C = −λC). Each two-body decay

contributes a multiplicative term to the matrix element as

HA→BC
λB , λC

D JA
λA, λB−λC (φB, θA, 0)∗, (5)

where the helicity couplings HA→BC
λB , λC

are complex constants. The modulus-squared of

this term can be thought of as the probability of a particle A with spin JA and helic-

ity λA to decay to two particles with spin projection λB − λC in the direction given by

(φB, θA, 0). The helicity couplings contain the dynamics of the decay, and must be deter-

mined from the data. Parity must be conserved when the decay proceeds via the strong

or electromagnetic interaction, requiring that the helicity couplings satisfy the relation

HA→BC
−λB ,−λC = PA PB PC (−1)JB+JC−JAHA→BC

λB , λC
, (6)

7An alternative convention is to set γ = −α. The two conventions lead to equivalent formulae.
8The function atan2(x, y) is the tan−1(y/x) function with two arguments. The purpose of using

two arguments instead of one is to gather information on the signs of the inputs in order to return the
appropriate quadrant of the computed angle.
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where P stands for the intrinsic parity of a particle.

To account for the subsequent decay of a daughter, B → DE, a similar procedure

is repeated. However the four-vectors of all particles must first be Lorentz boosted to

the rest frame of B, along the ~p
{A}
B i.e. ẑ

{A}
3 direction. Again, this is the z axis in

the rest frame of A after the Euler rotations (since the γ = 0 convention is used, the

ẑ
{A}

3 = ẑ
{A}

2 ). This can be visualized in Fig. 26, with the B → DE particle labels

replacing the A → B C labels. This transformation does not change vectors that are

perpendicular to the boost direction. Thus the transformed coordinates become the

initial coordinate system quantizing the spin of B in its rest frame,

x̂
{B}

0 = x̂
{A}

3 ,

ŷ
{B}

0 = ŷ
{A}

3 ,

ẑ
{B}

0 = ẑ
{A}

3 . (7)

In practice, there are two equivalent ways to determine the ẑ
{B}

0 direction. It can be set

to the direction of the B momentum in the A rest frame

ẑ
{B}

0 = ẑ
{A}

3 = p̂
{A}
B . (8)

Alternatively, the fact that B and C are back-to-back in the rest frame of A can be used,

~p
{A}
C = −~p {A}B . Since the momentum of C is antiparallel to the boost direction from the

A to B rest frames, the C momentum in the B rest frame will be different, but it will

still be antiparallel to this boost direction

ẑ
{B}

0 = −p̂ {B}C . (9)

After the first rotation by φB about ẑ
{A}

0 , the x̂
{A}

1 axis is along the component of ~p
{A}
B
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which is perpendicular to the ẑ
{A}

0 axis

~a
{A}
B⊥z0 ≡ (~p

{A}
B )⊥ẑ {A}0

= ~p
{A}
B − (~p

{A}
B )||ẑ {A}0

,

= ~p
{A}
B − (~p

{A}
B · ẑ {A}0 ) ẑ

{A}
0 ,

x̂
{A}

1 = â
{A}
B⊥z0 =

~a
{A}
B⊥z0

|~a {A}B⊥z0 |
. (10)

The ŷ
{A}

1 can then be uniquely determined from the unchanged ẑ
{A}

1 = ẑ
{A}

0 direction and

x̂
{A}

1 . After the second rotation by θA about ŷ
{A}

1 , ẑ
{A}

2 = ẑ
{A}

3 = p̂
{A}
B , and x̂

{A}
2 = x̂

{A}
3 is

antiparallel to the component of the ẑ
{A}

1 = ẑ
{A}

0 vector that is perpendicular to the new

z axis i.e. p̂
{A}
B . Thus

~a
{A}
z0⊥B ≡ (ẑ

{A}
0 )⊥~p {A}B

= ẑ
{A}

0 − (ẑ
{A}

0 · p̂ {A}B ) p̂
{A}
B ,

x̂
{B}

0 = x̂
{A}

3 = − â
{A}
z0⊥B = −

~a
{A}
z0⊥B

|~a {A}z0⊥B |
. (11)

Then ŷ
{B}

0 is obtained as ŷ
{B}

0 = ẑ
{B}

0 × x̂ {B}0 .

If C also decays, C → F G, then the coordinates for the quantization of C spin in the

C rest frame are defined by

ẑ
{C}

0 = −ẑ {A}3 = p̂
{A}
C = −p̂ {C}B , (12)

x̂
{C}

0 = x̂
{A}

3 = − â {A}z0⊥B = +â
{A}
z0⊥C , (13)

ŷ
{C}

0 = ẑ
{C}

0 × x̂ {C}0 , (14)

i.e. the z axis is reflected compared to the system used for the decay of particle B (it

must point in the direction of C momentum in the A rest frame), but the x axis is kept

the same, since the particle B was chosen for the rotation used in Eq. (5).

The processes of rotation and subsequent boosting can be repeated until the final-

state particles are reached, and all factors of Eq. (5) have been accumulated. After

multiply all such factors, they must be summed up coherently over the helicity states of

intermediate particles, and incoherently over the helicity states of the initial and final-
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state particles. The possible helicity values which are summed over are constrained by

angular momentum conservation. In the case of A→ B C, the constraints are |λB| ≤ JB,

|λC | ≤ JC and |λB − λC | ≤ JA. When there are multiple different decay chains that

can be taken to arrive at the same set of final-state particles, care must be taken in the

coherent addition of contributions from different chains. This will be discussed in the

context of the present use-case in the following sections.

5.2 Matrix element for the Λ∗ decay chain

First, the portion of the matrix element describing the conventional Λ0
b → Λ∗nψ, Λ∗n → Kp

decays (i.e. Λ∗ decay chain) will be discussed. Here Λ∗n denotes various possible excitations

of the Λ, e.g. Λ(1520), Unless an n-dependent quantity is being labeled, Λ∗n will often be

written just as Λ∗, for simplicity.

Analogously to Eq. 5, the decay of Λ0
b → Λ∗nψ is described by

HΛ0
b→Λ

∗
nψ

λΛ∗ , λψ
D

1
2
λ
Λ0
b
, λΛ∗−λψ(φΛ∗ , θΛ0

b
, 0)∗, (15)

where HΛ0
b→Λ

∗
nψ

λΛ∗ , λψ
are resonance (i.e. n) dependent helicity couplings to be determined by a

fit to the data. There are 4 different complex values of these couplings to be determined

for each Λ∗n resonance with spin JΛ∗n = 1
2
, and 6 values for higher spins. Note that this

is a weak decay, and so all couplings must be independent of each other. The couplings

are complex parameters; thus each independent coupling contributes 2 free parameters

(taken to be real and imaginary parts) to the fit. Since the ψ and Λ∗ are intermediate

particles in the decay chain, the matrix element terms for different values of λψ and λΛ∗

must be added coherently.

The choice of the ẑ
{Λ0
b}

0 direction for the Λ0
b spin quantization is arbitrary, and it is

taken to be the Λ0
b momentum in the lab frame, giving its spin projection onto this axis

the meaning of the Λ0
b helicity (λΛ0

b
). In the Λ0

b rest frame, this direction is defined by
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the direction of the boost from the lab frame (Eq. (8)),

ẑ
{Λ0
b}

0 = p̂
{lab}
Λ0
b
, (16)

as depicted in Fig. 27. With this choice, the Λ0
b helicity angle (θΛ0

b
) can be calculated as

cos θΛ0
b

= p̂
{lab}
Λ0
b
· p̂ {Λ

0
b}

Λ∗ . (17)

Longitudinal polarization of the Λ0
b via strong production mechanisms is forbidden due

to parity conservation in strong interactions, causing λΛ0
b

= +1
2

and −1
2

to be equally

likely. Terms with different λΛ0
b

values must be added incoherently. The choice of x̂
{Λ0
b}

0

direction in the Λ0
b rest frame is also arbitrary. The Λ0

b → Λ∗ψ decay plane in the lab

frame is used to define it, which makes the φΛ∗ angle zero by definition.

The strong decay Λ∗n → Kp is described by a term

HΛ∗n→Kp
λp

D
JΛ∗n
λΛ∗ , λp

(φK , θΛ∗ , 0)∗ RΛ∗n (mKp). (18)

Since the K− meson is spinless, the resonance-dependent helicity coupling HΛ∗n→Kp
λp

de-

pends only on proton helicity, λp = ±1
2
. As strong decays conserve parity, the two helicity

couplings are related

HΛ∗n→Kp
−λp = −PΛ∗n (−1)JΛ∗n−

1
2 HΛ∗n→Kp

λp
, (19)

where PΛ∗n is the parity of Λ∗n . Since the overall magnitude and phase of HΛ∗n→Kp
+ 1

2

can be

absorbed into a redefinition of theHΛ0
b→Λ

∗
nψ

λΛ∗ , λψ
couplings, it is possible to setHΛ∗n→Kp

+ 1
2

= (1, 0)

and HΛ∗n→Kp
− 1

2

= (PΛ∗n (−1)JΛ∗n−
3
2 , 0), where the values in parentheses give the real and

imaginary parts of the couplings.

The angles φK and θΛ∗ are the azimuthal and polar angles of the kaon in the Λ∗ rest

frame (see Fig. 27). The ẑ
{Λ∗}

0 direction is defined by the boost direction from the Λ0
b rest

frame, which coincides with the −~p {Λ
∗}

ψ direction in this frame (Eq. (9)). This leads to

cos θΛ∗ = −p̂ {Λ
∗}

ψ · p̂ {Λ
∗}

K , (20)

44



with both vectors in the Λ∗ rest frame. As explained in Sec. 5.1, the x̂
{Λ∗}

0 direction

is defined by the choice of coordinates in the Λ0
b rest frame discussed above. Following

Eq. (11) and (16),

~a
{Λ0
b}

z0⊥Λ∗ = p̂
{lab}
Λ0
b
− (p̂

{lab}
Λ0
b
· p̂ {Λ

0
b}

Λ∗ ) p̂
{Λ0
b}

Λ∗ ,

x̂
{Λ∗}

0 = x̂
{Λ0
b}

3 = −
~a
{Λ0
b}

z0⊥Λ∗

|~a {Λ
0
b}

z0⊥Λ∗ |
. (21)

The azimuthal angle of the K− can now be determined in the Λ∗ rest frame from (Eq. (3))

φK = atan2
(
−(p̂

{Λ∗}
ψ × x̂ {Λ

∗}
0 ) · p̂ {Λ

∗}
K , x̂

{Λ∗}
0 · p̂ {Λ

∗}
K

)
. (22)

The term RΛ∗n (mKp) describes the Λ∗n resonance that appears in the invariant mass

distribution of the kaon-proton system,

RΛ∗n (mKp) = B′
L
Λ∗n
Λ0
b

(p, p0, d)

(
p

MΛ0
b

)L
Λ∗n
Λ0
b

BW(mKp|MΛ∗n
0 ,Γ

Λ∗n
0 )B′LΛ∗n

(q, q0, d)

(
q

M
Λ∗n
0

)LΛ∗n

.

(23)

Here, p is the Λ∗ momentum in the Λ0
b rest frame (p = |~p {Λ

0
b}

Λ∗ |). Similarly, q is the K−

momentum in the Λ∗ rest frame (q = |~p {Λ
∗}

K |). The symbols p0 and q0 denote values of

these quantities at the resonance peak (mKp = M
Λ∗n
0 ). The orbital angular momentum

between the Λ∗ and ψ particles in the Λ0
b decay is denoted as L

Λ∗n
Λ0
b
. Similarly, LΛ∗n is the

orbital angular momentum between the p and K− in the Λ∗n decay. The Blatt-Weisskopf

45



functions [48],

B′0(p, p0, d) =1 ,

B′1(p, p0, d) =

√
1 + (p0 d)2

1 + (p d)2
,

B′2(p, p0, d) =

√
9 + 3(p0 d)2 + (p0 d)4

9 + 3(p d)2 + (p d)4
, (24)

B′3(p, p0, d) =

√
225 + 45(p0 d)2 + 6(p0 d)4 + (p0 d)6

225 + 45(p d)2 + 6(p d)4 + (p d)6
,

B′4(p, p0, d) =

√
11025 + 1575(p0 d)2 + 135(p0 d)4 + 10(p0 d)6 + (p0 d)8

11025 + 1575(p d)2 + 135(p d)4 + 10(p d)6 + (p d)8
,

B′5(p, p0, d) =

√
893025 + 99225(p0 d)2 + 6300(p0 d)4 + 315(p0 d)6 + 15(p0 d)8 + (p0 d)10

893025 + 99225(p d)2 + 6300(p d)4 + 315(p d)6 + 15(p d)8 + (p d)10
,

are used for the orbital angular momentum barrier factors, pLB′L(p, p0, d), to account

for the difficulty in creating the orbital angular momentum L. These depend on the

momentum of the decay products p (in the rest frame of the decaying particle) and on

the size of the decaying particle given by the constant d. This size parameter is set as

d = 3.0 GeV−1 ∼0.6 fm, and is varied in the studies of systematic uncertainties. The

relativistic Breit-Wigner amplitude is given by

BW(m|M0,Γ0) =
1

M2
0 −m2 − iM0Γ(m)

, (25)

where

Γ(m) = Γ0

(
q

q0

)2LΛ∗+1
M0

m
B′LΛ∗ (q, q0, d)2 . (26)

In the case of the Λ(1405) resonance, which peaks below the K−p threshold, a two-

component width equivalent to the Flatté parameterization [49] is used. A width for

its decay to the dominant Σ+π− channel is added to the width in the K−p channel,

Γ(m) = Γ(m)K−p+Γ(m)Σπ, where q in the second term and q0 in both terms are calculated

assuming the decay to Σ+π−. Assuming that both channels are dynamically equally likely

and differ only by the phase space factors Γ0 is set to the total width of Λ(1405) in both

terms. For nonresonant (NR) terms, BW(m) = 1 is used with M0 NR set to the midrange
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mass.

Angular momentum conservation limits LΛ∗n to JΛ∗n±
1
2
, which is then uniquely defined

by parity conservation in the Λ∗n decay, PΛ∗n = (−1)LΛ∗n+1. Angular momentum conserva-

tion also requires max(JΛ∗n−
3
2
, 0) ≤ LΛ

∗

Λ0
b
≤ JΛ∗n + 3

2
. The minimal value of L

Λ∗n
Λ0
b

is assumed

in RΛ∗n (mKp), and is varied in systematic uncertainty studies.

The electromagnetic decay ψ → µ+µ− is described by a term

D 1
λψ ,∆λµ

(φµ, θψ, 0)∗, (27)

where ∆λµ ≡ λµ+ − λµ− = ±1, and φµ, θψ are the azimuthal and polar angles of µ+ for

Λ0
b (µ− for Λ0

b decays) in the ψ rest frame (see Fig. 27). There are no helicity couplings in

Eq. (27), since they are all equal due to conservation of C and P parities. Therefore, this

coupling can be set to unity as its magnitude and phase can be absorbed into the other

helicity couplings which are left free in the fit. The calculation of the ψ decay angles is

analogous to that of the Λ∗ decay angles described above (Eqs. (20)–(22))

cos θψ = − p̂ {ψ}Λ∗ · p̂
{ψ}
µ , (28)

φµ = atan2
(
−(p̂

{ψ}
Λ∗ × x̂

{ψ}
0 ) · p̂ {ψ}µ , x̂

{ψ}
0 · p̂ {ψ}µ

)
, (29)

with

x̂
{ψ}

0 = x̂
{Λ∗}

0 = x̂
{Λ0
b}

3 (30)

and x̂
{Λ0
b}

3 given by Eq. (21).

Collecting terms from the subsequent decays together, the matrix element connecting

different helicity states of the initial and the final-state particles for the entire Λ∗ decay

chain can be written as

M Λ∗

λ
Λ0
b
, λp,∆λµ =

∑
n

RΛ∗n (mKp)HΛ∗n→Kp
λp

∑
λψ

ei λψφµ d 1
λψ ,∆λµ

(θψ)

×
∑
λΛ∗

HΛ0
b→Λ

∗
nψ

λΛ∗ , λψ
ei λΛ∗φK d

1
2
λ
Λ0
b
, λΛ∗−λψ(θΛ0

b
) d

JΛ∗n
λΛ∗ , λp

(θΛ∗). (31)
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Terms with different helicities of the initial and final-state particles (λp, ∆λµ) must

be added incoherently

∣∣MΛ∗
∣∣2 =

1 + PΛ0
b

2

∑
λp

∑
∆λµ

∣∣∣M(λ
Λ0
b
=+1/2), λp,∆λµ

∣∣∣2+
1− PΛ0

b

2

∑
λp

∑
∆λµ

∣∣∣M(λ
Λ0
b
=−1/2), λp,∆λµ

∣∣∣2 ,
(32)

where PΛ0
b is the Λ0

b polarization, defined as the difference of probabilities for λΛ0
b

= +1/2

and −1/2 [50]. For the given choice of quantization axis for Λ0
b spin, no polarization is

expected (PΛ0
b = 0), due to parity conservation in strong interactions which dominate Λ0

b

production at LHCb.

5.3 Matrix element for the P+
c decay chain

Next, the Λ0
b → PcjK

−, Pcj → ψp decays will be discussed, in which more than one

pentaquark state is allowed, j = 1, 2, . . . . Superscripts containing the Pc decay chain

name without curly brackets, e.g. φPc , will denote quantities belonging to this decay

chain and should not be confused with the superscript “{Pc}” denoting the P+
c rest

frame, e.g. φ {Pc}. With only a few exceptions, the Λ∗ decay chain label is omitted.

The weak decay Λ0
b → PcjK

− is described by the term,

HΛ0
b→PcjK

λPc
D

1
2
λ
Λ0
b
, λPc

(φPc , θ
Pc
Λ0
b
, 0)∗, (33)

where HΛ0
b→PcjK

λPc
are resonance (i.e. j) dependent helicity couplings. The helicity of the

pentaquark state, λPc , can only take values of ±1
2
, regardless of its spin, JPcj = 1

2
, 3

2
, . . . .

Therefore, there are two independent helicity couplings to be determined for each Pcj

state. The above mentioned φPc , θ
Pc
Λ0
b

symbols refer to the azimuthal and polar angles of

Pc in the Λ0
b rest frame (see Fig. 28).

Similar to Eq. (17), the Λ0
b helicity angle in the Pc decay chain can be calculated as,

cos θPc
Λ0
b

= p̂
{lab}
Λ0
b
· p̂ {Λ

0
b}

Pc
. (34)

The φPc angle cannot be set to zero, since the x̂
{Λ0
b}

0 axis in the Λ0
b rest frame has
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already been defined by the φΛ∗ = 0 convention. Analogous to Eq. (10),

~a
{Λ0
b}

Λ∗⊥z0 = ~p
{Λ0
b}

Λ∗ − (~p
{Λ0
b}

Λ∗ · p̂
{lab}
Λ0
b

) p̂
{lab}
Λ0
b
,

x̂
{Λ0
b}

0 =
~a
{Λ0
b}

Λ∗⊥z0

|~a {Λ
0
b}

Λ∗⊥z0 |
. (35)

The φPc angle can be determined in the Λ0
b rest frame from

φPc = atan2
(

(p̂
{lab}
Λ0
b
× x̂ {Λ

0
b}

0 ) · p̂ {Λ
0
b}

Pc
, x̂
{Λ0
b}

0 · p̂ {Λ
0
b}

Pc

)
. (36)

The strong decay Pcj → ψp is described by a term

HPcj→ψp
λPcψ ,λPcp

D
JPcj

λPc , λ
Pc
ψ −λ

Pc
p

(φψ, θPc , 0)∗ RPcj(mψp), (37)

where φPcψ , θPc are the azimuthal and polar angles of the ψ in the Pc rest frame (see

Fig. 28). They are defined analogously to Eqs. (20)−(22). The ẑ
{Pc}

0 direction is defined

by the boost direction from the Λ0
b rest frame, which coincides with the −~p {Pc}K direction.

This leads to

cos θPc = −p̂ {Pc}K · p̂ {Pc}ψ . (38)

The azimuthal angle of the ψ can now be determined in the Pc rest frame (see Fig. 28)

from

φPcψ = atan2
(
−(p̂

{Pc}
K × x̂ {Pc}0 ) · p̂ {Pc}ψ , x̂

{Pc}
0 · p̂ {Pc}ψ

)
. (39)

In Eq. (37), the x̂
{Pc}

0 direction is defined by the convention that was used in the Λ0
b

rest frame. Thus, similar to Eq. (21),

~a
{Λ0
b}

z0⊥Pc = p̂
{lab}
Λ0
b
− (p̂

{lab}
Λ0
b
· p̂ {Λ

0
b}

Pc
) p̂
{Λ0
b}

Pc
,

x̂
{Pc}

0 = −
~a
{Λ0
b}

z0⊥Pc

|~a {Λ
0
b}

z0⊥Pc |
. (40)

The ψ and p helicities, λPcψ and λPcp , have been labeled with the Pc superscript to make it

clear that the spin quantization axes are different than in the Λ∗ decay chain. Since the
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ψ is an intermediate particle, this has no consequences after summing (coherently) over

λPcψ = −1, 0,+1. The proton, however, is a final-state particle. Before the Pc terms in the

matrix element can be added coherently to the Λ∗ terms, the λPcp states must be rotated

to λp states (defined in the Λ∗ decay chain). The proton helicity axes are different, since

the proton comes from a decay of different particles in the two decay sequences, the Λ∗

and Pc. The quantization axes are along the proton direction in the Λ∗ and the Pc rest

frames, thus antiparallel to the particles recoiling against the proton: the K− and ψ,

respectively. These directions are preserved when boosting to the proton rest frame (see

Fig. 29). Thus, the polar angle between the two proton quantization axes (θp) can be

determined from the opening angle between the K− and ψ mesons in the p rest frame,

cos θp = p̂
{p}
K · p̂

{p}
ψ . (41)

(A similar problem is discussed in Ref. [51], where the two different χc1 helicity frames

in B0 → K+π−χc1 decays, in the interference of B0 → K∗χc1, K∗ → K+π− and of

B0 → Z−K+, Z− → χc1π
− contributions, are realigned.) The dot product above must

be calculated by operating on the ~p
{p}
K and ~p

{p}
ψ vectors in the proton rest frame obtained

by the same sequence of boost transformations, either according to the Λ∗ or Pc decay

chains, or even by a direct boost transformation from the lab frame.9

No azimuthal rotation is needed to align the two proton helicity frames, since the

decay planes of the Λ∗ and the Pc are the same (see Fig. 29). Therefore, the relation

between λp and λPcp states is

|λp〉 =
∑
λPcp

D
Jp

λPcp , λp
(0, θp, 0)∗|λPcp 〉 =

∑
λPcp

d
Jp

λPcp , λp
(θp)|λPcp 〉. (42)

9Numerical values of momentum vector components, (px, py, pz), depend on the boost sequence taken
and are related between different boosts via the rotation matrix. However, the dot product between the
two vectors remains independent of the boost sequences.
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Thus, the term given by Eq. (37) must be preceded by

∑
λPcp =± 1

2

d
Jp

λPcp , λp
(θp). (43)

Parity conservation in Pcj → ψp decays leads to the following relation

HPcj→ψp
−λPcψ ,−λPcp

= Pψ Pp PPcj (−1)Jψ+Jp−JPcj HPcj→ψp
λPcψ , λPcp

= PPcj (−1)
1
2
−JPcj HPcj→ψp

λPcψ , λPcp
, (44)

where PPcj is the parity of the Pcj state. This relation reduces the number of inde-

pendent helicity couplings to be determined from the data to 2 for JPcj = 1
2

and 3 for

JPcj ≥ 3
2
. Since the helicity couplings enter the matrix element formula as a product,

HΛ0
b→PcjK

λPc
HPcj→ψp
λPcψ , λPcp

, the relative magnitude and phase of these two sets must be fixed by a

convention. For example, HΛ0
b→PcjK

λPc=− 1
2

can be set to (1, 0) for every Pcj resonance, in which

case HΛ0
b→PcjK

λPc=+ 1
2

develops a meaning of the complex ratio of HΛ0
b→PcjK

λPc=+ 1
2

/HΛ0
b→PcjK

λPc=− 1
2

, while

all HPcj→ψp
λPcψ , λPcp

couplings should have both real and imaginary parts free in the fit.

The term RPcj(mψp) describes the ψp invariant mass distribution of the Pcj resonance

and is given by Eq. (23) after appropriate substitutions as

RPc j(mψp) = B′
L
Pc j

Λ0
b

(p, p0, d)

(
p

MΛ0
b

)L
Pc j

Λ0
b

BW(mψp|M
Pc j
0 ,Γ

Pc j
0 )B′LPc j

(q, q0, d)

(
q

M
Pc j
0

)LPc j

.

(45)

Angular momentum conservation limits L
Pcj
Λ0
b

in Λ0
b → PcjK

− decays to JPcj ± 1
2
. The

angular momentum conservation also imposes max(JPcj − 3
2
, 0) ≤ LPcj ≤ JPcj + 3

2
, which

is further restricted by the parity conservation in the Pcj decays, PPcj = (−1)LPcj+1. The

minimal values of L
Pcj
Λ0
b

and LPcj are assumed in RPcj(mψp).

The electromagnetic decay ψ → µ+µ− in the Pc decay chain contributes a term

D 1
λPcψ ,∆λPcµ

(φPcµ , θ
Pc
ψ , 0)∗, (46)

which is the same as Eq. (27), except that since the ψ meson comes from the decay of
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different particles in the two decay chains, the azimuthal and polar angle of the muon in

the ψ rest frame, φPcµ , θPcψ , are different from φµ, θψ introduced in the Λ∗ decay chain.

The ψ helicity axis is along the boost direction from the Pc to the ψ rest frames, which

is given by

ẑ
{ψ}

0
Pc = − p̂ {ψ}p , (47)

and so

cos θPcψ = −p̂ {ψ}p · p̂ {ψ}µ . (48)

The x axis is inherited from the Pc rest frame (Eq. (11)),

~a
{Pc}
z0⊥ψ = −~p {Pc}K + (~p

{Pc}
K · p̂ {Pc}ψ ) p̂

{Pc}
ψ

x̂
{ψ}

0
Pc = x̂

{Pc}
3 = −

~a
{Pc}
z0⊥ψ

|~a {Pc}z0⊥ψ |
, (49)

which leads to

φPcµ = atan2
(
−(p̂ {ψ}p × x̂ {ψ}0

Pc) · p̂ {ψ}µ , x̂
{ψ}

0
Pc · p̂ {ψ}µ

)
. (50)

Since the muons are final-state particles, their helicity states in the Pc decay chain,

|λPcµ 〉, need to be rotated to the muon helicity states in the Λ∗ decay chain, |λµ〉, before

the Pc matrix element terms can be coherently added to the Λ∗ matrix element terms.

The situation is simpler than for the rotation of the proton helicities discussed above, as

the muons come from the ψ decay in both decay chains. This makes the polar angle θµ

(analogous to θp in Eq. (43)) equal to zero, which leads to d
1
2

λPcµ , λµ
(0) = δλPcµ , λµ

, where δi,j

is the Kronecker symbol. However, the muon helicity states are not identical since the

x axes are offset by the azimuthal angle αµ. Since the boost to the µ rest frame is the

same for both decay chains (i.e. always from the ψ rest frame), αµ can be determined in

the ψ rest frame

αµ = atan2
(

(ẑ
{ψ}

3 × x̂ {ψ}3
Pc) · x̂ {ψ}3

Λ∗ , x̂
{ψ}

3
Pc · x̂ {ψ}3

Λ∗
)
, (51)
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where ẑ
{ψ}

3 = p̂ {ψ}µ , and from Eq. (11)

x̂
{ψ}

3
Pc = − â {ψ}z0⊥µ

Pc , (52)

~a
{ψ}
z0⊥µ

Pc = − p̂ {ψ}p + (p̂ {ψ}p · p̂ {ψ}µ ) p̂ {ψ}µ , (53)

as well as

x̂
{ψ}

3
Λ∗ = − â {ψ}z0⊥µ

Λ∗ , (54)

~a
{ψ}
z0⊥µ

Λ∗ = − p̂ {ψ}Λ∗ + (p̂
{ψ}
Λ∗ · p̂

{ψ}
µ ) p̂ {ψ}µ . (55)

The term aligning the muon helicity states between the two reference frames is given by

∑
λPcµ

D
Jµ

λPcµ λµ
(αµ, 0, 0)∗ =

∑
λPcµ

ei λ
Pc
µ αµδλPcµ , λµ

= ei λµαµ . (56)

The transformation of µ− states will be similar to that of the µ+ states, except that since

ẑψ will have the opposite direction, αµ+ = −αµ− . The transformation of |λPcµ+〉|λPcµ−〉 to

|λµ+〉|λµ−〉 states will require multiplying the terms for the Pc decay chain by

ei λµαµei λµ̄αµ̄ = ei (λµ−λµ̄)αµ = ei∆λµαµ . (57)

An alternative derivation of Eq. (57) is discussed in Ref. [18] (Eqs. (20)−(22) therein)

for the interference of B0 → K∗ψ, K∗ → Kπ and of B0 → ZK−, Z → ψπ (ψ → `+`−)

terms, which are analogous to the two decay chains discussed here with the substitution

B0 → Λ0
b , K

∗ → Λ∗, Z → Pc and π → p. The rotation by αµ about the `+ direction in

the ψ rest frame in the Z decay chain is incorporated by setting γ = αµ, instead of γ = 0

in Eq. (46). This leads to the same formulae since

D 1
λPcψ ,∆λµ

(φPcµ , θ
Pc
ψ , αµ)∗ = D 1

λPcψ ,∆λµ
(φPcµ , θ

Pc
ψ , 0)∗ ei∆λµαµ . (58)

The more generic derivation is used here to demonstrate that the methods of transforming
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the muon and proton helicity states between the two decay chains are the same.

Collecting terms from the three subsequent decays in the Pc chain together,

M Pc
λ
Λ0
b
, λPcp ,∆λPcµ

=e
i λ
Λ0
b
φPc
∑
j

RPcj(Mψp)
∑
λPcψ

ei λ
Pc
ψ φPcµ d 1

λPcψ ,∆λµ
(θPcψ )

×
∑
λPc

HΛ0
b→PcjK

λPc
ei λPcφ

Pc
ψ d

1
2
λ
Λ0
b
, λPc

(θPc
Λ0
b
)HPcj→ψp

λPcψ , λPcp
d
JPcj

λPc , λ
Pc
ψ −λ

Pc
p

(θPc),

(59)

and adding them coherently to the Λ∗ matrix element, via appropriate relation of |λp〉|λµ+〉|λµ−〉

to |λPcp 〉|λPcµ+〉|λPcµ−〉 states as discussed above, leads to the final matrix element squared

|M|2 =
∑

λ
Λ0
b
=± 1

2

∑
λp=± 1

2

∑
∆λµ=±1

∣∣∣∣∣∣MΛ∗

λ
Λ0
b
, λp,∆λµ + ei∆λµαµ

∑
λPcp

d
1
2

λPcp , λp
(θp)MPc

λ
Λ0
b
, λPcp ,∆λµ

∣∣∣∣∣∣
2

,

(60)

where PΛ0
b = 0 is set. As a cross-check, fitting the Λ0

b polarization to the data with

the default Λ∗ and P+
c model yields a value consistent with zero, PΛ0

b = (−2.0 ± 2.3)%

(statistical error only).

Assuming approximate CP symmetry, the helicity couplings for Λ0
b and Λ0

b can be made

equal, but the calculation of the angles requires some care, since parity (P ) conservation

does not change polar (i.e. helicity) angles, but does change azimuthal angles. Thus, not

only must ~pµ+ be used instead of ~pµ− for Λ0
b candidates (with K+ and p̄ in the final-state)

in Eqs. (28), (29), (48), (50) and (51), but also all azimuthal angles must be reflected

before entering the matrix element formula: φK → −φK , φµ → −φµ, φPc → −φPc ,

φPcψ → −φ
Pc
ψ , φPcµ → −φPcµ and αµ → −αµ [18].

It is clear from Eq. (60) that various Λ∗n and Pc resonances interfere in the differential

distributions. By integrating the matrix element squared over the entire phase space

the interferences cancel in the integrated rates unless the resonances belong to the same

decay chain and have the same quantum numbers.10

10For Λ∗
n −Pc, the λΛ0

b
= +1/2 interference terms have the opposite effect to the λΛ0

b
= −1/2 interfer-

ence terms.
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5.4 Reduction of the number of helicity couplings

A possible reduction of the helicity couplings can be achieved by relating them to the LS

couplings (BL,S) using Clebsch-Gordan coefficients

HA→BC
λB ,λC

=
∑
L

∑
S

√
2L+1

2JA+1
BL,S

 JB JC S

λB −λC λB − λC

×
 L S JA

0 λB − λC λB − λC

 ,

(61)

and then restricting the L values. Here L is the orbital angular momentum in the decay,

and S is the total spin of the daughters, ~S = ~JB + ~JC (|JB − JC | ≤ S ≤ JB + JC). If the

energy release in the decay, Q = MA−MB−MC , is small, Q/MA � 1, then higher values

of L should be suppressed; this effect is usually called “the angular momentum barrier.”

Applying this approach to Λ0
b → ψΛ∗n decays, the lowest L

Λ∗n
Λ0
b

value (Lmin) corresponds to

a single possible value of S, thus reducing the number of couplings to fit, from 4 (JΛ∗n = 1
2
)

or 6 (JΛ∗n ≥
3
2
), to just one BL,S coupling per resonance. Accepting also Lmin + 1 values,

gives three BL,S couplings to fit per resonance.

In Λ0
b → PcjK

− decays, S = JPcj and L
Pcj
Λ0
b

= JPcj ± 1
2
. Taking only the lower

L
Pcj
Λ0
b

value reduces the number of couplings from 2 to 1. Since its magnitude and phase

convention can be absorbed into HPcj→ψp
λPcψ , λPcp

(see the discussion in Sec. 5.3), one can simply

set B
Λ0
b→PcjK

JPcj−
1
2
,JPcj

= (1, 0) in this approach.

The reduction of couplings to fit for Pcj → ψp decays depends on the spin and parity

of the Pcj state. S can take values of 1
2

and 3
2
. Values of LPcj must be odd (even) for even

(odd) PPcj . For a JPPcj = 1
2

+
state, only LPcj = 1 is allowed with the two possible values

of S. Therefore, no reduction of couplings is possible. For a JPPcj = 1
2

−
state, LPcj = 0, 2

are allowed, each corresponding to one S value. Therefore, the number of couplings to

fit can be reduced from 2 to 1 when taking LPcj = 0. Gains can be larger for JPcj ≥ 3
2

states.

Even if no reduction in parameters is achieved, expressing the helicity couplings via

corresponding BL,S couplings using Eq. (61) is useful, since it automatically implements

the parity constraints (Eq. (44)) by restricting possible L values. Since the overall mag-
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nitude of the matrix element does not affect the normalized signal PDF , and because its

overall phase also drops out when taking its modulus, the magnitude and phase conven-

tion are fixed by setting B
Λ0
b→Λ(1520)J/ψ

0, 1
2

= (1, 0).
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Figure 26: Coordinate axes for the spin quantization of particle A (bottom part), chosen
to be the helicity frame of A (ẑ0||~pA in the rest frame of its mother particle or in the

laboratory frame), together with the polar (θ
{A}
B ) and azimuthal (φ
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B ) angles of the

momentum of its daughter B in the A rest frame (top part). Notice that the directions

of these coordinate axes, denoted as x̂
{A}

0 , ŷ
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0 , and ẑ
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0 , do not change when boosting

from the helicity frame of A to its rest frame. After the Euler rotation R(α = φ
{A}
B , β =

θ
{A}
B , γ = 0) (see the text), the rotated z axis, ẑ

{A}
2 , is aligned with the B momentum; thus

the rotated coordinates become the helicity frame of B. If B has a sequential decay, then
the same boost-rotation process is repeated to define the helicity frame for its daughters.
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6 Fitting techniques

In this section the formulation of the probability density function (PDF) which is fit to

the data is discussed. The PDF , P , is a function of the 6 independent variables which

were introduced in the calculation of the matrix element: mKp, and the angular variables

in the Λ∗ decay chain cos θΛ0
b
, cos θΛ, cos θJ/ψ , φK , and φµ. For brevity, the angular

variables will be collectively denoted by Ω. Recall that the variables in the Pc decay

chain are not independent, and can be calculated from the Λ∗ decay chain. The PDF

also depends on the fit parameters, −→ω , which generally include couplings and the masses

and widths of resonances. An unbinned maximum likelihood fit of these parameters to

the 6D data is performed by minimizing

− 2 lnL(−→ω ) = −2 ln
∑
i

P(mKp i, Ωi|−→ω ) (62)

with respect to −→ω .

