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Abstract 

 Trichloroacetimidates have frequently been used in the formation of glycosidic bonds and 

other ethers, which is especially useful for the introduction of ether protecting groups.  

Trichloroacetimidates have also been used as electrophiles in Friedel-Crafts alkylation reactions.  

The formation of C-N bonds has also been accomplished utilizing trichloroacetimidates.  Most 

frequently C-N bond formation with trichloroacetimidates is associated with sigmatropic 

rearrangement of an allylic trichloroacetimidate to an allylic trichloroacetamide.  This reaction 

can proceed thermally or through the use of Lewis acid or transition metal catalysts.  Recently, 

the direct substitution of trichloroacetimidates using nitrogen nucleophiles has been 

accomplished utilizing transition metal catalysts, which indicates that trichloroacetimidates may 

be suitable alkylation partners for certain nitrogen nucleophiles. 

 Trichloroacetimidates are now shown to be effective alkylating reagents for the 

monosubstitution of anilines using the Brønsted acid catalyst (±)-camphorsulfonic acid.  The 

reaction is especially efficient for electron deficient anilines while electron rich anilines provided 

lower yields due to competing Friedel-Crafts reactions.  A one-pot procedure for generating the 

trichloroacetimidate in situ followed by displacement with the aniline is also described, and the 

yields for this one-step process are similar to the two-step protocol.  The displacement of a chiral 

imidate by 4-chloroaniline led to significant racemization which indicates that the reaction may 

proceed through a carbocation intermediate. 

 The alkylation of sulfonamides with trichloroacetimidates under thermal conditions is 

also described.  Primary and secondary trichloroacetimidates are found to be suitable 

electrophiles under these conditions, while tertiary trichloroacetimidates provide reduced yields.  

Aryl and alkyl sulfonamides with varying electronic properties were well tolerated under the 



reaction conditions.  A bioactive analog of the analgesic ketoprofen is synthesized using the 

described methodology.  Complete racemization of a chiral trichloroacetimidate is observed 

under these reaction conditions which is evidence that the reaction proceeds through an SN1 type 

mechanism. 

 Pyrroloindoline trichloroacetimidates may react with amine nucleophiles in the presence 

of catalytic BF3ˑOEt2 to generate pyrroloindoline systems decorated with amines at the C3a 

position.  The natural product kapakahine C is a complex heterocyclic compound containing a 

substituted pyrroloindoline-pyridoindoline core that may be accessed using this method.  A route 

to the synthesis of the substituted pyridoindoline core of kapakahine C was investigated.  

Optimization of key reactions in this sequence, including a peptide coupling reaction and 

oxidative cyclization, was performed.  Investigation into completing the synthesis of kapakahine 

C is ongoing. 

 The inhibition of the SH2-containing inositol 5’-phosphatase (SHIP) can modulate the 

dephosphorylation of phosphoinositols.  These molecules act as second messengers in a signal 

transduction cascade, with the placement of phosphorylation on the inositol acting to convey 

information in the transmission of signals from the cell membrane to the cell nucleus.  The 

concentration of these phosphates has an effect on cellular function such as cell proliferation, 

survival, and differentiation.   

 The synthesis of six aminosteroid SHIP inhibitors is described.  Optimization of the key 

steps in the synthetic sequence was conducted.  The synthesis of two quinoline based SHIP 

inhibitors, which were identified in a high-throughput screening conducted by the National 

Cancer Institute (NCI), was also completed.  Studies were conducted to synthesize these 



molecules on multi-gram scale. The synthesized compounds were tested for inhibitory activity in 

a Malachite Green assay. 
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Chapter 1 

Trichloroacetimidates as Alkylating Reagents in C-N Bond Formation and Related 

Transformations 

Abstract: Trichloroacetimidates are often used in the formation of ethers in the synthesis of 

glycosidic bonds or in the introduction of ether protecting groups. Most often these groups are 

benzyl or 4-methoxybenzyl ethers, although a number of other ethers have also been formed with 

trichloroacetimidates. Trichloroacetimidates have been shown to be competent electrophiles in 

Friedel-Crafts reactions. Trichloroacetimidates are also commonly used for the formation of C-N 

bonds. Most often this entails the rearrangement of allylic trichloroacetimidates to form allylic 

amines, but more recent studies have shown that imidates may be used to efficiently alkylate 

amines. In this chapter a brief overview of the common reactivity of trichloroacetimidates is 

provided as background to place the results in the next three chapters in context. 

 Carboximidates, often referred to generally as imidates, are organic functional groups 

characterized by a R'-N=C(OR'')R linkage (Figure 1.1).  Trichloroacetimidates are a subset of the 

imidate functional group which are characterized by an N-H bond and trichloromethyl group at 

the R' and R positions respectively.  The first reported synthesis of a trichloroacetimidate was 

published by Steinkopf and Malinowski, as part of their studies on the reactivity of 

trichloroacetonitrile.
1, 2

  The use of trichloroacetimidates was then expanded by Cramer who 

reported the use of benzylic imidates as leaving groups in substitution reactions.
3, 4

  Initially, 

trichloroacetimidates were synthesized by the addition of trichloroacetonitrile to an alkoxide ion.  

In later years milder conditions utilizing DBU as a base were discovered by Bernet which 

avoided the use of metal hydride reagents.
5
  Classically, trichloroacetimidates have been utilized 
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for C-O and C-N bond forming reactions such as glycosidic bond formation, the synthesis of 

allylic amines (the Overman rearrangement), and in the formation of alcohol and carboxylic acid 

protecting groups.  

 

Figure 1.1: General Structures of Carboximidates and Trichloroacetimidates 

Glycosidic Bond Formation 

 The use of trichloroacetimidates as alkylating reagents in glycosidic bond formation was 

first demonstrated by Schmidt and coworkers in the early 1980s.
6-9

  Schmidt showed that α and β 

glycosyl imidates could be conveniently prepared from the reaction of both benzyl and acetyl 

protected glucopyranose with trichloroacetonitrile in the presence of a catalytic amount of NaH.  

The imidates could then be displaced with alcohols to afford the corresponding ether utilizing a 

Lewis acid like trimethylsilyl trifluoromethanesulfonate (TMSOTf) as a catalyst (Scheme 1.1).   

Scheme 1.1 

 

 Since Schmidt's initial discovery additional advances have been made to glycosidic bond 

formation with trichloroacetimidates including the use of other Lewis acid catalysts such as 

BF3ˑOEt2,
10

 and phenylboron difluoride.
11

  Glycosylation using trichloroacetimidates is valuable 
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as the α and β anomers of the protected carbohydrate products can be obtained predictably and 

selectively.
10

 This chemistry has now been utilized in much more complex systems, with the 

trichloroacetimidate donor being competent even in the introduction of a trisaccharide unit of the 

immunological adjuvant QS-21A 2.9 (Scheme 1.2).
12

   

Scheme 1.2 

 

Protecting Group Formation 

 Schmidt's research into glycosidic bond formation using trichloroacetimidates led to 

similar research into the formation of other C-O ether bonds using trichloroacetimidates.  This 

research has been especially useful in the installment of protecting groups in complex organic 
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molecules. Trichloroacetimidates have been used for the formation of benzyl ethers
13-15

 in a 

number of complex systems. This method has become especially popular in systems that are 

sensitive to base, like the -hydroxy ester 1.9 (Scheme 1.3). Under basic conditions compound 

1.9 undergoes a facile retroaldol reaction, which complicates formation of the corresponding 

ether under Williamson type conditions (NaH, BnBr). Alternatively, exposure of the alcohol to 

benzyl trichloroacetimidate in the presence of triflic acid provides the desired benzyl ether 

product in 79% yield. More recently it was shown that diphenylmethyl ethers
16

 may be installed 

under thermal conditions (refluxing toluene) without the need for an exogenous acid catalyst, 

which should further extend the utility of trichloroacetimidates in ether synthesis, as under 

thermal conditions both acid and base sensitive alcohols may be etherified in good yield. 

Scheme 1.3 

 

 The formation of ethers using trichloroacetimidates also provides an opportunity for 

asymmetric catalysis. For example, conditions for substituting z-allylic imidates utilizing 

carboxylic acids to form the corresponding esters were investigated by Overman (Scheme 1.4).
17, 

18
  This reaction utilized the palladium catalyst cobalt oxazoline palladacyclic complex (COP) to 

form the corresponding allylic esters with good yields and selectivity.  These reactions were used 

to synthesize bioactive molecules such as (+)-chloriolide,
19

 and (+)-polyrhactide B.
20

  Methods 

for the formation of allylic phenolic ethers were also investigated, and their formation was 

achieved with similar yields and selectivities.
21-23

  A number of systems which employ chiral 
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acids as organocatalysts have also been employed in etherification reactions
24, 25

 using imidates 

as starting materials. The use of trichloroacetimidates for the formation of ethers demonstrates 

their synthetic utility as reagents for oxygen alkylation, which may be used to install protecting 

groups rapidly and efficiently under mild conditions.   

Scheme 1.4 

 

 Trichloroacetimidates have also been used for the introduction of ester protecting groups 

of carboxylic acids.
26, 27

  Spontaneous esterification has been reported with glycosyl imidates,
10, 

28
 4-methoxy-benzyl trichloroacetimidate,

29, 30
 and 2-phenylisopropyl trichloroacetimidate.

31, 32
  

The formation of diphenylmethyl and esters using the corresponding imidate without the use of 

exogenous acid has also been reported.
33

  Similarly, thermal formation of 4-methoxy benzyl 

(PMB) esters has been accomplished using PMB imidate and various carboxylic acids.
34

  Both 

the PMB and DPM protecting groups may be removed via hydrogenation to regenerate the 
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corresponding carboxylic acid, or can be removed under acidic conditions, making these groups 

flexible protecting groups for the carboxylate. 

Friedel-Crafts Reactions 

 Carbon-carbon bond forming reactions utilizing trichloroacetimidates are also known.  

The Friedel-Crafts reaction of trichloroacetimidates and arenes is among the most useful and 

versatile reaction of this type.  Classically alkyl and acyl halides have been used as leaving 

groups in Friedel-Crafts alkylation and acylation,
35, 36

 however research performed by Schmidt 

showed that trichloroacetimidates were also suitable alkylating agents for Friedel-Crafts 

reactions with electron-rich arenes (Scheme 1.5).
37

  Trichloroacetimidates may provide 

advantages over alkyl halides as substrates in these reactions, as even electron poor benzylic 

trichloroacetimidates undergo these alkylation reactions.  This high degree of reactivity may be 

due to the rearrangement of the imidate to the acetamide byproduct, which adds a secondary 

thermodynamic driving force to the alkylation reaction. 

Scheme 1.5 

 

 Friedel-Crafts reactions utilizing trichloroacetimidates have been used in the synthesis of 

biologically interesting compounds. Given the use of trichloroacetimidates in carbohydrate 

chemistry, it is perhaps unsurprising that this chemistry has found use in the formation of C-

glycosides. A number of targets such as analogs of the aryl-C glycoside visnagin such as 1.24 
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(Scheme 1.6),
38

 and the flavone-C glycosides vitexin, isovitexin and isoembigenin have been 

accessed using trichloroacetimidate alkylation chemistry.
39

  

Scheme 1.6 

 

 The Friedel-Crafts alkylation employing trichloroacetimidates has also been utilized in 

the synthesis of complex natural products. For example, Fukuyama utilized this chemistry in the 

synthesis of the dictyodendrins.
40

  These compounds were the first marine alkaloids which 

possess inhibitory activity against telomerase, and enzyme that is a new potential target for 

cancer chemotherapy. The imidate alkylation allowed for the modular addition of benzyl groups 

to a highly functionalized indole core (Scheme 1.7). 
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Scheme 1.7 

  

Rearrangement of Allylic Trichloroacetimidates for the Synthesis of Allylic Amines 

(Overman Rearrangement) 

 The incorporation of nitrogen into organic molecules is an important synthetic challenge 

for organic chemists due to the prevalence of nitrogen-containing pharmaceuticals, natural 

products and bioactive compounds.  Of particular interest is the displacement of alcohols for 

nitrogen atoms, as alcohols are common inexpensive starting materials.  One method of 

introducing nitrogen from an allylic alcohol utilizing an imidate intermediate is an aza-Claisen 

rearrangement known as the Overman rearrangement
41,42 

which involves a [3,3]-sigmatropic 

rearrangement of a trichloroacetimidate to a trichloroacetamide (Scheme 1.8).  The development 

of this rearrangement is important as it allows for the synthesis of allylic amines from easily 

accessible allylic alcohols.
43

  Formation of the necessary imidate requires only the base-

catalyzed formation of the imidate from an allylic alcohol and trichloroacetonitrile.  The base can 
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be varied depending on the required reaction conditions, for example 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) is often employed as a base for primary and secondary 

alcohols, whereas the stronger alkoxide-forming base KH is frequently used to generate tertiary 

trichloroacetimidates.
44, 45

  Overman found that the trichloroacetimidate can then be treated with 

catalytic amounts of mercury (II) salts to catalyze the rearrangement of the trichloroacetimidate 

to the corresponding acetamide.
42

  Thermal rearrangements of the trichloroacetimidates could 

also be accomplished using a solvent with a high boiling point such as xylene and heating the 

reaction to 140°C.
41, 46

 The variety of relatively mild conditions available for the Overman 

rearrangement as well as the power of selectively converting a readily attainable allylic alcohol 

into an allylic amine led to the widespread use of this reaction. 

Scheme 1.8 

 

 Mechanistically, there are two possible pathways for the Overman rearrangement.  With 

no catalyst, the reaction is thought to proceed through a concerted sigmatropic pathway (Scheme 

1.9).   

Scheme 1.9 
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 With a transition metal catalyst, a two-step reaction pathway is proposed (Scheme 1.10).  

The first step involves the transition metal catalyst adding across the olefin to form a 

mercurinium ion (in the case of mercury catalyzed Overman rearrangement) or its equivalent.  

The intermediate 1.33 can then suffers breakage of the C-O bond and rearranges to form amide 

1.32.  Overman provides evidence for this mechanism by noting that rearrangement is successful 

for imidates which contain nucleophilic promoting R groups, such as alkyl substituents, and fails 

for substrates in which substitution at C-2 is favored such as cyclohex-2-en-1-yl 2,2,2-

trichloroacetimidate.
41

  Overall, the mechanistic pathway of the Overman rearrangement 

resembles that of the aza-Claisen rearrangement. 

Scheme 1.10 

 

 Since its initial discovery many investigations to improve the Overman rearrangement 

have been undertaken.  The use of palladium as a catalyst rather than mercury offers several 

advantages.
47-49

  First, palladium is considerably less toxic than mercury.  Second, the palladium-

catalyzed rearrangement has high transfer of chirality and provide trans alkenes selectively.  For 

these reasons palladium has become the transition metal of choice for catalysis of the Overman 

rearrangement.  Since the use of palladium as a transition metal catalyst for Overman 

rearrangements became more widespread other improvements and modifications for Overman 

rearrangement have been reported.  In particular, it was found that chiral palladium catalysts 

such as 1.35 may be employed in palladium catalyzed enantioselective rearrangement reactions. 

(Scheme 1.11).
50

  Chiral palladium complexes containing chiral oxazoline,
51

 chiral diamine 
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ligands,
52

 neutral ferrocenyl palladacycles
50, 53

 and chiral cobalt palladacycles
54, 55

 have been 

developed. These palladium complexes have been used to catalyze enantioselective 

rearrangements of trichloroacetimidates, which convert allylic imidates to their corresponding 

chiral amides.   

Scheme 1.11 

 

 The palladium-catalyzed rearrangement occurs via a cyclization-induced rearrangement 

(CIR) mechanism.  The rearrangement proceeds via a pi-allyl complex where palladium 

coordinates to the alkene 1.37 leading to the formation of the pi-allyl complex 1.40.
56

 Addition 

of the nucleophile 1.39  leads to the product 1.42.   



 
 

 12 

Scheme 1.12 

 

 Enantioselective Overman rearrangements have enjoyed use in the synthesis of bioactive 

compounds.  The GABA aminotransaminase inhibitor (S)-vigabatrin 1.46 (Figure 1.2) was 

synthesized using this chemistry.  The palladium catalyst cobalt oxazoline palladacyclic complex 

1.16 used in this transformation was capable of catalyzing the rearrangement of z-allyl 

trichloroacetimidates.  This interesting development led to further investigation of Overman 

rearrangements of z-allyl trichloroacetimidates.  Overman found that subjecting z-allyl imidate 

1.43 to intramolecular aminopalladation led to a 1:1 mixture of the 4-vinyloxazoline 1.44 and the 

diacetate 1.45 (Scheme 1.13).
57

  This research led to the discovery of reactions for synthesizing 

vinyloxazolidinones from z-allylic trichloroacetimidates.  Although the COP-palladium catalyst 

was unsuccessful in catalyzing z-allylic Overman rearrangements, the resulting chiral 

esterification and etherifications that resulted from this research proved synthetically useful.
57, 58
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Scheme 1.13 

 

 

Figure 1.2: Structure of (S)-Vigabatrin 

Alternative Trichloroacetimidate-Based Formation of C-N Bonds 

 Despite numerous improvements to the Overman rearrangement relatively few alternative 

methods for using trichloroacetimidates for forming C-N bonds are known.  One such reaction is 

the rearrangement of benzylic trichloroacetimidates to trichloroacetamides discovered by 

Cramer.
4
  This reaction is notable as it is the first reaction that demonstrates the displacement of 

trichloroacetimidates by nitrogen at the ipso carbon.  This reaction was also observed for methyl 

imidate as well as more highly substituted benzyl imidates.  For more substituted imidates 

formation of a carbocation intermediate facilitates rearrangement to the corresponding 

trichloroacetamide (Scheme 1.14).
4
  Methyl imidate can rearrange to the corresponding 

acetamide through a concerted mechanism (Scheme 1.15). Other similar rearrangements of 

trichloroacetimidates have been utilized for the synthesis of β-xylosidases inhibitor conduramine 

B,
59

 and for the synthesis of the multifunctional synthon 2-trichloromethyl-4-vinyloxazoline.
60
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Scheme 1.14 

 

Scheme 1.15 

 

 The use of trichloroacetimidates for rearrangement reactions such as the Overman 

rearrangement and for alkylation chemistry offers several advantages over other methods.  

Firstly, trichloroacetimidates are easily prepared via the reaction of alcohols with inexpensive 

trichloroacetonitrile
3
 and a catalytic amount of base.  Trichloroacetimidates are also quite stable, 

for example the electron rich benzyl imidate 1.53 can be stored without significant 

decomposition for years at low temperature (-20°C).  Further the reaction is driven not only by 

the displacement, but also by the rearrangement of the trichloroacetimidate to the more stable 

trichloroacetamide.  This additional driving force helps facilitate trichloroacetimidate 

rearrangements and displacements so that they can occur under milder conditions.  For 

displacement reactions the trichloroacetamide side product that is generated is far less acidic than 

comparable acidic byproducts in related displacement reactions such as HBr, HOMs, and HOTs, 

leading to fewer side reactions in reactions where no stoichiometric base is added.  The 

trichloroacetamide byproduct may also be removed from the reaction mixture by successive 
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washing with aqueous 2M NaOH solution.
61

  These advantages have led to the investigation of 

the synthetic utility of trichloroacetimidates in direct alkylation reactions. 

 

Figure 1.3: Electron Rich Trichloroacetimidate 

 A small number of direct alkylations of nitrogen nucleophiles utilizing 

trichloroacetimidate electrophiles have been reported.  For example, the direct alkylation of 

trichloroacetimidates with nitrogen based heterocycles has been reported.
10,62  

In these reactions 

the alkylation is facilitated by the use of a strong acid such as TMSOTf.  The bulky imidate 

2,2,2-tert-butyl trichloroacetimidate has also been used to form C-N bonds with anilines, 

requiring the use of BF3ˑOEt2 to proceed to completion.
63, 64

  Intriguingly, Piemontesi discovered 

certain nitrogen nucleophiles including indole, aniline, and morpholine could be alkylated in situ 

with 3-hydroxyoxindoles through an imidate intermediate (Scheme 1.16).
65

  The reaction was 

catalyzed by (PhO)2PO2H and though the scope tested was limited, these reactions provide 

strong evidence that Brønsted acid catalyzed alkylations of trichloroacetimidates with nitrogen 

nucleophiles is a viable synthetic strategy. 

Scheme 1.16 
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 Transition metals have also been used to enact these transformations.  For example, 

rhodium catalyzed alkylations of N-methyl anilines with secondary allylic trichloroacetimidates 

have been reported (Scheme 1.17).
66

  These alkylations are noteworthy as they occur without 

significant formation of the linear product and also do not require the use of the common Lewis 

acids used in trichloroacetimidate alkylation such as BF3ˑOEt2 and TMSOTf.  A number of 

improvements have been made to this methodology including a broadening of scope to include 

tertiary trichloroacetimidates,
44

 asymmetric aminations of tertiary trichloroacetimidates using a 

chiral rhodium catalyst,
67

 asymmetric aminations of secondary trichloroacetimidates using a 

chiral rhodium catalyst,
45

 and a study of asymmetric aminations of secondary and tertiary 

trichloroacetimidates with a chiral rhodium catalyst capable of alkylating anilines that lacked a 

chelating functional group at the β-position.
68

  This chemistry has also been utilized for the 

enantioselective synthesis of seven-membered nitrogen heterocycles.
69

  Apart from rhodium, 

palladium based transition metal catalysts have also been used to synthesize amine-linked 

pseudodisaccharides using trichloroacetimidates.
70

 

Scheme 1.17 

 

Conclusion 

 Trichloroacetimidates have been used for both C-O and C-N bond forming reactions.  

Etherifications and esterifications utilizing trichloroacetimidates typically employ the use of 

strong Lewis acid catalysts such as BF3ˑOEt2 and TMSOTf, although in some cases the reactions 
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proceed with no catalyst or promoter.  The Overman rearrangement has been widely used to 

form allylic amines from allylic alcohols.  Direct alkylation of trichloroacetimidates with 

nitrogen nucleophiles has been accomplished with the use of rhodium catalysts and in some 

cases strong Brønsted acid catalysts.  Due to the precedence of using trichloroacetimidates with 

oxygen and nitrogen nucleophiles, we hypothesized that trichloroacetimidates may be suitable 

partners for thermal and Brønsted acid catalyzed alkylation of anilines and sulfonamides. 
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Chapter 2 

Brønsted-Acid Catalyzed Monoalkylation of Anilines with Trichloroacetimidates 

Abstract 

Trichloroacetimidates are shown to be synthetically useful alkylating agents for the 

monosubstitution of anilines using a Brønsted acid catalyst to facilitate the reaction.  Electron 

poor anilines provided superior yields under these condition while electron rich aniline 

substitutions provided lower yields due to competing Friedal-Crafts alkylation.  A one-pot 

procedure involving the displacement of the reactive imidate intermediate formed from the 

alcohol in situ is also demonstrated, and the yields for this convenient process are comparable to 

the two-step protocol.  The displacement of a chiral trichloroacetimidate using this chemistry 

was found to led to significant racemization, which favors a mechanism that proceeds through a 

carbocation intermediate. 

 

Introduction 

 Substituted anilines are a common functional group found in many natural products and 

bioactive compounds (Figure 2.1).  For example, a substituted aniline comprises the core of the 

tyrosine kinase inhibitor lavendustin A (2.4),
1
 the analgesic fentanyl (2.5),

2
 and the 

topoisomerase inhibitor 5,6-dihydrobicolorine (2.6).
3
  Substituted anilines are also found in 

compounds such as the cholesterol lowering drug ezetimibe (2.7),
4
 the lipoxygenase inhibitor 

onosmin B (2.8),
5
 and the antifolate drug methotrexate (2.9).

6
  Other anilines are used frequently 

in molecules with sensor applications and in synthetic receptors.
7-9

  Due to the prevalence of 

substituted anilines in bioactive and pharmacologically interesting molecules, methodologies for 
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their formation are of great interest.  This led to the study described below, where anilines are 

alkylated with trichloroacetimidates. The conversion of carboxylic acids to esters and thiols to 

thioethers via alkylation with trichloroacetimidates has previously been observed,
10-12

  and 

therefore it was hypothesized that anilines could be alkylated with trichloroacetimidates in a 

similar manner employing a Brønsted acid catalyst. 

 

Figure 2.1: Some Aniline-Based Bioactive Compounds and Pharmaceuticals 

 Some alkylation reactions of anilines using trichloroacetimidates are known.  A search of 

the literature revealed that anilines are typically alkylated with imidates using the strong Lewis 

acid catalyst BF3ˑOEt2.
13-17

  The alkylation has also been accomplished using copper (II) triflate 

in nitromethane, which resulted in improved yields of the desired N-alkyl product with tert-

butyl- 2,2,2-trichloroacetimidate.
18

  Allylic trichloroacetimidates have been used to alkylate 

anilines with transition metal catalysts.  Typically, these reactions
19

 employ catalyst systems 

based on rhodium,
20-25

 iridium
26

 or palladium.
27, 28

  Less is known about the use of protic acids 

for catalyzing these N-alkylation reactions, however, Piemontesi and co-workers recently were 

able to use amine nucleophiles in substitution reactions with an oxindole based 
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trichloroacetimidate and the protic acid catalyst (PhO)2PO2H. 
29

  More recently the Chisholm 

group has shown that O- and S- alkylation reaction may occur under thermal conditions without 

the addition of a catalyst.
12, 30

 There was therefore interest in evaluating the reaction of amines 

with trichloroacetimidates with and without the presence of a Brønsted acid catalyst, as this 

could provide a new method for the formation of these valuable systems. 

Results and Discussion 

 Research into this transformation begun by optimizing conditions for the alkylation of 

2,5-dichloroaniline 2.2 with 1-phenethyltrichloroacetimidate 2.1 (Table 2.1).  Aniline 2.2 was 

chosen because it is readily available, inexpensive and easy to handle.  Imidate 2.1
31

 was used as 

it is prepared from the readily available 1-phenethylalcohol.  No reaction between the aniline and 

the imidate was observed in control reactions without the use of an acid catalyst (entries 1 and 2).  

The use of BF3ˑOEt2 as a Lewis acid catalyst resulted in the formation of desired product 2.3 in 

33% yield (entry 3).  In this case, the low yield of the product was likely the result of the 

formation of a number of side products including the N-dialkylation product.  The imidate was 

used as the limiting reagent in an attempt to improve the reactions yield (entry 4).  Although the 

yield improved to 68%, a number of side products including the dialkylation product were 

observed in a 
1
H NMR spectrum of the crude material and purification by silica gel 

chromatography was difficult.  The observed polyalkylation may be especially problematic for 

less encumbered trichloroacetimidates.  In order to favor monoalkylation, it was hypothesized 

that greater selectivity may be achieved using a weaker Brønsted acid as a catalyst, which may 

minimize dialkylation as the protonated alkylaniline should be less acidic than the protonated 

unsubstituted aniline.  Use of diphenylphosphoric acid as a catalyst was therefore explored, 

producing the desired monoalkylation product with 31% yield (entry 5).  Although the yield was 
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low, we were pleased to note that only the desired product 2.3 and unreacted starting material 

appeared to remain in the reaction mixture, with no dialkylation product being observed.  A 

number of other Brønsted acid catalysts were evaluated to build on this result. Dibenzyl 

phosphate failed to produce any of the desired product (entry 6).  The acids PPTS and DNBSA 

provided yields of 91% and 90% respectively (entries 7 and 8). Racemic camphorsulfonic acid 

(CSA) was also used and the desired product was isolated with an excellent yield of 97% (entry 

9).  When 2.5 mol% of the catalyst CSA was used the yield was reduced to 22% (entry 10).  The 

amount of imidate was also increased to see if the dialkylation product could be obtained 

selectively. Interestingly, no dialkylation product was observed by 
1
H NMR and 82% yield of the 

desired product was recovered with 2.4 equiv of imidate and (±)-CSA (entry 11).  Overall, the 

reaction conditions from entry 9 gave us the best result so these conditions were used in further 

studies. 
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Table 2.1 

 

 With conditions for the monoalkylation of anilines using trichloroacetimidates in hand, 

the focus shifted to testing the scope of the reaction with various anilines (Table 2.2).  Aniline 

was monosubstituted with imidate 2.1 with a yield of 76% (entry 1).  Aryl halides were well 

tolerated under the reaction conditions with many aryl halide-containing anilines being 

successfully alkylated (entries 2-3, 5-8, 10-11).  Electron poor anilines performed best under the 

tested conditions with yields ranging from 94%-99% (entries 8-12).  This is notable and useful 

because electron deficient anilines are often poorly reactive substrates for reductive amination as 

formation of the key imine intermediate is slow.
32, 33

  More moderate yields were obtained with 

electron rich anilines providing yields of 70% and 74% (entries 13-14).  Some reactions which 

worked poorly were improved upon heating in refluxing toluene (entries 3-4).  Sulfides and nitro 
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containing compounds (entries 9 and 13) were tolerated under the reaction conditions.  N-

Substituted anilines participated in the reaction readily with N-methyl aniline and indoline 

providing the corresponding tri-substituted anilines 2.23 and 2.22 in yields of 84% and 74% 

respectively (entries 14, 15).  Sterics also appeared to play a role in the reaction as the presence 

of two ortho bromides effectively stopped the reaction (entry 17).  On the other hand, 

incorporation of a single ortho substituent was well tolerated with the reaction (entries 5-11).  

Due to the success of anilines we attempted to expand the scope of the reaction by using the 

amine morpholine as a nucleophile (entry 16) however no reaction occurred under these 

conditions.  Even heating the reaction in toluene at reflux with (±)-CSA as a catalyst resulted in 

no formation of the desired substituted morpholine.  This result may be due to the less acidic 

ammonium salt formed from the morpholine, which is not acidic enough to activate the imidate 

by protonation, resulting in no reaction.  In any case, alkylation of various anilines using imidate 

2.1 proceeded well for a number of electron rich and electron deficient anilines. 



 
 

 31 

Table 2.2 

 

 There was also interest in evaluating the scope of the reaction with respect to the imidate 

and a study was undertaken to investigate this aspect of the substrate scope (Table 2.3).  This 
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investigation found that unhindered benzylic imidates were effective and well tolerated  

electrophiles in these N-alkylation reactions (entries 1-4).  The electron-poor 4-cyanzobenzyl 

imidate 2.28 was the only benzylic imidate to give poor conversion (entry 4).  In this case 

heating the reaction to reflux was necessary and provided the desired product 2.33 with a yield of 

(43%), as no product could be observed at room temperature.  Likewise secondary benzylic 

imidates provided good yields and were well tolerated (entries 5-7, 9).  Allylic imidates were 

also successfully employed as alkylating reagents under the reaction conditions providing the 

corresponding monoalkylated anilines in yields of 77-79% (entries 8-9).  The tertiary imidate 

2.42 provided the corresponding product 2.43 in low yield of 42% (entry 10).  The lower yield in 

this case was attributed to steric effects.  Similarly, the tert-butyl-2,2,2-trichloroacetimidate 2.44 

gave a lower yield of the corresponding monosubstituted tert-butyl aniline 2.45.  Apparently, the 

Brønsted acid catalyzed conditions are more mild than the Lewis acid conditions which have 

been employed by other groups for less sterically hindered aniline alkylation with tertiary 

trichloroacetimidates.
14-17, 34

  Furthermore, most reactions between anilines and tert-butyl-2,2,2-

trichloroacetimidate 2.44 require a large excess of imidate (2-5 equivalents).  The observed 

results are consistent with research done by Cran and coworkers that utilized the copper triflate 

as a catalyst for the alkylation of anilines with excess tert-butyl-2,2,2-trichloroacetimidate in 

warm nitromethane solvent.
18

  These conditions were highly optimized to obtain high yields with 

this imidate.  The primary imidate 2.46 was also evaluated, and none of the desired product 2.47 

could be detected during the reaction even in refluxing toluene (entry 12).  Alternatively, the 

phthalimidomethyl imidate 2.48 was used successfully as an alkylating agent and provided the 

corresponding product 2.49 in excellent yield (74%, entry 13).  During this investigation it was 

also noted that these reactions seemed to favor substitution over elimination.  This property 
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might be synthetically useful for alkylating anilines with electrophiles that are normally prone to 

elimination.  To further investigate this preference for substitution, the homopropargyl imidate 

2.50 was synthesized and subjected to the optimized reaction conditions.  Homopropargyl 

imidate 2.50 is known to be problematic with regards to elimination when the corresponding 

sulfonate ester is subjected to nucleophiles, as the electron withdrawing alkyne makes the -

proton more acidic. Alkylation of 2,5-dichloroaniline using homopropargyl imidate 2.50 resulted 

in an impressive 63% yield of the desired substitution product.  Although some elimination 

products were observed in the crude 
1
H NMR, the peaks corresponding to these products were 

contaminated with other minor impurities which made determination of the relevant ratios 

difficult.  These impurities could not be isolated due to their extremely nonpolar nature. 



