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ABSTRACT

The open nature of Android ecosystem has naturally laid the foundation for a highly

fragmented operating system. In fact, the official AOSP versions have been aggressively

customized into thousands of system images by everyone in the customization chain, such

as device manufacturers, vendors, carriers, etc. If not well thought-out, the customization

process could result in serious security problems. This dissertation performs a systematic

investigation of Android customization’ inconsistencies with regards to security aspects at

various Android layers.

It brings to light new vulnerabilities, never investigated before, caused by the

under-regulated and complex Android customization. It first describes a novel vulnerability

Hare and proves that it is security critical and extensive affecting devices from major

vendors. A new tool is proposed to detect the Hare problem and to protect affected

devices. This dissertation further discovers security configuration changes through a

systematic differential analysis among custom devices from different vendors and

demonstrates that they could lead to severe vulnerabilities if introduced unintentionally.
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1

1. INTRODUCTION

The smartphone market has expanded explosively in recent years as more consumers are

attracted to the rich features, sensor enabled devices. Existing smartphones are not simply

devices for making phone calls and receiving SMS messages, but powerful communication

and entertainment platforms for web surfing, social networking, GPS navigation and online

banking. Android is particularly eminent; never before any OS has been so popular and

diverse as Android. So far, over one billion mobile devices are running the OS, occupying a

smartphone market share of 82.8% as of 2015 according a report from IDC [1]. The

popularity of Android is spurred by its open ecosystem nature that Google adopted to tear

down some of the barriers caused by the closed nature of traditional operating systems. By

being an open ecosystem, Android aims to encourage innovation and to bring more choice

and empowerment to end users, which has been indeed embodied in the proliferation of

feature rich devices as well as compelling mobile applications (apps). The open nature of

Android ecosystem has naturally laid the foundation for a highly fragmented operating

system. In fact, the official versions (Android Open Source Project or AOSP) have been

aggressively customized into thousands of system images by everyone in the customization

chain. Hardware manufacturers, device vendors and carriers are free to build upon the

baseline to tailer it for different features and models in a bid to differentiate their products

from their competitors. As device vendors are more adept at changing the Android

framework and default system apps, and as hardware have grown more capable (i.e. high
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resolution cameras, innovative sensors, etc), Android customization is becoming more

prevalent overtime. In fact, according to OpenSignal [2], 2015 has seen an increased

fragmentation of manufacturers, with over 1000 manufacturers not seen in the year 2012.

However, if not well thought out, this customization could bring in serious security

vulnerabilities, causing severe damages. Indeed, previous studies [3–5] demonstrate several

vulnerabilities caused by the unregulated Android customization process, ranging from

over-privileged preloaded apps, information leakage, misconfigured Linux layer device

drivers, etc. Given the serious damages and the wide consumer audience at stake of any

security flaw caused by Android customization, it is important to study the aspects of this

practice and investigate any potentially uncovered security consequences. The study will

help draw a wider picture of Android customization with regards to its security effects and

assess the overall situation in real world custom images.

1.1 Android Customization Process

Android is a layered operating system, where each layer has its own tasks and

responsibilities. Different parties in the customization chain such as device vendors (e.g.

Samsung, HTC, Xiaomi), carriers (e.g T-Mobile, AT&T), and hardware manufacturers

(e.g. Qualcomm, mediaTek) might customize one or more layers to tailer the devices for

different purposes, such as supporting special hardware and providing different interfaces

and services. The application layer, lying at the top of Android architecture model and

providing core apps such as Home, Contact, Phone and Browsers, is often customized by

device vendors and carriers. Previous work [4] has demonstrated that this layer has always
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been the focus of vendor customization. Device vendors and carriers might add new

preloaded apps to support new services, modify default preloaded AOSP apps to provide

more sophisticated functionalities and UI, or delete existing ones (e.g remove the

Messaging app if the device is a tablet model).

The Framework and Libraries layers lie right below the Application layer and provide

support for developers to access various privileged resources, services and functionalities.

The previous study [6] makes the case based on the analysis of a custom phone (HTC EVO

4G) that Android Framework and Library are indeed extensively customized by the

vendor. The study reveals that certain framework binaries have been modified: core.dex

which contains the core Java language public APIs and other popular libraries such as

Apache Harmony Library; framework.dex which constitutes the core library for the

Android framework; services.dex that hosts a number of services such as PackageManager

Service, ActivityManager Service, WindowManager Service, etc; as well as

android.policy.dex which enforces device security policies such as mandatory screen lock.

At the bottom of the layers is the Linux kernel, providing a level of abstraction between

the device hardware and containing all essential hardware drivers like display, camera, etc.

Hardware manufacturers almost always need to modify a few device drivers and related

system settings to support any newly added hardware. The previous work [5] reveals that

most of the customization at this layer is actually related to device driver customization.
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1.2 Android Customization Hazards

Android device customization implies an opportunity for increased usability and

personalization as it empowers users to choose the Android device that perfectly meets

their specific needs. However, it also implies an increased security risk, given the Android

fragmentation process is highly unregulated. To put this under control, Google has

launched the Android Compatibility Program [7] to guide the customization process.

Nonetheless, this effort fails to address several security concerns arising from the aggressive

customization. The existing literature on Android customization hazards reports various

vulnerabilities. At the Linux kernel layer, the study [5] investigates the security

configurations of Android’s Linux device drivers, and finds that many of these devices have

not been properly protected, causing their exposures to the parties that should not access

them: e.g. a non-privileged app (without the required camera permission) can directly

command an exposed camera driver to take pictures.

Another study [4] reveals that the Application layer is also riddled with flaws

introduced during the customization process. Based on the analysis of preloaded system

apps from 10 stock factory images manufactured by different vendors, the study reports the

presence of known vulnerabilities such as over-privileged apps, exposed interfaces leading to

permission re-delegation attacks in system applications introduced by the corresponding

vendors. Similarly, another work [3] has anecdotally shown that Android vendors’

preloaded apps had security flaws shipped on several custom devices.

These studies demonstrate few serious security vulnerabilities resulting from Android

customization. However, little has been done to systematically study this process, its
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involved parties and carried-on changes to asses all possible security consequences. This

dissertation attempts to perform a systematic analysis of the decentralized and

under-regulated Android device customization process and consequently uncover possible

security risks, never investigated before. For this purpose, I first study several aspects of

Android customization, including its causes, stakeholders, carried-on changes and finally

speculate potential security effects if the customization is not well thought out. I then

conduct further investigation to prove my speculations with real world attacks. My

investigation lead to the discovery of a novel security vulnerability, Hanging Attribute

References (HARE), which I prove to be security critical and extensive (details are in

Chapter 4). I further identify a more general security risk that spans over all Android

layers, resulting from non-carefully modifying several security configuration features during

the customization process (details are in Chapter 5).

1.3 Thesis Statement and Contributions

The thesis statement of this dissertation is as follows: To proactively uncover

potential security risks of the decentralized and unregulated Android

customization process, this dissertation performs a systematic investigation of

inconsistencies created as a result of this process and assesses various security

implications. In support of this statement, this dissertation describes the following

contributions:

• Hanging Attributes References Threat: This dissertation investigates a critical aspect

of Android device customization overlooked in previous studies and whose
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implications are not clear. During customization, preloaded Android apps are

modified, added, or deleted to tailor custom devices for different purposes. For

example, a vendor may customize a smartphone OS without a 3G capability by

removing some components including the messaging and telephony provider apps.

However, other components such as VoIP apps might still reference the removed

apps. Thus, customization made to these components, if not well thought out, can

break the intrinsic relations that exist between Android’s components, resulting in

references to non-existing attributes. We call them Hanging Attribute References, or

simply Hares. A malware can fill the gap to acquire critical system capabilities, by

simply disguising as the owner of the removed component. Through performing a

large scale study, this dissertation shows that popular Android devices are riddled

with such flaws, which often have serious security implications leading to real-world

attacks (stealing user voice notes, replacing Google Email’s Account Settings

Activity, collecting user’s contacts without proper permissions, etc). We further

designed and implemented Harehunter, a new tool for automatic detection of Hares

that compares attributes defined with those used, and analyzes the references to

undefined attributes to determine whether they have been protected.

• Harvesting Inconsistent Security Configurations in custom Android ROMs: My

thread of research moved from trying to reveal specific vulnerabilities that might be

introduced as a result of Android customization to generalizing the problem to a

broader scope. More specifically, in this dissertation, I propose to systematically

detect security configuration changes introduced by different parties in the Android
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customization chain. My key intuition is that through comparing a custom device to

similar devices from other vendors, carriers, regions, or OS versions, we can identify

security configuration changes created unintentionally during the customization. For

this purpose, I first locate relevant security features that might be altered during this

process through investigating the Android access control model at different layers.

Then, I extract them from my collected Android custom ROMs (around 600 ROMs).

To detect inconsistent security features, I perform a differential analysis among

candidate image sets sharing similar features. My differential analysis reveals that

indeed the customization results in inconsistent security configurations, and more

dangerously, sometimes weaker security features. For example, my investigation

shows that vendors sometimes downgrade the privilege of Linux group ids, making

normal apps able to access very privileged resources on the system with a normal

permission. Besides, vendors sometimes downgrade the protection level of built-in

permissions leading to conflicting definitions throughout different images. This

dissertation also proves that the security configuration inconsistencies revealed in my

analysis can lead to actual vulnerabilities, including factory resetting the phone,

sending emergency broadcasts, and reading user emails, all without user confirmation

or a privileged permission.

1.4 Dissertation Roadmap

The rest of this dissertation is organized as follows: Chapter 2 provides an overview of

Android customization process, its factors, responsible parties and possible effects.
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Chapter 3 reviews related literature on Android customization and on demystifying

Android security in general. Chapter 4 presents my discovered Hanging Attribute

References (Hare) vulnerability, while Chapter 5 presents my work on harvesting

inconsistent security configurations. In the end, Chapter 6 summarizes this dissertation. In

a different direction, Appendix A presents my research work, DroidAPIMiner, on Detecting

Android malware.
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2. ANDROID CUSTOMIZATION

The open nature of Android ecosystem, promoting manufacturer differentiation and device

innovation, has naturally laid the foundation for a highly fragmented ecosystem. Hardware

and chipset manufacturers customize Android devices to provide different performance

levels, hardware components and screen sizes. Vendors further customize the Android

framework to support more sophisticated features and offer a unique user-experience.

Further complicating the process, the AOSP baseline has been heavily modified into

different Android versions. According to a survey by app maker and network data collector

OpenSignal [2], the year 2015 has seen more Android devices and more differentiation

between devices in the market. Out of the 682,000 devices surveyed, more than 24,000

distinct devices and 1294 distinct brands have been identified, where the largest portion

(37.8%) were manufactured by Samsung.

2.1 Fragmentation Factors & Parties

2.1.1 Custom Hardware Components

At any moment, Android devices might be running different hardware components

(e.g., processors, graphic cards, and screen sizes). Hardware and chipset manufacturers

customize Android devices to provide better performance levels and more sophisticated

hardware. For example, Samsung Galaxy S7 Edge’s 12-megapixel dual-pixel sensor enables
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super fast autofocus, brighter and sharper photos even in low-light conditions, while LG

G5’s second wide-angle camera enables stunning landscape photography. With each new

model release, device vendors often add more and more sensors to differentiate their devices

from other vendors. To illustrate, in newer models (Galaxy Note 4, Galaxy S6 Edge, etc),

Samsung integrated a high recognition fingerprint scanner, and a new heart rate monitor

sensor. Vendors adapt the basic Android software stack to the new vendor-specific

hardware platforms through integrating several additions to the Android OS.

2.1.2 Device Vendor Specific User Interface

Android’s User Interface is everything that the user is seeing and interacting with, and

clearly one of the key differentiating factors for an Android device. Thus, device vendors

strive to provide a richer and unique user experience enabling more intuitive and

esthetically enhanced interfaces. In fact, several vendors design their own differentiated UI.

To name a few, Samsung’s UI is branded as TouchWiz, HTC’s UI is branded as

HTC-Sense, and LG’s UI is branded as Optimus. Each custom UI uses its own color

palates and UI elements (e.g., buttons and scrolling lists) to present aesthetically dissimilar

arrangements. Device vendors integrate these custom UIs into their own devices through

adding and altering the existing Android Stock UI elements.

2.1.3 Device Vendors Specific Additions and Services

Device vendors might customize Android to provide business solutions or personalized

services. A prominent example is Samsung’s KNOX platform [8] which leverages hardware
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security capabilities to offer multiple levels of protection for the Android OS and installed

apps. The KNOX platform offers also an easy integration with popular Mobile Device

Management, Single Sign-On, and VPN solutions. To provide the KNOX security

platform, Samsung has integrated several solutions in the Android OS, such as Trusted

Boot, TrustZone based Integrity Measurement Architecture, and SEAndroid.

2.1.4 Operators Specific Features

The Android customization process continues when the device is tailored for a specific

network operator (i.e., mobile carrier), such as Verizon, AT&T, Sprint, Orange, etc. The

device vendors (i.e., Samsung, HTC, etc.) are obliged to comply with the operator’s

published network specifications, which are usually related to some network configurations

nuances. Based on carrier network requirements, device vendors modify the telephony

service to allow integrating a variety of LTE, GSM/CDMA bands.

Device vendors have to also conduct a series of changes, often spanning through several

Android layers, to support specific operator restrictions. Network operators might

intentionally require disabling some built-in Android features, following their business

model. In fact, major operators disable Android’s native tethering support, hotspot

support, and other features related to network sharing. Other operators, such as AT&T,

have disabled in few models the "Unknown sources" checkbox that allows installing apps

from unofficial markets such as the Amazon App Store and others. Operators might also

disable access to competing services such as blocking digital wallet solutions, forcing users

to use their supplied services. More customization might be carried out by device vendors
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to provide the support for unique operator services. For example, most operators provide

their own custom voice mail services, such as "Visual Voice Mail" service provided by

Verizon which lets users view voice messages received and listening to them in any order.

Integrating these new services into the existing main stream Android usually requires

device vendors to modify one or more Android layers.

2.1.5 Android Updates

Further complicating the Android customization process is the fast pace with which the

AOSP updates its OS versions. Since September 2008, 23 (from 1.0 to 6.0.1) official

versions have been released. Most of them have been heavily customized, which results in

tens of thousands of customized Android branches coexisting on billions of mobile phones

around the world (over 10,000 for Samsung alone), and many of them, at various version

levels, co-exist in today’s market. Making the situation more complex, to upgrade to a new

version, device vendors have to migrate all carried out customization changes at various

levels before a public release

2.2 Customization Effects

The above customization factors have led to a highly fragmented ecosystem, which not

only make development and testing of new apps across different device models and

specifications a challenge, but also inevitably open the door for a plethora of security risks.

When hardware manufacturers, device vendors and carriers perform their customization
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without fully understanding the security implications, security vulnerabilities will arise, at

various Android layers.

2.2.1 Compatibility and Portability Issues

Because of the differences between Android releases, hardware specifications, and device

variations (e.g, different screen sizes, etc.), the effort required to build applications that

work seamlessly on all devices can be exhausting; which might intuitively introduce

compatibility issues.

From one hand, each new Android API level introduces or removes features and bugs.

Even if each release aims to integrate the new changes without breaking existing

pre-installed apps in older versions, it is often not feasible to achieve perfect compatibility.

Due to insufficient cross-platform and product-lines testing of the new features and

changes, Android apps might not behave consistently across different versions. In an effort

to provide empirical evidence about the features that contribute most to Android

fragmentation, Han et al [9] investigate bug reports submitted by Android users of two

major vendors (HTC and Motorola). Their study reveals that bugs related to upgrades

occurred quite frequently when users moved from Android version 2.1 to 2.2, indicating

that the latter introduced compatibly and portability issues.

On the other hand, hardware specific variations and features might introduce unique

compatibility issues within different product-lines of the same vendor. In fact, the same

study [9] reports that different product-lines produced different bug report topics

indicating internal fragmentation issues within the same vendor. The portability issues are
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attributed to varying hardware components in the studied vendors’ models, such as screen

sizes, buttons behavior, gps, wifi, and Bluetooth support .

To ensure a consistent and correct behavior of Android apps across various API levels

and hardware configurations, Google introduced Firebase Test Lab for Android [10], a

cloud-based infrastructure for comprehensive testing of Android apps before release. Using

Firebase Test Lab, developers can access various physical Android devices installed on

Google data centers and test their apps on different brands and models, across multiple

Android APIs, device configurations, and screen orientations. Unlike testing apps on

Android emulators, Firebase Test Lab tests the apps on physical devices to help detect

issues that might not occur in an emulated environment.

Besides, to address the fragmentation and to ensure compatibility across Android

devices, Google launched earlier its Compatibility Program [7]. The program aims to

benefit the entire Android community, including users, developers, and device

manufacturers. More specifically, first, the program aims to provide a precise definition of

what developers can expect from a given device in terms of APIs and hardware

capabilities. Second, through providing an appropriate application filtering channel (such

as Google Play), Android users will be presented only with the apps that are compatible

with their device’s hardware and software capabilities. Finally, the program focuses on

allowing devices manufacturers to create devices that are unique but nonetheless

compatible with Android aspects relevant to running third-party apps.
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2.2.2 Android Updates Problem

Each month, Google advises security updates to be pushed on devices to fix known and

detected security vulnerabilities and bugs. However, device manufacturers and carriers

might be busy testing and optimizing the security updates for their own customized

versions of Android. This produces huge delays in following Google’s patch schedule and in

pushing the advised updates to existing device models. Even worse, device vendors might

opt to stop pushing further security updates to older models due to a lack of monetary

incentives, a fact that can make several unpatched custom android devices under major

security threats. For example, Samsung’s Note 2.0 have not received any security updates

since 4.4.2.

The security implications of Android’s updates cycle have been studied by the research

work [11]. Using a corpus of 20400 custom Android devices, the authors demonstrate that

there is a significant variability in delivering security updates across different device

manufacturers and network operators. The study further reveals that 87.7% of the

collected Android devices have major security vulnerabilities and are exposed to at least 1

major threat, including udev exploid [12], Gingerbreak [13], Apk duplicate file names [14],

Apk unchecked names [15], etc.

To face this alarming update challenge, Google has committed that its Nexus devices

will receive regular over-the-air security updates every month, as well as platform updates

[16]. Similarly, Samsung has committed to implement a new Android security update

process that fast tracks the security patches over-the-air when security vulnerabilities are

uncovered in a more timely manner, about once per month [17].
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Delayed Android updates is one of the many possible security issues resulting from

Android customization. In an effort to draw a complete picture of possible security

consequences, I propose to perform in the next section a systematic categorization of

Android customization aspects. The categorization will help us pinpoint areas of concerns

that might bring in security problems.

2.3 Systematic Categorization of Android Customization

In this section, I aim to systematically categorize the customization aspects discussed in

section 2.1 with regards to the Android layered architecture. For each layer, I list all

possible modifications performed by the customization stakeholders: device vendors,

carriers, and hardware manufacturers. Then, to uncover possible security consequences, I

dive into more details about the customization aspects within each layer.

2.3.1 Android Layered Architecture

As Figure 2.1 illustrates, Android is a layered operating system, where each layer has

its own tasks and responsibilities.

On the top of all layers is the application layer. It comprises preloaded apps provided

by AOSP (such as built-in web browser, messaging, email apps), by device vendors (such as

Samsung’s custom Settings, Samsung’s Gallery app), and sometimes by carriers (such as

Verizon’s Visual Voice app). This layer also contains third-party apps installed by the user

after purchasing the device.
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Fig. 2.1.: Android Layered Architecture and Components

To allow app developers to access various resources and functionalities, Android

Framework layer provides many high-level services such as PackageManager,

ActivityManager, NotificationManager and many others. These services mediate access to

system resources and enforce proper access control based on several criteria such as the

app’s user id, its acquired Android permissions, signature, etc. Right below the framework

layer lies the Libraries layer, which is a set of Android specific libraries and other core

libraries such as libc, SQLite database, media libraries, etc. Just like the framework

services, certain Android specific libraries perform various access control checks based on

similar criteria (e.i, the caller’s user id, permissions, etc).

At the bottom of the Android layers lies the Linux kernel which provides a level of

abstraction between the device hardware and the upper layers. It contains all lower level

core system functionalities such as memory management, process and power management

and provides essential hardware drivers like camera, device display, Wifi, etc. The Linux



18

kernel layer mediates access to hardware drivers and raw resources based on the standard

Discretionary Access Control (DAC).

2.3.2 Customization Aspects: Application Layer

Customization stakeholders might customize the Android application layer in several

aspects; they might add new preloaded apps, modify existing ones and / or remove

unnecessary ones.

Adding new preloaded apps. In order to differentiate their products from other

devices and provide more features, device vendors and carriers might ship new preloaded

apps within their devices. In fact, Wu et al [4] performed a provenance analysis aiming to

classify each preloaded app into three categories: apps originating from the AOSP, apps

customized or written by vendors, and other apps bundled into the stock image. A

breakdown of their results shows that on average, at most 18.22% of the apps originate

from AOSP, implying that 81.78% of the preloaded apps are actually added by vendors and

other parties (e.g., carriers).

Modifying existing AOSP and older editions of vendor specific apps. Existing

AOSP apps may well be customized by device vendors to provide additional or richer

functionalities and different UI layouts, as every vendor has incentives to add more

functionality, especially if their competitors are doing the same. During the customization

process, vendors might add new components (i.e., activities, services, broadcast receivers,

content providers, and custom permission definitions) to existing preloaded apps to provide
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new functionalities and services. For example, the Gmail app is actually a customized

version of the original AOSP email app "com.android.email", where several components

have been added. Similarly, during the customization, vendors might decide to omit certain

components from existing AOSP apps that are deemed not necessary or that have been

replaced with more sophisticated ones. To tailor the app for different needs, vendors might

also change the implementation of one or more components.

Another common practice, observed during the customization process is renaming

existing AOSP app names, package names, and component names with new names

reflecting the vendors’ identity. For example, Sony’s Conversations app with package name

"com.sonyericsson.conversations" is actually a customized version of the AOSP Mms app

with name "com.android.mms". The new naming convention could also be attributed to

the namespace requirements defined by Google’s Compatibility Document [18],

enumerating criteria that must be met in order for devices to be compatible with Android

6.0. In fact, one of the requirement states that if a device vendor is to add a new

permission, Google recommends that its ID string should not be in the "android.*"

namespace. To meet this recommendation, device vendors need to change their added

custom permissions whose ID string starts with "android." to new names. The document

also recommends that device implementers may introduce intent patterns using

namespaces that are clearly and obviously associated with their own organizations. This

has pushed device vendors to change their custom intent patterns to reflect their

organization namespaces.

Another possible customization practice that might be carried out by vendors is

changing access configurations of existing components in AOSP apps or their already



20

published preloaded apps. To restrict access to provided functionalities, vendors might

decide to make certain components private to the app itself, or only accessible to other

apps signed by them. In contrast, they might decide to expose or to require less strict

permissions to access downgraded components in their modified apps. If not carefully

carried out, this practice can open serious security holes.