While the background contribution is quite small, it must still be accounted for in

the minimization. There are two different methods for this which were implemented,

and which lead to different definitions of P and −2 lnL(−→ω ). The first is cFit, which

explicitly contains a background term in P . The second is sFit, which uses event weights

to statistically subtract the background from the likelihood calculation. These will be

discussed in turn, after first discussing the signal PDF . Two different procedures are

used in order to provide a cross-check on the background subtraction method.

6.1 The signal PDF

The signal PDF is the same in both the cFit and sFit method, and is written as

Psig(mKp,Ω|−→ω ) ≡ 1

I(−→w )
|M(mKp,Ω|−→ω )|2 Φ(mKp)ε(mKp,Ω), (63)
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where M(mKp,Ω|−→ω ) is the matrix element, Φ(mKp) = p q is the phase space func-

tion11, ε(mKp,Ω) is the efficiency, and I(−→w ) is the normalization integral. The Φ(mKp)

factor is included to account for working with the “rectangular Dalitz plane” variables

(mKp, cos θΛ), rather than the standard (m2
Kp,m

2
J/ψp). In particular, a weight of Φ(mKp)

will take a distribution which is uniform in (mKp, cos θΛ) and make it uniform in (m2
Kp,m

2
J/ψp).

The efficiency ε(mKp i,Ωi) includes all reconstruction and selection effects, and will be

discussed later. The integral I(−→ω ) is calculated via Monte Carlo integration, using the

MC sample which was generated uniformly in phase space and then passed through the

detector simulation and data selection. In particular, it is calculated as

I(−→ω ) ≡
∫
Pusig(mKp,Ω) dmKp dΩ ∝

Σjw
MC
j |M(mKp j,Ωj|−→ω )|2

ΣjwMC
j

, (64)

where Pusig(mKp,Ω|−→ω ) = |M(mKp,Ω|−→ω )|2 Φ(mKp)ε(mKp,Ω), and wMC
j are the correction

weights described in Appendix B.

6.2 Description of cFit procedure

In the cFit method, only the mJ/ψpK region with a high density of signal events is fitted.

This range is referred to as the signal range, and consists of the Nsignal−band = 27469

events lying within two units of the Λ0
b signal peak mass resolution, i.e. M0 ± 2σ. The

fit to mJ/ψpK is displayed again in Fig. 30 along with the signal range definition. The

sidebands are also shown, and are defined as events lying 5σ away from the signal

peak, and within the selected range of 4580 MeV to 5760 MeV. The 10259 events in the

sideband are used to form a background PDF , Pbkg(mKp i,Ωi), which is combined with

Psig(mKp i,Ωi|−→ω ) to form the total PDF as

P = (1− β)Psig(mKp i,Ωi|−→ω ) + β Pbkg(mKp i,Ωi) (65)

11As in Sec. 5, p is the momentum of the K−p system (i.e. Λ∗) in the Λ0
b rest frame, and q is the the

momentum of K in the Λ∗ rest frame.
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Figure 30: The invariant mass spectrum of J/ψpK− combinations, shown with the signal
range and sideband definitions.

with the integrated background probability set to β = 5.4%, as determined from the

fit to the J/ψK−p mass distribution shown in Fig 30. Thus the log-likelihood which is

minimized becomes

− lnL(−→ω ) = −Σi ln [(1− β)Psig(mKp i,Ωi|−→ω ) + β Pbkg(mKp i,Ωi)]

= −Σi ln

[
(1− β)

|M(mKp i,Ωi|−→ω )|2 Φ(mKp i)ε(mKp i,Ωi)

I(−→ω )
+ β
Pubkg(mKp i,Ωi)

Ibkg

]

= −Σi ln

{
(1− β) Φ(mKp i)ε(mKp i,Ωi)

I(−→ω )

[
|M(mKp i,Ωi|−→ω )|2

+
β I(−→ω )

(1− β) Ibkg

Pubkg(mKp i,Ωi)

Φ(mKp i)ε(mKp i,Ωi)

]}
= −Σi ln

[
|M(mKp i,Ωi|−→ω )|2 +

β I(−→ω )

(1− β)Ibkg

Pubkg(mKp i,Ωi)

Φ(mKp i)ε(mKp i,Ωi)

]
+N ln I(−→ω ) + constant, (66)

where Pubkg(mKp,Ω) is the unnormalized background density and Ibkg is its normalization

integral. As the constant term does not affect the minimization, it can be dropped.
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Thus, in formulating the log-likelihood in this way, the efficiency factor ε(mKp i,Ωi) only

appears in the background term, which constitutes a small fraction of the overall PDF .

This is desirable, as it makes the minimization less prone to deficiencies in the efficiency

parametrization. The same MC set used to evaluate I(−→ω ) is also used to calculate Ibkg

as 12

Ibkg ≡
∫
Pubkg(mKp) dmKp dΩ ∝ Σjw

MC
j

Pubkg(mKp j,Ωj)

Φ(mKp i)ε(mKp j,Ωj)
/Σjw

MC
j . (67)

The construction of Pubkg(mKp i,Ωi) closely follows that of the efficiency parametrization

ε(mKp i,Ωi), which will be discussed now, followed by Pubkg(mKp i,Ωi). It is assumed that

ε(mKp i,Ωi) factorizes as

ε(mKp,Ω) = ε1(mKp, cos θΛ)×ε2(cos θΛ0
b
|mKp)× ε3(cos θJ/ψ |mKp)×

ε4(φK |mKp)× ε5(φµ|mKp). (68)

The fully simulated MC sample, which has encoded in it the deviations from phase space

caused by reconstruction and selection effects, is used to construct this parametrization.

The ε1(mKp, cos θΛ) term is obtained by binning a two-dimensional (2D) histogram of

the simulated events. Each event is given a 1/Φ(mKp) weight, as they were originally

generated uniformly in the (m2
Kp,m

2
J/ψp) plane. The ε1(mKp, cos θΛ) efficiency and its vi-

sualization across the normal Dalitz plane are shown in Fig. 31. The other terms are again

built from 2D histograms, but with each bin divided by the number of simulated events

in the corresponding mKp slice, in order to remove the dependence on this mass. Each

of the other terms are shown in Fig. 32. A bi-cubic interpolation is used to interpolate

between bin centers in each 2D histogram.

The background PDF , calculated for simplicity as Pubkg(mKp,Ω)/Φ(mKp), is built

12Notice that the distribution of MC events used to calculate this includes both the Φ(mKp) and
ε(mKp,Ω) factors, thus it is necessary to divide by Φ(mKp) ε(mKp,Ω).
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Figure 31: Parameterized dependence of the relative signal efficiency over the rectangular
(left) and normal (right) Dalitz variables.

using the same approach. It is also assumed to factorize as

Pubkg(mKp,Ω)

Φ(mKp)
= Pbkg1(mKp, cos θΛ)× Pbkg2(cos θΛ0

b
|mKp)× Pbkg3(cos θJ/ψ |mKp)×

Pbkg4(φK |mKp)× Pbkg5(φµ|mKp). (69)

The 2D histograms are filled using the events from the sidebands, in the same man-

ner as was used in the efficiency parametrization construction. Also, a bi-cubic inter-

polation is again used to interpolate between bin centers. The background function

Pbkg1(mKp, cos θΛ) and its visualization across the normal Dalitz plane are shown in

Fig. 33. The other terms are shown in Fig. 34.
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Figure 32: Parameterized dependence of the relative signal efficiency for the cos θΛ0
b

(top
left), cos θJ/ψ (top right), φK (bottom left), and φµ (bottom right) variables.
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6.3 Description of sFit procedure

In the sFit method, the data in the entire 5480.0 − 5760.0 MeV range is fitted. This

procedure uses event weights obtained from the sPlot technique [47] to subtract the

background from the log-likelihood sum as

− lnL(−→w ) = −sW ΣiWi lnP(mKp i,Ωi|−→ω ). (70)

Here Wi is the the “sWeight” and sW = ΣiWi/ΣiW
2
i is a constant factor rescaling the

log-likelihood function to take into account the statistical error due to the background

subtraction. Note that since the events are weighted, strictly speaking this is not a maxi-

mum likelihood fit. The event weights are assigned via the fit to the mJ/ψpK− distribution.

Roughly stated, events will have weights dependent on the signal and background PDF

values at the particular mJ/ψpK value. So events in the sideband region will have negative

weights, which on average compensate for the background events present in the signal

region, where events will have positive weights.

In this method, the total PDF consists of only the signal PDF , Psig. Thus the

log-likelihood sum is

−2 lnL(−→ω ) =− 2sW
∑
i

Wi lnPsig(mKp i, Ωi|−→ω )

=− 2sW
∑
i

Wi ln |M(mKp i, Ωi|−→ω )|2 + 2sW ln I(−→ω )
∑
i

Wi

− constant, (71)

where the constant term can be dropped as it does not affect the minimization. As a

result, the efficiency does not enter explicitly in the log-likelihood calculation. It is hidden

in the normalization integral, but as that is calculated using Monte Carlo events which

have the efficiency effects simulated, there is no need to use an efficiency parametrization

in the sFit method.

A complication arises in the sWeight assignment, because the MC shows significant

variations of the mJ/ψpK mass resolution as functions of two of the fitted variables: cos θΛ0
b
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and cos θJ/ψ . This can be seen in Fig. 35, where mJ/ψpK is shown for different ranges of

these angles. It can also be seen that no strong variations exist for the other angles.

Thus, to more precisely determine the sWeights, the events are divided into 32 bins,

corresponding to four equal divisions of | cos θJ/ψ | and eight equal divisions of cos θΛ0
b
.

Note that as the cos θJ/ψ distributions are symmetric, the absolute value is used along

with half the bins, allowing for better event statistics in each bin. The fit to the mJ/ψpK

distribution is repeated for each bin, and the results are shown in Fig. 36. The sPlot

procedure is then repeated for each bin in order to determine the sWeights.

6.4 Choice of Nominal Background-Handling Method

There is no clear choice of either sFit or cFit as a superior method. An advantage of

sFit is that it does not require an efficiency or background parametrization. However, it

operates under a pseudo-likelihood, as it is dealing with weighted events. The negative

weights used in sFit can sometimes also lead to bad consequences, in which the events

with negative weights can drive the likelihood. Meanwhile cFit operates under a true

likelihood, but explicitly relies on 6D efficiency and background parametrizations.

Historically, the software for the cFit and sFit methods were developed independently

of each other as a means for cross-checking the results. The motivation for the cross-checks

were two-fold: to check for human error in developing these complicated fitters, and to

compare the two background-handling methods. The sFit code was developed by Liming

Zhang, and all studies which were performed with the sFit method were performed by

him. Ultimately, the decision was made to use cFit for the central values of the results,

and use cFit-sFit differences as a cross check.
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Figure 36: Fits to m(J/ψpK−) distributions in 4 for | cos θJ/ψ | × 8 for cos θΛ0
b

bins, where
the blue curves show the total fits, the red solid line the signal and the brown dashed line
the background. The columns from left to right correspond to 4 equal | cos θJ/ψ | ∈ [0, 1]
bins and the row from top to right correspond to 8 equal cos θΛ0

b
∈ [−1, 1] bins.
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7 Models of K−p resonances

The mKp distribution shown in Fig. 23 shows several resonant structures. However,

Λ(1520) is the only prominent and immediately identifiable state; it is a non-trivial

exercise to determine which resonances to include in the amplitude model. Thus far,

only Λ∗ → K−p contributions have been spoken of, with no mention of Σ∗ → K−p

contributions. Since the isospin of both the Λ0
b and the J/ψ are zero, it is expected

that the dominant contributions in the K−p system are from Λ∗ states, which would

proceed via a ∆I = 0 process. It is also possible that Σ∗ resonances contribute, but

these would have ∆I = 1. By analogy with kaon decays, the ∆I = 1 process should be

suppressed. [52]. The possibility of their presence is anyway revisited in Sec. 8.4. The list

of Λ∗ states as cataloged by the PDG [27] is shown in Table 5, along with their respective

JP quantum numbers, mass, width, and PDG class13. The JP of Λ(2585) is not known,

and 5/2− is assumed. Also listed in the table are the number of LS amplitudes allowed

for two different models, which will be discussed now.

An attempt was first made to try and fit the data with only Λ∗ resonances, in order to

see if a good description of the mass and angular distributions can be obtained without

including exotic pentaquark contributions. As part of the effort to do this, one should give

the Λ∗ model plenty of degrees of freedom with which to describe the data. However,

including all resonances and all LS couplings can quickly lead to a large number of

free parameters, as each additional resonance can contribute 8-12 new parameters if all

couplings are allowed. It is likely that not all of these resonances are present in the

data, for reasons which will be elaborated on shortly, and it is also likely that some of

the higher L amplitudes are either heavily suppressed or non-existent. Still, the most

general model includes all possible states and amplitudes. Thus the first model used is

the “extended” model. It does not include * states, but includes all other states and

allows all amplitudes, leading to a total of 146 free parameters. The masses and widths

of the Λ∗ states are fixed to their PDG values, as allowing them to float prevents the

13 The PDG utilizes a classification scheme in which the class is given by one to four stars (*). The
rankings range from very questionable (*) to well-estabilished states (****).
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Table 5: Λ∗ resonances listed by the PDG. The one star (*) states are not considered. The
number of LS amplitudes is also listed for both the “reduced” and “extended” models.
A zero entry means its not considered for the fits.

State Jp PDG class Mass (MeV) Γ (MeV) # Default # Extended
Λ(1405) 1/2− **** 1405.1+1.3

−1.0 50.5± 2.0 3 4
Λ(1520) 3/2− **** 1519.5± 1.0 15.6± 1.0 5 6
Λ(1600) 1/2+ *** 1600 150 3 4
Λ(1670) 1/2− **** 1670 35 3 4
Λ(1690) 3/2− **** 1690 60 5 6
Λ(1710) 1/2+ * 1713± 13 180± 40 0 0
Λ(1800) 1/2− *** 1800 300 4 4
Λ(1810) 1/2+ *** 1810 150 3 4
Λ(1820) 5/2+ **** 1820 80 1 6
Λ(1830) 5/2− **** 1830 95 1 6
Λ(1890) 3/2+ **** 1890 100 3 6
Λ(2000) ? * ≈2000 ? 0 0
Λ(2020) 7/2+ * ≈2020 ? 0 0
Λ(2050) 3/2− * 2056± 22 493± 60 0 0
Λ(2100) 7/2− **** 2100 200 1 6
Λ(2110) 5/2+ *** 2110 200 1 6
Λ(2325) 3/2− * ≈2325 ? 0 0
Λ(2350) 9/2+ *** 2350 150 0 6
Λ(2585) ? ** ≈2585 200 0 6

fit from converging. Variations in these parameters will be considered in the systematic

uncertainties.

As will be shown, fits with K−p resonances alone cannot adequately describe the

data, and it is necessary to include exotic pentaquark contributions. This is despite

the inclusion of free parameters describing resonances or amplitudes which likely do not

contribute to the data. Due to the large number of free parameters, it is desirable to

have an additional model with only more well-motivated parameters. This facilitates

the process of carrying out the characterization of the Pc states, as well as the ensuing

systematic studies. By removing the unlikely contributions, the very time-consuming fits

can be performed quicker, and with less concern of converging to false minima. For these

reasons, the “reduced” or “default” Λ∗ model was created.

As the minimal LΛ
∗

Λ0
b

for the spin 9/2 Λ(2350) equals JΛ∗ − JΛ0
b
− JJ/ψ = 3, it is

extremely unlikely that this state can be produced while being so close to the phase-

space limit (Q = mΛ0
b
−mJ/ψ ≈ 160 MeV). In fact L = 3 is the highest orbital angular
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momentum observed, with a very small rate, in decays of B mesons [53] with much

larger phase-space available (Q = 1780 MeV), and also without additional suppression

from the spin counting factors present in the Λ(2350) production (all three ~JΛ∗ , ~JΛ0
b

and

~JJ/ψ vectors have to line up in the same direction to produce the minimal LΛ
∗

Λ0
b

value).

Therefore, it is eliminated in the default Λ∗ model. The Λ(2585) is also eliminated, as

it peaks beyond the kinematic limit and is not as well-established, with the JP not even

being known. Also, even for resonances which are present, some possible values of orbital

angular momenta are not likely to contribute significantly due to high L values being

suppressed. Thus some high LΛ
∗

Λ0
b

amplitudes were removed. Only the lowest values were

kept for the high mass resonances, and smaller reductions made for the lighter ones. The

number of amplitudes used for each resonances is listed in Table 5. With this model the

number of parameters used to describe the Λ∗ decays was reduced from 146 to 64. The

difference between the fit results obtained with the default and extended Λ∗ models is

included in the systematic uncertainties.
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8 Fits with only K−p contributions

In this section, fits to the data with an amplitude model consisting of only K−p contri-

butions are shown. When answering the question of whether or not conventional contri-

butions can reproduce the data, it is important to give the model plenty of flexibility;

thus, the extended model is used for all fits in this section. Results are first shown for

the extended model by itself, and then with additions of further K−p contributions.

8.1 Extended Model

The results of the fit with the extended Λ∗ model without P+
c states are shown in this

section. The amplitude model is compared to the data by projecting it onto the various

kinematic variables. This is carried out by weighting the fully simulated MC sample with

the matrix element squared calculated for each event. The projections onto the mKp

and mJ/ψp variables are shown in Fig. 37. While mKp is reasonably well fit, the peaking

structure in mJ/ψp is not reproduced. The angular distributions are also reasonably
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Figure 37: Results of the extended Λ∗ model for (a) mKp and (b) mJ/ψp. The data are
shown as (black) squares with error bars, while the (red) circles show the projection of
the fit. Each Λ∗ component is also shown as specified in the legend. The error bars on
the points showing the fit results are due to simulation statistics.

reproduced, as shown by the projections displayed in Fig. 38.

It is also instructive to look at the projections onto mJ/ψp in bins of mKp, as displayed

in Fig. 39. Note that the peaking structures are outside of the allowed kinematic region in
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the first bin. The inability of the model to reproduce the data is clearly seen throughout

the remaining bins. It is apparent that the data can not be described by the extended

Λ∗ model.
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Figure 38: Results of the extended Λ∗ model for the different decay angular distributions.
The data are shown as (black) squares, while the (red) circles show the results of the fit.
Each fit component is also shown. The angles are defined in Sec. 5.2.
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Figure 39: Results of the extended Λ∗ for mJ/ψp in various intervals of mKp: (a) mKp <
1.55 GeV, (b) 1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, and (d) mKp >
2.00 GeV. The data are shown as (black) squares with error bars, while the (red) circles
show the results of the fit. Each fit component is also shown. See Fig. 38 for the legend.
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8.2 Addition of two new Λ∗ resonances

In addition to the resonances used in the extended model, two new Λ∗ resonances were

added to the amplitude model. All combinations of JP for the two resonances were tested

for spins up to 7/2. All LS couplings were allowed, and the masses and the widths of

the added states were free in the fit. The largest improvement in −2 lnL came from

adding a 1
2

−
and 3

2

−
state. The comparisons of this amplitude model to the data for mKp

and mJ/ψp are shown in Fig. 40. Clearly, the addition of these states does not lead to a

significantly improved ability to describe the peaking structure seen in mJ/ψp.
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Figure 40: Results of the extended Λ∗ model with an additional 1
2

−
and 3

2

−
state for (a)

mKp and (b) mJ/ψp. The data are shown as (black) squares with error bars, while the
(red) circles show the projection of the fit. Each Λ∗ component is also shown as specified
in the legend. The error bars on the points showing the fit results are due to simulation
statistics.
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8.3 Addition of four nonresonant components

Four nonresonant components with JP ’s of 1/2+, 1/2−, 3/2+, and 3/2− were also added on

top of the extended Λ∗ model. All LS amplitudes of the nonresonant states were allowed

to vary. The comparisons of this amplitude model to the data for the mKp and mJ/ψp

variables are shown in Fig. 41. Even with the addition of these four new components,

the amplitude model does not come close to being able to create the peaking structures

seen in the data.
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Figure 41: Results of the extended Λ∗ model with 1
2

±
and 3

2

±
nonresonant contributions

added on for (a) mKp and (b) mJ/ψp. The data are shown as (black) squares with error
bars, while the (red) circles show the projection of the fit. Each Λ∗ component is also
shown as specified in the legend. The error bars on the points showing the fit results are
due to simulation statistics.

8.4 Addition of Σ∗ states

As was stated earlier, significant contributions from Σ∗ → K−p are not expected due

to the larger isospin change in Λ0
b → J/ψΣ∗ (∆I = 1) compared with Λ0

b → J/ψΛ∗

(∆I = 0). Nevertheless, the Σ∗ states in the PDG with a *** or **** rating were added

to the extended model. These newly included states are listed in Table 6 along with their

properties. Here the Σ(2250) state was picked arbitrarily to have JP = 3/2+. All LS

amplitudes were allowed, resulting in a new total of 246 free parameters. The comparisons

of this amplitude model to the data for the mKp and mJ/ψp variables are shown in Fig. 42.

The results of the mJ/ψp projection are only marginally different from the extended model
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fit without the Σ∗ states, and no ability to produce the peaking structure is seen.

Table 6: List of added Σ∗ states

State JP PDG class Mass (MeV) Width (MeV) # of LS amplitudes
Σ(1385) 3/2+ **** 1383.7± 1.0 36± 5 6
Σ(1660) 1/2+ *** 1660 100 4
Σ(1670) 3/2− **** 1670 60 6
Σ(1750) 1/2− *** 1750 90 4
Σ(1775) 5/2− **** 1775 120 6
Σ(1915) 5/2+ **** 1915 120 6
Σ(1940) 3/2− *** 1940 220 6
Σ(2030) 7/2+ **** 2030 180 6
Σ(2250) ?? **** 2250 100 6
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Figure 42: Results of the extended Λ∗ model with Σ∗ contributions added on for (a) mKp

and (b) mJ/ψp. The data are shown as (black) squares with error bars, while the (red)
circles show the projection of the fit. Each Λ∗ component is also shown as specified in
the legend. The error bars on the points showing the fit results are due to simulation
statistics.
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9 Addition of a Pc resonance

The studies in the previous section have shown that the data clearly can not be described

by only K−p contributions. The well established Λ∗ states failed to reproduce the peaking

structures seen in the mJ/ψp distribution (Sec. 8.1), and the introduction of further states

was seen to not help (Sec.8.2). Furthermore, the addition of four nonresonant (Sec. 8.3)

or several Σ∗ (Sec. 8.4) components to the amplitude model still lead to poor descriptions

of the data.

As nothing in the K−p system has shown any ability to produce the observed peaking

structure, the next step is to add a resonance in the J/ψp system. Fits were performed

with Pc states of varying quantum numbers: JP = 1/2±, 3/2± and 5/2±. The mass and

width of the Pc states were allowed to vary. The best fit to the data as determined from

the −2 lnL was obtained with JP = 5/2+. However, this fails to give a good description

of the data. Figure 43 compares the data to the projections of the amplitude model on

the mKp and mJ/ψp variables. While the mKp projection is still well described, the model

doesn’t do a sufficient job of describing the peak in mJ/ψp.
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Figure 43: Results of the extended Λ∗ model with a 5
2

+
Pc state for (a) mKp and (b) mJ/ψp.

The data are shown as (black) squares with error bars, while the (red) circles show the
projection of the fit. Each fit component is also shown as specified in the legend. The
error bars on the points showing the fit results are due to simulation statistics.

The various angular distributions are shown in Fig. 44. The fit is again in good

agreement with the data. The projection on to the mJ/ψp variable in various bins of

mKp is shown in Fig. 45. Clearly, the discrepancy between the amplitude model and the
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peaking structures in mJ/ψp is much less than in the fit without a Pc, but it still doesn’t

describe the data well, especially in the 1.55 < mKp < 1.70 GeV interval.
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Figure 44: Results of the extended Λ∗ model with a 5
2

+
Pc state for various decay angular

distributions. The data are shown as (black) squares, while the (red) circles show the
results of the fit. Each fit component is also shown. The angles are defined in Sec. 5.2.
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Figure 45: Results of the extended Λ∗ with a 5
2

+
for mJ/ψp in various intervals of mKp:

(a) mKp < 1.55 GeV, (b) 1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, and (d)
mKp > 2.00 GeV. The data are shown as (black) squares with error bars, while the (red)
circles show the results of the fit. Each fit component is also shown. See Fig. 44 for the
legend.
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10 Addition of a second Pc resonance

The purpose of the extended model was to give the conventional hadron model plenty

of flexibility with which to describe the data before resorting to adding exotic hadron

contributions. It was shown in Sec. 8 that such fits could not be obtained, and then in

Sec. 9 it was shown that adequate descriptions of the data could not be obtained with

just a single Pc resonance. As discussed in Sec. 7, it is desirable to work with a Λ∗ model

which has less free parameters14. This is achieved in the default model by removing the

Λ(2350) and Λ(2585) as well as placing limits on the orbital angular momenta present

in the Λ0
b → J/ψΛ∗ decays. For the comparison of the extended and default models, see

Table 5. It is shown in this section that good descriptions of the data can be obtained

with this “reduced” Λ∗ model when two Pc resonances are included. Thus, this model is

used for determining nominal values of the Pc resonances, while the extended Λ∗ model

will be used as part of the systematic studies.

10.1 Fit results for default amplitude model

Fits were performed with two Pc resonances for all combinations of JP with spins up to

J = 7/2, for a total of 64 different combinations. The improvement in fit quality from

the default Λ∗ model with no Pc resonances is quantified by the −2 lnL. The best fit is

obtained with a 3/2− state having a mass of 4380±8 MeV and a width of 205±11 MeV,

along with a 5/2+ state having a mass of 4449.8±1.7 MeV and a width of 39±5 MeV15.

All uncertainties listed here are statistical; systematic uncertainties will be discussed

later. These states were named using their respective masses as Pc(4380) and Pc(4450).

In Fig. 46, the projections of the default amplitude model on mKp and mJ/ψp are shown

along with the data. The mKp distribution is of course well-described, and it is now seen

that mJ/ψp is well-described as well. Thus, it is seen that with two pentaquark resonances,

a good description of the data can be obtained. To see the fit projections obtained with

14In fact it is necessary to do this, as the number of free parameters in the extended model prevents
the determination of a positive-definite error matrix, and thus accurate statistical uncertainties.

15The mass resolution is 2.5 MeV at 4450 MeV, so these correspond to the natural widths of these
states.
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the extended Λ∗ model and the two Pc states, see Appendix D.

Figure 47 shows that the angular distributions are also well-fit. The one difference

is for the cos θΛ0
b

distribution where the fit is higher than the data for cos θΛ0
b
< 0 and

cos θΛ0
b
> 0. This can be due to a small mis-modeling of either the efficiency or the

background. We will show in the systematic uncertainty section that this discrepancy

has only a small effect on the final result. The mJ/ψp distribution in various intervals of

mKp is shown in Fig. 48, where it is seen that a good description is obtained for mJ/ψp

throughout the mKp range.

This amplitude model will henceforth be taken as the default, or nominal, amplitude

model. An important point is that while the best fit is obtained with JP (Pc(4380), Pc(4450)) =

(3/2−, 5/2+), the combinations (3/2+, 5/2−) and (5
2

+
, 3

2

−
) are not far behind, with their

−2 lnL values being only 0.92 and 2.32 worse, respectively. A full list of quantum number

rankings is given in Sec. 13.
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Figure 46: Fit projections of the default Λ∗ model with two P+
c states onto the (a) mKp

and (b) mJ/ψp distributions. The data are shown as solid (black) squares, while the
solid (red) points show the results of the fit. The solid (red) histogram shows the back-
ground distribution. The (blue) open squares with the shaded histogram represent the
Pc(4450)+ state, and the shaded histogram topped with (purple) filled squares represents
the Pc(4380)+ state. Each Λ∗ component is also shown. The error bars on the points
showing the fit results are due to simulation statistics.
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Figure 47: Fit projections of the default Λ∗ model with two P+
c states onto the decay

angular distributions. The data are shown as (black) squares, while the (red) circles show
the results of the fit. Each fit component is also shown. The angles are defined in Sec. 5.2.
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Figure 48: Fit projections of the default Λ∗ model with two P+
c states onto mJ/ψp for

various intervals of mKp: (a) mKp < 1.55 GeV, (b) 1.55 < mKp < 1.70 GeV, (c) 1.70 <
mKp < 2.00 GeV, an d (d) mKp > 2.00 GeV. The data are shown as (black) squares
with error bars, while the (red) circles show the results of the fit. The blue and purple
histograms show the two P+

c states. See Fig. 47 for the legend.
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Figure 49: Fit projections of the default Λ∗ model with two P+
c states onto the decay

angular distributions mKp > 2 GeV. The data are shown as (black) squares, while the
(red) circles show the results of the fit. Each fit component is also shown. The angles are
defined in Sec. 5.2.

89



10.2 Fit fractions

The fit fraction for a given resonance is defined as the ratio of the phase space integral

of the matrix element for the resonance taken by itself to the integral of the full matrix

element.

FF(resi) =

∫
dmKpdΩ|Mresi |2∫
dmKpdΩ|M |2

(72)

Similarly, one can calculate the fit fraction of multiple resonances taken together. Note

that interferences will allow for the sum of fit fractions for all the resonances in a model

to be greater than unity. Using fit fractions, the interference can be quantified via the

difference between the fit fraction of two resonances taken together and the fit fractions

calculated for each resonance separately. The fit fractions are listed in Table 7. The

Λ0
b → J/ψΛ∗(1405) was recently predicted [54], and this measurement can be taken as

a confirmation of this process. Systematic uncertainties of fit fractions for the Pc states

and the well-separated Λ∗(1405) and Λ∗(1520) states are estimated in Sec. 15.

Table 7: Fit fractions of the different components for the default 3/2−, 5/2+ model.

Resonance Fit fraction (%)
Pc(4450) 4.09± 0.48
Pc(4380) 8.42± 0.68
Λ∗(1405) 14.64± 0.72
Λ∗(1520) 18.93± 0.52
Λ∗(1600) 23.50± 1.48
Λ∗(1670) 1.47± 0.49
Λ∗(1690) 8.66± 0.90
Λ∗(1800) 18.21± 2.27
Λ∗(1810) 17.88± 2.11
Λ∗(1820) 2.32± 0.69
Λ∗(1830) 1.76± 0.58
Λ∗(1890) 3.96± 0.43
Λ∗(2100) 1.65± 0.29
Λ∗(2110) 1.62± 0.32
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11 Necessity of two Pc states

From viewing the mJ/ψp distribution by itself, it isn’t immediately clear why the addition

of a single Pc state isn’t better able to describe the data. This section examines why

this is the case, and further demonstrates the importance of performing a full amplitude

analysis which uses all kinematic variables and allows for the interference of the various

contributions, rather than a naive 1D fit to the mJ/ψp distribution.

11.1 Studies of the Pc decay angular distribution

The reason why adding a single Pc state fails to describe the peaking structure can be

found in the distribution of cos θPc , the Pc helicity angle. It is plotted versus m2(J/ψp)

in Fig. 50. This corresponds to the rectangular Dalitz plane, using the variables of the

Pc decay chain, and thus is a different representation of the usual Dalitz plot. The band

indicative of contributions in the J/ψp system is clearly seen just below 20 GeV 2, and

the presence of the lower mass Λ∗ states can be clearly seen at larger values of cos θPc ,

stretching across m2
J/ψp. It can be expected that the distribution of cos θPc resulting from

]2p) [GeVψ(J/2m
20 25

cPθ
co

s
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Figure 50: Distribution of m2
J/ψp versus cos θPc for candidates within ±20 MeV of the Λ0

b

mass.

a single Pc state should be symmetric about cos θPc = 0, and this will be proven shortly.
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However, if the mJ/ψp distribution of the data is split into two sets according to the sign

of cos θPc , there is a clear asymmetry in the size of the mJ/ψp peaking structure. This

is shown in Fig. 51. To be clear, this is about the difference in the size of the peaking

structure, and not about the difference in the total number of events. From viewing

Fig. 50, it is clear that the total number of events would exhibit this feature. What is

interesting is that the peak also shows this difference, which wouldn’t be the case if only

a single Pc state was present.
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Figure 51: Distributions of mJ/ψp in the data for cos θPc > 0 (solid black points) and
cos θPc < 0 (open red points). The background has been subtracted using sWeights.

The question then is how to get an asymmetric cos θPc distribution such as this

from Pc contributions. In Fig. 52, the cos θPc distributions are shown for two com-

binations of possible quantum numbers: JP (Pc(4380), Pc(4450)) = (3/2+, 5/2+) and

JP (Pc(4380), Pc(4450)) = (3/2−, 5/2+). Each figure shows the distributions resulting

from their individual contributions, as well as their combined contribution, which in-

cludes their interference effects. Note that, for the case in which the two Pc states have

matching parities, the combined distribution remains symmetric, while for the case in

which they have opposite parities, the combined distribution is asymmetric. Indeed, the
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combined distribution will in general be symmetric for the same-parity combinations, and

asymmetric for the opposite-parity combinations. If it is accepted that only contributions

from Pc states form the peaking structure, then the asymmetry shown in Fig. 51 can only

be caused by the interference of Pc states which have opposite parities.
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Figure 52: Distributions of cos θPc from individual and combined Pc contributions when
the quantum numbers are taken as (a)JP (Pc(4380), Pc(4450)) = (3/2+, 5/2+) and (b)
JP (Pc(4380), Pc(4450)) = (3/2−, 5/2+)

To prove the statement that distributions resulting from a single Pc state will always

be symmetric, the expression for the angular distribution of cos θPc is examined. In these

considerations, the J/ψ is treated as a final state particle. Using the formalism and

notation of Sec. 5, the distribution can be expressed as

I(θPc) =
∑

λPc ,λ
Pc
ψ ,λPcp

I
λPc
λPcψ ,λPcp

(θPc), (73)

with

I
λPc
λPcψ ,λPcp

(θPc) =

∣∣∣∣∣∑
j

HPcj
λPc
HPcj→ψp
λPcψ ,λPcp

d
JPcj

λPc ,λ
Pc
ψ −λ

Pc
p

(θPc)

∣∣∣∣∣
2

. (74)

A similar equation can be obtained from the full decay matrix of Λ0
b → P+

c K
−;P+

c →

ψp;ψ → µ+µ− decay chain, by integrating over all other variables. The λPc index of the

Wigner d-matrix can take values of ±1
2
, as determined by angular momentum conser-

vation in the Λ0
b → PcK

− decay, while the λPcψ − λPcp index takes the values ±3
2
,±1

2
, as

allowed in the Pc → ψp decay. The Pc decays strongly, which means parity is conserved
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and the HPcj→ψp
λPcψ ,λPcp

couplings must follow the relation

HPcj→ψp
−λPcψ ,−λPcp

= PPcj(−1)
1
2
−JPcjHPcj→ψp

λPcψ ,λPcp
. (75)

For only one Pc state (j = 1), the sum of the terms with (λPcψ , λ
Pc
p ) and (−λPcψ ,−λPcp ) for

given any λPc is

I
λPc
λPcψ ,λPcp

(θPc) + I
λPc
−λPcψ ,−λPcp

(θPc)

=

∣∣∣∣HPc
λPc
HPc→ψp
λPcψ ,λPcp

∣∣∣∣2(|dJPcλPc ,λ
Pc
ψ −λ

Pc
p

(θPc)|2 + |dJPc
λPc ,−(λPcψ −λ

Pc
p )

(θPc)|2
)
, (76)

where Eq. (75) is used. It is seen that the angular distribution is the sum of terms which

are quadratic in Wigner small d-matrices. The Wigner d-matrices are always either

odd or even functions. As both an odd function multiplying itself and an even function

multiplying itself will always be even, and the addition of an even function with another

even function is also even, the angular distribution will always be even. Thus, for a single

Pc state, the cos θPc distribution will alawys be symmetric around 0.