 
 

 34 

Table 2.3 

 

 Given the success of the imidate N-alkylation methodology, the extension to a one-pot 

Brønsted acid catalyzed protocol for monoalkylating anilines starting from the alcohol using the 
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trichloroacetimidate as an intermediate was attempted.  This protocol would avoid having to 

isolate and purify the imidate intermediate, and allow for the direct substitution of alcohols with 

anilines. Typically, the direct alkylation of anilines using alcohols requires the use of transition 

metal catalysts and high temperatures.
35-42

  A direct procedure utilizing an imidate intermediate 

could avoid these harsh conditions.  Experiments began by taking 1-phenethyl alcohol and 

treating with trichloroacetonitrile (TCAN) and 10 mol % DBU catalyst followed by addition of 

N-methylaniline  and 20 mol % of (±)-CSA.  This method proved to be successful and several 

substituted anilines were synthesized using this method (Table 2.4).  In several cases the yields 

for the single-pot procedure were higher than the two-step protocol.  N-Substituted anilines 

(compound 2.23), electron poor anilines (compounds 2.20, 2.3, 2.35, 2.27, 2.8), and benzyl 

imidates (entries 2.27, 2.52) were all tolerated under these reaction conditions.  Along with the 

synthesis of several substituted anilines, the lipoxygenase inhibitor onosmin B 2.8 was also 

synthesized in 85% yield using this methodology.
5
  Similarly the piperonal derivative 2.52 was 

prepared using this methodology in 81% yield.  This reaction represents a formal synthesis of 

5,6-dihydrobicolorine (Figure 2.1), as this system has been cyclized previously to the natural 

product in a single step.
43, 44
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Table 2.4 

 

 With conditions for the one-pot alkylation of anilines with trichloroacetimidates 

demonstrated, work began on investigating the mechanism of the N-substitution reaction.  The 

propensity of aniline substitution to displace the enantiomerically enriched trichloroacetimidate 

R-(2.1) (Scheme 2.1) was investigated.  Direct alkylation of a chiral imidate resulting in a chiral 

aniline with either retained or inverted chemistry would be synthetically useful as the chiral 

amine products are quite valuable.  Alternatively, racemization during the substitution may 

implicate a cation as an intermediate in the substitution reaction. Relevant to this experiment, the 

substitution of enantiomerically pure imidates using oxygen nucleophiles frequently provides 

enantiomeric mixtures as products.
45

  Reaction of imidate (R)-2.1 with 4-chloroaniline using (±)-

CSA as an acid catalyst provided the desired substituted aniline 2.11 in 85% yield.  Analysis of 
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the product by chiral HPLC revealed that the product was a 35:65 mixture of enantiomers. 

Comparison to a known literature example showed that a majority of the S stereoisomer was 

recovered.
46

 The significant racemization observed is likely due to the formation of a carbocation 

intermediate. The lack of complete racemization may be attributed to ion pairing occurring 

during the substitution reaction. As one of the ions (the camphorsulfonate) is chiral, it is 

interesting to speculate on the role of the chirality on the outcome of this transformation, as a 

chiral ion pair may lead to chiral induction in the reaction product. The use of chiral CSA would 

be unlikely to control the enantiomeric ratio of product, however, because the chirality of CSA is 

far from the sulfonate which takes part in the ion pairing near the forming chirality center in the 

transition state.  In the future, the use of chiral CSA and other chiral acids to catalyze the 

alkylation of anilines using chiral imidates may be investigated to determine if any significant 

change in enantioselectivity is observed, or if the enantioselectivity of the reaction can be 

controlled by these effects. 

Scheme 2.1 

 

 The results of the chiral HPLC analysis combined with the method's failure when ethyl 

trichloroacetimidate is employed are consistent with an SN1 type mechanism that proceeds 

through a carbocation intermediate.  Although some degree of stereocontrol was observed it 

should be noted that scalemic mixtures can be formed from cationic processes through ion-

pairing.
47

  A proposed mechanism for the reaction is show in figure 2.2.  Protonation of the 

aniline and imidate are possible through a reversible process, as the pKa of the aniline and the 



 
 

 38 

imidate are likely similar. Loss of the trichloroacetamide from the protonated imidate can lead to 

a carbocation intermediate which is then trapped by the aniline. This process also results in the 

formation of the trichloroacetamide byproduct which is always observed in the crude reaction 

mixture. A final proton transfer produces the product and regenerates the protonated aniline to 

complete turnover of the catalytic cycle.  The ammonium salts of the more basic amine 

substrates such as morpholine may not be strong enough to protonate the trichloroacetimidate, 

which may explain the low reactivity of these compounds. 

 

Figure 2.2: Proposed Mechanism of Aniline Substitution 

Conclusion 

 A procedure for monosubstitution of anilines using the Brønsted acid catalyst (±)-CSA 

and trichloroacetimidate electrophiles is described.  The alkylation is successful in a variety of 

anilines and is most effective with electron deficient anilines.  Electron rich anilines are more 

troublesome substrates for this reaction as Friedal-Crafts side products are occasionally 
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observed.  Basic alkyl amines such as morpholine fail to react and are not compatible under the 

described conditions.  Primary and secondary benzyl and allylic imidates were found to be 

reactive and a variety of substituted anilines are synthesized using these imidates.  A one step 

procedure where the imidate is formed in situ and displaced by the aniline was also developed.  

The protocol's usefulness was demonstrated through the synthesis of lipoxygenase inhibitor 

onosmin B and a formal synthesis of 5,6-dihydrobicolorine. Mechanistic studies appear to 

implicate a cationic pathway for the alkylation reaction. 

 

Experimental Section 

General Information. All anhydrous reactions were run under a positive pressure of argon or 

nitrogen. All syringes, needles, and reaction flasks required for anhydrous reactions were dried in 

an oven and cooled under an N2 atmosphere or in a desiccator. Dichloromethane and THF were 

dried by passage through an alumina column following the method of Grubbs (Pangborn, A. B.; 

Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518). 

Triethylamine was distilled from CaH2. All other reagents and solvents were purchased from 

commercial sources and used without further purification. 

 

Analysis and Purification. Analytical thin layer chromatography (TLC) was performed on 

precoated glass backed plates (silica gel 60 F254; 0.25 mm thickness). The TLC plates were 

visualized by UV illumination and by staining. Solvents for chromatography are listed as 

volume:volume ratios. Flash column chromatography was carried out on silica gel (40-63 μm). 

Melting points were recorded using an electrothermal melting point apparatus and are 
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uncorrected. Optical rotations were measured at the sodium D line (589 nm) on a digital 

polarimeter and reported in reagent grade solvent. Enantiopurity was determined using chiral 

phase HPLC with an OD-H (0.46 × 25 cm) column. Elemental analyses were performed on an 

elemental analyzer with a thermal conductivity detector and 2 meter GC column maintained at 

50 °C. 

 

Identity. Proton (
1
H NMR) and carbon (

13
C NMR) nuclear magnetic resonance spectra were 

recorded at 300 or 400 MHz and 75 or 100 MHz respectively. The chemical shifts are given in 

parts per million (ppm) on the delta (δ) scale. Coupling constants are reported in hertz (Hz). The 

spectra were recorded in solutions of deuterated chloroform (CDCl3), with residual chloroform 

(d 7.26 ppm for 
1
H NMR, δ 77.23 ppm for 

13
C NMR) as the internal reference. Data are reported 

as follows: (s = singlet; d = doublet; t = triplet; q = quartet; p = pentet; sep = septet; dd = doublet 

of doublets; dt = doublet of triplets; td = triplet of doublets; tt = triplet of triplets; qd = quartet of 

doublets; ddd = doublet of doublet of doublets; br s = broad singlet). Where applicable, the 

number of protons attached to the corresponding carbon atom was determined by DEPT 135 

NMR. Infrared (IR) spectra were obtained as thin films on NaCl plates by dissolving the 

compound in CH2Cl2 followed by evaporation or as KBr pellets. 

 

Representative Procedure A: Reaction of Imidate 5 with 2,5-Dichloroaniline 2.3.  

1-Phenethyl imidate 2.1 (0.30 g, 1.13 mmol) and 2,5-dichloroaniline 2.2 (0.15 g, 0.94 mmol) 

were added to a flame dried round bottom flask under argon. Dry dichloromethane (4 mL) was 

added followed by racemic camphorsulfonic acid (0.03 g, 0.11 mmol). The reaction was stirred 

at room temperature for 24h. After triethylamine (0.5 mL) was added, the reaction mixture was 
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preadsorbed on silica gel and purified by silica gel chromatography using 19% 

dichloromethane/80% hexanes/1% triethylamine to give 0.24 g (97%) of substituted aniline 2.3 

as a yellow oil.  

Representative Procedure B: Single Flask Synthesis of Monosubstituted Aniline 2.3.  

1-Phenethyl alcohol (0.33 g, 2.73 mmol) and trichloroacetonitrile (0.33 mL, 3.27 mmol) were 

added to a flame dried round bottom flask under argon. Dry dichloromethane (4 mL) was added 

followed by 1,8-diazabicyclo[5.4.0]undec-7-ene (0.04 g, 0.27 mmol). The reaction was stirred at 

room temperature and monitored for disappearance of the alcohol by TLC (4 hours). 2,5-

Dichloroaniline 2.2 (0.37 g, 2.28 mmol) was added followed by camphorsulfonic acid (0.13 g, 

0.54 mmol). The reaction was allowed to stir at room temperature for 24 h. Triethylamine (0.5 

mL) was then added, the reaction mixture was preadsorbed on silica gel and purified by silica gel 

chromatography using 19% dichloromethane/80% hexanes/1% triethylamine to provide 0.55 g 

(90%) of substituted aniline 2.3 as a yellow oil.  

 

2,5-Dichloro-N-(1-phenylethyl)aniline (2.3)  

Lit. Ref: Li, L.; Huang, G.; Chen, Z.; Liu, W.; Wang, X.; Chen, Y.; Yang, L.; Li, W.; Li, Y. 

Gallium Trichloride Catalyzed Hydroamination of Alkynes: Scope, Limitation, and Mechanistic 

Studies by DFT. Eur. J.Org. Chem. 2012, 5564-5572. 

Prepared using procedure A (0.24 g, 97%) from 2,5-dichloroaniline 6 and the known imidate 

2.1
31

 or procedure B (0.55 g, 90%) from 1-phenethyl alcohol, purified using silica gel 

chromatography (4% ethyl acetate/ 95% hexanes/1% triethylamine).  
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2.3. Yellow oil (0.24 g, 97%); TLC Rf = 0.71 (19% dichloromethane/80% hexanes/1% 

triethylamine); 
1
H NMR (300 MHz, CDCl3) δ 7.35-7.25 (m, 5H), 7.14 (d, J = 8.4 Hz, 1H), 6.54 

(dd, J = 8.4, 2.4 Hz, 1H), 6.38 (d, J = 2.4 Hz, 1H), 4.49 (q, J = 6.6 Hz, 1H), 1.57 (d, J =6.6 Hz, 

3H); 
13

C NMR (300 MHz, CDCl3) δ 144.0, 133.6, 129.8, 129.1, 128.5, 127.6, 125.9, 117.3, 

117.2, 112.4, 53.5, 25.1. 

 

N-(1-Phenylethyl)aniline (2.10)  

Lit. Ref: Li, L., Huang, G., Chen, Z., Liu, W., Wang, X., Chen, Y., Yang, L., Li, W. and Li, Y. 

Gallium Trichloride Catalyzed Hydroamination of Alkynes: Scope, Limitation, and Mechanistic 

Studies by DFT. Eur. J. Org. Chem. 2012, 5564–5572. 

Prepared using procedure A from aniline and the known imidate 2.1,
31

 purified using silica gel 

chromatography (95% hexanes/4% ethyl acetate/1% triethylamine).  

2.10. Yellow oil (0.14 g, 76%); TLC Rf = 0.59 (95% hexanes/4% ethyl acetate/1% 

triethylamine); 
1
H NMR (300 MHz, CDCl3) δ 7.38-7.28 (m, 4H), 7.25-7.24 (m, 1H), 7.12-7.06 

(m, 2H), 6.66 (t, J = 7.8 Hz, 1H), 6.54 (d, J = 7.5Hz, 2H), 4.48 (q, J = 6.9 Hz, 1H), 1.53 (d, J = 

6.9 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ 147.5, 145.4, 129.4, 128.9, 127.1, 126.1, 117.5, 

113.6, 53.7, 25.3. 

 

4-Chloro-N-(1-phenylethyl)aniline (2.11) 

Lit Ref: Che, C.; Liu, X. Highly Enantioselective Synthesis of Chiral Secondary Amines by 

Gold(I)/Chiral Brønsted Acid Catalyzed Tandem Intermolecular Hydroamination and Transfer 

Hydrogenation Reactions. Org Lett. 2009, 11, 4204-4207.  
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Prepared using procedure A from 4-chloroaniline and the known imidate 2.1,
31

 purified using 

silica gel chromatography (4% ethyl acetate/95% hexanes/1% triethylamine).  

2.11. Reddish crystals (0.19 g, 89%); mp = 58-60 °C; TLC Rf = 0.43 (5% ethyl acetate/95% 

hexanes); 
1
H NMR (300 MHz, CDCl3) δ 7.33-7.19 (m, 5H), 7.00 (dt, J = 9.9, 3.0 Hz, 2H), 6.40 

(dt, J = 10.2, 3.3 Hz, 2H), 4.42 (q, J = 6.9 Hz, 1H), 4.04 (br s, 1H), 1.49 (d, J = 6.6 Hz, 3H); 
13

C 

NMR (75 MHz, CDCl3) δ 145.8, 144.7, 128.9, 128.7, 127.1, 125.8, 121.9, 114.4, 53.6, 25.0. 

When (R)-5 (>98:2 er) was used an 85% yield (0.061 g) of reddish crystals was obtained as a 

35:65 ratio of R:S enantiomers. Chiral HPLC analysis: Chiralcel OD (heptane/i-PrOH = 95/5, 1.0 

mL/min, 254 nm, 25 °C): tminor = 7.52 min, tmajor = 9.75 min, 35:65 ratio, 30% ee. 

 

4-Bromo-N-(1-phenylethyl)aniline (2.12) 

Lit Ref. Li, S.; Xie, J.; Zhang, Y.; Zhou, Q.; Zhu, S. Well-Defined Chiral Spiro 

Iridium/Phosphine−Oxazoline Cationic Complexes for Highly Enantioselective Hydrogenation 

of Imines at Ambient Pressure. J. Am. Chem. Soc. 2006, 128, 12886-12891. 

 Prepared using procedure A from 4-bromoaniline and the known imidate 2.1,
31

 purified using 

silica gel chromatography (49% dichloromethane/ 50% hexanes/1% triethylamine).  

2.12. Off-white solid (0.18 g, 70%); mp = 68-71 °C; TLC Rf = 0.71 (49% dichloromethane/50% 

hexanes/1% triethylamine); 
1
H NMR (400 MHz, CDCl3) δ 7.33-7.28 (m, 4H), 7.24-7.21 (m, 1H),  

7.14 (dt, J = 9.6, 3.2 Hz, 2H),  6.36 (dt, J = 10.0, 2.4 Hz, 2H), 4.43 (q, J = 6.8 Hz, 1H), 4.06 (br 

s, 1H) 1.50 (d, J = 6.4 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ 146.3, 144.7, 132.0, 128.9, 127.2, 

125.9, 115.0, 109.0, 53.6, 25.1. 
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2-Bromo-N-(1-phenylethyl)aniline (2.16) 

Lit Ref. Brandt, J. R.; Ciana, C.; Gaunt, M. J.; Meyer, F.; Phipps, R. J. A Highly Para-Selective 

Copper(II)-Catalyzed Direct Arylation of Aniline and Phenol Derivatives. Angew. Chem. Int. Ed. 

2011, 50, 458-462.  

Prepared using procedure A from 2-bromoaniline and the known imidate 2.1,
31

 purified using 

silica gel (19% dichloromethane/80% hexanes/1% triethylamine).  

2.16. Clear colorless oil (0.18 g, 70%); TLC Rf = 0.50 (19% dichloromethane/80% hexanes/1% 

triethylamine); 
1
H NMR (400 MHz, CDCl3) δ 7.50 (dd, J = 8.0, 1.6 Hz, 1H), 7.44-7.38 (m, 4H), 

7.33-7.29 (m, 1H), 7.07 (ddd, J = 8.0, 7.2 1.2 Hz, 1H), 6.58 (ddd, J = 7.6, 7.2 1.6 Hz, 1H), 6.48 

(dd, J = 8.4, 1.2 Hz, 1H),  4.81 (br d, J = 3.6 Hz, 1H), 4.60 (p, J = 6.8 Hz, 1H), 1.65 (d, J = 6.8 

Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 144.6, 144.1, 132.3, 128.9, 128.4, 127.1, 125.8, 117.9, 

112.8, 109.7, 53.6, 25.3.   

 

N-(1-Phenylethyl)-3,5-bis(trifluoromethyl)aniline (2.20) 

Lit Ref: Ackermann, L.; Fingerhut, B.; Kaspar, L. T. Titanium-Catalyzed Intermolecular 

Hydroamination of Vinylarenes. Ang. Chem. Int. Ed. 2005, 44, 5972 - 5974.  

Prepared using procedure A (0.29 g, 98%) from 3,5-bis(trifluoromethyl)aniline and the known 

imidate 2.1,
31

 or procedure B (0.75 g, 99%) from 1-phenethyl alcohol, purified using silica gel 

chromatography (19% dichloromethane/ 80% hexanes/1% triethylamine).  
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2.20. White solid (0.29 g, 98%); mp = 56-57 °C; TLC Rf = 0.47 (19% dichloromethane/80% 

hexanes/1% triethylamine); 
1
H NMR (400 MHz, CDCl3) δ 7.39-7.37 (m, 4H), 7.32-7.29 (m, 1H), 

7.15 (s, 1H), 6.91 (s, 2H), 4.57 (q, J = 6.8 Hz, 1H), 4.51 (br s, 1H), 1.59 (d, J = 6.8 Hz, 3H); 
13

C 

NMR (75 MHz, CDCl3) δ 147.9, 143.6, 132.2 (q, J = 33.0 Hz), 129.2, 127.7, 125.6, 123.8 (q, J = 

271.0 Hz), 112.6 (q, J = 3.0 Hz), 110.2 (sep, J = 3.0 Hz), 53.6, 24.6.  

 

2-Nitro-N-(1-phenylethyl)aniline (2.18) 

 Prepared using procedure A from 2-nitroaniline and the known imidate 2.1,
31

 purified using 

silica gel chromatography (49% dichloromethane/50% hexanes/1% triethylamine).  

2.18. Yellow oil (0.24 g, 94%); TLC Rf = 0.31 (50% dichloromethane/50% hexanes ); IR (thin 

film) 3380, 3086, 3029, 2972, 2929, 2873, 1618 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 8.41 (br s, 

1H), 8.17 (dd, J = 8.4, 1.5 Hz, 1H), 7.35-7.25 (m, 6H), 6.64-6.57 (m, 2H), 4.69 (p, J = 6.6 Hz, 

1H), 1.65 (d, J = 6.9 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ 144.6, 143.7, 136.1, 132.3, 129.1, 

127.5, 126.8, 125.7, 115.7, 115.3, 53.3, 25.1. Anal. Calcd for C14H14N2O2: C, 69.41.; H, 5.82; N, 

11.56. Found: C, 69.15; H, 5.90; N, 11.16. 

 

4-(Methylthio)-N-(1-phenylethyl)aniline (2.21)  

Lit. Ref: Johns, A. M.; Utsunomiya, M.; Incarvito, C. D.; Hartwig, J. F. A Highly Active 

Palladium Catalyst for Intermolecular Hydroamination. Factors that Control Reactivity and 

Additions of Functionalized Anilines to Dienes and Vinylarenes. J. Am. Chem. Soc. 2006, 128, 

1828-1839. 
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Prepared using procedure A from 4-(methylthio)aniline and the known imidate 2.1,
31

 purified 

using silica gel chromatography (5% ethyl acetate/94% hexanes/1% triethylamine).  

2.21. Orange oil (0.17g, 70%); TLC Rf = 0.31 (5% ethyl acetate/94% hexanes/1% triethylamine); 

IR (thin film) 3411, 3082, 3061, 3026, 2979, 2919, 2867, 1598 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3) δ 7.36-7.29 (m, 4H), 7.24-7.23 (m, 1H),  7.12 (d, J = 8.4 Hz, 2H), 6.46 (br d, J = 7.6 Hz, 

2H), 4.46 (q, J = 6.8 Hz, 1H), 2.36 (s, 3H), 1.51 (d, J = 6.8 Hz, 3H). 
13

C NMR (75 MHz, CDCl3) 

δ 146.2, 145.0, 131.4, 128.8, 127.1, 125.9, 124.2, 114.0, 53.6, 25.0, 19.1. 

 

4-Ethyl-N-(1-phenylethyl)aniline (2.13)  

Lit. Ref. Bai, B.; Deng, Y.; He, J.; Pan, W.; Zhu, H.; Zhu, H.; Deng, Y.; He, J.; Pan, W. Highly 

efficient asymmetric-axle-supported N–O amides in enantioselective hydrosilylation of 

ketimines with trichlorosilane.  Tetrahedron, 2013, 69, 7253 - 7257.  

Prepared using procedure A from 4-ethylaniline and the known imidate 2.1,
31

 purified using 

silica gel chromatography (1% dichloromethane/98% hexanes/1% triethylamine).  

2.13. Orange oil (0.10 g, 47%); TLC Rf = 0.74 (1% dichloromethane/98% hexanes/1% 

triethylamine); 
1
H NMR (300 MHz, CDCl3) δ 7.40-7.22 (m, 5H), 6.94-6.92 (m, 2H), 6.47 (dt, J 

= 9.0, 2.4 Hz, 2H), 4.45 (q, J = 6.9 Hz, 1H), 2.49 (q, J = 7.5 Hz, 2H), 1.51 (d, J = 6.6 Hz, 3H), 

1.15 (t, J = 7.5, 3H); 
13

C NMR (75 MHz, CDCl3) δ 145.7, 145.5, 133.3, 128.9, 128.7, 127.1, 

126.1, 113.6, 54.0, 28.1, 25.3, 16.2. 

 

2-Fluoro-4-methyl-N-(1-phenylethyl)aniline (2.14) 
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 Prepared using procedure A from 2-fluoro-4-methylaniline and the known imidate 2.1,
31

 

purified using silica gel chromatography (5% ethyl acetate/94% hexanes/1% triethylamine).  

2.14. Clear colorless oil (0.17g, 80%); TLC Rf = 0.59 (5% ethyl acetate/94% hexanes/1% 

triethylamine); IR (thin film) 3431, 3061, 3031, 2968, 2925, 1658 cm
-1

; 
1
H NMR (300 MHz, 

CDCl3) δ 7.38-7.28 (m, 4H), 7.25-7.19 (m, 1H), 6.79 (dd, J = 12.3, 1.5 Hz, 1H), 6.64-6.61 (m, 

1H), 6.40 (br s, 1H), 4.48 (q, J = 6.6 Hz, 1H), 2.18 (s, 3H), 1.57 (d, J = 6.6 Hz, 3H); 
13

C NMR 

(75 MHz, CDCl3) δ 151.6 (d, J = 236.6 Hz), 145.2, 133.4 (d, J = 11.8 Hz), 128.9, 127.2, 126.7 

(d, J = 6.6 Hz), 126.0, 124.9 (d, J = 3.1 Hz), 115.3 (d, J = 18.2 Hz), 113.5 (d, J = 3.4 Hz), 53.8, 

25.3, 20.6 (d, J = 1.1 Hz). Anal. Calcd for C15H16FN: C, 78.57; H, 7.03; N, 6.11. Found: C, 

78.31; H, 7.27; N, 5.76. 

 

2-Chloro-N-(1-phenylethyl)-5-(trifluoromethyl)aniline (2.19)  

Prepared using procedure A from 2-chloro-5-(trifluoromethyl)aniline and the known imidate 

2.1,
31

 purified using silica gel chromatography (5% ethyl acetate/94% hexanes /1% 

triethylamine).  

2.19. Yellow oil (0.28 g, 98%); TLC Rf = 0.57 (5% ethyl acetate/94% hexanes /1% 

triethylamine); IR (thin film) 3428, 3087, 3066, 3031, 2974, 2930, 2873, 1603 cm
-1

; 
1
H NMR 

(300 MHz, CDCl3) δ 7.34-7.25 (m, 6H), 6.80 (ddd, J = 8.1, 2.1, 0.6 Hz, 1H), 6.64 (d, J = 1.8 Hz, 

1H), 4.55 (q, J = 6.6 Hz, 1H), 1.60 (d, J = 6.6 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 143.6, 

143.3, 130.1 (q, J = 32.0 Hz), 129.3, 129.0, 127.5, 125.7, 124.0 (q, J = 271.0 Hz), 122.2, 113.7 

(q, J = 4.0 Hz), 108.8 (q, J = 4.0 Hz), 53.4, 24.7. Anal. Calcd for C15H13ClF3N: C, 60.11; H, 

4.37; N, 4.67. Found: C, 60.27; H, 4.36; N, 4.55. 
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2-Chloro-4-fluoro-N-(1-phenylethyl)aniline (2.17)  

Prepared using procedure A from 2-chloro-4-fluoroaniline and the known imidate 2.1,
31

 purified 

using silica gel chromatography (19% dichloromethane/80% hexanes/1% triethylamine). 

2.17. Dark oil (0.27 g, 99%); TLC Rf = 0.52 (19% dichloromethane/80% hexanes/1% 

triethylamine); IR (thin film) 3424, 3064, 3029, 2971, 2929, 2871, 1599 cm
-1

;
 1
H NMR (300 

MHz, CDCl3) δ 7.33-7.28 (m, 4H), 7.25-7.22 (m, 1H), 7.03 (dd, J = 8.4, 3.0 Hz, 1H), 6.69 (ddd, 

J = 9.0, 8.1, 2.7 Hz, 1H), 6.32 (dd, J = 9.0, 5.7 Hz, 1H), 4.52 (br s, 1H), 4.47 (q, J = 6.9 Hz, 1H), 

1.57 (d, J = 6.9 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ 154.4 (d, J = 236.4 Hz) 144.5, 139.9 (d, J 

= 2.2 Hz), 128.9, 127.2, 125.8, 118.8 (d, J = 10.3 Hz), 116.3 (d, J = 25.8 Hz), 114.3 (d, J = 21.5 

Hz), 112.8 (d, J = 8.0 Hz), 53.9, 25.3. Anal. Calcd for C14H13ClFN: C, 67.34; H, 5.25; N, 5.61. 

Found: C, 67.39; H, 4.97; N, 5.53. 

 

2-Chloro-4-methyl-N-(1-phenylethyl)aniline (2.15)  

Lit. Ref: Menche, D.; Hassfeld, J.; Li, J.; Menche, G.; Ritter, A.; Rudolph, S. Hydrogen Bond 

Catalyzed Direct Reductive Amination of Ketones. Org. Lett. 2006, 8, 741-744. 

Prepared using procedure A from 2-chloro-4-methylaniline and the known imidate 2.15,
31

 

purified using silica gel chromatography (5% dichloromethane/94% hexanes/1% triethylamine).  

2.15. Yellow oil (0.22 g, 94%); TLC Rf = 0.56 (5% dichloromethane/94% hexanes/1% 

triethylamine); 
1
H NMR (300 MHz, CDCl3) δ 7.35-7.19 (m, 5H), 7.07 (dd, J = 2.1, 0.9 Hz, 1H), 

6.76 (dd, J = 8.1, 1.8, 0.6 Hz, 1H), 6.35 (d, J = 8.1 Hz, 1H), 4.51 (q, J = 6.6 Hz, 1H), 2.16 (s, 
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3H), 1.58 (d, J = 6.6 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ 145.0, 140.8, 129.6, 128.9, 128.4, 

127.2, 127.0, 126.0, 119.0, 112.9, 53.8, 25.4, 20.3. 

 

N-Methyl-N-(1-phenylethyl)aniline (2.23)  

Lit Ref: Baeza, A.; Pfaltz, A. Iridium-Catalyzed Asymmetric Hydrogenation of Unfunctionalized 

Enamines. Chem. Eur. J. 2009, 15, 2266-2269. 

Prepared using procedure A (0.17 g, 84%) from N-methylaniline and the known imidate 2.1,
31

 or 

procedure B (0.36 g, 82%) from 1-phenethyl alcohol, purified using silica gel chromatography 

(4% ethyl acetate/95% hexanes /1% triethylamine).  

2.23. Yellow oil (0.17 g, 84%); TLC Rf = 0.32 (2% ethyl acetate/97% hexane /1% 

triethylamine); 
1
H NMR (300 MHz, CDCl3) δ 7.34-7.22 (m, 7H), 6.84 (d, J = 8.1 Hz, 2H), 6.73 

(t, J = 7.2 Hz, 1H), 5.13 (q, J = 6.9 Hz, 1H), 2.68 (s, 3H), 1.55 (d, J = 6.9 Hz, 3H); 
13

C NMR (75 

MHz, CDCl3) δ 150.4, 143.0, 129.4, 128.6, 127.1, 127.0, 116.9, 113.3, 56.7, 32.0, 16.5. 

 

1-(1-Phenylethyl)indoline (2.22) 

Lit. Ref. Shahane, S.; Louafi, F.; Moreau, J.; Hurvois, J.-P.; Renaud, J.-L.; van de Weghe, P.; 

Roisnel, T. Synthesis of Alkaloids of Galipea officinalis by Alkylation of an α-Amino Nitrile. 

Eur. J. Org. Chem. 2008, 4622-4631. 

Prepared using procedure A from indoline the known imidate 2.1,
31

 purified using silica gel 

chromatography (5% ethyl acetate/94% hexanes/1% triethylamine).  

2.22. Dark oil (0.18 g, 74%); TLC Rf = 0.52 (5% ethyl acetate/94% hexanes/1% triethylamine); 

1
H NMR (300 MHz, CDCl3) δ 7.42-7.22 (m, 5H), 7.05 (dd, J = 7.2, 0.9 Hz, 1H), 6.98 (t, J = 7.5 
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Hz, 1H), 6.60 (t, J = 6.9 Hz, 1H), 6.35 (d, J = 7.5 Hz, 1H), 4.71 (q, J = 7.2 Hz, 1H), 3.44-3.28 

(m, 2H), 2.94 (t, J = 8.7 Hz, 2H), 1.53 (d, J = 6.9 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ 151.7, 

143.2, 130.5, 128.7, 127.5, 127.4, 127.2, 124.7, 117.3, 107.6, 54.9, 48.3, 28.5, 16.9. 

 

N-Benzyl-2,5-dichloroaniline (2.27)  

Prepared using procedure A (0.23 g, 92%) from 2,5-dichloroaniline 2.2 and the commercially 

available benzyl-2,2,2-trichloroacetimidate 2.26 or procedure B (0.37 g, 64%) from benzyl 

alcohol, purified using silica gel chromatography (19% dichloromethane/80% hexanes/ 1% 

triethylamine).  

2.27. Clear colorless oil (0.23 g, 92%); TLC Rf = 0.50 (20% dichloromethane/80% hexanes); IR 

(thin film) 3422, 3064, 3030, 2852, 1595 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.39-7.29 (m, 5H), 

7.18-7.15 (m, 1H), 6.62-6.59 (m, 2H), 4.76 (br s, 1H), 4.36 (s, 2H); 
13

C NMR (75 MHz, CDCl3) 

δ 144.8, 138.1, 133.8, 129.9, 129.1, 127.8, 127.6, 117.5, 117.4, 111.5, 48.0. Anal. Calcd for 

C13H11Cl2N: C, 61.93; H, 4.40; N, 5.56. Found: C, 62.26; H, 4.26; N, 5.51. 

 

2,5-Dichloro-N-(4-methoxybenzyl)aniline (2.29)  

Prepared using procedure A from 2,5-dichloroaniline 2.2 and the commercially available 4-

methoxybenzyl-2,2,2-trichloroacetimidate 2.28, purified with silica gel chromatography (5% 

ethyl acetate/94% hexanes/1% triethylamine).  
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2.29. Yellow oil (0.22 g, 91%); TLC Rf = 0.42 (2% ethyl acetate/97% hexanes/1% 

triethylamine); IR (thin film) 3422, 3071, 3003, 2958, 2836, 1595 cm
-1

;
 1

H NMR (400 MHz, 

CDCl3) δ 7.26 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 6.62-6.58 

(m, 2H), 4.66 (br s, 1H), 4.27 (s, 2H), 3.80 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ 159.3, 144.9, 

133.8, 130.1, 129.9, 128.9, 117.4, 117.2, 114.4, 111.5, 55.5, 47.5. Anal. Calcd for C14H13Cl2NO: 

C, 59.59; H, 4.64; N, 4.96. Found: C, 59.61; H, 4.94; N, 4.84. 

 

N-((6-Bromobenzo[d][1,3]dioxol-5-yl)methyl)-2,5-dichloroaniline (2.31) 

 Prepared using procedure A from 2,5-dichloroaniline 2.2 and the known imidate 2.30,
48

 purified 

using silica gel chromatography (19% dichloromethane/80% hexanes/1% triethylamine). 

2.31. Yellow oil (0.20 g, 80%); TLC Rf = 0.29 (20% dichloromethane/80% hexanes); IR (thin 

film) 3436, 3107, 3078, 3010, 2915, 1593 cm
-1

; 
1
H NMR (300 MHz, CDCl3), δ 7.17 (d, J = 8.4 

Hz, 1H), 7.04 (s, 1H), 6.82 (s, 1H), 6.62 (dd, J = 8.4, 2.4 Hz, 1H), 6.51 (d, J = 2.1 Hz, 1H),  5.97 

(s, 2H), 4.84 (t, J = 5.4 Hz, 1H), 4.33 (d, J = 5.7Hz, 2H); 
13

C NMR (100 MHz, CDCl3), δ 147.82, 

147.76, 144.2, 133.7, 130.0, 129.8, 117.5, 117.4, 113.5, 113.0, 111.4, 108.7, 101.9, 47.8. Anal. 

Calcd for C14H10O2NBrCl2: C, 44.83; H, 2.69; N, 3.73. Found: C, 45.10; H, 2.74; N, 3.94. 