Additionally, vendors might add new resources to existing AOSP and their already

published preloaded apps. For example, they might add more shared preferences and files

depending on the required functionalities. They might also change access control rights of

existing resources for specific purposes.

Removing existing preloaded apps. Vendors may customize Android devices through

removing certain apps that are not required for the device’s functionality or that may have

been replaced with a vendor specific one. For example, a manufacturer may customize a

smartphone OS for a tablet without 3G capability by removing some apps related to

telephony and messaging services, including the dialer app, phone app, telephony providers

and Sms/Mms app.

2.3.3 Customization Aspects: Framework Layer

To incorporate new services and provide support for added functionalities, vendors often

customize the Android framework layer and libraries. They might add new framework

services and libraries, alter existing ones though customizing their implementation and

adding new APIs to provide developers access to new resources and functionalities.
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Adding new system services. Android system services play a key role in exposing

low-level functionalities (e.g, hardware resources) to high-level applications, and in

providing applications with the information and capabilities necessary to achieve desired

functionalities. There are around 70 system services in the Marshmalllow release of

Android, including PackageManagerService, ActivityManagerService and

WindowManagerService, etc. To allow exposing new functionalities, vendors integrate new

system services within the Android framework. In fact, according to our study [19] on 606

custom Android images manufactured by 11 different vendors, on average, vendors added

130 new services, where the largest number of added system services is reported in

Samsung, Amazon and LG images. Supporting the same observation, the study [6] which

proposes to compare an HTC device (HTC Evo 4G) to the official Android AOSP and to

locate the manufacturer’s modifications, reports that Android system services binary

(services.dex) is one of the most heavily customized binaries in Android. In the analyzed

device, several system services have been added for HTC pen support, USB-based

networking, and for integrating a proprietary logging facility.

Modifying existing system services. To tailor existing system services for new

functionalities, manufacturers might modify existing system services. In fact, based on the

same study [6], 95 new classes and 1139 methods have been added while 124 classes and

384 methods have been modified in services.dex extracted from the analyzed HTC Evo 4G

device.
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Modifying other framework binaries. Similarly, vendors might modify other

framework binaries to provide support for added functionalities. The same study [6] reveals

that android.policy.dex, containing enforcement of device security policies such as

mandatory screen lock, has been modified to change the user interface of the lock screen

and to support a new introduced feature (e.g., touch-based stylus). core.dex and ext.dex

also manifest few Java libraries additions, while framework.dex shows extensive

customization; more than 1500 classes have been added, and more than 1100 classes have

been modified.

Changing configuration files. Android framework contains several configuration files

that might be customized by vendors for specific reasons. Framework resources apks

(located under /system/framework) contain the definition of most built-in permissions and

protected broadcasts. Vendors may customize these configuration files to add new

permissions, modify existing ones, add new protected broadcasts or remove existing ones.

Other framework configuration files are located under /system/etc/ and contain critical

system wide configurations. Vendors might modify platform.xml to customize gid (Linux

group Id) to permission mappings or change other configurations under the same directory.

2.3.4 Customization Aspects: Kernel Layer.

Hardware manufacturers, such as Qualcomm and MediaTek, often customize the

Android Kernel layer to fit their hardware components. They often add new device drivers

or modify configurations of existing ones.
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Adding new device drivers. Android inherits the way Linux manages its device

drivers in which block and stream devices are mostly placed under /dev. By default,

Android introduces a set of device drivers, such as GPS, audio, camera, etc. In addition to

that, vendors often introduce a plethora of new devices drivers for custom CPU, graphic

devices, etc. In fact, one of the primary reasons for vendors to customize Android is to

make it work with added hardware. Thus, vendors need to fit the corresponding new device

drivers to the AOSP baseline. As device drivers communicate with Android users through

framework services such as the Sensor Service and the LocationManagerService, any

customization made to the device drivers should be properly propagated to the

corresponding framework services. Thus, device vendors often need to customize these

services to support the custom hardware components.

Removing device drivers. Vendors might decide to remove certain device drivers if the

corresponding hardware have been removed from a specific model. For example, a vendor

might decide to remove NFC driver if the device does not include an NFC card.

Modifying configurations of existing device drivers. Hardware manufacturers often

need to modify the configuration of existing device drivers (e.g., gps driver, audio driver,

camera driver, etc.) and related configurations and settings to provide full support for the

custom hardware. In fact, Zhou et al [5] conducted a large scale measurement study to

understand the scope and magnitude of vendor device customization in 2423 factory

images; the study led to the discovery of 1290 images containing at least one device file
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whose protection level is set differently from the reference AOSP images (publicly readable

and writable, below that of the reference device file).

2.4 Customization Security Risks Categorization

Based on my analysis of the customization aspects carried out at various Android

layers, I can categorize customization security effects based on the following three

categories: risks due to additions, risks due to modifications and risks due to removals.

2.4.1 Security Risks due to Additions

Fig. 2.2.: Customization Security hazards due to addition of new entities

Figure 2.2 summarizes possible security effects of introducing a new app, component, or

framework services, libraries, and kernel drivers.

Buggy and Vulnerable System apps. If not carefully designed and implemented,

newly introduced preloaded apps or components might contain known dangerous practices

and even security vulnerabilities. In fact, the prominent work [4] demonstrates that the
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majority of studied vendor preloaded apps exhibited permission over-privilege; that is, they

request more permissions than what is actually needed by the apps, indicating a poor

understanding of the Android security model. The same work shows that vendor apps

contain know Android vulnerabilities. First, a large percentage of vendor introduced apps

included permission re-delegation attacks [20], which are a form of the classic confused

deputy attack [21] allowing an authorized app to gain access to an Android permission

without actually requesting it. This is particularly more dangerous in the context of

preloaded apps as it might lead to gaining system or signature level permissions, not

available to third-party apps. Second, the study detected that a huge percentage of vendor

apps contained passive content leaks and content pollution [22]. A content leak happens

when a content provider is world-readable (i.e., one that takes no sensitive permission to

protect its read access), or if it is accessible from another exposed component (e.g, activity,

receiver, or service). A content pollution on the other hand, exists when a content provider

is world-writable (e.g., not using a sensitive permission to protect its write access) allowing

an unauthorized app to manipulate certain in-app data.

Vulnerable framework services and libraries. System services provide and intercept

access to core Android functionalities, and are responsible of enforcing proper access

control based on the caller’s identity (e.g., UID, PID, package signature, etc.), caller’s

permissions, and other criteria. Omitting an access control check within vendor added

system services’ APIs might expose corresponding functionalities to non-authorized apps;

thus leading to serious security holes. Similarly, employing weaker access control checks

might also put the corresponding operations at risk, as it can be easily circumvented.
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Weak configurations of new device drivers. Vendors are responsible of specifying

the filesystem permission bits for their added device drivers, some of which are

security-critical. These devices, if not properly protected, could allow an unauthorized app

to access sensitive user data (e.g., GPS location, selected screen coordinates, etc.) or

system capabilities that usually require dangerous / system Android permissions (e.g.,

redirecting the driver to take a picture or take a screenshot, etc). Thus, vendors might put

the device at risk if they do not enforce proper access control permissions on newly added

device drivers.

2.4.2 Security Risks due to Modifications

Fig. 2.3.: Customization Security hazards due to modifying existing entities

Figure 2.3 summarizes possible security effects of modifying existing preloaded apps’

configurations or implementation, modifying framework system services and libraries and

modifying system-wide settings, including device drivers.
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Vulnerable System apps. During the customization of preloaded Android apps,

vendors might weaken the access control on existing components through omitting security

checks implemented programmatically (e.g., binder.getCallingUid API,

context.checkCallingPermission API, etc.) or through downgrading their protection within

the manifest files. For example, a developer might decide to expose a component that has

been protected in older versions or to remove any required caller permissions. If the

underlying component provides privileged capabilities, downgrading its protection would

naturally lead to known Android vulnerabilities such as permission re-delegation attacks,

and content leaks and pollution attacks.

Weaker System wide configurations. During the customization process, device

manufacturers might decide to alter certain security-critical configurations used to protect

privileged resources and capabilities on the system. If not carefully carried out, the new

security configurations might be weaker than the original ones, thus breaking some of the

assumptions made by other components. For example, through altering configurations

within framework-res.apk, a vendor might unintentionally downgrade the protection level

of system-wide Android permissions and remove protected broadcasts declarations.

Similarly, through introducing wrong gid to permission mappings, vendors might

downgrade the permission level required to obtain critical gids. If developers and other

customization parties are not aware of these weaker configuration changes, they might

continue to use them to protect highly privileged resources.
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Weaker configurations of existing device drivers. Similar to the discussion earlier,

device manufacturers might customize the security protection level of existing device

drivers, which might be way weaker than their counterpart on the AOSP reference model.

In fact, though analyzing device driver configurations of 2423 images and comparing them

to their counterpart on AOSP, the study [5] identified 1290 likely vulnerable images,

including at least one device driver whose write/read access are weaker than the same file

on the reference AOSP. The authors demonstrated the consequences of exposing one

critical device node to the public on Samsung Galaxy SII through designing an app that

can command the camera driver to take pictures without having the required permissions.

Breaking relationships between Android components. Different Android

components (apps or their internal activities, services, content providers, receivers, etc.)

are connected together by Inter-Component Communication (ICC). Intents are the primary

vehicle for ICC, and describe operations to be performed by the recipient. For example, to

render the user’s current GPS coordinates on a map, a developer can build an intent

containing the target location and send it to any component that handles rendering maps.

Developers can invoke intent recipients in two ways, explicitly where the target

component’s package name and class name are specified, or implicitly where the target’s

intent filters are set (e.g., action, category, data fields, etc.). Through modifying

components’ identifiers and intent filters’ attributes during the customization, vendors are

risking to break the ICC that exists intrinsically between different preloaded apps, installed

third-party apps, and even framework services referring to other components on the device.

If developers are not aware of the new identifiers’ names, they might refer to non-existing
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components through using previous identifiers (previous package names, class names,

content providers authorities, older action filters, etc.). For example, to save voice notes to

the default notes’ database, a developer might use a previous identifier of the content

provider authority, leading to a possible crash of the app or even worse leaking the voice

notes to non-authorized parties. In fact, If the ICC reference points (i.e., invocation of the

content provider’s authority) are not well guarded (e.g., through a signature check), a

malicious app might claim the ownership of the referenced entity and thus, acquire some

privileges associated with it.

2.4.3 Security Risks due to Removal

Just like modifying existing Android components, removing a certain app or component

from existing apps can lead to breaking the intrinsic relationship that exists between them.

When an attribute (e.g. a package name, authority, action, etc.) is used on a device but

the party defining it has been removed, a malicious app can fill the gap to acquire critical

system capabilities, by simply disguising as the the owner of the attribute.

2.4.4 Summary of the Security Risks

My systematic categorization is not only able to cover all security risks already

discovered on Android customization (as of my knowledge), but to also lay the ground for

another investigation space aiming at studying other serious customization risks, including

investigating aspects of breaking the relationships between Android components,
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introducing vulnerable framework services, weakening the existing framework services’

access control checks, and more generally, introducing weaker system-wide security features.

In this dissertation, I make the first step towards understanding and assessing the

security effects of breaking the intrinsic relationship that exists between components as a

result of Android customization. My investigation reveals a new vulnerability, never

investigated before, that can take place once components are removed or renamed while

other components are still referring to them. The reference to the non-existing components

becomes hanging and could be exploited by malicious parties through claiming the

non-existing attribute to acquire privileged capabilities and mount different attacks. I

discuss more details about this customization-due vulnerability in Chapter 4 and prove

(with other collaborators) that it is actually prevalent in major vendors and also security

critical.

In the second part of this dissertation, I generalize my finding on Hanging Attribute

References (Hare) vulnerability as well as my systematic analysis of other proved and

potentially possible customization security risks. Existing Android literature demonstrates

that customization is responsible for a number of security problems ranging from

over-privileged to buggy system apps that can be exploited to mount permission

re-delegation or permission leakage attacks. My work on Hanging Attribute References and

the research work ADDICTED [5] show further serious risks allowing an attacker to mount

severe phishing attacks and to access resources without the corresponding permission. All

the problems reported so far on Android customization are mainly caused by vendors’

altering of critical configurations. I have shown in my systematic categorization how

vendors might carelessly change important configurations; they might change the
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protection of components within preloaded apps leading to exposed interfaces and

potentially to component hijacking attacks, alter attributes of existing identifiers (e.g.,

package names, authorities, etc.) and even remove them leading to the hanging attribute

reference vulnerability. I have also pointed out that it could be possible that vendors might

change other system-wide configurations such as gid to permission mappings, etc

Albeit the demonstrated serious consequences of altering security features

configurations, no work has systematically investigated all security configuration changes

caused by vendor customization. In this dissertation, I propose to systematically detect

security configuration changes introduced by parties in the Android customization chain

through a large scale differential analysis. My work identified a large number of

inconsistent configurations indicating that vendor customization is highly under-regulated

and requires more security scrutiny. I discuss more details about inconsistent security

features harvesting in Chapter 5.
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3. RELATED WORKS

The popularity of Android operating system has attracted a lot of interests in the recent

years. The main research directions fall into three categories: understanding the security

landscape of the Android ecosystem; proposing various solutions to enhance its security

architectural model, and uncovering emerging threats and vulnerabilities at various

Android layers (app, framework, and Linux kernel). This dissertation falls in the last

category as it mainly identifies security threats caused by Android customization,

systematically.

In this section, I first review prior research related to Android customization. Then, I

review other studies with regards to these three categories: demystifying Android security,

Android security enhancement proposals, and finally, uncovering emerging threats.

3.1 Security Hazards of Android Customization

The security risks introduced by the fragmented Android ecosystem has been studied

before. The previous work [3], which systematically studies 8 popular Android

smartphones from different manufacturers reveals that these phone images do not properly

enforce the permission-based security model. Several privileged or dangerous permissions

protecting sensitive user data within preloaded apps are exposed to non-privileged apps.

The authors developed Woodpecker, a tool that allows detecting capability leaks in
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Android, and employed it to identify vulnerable cases in few customized Android devices.

For example, the tool revealed that a preloaded app in Samsung’s Epic 4G contains an

explicit leak of the permission MASTER_CLEAR, which once exploited, allows an

attacker to wipe the user data on the phone without his confirmation. Similarly, the tool

discovered that the studied HTC’s messaging app contains another serious capability leak,

exposing the SEND_SMS permission to third party apps, and consequently allowing them

to send sms messages to premium numbers. Even though this research work has just

anecdotally shown that Android devices have security flaws shipped in their pre-loaded

apps, it is one of the earliest to provide insights on the dangers of vendor customization.

Prior research [4] aims to assess the impact of Android customization on the overall

Android security at the application level and to determine the source of security risks

troubling the security aspects of Android preloaded apps. For this purpose, the authors

developed a three-stage process; the first stage aims to classify each preloaded app into

apps originating from AOSP, vendors, or other origins (e.g., carriers, etc.). The second

stage analyzes the permission usage trend to detect over-privileged cases; that is, apps

requesting more permissions than what they actually need for proper functioning. The

third phase conducts a vulnerability analysis to detect permission re-delegation attacks [20]

and content leaks and pollution attacks [22]; where permission re-delegation attacks allow

unprivileged apps to act as though they have sensitive permissions via exploiting open

interfaces of preloaded apps, and where content leaks allow such apps to gain unauthorized

access to private data. The evaluation results of this 3 stage process show that 81.78% of

pre-loaded apps on stock Android devices are originating from vendor customization and

are responsible for the majority of detected security problems (85.78%) (i.e., permission
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over-privilege, permission re-delegation, etc). Unlike these prior studies, My HareHunter

work (chapter 4) discusses new type of vulnerabilities never reported before, hanging

attribute references vulnerability, which is also specific to the customization process,

affecting mostly the Android application layer. My research demonstrates the serious

consequences of the new flaws and identifies the fundamental cause behind them, which has

never been done before. Moreover, My DroidDiff (Chapter 5) is fundamentally different

from the above two works that aim to find specific known vulnerabilities (e.g., capability

leaks, permission re-delegation, etc.) on different customized images through conducting a

reachability analysis from an open entry point to privileged sinks within decompiled system

apps. Instead, I leverage a differential analysis to point out inconsistencies in Android

components’ protection, and consequently detect unintentionally exposed ones. Moreover,

my analysis gives further insights about possible reasons behind the exposure.

Another closely related study is the prominent work [5] analyzing security

configurations of Android’s Linux device drivers in an effort to discover fragmentation

perils at the Kernel layer. The study performs a systematic study on the security hazards

of Android device customization through automatically identifying the Linux files related

to the operations on a given device driver (e.g., audio, camera, wifi drivers, etc.) and then

comparing their protection levels (Linux file permission bits for each individual file) on a

vendor’s version with those on the corresponding AOSP version. Any detected weaker

protection on a vendor device driver implies a potential security hazard. The presence of

the discrepancy of Linux file permissions across two similar OSes, together with its relation

with a dangerous Android permission (e.g., CAMERA permission) is quite alarming.

Surprisingly, the research finds that many vendor specific device drivers have not been
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properly protected, causing their exposures to the parties that should not access them:

e.g., an app can directly command an exposed camera driver to take pictures, even when it

does not have the camera permission. The research further conducts a measurement study

reporting the pervasiveness of the problem across over 2,000 factory images; around 1290

(53.24%) analyzed images contain at least one likely CF, publicly exposing different device

nodes such as GPU, Unified Memory Provider, 2D Graphics, camera and RFID device

drivers. By comparison, my study on Hanging Attribute References (Chapter 4) happens

on pre-installed apps, which requires more complicated code analysis than a simple check

of Linux drivers’ security configurations, as does this work. Pre-installed apps are known to

be the main target of a customization [4] and their customization - specific flaws have never

been investigated thoroughly before, to the best of my knowledge. On a similar track, my

DroidDiff study (Chapter 5) have been inspired by this work, which is only limited to

investigating Linux device drivers inconsistencies, to generalize the search space for security

inconsistencies to all Android layers. From a top-down approach, this related work is

actually a specific case of system-wide inconsistent security configurations. My finding on

inconsistent GID to permission mappings (section 5.5.3) demonstrates another way that

can expose critical device drivers. More specifically, through introducing a low

protection-level permission mapping to privileged GIDs (e.g., a normal protection level

permission mapping to CAMERA gid), a vendor will allow third party apps to gain access

to security critical drivers once they gain a lower privileged permission.

Another related work [6] audits third-party Android phones by comparing them

side-by-side to the official Android operating system in order to locate potential security

vulnerabilities and design flaws creeping through the vendor customization. The authors
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extract pre-installed apps and libraries from a custom Android image, build a matching

system from the AOSP, then compare the pre-installed apps and libraries to locate

modifications and assess their security. The results of comparing a custom HTC phone

(HTC Evo 4G) to a matching AOSP reveals that vendors modified several framework

binaries such as: android.policy.dex (security enforcement modules like mandatory screen

lock), framework.dex (the core library of the Android framework) and services.dex (hosting

a number of built-in system services such as WindowManagerService,

PackageMangerService, and ActivityMangerService). The study further demonstrates that

the introduced customization might be risky through few discovered cases; a pre-installed

app on the HTC test device was found to execute arbitrary commands from a

non-authorized IPC channel or the internet, allowing to retrieve sensitive data such as

device id and software configuration details. Another detected case reveals an intrusive

software (Carrier IQ) collecting different private user data on the test device. My work on

Hares (Chapter 4) is different from this work as it focuses on describing a new Android

vulnerability and proposing a detection mechanism. My work on harvesting inconsistent

configurations in custom Android ROMs (Chapter 5) is similar to this work as it also

leverages a comparative approach to locate modifications that could be security critical.

This related work though does not look into any configuration discrepancies, but rather,

dives into the Java components of the preloaded apps and system libraries.

Another Previous work, conducted by Gallo et al [23], highlights security issues in the

Android permission model with regards to Android customization. The authors analyzed

five different devices and concluded that serious security issues such as poorer permission

control grow sharply with the level of customization.
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Dangling pointer protection. Remotely related to my work on Hanging Attributes

References vulnerability discussed in Chapter 4 is the prior research on dangling pointers, a

memory vulnerability in which a pointer in a program does not point to a valid object [24].

The problem has been studied for decades and can be detected by various tools such as

Valgrind [25]. Given the conceptual similarity between this old problem and Hare, the new

security risk actually comes from the interconnections among different apps and system

components, whose detection and mitigation need to be done across the whole operating

system. This poses a new challenge to the system security research.

3.2 Demystifying Android Security

Survey of Android Security. A high-level view of Android security is presented in the

earlier research works [26,27]. The first study [26] unmasks the complexity of Android

security, and discusses the two security enforcement mechanisms employed by Android, one

applied at system level (e.g., private APIs, permission check enforcement, etc.) and the

other at the Inter Component Communication level (e.g., component visibility, permissions,

etc.). The work further notes some possible development pitfalls that occur when defining

an application’s security. The second work [27] aims to better understand Android app

attack vectors through a systematic characterization of popular Android apps’ security.

The authors consider a broad range of concerns including dangerous functionalities and

vulnerabilities and proposed a Dalvik decompiler for the analysis. Both works highlight the

concern on over-privileged apps and question Android’s permission-based security

architecture.
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A similar study [28] provides another survey of Android security in general. The work

first provides a taxonomy of mobile platform attack classes with specific examples (such as

Android repackaging attacks, remote execution of payloads, etc.) as each class applies to

the Android environment, then proposes mitigations when possible. More recently,

SoK [29] systematizes the research work on Android security and privacy in appified

platforms. To objectively evaluate and compare the existing different approaches, the

authors first came up with a common understanding of several challenges and attack

models threatening the Android ecosystem, then created a unified understanding of the

attacker’s capabilities. Based on this understanding, the authors analyzed the security

benefits of different proposed solutions in the Android security literature and performed a

systematic comparison with regards to their role in the overall ecosystem. My HareHunting

work (Chapter 4) has been categorized by this study as a security consequence of vendor

customization/ fragmentation, caused by both modifications carried out by platform

developers and device vendors.

Android Permissions. Android permissions are meant to protect critical android

resources on the framework layer. Apps can optionally use built-in or custom permissions

to protect their own resources (a content provider, a service, an activity or a broadcast

receiver). The android literature contains a large amount of research work on Android

permissions. Prior work [30] leverages dynamic analysis to demystify android permissions

usage, through mapping APIs to their permission requirements. To overcome some

limitations of Stowaway [30], PScout [31] proposes a static analysis tool aiming to come up

with a complete specification for the Android permission system that lists permission
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requirements for every API call. The tool performs a reachability analysis between API

calls and permission checks within the entire Android source code. The work [32] is

another earlier effort aiming to help developers specify the minimum permission

requirement needed for the correct functioning of a given app; the proposed tool relies on a

manually constructed API-permission mapping and on the app code’s to point out

permissions not required by any used API. Compared to Stowaway [30] and PScout [31],

this tool involves a less reliable approach to map permissions to APIs; manual parsing of

Android APIs documentation which is most often not complete.