Next the two Pc case is considered. The sum term is now given by

I
λPc
λPcψ ,λPcp

(θPc) + I
λPc
−λPcψ ,−λPcp

(θPc)

=

∣∣∣∣H1d
JPc1
λPc ,λ

Pc
ψ −λ

Pc
p

(θPc) +H2d
JPc2
λPc ,λ

Pc
ψ −λ

Pc
p

(θPc)

∣∣∣∣2
+

∣∣∣∣H1d
JPc1
λPc ,−(λPcψ −λ

Pc
p )

(θPc) + PPc1PPc2(−1)JPc1−JPc2H2d
JPc2
λPc ,−(λPcψ −λ

Pc
p )

(θPc)

∣∣∣∣2 , (77)

where PPc1 PPc2 are parities of the two Pc, and for short

Hj = HPcj
λPc
HPcj

λPcψ ,λPcp
(78)

It is found by a Mathematica investigation that when the parities of the two Pc states

are equal the cos θPc distribution will be symmetric, and when the parities are opposite

the distribution will be asymmetric.
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11.2 Comparison of the data and amplitude model cos θPc dis-

tributions

The asymmetric cos θPc distribution of the data and how it is accounted for in the default

amplitude model is directly studied here. The distribution is examined in the range of

4.41 − 4.49 GeV, in order to directly study the Pc region of interest and to reduce the

Λ∗ background. This corresponds to roughly mPc(4450) ± ΓPc(4450), and captures most of

the Pc(4450) rate and its interference with Pc(4380). The data is efficiency-corrected

and background-subtracted to remove distortions of the distribution from either of these

sources. It is displayed along with the efficiency-corrected projections of the total am-

plitude model, total Λ∗ and Pc contributions, and individual Pc constributions in the

left plot of Fig. 53. The background component of the total amplitude model has also

been removed. It is seen that there is a clear asymmetry in the excess of the data over

the Λ∗ contribution, indicating that the default Λ∗ model is incapable of producing the

asymmetry present in the Pc peak. Further, the combined Pc contribution matches this

excess quite well. This can be more easily seen in the right plot of Fig. 53, in which the

total Λ∗ contribution has been subtracted from the data.
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Figure 53: (left) Distribution of cos θPc from efficiency-corrected and background-
subtracted data, along with the total fit, total Λ∗ contribution, total Pc contribution,
and individual Pc contributions. (right) The left plot with the total Λ∗ contribution
subtracted from the data.

For a direct demonstration that two same-parity Pc states will not be able to describe

the data, see Appendix F, where the best fit obtained with same-parity states is shown.
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The fit does a poor job of describing the mJ/ψp distribution, and has a ∆(−2 lnL) which is

5.12 worse than the default fit. Thus direct tests of the same-parity states are in agreement

with the arguments presented in this section. It should be noted that low mass Λ∗ states

are also capable of generating an asymmetric cos θPc distibution which peaks towards

+1. Thus the conclusion that two opposite-parity Pc states must be present in order to

describe the data relies on the validity of the assumption that the asymmetry in the mJ/ψp

peak is a result of activity in the J/ψp system, and not a byproduct of some unrepresented

Λ∗ components.
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12 Significance of the Pc states

The significance of the Pc states is quantified via the hypothesis testing performed in this

section. Three different hypotheses are considered: no Pc’s are present in the data, a

single Pc is present, and two Pc’s are present. These are referred to as HnoPc , H1Pc , and

H2Pc . The goal is to calculate the probability that a “null hypothesis” is true against

an “alternative hypothesis”. This probability is the “p−value”, which formally is the

probability that, when the null hypothesis is true, the test variable returns a value equal

to or more extreme than the measured value. The p−value is often expressed in terms

of an equivalent number of Gaussian standard deviations, nσ. They are related to each

other as

p = 1−
∫ nσ

0

G(x)dx , (79)

where G(x) is the Gaussian distribution and one sided probability is used, as these are

nested hypotheses. Thus nσ can be calculated with the help of the inverse complementary

error function:

nσ(p) =
√

2 erfc−1(2p) . (80)

Three types of hypothesis testing are performed

1. H1Pc vs HnoPc : Null hypothesis HnoPc tested against alternative hypothesis H1Pc .

This can be thought of as the significance of Pc(4450).

2. H2Pc vs H1Pc : Null hypothesis H1Pc tested against alternative hypothesis H2Pc .

This can be thought of as the significance of Pc(4380).

3. H2Pc vs HnoPc : Null hypothesis HnoPc tested against alternative hypothesis H2Pc .

This can be thought of as the significance of both Pc’s.

For each of these types of tests, the extended Λ∗ model is used in order to be most

conservative.

To calculate a p−value, the expected distribution of the ∆(−2 lnL) test variable must

first be known, where the difference of the log-likelihoods is between the null and the alter-

native hypotheses. The hypothesis tests listed above are examples of nested hypotheses,
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meaning the null hypothesis is a subset of the more general alternative hypothesis. For

such cases, Wilks’ Theorem says that in the asymptotic limit of infinite statistics, the

∆(−2 lnL) distribution will be distributed as a χ2
k distribution with a number of de-

grees of freedom k which is equal to the difference in total free parameters between the

alternative and null hypothesis. The p−value can then be calculated as

p =

∫ ∞
∆(−2 lnL)

χ2
k(x) dx. (81)

An issue arises, though, in adding resonances with free mass and width, which are un-

defined under the null hypothesis. In such a scenario, the likelihood regularity is not

satisfied, and Wilks’ theorem no longer holds. This is a case of needing to take into

account the “look elsewhere effect”; the null hypothesis isn’t testing against a single al-

ternative hypothesis, but a continuum of hypotheses with varying masses and widths.

Statistical simulations under the null hypothesis must be performed in order to obtain an

effective number of degrees of freedom (ndfeff). This is done by generating pseudoexperi-

ments under the null hypotheses, and calculating ∆(−2 lnL) for each pseudoexperiment.

Enough of these are done to get a handle on the distribution of ∆(−2 lnL) under the null

hypothesis. The distribution of ∆(−2 lnL) is then fit with a χ2
k distribution in order to

determine k = ndfeff . This can then be used with the ∆(−2 lnL) to calculate the p−value

using Eq. 81.

All parts of the fit are simulated in the pseudoexperiments. This includes simulating

the event samples of the Λ0
b signal regions, the Λ0

b sidebands, and the fully simulated

phase space MC, in statistics which match those used in the fit to the real data. The

data sets are generated by throwing events uniformly in the 6D phase space, and then

shaping them as described below. The events in the signal region are a mixture of the

Λ0
b → J/ψK−p signal events and background events. Thus for the background fraction

β (5.4%) and total number of events in the signal range Nsignal−band (27469), a total of

βNsignal−band background-type events are generated and (1 − β)Nsignal−band signal-type

events are generated. The signal-type events are shaped according to the amplitude

model corresponding to the null hypothesis being tested. Thus, for example, in the H1Pc
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vs HnoPc type of hypothesis test, the signal events are shaped according to the amplitude

model obtained by fitting the extended Λ∗ model to the data. The background-type events

are shaped according to the parameterized background built from the Λ0
b sidebands of

the real data (Eq. 69). The Λ0
b sidebands are also shaped according to the background

parametrization. Note that this sideband pseudo-data set is then used for constructing the

background parametrization used in the pseudoexperiment. Similarily the MC pseudo-

data set is shaped using the efficiency parametrization built from the MC data set used

in the fit to the real data, and is then used to construct the efficiency parametrization

used in the pseudoexperiment. The fits are then performed the same way as to the real

data sample, but using the pseudo-data sets.

Pseudoexperiments were performed for each of the types of hypothesis testing, and

the distributions of the ∆(−2 lnL) test variable were accumulated. The fitted ndfeff for

each type can be seen in Table 8, where they can also be compared to the change in the

number of parameters obtained when going from the nested null hypothesis to the more

general alternative hypothesis. In the significance calculation of the Z(4430)+ in the

LHCb amplitude analysis, it was found that the simulated ∆(−2 lnL) distribution was

well described by a χ2 distribution with an ndfeff value around twice the number of free

parameters in the Z(4430)+ term [19]. We see approximately the same behavior here.

In order to be conservative, the statistical uncertainty for the fitted ndfeff is added to it,

and this value is then rounded up to the nearest integer before being used to calculate

the p−value. For example, k = 20 is used in Eq. 81 along with ∆(−2 lnL) = 14.72 for

the H1Pc vs HnoPc hypothesis test. Equation 80 is then used to convert the p−value

to standard deviations. The resulting significances with which the null hypothesis can

be rejected are also listed in Table 8. It is seen that the significance of Pc(4450) can

Table 8: For each type of hypothesis testing performed: the difference in free parameters
for the nested hypothesis, the ndfeff , the ∆(−2 lnL), and the significance with which the
null hypothesis can be rejected.

Test ∆ param ndfeff ∆(−2 lnL) Significance (σ)
H1Pc vs HnoPc 10 18.1± 1.0 14.72 12.2
H2Pc vs H1Pc 10 13.6± 1.5 11.62 9.2
H2Pc vs HnoPc 20 42.5± 2.4 18.72 14.6
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be taken as approximately 12.2σ, Pc(4380) as approximately 9.2σ, and their combined

significance approximately 14.6σ. These are about 20% lower than the naive estimates

obtained using
√

(∆(−2 lnL)). The word “approximately” needs to be noted here, as the

number of pseudoexperiments necessary to calculate the significances to these precisions

would be impractical. Each pseudoexperiment performed for this analysis takes about a

day running on 12 CPU cores. Because of the limited availability of such hardware and the

large CPU consumption, it is impossible to simulate such a large number of experiments.

The conclusion that should be drawn is that the Pc states are overwhelmingly significant.

100



13 Quantum numbers of the Pc states

The studies done in this section detail the efforts to attempt a determination of the

quantum numbers of the Pc states. For two models representing separate hypotheses, e.g.

when discriminating between different JP values assigned to a Pc state, the ∆(−2 lnL)

can be assumed to be distributed under the disfavored JP hypothesis as a χ2 distribution

with one degree of freedom (ndf = 1). This gives an upper limit on the p−value for the

disfavored hypothesis [55], or equivalently a lower limit on the significance of its rejection.

To accurately determine the significances, statistical simulations would be necessary in

order to obtain the actual distribution of ∆(−2 lnL) under the disfavored hypothesis.

These statistical simulations would require a large number of pseudoexperiments, and

there are a large number of alternative quantum number hypotheses to test against (64

in total). While many of the hypotheses have such poor ∆(−2 lnL) values that they can

be ruled out without statistical simulations, there is some dependence of the rankings on

the Λ∗ model used (see next subsection 13.1). For these reasons, and the fact that the

pseudoexperiments are very computationally demanding, the lower limit of rejection for

the disfavored hypotheses given by
√

∆(−2 lnL) is used.

As was mentioned in Sec. 10.1, the fits to the data with the default Λ∗ model and the

two Pc states were performed with all possible combinations of the Pc quantum numbers

for spins up to J = 7/2. The results for the JP combinations with opposite parities

are given in Table 9. They are ranked by ∆(−2 lnL), written as (
√

∆(−2 lnL))2 so that

the lower limit on the significance can easily be read off. Also given are the changes

in mass and width for each Pc state, relative to the preferred hypothesis. While the

(3/2−, 5/2+) gives the best fit quality, (3/2+, 5/2−) and (5/2+, 3/2−) have comparable

likelihoods. It was shown in Sec. 11 that the only way to obtain decent fits with this Λ∗

model is for the Pc states to have opposite parities. Nevertheless, the results from the

same parity combinations can be found in Appendix F, where it is shown that the same

parity combinations are excluded at more than a 5σ level.
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Table 9: Changes in fit quality ((
√

∆(−2 lnL))2), masses, and widths of different JP

combinations with respect to the (3/2−, 5/2+) fit.

Pc(4380) Pc(4450)

Jp(Pc(4380), Pc(4450)) (
√

∆(−2 lnL))2 M0 Γ0 M0 Γ0

Nominal Values
3/2− , 5/2+ − 4380 205 4449.8 39

∆ from Nominal
3/2+ , 5/2− 0.92 −10 6 0.5 11
5/2+ , 3/2− 2.32 −3 34 −1.3 6
5/2− , 3/2+ 5.92 −30 −42 −4.1 17
1/2− , 3/2+ 5.92 −10 47 −2.2 −2
7/2+ , 5/2− 6.32 −4 48 −1.5 13
3/2− , 1/2+ 6.32 −22 −19 −3.0 5
3/2+ , 3/2− 6.42 −38 −64 −4.7 11
5/2− , 7/2+ 6.82 6 47 −1.6 3
7/2− , 1/2+ 6.82 −41 −69 −3.9 18
7/2+ , 3/2− 7.22 −16 17 −3.9 13
5/2− , 5/2+ 7.32 −27 −40 −3.8 5
3/2+ , 1/2− 7.42 −38 −53 −3.1 11
5/2+ , 1/2− 7.62 −38 −93 −4.0 15
1/2− , 1/2+ 7.72 −22 −22 −4.4 7
5/2− , 1/2+ 8.02 −15 21 −5.3 7
3/2− , 3/2+ 8.32 −31 −55 −3.6 8
7/2+ , 1/2− 8.52 −36 −57 −5.2 25
7/2+ , 7/2− 8.62 27 174 −3.3 −0
1/2− , 5/2+ 8.62 −9 −6 −2.2 −3
7/2− , 5/2+ 8.92 −30 −63 −3.7 18
1/2+ , 3/2− 8.92 −47 −87 −6.5 18
7/2− , 3/2+ 8.92 −40 −67 −4.8 12
1/2+ , 1/2− 9.02 −48 −71 −3.6 20
1/2− , 7/2+ 9.42 −4 −1 −1.2 −5
5/2+ , 7/2− 9.62 −16 −48 −0.3 9
3/2+ , 7/2− 9.62 −13 −12 −2.9 −4
5/2+ , 5/2− 9.92 −22 −4 −3.4 4
3/2− , 7/2+ 9.92 2 17 −2.3 2
7/2− , 7/2+ 10.52 −40 −91 −4.0 12
1/2+ , 5/2− 10.92 −16 −37 −1.7 4
1/2+ , 7/2− 11.62 −21 −33 −1.1 −1
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13.1 Quantum Number Systematics

The preferred quantum numbers which were presented in the previous section are subject

to potential biases from systematic effects. The most substantial effect arises from the

model used to describe the Λ∗ resonances, which dominate the Λ0
b → J/ψK−p decays.

As a good description of the mKp distribution is already obtained with the default Λ∗

model, deficiencies in the Λ∗ model would show up in the description of angular distri-

butions and their correlations. An imperfect description of these could then lead to the

Pc contributions attempting to compensate for a lacking Λ∗ model. In effect then, the

quantum numbers would be tuned to the combined effects from the Pc contributions and

the deficiencies in the Λ∗ model, which could lead to departures from the true quantum

numbers.

In order to study the systematic effect associated with the assumed Λ∗ model, the

quantum number study was repeated with the extended Λ∗ model. As this includes

more nuisance parameters for describing the Λ∗ contributions, this allows for testing

how much the preferred Pc quantum numbers are affected by possible deficiencies in the

Λ∗ model. These studies were only performed with the opposite-parity combinations of

quantum numbers for spins up to 5/2, as it has been shown that an opposite parity

is necessary and because spin 7/2 and higher are not plausible. The quantum number

rankings obtained when using the extended Λ∗ model are given in Table 10. It is seen

that there is in fact some dependence on the Λ∗ model, and the preferred set of quantum

numbers changes. With the extended Λ∗ model, the best fit occurs with the 5/2+ 3/2− set

of quantum numbers. The (3/2−, 5/2+) combination preferred with the default model is

now ranked 3rd overall. Common between the default and extended Λ∗ models, though,

is that combinations with one Pc having spin 3/2 and the other having spin 5/2 are

preferred. The conclusion from this study is that there are systematic effects associated

with the Λ∗ model. In-depth studies will have to be done in order to obtain a better Λ∗

model, which will then hopefully lead to better determined quantum numbers for the Pc

states.
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Table 10: Results of the extended model quantum number preference study showing the
changes in fit quality ((

√
∆(−2 lnL))2), masses, and widths of different JP combinations

with respect to the (3/2−, 5/2+) solution.

Pc(4380) Pc(4450)

Jp(4380, 4450) (
√

∆(−2 lnL))2 M0 Γ0 M0 Γ0

(3/2−, 5/2+) solution
3/2− , 5/2+ −− 4359 151 4450.1 49

∆ from (3/2−, 5/2+) solution
5/2+ , 3/2− −3.62 10 −7 −1.6 −6
5/2− , 3/2+ −2.72 −4 −9 −3.6 −2
3/2− , 5/2+ – – – – –
3/2+ , 5/2− +3.52 −3 −7 −1.9 −2
5/2− , 5/2+ +3.62 −26 −57 −4.8 −4
5/2+ , 1/2− +4.22 −19 −38 −4.4 −3
3/2− , 3/2+ +5.12 −27 −63 −5.1 −1
3/2+ , 3/2− +5.72 −23 −52 −5.2 −4
3/2+ , 1/2− +5.92 −8 −3 −2.6 −4
1/2+ , 3/2− +6.72 −11 −48 −4.1 −4
5/2− , 1/2+ +7.02 −17 −54 −4.8 −3
5/2+ , 5/2− +7.22 −14 −19 −2.5 −12
3/2− , 1/2+ +7.32 −10 −31 −2.8 −7
1/2− , 5/2+ +7.52 −15 −18 −4.4 −5
1/2− , 3/2+ +7.72 −17 −15 −2.0 −7
1/2− , 1/2+ +8.22 −8 −22 −2.8 −7
1/2+ , 5/2− +8.42 −41 −72 −5.8 −5
1/2+ , 1/2− +8.52 −36 −57 −3.8 −2
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14 Further Cross checks

This section details various cross checks and studies which were performed. Some of these

include comparisons of the fit results to the default fit, but are meant solely as consistency

checks and do not warrant any systematic uncertainty to be associated with them. In

addition to these studies, the fits to the data performed with the sFit method and using

the default amplitude model can be found in Appendix E, along with fits peformed with

the extended Λ∗ model without Pc’s, a single Pc, and two Pc’s.

14.1 Examination of mJ/ψK

When invoking pentaquark resonances to be able to reproduce the data, it is only natural

to consider whether or not there are any Z tetraquark resonances present in the J/ψK−

system. This was discussed in Sec. 4.2, where the (m2
Kp,m

2
J/ψK) and (m2

J/ψp,m
2
J/ψK)

Dalitz planes, as well as the 1D mJ/ψK distribution, were shown. While there were

apparent structures in the mJ/ψK distribution, studying the Dalitz planes indicated that

any structures were reflections. Here, the ability of the default Λ∗ model with the Pc(4450)

and Pc(4380) states to reproduce the structures in mJ/ψK is studied. In Fig. 54 the mJ/ψK

mass distribution of the data is shown along with the projection of the amplitude model.

It is shown in the usual intervals of mKp mass, as well as for the full mass range. The

amplitude model is seen to be able to reproduce the data, confirming that reflections are

likely the cause of the structures seen.

14.2 Check on Λ0
b polarization

As a consequence of the parity conservation in the strong production mechanism, the Λ0
b

polarization must be zero for the selected choice of its spin quantization axis. Therefore,

measuring the longitudinal polarization by the fit to the data constitutes a good cross-

check of the efficiency simulation. This is accomplished by introducing the polarization

asymmetry, apol ≡ (Pλ
Λ0
b
=+1/2 − Pλ

Λ0
b
=−1/2)/(Pλ

Λ0
b
=+1/2 + Pλ

Λ0
b
=−1/2), as a free parameter

in the fit by multiplying the λΛ0
b

= +1/2 term in Eq. (60) by (1 + apol)/2, and the −1/2
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term by (1 − apol)/2 (Pλ
Λ0
b

stands for the probability of helicity λΛ0
b
). This study was

performed with the sFit technique. The fit with the default Λ∗ and Pc model yields a

polarization value consistent with zero, (−2.0± 2.3)%, as expected.

14.3 Subtraction of B0
s → J/ψK−K+ and B0 → J/ψK−π+ back-

grounds in the fit

In the nominal method, reflections from B0
s → J/ψK−K+ and B0 → J/ψK−π+ are ex-

plicitly vetoed. The peaking structure is of course present before applying the veto. How-

ever as the veto does modify the efficiency across the Dalitz plane (see Fig. 103), it is worth

examining the consistency of the results obtained when no such veto is applied. This test

was done with the sFit method. Monte Carlo simulations of the B0
s → J/ψK−K+ and

B0 → J/ψK−π+ decays were used to parametrize the mJ/ψpK distribution, as shown in

Fig. 55. Using the usual shapes for the combinatoric background (exponential function)

and signal peak (double-sided Hypatia function), the sPlot procedure is then performed

with the four different event types. The sWeights are obtained only from the overall

mJ/ψK−p mass fit, because of the difficultly in obtaining an estimate of the reflection in

each of the 4x8 bins nominally used for determining the sWeights.

The data with no vetos applied is compared to the projections of the amplitude

model onto mKp and mJ/ψp in Fig. 56. The comparison of the angular variables is shown

in Fig. 57, and mJ/ψp in different mKp mass intervals in Fig. 58. It is seen that good

descriptions of the data without the veto are also obtained with the default amplitude

model. The resulting changes in the Pc parameters from the nominal method are listed

in Table 11. Overall, the results are consistent, and only modest changes are seen.

Table 11: Changes in mass, width, and fit fraction resulting from fitting the data without
any vetoes applied.

State ∆M0 ( MeV) ∆Γ0 ( MeV) ∆ FF (%)
Pc(4380) -12 -19 -1.9
Pc(4450) -1.9 -5.9 0.39
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Figure 54: Fit projections of the default Λ∗ model with two P+
c states onto mJ/ψK

for various ranges of mKp: (a) mKp < 1.55 GeV, (b) 1.55 < mKp < 1.70 GeV, (c)
1.70 < mKp < 2.00 GeV, an d (d) mKp > 2.00 GeV. The data are shown as (black)
squares with error bars, while the (red) circles show the results of the fit. The individual
resonances are given in the legend.
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Figure 55: Fit to the J/ψK−π+ mass spectrum where the B0
s → J/ψK−K+ and B0 →

J/ψK−π+ reflections have been parameterized. The red solid line is the total fit, the blue
solid line the signal shape, the light gray area the combinatoric background, the dark
gray the contribution from B0

s → J/ψK−K+ and the green region the contribution from
B0 → J/ψK−π+.
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Figure 56: (sFit) Results of the study without any vetos and using the default amplitude
model for (a) mKp and (b) mJ/ψp. The data are shown as (black) squares with error bars,
while the open (red) circles show the projection of the fit. The total Λ∗ contribution is
shown with the dashed grey line, and the total Pc contribution with the dashed blue line.
The error bars on the points showing the fit results are due to simulation statistics.
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Figure 57: (sFit) Results of the study without any vetos and using the default amplitude
model for the angular distributions. The data are shown as (black) squares with error
bars, while the open (red) circles show the projection of the fit. The total Λ∗ contribution
is shown with the dashed grey line, and the total Pc contribution with the dashed blue
line. The error bars on the points showing the fit results are due to simulation statistics.
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Figure 58: (sFit) Results of the study without any vetos and using the default amplitude
model for for mJ/ψp in various intervals of mKp: (a) mKp < 1.5 GeV, (b) 1.55 < mKp <
1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, and (d) mKp > 2.0 GeV. The data are shown
as (black) squares with error bars, while the open (red) circles show the projection of
the fit. The total Λ∗ contribution is shown with the dashed grey line, and the total Pc
contribution with the dashed blue line. The error bars on the points showing the fit
results are due to simulation statistics.
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14.4 Use of looser BDT cut

A fairly tight cut is used on the multivariate classifier (BDT) used for the final background

suppression. For more details on this cut and to see various metrics that can be used for

examining signal-to-background contributions, see Appendix C. In this section, a looser

cut of BDT> 0.5 is used. This doubles the background fraction (β), and increases the

signal yield by 14%. The mKp and mJ/ψp mass distributions of the data with the looser

BDT cut are shown along with the projections from the amplitude model in Fig. 59. The

similar plots for the angular distributions are shown in Fig. 60, and the mJ/ψp distribution

in intervals of mKp are shown in Fig. 61. The results are compared to the nominal values

of the Pc parameters for consistency, and the changes reported as standard deviations are

shown in Table 12. The results obtained with the looser BDT cut are in good agreement

with the nominal results.
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Figure 59: Results of the study using a looser BDT cut and using the default amplitude
model for (a) mKp and (b) mJ/ψp. The data are shown as solid (black) squares, while the
solid (red) points show the results of the fit. The solid (red) histogram shows the back-
ground distribution. The (blue) open squares with the shaded histogram represent the
Pc(4450)+ state, and the shaded histogram topped with (purple) filled squares represents
the Pc(4380)+ state. Each Λ∗ component is also shown. The error bars on the points
showing the fit results are due to simulation statistics.

Table 12: Changes in mass, width, and fit fraction reported in standard deviations,
resulting from fitting the data without any vetoes applied.

State ∆M0 ∆Γ0 ∆ FF
Pc(4380) 0.0 0.1 -0.2
Pc(4450) -0.7 0.2 0.2
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Figure 60: Results of the study using a looser BDT cut and using the default amplitude
model for the angular distributions. The data are shown as (black) squares, while the
(red) circles show the results of the fit. Each fit component is also shown. The angles are
defined in Sec. 5.2.
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Figure 61: Results of the study using a looser BDT cut and using the default amplitude
model for various intervals of mKp: (a) mKp < 1.55 GeV, (b) 1.55 < mKp < 1.70 GeV,
(c) 1.70 < mKp < 2.00 GeV, an d (d) mKp > 2.00 GeV. The data are shown as (black)
squares with error bars, while the (red) circles show the results of the fit. The blue and
purple histograms show the two P+

c states. See Fig. 47 for the legend.
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14.5 Separate Λ0
b pT intervals

Here, the data is divided into two intervals corresponding to events in which the Λ0
b

transverse momentum is above or below 6.5 GeV. The two data sets are then fit using

the default amplitude model. This study was done with the sFit method, and the results

are given in Table 13, where it is seen that the values obtained in the bins are all within

two standard deviations of each other.

Table 13: Deviation in Pc fit parameters given in standard deviations, and obtained from
data separated into two pT intervals.

State ∆M0 ∆Γ0 ∆ FF
Pc(4380) 1.2 0.2 0.9
Pc(4450) 1.1 2.0 1.1

14.6 Variations with HLT1 trigger line

In the nominal selection criteria, it is required that events pass at least one of three Hlt1

trigger lines. To examine any possible biases or differences in trigger lines, separate fits

are performed to three data sets in which it is required that all events pass just one of

the three trigger lines. This study was performed with the sFit method, and Table 14

shows the difference between the default fit and the fits using individual trigger lines.

Table 14: Changes in fit results from the nominal values for different HLT1 trigger lines:
mass (M0), width (Γ0), and fit fractions (FF). Units of M0 and Γ0 are in MeV, while FF
is in %.

Pc(4380) Pc(4450) Λ∗(1405) Λ∗(1520)
Hlt1 Line f M0 Γ0 FF M0 Γ0 FF FF FF
DiMuonHighMass 0.82 +5 -5 -0.4 +0.3 +1 -0.5 +0.2 -0.4
TrackAllL0 0.75 +8 +25 -0.1 +0.3 -5 -0.5 -0.3 +0.1
TrackMuon 0.95 +1 +3 0.0 +0.7 -1 0.0 0.0 0.0
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15 Systematic uncertainties

In this section, systematic uncertainties on the mass, width, and fit fraction of the Pc

states are estimated. In addition, uncertainties on the fit fractions of the Λ(1405) and

Λ(1520) states will be estimated, as they are well-separated from the other Λ∗ resonances.

15.1 Variations in Λ∗ masses and widths

In the nominal fits, the mass and width of the Λ∗ states are fixed to the values reported

by the PDG [27] and listed in Table 5. Thus, there is a systematic uncertainty associated

with the masses and widths used. In order to assess this, fits were performed in which

the masses and widths were allowed to vary within the uncertainties given in the PDG.

This was done separately for each Λ∗ state, and was performed with the sFit background

subtraction method. The effects on the reported quantities are given in Table 15. The

uncertainties associated with each resonance are added in quadrature, resulting in the

values given at the bottom of the table.

Table 15: Variations in reported quantites when allowing the mass and width of each Λ∗

resonance to vary in the fit. The last row gives the overall uncertainty.

Λ∗ state ∆M0 ( MeV) ∆Γ0 ( MeV) FF (%)
varied Pc(4380) Pc(4450) Pc(4380) Pc(4450) Pc(4380) Pc(4450) Λ(1405) Λ(1520)
1405 -1.0 0.00 1.1 -0.09 0.02 0.01 1.77 0.00
1520 -1.1 0.04 -1.1 0.44 -0.01 0.08 -0.20 1.02
1600 -0.3 -0.62 -9.6 3.69 -0.25 0.24 -1.70 -2.22
1670 0.8 -0.27 -4.0 -0.36 -0.15 -0.13 -0.11 -0.02
1690 -0.8 -0.03 1.2 -1.10 0.08 -0.06 -0.12 0.17
1800 -4.6 -0.20 4.7 1.40 0.21 0.13 -0.09 -0.06
1810 -2.6 0.01 3.2 0.45 0.14 0.13 -0.04 0.01
1820 -0.6 0.01 1.5 0.33 0.08 0.05 0.02 0.01
1830 -1.6 -0.12 2.4 0.14 0.08 0.02 0.15 0.00
1890 2.9 0.12 14.2 -1.19 0.37 -0.11 0.21 0.05
2100 0.3 0.03 -0.8 -0.10 -0.04 0.00 0.00 -0.02
2110 -1.3 -0.04 -5.1 0.25 -0.17 0.00 -0.12 0.00
Total ±6.6 ±0.7 ±19.5 ±4.4 0.58 0.37 ±2.49 ±2.45

15.2 Orbital angular momentum in Λ∗ parametrization

The resonance parametrization used for describing Λ∗ resonances (Eq. 23) assumes the

lowest possible value for LΛ
∗

Λ0
b
, the orbital angular momentum present in the Λ0

b → J/ψΛ∗

decay. This is in accordance with the expectation that higher angular momenta values
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are suppressed via angular momentum barriers. The value chosen enters explicitly in

Eq. 23, and also enters via the Blatt-Weisskopf function, Eq. 24. Note that there are

only two possible values of angular momentum in the Λ∗ → K−p decay, and the value

used is fixed due to parity conversation. Thus there is no assumption which needs to

be made regarding the orbital angular momentum in this decay. In order to estimate a

systematic uncertainty associated with this choice of LΛ
∗

Λ0
b
, the value used is incremented

for each of the Λ∗ resonances. The fits are repeated for each possible value, such that it is

consistent with the LS couplings allowed for the particular resonance. Thus, for example,

there are no other values tested for Λ(2100) and Λ(2110), as only the LS amplitudes with

the minimum LΛ
∗

Λ0
b

are included in the default model. The resulting changes for each fit

are listed in Table 16. The uncertainties are added in quadrature to determine a total

systematic uncertainty from this source.

Table 16: Changes resulting from varying the LΛ
∗

Λ0
b

value used in the resonance

parametrization. The last row gives the overall uncertainty obtained from adding each
row in quadrature.

∆M0 ( MeV) ∆Γ0 ( MeV) FF (%)

LΛ
∗

Λ0
b

change Pc(4380) Pc(4450) Pc(4380) Pc(4450) Pc(4380) Pc(4450) Λ(1405) Λ(1520)

L
Λ(1405)

Λ0
b

+ 1 0.2 0.1 1.0 0.4 0.21 0.13 0.16 0.0

L
Λ(1520)

Λ0
b

+ 1 6.6 0.0 11.0 1.2 0.42 0.26 2.3 1.22

L
Λ(1520)

Λ0
b

+ 2 7.4 0.0 14.0 0.9 0.54 0.23 2.41 1.97

L
Λ(1600)

Λ0
b

+ 1 1.5 0.0 1.0 0.7 0.13 0.15 0.0 0.01

L
Λ(1670)

Λ0
b

+ 1 0.1 0.0 0.0 0.4 0.21 0.13 0.0 0.0

L
Λ(1690)

Λ0
b

+ 1 0.4 0.0 2.0 0.6 0.15 0.14 0.01 0.0

L
Λ(1690)

Λ0
b

+ 2 1.6 0.0 5.0 0.9 0.04 0.17 0.02 0.01

L
Λ(1800)

Λ0
b

+ 1 1.0 0.0 3.0 0.3 0.13 0.11 0.0 0.01

L
Λ(1800)

Λ0
b

+ 2 2.7 0.2 7.0 0.1 0.06 0.07 0.01 0.02

L
Λ(1810)

Λ0
b

+ 1 1.6 0.1 1.0 0.3 0.2 0.1 0.02 0.0

L
Λ(1890)

Λ0
b

+ 1 0.3 0.1 0.0 0.4 0.2 0.12 0.0 0.0

Uncertainty( MeV) 10.7 0.3 20.2 2.1 0.81 0.53 3.34 2.31

15.3 Orbital angular momentum in Pc parametrization

Similar to the previous section, the resonance parametrization used for describing Pc

resonances (Eq. 45) assumes the lowest possible value for LPc
Λ0
b
, the angular momentum

present in the decay Λ0
b → PcK

−. Again, this value enters both Eq. 45 and the Blatt-
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Weisskopf function, Eq. 24. There are only two possible values for LPc
Λ0
b
, and fits are

performed with the nominal value incremented by one in order to estimate the systematic

uncertainty associated with the choice of the minimal value. Additionally, the lowest value

is assumed for the orbital angular momentum in the decay Pc → J/ψp, LPc . This enters

explicitly in Eq. 45, the Blatt-Weisskopf functions, and additionally the mass-dependent

width (Eq. 26). The possible values for LPc are constrained by parity, and so they are

incremented by two, for each of the Pc states, to the only other value allowed. The

resulting changes of the reported values in each fit with respect to the nominal fit are

listed in Table 17.

Table 17: Changes resulting from varying the LPc
Λ0
b

or LPc value used in the resonance

parametrization. The last row gives the overall uncertainty obtained from adding each
row in quadrature.