 

4-(((2,5-Dichlorophenyl)amino)methyl)benzonitrile (2.33). Prepared using procedure A in 

refluxing toluene from 2,5-dichloroaniline 6 and the known imidate 2.32,
49

 purified using silica 

gel chromatography (9% ethyl acetate/90% hexanes/1% triethylamine).  
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2.33. White solid (0.11 g, 43%); mp = 114-115 °C; TLC Rf = 0.59 (50% dichloromethane/ 50% 

hexanes); IR (thin film) 3409, 2916, 2224, 1595, 1567 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.64 

(dd, J = 6.4, 1.6 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.8 Hz, 1H), 6.63 (dd, J = 8.4, 2.0 

Hz, 1H), 6.45 (d, J = 2.0 Hz, 1H), 4.92 (t, J = 5.6 Hz, 1H), 4.47 (d, J = 6.0 Hz, 2H); 
13

C NMR 

(100 MHz, CDCl3) δ 144.0, 143.7, 133.7, 132.7, 130.0, 127.6, 118.7, 117.8, 117.5, 111.4, 111.3, 

47.2. Anal. Calcd for C14H10Cl2N2: C, 60.67; H, 3.64; N, 10.11. Found: C, 60.32; H, 3.58; N, 

9.80. 

 

N-Benzhydryl-2,5-dichloroaniline (2.35)  

Prepared using procedure A (0.28 g, 87%) from 2,5-dichloroaniline 2.2 and the known imidate 

2.34
50

 and procedure B (0.39 g, 88%) from diphenylmethanol, purified using silica gel 

chromatography (10% dichloromethane/89% hexanes/1% triethylamine). 

2.35. Clear colorless oil (0.28 g, 87%); TLC Rf = 0.59 (10% dichloromethane/89% hexanes/1% 

triethylamine); IR (thin film) 3417, 3031, 2925, 1656, 1596 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 

7.34-7.25 (m, 10H), 7.16 (d, J = 8.4 Hz, 1H), 6.59 (dd J =  8.4, 2.4 Hz, 1H), 6.44 (d, J = 2.1 Hz, 

1H), 5.52 (s,1H), 4.95 (br s, 1H); 
13

C NMR (75 MHz, CDCl3) δ 144.1, 141.9, 133.7, 129.9, 

129.2, 128.7, 128.0, 127.6 117.7, 112.7, 62.7. Anal. Calcd for C19H15Cl2N: C, 69.52; H, 4.61; N, 

4.27. Found: C, 69.75; H, 4.62; N, 4.60. 

 

2,5-Dichloro-N-(1-(p-tolyl)ethyl)aniline (2.37) 



 
 

 53 

Prepared using procedure A from 2,5-dichloroaniline 2.2 and the known imidate 2.36,
51

 purified 

using silica gel chromatography (5% ethyl acetate/94% hexanes/1% triethylamine).  

2.37. Clear colorless oil (0.17 g, 68%); TLC Rf = 0.81 (5% ethyl acetate/95% hexanes); IR (thin 

film) 3422, 2968, 2923, 2867, 1594 cm
-1

; 
1
H NMR (300 MHz, CDCl3) 7.23-7.20 (m, 2H), 7.16-

7.12 (m, 3H), 6.53 (dd, J = 8.4, 2.4 Hz, 1H), 6.40 (d, J = 2.1 Hz, 1H), 4.72 (br s, 1H), 4.46 (q, J = 

6.6 Hz, 1H), 2.33 (s, 3H), 1.55 (d, J = 6.6 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 143.9, 140.8, 

136.9, 133.4, 129.6, 125.6, 117.1, 116.9, 112.2, 53.0, 24.9, 21.1 (One signal in the aromatic 

region was not resolved). Anal. Calcd for C15H15Cl2N: C, 64.30; H, 5.40; N, 5.00. Found: C, 

64.52; H, 5.20; N, 4.74. 

 

N-Allyl-2,5-dichloroaniline (2.39) 

Prepared using procedure A from 2,5-dichloroaniline 2.2 and the commercially available O-allyl 

2,2,2-trichloroacetimidate 2.38, purified using silica gel chromatography (4% dichloromethane/ 

94% hexanes/1% triethylamine).  

2.39. Clear colorless oil (0.19 g, 77%); TLC Rf = 0.24 (5% dichloromethane/ 95% hexanes); 

IR(thin film) 3426, 3086, 3013, 2985, 2926, 2850, 1645, 1595 cm
-1

; 
1
H NMR (300 MHz, CDCl3) 

δ 7.16-7.13 (m, 1H), 6.61-6.58 (m, 2H), 5.94-5.87 (m, 1H), 5.32-5.20 (m, 2H), 4.52 (br s, 1H), 

3.82 (d, J = 8.4 Hz, 2H); 
13

C NMR (75 MHz, CDCl3) δ 144.6, 134.0, 133.6, 129.7, 117.3, 117.0, 

116.8, 111.3, 45.9; Anal. Calcd for C9H9Cl2N: C, 53.49; H, 4.49; N, 6.69. Found: C, 53.40; H, 

4.89; N, 6.69. 
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2,5-Dichloro-N-(cyclohex-2-en-1-yl)aniline (2.41)  

Prepared using procedure A from 2,5-dichloroaniline 2.2 and the known imidate 2.40,
52

 purified 

using silica gel chromatography (2% ethyl acetate/97% hexanes/1% triethylamine).  

2.41. Orange oil (0.19 g, 79%); TLC Rf = 0.60 (5% ethyl acetate/95% hexanes); IR (thin film) 

3418, 3026, 2938, 2862, 1593 cm
-1

;
 
 
1
H NMR (300 MHz, CDCl3) δ 7.14 (d, J = 8.4 Hz, 1H), 6.66 

(d, J = 2.4 Hz, 1H), 6.57 (dd, J = 8.4, 2.4 Hz, 1H), 5.94- 5.88 (m, 1H), 5.75-5.70 (m, 1H), 4.36 

(br d, J = 7.8 Hz, 1H), 3.98 (br s, 1H), 2.09-2.05 (m, 2H), 1.96-1.89 (m, 1H), 1.77-1.63 (m, 3H); 

13
C NMR (100 MHz, CDCl3) δ 143.8, 133.6, 131.2, 129.9, 127.4, 117.3, 116.5, 111.3, 47.7, 28.6, 

25.1, 19.5; Anal. Calcd for C12H13Cl2N: C, 59.52; H, 5.41; N, 5.78. Found: C, 59.38; H, 5.27; N, 

5.45. 

 

2,5-Dichloro-N-(2-phenylpropan-2-yl)aniline (2.43)  

Prepared using procedure A from 2,5-dichloroaniline 2.2 and the known imidate 2.42,
53

 purified 

using silica gel chromatography (9% dichloromethane/ 90% hexanes/1% triethylamine).  

2.43. Clear colorless oil (0.22 g, 42%); TLC Rf = 0.58 (10% dichloromethane/90% hexanes); IR 

(thin film) 3419, 3042, 3011, 2857, 1578 cm
-1

; 
1
H NMR (400 MHZ, CDCl3) δ 7.45-7.42 (m, 

2H), 7.34 (tt, J = 6.8, 1.6 Hz, 2H), 7.25 (tt, J = 6.8, 1.6 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.48 

(dd, J = 8.0, 2.4 Hz, 1H), 6.06 (d, J = 2.4 Hz, 1H), 4.84 (br s, 1H), 1.68 (s, 6H); 
13

C NMR (100 

MHz, CDCl3) δ 145.9, 142.7, 132.7, 129.6, 128.9, 126.9, 125.4, 118.0, 116.8, 114.4, 56.1, 30.5. 

Anal. Calcd for C15H15Cl2N: C, 64.30; H, 5.40; N, 5.00. Found: C, 63.95; H, 5.71; N, 4.70. 
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N-(tert-Butyl)-2,5-dichloroaniline (2.45)  

Prepared using procedure A from 2,5-dichloroaniline 2.2 and the commercially available tert-

butyl 2,2,2-trichloroacetimidate 2.44 with 10 mol% BF3ˑOEt2, purified using silica gel 

chromatography (19% dichloromethane/80% hexanes/1% triethylamine). 

2.45. Clear colorless oil (0.01 g, 5%); TLC Rf = 0.45 (20% dichloromethane/80% hexanes); IR 

(thin film) 3416, 3086, 3060, 2981, 1592, 1504 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.14 (d, J = 

8.4 Hz, 1H), 6.89 (d, J = 2.4 Hz, 1H), 6.56 (dd, J = 8.4, 2.4 Hz, 1H), 4.38 (br s, 1H), 1.40 (s, 

9H); 
13

C NMR (75 MHz, CDCl3) δ 143.6, 132.9, 129.8, 118.6, 116.6, 113.8, 51.4, 29.6. Anal. 

Calcd for C10H13Cl2N: C, 55.06; H, 6.01; N, 6.42. Found: C, 55.13; H, 6.35; N, 6.13. 

 

2-(((2,5-Dichlorophenyl)amino)methyl)isoindoline-1,3-dione (2.49) 

Prepared using procedure A from 2,5-dichloroaniline 2.2 and the known imidate 2.48,
54

 purified 

using silica gel chromatography (20% ethyl acetate/79% hexanes/1% triethylamine).  

2.49. White powder (0.24 g, 74%); mp = 200-201 °C; TLC Rf = 0.83 (20% ethyl acetate/79% 

hexanes/1% triethylamine); IR (KBr) 3397, 3067, 1718, 1657 cm
-1

;
 1

H NMR (400 MHz, CDCl3) 

δ 7.88-7.86 (m, 2H), 7.74-7.72 (m, 2H), 7.26 (s, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.66 (dd, J = 8.4, 

2.4 Hz, 1H), 5.47 (t, J = 7.6 Hz, 1H), 5.19 (d, J = 7.6 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) δ 

168.2, 142.0, 134.4, 133.8, 131.8, 130.1, 123.7, 119.0, 118.0, 112.4, 46.6. Anal. Calcd for 

C15H10Cl2N2O2: C, 56.10; H, 3.14; N, 8.72. Found: C, 56.06; H, 3.33; N, 8.51. 
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2,5-Dichloro-N-(1,4-diphenylbut-3-yn-1-yl)aniline (2.51)  

Prepared using procedure A from 2,5-dichloroaniline 2.2 and the known imidate 2.50,
55

 purified 

using silica gel chromatography (4% dichloromethane/ 95% hexanes/1% triethylamine).  

2.51. Yellow solid (50 mg, 63%); mp = 86-88 °C; TLC Rf = 0.54 (10% ethyl acetate/90% 

hexanes); IR (KBr) 3380, 3114, 2989, 1594, 1504 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.42-7.27 

(m, 10H), 7.15 (d, J = 8.4 Hz, 1H), 6.57 (dd, J = 8.4, 2.4 Hz, 1H), 6.40 (d, J = 2.0 Hz, 1H), 5.33 

(d, J = 5.2 Hz, 1H), 4.61 (q, J = 5.6 Hz, 1H), 3.05 (dd, J = 16.8, 5.2 Hz, 1H), 2.91 (dd, J = 16.8, 

6.4 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) δ 143.8, 141.1, 133.4, 131.6, 129.7, 128.9, 128.3, 

128.1, 127.9, 126.2, 123.0, 117.7, 117.5, 112.6, 84.8, 84.2, 56.5, 29.3. Anal. Calcd for 

C22H17Cl2N: C, 72.14; H, 4.68; N, 3.82. Found: C, 72.35; H, 4.63; N, 3.82. 

 

N-((6-Bromobenzo[d][1,3]dioxol-5-yl)methyl)-N-methylaniline (2.52)  

Prepared using procedure B from the known 6-bromo-1,3-benzodioxole-5-methanol
56

 and N-

methylaniline, purified using silica gel chromatography (49% dichloromethane/50% hexanes/1% 

triethylamine).  

2.52 Yellow solid (0.81 g, 81%); mp = 72-74°C; TLC Rf = 0.37 (50% dichloromethane/50% 

hexanes); IR (KBr) 3436, 3093, 3064, 2893, 2827, 2565, 1597 cm
-1

; 
1
H NMR (400 MHz, CDCl3) 

δ 7.24-7.20 (m, 2H), 7.04 (s, 1H), 6.73 (dt, J = 7.2, 0.8 Hz, 1H), 6.73-6.65 (m, 3H), 5.93 (s, 2H), 

4.44 (s, 2H), 3.07 (s, 3H); 
13

C NMR (75 MHz, CDCl3) 149.2, 147.8, 147.3, 131.0, 129.3, 116.8, 

113.0, 112.6, 112.1, 108.0, 101.7, 57.4, 38.8. Anal. Calcd for C15H14O2NBr: C, 56.27; H, 4.41; 

N, 4.37. Found: C, 56.43; H, 4.28; N, 4.36. 
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Onosmin B (2.8)  

Lit Ref: Ahmad, I.; Nawaz, S. A.; Afza, N.; Malik, A.; Fatima, I.; Khan, S. B.; Ahmad, M.; 

Choudhary, M. I., Isolation of Onosmins A and B, Lipoxygenase Inhibitors from Onosma 

hispida. Chem. Pharm. Bull. 2005, 53, 907-910. 

Prepared using procedure B with 4-methylbenzyl alcohol and 2-aminomethylbenzoate, purified 

using silica gel chromatography (29% dichloromethane/70% hexanes/1% triethylamine).  

2.8. Clear colorless oil (0.26 g, 85%); TLC Rf = 0.55 (10% ethyl acetate/90% hexanes); IR (thin 

film) 3368, 3078, 3020, 2949, 2921, 2847, 1681 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.14 (br s, 

1H), 7.92 (dd, J = 8.0, 1.6 Hz, 1H), 7.29 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.26-7.23 (m, 2H), 7.14 

(d, J = 7.6 Hz, 2H), 6.65 (dd, J = 8.0, 0.8 Hz, 1H), 6.59 (ddd, J = 8.0, 7.2, 1.2 Hz, 1H), 4.41 (s, 

2H), 3.86, (s, 3H), 2.33 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 169.1, 150.9, 136.8, 135.7, 134.6, 

131.6, 129.4, 127.1, 114.8, 111.7, 110.2, 51.5, 46.8, 21.1. Anal. Calcd for C16H17O2N: C, 75.27; 

H, 6.71; N, 5.49. Found: C, 75.54; H, 6.67; N, 5.83.  
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Chapter 3 

Alkylation of Sulfonamides with Trichloroacetimidates Under Thermal Conditions 

Abstract 

The intermolecular alkylation of sulfonamides with trichloroacetimidates using thermal 

conditions is reported herein.  Allylic and benzylic imidates were found to be effective alkylating 

agents under the reported reaction conditions.  Secondary imidates were found to provide the 

higher yields than primary and tertiary trichloroacetimidates.  Aryl and alkyl sulfonamides were 

both alkylated effectively with yields ranging from 55%-98%.  A bioactive ketoprofen analog 

was efficiently synthesized using the described methodology.  An SN1 type mechanism for the 

reported reaction is proposed and evidence supporting this hypothesis is provided via the 

alkylation of a chiral trichloroacetimidate, which proceeded with complete racemization. 

 

Introduction 

 The sulfonamide functional group plays an important role in many bioactive and 

pharmaceutically interesting compounds.  Several interesting medicinally relevant sulfonamides 

have been described in the literature, such as the HMG-CoA reductase inhibitor rosuvastatin
1
 

(3.4) and the cardiac rhythmicity regulator efsevin
2
 (3.5).  Other bioactive sulfonamides such as 

the inhibitor of delayed-rectifier k
+
 chromanol 293B

3
 (3.6), the selective EP(2) receptor 

agonist taprenepag isopropyl
4
 (3.7) and the ketoprofen analog 3.8 are shown in Figure 3.1.

5
  

Examination of the use of sulfonamides in pharmaceuticals shows that sulfonamides are a well 

represented functional group in medicinal chemistry and drug design.
6, 7

  The synthesis of new 
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sulfonamide-containing structures continues to be a popular avenue for drug discovery.
8
  

Sulfonamides have also been used for insecticidal and agricultural applications.
9, 10

  Overall, the 

varied biological activity of sulfonamides defines their use as valuable synthetic targets with a 

variety of uses. 

 

Figure 3.1: Bioactive and Pharmacologically Interesting N-Substituted Sulfonamides 

 In addition, sulfonamides serve an important purpose in synthetic organic chemistry as 

they facilitate the introduction of nitrogen into organic molecules.  Sulfonamides often function 

as protecting groups to conceal the reactive amine moiety during functional group manipulation.  

Initially, the use of sulfonamides as protecting groups was limited due to the harsh conditions 

required for cleavage.
11, 12

  However, this has changed as more mild conditions for the 

deprotection of sulfonamides have now been developed.  In particular, the discovery of the 2-

(trimethylsilyl)-ethanesulfonamide (SES-NH2) by Weinreb
13

 and the utilization of the 2- and 4-

nitrobenezene sulfonamides by Fukuyama
14

 have expanded the potential of this chemistry.  

These developments have lead to increased use of sulfonamides in synthetic organic chemistry. 
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 Due to the numerous uses for substituted sulfonamides in medicinal chemistry and 

synthetic chemistry, effective methods for the formation of substituted sulfonamides are highly 

desired.  Most commonly, substituted sulfonamides are formed from amines and sulfonyl 

chlorides.
15, 16

  Direct alkylation of sulfonamides with alkyl halides
17, 18

 and reductive 

amination
19, 20

 methods are also popular.  The Mitsunobu reaction can also be employed to 

convert an alcohol into a substituted sulfonamide.
13, 14, 21

  The high level of interest in synthetic 

methods for preparing substituted sulfonamides has led to newer, more atom-economical 

methods for their formation.  These include transition-metal catalyzed methods such as the 

hydroaminations of alkenes,
22-30

 C-H activation methods,
31-36

 metal catalyzed additions to N-

sulfonyl imines,
11, 37-41

 alkylation via -allyl metal complexes,
42-44

 and alkylation of alcohols 

with borrowing hydrogen methods.
45-48

  The direct alkylation of allylic and benzylic alcohols 

have also been explored although these methods typically require the use of strong acid 

catalysts.
49, 50

  As the thermal alkylations of thiols and alcohols with trichloroacetimidates have 

been observed to proceed without a catalyst or promoter,
51, 52

 it was hypothesized that 

sulfonamide alkylation could be accomplished thermally through the use of trichloroacetimidates 

without the use of exogenous acid. 

Results and Discussion 

 The research began with the optimization of the reaction of 1-phenylethyl imidate 3.9 and 

toluene sulfonamide 3.10.  Imidate 3.9 was chosen as it is easily prepared from inexpensive and 

commercially available 1-phenylethyl alcohol, while toluene sulfonamide 3.10 was chosen 

because it is inexpensive and relatively soluble in a variety of organic solvents.  At first Lewis 

acid catalysts were evaluated to promote this transformation.  The reaction of imidate 3.9 with 

sulfonamide 3.10 in toluene with 10 mol% BF3ˑOEt2 as a catalyst provided the substitution 
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product in 29% yield (entry 1).  Along with the desired product, a significant side product, the 

rearranged trichloroacetamide, was also observed in the crude 
1
H NMR of the reaction mixture.  

The formation of this undesirable side product from the rearrangement of the 

trichloroacetimidate has been reported previously.
53

 Switching the Lewis acid catalyst from 

BF3ˑOEt2 to TMSOTf failed to provide the desired product and again primarily 

trichloroacetamide was recovered from the reaction mixture (entry 2).  As the rearrangement of 

benzylic trichloroacetimidates to acetamides using Lewis acids has been reported in the 

literature, it was considered that perhaps stronger Brønsted acid catalysts may catalyze the 

reaction and reduce the amount of rearranged acetamide.  The substitution was therefore 

evaluated with 2,4-dinitrobezenesulfonic acid (DNBSA) as an acid catalyst and the result was an 

encouraging 71% yield of the desired product 3.11 (entry 3).  PPTS provided similar results 

albeit at a reduced yield of 51% (entry 4).  Although these results were encouraging, we were 

intrigued by the possibility of a substitution reaction that could be performed without the use of 

exogenous acid catalysts.  The search for such conditions was initiated by heating toluene 

sulfonamide 3.10 and imidate 3.9 in toluene at 86° C (entry 5).  No reaction was observed under 

these conditions, however, and switching the solvent to refluxing THF resulted in the formation 

of a complex mixture (entry 6).  Treating imidate 3.9 with toluenesulfonamide 3.10 in refluxing 

toluene (111 °C boiling point) provided the desired product 3.11 in 76% yield (entry 7).  Shorter 

reaction times were not as effective as conversion to the substituted sulfonamide 3.11 was not 

complete and so isolated yields were more moderate (24%, entry 8).  At this point it was noted 

that toluene sulfonamide 3.10 was only slightly soluble in toluene, while the substituted 

sulfonamide 3.11 and the trichloroacetamide byproduct were completely soluble.  This 

differential solubility may account for some loss of yield, as the soluble trichloroacetamide may 
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compete with the poorly soluble sulfonamide for the benzylic electrophile. A protocol where the 

imidate was added in portions was therefore devised, as less trichloroacetamide would be in the 

reaction mixture to compete with toluene sulfonamide as a nucleophile, leading to more 

sulfonamide substitution product and less of the undesired acetamide byproduct.  Adding the 

trichloroacetimidate in portions provided an improved yield of 86% (entry 9).  Although the 

amount of imidate used in the reaction was increased, a similar reaction without the stepwise 

addition of trichloroacetimidate 3.9 did not result in an increased yield (entry 10).  As the 

conditions used in entry 9 provided the best yield, this protocol was chosen to test the robustness 

of the thermal substitution reaction. 

Table 3.1 
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 The scope of the thermal substitution reaction with respect to the sulfonamide was then 

investigated (Table 3.2).  The reaction of a number of different benzenesulfonamides with the 

phenethyl trichloroacetimidate 3.9 provided the desired alkylation product, with 4-

methoxybenzenesulfonamide, benzenesulfonamide and 4-chlorobenzenesulfonamide providing 

yields of 75%, 74% and 84% respectively (entries 1-3).  Similarly, alkyl sulfonamides were 

tolerated well, with methane sulfonamide and ethane sulfonamide providing yields of 79% and 

76% respectively (entries 6-7).  To our delight 2-(trimethylsilyl)-ethanesulfonamide provided the 

desired product 3.20 yield of 70% (entry 8).  This is notable as this sulfonamide can be cleaved 

to the corresponding amine through the use of cesium fluoride in DMF.
54

  The artificial 

sweetener saccharin was found to be an exceptional reagent for this reaction and provided 98% 

yield of the desired substitution product (entry 9).  Saccharin has been used in the Gabriel 

synthesis as a surrogate for phthalimide, so this substitution provides an alternative for this 

popular route to primary amines.
55

  N-Substituted sulfonamides were less reactive under these 

reaction conditions.  N-Methyl toluenesulfonamide gave just 27% of the desired product (entry 

10) while N-benzyltoluene sulfonamide failed to react altogether (entry 11).  Under the thermal 

conditions, 2-nitrobenzenesulfonamide provided a poor yield of only 13% (entry 5).  This result 

was particularly disappointing as nitrobenzenesulfonamides have been used by Fukuyama as 

reagents for installing amines.
14
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Table 3.2 

 

 Due to the utility of 2-nitrobenzenesulfonamide and 4-nitrobenzenesulfonamide in 

organic synthesis, expanding the scope of the imidate substitution to include these substrates was 

further investigated (Table 3.3).  First, it was noted that although the reaction of 1-phenethyl 

imidate 3.9  with 2-nitrobenzenesulfonamide was poor, the more reactive imidate 

diphenylmethyl imidate 3.25 was capable of alkylation under these original conditions with a 

yield of 80% (entry 1).  Although this was result was encouraging, expanding the scope to less 

reactive imidates was necessary.  Adding the strong acid DNBSA as a catalyst in CH2Cl2 

resulted in a yield of 17% (entry 3).  The more mild acid PPTS was incapable of catalyzing this 



 
 

 72 

reaction and the starting materials were recovered unchanged (entry 4).  Heating 2-

nitrobenzensulfonamide and phenethyl imidate 3.9 in THF at reflux without an acid catalyst 

resulted in the formation of a complex mixture of products (entry 5).  Performing the reaction in 

refluxing dichloroethane (DCE) without the addition of an acid catalyst resulted in a yield of 

14% while refluxing conditions in dimethoxyethane (DME) resulted in 12% yield of the desired 

substituted sulfonamide (entries 6-7).  Utilizing BF3ˑOEt2 as a Lewis acid catalyst in DCM, the 

substituted sulfonamide 3.17 was isolated in 12% yield.  Although the yield for this reaction was 

low it was noted that the reaction was completed quickly, requiring just 1 hour to proceed to 

completion. These low yields may be due to 2-nitrobenzenesulfonamide being exceptionally 

insoluble in most of these solvents.  Therefore slow addition of imidate 3.9 to the sulfonamide 

while utilizing BF3ˑOEt2 as a promoter was investigated, as this procedure would maximize the 

concentration of the sulfonamide nucleophile relative to the concentration of the electrophile, 

minimizing the risk of decomposition of the imidate by rearrangement.  The slow addition of the 

imidate would allow enough time for the sparingly soluble 2-nitrobenzenesulfonamide to be 

converted into the more soluble substituted sulfonamide 3.17.  Slow addition of imidate 3.9 with 

a syringe pump resulted in a drastically increased yield of 44% for compound 3.17 (entry 9).   
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Table 3.3 

 

 Encouraged by this increase in yield with slow addition of imidate 3.9, a slow addition 

procedure with syringe pump was applied in a number of other variations to improve the yield of 

the 2-nitrobenzene sulfonamide alkylation.  Lewis acid catalyzed addition of imidate 3.9 to the 

sulfonamide in DCM with the Lewis acid catalyst BF3ˑOEt2 at room temperature provided the 

desired product 3.17 (60%, Table 3.4, entry 1) with an improved yield.  Heating this reaction to 

reflux provided a yield of 59% (entry 2).  Although the yield was similar, it was noted that a 

significantly better ratio of desired product 3.17 to the rearranged product 3.27 was realized as 

indicated by 
1
H NMR.  Increasing the amount of sulfonamide to 1.3 equivalents provided 

product 3.17 with an increased yield of 70% (entry 3).  No further substantial increase in yield 

was obtained by further increasing the equivalents of imidate (entry 4).  Several other solvents 

were also evaluated, but performing the substitution in acetonitrile provided no product (entry 5) 

whereas changing the solvent to nitromethane provided a more moderate yield of 53% (entry 6).  
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Encouragingly no rearrangement of imidate was observed in this reaction.  Unfortunately a 

number of unidentifiable side products made purification by column chromatography difficult 

and therefore the isolated yield was lower than observed with DCM.  Performing the substitution 

in nitromethane at 50°C resulted in an improved yield of 61% (entry 7), but this was still lower 

than that obtained with DCM.  At this elevated temperature some of the rearrangement product 

3.27 could again be observed in the crude 
1
H NMR.  Addition of the imidate slowly over 10h 

with a syringe pump was also evaluated.  Unfortunately, this method provided a poor yield of 

3.17 (12%, entry 8) and was found to be comparable to yields acquired from mixing the imidate 

and sulfonamide in toluene at reflux (Table 3.3, entry 2).  Using the Lewis acid CuSO4 as a 

catalyst resulted in no observed reaction (entry 9) and using DNBSA resulted in the isolation of 

only 4% of product 3.17 (entry 10).  The possibility of using 2-nitrobenzene sulfonamide as the 

limiting reagent was also evaluated.  Entries 11-14 represent the highest yields obtained using 

the trichloroacetimidate as the limiting reagent.  Unfortunately even using a large excess of 

sulfonamide (entry 14) resulted in an isolation of just 58% of the desired product 3.17.  All 

yields are listed with respect to the limiting reagent.  Overall, the conditions from entry 3 were 

found to be the most efficient, so these conditions were used to alkylate 2-

nitrobenzenesulfonamide. 
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Table 3.4 

 

 The scope of the imidate alkylation was now investigated with respect to the imidate 

alkylation partner.  Secondary benzylic imidates were tolerated well with yields ranging from 

44% to 94% (entries 1-9) (Table 3.5).  Primary benzylic imidates provided lower yields (55%-

68%, entries 10-11) while benzyl imidate failed to produce any of the desired product 3.38 (entry 

12).  The highly reactive diphenylmethyl imidate provided the desired product 3.34 in excellent 
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yield (89%) with no formation of the rearranged trichloroacetamide product observed (entry 8).  

The diphenylmethyl group has been used as a protecting group for sulfonamides, so this 

represents a new method for its' introduction.
56

  Ethers and aryl halides were also tolerated under 

the reaction conditions the substituted sulfonamide 3.32 was synthesized with a yield of 89% 

(entry 6).  Esters were also caused no issues under the reaction conditions, and substituted 

sulfonamide 3.35 was formed cleanly with a yield of 67% (entry 9).  The substituted 

sulfonamides 3.29 and 3.30 were both formed with yields of 79% for both compounds (entries 3-

4).  The sterically hindered substituted sulfonamide 3.31 was formed with good yield of 94% 

(entry 5).  Similarly the o-bromobenzylic imidate provided the desired substitution product 3.32 

with a yield of 88% (entry 6).  The highly reactive furfuryl imidate was found to provide the 

corresponding substituted sulfonamide 3.33 with a more moderate yield of 44%.  This reagent 

may be rearranging to the trichloroacetamide quickly under the reaction conditions, and 

hydrolysis of this imidate has also been noted to be quite facile.  Allyl imidates were tolerated 

under the reaction conditions which was exciting due to the proclivity of allyl imidates towards 

the competing Overman rearrangement.
57, 58

  Allyl imidates provided the corresponding 

substituted sulfonamides 3.39 and 3.40 with yields of 60% and 28% respectively (entries 13-14).  

Unsurprisingly, the more stable secondary allyl imidate gave higher yields in the substitution 

reaction.  Methyl imidate was found to be slightly reactive under the reaction conditions and N-

methylsulfonamide 3.41 was recovered in 5% yield (entry 15).  tert-Butyl imidate was found to 

be totally unreactive under the reaction conditions (entry 16). 
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Table 3.5 

 

 The mechanism for the thermal substitution reaction was investigated next.  As noted in 

table 3.5, trichloroacetimidates that formed more stable carbocations typically provided higher 
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yields.  In table 3.4, there was no obvious difference between highly nucleophilic and weakly 

nucleophilic sulfonamides that could not be explained by solubility problems.  These results led 

us to hypothesize that an SN1 mechanism was operative in this transformation (Scheme 3.2).  To 

provide further evidence for this mechanism chiral (R)-3.9
59

 was treated with 

toluenesulfonamide 3.10 in toluene resulting in an 81% yield of product 3.11 (Scheme 3.1).  

Analysis of the product 3.11 using chiral HPLC showed that the product was racemic.  This 

result provided further evidence that the reaction is proceeding via an SN1 pathway, as a cationic 

intermediate is expected to lead to significant racemization. 

Scheme 3.1 

 

Scheme 3.2 

 

 The sulfonamide alkylation was then applied to the synthesis of the ketoprofen analog 3.8 

which was first synthesized by Sakurai and coworkers (Scheme 3.3).
5
  Sulfonamide 3.8 has 



 
 

 79 

shown a variety of interesting pharmacological properties including LTD4 antagonistic activity, 

TXA2 antagonistic activity, and TXA2 synthase inhibitory activity.
60-62

  The previously described 

synthesis of ketoprofen analog 3.8 required two steps: formation of the diphenylmethylazide 

from the corresponding alcohol and then an additional step to reduce the azide to the 

corresponding amine.  A more rapid route could be realized using the new thermal alkylation 

conditions.  The synthesis was initiated by preparing alcohol 3.48 via the method described by 

Sakurai and coworkers.  Formation of trichloroacetimidate 3.49 proceeded without difficulty and 

the desired product 3.49 was isolated following column chromatography in excellent yield 

(99%).  Thermal alkylation of 4-chlorobenzene sulfonamide with trichloroacetimidate 3.49 

provided substituted sulfonamide 3.50 in high yield (88%).  This completed a formal synthesis of 

ketoprofen analog 3.8 as saponification of 3.50 leads directly to 3.8. The desired target could 

then be accessed through a known saponification reaction with NaOH in one fewer step than the 

published synthesis.  

Scheme 3.3 

 



 
 

 80 

Conclusion 

 The development of thermal conditions for the alkylation of sulfonamides with 

trichloroacetimidates has been completed.  The scope of the reaction has been tested with respect 

to both sulfonamides and trichloroacetimidates.  Monosubstitution was found to occur with 

primary sulfonamides, whereas monosubstituted sulfonamides were alkylated less effectively 

using the described conditions.  Conditions for alkylating the useful reagent 2-nitrobenzene 

sulfonamide were also optimized.  The substitution of imidate (R)-3.9 with toluene sulfonamide 

resulted in racemic product which provided strong evidence that the process is most likely an 

SN1 pathway.  A formal synthesis of the ketoprofen analog 3.8 was then completed using the 

described chemistry in one less step than the previously published synthesis. 

Experimental Section 

Representative Sulfonamide Substitution Procedure A: To a flame dried round bottom flask 

under an atmosphere of argon was added p-toluene sulfonamide 3.10 (0.13 g, 0.77 mmol) and 

toluene (4 mL). Phenethyl imidate 3.9
63

 (51 mg, 0.19 mmol) was added and the reaction mixture 

was heated to reflux. Phenethyl imidate 3.9 (0.05 g, 0.19 mmol) was added to the refluxing 

reaction mixture every 30 minutes until 1.14 mmol (1.5 equiv) of phenethyl imidate 3.9 was 

added. After stirring at reflux overnight, the reaction mixture was allowed to cool to room 

temperature, preadsorbed on silica gel and purified by silica gel chromatography (30% ethyl 

acetate/70% hexanes) to give 0.180 g (86%) of substituted sulfonamide 3.11 as a white solid. 