Another line of research is devoted to enhancing the permission system. Felt et al. [33]

propose making the permission granting mechanism dependent on the permission type

requested, e.g., auto-granting non-severe permissions with reversible side-effects, trusted UI

for user-initiated or alterable requests, or confirmation dialogs for non-alterable,

app-initiated requests that need immediate approval. On the same line, Roesner et al. [34]

proposed a concrete realization of trusted UI in the form of access control gadgets that

allow a user-driven delegation of permissions to apps whenever such widgets can be

effectively integrated into the apps’ workflows. A more recent work [35] aims to improve

the effectiveness of Android permissions by employing the notion of privacy as contextual

integrity. More specifically, the authors propose a new permission requesting model, that

would only prompt users when an app accesses sensitive data in a way that defies a user’s

expectation. The goal of the proposed work is to minimize habituation by only confronting

users with necessary security decisions and avoiding to show them permission requests that

are either expected, reversible or unconcerning. Liu et al. [36] propose to reduce the list of
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permissions that the user faces at application install time and replacing it with a concise

list reflecting privacy profiles.

Other research works [37,38] on Android permissions employs NLP techniques to

analyze Android apps descriptions, derive required permissions, and check whether they

correspond to the effective permissions set requested within the Android manifest file.

Zhang et al [39] take a different approach and generate security-centric app descriptions

from analyzing apps’ code in an effort to educate Android users about understanding a

given apps’ functionalities at install time.

Android Linux-layer security. Only limited effort has been made on Android’s

Linux-layer security whether in terms of investigating possible security threats or providing

enhancement to the existing access control. Besides the research work [5] discussed in the

earlier section of related works, a prominent work include [40] describing a new side

channel for inferring user secrets such as key strokes and browsing history through tracking

changes in a target application’s memory footprint, exposed by Android’s Linux. Another

related work is the study [41] inspecting public resources disclosed at both the Android and

the Linux layers to measure its impact on sensitive data exposure. The work demonstrates

that by monitory various exposed channels (e.g., Linux resources such as process usage

data), an app without any permission may acquire sensitive information such as

smartphone user’s identity, her disease condition, geo-locations and her driving route, from

top-of-the-line Android apps. My DroidDiff finding on the Linux GID downgrades through

association with non-privileged Android permissions, is related to these works in that it
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also describes a new attack vector that can allow third party apps to access critical Linux

resources (device drivers) by requesting non-system Android permissions.

Enhancement of Android Security. A lot of research work have been conducted to

enhance Android’s access control model and improve its security. Quire [42] proposes a

security mechanism to address the confused deputy issue through tracking the IPC call

chain and allowing an app the choice of operating with the reduced privileges of its callers

or exercising its full privilege. The earlier research works [43,44] propose modifications to

the Android framework allowing the user to provide mock data to applications interactively

as they are being used. Similarly, the work [45] presents novel privacy controls to protect

users’ sensitive data through providing shadow data in place of private ones, and through

exfiltration blocking.

Another work [46] develops an Android Permission Extension (Apex) framework, a

comprehensive policy enforcement mechanism for the Android platform allowing a user to

selectively grant permissions to applications as well as impose constraints on the usage of

resources. For that purpose, the authors defined the semantics and the policy model used

to describe these constraints. They further introduced an extended package installer that

enables end users to specify the resource usage constraints. This work is similar to the

earlier work Saint [47] which describes a mechanism that enables app developers to define

install-time and runtime constraints. However, the proposed Saint framework [47] gives the

option of policy specification to the application developers and not to the user as apposed

to Apex [46]. Other frameworks such as XManDroid [48] and TrustDroid [49] focus on

mediating communication between components in different applications. FlaskDroid [50]
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and the SEAndroid project [51] also mediate component interaction as a part of their

enforcement. SEAndroid solved the technically complex challenge of porting

SELinux-based mandatory access control from the desktop domain to Android.

On a different track, revDroid [52] aims to assess the side effects (such as app crashes)

of selective permission granting and revocation proposed by these works [43,45,46],

through an automatic static analysis that counts unhandled security exception caused by

permission revocations.

Another line of research employs tainting capabilities to enhance Android’s access

control. AppFence [45] provides additional mechanisms to shadow sensitive data and to

block unauthorized leakage via the network through fine-grained taint tracking.

YAASE [53] encompasses tainting to prevent the confused deputy and privilege escalation

attacks. The work [54], on the other hand, employs taint tracking to enforce data-driven

usage control in a business environment.

AdDroid [55] and AdSplit [56] provide fine-grained access control at component level.

Both of them attempt to restrict untrusted 3rd-party components (i.e., advertisement)

inside the app. AdDroid [55] encapsulates the advertising libraries into the Android

framework to lift their trust level, which can only be realized if the device vendors reach an

agreement with all advertising companies. AdSplit [56], on the other hand, isolate

advertisement into a separate activity from the app, such that the advertisement activity is

placed beneath the app activity. However, this approach is not likely to be adopted in

practice as it imposes a risk over the app’s transparency, thus, possibly leading to the Click

Jacking attack and its variations. AFrame [57] presents a different isolation approach

relying on process ids. The solution places advertisements and its containing app on the
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same drawing surface but within different processes. As such, the approach does not suffer

from the limitations inherited from using the transparency technique.

3.3 Android Vulnerabilities.

A separate line of research on Android focuses on identifying Android specific

vulnerabilities and attacks. My HareHunter paper (Chapter 4) falls into this subcategory

as it identifies a new attack model, mainly attributed to non-careful (security oblivious)

device customization and that can be exploited to mount high level attacks (e.g. phishing,

stealing user info, etc.). However, to the best of my knowledge, never before has anyone

investigated the security risks of hanging references: i.e., the parties to be invoked do not

exist and can therefore be impersonated by a malicious app.

Android Updates. Few researchers tried to identify vulnerabilities caused by the very

fast paced Android app lifecycle and frequent updates released by Google. Thomas et

al. [11] collected a corpus of 20400 custom Android devices and demonstrated that there is

a significant variability in delivering security updates to Android devices manufactured by

different vendors and carriers; leading to unpatched known security vulnerabilities. In fact,

the study reveal that 87.7% of the collected Android devices have major security

vulnerabilities and are exposed to at least 1 major threat. The research work [58] reveals

another class of attacks caused during the Android OS updates through which an attacker

can strategically request permissions and other attributes, available in future OS versions,

to elevate its privilege once the update takes place. This problem (called Pileup [58]) is

most related to my work HareHunter (Chapter 4) in that it is caused by the logic flaws
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within the Android upgrade mechanism, which tends to avoid substituting a new app for

the existing one with the same attributes such as package names. In a Pileup exploit, new

attributes not in use are preempted by a malicious app before an upgrade, while in a Hare

attack, the adversary takes advantage of the attributes that do not exist but are still used

on a device. My DroidDiff work (Chapter 5) demonstrates other security problems caused

by the fast paced API version updates; to catch up with a new version release, vendors

might not concentrate on fixing all security vulnerabilities discovered especially in older

models, forget to adapt important configuration changes and might even make mistakes

through downgrading important security features.

Android and Web. Other researchers focused on uncovering vulnerabilities within

specific Android apps in the web landscape. Luo et al. [59] present the first systematic

study on the security problems of WebView and discover several attacks revealing a

fundamental problem in the weakened TCB and sandbox of the Android’s Webview

infrastructure. Wang et al. [60] perform another systematic study to understand the

unauthorized origin crossing on mobile OSes and bring in light the presence of such

vulnerabilities in high profile apps. Recent work [61] has extended the scope to cover code

injection attacks on all HTML5-based mobile apps. The conducted attacks mainly target

vulnerable apps that utilize the WebView feature provided by Android.

Component Hijacking attacks on Android. Other research work have tackled

various vulnerabilities, specific to the Android ecosystem. Security effects of exporting

content providers have been studied by Zhou et. al [22], including content leaks and
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content pollution. Permission re-delegation [20] attacks depict another consequence of

non-intentional public export of interfaces, in which an application with a permission

performs a privileged task on behalf of an application without that permission; thus, an

attacker can exercise privileged capabilities without acquiring the corresponding Android

permissions. Earlier research work [62] has studied unauthorized intent receipt where an

attacker can hijack activities and services in case of implicit intents. The work does not

directly touch the Hare flaws as it does not require the absence of the legitimate

activity/service being referred. Rather, it discusses the cases where multiple recipients are

present on the device. In my HareHunter work (Chapter 4), I discuss that even an explicit

intent can be hijacked when the legitimate recipient is not in place. I further evaluate the

security consequences of hijacking other components such as content providers and

permissions.

Other works include evaluating the security risks resulting from design flaws in the

push-cloud messaging [63], identifying the risks of Android app uninstallation process [64]

and the risks of Android’s Clipboard component and sharing mechanism [65]. Two recent

studies further examine the crypto misuse in Android apps [66,67]. These works relate to

my DroidDiff research as they are also partially due to developers’ mis-configurations of

app components or misinterpretation of Android’s security protection. Others works

include discovered vulnerabilities on Android’s flawed design, such as the research [68]

exploiting flaws in Android’s system server to mount several DoS attacks and the

study [69] uncovering the Android root providers and showing that these well-engineered

exploits are not well protected, and can be extremely dangerous if exploited.
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GUI Security. GUI Security has been extensively studied in the context of Android OS

with relationship to its unique design and GUI sub-systems. It has been demonstrated that

Android’s GUI confidentiality can be breached by embedding UI components from a

malicious source [59,70], through commending adb to take screen shots without user’s

knowledge [71], via other side channels such as shared memory [72], or reading device

sensors [73, 74]. Most recently, the work [75] performs a systematic security evaluation of

Android’s multitasking and the ActivityManagerService design in depth and discovers a

wide open surface of attacks allowing to confuse users about the displayed UI and threaten

its confidentiality.

Side channels: Exploiting Unprotected Resources Few research works point out

unintended information leaks using motion sensors provided by mobile devices. The

feasibility of keystroke inference from nearby keyboards using accelerometers has been

shown in [76]. Another work [77] demonstrates the possibility of keystroke inference on a

mobile device using accelerometers and mentions the potential of using gyroscope

measurements as well, while another study [78] points to the benefits of exploiting the

gyroscope compared to other motion sensors on the device to infer keystrokes. The

study [79] shows that gyroscopes on smartphones can be used for eaves-dropping on a

conversation in the vicinity of the phone and identifying the speakers. Zhou et al. [41]

reveal that audio on/off status is a side-channel for location tracking without permissions.

SurroundSense [80] demonstrates that ambient sound and light can be used for mobile

phone localization via ambience fingerprinting. The recent work [81] shows that by simply

reading the phone’s aggregate power consumption over a period of a few minutes, an



47

application can learn information about the user’s location. The authors employed machine

learning algorithms to accurately infer users’ location.

3.4 Android Malware.

Android research is rich in the field of Android malware detection. I place my

DroidAPIMiner work (Appendix A) in the context of other approaches to detect malware

through leveraging byte-code level information.

One much-studied direction focuses on detecting Android malware based on the

permission requirements. Kirin [82] blocks apps that declare risky permission combinations

or contain any suspicious action strings used by activities, services or broadcast receivers.

Sarma et al. [83] propose different risk signals based on the requested permissions, category

as well as requested permissions of apps belonging to the same category. In another work,

Sarma et al. [84] employ probabilistic generative models to compute a real risk score of

Android apps based on the permissions that they request. Other work for detecting

malware through bytecode level information include (AASandbox) [85] which relies on a

trial and error approach to identify suspicious patterns in the source code, and

DroidRanger [86] which detects Android malware based on the similarities of the requested

permissions and the behavioral footprints to different known malware families, formulated

through a heuristic based filtering. Compared to these two approaches, my DroidAPIMiner

(Appendix A) is more reliable, I do not rely on any heuristics or a trial and error approach.

Rather, DroidAPIMiner conducts a thorough frequency analysis of API calls within benign
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and malicious apps to extract malware features and employ machine learning to get the

most relevant ones.

Another direction of related work relies on system level events to detect possible

malicious behavior. Schmidt et al. [87] extract library and system function calls from

Android executables and compare them to malware executables to classify apps.

Crowdroid [88] collects system call traces of running apps on different Android devices and

applies clustering algorithms to detect malicious behavior. More Recently, AsDroid [89]

detects stealthy app behaviors by identifying mismatches between API invocations and the

text displayed in the GUIs. More similar research [90,91] to my DroidAPIMiner rely on

semantics within the bytecode to detect specific vulnerabilities in Android applications.

Potharaju et al. [90] aim to detect plagiarized apps through different detection schemes

relying on symbol tables and method-level Abstract Syntactic Tree fingerprints. In [91],

Zhou et al. aim to systematically detect and analyze repackaged apps containing additional

potential malicious logic in third party Android markets based on fuzzy hashing techniques.

Similar to my proposed detection approach in DroidAPIMiner, Drebin [92] extracts

several features from Android applications (e.g., requested permissions, invoked framework

APIs) and then applies machine learning techniques to perform classification. I did not rely

on Android permission in my analysis, but instead focused only on API calls. I justify this

decision with the fact it is quite easy for malicious authors to request more benign

permission to defeat any approach relying on them for detection. Zhang et al. [93] extract

more sophisticated classification features to fight against malware variants and zero-day

malware. More specifically, they extract a weighted contextual API dependency graph as

program semantics to construct feature sets and introduce graph similarity metrics to
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uncover homogeneous application behaviors while tolerating minor implementation

differences.

A different direction for detecting Android malware relies on dynamic analysis.

Andromaly [94] continuously monitors various system metrics to detect suspicious activities

through applying supervised anomaly detection techniques. In [95], Enck et al. perform

dynamic taint analysis to track the flow of private and sensitive data through third party

apps, and detect any leakage to remote servers. Portokalidis et al. [96] propose a security

model for protecting mobile devices which performs multiple attack detection techniques

simultaneously on remote servers hosting an exact replica of the devices.

Other works are more general and aim to detect potentially suspicious behavior such as

sensitive data flows and information leaks. Notable works include FlowDroid [97] and

DroidSafe [98] which propose precise static taint analyses to detect potentially malicious

data flows. Similarly, AppSealer [99], Capper [100], PEG [101] exercised static data flow

analysis to identify dangerous code in Android apps. AppContext [102] is a system

leveraging supervised machine learning to classify potentially malicious behaviors by taking

into account the context in which such behaviors are executed. A more similar

approach [103] also shares the same observation with AppContext; that is just looking at

behaviors alone is not enough to perform precise classification, and propose a solution to

detect logic bombs (i.e, malicious behavior triggered under special conditions).

Lok and Yin [104] present DroidScope, a virtualization based platform for Android

malware analysis. It rebuilds both the operating system and Java level semantics, and

enables instrumentation of the Dalvik and native instructions. Consequently, DroidScope

can be used to understand the behavior of malware both at the native code level as well as
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at the interaction with the system. On the same line, AppFence [45] is a dynamic

framework implemented as modifications to the Android framework that prevents attacks

against user privacy via data shadowing. Other research works, such as Mobile

Sandbox [105], CopperDroid [106], Andrubis [107], VetDroid [108] developed tools and

techniques to dynamically analyze unknown Android applications for potential malicious

behavior. Another research line proposes solutions based on dynamic analysis to perform

multi-path execution and dynamic symbolic execution of unknown Android apps

[109–111].
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4. HARE HUNTING IN THE WILD ANDROID: A STUDY ON

THE THREAT OF HANGING ATTRIBUTE REFERENCES

Earlier research work [26] has demonstrated that most of the vendor customization process

happens at the level of system apps; that is, vendors often remove specific system apps,

add new ones, and modify the identifiers of existing ones. For example, the manufacturer

may customize a smartphone OS for a tablet without 3G capability by removing some

components, including the messaging and telephony provider apps; however, in the

presence of the apps capable of receiving SMS/MMS messages, malware on the tablet could

impersonate the missing telephony providers (using its SMS/MMS authorities) to

communicate with those apps and their users (e.g., cheating them into believing that their

friends are sending them messages from the VoIP channel). Fundamentally, what causes

the problem here is the intrinsic interdependent relations between different Android

components (apps and framework services), which connect one party to another through

references to the latter’s attributes such as package, activities, services names, authorities

of content providers and permissions: e.g., startActivity called by one app to invoke

another’s activity (whose name is specified through setClassName). Customizations made

to those components, if not well thought-out, could easily break some of such relations,

resulting in the references to non-existing attributes (e.g., the authorities of the SMS/MMS

providers not on the tablet). We call them hanging attribute references, or simply Hares.
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As a side effect of the Android fragmentation, Hares could also be brought in by the

third-party developer who designs her app to run on various Android versions, with or

without certain service components it utilizes. For example, a reference to the non-existing

messaging content provider could also be embedded in a third- party app meant to work on

both the smartphone and the tablet. Compared with the customization flaws discovered in

the prior research, which are about misconfigurations of Linux-layer device drivers [26], the

hanging reference is a framework-layer issue and potentially more pervasive, given the fact

that system apps on that layer have always been the focus of a customization [24].

However, such a problem has never been studied, whose security implications, scope and

magnitude, therefore, are not clear at all.

In this thesis, we report this new type of vulnerabilities, which we demonstrate are

indeed both security-critical and extensive. We show that popular Android devices are

riddled with such flaws, which often have serious security implications: when an attribute

(e.g., a package/authority/action name) is used on a device but the party defining it has

been removed, a malicious app can fill the gap to acquire critical system capabilities, by

simply disguising as the owner of the attribute. More specifically, we found that a Hare on

Note 8.0 can be exploited to steal the user’s voice note and another flaw on Tab S 8.4

allows a malicious app to impersonate the Facelock guard to gain control on the user’s

login authentication. The popular Tango app contains an unprotected reference to the

missing sms, which can be leveraged to steal the user’s messages. Also through hijacking

various packages, activities or missing content providers, the adversary is able to replace

Google Email’s internal account settings interface, inject activities into LG FileManager

and LG CloudHub to steal the user’s password, and trick S-Voice into launching a
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malicious program whenever the user needs to use the pre-installed voice recorder.

Moreover, on Note 3 (phone) and Note 8.0 (tablet), a Hare related to an absent permission

can be exploited to steal all the contact information (e.g., email, phone number, etc.) of

the device user and even tamper with its content (e.g., changing a friend’s phone number,

email and URL to those under the adversary’s control), when the malicious app does not

have the privilege to do so.

To understand the scope and magnitude of the security hazards introduced by Hares,

we (along with other collaborators) propose and ran a new tool to automatically evaluate

over 97 OS images for Google, Samsung, LG, HTC and Motorola devices. This

measurement study shows that unprotected Hares exist on every single device we tested

and are completely open to exploits. Also interestingly, I found that though such flaws can

be caused by carriers and other parties, apparently they have been primarily introduced by

the manufacturers when customizing the same OS to different device models. Further, the

problems are still pervasive even on the latest OS versions and phone models, across

different manufacturers, indicating that this security risk has yet come to their attentions.

These findings point to the gravity of such security hazards and the urgent need to develop

effective solutions to address them. We reported the high-profile Hares discovered in our

research to Google, Samsung and other related organizations, who all acknowledged the

importance of our findings.

Our measurement study was made possible by Harehunter, a new tool for automatic

detection of the Hare vulnerabilities within system apps. For this purpose, Harehunter first

performs a differential analysis, comparing all the attributes defined by the system apps on

an Android image with those referred to by them. Any discrepancy between the definitions
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and the references reveals a Hare risk. This instance is further evaluated through

automatic program analysis to find out whether it is actually protected: e.g., whether a

package’s signature has been verified before its activity is invoked. If not, then the problem

is reported as a likely Hare (LHare) case. Running Harehunter on 97 popular device

images, we discovered 21557 likely Hares within 3450 vulnerable system apps, which have

been documented in a database. This database is utilized by a protecting app we

developed, called HareGuard, to inspect every newly installed app on these devices,

identifying the suspicious ones that attempt to exploit the Hares there, thereby securing

the device even before its manufacturer can fix the problems. Our study further evaluated

the efficacy and performance of Harehunter and HareGuard, which were both shown to be

highly effective. We further discussed the lessons learnt from our study and the effort that

needs to be made to avoid similar problems in the development of future systems.

Attribute reference and Android security model. Different Android components

(apps or their internal activities, services, content providers, receivers, etc.) are connected

together by Inter-Component Communication (ICC), such as Intent messaging. An Intent

is a message that describes the operations to be performed by the recipient: for example,

startActivity that triggers an activity (a set of user-interface related operations)

associated with an app. The app’s package name and activity name can be specified

through the Intent, using the method setPackage, setClassName, setComponent, etc.

Here the reference from one component to another happens through the latter’s attributes,

i.e., the package name and activity name. When these attributes have not been set for the

communication, the Intent is implicit and needs to be resolved by the OS to locate the
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recipient capable of handling it. In this case, the sender needs to provide an action (e.g.,

android.intent.action.Edit through setAction) and other parameters (such as data),

and the recipient is supposed to declare an Intent filter for its component (activity, service,

receiver) that matches these parameters in order to get the Intent. Another important

Android component is content provider, which manages access to an app’s databases

(structured datasets). To operate on another app’s content provider, one must get an URI

“content://authorityname/path”, through which the database table corresponding to

the path can be read (query) and written (e.g., insert), under the consent of its owner.

In all such ICC communication, once the target of a reference (e.g., package name, activity

name, action name and authority name) is not present on the same system, the reference

becomes hanging, which can have serious security implications (Section 4.1).

Android protects its information assets through an application-sandbox and permission

model, in which every app runs within its own compartment (enforced through the Linux

user protection) and can only access sensitive global resources and other app’s components

(content provider, service, activity, broadcast receiver) with proper permissions. More

specifically, the app can specify for each of its components a permission and only process

the message or service request from the parties with the permission. For example, a

content provider can be guarded with a readPermission and a writePermission; a

broadcast receiver can be configured to get the message only from those with a specific

permission. Such permission protection is mostly set statically within an app’s manifest

file, but it can also be specified programmatically, using the APIs like checkPermission.

An app that wants to obtain such a permission needs to ask for the user’s consent.

However, when the party that defines such a permission does not exist on a custom version,
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the permission protection becomes hanging: anyone that defines the permission can silently

gain the privilege to access protected app components.

Adversary Model. We consider a scenario where a malicious app has been installed on

the target device. However, the app does not need to have any suspicious permissions.

Actually, in the case of hanging permission protection, it can define the missing permission

by its own to launch all kinds of attacks. To deliver the information stolen from the device,

the app needs the communication capability. This can be done explicitly by asking for the

network permission, which has been requested by almost all apps. Alternatively, the

malicious app can utilize other channels, such as browser, to send the data out, as

demonstrated in the prior work [112].

4.1 Exploiting Hares

As mentioned earlier, a hanging attribute reference could be an ICC call to a

nonexisting package, activity, service (which could be implicitly specified by the action or

data filters) or authority of a content provider, or the use of a missing permission to

protect an app component (service, activity, broadcast receiver and content provider). In

the presence of such a reference, a malicious app that claims its target attribute could gain

access to the information assets exposed by the ICC or guarded by the permission. More

specifically, when the reference is not guarded along the execution path involving the Hare,

that is, no validation of the existence and legitimacy of the attribute before using it, the

malware that acquires the attribute (e.g. package/authority/permission name)

automatically obtains the privilege associated with the attribute and becomes entitled to
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get sensitive messages from the sender, utilize its component, etc. Examples of the attacks

are presented in the rest of the section.