∆M0 (MeV) Γ0 Fit fractions (%)
L changed Pc(4380) Pc(4450) Pc(4380) Pc(4450) Pc(4380) Pc(4450)

LPc

Λ0
b

+ 1 (Λ0
b → Pc(4380)K−) +6 +0.1 +3 0.0 0.37 0.16

LPc

Λ0
b

+ 1 (Λ0
b → Pc(4450)K−) 0.0 +0.7 +4 0.0 0.09 0.14

Total 6 0.7 5 0 0.38 0.21

LPc + 2 (Pc(4380)→ J/ψp) +1 -0.4 +31 0 0.61 0.09
LPc + 2 (Pc(4450)→ J/ψp) +4 -0.1 -12 -2 0.63 0.37

Total 4 0.4 33 2 0.88 0.38

15.4 Background studies

The Λ0
b sidebands are used to model the background component which is present in the

fitted signal range. The assumption is that the background events which comprise the

sidebands will accurately represent the background events under the Λ0
b peak. As a way

to probe for possible differences, the sidebands are split into the lower sideband and upper

sideband, i.e. split by whether an event’s mJ/ψKp value is below or above the Λ0
b peak. The

separate sideband background distributions in the mKp and mJ/ψp variables are shown in

Fig. 62, while the distributions for the angular variables are shown in Fig. 63. The lower

sideband contains 5661 events while the upper sideband contains 4598 events, and they

are normalized to each other in the figures. The most prominent difference between the

lower and upper sidebands is in the mKp distribution, as the upper sideband appears to

have some partially reconstructed contributions present.
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Figure 62: Distributions of the mKp (left) and mJ/ψp (right) variables in the lower (red
triangles) and upper (blue squares) sidebands.

Ideally, the background composition in the signal range would be a mixture of the

two sideband samples, and thus be accurately represented by their combination. Also

recall that the background is only 5.4% of the signal sample size, which is quite a small

component and not likely to cause large changes in the results. Still, to probe for the size

of effects which might be caused by changing background compositions, fits are repeated

in which either only the left or only the right sideband is used to construct the background

parametrization. The largest deviations from the nominal values, caused by either using

the lower or the upper sideband, are used to set the systematic uncertainties. The results

are listed in the “Separate sidebands” entry of the summary Table 18. It is seen that the

systematic uncertainties associated with this effect are small, as was predicted due to the

low background fraction.

15.5 Efficiency mis-modeling

The weights wMC
j are applied to the MC sample in order to correct for mismodeling in

the simulation of Λ0
b → J/ψKp events. For full details on how they are calculated, see

Sec. B. These weights affect how the efficiencies are modeled in the 6D phase space, and

so are part of the larger picture of how well the efficiency effects are represented in the

MC sample. Of particular concern is that the cos θΛ0
b

fit is consistently in excess over

the data for cos θΛ0
b
< 0 and consistently below the data for cos θΛ0

b
> 0, regardless of

118



the amplitude model used. This suggests that there is efficiency mismodeling. In order

to assess a possible systematic uncertainty associated with this, the MC set is further

weighted to tune the projection of the default amplitude model onto cos θΛ0
b
, in order to

better agree with the data. If it is assumed the amplitude model accurately represents

the data, the changes caused by adjusting these weights then can give an idea of how

large of an effect mismodeling the efficiency has. Three weights are used to help bring

better agreement in this distribution: wp(p, η), wK(p, η), and wΛ0
b
(p, pT) for the proton,

kaon, and Λ0
b , respectively. Using these new weights the data is then refit, and the fit

was performed using the sFit method. The angular distributions for the fit projections

using the new weights are shown in Fig. 64, where it is seen that the description of

cos θΛ0
b

is improved, without worsening the descriptions of the other fitted variables. The

differences of the fit results with the nominal values are taken as an estimate of the

systematic uncertainty due to possible efficiency mismodeling. The uncertainties are

shown in the summary Table 18, in the “Efficiencies” row.

15.6 Additional systematic uncertainties

Various additional systematic uncertainties are listed here. The systematic uncertainty

which comes from the assumed Λ∗ model was estimated using the results obtained with

the extended Λ∗ model. For a full presentation of the results obtained with the extended

Λ∗ model, Pc(4380), and Pc(4450), see Appendix D. The uncertainties are shown in

Table 18, in the “Λ∗ model” row. This is a dominant source of systematic uncertainty

for the Pc parameters.

The effect of adding a nonresonant K−p component to the default model was also

studied. A nonresonant component can usually be expected to show up most prominently

in the quantum numbers which result in the lowest possible orbital angular momentum.

In the Λ0
b → J/ψΛ∗ decay, 1/2± and 3/2± can all result in LΛ

∗

Λ0
b

= 0. In the Λ∗ → K−p

decay, parity must be conserved, which gives the requirement PΛ∗ = PpPK−(−1)LΛ∗ . Thus

in order to have LΛ∗ = 0 it is necessary to have PΛ∗ = −. The only remaining quantum

number option with negative parity and capable of having LΛ∗ = 0 is 1/2−. Thus a
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1/2− nonresonant component was added to model, and limited to only the complex

amplitude with LΛ
∗

Λ0
b

= 0. Note that, while only this particular partial-wave was used for

the estimation of systematic uncertainties associated with nonresonant components, a

more aggressive study without Pc states was done in Sec. 8.3. The resulting uncertainties

are shown in Table 18, in the “Nonresonant” row. The narrow Pc parameters are not

observably changed, though there is a fairly large effect on the Pc(4380) width and fit

fraction, as well as the Λ(1405) fit fraction. Including a nonresonant J/ψp component in

the model was also tested, but had no observable effects.

As there is only a marginal preference for the (3/2−, 5/2+) set of quantum numbers,

and all other combinations can’t be ruled out, there is a systematic uncertainty associated

with the quantum number assignment. The changes in ∆(−2 lnL) and Pc parameters

obtained with different quantum number assignments were given in Table 9. It was seen

that the (3/2+, 5/2−) and (5/2+, 3/2−) combinations also gave comparable fit qualities.

The systematic uncertainty for each reported value is set by the largest deviation seen

in either of these alternative fits. The obtained values are listed in the “JP assignment”

row of Table 18.

The Blatt-Weisskopf d parameter used in Eq. (24) was chosen as 3.0 GeV −1 for the

nominal value. The fits were repeated with d = 1.5 GeV−1 and d = 4.5 GeV−1. The

maximum change is taken as the uncertainty, which is listed in the “d = 1.5−4.5 GeV−1”

row of Table 18.

Two studies were performed which are related to the proton identification. To ob-

tain a purer proton sample, the proton identification criteria was tightened by requiring

DLL(p−π) > 12 and DLL(p−K) > 5, rather than the nominal cuts of 10 and 3, respec-

tively. Separately, the default fit was redone after requiring the proton momentum pp to

the range above 10 GeV and below 100 GeV for all candidates. This range corresponds

to where there is the most proton identification power, and thus will help ensure a more

reliable identification. The study was performed with the sFit method, and the results

are listed in Table 18 in the “Proton ID” and “10 < pp < 100 GeV” rows, respectively.

There is also a systematic uncertainty associated with the Flatté couplings used for
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the parametrization of Λ(1405), as the coupling for the Λ(1405)→ K−p is not known. In

the default model, it is set to the same value as the coupling to the dominant Λ(1405)→

Σ+π− mode. To assess the systematic uncertainty associated with this, the Λ(1405) →

K−p is both doubled and halved. The maximum deviations are taken as the uncertainty,

and are listed in the “Λ(1405) coupling” row of Table 18.

15.7 Total systematic uncertainties

The uncertainties from the discussed sources are added in quadrature. The choice was

made to take symmetric uncertainties from the deviations, as this is the more conservative

choice, rather than quote positive and negative errors. The differences between cFit

and sFit results are already covered in the other systematic uncertainties, and so their

comparison is listed only as a cross-check and does not contribute to the total. For a

detailed comparison between the cFit and sFit results, see Appendix E.3. In Table 18 the

various sources of systematic uncertainties are listed along with the overall assessment.

Table 18: Summary of systematic uncertainties on Pc masses, widths and fit fractions,
and Λ∗ fit fractions. The sFit/cFit difference is listed as a cross-check and not included
as a uncertainty.

Source M0 (MeV) Γ0 (MeV) Fit fractions (%)
Pc(4380) Pc(4450) Pc(4380) Pc(4450) Pc(4380) Pc(4450) Λ(1405) Λ(1520)

Λ∗ model 21 0.3 54 10 3.14 0.32 1.37 0.15
Λ∗ masses & widths 7 0.7 20 4 0.58 0.37 2.49 2.45
Proton ID 2 0.3 1 2 0.27 0.14 0.20 0.05
10 < pp < 100 GeV 0 1.2 1 1 0.09 0.03 0.31 0.01
Nonresonant 3 0.3 34 2 2.35 0.13 3.28 0.39
Separate sidebands 0 0 5 0 0.24 0.14 0.02 0.03
JP assignment 10 1.3 34 11 0.76 0.44
d = 1.5− 4.5 GeV−1 9 0.6 19 3 0.29 0.42 0.36 1.91

LPc

Λ0
b

Λ0
b → PcK− 6 0.7 5 0 0.38 0.21

LPc Pc → J/ψp 4 0.4 33 2 0.88 0.38

L
Λ∗
n

Λ0
b

Λ0
b
∗ → J/ψΛ∗ 11 0.3 20 2 0.81 0.53 3.34 2.31

Efficiencies 1 0.4 4 0 0.13 0.02 0.26 0.23
Λ(1405) coupling 0 0 0 0 0 0 1.90 0
Overall 29 2.2 87 16 4.26 1.07 5.82 3.89
sFit/cFit cross check 5 1.0 11 2 0.46 0.01 0.45 0.13
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16 Pc Phase Motion Studies

16.1 Phase Motion Study Methodology

In this section, the resonant natures of the states are probed. This is done with the

method pioneered in Ref. [19], in which the resonant nature of the tetraquark candidate

Z(4430) was studied. In a typical amplitude model, resonances are represented by a Breit-

Wigner amplitude, multiplied by some factors to account for the difficulty in overcoming

angular momentum barriers. The Breit-Wigner represents the expected behavior of a true

resonance. In particular, there is a quick 180◦ change in phase of the complex amplitude

as one moves across the pole mass. The complex amplitudes, if displayed in an Argand

diagram, display a circular, counter-clockwise trajectory. These features are shown in

Fig. 65, where the Breit-Wigner parameters are set to the values of the Pc(4450) in the

nominal amplitude fit: M0 = 4449.8 MeV and Γ0 = 39 MeV. Note that trajectory on the

Argand plane will intersect the (0,0) point, as the Breit-Wigner amplitude magnitude

goes to zero far away from the resonance pole.

In order to test if the observed structures follow the expected phase motion of a reso-

nance, the parametrization (Eq. 45) is replaced with six independent complex amplitudes,

equally spaced in mJ/ψp in the range M0 ± Γ0. The fit to the data then determines the

real and imaginary part of the Pc amplitude in each mJ/ψp bin, and uses a cubic spline

based on the closest 4 points to interpolate to masses between bin centers. The ampli-

tude is set to zero outside this range. These fitted complex amplitudes for each mJ/ψp

bin are displayed as in Fig. 65. In short, these amplitude points take over the role of

the Breit-Wigner parametrization, and show changes in the magnitude and phase with

mJ/ψp. However, they are free to take whatever mJ/ψp-dependence the data wants. Thus,

if they still follow the form expected from a Breit-Wigner, it is indicative of a resonant

nature.

In each bin the overall normalization and phase of the Pc amplitude is determined

by floating its real and imaginary parts. As a technical point in performing the fit, this

then requires fixing one of the LS amplitudes in the Pc → J/ψp decay to (1,0). This
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is necessary to avoid two free parameters directly multiplying each other, which would

lead to convergence issues. Thus, the lowest LS coupling is set to (1,0), while the higher

LS couplings are allowed to float and now have the meaning of the ratio with the lowest

LS amplitude. The rest of the model reamins the same, and all of the other usual free

parameters in the fit are still kept free. In general, this exercise is only carried out for

one Pc resonance at a time, as there otherwise are convergence issues.

16.2 Phase motion of the Pc(4450)+ state

The projection onto mJ/ψp for the default model in which the Pc(4450) Breit-Wigner

parametrization was replaced as specified above is shown in Fig. 66, where it is seen that

the data are still well described. The six complex amplitudes representing the Pc(4450)

are displayed in an Argand diagram in Fig. 67. Note that because the magnitude and

phase conventions are determined for all the terms in all the amplitude fits by setting

the lowest LS amplitude of Λ(1520) to (1,0), the orientation of the diagram in Fig. 67

gives the relative phase of the Pc(4450) to the Λ(1520). This is the reason it is rotated

compared to Fig. 65. The red circle superimposed on the data points is the Breit-Wigner

formula (i.e. Eq. (23)), covering the same M0 ± Γ0 range, with the mass and width

fixed to the default fit parameters: M0 = 4450 MeV and Γ0 = 39 MeV. The shape

does not appear exactly as a circle because of the pLB′L factors, however, their effect is

very small. The phase and magnitude of the Breit-Wigner circle at the pole mass M0

is set to the average values between the two points around M0. It is seen that the six

complex amplitudes follow the trajectory predicted by a Breit-Wigner lineshape quite

well, indicating consistency of the Pc(4450) structure with a true resonance.

The magnitude-squared and complex phase of the amplitudes are shown as a function

of mJ/ψp in Fig. 68 and 69, respectively. Again, the red curves are the predictions from

a Breit-Wigner lineshape with M0 = 4450 MeV and Γ0 = 39 MeV, scaled to the data

as described above. The phase of the amplitudes undergo a rapid change when the

magnitude peaks, as can also be concluded from the Argand diagram. Thus it is clearly

seen that the data agree well with the Breit-Wigner expectations.
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In order to test the sensitivity of the Argand diagram to the Λ∗ model which is used,

this exercise was repeated with the extended Λ∗ model. Unfortunately, the fit did not

converge, likely due to ambiguities caused by too many free parameters. Therefore, the

test was done with an “intermediate” Λ∗ model, which lies between the default and

extended Λ∗ models in terms of complexity. In this intermediate model, all possible

LS couplings are allowed, but the poorly motivated Λ(2350) and Λ(2585) states are not

included. The number of free parameters increases from 84 to 142, which constitutes a

substantial change in the fit model. The resulting Argand diagram is shown in Fig. 70.

The diagram is oriented somewhat differently, which must be due to the change of the

average phase of the Λ∗ contributions under the Pc(4450) peak. The agreement between

the complex amplitudes determined from the data and the Breit-Wigner expectation is

even better than for the fit with the default Λ∗ model.
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Figure 65: Demonstration of the expected phase motion of a resonance which follows a
Breit-Wigner lineshape with the nominal Pc mass and width of M0 = 4449.8 MeV and
Γ0 = 39 MeV: (a) The magnitude of the complex amplitude is shown (blue) along with
the phase (red) (b) the complex amplitude plotted in an Argand diagram.
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Figure 66: Results formJ/ψp of the default amplitude model but with Pc(4450) represented
by six complex amplitudes, as described in the text. The data are shown as (black)
squares with error bars, while the (red) circles show the projection of the fit. The other
fit components are shown with the same style as usual (e.g. see Fig. 46). The fitted
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Figure 67: The real part versus imaginary part of the amplitudes used to represent
Pc(4450) (data points) for the fit shown in Fig 66. The (red) partial circle is the ex-
pectation for a Breit-Wigner amplitude. The arrows indicate the direction of the phase
motion.
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Figure 68: The measured magnitude-squared of the Pc(4450) amplitude shown as (black)
points with error bars. The (red) solid curve is the expectation from a Breit-Wigner
lineshape.
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Figure 69: The measured phase of the Pc(4450) amplitudes shown as (black) points with
error bars. The (red) solid curve is the expectation from a Breit-Wigner lineshape, while
the (blue) dashed line shows the magnitude-squared of the Breit-Wigner scaled arbitrarily
to the range of this diagram.
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Figure 70: The real part versus imaginary part of the amplitudes used to represent
Pc(4450) (data points) for the fit performed with an intermediate Λ∗ model instead of
the default. The (red) partial circle is the expectation for a Breit-Wigner amplitude. The
arrows indicate the direction of the phase motion.
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16.3 The opposite parity (3/2+, 5/2−) solution

In order to probe for a dependence on the assumed quantum numbers of the Pc states,

the exercise was repeated using the alternate solution in which the quantum numbers of

Pc(4380) and Pc(4450) are 3/2+ and 5/2−, respectively. The same procedure was followed,

and the Argand plot obtained is shown in Fig. 71. This result also demonstrates a large

phase change through the resonance peak, and follows the Breit-Wigner prediction well.

A few points lie off the circle, but generally agree within uncertainties.
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Figure 71: The real part versus imaginary part of the amplitudes used to represent
Pc(4450) (data points) for the fit performed with the (3/2+, 5/2−) solution. The (red)
partial circle is the expectation for a Breit-Wigner amplitude. The arrows indicate the
direction of the phase motion.
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16.4 Measuring the change in the amplitude phase of the Pc(4380)+

state

The same studies were then performed with the Pc(4380) state. Again, six complex

amplitudes were used over the mass range of M0 ± Γ0. The resulting Argand diagram

is shown in Fig. 72, along with the expectations from a Breit-Wigner with parameters

set to the nominal values of M0 = 4380 MeV and Γ0 = 205 MeV. Clearly, the results

are not as aesthetically pleasing as those obtained for the Pc(4450). Unfortunately, this

state is much wider than the higher mass state, and is more sensitive to the underlying

Λ∗ model, as reflected in its mass and width dependence on the Λ∗ model. It should be

noted that there is evidence of a large change of phase, and it is mostly one point which

lies off of the trajectory.
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Figure 72: The real part versus imaginary part of the amplitude for the Pc(4380) state
(data points). The (red) partial circle is the expectation for a Breit-Wigner amplitude.
The arrows indicate the direction of the phase motion.

The magnitude-squared and complex phase of the amplitudes are shown as a function

of mJ/ψp in Fig. 73 and 74, respectively. Again, the red curves are the predictions from the
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Breit-Wigner lineshape. While the magnitude-squared agrees well with the predictions,

the phase does not exactly follow the expected behavior. There is clearly a large change

of phase, though.

 [GeV] pψJ/m
4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5 4.55 4.6

M
ag

ni
tu

de
 s

qu
ar

ed

0

0.02

0.04

0.06

0.08

0.1

LHCb

+(4380)cP

Figure 73: The measured magnitude-squared of the Pc(4380) amplitude shown as (black)
points with error bars. The (red) solid curve is the expectation from a Breit-Wigner
phase.

As with the Pc(4450) studies, the procedure was repeated with the intermediate Λ∗

model in order to test the dependence on the Λ∗ background. The results are shown in

Fig. 75). Again, the two amplitudes corresponding to the lower mJ/ψp bins do not follow

the circular trajectory well. It is not uncommon for a broad resonance not to follow

the Breit-Wigner expectations exactly. Larger statistics and better understanding of Λ∗

backgrounds will help to elucidate the nature of this state.
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Figure 74: The measured phase of the Pc(4380) amplitude shown as (black) points with
error bars. The (red) solid curve is the expectation from a Breit-Wigner phase, while the
(blue) dashed line shows the magnitude-squared of the Breit-Wigner scaled arbitrarily to
the range of this diagram.
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Figure 75: The real part versus imaginary part of the amplitude for the Pc(4380) (data
points) obtained with the intermediate Λ∗ model. The (red) partial circle is the expecta-
tion for a Breit-Wigner amplitude with M0 = 4380 MeV and Γ0 = 205 MeV. The arrows
indicate the direction of the phase motion.
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16.5 Further phase studies

As the P+
c amplitudes stretch over a wide range of mKp masses, they cross many different

Λ∗ contributions (see Fig. 46). It is interesting to probe their magnitude and phase run-

ning at the different crossing points. Unfortunately, limited statistics makes it difficult to

do this with the model independent parameterization, i.e. using the above method with

different sets of amplitudes dependent on the mKp value as well. In a similar vein, an

exercise is performed which assumes the Breit-Wigner amplitude, but allows M0 and Γ0

to vary independently in different slices of mKp. In this exercise, the Breit-Wigner am-

plitude is multipled by 1/
√

Γ0 to make the integral of its intensity (i.e. of the amplitude

squared) over mJ/ψp be Γ0–independent. In one variation of this type, the data was split

at the midpoint of the mKp range (1978 MeV). The helicity couplings for a P+
c are shared

between the two mKp slices, while the mass and width are allowed to be different. Specif-

ically, if the mKp value of a data point is below the midpoint, the Breit-Wigner amplitude

is calculated with one set of M0 and Γ0, and if it is above the midpoint it is calculated

with another set. Both sets of parameters are simultaneously used as free parameters in

the fit. The exercise is done using one P+
c state at a time, and the results are given in

Table 19. The masses and widths determined in the two different mKp slices are very

consistent for both states. In the second test of this type, the Breit-Wigner parameters

were determined separately for an mKp band centered on the Λ(1600) resonance, which

has the largest fit fraction among all contributions. Thus the data was divided according

to events lying within 1450 < mKp < 1750 MeV (M0(Λ(1600)) ± Γ0(Λ(1600))), and the

rest of the mKp range. Note that the P+
c states will not contribute significantly to masses

below this range. In particular, the Pc(4450)+ state does not extend to the Λ(1520) peak

region at all. Thus the two ranges are still accurately described as “low” or “high” in

Table 19. The results in different mKp slices are consistent again, with the largest devia-

tion observed being 2.3σ for the Pc(4380) width. From this exercise it is concluded that

both the Pc(4380) and Pc(4450) resonances are consistently present in different parts of

the Dalitz plot dominated by different Λ∗ states.
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Table 19: Mass and width of the Pc states fit in different slices of mKp mass. The
combined probability for M0 and Γ0 being consistent in the low and high mKp slices is
given in the row titled “CL”.
state Pc(4450) Pc(4380)
slice low high diff. low high diff.

MeV MeV MeV MeV
Slice mKp in half

M0 4451.2± 2.5 4448.6± 2.5 +0.73σ 4399.0± 15.3 4375.6± 8.5 +1.33σ
Γ0 38.7± 4.5 38.8± 4.4 −0.01σ 203.7± 20.6 202.2± 16.9 −0.05σ
CL 77% 41%

Λ(1600) slice vs. the rest
M0 4451.1± 2.3 4449.6± 2.3 +0.45σ 4371.4± 12.1 4384.9± 8.9 −0.90σ
Γ0 34.3± 4.4 39.8± 4.5 −0.9σ 164.2± 14.3 215.5± 16.7 −2.33σ
CL 62% 4.4%
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17 Conclusions from amplitude analysis

A full amplitude analysis of Λ0
b → J/ψK−p decays in the LHCb Run I data set has

been performed. The dominant contributions to this final state proceed via the expected

Λ0
b → J/ψΛ∗, Λ→ K−p decays, for which a rich spectrum of known Λ∗ states is observed.

Unexpectedly, a prominent peak is also found in the mJ/ψp distribution. Many tests were

performed to rule out the possibility this peak was artificially created, and to confirm that

it must be due to physics processes in real Λ0
b → J/ψK−p decays. An amplitude analysis

was performed to test if the peak could possibly be created via interferring Λ∗ resonances

reflecting into the mJ/ψp distribution. It was found that even if extra Λ∗ resonances, four

nonresonant contributions, or several Σ∗ states were included, K−p contributions alone

showed no ability to produce the peak. The addition of a single Pc state was also found

to be inadequate, and in fact two Pc states were needed. Interpretted as resonant states,

they must be composed of five quarks, ccuud, and could therefore be called pentaquark

states.

When using the default Λ∗ model, the preferred quantum numbers for the states

were found to be (3/2−, 5/2+), though the (3/2+, 5/2−) and (5/2+, 3/2−) combinations

are not much worse. The lighter state, Pc(4380), has a mass of 4380 ± 8 ± 29 MeV

and a width of 205 ± 18 ± 87 MeV, while the heavier state, Pc(4450) has a mass of

4449.8± 1.7± 2.2 MeV and a width of 39± 5± 16 MeV. The fit fractions of Pc(4380)

and Pc(4450) were found to be (4.1± 0.5± 1.1)% and (8.4± 0.7± 4.3)% , respectively.

The well separated Λ(1405) and Λ(1520) states were also reported as having fit fractions

of (15 ± 1 ± 6)% and (19 ± 1 ± 4)% , respectively. Phase motion studies were also

performed on both of the Pc states. The Pc(4450) phase motion appears to be in good

agreement with the expectations of a resonance. The Pc(4380) studies did demonstrate

large changes in phase, but were in worse agreement.

As it stands, the default amplitude model constructed does have some shortcomings

which merit discussion. The overall fit to mJ/ψp is reasonably good. Perfect amplitude

fits are rarely achieved for high statistics samples like the one analyzed here. Still, there

is a small discrepancy at masses slightly above the Pc(4450) region. Furthermore, it was
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found that performing the quantum number studies with the extended Λ∗ model changed

the ranking of preferred quantum numbers, e.g. making the (5/2−, 3/2+) hypothesis more

likely, while its statistical rejection was large with the default model. Thus, there should

be a healthy dose of skepticism when making statements about the quantum numbers

based on the default model only. It is possible that improvements in the Λ∗ model could

lead to an even better description of the mJ/ψp distribution, elucidation on the nature of

Pc(4380), and a unique determination of the quantum numbers of both Pc states. With

larger data samples to be accumulated with the LHCb detector in the future, it will

hopefully be possible to explore a wider range of extensions of the present Λ∗ model than

was documented in this work.
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18 Model-Independent Confirmation

The amplitude analysis detailed in the first part of this thesis tested if interfering Λ∗

states were capable of reproducing the peaking structures seen in the mJ/ψp distribution.

It was shown that, with the known Λ∗ resonances, this was not the case. Additional Λ∗

states with varying quantum numbers, Σ∗ states, and nonresonant contributions were

also added. The resulting models still gave an inadequate description of the data. Thus

it is unlikely that deficiencies in the conventional resonance model are likely to change the

need to include exotic components in the amplitude model in order to reproduce the data.

This is further supported by the interference patterns in the angular distributions, the

overall improvement in fit quality upon addition of the Pc resonances, and the resonance

phase motion studies. There is an abundance of evidence that the peaking structures are

a result of activity in the J/ψp system.

Still, baryon spectroscopy is a complex problem from both experimental and theoreti-

cal points of view, and there are good reasons for believing that the Λ∗ model used in the

amplitude models has deficiencies. For instance, there are a large number of predicted

resonances which have not been observed in the data, particularly at high masses, i.e.

mKp > 2 GeV. Various theoretical predictions are listed in Table 20, where it is shown

that not only are there far more predicted states than listed in the PDG, but also there

is not very good agreement between theoretical models. If the higher mass states exist,

they may have evaded experimental detection for a variety of reasons. As evidenced by

the mKp distribution (Fig 23), these states must have either a low production rate or a

low rate to decay to K−p. They may also be broad, making them difficult to identify

as individual resonances in the presence of a high density of predicted excitations with

identical quantum numbers. Further, the previous data from the scattering experiments

do not cover the high mass region.

Even for the “well-established” states given by the PDG, there should be some de-

gree of skepticism. These states usually come from simultaneous fits to partial wave

analysis results, and have shown up in multiple different fits which are always somewhat

model-dependent. Even for the lower mass regions, the interpretations of these data are
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Table 20: Theoretical predictions for Λ∗ resonance masses

JP State Status Mass [56] [57] [58] [59] [60] [61]
1
2

+
Λ **** 1115.683± 0.006 1115 1115 1108 1136 1116 1149± 18
Λ(1600) *** 1560-1700 1615 1680 1677 1625 1518 1807± 94
Λ(1710) * 1713± 13
Λ(1810) *** 1750-1850 1901 1830 1747 1799 1666 2112± 54

1972 1910 1898 1955 2137± 69
1986 2010 2077 1960
2042 2105 2099
2099 2120 2132

3
2

+
Λ(1890) **** 1850-1910 1854 1900 1823 1896 1991± 103

1976 1960 1952 2058± 139
2130 1995 2045 2481± 111
2184 2050 2087
2202 2080 2133

5
2

+
Λ(1820) **** 1815-1825 1825 1890 1834 1896
Λ(2110) *** 2090-2140 2098 2035 1999

2221 2115 2078
2255 2115 2127
2258 2180 2150

7
2

+
Λ(2020) * 1990-2130 2251 2120 2130

2471 2331
9
2

+
Λ(2350) *** 2340-2370 2360 2340

1
2

−
Λ(1405) **** 1405.1+1.3

−1.0 1406 1550 1524 1556 1431 1416± 81
Λ(1670) **** 1660-1680 1667 1615 1630 1682 1443 1546± 110
Λ(1800) *** 1720-1850 1733 1675 1816 1778 1650 1713± 116
Λ(2000) * 1935-2040 1927 2015 2011 1732 2075± 249

2197 2095 2076 1785
2218 2160 2117 1854

3
2

−
Λ(1520) **** 1519.5± 1.0 1549 1545 1508 1556 1431 1751± 40
Λ(1690) **** 1685-1695 1693 1645 1662 1682 1443 2203± 106

1812 1770 1775 1650 2381± 87
Λ(2050) * 2056± 22 2035 2030 1987 1732

2319 2110 2090 1785
Λ(2325) * 2300-2375 2322 2185 2147 1854

2392 2230 2259 1928
2454 2290 2275 1969
2468 2313

5
2

−
Λ(1830) **** 1810-1830 1861 1775 1828 1778 1785

2136 2180 2080
2350 2250 2179

7
2

−
Λ(2100) **** 2090-2110 2097 2150 2090

2583 2230 2227
9
2

−
2665 2370
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ambiguous in places. This is well illustrated in the recently published fits in Ref [62],

which are based on the coupled channel approach applied to all K̄N scattering data.

There the *** Λ(1800) state was not seen, while evidence for a few yet unidentified states

was obtained. The PDG entries are compared to this result and other global fits in

Table 21. In Ref. [62], fits to the scattering data also required significant non-resonant

terms, whose magnitude and phase varied slowly with mKp. In the amplitude models

used in this thesis, only constant non-resonant terms were tried.

Table 21: Quantum numbers, masses, and widths of Λ∗ states found in K̄N scattering
data

PDG [62] [63] [64] [64]

JP State Status Mass Width Mass Width Mass Width Mass Width Mass Width
1
2
+

Λ(1600) *** 1560-1700 50-250 1568± 12 132± 22 1572 138 1544 112 1548 164
Λ(1710) * 1713± 13 180± 42 1685± 29 59± 34 1688 166

1835± 10 180± 22
Λ(1810) *** 1750-1850 50-250 1837.2± 3.4 58.7± 6.5 1780 64 1841 62

2135 296 2097 116
3
2
+

1690.3± 3.8 46.4± 11.0 1671 10
Λ(1890) **** 1850-1910 60-200 1846.36± .81 70.0± 6.0 1876 145 1859 112

2001 994
5
2
+

Λ(1820) **** 1815-1825 70-90 1817± 57 85± 54 1814 85 1824 78 1821 64
Λ(2110) *** 2090-2140 150-250 1931± 25 189± 36 1970 350

7
2
+

1757 146
Λ(2020) * 1990-2130 125-275 2012± 81 210± 120 1999 146 2041 238

1
2
−

Λ(1405) **** 1405.1+1.3
−1.0 50.5± 2.0 1435.8± 5.9 279± 16 1402 49

1573 300 1512 370
Λ(1670) **** 1660-1680 25-50 1636.0± 9.4 211± 35 1667 26 1669 18 1667 24
Λ(1800) *** 1720-1850 200-400 1729 198
Λ(2000) * 1935-2040 70-315 1983± 21 282± 22 1984 233

2043± 39 350± 29
3
2
−

Λ(1520) **** 1519.5± 1.0 15.6± 1.0 1519.33± 0.34 17.8± 1.1 1518 16 1517 16 1517 16
Λ(1690) **** 1685-1695 50-70 1687.40± 0.79 66.2± 2.3 1689 53 1697 66 1697 74
Λ(2050) * 2056± 22 493± 61 2051± 20 269± 35 1985 447
Λ(2325) * 2300-2375 120-215 2133± 120 1110± 280

5
2
−

Λ(1830) **** 1810-1830 60-110 1821.4± 4.3 102.3± 8.6 1809 109 1766 212
1970 350 1899 80 1924 90

2199± 52 570± 180
7
2
−

Λ(2100) **** 2090-2110 100-250 2079.9± 8.3 216.7± 6.8 2023 239

Thus, in spite of a quality description of the mKp distribution by the amplitude mod-

els, it is very likely that the models missed or contained spurious K−p components.

Improvements to the Λ∗ models could certainly be made, and doing so may even shed

more light on the Pc states. However this is a difficult task which will take time and

will necessarily remain a model-dependent interpretation of the data. Therefore, it is

worth inspecting the data with an approach that is model-independent with respect to

K−p contributions. Such a method was used by the BaBar collaboration [65] and later

improved upon by the LHCb collaboration [20]. In these studies, B0 → ψ(2S)π+K−

decays were inspected, which are dominated by kaon excitations decaying to K−π+. The

goal was to understand whether the data also contain the tetraquark candidate Z(4430)+

decaying to ψ(2S)π+. In particular, the ability to describe the ψ(2S)π+ mass distribu-
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tion in terms of K∗ resonances in the K−π+ system was examined. The method will

be described in more detail in the following section, but in short it involves building a

representation of the Dalitz plane which is taken directly from the data, and filtering

out contributions (i.e. statistical fluctuations or exotic components) that couldn’t plau-

sibly come from K∗ resonances. This representation is then projected onto the ψ(2S)π+

variable and compared to the distribution observed in the data. Thus this probes how

well the conventional resonances are able to describe the data, and if there is the need to

include an exotic contribution. The method involves using only mild assumptions about

the maximum spin of K∗ resonances which are present in the data, and can be guided by

the Quark Model as well as previous experimental results. However such an approach as-

sumes nothing about the number of resonances, nor does it assume anything about their

lineshapes, masses, widths, or possible interference patterns. It also does not require any

assumptions about the presence of nonresonant contributions.

This approach can be used to show an inconsistency of the data with a hypothesis

that only conventional resonances are present. Qualitatively, this approach can point to

the location of an exotic structure which causes this inconsistency. However, it does not

allow for the determination of any parameters of putative exotic resonances, since they

can interfere with the conventional resonances, as well as feed into parts which can also

be attributed to conventional resonances. This happens in an intractable way, and would

necessarily require a model to predict. It also does not formally prove which channel the

exotic contributions are in, e.g. in the B0 → ψ(2S)π+K− study a tetraquark could be

present in either the ψ(2S)π+ or the J/ψK− system. The sensitivity of such an approach

is also dependent on a variety of factors. Most important are the fit fractions and spins

of conventional hadrons which are present, and the fit fractions and decay widths of

any exotic contributions which may be present. For these reasons, the sensitivity is a

priori unknown without the use of an amplitude model. Therefore, this approach is only

useful when it leads to a rejection of the hypothesis that only conventional resonances

are present, and it produces only inconclusive results otherwise. It is also worth stressing

that this approach cannot rule out contributions from rescattering mechanisms, which
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can produce peaks that may fake the presence of exotic hadrons.

The model-independent nature of this method is certainly appealing and could serve

to put to rest concerns about the modeling of conventional contributions to the data, but

clearly this does come at the cost of less power. For this reason, this method and the

amplitude analysis complement each other nicely. In the second part of this thesis, the

method is used to test the hypothesis that the Λ0
b → J/ψpK− decays can be described with

only conventional hadrons decaying to K−p. Studies of the sensitivity of the method with

amplitude models are also performed for the first time, and algorithmic improvements to

the method are made.
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19 The model-independent formalism

The aim of this analysis is to assess the level of consistency of the data with the hypothesis

that all Λ0
b → J/ψpK− decays proceed via Λ0

b → J/ψΛ∗, Λ∗ → pK−, while making only

minimal assumptions about the spin of possible Λ∗ contributions. This will be referred

to as the H0 (i.e. “null”) hypothesis, and will be specified in more detail in this section.