 

4-Methyl-N-(1-phenylethyl)benzenesulfonamide (3.11)  
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Lit Ref: Giner, X.; Nájera, C. (Triphenyl phosphite)gold(I)-Catalyzed Intermolecular 

Hydroamination of Alkenes and 1,3-Dienes. Org. Lett. 2008, 10, 2919-2922. 

Prepared using procedure A (0.180 g, 86%) using the known imidate
63

 and purified using silica 

gel chromatography (30% ethyl acetate/70% hexanes). 

3.11. White solid (0.18 g, 86%); mp = 74-78 °C; TLC Rf = 0.43 (20% ethyl acetate/80% 

hexanes); 
1
H NMR (300 MHz, CDCl3) δ 7.61 (dt, J = 8.7, 2.1 Hz, 2H), 7.21-7.17 (m, 5H), 7.11-

7.08 (m, 2H), 4.76 (d, J = 6.8 Hz, 1H), 4.47 (p, J = 6.9 Hz, 1H), 2.39 (s, 3H), 1.42 (d, J = 6.9 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3) δ 143.1, 142.0, 137.7, 129.4, 128.5, 127.5, 127.1, 126.1, 53.6, 

23.5, 21.5. Chiral HPLC analysis: Chiralcel OD (heptane/i-PrOH = 90/10, 1.0 mL/min, 254 nm, 

25 °C): t = 10.6, 12.8 min. 

 

4-Methoxy-N-(1-phenylethyl)benzenesulfonamide (3.14)  

Lit. Ref: Wang, L.; Zhou, Q.; Qu, C.; Wang, Q.; Cun, L.; Zhu, J.; Deng, J. Efficient asymmetric 

transfer hydrogenation of N-sulfonylimines on water. Tetrahedron 2013, 69, 6500-6506 

Prepared using procedure A (0.17 g, 75%) using the known imidate
63

 and purified by silica gel 

chromatography (100% DCM). 

3.14. Waxy off-white solid (0.17 g, 75%); mp = 94-96 °C; TLC Rf = 0.25 (100% DCM); 
1
H 

NMR (400 MHz, CDCl3) δ 7.65 (dt, J = 9.2, 2.8 Hz, 2H), 7.21-7.15 (m, 3H), 7.11-7.09 (m, 2H), 

6.82 (dt, J = 9.6 , 2.8 Hz, 2H), 5.35 (d, J = 7.2 Hz, 1H), 4.43 (p, J = 7.2 Hz, 1H), 3.82 (s, 3H), 

1.40 (d, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 162.6, 142.2, 132.2, 129.2, 128.5, 

127.4, 126.2, 114.0. 55.6, 53.7, 23.6.  
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N-(1-Phenylethyl)benzenesulfonamide (3.15)  

Lit Ref: Zotto, C. D.; Michaux, J.; Zarate-Ruiz, A.; Gayon, E.; Virieux, D.; Campagne, J.M.; 

Terrasson, V.; Pieters, G.; Gaucher, A.; Prim, D. FeCl3-catalyzed addition of nitrogen and 1,3-

dicarbonyl nucleophiles to olefins. J. Organomet. Chem. 2011, 696, 296-304. 

Prepared using procedure A (0.14 g, 72%) using the known imidate
63

 and purified using silica 

gel chromatography (30% ethyl acetate/70% hexanes). 

3.15. White solid (0.14 g, 74%); mp = 87-91 °C; TLC Rf = 0.44 (30% ethyl acetate/70% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.74-7.71 (m, 2H), 7.44 (td, J = 6.4, 1.2 Hz, 1H), 7.36-

7.31 (m, 2H), 7.14-7.07 (m, 5H), 5.65 (d, J = 7.2 Hz, 1H), 4.48 (p, J = 6.8 Hz, 1H), 1.40 (d, J = 

7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 142.0, 140.7, 132.3, 128.8, 128.5, 127.4, 127.0, 

126.1, 53.8, 23.6. 

 

4-Chloro-N-(1-phenylethyl)benzenesulfonamide (3.16) 

Lit Ref: Wang, Z.; Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Efficient Intermolecular Iron-Catalyzed 

Amidation of C−H Bonds in the Presence of N-Bromosuccinimide. Org. Lett. 2008, 10, 1863-

1866. 

Prepared using procedure A (0.19 g, 83%) using the known imidate
63

 and purified using silica 

gel chromatography (10% ethyl acetate/90% hexanes). 

3.16. White amorphous solid (0.15 g, 85%); mp = 71-75 °C; TLC Rf = 0.21 (10% ethyl 

acetate/90% hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.8 
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Hz, 3H), 7.19-7.17 (m, 2H), 7.08-7.05 (m, 2H), 5.14 (d, J = 7.2 Hz, 1H), 4.50 (p, J = 6.8 Hz, 

1H), 1.44 (d, J = 6.8 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 141.6, 139.2, 138.7, 129.0, 128.6, 

128.5, 127.6, 126.1, 53.9, 23.6. 

 

2-Nitro-N-(1-phenylethyl)benzenesulfonamide (3.17)  

Lit Ref: Fiori, K. W.; Du Bois, J. Catalytic Intermolecular Amination of C−H Bonds: Method 

Development and Mechanistic Insights. J. Am. Chem. Soc. 2007, 129, 562-568. 

2-Nitrobenzenesulfonamide (0.18 g, 0.87 mmol) and BF3•OEt2 (0.02 g, 0.09 mmol) were 

suspended in DCM (4 mL). The suspension was heated to reflux. A 0.1 M solution of 1-

phenethyl trichloroacetimidate 3.9
63

 (0.30 g, 1.13 mmol) in DCM was added to the suspension 

using a syringe pump over the course of one hour. The reaction was refluxed for 18h. After 

cooling to room temperature, the reaction was poured into saturated aq. NaHCO3 and extracted 

with DCM (3x). The combined organic extracts were dried over Na2SO4, filtered and 

concentrated in vacuo. The residue was purified via silica gel chromatography (100% DCM) 

providing 3.17 (0.18 g, 70%) as a white solid. The sulfonamide 3.17 was also prepared using 

procedure A (0.04 g, 13%). 

3.17. White solid (0.18 g, 70%); mp = 89-91 °C; TLC Rf = 0.58 (100% DCM); 
1
H NMR (400 

MHz, CDCl3) δ 7.71 (dd, J = 8.0, 1.2 Hz, 1H), 7.67 (dd, J = 8.0, 1.6 Hz, 1H), 7.54 (td, J = 7.6, 

1.2 Hz, 1H), 7.40 (td, J = 8.0, 1.6 Hz, 1H), 7.12-7.06 (m, 5H), 5.77 (d, J = 8.4 Hz, 1H), 4.69 (p, J 

= 6.8 Hz, 1H), 1.52 (d, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 147.3, 141.2, 134.5, 

132.9, 132.5, 130.8, 128.5, 127.7, 126.1, 124.9, 55.0, 23.7. 
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N-(1-Phenylethyl)methanesulfonamide (3.18) 

Lit Ref: Fiori, K. W.; Du Bois, J., Catalytic Intermolecular Amination of C−H Bonds: Method 

Development and Mechanistic Insights. J. Am. Chem. Soc. 2007, 129, 562-568. 

Prepared using procedure A (0.12 g, 79%) using the known imidate
63

 and purified using silica 

gel chromatography (30% ethyl acetate/70% hexanes). 

3.18. Yellow oil (0.12 g, 79%); TLC Rf = 0.35 (30% ethyl acetate/70% hexanes); 
1
H NMR (400 

MHz, CDCl3) δ 7.39-7.26 (m, 5H), 5.16 (d, J = 7.2 Hz, 1H); 4.64 (p, J = 7.2 Hz, 1H), 2.61 (s, 

3H), 1.53 (d, J = 6.8 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 142.4, 129.0, 128.0, 126.2, 53.8, 

41.8, 24.0. 

 

N-(1-Phenylethyl)ethanesulfonamide (3.19) 

Lit Ref: Nishioka, Y.; Uchida, T.; Katsuki, T., Enantio- and Regioselective Intermolecular 

Benzylic and Allylic C-H Bond Amination. Angew. Chem. Int. Ed. 2013, 52, 1739-1742. 

Prepared using procedure A (0.15 g, 76%) using the known imidate
63

 and purified using silica 

gel chromatography (100% DCM flushed with 30% ethyl acetate/70% hexanes). 

3.19. White solid (0.15 g, 76%); mp = 89-91 °C; TLC Rf = 0.34 (30% ethyl acetate/70% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.36-7.26 (m, 5H), 5.17 (br d, J = 7.1 Hz, 1H), 4.62 (p, 

J = 7.1 Hz, 1H), 2.76 (h, J = 7.4 Hz, 1H), 2.61 (h, J = 7.4 Hz, 1H), 1.54 (d, J = 6.9 Hz, 3H), 1.17 

(t, J = 7.4 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 142.8, 128.8, 127.9, 126.2, 53.7, 47.9, 24.2, 

8.0. 
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N-(1-Phenylethyl)-2-(trimethylsilyl)ethanesulfonamide (3.20) 

Lit Ref: Nishioka, Y.; Uchida, T.; Katsuki, T., Enantio- and Regioselective Intermolecular 

Benzylic and Allylic C-H Bond Amination. Angew. Chem. Int. Ed. 2013, 52, 1739-1742. 

Prepared using procedure A (0.13 g, 70%) using the known imidate
63

 and purified by silica gel 

chromatography (30% ethyl acetate/80% hexanes). 

3.20. White crystals (0.13 g, 70%); mp = 61-64 °C; TLC Rf = 0.58 (20% ethyl acetate/80% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.38-7.27 (m, 5H), 4.73 (d, J = 6.9 Hz, 1H), 4.62 (p, J = 

6.9 Hz, 1H), 2.61 (td, J = 14.0, 3.9 Hz, 1H), 2.47 (td, J = 13.9, 4.4 Hz, 1H), 1.54 (d, J = 6.9 Hz, 

3H), 0.86 (td, J = 13.8, 4.0, 1H), 0.74 (td, J = 14.0, 4.3 Hz, 1H), -0.13 (s, 9H); 
13

C NMR (100 

MHz, CDCl3) δ 143.0, 129.1, 128.2, 126.4, 53.9, 50.0, 24.3, 10.5, -2.0. 

 

3-Oxo-N-(1-phenylethyl)benzo[d]isothiazole-2(3H)-sulfonamide 1,1-dioxide (3.21)  

Lit Ref: Robinson, R. I.; Fryatt, R.; Wilson, C.; Woodward, S. Sulfonamide Ligands Attained 

Through Opening of Saccharin Derivatives. Eur. J. Org. Chem. 2006, 4483-4489. 

Prepared using procedure A using the known imidate
63

 and purified by silica gel chromatography 

(20% ethyl acetate/80% hexanes). The crude product was then taken up in ethyl acetate (30 mL) 

and washed with 2M NaOH (5 x 20 mL). The organic layers were combined, dried over sodium 

sulfate and concentrated in vacuo to provide 3.21 as a clear colorless oil (0.22 g, 98%). 

3.21. Clear colorless oil (0.22 g, 98%); TLC Rf = 0.37 (20% ethyl acetate. 80% hexanes); 
1
H 

NMR (400 MHz, CDCl3) δ 7.98-7.95 (m, 1H), 7.90-7.88 (m, 1H), 7.82 (td, J = 7.4, 1.2 Hz, 1H), 
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7.77 (td, J = 7.2, 1.4 Hz, 1H), 7.60-7.57 (m, 2H), 7.36 (tt, J = 6.8, 1.2 Hz, 2H), 7.29 (tt, J = 6.2, 

1.3 Hz, 1H), 5.45 (q, J = 7.3 Hz, 1H), 2.03 (d, J = 7.3 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 

158.5, 138.6, 137.8, 134.6, 134.2, 128.5, 128.2, 127.7, 127.3, 125.0, 120.7, 53.0, 17.7. 

 

4-Methyl-N-(1-phenylethyl)benzenesulfonamide (3.22)  

Yang, C.-H.; Fan, W.-W.; Liu, G.-Q.; Duan, L.; Li, L.; Li, Y.-M., On the understanding of 

BF3•Et2O-promoted intra- and intermolecular amination and oxygenation of unfunctionalized 

olefins. RSC Adv. 2015, 5, 61081-61093. 

Prepared using procedure A (0.06 g, 27%) using the known imidate
63

 and purified using silica 

gel chromatography (100% DCM). 

3.22. White powder (0.06 g, 27%); mp = 60-62 °C; TLC Rf = 0.52 (100% DCM); 
1
H NMR (400 

MHz, CDCl3) δ 7.74 (dt, J = 8.4, 1.8 Hz, 2H), 7.32-7.24 (m, 7H), 5.29 (q, J = 7.0 Hz, 1H), 2.57 

(s, 3H), 2.43 (s, 3H), 1.29 (d, J = 7.0 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 143.1, 139.9, 

137.3, 129.7, 128.4, 127.5, 127.3, 127.1, 54.8, 28.4, 21.5, 15.2. 

 

1-(p-Tolyl)ethyl 2,2,2-trichloroacetimidate (S3.28) 

To a round bottom flask under argon was added 1-(p-tolyl)ethanol (0.51 g, 3.74 mmol), 

trichloroacetonitrile (0.48 mL, 4.86 mmol) and DCM (7 mL). DBU (0.06 mL, 0.37 mmol) was 

added and the reaction mixture was stirred at room temperature for 18 h. Triethylamine (1 mL) 

was added to the reaction mixture and the solvent was removed in vacuo. Purification of the 
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residue by silica gel chromatography (1% triethylamine/9% ethyl acetate/90% hexanes) provided 

imidate S3.28 as white crystals (0.81 g, 77%). 

S3.28. White crystals (0.81 g, 77%); mp = 41-42 °C; TLC Rf = 0.50 (10% ethyl acetate/90% 

hexanes); IR (KBr) 3344, 2982, 2931, 2868, 1663, 1285 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 

8.27 (br s, 1H), 7.31 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 5.94 (q, J = 6.6 Hz, 1H), 2.34 

(s, 3H), 1.63 (d, J = 6.6 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 161.7, 138.4, 137.6, 129.2, 

125.8, 91.8, 77.2, 22.2, 21.2. Anal. Calcd for C11H12Cl3NO: C, 47.09; H, 4.31; N,4.99. Found: 

C,46.75; H, 4.05; N, 4.80. 

 

4-Methyl-N-(1-(p-tolyl)ethyl)benzenesulfonamide (3.28)  

Lit Ref: Yadav, J. S.; Subba Reddy, B. V.; Jain, R.; Baishya, G., N-Chlorosuccinimide as a 

versatile reagent for the sulfenylation of ketones: a facile synthesis of α-ketothioethers. 

Tetrahedron Lett. 2008, 49, 3015-3018. 

Prepared using procedure A (0.19 g, 89%) using imidate S3.28 and purified using silica gel 

chromatography (30% ethyl acetate/70% hexanes). 

3.28. White powder (0.19 g, 89%); mp = 118-119 °C; TLC Rf = 0.65 (30% ethyl acetate/70% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.62 (dt, J = 8.3, 1.0 Hz, 2H), 7.17 (dd, J = 8.5, 0.6 Hz, 

2H), 6.98 (app s, 4H), 5.04 (d, J = 7.0 Hz, 1H), 4.40 (p, J = 6.9 Hz, 1H), 2.38 (s, 3H), 2.27 (s, 

3H) 1.39 (d, J = 6.8 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 143.0, 139.1, 137.8, 137.1, 129.4, 

129.2, 127.1, 126.1, 53.4, 23.5, 21.5, 21.0. 
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1,2,3,4-Tetrahydronaphthalen-1-yl 2,2,2-trichloroacetimidate (S3.29) 

To a round bottom flask under argon was added 1,2,3,4-tetrahydronaphthalen-1-ol (1.00 g, 6.75 

mmol), DBU (0.10 mL, 0.67 mmol) and DCM (23 mL). The reaction mixture was stirred at 

room temperature for 15 minutes and then cooled to 0°C in an ice/water bath. 

Trichloroacetonitrile (0.88 mL, 8.77 mmol) was added and the reaction mixture was warmed to 

room temperature and stirred overnight. The solvent was then removed in vacuo. Triethylamine 

(1 mL) was added and the residue was purified by silica gel chromatography (2% 

triethylamine/10% ethyl acetate/88% hexanes) to provide S3.29 as a clear colorless oil (1.68 g, 

94%). 

S3.29. Clear colorless oil (1.68 g, 94%); TLC Rf = dec. (10% ethyl acetate/90% hexanes); IR 

(thin film) 3341, 3064, 3024, 2940, 2869, 1657 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.39 (br s, 

1H), 7.39-7.37 (m, 1H), 7.27-7.14 (m, 3H), 6.10 (t, J = 4.8 Hz, 1H), 2.93-2.74 (m, 2H), 2.22-1.96 

(m, 3H), 1.89-1.81 (m, 1H); 
13

C NMR (100 MHz, CDCl3) δ 162.5, 138.1, 134.2, 129.6, 129.1, 

128.3, 126.1, 92.1, 75.5, 29.1, 27.9, 19.1. Anal. Calcd for C12H12Cl3NO: C, 49.26; H, 3.82; 

N,4.75. Found: C,48.92; H, 4.44; N, 4.92. 

 

4-Methyl-N-(1,2,3,4-tetrahydronaphthalen-1-yl)benzenesulfonamide (3.29)  

Fan, X.; Fu, L.-A.; Li, N.; Lv, H.; Cui, X.-M.; Qi, Y., Iron-catalyzed N-alkylation using [small 

pi]-activated ethers as electrophiles. Org. Biomol. Chem. 2013, 11, 2147-2153. 
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Prepared using procedure A (0.18 g, 79%) using imidate S3.29 and purified using silica gel 

chromatography (30% ethyl acetate/70% hexanes). 

3.29. Beige solid (0.18 g, 79%); mp = 115-118 °C; TLC Rf = 0.62 (30% ethyl acetate/ 70% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.75 (td, J = 8.4, 1.9 Hz, 2H), 7.26 (d, J = 7.9 Hz, 2H), 

7.05 (td, J = 7.3, 1.2 Hz, 1H), 7.00-6.94 (m, 2H), 6.87 (d, J = 7.6 Hz, 1H), 4.67 (br d, J = 7.8 Hz, 

1H), 4.37 (p, J = 5.2 Hz, 1H), 2.71-2.54 (m, 2H), 2.38 (s, 3H), 1.79-1.71 (m, 3H), 1.66-1.62 (m, 

1H);
 13

C NMR (100 MHz, CDCl3) δ 143.4, 138.2, 137.6, 135.6, 129.8, 129.2, 128.8, 127.6, 

127.2, 126.3, 51.9, 30.8, 28.9, 21.6, 19.2. 

 

1-(Naphthalen-1-yl)ethyl 2,2,2-trichloroacetimidate (S3.30) 

To a round bottom flask under argon was added 1-(naphthalen-1-yl)ethanol (0.85 g, 4.92 mmol), 

trichloroacetonitrile (0.59 mL, 5.90 mmol) and DCM (12 mL). DBU (0.08 mL, 0.49 mmol) was 

added to the reaction mixture and the reaction mixture was stirred at room temperature for 18h. 

Triethylamine (1 mL) was added to the reaction mixture and the reaction mixture was purified by 

silica gel chromatography (2% triethylamine/8% ethyl acetate/90% hexanes) to provide S3.30 as 

a clear colorless oil (1.32 g, 85%). 

S3.30. Clear colorless oil (1.32 g, 85%); TLC Rf = 0.80 (10% ethyl acetate/90% hexanes); IR 

(DCM) 3339, 3052, 2983, 2933, 2870, 1661, 1598 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.36 (br 

s, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.89-7.87 (m, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 7.1 Hz, 

1H), 7.56-7.47 (m, 3H), 6.74 (q, J = 6.6 Hz, 1H), 1.81 (d, J = 6.6 Hz, 3H); 
13

C NMR (100 MHz, 

CDCl3) δ 161.7, 137.1, 133.8, 130.2, 128.9, 128.5, 126.3, 125.7, 125.4, 123.2, 123.0, 91.8, 74.6, 
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21.34. Anal. Calcd for C14H12Cl3NO: C, 53.11; H, 3.82; N,4.42. Found: C,53.47; H, 3.62; N, 

4.75. 

 

4-Methyl-N-(1-(naphthalen-1-yl)ethyl)benzenesulfonamide (3.30)  

Lit Ref: Wang, L.; Zhou, Q.; Qu, C.; Wang, Q.; Cun, L.; Zhu, J.; Deng, J., Efficient asymmetric 

transfer hydrogenation of N-sulfonylimines on water. Tetrahedron 2013, 69, 6500-6506. 

Prepared using procedure A (0.20 g, 79%) using imidate 3.30 and purified using silica gel 

chromatography (30% ethyl acetate/70% hexanes). 

3.30 Orange oil (0.20 g, 79%); TLC Rf = 0.43 (30% ethyl acetate.70% hexanes); 
1
H NMR (400 

MHz, CDCl3) δ 7.89-7.87 (m, 1H), 7.80-7.78 (m, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.56 (dt, J = 8.3, 

1.7 Hz, 2H), 7.47-7.40 (m, 2H), 7. 36 (dd, J = 7.2, 1.0 Hz, 1H), 7.31-7.27 (m, 1H), 7.04 (d, J = 

7.9 Hz, 2H), 5.28 (p, J = 6.8 Hz, 1H), 5.15 (d, J = 6.8 Hz, 1H), 2.31 (s, 3H), 1.58 (d, J = 6.8 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3) δ 143.1, 137.7, 137.5, 133.8, 130.1, 129.3, 128.8, 128.1, 

127.1, 126.3, 125.6, 125.3, 123.4, 122.6, 49.8, 23.2, 21.4. 

 

1-(o-Tolyl)ethyl 2,2,2-trichloroacetimidate (S3.31) 

To a round bottom flask under argon was added 1-(o-tolyl)ethanol (1.08 g, 8.89 mmol), 

trichloroacetonitrile (1.16 mL, 11.56 mmol) and DCM (17 mL). DBU (0.13 mL, 0.89 mmol) was 

added and the reaction mixture was stirred at room temperature for 18 h. The solvent was then 

removed in vacuo. Triethylamine (1 mL) was added and the residue was purified by silica gel 
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chromatography (1% triethylamine/9% ethyl acetate/90% hexanes) to provide S3.31 as white 

crystals (1.82 g, 73%). 

S3.31. Clear colorless oil (1.82 g, 73%); TLC Rf = 0.68 (10% ethyl acetate/90% hexanes); IR 

(KBr) 3342, 3025, 2980, 2931, 1662, 1288 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.27 (br s, 1H), 

7.51-7.48 (m, 1H), 7.25-7.14 (m, 3H), 6.14 (q, J = 6.5 Hz, 1H), 2.42 (s, 3H), 1.61 (d, J = 6.6 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3) δ 161.5, 139.7, 134.7, 130.3, 127.7, 126.3, 125.1, 91.8, 74.3, 

21.0, 19.0. Anal. Calcd for C11H12Cl3NO: C, 47.09; H, 4.31; N,4.99. Found: C, 46.88; H, 4.06; 

N, 4.81. 

 

4-Methyl-N-(1-(o-tolyl)ethyl)benzenesulfonamide (3.31)  

Lit Ref: Nishimura, T.; Yasuhara, Y.; Hayashi, T., Asymmetric Addition of Dimethylzinc to N-

Tosylarylimines Catalyzed by a Rhodium−Diene Complex toward the Synthesis of Chiral 1-

Arylethylamines. Org. Lett. 2006, 8, 979-981. 

Prepared using procedure A (0.21 g, 94%) using imidate S3.31 and purified using silica gel 

chromatography (30% ethyl acetate/70% hexanes). 

3.31 Off-white solid (0.31 g, 94%); mp = 87-89 °C; TLC Rf = 0.56 (30% ethyl acetate/70% 

hexanes);
 1

H NMR (400 MHz, CDCl3) δ 7.50 (dt, J = 8.3, 1.7 Hz, 2H), 7.06-7.01 (m, 3H), 6.95-

6.87 (m, 3H), 5.60 (d, J = 7.2 Hz, 1H), 4.62 (p, J = 6.9 Hz, 1H), 2.24 (s, 3H), 2.10 (s, 3H), 1.23 

(d, J = 6.8 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 143.0, 140.5, 137.7, 134.3, 130.3, 129.4, 

127.1, 127.0, 126.4, 125.5, 49.8, 23.1 21.5, 19.0. 
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1-(6-Bromobenzo[d][1,3]dioxol-5-yl)ethyl 2,2,2-trichloroacetimidate (S3.32) 

To a round bottom flask under argon was added 1-(6-bromobenzo[d][1,3]dioxol-5-yl)ethanol
64

 

(2.90 g, 11.83 mmol), DBU (0.18 mL, 1.18 mmol) and DCM (39 mL). The reaction mixture was 

stirred at room temperature for 15 min. and then cooled to 0°C in an ice/water bath. 

Trichloroacetonitrile (1.53 mL, 15.38 mmol) was added to the reaction mixture and the reaction 

mixture was warmed to room temperature and stirred overnight. The solvent was then removed 

in vacuo. Triethylamine (1 mL) was added and the residue was purified by silica gel 

chromatography (1% triethylamine/50% ethyl acetate/49% hexanes) to provide S3.32 as a clear 

colorless oil (3.80 g, 83%). 

S3.32. Clear colorless oil (3.80 g, 83%); TLC Rf = 0.69 (30% ethyl acetate/70% hexanes); IR 

(thin film) 3339, 3080, 2983, 2930, 2897, 1667 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.37 (br s, 

1H), 7.03 (s, 1H), 6.98 (s, 1H), 6.17 (q, J = 6.4 Hz, 1H), 5.96 (q, J = 1.2 Hz, 2H), 1.58 (d, J = 6.4 

Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 161.1, 147.81, 147.80, 134.2, 112.6, 112.0, 106.2, 

101.8, 91.5, 76.3, 21.0. Anal. Calcd for C11H9BrCl3NO3: C, 33.92; H, 2.33; N,3.60. Found: C, 

33.88; H, 2.49; N, 3.48. 

 

N-(1-(6-Bromobenzo[d][1,3]dioxol-5-yl)ethyl)-4-methylbenzenesulfonamide (3.32) 

Prepared using procedure A (0.29 g, 88%) using imidate S3.32 and purified by silica gel 

chromatography (30% ethyl acetate.70% hexanes). 
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3.32. Yellow powder (0.29 g, 88%); mp = 106 °C (dec); TLC Rf = 0.53 (30% ethyl acetate/70% 

hexanes); IR (KBr) 3272, 2986, 1714, 1503, 1478, 1326 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 

7.64 (dt, J = 8.5, 1.9 Hz, 2H), 7.18 (dd, J = 8.4, 0.5 Hz, 2H), 6.82 (s, 1H), 6.69 (s, 1H), 5.89 (dd, 

J = 6.9, 1.4 Hz, 2H), 5.46 (d, J = 6.6 Hz, 1H), 4.79 (p, J = 6.8 Hz, 1H), 2.38 (s, 3H), 1.32 (d, J = 

6.8 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 147.6, 147.4, 143.2, 137.0, 134.6, 129.4, 127.2, 

112.37, 112.36, 107.4, 101.8, 52.9, 22.9, 21.5. Anal. Calcd for C16H16BrNO4S: C, 48.25; H, 4.05; 

N, 3.52. Found: C, 48.07; H, 4.06; N, 3.30. 

 

1-(Furan-2-yl)pentyl 2,2,2-trichloroacetimidate (S3.33) 

To a round bottom flask containing 1-(furan-2-yl)pentan-1-ol
65

 (0.52 g, 3.37 mmol) dissolved in 

DCM (33 mL) was added trichloroacetonitrile (0.58 g, 4.04 mmol) and DBU (0.05 g, 0.34 

mmol). The reaction mixture was stirred at room temperature for 1 hour. The solvent was then 

removed in vacuo. Triethylamine (1 mL) was added and the residue was purified by silica gel 

chromatography (1% triethylamine/19% ethyl acetate/80% hexanes) to provide S3.33 as a yellow 

oil (0.32 g, 33%). 

S3.33. Yellow oil (0.32 g, 33%); TLC Rf = 0.62 (20% ethyl acetate/80% hexanes); IR (KBr) 

3346, 2960, 2873, 1656, 1501 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 7.40 (dd, J = 

1.8, 0.8 Hz, 1H), 6.39 (d, J = 3.12 Hz, 1H), 6.34 (dd, J = 3.2, 1.8 Hz, 1H), 5.96 (t, J = 6.6 Hz, 

1H), 2.18-2.08 (m, 1H), 2.07-1.98 (m, 1H), 1.47-1.26 (m, 4H), 0.91 (t, J = 6.9 Hz, 3H); 
13

C 

NMR (100 MHz, CDCl3) δ 162.0, 152.3, 142.4, 110.2, 108.5, 91.7, 73.9, 32.4, 27.4, 22.3, 13.9. 

Anal. Calcd for C11H14Cl3NO2: C, 44.25; H, 4.73; N, 4.69. Found: C, 44.49; H, 4.45; N, 4.79. 
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N-(1-(Furan-2-yl)pentyl)-4-methylbenzenesulfonamide (3.33)  

Lit Ref: Zhou, W.-S.; Lu, Z.-H.; Wang, Z.-M., An efficient preparation of optically active α-

furfuryl amide by kinetic resolution using the modified sharpless asymmetric epoxidation 

reagents. Tetrahedron 1993, 49, 2641-2654. 

Prepared using procedure A (0.09 g, 44%) with imidate S3.33 and purified using silica gel 

chromatography (20% ethyl acetate/80% hexanes). 

3.33. Reddish solid (0.09 g, 44%); mp = 54-56 °C; TLC Rf = 0.38 (20% ethyl acetate.80% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.61 (dt, J = 8.5, 1.9Hz, 2H), 7.18 (dd, J = 8.5, 0.6 Hz, 

2H), 7.12 (dd, J = 1.8, 0.8 Hz, 1H), 6.09 (dd, J = 3.2, 1.8 Hz, 1H), 5.89 (d, J = 3.2 Hz, 1H), 5.1 

(d, J = 8.7 Hz, 1H),4.38 (q, J = 7.3 Hz, 1H), 2.37 (s, 3H). 1.78-1.73 (m, 2H), 1.28-1.20 (m, 3H), 

1.18-1.11 (m, 1H), 0.82 (t, J = 7.0 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 153.2, 142.9, 141.7, 

137.8, 129.3, 127.0, 109.9, 106.7, 51.7, 34.7, 27.7, 22.1, 21.4, 13.8. 

 

N-Benzhydryl-4-methylbenzenesulfonamide (3.35) 

Lit Ref: Ye, Y.H.; Zhang, J.; Wang, G.; Chen, S.-Y.; Yu, X.-Q. Cobalt-catalyzed benzylic C–H 

amination via dehydrogenative-coupling reaction. Tetrahedron 2011, 67, 4649-4654.  

Prepared using procedure A (0.23 g, 89%) using the known imidate
66

 and purified using silica 

gel chromatography (20% ethyl acetate/80% hexanes). 
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3.35. White powder (0.23 g, 89%); mp = 122-124 °C; TLC Rf = 0.42 (20% ethyl acetate/80% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.56 (dt, J = 8.5, 2.0 Hz, 2H), 7.23-7.19 (m, 6H), 7.15-

7.08 (m, 6H), 5.56 (d, J = 6.8 Hz, 1H), 5.01 (d, J = 6.8 Hz, 1H), 2.38 (s, 3H); 
13

C NMR (100 

MHz, CDCl3) δ 143.2, 140.6, 137.4, 129.4, 128.5, 127.5, 127.4, 127.2, 61.4, 21.5. 

 

N-benzhydryl-2-nitroaniline (3.26) 

Lit Ref: Ohshima, T.; Ipposhi, J.; Nakahara, Y.; Shibuya, R.; Mashima, K. Aluminum Triflate as 

a Powerful Catalyst for Direct Amination of Alcohols, Including Electron-Withdrawing Group-

Substituted Benzhydrols. Adv. Synth Cata. 2012, 354, 2447-2452. 

Prepare using procedure A (0.22 g, 80%) using the known imidate
67

 and purified using silica gel 

chromatography (80% dichloromethane/20% hexanes). 

3.26. White solid (0.22 g, 80%); mp = 165-166°C; TLC Rf = 0.48 (80% dichloromethane/20% 

hexanes); 
1
H NMR (400 MHz CDCl3), δ 7.69 (dd, J = 3.8, 1.2 Hz, 1H), 7.67 (dd, J = 3.9, 1.3 Hz, 

1H), 7.52 (td, J = 7.6, 1.4 Hz, 1H), 7.38 (td, J = 7.8, 1.3 Hz, 1H), 7.18-7.16 (m, 10H), 6.18 (d, J 

= 9.0 Hz, 1H), 5.81 (d, J = 9.0 Hz, 1H); 
13

C NMR (100 MHz, CDCl3), δ 147.2, 139.4, 134.4, 

133.0, 132.5, 130.8, 128.6, 127.9, 127.5, 124.9, 62.3. 

 

Methyl 4-(4-(phenyl(2,2,2-trichloro-1-iminoethoxy)methyl)phenyl)butanoate (S3.35)  

To a round bottom flask containing the known alcohol
68

 (0.0 9 g, 0.31 mmol) was added DCM (1 

mL) followed by trichloroacetonitrile (0.06 g, 0.38 mmol) and DBU (0.01 g, 0.03 mmol). The 

reaction mixture was stirred at room temperature for 4 hours. The solvent was then removed in 
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vacuo. Triethylamine (1 mL) was added to the residue and the reaction mixture was purified by 

silica gel chromatography (1% triethylamine/29% ethyl acetate/70% hexanes) to provide S3.35 

as a pale yellow oil (0.130 g, 99%). 