It is important to note that not every hanging reference is exploitable. It can be

protected by verifying the existence of the package that supposes to define it and then

verifying its signature (extracted through getPackageInfo with flag GET_SIGNATURE S), or

its application info FLAG_SYSTEM, or by checking the current device’s model, country code

or other properties (e.g. getProperty). The presence of such protection was identified in

our study through automatic code analysis (Section 4.2.1). On the other hand, if the

security check is not in place, a Hare becomes vulnerable to exploits, even though it could

still be nontrivial to find the conditions for triggering the code.

In my research, I systematically analyzed 97 Android factory images from major device

manufacturers (Google, Samsung, LG, HTC, Motorola), and found 21557 hanging attribute

references that are likely to be vulnerable (Section 4.2.2). To understand the security risks

they may pose, we built end-to-end attacks on a few Hare instances. Except a small set of

them that were discovered manually, which motivated the whole research, most of the

Hares, particularly those within pre-installed apps, were detected automatically using

Harehunter described in Section 4.2.1. We reported all these security-critical flaws to the

manufacturers, including Samsung, LG, Google and HTC. Some of them have already been

fixed. Following we elaborate what we learnt about such vulnerabilities and the

consequences once exploited. Also, some of the attack apps we built passed the security

check of Google Play, while the rest were accepted by other leading app markets like
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Amazon Appstore and even Samsung’s own app store, which demonstrates that the

security risks posed by these vulnerabilities are realistic1.

4.1.1 Package, Action and Activity Hijacking

Among all the Hares discovered in our research, the hanging references often point to

package names and actions. These attributes play an important role in Hare exploits, even

when the main targets are other attributes. This is because a missing package can be the

owner of absent activities, and actions often need to be specified for receiving the Intent

caused by vulnerable references. Moreover, references to nonexisting activities were also

found to be pervasive. By exploiting these vulnerabilities, the malware can let a trusted

source (a system service or app) invoke a malicious activity, making it look pretty

trustworthy to the user. This enables a variety of highly realistic phishing attacks that can

lead to disclosure of sensitive data, such as passwords. Following we elaborate a few

examples for such Hare flaws and our end-to-end attacks.

A limitation of the exploits on package names is that once the owners of the targeted

names are already on Google Play, our attack apps can no longer be uploaded there, as the

Play Store does not allow two apps to have the same package names. This restriction,

however, is not applied to other attributes. So those not relying on package names can still

get into the Store. Also, third-party app stores like Amazon and Samsung typically do not

have the target apps of our attacks and therefore the code for hijacking their package

names can often be accepted there. Interestingly, we even managed to publish some of the
1
To avoid causing any damage to those inadvertently downloading our apps, we either removed

them as soon as they were approved by the app markets or make sure that they do not send out

sensitive user data or perform other actions that could harm the user.
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attack apps on Samsung App Store, even though they performed days of manual analysis

on our submission.

Stealing voice note. S-Voice is a personal assistant and knowledge navigator service app

pre-installed on certain devices (e.g. Note 8.0). One of its features is voice memo: the user

can simply say “take memo” or “take note” to activate the functionality and follow the

instruction (“please say your note”) to record her note. After the note is taken, the app first

checks whether another system app com.vendor.android.app.memo (memo for short)

exists, and if so, connects itself to the latter’s service by calling bindService using an

action name specified by its Intent filter. This hands over the note to the memo app. In the

case that the app is not there, S-Voice looks for another system service to handle the voice

note.

We found that S-Voice fails to verify the signature of memo when referring to it. As a

result, on the device where the app is missing, the references to both its package name and

action (through bindService) become hanging. A malicious app can then impersonate

memo using its package/action names to steal the user’s voice note. In our research, we

built an attack app with the package name of memo that defines a service with the action

Intent filter com.vendor.android.intent.action.MEMO_SERVICE. The app also includes

an interface for receiving service requests and data from S-Voice. We ran it on top of Note

8.0, a device that does not have the memo app, and successfully stole the voice note

recorded from the user. Our attack app was successfully uploaded to Amazon Appstore.

Cheating AOSP keyguard. Prior to 5.0, all AOSP versions after 2.3 support face-based

screen unlock, which is done through a system app called Facelock (com.android
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.facelock). Once this biometric authentication option is chosen by the user, the Android

Keyguard service will bind itself to a Facelock service, enabling the user to use her face and

the front camera to unlock her device. More specifically, whenever the security settings

fragment within the Settings app is created, Settings app will invoke

isBiometricWeakInstalled in LockPatternUtils framework class to check if the

Facelock app is installed. If so, it will add Facelock as an available screen lock option.

Later when the user clicks on the option, Settings sends an Intent to Facelock for

configuration. After this step is done (which also includes configuring a back-up PIN or

Pattern), FaceUnlock is set as the lock screen option. Under the option, whenever the user

clicks on a locked phone, Keyguard will bind itself to the face-unlocking service by sending

an Intent specifying the action com.android.internal.policy.IfaceLockInterface to

the Facelock app. The screen is unlocked once Facelock informs Keyguard that the user is

authenticated.

A problem here is that on all the AOSP versions prior to 5.0 supporting the FaceUnlock

option, the Android framework class LockPatternUtils fails to verify the signature of the

Facelock app. As a result, on the device model where the app is not present, the reference

to its package name becomes hanging and can be exploited by a malicious app. In our

research, we installed on Tab S 8.4 an attack app that impersonated com.android

.facelock along with the required setup activities and unlocking service, and successfully

activated the FaceUnlock option. When the option was selected, the attacker app was

invoked and consequently set as a phone lock. When the user wished to unlock the screen,

the attacker app utilized the action com.android.internal.policy

.IfaceLockInterface to cheat Keyguard into binding to its service. As a result, the
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malware gained full control of the screen unlock process and was able to expose the device

to whoever it wanted. This attack poses a particularly serious threat to the multiuser

framework provided by Google from Android 4.2, where an attacker purposely installs the

malicious Facelock app as a backdoor to other user’s accounts. In fact, once installed in the

malicious user’s account, the app will be immediately enabled on other users accounts as

discussed in the prior research [113]. Note that though Lollipop and the later versions no

longer offer FaceUnlock, and instead push the support for the functionality to device

manufacturers, this security flaw still has a significant impact, given the fact that around

90% of the devices in the market are running the versions below 5.0.

Phantom on Galaxy. Samsung Task Manager is a system app that offers convenient

memory management for the user. Through the service, one can monitor which apps are

running on the device. In our research, we analyzed the Task Manager and found that it

does not display the apps on a white list. Examples of such apps include com.sec.

android.app.wlantest, com.kt.iwlan, com.sec.imsphone, etc. Interestingly, those

special apps are identified from their package names and no signature verification is in

place to check their authenticity. Also, many of them are missing on various devices. The

consequence here is that the adversary can build malware exploiting such hanging

references, using the authorized apps’ names to ensure that his app will not draw attention

when it is operating, e.g., recording phone conversation in the background. We

implemented such a phantom app on Samsung Note 8.0 and made it disappear from the

Task manager. Again our attack app, which masqueraded as a note taker, passed the

security check of Amazon Appstore.
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Faking Dropbox on LG. LG FileManager is a system app on LG devices that helps the

user manage her file system. It also supports the use of Dropbox, which can be opened by

clicking on a button with the Dropbox icon. Interestingly, on LG G3 factory image, our

analyzer (Section 4.2.1) found that the button actually first tries to launch an activity

within com.vcast.manager, a Verizon cloud app, and only goes to the Dropbox’s web login

page once the attempt fails. This program logic could be designed for the devices

distributed by Verizon but leaves the reference to the service hanging on those with other

carriers and development phones.

In our research, we built an attack app to impersonate com.vcast.manager and

hijacked the activity pointed to by the hanging reference. Since LG FileManager does not

check the target app’s signature before starting its activity, it blindly invoked our app

whenever the user clicked on the “Dropbox” button. This gives the app an opportunity to

show up a fake Dropbox login activity to steal the user’s credentials.

Replacing official recorder. S-Voice performs voice recording using a default recorder.

There are two such recorders, com.sec.android.app.voicerecorder and com.sec.

android.app.voicenote. What happens is that S-Voice first attempts to use the activity

of voicerecorder and only when this fails (the app does not exist), it switches to

voicenote. Again, such a two-choose-one process does not involve proper authentication of

the target. This allowed us to construct an attack app impersonating voicerecorder app

with the activity VoiceRecorderMain Activity to control the target of the reference. On

Note 8.0, our experiment shows that the attacker’s activity was always invoked, even in the
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presence of voicenote, which enabled it to record sensitive user conversation or perform a

phishing attack.

Hulu on watch. WatchON is a popular app that allows its user to view the TV programs

in their TV or select movies from the Video-on-Demand service that integrates Hulu, Vudu,

popcornflix, etc. Once the user clicks on a Hulu movie, WatchON sends an implicit Intent

to launch Hulu’s activity. For some movies requiring a HuluPlus account, the user will be

redirected to an upgrade activity where she can pay to be upgraded to the HuluPlus status.

The problem here is that the references to the Hulu’ activities were found to be hanging

in our research: even though WatchON indeed checks whether Hulu exists before sending

the implicit Intent, it fails to verify the app’s signature. Therefore, we were able to build a

malicious app that masqueraded as Hulu and set an Intent filter with action hulu.intent.

action.LAUNCH_VIDEO_ID to get the upgrade Intent. Through launching a malicious

activity, we could cheat the user into entering her login credentials for Hulu. More

seriously, when she actually clicked on a paid movie, the malware displayed an upgrade

activity, asking for her credit-card information. Since all these activities were triggered by

WatchON, the malware is very likely to get what it wants. We successfully uploaded this

attack app to Samsung App Store, which analyzed our code both statically and

dynamically for days.

4.1.2 Content-Provider Capture

Just like actions and activities, content providers are also extensively used for inter-app

and app-framework interactions. Specifically, an app may query another app’s content
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provider by directly referring to its authority, one or more URIs formatted in a Java-style

naming convention: e.g., com.example.provider.imageprovider. However, just like what

happens to other attributes, such a reference (to the authority) can also become hanging,

when the related provider is in absence on a device. This opens another avenue for the

Hare exploit, when a malicious app strategically defines a content provider to misinform

the querier.

Note that unlike package name, duplicated authority names are not forbidden on the

Play Store. As a result, all our attack apps were successfully uploaded to Google Play.

Following we describe a few attacks on the Hares of this type.

Hijacking Intent invocations. A surprising finding of our research is that a subtle

content-provider Hare within Google Email (version 6.3-1218562) allows a malicious app to

completely replace its internal account settings with a malicious activity. Specifically,

Google Email, the standard email application on every Google phone, lets the user

configure different email accounts (Gmail, exchange, etc.) through a Settings interface. To

invoke this activity, the app sends an implicit Intent with action

android.intent.action.EDIT and data content://ui.email.android.com/set

tings?account=x, where x is the email account ID used to inform the account settings

activity which email’s setting to edit. These two parameters are specified within the

account settings activity’s Intent filter, as illustrated in the following code snippet:

<!-- Account Settings Intent Filters-->

<activity

android:name=".activity.setup.AccountSettings" android:exported="true">

<intent-filter>
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<action android:name="android.intent.action.EDIT"/>

<category android:name= "android.intent.category.DEFAULT"/>

<data android:scheme="content"

android:host="ui.email.android.com"

android:pathPrefix="/settings"/>

</intent-filter>

This implicit Intent can be received by any app that specifies the above Intent filter for its

activity. However, when this happens, Android pops up a window that lists all eligible

receivers to let the user select. What we want to do here is to circumvent this protection,

making a malicious app the only qualified recipient.

To this end, we analyzed the data part of the Intent filter in the code snippet above

and checked how the ActivityManagerSer vice (AMS for short) resolves the Intent sent to

this Intent filter. Figure 4.1 depicts the Intent resolution steps in this scenario. If the

data’s scheme is content, AMS will try to infer the MIME (Multi-Purpose Internet Mail

Extension) of the attached data to identify the recipient that can handle this type: the

data type here is supposed to be given by the content provider ui.email.android.com.

However, this provider does not exist and as a result, the type is typically ignored and the

Intent is sent to whoever define the action.EDIT and data filter (with scheme="content")

without a specified MIME type (as No branch in Figure 4.1).
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Look for mime type of authority: 
ui.email.android.com public String getType(Uri uri) {

return ?ABC?; }

Provider 
with authority 

?ui.email.android.com? 
exists?

<intent-filter>
<action name= "Action.EDIT" />
<data scheme="content"
   host=?ui.email.android.com"
   pathPrefix=?/settings"/>
<intent-filter>

Intent i = new Intent(?Action.Edit?);
i.setData(Uri.parse(?content://ui.email.android.com/settings?account=id?);
startActivity(i);

GetType of Provider

<intent-filter>
<action name= "Action.EDIT" />
<data scheme="content"
   host=?ui.email.android.com"
   pathPrefix=?/settings?/
   mimeType= ?ABC"/ >
<intent-filter>

No

Yes

Launch acvtivity

Malicious Setting ActivityEmail Account Setting Activity

AMS Malicious provider with authority 
?ui.email.android.com?

Account Setting Button Click

Email Activity

Fig. 4.1.: Exploiting a Hare Authority to Hijack Email Account Settings Activity

The security risk here is that the reference to the content provider is hanging and can

be exploited by a malicious app defining that provider. What the malware can do is to

name the provider’s authority ui.email.android.com to receive the query from the AMS

(the Yes branch in Figure 4.1), return a MIME type of its own choice to misinform it, and

in the meantime specify this type within its own activity Intent filter, making itself the

only eligible app to get the Intent (for invoking the account settings activity). In our

research, our attack app took over the content provider and responded to the query from

AMS with a MIME type vnd.android.cursor.dir/vnd.example.ABC. Also, the attacker
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defines an Intent filter as illustrated in the next code snippet, by claiming a mineType

with the type it told the AMS.

<!-- Malicious Setting Activity Intent Filters-->

<activity android:name=".MaliciousSetting">

<intent-filter>

<action android:name= "android.intent.action.EDIT"/>

<category android:name= "android.intent.category.DEFAULT"/>

<data android:scheme="content"

android:host="ui.email.android.com"

android:pathPrefix="/settings"

android:mimeType= "vnd.android.cursor.dir/vnd.example.ABC"/>

</intent-filter>

In this way, the Intent from the app went only to the malware, leading the user to a

malicious activity that lets her enter her password. We also successfully submitted the app

to Google Play, before notifying Google of this security-critical flaw.

Tango in the dark. Tango is a popular cross-platform messaging app, offering audio,

video calls over 3G, 4G and Wi-Fi networks. The app has been installed over 100 million

times from Google Play. To display SMS messages received, it sets up an Intent filter with

the action android.provider.Telephony.SMS_RECEIVED to get the Intent that carries the

message from the Telephony Manager. When the user sends a message through Tango, the

app saves it to sms, telephony’s content provider.
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On a device without Telephony, Tango’s reference to its content provider becomes

hanging. A malicious app, therefore, can define a content provider using the authority sms

to get the SMS message the user sends. This can happen when the malware first sends a

message, causing the inadvertent user to reply. What can be leveraged here is another

vulnerability in Tango: the app does not protect its SMS receiver with the system

permission android.permission.broadcast_sms, as it is supposed to do. This allows any

party broadcasts to the action SMS_RECEIVED to inject a fake short message into the app.

In our research, we implemented the attack on Tab S 8.4, sending a fake message to Tango

and receiving the user’s response using the malicious content provider.

LG CloudHub scam. LG CloudHub is a system app that allows managing cloud

accounts, uploading data to clouds and accessing it from different devices. By default, the

app supports Dropbox and Box, and on various devices can also connect the user to other

services, including LG cloud provider. The information about these additional services is

kept in a content provider com.lge.lgaccount.provider, which LG CloudHub looks up

each time when it is invoked.

Interestingly, on some phones, this provider does not exist. A prominent example is LG

G3. When this happens, LG CloudHub just displays the default services, Dropbox and

Box. However, this makes the reference to the content provider a Hare case and exposes it

to the manipulation of a malicious app. Specifically, we implemented an attack app that

defined com.lge.lgaccount.provider and placed in the content provider an entry for LG

Cloud account. This account was then displayed on the LG CloudHub available accounts

list. Once it was clicked by the user, the app sent an implicit Intent with action
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com.lge.lgaccount.action.ADD_ACCOUNT. On the device (G3), no pre-installed apps

define the action, which enabled the malware to define the action, claiming that it could

handle the Intent. The consequence is that the user’s click on the system app (LG

CloudHub) triggered a malicious activity that masqueraded as the login page for LG Cloud

account, which was used to cheat the user into exposing her password and other credentials.

4.1.3 Permission Seizure

The Hare flaws can also be introduced by permissions, which are defined by system

apps and utilized to control the access to various system (e.g., GPS, audio, etc.) or

app-defined resources (e.g., content providers, broadcast receivers, etc.). During the OS

customization process, the apps that specify the permissions (their original “owners”) could

be removed. In the meantime, if the resources guarded by these permissions are still there,

the uses of the permissions (for protection) become hanging references. To exploit such

flaws, the adversary can simply define those missing yet still being utilized permissions to

gain access to the resources they protect. This problem was also found to be extensive in

our research, present on all 97 factory images we scanned. Making this threat particularly

perilous is the fact that Google Play does not check duplicate permissions: all our attack

apps were successfully uploaded there. Here we describe two examples.

Getting contacts from S-Voice. The system app S-Voice includes a content provider

(com.vlingo.midas.contacts.content provider) that maintains the information about

the user’s contacts, including names, email addresses, telephone number, home addresses,

etc. Access to the provider is guarded by a pair of permissions com.vlingo.midas
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.contacts.permission.READ (READ for short) and com.vlingo.midas.contacts.

permission.WRITE (WRITE). However, we found that they are not on defined on Galaxy

Note 3 (phone) and Note 8.0 (tablet), which opens the door for the exploit.

Specifically, we built an attack app for both devices, which defined the READ and WRITE

permissions. The app was found to be able to successfully read all the contact data from

S-Voice and also update its data managed by the content provider at will, e.g., changing

the email address, URLs and phone number of a contact, which could lead to information

leaks and other consequences (e.g., causing the user to visit the adversary’s URL placed in

her friend’s contact).

Cracking Link. Link is a system app that allows its user to synchronize her data (files,

images, audio, video, etc.) across different devices (phone, tablet, laptop, etc.). For this

purpose, on a mobile device (phone or tablet), the app uses a content provider

com.mfluent.asp.datamodel.ASPMediaStoreProvider to maintain the information

about such data, together with the geolocations of the user. This provider is protected by

com.mfluent.asp.permission.DB_READ _WRITE (DB_READ_WRITE for short). However, on

many factory images, we did not find that the permission has been defined. As a result, the

protection here becomes hanging.

We built an attack app in our research that defined the DB_READ _WRITE permission.

On Galaxy Note 3 and Note 8.0, this app successfully acquired sensitive information from

the content provider, including the user’s geolocations, all the meta-data of documents,

audio and video files (names, directory path, artist, genre, etc.). Also, the malware was

able to change the meta-data.
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4.2 Detection and Measurement

To better understand Hares and mitigate the security risks they pose, we built a suite

of tools in our research, including Harehunter, an automatic analyzer that detects Hare

flaws from pre-installed apps on factory images, and HareGuard, an app that catches the

attempts to exploit known hares on a device. Using Harehunter, we also performed a

measurement study that inspected 97 factory OS images for popular devices like Galaxy

S5, S6, Note 3, 4, 8.0, LG G3, Nexus 7, Moto X, etc. Our study brought to light 21557

likely Hares across these devices, which demonstrates the pervasiveness of such

security-critical vulnerabilities. In the rest of the section, we elaborate the design and

implementation of these new techniques and our findings.

4.2.1 Harehunter

As mentioned earlier, Harehunter is designed to identify hanging references within

system apps and can achieve a high accuracy. We focus on these apps because prior

research shows that pre-installed apps are the most intensively customized components

across different Android devices [4], and therefore the most likely sources of Hare

vulnerabilities. Our manual analysis further indicates that the major portion of Hares

indeed come from system apps. On the other hand, framework services may also include

hanging references, so do third-party apps (e.g., Tango). Harehunter can be directly

applied to find the problems in the third-party apps and extended (by tweaking the

pre-processing step) to work on Android services. Following we describe the idea, design of

Harehunter and its implementation.
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Design. The idea behind our design is simple. For each factory image, we first run a

differential analysis : extracting all the attributes (package names, actions, activities,

services, content providers and permissions) its pre-installed apps define and all the

references to the attributes within their code and manifests, and then comparing the

references with the definitions. Any discrepancy between these two ends indicates the

possible presence of Hares. For example, if a package name is used to start an activity

(startActivity) or bind a service (bindService) but it is not owned by any pre-installed

apps on a device, the reference to it is likely to be hanging. On the other hand, such a

reference could turn out to be well guarded: for example, before referring to the package, a

system app may first check its existence, collect its signature information (e.g.,

getPackageInfo with GET_SIGNATURE flag) and verify it against the signature of the

authentic app. To detect a truly vulnerable Hare, we have to analyze the code between a

potential guard (e.g., functions for signature checking) and a possible hanging reference

(e.g., startActivity) to find out whether they are indeed related. Only an unprotected

reference will be reported as a Hare.

To implement this idea, we designed a system with three key components,

Pre-processor, Differ and Guard Catcher, as illustrated in Figure 4.2: Pre-processor

extracts app packages from an OS image and converts them into the forms that can be

analyzed by follow-up steps; Differ performs the differential analysis and reports possible

hanging references; Catcher inspects the APK involving such references to determine

whether they have been guarded. In the rest of the section, we describe how these

components were built in our research.
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Fig. 4.2.: Design of Harehunter.

Pre-processing. From each factory image, Harehunter first collects all its pre-installed

apps, in the forms of APK and ODEX files, and runs Apktool to extract each app’s

manifest file and Baksmali to decompile the app into Smali code. For some devices,

particularly those with Samsung, a system app’s ODEX file is often separated from its

APK file, for the purpose of improving its loading time, while Flowdroid, the static

analyzer we built our system upon, only works on APKs. To address this issue, our

pre-processor was implemented to automatically unzip an ODEX file, decompile it and

then recompile and compress it, together with its resource files, into a new APK file.

Further complicating this process is that for Android 5.0 Lollipop, ODEX files are replaced

with OAT files, which include native code. For the app in such a form, Harehunter first
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unzips its OAT files and then runs oat2dex to convert it to the ODEX formate, enabling

the above process to move forward.

Differential analysis. To perform a differential analysis, Differ first searches all

extracted, decompiled code and manifest files for the definitions of the targeted attributes.

Running an XML parser, our approach can easily collect defined package, actions as well as

content providers authorities and permissions from individual apps’ manifest file. Note that

all these attributes, except the action for receiving broadcast messages, can only be defined

within the manifest. Although the action used in an Intent filter for a broadcast receiver

can be specified programmatically, it only serves to get a message, not invoke a service or

activity, and therefore its absence will not cause a Hare hazard.