Here, the Λ∗ denotes not only excitations of the Λ baryon, but also nonresonant K−p

contributions or excitations of the Σ baryon. As mentioned in the amplitude analysis

sections, the latter contributions are expected to be small [52], but are still automatically

covered by the analysis formalism. The method is two-dimensional and uses the infor-

mation contained in the Dalitz variables, (m2
Kp,m

2
J/ψp), or equivalently in (mKp, cos θΛ∗).

Equivalence between the two sets of variables can be seen from

m2
J/ψp = m2

J/ψ +m2
p + 2

(
EJ/ψEp − pJ/ψpp cos θΛ∗

)
, (82)

where the momenta

p2
J/ψ = E2

J/ψ −m2
J/ψ ,

p2
p = E2

p −m2
p,

and the energies

EJ/ψ = (m2
Λ0
b
−m2

J/ψ −m2
Kp)/(2mKp),

Ep = (m2
Kp +m2

p −m2
K)/(2mKp)

of J/ψ and p are expressed in the K−p rest frame and cos θΛ∗ ≡ −p̂J/ψ · p̂K = p̂J/ψ · p̂p

was used to arrive at Eq. 82. Thus, for a given value of mKp, there is a one-to-one cor-

respondence between m2
J/ψp and cos θΛ∗ . The (mKp, cos θΛ∗) plane is particularly suitable

for imposing constraints stemming from the H0 hypothesis, as will be seen. All con-

siderations in this section apply to data in which reconstruction and selection efficiency
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effects have been corrected. To see the efficiency-corrected distribution of the data over

the (mKp, cos θΛ∗) plane, along with simulations of expected Λ∗ or Pc contributions, see

Appendix. I.

The cos θΛ∗ dependence of the efficiency-corrected data is expanded in Legendre poly-

nomials (Pl) as a function of mKp:

dN

d cos(θΛ∗)
(mKp) =

lmax∑
l=0

〈PU
l 〉(mKp)Pl(cos θΛ∗). (83)

where N is the efficiency corrected Λ0
b → J/ψpK− signal yield, and 〈PU

l 〉(mKp) are mass-

dependent expansion coefficients (“moments”) whose calculation will be detailed later.

The specific choice of lmax will also soon be discussed. The Legendre polynomials are

normalized and orthogonal:

∫ 1

−1

Pi(cos θΛ∗)Pj(cos θΛ∗)d cos θΛ∗ = δij . (84)

Using the orthogonality condition with Eq. (83), it is easy to show:

〈PU
l 〉(mKp) =

∫ 1

−1

Pl(cos θΛ∗)
dN

d cos θΛ∗
d cos θΛ∗ . (85)

The mKp-dependence is accounted for by dividing the mKp dimension into bins, such that

Eq. 83 is given for each bin as

dN

d cos(θΛ∗)

∣∣∣∣
k

=
lmax∑
l=0

〈PU
l 〉k Pl(cos θΛ∗). (86)

The key to this analysis method is that, under the H0 hypothesis, the expansion can

be truncated at a reasonably small lmax value, after which higher order moments would

only describe statistical fluctuations. Specifically, a Λ∗ resonance with spin J1 can only

contribute to moments up to l = 2J1, while interferences between two resonances with

spin J1 and J2 can contribute up to moments l = J1 + J2. Thus, if the highest spin Λ∗

resonance present in a particular mKp bin has spin Jmax, the expansion can be truncated
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at order lmax = 2Jmax.

A proof of the statement that lmax can be set to 2Jmax starts by examining the matrix

element of the decay, which was been documented in the amplitude analysis (Sec. 5). As

the analysis is working under the H0 hypothesis, only the Λ∗ part of the matrix element

is considered. Furthermore, as this is a two-dimensional method concerned with only

the Dalitz variables, the J/ψ is treated as a final state particle. Thus the sum over its

helicities must be taken incoherently. The relevant matrix element is then

|M|2 =
∑
λ
Λ0
b

∑
λp

∑
λψ

∣∣∣∣∑
n

Rn(mKp)HΛ∗n→Kp
λp

×

∑
λΛ∗

HΛ0
b→Λ

∗
nψ

λΛ∗ , λψ
ei λΛ∗φK d

1
2
λ
Λ0
b
, λΛ∗−λψ(θΛ0

b
) d

JΛ∗n
λΛ∗ , λp

(θΛ∗)

∣∣∣∣2 ,

(87)

where the H are the constant helicity couplings, λX is a projection of the spin of particle

X onto its momentum direction (“helicity”), Rn(mKp) represents the mass dependence

of the decay amplitude for the given Λ∗n resonance (which could also be a non-resonant

contribution or Σ∗ → pK− resonance), dJm′m(θ) are the small Wigner functions, the θ are

the helicity angles, and φK is the angle between the decay planes of Λb and Λ∗ (see Sec. 5

for a more detailed explanation). Expanding this equation in order to integrate over the

extraneous angles results in

|M|2 =
∑

λ
Λ0
b
λp λψ

nn′ λΛ∗ λΛ∗′

Rn(MKp)(Rn′(MKp))
∗HΛ∗n→Kp

λp
(HΛ∗n

′→Kp
λp

)∗ ×

HΛ0
b→Λ

∗
nψ

λΛ∗ , λψ
(HΛ0

b→Λ
∗
n
′ψ

λΛ∗′ , λψ
)∗ ei(λΛ∗φK−λΛ∗′φK)

d
1
2
λ
Λ0
b
, λΛ∗′−λψ

(θΛ0
b
) d

1
2
λ
Λ0
b
, λΛ∗−λψ(θΛ0

b
) d

JΛ∗n
λΛ∗ , λp

(θΛ∗) d
JΛ∗n ′

λΛ∗′ , λp
(θΛ∗)

(88)

Next, integration over φK will yield the factor
∫ π
−π e

i(λΛ−λ
′
Λ)φKdφK = 2πδλΛ λ

′
Λ
. Finally
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integration over θΛ0
b

is performed to give

|M|2 ∝
∑

λ
Λ0
b
λpλψ

nn′λΛ∗

Rn(MKp)(Rn′(MKp))
∗HΛ∗n→Kp

λp
(HΛ∗n

′→Kp
λp

)∗ ×

HΛ0
b→Λ

∗
nψ

λΛ∗ , λψ
(HΛ0

b→Λ
∗
n
′ψ

λΛ∗ , λψ
)∗ d

JΛ∗n
λΛ∗ , λp

(θΛ∗) d
JΛ∗n ′

λΛ∗ , λp
(θΛ∗)

(89)

Thus the end result is the matrix element is proportional to various amplitudes mul-

tiplying two d-matrices. Note that while the quantum number J can differ between the

two d-matrices, the helicity projections must be the same. It is not immediately obvious

how many moments are necessary to include in a Legendre polynomial expansion of the

products of these d-matrices. To make this clearer, examine the general formula for the

d-matrix:

dJm′m(θ) = [(J +m′)!(J −m′)!(J +m)!(J −m)!]1/2

×
∑
s

(−1)m
′−m+s

(J +m− s)!s!(m′ −m+ s)!(J −m′ − s)!

×
(

cos
θ

2

)2J+m−m′−2s

×
(

sin
θ

2

)m′−m+2s

,

(90)

where the the sum over s is over all values such that the factorials are nonnegative.

Multiplying two of these expressions with identical values of m and m′, one obtains (with

the labeling of the unimportant constant factors with K):

dJ1

m′m(θ) dJ2

m′m(θ) ∝
∑
s1 s2

KJ1

m′ms1
KJ2

m′ms2
×
(

cos
θ

2

)2J1+2J2+2m−2m′−2s1−2s2

×
(

sin
θ

2

)2m′−2m+2s1+2s2

∝
∑
s1 s2

KJ1

m′ms1
KJ2

m′ms2
×
(

1

2
(1 + cos θ)

)J1+J2+m−m′−s1−s2

×
(

1

2
(1− cos θ)

)m′−m+s1+s2

.

(91)

Thus the product of two d-matrices with the same m,m′ values can be expressed as a

summation over powers in cos θ. The absence of terms such as sin θ and cos θ/2 then
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means that this can be expressed in terms of Legendre polynomials with a clean cut-off

at some order lmax. From examining the powers in Eq (91), the highest order term in cos θ

is J1 + J2, which corresponds to a highest order Legendre polynomial of lmax = J1 + J2.

Thus the result has been proven, and Eq (83) is a useful means for examining how well

Λ∗ resonances can describe the data.

An appropriate cut-off for lmax needs to be decided upon, which is the key concept

of this analysis approach. The PDG and theoretical predictions are in agreement that

the highest spin state present in the data should correspond to J = 9/2, which in turn

corresponds to expecting Λ∗ contributions to Legendre moments up to order lmax = 9.

However, high spin states are not present at low mKp masses. Thus using lmax = 9 at

low mKp does not make sense, and a mass-dependent lmax is used instead. In particular,

if the lowest lying known resonance with spin J has mass M0 and width Γ0, moments

up to order 2J are allowed for masses above m0 − 2Γ0. As the J = 1/2 Λ(1405) occurs

below threshold, l = 1 is allowed throughout the whole mass range. And as the J = 3/2

Λ(1520) is sufficiently close to the threshold, l = 3 is also allowed over the whole mass

range. The rest of the dependence is taken as

lmax(mKp) =



3 if mKp < 1.64 GeV

5 if 1.64 ≤ mKp < 1.7 GeV

7 if 1.7 ≤ mKp < 2.050 GeV

9 if mKp ≥ 2.050 GeV.

(92)

This dependence is shown in Fig. 76, along with the experimental results listed in the

PDG and the predictions from Ref. [58].

As a cross-check of the theorem derived above, the Legendre moments of the cos θΛ∗

distribution as a function of mKp are shown in Fig. 77 for a very large statistics sample

(107 events) of decays generated according to the extended Λ∗ amplitude model (no Pc

contributions) with its parameters set by the fit to the data (Sec. 8.1). The displays

for each order Legendre moment are shown with the same scale in order to show their
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relative importance, but Fig 78 shows the results zoomed in to see more detail. As a

reminder, the model contains 14 Λ∗ resonances with spins up to 9/2, as listed in Table 5.

Following expectations, the moments with l above the maximal 2JΛ∗ value present at a

given mKp value are all consistent with zero.

In contrast, Λ0
b → P+

c K
−, P+

c → J/ψp contributions can induce non-zero values

of even very high l moments through a wide range of mKp masses. This important

point, which allows this method to work, is illustrated in Fig. 79, where a high statistics

sample was generated with an amplitude model containing only the Pc(4380) and Pc(4450)

contributions. The parameters of these components were set from the fit of the default

amplitude model to the data (see Sec. 10.1). In a similar exercise, high statistics samples

were generated with amplitude models containing only the individual Pc(4380)+ and

Pc(4450)+ contributions, with all parameters again taken from the default fit to the data

(Sec. 10.1). The resulting Legendre moments for both are shown in Fig. 80. One notes

that the narrower Pc(4450) contributes much more in the higher moments than the broad

Pc(4380). This reflects the important point that the narrower an exotic resonance, the

more it will reflect into higher order Legendre moments of the conventional hadron helicity

angles. This in turn has important implications on the expected levels of sensitivity to

exotic contributions.

By taking the observed mKp distribution of the data, and expanding the cos θΛ∗ dis-

tribution in bins of mKp with Legendre polynomials truncated at lmax, a representation of

the Dalitz plane under the H0 hypothesis can be constructed. Thus if the H0 hypothesis

is true, the projection of the representation onto mJ/ψp should be consistent with the

observed distribution in the data, up to statistical fluctuations that get smoothed out by

not including higher order moments. The consistency of the H0 hypothesis with the data

can thus be probed. In the next section, the details of this procedure are laid out.
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Figure 76: Excitations of the Λ baryon. States predicted in Ref. [58] are shown as short
horizontal bars (black) and experimentally well-established Λ∗ states are shown as green
boxes covering the mass ranges from M0 − Γ0 to M0 + Γ0. The mKp mass range probed
in Λ0

b → J/ψpK− decays is shown by long horizontal lines (blue). The lmax(mKp) filter is
shown as a stepped line (red). All contributions from Λ∗ states with JP values to the left
of the red line are accepted by the filter. The filter works well also for the excitations of
the Σ baryon [27,58] (not shown).
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Figure 77: Legendre moments of cos θΛ∗ as a function of mKp for simulated data from
an amplitude model with only Λ∗ resonances (see the text for more details). The regions
excluded by the l ≤ lmax(mKp) filter are shaded. The displayed range of values of Legendre
moments (the vertical axis) is kept the same between various ` to illustrate their relative
importance. See Fig. 78 for the same plots displayed with an `-dependent display range,
which makes the variations more visible.
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Figure 78: Legendre moments of cos θΛ∗ as a function of mKp for simulated data from
an amplitude model with only Λ∗ resonances (see the text for more details). The regions
excluded by the l ≤ lmax(mKp) filter are shaded. These are the same plots as already
shown in Fig. 77, but displayed here with an `−dependent range in order to make higher
order moments more visible.
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Figure 79: Legendre moments of cos θΛ∗ as a function of mKp for simulated data from an
amplitude model with only the Pc(4380) and Pc(4450) resonances (see the text for more
details). The regions excluded by the l ≤ lmax(mKp) filter are shaded.
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Figure 80: Legendre moments of cos θΛ∗ as a function of mKp for simulated data from
amplitude models with either only the Pc(4380) (solid blue) or Pc(4450) (dashed red)
resonance (see the text for more details). The regions excluded by the l ≤ lmax(mKp)
filter are shaded.
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20 Procedure

The general strategy of the analysis is outlined in the following steps, for which more

details will be given in the rest of this section:

1. Form efficiency-corrected and background-subtracted binned mKp and mJ/ψp distri-

butions. Use also efficiency corrections and background-subtraction in the calcula-

tion of Legendre moments of cos θΛ∗ in each bin of mKp (〈PU
l 〉k).

2. Use themKp distribution and Legendre moments obtained in (1), along with the lmax

filter of the H0 hypothesis, to form a two-dimensional PDF : F(mKp, cos θΛ∗|H0).

3. Project F(mKp, cos θΛ∗|H0) onto mJ/ψp by using the mJ/ψp ↔ cos θΛ∗ correspon-

dence (Eq. 82), and integrating over mKp. Such projection allows to construct tests

of H0 which take into account that exotic hadron contributions peak in certain

mJ/ψp range. As their reflections create complicated bands in the (mKp, cos θΛ∗)

plane (see e.g. the right plot of Fig. 129), which cannot be built into 2D test vari-

ables in a model independent way, tests constructed directly in this plane have very

poor sensitivity to exotic hadrons.

4. Probe the compatibility of F(mJ/ψp|H0) with the mJ/ψp distribution obtained in (1)

via a hypothesis test variable t (to be made more specific later).

5. As there are many parameters in F(mJ/ψp|H0), which are correlated in a com-

plicated way, run pseudoexperiments to get the distribution of t under the H0

hypothesis: F(t|H0).

6. With F(t|H0), and the value of t obtained on the data, calculate a p-value for H0.

If the p-value is sufficiently low16 the H0 hypothesis can be rejected. Otherwise,

the data are not inconsistent with the presence of only l ≤ lmax moments. Such a

statement does not rule out the presence of exotic hadron contributions.

16A p-value is the probability thatH0 is rejected even though it is true, thus frequency of such undesired
“type I error” can be directly dialed by a choice of a cut-off value.
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Similar to the cFit method which was used in the amplitude analysis, events are

selected from the signal range, while the sidebands are used for subtraction of the back-

ground (see Fig 30). Details will now be given for the general procedure, and the con-

struction of the PDF ’s will be outlined.

20.1 Efficiency correction and background subtraction

Efficiency effects lead to distortions in the distributions of the data, and thus need to be

corrected for in order for the considerations in Sec. 19 to hold. For example, in addition to

the directly used mKp and mJ/ψp distributions, efficiency effects would also lead to mod-

ifications of the Legendre moments, and invalidate the conclusion that lmax = 2Jmax is

the highest rank of Legendre polynomial needed to fully describe the cos θΛ∗ distribution.

Thus efficiency corrections must be applied, and this requires an efficiency parameter-

ization. Unless the efficiency is completely uniform in the other decay angles (which

is not the case here), the parameterization should still take them into account. Thus

the efficiency correction is applied to all six dimensions which describe the decay. The

parametrization used is the same as in the amplitude analysis (Sec. 6.2). In particular,

the efficiency is assumed to factorize as

ε(mKp, cos θΛ∗ ,Ωa) = ε1(mKp, cos θΛ∗)×ε2(cos θΛ0
b
|mKp)× ε3(cos θJ/ψ |mKp)× (93)

ε4(φK |mKp)× ε5(φµ|mKp).

The notation is slightly different in order to separate the Dalitz variables from the other

decay angles Ωa, but the parametrization is exactly the same as Eq. 68. This is used

to calculate the efficiency on an event-by-event basis, and its inverse is used as an event

weight when making histograms of efficiency-corrected yields as well as when calculating

the Legenedre moments.

The background subtraction is done using the events from the Λ0
b sidebands, which

are the same as defined in Sec 6.2. A scaling factor, α ≡ βNsignal−band/Nsideband, corrects

for different background yields in the signal-band and in the sidebands. Here Nsignal−band
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is the number of selected events in the signal region, Nsideband is the number of selected

events in the Λ0
b sidebands, and β is the background fraction in the signal region (5.4%),

also defined in Sec 6.2. When calculating the signal yields or Legendre moments, all

events in the signal-band and sidebands are summed over, with each event having a

background subtraction weight w assigned. This weight is set to one for events in the

signal region and to −α for events in the sidebands. In a variation of this default method,

the sPlot technique is used to set w to sWeights which are determined by the fits to mJ/ψpK

(Fig. 20).

20.2 Construction of PDF ’s

The full PDF representing the H0 hypothesis is factored as

F(mKp, cos θΛ∗|H0) = F(mKp|H0)F(cos θΛ∗|H0,mKp), (94)

where F(mKp|H0) gives a dependence on mKp, and F(cos θΛ∗ |H0,mKp) gives the depen-

dence on cos θΛ∗ at a given mKp. The construction of both, and the determination of

their numerical parameters will now be shown.

In order to make the analysis as model-independent as possible, no interpretations

are imposed on the mKp mass distribution. Instead, the observed efficiency-corrected

and background-subtracted histogram of mKp is simply incorporated as a part of the

numerical representation of the H0 hypothesis. These parameters are denoted as

{∆Nk/∆mKp, k = 1, . . . , nKpbin}, (95)

where k denotes the bin index, ∆Nk/∆mKp is the bin yield, and nKpbin = 100 is the

number of bins used. The bins are divided evenly in the kinematically allowed range:

(mK +mp,mΛ0
b
−mJ/ψ ). The yields in each bin are determined from the data as

∆Nk/∆mKp =

ncand
k∑

i=1

wi/εi. (96)

156



Here the i index iterates over selected J/ψpK− candidates in the signal and sideband

regions for the kth bin of mKp (ncand
k is their total number), εi = ε(mKp

i, cos θΛ∗
i,Ωa

i)

is the efficiency correction, and wi is the background subtraction weight. To obtain a

continuous probability density function, F(mKp|H0), a quadratic interpolation between

nearby ∆Nk/∆mKp values is used. The mKp distribution of the data and F(mKp|H0)

are shown in Fig 81.
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Figure 81: Efficiency-corrected and background-subtracted mKp distribution of the data (black
points with error bars), with P(mKp|H0) superimposed (solid blue line). P(mKp|H0) fits the
data by construction.

To construct F(cos θΛ∗|H0,mKp
k), the Legendre polynomial expansion of cos θΛ∗ is

used. The Legendre moments are determined from the data as

〈PU
l 〉k =

ncand
k∑

i=1

(wi/εi)Pl(cos θiΛ∗), (97)

where the same binning as Eq. 96 is used. The values of 〈PU
l 〉k are shown in Fig. 82, and

again in Fig. 83 with only 25 bins so that the structures are more clearly seen. Note that

the lower order moments dominate, consistent with expectations of greater contributions

coming from resonances with relatively low spins. However, there is substantial activity

in the higher moments as well. It is important to also note the presence of structures
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Figure 82: Legendre moments of cos θΛ∗ as a function of mKp in the data. Regions excluded
by the l ≤ lmax(mKp) filter are shaded. For coarser binning, see Fig. 83.
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Figure 83: Legendre moments of cos θΛ∗ as a function of mKp in the data, shown with just 25
bins. Regions excluded by the l ≤ lmax(mKp) filter are shaded.
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in regions which are excluded by the lmax(mKp) filter. The deviations from the expected

behavior of K−p contributions can by itself be taken as indications of exotic contributions.

Still, as the fit fractions of the Pc(4380) and Pc(4450) in the amplitude model are only

8.4% and 4.1%, respectively, it is important to probe the presence of moments induced

via exotic contributions in a way which aggregates the entire data set. Towards obtaining

a continuous PDF , linear interpolation between neighboring mKp bins is used for each

l-th moment. The moments are then used to construct F(cos θΛ∗|H0,mKp
k) as

F(cos θΛ∗|H0,mKp
k) =

lmax(mKp
k)∑

l=0

〈PN
l 〉kPl(cos θΛ∗).

Here the Legendre moments are normalized,

〈PN
l 〉k = 〈PU

l 〉k 2/(∆Nk/∆mKp),

since the overall normalization of F(cos θΛ∗|H0,mKp) to the data is already contained in

the F(mKp|H0) definition. With this, the construction of the full F(mKp, cos θΛ∗|H0) has

been specified. A complete list of its parameters, and a full numerical representation of

the H0 hypothesis, is given by

{∆Nk/∆mKp, [〈PU
l 〉k, l = 1, . . . , lmax(mKp

k)], k = 1, . . . , nKpbin}. (98)

20.3 Projection onto mJ/ψp

In order to probe the consistency of H0 with the data, F(mKp, cos θΛ∗ |H0) is projected

onto mJ/ψp. This is done using the mJ/ψp ↔ cos θΛ∗ correspondence (Eq. 82), and inte-

grating over mKp. In practice, this is done via Monte Carlo techniques. A total of 107

events are generated uniformly over the (mKp, cos θΛ∗) plane. Each event is then weighted

by its value of F(mKp, cos θΛ∗|H0). Each event’s value of mJ/ψp is then calculated, and a

histogram of mJ/ψp filled with each event’s weight. To achieve a continuous F(mJ/ψp|H0),

quadratic splines are used to interpolate between nearby mJ/ψp bins of the histogram.
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Shown in Fig. 84 is the efficiency-corrected and background-subtracted mJ/ψp distribu-

tion of the data, along with F(mJ/ψp|H0). The distribution of the data has been obtained

just as the mKp distribution, with histogram bins determined as

∆Nk/∆mJ/ψp =

ncand
k∑

i=1

wi/εi. (99)

Clearly, there is an excess of the data over F(mJ/ψp|H0) in the Pc(4450) region. Because of
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Figure 84: Efficiency-corrected and background-subtracted mJ/ψp distribution of the data
(black points with error bars), with F(mJ/ψp|H0) (solid blue line) superimposed.

the statistical correlations between the data and F(mJ/ψp|H0), no quantitative statements

can immediately be made on the size of the disagreement between them. The quantitative

tests used, and the statistical simulations necessary to turn the results into a p-value, are

discussed in the following sections.

161



20.4 Hypothesis Testing

The hypothesis testing is performed with test variables, generically denoted as t, which

probe the compatibility of H0 with the data. A natural test variable is a χ2 variable:

tχ2 =

nbins∑
k=1

(
ck −F(mJ/ψp

k|H0)

σ(ck)

)2

,

ck = ∆Nk/∆mJ/ψp =

ncand
k∑

i

wi/εi,

σ(ck) =

√√√√ncand
k∑

i

(wi/εi)
2

(100)

where ck is the kth bin content of the directly obtained efficiency-corrected and background-

subtracted mJ/ψp distribution, mJ/ψp
k is the bin center, ncand

k is the number of events

contributing to this bin, and nbins is the number of bins. Since ck and the values of

F(mJ/ψp
k|H0) are strongly correlated17, the average tχ2 value is expected to be smaller

than nbins − 1 = 54, which is the number of degrees of freedom (ndf) for a χ2 calculated

between uncorrelated histograms normalized to the same area. The F(mJ/ψp|H0) func-

tion can roughly be thought of as a display of the fit of F(mKp, cos θΛ∗|H0) to the 2D

distribution (mKp, cos θΛ∗), projected onto the mJ/ψp axis. However as the parameters

of the model, {∆Nk/∆mKp, [〈PU
l 〉k, l = 1, . . . , lmax(mKp

k)], k = 1, . . . , nKpbin}, are not

actually fit to the mJ/ψp distribution, the reduction of ndf of the tχ2 variable cannot be

predicted without statistical simulations. These will be discussed in Sec. 20.4.

The appeal of any χ2 test is the simplicity of its formulation, as it tests a given

hypothesis, H0, against any alternative hypothesis, H1, which is simply defined as not

H0. However, its power against any more specific H1 hypothesis may be poor. The

sensitivity of the above described χ2 test, tχ2 , can also suffer from the use of overestimated

errors in its definition, which do not correct for the statistical correlations between ck and

F(mJ/ψp
k|H0). For a more specific H1 hypothesis, which can predict F(mJ/ψp|H1),18 the

17 In fact, for lmax →∞ the two values must be exactly equal, resulting in tχ2 = 0.
18H1 = .not.H0 cannot predict it!
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most sensitive choice of a test variable often is:

tDLL = −2
∑
i

log

(
P(xi|H0)

P(xi|H1)

)
, (101)

where the sum is over all events in the data sample. Such a likelihood-ratio test is

guaranteed to be the most powerful test between H0 and H1 if the hypotheses are simple

i.e. contain no free parameters. In the present case, H0 contains a large number of

parameters which are determined from the data. Nevertheless, the likelihood-ratio test

can be useful if H1 is made more specific than .not.H0.

Thus, as was done in the analysis of B0 → ψ(2S)π+K− decays [20], the alternative

hypothesis is taken as including moments up to l ≤ llarge, where llarge is some value which

is sufficiently large to describe exotic hadron contributions. The precise meaning of such

a constructed likelihood-ratio test, is to test the significance of the lmax(mKp) ≤ l ≤ llarge

moments of the cos θΛ∗ distributions in the data; these are the moments which cannot

be plausibly induced via Λ0
b → J/ψΛ∗, Λ∗ → K−p decays. It is important to choose the

value of llarge independently of the actual data set, otherwise the choice of llarge value must

be subject to statistical simulations with pseudoexperiments. This can be cumbersome,

especially without a well defined numerical algorithm. In Ref [20], a value of llarge = 30

was used, and so a similar choice of llarge = 31 was decided upon. Note that the value is

incremented by one, because in the present case baryons are being studied, which have

fractional spin. Thus, a complete list of parameters which specify the H1 hypothesis is

{∆Nk/∆mKp, [〈PU
l 〉k, l = 1, . . . , llarge = 31], k = 1, . . . , nKpbin}. (102)

A PDF describing this hypothesis, F(mKp, cos θΛ∗|H1), is then built and projected onto

mJ/ψp to get F(mJ/ψp|H1) in the same manner as was done for H0. It can be seen in

Fig. 85 that this choice of llarge is capable of capturing the observed mJ/ψp structures

rather well, including the narrow peak associated with the Pc(4450) state.

It is worth emphasizing that a choice of llarge cannot be “wrong”, as it is ultimately

just a test variable, whose distribution under the H0 hypothesis can be simulated. Thus,
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Figure 85: Efficiency-corrected and background-subtracted mJ/ψp distribution of the data
(black points with error bars), with P(mJ/ψp|H1) (dashed black line).

a choice of llarge can only be questionable due to sub-optimal discriminating power. At

first, it might seem that llarge should be taken as large as is practically possible. However,

after a certain point, increasing it even further only serves to better describe statistical

fluctuations. This doesn’t capture any physics, and only weakens its discriminating power.

In Appendix M, the full analysis is repeated with a range of llarge values.

The data contains an admixture of background events and signal events. Instead of

incorporating the background PDF into P(mJ/ψp i|H0,1) in Eq. (101), an approach is used

which was motivated by the sFit method: the background contribution is subtracted from

the log-likelihood value on a statistical basis by using the sidebands and event weights

(wi):

tDLL = −2

nsig
cand+nside

cand∑
i

wi

(
P(mJ/ψp i|H0)

P(mJ/ψp i|H1)

)
. (103)

These weights are the same as the simple sideband-subtraction weights which were dis-

cussed already in Sec. 20.1. In a systematic check, the sWeights determined by the fit to

mJ/ψKp are used instead.

In Ref. [20], the log-likelihood ratio was efficiency-corrected, by using a 1/εi weight
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for each event, such that the total weight was wi/ei. It was decided not to follow this

approach here, as the weights do not seem well justified from likelihood theory. Further,

it makes the test variable more dependent on the efficiency. Instead, the PDF for each

hypothesis has the efficiency factored in:

P(mJ/ψp i|H0,1) = F(mJ/ψp i|H0,1) εi/IH0,1 , (104)

where IH0,1 is the normalization. The event efficiencies εi then cancel in the calculation

of the likelihood ratio P(mJ/ψp i|H0)/P(mJ/ψp i|H1). While they still affect the normal-

ization, this definition of log-likelihood ratio is less dependent on the efficiency. The

normalization integral is performed via Monte Carlo integration with an nMC = 107

event sample generated uniformly in phase space:

IH0,1, ∝
nMC∑
k

P(mJ/ψp k|H0,1) εk. (105)

Putting things together, a pseudo19 log-likelihood ratio test variable is defined as

tDLL = ∆(−2 logL) = −2

nsig
cand+nside

cand∑
i

wi log

(
F(mJ/ψp i|H0)/IH0

F(mJ/ψp i|H1)/IH1

)
. (106)

Both test variables are studied in this analysis. However, it can be expected, and is

in fact seen, that the log-likelihood ratio proves to be the more powerful discriminator.

20.5 Pseudoexperiments

In order to turn the values of the test variables obtained from the data, tdata
χ2 and tdata

DLL into

a p-value for the H0 hypothesis, the distributions of tχ2 and tDLL under the H0 hypothesis,

Ft(χ2|H0) and Ft(∆(−2 lnL)|H0), must first be known. In order to obtain these, a large

number of pseudoexperiments are generated according to the H0 hypothesis, and the test

variables are calculated and accumulated until a good handle on the Ft(t|H0) distributions

are obtained. In the pseudoexperiments, all parts of the analysis are simulated in order

19“pseudo” since the event weighting is involved.
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to capture all contributions of statistical fluctuations. Thus, three different types of toy

data sets are produced in each pseudoexperiment, which are analyzed in the same exact

way as the real data. They are:

• Λ0
b signal region pseudo-events, corresponding to real data taken from ±2σ of

the Λ0
b mass peak. This sample is a mixture of signal events corresponding to true

Λ0
b → J/ψpK− events in the data as well as background events.

• Λ0
b sideband region pseudo-events, corresponding to data taken from the side-

bands of the Λ0
b mass peak. This sample contains only background events, which

are used for the statistical subtraction of the background in the Λ0
b signal region.

• Efficiency MC pseudo-events, corresponding to the fully simulated, phase space

MC data set used to construct the efficiency parameterization. The parametrization

is used for the efficiency correction when making displays of the data and when

calculating the Legendre moments of cos θΛ∗ .

The toy data sets are generated with statistics exactly matching that used in the anal-

ysis of the actual data. The generation procedure consists of generating events uniformly,

and then shaping them based off specific procedures dependent on the event type. In

general, there may be multiple effects shaping a data sample, such as efficiency and decay

dynamics. Each of these effects has a weight wj associated with it, such that there is a

total weight

w =
∏
j=1

wj (107)

As the data set used in the actual analysis was unweighted, it was decided to perform the

generation with an accept/reject algorithm, rather than handle weighted data events. For

an event i, the ratio wi/wmax is formed, where wi is the total weight for that particular

event and wmax is the maximum possible weight. A random number x in the interval of

(0, 1) is then thrown, and if x < wi/wmax the event is accepted; otherwise it is rejected.

This procedure results in the data set being shaped by all relevent effects.

The MC pseudo-data set, used in the efficiency correction procedure, is generated

uniformly in phase space and then shaped with the efficiency parameterization used
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when correcting the real data. The Λ0
b sideband events are also generated uniformly,

and then shaped using a background parametrization. The background parametrization

is the same as was used in the amplitude analysis (Sec.6.2). It is built the same way

as the efficiency parametrization, but using the sideband events. The Λ0
b signal region

pseudo-events are simulated by combining signal and background pseudo-events, which

contribute nsig
cand(1−β) and nsig

candβ events, respectively. The background pseudo-events are

necessary to include in order to simulate the background subtraction. They are generated

in the same way as the sideband events. The signal events are generated uniformly on the

(mKp, cos θΛ∗) plane, and in all other decay angles as well. These events are shaped by

F(mKp, cos θΛ∗ |H0) and the efficiency parametrization. The F(mKp, cos θΛ∗ |H0) weight

by itself would result in the pseudo-signal data matching the efficiency-corrected and

background-subtracted mKp distributions of the real data, as well as its angular structure

expanded in Legendre moments of cos θΛ∗ filtered through the l ≤ lmax(mKp) requirement.

Therefore, they represent data constructed under the H0 hypothesis. There is a subtle ef-

fect which results from the fact that the other decay angles, Ωa = (cos θΛ0
b
, cos θJ/ψ , φK , φµ)

are only shaped by the efficiency parametrization, whereas in the real data they are shaped

by decay dynamics as well as efficiency effects. These angles enter the analysis only via

the efficiency correcion, and so their particular distributions would only affect the size

of fluctuations due to regions of phase space not being sampled in the same way as the

data. As the pseudoexperiments are concerned with measuring the size of fluctuations,

and there is no way to shape the angles without assuming a model, it is a systematic

effect which is studied in Sec. 24.2.

The pseudoexperiments used for quoting actual p-values for the H0 hypothesis are

generated independently of amplitude models in order to make the model-independent

approach self-contained. Such pseudoexperiments are referred to as H0 pseudoexperi-

ments. However, in validation, sensitivity, and systematic studies the pseudoexperiments

may be shaped with an amplitude model. In these cases, the signal events are gener-

ated uniformly in phase space, and shaped with the efficiency parametrization and the

modulus-squared of the matrix element of the corresponding amplitude model. In such
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cases, the effect discussed above with regards to the shaping of the Ωa angles is not

present.
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21 Validation and Sensitivity

While this analysis method is model-independent, amplitude models can provide a means

to perform validation and sensitivity studies. Since what is present in the amplitude

model during the pseudo-data generation is controlled, “the truth” is known and the

response of the analysis method to this truth can be tested. This allows for testing

whether or not the H0 hypothesis will be accepted for data sets which contain only the

well-motivated Λ∗ states. Further, it allows for testing the sensitivity to data sets with

both Pc states built into them by construction, and whether or not the H0 hypothesis

would be rejected.

It is also important to study the expected sensitivity as a function of the width of

prospective exotic contributions. Exotic, but broad, peaking structures in mJ/ψp will

contribute mostly to lower order moments, as was shown in Fig 80. If the exotic contri-

bution contributes mostly to l ≤ lmax(mKp), then it is possible that the H0 hypothesis

will be accepted, though it shouldn’t be. Within the terminology of hypothesis testing,

this is referred to as a “Type II error”. This “self-subtraction” is unavoidable, as even

narrow exotic contributions will feed down into the numerical representation of H0 to

some extent. The degree to which this is done cannot be a priori known without the

usage of some particular amplitude model, with already well determined parameters of

all contributions. Due to this effect, if H0 is accepted, no firm conclusion can be drawn.

It is only when H0 can be rejected that the results become interesting. For these reasons

it is useful to probe the expected sensitivity of the method before applying it to the data.

21.1 Validation on extended Λ∗ model and sensitivity to default

amplitude model

The extended Λ∗ amplitude model without any Pc contributions is used to perform pseu-

doexperiments to check that the model-independent method can reproduce the pseudo-

data, i.e. that the H0 hypothesis would be accepted on data sets with only the conven-

tional resonances. This model contains 14 Λ∗ states which span all expected spin values.
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The parameters of the amplitude model are taken from the fit to the data (Sec. 8.1).

The efficiency-corrected and background-subtracted distribution of mJ/ψp for one pseu-

doexperiment is compared to F(mJ/ψp|H0) obtained from the pseudo-data set in Fig. 86.