S3.35. Pale yellow oil (0.13 g, 99%); TLC Rf = 0.22 (30% ethyl acetate/70% hexanes); IR (KBr) 

3651, 3279, 1731, 1495 cm
-1

; 
1
H NMR (400 MHz CDCl3) δ 8.40 (br s, 1H), 7.43-7.41 (m, 2H), 

7.35-7.33 (m, 4H), 7.29-7.28 (m, 1H), 7.15 (d, J = 8.2 Hz, 2H), 6.92 (s, 1H), 3.63 (s, 3H), 2.62 (t, 

J = 7.4 Hz, 2H), 2.32 (t, J = 7.4 Hz, 2H), 1.93 (p, J = 7.6 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) 

δ 173.8, 161.4, 141.2, 139.9, 137.5, 128.6, 128.5, 128.0, 127.1, 126.9, 91.7, 81.3, 51.5, 34.8, 34.4 

26.3. Anal. Calcd for C20H20Cl3NO3: C, 56.03; H, 4.70; N, 3.27. Found: C, 56.28; H, 4.90; N, 

3.28. 

 

Methyl 4-(4-((4-methylphenylsulfonamido)(phenyl)methyl)phenyl)butanoate (3.50). 

Prepared following procedure A (0.23 g, 67%) with imidate S3.35 and purified using silica gel 

chromatography (30% ethyl acetate/70% hexanes) followed by a second purification using silica 

gel chromatography (100% DCM). 

3.50. Clear colorless oil (0.23 g, 67%); TLC Rf = 0.45 (30% ethyl acetate/70% hexanes); IR 

(DCM) 3328, 3227, 3062, 2950, 2864, 1731, 1599 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 7.55 (dt, 

J = 6.6, 1.6 Hz, 2H), 7.20-7.17 (m, 3H), 7.12-7.09 (m, 4H), 7.00 (d, J = 1.6 Hz, 4H), 5.53 (d, J = 

6.9 Hz, 1H), 5.32 (d, J = 7.2 Hz, 1H), 3.65 (s, 3H), 2.56 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H), 2.29 (t, 

J = 7.4 Hz, 2H), 1.88 (p, J = 7.6 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) δ 174.0, 143.0, 140.8, 

140.7, 138.3, 137.4, 129.3, 128.6, 128.5, 127.44, 127.40, 127.3, 127.2, 61.1, 51.7, 34.6, 33.3, 
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26.4, 21.4. Anal. Calcd for C25H27NO4S: C, 68.62; H, 6.22; N, 3.20. Found: C, 68.52; H, 6.44; N, 

3.59. 

 

N-(4-Methoxybenzyl)-4-methylbenzenesulfonamide (3.36)  

Lit Ref: Molander, G. A.; Fleury-Brégeot, N.; Hiebel, M.-A., Synthesis and Cross-Coupling of 

Sulfonamidomethyltrifluoroborates. Org. Lett. 2011, 13, 1694-1697. 

Prepared using procedure A (0.17 g, 75%) using the commercially available imidate and purified 

using silica gel chromatography (100% DCM) followed by recrystallization from methanol. 

3.36. White solid (0.17 g, 68%); mp = 122-123 °C; TLC Rf = 0.61 (40% acetone/60% hexanes); 

1
H NMR (300 MHz, CDCl3) δ 7.75 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.10 (d J = 8.7 

Hz, 2H), 6.79 (d, J = 8.7 Hz, 2H), 4.59 (t, J = 5.8 Hz, 1H), 4.05 (d, J = 6.0 Hz, 2H), 3.78 (s, 3H), 

2.44 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ 159.3, 143.5, 136.9, 129.7, 128.3, 129.3, 127.2, 

114.1, 55.3, 46.8, 21.5. 

 

4-Methyl-N-(2-methylbenzyl)benzenesulfonamide (3.37)  

Lit Ref: Müther, K.; Mohr, J.; Oestreich, M., Silylium Ion Promoted Reduction of Imines with 

Hydrosilanes. Organometallics 2013, 32, 6643-6646. 

Prepared using procedure A (0.12 g, 55%) using the known imidate
69

 and purified using silica 

gel chromatography (30% ethyl acetate/70% hexanes). 
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3.37. White solid (0.12 g, 55%); mp = 107-109 °C; TLC Rf = 0.31 (30% ethyl acetate/70% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.76 (dt, J = 8.5, 2.0 Hz, 2H), 7.31 (dd, J = 8.5, 0.6 Hz, 

2H), 7.20-7.10 (m, 4H), 4.45 (t, J = 5.8 Hz, 1H), 4.09 (d, J = 6.0 Hz, 2H), 2.44 (s, 3H), 2.24 (s, 

3H); 
13

C NMR (100 MHz, CDCl3) δ 143.6, 136.7, 136.6, 133.9, 130.6, 129.7, 128.9, 128.3, 

127.2, 126.2, 45.4, 21.6, 18.8. 

 

N-(Cyclohex-2-en-1-yl)-4-methylbenzenesulfonamide (3.39)  

Lit Ref: Xu, X.; Wu, H.; Li, Z.; Sun, X.; Wang, Z., Iron oxide-silver magnetic nanoparticles as 

simple heterogeneous catalysts for the direct inter/intramolecular nucleophilic substitution of π-

activated alcohols with electron-deficient amines. Tetrahedron 2015, 71, 5254-5259. 

Prepared using procedure A (0.12 g, 60%) using the known imidate
70

 and purified using silica 

gel chromatography (30% ethyl acetate/70% hexanes). 

3.39. Colorless crystals (0.12 g, 60%); mp = 99-100 °C; TLC Rf = 0.45 (30% ethyl acetate/70% 

hexanes); 
1
H NMR (400 MHz, CDCl3) δ 7.77 (dt, J = 8.5, 2.0 Hz, 2H), 7.30 (dd, J = 8.5, 0.6 Hz, 

2H). 5.79-5.74 (m, 1H), 5.37-5.32 (m, 1H), 4.44 (d, J = 8.6 Hz, 1H), 3.84-3.79 (m, 1H), 2.43 (s, 

3H), 2.00-1.87 (m, 2H), 1.79-1.73 (m, 1H), 1.64-1.50 (m, 3H); 
13

C NMR (100 MHz, CDCl3) δ 

143.2, 138.4, 131.5, 129.7, 127.1, 127.0, 49.0, 30.2, 24.5, 21.5, 19.3. 

 

N-Allyl-4-methylbenzenesulfonamide (3.40)  
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Lit Ref: Kobayashi, Y.; Inukai, S.; Kondo, N.; Watanabe, T.; Sugiyama, Y.; Hamamoto, H.; 

Shioiri, T.; Matsugi, M., A medium fluorous Grubbs–Hoveyda 2nd generation catalyst for phase 

transfer catalysis of ring closing metathesis reactions. Tetrahedron Lett. 2015, 56, 1363-1366. 

Prepared using procedure A (0.05 g, 28%) using the commercially available imidate and purified 

using silica gel chromatography (30% ethyl acetate/ 70% hexanes). 

3.40. Off-white solid (0.05 g, 28%); mp = 53-56 °C; TLC Rf = 0.42 (30% ethyl acetate/70% 

hexanes); 
1
H NMR (400 MHz CDCl3) δ 7.76 (dt, J = 8.5, 2.0 Hz, 2H), 7.31 (dd, J = 8.5, 0.6 Hz, 

2H), 5.77-5.68 (m, 1H), 5.19-5.08 (m, 2H), 4.51 (t, J = 4.50 Hz, 1H), 3.59 (tt, J = 6.1, 1.5 Hz, 

2H), 2.43 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 143.5, 137.0, 133.0, 129.7, 127.2, 117.7, 45.8, 

21.5. 

 

N,4-Dimethylbenzenesulfonamide (3.41)  

Lit Ref: Laha, J. K.; Sharma, S.; Dayal, N., Palladium-Catalyzed Regio- and Chemoselective 

Reactions of 2-Bromobenzyl Bromides: Expanding the Scope for the Synthesis of Biaryls Fused 

to a Seven-Membered Sultam. Eur. J. Org. Chem. 2015, 7885-7891. 

Prepared using procedure A (0.01 g, 5%) using the commercially available imidate and purified 

using silica gel chromatography (30% ethyl acetate/70% hexanes). 

3.41. Off-white solid (0.01 g, 5%); mp = 69-71 °C; TLC Rf = 0.33 (30% ethyl acetate/70% 

hexanes); 
1
H NMR (400 MHz CDCl3) δ 7.68 (dt, J = 8.3Hz, 2H), 7.25 (dd, J = 8.4, 0.5 Hz, 2H), 

4.22 (d, J = 4.7 Hz, 1H), 2.58 (d, J = 5.4 Hz, 3H), 2.37 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 

143.5, 135.8, 129.7, 127.3, 29.4, 21.5. 
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Methyl-4-(4-((4-chlorophenylsulfonamido)(phenyl)methyl)phenyl)butanoate (3.50) 

Lit Ref: Sakurai, S.; Ogawa, N.; Suzuki, T.; Kato, K.-i.; Ohashi, T.; Yasuda, S.; Kato, H.; Ito, Y., 

Synthesis and Thromboxane A2 Antagonistic Activity of [[1-Aryl(or Benzyl)-1-

(benzenesulfonamide)methyl]phenyl]alkanoic Acid Derivatives. Chem. Pharm. Bull. 1996, 44, 

765-777.  

Prepared using procedure A (0.08 g, 88%) and purified using silica gel chromatography (30% 

ethyl acetate/70% hexanes). 

3.50. Clear colorless oil (0.08 g, 88%); TLC Rf = 0.40 (30% ethyl acetate/70% hexanes); IR 

(KBr) 3153, 2986, 2820, 1730, 1586 cm
-1

; 
1
H NMR (400 MHz CDCl3) δ 7.53 (dt, J = 9.2, 2.5 

Hz, 2H), 7.25-7.18 (m, 5H), 7.12-7.09 (m, 2H), 7.00 (br s, 4H), 5.58 (d, J = 7.6 Hz, 1H), 5.53 (d, 

J = 7.6 Hz, 1H), 3.65 (s, 3H), 2.57 (t, J = 7.4 Hz, 2H), 2.30 (t, J = 7.4 Hz, 2H), 1.89 (p, J = 7.6 

Hz, 2H); 
13

C NMR (100 MHz, CDCl3) δ 173.9, 141.1, 140.2, 139.0, 138.7, 137.7, 128.9, 128.7, 

128.59, 128.57, 127.7, 127.4, 127.3, 61.3, 51.6, 34.6, 33.4, 26.4. Anal. Calcd for C24H24ClNO4S: 

C, 62.94; H, 5.28; N, 3.06. Found: C, 63.17; H, 5.35; N, 3.22. 
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Chapter 4 

Studies Towards the Synthesis of Kapakahine C 

Abstract 

 Kapakahine C is a complex heterocyclic natural product isolated from the marine sponge 

cribrochalina olemda which contains a unique fused pyrroloindoline-pyridoindoline core 

decorated with a cyclic pentapeptide.    The molecule may be divided retrosynthetically into 

three fragments: the pyrroloindoline, the pyridoindoline and the pentapeptide sections. A route to 

kapakahine C utilizing a trichloroacetimidate electrophile and a pyrroloindoline nucleophile was 

investigated.  The synthesis of the pyrroloindoline and the pentapeptide sections were completed.  

Optimization of the key oxidative cyclization step in the formation of the pyridoindoline section 

of kapakahine C was undertaken and research to improve this reaction is ongoing. 

Introduction 

 Recently, the development of mild and effective methods for the derivatization of 

nitrogen containing heterocycles has attracted significant synthetic interest.  One attractive target 

for such derivatization is the pyrroloindoline heterocycle, which is typically composed of a 

hydrogenated pyrrole ring fused to indoline.  The pyrroloindoline functional group is prevalent in 

many bioactive molecules such as (-)-physostigmine (4.1),
1
 flustramine B (4.2),

2
 (+)-

chimonanthine (4.3),
3
 psychotrimine (4.4),

4
 chaetocochin A (4.5),

5
  and kapakahine C (4.6).

6
  

Some of these molecules have enjoyed success as pharmaceuticals.  For example, physostigmine 

4.1 has been used to treat conditions such as Alzheimer's disease and glaucoma.
7
  The alkaloid 

hodgkinsine B (4.8) has been shown to possess analgesic properties.
8
  Other pyrroloindolines 

have attracted academic interest due to their varied biological activity and complex architectures.  
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For example, psychotrimine was found to inhibit the growth of various bacteria including 

staphylococcus aureus 8325 and staphylococcus epidermidis RP62A at concentrations of 

64μg/mL and 32μg/mL respectively.
9
  Amauromine (4.7) was revealed to have vasodilating 

activity as well as potent activity in studies that measure the reversal of multiple drug 

resistance
10

.
11,12

  The alkaloid neoxaline (4.9) has shown interesting activity as a tumor 

suppresor.
13

 Given the varied and complex bioactivity associated with this structural class of 

alkaloids, selective and mild methods for the derivatization of these compounds are desirable 

with a number of approaches to this system under development. 
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 Figure 4.1: Natural Products and Bioactive Compounds Containing a 

Pyrroloindoline 

 Unsurprisingly, many strategies for the formation and alkylation of the pyrroloindoline 

core structure have already been investigated.  Common starting materials for synthesizing 

pyrroloindolines include functionalized indoles and tryptamines.
14

 Of particular interest to our 

group was functionalization of the pyrroloindoline core at the C3a position.  This position is a 

point of diversity within pyrroloindoline alkaloids, with systems containing oxygen, nitrogen, sp
2
 

and sp
3
 hybridized carbon atoms at the C3a position being well-known. Methods for the rapid 

incorporation of carbon and heteroatom nucleophiles at this position would facilitate 
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derivatization of a common pyrroloindoline intermediate, which allows for the synthesis of most 

pyrroloindoline based natural products. In addition these methods may provide a means to 

rapidly evaluate the biological activity of a library of pyrroloindolines, that can be rapidly 

prepared.  Most common methods for the incorporation of diverse functionality at the C3a 

position of a pyrroloindoline scaffold involve either alkylation of a C3a-bromide (like compound 

4.10) using a stoichiometric silver salt as a promoter or the stoichiometric use of a strong base 

such as KOtBu (Scheme 4.1).  For instance, Zinzallay and coworkers synthesized C3a 

substituted pyrroloindolines via nucleophilic substitution at the C3a position using nitrogen, 

oxygen, sulfur and carbon based nucleophiles although this reaction required the use of 

stoichiometric silver nitrate and phase transfer agent.
15

  Numerous other alkylation examples that 

employ stoichiometric silver salts or strong base are known.
16,17,18,19,20

  The use of a strong base 

is limited to systems which have an ester at the C2-poisition, as these reactions have been shown 

to proceed through an azetidine intermediate.
16, 21

  These preparations represent the most 

commonly used procedures for the rapid functionalization of pyrroloindolines at the C3a 

position. 

Scheme 4.1 

 

 Although methods for the formation and derivatization of pyrroloindolines and indoles 

have been researched heavily in recent years,
14, 22

 common approaches to pyrroloindoline 

synthesis suffer from some drawbacks.  The use of silver salts can cause alkylations to become 

expensive, as these reagents must be used in stoichiometric amounts and the price of silver has 
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been increasing.  Some pyrroloindoline compounds may be unstable in the presence of bases 

such as KOtBu.  Given these drawbacks a mild method for the functionalization of 

pyrroloindolines at the C3a position is desirable, preferable one that is dependent on catalytic 

reagents.  An alkylation of pyrroloindolines with a trichloroacetimidate at the C3a position may 

alleviate some of the issues of pyrroloindoline derivatization at the C3a position and meet the 

criteria of a system that may be alkylated under catalytic conditions. 

 Alkylation with different types of nucleophiles (including carboxylic acids, thiols, 

alcohols, sulfonamides and anilines) using trichloroacetimidates has been investigated by our 

laboratory and by other researchers.
23-26

  In many cases the trichloroacetimidate is reactive 

enough to alkylate these functional groups without the need for any additional catalyst or 

promoter.
27-30

  The use of trichloroacetimidates to alkylate pyrroloindolines offers several 

advantages over traditional methods.  First, trichloroacetimidate alkylations typically proceed 

with use of catalytic amounts of acid
31,32,33

 rather than the expensive stoichiometric silver salts 

used in traditional methods.  Secondly trichloroacetimidates are easily prepared from alcohols 

and inexpensive trichloroacetonitrile (~$240/ kg) and may be generated in situ.
34,35,36

  

Furthermore trichloroacetimidates are quite stable and resistant to decomposition when stored 

properly.  For example, highly reactive 3,4-dimethoxybenzyl 2,2,2-trichloroacetimidate 4.12 was 

found to be stable for more than 3 years while stored in a sealed vial at -20° C (Figure 4.2).  

Displacement of trichloroacetimidates can proceed under mild conditions as substitutions are 

exothermic and driven not only by the formation of the new C-X bond but also by the 

rearrangement of the imidate to the trichloroacetamide.  For this reason, even electron-deficient 

trichloroacetimidates may be used as alkylating agents.
37

  Additionally, the trichloroacetamide 

byproduct generated from these reactions is a mild, rather than strong, acid that can be removed 
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through either column chromatography or by washing with aqueous 2M NaOH solution.
27

  For 

these reasons we hypothesized that alkylations of pyrroloindolines may be improved through the 

use of trichloroacetimidates. 

 

Figure 4.2: Structure of 3,4-Dimethoxybenzyl 2,2,2-trichloroacetimidate 4.12 

 In order to test our hypothesis a pyrroloindoline system with a trichloroacetimidate at the 

C3a position was synthesized.
38

  Known pyrroloindoline 4.13, which was synthesized from 

tryptamine,
39

 was treated with trichloroacetonitrile and DBU to form the corresponding imidate 

4.14.  This imidate was found to be a competent electrophile with a number of carbon, nitrogen 

and oxygen nucleophiles.
38

 While these substitution reactions did not occur under thermal 

conditions, catalytic amounts of BF3•OEt2 was all that was necessary to promote these reactions. 

Many of these reactions were quite rapid as well (depending on the nucleophile), with most 

being complete in just 10 min at room temperature. 

Scheme 4.2 

 

 Given the prevalence of bioactive pyrroloindoline containing systems in pharmaceuticals 

and our hypothesis that we could improve the alkylation of pyrroloindolines, we sought to 
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demonstrate the utility of this new alkylation method in the total synthesis of  a complex natural 

product.  The synthesis of kapakahine C, a cyclic peptide that was isolated from the marine 

sponge cribrochalina olemda along with several other members of the kapakahine family,
6,40,41

 

became a focus of the next step in this project. Kapakahine C makes an attractive synthetic target 

for several reasons.  First, kapakahine C has shown cytotoxic activity against P388 murine 

leukemia cells at an IC50 value of 5.0 µg/mL.  Second, it was isolated from a marine sponge 

which makes the isolation of large quantities of kapakahine C from natural sources practically 

difficult.  Third, kapakahine C is the most complex member of the kapakahine family and 

although kapakahines B, E and F have been synthesized, no synthesis of kapakahine C has ever 

been reported.
21,42,43,44

  Additionally the structure of kapakahine C is unique in that it is 

comprised of a polycyclic core whose structure is that of a pyrroloindoline bound by the indole 

nitrogen to a pyridoindoline.  The existence of such a linkage makes kapakahine C an intriguing 

target for elaboration using the newly developed pyrroloindoline alkylation chemistry. 

Retrosynthetic Analysis 

 Retrosynthetic analysis of kapakahine C revealed that the target molecule could be 

divided into three fragments A, B, and C (Scheme 4.3).  Fragment A, a protected polypeptide 

chain may be easily be constructed through peptide coupling reactions of commercially available 

amino acids.  The desired pyrroloindoline, fragment B, was envisioned to come from tryptophan.  

The key step in forming this fragment would be the oxidative cyclization of protected tryptophan 

4.19.  This chemistry is known,
45

 and though the product is obtained as a 1:1 mixture of 

diastereomers, the brevity of the planned scheme is synthetically desirable.  The final piece, 

fragment C, could be prepared from an oxidative cyclization from the protected dipeptide 4.20, 

analogously to the work of Evano which utilized a similar approach in his synthesis of 
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chaetominine.
46

  Compound 4.20 was thought to be available from a precursor derived from the 

inexpensive and readily available amino acids, tryptophan and tyrosine. 

Scheme 4.3 

 

Synthesis of Kapakahine C 

 With good routes in hand to access fragments A and B, work became focused on the 

synthesis of fragment C.  First the known protected tyrosine 4.22
47

 was prepared from 

commercially available L-tyrosine (Scheme 4.4).  Fischer esterification of L-tyrosine in 

methanol with thionyl chloride provided the corresponding methyl ester 4.24.  Subsequent Boc 
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protection of the amine then gave intermediate 4.25 which was benzylated on the phenol to 

provide benzyl ether 4.26.  Deprotection of the Boc group was accomplished using 

trifluoroacetic acid in DCM to provide protected tyrosine 4.22 in 85% yield over 4 steps.  This 

route proved to be an efficient method for preparing protected tyrosine 4.22 as it required only 

two chromatographic purifications and was scaled from 5 grams of L-tyrosine to 15 grams of L-

tyrosine without complication. 

Scheme 4.4 

 

 With protected L-tyrosine 4.22 in hand we shifted our focus to preparing the coupled 

peptide 4.20.  Initially, L-tryptophan was protected using phthalic anhydride and TEA in 

refluxing toluene which provided phthalimide 4.21 in 96% yield (Scheme 4.5).  Again column 
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chromatography was not required for purification of this product and the reaction was easily 

scaled to 15 g of L-tryptophan.   

Scheme 4.5 

 

 Subsequent coupling of protected tyrosine 4.22 and protected tryptophan 4.21 proceeded 

with some difficulty (Table 4.1).  The coupling proceeded with low yields with HATU when left 

for a period of 18h hours (entries 1-3).  This was likely due to epimerization of the α proton next 

to the electron-withdrawing phthalimide, which gave a mixture of diastereomers that was 

difficult to separate by chromatography.  To combat this problem the more hindered base 

diisopropylethylamine (DIPEA) was used (entry 4).  Although the reaction now proceeded 

without formation of the undesired epimer, the rate of the transformation was depressed and low 

yields still resulted.  Switching the base back to TEA and reducing the reaction time to 4 hours 

served the desired purpose of increasing the yield to 65% (entry 5).  No epimerized product was 

isolated from this reaction after shortening the reaction time, evidently the racemization occurred 

significantly more slowly than the coupling. 
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Table 4.1 

 

 With coupled product 4.20 in hand we sought to perform an oxidative cyclization to 

provide the corresponding alcohol 4.29 (Table 4.2).  A number of different conditions were 

evaluated to affect the cyclization.  Generation of DMDO in situ using oxone in acetone/DCM 

failed to provide any product and starting material was recovered (entry 1).  MCPBA was used to 

try to close the ring through an epoxide intermediate but no product could be recovered from the 

crude reaction mixture (entry 2).  The use of CuCl2 and TEMPO, a procedure reported by Deng
48

 

and coworkers, similarly resulted in a complex mixture from which the product could not be 

isolated (entry 3).  The use of 2.0 equiv NCS and O2 to cyclize the indole to the desired 

pyridinoindoline according to the procedure of Evano
46

 resulted in the formation of the desired 

product 4.29 and the unoxidized indole product 4.30 in yields of 25% and 37% respectively.  

Although the yield of the desired alcohol was low, we were able to oxidize the indole 4.30 to the 

corresponding alcohol 4.29 in 50% yield (Scheme 4.6).  Further optimization of this reaction was 

then initiated in order to access enough material to continue the synthesis.  The presence of 
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unidentifiable side products in the reaction mixture led us to believe that epimerization of the α 

amino stereocenter may be causing complications.  We attempted to alleviate these problems by 

reducing the temperature of the reaction to -78 °C and switching the base to DIPEA (entries 5, 

6).  Unfortunately both of these reactions failed to generate product and starting material was 

recovered.  The halo-succinimides NBS and NIS were also evaluated in this cyclization, but 

these reagents failed to produce product (entries 7, 8).  Surprisingly, increasing the reaction 

temperature to reflux increased to reaction yield of the desired alcohol to 36%.  Presumably, this 

is because a greater portion of the indole is converted to the corresponding pyridinoindoline 

alcohol at high temperatures.  Increasing the reaction time to 1h further increased the yield to 

60% (entry 17).  Unfortunately when this reaction was scaled up from 50 mg to 500 mg the yield 

dropped down to 32% (entry 18) and more effort was required to optimize the reaction at larger 

scale.  Extending the reaction time further to 18h gave the desired product with a yield to 33% 

(entry 10).  Switching the solvent to dichloroethane so the reaction could be heated at a higher 

temperature resulted in a yield of 20% (entry 11).  Likewise, performing the transformation in a 

pressure tube to access a higher temperature in DCM solvent also resulted in a 20% yield (entry 

12). The amount of NCS was also adjusted, but neither raising nor lowering the amount of NCS 

resulted in a higher yield (entries 13-14).  These results may be due to the requirement of more 

oxygen to oxidize the indole on a larger scale.  A moderate improvement in yield was observed 

(38%) by bubbling oxygen through the dichloromethane during the reaction (entry 20).  

Interestingly, a diastereomer of 4.29 containing the (S) alcohol could be isolated during this 

reactions.  Evidently, either diastereomer may be formed under these harsh conditions.   Work to 

further increase the efficiency of this reaction on a large scale is still ongoing. 
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Table 4.2 
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Scheme 4.6 

 

 After optimization of the oxidative cyclization is complete the pyridoindoline 4.30 will 

be reduced with NaBH3CN (Scheme 4.7).  Cyclization of the resulting amine to the 

corresponding lactam should readily occur as evidenced by the work of Evano.
46

  Formation of 

the desired trichloroacetimidate with TCAN and DBU in dichloromethane will then be 

accomplished.  Finally reaction of imidate 4.32 with fragment 4.17 will be evaluated to form the 

"western" portion of kapakahine C. 

Scheme 4.7 
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Conclusion 

  
Kapakahine C precursor 4.29 was synthesized in a yield of 33% over 6 linear steps.  

Coupling precursors 4.21 and 4.22 were synthesized on large scale.  Conditions for the coupling 

of fragments 4.21, and 4.22 were investigated and optimized.  Optimization of the oxidative 

cyclization of 4.20 to pyridinoindoline 4.29 was undertaken and conditions were found to affect 

the transformation  resulting in 60% yield of the desired product. Future work will involve 

further optimization of the oxidative cyclization and the use of this compound in an imidate 

coupling reaction to form the western portion of kapakahine C. Attempts will then be made to 

attach and cyclize the peptide section of the molecule to complete the synthesis of the natural 

product. 

Experimental Section 

 

(S)-2-(1,3-Dioxoisoindolin-2-yl)-3-(1H-indol-3-yl)propanoic acid (4.21) 

Lit Ref: Zhao, L.; May, J. P.; Huang, J.; Perrin, D. M., Stereoselective Synthesis of Brevianamide 

E. Org. Lett. 2012, 14, 90-93. 

To a flame dried round bottom flask at room temperature was added L-tryptophan (5.0 g, 24.5 

mmol), phthalic anhydride (3.6 g, 24.5 mmol) and toluene (75 mL).  Triethylamine was added 

(0.4 mL, 5.4 mmol) and the reaction mixture was heated to reflux for 24 h.   The reaction 

mixture was allowed to cool to room temperature and concentrated in vacuo.  Water (100 mL) 
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was added and the aqueous layer was extracted with ethyl acetate (3 x 30 mL).  The organic 

layers were dried over sodium sulfate, filtered, and concentrated under reduced pressure.  The 

crude product was dissolved in MeOH (50 mL) and concentrated under reduced pressure to 

provide 7.9 g (96%) of product 4.21 as a yellow foam.  

4.21.  mp = 88-92 °C; TLC Rf = 0.26 (10% MeOH/90% Dichloromethane); 
1
H NMR (400 MHz, 

CDCl3)  7.98 (br d, J = 1.4 Hz, 1H), 7.69-7.55 (m, 2H), 7.48-7.45 (m, 2H), 7.19-7.08 (m, 2H), 

6.99 (td, J = 7.1, 1.1 Hz, 1H), 6.92 (td, J = 8.0, 1.0 Hz, 1H), 6.85 (d, J = 2.2 Hz), 5.13 (dd, J = 

10.9, 5.08 Hz, 1H), 3.67-3.52 (m, 2H).  

 

(S)-Methyl 3-(4-(benzyloxy)phenyl)-2-((S)-2-(1,3-dioxoisoindolin-2-yl)-3-(1H-indol-3-

yl)propanamido)propanoate (4.20) 

To a flame dried round bottom flask kept at 0°C in an ice/water bath was added protected 

tyrosine
47

 4.22 (1.0 g, 3.51 mmol) and CH2Cl2 (35 mL).  HATU (2.0 g, 5.21 mmol) and 

triethylamine (1.97 mL, 14.02  mmol) were then added.  In a separate flask protected tryptophan 

4.21 (1.41 g, 4.21 mmol ) was dissolved in CH2Cl2 (42 mL), and this solution was added 

dropwise to the first solution at 0° C. The reaction mixture was stirred at 0.5 h at 0 °C and then 

allowed to warm to room temperature.  The reaction was stirred at room temperature for 4 h.  

H2O (30 mL) was added and the organic and aqueous layers were separated.  The organic layer 
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was washed with saturated NaHCO (3 x 20 mL) and brine (1 x 20 mL), dried over Na2SO4, 

filtered and concentrated.  Purification of the resulting crude residue by silica gel column 

chromatography (50% ethyl acetate/50% hexanes) resulted in the isolation of 0.59 g (59%) of  

product 4.20 as a yellow foam. 

4.20.  mp = 76-77 °C; TLC Rf = 0.52 (50% ethyl acetate/50% hexanes); IR (KBr) 3359, 3060, 

2952, 1776, 1714, 1513 cm
-1

;  
1
H NMR (400 MHz, CDCl3)  7.93 (s, 1H), 7.77 (dd, J = 5.5, 3.0 

Hz, 2H), 7.66 (dd, J = 5.5, 3.0 Hz, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.42-7.30 (m, 5H), 7.27-7.26 

(m, 1H), 7.16 (dt, J = 7.0, 1.1 Hz, 1H), 7.10 (dt, J = 7.2, 1.2 Hz, 1H), 6.96 (d, J = 2.4 Hz, 1H), 

6.79 (dt, J = 9.5, 2.8 Hz, 2H), 6.63 (dt, J = 9.5, 2.8 Hz, 2H), 6.55 (d, J = 7.7 Hz, 1H), 5.24 (t, J = 

7.9 Hz, 1H), 4.94 (s, 2H), 4.85-4.50 (s, 1H), 3.76 (dd, J = 15.2, 7.4 Hz, 1H), 3.68 (s, 3H), 3.56 

(ddd, J = 15.0, 8.1, 0.5 Hz, 1H), 3.00 (dd, J = 14.0, 5.5 Hz, 1H), 2.93 (dd, J = 14.0, 6.0 Hz, 1H);  

13
C NMR (100 MHz, CDCl3) δ 171.6, 168.2, 167.9, 157.7, 137.0, 136.3, 134.1, 131.7, 130.1, 

128.6, 128.0, 127.4, 126.8, 123.4, 122.9, 122.4, 119.8, 118.7, 114.8, 111.2, 111.1, 69.9, 54.0, 

53.5, 52.3, 36.8, 25.5. Anal. Calcd for C36H31N3O6: C, 71.87; H, 5.19; N, 6.98. Found: C,71.48; 

H, 5.38; N, 7.38. 

 

(S)-Methyl 3-(4-(benzyloxy)phenyl)-2-((S)-3-(1,3-dioxoisoindolin-2-yl)-2-oxo-2,3,4,9-

tetrahydro-1H-pyrido[2,3-b]indol-1-yl)propanoate (4.30) 
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To a flame dried round bottom flask was added protected peptide 4.20 (0.10 g, 1.67 mmol) and 

CH2Cl2 (3 mL) at room temperature.  N-Chlorosuccinimide (0.04 g, 0.33 mmol) and 

triethylamine (0.7 mL, 0.50 mmol) were then added.  Oxygen was bubbled through the resulting 

solution and the mixture was stirred at room temperature for 2h .  The progress of the 

transformation was carefully monitored and CH2Cl2 was added as needed to keep the level of 

solvent at approximately 3 mL.  After 2 h the solvent was removed in in vacuo.  Purification of 

the crude residue by silica gel column chromatography (50% ethyl acetate/50% hexanes) resulted 

in the isolation of 0.03 g (27%) of indole 4.30 as a yellow foam.    