Most references to these attributes are within the code, in the forms of various API

calls. Specifically, package names and actions are utilized through startActivity,

startActivityForResult, startService, etc. The authority name of a content provider

appears in various operations on the provider, such as update, query, delete and others.

Permissions are claimed in manifests or verified through checkPermission and other APIs.

To identify these references, Differ first locates the call sites for all related functions from

an app’s Jimple code (an intermediate representation output by Soot [114]), and then

performs a define-use analysis from each call site to recover the targeted attribute names,

using the control-flow graph (CFG) constructed by Flowdroid. An issue here is that

Flowdroid cannot create a complete CFG, missing quite a few program entry points like

onHandleIntent. In our implementation, we added back as many entries as we could find,

but were still left with some target function calls whose related CFGs could not be built by
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Flowdroid. For these calls, our current prototype can only deal with the situation where

the attribute names are hardcoded within the related functions.

Guard detection. As mentioned earlier, references to missing attributes are often

protected. There are two basic ways for such protection, signature guard or feature guard.

Figures 4.3 and 4.4 present the examples for both cases. Signature guard tries to obtain

the signature of the package to be invoked, and compare it with what is expected. In the

example (Figure 4.3), this check is done through extracting the signature of

com.facebook.katana through getPackageInfo with GET_SIGNATURES as a flag and then

invoking compareSignature to compare it with that of the legitimate Facebook app,

before binding to the target app’s service (bindService). The presence of the authentic

package can also ensure the correctness of action and activity names. The other way to

protect these attributes is to check the build model of the current device, since only some

of them come with certain features (in terms of packages, content providers and others):

e.g., input methods, email apps can all be different from builds to builds; SMS/MMS

providers may not even exist on a tablet. As an example, Figure 4.4 shows that an app

first runs hasSystemFeature to check whether the current device supports Google TV

(com.google.android.tv): if so, it invokes the app youtube.googletv, and otherwise,

just YouTube.

To detect such protection, Guard Catcher conducts a taint analysis through both an

app’s data flows and control flows, using the functionalities provided by Flowdroid.

Specifically, our approach first identifies a set of guard functions like hasSystemFeature

and getPackageInfo with GET_SIGNATURES parameter and then attempts to establish



76

public boolean extendAccessToken(Context context, ServiceListener

servicelistener){

Intent intent = new Intent();

try{
PackageInfo pi = context.getPackageManager().getPackageInfo

("com.facebook.katana", PackageManager.GET_SIGNATURES);

// Compare signature to the legitimate Facebook

// app Signature

if (!compareSignatures (pi.signatures[0].toByteArray())){

return false;
} else{

intent.setClassName("com.facebook.katana", "com.facebook.katana.platform.
TokenRefreshService");

return context.bindService(intent, new
TokenRefreshServiceConnection(context, servicelistener), 1);}

}catch(PackageManager.NameNotFoundException e){

return false;
}

}

Fig. 4.3.: Signature Based Guard Example

private void ViewVideo(Uri uri){

Intent intent = new Intent("android.intent.action.VIEW", uri);

if (getPackageManager().hasSystemFeature ("com.google.android.tv")){
intent.setPackage("com.google.android.youtube.googletv");

} else{
intent.setPackage("com.google.android.youtube");

} startActivity(intent);

}

Fig. 4.4.: Feature Based Guard Example

relations between them and the hanging references discovered by the differential analysis, a

necessary condition for these references to be protected. For this purpose, the outputs of

these guards are set as taint sources and the references (e.g., startActivity,

bindService) are labeled as taint sinks. Flowdroid is run to determine whether the taint

can be propagated from the former to the latter. For the sinks that cannot be tainted, they

are reported as likely Hares.
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Running a full taint analysis (through both explicit and implicit information flows) for

every guard and reference pair can be very slow. To make the guard detection more

scalable, Catcher takes a multi-step hybrid strategy, combining quick property checks with

the taint analysis. Specifically, it first inspects whether a source and its corresponding sink

are within the same method. When this happens, in the vast majority of cases, they are

related and therefore the reference is considered to be protected. Otherwise, our approach

further compares the package name involved in a signature check with that used for a

reference. A match found between the pair almost always indicates a protection relation.

An example is com.facebook.katana within the code snippet in Figure 4.3 that shows up

both within getPackageInfo and setClassName. Only when both checks fail, will the

heavyweight taint analysis be used. In our large-scale analysis of factory images

(Section 4.2.2), we found that most of the time, the guard for a reference can be discovered

in the first two steps.

Evaluation. We evaluated the effectiveness of our implementation in a measurement

study, which involves the OS images for 97 popular devices, all together over 24000 system

apps. Harehunter reported 21557 likely Hares. From all these Hares, we randomly sampled

250 and manually analyzed their code. Only 37, i.e., 14%, were found to be false detection:

that is, falsely treating a guarded reference as a Hare. We further measured the false

negative rate of the Guard Catcher by randomly checking likely hanging references

reported by Differ and comparing the findings with what was detected by Catcher. In all

250 samples, 46 (19%) were missed by our implementation: i.e., true Hares falsely

considered to be guarded. Looking into those false positives and negatives, we found that
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Vendor Images
count

System apps
count

Avg # of System apps
per Image

Countries
count

Carriers
count

OS versions
count

Vendor A 83 21733 261 36 23 10
Vendor B 7 1561 223 1 1 4
Vendor C 1 174 174 1 1 1
Vendor D 4 398 99 1 1 3
Vendor E 2 319 159 2 1 2
Total 97 24185 183 36 23 10

Table 4.1: Android Images Collected

they were all caused by the incomplete call graphs output by FlowDroid. Flowdroid is

known to have trouble in dealing with ICC [115] and other issues like missing entry points

and incomplete call graphs. When this happens, a taint analysis cannot go through.

4.2.2 A Large-scale Measurement Study

To understand the scope and magnitude of the security hazards caused by Hares, we

performed a large-scale measurement study on 97 factory images. The study shows that

Hares are indeed pervasive, with a significant impact on the Android ecosystem: over 21557

LHares were discovered and many of them could lead to the consequences such as activity

hijacking, data leakage and pollution. Following we report our findings.

OS Image collection. In our research, we collected 97 factory images from Samsung

Update [116], Android Revolution [117] and physical devices, which include around 183

apps per image and 24185 all together apps. These images are customized for 49 different

phone or tablet models, 36 countries and 23 different carriers. They operate Android

versions from 4.0.3 to 5.0.2. The detailed information is presented in Table 4.1. Please note

that we are anonymizing vendors upon their request.

Landscape. When analyzing those factory images, we found that about 13% of their

pre-installed apps could not be decompiled by Apktool or analyzed by Flowdroid. Among
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Vendor Hares in Android 4.X Hares in Android 5.X Avg
Hares per
Device

Min
Hares per
Device

Max Hares
per DeviceHares

count
Vulnerable apps

count
Hares
count

Vulnerable apps
count

Vendor A 19279 3045 (18%) 608 99 (6%) 239 23 598
Vendor B 679 121 (13.3%) 425 85 (15.5%) 157 100 224
Vendor C N/A N/A 248 33 (21.5%) 241 248 248
Vendor D 107 31 (12.4%) 8 5 (5%) 29 8 45
Vendor E 187 23 (15.6%) 16 8 (12.1%) 101 16 187
Total 20252 3220 (14.3%) 1305 230 (11.7%) 153 8 598

Table 4.2: Hares Prevalence in System Apps per Vendor

those that could be analyzed, Harehunter discovered all together 21557 flaws (unguarded

hanging references) within 3450 vulnerable apps. Note that some of these flaws might

occur more than once within the same app, and some of the vulnerable apps show up on

multiple devices. Our research reveals that every single image contains a large number of

Hare flaws, ranging from 8 to 598. On average, 14.3% of pre-installed apps on 4.X and

11.7% on 5.X were found to be vulnerable. Table 4.2 shows the details.

Also as we can see from the table, the problems are also pervasive across different

device manufacturers: both Vendor A and C have a significant portion of their system apps

involving hanging references. By comparison, Vendor D has the smallest number of flaws

(29) and the lowest ratios (8%) of faulty apps. A possible reason is that the OS images its

devices run are the least customized ones, which minimizes the chance for introducing

Hares.

Figure A.6 illustrates the distribution of the flaws across different Hare categories. Most

problems come from undefined action names. By comparison, a relatively low percentage of

permissions were found to be involved in hanging references.

Impacts. The impacts of Hares are significant. In addition to the end-to-end attacks we

built (Section 4.1), we also randomly sampled 33 flaws and manually analyzed what could
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Fig. 4.5.: Distribution of Hares across Different Hare Categories

happen once they were exploited. Note that due to the lack of a large number of physical

devices, all we could do is just static analysis to infer possible consequences once an exploit

succeeds. Such an analysis may not be accurate, but it is still important for understanding

the impacts of this type of security flaws that have never been noticed before. The

outcomes of our analysis are shown in Table 4.3.

As we can see here, 5 instances of the randomly picked Hares might be exploited to

launch similar Phishing attacks as discussed in Section 4.1, due to undefined package and

activity names and/or action names for activity Intent filters. One Hare found in the HTC

Task App allows redirecting an Intent through exploiting a non-defined content provider

used for Intent resolution, just like the GoogleEmail attack. 4 Hares (on the devices such

as Note 8.0 and S5) might cause content leakage (notes and browser bookmarks) once

malware impersonates undefined content providers, which the victim apps insert data into.

4 instances might expose user’s private information when hanging package names are

hijacked. Particularly, we found that on Note 8.0, a hanging reference involves an explicit

Intent delivered to a nonexisting package. The Intent includes a content URI pointing to
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private data (e.g., photos) and also a permission FLAG_GRANT_URI_PERMIS SION that

enables the recipient to read the data without requesting a permission. As a result, an

unauthorized app using the target’s package name could gain access to the data.

Also, on LG G3, a hanging reference to a nonexisting content provider might open the

door for the adversary to define those providers to contaminate the data synchronized to

the user’s other devices. Further, our analysis reveals 3 instances that might cause

denial-of-service attacks when the adversary creates undefined content providers that victim

apps use, and sets their exported flag to false. From the app code, this attack could cause a

security exception when the victim app attempts to read or write to these providers. A

prominent example is Amazon MP3 app (pre-installed on specific HTC models such as One

M8). Once launched, it checks an undefined provider. If a malicious app declares this

provider and sets its exported flag to false, Amazon MP3 will never be able to run until the

malicious app is uninstalled. Some other Hares may lead to unexpected situations: e.g., an

app with a certain package name will not show up in system Task Managers and other

apps on LG G3 could not be forced to stop from the LG Settings app.

We also found that Hares in 3 apps might only cause display of dialogs or notifications.

Also, there are 6 hares related to missing services whose functionalities we could not figure

out. Finally, we did not find any entry points for 4 Hares, which could be dead code.

Responsible parties. We further looked into which parties introduce such flaws and

when this happens. For this purpose, we inspected 6 images from Vendor A all running

4.4.2, as described in Table 4.4. The percentage of Hare flaws that are uniquely introduced

by these models ranges from 9% to 29%. We further grouped the images into subgroups
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Impact Hare Category # of Hares
Activity Hijacking Package and Activity Name 3
Activity Hijacking Action Name 2
Activity Hijacking Provider Authority 1

Data Leakage Provider Authority 4
Data Leakage Package and Activity Name 1
Data Pollution Provider Authority 1

D.O.S. Provider Authority 3
Dialog Popup Action Name of Activities 3

Others Package Name 5
Impact Not Clear Action Name of Services 6
Maybe Dead Code All Categories 4

Table 4.3: Possible Impact of 33 Randomly Picked Hares

(e.g., phone, tablet) and checked which ones exhibit the highest percentage of common

Hare cases. Tablet models have the highest percentage of common Hares 63%, while phone

models have the second highest common Hares 56%. The common Hare cases between a

tablet and phone device model is at most 38%. So customizing the OS to tablet models or

to phone models introduces a lot of Hares. In the meantime, we also compared the flaws

found on the same model (Phone 3 running Android 4.4.2)customized for different carriers.

The results are in Table 4.5.

Model # of New Hares Introduced by Model
Tablet 1 106 (27%)
Phone 2 35 (21%)
Phone 3 75 (29%)
Tablet 4 57 (22%)
Tablet 5 22 (9%)
Tablet 6 72 (20%)

Table 4.4: Hare Flaws in Different Vendor A Models Running Android 4.4.2

As we can see from Table 4.5 given a Phone 3 image, its customizations across 6

carriers bring in about 3% to 20% of flaws. Clearly, both manufacturers and carriers cause

Hare flaws. However, the former apparently needs to take more responsibility than the

latter. Also, most Hares are likely to be introduced during the OS customizations for

different device models (phone or tablet).
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Country Carrier # of Hares Introduced by Carrier
China China Unicom 51 (20%)
U.S. AT&T 22 (13%)
Chile Entel pcs 4 (3%)

Argentina Movistar 5 (3%)
Brazil Vivo 5 (3%)

S. Korea SK Telecom 44 (18%)

Table 4.5: Hares in Phone 3 Running Android 4.4.2 For Different Countries and Carriers

Trend. Figure 4.6 further compares the ratios of vulnerable apps over different OS

versions across multiple manufacturers. For Vendor A devices, there is an observable trend

that the higher versions (5.0.1 and 5.0.2) contain fewer Hares than the lower ones: the

faulty ratio comes from 26% on 4.0.3 down to about 8.2% on 5.0.2. On the other hand, for

Vendor B phones, the trend is almost constant: the ratio is 14.3% on 4.2.2 and 15.1% on

5.0.1 . Also, on all these devices, the Hare risks remain significant, which indicates that

manufacturers have not yet realized the gravity of this type of vulnerabilities.

Fig. 4.6.: Ratios of Vulnerable Apps
Across Different OS Versions and Manufacturers
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4.2.3 App-level Protection

Motivation and idea. Fundamentally, the Hare flaws can only be fixed by device

manufacturers and app developers, who are supposed to either remove the hanging

references in their code or put proper security checks in place. However, given the

pervasiveness of the problem and its root cause, i.e., the under-regulated Android

ecosystem, we believe that they cannot be completely eliminated within a short period of

time. Before their complete solution can be implemented (Section 4.3), it is important to

help individual Android users protect their systems, in the presence of these flaws.

Compared with a framework layer protection, which can only be deployed by manufacturers

and carriers, the most practical solution is app-level defense, as all the users need to do is

just to install a protecting app from Google Play to get immediate protection against the

threats to the vulnerabilities on her system. We found that this can actually be easily done.

In our research, we developed such simple protection, using an app, called HareGuard,

to scan other third-party apps whenever they are installed to ensure that they are not

taking advantage of any known Hare vulnerabilities on a specific device model. HareGuard

collects a device’s model information and queries a server-side database to acquire all the

Hares within the model (which are detected off-line, for example, through Harehunter).

Whenever an app is installed, HareGuard immediately checks its manifest file for the

package name, activity, action, authority name and permissions it defines, making sure that

the app does not intend to hijack any missing attributes. This scanner app is invoked

through startForeground, running with a notification posted on the Notification Center.
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Implementation. Specifically, as soon as HareGuard is installed, it calls Build class to

collect the device information, including Build.MANUFACTURER and Build.MODEL, and

queries our database for all the Hare flaws on the device. The scanner also utilizes an

Intent receiver with actions android.intent.action.PACKAGE_ADDED to monitor new app

installed and android.intent.action.PACKAGE_CHANGED to detect whether an app is

updated. For each new or recently updated app, it uses the API openXmlResourceParser

to open its manifest file and identify all the attributes it defines. These attributes are then

compared with a set of hanging references retrieved from our Hare database to detect Hare

risks: i.e., defining an attribute associated with a hanging reference. Once a risk is found,

HareGuard alarms the user, explaining potential security hazards to her and urging her to

make sure that the app indeed comes from a reliable source or simply remove it. To assist

the user in this process, the scanner can compare the signature of the app with the one

belonging to the authorized party, whenever it exists in the database.

We implemented HareGuard in our research, using a database that documents the

findings made by Harehunter when scanning the factory images for popular mobile devices.

Evaluation. Our implementation of HareGuard was found to be effective at detecting all

the attack apps we built. We further evaluated its performance, whose impacts on its host

system are minimum: the scanner was found to utilize only 4.29 MB memory and consume

0.29% CPU when scanning an app’s manifest.



86

4.3 Discussion

Hares are not just a few isolated, random bugs introduced by implementation lapses.

The presence of such flaws implies the weaknesses in Android’s design philosophy and its

ecosystem. Fundamentally, Android is a complex system, whose components and apps are

meant to work together, which leads to highly complicated interdependent relations among

them. In the meantime, the Android ecosystem is known to be highly diverse and

de-centralized: each OS version is customized and re-customized by various parties almost

independently and utilized by anyone who can build an app for the version; so far little

guidance has been provided to help regulate the customizations and app development,

making sure that they respect the existing complicated relations among system

components and apps introduced by themselves and other parties (AOSP, manufacturers,

carriers, app developers, etc).

In the absence of such guidance and a proper enforcement mechanism, hanging

references become inevitable. As evidenced by our research (the first one on this new

category of problems), indeed Hares are pervasive, existing on every single device we

inspected, and also indeed they are security-critical, endangering sensitive user data (e.g.,

voice memo) and even the proper execution of system apps (e.g., activity injection in

Google Email). Even though not every problem reported by Harehunter is exploitable,

which depends on the conditions for running vulnerable code, the pervasiveness of such

unprotected code is alarming: without deep inspection of individual cases, no one knows

whether they can be exploited under certain conditions, leading to unexpected

consequences.
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Moving forward, I believe that systematic effort needs to be made to eliminate these

flaws, and also lessons need to be learnt to avoid the similar pitfall when building other

open computing systems. Following are a few thoughts.

Elimination of Hares. To completely eliminate the Hare risks, it is important to have

such interdependent relations well documented and make them open to the parties involved

in OS customizations and app development. Also, there should be a policy in place that

requires that anyone who modifies the OS or builds an app should not create a hanging

relation such as referring to a nonexisting attribute, and a mechanism for the policy

compliance check. The policy enforcement here can leverage the existing Android

compatibility program, which currently still cannot do security check. The challenging part

is the collection of the interdependent relations for all known Android versions. Such

information is not there yet. Actually, our study shows that the manufacturer seems

unaware of the relations on its own device, often breaking them and causing Hares when

customizing an Android version to different models. A systematic tool, like Harehunter, is

needed to identify such information.

In the meantime, effort should be made to secure each attribute reference. Most

importantly here is explicit authentication before a reference. All too often we have seen

that references are only protected implicitly : e.g., the reference to a system app is secured

by the presence of the app on a device, which excludes any other app using the same

package name. Such protection is fragile, completely falling apart once the app is removed

when the OS is customized for a new device model.
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On the other hand, a security check can be more complicated than it appears to be.

More specifically, even though references to package names can be directly guarded with a

signature check. Other attributes like content providers, actions, etc. can be directly used

and their presence on a specific device is often verified by checking the current device

model and other features. The correctness of such a check, again, hinges on the knowledge

about the components/apps relations across different versions, models, etc., which need to

be recovered by Harehunter and other similar tools.

Protection of legacy systems. Before we can even think about how to eliminate Hares

in developing future systems and apps, an issue we first need to address is how to secure

existing devices, which, as shown in our research, are riddled with different kinds of Hare

flaws. The techniques we developed, Harehunter and HareGuard, made a first step toward

identification and protection of these vulnerabilities. Particularly, as mentioned earlier,

Harehunter can also play a critical role in gathering the interdependent relations to help

secure new systems and apps. With its great potentials, our current implementation is still

preliminary: it introduced about 14% of false positives and missed 19% of truly vulnerable

cases in our study (Section 4.2.1). Most problems are caused by Flowdroid, the static

analysis tool that supports our system. It is conceivable that Harehunter will become more

effective once a more capable analyzer is used. Also, for device manufacturers who have the

source code for all the services and system apps, a tool similar to Harehunter, but working

on source code, could be more accurate in detecting the Hare flaws. We expect that these

directions will be explored by both the academia and the industry in the near future.
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5. HARVESTING INCONSISTENT SECURITY

CONFIGURATIONS IN CUSTOM ANDROID ROMS VIA

DIFFERENTIAL ANALYSIS

The fragmented Android eco-system brings in several security vulnerabilities when vendors

change the functionalities and configurations without a comprehensive understanding of

their implications. As discussed in the earlier Chapter 2, previous work has demonstrated

some aspects of these changes and the resulting security problems. Wu et al. [4] analyze

several stock Android images from different vendors, and assess security issues that may be

introduced by vendor customization. Their results show that customization is responsible

for a number of security problems ranging from over-privileged to buggy system apps that

can be exploited to mount permission re-delegation or permission leakage attacks. Our

Harehunter work (Chapter 4) reveals a new category of Android vulnerabilities, called

Hares, caused by the customization process. Hares occur when a privileged app uses a

component that has been removed during customization. A malicious app can

“impersonate” the missing component to launch privilege escalation, information leakage

and phishing attacks. ADDICTED [5] finds that many custom Android devices do not

properly protect Linux device drivers, exposing them to illegitimate parties.

All the problems reported so far on Android customization are mainly caused by

vendors’ altering of critical configurations. They change security configurations of system

apps and Linux device drivers; they also remove, add, and alter system app components.
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Although the existing work has studied several aspects of security problems in the changes

of system/app configurations, there is no work that systematically finds all security

configuration changes caused by vendor customization, how likely vendor customization can

lead to security problems, what risky configuration changes are often made by vendors, etc.

In this chapter, I make the first attempt to systematically detect security configuration

changes introduced by parties in the Android customization chain. My key intuition is that

through comparing a custom device to similar devices from other vendors, carriers, and

regions, or through comparing different OS versions, I might be able to find security

configuration changes created unintentionally during the customization. More importantly,

through a systematic study, I may be able to find valuable insights in vendor customization

that can help vendors improve the security of their future customizations.

I propose DroidDiff, a tool that detects inconsistent security configurations in a large

scale, and that can be employed by vendors to locate risky configurations created

unintentionally.

The first challenge that I faced in my systematic study is to identify what

configurations are security relevant and are likely to be customized. I call this step feature

extraction. I start from the Android layered architecture and list access control checks

employed at each layer. Then, for each access control check, I rely on Android

documentation and my domain knowledge to define corresponding security features. I

further analyze how different configurations of these features across custom images can lead

to inconsistencies and thus affect the access control check semantics. As a result, I have

identified five categories of features. DroidDiff then extracts these features from 591



91

custom Android ROMs that I have collected from multiple sources. This step produces the

raw data that will be used for my analysis.

The next challenge is how to compare these images to find out whether they have

inconsistent values for the features that I extracted. I call this step differential analysis.