Also shown is F(mJ/ψp|H1), which is used in the likelihood ratio test. The distributions

appear compatible with each other, and indicate that the H0 hypothesis would be ac-

cepted. Note that they are not expected to look identical, since the F(mKp, cos θΛ∗|H0)

construction is equivalent to a complicated smoothing algorithm of the directly obtained

distribution, and thus leaves out statistical fluctuations.
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Figure 86: The efficiency-corrected and background-subtracted distribution of mJ/ψp for
the pseudo-data-set (black points with error bars) generated according to the extended
Λ∗ amplitude model without any P+

c states, compared to P(mJ/ψp|H0) (solid blue line)
and P(mJ/ψp|H1) (dashed black line).

To test the sensitivity of the method to data sets with Pc(4450) and Pc(4380) built into

them, pseudo-data sets are constructed using the default (i.e. “reduced”) Λ∗ amplitude

model with both P+
c states. Shown in Fig. 87 is the efficiency-corrected and background-

subtracted distribution of mJ/ψp in the pseudo-data set together with F(mJ/ψp|H0) and

F(mJ/ψp|H1). The directly obtained distribution has a clear excess over F(mJ/ψp|H0)

in the region of Pc(4450), and appears very similar to the result shown on the data in
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Fig. 84. Meanwhile, F(mJ/ψp|H1) reproduces the distribution of the data quite well.
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Figure 87: The efficiency-corrected and background-subtracted distribution of mJ/ψp for
the pseudo-data-set (black points with error bars) generated according to the default Λ∗

amplitude model with both Pc(4380) and Pc(4450) included, compared to P(mJ/ψp|H0)
(solid blue line) and P(mJ/ψp|H1) (dashed black line).

Many pseudoexperiments were performed to get the distribution of the test variables

for pseudo-data sets generated from the Λ∗-only amplitude model. This is then compared

to the distribution of the test variables for the H0 pseudoexperiments, as a means of

validation. The comparisons for tχ2 and tDLL are shown in Fig. 88 on the left and right,

respectively. The distribution of the black Λ∗-only histogram is nearly identical to that of

the red-dashed H0 histogram. This indicates that the Λ∗−only pseudoexperiments would

all be assigned high p-values, and therefore the H0 hypothesis would have always been

accepted, thus validating the test. Many pseudoexperiments were also ran for the default

amplitude model with both Pc states. These are shown as the blue histograms in Fig. 88

for both test variables. From the separation of the blue and red histograms, it is clear

that most of the time a low p-value would have been assigned to the H0 hypothesis, and

thus H0 would have been rejected. Thus, if the amplitude model with the Pc(4380) and

Pc(4450) accurately represents the data, it can be expected that the H0 hypothesis can
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be rejected with a good level of confidence. It is also clear from the sensitivity studies

that the tDLL test variable is going to be the more powerful variable, as predicted.
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Figure 88: Distribution of tχ2 (left) and tDLL (right) in the H0 pseudoexperiments (red
falling hatched), compared to the distributions obtained from the Λ∗−only amplitude
pseudo-experiments (black) and the pseudo-experiments generated from the default am-
plitude model, i.e. with the Pc(4380) and Pc(4450) included (blue rising hatched).

21.2 Dependence of sensitivity on width

To study the dependence of the sensitivity on the width of exotic contributions, pseudoex-

periments were generated with amplitude models containing only a single Pc resonance.

In particular, the default amplitude model with the Pc(4450) and Pc(4380) was used,

but with the Pc(4450) contribution removed. Thus the model contains only the Λ∗ and

Pc(4380) contributions. Versions of the pseudoexperiments were generated which differ

only by the width of the Pc(4380) resonance. Starting with the nominal value, the width

was reduced by half in the subsequent sets of pseudo-experiments. The resulting distri-

butions from many pseudo-experiments are shown in Fig. 89 for the tχ2 and tDLL test

variables. The set in which the nominal Pc(4380) width (205 MeV) was used gives a

distribution (blue histogram) which is essentially indistinguishable from the distribution

of the H0 pseudoexperiments (red falling hatched histogram). This indicates that the

H0 hypotheses is expected to be accepted, even though this is not the desired outcome

and illustrates an insensitivity of the model-independent approach to broad resonances.

When the width is cut in half (102.5 MeV; magenta histogram), the distribution of the
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pseudo-experiments starts separating from the H0 hypothesis, but there is still substan-

tial overlap. Thus the H0 hypothesis would only be rejected occasionally. When the

width is reduced by another factor of two (51.2 MeV; green histogram) a full separation

develops. Thus, in this cases the H0 hypothesis can always be expected to be rejected. A

comparison of these figures with those shown in Fig. 88 reflects the unsurprising depen-

dence of the sensitivity of the method to the production rate of the resonance. Despite

the Pc(4450) state having a width of 39 MeV, the separation from H0 of the amplitude

model with both Pc(4380) and Pc(4450) included is worse than the separation obtained

when just the Pc(4380) state is included with a width of ∼ 50 MeV. This is because the

fit fraction for Pc(4450) is less than half of that for Pc(4380).
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Figure 89: Distribution of tχ2 (left) and tDLL (right) in pseudoexperiments generated from
an amplitude model with only the Pc(4380) (no Pc(4450)+) included, and taking widths
of the nominal 205 MeV (blue solid histogram), 102.5 MeV (magenta solid histogram),
and 51.2 MeV (green solid histogram). Also shown are the distributions from the H0

pseudoexperiments (red falling hatched).

The fact that the method is not at all sensitive to the nominal Pc(4380) state is
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an interesting one. It was already expected from visualizing the Legendre moments of

the individual Pc states (Fig. 80) that there would be little sensitivity to the broader

state. The reason for this effect comes from the one-to-one correspondence between

mJ/ψp and cos θΛ∗ values, which exists for a given mKp (Eq.82). From this it is seen that

a peak in the mJ/ψp mass distribution generates a peak in the cosine of the Λ∗ helicity

angle. The narrower the mJ/ψp peak, the sharper the peak in the cos θΛ∗ distribution.

Quickly changing structures in cos θΛ∗ then will result in larger contributions to higher

order Legendre moments. To summarize, broader resonances result in broader structures

in the cos θΛ∗ distribution, which leads to larger contributions to lower order Legendre

moments, which then get attributed to Λ∗ resonances.

In fact, it was already known from the amplitude model fits to the data without

both Pc states that the broad peaking attributed to Pc(4380) can also be approximately

described with Λ∗ resonances. This can be seen in the projections of the amplitude model

on mJ/ψp for events lying in the high mKp mass interval: mKp > 2 GeV. In Fig. 90, these

projections are shown for the extended Λ∗ model with no Pc states, a single Pc state,

and both Pc(4380) and Pc(4450). Even in the fits without the Pc(4380) state, the broad

structure is roughly reproduced. Of course, the significance of the Pc(4380) contribution in

the amplitude analysis is only partially related to this mKp-slice of the mJ/ψp distribution.

Much of it comes from the asymmetry in the cos θPc distribution produced in the mass

region of the Pc(4450) state through their interference, which shows up through the

whole mKp range. Indeed in the other mKp slices, the Λ∗ resonances fail to describe the

mJ/ψp distribution. The 2D model-independent approach is completely oblivious to such

interference effects. It would be naive to expect the 2D method, which allows for the

self-subtraction of exotic hadron components and also does not benefit from functional

forms imposed on resonant amplitudes, to be as sensitive as the 6D amplitude fits. As

noted already, the model independence comes at the expense of lower sensitivity.

The ability of F(mJ/ψp|H0) to reproduce the Pc(4380) structure can be seen by viewing

the mJ/ψp distribution in slices of mKp. This is shown in Fig. 91, where the data are

compared to F(mJ/ψp|H0) using the same intervals of mKp as were often used in the
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Figure 90: The distribution ofmJ/ψp (no efficiency-corrections or background-subtraction)
for the real data (black points with error bars) satisfying mKp > 2.0 GeV, and various
amplitude fit results superimposed. The results shown are: (a) the extended Λ∗ model
and no P+

c states, (b) only one P+
c state, and (c) two P+

c states (bottom). The total fits
are shown (red dots), as well as Pc(4450) (blue hatched) and Pc(4380) (magenta hatched)
when present Individual Λ∗ resonances are also shown.
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amplitude analysis. Also shown is F(mJ/ψp|H1). Again, the interesting slice is for mKp >

2 GeV, where the best Pc to Λ∗ yield ratio is found, and the Pc(4380) state structure

is seen most visibly. However, while there is a clear excess of the data in the Pc(4450)

region, it is seen that F(mJ/ψp|H0) describes the Pc(4380) region well. One can check

that this is the expected behavior, even when the Pc(4380) is guaranteed to be present in

the data, by showing the displays for a pseudoexperiment in which the pseudo-data has

been generated according to the default Λ∗ model with both the Pc(4380) and Pc(4450).

This is shown in Fig. 92, where again it is seen that F(mJ/ψp|H0) reproduces the Pc(4380)

region.

It is of course tempting to compare what has been shown here to the previous appli-

cation of this method, in which it was used to probe for the presence of the Z(4430)+

in B0 → ψ(2S)π+K− decays. In the LHCb publication [20] in particular, evidence

was found for the presence of the Z(4430)+. As its width has been determined to be

172 ± 13 +37
−34 MeV, this may at first seem to be at odds with the conclusion that there

is no sensitivity to Pc(4380), despite its comparable width. The conventional hadron

“background” is much different in B0 → ψ(2S)π+K− decays, however. As a result the

lmax(mKπ) filter was a factor of two tighter than the lmax(mKp) filter which could be

deployed in this analysis. This point is illustrated in Table 22. Unfortunately, the looser

filter is unavoidable in the present use-case. This is partly due to the fact that the kine-

matic threshold for the K−p decays studied here is 316 MeV above the Λ mass i.e. the

ground state of the Λ∗ system. This is significantly higher than for the K−π+ decays

studied in the Z(4430)+ analysis, where the threshold was only 139 MeV above the kaon

mass. Therefore, higher Λ excitations, which have higher spins, cover a larger fraction of

the available phase-space. Furthermore, because of the third quark in the baryon, which

contributes its spin to possible J values, higher J values are reached at lower excitation

energies. As a result of all of this, the B0 → ψ(2S)π+K− was able to be sensitive to

broader resonances.

To conclude this section, sensitivity studies of this model-independent method have

been performed for the first time. There are three effects which determine the overall
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Table 22: Comparison of lmax(m) filters used in the model independent analysis of B0 →
ψ(2S)K−π+ and this analysis of Λ0

b → J/ψK−p. The bottom row shows lmax values
averaged over the entire m range, using mass range fraction as a weight. On average, the
Λ0
b → J/ψK−p is a factor of 2 looser than the B0 → ψ(2S)K−π+ filter.

B0 → ψ(2S)K−π+ Λ0
b → J/ψK−p

m lmax range m lmax range
range value fraction range value fraction

633- 836 MeV 2 21.1% 1432-1640 3 19.0%
836-1000 MeV 3 17.1% 1640-1700 5 5.5%

1700-2050 7 32.0%
1000-1593 MeV 4 61.8% 2050-2524 9 43.4%

average lmax 3.4 average lmax 7.0

sensitivity. One very important effect, for which the main study was done, is the width

of the exotic resonance. It was demonstrated here that there is no sensitivity to the

Pc(4380), with its particular parameters determined from the amplitude analysis. Also

important is the overall rate which the exotic contribution contributes, as was evidenced

by the difference in separation between the pseudoexperiments based on the default

amplitude model, and the pseudoexperiments in which the Pc(4380) was given a width

comparable to the Pc(4450). It is of course not surprising that larger decay rates lead to

better sensitivity. Finally, the comparison to the previous application, in which B0 →

ψ(2S)π+K− decays were studied, highlighted the importance of the spin-mass relation

for conventional hadrons present in the data.
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Figure 91: Efficiency-corrected and background-subtracted mJ/ψp distribution of the data
(black points with error bars), with F(mJ/ψp|H0) (solid blue line) and P(mJ/ψp|H1)
(dashed black line) superimposed, shown for different ranges of mKp: (a) mKp <
1.55 GeV, (b) 1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, and (d)
mKp > 2.0 GeV.
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Figure 92: Efficiency-corrected and background-subtracted mJ/ψp distribution of the
pseudo-data set (black points with error bars), generated according to the default
amplitude model, with F(mJ/ψp|H0) (solid blue line) and P(mJ/ψp|H1) (dashed black
line) superimposed, shown for different ranges of mKp: (a) mKp < 1.55 GeV, (b)
1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, and (d) mKp > 2.0 GeV.
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22 Compatibility of H0 with the data

In this section, the values of the test variables obtained from the data, tdata
χ2 and tdata

DLL,

are turned into p-values for the H0 hypothesis. The histogram of the tχ2 values for many

pseudoexperiments generated under the H0 hypothesis is shown again in Fig. 93, for both

log and linear scale, where it is compared to the value obtained on the data, tdata
χ2 = 120.5.

For a true χ2 distribution, one expects RMS =
√

2 < χ2 >. The tχ2 value averaged over

all pseudo-experiments is < tχ2 >= 48.2±0.1. The RMS of the distribution is 10.1±0.1,

which agrees well with
√

2 < tχ2 > = 9.8. In fact, the simulated tχ2 distribution is well

described with a nominal χ2 distribution having ndf = 48.1± 0.1, as determined by the

fit shown with the solid red line. As a measure of fit quality, the χ2/ndf of the fit is

82.1/73, corresponding to a p−value for the fit of 21.7%. To determine a p−value of

the H0 hypothesis, the fitted ndf was rounded up (to be conservative), and the nominal

P(χ2|ndf = 49) distribution was taken as an approximation of Ft(tχ2|H0). Using the

measured tdata
χ2 value, this yields pdata = 5.8 · 10−8. The equivalent standard deviation in

the Gaussian distribution is calculated via20

nσ(pdata) =
√

2 erfc−1(2pdata) . (108)

as 5.3σ. Thus, using the tχ2 test variable, the H0 hypothesis can be rejected at 5.3

standard deviations.

The histogram of the tDLL values obtained over many pseudoexperiments generated

under the H0 hypothesis is shown in log and linear scale in Fig. 94. The value obtained

on the real data, tdata
DLL = 144.7, is marked by the vertical black line. Originally a Gaussian

function was used to fit to the distribution, for use as an approximation for F(tDLL|H0).

However, an increasingly high number of pseudoexperiments performed allowed for the

20This is using the convention in which pdata = 0.5 corresponds to 0σ and is valid for pdata < 0.5. For
pdata > 0.5, nσ(pdata) =

√
2 erfc−1(2 × (1 − pdata)) would need to be used. This is a more conservative

definition of nσ(pdata) than was used in the amplitude analysis (Sec. 12), where 0σ was defined to
correspond to pdata = 1.0. The difference in the conventions was motivated by the fact that in the
amplitude fits the null hypothesis was exactly nested in the alternative hypothesis, as reflected by the
∆(−2 lnL) ≥ 0 constraint. Meanwhile here H0 and H1 are only approximately nested, as evidenced by
the possibility of tDLL reaching negative values (this is because the free parameters of these hypotheses
are not obtained by minimizing the corresponding negative log-likelihoods).
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Figure 93: Distribution of tχ2 in the H0 pseudoexperiments (red histogram) in log (left)
and linear (right) scale compared to the value obtained in the data (vertical black bar).
The distribution is fitted with and well described by a χ2 distribution (solid red line).

development of a slightly observable asymmetry in the distribution. As a result, it is not

described well in the higher end by a Gaussian function. Thus the distribution is instead

fit with a bifurcated Gaussian distribution,

P(tDLL|σl, σr, tDLL0) =
2√

2π(σl + σr)
× e

−
(tDLL−tDLL0

)2

2σ2
i , σi =


σl tDLL ≤ tDLL0

σr tDLL > tDLL0 .

(109)

The fit is also shown in Fig. 94 by the solid red line. The distribution is well-described by

the bifurcated Gaussian, and the fit has a χ2/ndf of 87.1/82, corresponding to a p−value

for the fit of 33.0%. The obtained bifurcated Gaussian parameters are tDLL0 = 18.9±0.2,

a left width of σl = 9.6± 0.1, and a right width of σr = 12.4± 0.2. The p−value for the

data is determined through integration of F(tDLL|σl, σr, tDLL0) in the region beyond tdata
DLL.

This integral from tdata
DLL to∞ can be calculated with the help of the complementary error

function as

I(tdata
DLL) =

σr
σl + σr

erfc

(
tdata
DLL

σr
√

2

)
(110)

The p−value is found to be pdata = 2.3 · 10−24. The equivalent standard deviation in the

normal Gaussian distribution is 10.1σ. This value is not much lower than the 11.3σ one

would obtain using the normal Gaussian distribution to fit the pseudoexperiment distri-

bution. To estimate the importance of the statistical uncertainty of the fit parameters in

calculating the significance, tDLL0 and σr were shifted up by one unit of its statistical error,
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while σl was shifted down by one unit of its statistical error. The resulting significance is

10.0σ, indicating the effect from the statistical uncertainty of the fit parameters is very

small. The significances obtained with the tDLL test variable can formally be interpreted

as the significance of the higher order (lmax(mKp) ≤ l ≤ 31) moments of the Λ∗ helicity

angle distributions. As these are beyond what can be generated via Λ0
b → J/ψΛ∗ decays,

the hypothesis that the data can be described with the Λ0
b → J/ψΛ∗ decays alone is ruled

out at 10.1σ level.
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Figure 94: Distribution of tDLL in the H0 pseudoexperiments (red histogram) in log (left)
and linear (right) scale compared to the value obtained in the data (vertical black bar).
The distribution is fitted with and well described by a bifurcated Gaussian distribution
(solid red line).

The data represents one instance of an “experiment”. Thus, one can ask how likely

it was to be able to reject the H0 hypothesis. For example, one can calculate the values

of tdata that would be necessary to achieve 3σ and 5σ levels of rejection by using the

fits to the H0 distributions shown in this section. If the default amplitude model with

both Pc states is assumed to be an accurate representation of the data, the distributions

shown in Sec. 21.1, can then be used to estimate the probability of obtaining a value

of tdata that is at least as large as the values necessary for 3σ and 5σ significances.

When using the tχ2 variable, rejections of at least 3σ (5σ) are expected for 91.3% (28.2%)

of the pseudoexperiments generated from this amplitude model. For the tDLL variable,

rejections of at least 3σ (5σ) are expected for 99.9% (93.0%) of the pseudoexperiments.

While it is known that the amplitude model doesn’t provide a perfect description of the

data, it is still reasonably good. Thus, this study shows it is not surprising that the H0
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hypothesis was rejected with both test variables.

It is also reasonable to ask why the tDLL variable has significantly better discriminat-

ing power than the tχ2 variable. One possibility is that there is an over-estimation of

errors used in calculating the tχ2 . However the dominant factor likely lies in the nature

of the more specific H1 hypothesis that H0 is tested against. In particular, the con-

struction of F(mKp, cos θΛ∗|H) is essentially a complicated smoothing procedure. Thus

F(mKp, cos θΛ∗ |H1) captures the essential physics, while removing noise from statistical

fluctuations. In fact, it can been seen in Appendix M that increasing llarge to higher values

results in diminished discriminatory power, presumably from inserting more statistical

noise into the test.
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23 Hypothesis testing with mJ/ψK

The evidence points towards the source of incompatibility with H0 coming from activity

in the J/ψp system. For instance, the Dalitz planes shown in Sec. 4.2 indicated that

structures seen in the J/ψK− system were reflections from the J/ψp system. This was

also supported by the amplitude analysis, in which the default amplitude model was

seen to reproduce the mJ/ψK distribution reasonably well (Fig. 54). Nevertheless, it is

worth repeating the model-independent analysis with the mJ/ψK distribution in order to

compare the results to those obtained with the mJ/ψp distribution.

The procedure is carried out just as in the nominal analysis. The same F(mKp, cos θΛ∗|H0)

function is used, except it is projected on mJ/ψK . The mJ/ψK ↔ cos θΛ∗ correspondence

for a given mKp can be seen with the J/ψK− version of Eq. 82:

m2
J/ψK = m2

J/ψ +m2
K + 2

(
EJ/ψEK + pJ/ψpK cos θΛ∗

)
, (111)

where the momenta

p2
J/ψ = E2

J/ψ −m2
J/ψ ,

p2
K = E2

K −m2
K ,

and the energies

EJ/ψ = (m2
Λ0
b
−m2

J/ψ −m2
Kp)/(2mKp),

EK = (m2
Kp +m2

K −m2
p)/(2mKp)

of J/ψ and K− are expressed in the K−p rest frame and cos θΛ∗ ≡ −p̂J/ψ · p̂K was used.

With this, the projection of F(mKp, cos θΛ∗|H0) onto mJ/ψK can proceed in the usual

manner. A total of 107 events are generated uniformly over the (mKp, cos θΛ∗) plane,

and their corresponding value of mJ/ψK is calculated. Each event then fills a histogram

of mJ/ψK with F(mKp, cos θΛ∗|H0) as its weight. To achieve continuous F(mJ/ψK |H0)
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distributions, quadratic splines are used to interpolate between nearby mJ/ψK bins of the

histogram. The efficiency-corrected and background-subtracted mJ/ψK distribution of the

data is shown along with F(mJ/ψK |H0) (and F(mJ/ψK |H1)) in Fig. 95.
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Figure 95: Efficiency-corrected and background-subtracted mJ/ψK distribution of the data
(black points with error bars), with F(mJ/ψK |H0) (solid blue line) and F(mJ/ψK |H1)
(dashed black line) superimposed.

The data shows a clear disagreement with F(mJ/ψK |H0) in the higher mJ/ψK regions.

This is expected, because Pc resonances will reflect into this distribution, as previously

mentioned. However reflections will be more smeared out, and less localized than in the

system in which they peak. Thus a discrepancy is expected, though it should be weaker

than in the system the suspected reflections are coming from. In order to quantify the level

of discrepancy, pseudoexperiments are again necessary. The hypothesis testing procedure
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is thus repeated for these displays, with the analogously defined test variables.

tχ2 =

nbins∑
k=1

(
ck −F(mJ/ψK

k|H0)

σ(ck)

)2

,

ck = ∆Nk/∆mJ/ψK =

ncand
k∑

i

wi/εi,

σ(ck) =

√√√√ncand
k∑

i

(wi/εi)
2

(112)

where ck is the kth bin content of the directly obtained efficiency-corrected and background-

subtracted mJ/ψK distribution, mJ/ψK
k is the bin center, ncand

k is the number of events

contributing to this bin, and nbins is the number of bins. And tDLL becomes

tDLL = ∆(−2 logL) = −2

nsig
cand+nside

cand∑
i

wi log

(
F(mJ/ψK i|H0)/IH0

F(mJ/ψK i|H1)/IH1

)
. (113)

The pseudoexperiments are also simulated just as before. The histogram of the tχ2

values obtained from the pseudoexperiments are shown in Fig. 96 along with the result

from the data, tdata
χ2 = 98.6. The fit of the histogram with a χ2 distribution returns

ndf = 49.1 ± 0.1. Rounding up, the nominal P(χ2|ndf = 50) distribution is used to

calculate a p−value. The corresponding result in Gaussian standard deviations is a

3.9σ rejection of the H0 hypothesis. The distribution of tDLL values obtained from the

pseudoexperiments is shown in the histogram in Fig. 97 along with the result from the

data, tdata
DLL = 90.1. The fit with a bifurcated Gaussian gives tDLL0 = 17.8 ± 0.3, a left

width of σl = 10.3±0.1, and a right width of σr = 13.5±0.2. The bifurcated Gaussian is

then used to approximate F(tDLL|H0), and the p-value calculated. The result in Gaussian

standard deviations is a 5.3σ rejection of the H0 hypothesis.

Thus in both tests fairly significant rejections of the H0 hypothesis are obtained.

However, they are substantially weaker than the rejections obtained when using the

mJ/ψp distributions to perform the hypothesis testing. Again, this is in accordance with

expectations of the discrepancies between F(mJ/ψK |H0) and the data being a result of

activity in the J/ψp system. This adds to the model-dependent evidence obtained from
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Figure 96: Distribution of tχ2 calculated on the mJ/ψK distribution in the H0 pseudo-
experiments (red histogram) in log (left) and linear (right) scale compared to the value
obtained in the data (vertical black bar). The distribution is fitted with and well described
by a χ2 distribution (solid red line).
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Figure 97: Distribution of tDLL calculated on the mJ/ψK distribution in the H0 pseudo-
experiments (red histogram) in log (left) and linear (right) scale compared to the value
obtained in the data (vertical black bar). The distribution is fitted with and well described
by a bifurcated Gaussian distribution (solid red line).

the amplitude analysis that discrepancies from a Λ∗ only model come from activity in

the J/ψp system.
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24 Systematic checks

In this section, variations on the nominal method are performed in order to probe for

the size of possible systematic effects. For many of these, identical results to the nominal

method are not necessarily expected. Rather, the variations are performed in order to

check for consistency with expectations and to set possible lower bounds on the signifi-

cance of the rejection of the H0 hypothesis.

24.1 Background subtraction

Here systematic effects associated with the background subtraction are studied. The

background is subtracted in three variables throughout the analysis procedure: mKp, cos θΛ∗ ,

andmJ/ψp. This subtraction is nominally performed using the Λ0
b sidebands. This assumes

that the backgrounds in the signal region can be accurately represented by the events in

the sidebands. The efficiency-corrected distributions of the three variables are checked

for consistency between the left and right sidebands in Fig. 98. The left sideband con-

tains 5661 events while the right side band contains 4598, and they are normalized to each

other in the figure. There is a fair amount of disagreement between them, and the χ2/ndf

values are are 68.4/(40− 1), 135.5/(100− 1), and 99.9/(54− 1) for the mKp, cos θΛ∗ ,and

mJ/ψp distributions, respectively.

Ideally, the background in the signal region can accurately be represented by a mix-

ture of the left and right sidebands, and is well described by their combined distribution.

However, to probe for systematic uncertainties associated with this, the data are reana-

lyzed with the background subtraction being performed using either only the left or the

right sideband. The efficiency-corrected and background-subtracted mJ/ψp distributions

of the data obtained from using the individual sidebands for the background subtraction

are shown in Fig. 99 along with the obtained F(mJ/ψp|H0,1) PDF ’s. Note that the PDF ’s

probe the background subtraction in mKp and cos θΛ∗ . There are no significant visual

differences between the mJ/ψp distributions obtained from the data, or F(mJ/ψp|H0,1).

These distributions can be also compared to the nominal display in Fig. 84, where both
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Figure 98: The efficiency-corrected distributions of the variables mKp, cos θΛ∗ ,mJ/ψp in
the left (red) and right (blue) sidebands separately. The distributions are normalized to
each other.

sidebands are used, and no significant differences are seen.

The hypothesis testing is also repeated, for cases in which the backgrounds are mod-

eled using either the left or the right sideband. Pseudoexperiments are performed in the

same manner as the nominal method, but with background events shaped according to

the background parametrization built from either the left or the right sideband. The

results of the significances obtained with both test variables are listed in Table 23. From

these tests it is concluded that the background subtraction systematics are small, which

is not surprising given that the background fraction in the signal region is only β = 5.4%.

As an additional cross-check, the analysis is repeated using the sPlot technique to sub-

tract the background. In this method, the full mJ/ψpK distribution is passed through the

analysis chain, rather than just the signal range (see Fig 30). The events are weighted, as
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Figure 99: Results for when only the lower (left) or upper (right) mass sidebands of the Λ0
b

peak are used for the background-subtraction. The efficiency-corrected and background-
subtracted distribution of mJ/ψp for the data (black points with error bars), compared
with P(mJ/ψp|H0) (solid blue line) and P(mJ/ψp|H1) (dashed black line). These should be
compared to each other and to the nominal distribution obtained using both sidebands
together, shown in Fig. 84.

Table 23: Significances obtained in Gaussian standard deviations when only lower or
upper Λ0

b mass sidebands are used to model the backgrounds.

Sideband tχ2 tDLL

Lower 5.2 9.8
Upper 5.3 10.5

in Sec. 6.3. The weights then are used as the wi weights used for background-subtraction

in making the mKp (Eq. 96) and mJ/ψp (Eq. 99) histograms, determining the Legen-

dre moments (Eq. 97), and in the calculation of the tχ2 (Eq. 100) and tDLL (Eq. 106)

test variables. Shown in Fig. 100 is the mJ/ψp distribution of the data, along with the

F(mJ/ψp|H0,1) distributions. Again, there are no large changes observed as compared to

the nominal result Fig. 84.

The hypothesis testing was repeated using the sPlot background subtraction tech-

nique. The sPlot procedure used in the amplitude analysis is quite intricate (Sec. 6.3),

and performing statistical simulations for it would be overly complicated to implement.

As an alternative, a simple sPlot procedure is used for the statistical simulations, in which

the overall weights are assigned from a single global fit to the mJ/ψpK distribution. This

then neglects any dependence of the mJ/ψpK mass resolution on cos θΛ0
b

and cos θJ/ψ , which

anyway only enter the analysis through the efficiency correction. The signal events are

generated as described previously for the nominal procedure, and the background events

are also generated as in the nominal procedure, i.e. with the background parametrization
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Figure 100: Results when the sPlot technique is used for background subtraction. The
efficiency-corrected and background-subtracted distribution of mJ/ψp for the data (black
points with error bars), compared with P(mJ/ψp|H0) (solid blue line) and P(mJ/ψp|H1)
(dashed black line). The figure should be compared to the nominal distribution obtained
using sideband subtraction, shown in Fig. 84.

built from the sidebands. The sPlot procedure also requires that a value of mJ/ψpK is also

generated. This is done according to the one-dimensional signal and background PDF ’s

obtained from the fit to the mJ/ψpK distribution of the data, as was described in Sec. 4.2.

The simulated mJ/ψpK distribution is then fit in the same way, and the fit results are used

to set the sWeights for the given pseudoexperiment.

As usual, many pseudoexperiments were then ran in order to get a handle on the

distributions of the test variables under the H0 hypothesis. The tχ2 test variable yields

a 5.7σ rejection of the H0 hypothesis, in comparison to the 5.3σ obtained using the

nominal procedure The tDLL test variable yields a a 10.4σ rejection, as compared to the

nominal value of 10.1σ. Thus performing the background subtraction with the sPlot

technique gives slightly stronger rejections than are obtained with the nominal method.

A larger rejection is at least partially due to the increased size of the event sample passed

through the analysis chain (i.e. events in between the sidebands and the signal regions

are now included). There are also increased statistics of background events used, which
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would lead to less fluctuations in the background subtraction.
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24.2 Simulations of efficiency corrections

As noted in Sec. 20.5, there is also a systematic uncertainty associated with how the

other decay angles Ωa = (cos θΛ0
b
, cos θJ/ψ , φK , φµ), which only enter the analysis via

the efficiency correction, are generated in the pseudoexperiments. In particular, in the

pseudoexperiments they are only shaped by the efficiency parametrization, whereas in

the real data they are shaped by both the decay dynamics and efficiency effects. While

the dominant factor in their shaping is the efficiency, different shapes or correlations in

these variables between the real signal data and signal data in the pseudo-experiments

could result in different statistical sampling of the 6D phase space. When averaged over

many pseudoexperiments, this does not affect the average values of the quantities used

in the hypothesis testing: the bin contents in the histograms of mKp and mJ/ψp, and

the Legendre moments. However, the size of fluctuations in these quantities in each

pseudoexperiment are affected. The size of statistical fluctuations is what finding the

distribution of the test variables over many pseudoexperiments is concerned with. Thus,

there is a potential bias induced in these distributions, which in turn affects the p−value of

the test variables obtained for the H0 hypothesis. It should be stressed that just ignoring

the efficiency dependence on these angles and parameterizing the efficiency on the Dalitz

plane only makes the systematics worse, as in that case not only the fluctuations are

mismodeled, but also the average values of simulated histogram contents and Legendre

moments.

It is worth noting that this effect can already be seen to be small, due to the simi-

larity of the test variable distributions of H0 pseudoexperiments and pseudoexperiments

generated with the extended Λ∗ amplitude model, which was shown in Sec.21. In the

latter pseudoexperiments, the Ωa variables were shaped by the decay dynamics, and no

substantial difference was seen from the H0 pseudoexperiments. However, in order to

more directly estimate the size of such systematic effects, pseudoexperiments are per-

formed in which the Ωa variables of the signal events are shaped by an amplitude model.

In particular, the full events are generated according to the extended Λ∗ model. No Pc

contributions were included, in order to keep with the philosophy of this analysis, i.e. that
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only Λ∗ resonances are present in the data. This more realistically shapes the non-Dalitz

angular variables, including correlations among them. As the (mKp, cos θΛ∗) plane is to

be shaped by F(mKp, cos θΛ∗|H0), it first needs the shaping from the amplitude model to

be undone. This is done by forming a 2D, binned representation of the distribution of the

extended Λ∗ model over the (mKp, cos θΛ∗) plane. With this, event weights determined

by the (mKp, cos θΛ∗) value can be applied such that the 2D distribution is flattened. The

shaping from F(mKp, cos θΛ∗|H0) weights can then be carried out in the usual way. The

flattening and re-shaping procedure results in the correlations between the (mKp, cos θΛ∗)

plane and the Ωa variables being lost. However this procedure still results in a better

representation of the 1D distributions of Ωa, as well as their correlations with each other.

The pseudoexperiments were performed to obtain the distributions of Ft(tχ2|H0) and

Ft(tDLL|H0). Using the values obtained on the data, rejections of the H0 hypothesis are

obtained with the tχ2 and tDLL variables at 5.3σ and 9.9σ, respectively. Thus there was no

change for tχ2 , and the results change for tDLL only modestly (∼ 2%). In the Appendix K,

results are also shown in which the distributions of test variables are obtained with the

extended Λ∗ model. This test against only one specific Λ∗ model, but does take all

correlations between kinematic variables into account. The conclusions obtained are

the same, i.e. this systematic effect is very small. While the studies presented in this

section and in Appendix K do result in pseudoexperiments with angular distributions

more representative of what is actually in the data, it would not be appropriate to make

either a default approach. Doing so would result in an explicit dependence of the results

on a model-dependent amplitude analysis, which is completely against the goal of this

analysis method. Thus these studies are only used to assess a systematic uncertainty

from this effect.
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24.3 Looser BDT cut

In this section the analysis is performed with the data set obtained from the looser BDT

cut which was used as a cross-check in the amplitude analysis (Sec. 14.4). In particular,

the nominal BDT cut is loosened from > 0.9, to > 0.5. For more details on the BDT

variable and training, see Appendix C. This increases the background fraction (β) by

a factor of 2, while increasing the signal yield by 14%. Thus this test probes both the

efficiency parametrization and background subtraction. Since the background remains

relatively small (∼ 10%), a slightly improved statistical sensitivity is expected. Shown

in Fig. 101 is the efficiency-corrected and background-subtracted mJ/ψp distribution of

the data obtained with this cut, along with the obtained F(mJ/ψp|H0,1) distributions.

Clearly, there is still a large excess of the data over the F(mJ/ψp|H0) distribution in the

Pc region.
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Figure 101: Results when a looser BDT cut is used. The efficiency-corrected and
background-subtracted distribution of mJ/ψp for the data (black points with error bars),
compared with P(mJ/ψp|H0) (solid blue line) and P(mJ/ψp|H1) (dashed black line).

Statistical simulations are performed in order to quantify the H0 rejection levels in

the same way as described for the nominal results. The tχ2 test variable results in a
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6.7σ rejection of H0 (vs. 5.3σ in the nominal cut). The tDLL test variable gives an 11.1σ

rejection of H0 (vs. 10.1σ in the nominal cut). Both test variables give a larger significance

than those obtained with the default BDT cut, which is consistent with the expectations

of higher sensitivity.