4.30. mp = 116-117 °C; TLC Rf = 0.51 (50% ethyl acetate/50% hexanes); IR 3415, 2984, 1715, 

1585  (KBr)  cm
-1

; 
1
H NMR (400 MHz, CDCl3)  8.05 (br s, 1H), 7.88 (dd, J = 5.5, 3.04 Hz, 

2H), 7.74 (dd, J = 5.4, 3.1 Hz, 2H), 7.43-7.22 (m, 9H), 7.16 (d, J = 8.6 Hz, 2H), 7.13-7.06 (m, 

2H), 6.79 (d, J = 8.7 Hz, 2H), 5.20 (t, J = 7.6 Hz, 1H), 5.11 (dd, J = 13.7, 7.9 Hz, 1H), 4.88 (s, 

3H), 3.72 (s, 3H), 3.61 (t, J = 14.2 Hz, 1H), 3.47-3.35 (m, 2H), 3.06 (dd, J = 14.6, 7.9 Hz, 1H); 

HRMS (ESI
+
) m/z Calc’d for C36H29N3O6 [M + Na

+
] 622.1949, found 622.1949 

 

(S)-Methyl 3-(4-(benzyloxy)phenyl)-2-((3S,4aR)-3-(1,3-dioxoisoindolin-2-yl)-4a-hydroxy-2-

oxo-2,3,4,4a-tetrahydro-1H-pyrido[2,3-b]indol-1-yl)propanoate (4.29) 
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To a flame dried round bottom flask was added protected peptide 4.20 (0.05 g, 0.08 mmol) and 

CH2Cl2 (1.5 mL) at room temperature.  N-Chlorosuccinimide (0.02 g, 0.17 mmol) and 

triethylamine (0.04 mL, 0.25 mmol) were then added.  The solution was heated to reflux and 

stirred for 1 h.  The reaction mixture was allowed to cool to room temperature and the solvent 

was removed in vacuo.  Purification by silica gel column chromatography (50% ethyl 

acetate/50% hexanes) resulted in the isolation of 0.03 g (60%) of cyclized alcohol 4.29 as a 

yellow foam. 

4.29.  mp = 95-97 °C; TLC Rf = 0.67 (50% ethyl acetate/50% hexanes); IR (CH2Cl2) 3061, 3034, 

2950, 1781, 1719, 1617, 1580 cm
-1

;  
1
H NMR (400 MHz, CDCl3)  7.92-7.91 (m, 1H), 7.82-7.81 

(m, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.43-7.28 (m, 8H), 7.23-7.13 (m, 2H), 6.86 (dd, J = 6.8, 1.9 

Hz, 2H), 5.69 (dd, J = 9.6, 5.7 Hz, 1H ), 5.49 (dd, J = 10.3, 7.4 Hz, 1H), 5.01 (s, 2H), 3.78 (s, 

3H), 3.63-3.42 (m, 2H), 2.85-2.87 (m, 2H); 
13

C NMR (100 MHz, CDCl3)  169.4, 167.3, 167.0, 

166.9, 166.4, 157.6, 152.2, 137.2, 136.0, 134.5, 131.8, 131.6. 131.1, 130.4, 130.3, 129.4, 128.5, 

127.9, 127.5, 125.7, 123.9, 123.7, 122.2, 120.7, 114.8, 70.0, 64.9, 56.9, 46.9, 33.3, 32.7. 

HRMS (ESI
+
) m/z Calc’d for C36H29N3O7 [M + Na

+
] 638.1898, found 638.1897 

 

(S)-Methyl 3-(4-(benzyloxy)phenyl)-2-((3S,4aS)-3-(1,3-dioxoisoindolin-2-yl)-4a-hydroxy-2-

oxo-2,3,4,4a-tetrahydro-1H-pyrido[2,3-b]indol-1-yl)propanoate ((S)-4.29) 
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To a flame dried round bottom flask was added protected peptide 4.20 (0.10 g, 1.67 mmol) and 

CH2Cl2 (3 mL) at room temperature.  N-Chlorosuccinimide (0.04 g, 0.33 mmol) and 

triethylamine (0.7 mL, 0.50 mmol) were then added.  The solution was heated to reflux and 

oxygen was bubbled through the reaction mixture with stirring at reflux for 1 h.  The progress of 

the transformation was carefully monitored and CH2Cl2 was added as needed to keep the level of 

solvent at approximately 3 mL.  The reaction mixture was allowed to cool to rt and solvent was 

removed in in vacuo.  Purification of the crude residue by silica gel column chromatography 

(50% ethyl acetate/50% hexanes) resulted in the isolation of 0.02 g (24%) of cyclized alcohol 

(S)-4.29 as a yellow foam.    

(S)-4.29.  mp = 112-114 °C; TLC Rf = 0.54 (50% ethyl acetate/50% hexanes); IR (KBr)   3410,  

2933, 1721, 1617, 1512 cm
-1

; 
1
H NMR (400 MHz, CDCl3)  7.93-7.91 (m, 2H), 7.83-7.81 (m, 

2H), 7.76-7.73 (m, 2H), 7.48 (d, J = 7.4 Hz, 1H), 7.44-7.29 (m, 7H), 7.23-7.16 (m, 3H), 6.87-

6.83 (m, 2H), 5.69 (dd, J = 9.6, 6.0 Hz, 1H), 5.52-5.48 (m, 1H), 5.00 (s, 2H), 3.78 (s, 3H), 3.63-

3.58 (m, 1H), 3.49-3.42 (m, 1H), 2.86-2.83 (m, 2H); 
13

C NMR (100 MHz, CDCl3) 



Anal. Calcd for 

C36H29N3O7: C, 70.23; H, 4.75; N, 6.83. Found: C,70.08; H, 5.02; N, 6.46. 
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Chapter 5 

Synthesis of Aminosteroid and Quinoline SHIP Inhibitors 

Abstract 

 Recent research has shown that inhibition of the SH2-containing inositol phosphatase 

SHIP can modulate the dephosphorylation of  phosphoinositols, which are intercalated in the cell 

membrane.  The molecules act as second messengers in a signal transduction cascade, with the 

phosphorylation pattern on the inositol acting as a key recognition element in the transmission of 

signals through the cell membrane. The concentration of these second messenger phosphates has 

a profound effect on cellular function such as cell differentiation, survival, and proliferation.  

Inhibition of the phosphatase activity of SHIP can be accomplished through the use of small 

molecule inhibitors such as aminosteroids and quinolines.  The work herein describes the 

synthesis of six aminosteroid analogs of a well studied SHIP inhibitor 3AC.  Research was 

conducted to improve the efficiency of the synthesis of these molecules.  The synthesized 

aminosteroids were tested for SHIP inhibitory potency in a Malachite Green assay.   

 Also described is the synthesis of two quinoline SHIP inhibitors NSC13480 and 

NSC305787.  Research was conducted to efficiently synthesize these molecules on multi-gram 

scale.  The synthesized quinolines were tested for their inhibitory activity in a Malachite Green 

assay.  The structure activity studies show that a basic near the 4-position of the quinoline and 

the heterocycle are both required for SHIP inhibition. 

Introduction 
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 Phospholipids are a common component of the cell membrane in eukaryotes.  One class 

of phospholipids are comprised of fatty acid chains that are connected to an inositol ring which 

are further decorated with phosphate groups, often called phosphoinositols.  Although 

phosphoinositols make up only a small part of the cell membrane, these molecules play an 

important role in cell differentiation, survival, proliferation and effector function.
1-3

  Intracellular 

enzymes called kinases add phosphates to these inositol rings, while phosphatases remove these 

phosphates. The phosphorylation pattern on the inositol plays a key role in cellular signaling, as 

signals are transmitted through these molecules with the phosphorylation pattern acting as a 

control element for other signaling enzymes.  These other signaling enzymes include mitogen 

activated protein kinases (MAPK),
4
 and extracellular-regulated kinases (ERK),

5
 whose roles 

have been studied extensively utilizing small-molecule kinase inhibitors. 

 The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling pathway is a major 

signaling pathway with roles in cellular functions such as cell growth, differentiation, cell 

motility, and survival.
2
  PI3K, once activated by an external stimuli, rapidly synthesizes its target 

inositol triphosphate, phosphatidylinositol (3,4,5)- trisphosphate (PI-3,4,5-P3). The PI3K 

pathway is also regulated by the Src homology 2-containing inositol 5’-phosphatase SHIP which 

dephosphorylates the second messenger phosphatidylinositol (3,4,5)- trisphosphate (PI-3,4,5-P3), 

to form phosphatidylinositol (3,4)-bisphosphate (Figure 5.1).
6
  A second phosphatase protein, 

phosphatase and tensin homolog (PTEN), hydrolyses (PI-3,4,5-P3) to form phosphatidylinositol 

(4,5)-bisphosphate.
7, 8

 Association of (PI-3,4,5-P3) with the protein serine-threonine kinase Akt, 

(sometimes called protein kinase B), and phosphoinositide-dependant kinase 1 (PDK1) at the 

plasma membrane leads to the phosphorylation and activation of Akt by PDK1, initiating a 

cascade of protein phosphorylation events that transfers signals from the membrane to the cell 
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nucleus.
9
 The concentration of phosphoinositol phosphates regulate downstream effector 

cascades by controlling the phosphorylation of a host of other proteins downstream in the PI3K 

signaling pathway.
2
 

 

 

Figure 5.1: PI3K Modification of Inositols at the Cell Membrane 

 Two paralogs of SHIP exist in eukaryotic cells, SHIP1 and SHIP2.  SHIP1, a 145 kDa 

enzyme,
10

 is found primarily in blood and bone marrow cells, but it can also be found in 

embryonic stem cells and mesenchymal stem cells.
11-14

 In contrast SHIP2 is found ubiquitously 

throughout the other tissues in the body. SHIP2 is especially prevalent in skeletal muscles, the 

heart, and placenta.
15

  Despite sharing a high rate of amino acid conversion, SHIP1 and SHIP2 

each play unique roles in in vivo functions such as cellular expression and receptor recruitment.
16

  

Specifically, SHIP1 is a is a negative regulator of cell growth and mediates the inhibitory activity 

of mast cells and B cells.
17-19

  SHIP1 has also been shown to be an inducer of cellular 

apoptosis,
20

 and as a negative controller in hematopoietic cell proliferation/survival.
21

  

Alternatively, SHIP2 has a role as an inhibitor for the insulin pathway, and mediates insulin 

resistance.
22

  The various biological effects regulated independently by SHIP1 and SHIP2 makes 
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the inhibition and upregulation of SHIP1 and SHIP2 a desirable objective for the treatment of a 

number of disease states. 

 Control of the PI3K pathway through inhibition and upregulation of SHIP1 and/or SHIP2 

may have applications for the treatment of several human diseases, including cancer.  One 

application of PI3K pathway regulation is the treatment of leukemia.
23, 24

 Furthermore, breast 

cancer tumors
25, 26

 and hematological malignancies such as the plasma cell disorder multiple 

myeloma
27

 may be suppressed by regulation of inositol phosphatases in the PI3K pathway.  

Modulation of PTEN could in theory be used to control PI3K signaling, however, due to PTEN's 

role as a tumor suppressor,
28-31

 PTEN inhibition has little hope for therapeutic potential.  The 

inhibition of the PI3K enzyme is also under investigation as an approach in cancer treatment, 

although inhibition of this enzyme has been troubled by the need for isoform specific 

inhibitors.
32, 33

  As PTEN and PI3K have been shown to be problematic targets, control of PI-

3,4,5-P3 through modulation of SHIP1 and SHIP2 has become a passionately researched 

objective.  

 Besides cancer, SHIP inhibition has shown promising results in the treatment of several 

other diseases.  For instance, SHIP has been shown to be a repressor of mast cell hyperplasia, 

cytokine production, and allergic inflammation in vivo.
34

  This activity against anaphylactic 

events in allergy sufferers has led to the development of AQX-1125 which is a candidate for the 

treatment of allergic asthma (Figure 5.2).
35

  Due to the role of SHIP2 as a controller of insulin 

signaling, SHIP2 inhibition may have potential in the treatment of diabetes as increased 

activation of SHIP2 results in decreased activation of insulin-stimulated mitogen activated 

protein (MAP) and decreased insulin-stimulated thymidine incorporation.
36, 37

  SHIP inhibition 

has also shown potential to facilitate bone marrow transplantation and ameliorate Graft vs. Host 
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disease.
38

  Overexpression of an MHC independent-ligand in SHIP knockout mice further 

provides evidence for inhibition of SHIP as a treatment in Graft Vs. Host disease.
39

  SHIP 

knockout mice were also shown to develop a severe inflammatory condition in their lower 

intestine that appears related to Crohn's disease in humans.
40

  SHIP1 may also be a genetic 

determinant to Crohn's Disease susceptibility in humans as single nucleotide polymorphisms 

found at the same loci as SHIP1 are highly enriched in Crohn's disease patients.
41

  SHIP1 has 

also been implicated as playing a role in cystic fibrosis.
42

  Regulation of osteoclast formation and 

function is also accomplished by SHIP1.
43

  Furthermore, inhibition of the SHIP1 enzyme has 

been shown to lead to an increase in blood cell production in in vivo studies with mice.
44

  Finally, 

SHIP inhibition should theoretically be a useful treatment in patients with AIDS.  This is because 

patients with AIDS show a reduction in reduced natural killer (NK) cells.  SHIP1 has been 

shown to regulate NK cells.
38, 45

  Therefore the decrease in NK cells may be partially attributed 

to an increased levels of SHIP1.
46

  Due to the therapeutic potential of SHIP regulation in 

ailments such as cancer, diabetes, Graft Vs. Host disease, Crohn's disease, AIDS, and the 

potential of SHIP1 inhibition to result in increased blood cell production, modulation of the 

SHIP enzyme utilizing small molecules is a valuable research goal. 

 

Figure 5.2: Structure of AQX-1125 

 Our investigations have focused on several types of SHIP inhibitors, including  

aminosteroids (5.5), quinoline aminoalcohols (5.6), tryptamines (5.7) and thiophenes (5.8) 
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(Figure 5.3).  Of these four classes, my research projects have been focused on synthetic efforts 

towards the aminosteroids and quinoline classes of SHIP inhibitors.   

 

Figure 5.3: Some Common SHIP Inhibitors 

Aminosteroids 

 Utilizing high throughput screening, the parent aminosteroid 3α-aminocholestane 5.5 

(3AC) was identified as a selective inhibitor of the SHIP1 enzyme.
44

  In the Malachite Green 

phosphate assay,
47

 a biological assay used to follow phosphate release and adapted to for use in 

determining the activity of the SHIP enzyme, 3AC shows a detectable level of selective SHIP1 

inhibition at 2mM and 50% inhibition at 10 mM.  Further testing of 3AC in mice revealed that 

treatment with the molecule expands the myeloid immunoregulatory cell pool and increases the 

production of red blood cells in myleosuppressed hosts.
48

 Treatment with 3AC was also found to 

significantly increase the number of MIR cells in the spleen and lymph nodes of treated mice 

with no comparable change observed in the controls.
44

 Although 3AC is a selective SHIP1 

inhibitor it is not very soluble in water and not potent enough to be a promising drug candidate.  
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For these reasons we sought to develop aminosteroids that are more potent than 3AC, while also 

focusing on target molecules that are more polar and water soluble to improve bioavailability and 

facilitate dosing in animal models. 

 A number of analogs of 3AC have been prepared in the Chisholm laboratory for both in 

vitro testing and in vivo trials in mice.
49

  Structure-activity studies on these compounds have 

revealed some useful trends that have guided us toward new synthetic targets.  In particular, 

nonpolar groups on the D ring of the steroid skeleton seem to improve selectivity for SHIP1 

inhibition and lower inhibitory activity against SHIP2 (Figure 5.4).  These groups may help the 

aminosteroid fit into a nonpolar section of the binding pocket of SHIP1.  Conversely, it was 

found that polar groups on the D ring of the steroid substructure significantly reduce the SHIP 

inhibitory activity of these compounds.  Based on these observations a tentative model for the 

binding pocket of SHIP may be proposed (Figure 5.5).  The synthesis of our aminosteroid SHIP 

inhibitors were planned around this model. 

 

Figure 5.4: Steroid Ring System and Numbering 

 

Figure 5.5: Structure Activity Relationships of Aminosteroids 
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 In order to synthesize more potent selective SHIP1 inhibitors an analog with a long chain 

hydrocarbon tail at the C17 position seems necessary. To improve potency, another polar 

functional group on the A ring of the steroid was incorporated. The A ring is thought to bind to 

the phosphatase active site, which is made up of primarily polar amino acids, so it may be 

possible to form a second contact with a polar group in this area of the enzyme. In addition, a 

second polar group on the steroid A ring would increase water solubility. To test this hypothesis 

four molecules based on our previously synthesized molecules were designed to be synthesized 

(Figure 5.6).  The synthesis of aminosteroids K111 and K141 was also planned on larger scale in 

order to test the compounds in vivo in mice. 

 

Figure 5.6: Proposed 3AC Analogs to be Synthesized 

Quinolines 

 The high-throughput screening using the National Cancer Institute's (NCI) diversity set 

also identified a pair of potential quinoline based SHIP inhibitors, NSC 305787 5.15 and 
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NSC13480   5.16. 
50

  Both quinolines were designed as antimalarial agents by chemists at the 

Walter Reed Army Institute of Research.
51

  The program developed analogs of quinine 5.17 

which is structurally similar to quinidine 5.18.  This work culminated in the development of 

mefloquinone 5.19 which is marketed as Larium and used as a prophylactic and to treat malaria.  

Recently, mefloquinone 5.19 was shown to possesses anticancer properties at high 

concentrations, which may be attributed to SHIP inhibition, as our studies have shown that 

mefloquine does inhibit SHIP at similar concentrations.
52

  Additionally, several similar quinoline 

amino alcohols have shown activity as antbacterials,
53

 as biofilm formation inhibitors,
54

 and as 

inducers of vacuolization and cell death in glioblastoma cells.
55

  Because the SHIP gene is not 

present in bacteria it is unlikely that SHIP inhibition plays a role in these mefloquine's biofilm 

inhibition or antimicrobial microbial properties, but the quinoline aminoalcohol scaffold may be 

modified into a selective SHIP inhibitor once structure activity studies reveal the necessary 

functionality for SHIP inhibition.  SHIP inhibition has been shown to be cytotoxic to a number 

of human cancer cell types both in vitro and in vivo.
56-58, 59

 Due to our interest in designing and 

producing effective inhibitors of the SHIP1 and SHIP2 enzymes, we sought to synthesize the 

quinoline-based SHIP inhibitors 5.15-HCl and 5.16-HCl, verify their structures and test their 

activity against SHIP. In addition, the role of the aminoalcohol would be probed with these 

studies to determine if the chirality centers in the parent molecules are necessary for SHIP 

inhibition. 
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Figure 5.7: Quinoline-Based SHIP Inhibitors 

Results and Discussion 

 Initially a synthetic route to the desired aminosteroids 5.13 and 5.14 was developed.  The 

steroid diamines would be derived from the α-bromoketone 5.20 (Scheme 5.1), as this compound 

is readily formed from a bromination reaction with the corresponding ketone. This ketone is 

readily available from commercially available 3, 5-dihydrocholesterol 5.21.  

Scheme 5.1 

 

 The synthesis of 5.13 began with an oxidation of commercially available 5-α-cholestan-

β-3-ol 5.21 with pyridinium chlorochromate in DCM (Scheme 5.2).  The reaction proceeded 

smoothly providing the corresponding ketone 5.22 in 99% yield.  The ketone 5.22 was then 

brominated at the α position using pyridinium tribromide to provide ketobromide 5.20 in 72% 
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yield.  The interesting regio and stereo selectivity of this reaction warrants some additional 

discussion.  Examination of the possible enol intermediates show that enol 5.26 is the most 

thermodynamically stable (Figure 5.8).  Studies performed by Velluz and coworkers show that 

enol 5.27 is disfavored.
60

 This is due to the steric strain imposed by the axial C-10 methyl group 

is greater for a decalin with a 3,4 alkene (5.27) than a 2,3 alkene (5.26).  Additionally, the 

enolization shown in figure 5.8 causes planarization of the α hydrogen leading to steric strain 

between the α hydrogen and the C-6 equatorial hydrogen.  The stereochemistry of the bromide is 

always obtained as the shown equatorial isomer. This is because epimerization of the bromide 

will lead to the equatorial alcohol to relieve 1,3 diaxial strain between the bromide and the C-10 

axial methyl group.  This epimerization may be rapid under the reaction conditions, as 

enolization of the ketone is facilitated by the acetic acid media. Indeed, examination of the crude 

reaction via 
1
H NMR shows no product with axial bromides (Figure 5.9).  Evidently, other 

ketobromides are formed in this reaction but the desired ketobromide 5.20 is less soluble in the 

polar solvent and precipitates from the reaction, allowing for its isolation by filtration.  This 

allowed for rapid isolation of ketobromide 5.20 which was obtained following α bromination in 

72% yield. 



 
 

 147 

Scheme 5.2 

 

 

Figure 5.8: Possible Enol Intermediates 
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Figure 5.9: 
1
H NMR of Bromination Mother Liquor 

 After formation of ketobromide 5.20, SN2 displacement of the bromide with NaN3 

resulted in the formation of the corresponding ketoazide 5.23 with good yield (75%).  

Epimerization of the azide moiety resulted in the formation of the less strained equatorial azide.  

Again the axial methyl group at the C-10 position controls the observed stereochemistry, as it 

induces rapid equilibration of the azide to the equatorial isomer to avoid the 1,3-diaxial 

interaction.  Chemoselective reduction of the ketone functional group with sodium borohydride 

then resulted in the formation of diastereomers 5.24 and 5.25 which could be isolated using 

column chromatography resulting in yields of 38% of 5.24 and 24% of 5.25.  Difficulty was 

encountered in separating the cis-azido alcohol from unidentifiable impurities, which is almost 

certainly the cause of the uneven yields.  After this point the synthesis of compounds 5.24 and 

5.25 diverged and the alcohols were treated separately. Lithium aluminum hydride reduction of 

azidoalcohol 5.24 provided the corresponding amine, which was taken on without purification.  
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The amine was then treated with HCl (g) to generate the amine hydrochloride salt 5.11 with a 

yield of 28% over 2 steps. 

Scheme 5.3 

 

 With the synthesis of 5.11 completed, we set our sights on the synthesis of the related 

diastereomer 5.12.  The azido alcohol 5.25 was reduced via a Staudinger reduction to generate 

aminoalcohol 5.30 with excellent yield (98%).  Treatment of amine 5.30 with HCl gas generated 

amine hydrochloride 5.12 with a 95% yield. 

Scheme 5.4 

 

 The synthesis of the diamine 5.13 was envisioned to occur from alcohol 5.24 (Scheme 

5.5).  The alcohol was mesylated using MsCl and pyridine and the corresponding mesylate 5.31 

was carried on to the next step without purification.  The mesylate was displaced with sodium 

azide to provide the corresponding diazide steroid 5.31 with a yield of 68% over 2 steps.  The 

SN2 displacement resulted in an inversion of stereochemistry at the C3 position, as was clear 
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from the coupling constants in the 
1
H NMR.  With pure diazide 5.31 in hand lithium aluminum 

hydride reduction to provide the diamine 5.32 was attempted.  Unfortunately, the reaction 

resulted in a complex mixture from which the desired product could not be isolated.  A 

Staudinger reduction was also evaluated, and again the result was a complex mixture that did not 

provide the desired product.  Finally, hydrogenation conditions were used and the reaction 

proceeded smoothly providing the corresponding diamine.  The diamine was acidified using 

gaseous HCl to provide diamine hydrochloride 5.13 in 24% yield over 2 steps.  

Scheme 5.5 

 

 With the synthesis of 5.13 complete we set our focus on the synthesis of diastereomer 

5.14.  The azidoalcohol 5.25 was converted to the corresponding mesylate using 

methanesulfonyl chloride and pyridine (Scheme 5.6).  The resulting crude mesylate was 

converted to the diazide following and SN2 displacement with sodium azide providing diazide 

5.33 with a yield of 37% over 2 steps.  The SN2 attack resulted in an inversion of stereochemistry 
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at the C3 position as determined by 
1
H NMR.  Again, the diazide 5.33 was subjected to reduction 

conditions with LiAlH4 and again we were disappointed to find the reaction provided only a 

crude mixture.  Subjecting diazide 5.33 to hydrogenation conditions, however, provided the 

desired diamine with little trouble.  Acidification of this diamine with HCl gas provided the 

corresponding diamine chloride 5.14 in 20% yield over 2 steps. With the syntheses of steroid 

5.11-5.14 completed the compounds were given to our collaborators at SUNY Upstate for testing 

in a malachite green assay, and these results will be disclosed in due course. 

Scheme 5.6 

 

 In addition to the synthesis of the aminoalcohols and diamines, the synthesis of two other 

aminosteroid analogs (K111 and K141) was scaled up so that the compounds could undergo 

further biological testing. The synthesis of aminosteroid SHIP inhibitor K111 began with a 

Wolff-Kishner reduction of commercially available pregnenolone 5.35.  Although it was 

expected that this reaction would run smoothly due to the lack of complicating functional groups 
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present in pregnenolone, the reaction was more challenging than anticipated and many 

conditions had to be evaluated to reach the eventual yield of 85%.  Initial attempts to reduce the 

ketone to the corresponding alkane via Wolff-Kishner reduction failed and no product was 

recovered (Table 5.1, entry 1).  A second attempt using HCl and DCM for the extraction also 

failed as an emulsion formed which made separation difficult (entry 2).  At this point, it was 

noted that despite the reaction being heated to refluxing conditions, the drip rate from the reflux 

condenser was very slow.  It was hypothesized that the reaction may not be going to completion 

because the sand bath was not heating the reaction to a hot enough temperature.  To our delight, 

changing to a different sand bath which was smaller, improving contact with the reaction flask 

and therefore gave better heat delivery provided significantly improved results and the desired 

steroid 5.36 was obtained in good yield (63%-65%, entries 3-4).  In addition MTBE was utilized 

for the extractive workup and although separation with the solvent was easy, many extractions 

were required to fully remove the steroid from the aqueous layer.  Changing the extraction 

solvent to ethyl acetate provided cleaner workup conditions and provided our desired steroid 

5.36 in excellent yield (85%, entry 5).  A Mitsunobu reaction of the C3 alcohol using diisopropyl 

azodicarboxylate (DIAD) and diphenylphosphoryl azide then provided the corresponding azide 

5.37 in good yield (84%) with inverted stereochemistry relative to the starting alcohol.  Lithium 

aluminum hydride reduction of azide 5.37 proceeded smoothly and resulted in the isolation of 

amine 5.38 in 46% yield.  The synthesis was completed by treatment of amine 5.38 with gaseous 

HCl which afforded the hydrochloride salt in 68% yield.  Synthesis of K111 was completed and 

resulted in the formation of K111 in 22% overall yield over 4 steps. 
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Scheme 5.7 

 

Table 5.1 

 

 The synthesis of aminosteroid K141 was then undertaken (Scheme 5.8).  Again, a Wolff-

Kishner reduction was the first step of the reaction.  Here, as previously discussed, high 

temperatures were key to getting the reaction to proceed to completion (Table 5.2).  The larger 

sand bath again provided none of the desired product 5.40 (entries 1-2).  After switching to the 

smaller sand bath, the use of MTBE in the extraction was key to achieving higher isolated yields 
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of the desired steroid product 5.40.  The C3 alcohol of compound 5.40 was then oxidized with 

pyridinium chlorochromate (PCC) and purified through a short plug of silica gel, providing the 

corresponding ketone product 5.41.  Bromination of ketone 5.41 was accomplished using 

pyridinium tribromide in acetic acid.  Filtration of crude reaction mixture resulted in the isolation 

of ketobromide 5.42 in good yield (68%).  Presumably, the regioselectivity and stereoselectivity 

of this reaction is governed by the same forces which provided ketobromide 5.20 (see Scheme 

5.2).  Displacement of the secondary bromide via substitution with sodium azide resulted in the 

isolation of ketoazide 5.43 in 56% yield.  In this case displacement of the bromide was followed 

by epimerization which provided the more thermodynamically stable equatorial azide as the sole 

observed substitution product.  Chemoselective reduction of the ketone over the azide was 

accomplished by use of the bulky reducing agent L-selectride, resulting in the formation of the 

azido alcohol 5.44 in 70% yield.  The bulky reducing reagent prefers to deliver the hydride from 

the equatorial face, which leads to the selective formation of the axial alcohol.  Reduction of the 

azide to the corresponding amine was followed by formation of the hydrochloride salt with 

gaseous HCl in diethyl ether. This provided synthetic target K141 in 40% yield over 2 steps.  

The overall yield for the reaction sequence was 9% over 7 steps. Approximately 1 g of K111 and 

K141 were prepared using these routes, and these materials were then provided to co-workers at 

SUNY Upstate Medical University for further evaluation. 
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Scheme 5.8 

 

Table 5.2 
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Synthesis of Quinoline SHIP Inhibitors 

 The quinolines NSC13480 and NSC305787 have been reported to have activity as SHIP 

inhibitors.
50

  The development of a synthesis amenable to accessing these compounds on a gram 

scale was investigated to the molecules could undergo further biological evaluation.  

Retrosynthetically the route used to access these molecules would follow the general path 

outlined in Scheme 5.9. The aminoalcohol portion of the molecule would derive from an epoxide 

like 5.46, which can be opened upon deprotection of the amine to form the piperidine ring. The 

epoxide will come from the corresponding E-alkene, which may be accessed by Horner-Wittig 

chemistry. 

Scheme 5.9 

 

 The new synthetic route to dichloroquinoline 5.15ˑHCl began with a chlorination of 

isatin 5.50 using trichloroisocyanuric acid (TCCA) and sulfuric acid as a solvent.  This reaction 

initially posed a throughput problem as the transformation is highly exothermic, with large scale 

attempts heating uncontrollably.  Furthermore, some low yielding steps later in the synthesis to 

form the desired quinoline meant that large quantities of dichloroisatin 5.51 would need to be 

synthesized in order to achieve the desired throughput. This reaction overheating issue was 

solved by beginning the reaction at -78° C and allowing the reaction mixture to slowly and safely 

warm to room temperature.  Using this technique up to 100 mmol of isatin could be produced in 



 
 

 157 

a single batch, with the yield being virtually quantitative.  Following the chlorination reaction, 

dichloroisatin 5.51 was subjected to a Pfitzinger reaction which provided the desired carboxylic 

acid 5.52 in 17% yield over 2 steps.  Although the yield for this reaction was low the product 

could be easily isolated from crude side products through recrystallization which was desirable 

when performing the reaction on large scale.  Reduction of carboxylic acid 5.52 with BH3 in 

THF resulted in the formation of the desired alcohol 5.53.  Alcohol 5.53 was the converted to the 

corresponding chloride 5.54 using thionyl chloride in DCM.  Despite the apparent simplicity of 

this reaction numerous conditions had to be tried to affect the desired transformation (Table 5.3).  

The Appel reaction was initially evaluated (entries 1-2), but the reaction provided a complex 

mixture of compounds that was difficult to purify so the reaction was not pursued.  Other 

chlorinating agents such as oxalyl chloride (entry 3) and TCCA (entry 4) were found to consume 

the starting material, however no desired chloride product could be isolated from the reaction 

mixture.  Treating alcohol 5.53 with SOCl2 in pyridine gave the product 5.54 along with a side 

product that appears to be formed from displacement of the resulting chloride 5.54 with another 

nucleophile, perhaps some type of chlorosulfonate (entry 5).  The chlorinating agent 

methanesulfonyl chloride was also evaluated but consumption of starting material was not 

observed, and these conditions were not further optimized (entry 6).  Eventually, it was 

determined that SOCl2 in DCM in the absence of pyridine provided the best and most consistent 

results for the formation of chloride 5.54 (entry 7). Chloride 5.54 was obtained in 44% yield over 

2 steps from carboxylic acid 5.52 (entry 8).  An Arbuzov reaction with chloride 5.54 resulted in 

the isolation of the corresponding phosphonate 5.55 in 75% yield.  This product was isolated 

following silica gel chromatography and taken forward in the synthesis of 5.15ˑHCl. 
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Scheme 5.10 

 

Table 5.3 

 

 With the synthesis of phosphonate precursor complete, the intermediate phosphonate 5.55 

was provided to other co-workers for completion of the synthesis.  A Horner-Wadsworth-Emmons 
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reaction was performed with the phosphonate precursor 5.55 and aldehyde intermediate 5.49 and 

the desired E alkene was obtained with good selectivity (>20:1 by 
1
H NMR) and yield (74%).  The 

E alkene 5.56 was then epoxidized using meta-chloroperoxybenzoic acid (m-CPBA) to provide the 

corresponding epoxide 5.57.  Deprotection of the phthalimide moiety of 5.57 with hydrazine 

resulted in the spontaneous cyclization of the newly formed amine and opening of the epoxide to 

provide desired product 5.15.  Finally, treatment of amine 5.15 with HCl resulted in the formation 

of amine hydrochloride salt 5.15ˑHCl in 60% yield. 

Scheme 5.11 

 

 With the synthesis of quinoline SHIP inhibitor 5.15ˑHCl completed work began on the 

synthesis of the second quinoline 5.16ˑHCl.   This synthesis began with a Doebner condensation of 

1-naphthylamine 5.58, benzaldehyde and pyruvic acid in ethanol.  The reaction resulted in the 
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isolation of carboxylic acid 5.59 in 25% yield.  Although the yield for this reaction was low, the 

reaction required only 3.5 hours of reaction time and just a simple filtration for purification.  

Furthermore the reaction was easily scaled up to use 100 mmol of 1-naphthylamine without 

difficulty.  The carboxylic acid 5.59 was then reduced to alcohol 5.60 using NaBH4 and I2 to form 

borane in situ.  This reaction allowed us to avoid using the more expensive reducing agent 

BH3•THF.  Alcohol 5.60 was converted to chloride 5.61 in 44% yield over 2 steps without 

difficulty using thionyl chloride.  An Arbuzov reaction of chloride 5.61 provided the 

corresponding phosphonate compound 5.62 in 42% yield.  Overall, the synthesis of this portion of 

the molecule was operationally simple despite some yields being low. 

Scheme 5.12 

 

 With synthesis of the phosphonate 5.62 completed, work began on the finishing the 

synthesis of aminoalcohol 5.16ˑHCl.  The aldehyde condensation partner 5.49 was synthesized 

in two steps from commercially available amino alcohol 5.63 in 86% yield over two steps.  