Given a set of images, conducting the comparison itself is not difficult; the difficulty is to

decide the set of images for comparison. If I simply compare all the 591 images, it will not

provide much insight, because even if I see inconsistencies, it will be hard to interpret their

implications. To gain useful insights, I need to select a meaningful set of images for each

comparison. Based on my hypothesis that inconsistencies can be introduced by vendors,

device models, regions, carriers, and OS versions, I have developed five differential analysis

algorithms: Cross-Vendor, Cross-Model, Cross-Region, Cross-Carrier, and Cross-Version

analysis, each targeting to uncover inconsistencies caused by customization of different

purposes. For example, in the Cross-Vendor analysis, I would like to know how many

inconsistencies are there among different vendors; in the Cross-Model analysis, I attempt to

identify whether each vendors may further introduce inconsistencies when they customize

Android for different device models (e.g. Samsung Galaxy S4, Galaxy S5, Galaxy S6 Edge,

etc.).

DroidDiff results reveal that indeed the customization process leads to many

inconsistencies among security features, ranging from altering the protection levels of

permissions, removing protected broadcasts definitions, changing the requirement for

obtaining critical GIDs, and altering the protection configuration of app components. We

present my discoveries in this chapter to show the inconsistency situations among each
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category of features and how versions, vendors, models, region, and carriers customizations

impact the whole situation.

Not all inconsistencies are dangerous, but some changes patterns are definitely risky

and warrant further investigations. I have identified such risky patterns, and presented

results to show how prevalent these patterns are in the customization process. These

inconsistencies in security configuration expose devices to potential attacks, but if the

vendors understand fully the security implication of such customization, they will more

likely remedy the introduced risks by putting proper protection at some other places.

Unfortunately, most of the inconsistencies seem to be introduced by developers who do not

fully understand the security implications. Therefore, my differential analysis can help

vendors to identify the inconsistencies introduced during their customization process, so

they can question themselves whether they have implemented mechanisms to remedy the

risks.

To demonstrate that the identified risky inconsistencies, if introduced by mistakes, can

indeed lead to attacks, I have picked a few cases identified from my differential analysis,

and designed proof-of-concept attacks on physical devices1. We have identified several real

attacks from my available devices. To illustrate, I found that a detected inconsistency on

Nexus 6 can be exploited to trigger emergency broadcasts without the required system

permission and another similar one on Samsung S6 Edge allows a non-privileged app to

perform a factory reset without a permission or user confirmation. Through exploiting

another inconsistency on Samsung Note 2, an attacker can forge SMS messages without the

required SEND_SMS permission. Moreover, a detected inconsistency related to permission
1
Due to resource limitation, my could not design the attacks for all the cases identified in my analysis.
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to Linux GID mapping allows non-privileged apps to access the camera device driver with

a normal protection level permission. I have filed security reports about the confirmed

vulnerabilities to the corresponding vendors. We strongly believe that vendors, who have

source code, more resources, and know more about their systems, can find more attacks

themselves from the risky inconsistencies identified from my studies. We also envision that

in the future, vendors can use my database and run our DroidDiff on their newly

customized images, so they can identify potential risky inconsistencies introduced in their

customization process.

5.1 Investigation & Methodology

In this chapter, I investigate Android’s security features which are configurable during

customization at the level of the framework and preloaded apps. Figure 5.1 depicts my

investigation flow. As my work is data driven, the first and second phase are mainly

concerned with locating and extracting meaningful security features from our collected

Android custom ROMs. The two phases generate a large data set of configurations of the

selected security features per image. The third phase performs differential analysis on the

generated data according to my proposed algorithms to find any configuration

discrepancies. It should be noted that it is out of my scope to find security features that

are wrongly configured on all images, as obviously, they would not be detected through my

differential analysis.
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As Figure 5.2 illustrates, Android is a layered operating system, where each layer has

its own tasks and responsibilities. On the top layer are preloaded apps provided by the

device vendors and other third parties such as carriers. To allow app developers to access

various resources and functionalities, Android Framework layer provides many high-level

services such as Package Manager, Activity Manager, Notification Manager and many

others. These services mediate access to system resources and enforce proper access control

based on the app’s user id and its acquired Android permissions. Additionally, certain

services might enforce access control based on the caller’s package name or certificate.

Right below the framework layer lies the Libraries layer, which is a set of Android specific

libraries and other necessary libraries such as libc, SQLite database, media libraries, etc.

Just like the framework services, certain Android specific libraries perform various access

control checks based on the caller’s user id and its permissions as well. At the bottom of

the layers is Linux kernel which provides a level of abstraction between the device

hardware and contains all essential hardware drivers like display, camera, etc. The Linux

kernel layer mediates access to hardware drivers and raw resources based on the standard

Discretionary Access Control (DAC).

To encourage collaboration and functionality re-use between apps, Android apps are

connected together by Inter-Component Communication (ICC). An app can invoke other

apps’ components (e.g. activities and services) through the intent mechanism. It can

further configure several security parameters to protect its resources and functionalities. As

summarized in Figure 5.2, it can make its components private, require the caller to have

certain permissions or to belong to a certain process.
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Linux	Kernel	

Libraries	

Applica1on	Framework	
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JNI	JNI	
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Raw	Resources	

Component Visibility 

Permission Check 

Protected Broadcast 

UID Check 

Applica1on		

Fig. 5.2.: Android Security Model

Based on Figure 5.2, I summarize the Access Control (AC) checks employed by Android

in Table 5.1. I specify the ones whose security features might be altered statically during

device customization. By static modification, I refer to any modification that can be

performed through changing framework resources files (including framework-res*.xml which

contains most configurations of built-in security features), preloaded apps’ manifest files

and other system-wide configuration files (platform.xml and *.xml under

/etc/permissions/).

In the following section, I describe in details each configurable AC check and define its

security features based on Android documentation and my domain knowledge. I further

justify how inconsistent configurations of these features across custom images can bring in

potential security risks. Please note that I do not discuss AC checks based on Package

Names as my HareHunter work [118] has covered the effects of customizing them.
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Before I proceed, I present some notations that I will be referring to in my analysis.

IMG denotes a set of the collected images. EP , EGID, EPB and EC represent a set of all

defined permissions, GIDs, protected broadcasts and components on IMG, respectively.

5.2.1 Permissions

Default and custom Android Permissions are used to protect inner components, data

and functionalities. The protection level of a permission can be either Normal, Dangerous,

Signature, or SystemOrSignature. These protection levels should be picked carefully

depending on the resource to be protected. Signature and SystemOrSignature level

permissions are used to protect the most privileged resources and will be granted only to

apps signed with the same certificate as the defining app. Dangerous permissions protect

private data and resources or operations affecting the user’s stored data or other apps such

as reading contacts or sending SMS messages. Requesting permissions of Dangerous levels

requires explicit user’s confirmation before granting them. Normal level on the other hand,

is assigned to permissions protecting least privileged resources and do not require user’s

approval. The following is an example of a permission declaration:

<permission android:name="READ_SMS" android:protectionLevel="Dangerous">

We aim to find if a permission has different protection levels across various images. For

example, on vendor A, a permission READ_A is declared with Normal protection level, while

on vendor B, the same permission is declared with a Signature one. This would expose

the underlying components that are supposed to be protected with more privileged
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AC Checks Layer Configurable

UID Kernel, Framework
Library, App No

GID Kernel Yes
Package Name Framework, App Yes

Package Signature Framework, App No

Permission Framework, Library
App Yes

Protected Broadcast App Layer Yes
Component Visibility App Layer Yes
Component Protection App Layer Yes

Table 5.1: Security Checks

permissions. It would also create a big confusion for developers, as the same permission

holds different semantics across images.

Formally, for each defined permission e 2 EP , I define the security feature fne as the

following:

fne = ProtectionLevel(e)

The potential values of fne is in the set {Normal, Dangerous, Signature, Unspecified, 0}. I

map SignatureOrSystem level to Signature, as both of them cannot be acquired by third

party apps without a signature check. An unspecified value refers to a permission that

has been defined without a protection level, while 0 refers to a permission that is not

defined on an image.

5.2.2 GIDs

Certain lower-level Linux group IDs (GIDs) are mapped to Android permissions. Once

an app process acquires these permissions, it will be assigned the mapped GID, which will

be used for access control at the kernel. Permissions to GID mappings for built-in and
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custom permissions are defined mostly in platform.xml and other xml files under

/etc/permissions/. The following is an example of a permission to GID mapping:

<permission android:name = "android.permission.NET_TUNNELING">

<group gid="vpn" />

</permission>

In the above example, any process that has been granted NET_TUNNELING permission

(defined with a Signature level) will be assigned the vpn GID, and consequently perform

any filesystem (read, write, execute) allowed for this GID.

Android states that any change made incautiously to platform.xml would open serious

vulnerabilities. In this analysis, I aim to find if the customization parties introduce any

modifications to these critical mappings and if so, what damages this might create. More

specifically, I want to reveal if vendors map permissions of lower protection levels to

existing privileged GIDs, which can result in downgrading their privileges. Following the

same example above, assume that on a custom image, the vendor maps a permission

vendor.permission (defined with Normal protection) to the existing vpn GID. This new

mapping would downgrade the privilege of vpn GID on the custom image as it can be

acquired with a Normal permission instead of a Signature one. Thus, any third party app

granted vendor.permission will run with vpn GID attached to its process, which basically

allows it to perform any filesystem permissible for vpn GID, usually allowed to only system

processes.

To allow discovering vulnerable GID to permission mappings, I extract the minimum

permission requirement needed for acquiring a certain GID on a given image; i.e. the
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minimum protection level for all permissions mapping to it. If the same GID has different

minimum requirements on 2 images, then it is potentially vulnerable. For the previous

example, I should be able to reveal that vpn GID is problematic as it can be acquired with

a Normal permission level on the custom image and with a Signature one on other images.

For each defined GID e 2 EGID, let Pe denote the permission set mapping to e, I define

the feature fne:

fne = GIDProtectionLevel(e), where :

GIDProtectionLevel(e) = min
8p2Pe

ProtectionLevel(p)

5.2.3 Protected Broadcasts

Protected broadcasts are broadcasts that can be sent only by system-level processes.

Apps use protected broadcasts to make sure that no process, but system-level processes can

trigger specific broadcast receivers. System apps can define protected broadcasts as follows:

<protected-broadcast android:name="broadcast.name"/>

Another app can use the above defined protected-broadcast through the following:

<receiver android:name="ReceiverA">

<intent-filter>

<action = "broadcast.name"/>

<intent-filter/>

<receiver/>
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The above ReceiverA can be triggered only by system processes broadcasting

broadcast.name protected broadcast. The app can alternatively use protected broadcast

through dynamically registered broadcast receivers. As it is known, during the

customization process, certain packages are removed and altered. I hypothesize that

because of this, certain protected broadcasts’ definitions will be removed as well. I aim to

uncover if these inconsistently non-protected broadcasts are still being used though, as

action filters within receivers. This might open serious vulnerabilities, as the receivers that

developers assumed to be only invocable by system processes will now be invocable by any

third-party app and consequently expose their functionalities.

Formally, for each Protected Broadcast e 2 EPB, I define the following:

fne = DefineUse(e),

Where DefineUse(e) is defined as the following:

DefineUse(e) =

8
>>><

>>>:

1 if e is used on an image but not defined

0 for other cases

5.2.4 Component Visibility

Android allows developers to specify whether their declared components (activities,

services, receivers and content providers) can be invoked externally from other apps. The

visibility can be set through the exported flag in the component declaration within the

app’s manifest file. If this flag is not specified, the visibility will be implicitly set based on
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whether the component defines intent filters. If existing, the component is exported;

otherwise, it is not as illustrated in the following snippet.

// Service1 is private to the app

<service android:name="Service1"/>

// Service2 is not private to the app

<service android:name="Service2">

<intent-filter> ... <intent-filter/>

</service>

We would like to uncover any component that has been exposed on one image, but not

on another. I assume that if the same component name appears on similar images (e.g.

same models, same OS version), then most likely, the component is providing the same

functionality or protecting the same data (for content providers). Thus, its visibility should

be the same across all images. To account for the cases where a component has been

exported but with an added signature permission requirement, I consider them as

implicitly unexposed.

Formally, for each defined component e 2 EC , I extract the following feature:

fne = Exported(e)

The potential values of fne is either {true, false, 0}. 0 refers to a non-existing

component on a studied image.
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5.2.5 Component Protection

Apps can use permissions to restrict the invocation of their components (services,

activities, receivers). In the next code snippet, ServiceA can be invoked if the caller

acquires vendor.permissionA. Moreover, an app can use permissions to restrict reading

and writing to its content provider, as well as to specific paths within it.

android:readPermission and android:writePermission take precedence over

android:permission if specified, as shown in the code snippet. Components inherit their

parents’ permission if they do not specify one.

<service android:name="ServiceA" android:permission="vendor.permissionA"/>

<provider android:authorities="providerId" android:name="providerB"

android:Permission="vendor.permissionB"

android:readPermission="vendor.read" android:writePermission="vendor.write">

We aim to find if the same component has different protection requirements on similar

images. Protection mismatch might not necessarily indicate a flaw if the component is not

exposed. That’s why, I only consider protection mismatches in case of exported

components.

We list three cases where a component can be unintentionally exposed on one image,

while being protected on other images. The first case is that the permission requirement is

removed from the component’s declaration. Second, the permission protecting it is of lower

privilege compared to other images. Third, the permission protecting the component is not

defined within the image, which makes it possible for any third-party app to define it and
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consequently invoke the underlying component. To allow discovering components with

conflicting protections, I map their permissions to their declarations within the same

image. Any mismatch would indicate a possible security flaw for this component.

Formally, let Pe represents the permission protecting a component e 2 Ec. I define the

following feature:

fne = Protection(e);

Where Protection(e) is defined as:

Protection(e) =

8
>>>>>>>><

>>>>>>>>:

0 if e is not defined

1 if Pe is None; i.e. e is not protected

ProtectionLevel(Pe) otherwise

In the case where e is a content provider, I define Pread and Pwrite representing its read and

write permissions and extract fne for both cases.

5.3 Data Generation

To reveal whether customization parties change the configurations of the mentioned

security features, I conduct a large scale differential analysis. I collected 591 Android

ROMs from Samsung Updates [116], other sources [119–121], and physical devices. These

images are customized by 11 vendors, for around 135 models, 45 regions and 8 carriers.

They operate Android versions from 4.1.1 to 5.1.1. Details about the collected images are

in Table 5.2. In total, these images include on average 157 apps per image and 93169 all
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Version # of Distinct Vendors # of images
Jelly Bean 9 102

KitKat 9 177
Lollipop 8 312
Total 11 591

Table 5.2: Collected Android Images

together apps. To extract the values of the selected security features on each image, I

developed a tool called DroidDiff. For each image, DroidDiff first collects its framework

resources Apks and preloaded Apks then runs Apktool to extract the corresponding

manifest files. Second, it collects configuration files under /etc/permission/. Then,

DroidDiff searches the extracted manifests and configuration files for the definitions of the

targeted entities (EP , EPB, EGID and EC). Finally, DroidDiff runs the generated values

through my differential analysis methodologies, discussed in the next section.

5.4 Differential Analysis

In my analysis, I aim to detect any feature fne having inconsistent values throughout a

candidate set of images. Any inconsistency detected indicates a potential unintentional

configuration change introduced by a customization party and requires further security

analysis to assess possible consequent damages.

Let fv(fne, img) represent the value of the feature fne on a given image img. To

illustrate fne to fv(fne, img) mappings, consider this real world example depicted in

Table 5.3. As shown, I extract 3 security features and their corresponding values from 2

Xiaomi images. For the custom permission e = MIPUSH_RECEIVE, the my feature extraction
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Image e 2 EP

MIPUSH_RECEIVE
e 2 EGID

camera GID
e 2 EC

sms
I1: Xiaomi RedMi 1

Version: 4.4.2 Signature Normal True

I2: Xiaomi Mi 2A
Version: 4.1.1 Unspecified Dangerous False

Table 5.3: Security Configurations Map

step generates the following values fv(fne, I1) = Signature, and fv(fne, I2) =

Unspecified.

Let IMG denote a set of candidate images to be compared, I define a feature fne as

inconsistent if:

C(fne) = 9 x 9 y [ x 2 IMG ^ y 2 IMG

^ x 6= y ^ fv (fne , x) 6= fv (fne , y) ]

The above statement means that I consider the feature fne inconsistent across the set IMG

if there exists at least two different images where the value of fne is not equal. It should be

noted that I do not consider any cases where fv(fne, img) = 0 for e 2 {EP , EGID and EC}.

Sample Selection. To discover meaningful inconsistencies through differential analysis,

our collected images should be clustered based on common criteria. A meaningful

inconsistency would give us insights about the responsible party that introduced it. For

example, to reveal if inconsistencies are introduced by an OS upgrade, it would not make

sense to select images from all vendors, as the inconsistency could be due to customizing

the device for a specific vendor, rather than because of the OS upgrade. Similarly, to

uncover if a specific vendor causes inconsistencies in a new model, it is not logical to

compare it with models from other vendors. Rather, I should compare it with devices from
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the same vendor. Besides, to avoid detecting a change caused by OS version mismatches,

the new model should be compared to a model running the same OS version.

We designed five different algorithms that target to uncover meaningful inconsistencies.

Specifically, by carefully going through each party within the customization chain, I

designed algorithms that would reveal inconsistencies (if any) caused by each party.

Further, for each algorithm, I select my candidate images based on specific criteria that

serve the purpose of the algorithm,

We describe each algorithm as well as the sample selection criteria in the next sections.

A1: Cross-Version Analysis. This analysis aims to uncover any inconsistent security

features caused by OS version upgrades. I select candidate image sets running similar

device models to make sure that the inconsistency is purely due to OS upgrade. For

instance,we would pick 2 Samsung S4 devices running 4.4.4 and 5.0.1 as a candidate image

set, and would reveal if upgrading this model from 4.4.4 to 5.0.1 causes any security

configuration changes.

Formally, let IMGMODEL denote the candidate image set as the following:

IMGMODEL ={img1, img2, ..., imgn}

such that imgi 2 IMGMODEL if model(imgi) = MODEL

Based on our collected images, this algorithm generated 135 candidate image sets (count of

distinct model).

Let fv(fne, img) denote a value for a feature fne in img 2 IMGMODEL. I define the

inconsistency condition under Cross-Version analysis algorithm as follows,
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discrepancies with regards to our selected features. In this section, I present my results and

findings.

5.5.1 Overall Results

Figure 5.3 shows the overall changes detected from my analysis. I plot the average

percentage of inconsistencies detected for each feature category (Permission, GID,

Protected Broadcasts, Component Visibility, and Component Protection) using the five

differential analysis algorithms. To provide an estimate of the inconsistencies count, each

box plot shows an average number of total common entities (appearing on at least 2

images) in the image sets studied; I depict this number as # total in the graph. Let us use

the first box plot as an example to illustrate what the data means: under the Cross-Version

analysis (A1), DroidDiff generated on average 673 common permissions per each studied

candidate sets. 50% of the candidate image sets contain at least 4.8% of total permissions

(around 32 out of 673) having inconsistent protection levels; those in the top 25

percentile (shown in the top whisker) have at least 6% (40) inconsistent permissions.

Figure 5.3 also depicts the image sets that are outliers, i.e., they have particularly higher

number of inconsistencies compared to the other image sets in the same group. For

instance, the candidate image set IMGV ersion=4.4.2 in the Cross-Vendor analysis (A2)

contains around 10% of GIDs whose protections are inconsistent.

As depicted in Figure 5.3, the Cross-Version analysis (A1) detects the highest

percentage of inconsistencies in all 5 categories, which means that upgrading the same

device model to a different OS version introduces the highest security configuration
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changes. An intuitive reason behind this is that through a new OS release, Android might

enforce higher protections on the corresponding entities to fix some discovered bugs (e.g.

adding a permission requirement to a privileged service). However, we found out that

through newer OS releases, certain security features are actually downgraded, leading to

potential risks if done unintentionally. We discuss this finding in more details in

Section 5.5.6.

Through the Cross-Vendor analysis (A2), DroidDiff detects that several security

features are inconsistent among vendors, even though they are of the same OS version. I

have further analyzed the vendors that cause the highest number of inconsistencies. An

interesting observation is that smaller vendors, such as BLU, Xiaomi and Digiland caused

several risky inconsistencies. In fact, all inconsistent GIDs (potentially very severe) are

actually caused by these 3 companies. Probably, small vendors may not have enough

expertises to fully evaluate the security implications of their actions.

The Cross-Model analysis (A3) also detects a number of inconsistencies, which means

that different device models from the same vendor and OS version, might have different

security configurations.

Although the Cross-Carrier (A4) and Cross-Region (A5) analyses detect a smaller

percentage of inconsistencies, it is still significant to know that the same device model

running the same OS version might have some different configurations if it is customized

for different carriers or regions. Our results shows that the inconsistencies are less common

in North America region, and more prevalent in Chinese editions.
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5.5.2 Permissions Changes Pattern

Protection level mismatch. DroidDiff differential analysis results confirm that Android

permissions may hold different protection levels across similar images. As Figure 5.3

illustrates, more than 50% of the candidate image sets contain at least 32 (out of 673), 9

(out of 817) permissions having inconsistent protection levels in the Cross-Version (A1) and

Cross-Model (A3) analyses, respectively. To reveal more insights, I checked which

combination of protection level changes are the most common. That is, which combination

out of the following 3 possible combinations is the most common (Normal, Dangerous),

(Normal, Signature) or (Dangerous, Signature). I have calculated the occurrence of each

pattern, and present the results in Figure 5.4. As shown, (Normal, Signature)

combination is the most common pattern. This is quite serious as several permissions that

hold a Signature protection level on some images are defined with a Normal protection

level on others. We present here two permissions holding inconsistent protection levels:

• com.orange.permission.SIMCARD_AUTHENTICATION holds Signature and Normal

protection on Samsung S4(4.2.2) and Sony Experia C2105 (5.0.1), respectively.

• com.sec.android.app.sysscope.permission.RUN_ SYSSCOPE holds Dangerous and

Signature protection on Samsung Note4 and S4(5.0.1), respectively.

Usage of unspecified protection level. Android allows developers to define a

permission without specifying a protection level, in which case, the default protection level

is Normal. In our investigation, I found that it is not clear whether developers really

intended to use Normal as the protection level. I found that a large percentage of these
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permissions (with unspecified protection level) hold conflicting protections on other images.

Overall, 2% of the permissions studied were defined without a specified protection level in

at least one image. To check if developers intended to use Normal as the protection level,

for each permission that has been defined without a protection level, I check its

corresponding definitions on other images to see if it has a protection level specified. I then

compare the other specification to see it it is Normal or not. As Figure 5.5(a) illustrates, on

average, 91% of these permissions holding unspecified protection level hold a Signature

protection on at least 1 other image, which indicates that developers probably intended to

use the Signature protection level. I illustrate this finding with 2 permissions:

• com.sec.android.phone.permission.UPDATE_ MUTE_STATUS holds Unspecified

and Signature protections on Samsung E7 (5.1.1) and S6 Edge(5.1.1), respectively.

• com.android.chrome.PRERENDER_URL holds Unspecified and Signature

protections on LG Vista (4.4.2) and Nexus7 (4.4.2), respectively.