24.4 Summary of Systematic Effects

The significances for each of the studies performed in this section are shown for both test

variables in Table 24. For the sideband test, the weaker significance obtained from using

the lower sideband is listed. All systematic variations result in large significances for the

rejection of the H0 hypothesis, and are generally in line with what was expected.

Table 24: Significances obtained in Gaussian standard deviations for the various system-
atic studies performed.

Test tχ2 tDLL

Nominal 5.3 10.1
Sideband 5.2 9.8

sPlot 5.7 10.4
Simulations of efficiency corrections 5.3 9.9

Loose BDT 6.7 11.1
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25 Conclusions from model-independent study

Previously, it had been shown via an amplitude analysis that K−p contributions could not

produce the peaking structures found in the mJ/ψp distribution of Λ0
b → J/ψK−p decays.

This model-dependent study provided an abundance of evidence this was the case, but

still required making several assumptions about the Λ∗ “background”. In particular,

assumptions were made regarding the number of states and their quantum numbers,

lineshapes, masses, widths and interference patterns. As the spectroscopy of these K−p

resonances is poorly understood, the amplitude analysis was open to some criticism.

This model-independent analysis aimed to alleviate any worries about mismodeling of

K−p contributions, and what it could mean for the conclusion that they are unable to

describe the data by themselves.

The hypothesis that only Λ0
b → J/ψΛ∗, Λ∗ → Kp decays (Λ∗ could also be Σ∗ or

nonresonant components) contribute to the J/ψK−p final state was tested. This was

referred to as the H0 hypothesis, and it contained only mild model assumptions pertain-

ing to the masses at which certain spins appear. It was found that the H0 hypothesis

was not compatible with the observed mJ/ψp distribution of the data. After systematic

uncertainty studies, it is reported that the H0 hypothesis can be rejected at > 9σ from

a log likelihood ratio test, and > 5σ from a simple χ2 test. Repeating the analysis, but

probing compatibility with the mJ/ψK distribution of the data, lower rejections levels were

obtained. This gives a model-independent hint from the data that J/ψp contributions

are more significant than J/ψK− contributions (if any). Tests studying the sensitivity

of this method on the narrowness of exotic resonances were also performed for the first

time.

It should be stressed, that the values quoted here are not to be thought of as the

significances of any particular pentaquark candidate, as the hypotheses tested in the

model-independent approach make no assumptions about any exotic states decaying to

J/ψp (or J/ψK−). Evidence that the failure of the Λ∗ resonances to describe the data

has something to do with a Pc contributions is based on a qualitative inspection of

Fig. 84. To turn such an inspection into a probabilistic statement for a given mass
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range, a deterministic peak-search algorithm would need to be developed with its own

discrimination variable, which would then need to be statistically simulated. This is

impossible to implement rigorously as the shape of any exotic state can be affected by

interferences with other components, and thus is not universal. Still, to conclude, it has

been shown via model-independent methods that the hypothesis that the data contains

only K−p contributions can be rejected with high significance. The analysis requires only

minimal assumptions on the mass and spin of the K−p contributions; no assumptions on

their number, their resonant or nonresonant nature, or their lineshapes have been made.

Non-K−p contributions, which must be present in the data, can be either of the exotic

hadron type, or due to rescattering effects among ordinary hadrons. This result supports

the amplitude model-dependent observation of the J/ψp resonances presented in the first

part of this thesis.
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26 Discussion

The observation of the Pc(4380) and Pc(4450) pentaquark candidates presented in this

thesis has revitalized interest in pentaquarks. There has been much discussion in the

theoretical community about the nature of these states and possible methods for internal

binding of the five quarks. It is beyond the scope of this dissertation to give a full summary

of the large number of publications which have already been released on this topic. Instead

a brief overview of the more popular interpretations of the candidates will be given. For

more detailed reviews of the models and interpretations, see Refs. [66,67]. Each of these

models has difficulties, and so this section will be concluded with a discussion of the

outlook on what to look forward to in order to elucidate the nature of these states. Note

that, while the preferred quantum numbers of the default Λ∗ model will be taken as being

correct in this discussion, they may change as better representations of the Λ∗ component

are found.

26.1 Theoretical Models

A leading interpretation of the Pc(4380) and Pc(4450) pentaquark candidates is that

they are baryon-meson molecules, loosely bound by pseudoscalar meson exchange [68–77].

Molecular models have already been employed to describe exotic meson candidates, and

appear to be reasonable explanations for several of them. See Ref. [68] for a discussion of

the application of the molecular model to several tetraquark candidates. Inspiration for

these interpretations generally comes from the proposed exotic hadron lying right at the

threshold of the two hadrons comprising the molecule. The binding energy is not expected

to be large, and so the mass of the molecule is expected to be close to the threshold. Due

to this, it is expected that these bound states occur only for a ground state i.e. are in

an S-wave configuration (no orbital angular momentum between the two hadrons) and

with no radial excitation. Radial or orbital excitations would push the energy of the

constituent hadrons above the shallow potential well between them. Nearby thresholds

for each of the Pc states are listed in Table 25. The possible quantum numbers for each
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of these molecular hypotheses are set, due to the assumption that the constituents are

combined in an S-wave. These are also listed in Table 25. It should be noted, however,

that depending on the exact model of inter-hadron forces, not all of these combination

are expected to create a bound state. For example, constituent hadrons must have a

non-zero isospin to couple via pion exchange, which excludes molecules with charmonium

as a constituent. For Pc(4380), a Σc(2520)+D̄0 molecule appears to be a viable candidate;

however the molecular model has difficulty accounting for its rather large width, as will be

explained later. For Pc(4450), which is suitably narrow for molecular interpretations, none

of the possible combinations have spin J = 5/2. Indeed, to create an S-wave molecule

with spin J = 5/2, the mass would likely be well over that of Pc(4450). The most

reasonable quantum numbers that the molecular model is able to provide for Pc(4450)

are 3/2− and 3/2+, from Σc(2455)+D̄∗0 [68] and χc1p molecules, respectively. The only

opposite parity combination then is (3/2−,3/2+), which did not fare well using either the

default Λ∗ model or the extended Λ∗ model. Thus it does not appear that both Pc states

can fit into the molecular model, with Pc(4380) appearing to be the weaker molecular

candidate of the two of them.

Table 25: Pc states and nearby baron-meson thresholds.

Measured Pc(4380) Pc(4450)

Mass 4380± 8± 29 MeV 4449.8± 1.7± 2.2 MeV
Width 205± 18± 87 MeV 39± 5± 16 MeV

Nearby Threshold Pc(4380) Pc(4450) S-wave JP

Σc(2520)+D̄0 4382.3± 2.4 3/2−

χc1p 4448.93± 0.07 1/2+, 3/2+

Λc(2595)D̄0 4457.09± 0.35 1/2+

Σc(2455)+D̄∗0 4459.9± 0.5 1/2−, 3/2−

Σc(2455)+D̄0π0 4452.7± 0.5 1/2+

Another popular interpretion employs other colored objects to construct the pen-

taquark candidates, e.g. antiquark-diquark-diquark [78–83] and diquark-triquark config-

urations [84, 85]. The former are constructed as the c antiquark grouped with (cu) and

(ud) diquarks, and the latter as a (cu) diquark paired with a c(ud) triquark. Such col-

ored objects represent spatial correlations between groups of the constituent quarks of

hadrons, and have been employed in the past as part of models for conventional baryons
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as well as tetraquark candidates. Each of these colored objects would be in the same color

confinement volume and feel the color force of the others. Since the confinement volume

cannot be much larger than about 1 fm, pentaquarks constructed with this picture are

generally tightly bound resonances, though Ref. [84] offers a picture in which a diquark

and triquark are rapidly separating. Pentaquark candidates of various JP quantum num-

bers can be obtained by realignments of the constituent spins or increasing their orbital

angular momentum. The mass can also be easily shifted up by allowing radial excitations.

Thus there is more flexibility in predicting whether tightly bound pentaquark resonances

with certain quantum numbers might be present at the Pc masses, and this typically

involves some sort of phenomonological model of color forces at confining distances. In

particular, a pair of (3/2, 5/2) states of opposite parity can be accommodated by chang-

ing orbital angular momentum between quarks by one unit. Such models consider the

proximity of the Pc states to the baryon-meson thresholds as coincidence. These models

have difficulty explaining the narrow width of the Pc(4450), as discussed next.

An important feature of Pc(4450) to consider is its small width of 39 MeV, despite

lying several hundred MeV above the J/ψp threshold. The width of a state depends on

the product of the matrix element for the decay and the amount of phase space available.

This seems to indicate that Pc(4450) has an internal structure which works to suppresses

the matrix element for a rearrangment of quarks into J/ψ plus p configuration. Molecular

models, in which c and c are separated into two constituent hadrons (i.e. into a charm

baryon and a charm meson) provide a natural mechanism for such a suppression; the

average distance between the hadrons can be larger than the color confinement volume,

and thus much larger than the J/ψ size. The separation between the c and c inside

a tightly bound pentaquark is necessarily much smaller, making their recombination

into J/ψ more likely. On the other hand, this would make the large Pc(4380) width

difficult to accommodate in the molecular model, and the tightly bound models would

be more suitable interpretations if it is a true resonance. It should also be noted that the

explanation of the pentaquarks in terms of a confined, yet rapidly separating, uc diquark

and c(ud) pair does not have this difficulty [84]. In this model, the energy release in the
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production (Λ0
b → PcK) is hypothesized to lead to the rapid separation. Such a picture

offers a suggestion on how the rearrangement of quarks into J/ψp could be suppressed.

Another group of interpretations attribute the structures as not being due to bound

states, but scattering effects between virtual hadrons [86–89]. Like the molecular picture,

these are inspired by the nearness of the structures to meson-baryon thresholds. The

proposed effects are a result of the rescattering of conventional hadrons causing singular-

ities in the S-matrix, which manifest themselves as mass peaks in the system produced

via quark rearrangement in the hadron rescattering. Such models have also been pro-

posed in the past to account for other exotic hadron candidates. These models face a

similar difficulty as the molecular models in that they have troubles accomodating one

of the proposed Pc states having an effective J = 5/2, since only S-wave rescattering can

be significant. Nevertheless, P -wave couplings have still been assumed in two possible

scenarios: the decay Λ0
b → χc1K

−p with the rescattering of χc1p → J/ψp can lead to a

two-point singularity, and Λ0
b → χc1Λ(1890), Λ(1890) → K−p with the rescattering of

χc1p → J/ψp can lead to a triangle singularity [86]. A similar picture was also used in

Ref. [87]. Ref. [89] proposes the structure is a result of Λ0
b → Σ+

c D
∗−
s , D∗−s → D̄∗0K−

followed by ΣcD̄
∗0 → J/ψp. Ref. [88] employ a variety of rescatterings which result in

two-point or triangle singularities. The observability of these singularities has been in

discussion for a long time [90, 91], and thus if this hypothesis is true for one or both of

the observed structures, this would also be an interesting outcome [92].

26.2 Outlook

As discussed, each of the models presented has difficulties in describing both states. A

number of possible explanations exist. One is that the interpretation of the data is not

correct. It is certainly possible, for instance, that the most preferred quantum numbers

are incorrect. The results are already ambiguous in the default amplitude model, and

the fact that the preferences have significant changes when using the extended Λ∗ model

casts more uncertainty on the quantum number assignments. Another realistic scenario is

that the two states have different natures and internal bindings. There is no good reason,
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other than simplicity, why different interpretations can’t be given for the two candidates.

Towards the goal of understanding the nature of the results presented in this disser-

tation, there are a number of directions to look towards. It will be important to see

confirmation of these states in other experiments. Of particular interest would be seeing

them in different production methods. It has been suggested that they could be seen in

photoproduction [93–96]. If they were seen in this production mechanism, it would rule

out any interpretations in terms of rescaterring effects. Direct production in pp collisions

is another possibility, but backgrounds are large.

Further studies in the Λ0
b → J/ψK−p decay mode will also be useful. Resolving

ambiguities in the quantum numbers would greatly help in narrowing down possible

models. Hopefully this will be possible with increased statistics and a more sophisticated

handling of the Λ∗ model (e.g. going beyond the limitations of the Isobar approximation).

One could also look forward to more conclusive studies of the phase motion of the Pc(4380)

state. Many of the different proposed models predict other states which should be visible

in this channel. Better statistics and improved amplitude models would help in terms of

giving better sensitivity to these searches.

These states should also be looked for in other Λ0
b decays. Recently, evidence of exotic

contributions in Λ0
b → J/ψπ−p decays was published by LHCb [97]. If the Pc(4380) and

Pc(4450) are true resonant states, they should also be present in this decay channel.

As this decay is Cabibbo suppressed, the statistics are significantly less than in the

Λ0
b → J/ψp−K mode, and the backgrounds are also higher. With the present statistics it

was not possible to decisively determine if the exotic contributions were from Pc → J/ψp

contributions or from Zc → J/ψπ contributions. Such a Zc state was reported by Belle in

B̄0 → J/ψK−π+ decays [98]. It will be interesting to see what conclusions are reached

with more data. It should also be noted, however, that there has already been discussion

of a triangle singularity appearing in this channel near the Pc(4450) mass as well [92].

Also interesting would be to see Pc(4450) in other decays e.g. in Λ0
b → χc1K

−p, as this

would rule out some rescattering models [86], while observing a deficit at the Pc(4450)

mass in mχc1p would confirm them. The observation of the Pc states decaying to open
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charm pairs would be interesting. Searches for such decays would be useful in terms

of narrowing down models (see Table 3 of Ref [66]). Such decays have more tracks in

the final-state, though, and thus are much more difficult as they will suffer from lower

efficiency and higher backgrounds.

Finally, searches for other charmonium-pentaquarks, as well as bottomonium-pentaquarks

or bc-pentaquarks, will be avenues to watch. This is not to say that pentaquarks with only

light-flavored quarks should be ruled out. However, due to the history with tetraquark

searches, along with recent theoretical studies suggesting heavy quarks are important in

forming exotic hadrons [32–34], these certainly seem like the most promising searches.
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27 Conclusions

The observation of structures consistent with charmonium-pentaquark states decaying to

J/ψp in Λ0
b → J/ψK−p decays has been presented. A 6D amplitude analysis demonstrated

that good descriptions of the data can’t be achieved with only the known K−p resonances

in the amplitude model. For good fits of the data, it is necessary to have two J/ψp

resonances in the amplitude model. These new pentaquark candidates, Pc(4450) and

Pc(4380), each have significances of over 9 standard deviations. The mass and width of

Pc(4450) were found to be 4449.8± 1.7± 2.2 MeV and 39± 5± 16 MeV, respectively,

while the mass and width of Pc(4380) were found to be 4380±8±29 MeV and 205±18±

87 MeV, respectively. The JP assignments could not be uniquely determined, though

there is a preference for opposite parity states with spin 3/2 and spin 5/2. A model-

independent analysis confirmed that the data could not be described with only K−p

contributions at over 9 standard deviations, and that J/ψp contributions play a dominant

role in this incompatibility. This was done while making only minimal assumptions on the

mass and spin of the K−p contributions, and without making any assumptions on their

number, their resonant or nonresonant nature, their lineshapes, or interference patterns.

Non-K−p contributions, which must be present in the data, can be either of the exotic

hadron type, or due to rescattering effects among ordinary hadrons.

The studies in this dissertation have revitalized experimental and theoretical interest

in pentaquark resonances. There has already been a large amount of theoretical activity

attempting to explain these states, and it is going to take a large amount of experimental

effort to sort out the situation. The field of exotic hadrons is going to be quite exciting

in the coming years, and much will be learned about how quarks bind together. In the

meantime, these results have already provided much input towards understanding QCD,

and could also help with other strongly coupled theories.
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Appendices

A Effects of B0
s and B0 vetos

To check for contributions from B0
s → J/ψK−K+ and B0 → J/ψK−π+ decays, the

proton track is reassigned as either a kaon or a pion, and then either the mJ/ψK−K+ or

mJ/ψK−pi+ invariant mass is calculated. Both of these are shown for the data which has

passed the selection criteria in Fig. 102.
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Figure 102: (a) Invariant mass of J/ψK+K− combinations from Λ0
b → J/ψK−p candi-

dates where the p is interpreted as a K+. (b) Invariant mass of J/ψπ+K− combinations
from Λ0

b → J/ψK−p candidates where the p is interpreted as a π+. The vertical dashed
(red) lines indicates the vetoed events.

Clearly, there are substantial contributions from both sources. The decision was

made to remove the B0
s and B0 backgrounds, rather than attempt to parametrize them

somehow. This was done by vetoing the candidates which fall between the vertical red

dashed lines, effectively eliminating the pollution from these backgrounds. Naturally,

this procedure modifies the detection efficiencies. In Fig. 103 the effects of the vetos on

the efficiency across the Dalitz plane is shown. The scale is such that a value of unity

means that the vetos had no effect on the bin. One can see the vetos cause only fairly

smooth modifications to the Dalitz plane. There is also a small background from real

Λ0
b → J/ψK−p events where both the K− and p are misidentified. Using sidebands and

simulation this contribution is estimated to amount to be only 0.4% of all combinations,

and the decision was made to neglect this background.
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Figure 103: The reduction of efficiency across the Dalitz plane from the vetos, where
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B Monte Carlo weights

The weights which are given to MC events in order to more accurately represent the

behavior of the data are discussed in this section. These weights then affect the efficiency

parametrization and the integration of PDF ’s defined in Sec. 6. The overall weight

applied to each MC event is defined as

wMC = εp(p, η, nTracks) εK(p, η, nTracks)w(nTracks)wΛ0
b
(p, pT)wK(p)wp(p). (114)

Each term in the equation is obtained in sequence from left to right, in order to account

for correlations. The above is somewhat of a simplification, as portions of the procedure

are applied in an iterative manner, as described below.

In the first step, the first four terms are determined. The first term is to correct for

well-known deficiencies in the simulation’s modeling of particle identification efficiencies.

Thus, rather than just applying a selection cut and discarding events which do not pass

the criteria, it is common practice to instead use event weights obtained with data-

driven methods to replicate the action of performing such cuts. Thus, no explicit particle

identification cuts were applied to the p and K candidates when selecting the Monte Carlo

events. Instead, the εp and εK weights are used, which are obtained from high statistics

and high purity calibration samples of Λ0 → pπ+ and D0 → K−π+, respectively. The

efficiencies from these samples for the particular PID cuts used are parametrized in terms

of the proton’s or kaon’s momentum p, pseudorapidity η, or total number of long tracks

(nTracks) in the event. The weight w(nTracks) corrects for the remaining differences

between the data and MC for the dependence of the overall signal efficiency on nTracks.

It is obtained from the distribution of nTracks in the background-subtracted data divided

by that in the simulation. The term wΛ0
b
(p, pT) is due to an imperfect description of the

Λ0
b production kinematics in the simulation. It is obtained as the ratio of two-dimensional

(p, pT)Λ0
b

distributions between the data and simulation. To obtain the distribution, the

phase space signal sample must be modified to account for the decay kinematics in data.

Here the background-subtracted two-dimensional Dalitz-plot distribution from data is
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used.

The above terms are used for the initial weights. They are applied to the MC, and

an amplitude fit is then performed. The matrix element from the fitted amplitude model

is then applied as a weight to the MC set. Then the pK , pp and (p, pt)Λ0
b

distributions

from the weighted MC set are compared to the corresponding distributions in the data.

The pK and pp distributions for both the MC and data are shown in Fig. 104, where the

ratios between them are seen to be relatively uniform and have values near unity over a

large momentum range. In the regions below 10 GeV and above 100 GeV, where particle

identification is less reliable, the ratios are closer to 0.5. The ratios between the data and

the simulation for pK and pp are taken as wK(pK) and wp(pp).

It is somewhat surprising that the ratio of (p, pt)Λ0
b

between the data and MC varies

from 0.95 to 1.25, as shown in Fig. 105. In principle, it should be close to unity, as

the initial wΛ0
b
(p, pt) weight has already applied. The reason it changes is that the ini-

tial weight was obtained using the data’s two-dimensional Dalitz-plot distribution as an

“amplitude model”, while here the six-dimensional amplitude model has been used as

a weight. Therefore, wΛ0
b
(p, pt) is updated using this newer model. After applying this

new weight, the data and fit agreement on cos θΛ0
b

is largely improved as the cos θΛ0
b

distribution strongly depends on the distribution of (p, pt)Λ0
b

at production.
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Figure 104: Distribution of proton (left) and kaon (right) momentum (top) for the Λb →
J/ψpK candidates in the data (black points) and in the simulations (red points). The
ratio of these distributions (bottom) defines the wp(p) and wK(p) terms in the MC weight.
The background in the data is subtracted using sWeights.
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C BDT training

A Boosted Decision Tree (BDT) is used as a multivariate analyzer, taking input from

multiple variables and using them to attempt to classify an event as either signal or

background. It was constructed using the Toolkit for Multivariate Data Analysis (TMVA)

package [99], using the gradient boosting method. Hereafter it is referred to as BDTG,

to reflect the use of gradient boosting. The BDTG is “trained” to distinguish between

the signal and background events. The fully simulated MC data sample is used to model

the Λ0
b → J/ψK−p signal events. To model the background, events with invariant mass

mJ/ψKp lying in the interval of 150 to 250 MeV from the Λ0
b mass peak are used. The

samples for both the signal and background event types which remain after the selection

criteria are divided into two nearly equal parts. Half of the sample is used for the BDTG

training, and the other half is used to test the BDTG performance.

The variables used as input to the BDTG are listed below, with a brief explanation

and the name with which they are labeled Fig. 106, which shows their distribution in

both the signal and background sample.

• The minimum DLLπ(µ) of the µ+ and µ− (mmPIDmu).

• The minimum χ2
IP of either the K− or the p. The natural logarithm is taken in

order to reduce the range the variable takes [log(pmipCHI2)].

• The cosine of the angle between the Λ0
b momentum and the direction between its

PV and decay vertex [dira].

• χ2
IP(Λ0

b) [log(BCHI2)].

• Flight distance of the Λ0
b [FD].

• pT of the Λ0
b [BPT].

• χ2
vtx(Λ0

b) [LogBIPCHI2].

• pT sum of the K− and p [SumPT].
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Note that there is discrimination power between signal and background in all of these

variables, though several of them would be very weak if they were to be used by them-

selves. The distributions of the BDTG classifier response to the signal and background

performance test samples are shown in Fig. 107. Clearly, there is good separation between

the signal and background test samples, and the BDTG is much more powerful than any

of the individual variables.

In order to choose an optimal selection criteria for the BDTG output, different metrics

are often used which depend on the number of signal (S) and background (B) events.

Examples are S/
√
S +B, S/(S+B), and S2/(S+B)1.5. Figure 108 shows these different

metrics, where the numbers of signal and background events were determined by fitting

the mJ/ψKp distribution in the data for different values of the BDTG cut. Ultimately,

a cut of BDTG > 0.9 was used. This is a fairly agressive choice, but experience with

the multivariable fits in this analysis led to the conclusion that a better optimization was

found by rejecting more background. Less background will obviously lead to less concerns

about how it is modeled, and a large signal sample still remains after the tigher cut. In

order to estimate systematic effects which come with this cut, some studies are also

performed with a cut of BDTG > 0.5. Decreasing the BDTG requirement to be greater

than 0.5 increases the number of signal events by 13% and the number of background

events by 93%.

Note that the output of the BDTG can never be wrong, in the sense that it is ulti-

mately just a variable that uses information from multiple inputs to try to classify an

event as either signal or background. However the performance of the BDTG can cer-

tainly be poor if the distributions of the variables used in the training samples do not

correctly represent what is in the actual data. In Fig. 109, comparisons of the variables

used in the BDTG are shown between the background-subtracted data and the simulated

signal sample used to train the BDTG. The events in the simulation sample are weighted

using the modulus-squared of the matrix element from the default amplitude model, in

order to reflect the dynamics which are present in the data. It is seen that there is good

agreement between the training sample and the data.
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In the amplitude analysis, all independent kinematic variables in the decay are fitted.

(The fitting variables are all defined in Sec. 5. ) While any significant correlation of these

variables with the variables used in the BDTG is not inherently a problem, if the BDTG

significantly modifies one of these distributions it makes the analysis more susceptible to

mismodeling issues. The correlation of the BDTG variables with the fitted variables are

given in Table 26. Here the correlation coefficient is defined as

ρX,Y =
cov(X,Y)

σXσY ,
(115)

with cov(X,Y) being the covariance, and σi the standard deviation. The correlations are

small except for those of SumPT and LogmIPCHI2 with cos θΛ0
b
. The 2D histograms

of these combinations are shown in Fig. 110. The distributions are smooth and the

correlations are not a problem. Furthermore, one notes that the correlations of the fitted

variables with the BDTG output are all small.

Table 26: Correlations of the variables used in the BTDG and the BDTG output with
the six fitted variables.

mKp mJ/ψp cos θΛ0
b

cos θJ/ψ φK φµ
mmPIDmu -0.0102 0.0144 0.0410 -0.0063 0.0026 -0.0010
LogmIPCHI2 0.0300 -0.0034 -0.1567 -0.0017 0.0003 0.0008
DIRA -0.0181 -0.0079 0.0195 0.0038 -0.0023 0.0030
LogBCHI2 -0.0042 0.0030 0.0041 -0.0023 0.0026 -0.0006
FD -0.0203 -0.0206 -0.0064 0.0005 -0.0038 0.0013
BPT -0.0266 -0.0224 -0.0219 -0.0039 -0.0015 0.0013
LogBIPCHI2 0.0018 0.0025 0.0036 -0.0033 -0.0025 -0.0017
SumPT 0.037 -0.0243 0.3480 -0.0031 -0.0011 0.0003
BDTG 0.0346 -0.0212 0.0647 0.0009 -0.0046 0.0013
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Figure 106: Signal and background distributions of variables used in BDTG.
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D Results for extended model with both Pc states

It was shown in Sec. 10.1 that good descriptions of the data can be obtained with the

default (or “reduced”) Λ∗ model and the two Pc states: Pc(4380) and Pc(4450). The

preferred quantum numbers with the default Λ∗ model are JP (Pc(4380), Pc(4450)) =

(3/2−, 5/2+). The results for the fit performed with the extended Λ∗ model and two

Pc’s of the same quantum numbers are shown in this section. The mass, width, and fit

fraction of Pc(4380) with the extended Λ∗ model were found to be 4359 MeV, 151 MeV,

and 5.28, respectively, while the mass, width, and fit fraction of Pc(4450) were found to

be 4450.1 MeV, 49 MeV, and 4.41, respectively21. In Fig. 111, the projections of this

amplitude model on mKp and mJ/ψp are shown along with the data, where it is seen

good descriptions are obtained. The angular distributions are reasonably reproduced as

well, as shown in Fig. 112. Lastly, Fig. 113 shows the projection onto mJ/ψp in the usual

intervals of mKp.
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Figure 111: Fit projections of the extended Λ∗ model with two P+
c states onto the (a)

mKp and (b) mJ/ψp distributions. The data are shown as solid (black) squares, while the
solid (red) points show the results of the fit. The solid (red) histogram shows the back-
ground distribution. The (blue) open squares with the shaded histogram represent the
Pc(4450)+ state, and the shaded histogram topped with (purple) filled squares represents
the Pc(4380)+ state. Each Λ∗ component is also shown. The error bars on the points
showing the fit results are due to simulation statistics.

21While the fits with the extended model converged, they never converged with a positive-definite
error matrix. Thus it is not possible to give accurate statistical uncertainties. This is due to the number
of parameters, and is another important reason for needing to have a Λ∗ model with less parameters as
the default.
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Figure 112: Fit projections of the extended Λ∗ model with two P+
c states onto the decay

angular distributions. The data are shown as (black) squares, while the (red) circles show
the results of the fit. Each fit component is also shown. The angles are defined in Sec. 5.2.
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Figure 113: Fit projections of the extended Λ∗ model with two P+
c states onto mJ/ψp

for various intervals of mKp: (a) mKp < 1.55 GeV, (b) 1.55 < mKp < 1.70 GeV, (c)
1.70 < mKp < 2.00 GeV, an d (d) mKp > 2.00 GeV. The data are shown as (black)
squares with error bars, while the (red) circles show the results of the fit. The blue and
purple histograms show the two P+

c states. See Fig. 47 for the legend.
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E sFit Results

The fit results obtained with the sFit method (Sec. 6.3) are given here. The attempt to

fit the data with no Pc states is shown, followed by the attempts with a single Pc state.

Next the fit results are shown with the default Λ∗ model and two Pc states, and compared

to the results obtained with the default cFit method. For completeness, the results with

the extended Λ∗ model and two Pc states are then shown.

E.1 Extended model, no Pc states

As with the cFit method, attempts were first made to fit the data with the extended Λ∗

model and no Pc states. The projections onto mKp and mJ/ψp are shown in Fig. 114. As

was the case with the cFit method (Sec. 8.1), the mKp distribution is described well by

the fit, but the mJ/ψp distribution is described very poorly. Again, the Λ∗ states show

no ability to reproduce the peaking structure. The different angular distributions are
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Figure 114: (sFit) Results of the extended Λ∗ model for (a) mKp and (b) mJ/ψp. The
data are shown as (black) squares with error bars, while the open (red) circles show the
projection of the fit. The error bars on the points showing the fit results are due to
simulation statistics.

shown in Fig. 115. They also agree nicely with the data. The projections onto the mJ/ψp

distribution in various bins of mKp are shown in Fig. 116. As with cFit, there is an

inability to describe the data in the region of 4450 MeV throughout the range of mKp

values.
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Figure 115: (sFit) Results of the extended Λ∗ model for the different decay angular
distributions. The data are shown as (black) squares, while the open (red) circles show
the results of the fit. The angles are defined in Sec. 5.2.
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Figure 116: (sFit) Results of the extended Λ∗ for mJ/ψp in various intervals of mKp: (a)
mKp < 1.55 GeV, (b) 1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, and (d)
mKp > 2.00 GeV. The data are shown as (black) squares with error bars, while the open
(red) circles show the results of the fit.
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E.2 Extended model, one Pc state

Here the efforts are shown to fit the data with the extended Λ∗ model and a single Pc

state. Fits were performed with JP values of 1/2±, 3/2± and 5/2±. The best fit was

obtained with the 3/2+ state. Figure 117 shows the fit projections onto the mKp and

mJ/ψp distributions for the JP = 3/2+ best fit. Of course, the mKp distribution remains

well-described. As with the cFit method, the mJ/ψp description improves somewhat, but

the description of the data is still severly inadequate.
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Figure 117: (sFit) Results of the extended Λ∗ model with a JP = 3/2+ Pc for (a) mKp

and (b) mJ/ψp. The data are shown as (black) squares with error bars, while the open
(red) circles show the projection of the fit. The total Λ∗ contribution is shown with the
dashed grey line, and the Pc contribution with the dashed blue line. The error bars on
the points showing the fit results are due to simulation statistics.

The angular distributions are shown in Fig. 118. As usual, the fit is in good agreement

with the data. The mJ/ψp mass distribution is shown in various bins of mKp in Fig. 119.

The discrepancy between the fit and the peaking structures in mJ/ψp is much less than in

the fit without a Pc, though the 1.55 < mKp < 1.70 GeV interval is still poorly described.

Thus again, the behavior mirrors that seen with the cFit method.
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Figure 118: (sFit) Results of the extended Λ∗ model with a JP = 3/2+ Pc for the different
decay angular distributions. The data are shown as (black) squares, while the open (red)
circles show the results of the fit. The total Λ∗ contribution is shown with the dashed
grey line, and the Pc contribution with the dashed blue line. The angles are defined in
Sec. 5.2.
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Figure 119: (sFit) Results of the extended Λ∗ with a JP = 3/2+ Pc for mJ/ψp in various
intervals of mKp: (a) mKp < 1.55 GeV, (b) 1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp <
2.00 GeV, and (d) mKp > 2.00 GeV. The data are shown as (black) squares with error
bars, while the open (red) circles show the results of the fit. The total Λ∗ contribution is
shown with the dashed grey line, and the Pc contribution with the dashed blue line.
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E.3 Default model results

Clearly the same conclusion was also reached with sFit: the data can’t be described with

the extended Λ∗ model and a single Pc state. The fit results are shown in this section for

the default Λ∗ model with a 3/2− and a 5/2+ Pc state. Figure 120 shows the projections

onto both the mKp and mJ/ψp distributions. The angular distributions and the mJ/ψp
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Figure 120: (sFit) Results of the default Λ∗ and two Pc states with JP quantum numbers
of 3/2− and 5/2+ for (a) mKp and (b) mJ/ψp. The data are shown as (black) squares
with error bars, while the open (red) circles show the projection of the fit. The total
Λ∗ contribution is shown with the dashed grey line, and the total Pc contribution with
the dashed blue line. The error bars on the points showing the fit results are due to
simulation statistics.

mass distributions in bins of mKp are shown in Fig. 121 and Fig. 122, respectively. Good

agreement is seen with the data in all projections.

For Pc(4380) the fit returns a mass and width of 4375 ± 8 MeV and 194 ± 16 MeV,

respectively, while for Pc(4450) the mass and width were found to be 4448.8± 1.7 MeV

and 41± 5 MeV, respectively. These values are listed alongside those obtained with cFit

in Tab 27. Also given in the table is a comparison of the fit fractions for each of the

resonant components. Overall good agreement is seen in these as well.

The quantum number study was also done with sFit. Table 28 shows the changes in

−2 lnL and Pc parameters for the different opposite parity quantum number combina-

tions. In this case, the parity reversed (3/2+, 5/2−) is slightly preferred over (3/2−, 5/2+).

As there is not very good discrimination between quantum number hypotheses in the cFit

method or the sFit method, it is not surprising that there is some disagreement. There

is fairly good agreement though, in that the same trends are seen in which the spins 3/2

226



Table 27: Comparison of Pc parameters and fit fractions of the resonant components
which were obtained with cFit and sFit using the default Λ∗ model with the two Pc’s
having quantum numbers JP (Pc(4380), Pc(4450)) = (3/2−, 5/2+).

Particle cFit sFit
Mass ( MeV)

Pc(4450) 4449.8± 1.7 4448.8± 1.7
Pc(4380) 4380± 8 4375± 8

Width ( MeV)
Pc(4450) 39± 5 41± 5
Pc(4380) 205± 18 194± 16

Fit fraction (%)
Pc(4450) 4.09± 0.48 4.10± 0.45
Pc(4380) 8.42± 0.68 7.96± 0.67
Λ∗(1405) 14.64± 0.72 14.19± 0.67
Λ∗(1520) 18.93± 0.52 19.06± 0.47
Λ∗(1600) 23.50± 1.48 24.42± 1.36
Λ∗(1670) 1.47± 0.49 1.53± 0.50
Λ∗(1690) 8.66± 0.90 8.60± 0.85
Λ∗(1800) 18.21± 2.27 16.97± 2.20
Λ∗(1810) 17.88± 2.11 17.29± 1.85
Λ∗(1820) 2.32± 0.69 2.32± 0.65
Λ∗(1830) 1.76± 0.58 2.00± 0.53
Λ∗(1890) 3.96± 0.43 3.97± 0.38
Λ∗(2100) 1.65± 0.29 1.94± 0.28
Λ∗(2110) 1.62± 0.32 1.44± 0.28
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and 5/2 are preferred.
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Table 28: (sFit) Changes in fit quality (−2 lnL), masses, and widths of different JP

combinations with respect to the (3/2−, 5/2+) solution.