Subsequent Horner-Wadsworth-Emmons
61

 reaction of phosphonate 5.62 and aldehyde 5.49 

resulted in the formation of the corresponding E alkene 5.64 in 68%.  The E alkene was formed 

preferentially over the Z alkene in greater than 20:1 ratio (as determined by 
1
H NMR analysis).  

Epoxidation of alkene 5.64 with meta-chloroperoxybenzoic acid (m-CPBA) provided the desired 

epoxide 5.65 in 61% yield.  Removal of the phthalimide protecting group with hydrazine led to a 
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cyclization reaction of the resulting amine on the epoxide, providing the desired aminoalcohol 

product 5.16 in 62% yield.  Formation of the hydrochloride salt with HCl in ether provided the 

synthetic target 5.16ˑHCl in 60% yield. 

Scheme 5.13 

 

 With the synthesis of quinoline SHIP inhibitors 5.15ˑHCl and 5.16ˑHCl completed, these 

compounds were turned over to our collaborators at SUNY Upstate in order to test their 

inhibition of SHIP1 and SHIP2 (Table 5.4).  When these compounds were initially synthesized, 

their inhibition was tested using a Fluorescence Polarization assay for phosphatase activity.
62

  

Unfortunately, this assay was expensive and great care had to be taken with fluorescent 

compounds such as quinolines to assure accurate and repeatable results, as the fluorescence of 

the quinoline often interfered with the results of the assay.  For this reason our collaborators 

employed the colorimetric Malachite Green assay
47

 in order to evaluate the compounds' SHIP 

inhibitory activity.  The quinoline 5.16-HCl was found to precipitate in the conditions used in the 
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Malachite Green assay and so the more soluble citrate salt of this compound was prepared and 

evaluated (entries 1-2).  The inhibitory activity of 5.16-citrate was found to be moderate with the 

compound providing 38% and 17% inhibition for SHIP1 and SHIP2 respectively. Interestingly, 

5.15-HCl provided significantly stronger inhibition results with 38% and 73% inhibition for 

SHIP1 and SHIP2 respectively (entry 3).  The high SHIP2 inhibition is particularly notable.  

Mefloquine hydrochloride provided inhibition of 54% against both SHIP paralogs (entry 4).  The 

previously reported antitumor activity possessed by mefloquine may be explained by this SHIP 

inhibitor activity.  The quinine and quinidine sulfates 5.17 and 5.18 both showed comparatively 

little SHIP inhibition (entries 5-6).  The role of the aminoalcohol core in the SHIP inhibitory 

activity was also probed.  Carboxylic acids 5.59 and 5.52 were tested as well as alcohols x and x 

and no significant inhibition of SHIP was observed except for some moderate SHIP1 inhibitory 

activity displayed by carboxylic acid 5.52 (entries 7-10).  From these results we hypothesized 

that the amine portion of the molecule may be more important to SHIP inhibitory activity.  The 

lack of activity of (1R,2S)-(-)- ephedrine 5.66 and (1R,2S)-(+) pseudoephedrine 5.67 in the 

Malachite Green assay also supported that the quinoline and amine may both be necessary for 

SHIP inhibition.  To test this hypothesis the quinoline 5.68 was synthesized from alcohol 5.60 

using classical Gabriel conditions.
63

  Quinoline 5.68 was found to exhibit significant activity in 

the Malachite Green assay with 41% inhibition against the SHIP1 paralog and 66% inhibition 

against the SHIP2 paralog.  The result confirms the importance of both the amine and quinoline 

moieties for SHIP inhibition and provides a blueprint for future development of quinoline SHIP 

inhibitors. 
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Table 5.4 

 

Conclusion 

 A viable synthetic route to the aminosteroid analogs of selective SHIP1 inhibitor 3AC 

5.11, 5.12, 5.13, 5.14, K111, and K141 has been developed.  Optimization of Wolff-Kishner 

reactions for compounds 5.35, and 5.39 led to a more efficient syntheses of these compounds.  

Similarly, optimization of the azide reducing conditions for compounds 5.31, and 5.33, was also 

conducted.  The aminosteroids are now being tested for SHIP1 and SHIP2 inhibitory activity by 

our collaborators at SUNY upstate. 

 Quinoline SHIP inhibitors 5.15ˑHCl and 5.16ˑHCl were synthesized with overall yields 

of 1.0% and 0.7% respectively.  Optimization of the synthetic routes used to prepare these 
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compounds allowed for their preparation on multi-gram scale.  Structure activity relationships 

conducted on the intermediates for these compounds show that both quinoline and amine are 

necessary for SHIP inhibition.  The synthesis of similar aminosteroid and quinoline SHIP1 

selective, SHIP2 selective, and pan-SHIP inhibitors will be used to probe the biological effects of 

SHIP inhibition.  

Experimental Section 

 

(5S,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)tetradecahydro-

1H-cyclopenta[a]phenanthren-3(2H)-one (5.22) 

Lit Ref; Zhu, Y.; Zhao, B.; Shi, Y. Highly Efficient Cu(I)-Catalyzed Oxidation of Alcohols to 

Ketones and Aldehydes with Diaziridinone. Org. Lett. 2013, 15, 992-995. 

To pyridinium chlorochromate (3.30 g, 15.44 mmol), dissolved in dichloromethane (40 mL) was 

added 5α-cholestan-3-β-ol (3.00 g, 7.78 mmol) followed by silica gel (3.30 g).  The reaction 

mixture was stirred at rt overnight.  The resulting suspension was filtered through a plug of silica 

gel with 10% ethyl acetate/90% hexanes until no more product was observed in the filtrate by 

TLC.  The solvent was removed in vacuo resulting in the isolation of 2.97 g (99%) of ketone 

5.22 as a white powder. 

5.22. White powder (2.97 g, 99%); mp = 129-131°C; TLC Rf = 0.36 (10% ethyl acetate/90% 

hexanes); 
1
H NMR (300 MHz, CDCl3), δ 2.42-2.23 (m, 3H), 2.10-1.93 (m, 3H), 1.87-1.78 (m, 

1H), 1.72-1.67 (m, 1H), 1.60-1.48 (m, 8H), 1.42-1.29 (m, 7H), 1.26-1.23 (m, 1H), 1.18-1.05 (m, 

7H), 1.01-0.94 (m, 4H), 0.91-0.85 (m, 9H), 0.76-0.70 (m, 1H), 0.68 (s, 3H). 
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((2R,5S,8R,9S,10S,13R,14S,17R)-2-Bromo-10,13-dimethyl-17-((R)-6-methylheptan-2-

yl)tetradecahydro-1H-cyclopenta[a]phenanthren-3(2H)-one (5.20) 

Lit Ref: Kasal, A.; Budesinsky, M. α-Methoxymethyl ketones via aldol reaction. Tetrahedron 

2013, 69, 9663-9674. 

Ketone 5.22 (0.99 g, 2.62 mmol) was dissolved in acetic acid (2.62 mL).  The solution was 

warmed to 50 
o 

C in an oil bath and pyridinium tribromide (0.84 g, 2.62 mmol) was added.  The 

reaction was stirred at 50 
o 
C for 10 minutes until a precipitate formed.  The reaction mixture was 

allowed to cool to room temperature and the precipitate was collected by filtration and dried 

under reduced pressure resulting in the isolation of 0.88 g (72%) of ketobromide 5.20 as an off-

white solid. 

5.20. Off white solid (1.57 g, 68%); mp = 157-158 °C; TLC Rf = 0.49 (10% ethyl acetate/90% 

hexanes); 
1
H NMR (400 MHz, CDCl3), δ 4.74 (dd, J = 13.6, 6.0 Hz, 1H), 2.63 (dd, J = 12.8, 6.0 

Hz, 1H), 2.42-2.39 (m, 2H), 1.99 (dt, J = 12.8, 3.4 Hz, 1H), 1.88-1.78 (m, 2H), 1.72-1.68 (m, 

1H), 1.55 (app s, 9H), 1.40-1.32 (m, 7H), 1.17-1.08 (m, 8H), 1.03-0.97 (m, 2H), 0.91-0.85 (m, 

8H), 0.81-0.75 (m, 1H), 0.60 (s, 3H). 
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(2R,5S,8R,9S,10S,13R,14S,17R)-2-Azido-10,13-dimethyl-17-((R)-6-methylheptan-2-

yl)tetradecahydro-1H-cyclopenta[a]phenanthren-3(2H)-one (5.23) 

Lit Ref: Heathcock, C. H.; Smith, S. C. Synthesis and Biological Activity Of Unsymmetrical Bis-

Steroidal Pyrazines Related to the Cytotoxic Marine Natural Product Cephalostatin 1. J. Org. 

Chem. 1994, 59, 6828-6839. 

Ketobromide 5.20 (0.50 g, 1.07 mmol) was dissolved in dimethylformamide (20 mL).  NaN3 

(0.08 g, 1.29 mmol) was added and the solution was stirred at room temperature for 4 hours.  The 

solution was then poured over crushed ice and allowed to warm to room temperature. The 

mixture was partitioned between ethyl acetate and water, and the aqueous layer was extracted 

with ethyl acetate (3 x 20 mL).  The combined organic extracts were washed with cold water (2 x 

20 mL), and brine (1 x 20 mL).  The organic extracts were dried over Na2SO4, filtered, and 

concentrated under reduced pressure.  Silica gel chromatography (10% ethyl acetate/90% 

hexanes) was performed, resulting in the isolation of 0.35 g (75%) of 5.23 as a white solid. 

5.23. White solid (0.35 g, 75%); mp 118-121 °C; TLC Rf = 0.46 (10% ethyl acetate/90% 

hexanes); 
1
H NMR (400 MHz, CDCl3), δ 3.98 (dd, J = 12.8, 6.4 Hz, 1H), 2.40-2.11 (m, 3H), 

2.00 (dt, J = 12.6, 3.4 Hz, 1H), 1.86-1.78 (m, 1H), 1.74-1.68 (m, 1H), 1.60-1.48 (m, 4H), 1.41-

1.30 (m, 8H), 1.29-1.23 (m, 2H), 1.18-.1.10 (m, 5H), 1.08 (s, 3H), 1.05-0.96 (m, 3H), 0.91-0.85 

(m, 9H), 0.81-0.74 (m, 1H), 0.67 (s, 3H).  
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Reduction of (2R,5S,8R,9S,10S,13R,14S,17R)-2-Azido-10,13-dimethyl-17-((R)-6-

methylheptan-2-yl)tetradecahydro-1H-cyclopenta[a]phenanthren-3(2H)-one 

Lit Ref: Gonschior, M.; Kötteritzsch, M.; Rost, M.; Schönecker, B.; Wyrwa, R. Synthesis of 

N,N-bis[2-(2-pyridyl)ethyl]amino steroids and related compounds intended as chiral ligands for 

copper ions. Tetrahedron: Asymmetry 2000, 11, 2159-2182. 

A solution of azidoketone 5.23 (2.87 g, 1.66 mmol) in diethyl ether (25 mL) was added to a 

suspension of sodium borohydride (0.37 g, 2.48 mmol) in ether:methanol (250 mL, 4:1). The 

reaction mixture was stirred continuously at room temperature. After approximately 2 h, the 

reaction mixture was quenched by adding saturated sodium bicarbonate solution (25 mL).  The 

reaction mixture was extracted with ether (3 x 25 mL).  The organic layers were collected, dried 

over magnesium sulfate, and concentrated under reduced pressure. The concentrate was purified 

using silica gel chromatography (5% ethyl acetate/95% hexane) to afford 5.24 (1.08 g, 38%) as a 

white foam and 5.25 (0.67 g, 24%) as a clear colorless oil. 

5.24. White foam (1.08 g, 38%); mp = 95-100°C; TLC Rf = 0.18 (5% ethyl acetate/95% 

hexanes); 
1
H NMR (400 MHz, CDCl3), δ 3.46-3.32 (m, 2H), 2.16 (d, J = 2.9 Hz, 1H), 2.03-1.96 

(m, 2H), 1.88-1.78 (m, 1H), 1.74-1.68 (m, 2H), 1.53-1.47 (m, 3H), 1.36-1.24 (m, 9H), 1.16-1.00 

(m, 9H), 0.91-0.85 (m, 14H),0.73-0.67 (m, 1H), 0.65 (s, 3H). 
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5.25. Clear colorless oil (0.67 g, 24%); TLC Rf = 0.27 (5% ethyl acetate/ 95% hexanes); 
1
H 

NMR (400 MHz, CDCl3), δ 3.97 (br s, 1H), 3.56-3.51 (m, 1H), 2.00-1.95 (m, 2H), 1.86-1.75 (m, 

2H), 1.69-1.45 (m, 8H), 1.40-1.21 (m, 8H), 1.18-0.98 (m, 9H), 0.91-0.85 (m, 10H), 0.82 (s, 3H), 

0.65 (s, 3H). 

 

(2R,3R,5S,8R,9S,10S,13R,14S,17R)-3-Hydroxy-10,13-dimethyl-17-((R)-6-methylheptan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthren-2-aminium chloride (5.11) 

A suspension of LiAlH4 (0.05 g, 1.29 mmol) in THF (3 mL) was cooled at 0 
o
C using an 

ice/water bath. A solution of azidoalcohol 5.24 (0.17 g, 0.39 mmol) in THF (3 mL) was added 

dropwise to the cooled suspension. After approximately 10 min, the reaction mixture was 

allowed to warm to room temperature after which it was heated to reflux. After 4h, the reaction 

mixture was cooled to room temperature and diluted with THF (6 mL). The reaction mixture was 

then cooled to 0 
o
C and quenched using the Fieser method.

33
 The quenched reaction mixture was 

filtered through celite, dried over magnesium sulfate, and concentrated under reduced pressure. 

Purfication by column chromatography (1% NH4OH/9% MeOH/90% dichloromethane) resulted 

in the isolation of free amine. The free amine was dissolved in diethyl ether and dry hydrogen 

chloride, produced from reacting sodium chloride with concentrated sulfuric acid, was purged 

into the solution resulting in the formation of a precipitate.  The solution was filtered through 

celite and the precipitate was collected, washed with diethyl ether, and dried under reduced 

pressure to afford 0.05 g (28% over 2 steps) of amine salt x as a white solid. 
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5.11. White solid (0.05 g, 28%); mp = 202 °C (dec); IR (KBr) 3418, 2932, 1655, 1501, 1459 cm
-

1
; 

1
H NMR (400 MHz, MeOD), δ 3.46 (td, J = 10.6, 5.0 Hz, 1H), 3.31 (br s, 2H), 3.08-3.02 (m, 

1H), 2.05-2.02 (m, 2H), 1.87-1.81 (m, 1H), 1.73-1.68 (m, 2H), 1.59-1.50 (m, 3H), 1.39-1.25 (m, 

10H), 1.19-1.02 (m, 10H), 0.94-0.87 (m, 13H), 0.81-0.74 (m, 1H), 0.71 (s, 3H); 
13

C NMR (100 

MHz, CDCl3), δ 56.3, 56.2, 54.0, 53.6, 44.4, 42.3, 40.9, 39.8, 39.3, 36.6, 36.2, 35.9, 34.9, 31.5, 

27.9, 27.7, 27.6, 23.8, 23.5, 21.7, 21.5, 21.1, 17.8, 11.8, 11.1.  Anal. Calcd for C27H50ClNO: C, 

73.68; H, 11.45; N, 3.18. Found: C, 73.86; H, 11.70; N, 2.95. 

 

(2R,3S,5S,8R,9S,10S,13R,14S,17R)-2-Amino-10,13-dimethyl-17-((R)-6-methylheptan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-ol (5.30) 

Lit Ref: Gonschior, M.; Kötteritzsch, M.; Rost, M.; Schönecker, B.; Wyrwa, R. Synthesis of 

N,N-bis[2-(2-pyridyl)ethyl]amino steroids and related compounds intended as chiral ligands for 

copper ions. Tetrahedron: Asymmetry 2000, 11, 2159-2182. 

To a flame dried round bottom flash was added azidoalcohol 5.25 (0.06, 0.13 mmol) and PPh3 

(0.07 g, 0.26 mmol).  Dry THF was added (1 mL) and the reaction mixture was stirred at room 

temperature for 2h.  Water was added (5 mL) and the reaction mixture was refluxed overnight.  

The reaction  mixture was cooled to room temperature and the organic layer was  collected, dried 

over magnesium sulfate and concentrated under reduced pressure.  The resulting material was 

dissolved in  THF and silica gel (0.5 g) was added.  The mixture was stirred at 40 °C for 1h and 

concentrated in vacuo.  Purification  by column chromatography (1% NH4OH/9% MeOH/90% 

dichloromethane) resulted in the isolation of free amine 5.30 (0.05g, 98%). 
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5.30. White solid (0.05g, 98%); mp = 198-202 °C; TLC Rf = 0.47 (10% MeOH/ 90% CH2Cl2); 

1
H NMR (400 MHz, CDCl3), δ 3.72 (br s, 1H), 3.00 (dt, J = 12.0, 4.0 Hz, 1H), 1.95 (dt, J = 12.3, 

4.0 Hz, 2H), 1.83-1.76 (m, 3H), 1.67-1.63 (m, 1H), 1.60-1.45 (m, 7H), 1.34-1.23 (m, 7H), 1.12-

1.06 (m, 7H),   1.02-0.97 (m, 3H), 0.91-0.85 (m, 10H), 0.80 (s, 3H), 0.78-0.71 (m, 1H), 0.64 (m, 

3H); 
13

C NMR (100 MHz, CDCl3), δ 56.4, 56.22, 54.19, 42.6, 41.0, 40.0, 39.5, 38.1, 36.4, 36.2, 

35.8, 35.1, 34.1, 31.9, 29.7, 28.23, 28.21, 28.0, 27.9, 24.2, 23.8, 22.8, 22.6, 20.9, 18.7, 12.5, 12.1. 

 

(2R,3S,5S,8R,9S,10S,13R,14S,17R)-3-Hydroxy-10,13-dimethyl-17-((R)-6-methylheptan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthren-2-aminium chloride (5.12) 

Free amine 5.30 was dissolved in diethyl ether (25 mL).  Dry hydrogen chloride gas, produced 

from reacting sodium chloride with concentrated sulfuric acid, was purged into the solution 

resulting in the formation of a precipitate.  The solution was filtered through celite and the 

precipitate was collected, washed with diethyl ether, and dried under reduced pressure to afford 

0.05 g (95%) of amine salt 5.12 as a white solid. 

5.12. White solid (0.05 g, 95%);  mp = 207°C (dec): IR (KBr) 3438, 2829, 1656, 1451 cm
-1

; 
1
H 

NMR (400 MHz, CD3OD), δ 4.01 (s, 1H), 3.33-3.32 (m, 4H), 2.06-2.03 (m, 1H), 1.89-1.83 (m, 

1H), 1.76-1.72 (m, 2H), 1.65-1.53 (m, 6H), 1.45-1.31 (m, 10H), 1.21-1.12 (m, 5H), 1.08-1.02 (m, 

3H), 0.96-0.88 (m, 12 H), 0.87-0.80 (m, 1H), 0.72 (s, 3H); 
13

C NMR (100 MHz, CD3OD), δ 

64.8, 56.4, 56.2, 54.1 50.1, 42.3, 39.8, 39.3, 37.8, 36.6, 36.3, 35.9, 35.7, 35.0, 34.8, 31.6, 27.9, 
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27.7, 27.4, 23.5, 21.8, 21.5, 20.6, 17.8, 11.1, 10.9. Anal. Calcd for C27H50ClNO: C, 73.68; H, 

11.45; N, 3.18. Found: C, 74.08; H, 11.70; N, 2.95. 

 

(2R,3S,5S,8R,9S,10S,13R,14S,17R)-2,3-Diazido-10,13-dimethyl-17-((R)-6-methylheptan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthrene (5.31) 

Azidoalcohol 5.24 (0.21 g, 0.48 mmol) was dissolved in pyridine (2 mL). Methanesulfonyl 

chloride (0.07 mL, 0.82 mmol) was added dropwise and the reaction mixture was stirred for 24 

h. Water (5 mL) was added and the quenched reaction mixture was extracted with DCM (20 

mL). The organic layers were collected, washed with hydrochloric acid (2 x 10 mL, 6 M) 

followed by sat. sodium bicarbonate (2 x 10 mL) and water (2 x 10 mL). The solution was dried 

over sodium sulfate and concentrated under reduced pressure to afford the corresponding crude 

azidomesylate.  The azidomesylate was dissolved in DMF (2 mL) and sodium azide (0.53 g, 0.82 

mmol) was added.  The reaction mixture was stirred for 20h at 100 °C.  The reaction mixture was 

cooled and poured over crushed ice.  The resulting mixture was extracted with ethyl acetate (3 x 

10 mL).  The organic layer was washed with H2O, (1 x 10 mL).  The organic layer was dried 

over sodium sulfate and concentrated under reduced pressure.  Purification by column 

chromatography (10% ethyl acetate/90% hexanes) resulted in the isolation of 0.30 g (68% over 

two steps) of the product 5.31 as a white solid. 

5.31. White solid (0.23 g, 68%); mp = 98-100 °C; IR (KBr) 2938, 2870, 2851, 2080, 1460 cm
-1

;
 

1
H NMR (400 MHz, CDCl3), δ 3.91-3.90 (m, 1H), 3.49 (dt, J = 12.5, 4.0 Hz, 1H), 1.98 (dt, J = 
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12.3, 3.0 Hz, 1H), 1.84-1.77 (m, 2H), 1.69-1.65 (m, 1H), 1.58-0.80 (m, 37H), 0.65 (s, 3H); 
13

C 

NMR (100 MHz, CDCl3), δ 61.8, 58.8, 56.3, 36.2, 54.0, 42.6, 39.8, 39.5, 39.1, 37.4, 36.8, 36.2, 

35.8, 34.9, 32.5, 31.6, 28.2, 28.0, 27.5, 24.2, 23.8, 22.8, 22.6, 20.9, 18.7, 12.6, 12.1. Anal. Calcd 

for C27H46N6: C, 71.32; H, 10.20; N, 18.48. Found: C, 71.60; H, 10.43; N, 18.69. 

 

(2R,3S,5S,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-2,3-diaminium chloride (5.13) 

To a flame dried round bottom flask was added diazide 5.31 (0.08 g, 0.2 mmol) and 10% Pd/C 

(0.02 g, 0.02 mmol).  A balloon filled with hydrogen gas was added to the reaction vessel and 

MeOH (5 mL) was added carefully.  The reaction mixture was stirred at room temperature for 90 

min.  The reaction mixture was filtered through celite and washed through with methanol.  The 

filtrate was dried over sodium sulfate, filtered, and concentrated under reduced pressure.  The 

resulting powder was dissolved in diethyl ether (20 mL).  Dry hydrogen chloride gas, produced 

from reacting sodium chloride with concentrated sulfuric acid, was purged into the solution 

resulting in the formation of a precipitate.  The solution was filtered through celite and the 

precipitate was collected, washed with diethyl ether, and dried under reduced pressure to afford 

0.06 g (24% over two steps) of amine salt 5.13 as a white solid. 

5.13.  White solid (0.06 g, 24%); %); mp = 183 °C (dec); IR (KBr) 3429, 2932, 1657, 1459, 1251 

cm
-1

;
 1

H NMR (300 MHz, MeOD), δ 3.70 (br s, 1H), 3.61-3.57 (m, 1H), 1.97-1.87 (m, 2H), 1.67-

0.90 (m, 27H), 0.85-0.83 (m, 8H), 0.79-0.77 (m, 10H), 0.61 (s, 3H); 
13

C NMR (75 MHz, CDCl3), 

δ 56.24, 56.16, 53.2, 49.3, 42.3, 39.7, 39.2, 38.0, 36.8, 36.0, 35.9, 35.7, 34.8, 31.2, 30.7, 27.8, 
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27.7, 26.9, 23.7, 23.5, 21.8, 21.5, 20.6, 17.8, 11.2, 11.1. Anal. Calcd for C27H52Cl2N2: C, 68.18; 

H, 11.02; N, 5.89. Found: C, 68.58; H, 10.64; N, 5.86. 

 

(2R,3R,5S,8R,9S,10S,13R,14S,17R)-2,3-Diazido-10,13-dimethyl-17-((R)-6-methylheptan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthrene (5.33) 

In a round bottom flask, azidoalcohol 5.25 (1.08 g, 2.45 mmol) was dissolved in pyridine (10 

mL). Methanesulfonyl chloride (0.34 mL, 4.17 mmol) was added dropwise and the reaction 

mixture was stirred for 24h. Water (10 mL) was added and the quenched reaction mixture was 

extracted with DCM (20 mL). The organic layers were collected, washed with hydrochloric acid 

(2 x 20 mL, 6 M) followed by sat. sodium bicarbonate (2 x 10 mL) and water (2 x 10 mL). The 

solution was dried over sodium sulfate and concentrated under reduced pressure to afford the 

corresponding crude azidomesylate The azidomesylate was dissolved in DMF (10 mL) and 

sodium azide (0.26 g, 3.98 mmol) was added.  The reaction mixture was stirred for 20h at 100°C.  

The reaction mixture was cooled and poured over crushed ice.  The resulting mixture was 

extracted with ethyl acetate (5 x 10 mL).  The organic layer was washed with H2O, (1 x 10 mL).  

The organic layer was dried over sodium sulfate and concentrated under reduced pressure.  

Purification by column chromatography (10% ethyl acetate/90% hexanes) resulted in the 

isolation of the diazide 5.33 (0.42 g, 37% over two steps) as a white solid. 

5.33. White solid (0.42 g, 37%); mp 80-81 °C; IR (KBr) 2930, 2853, 2097, 1257 cm
-1

; 
1
H NMR 

(300 MHz, MeOD), δ 3.39-3.30 (m, 1H), 3.21 (td, J = 11.5, 5.1 Hz, 1H), 2.05 (dd, J = 12.9, 4.5 

Hz, 1H), 1.98 (dt, J = 12.7, 3.3 Hz, 1H), 1.84-1.66 (m, 3H), 1.56-1.41 (m, 5H), 1.33-0.99 (m, 
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16H), 0.91-0.83 (m, 14H), 0.73-0.67 (m, 1H), 0.65 (s, 3H); 
13

C NMR (75 MHz, CDCl3), δ 44.5, 

43.0, 42.6, 39.8, 39.5, 36.7, 36.2, 35.8, 34.9, 33.2, 31.7, 28.2, 28.0, 27.8, 24.2, 23.8, 22.8, 22.6, 

21.2, 18.7, 12.9, 12.1. Anal. Calcd for C27H46N6: C, 71.32; H, 10.20; N, 18.48. Found: C, 71.73; 

H, 10.09; N, 18.33. 

 

(2R,3R,5S,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-

yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-2,3-diaminium chloride (5.14) 

To a flame dried round bottom flask was added diazide 5.33 (0.20 g, 0.44 mmol) and 10% Pd/C 

(0.47 g, 0.04 mmol).  A balloon filled with hydrogen gas was added to the reaction vessel and 

MeOH (5 mL) was added carefully.  The reaction mixture was stirred at room temperature for 90 

min.  The reaction mixture was filtered through celite and washed through with methanol.  The 

filtrate was dried over sodium sulfate, filtered, and concentrated under reduced pressure.  The 

resulting powder was dissolved in diethyl ether (30 mL).  Dry hydrogen chloride gas, produced 

from reacting sodium chloride with concentrated sulfuric acid, was purged into the solution 

resulting in the formation of a precipitate.  The solution was filtered through celite and the 

precipitate was collected, washed with diethyl ether, and dried under reduced pressure to afford 

0.04 g (20% over two steps) of amine salt 5.14 as a white solid. 

5.14. White solid (0.05g 20%); mp = 211 °C (dec); IR (KBr) 3423, 2951, 1656, 1491 cm
-1

; 
1
H 

NMR (300 MHz, CD3OD), δ 3.43-3.36 (m, 1H), 3.27-3.23 (m, 1H), 2.06 (dd, J = 12.5, 3.0 Hz, 

1H), 1.94 (dt, J = 12.6, 4.0 Hz, 1H), 1.78-1.69 (m, 2H), 1.67-1.62 (m, 1H), 1.58-1.48 (m, 2H), 

1.30-1.14 (m, 12H), 1.09-0.67 (m, 22H), 0.61 (s, 3H); 
13

C NMR (75 MHz, CDCl3), δ 56.22, 
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56.19, 53.5, 52.4, 49.8, 43.8, 42.3, 41.4, 39.7, 39.3, 36.1, 35.9, 35.7, 34.8, 31.6, 31.2, 27.8, 27.7, 

27.1, 23.7, 23.5, 21.7, 21.5, 20.9, 17.7, 11.3, 11.0. Anal. Calcd for C27H52Cl2N2: C, 68.18; H, 

11.02; N, 5.89. Found: C, 68.52; H, 10.75; N, 5.53. 

 

(3S,8S,9S,10R,13R,14S,17S)-17-Ethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-

10,13-dimethyl-1H-cyclopenta[a]phenanthren-3-ol (5.36) 

Lit. Ref: Lichtfouse, E.; Albrecht, P. Lichtfouse, E.; Albrecht, P. Synthesis of triaromatic steroid 

hydrocarbons Methylated at Position 2, 3 or 6: Molecular Fossils of Yet Unknown Biological 

Origin. Tetrahedron 1994, 50, 1731-1744. 

KOH (1.59 g, 28.39 mmol) was suspended in ethylene glycol (15 mL) and the reaction mixture 

was warmed to reflux until the KOH dissolved.  The solution was allowed to cool to room 

temperature, and pregnenolone 5.35 (3.00 g, 9.49 mmol) was added followed by hydrazine 

monohydrate (1.23 mL, 21.03 mmol).  The reaction mixture was heated to reflux and stirred 

overnight.  The mixture was then allowed to cool to room temperature and brine (600 mL) was 

added. The suspension was then extracted with ethyl acetate (7 x 100 mL).  The organic layers 

were collected, combined, dried over MgSO4, filtered, and concentrated under reduced pressure. 

The residue was purified by silica gel chromatography (20% ethyl acetate/80% hexanes) 

resulting in the isolation of 2.44 g (85%) of 5.36 as a white powder. 

5.36.  mp 126-128 °C (chloroform); []D - 4.88 ( c 11.5, CH2Cl2); TLC Rf = 0.29 (20% ethyl 

acetate/80% hexanes); IR (CHCl3) 3497, 2942, 1638 cm
-1

; 
1
H NMR (300 MHz, CDCl3)  5.36-
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5.35 (m, 1H), 3.58-3.48 (m, 1H), 2.34-2.18 (m, 2H), 2.04-1.72 (m, 5H), 1.66-1.35 (m, 9H), 1.22-

1.04 (m, 5H), 1.01 (s, 4H), 0.90-0.82 (m, 4H), 0.58 (s, 3H). 

 

(3R,8S,9S,10R,13R,14S,17S)-3-Azido-17-ethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-10,13-dimethyl-1H-cyclopenta[a]phenanthrene (5.37) 

Lit. Ref: Cave, A.; Jarreau, F. X.; Khuong Huu, Q.; Leboeuf, M.; Serban, N.; Goutarel, R., 

Steroid alkaloids. LVIII. Influence of the nature of aprotic polar solvents on the stereochemistry 

and the mechanism of azidolysis of 3β-tosyloxy-Δ5 steroids. Application to a synthesis of 3α-

amino-Δ5-steroids. Bull. Soc. Chim. Fr. 1967, 701-706. 

To a flame dried round bottom flask under argon was added 5.36 (0.30 g, 1.00 mmol), PPh3 

(0.39 g, 1.49 mmol) and benzene (4 mL).  DIAD (0.19 mL, 1.00 mmol) and (PhO)2PON3 (0.22 

mL, 1.00 mmol) were then added to the solution.  The reaction mixture was stirred at room 

temperature for 24 h.  Additional PPh3 (0.39 g, 1.49 mmol), DIAD (0.19 mL, 1.00 mmol), and 

(PhO)2PON3 (0.22 mL, 1.00 mmol) were added after TLC showed that starting material 

remained.  The reaction mixture was allowed to stir at room temperature for 2 h, until TLC 

showed that all starting alcohol 5.36 was consumed.  The solution was concentrated in vacuo, 

and the residue was purified by silica gel chromatography (10% ethyl acetate/90% hexanes) 

resulting in the isolation of 0.28 g (84%) of azide 5.37 as a white powder. 

5.37.  mp 121-122 °C (chloroform); []D - 0.11 ( c 8.0, CH2Cl2); TLC Rf = 0.53 (3% ethyl 

acetate/97% hexanes); IR (CHCl3) 2943, 2111, 2082, 1651 cm
-1

; 
1
H NMR (300 MHz, CDCl3)  
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5.42-5.39 (m, 1H), 3.89 (t, J = 2.9 Hz, 1H), 2.57-2.49 (m, 1H), 2.19 (dt, J = 15.0, 2.8 Hz, 1H), 

2.05-1.94 (m, 1H), 1.89-1.83 (m, 1H) 1.80-1.72 (m, 2H), 1.70-1.34 (m, 8H), 1.25-1.03 (m, 6H), 

1.01 (s, 3H), 0.96-0.83 (m, 5H), 0.58 (s, 3H). 

 

(3R,8S,9S,10R,13R,14S,17S)-17-Ethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-

10,13-dimethyl-1H-cyclopenta[a]phenanthren-3-amine (5.38) 

Lit. Ref: Cave, A.; Jarreau, F. X.; Khuong Huu, Q.; Leboeuf, M.; Serban, N.; Goutarel, R., 

Steroid alkaloids. LVIII. Influence of the nature of aprotic polar solvents on the stereochemistry 

and the mechanism of azidolysis of 3β-tosyloxy-Δ5 steroids. Application to a synthesis of 3α-

amino-Δ5-steroids. Bull. Soc. Chim. Fr. 1967, 701-706. 