2%	
23%	

75%	

Region 
(Normal,	Dangerous)	

(Normal,	Signature)	

(Dangerous,	Signature)	

38%	

45%	

17%	

Version 

14%	

63%	
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Carrier 

13%	

71%	
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Model 50%	
41%	

9%	
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Fig. 5.4.: Protection Level Changes Patterns
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Fig. 5.5.: Inconsistency Breakdown

5.5.3 Permission-GID Mapping

By analyzing the differential analysis results of the mappings between GIDs and

permissions, I have confirmed that customization introduces problematic

GID-to-permission mappings that can lead to serious vulnerabilities in the victim images.

Through the Cross-Vendor analysis (A2), DroidDiff detects 3 inconsistent cases (out of 25

common GIDs), in which vendors mapped less privileged permissions to privileged GIDs.

This dangerous pattern leads to downgrading the protection level of these GIDs. I

illustrate this finding with one detected example. On AOSP images and several customized

images (running 4.4.4 and below), camera GID is mapped to a Dangerous level permission

(android.permission.CAMERA). However, on Neo 4.5 (BLU), I found out that the same

GID is mapped to a Normal level permission: android.permission.ACCESS_MTK_MMHW.

This case indicates that BLU has downgraded the requirement for apps to obtain the
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camera GID. Our analysis reveals that the requirements for two more GIDs, system GID

and media GID, have been downgraded. These two GIDs, protected by a Signature

permission on most devices, can be acquired with a Normal permission on the victim

devices.

5.5.4 Protected Broadcasts Changes Pattern

DroidDiff further reveals that protected broadcasts’ definitions might be removed from

some images during the customization process. As illustrated in Figure 5.5(b), through the

Cross-Version analysis (A1), we detected that 70% of protected broadcast are not defined

on at least one vendor. This might not necessarily be problematic if the broadcast is not

used. However, my investigation shows that around 9% of these inconsistently unprotected

broadcasts (28 on average per image set) are used as intent-filters actions for broadcast

receivers. This inconsistency across versions is quite alarming as a privileged receiver that

was supposed to be invoked by system processes can be invoked by any unprivileged app

on certain versions. As Figure 5.3 further illustrates, Cross-Vendor (A2) and Cross-Model

(A3) analyses reveal that more than 25% of candidate image sets contain at least 2%

broadcasts which are inconsistently protected, but still being used as intent-filter actions.

5.5.5 Component Security Changes Pattern

Visibility mismatch. DroidDiff results confirm that app components may have a

conflicting visibility. That is, the component is exposed on one image but not on another.
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Fig. 5.6.: Breaking Down Components: Visibility Mismatch

As Figure 5.3 illustrates, 50% of the candidate image sets contain at least 3.9% components

(around 222) and 2% (133) holding inconsistent visibility through various versions (A1) and

models (A3), respectively. To provide insights about which components hold more visibility

inconsistencies, I break down my findings to activities, services, receivers, and content

providers. I plot the results in Figure 5.6. As depicted, content providers and activities

have the highest visibility mismatch. In fact, 25% of the candidate image sets contain at

least 20% (53) and 14% (21) content providers holding a different visibility in different

versions (A1) and vendors (A2), respectively. Similarly, 4% (139) and 3% (45) of activities

hold a conflicting visibility in 50% of the studied sets based on A1 and A2, respectively.

Permission mismatch. DroidDiff further reveals that components may hold

inconsistent protections across images. We break down my findings in Figure 5.7. My

results show that content providers exhibit the highest number of protection

inconsistencies. In fact, more than 25% of the candidate images sets include at least 19%

(51) and 10% (33) content providers having different protections in the Cross-Version (A1)
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Fig. 5.7.: Breaking Down Components: Permission Protection Mismatch

and Cross-Model (A3) analyses, respectively. I have further analyzed these inconsistent

components and categorized the reason behind the discrepancies. As Figure 5.5(c)

illustrates, in the majority of the cases (60%), the discrepancy is caused by the same

component being protected with a permission on one image, but not protected at all on

others. The second common reason (30%) is that the same component is protected with

permissions holding different protection levels across the studied images. Using non-defined

permissions to protect a component is third common reason (10%).

Duplicate components declaration. Based on my analysis of the inconsistent

broadcast receivers (particularly high on Lollipop images), we found out that most of them

are caused by a non-safe practice that developers follow. Developers declare duplicate

broadcast receivers names in the same app, but assign them different protections. After

further investigation, we found out that it is not a safe practice to do as it will be possible
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to bypass any restrictions put on the first defined receiver. To illustrate, consider the

following receivers, defined in Samsung’s preloaded PhoneErrorService app:

<receiver android:name="PhoneErrorReceiver"

android:permission="android.permission.REBOOT">

<intent-filter>

<action android:name="REFRESH_RESET_FAIL"/>

...

</intent-filter>

</receiver>

<receiver android:name="PhoneErrorReceiver">

<intent-filter>

<action android:name="DATA_ROUTER_DISPLAY"/>

</intent-filter>

</receiver>

In the above code, the developer decided to protect the functionality triggered when

receiving the action REFRESH_RESET_FAIL with the permission REBOOT (Signature level).

In the other case, she decided not to require any permissions when invoking the

functionality triggered by the action DATA_ROUTER_DISPLAY. At first glance, the above

duplicate components declaration might look fine. However, we found out that the

PackageManagerService does not carefully handle the registration of duplicate receivers.

On one hand, it correctly handles mapping each filter to the required permission, used for

implicit intents routing (e.i., sending the action REFRESH_RESET_FAIL requires REBOOT
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permission, while sending DATA_ROUTER_DISPLAY does not require any permission). On the

other hand, however, it does not correctly map each component name to the required

permission, used for explicit intents routing (e.i., the first PhoneErrorReceiver should

require REBOOT while the second one should not). In fact, it turns out that the second

declaration of the component name replaces the first one. Thus, any protection requirement

on the second receiver would replace the first receiver’s permission requirement in case of

explicit invocation. Consequently, in the above example, invoking PhoneErrorReceiver

explicitly does not require any permission. The explicit intent can further set the action

REFRESH_RESET_FAIL and thus trigger the privileged functionality (rebooting the phone)

without the required REBOOT permission. I have confirmed this dangerous pattern in several

preloaded apps and were able to achieve various damages. I filed a bug report about this

discovered vulnerability to Android Security team and informed other vendors about it.

5.5.6 Downgrades Through Version Analysis

A dangerous pattern that I are interested in is whether there are any security

downgrades through versions. For example, unlike a security configuration upgrade,

possibly attributed to fixing discovered bugs in earlier images, downgrading a security

configuration is quite dangerous as it will lead to a potential exposure of privileged

resources that were already secured on previous versions. For each security configuration,

my report in Figure 5.8, the percentage of security configuration downgrades out of all

detected cases. As Figure 5.8 illustrates, a large number of configurations are indeed
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Fig. 5.8.: Percentage of Security Features Downgrades

downgraded. For example, 52% of inconsistent component protection mismatch are

actually caused by downgrading the protection.

5.6 Attacks

We would like to find out whether the risky patterns discovered can actually lead to

actual vulnerabilities. To do that, we have selected some high impact cases, and tried to

design attacks to verify whether these cases can become vulnerabilities. Due to resources

limitations, our verification is driven by the test devices that I have, including Samsung

Edge 6 Plus (5.1.1), Edge 6 (5.0.1), Nexus 6 (5.1.1), Note2 (4.4.2), Samsung S4 (5.0.1),

MotoX (5.0.1), BLU Neo4 (4.2.2), and Digiland DL700D (4.4.0). We have found 10 actual

attacks, some of which were confirmed on several devices. I have filed security reports for

the confirmed vulnerabilities to the corresponding vendors. I discuss here 6 attacks. At the

end of this section, I I discuss possible impacts of 40 randomly selected cases in other

devices to demonstrate the significance of inconsistent security configurations.
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Stealing emails. SecEmailSync.apk is a preloaded app on most Samsung devices. It

includes a content provider, called "com.samsung.android.email.otherprovider", which

maintains a copy of user’s emails received through the default Samsung email app. Our

Cross-Model and Cross-Region analyses reveal inconsistent permission protections on this

provider among several Samsung images. The Read and Write accesses to this provider are

protected with a Signature permission "com.samsung.android.email.permission.

ACCESS_PROVIDER" on Samsung Grand On(5.1.1, India), S6 Edge (5.1.1, UAE), and other

devices. However, this provider is not protected with any permission on several other

devices such as our test device S6 Edge (5.1.1, Global edition). I wrote an attack app that

queries this content provider. It was able to access user’s private emails on the victim

device without any permission.

Forging premium SMS messages. The TeleService package (com.android.phone) is

preloaded on many Samsung devices, and provides several services for phone and calls

management. A notable service is .TPhoneService, which performs some major phone

functionalities such as accepting voice and video calls, dialing new phone numbers, sending

messages (e.g. to inform why a call cannot be received), as well as recording voice and

video calls. The Cross-Model and Cross-Version analyses reveal a permission mismatch on

this critical service. On several devices, such as Samsung S5 LTE-A (4.4.2, Korea), the

access to this service is protected with the Signature permission com.skt.prod.

permission.OEM_PHONE_SERVICE, which makes the service unaccessible to third-party

apps. However, on several other devices such Samsung Note 2 (4.4.2, Global edition), this

service is protected with another permission com.skt.prod.permission.PHONE_SERVICE
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for which my analysis reveals a missing definition. I built an attack app that defines the

missing permission with a Normal protection level. My app was able to successfully bind to

com.android.phone.TPhoneService and invoke the send-message API on Samsung Note

2, allowing to forge SMS messages without the usually required SEND_SMS.

Unauthorized factory reset. The preloaded Samsung app ServiceModeApp_FB.apk

performs various functionalities related to sensitive phone settings. It includes a broadcast

receiver ServiceModeAppBroadcastReceiver that listens to several intent filters including

the action filter com.samsung.intent.action.SEC_FACTORY_RESET_ WITHOUT_FACTORY_UI

that allows to factory reset the phone and delete all data without user confirmation. The

Cross-Version analysis reveals a protection mismatch for this critical broadcast receiver. In

most devices running Kitkat and below, this receiver is protected with the Signature

permission com.sec.android.app.servicemodeapp.permission. KEYSTRING. However,

on several Lollipop images, it is not correctly protected. Further investigation reveals that

this is caused by the duplicate receiver pattern discussed in Section 5.5.5. The declaration

of the receiver has been duplicated on the victim images such that the first one requires a

Signature permission while the second one does not. As discussed in Section 5.5.5, using

this risky pattern allows a caller app to bypass any restrictions on the first declared

broadcast receivers through explicit invocation. I wrote an attacking app that invokes the

broadcast receiver explicitly with the action com.samsung.intent.action.

SEC_FACTORY_RESET_WITHOUT_FACTORY_UI and were able to factory reset several victim

devices including the latest S6 Edge Plus 5.1.1, S6 Edge 5.0.1, and S4 5.0.1.
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Accessing critical drivers with a normal permission. The Cross-Vendor analysis

reveals a critical protection downgrade of the system GID. On some images, such as

Samsung S5 (4.4.2), this GID is mapped to the Signature permission com.qualcomm.

permission.IZAT. Nevertheless, on other images (e.g., Redmi Note 4.4.2 and Digiland

DL700D 4.4.0), this GID is mapped to a Normal level permission android.permission.

ACCESS_MTK_MMHW, indicating that any third-party app can easily get the system GID.

Table 5.4 lists the device drivers that are accessible via the system GID on the Digiland

DL700D Tablet. These are privileged drivers, but they can now be accessible to normal

apps.

Driver ACL

bootimg; devmap; mtk_disp; pro_info; preloader; recovery

r –

pro_info; devmap; dkb; gps; gsensor; hdmitx; hwmsensor;

kb; logo; misc; misc-sd; nvram; rtc0; sec; seccfg ; stpwmt

touch; ttyMT2 ; wmtWifi; wmtdetect

rw-

cpuctl

r-x

Table 5.4: Drivers accessible to System GID

Triggering emergency broadcasts without permission. CellBroadcastReceiver is a

preloaded Google app that performs critical functionalities based on received cell

broadcasts. It registers the broadcast receiver PrivilegedCellBroadcastReceiver that

allows receiving emergency broadcasts from the cell providers (e.g., evacuation alerts,

presidential alerts, amber alerts, etc.) and displaying corresponding alerts. This critical

functionality can be triggered if the action android.provider.Telephony.SMS

_EMERGENCY_CB_RECEIVED is received. The Cross-Vendor and Cross-Version analyses

discovered a protection mismatch on this receiver among several devices. For instance, on
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Nexus S 4G 4.1.1, this receiver is protected with the Signature permission android.

permission.BROADCAST_SMS. However, on other devices (e.g., Nexus6 5.1.1 and MotoX

XT1095 5.0.1), it is protected with the Dangerous permission android.permission.

READ_PHONE_STATE. My investigation reveals that this is also due to the duplicate receivers

risky pattern (Section 5.5.5). On the victim devices, PrivilegedCellBroadcastReceiver

has been declared twice such that its first declaration requires a Signature permission and

handles the action android.provider.Telephony.SMS_EMERGENCY_CB _RECEIVED, while

the second declaration handles less privileged actions and requires a Dangerous permission.

As discussed, any third-party app can bypass the permission requirement on the first

receiver through explicit invocation. I wrote an attack app that was able to trigger this

receiver and show various emergency alerts.

Tampering with system wide settings. SystemUI is a preloaded app that controls

system windows. It handles and draws a lot of system UIs such as top status bar, system

notification and dialogs. To manage the top status bar, the custom Samsung SystemUI

includes a service com.android.systemui.PhoneSettingService, which handles incoming

requests to turn on/off a variety of system wide settings appearing on the top status bar.

These settings include turning on/off wifi, bluetooth, location, mobile data, nfc, driving

mode, etc; that are usually done with user consent. Our analysis shows a protection

mismatch for this service. On S5(4.4.2) and Note8(4.4.2), this service is protected with a

signature permission com.sec.phonesettingservice.permission.PHONE_ SETTING, while

on Note 2, 4.4.2, the service is not protected with any permission. I wrote an attack app
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that successfully asks the privileged service to turn on all the settings mentioned above

without any permission.

Other Randomly Selected Cases. The impact of inconsistent security configurations

are significant. In addition to end-to-end attacks I built, I also randomly sampled 40

inconsistencies and manually analyzed what could happen once they were exploited. Note

that due to the lack of physical devices, all I could do is just static analysis to infer possible

consequences once an exploit succeeds. Such an analysis may not be accurate, but it is still

important for understanding the impacts of inconsistent security configurations. The

outcomes of my analysis are shown in Table 5.5. Please note that I could not assess the

impact in 5 cases (heavily obfuscated code), while I confirmed that 2 cases have been

hardened via runtime checks.

Inconsistent Configuration Category Impact Specific Examples
Permission Protection Change Change System / App Wide Settings Xiaomi Cloud Settings, Activate SIM

Removed Protected Broadcasts Trigger Dangerous Operations and events Trigger data sync, SMS received
Airplane mode active, SIM is full

Non-Protected Content Providers Data Pollution Write to system logs, Add contacts
Change instant messaging configurations

Non-Protected Content Providers Data Leaks Read emails, Read contacts
Read blocked contact lists

Non-Protected Services Trigger Dangerous Operations Access Location, Bind to printing services
Kill specific apps, Trigger backup

Non-Protected Activities Change System wide Settings Change Telephony settings, Access hidden activities

Non-Protected Receivers Trigger Dangerous Operations Send SMS messages, Trigger fake alerts
Alter telephony settings , Issue SIM commands

Table 5.5: Impact of Inconsistent Security Configurations

5.7 Limitations

In this section, I discuss some limitations of my proposed approach.
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Components implementation changes. A static change of a component’s security

configurations (visibility or permission protection) might not necessarily indicate a security

risk all the time. In fact, a developer might intentionally decide to export a component or

downgrade its permission protection in the following cases: the component’s operations or

supplied data are not privileged anymore or the component’s implementation is hardened

via runtime checks of the caller’s identity (e.g., binder.getCallingUid() or Context.

checkPermission() APIs). My solution pinpoints these possibly unintentional risky

configurations changes and demands further investigation to confirm whether the change

was indeed intentional or not.

Components renaming. My approach would miss detecting inconsistent configurations

of components which have been renamed during the customization. In fact, as Android

relies heavily on implicit intents for inter-app communication, vendors might rename their

components to reflect their organization identity.
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6. CONCLUSION AND FUTURE WORK

In summary, this dissertation conducts a study of Android customization with regards to

security aspects. The objective of this work is to systematically investigate any

inconsistencies created as a result of this process and to assess its various security

implications. First, my investigation led to the discovery of serious Android security flaws

that have never been studied before. The problem, called Hare, has been caused by the

conflict in the decentralized, unregulated Android customization process and the

complicated interdependencies among different Android apps and components. This work

brings to light the significance of this security risk, revealing the damages that can be done

on various Android devices, and showing that popular devices are riddled with such flaws.

Second, this dissertation makes the first attempt to systematically detect security

configuration changes introduced by Android customization. I list the security features

applied at various Android layers and leverage differential analysis among a large set of

custom ROMs to find out if they are consistent across all of them. By comparing security

configurations of similar images, I were able to locate critical security changes that might

have been unintentionally introduced during the customization. My systematic comparison

shows that indeed, customization parties change several configurations leading to severe

vulnerabilities such as private data exposure and privilege escalation.

As future work, I propose to enhance DroidDiff to detect risky inconsistencies more

accurately; I plan to detect the cases where a component’s implementation has been
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hardened via runtime checks (invocation of specific APIs). To detect other cases that

might be missed because of components’ renaming, I intend to calculate the similarity

between components and then check the security configurations of any two similar

components. I believe that such improvements to DroidDiff would help reduce the number

of false positives and pinpoint risky configurations more accurately.

Besides, I plan to employ DroidDiff differential analysis results to predict the correct

security configuration of a given misconfigured feature. If the majority of security features

share the same configuration, then inconsistent components should be most probably

configured similarly on the victim images.

Finally, I plan to deploy DroidDiff to be used by vendors to check the configurations of

various security features on a given image. DroidDiff will extract those features from the

image, and compare them to my collected configurations of other images. Then, DroidDiff

would flag inconsistent ones to be further investigated by the vendors who have the source

code and devices to check their effects.
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A. DROIDAPIMINER: MINING API-LEVEL FEATURES FOR

ROBUST MALWARE DETECTION IN ANDROID

As Android mobile devices are becoming increasingly popular, they are becoming a target

of malware authors. To protect mobile users from the severe threats of Android malwares,

different solutions have been proposed. Several systems have been proposed based on

Android permission system. In [122], if an app requests a specific or a combination of

critical permissions, a risk signal will be raised. In [83], several risk signals have been

proposed depending on an app’s requested permissions, its category, as well as the

requested permissions from apps belonging to the same category. In [123], different risk

scoring schemes have been designed using probabilistic generative models. However, the

permission-based warning mechanisms fall short for several reasons:

• The existence of a certain permission in the app manifest file does not necessarily

mean that it is actually used within the code. According to [124–126], a large

percentage of Android apps are over-privileged.

• A large number of requested permissions, specially the critical ones, are actually not

used within the application’s code itself, but rather are required by the advertisement

packages.

• Malware can perform malicious behavior without any permission [127].
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Another direction to detect malicious activities in Android apps relies on the semantic

information within the application bytecode. CHEX [128] statically vets Android apps for

component hijacking vulnerabilities through performing data flow analysis and conducting

reachability tests on the generated system dependency graphs to detect potential hijack

enabling flows. Similarly, Woodpecker [127] exposes capability leaks through using data

flow analysis and exploring the reachability of a dangerous permission from a

non-protected interface. While these approaches are effective in detecting the particular

vulnerabilities that they target, they cannot be generalized to detect other malicious

activities. DroidRanger [86], on the other hand, combines permission-based behavioral

footprints and a heuristic based filtering scheme to detect malicious apps.

In this work, I aim to overcome the shortcomings of the permission-based warning

mechanisms and build a robust and lightweight classifier for Android apps that could be

used for malware detection. To select the best features that distinguish between malware

from benign apps, I rely on API level information within the bytecode since it conveys

substantial semantics about the apps behavior. More specifically, I focus on critical API

calls, their package level information, as well as their parameters.

Instead of following a heuristic based approach for identifying critical features for

malware functioning, I have analyzed a large corpus of benign and malware samples,

generated the set of APIs used within each app, and conducted a frequency analysis to list

out the ones which are more frequent in the malware than in the benign set. Furthermore,

for certain critical APIs which were frequent in both sample sets, I have conducted a

simple data flow analysis on the malware APK samples to identify potentially dangerous

inputs. I generated a list of frequently used parameters, thoroughly examined them to filter
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out the dangerous ones and flagged all apps that request them. To perform API level

feature extraction and data flow analysis, I have developed a tool called DroidAPIMiner

built upon Androguard [129] reverse engineering tool. I use RapidMiner [130] to build the

classification models.

In summary, the contributions of this work are as follows:

• I introduce a robust and efficient approach for describing Android malware that relies

on the API, package, and parameter level information.

• Based on the identified feature set of Android malware, I provide valuable insights

about malware behavior at API-level.

• I produce and evaluate different classifiers for Android apps. Our testing shows that

some of them achieve a high accuracy and low false positive rate compared to the

permission-based classifiers. In fact, KNN achieves a 99% accuracy and 2.2% false

positive rate.

A.1 Approach Overview

In our work, I I follow a generic data mining approach that aims to build a classifier for

Android apps. The classifier should be able to automatically learn to identify complex

malware patterns and make smart decisions based on that. The classifier should also be

able to generalize from the input set to correctly predict an accurate class of given new

apps. As depicted in Fig. A.1, our approach is divided into three phases: feature

extraction, feature refinement, and models learning and generation.
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Fig. A.1.: Our Approach

During the feature extraction phase, I statically examine the collected benign and

malware APK samples to determine and extract the necessary features for malware to

function. In selecting the feature set, I focus on some semantic information encapsulated

within the bytecode of apps. More specifically, I extract API calls and their package level

information. Besides, I extract the requested permissions of the apps for the generation of

the baseline model.

During the feature refinement phase, I remove the API calls that are exclusively

invoked by third-party packages such as advertisement packages. I reduce our feature set

further to include only those APIs whose support in the malware set is significantly higher

than in the benign set. For those APIs which were frequent in the two sets, I perform data

flow analysis to recover their parameter values and select only the APIs that invoke

dangerous values. Subsequently, for each APK file, I generate a set of feature vectors along

with associated class labels, i.e. malware or benign. For the last two steps, I have

implemented DroidAPIMiner, a python program that import libraries from Androguard

static analysis tool for Android apps [129]. Section 3 will be dedicated to discuss in more
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details how I conduct feature extraction and refinement. I discuss in Section 4 some of the

insights that I have gained based on the identified features.

During the model learning and generation phase, I feed the representative vectors to

standard classification algorithms that build the models by learning from them. I have

generated 4 different classifiers: ID5 DT [131], C4.5 DT [132], KNN [133] and SVM [134]. I

test the generated classifiers to estimate the accuracy using split validation. Two thirds of

the data set are randomly selected for training and the rest one third is dedicated for

testing. For this step, I use RapidMiner [130] to generate the classification models and

evaluate them. In Section 5, I perform the classification and evaluate the models.