Pc(4380) Pc(4450)
Jp(4380, 4450) −2 lnL M0 Γ0 M0 Γ0

3/2− , 5/2+ Values
3
2

−
, 5

2

+
– 4375± 8 194± 16 4448.8± 1.7 42± 5

∆ from 3/2−2 , 5/2+

3
2

+
, 5

2

− −2.82 −8 9 0.5 7
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2
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– – – – –

5
2

+
, 3

2

−
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Figure 121: (sFit) Results of the default Λ∗ and two Pc states with JP quantum numbers
of 3/2− and 5/2+ for the different decay angular distributions. The data are shown as
(black) squares, while the open (red) circles show the results of the fit. The total Λ∗

contribution is shown with the dashed grey line, and the total Pc contribution with the
dashed blue line. The angles are defined in Sec. 5.2.
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Figure 122: (sFit) Results of the default Λ∗ and two Pc states with JP quantum numbers
of 3/2− and 5/2+ for mJ/ψp in various intervals of mKp: (a) mKp < 1.55 GeV, (b)
1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, and (d) mKp > 2.00 GeV. The
data are shown as (black) squares with error bars, while the open (red) circles show the
results of the fit. The total Λ∗ contribution is shown with the dashed grey line, and the
total Pc contribution with the dashed blue line.
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E.4 Extended model, two Pc states

For completeness, the fit results obtained with the extended Λ∗ model and two Pc states

are shown here. Figure 123 shows the projections onto mKp and mJ/ψp, where a good

description of the data is seen in both. The angular distributions and mJ/ψp mass distri-
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Figure 123: (sFit) Results of the extended Λ∗ and two Pc states with JP quantum numbers
of 3/2− and 5/2+ for (a) mKp and (b) mJ/ψp. The data are shown as (black) squares with
error bars, while the open (red) circles show the projection of the fit. The total Λ∗

contribution is shown with the dashed grey line, and the total Pc contribution with the
dashed blue line. The error bars on the points showing the fit results are due to simulation
statistics.

bution in bins of mKp are shown in Fig. 124 and Fig. 125, respectively. Good agreement

is seen.
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Figure 124: (sFit) Results of the extended Λ∗ and two Pc states with JP quantum numbers
of 3/2− and 5/2+ for the different decay angular distributions. The data are shown as
(black) squares, while the open (red) circles show the results of the fit. The total Λ∗

contribution is shown with the dashed grey line, and the total Pc contribution with the
dashed blue line. The angles are defined in Sec. 5.2.
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Figure 125: (sFit) Results of the extended Λ∗ and two Pc states with JP quantum numbers
of 3/2− and 5/2+ for mJ/ψp in various intervals of mKp: (a) mKp < 1.55 GeV, (b)
1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, and (d) mKp > 2.00 GeV. The
data are shown as (black) squares with error bars, while the open (red) circles show the
results of the fit. The total Λ∗ contribution is shown with the dashed grey line, and the
total Pc contribution with the dashed blue line.
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F Same parity fits

It was pointed out in Sec. 11 that two states with the same parity could not produce the

asymmetric cos θPc distribution necessary to obtain good fits to the data. Nevertheless,

the fits with same-parity combinations were performed. The results are listed in Table 29.

The fit with the smallest ∆(−2 lnL) is considerably worse than the nominal fit with

JP (Pc(4380), Pc(4450)) = (3/2−, 5/2+). Furthermore, it does not describe the mJ/ψp

distribution well as can be seen in Fig. 126. Indeed, the expected behavior is seen: the

fit fractions of the states are prevented from growing enough to fill in the peak because

doing so would cause the cos θPc distribution of the data to be vastly overshot at low

values.
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Figure 126: Fit projections of the default Λ∗ model with two Pc states of quantum
numbers (5/2+, 3/2+) onto the (a) mKp and (b) mJ/ψp distributions. The data are shown
as solid (black) squares, while the solid (red) points show the results of the fit. The solid
(red) histogram shows the background distribution. The (blue) open squares with the
shaded histogram represent the Pc(4450)+ state, and the shaded histogram topped with
(purple) filled squares represents the Pc(4380)+ state. Each Λ∗ component is also shown.
The error bars on the points showing the fit results are due to simulation statistics.
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Table 29: Changes in fit quality ((
√
−2 lnL)2) and Pc(4380) and Pc(4450) mass and width

from the baseline two Pc fit for different combinations of JP states with the same parity.

Pc(4380) Pc(4450)

Jp(4380, 4450) (
√
−2 lnL)2 M0 Γ0 M0 Γ0

Nominal Values
3
2

−
, 5

2

+ − 4380 205 4449.8 39
∆ from Nominal

5
2

+
, 3

2

+
5.12 −34 −57 −4.2 9

3
2

−
, 3

2

−
5.42 −49 −81 −6.5 19

5
2

+
, 1

2

+
5.92 −35 −52 −3.5 6

3
2

+
, 1

2

+
6.42 −43 −70 −5.1 15

5
2

−
, 1

2

−
6.72 −38 −43 −4.7 21

7
2

−
, 3

2

−
6.92 −27 −46 −5.8 18

1
2

−
, 3

2

−
7.32 −43 −68 −4.8 13

5
2

−
, 7

2

−
7.72 −23 −12 −3.4 1

3
2

−
, 1

2

−
7.72 −14 1 −2.3 −2

5
2

−
, 3

2

−
7.82 −43 −87 −5.7 14

5
2

+
, 7

2

+
8.22 −36 −60 −3.1 7
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2
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, 1

2

−
8.32 −16 23 1.6 1
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2
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2

+
8.32 79 586 −4.6 4

7
2
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8.42 −36 −54 −3.4 22

1
2

−
, 5

2

−
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2
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2
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2

−
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2
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2
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1
2

+
, 5

2

+
9.92 −33 −45 −4.1 10

1
2
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, 1
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+
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2
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+
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+
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Figure 127: Fit projections of the default Λ∗ model with two Pc states of quantum
numbers (5/2+, 3/2+) onto mJ/ψp for various intervals of mKp: (a) mKp < 1.55 GeV, (b)
1.55 < mKp < 1.70 GeV, (c) 1.70 < mKp < 2.00 GeV, an d (d) mKp > 2.00 GeV. The
data are shown as (black) squares with error bars, while the (red) circles show the results
of the fit. The blue and purple histograms show the two P+

c states. See Fig. 47 for the
legend.
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G Amplitude model based on the default fit

In this section, the numerical values are listed for all parameters obtained by the fit to

the data with the default Λ∗ model and two Pc states with JP assignment of 3/2− and

5/2+. The results are shown in Tables 31-33. The parameters without error bars were

fixed in the fit. The correlation coefficients among the Pc masses and widths are shown

in Table 30.

Table 30: Correlations coefficients between the P+
c parameters.

Γ0(4380) M0(4380) Γ0(4450) M0(4450)
Γ0(4380) 1.000 0.272 -0.035 -0.047
M0(4380) 1.000 -0.396 0.125
Γ0(4450) 1.000 -0.073
M0(4450) 1.000
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Table 31: Amplitude model based on the default fit to the data - Part I

Resonance JP M0 MeV Γ0 MeV BL,S couplings

P+
c (4380) 3/2− 4380.0±8.2 205.0±17.5 B

Λ0
b→PcK

1, 3
2

(1, 0)

B
Λ0
b→PcK

2, 3
2

(+0.196±0.078,−0.302±0.086)

BPc→ψp
0, 3

2

(−0.023±0.027,−1.393±0.022)

BPc→ψp
2, 1

2

(+0.181±0.149,+0.291±0.112)

BPc→ψp
2, 3

2

(+0.895±0.228,+0.811±0.198)

P+
c (4450) 5/2+ 4449.8±1.7 38.6±4.7 B

Λ0
b→PcK

2, 5
2

(1, 0)

B
Λ0
b→PcK

3, 5
2

(−0.251±0.127,−0.595±0.154)

BPc→ψp
1, 3

2

(−7.465±2.678,+11.44±2.826)

BPc→ψp
3, 1

2

(+0.438±2.038,−7.096±1.866)

BPc→ψp
3, 3

2

(−4.156±2.781,−11.27±2.022)

Λ∗(1405) 1/2− 1405.1 50.5 B
Λ0
b→Λ

∗ψ

0, 1
2

(+0.051±0.014,−0.102±0.013)

B
Λ0
b→Λ

∗ψ

1, 1
2

(+0.054±0.011,−0.039±0.013)

B
Λ0
b→Λ

∗ψ

1, 3
2

(+0.032±0.010,+0.042±0.015)

Λ∗(1520) 3/2− 1519.5 15.6 B
Λ0
b→Λ

∗ψ

0, 1
2

(1, 0)

B
Λ0
b→Λ

∗ψ

1, 1
2

(−0.840±0.115,−0.267±0.138)

B
Λ0
b→Λ

∗ψ

1, 3
2

(+0.559±0.096,−0.329±0.120)

B
Λ0
b→Λ

∗ψ

2, 3
2

(+0.078±0.078,−0.048±0.101)

B
Λ0
b→Λ

∗ψ

2, 5
2

(−0.697±0.112,−0.352±0.119)
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Table 32: Amplitude model based on the default fit to the data - Part II

Resonance JP M0 MeV Γ0 MeV BL,S couplings

Λ∗(1600) 1/2+ 1600.0 150.0 B
Λ0
b→Λ

∗ψ

0, 1
2

(+0.223±0.048,−0.303±0.042)

B
Λ0
b→Λ

∗ψ

1, 1
2

(−0.027±0.030,+0.038±0.031)

B
Λ0
b→Λ

∗ψ

1, 3
2

(−0.376±0.043,+0.056±0.048)

Λ∗(1670) 1/2− 1670.0 35.0 B
Λ0
b→Λ

∗ψ

0, 1
2

(−.0089±.0021,−.0035±.0022)

B
Λ0
b→Λ

∗ψ

1, 1
2

(+.0031±.0019,−.0002±.0020)

B
Λ0
b→Λ

∗ψ

1, 3
2

(−.0058±.0017,−.0012±.0022)

Λ∗(1690) 3/2− 1715.0 60.0 B
Λ0
b→Λ

∗ψ

0, 1
2

(+0.299±0.084,−0.236±0.069)

B
Λ0
b→Λ

∗ψ

1, 1
2

(+0.163±0.074,−0.150±0.063)

B
Λ0
b→Λ

∗ψ

1, 3
2

(+.0026±0.062,−0.079±0.072)

B
Λ0
b→Λ

∗ψ

2, 3
2

(−0.030±0.072,−0.427±0.061)

B
Λ0
b→Λ

∗ψ

2, 5
2

(−0.213±0.076,+0.396±0.064)

Λ∗(1800) 1/2− 1800.0 300.0 B
Λ0
b→Λ

∗ψ

0, 1
2

(−0.067±0.015,+0.070±0.013)

B
Λ0
b→Λ

∗ψ

1, 1
2

(−0.065±0.012,−0.065±0.014)

B
Λ0
b→Λ

∗ψ

1, 3
2

(+.0040±0.012,−0.039±0.010)

B
Λ0
b→Λ

∗ψ

2, 3
2

(−0.013±0.007,+0.024±0.006)

Λ∗(1810) 1/2+ 1810.0 150.0 B
Λ0
b→Λ

∗ψ

0, 1
2

(−0.076±0.022,−0.016±0.023)

B
Λ0
b→Λ

∗ψ

1, 1
2

(+0.034±0.019,+0.072±0.022)

B
Λ0
b→Λ

∗ψ

1, 3
2

(+0.299±0.030,−.0002±0.033)
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Table 33: Amplitude model based on the default fit to the data - Part III

Resonance JP M0 MeV Γ0 MeV BL,S couplings

Λ∗(1820) 5/2+ 1820.0 80.0 B
Λ0
b→Λ

∗ψ

1, 3
2

(−2.807±1.092,−5.691±0.958)

Λ∗(1830) 5/2− 1830.0 95.0 B
Λ0
b→Λ

∗ψ

1, 3
2

(+1.821±0.330,+0.298±0.373)

Λ∗(1890) 3/2+ 1890.0 100.0 B
Λ0
b→Λ

∗ψ

0, 1
2

(−0.034±0.019,−0.011±0.015)

B
Λ0
b→Λ

∗ψ

1, 1
2

(−0.091±0.017,+.0080±0.015)

B
Λ0
b→Λ

∗ψ

1, 3
2

(+0.015±0.014,−0.052±0.016)

Λ∗(2100) 7/2− 2100.0 200.0 B
Λ0
b→Λ

∗ψ

2, 5
2

(−116.5±17.70,+86.61±16.32)

Λ∗(2110) 5/2+ 2110.0 200.0 B
Λ0
b→Λ

∗ψ

1, 3
2

(+1.285±1.342,−7.745±0.943)
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H Addition of a third Pc state to the amplitude model

As discussed previously two Pc states are required to obtain satisfactory description of

the data. In particular, while good descriptions of the other fitted variables can be

obtained even without any Pc states, two Pc states are necessary to describe the mJ/ψp

distribution. A χ2-value for the binned mJ/ψp distribution between the data and the fit

result performed with the default Λ∗ model and no Pc states is 348.0 per 74 bins. It

improves to 201.6 (a change of -146.4) with the addition of a single Pc state. It improves

further to 108.5 (a change of -93.1) when a second Pc state is included in the fit. The

corresponding χ2-values obtained when using the extended Λ∗ model are 265.4, 151.1 (a

change of -114.2) and 109.3 (a change of -41.8) for fits with no-, one- and two-Pc states,

respectively. While such χ2-values for the fits with two Pc states are acceptable for high

statistics amplitude analysis like this one, they are not perfect. This prompts the question

of whether a better description of the data can be obtained by including a third Pc state

in the fit. The mass region immediately above the narrow Pc(4450) peak shows some

disagreements between the fit and the data (see e.g. Fig. 46). Fits were performed with

the default Λ∗ model, Pc(4380), and Pc(4450), in which a third Pc state was included in

this mass range, with free mass and width. Eight different JP assignments were used,

covering all quantum numbers with J ranging from 1/2 to 7/2. While the ∆(−2 lnL) is

always improved, most of these fits make the χ2-value of the mJ/ψp distributions worse

(by up to +4.9). The biggest improvement in the χ2-value is obtained with a JP = 3/2−

state, and is essentially negligible at only −1.9. In view of the lack of evidence for a

third Pc state, it is not included in the fit model, or even in the evaluation of systematic

uncertainties on the Pc(4450) and Pc(4380) parameters. 22

Anecdotal evidence that the slight disagreement between the fits and the data in the

region above the Pc(4450) state may have something to do with an imperfect Λ∗ model

comes from the two-Pc fits with an intermediate Λ∗ model, in which all possible LS

couplings are allowed, but no poorly motivated Λ∗ states are added. The χ2-value for

22 They are modest in any case. For the fit with the third state with JP = 3/2−, the masses, widths
and fit fractions change by +0.8 MeV, +3.8 MeV and +0.4% for Pc(4450), and by +11 MeV, +2.9 MeV
and +1.8% for Pc(4380), respectively.
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mJ/ψp changes by -10.3, which is more than the gain from a third Pc state in the fit.
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I Dalitz Plots

Rectangular Dalitz plots are shown in Fig 128 for both the the K−p system variables

(mKp, cos θΛ∗) and the J/ψp system variables (mJ/ψp, cos θJ/ψp). Amplitude models were

also used to show the contributions over the (mKp, cos θΛ∗) plane which could be expected

from Λ∗ or Pc components. A high statistics (107 events) sample was generated according

to the extended Λ∗ model (no Pc components) fit to the data. Another high statistics

sample was generated according to the Pc parameters which were determined in the fit

of the default amplitude model to the data. That is, the Λ∗ components were zeroed out

in this latter toy data set. The distributions for both of these toy data sets can be seen

in Fig. 129.
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Figure 128: The rectangular Dalitz plots of the data, displaying the invariant mass ver-
sus helicity angles for the K−p (left) and J/ψp (right) systems. The backgrounds are
subtracted using sWeights.
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Figure 129: The rectangular Dalitz plots displaying the invariant mass versus helicity
angles for the K−p systems for the extended Λ∗ model (left) and Pc components as
determined in the default amplitde model (right).
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J Normalized Legendre moments

The normalized Legendre moments defined by Eq. 98 are shown here. Figure 130 shows

them with the mKp binning used in the analysis. In order to better see the structures,

Fig. 131 shows them with bins that are four times as large.
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Figure 130: Normalized Legendre moments of cos θΛ∗ as a function of mKp in the data.
Regions excluded by the l ≤ lmax(mKp) filter are shaded.
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Figure 131: The normalized Legendre moments of cos θΛ∗ shown in Fig. 130 with four
times larger bins. Regions excluded by the l ≤ lmax(mKp) filter are shaded.
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K Model Dependent Hypothesis Testing

In the default analysis, H0 hypothesis testing is performed using the 2D model inde-

pendent approach based on the (mKp, cos θΛ∗) information. This necessarily involves

neglecting dynamical correlations with the other decay angles (Ωa ≡ cos θΛ0
b
, cos θJ/ψ , φK

and φµ), which can affect the test results if the efficiency is not uniform in Ωa. In the de-

fault approach, the H0 pseudoexperiments are generated with uniform Ωa distributions.

A systematic check was discussed in Sec. 24.2, in which the Ωa distributions were shaped

according to the Λ∗ amplitude model, but their correlations with (mKp, cos θΛ∗) were ne-

glected in order to maintain the model independent approach to the generation of the

(mKp, cos θΛ∗) variables under the H0 hypothesis. In this section, the check is taken even

further, these correlations are included by generating all six variables from the extended

Λ∗ amplitude model (no Pc states), with the parameters previously fixed by the fit to the

real data. While the analysis of such generated pseudoexperiments is still performed in

the default model-independent way, the pseudo-experiments themselves no longer reflect

the 2D H0 model independent hypothesis extracted from the real data. Instead, they rep-

resent just one particular 6D model-dependent implementation of the broader hypothesis

that the 2D H0 hypothesis aims to test, namely that the data are composed of K−p con-

tributions only. The model-dependent distribution of the model-independent χ2 variable

is shown in Fig. 132, along with the usual χ2 value determined from the real data. The

fit of the pseudoexperiment distribution with a χ2 distribution gives ndf = 47.9 ± 0.1.

This then yields a rejection of the K−p-only hypothesis of 5.4σ (vs. 5.3σ in the default

approach). The model-dependent distribution of the model-independent ∆(−2 logL)

variable is shown in Fig. 133, along with the usual value determined from the real data.

The fit with a bifurcated Gaussian gives 〈tDLL0〉 = 18.1±0.3, a left width of σl = 9.7±0.2,

and a right width of σr = 12.6±0.2. This gives a rejection of the K−p-only hypothesis of

10.0σ (vs. 10.1σ in the default approach). This study confirms that the effects of neglect-

ing dynamical effects in shaping Ωa are small enough not to bias the model-independent

test results in a significant way.
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Figure 132: Distribution of tχ2 in the pseudoexperiments with signal events generated
according to the extended Λ∗ model (red histogram) in log (left) and linear (right) scale
compared to the value obtained in the data (vertical black bar). The distribution is fitted
with and well described by a χ2 distribution (solid red line).
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Figure 133: Distribution of tDLL in the pseudoexperiments with signal events generated
according to the extended Λ∗ model (red histogram) in log (left) and linear (right) scale
compared to the value obtained in the data (vertical black bar). The distribution is fitted
with and well described by a bifurcated Gaussian distribution (solid red line).
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L lmax(mKp) Variations

In this section, the hypothesis testing is performed with variations of lmax(mKp) (Eq. 92).

In particular, the variations of lmax(mKp)+1 (but no more than 9) and lmax(mKp)−1 are

tested. As an extreme test, the lmax(mKp) + 2 variation is also done. Let these modified

hypotheses be denoted by H
lmax(mKp)−1
0 , H

lmax(mKp)+1
0 , and H

lmax(mKp)+2
0 . As usual, the

distribution of the corresponding test variables generated under these different hypotheses

are used to calculate the p−values for the values obtained from the data.

Clearly it is expected that H
lmax(mKp)−1
0 will be rejected with a larger significance than

H0. While this hypothesis still contains the majority of the expected Λ∗ contributions

some Λ∗ components will not be contained. Thus its stronger rejection does not imply

better evidence for non-K−p contributions. A decrease in significance can be expected

for H
lmax(mKp)+1
0 . The goal is to see how much it decreases by, and to check that this

variation won’t result in any large changes and the acceptance of H
lmax(mKp)+1
0 .

For the H
lmax(mKp)−1
0 pseudoexperiments, the tχ2 distribution is shown in Fig. 134,

where it has been fit with a nominal χ2 distribution. The result from the data is shown

as a black line. The distribution is well fit by the nominal χ2, which returned ndf = 49.9±

0.3. Using the value from the data, tdata
χ2 = 178.6, an 8.0σ rejection of the H

lmax(mKp)−1
0

hypothesis is obtained.
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Figure 134: Distribution of tχ2 in the H
lmax(mKp)−1
0 pseudoexperiments (red histogram)

in log (left) and linear (right) scale compared to the value obtained in the data (vertical
black bar). The distribution is fitted with and well described by a χ2 distribution (solid
red line).

The results of the ∆(−2 logL) test for the H
lmax(mKp)−1
0 pseudoexperiments are shown
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in Fig. 135. The fit yields 〈tDLL0〉 = 20.1 ± 1.2, a left width of σl = 13.5 ± 0.7, and a

right width of σr = 15.2 ± 0.8. Using the value tdata
DLL = 289.0 determined from the data,

the H
lmax(mKp)−1
0 hypothesis can be rejected at 17.7σ. Thus, the rejection of H

lmax(mKp)−1
0

is much stronger than of the default H0 hypothesis. Interestingly, the amplitude simula-

tions show that the isolated Λ∗ resonances contribute only up to l = 2 J − 1. This is due

to cancellations built into the matrix element stemming from constraints in the helicity

couplings from the parity conservation in the strong decay Λ∗ → K−p. Such cancella-

tions are not guaranteed when two different resonances overlap and interfere. Therefore,

adopting lmax(mKp)− 1 as the default approach would not be acceptable.
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Figure 135: Distribution of tDLL in the H
lmax(mKp)−1
0 pseudoexperiments (red histogram)

in log (left) and linear (right) scale compared to the value obtained in the data (vertical
black bar). The distribution is fitted with and well described by a bifurcated Gaussian
distribution (solid red line).

The tχ2 distribution for the H
lmax(mKp)+1
0 pseudoexperiments is shown in Fig. 136. The

fit yields ndf = 46.6±0.3, and using the value from the data, tdata
χ2 = 94.6, a 3.9σ rejection

of the H
lmax(mKp)+1
0 hypothesis is obtained.

The results of the ∆(−2 logL) test for the H
lmax(mKp)+1
0 pseudoexperiments are shown

in Fig. 137. The fit yields 〈tDLL0〉 = 16.7± 0.9, a left width of σl = 8.4± 0.6, and a right

width of σr = 12.3± 0.6. Using the value from the data of tdata
DLL = 98.7, a 6.7σ rejection

of the H
lmax(mKp)+1
0 hypothesis is obtained. As expected the rejection of the H

lmax(mKp)+1
0

hypothesis is lower than of the default H0 hypothesis. With the log likelihood ratio test, it

is still high enough to rule out K−p-only interpretation of the data with high significance,

though.

The tχ2 distribution for the H
lmax(mKp)+2
0 pseudoexperiments are shown in Fig. 138.
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Figure 136: Distribution of tχ2 in the H
lmax(mKp)+1
0 pseudoexperiments (red histogram)

in log (left) and linear (right) scale compared to the value obtained in the data (vertical
black bar). The distribution is fitted with and well described by a χ2 distribution (solid
red line).
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Figure 137: Distribution of tDLL in the H
lmax(mKp)+1
0 pseudoexperiments (red histogram)

in log (left) and linear (right) scale compared to the value obtained in the data (vertical
black bar). The distribution is fitted with and well described by a bifurcated Gaussian
distribution (solid red line).

The fit yields ndf = 44.7 ± 0.3, and using the value from the data, tdata
χ2 = 82.7, a 3.2σ

rejection of the H
lmax(mKp)+2
0 hypothesis is obtained.

The results of the tDLL test for the H
lmax(mKp)+2
0 pseudoexperiments are shown in

Fig. 139. The fit yields 〈tDLL0〉 = 14.0 ± 0.7, a left width of σl = 7.3 ± 0.5, and a

right width of σr = 12.7 ± 0.5. Using the value from the data of tdata
DLL = 81.1, a 5.3σ

rejection of the H
lmax(mKp)+2
0 hypothesis is obtained. Even with this extreme variation

the H
lmax(mKp)+2
0 hypothesis can be ruled out with a high significance. A summary of the

rejections for the different variations is given in Table 34.
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Figure 138: Distribution of tχ2 in the H
lmax(mKp)+2
0 pseudoexperiments (red histogram)

in log (left) and linear (right) scale compared to the value obtained in the data (vertical
black bar). The distribution is fitted with and well described by a χ2 distribution (solid
red line).
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Figure 139: Distribution of tDLL in the H
lmax(mKp)+1
0 pseudoexperiments (red histogram)

in log (left) and linear (right) scale compared to the value obtained in the data (vertical
black bar). The distribution is fitted with and well described by a bifurcated Gaussian
distribution (solid red line).

Table 34: Significances of rejection in standard deviations, obtained for both test variables
under the different lmax(mKp) variations

t = χ2 t = ∆(−2 logL)

H
lmax(mKp)−1
0 8.0σ 17.7σ

H0 (nominal) 5.3σ 10.1σ

H
lmax(mKp)+1
0 3.9σ 6.7σ

H
lmax(mKp)+2
0 3.2σ 5.3σ
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M Variations of llarge

The choice of llarge must be large enough to capture the features of mJ/ψp (or mJ/ψK).

However, if it is made too large, the discriminating power of the likelihood ratio test is

expected to deteriorate. This is because after a certain point the higher moments serve

more to capture statistical fluctuations than they do to capture actual physics. Indeed,

in the llarge → ∞ limit, it is expected that the power will deteriorate to that of the χ2

test. While it is important to choose the value of llarge independently of the actual data

set 23, it is interesting to study how its value affects the strength with which H0 can be

rejected. The pseudoexperiments and test on the data were repeated with varying values

of llarge. The resulting levels of rejection of H0 are shown in Fig. 140.
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Figure 140: Levels of rejection of H0 obtained when the hypothesis testing is repeated
with various values of llarge.

The expected deterioration of the power of the test for very high values of llarge is

clearly seen. Also, the level of rejection of H0 obtained with the nominal choice of

23If the llarge value is tuned to the data set, then this procedure must also be simulated in the pseudo-
experiments. This would require a well defined numerical procedure, and would be overly cumbersome.
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llarge = 31 is actually close to the optimal level. While the test could be strengthened

somewhat by tuning llarge, this is unnecessary and undesirable to do.
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N Measurement of the ratio of B+
c branching frac-

tions to J/ψπ+ and J/ψµ+νµ final states

This Appendix covers an analysis which was done during the period of the dissertation

work, but does not fit into the main narrative of the study. The analysis resulted in

a paper, which will be briefly summarized here. For more details, Ref. [100] should be

consulted.

N.1 Introduction

The B+
c meson is the ground state of the b̄c quark-pair system and thus has the unique

status of being the lightest doubly-heavy, open-flavor bound state. It must decay weakly,

and is further unique in that the decays of both constituents compete with each other.

The c → s and b → c transitions are expected to contribute about 70% and 20% of the

decay width, respectively, with the remaining 10% being from weak annihilation [101].

These features make the B+
c meson a good system for studying both the weak and strong

interactions, and a means for refining effective models. While its decays to several chan-

nels have previously been observed, there had been no experimental determination of

the relative size of semileptonic and hadronic decay rates. The goal of this work is a

measurement of the ratio of branching fractions,

R ≡ B(B+
c → J/ψπ+)

B(B+
c → J/ψµ+νµ)

, (116)

and to test various theoretical models of B+
c meson decays, for which predictions of R

vary over a wide range, 0.050–0.091 [102–109]. The analysis was performed on the data

sample collected during 2011 by the LHCb experiment, corresponding to an integrated

luminosity of 1.0 fb−1.
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N.2 Analysis Summary

The mass of B+
c → J/ψπ+ signal candidates peaks at the B+

c mass within the experimen-

tal resolution, which allows for a straightforward signal yield extraction in the presence

of relatively small backgrounds under the signal peak. An extended maximum likeli-

hood fit to the unbinned distribution of observed mJ/ψπ values yields NJ/ψπ = 839 ± 40

B+
c → J/ψπ+ signal events and is shown in Fig. 141. The signal is represented in the fit
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Figure 141: Invariant-mass distribution of B+
c → J/ψπ+ candidates (black data points).

The maximum likelihood fit of the B+
c signal is superimposed (blue solid line). Individual

fit components are also shown: (dashed blue line) the signal, (red long-dashed line) the
background and (green dotted line) B+

c → J/ψK+ feeddown.

by a double-sided Crystal Ball (CB) function [110], with the parameters describing small

non-Gaussian tails fixed by a fit to a simulated signal distribution. The background is

smoothly distributed and modeled by an exponential function. A small background from

B+
c → J/ψK+ decays, peaking 37 MeV below the signal peak, is also included in the fit

with all shape parameters fixed from the simulation. Its normalization is constrained to

be 1% of the fitted signal amplitude, as predicted by the measured ratio of the branching

fractions [111] scaled by an efficiency ratio of 15% obtained from the simulation.

The main challenge in this analysis is the signal yield extraction for the B+
c →

J/ψµ+νµ decay mode, as the unreconstructed neutrino results in a broad J/ψµ+ mass

256



(mJ/ψµ) distribution amidst multiple difficult-to-model backgrounds. The dominant back-

ground source is from Bu,d,s decays to J/ψ plus hadrons, with one of the hadrons misiden-

tified as a muon. The Bu,d,s production rates are orders of magnitude higher than for

B+
c , resulting in the large backgrounds. Since many exclusive decay modes with vari-

ous hadron multiplicities and unknown branching ratios contribute, the mJ/ψµ shape of

such backgrounds is difficult to predict. Additionally, feeddown from other B+
c → f ,

f → J/ψµ+νµX decays must be accounted for, many of which have unknown mJ/ψµ

distributions and decay rates, and thus require theoretical input. Decays to excited char-

monium states (f = ψf µ
+νµ, with ψf = χcJ or ψ(2S)) and states containing τ leptons

(f = J/ψτ+ντ ) are the dominant contributions.

To suppress these dominant backgrounds, the analysis is restricted to the mJ/ψµ >

5.3 GeV endpoint region, and uses the mass-shape difference between the signal and the

remaining background to extract the B+
c → J/ψµ+νµ signal yield. This endpoint value

is then extrapolated to the full phase space using theoretical predictions. Since the B+
c

and J/ψ are both 1S heavy quarkonia states, the form factors involved in predicting the

extrapolation factor and the shape of the mass distribution at the endpoint have only

modest model dependence. The 5.3 GeV lower limit on mJ/ψµ is above the kinematic

limit for B+
u → J/ψh+ decays, with h+ denoting a charged kaon or pion. Thus the

Bu,d,s backgrounds in the selected region are much smaller, and are from Bu,d,s → J/ψX

decays paired with a bachelor µ+ originating from some other decay. This is illustrated

in Fig. 142, where the simulated Bu,d,s → J/ψX distribution is shown with the simulated

signal distribution. The shape of such combinatorial backgrounds is less sensitive to the

details of the composition of b-hadron decay modes, and thus is easier to predict. The

feeddown contributions are also easier to model, as unreconstructed decay products in

the ψf → J/ψX transitions (X = γ, ππ, π0, η, γγ) or τ+ → µ+νµν̄τ decays carry energy

away, lowering the J/ψµ+ mass relative to that from direct B+
c → J/ψµ+νµ decays. This

is also shown in Fig. 142.

The signal yield is determined from the fit to the mJ/ψµ distribution, and has a signal,

background, and feeddown component, each of which will be discussed in turn. The
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Figure 142: Distribution of mJ/ψµ for B+
c → J/ψµ+νµ candidates selected in simulated

event samples of (blue filled points) the signal, (green filled points) the B+
c feeddown and

(red filled squares) the Bu,d,s backgrounds. Relative normalization is derived from the fit
to the data described later in the text. The part of the spectrum included in the fit is
indicated with a vertical dashed black line. The B+

c feeddown distribution is also shown
after magnifying its normalization by a factor of ten (green dashed histogram).

mJ/ψµ signal shape is dominated by the endpoint kinematics, and is described by the

B+
c → J/ψµ+νµ three-body phase-space distribution multiplying a linear polynomial to

accound for distortions resulting from the dynamics of the decay. The combinatorial

background is smooth and extends beyond the kinematic limit for the B+
c → J/ψµ+νµ

decays, which is used to set the background level in the signal region. The combinatorial

Bu,d,s background is parameterized with an exponential function which is quadratic in its

argument. The tail of the B+
u → J/ψh+ distribution, with a light hadron misidentified as

a muon, may enter the signal region because of detector resolution. This is parameterized

with a Gaussian function, with a mean value and width fixed to the results of the fit to

the simulated B+
u → J/ψh+ distribution. The relative contributions of the combinatorial

and misidentified backgrounds is a free parameter in the fit. The feeddown background

is small, and its shape is fixed by simulations of the contributing channels mixed in

the expected proportions. It is parametrized with a J/ψµ+νµ three-body phase space

distribution multiplying a quadratic polynomial, where an effective B+
c mass is used in
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the phase space distribution due to the unreconstruced decay products. The ratio of the

feeddown yield to the signal yield is fixed to the expectations obtained using theoretical

predictions for the decay rates and simulated samples for the efficiencies.

An unbinned maximum likelihood fit is performed simultaneously to the mJ/ψµ distri-

butions of the data and the signal and background simulations. The fitted mJ/ψµ range

of 5.3 to 8.0 GeV yields NJ/ψµ = 3537± 125 signal events. The mJ/ψµ distributions and

the fit results are displayed in Fig. 143.
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Figure 143: Invariant-mass distribution of J/ψµ+ pairs from B+
c → J/ψµ+νµ candidates

(black data points) for (top left) the data, (bottom left) B+
c → J/ψµ+νµ signal simulation,

(top right) Bu,d,s → J/ψX background simulation and (bottom right) B+
c feeddown

simulation. The unbinned maximum likelihood fit of the B+
c signal is superimposed (blue

solid line). Individual fit components are also shown: (blue short-dashed line) the signal,
(red long-dashed line) the background and (green dotted line) B+

c feeddown.

The result for the ratio of the branching fractions restricted to decays with mJ/ψµ >

5.3 GeV is found to be

R(mJ/ψµ > 5.3 GeV) = 0.271± 0.016± 0.016, (117)
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where the first uncertainty is statistical and the second is systematic. This ratio is

extrapolated to the full phase space using the predictions of various phenomenological

models [106,107,109,112–114]. The result obtained using the model of Kiselev et al. [106]

is near the average of all models, and is used for the default value. The largest deviation

from this model is taken as an estimate of the extrapolation systematic error. The final

result over the full mass range is

R = 0.0469± 0.0028± 0.0046. (118)

N.3 Summary

The ratio of hadronic and semileptonic decay branching fractions of the B+
c meson is

measured for the first time. A comparison between the measured and the predicted

values ofR is shown in Fig. 144. The measured value is slightly below the lowest predicted

value. The predictions by the relativistic quasipotential Schrödinger model of Ebert et al.

[107] and the model of El-Hady et al., based on a nonrelativistic reduction of the Bethe-

Salpeter equation [104], are in good agreement with the experimental value. The model

of Ke et al. [109], based on the modified harmonic oscillator wave function in light-front

quark model, is also consistent with the data. The other models [102, 103, 105, 106, 108]

significantly overestimate R.
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Figure 144: The measured value of R (horizontal solid line) and its ±1σ uncertainty
band (dashed lines) compared to the predictions (diamonds). A nonrelativistic reduction
of the Bethe-Salpeter equation is used in the predictions of Chang et al. [102], El-Hady
et al. [104], and Colangelo et al. [105], while the latter also utilizes heavy quark symmetry.
A light-front constituent quark model is used by Anisimov et al. [103] and Ke et al. [109].
QCD sum rules are used by Kiselev et al. [106], a relativistic quasipotential Schrödinger
model is used by Ebert et al. [107], and a relativistic constituent quark model is used by
Ivanov et al. [108].
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