A.2 Feature Extraction and Refinement

In this section, I aim to systematically determine and extract necessary features for

malware functioning. Android app’s bytecode contains information that could be used to

describe its behavior. From the bytecode, I can retrieve information ranging from

coarse-grained levels as packages to fine-grained levels as instructions. I do not perform

sophisticated program analysis because it is computationally expensive. Rather, I focus on

extracting package and API level information since they clearly capture the app’s behavior.

More specifically, I consider class name, method name, and some parameters of the callee

and the package name of the caller, which I will describe in the next subsections.
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A.2.1 Extraction of Dangerous APIs

Contrary to previous work, I do not follow a heuristic-based approach to identify

dangerous APIs for malware functioning. Instead, I aim to reliably identify the major APIs

that malware invoke by statically analyzing our samples.

Effectively, I have statically analyzed a large set of malware and benign apps and

generated a list of distinct API calls within each set. A distinct API refers to a distinct

combination of Class Name, Method Name, and Descriptor. I then conduct a frequency

analysis to select those APIs which are more used in the malware than in the benign set. I

further refine the API list to include only those with a usage difference higher or equal to a

certain threshold.

A.2.2 Extraction of Package Level Information

Most of Android apps contain one or more third-party packages (according to our

analysis, 71 % of the benign apps contain at least one advertisement package). These

packages often exhibit some suspicious behavior. For instance, many ads use encryption to

hinder their removal. Also, getCellLocation() and getDeviceId() methods are often

called by ad kits for users’ identification and tracking purposes. I aim to identify at what

package level a certain API is invoked. To achieve this goal, I have performed the following

tasks:

• Extract advertisement and similar packages: Using Androguard, I generate all

distinct packages invoked within each APK in our collected sample. I remove from

the generated packages names all common packages such as Android specific
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packages, Java packages, etc. I inspect the remaining items and compile a list of

advertisement, web tracking, web analysis and application ranking packages. In total,

I have identified around 412 distinct advertisement and similar packages. Some

commonly used advertisement packages are: Admob, Flurry, Millennialmedia,

Inmobi, Adwhirl, Adfonic, Adcenix, etc.

• Identify calling packages: I check at what package a certain API is called. In

other words, I distinguish if an API is invoked only by a third-party package, only by

the application specific packages, or by both. I white-list any APIs that are

exclusively invoked by third-party packages.

A.2.3 Extraction of APIs Parameters

Certain frequent APIs in the malware set did not yield to a high support difference

between the malware and the benign sample as they were also common in the benign

sample. For example, some methods within string manipulation and IO classes are almost

as frequent in the malicious set as in the benign set. To increase this difference, I have

performed data flow analysis on these specific APIs in order to recover the parameters

values that have been passed to them through inspecting the registers invoked.
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Table 1. Categorization of parameters to frequently used Malware APIs

Classes Methods Parameter Category

Intent
IntentFilters

setFlags, addFlags,
setDataAndType,
putExtra, init

Flag is either:
CALL, CONNECTIVITY, SEND, SENDTO,
or BLUETOOTH

ContentResolver query, insert,
update..

URI is either:
Content://sms-mms, Content://telephony,
Content://calendar, Content://browser/bookmarks,
Content://calllog, Content://mail,
or Content://downlaods

DataInputStream
Bu↵eredReader
DataOutputStream
DataOutputStream

init, writeBytes... Reads from process
Reads from connection
Uses SU command

InetSocketAddress init parameter IP is explicit or port is 80
File
Stream
StringBuilder
String
StringBu↵er

init, write, append,
indexOf, Substring

Dangerous Command such as: su, ls, loadjar, grep,
/sh, /bin, pm install, /dev/net, insmod, rm, mount,
root, /system, stdout, reboot, killall, chmod, stderr
Accesses external storage or cache
Contains either:
An identifier (e.g. Imei), an executable file( e.g. .exe,
.sh), a compressed file (e.g. jar, zip), a unicode string,
an sql query, a reflection string, or a url

Table A.1: Categorization of Parameters to Frequently Used Malware APIs

Based on our initial investigation, these APIs generated distinct parameters which

resulted in a big number of features. To reduce the parameter feature set, I have

categorized the parameters based on different criteria. Table A.1 includes the APIs on

which I have performed the data flow analysis along with the criteria that I have adopted

to categorize their input parameters.

A.3 Insights in API-Level Malware Behavior

Based on the API level analysis, I have identified the top APIs that Android malwares

invoke. Fig.A.2 shows the top 20 APIs that produce the highest difference of usage

between malware and benign apps. As illustrated, I get a better difference after filtering

out third-party packages. For example, the method init in Java.Util.TimerTask initially

produced 14% usage difference between the two sets. This difference increased to 28% after

whitelisting this API in third-party packages since it is mainly invoked by them in the

benign sample.
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Fig. A.2.: Top 20 APIs with the Highest Difference Between Malware and Benign Apps

We discuss here some of the top commonly used malware features that our study

generated after refining the initial feature set. To help understand malware behavior and

gain more insight into what resources are accessed and what actions are performed, I

classify the APIs by the type of requested resources and utilities. At the end of the section,

I present the data flow analysis results.

A.3.1 Application-specific resources APIs

Content Resolver: This class provides access to content providers. It processes

requests (CRUD operations) by directing them to the appropriate content provider. The

most frequent methods used in this class by malware are insert(), delete() and query().
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This latter can be invoked to grab sensitive information from content providers of other

apps if they are not protected by permissions. As stated in [135], some vendor pre-installed

apps have implicitly exported content providers which allowed other apps to successfully

obtain sensitive information from them without acquiring the necessary permissions.

Context: Context class provides global application information such as its specific

assets, classes, and resources. startService() is very frequently used methods within this

class with a support of more than 70% in malware and less than 34% in benign ones. This

API can be invoked to start a given service in the background without interacting with the

user. getFilesDir() and openFileOuput() are other frequent APIs in this class that

malwares call to create files and get their absolute paths. getApplicationInfo() is often

used by malwares for obtaining various information about the app such as whether it’s

debuggable, installed on external storage, holds factory test flag, etc.

Intents: Intents allow launching other activities and services and interacting with the

phone’s hardware. The most frequent APIs used by malwares within Intents are

setDataAndType(), setFlags() and addFlags(). setDataAndType() allows setting the

URI path for the intent data with an explicit MIME data type. As stated in the official

documentation of Android [136], this method should “very rarely be used" since it allows to

override the ordinary inferred MIME type of data of a newly specified MIME type.

setFlags() and addFlags() are used to set the old flags or add new ones to the intent to

specify how it should be handled. Depending on the parameter flag to these APIs, malware

controls the associated component such as running it with foreground priority.
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A.3.2 Android framework resources APIs

ActivityManager: This class allows interacting with other activities running in the

system. The method getRunningServices() is often invoked by malware to inquire

whether a certain service (like Anti-virus) is currently executing. getMemoryInfo() is also

frequently invoked by malware and might be used to check how close the system to have no

enough memory for other background process and thus needing to start killing other

processes. restartPackage() is often invoked by malware to kill other apps’ services.

According to Android’s documentation [137], the original behavior of this method is no

longer available to apps as it “allows them to break other applications by removing their

alarms, stopping their services, etc".

PackageManager: This class contains information about the application packages

installed on the device. Malicious apps call getInstalledPackages() to scan the system

against a list of known anti-virus and take an appropriate action based on that (e.g.

remain dormant, kill the anti-virus process, etc.) .

Telephony/ SmsManager and telephony/ gsm/ SmsManager: These classes

allows managing various SMS operations. Malware authors invoke many methods within

theses classes. sendTextMessage() is very frequently used by malwares authors to send

sms messages to premium rate numbers without the user’s consent and thus incur financial

losses. Examples of SMS Trojans include malware belonging to the following families:

SpyEye, OpFake, Gemini, etc.

TelephonyManager: This class retrieves various information about telephony services

on the device. The most frequently used APIs by malwares are: getSubscriberId(),
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getDeviceId(), getLine1Number(), getSimSerialNumber (), getNetworkOperator(),

and getCellLocation(). Malware authors collect these private data and send it to remote

servers to build users profiles and track them. As illustrated in Fig. A.2,

getSubsriberId() is the mostly used API by our malware sample.

A.3.3 DVM related resources APIs

DexClassLoader: This class allows loading classes from external .jar and .apk files

containing a classes.dex. loadClass() is one of the most frequently invoked APIs by

malware and is used to execute code not installed as part of the app and consequently

evade malware detection techniques that rely on static analysis.

Runtime and System: Runtime class allows apps to interact with the environment in

which they are running. Malware invokes Runtime.getRuntime.exec () method to

execute dangerous Linux commands along with the supplied arguments in a newly spawned

native process and thus avoid the normal execution lifecycle of the program. System class

provides system related facilities such as standard input, output and error output streams.

loadLibrary()dynamically loads native libraries and can be used maliciously through

running native code exploiting some known system vulnerabilities.

A.3.4 System resources APIs

ConnectivityManager, NetworkInfo, and WifiManage: These classes provide

network related functionalities such as answering queries about different connections (Wifi,

GPRS, UMTS) and network interfaces. Android malware calls APIs within
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ConnectivityManager class (getNetworkInfo()), NetworkInfo (getExtraInfo(),

getTypeName(), isConnected(), getState()), and within WifiManager

(setWifiEnabled() and getWifiState()) to establish a network connection and interact

with malicious remote servers.

HttpURLConnection and Sockets: APIs within these classes are used to send and

receive data over the web and establish communication with remote servers. The most

frequent APIs used by malwares in HttpURLConnection are setRequestMethod(),

getInputStream(), and getOutputStream() which manage transferring data between the

malware apps and the malicious servers. Similarly, malware applications often invoke

getInputStream() and getOutputStream() in Socket class for the same purpose. I have

also noted a heavy use of InetSocketAddress which implements an IP socket address given

an IP address and a port number.

OS package: A lot of frequently used APIs in malware belong to OS package which

allows message passing, ipc services, process and threads management. sendMessage()

method in os.Handler class inserts messages into message queues of different executing

threads, while obtainMessage() retrieves messages from the message queues. Malware

authors often invoke myPid() and killProcess() in Process class to request killing

processes based on a given pid. However, the kernel will impose restrictions on which

processes an application can actually kill [138]; only apps and packages sharing common

UIDs can actually kill each other. Unfortunately, these restrictions will not prevent

Android malware from killing processes beyond their scope once they can root the device.

IO Package: IO package provides IO processing services such as reading and writing

to streams, files, internal memory buffers, etc. Malwares invoke APIs within
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IO.DataOutputStream (such as writeBytes()) to write data and upload files through a

URL connection. Similarly, they call APIs in IO.DataInputStream (such as readLines(),

available()) to read and download malicious payloads from a certain URL connection.

Methods within IO.FileOutputStream (such as write()) are used to write the malicious

content downloaded from a remote server to local files. mkdir(), delete(), exists() and

ListFiles() are other used APIs in IO.File by malware for file management.

A.3.5 Utilities APIs

String, StringBuilder and StringBuffer: These classes provide an interface for

creating and manipulating strings. Malware heavily call substring(), indexOf(),

getBytes(), valueOf(), replaceAll(), and Append(). These methods can be used for

code obfuscation, construction of payloads to be sent to servers, and evasion of static

malware detection techniques through dynamically creating URLs, parameters to reflection

APIs, and dangerous Linux commands.

Timer: Timers facilitate scheduling one-shot or recurring tasks for future execution.

Malware can invoke APIs within this class (such as schedule() and cancel()) to avoid

dynamic analysis by remaining dormant until a fixed date is reached, or until a specific

event has been fired.

ZipInputStream: This class allows decompressing data from an InputStream ZIP

archive. Malwares rely on methods in this class to decompress and read data from

compressed files (.jar, .apk, .zip) downloaded during execution or originally attached to the
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app. Commonly used APIs by malware in this class are read(), close(), getNextEntry()

and closeEntry().

Crypto: This package serves as an interface for implementing cryptographic operations

such as encryption, decryption, and key agreement. Methods within Crypto.Cipher such as

getInstance() and doFinal() transform a given input to an encrypted or decrypted

format while Crypto.spec.DESKeySpec() allows specifying a DES key. These methods can

be used for code obfuscation and avoiding static detection through encrypting root exploits,

SMS payloads, targeted premium SMS numbers, and URLs to remote malicious servers.

w3c.dom: This package provides the official w3c Java interfaces for the Document

Object Model (DOM), which is used in apps for XML document processing. Malwares use

several APIs in w3c.dom such as getDocumentElement (), getElementByTagName(), and

getAttribute() to parse XML files. XML can be used by malwares to establish bot

communication, encode data, and process local configuration files.

A.3.6 Parameters Features:

Based on the data flow analysis that I have conducted, I obtained the frequent

parameters (categorized as discussed in Table A.1) that are used by malwares applications

more often than the benign ones in certain API invocations. Table A.2 depicts some of the

top invoked parameters types that yield to the highest support difference between the

malware and benign sample.

From the data flow analysis results depicted in Table A.2, I can gain more insight on

Android malware behavior. A large percentage of String manipulation operations are
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performed on dangerous Linux commands (such as SU, mount, sh, bin, pm install, killall,

chmod). These commands are mainly used by malware authors to root the phone and

exploit some well known vulnerabilities. After getting superuser privilege, malwares

perform various dangerous Linux operations through invoking runtime.exec(). Most of the

ContentResolver operations are performed on SMS, MMS, telephony or call log content

providers.

Class Method Parameter type Difference (%)
StringBuilder append Dangerous command 35.95
ContentResolver query SMS or MMS 23.65
StringBuilder append Unicode string 23.6
StringBuilder init Dangerous command 23.07
DataOutputSream writebytes Reads from process 21.80
DataOutputSream init Reads from process 21.62
runTime exec Dangerous command 21.27
InetSocketAddress init Port 80 19.91
StringBuilder append Compressed file 19.58
DataInputStream init Reads from connec-

tion
19.27

String valueOf Unicode string 18.05
StringBuilder append File manupilation 17.79
File init Accesses external stor-

age
16.92

InetSocketAddress init Explicit IP 14.87
String getBytes URL manupilation 14.05
Intent setFlags SendTo 12.94
Intent setFlags Call 11.67
ContentResolver query Telephony 10.88
Intent setFlags Send 10.47
ContentResolver query Call_log 10.12

Table A.2: Some Frequent API Parameters in Malware
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A.4 Classification and Evaluation

A.4.1 Data Set

To extract malware and benign apps’ features, generate and evaluate the classification

models, I have collected and analyzed around 20,000 apps. Our malware sample consists of

3987 malware apps that I collected from different sources (McAfee and Android Malware

Genome Project [139]). The malware sample belongs to different Android malware

families. Our benign sample consists of the top 500 free apps in each category in Google

Play (around 16000 apps) that I collected in July 2012.

A.4.2 Classification Models

As discussed earlier, our objective is to build a model that classifies unknown apps as

either benign or malware. For that, I have employed four different algorithms for the

classification: ID3 DT [131], C4.5 DT [131], KNN [133], and linear SVM [134]. These

inducers belong to different family of classifiers. C4.5 and ID3 are related to decision trees

and KNN belong to Lazy classifiers. SVM is a supervised learning method that proceeds

through dividing the training data by an optimal separating hyperplane. I have decided to

employ algorithms from different classifiers because I hope that they will produce different

classification models for Android apps. Our analysis shows that KNN and ID3 DT models

lead to a better accuracy compared to the other models.

To test our generated classification models, I use split validation. That is, I randomly

split our dataset into training (2/3) and testing set (1/3). I build the classification models
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based on the training set and feed the testing instances to evaluate the models. To evaluate

each classifier’s performance, I measured the True Positive Ratio (TPR), i.e., the

proportion of malware instances that were correctly classified:

TPR =
TP

TP + FN

where TP is the number of malware apps correctly identified and FN is the number of

malware apps classified as benign apps. Similarly, I measure the True Negative Ratio

(TNR), i.e., the proportion of benign instances that were correctly classified:

TNR =
TN

TN + FP

where TN is the number of benign apps correctly identified and FP is the number of

benign apps identified as malware apps. To capture the overall performa I nce, I measure

the models’ accuracy, i.e., the total number of benign and malware instances correctly

classified divided by the total number of the dataset instances:

Accuracy =
TP + TN

TP + TN + FP + FN

By means of our collected dataset, I conducted different experiments to find the optimum

feature set that will produce the best cut between the malware and benign sample.
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A.4.3 Permission-Based Feature Set

In the first experiment, I extract the permissions requested by malware and benign

apps and obtain their perspective percentage usage in the two sets. I then rank the

permissions based on the difference usage and took the top k permissions that are more

frequently requested in malware than in benign apps. To determine the optimum k

permissions, I evaluate the performance of the models for k = 10, 20, 30..., up to 124.

Fig. A.3 depicts the results obtained for the permission-based feature set in terms of

accuracy, TPR, and TNR. As illustrated, the models’ accuracy increases as the feature set

includes more permissions. It should be noted that only 64 permissions were more frequent

in the malware set than in the benign set, which means that after the top 64 permissions,

the classifiers start to learn also from the permissions that are frequent in the benign set.

This makes the classifiers not solid enough since they can fail to detect malicious apps in

the following two scenarios. First, malware authors can easily defeat the permission-based

classifiers through merely declaring “benign" permissions in the manifest file. Second, the

classifiers will not be able to correctly classify repackaged android malware; which is based

on legitimate apps but embeds extra payload to achieve a malicious goal. The manifests of

the repackaged apps include both the original permissions of the benign app and the

permissions needed for the malicious behavior and thus confuse the classifiers.

To demonstrate that the permission model is not robust enough, I designed an

experiment in which I modify our malware set and feed it to the classifiers. In each

malware manifest, I declare 10 new permissions (the top 10 in the benign set) and keep

everything else unchanged. As shown in Fig. A.3(d), when the feature set contains the
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permissions used in the benign set, the classifiers are not able to correctly classify the

malware set. In fact, using the top 80 permissions, the classification rate of KNN drops to

67% and of ID3 to 43%.

(a) Accuracy (b) TPR

(c) TNR (d) Classification Rate of Modified Malware Set

Fig. A.3.: Performance of Permission-based Models

A.4.4 API-Based Feature Set with Package Level and Parameter Information

In the second experiment, our feature vector includes the generated APIs within each

set, which make up in total 8375 distinct APIs. I also embed package level information.

That is, I white-list the APIs that are exclusively called by third-party packages. I

specifically filter out these APIs to avoid the case where a benign app might be classified as
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(a) API Features Distribution (b) Accuracy

(c) TPR (d) TNR

Fig. A.4.: Performance of API-based Models

malicious if a third-party package invokes a possibly “malicious”API. Consequently, the

support of white-listed APIs drops in the benign set.

We conduct a frequency analysis and took only the APIs whose usage in the malware

set is higher than in the benign set. Based on this, I have reduced our features to 491

APIs. As shown in Fig. A.4(a), a large portion of these APIs have a usage difference of less

than 6% which will result in creating more noise in the classifiers and slow down the

learning process. To solve this issue, I further refine our feature set to include only the top

169 APIs (with a usage difference greater or equal to 6%).

We generate the classification models for the top k (10, 40, 80, 120 and 169) API

features and evaluate their performance. As depicted in Fig. A.4, using the top 169 API



152

based features, I achieve the highest accuracy, TPR and TNR using KNN. C4.5 is the

worst performing model as it barely achieves 83% TPR.

In the same experiment, I also include the parameter-based features obtained using

data flow analysis on the original set. I re-generate the models and evaluate them after

adding 20, 40, and 60 parameters to the 169 filtered APIs. As shown in Fig. A.4, by adding

the top 20 used parameters, I are able to achieve the highest accuracy (99%) and TPR

(97.8%) using KNN algorithm. The other algorithms also perform better with the newly

added parameter-based feature set.

Unlike permission-based classifiers, it is not possible to trick API-based classifiers

through declaring benign APIs, because the models do not rely on benign features to

classify a given app. Rather, they only rely on the APIs (along with parameters) that are

more frequently used in malware than in benign apps.

A.4.5 Models Comparison

To show the improvement achieved over the experiments performed, I plot the accuracy,

TPR, and TNR of the classification models together as depicted in Fig. A.5. I consider two

permission models. The first one is trained on the top 60 frequent permissions in malware

and the second one on all the permissions. For the API filtered model, the feature vector

includes all the top 169 features. The last model that I consider is trained on the top 169

filtered APIs along with the top 20 frequent parameters in certain APIs within malware.

As shown in Fig. A.5, our API based features performs better than the

permission-based one. I were able to improve the accuracy, TPR and TNR of the models
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(a) Accuracy (b) TPR

(c) TNR

Fig. A.5.: Models Comparison

by embedding package and some parameter features to our original features. KNN is the

best performing model, followed by ID3, SVM then C4.5.

A.4.6 Processing Time

It is evident that the processing time is a crucial metric for a scalable detection system.

In this section, I report the execution time of DroidAPIMiner which consists of the time

required to de-assemble an apk file and to extract the API and parameter feature set. I

also report the time that RapidMiner requires for applying different classification models to

classify a new instance. I perform the analysis an Intel Core i5-2430M machine with 6GB

of memory.
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Fig. A.6.: Distribution of DroidAPIMiner Processing time

Fig. A.6 shows the distribution of DroidAPIMiner processing time among the collected

apps sample. As depicted in the graph, more than 80% of the apps require less than 15 sec

to be analyzed by DroidAPIMiner. Besides, as shown in Table. A.3 applying KNN

algorithm to classify new inputs is quite fast and takes less than 10 sec. In total, our

detection system requires on average about 25 sec to classify an apk file as either benign or

malicious, which makes it efficient enough to be deployed on either mobile devices and

back-end servers.

Algorithm Model Application
and Classification time (sec)

ID3 185.0 +- 32.0
KNN 9.0 +- 1.0
C4.5 21.0 +- 4.0
SVM 160.2 +- 40.0

Table A.3: Processing Overhead of the Classification Algorithms
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A.5 Discussion

In this section, I discuss some potential evasion techniques that malware authors may

adopt in order to thwart our classifiers. Furthermore, I discuss how our tool handles these

cases.

• Reflection: Malware authors may use reflection to easily obfuscate any dangerous

API call and thus evade the static detection of the occurrence of that API by our

analysis tool. However, it should be noted that our study has shown that reflection

APIs are more frequently used by our malware set than in the benign set, which

makes them part of the feature vector for the classification.

• Native Code: To avoid static detectors at the bytecode level, malwares sometimes

embed malicious payload within native content. Since our detection tool only works

at bytecode level, it will not be able to detect any dangerous methods invoked.

However, the use of JNI calls such as System.loadLibrary() is also used as a

classification feature by our tool.

• Bytecode Encryption: To prevent reverse engineering of Java code, malware authors

may encrypt their code and allow the decryption at runtime. Our tool considers

decryption APIs as a classification feature.

• Dynamic Loading: As discussed earlier, DexClassLoader allows loading classes from

.jar and .apk files at runtime and executing code not installed as part of an app.

loadClass() in DexClassLoader also belongs to our feature set.
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