To a flame dried flask purged with argon was added 5.37 (2.00 g, 6.11 mmol) followed by THF 

(200 mL).  The reaction mixture was cooled to 0
o
C in an ice bath and solid LiAlH4 (2.31 g, 61.11 

mmol) was added slowly.  The reaction mixture was removed from the ice bath and allowed to 

stir for 24 h.  The solution was then cooled to 0 
o
C in an ice bath and quenched with H2O (10 

mL) and 15% NaOH (10 mL).  More H2O (15 mL) was then added until the solution turned to a 

cloudy white suspension. The reaction mixture was vacuum filtered and extracted with ethyl 

acetate (5 x 50 mL).  The combined organic layers were washed with brine (2 x 50 mL), dried 

with MgSO4, filtered, and concentrated under reduced pressure.  The residue was purified using 

silica gel chromatography (95% CH2Cl2/4% MeOH/1% NH4OH) providing 0.85 g (46 %) of 

5.38 as an off white solid. 
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5.39.  mp 86-88 °C (chloroform); []D - 7.50 ( c 9.5, CH2Cl2); TLC Rf = 0.83 (95% CH2Cl2/4% 

MeOH/1% NH4OH); IR (CHCl3) 3375, 2934, 2854, 1584 cm
-1

; 
1
H NMR (300 MHz, CDCl3)  

5.36-5.35 (m, 1H), 0.54-0.34 (m, 1H) 3.15 (br, s, 1H), 2.60-2.55 (m, 1H), 2.01-1.33 (m, 15H), 

1.22-1.03 (m, 5H), 1.00 (s, 4H) 0.89-0.74 (m, 4H), 0.57 (s, 3H).   

 

(3R,8S,9S,10R,13R,14S,17S)-17-Ethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-

10,13-dimethyl-1H-cyclopenta[a]phenanthren-3-aminium chloride (K111) 

The –amine 5.38 (1.05 g, 3.49mmol) was dissolved in diethyl ether (50 mL). Dry hydrogen 

chloride gas, produced from reacting sodium chloride with concentrated sulfuric acid, was 

purged into the solution resulting in the formation of a precipitate. The solution was filtered and 

the precipitate was collected, washed with diethyl ether, and dried under vacuum to afford 0.79 g 

(69%) of amine salt K111 as a tan powder. 

K111.  mp 283-285 °C (diethyl ether); []D - 3.25 ( c 10.5, DMSO); IR (CH3OH) 3431, 2944, 

2519, 2238, 2075, 1643 cm
-1

; 
1
H NMR (300 MHz, CD3OD)  7.69 (br s, 3H), 5.36-5.35 (m, 1H), 

3.39-3.34 (m, 1H), 2.61-256 (m, 1H), 2.08-1.02 (m, 21H), 0.95 (s, 3H), 0.84 (t, J = 7.4 Hz, 3H), 

0.54 (s, 3H);  
13

C NMR (75 MHz, CDCl3) 50.2, 41.9, 37.8, 37.2, 34.9, 

32.2, 31.9, 31.8, 28.0, 24.4, 22.9, 20.4, 18.0, 12.5, 11.9, 11.6. Anal calcd for C21H36ClN: C, 

74.63; H, 10.74; N, 4.14.  Found: C, 74.44; H, 10.87, N, 4.55. 
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5–Androstan–3–ol (5.40) 

KOH (4.76 g, 84.58 mmol) was suspended in ethylene glycol (30 mL) and the reaction mixture 

was warmed to reflux until the KOH dissolved.  The solution was allowed to cool to room 

temperature, and epiandrosterone 5.39 (6.00 g, 20.63 mmol) was added followed by hydrazine 

monohydrate (3.10 mL, 61.89 mmol).  The reaction mixture was heated back to reflux and 

stirred overnight.  The resulting solution was allowed to cool to room temperature and brine (600 

mL) was added. The layers were then separated, and the aqueous layer was extracted with 

methyl tert-butyl ether (7 x 200 mL).  The organic layers were collected, combined, dried over 

MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel 

chromatography (20% ethyl acetate/80% hexanes) providing 4.78 g (83%) of 5.40 as a white 

solid. 

5.40. mp = 149-151 
o
C (CH2Cl2); TLC Rf = 0.33 (ethyl acetate 20%/hexane 80%); IR (KBr) 

3350, 2930, 2845, 1447, 1377, 1133 cm
–1

; 
1
H NMR (300 MHz, CDCl3)  3.59 (hept, J = 4.9 Hz, 

1H), 1.84–1.76 (m, 1H), 1.75–1.71 (m, 2H), 1.70–1.65 (m, 2H), 1.64–1.62 (m, 1H), 1.60–1.58 

(m, 1H), 1.57–1.55 (m, 1H), 1.52–1.50 (m, 1H), 1.48–1.47 (m, 1H), 1.46–1.44 (m, 1H), 1.43–

1.37 (m, 2H), 1.36–1.32 (m, 1H), 1.29–1.22(m, 4H), 1.17–1.10 (m, 4H), 0.98-0.83 (m, 3H), 0.80 

(s, 3H), 0.69 (s, 3H), 0.66–0.60 (m, 1H); 
13

C NMR (75 MHz, CDCl3)  71.6, 54.8, 54.7, 45.1, 

41.0, 40.6, 39.1, 38.4, 37.3, 36.1, 35.8, 32.7, 31.7, 29.0, 25.7, 21.5, 20.7, 17.7, 12.6. 
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(5S,8S,9S,10S,13S,14S)–10,13–Dimethyltetradecahydro–1H–cyclopenta[a]phenanthren–

3(2H)–one (5.41) 

Lit. Ref: Norden, S.; Bender, M.; Rullkötter, J.; Christoffers, J. Androstanes with Modified 

Carbon Skeletons. Eur. J. Org. Chem. 2011, 2011, 4543-4550. 

To pyridinium chlorochromate (7.48 g, 34.79 mmol) dissolved in dichloromethane (30 mL) was 

added 5.40 (4.78 g, 17.32 mmol) followed by silica gel (7.48 g).  The reaction mixture was 

stirred at room temperature overnight.  The resulting suspension was filtered through a plug of 

silica gel with dichloromethane until no more product was observed in the filtrate by TLC.  The 

solvent was removed in vacuo resulting in the isolation of 4.70 g (99%) of 5.41 as a white 

powder. 

5.41. TLC Rf = 0.39 (20% ethyl acetate/80% hexanes); 
1
H NMR (300 MHz, CDCl3)  2.40–2.22 

(m, 3H), 2.11–1.98 (m, 2H), 1.77–1.69 (m, 2H), 1.67–1.61 (m, 2H), 1.60–1.50 (m, 3H), 1.49–1.3 

8 (m, 2H), 1.38–1.30 (m, 4H), 1.21–1.08 (m, 3H), 1.01 (s, 3H), 0.99–0.87 (m, 2H), 0.75 (dd, J = 

10.7, 4.2 Hz, 1H), 0.72 (s, 3H); 
13

C NMR (75 MHz, CDCl3)  210.7, 54.0, 53.8, 46.4, 44.3, 40.5, 

40.1, 38.5, 38.3, 37.8, 35.4, 35.4, 31.8, 28.7, 25.2, 21.2, 20.2, 17.2. 
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(2R,5S,8S,9S,10S,13S,14S)–2–Azido–10,13–dimethyltetradecahydro–1H–

cyclopenta[a]phenanthren–3(2H)–one (5.42) 

Ketone 5.41 (0.82 g, 3.00 mmol) was dissolved in acetic acid (30 mL)  The solution was warmed 

to 50 
o
C in an oil bath and pyridinium tribromide (0.96 g, 3.00 mmol) was added.  The reaction 

was stirred at 50 
o
C for 30 minutes until a precipitate formed.  The reaction mixture was allowed 

to cool to room temperature and the precipitate was collected by filtration and dried under 

reduced pressure resulting in the isolation of 0.72 g (68%) of ketobromide 5.42 as an off-white 

solid. 

5.42. mp = 198-204 
o
C (CHCl3); TLC Rf = 0.92 (10% ethyl acetate/90% hexanes); IR (KBr) 

2924, 2865, 2846, 1716, 1656, 1311 cm
–1

;  = +29.2 (c 1.13, DCM); 
1
H NMR (300 MHz, 

CDCl3)  4.75 (dd, J = 13.4, 6.3 Hz, 1H), 2.65 (dd, J = 12.6, 6.3 Hz, 1H), 2.43–2.40 (m, 2H), 

1.84 (d, J = 13.4 Hz, 1H), 1.78–1.76 (m, 1H), 1.73–1.71 (m, 1H), 1.67–1.53 (m, 6H), 1.48–1.41 

(m, 2H), 1.39–1.33 (m, 2H), 1.31–1.28 (m, 1H), 1.19–1.13 (m, 2H), 1.09 (s, 3H), 1.02–0.86 (m, 

2H), 0.84–0.77 (m, 1H), 0.72 (s, 3H); 
13

C NMR (75 MHz, CDCl3)  201.5, 54.9, 54.4, 54.1, 

52.1, 47.7, 44.2, 41.1., 40.5, 39.4, 38.8, 35.5, 32.1, 28.7, 25.7, 21.8, 20.7, 17.8, 12.4. 

  1.19

D
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2R–Azido–10,13–dimethylhexadecahydro–1H–cyclopenta[a]phenanthren–3S–ol (5.43) 

Ketobromide 5.42 (0.36 g, 1.01 mmol) was dissolved in dimethylformamide (20 mL).  NaN3 

(0.08 g, 1.20 mmol) was added and the solution was stirred at room temperature for 4 h.  The 

solution was poured over crushed ice and allowed to warm to room temperature. The mixture 

was partitioned between ethyl acetate and water, and the aqueous layer was extracted with ethyl 

acetate (3 x 20 mL).  The combined organic extracts were washed with cold water (2 x 20 mL), 

and brine (1 x 20 mL).  The organic extracts were dried over Na2SO4, filtered, and concentrated 

under reduced pressure.  Silica gel chromatography (10% ethyl acetate/90% hexanes) was 

performed, resulting in the isolation of 0.17 g (56%) of 5.43 as a white powder. 

5.43. mp = 131-132 
o
C (ethyl alcohol); TLC Rf = 0.63 (20% ethyl acetate/80% hexanes); IR 

(KBr) 2928, 2833, 2105, 1714, 1282, 1156 cm
–1

;  = +54.8 (c 1.00, DCM); 
1
H NMR (300 

MHz, CDCl3)  3.98 (dd, J = 13.1, 6.4 Hz, 1H), 2.42–2.21 (m, 3H), 1.77–1.70 (m, 2H), 167–1.55 

(m, 6H), 1.47–1.25 (m, 6H), 1.19–1.13 (m, 2H), 1.09 (s, 3H), 1.01–1.87 (m, 2H), 0.84–0.76 (m, 

1H), 0.71 (s, 3H); 
13

C NMR (75 MHz, CDCl3)  205.5, 64.2, 54.4, 54.2,47.9, 45.8, 44.0, 41.1, 

40.5, 38.8, 37.3, 35.4, 32.1, 28.7, 25.7, 21.8, 20.7, 17.7, 12.8. 

  4.21

D
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2R–Azido–10,13–dimethylhexadecahydro–1H–cyclopenta[a]phenanthren–3S–ol (5.44) 

To a flame dried round bottom flask was added, ketoazide 5.43 (0.12 g, 0.39 mmol) and 

tetrahydrofuran (8 mL).  The reaction mixture was cooled to -78 
o
C in a dry ice/acetone bath and 

1 M L-selectride in THF (0.60 mL, 0.60 mmol) was added dropwise.  The mixture was stirred at 

-78 
o
C for 2 h.  The reaction mixture was then transferred to an ice/water bath and quenched with 

sat. aq. NH4Cl (8 mL).  The aqueous layer was extracted with ethyl acetate (3 x 10 mL), and the 

combined organic extracts were dried over Na2SO4, filtered, and concentrated under reduced 

pressure.  Silica gel chromatography (10% ethyl acetate/90% hexanes) provided 88 mg (70%) of 

5.44 as an off-white solid. 

5.44. mp = 76-81 
o
C (CH2Cl2); TLC Rf = 0.69 (20% ethyl acetate/80% hexanes); IR (KBr) 3435, 

2927, 2099, 1451, 1248, 1038 cm
–1

;  = –60.7 (c 10.94, DCM);
 1

H NMR (300 MHz, 

CDCl3)  3.97-3.95 (br s, 1H), 3.53 (ddd, J = 12.5, 4.6, 3.0, Hz, 1H), 1.95 (br s, 1H), 1.81–1.73 

(m, 3H), 1.63–1.53 (m, 5H), 1.51–1.38 (m, 3H), 1.32–1.22 (m, 3H), 1.21–1.07 (m, 4H), 1.02–

0.85 (m, 3H), 0.82 (s, 3H), 0.69 (s, 3H); 
13

C NMR (75 MHz, CDCl3)  68.2, 61.2, 54.6, 54.6, 

41.0, 40.6, 38.9, 38.3, 37.2, 37.1, 35.6, 34.5, 32.4, 27.9, 25.7, 21.2, 20.7, 17.8, 12.5.    

  8.20

D
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(2R,3S,5S,8S,9S,10S,13S,14S)–3–Hydroxy–10,13–dimethylhexadecahydro–1H–

cyclopenta[a]phenanthren–2–aminium chloride (K141) 

A suspension of lithium aluminum hydride (0.55 g, 14.42 mmol) in tetrahydrofuran (31 mL) in a 

round bottom flask was cooled to 0 
o
C using an ice/water bath.  A solution of azide 5.44 (1.37 g, 

4.34 mmol) in tetrahydrofuran (31 mL) was added slowly.  The solution was stirred  at 0 
o
C for 

10 min and then warmed slowly to reflux.  The mixture was stirred at reflux for 4 h and allowed 

to cool to room temperature.  The reaction mixture was then diluted with tetrahydrofuran (62 

mL) and cooled to 0 
o
C in an ice/water bath.  H2O (3 mL), and 15% NaOH (3 mL) were added 

followed by additional H2O (9 mL).  The reaction mixture was filtered through celite and the 

salts were washed with diethyl ether (40 mL).  The filtrate was concentrated under reduced 

pressure, and the organic residue was dissolved in a mixture of ether (30 mL) and chloroform (30 

mL).  The mixture was filtered through celite to remove any undissolved solids. The filtrate was 

concentrated under reduced pressure and the resulting solid was dissolved in ether (100 mL).    

Dry hydrogen chloride gas, produced from reacting sodium chloride with concentrated sulfuric 

acid, was purged into the solution resulting in the formation of a precipitate. The solution was 

filtered through celite and the precipitate was collected, washed with diethyl ether, and dried 

under reduced pressure to afford 0.58 g (40% over 2 steps) of amine salt K141 as a pale yellow 

powder. 

K141. mp = 235 
o
C (diethyl ether) (dec.); IR (KBr) 3399, 3043, 2926, 1970, 1600, 1085 cm

–1
; 

 = +17.4 (c 0.33, methanol); 
1
H NMR (300 MHz, CD3OD)  4.59 (bs, 1H), 3.98 (s, 1H),   8.22

D
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1.77–1.74 (m, 3H), 1.67–1.64 (m, 2H), 1.62–1.51 (m, 5H), 1.48–1.33 (m, 5H), 1.29–1.27 (m, 

2H), 1.19–1.14 (m, 2H), 1.02–0.92 (m, 2H), 1.02-0.92 (m, 2H), 0.88 (s, 3H), 0.84-0.79 (m, 1H), 

0.73 (s, 3H); 
13

C NMR (75 MHz, CD3OD)  66.3, 51.6, 42.1, 41.6, 40.1, 39.4, 38.2, 38.0, 36.9, 

36.4, 33.6, 29.0, 26.6, 22.2, 21.5, 18.1, 12.5. Anal calcd for C19H34OClN: C, 69.59; H, 10.45; N, 

4.27.  Found: C, 69.85; H, 10.20, N, 4.21. 

 

2-(Hydroxy(2-phenylbenzo[h]quinolin-4-yl)methyl)piperidin-1-ium chloride (5.16•HCl) 

Lit Ref: Buchman, E. R.; Howton, D. R. Potential antimalarials. (2-Phenyl-7,8-benzo-4-

quinolyl)- 2-piperidylcarbinols. J. Org. Chem. 1949, 14, 895-899. 

Amine 5.16 (1.37 g, 3.72 mmol) was suspended in 100 mL diethyl ether and anhydrous 

hydrogen chloride (2M in diethyl ether, 4.0 mL, 8.0 mmol) was added. The resulting precipitate 

was collected by vacuum filtration, suspended in 100 mL ethanol, and filtered again to provide 

900 mg (60%) amine hydrochloride salt 5.16•HCl as a white solid.  

5.16ˑHCl. mp = 258 °C (dec.); IR (KBr) 3280, 2936, 2854, 2710, 1589, 1377, 1106, 832, 698 

cm
-1

; 
1
H NMR (300 MHz, DMSO-d6) δ 9.65 (d, J = 12.8 Hz, 1H), 9.43-9.37 (m, 1H), 8.39 (d, J 

= 10.4 Hz, 3H), 8.32 (s, 1H), 8.24 (d, J = 9.6 Hz, 1H), 8.10-8.06 (m, 1H), 8.03 (d, J = 12.8 Hz, 

1H), 7.84-7.75 (m, 2H), 7.65-7.58 (m, 2H), 7.57-7.50 (m, 1H), 6.60 (d, J = 4.2 Hz, 1H), 5.90 (s, 

1H), 3.52-3.39 (m, 1H), 3.09-2.94 (m, 1H), 1.79-1.52 (m, 4H), 1.37-1.19 (m, 2H); 
13

C NMR (75 

MHz, DMSO-d6) δ 153.8, 147.3, 145.2, 138.7, 132.9, 131.0, 129.5, 128.9, 128.4, 127.8, 127.6, 



 
 

 186 

127.1, 126.9, 124.3, 121.7, 120.9, 116.3, 67.5, 58.7, 44.0, 21.6, 21.1, 20.8. Anal. Calcd for 

C25H25ClN2O: C, 74.15; H, 6.22; N, 6.92. Found: C, 74.19; H, 5.95; N, 6.82. 

 

(2-Phenylbenzo[h]quinolin-4-yl)(piperidin-2-yl)methanol (5.16) 

Epoxide 5.65 (3.00 g, 6.00 mmol) was dissolved in a mixture of 30 mL ethanol and 30 mL THF. 

Hydrazine hydrate (600 µL, 12.4 mmol) was added and the reaction was refluxed for 2 hours. 

The reaction was concentrated under vacuum to provide a crude mixture of product and 

byproducts. Silica gel chromatography (90% dichloromethane / 9% methanol / 1% NH4OH) 

provided the free amine as a brown solid with some orange colored impurities. The mixture was 

suspended in 30 mL methanol and filtered to provide amine 5.16 (1.37 g, 62%) as a tan solid.  

5.16. mp = 175 °C (dec.); TLC Rf = 0.20 (90% dichloromethane / 9% methanol / 1% NH4OH); 

IR (KBr) 3286, 3060, 2932, 2851, 2744, 1590, 1443, 1382, 1107, 1048, 885, 700 cm
-1

; 
1
H NMR 

(300 MHz, DMSO-d6) δ 9.42- 9.38 (m, 1H), 8.41-8.38 (m, 2H), 8.30 (s, 1H), 8.16 (d, J = 9.3 Hz, 

1H), 8.06-8.03 (m, 1H), 7.95 (d, J = 9.2 Hz, 1H), 7.82-7.73 (m, 2H), 7.65-7.59 (m, 2H), 7.56- 

7.50 (m, 1H), 5.73 (br s, 1H), 5.34 (br s, 1H), 2.96-2.86 (m, 2H), 2.54-2.40 (m, 1H), 1.74-1.66 

(m, 1H), 1.59-1.51 (m, 1H), 1.48-1.40 (m, 1H), 1.34-1.14 (m, 3H); 
13

C NMR (100 MHz, 

DMSOd6) δ 153.8, 150.3, 145.3, 139.0, 133.0, 131.3, 129.4, 129.0, 128.3, 127.8, 127.0, 126.9, 

124.5, 122.8, 121.6, 116.9, 72.2, 61.4, 46.5, 26.7, 26.0, 24.1 (One signal in the aromatic region 

was not resolved). Anal. Calcd for C25H24N2O: C, 81.49; H, 6.57; N, 7.60. Found: C, 81.16; H, 

6.24; N, 7.83. 
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2-((2-(Adamantan-1-yl)-6,8-dichloroquinolin-4-yl)(hydroxy)methyl)piperidin-1-ium 

chloride  (5.15ˑHCl)  

Lit Ref: Novotny, J.; Collins, C. H.; Starks, F. W. Synthesis and screening of potential 

antimalarial agent alpha -(2-piperidyl)-2-(1-adamantyl)-6,8-dichloro-4- quinolinemethanol 

hydrochloride. J. Pharm. Sci. 1974, 63, 1264-1267. 

Amine 5.15 (678 mg, 1.52 mmol) was suspended in diethyl ether and anhydrous hydrogen 

chloride (2M in diethyl ether, 1.6 mL, 3.2 mmol) was added. The resulting precipitate was 

collected by vacuum filtration, re-suspended in 25 mL diethyl ether with 25 mL of ethanol added 

and filtered again to provide 440 mg (60%) of 5.15ˑHCl as a white solid.  

5.15ˑHCl. mp = 202 °C (dec.); IR (film) 3271, 2904, 2847, 1595, 1451, 1130 cm
-1

; 
1
H NMR 

(300 MHz, DMSO-d6) δ 10.15 (d, J = 9.5 Hz, 1H), 8.52 (d, J = 2.1 Hz, 1H), 8.46-8.35 (m, 1H), 

8.05 (d, J = 2.1 Hz, 1H), 7.85 (s, 1H), 6.57 (d, J = 4.5 Hz, 1H), 5.85 (s, 1H), 3.31-3.20 (m, 2H), 

2.94 (q, J = 11.5 Hz, 1H), 2.12 (br s, 3H), 2.06 (br s, 6H), 1.78 (br s, 6H), 1.72-1.53 (m, 4H), 

1.33- 1.12 (m, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 168.8, 146.4, 141.6, 134.6, 130.4, 129.4, 

125.2, 121.9, 117.5, 67.6, 58.4, 44.1, 41.1, 39.8, 36.2, 28.0, 21.7, 21.0, 20.7. Anal. Calcd for 

C25H31Cl3N2O: C, 62.31; H, 6.48; N, 5.81. Found: C, 62.03 H, 6.36; N, 6.22. 
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(2-(Adamantan-1-yl)-6,8-dichloroquinolin-4-yl)(piperidin-2-yl)methanol (5.15)  

Epoxide 5.57 (2.50 g, 4.34 mmol) was dissolved in 15 mL ethanol. Hydrazine hydrate (632 µL, 

13.0 mmol) was added and the mixture was refluxed for 3 hours. After cooling to room 

temperature, the mixture was concentrated under vacuum and purified by silica gel 

chromatography (90% dichloromethane / 9% methanol / 1% NH4OH) to provide 983 mg of 

amine 5.15 (51%) as a beige solid.  

5.15. mp = 180 °C (dec.); TLC Rf = 0.29 (90% dichloromethane / 9% methanol / 1% NH4OH); 

IR (KBr) 3309, 3068, 2906, 2849, 2675, 1597, 1482, 1309, 1116, 869 cm
-1

; 
1
H NMR (300 MHz, 

DMSO-d6) δ 8.25 (d, J = 2.1 Hz, 1H), 7.99 (d, J = 2.1, 1H), 7.78 (s, 1H), 5.66 (s, 1H), 5.08 (s, 

1H), 2.88 (d, J = 14.4 Hz, 1H), 2.71-2.63 (m, 1H), 2.44-2.30 (m, 1H), 2.11 (br s, 3H), 2.05 (br s, 

6H), 1.78 (br s, 6H), 1.73-1.64 (m, 1H), 1.48-1.38 (m, 2H), 1.28-1.11 (m, 3H); 
13

C NMR (100 

MHz, DMSO-d6) δ 168.8, 149.1, 141.6, 134.5, 129.3, 128.9, 126.1, 122.4, 117.7, 72.4, 61.1, 

46.3, 41.2, 41.1, 36.2, 28.0, 26.2, 25.8, 23.9. Anal. Calcd for C25H30Cl2N2O: C, 67.41; H, 6.79; 

N, 6.29. Found: C, 67.55; H, 6.96; N, 6.26. 
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2-(5-Hydroxypentyl)isoindoline-1,3-dione (5.63s)  

Lit Ref: Allegretti, P. A.; Ferreira, E. M. Vicinal Bisheterocyclizations of Alkynes via 

Nucleophilic Interception of a Catalytic Platinum Carbene. J. Am. Chem. Soc. 2013, 135, 17266-

17269. 

5-Amino-1-pentanol (18.7 g, 181 mmol) and phthalic anhydride (26.8 g, 181 mmol) were heated 

to reflux in 181 mL toluene with a Dean-Stark condenser attached for 24 h. The mixture was 

cooled to room temperature, transferred to a separatory funnel using ethyl acetate, washed once 

with brine, dried with sodium sulfate, and concentrated under vacuum to provide 39.2 g (93%) 2- 

(5-hydroxypentyl)isoindoline-1,3-dione 5.63s as a white solid.  

5.63s. mp = 43-48 °C; TLC Rf = 0.29 (60% ethyl acetate / 40% hexanes); 
1
H NMR (300 MHz, 

CDCl3) δ 7.87-7.80 (m, 2H), 7.74-7.67 (m, 2H), 3.70 (t, J = 7.1 Hz, 2H), 3.64 (t, J = 6.3 Hz, 2H), 

1.77-1.56 (m, 4H), 1.48-1.36 (m, 2H) 

 

5-(1,3-Dioxoisoindolin-2-yl)pentanal (5.49)  

Lit Ref: Allegretti, P. A.; Ferreira, E. M. Vicinal Bisheterocyclizations of Alkynes via 

Nucleophilic Interception of a Catalytic Platinum Carbene. J. Am. Chem. Soc. 2013, 135, 17266-

17269. 

2-(5-hydroxypentyl)isoindoline-1,3-dione  5.63s (932 mg, 4.00 mmol) was dissolved in 13 mL 

anhydrous dichloromethane and cooled to 0 °C while under argon. Trichloroisocyanuric acid 
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(974 mg, 4.20 mmol) and TEMPO (6 mg, 0.04 mmol) were then added. The mixture was stirred 

at room temperature for 20 min and then filtered through celite. The resulting solution was 

washed with saturated sodium bicarbonate, 1M HCl, and brine, dried with sodium sulfate, and 

concentrated under vacuum to provide 850 mg (92%) aldehyde 5.49 as a yellow oil.  

5.49. TLC Rf = 0.70 (100% diethyl ether); 
1
H NMR (300 MHz, CDCl3) δ 9.76 (t, J = 1.6 Hz, 

1H), 7.88-7.81 (m, 2H), 7.75-7.68 (m, 2H), 3.71 (t, J = 6.8 Hz, 2H), 2.51 (td, J = 7.4, 1.5 Hz, 

2H), 1.80-1.61 (m, 4H). 

 

2-Phenylbenzo[h]quinoline-4-carboxylic acid (5.59)  

Lit Ref: Buchman, E. R.; Howton, D. R. Potential antimalarials. (2-Phenyl-7,8-benzo-4-

quinolyl)- 2-piperidylcarbinols. J. Org. Chem. 1949, 14, 895-899. 

1-Naphthylamine 5.58 (25.0 g, 175 mmol) was dissolved in 100 mL of ethanol. Benzaldehyde 

(17.8 mL, 18.6 g, 175 mmol) and pyruvic acid (12.2 mL, 15.4 g, 175 mmol) were added 

sequentially to the 1-naphthylamine solution at room temperature. The reaction was then 

refluxed open to air for 3 h. After cooling to room temperature, the mixture was vacuum filtered. 

The resulting solid was thoroughly washed with ethanol and dried under vacuum to yield 13.7 g 

(26%) of carboxylic acid 5.59 as a yellow solid.  

5.59. mp = 294-297 °C; TLC Rf = 0.11 (20% ethyl acetate / 80% hexanes); IR (KBr) 3061, 2623, 

1704, 1256, 868, 742, 687 cm
-1

; 
1
H NMR (300 MHz, DMSO-d6) δ 9.42-9.39 (m, 1H), 8.58 (s, 

1H), 8.54 (d, J = 9.3 Hz, 1H), 8.48-8.44 (m, 2H), 8.11-8.04 (m, 2H), 7.87-7.79 (m, 2H), 7.66- 
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7.53 (m, 3H); 
13

C NMR (75 MHz, DMSO-d6) δ 167.9, 154.4, 146.3, 138.1, 138.0, 133.1, 130.8, 

129.9, 129.1, 128.9, 128.7, 128.0, 127.5, 127.2, 124.5, 122.3, 121.9, 118.9. Anal. Calcd for 

C20H13NO2: C, 80.25; H, 4.38; N, 4.68;. Found: C, 80.04; H, 4.39; N, 4.96. 

 

(2-Phenylbenzo[h]quinolin-4-yl)methanol (5.60) 

 Carboxylic acid 5.59 (5.00 g, 16.7 mmol) was suspended in 17 mL anhydrous THF under argon. 

After cooling the mixture to 0 °C, borane-tetrahydrofuran complex (1M in THF, 34.0 mL, 34.0 

mmol) was slowly added to the well-stirred mixture. After hydrogen gas evolution ceased, the 

reaction was allowed to warm to room temperature and stirred for 6 h. The mixture was then 

cooled to 0 °C and aqueous NaOH (3 M, 17 mL) was slowly added. The mixture was stirred at 

room temperature for 12 h, after which the THF was removed in vacuo. The resulting mixture 

was then extracted with ethyl acetate. The combined organic extracts were dried with MgSO4, 

filtered, and evaporated to an oil, which was diluted with 50 mL of methanol. The methanol was 

then removed under vacuum to yield 3.81 g (80%) of alcohol 5.60 as a white solid.  

5.60. mp = 140-144 °C; TLC Rf = 0.32 (20% ethyl acetate / 80% hexanes); IR (KBr) 3343, 3061, 

2899, 1591, 1377, 1020, 756, 693 cm
-1

; 1 H NMR (300 MHz, DMSO-d6) δ 9.41-9.38 (m, 1H), 

8.44-8.40 (m, 2H), 8.32 (s, 1H), 8.03-8.07 (m, 1H), 8.00-7.94 (m, 2H), 7.83-7.74 (m, 2H), 7.65- 

7.59 (m, 2H), 7.56-7.50 (m, 1H), 5.72 (t, J = 5.5 Hz, 1H), 5.16 (d, J = 5.5 Hz, 2H); 
13

C NMR (75 

MHz, DMSO-d6) δ 154.4, 149.0, 145.0, 139.1, 133.2, 131.3, 129.5, 129.0, 128.3, 128.0, 127.13, 
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127.09, 127.05, 124.4, 122.5, 121.1, 116.0, 60.3. Anal. Calcd. for C20H15NO: C, 84.19; H, 5.30; 

N, 4.91. Found: C, 84.06; H, 4.97; N, 5.09. 

 

4-(Chloromethyl)-2-phenylbenzo[h]quinoline (5.61) 

Alcohol 5.60 (13.5 g, 47.4 mmol) was dissolved in 95 mL anhydrous dichloromethane. Neat 

thionyl chloride (4.82 mL, 7.90 g, 66.4 mmol) was slowly added to the solution at room 

temperature. The reaction was stirred at room temperature for 18 h and then carefully quenched 

with saturated aqueous NaHCO3. The reaction was diluted with an equal volume of water and 

vigorously stirred until all solids dissolved. The organic layer was separated, washed with brine, 

dried with Na2SO4, filtered, and evaporated under vacuum to yield 10.3 g (72%) of chloride 5.61 

as a tan solid.  

5.61. mp = 145-153 °C; TLC Rf = 0.80 (20% ethyl acetate / 80% hexanes); IR (KBr) 3062, 2942, 

1588, 1053, 752, 689 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 9.53-9.50 (m, 1H), 8.36-8.34 (m, 2H), 

8.06 (s, 1H), 7.99 (d, J = 8.7 Hz, 1H), 7.95-7.88 (m, 2H), 7.79-7.70 (m, 2H), 7.60-7.55 (m, 2H), 

7.52-7.48 (m, 1H), 5.10 (s, 2H); 
13

C NMR (100 MHz, CDCl3) δ 155.4, 146.8, 142.5, 139.4, 

133.7, 132.2, 129.6, 129.0, 128.6, 128.3, 127.9, 127.6, 127.3, 125.3, 123.0, 120.4, 119.1, 43.1. 

Anal. Calcd. for C20H14ClN: C, 79.07; H, 4.65; N, 4.61. Found: C, 78.96; H, 4.50; N 4.83. 
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Dimethyl ((2-phenylbenzo[h]quinolin-4-yl)methyl)phosphonate (5.62) 

Chloride 5.61 (1.97 g, 6.50 mmol) and trimethyl phosphite (13.7 g, 13.0 mL, 110 mmol) were 

combined in a flask with 6.5 mL of toluene. The mixture was refluxed for 3 d. After cooling to 

room temperature, the mixture was concentrated under vacuum to a brown oil which was 

triturated with diethyl ether. The resulting precipitate was vacuum filtered and washed with cold 

diethyl ether to yield 2.12 g (87%) of phosphonate 5.62 as a white solid.  

5.62. mp = 136-137 °C; TLC Rf = 0.43 (20% acetone / 80% dichloromethane); IR (KBr) 3061, 

2953, 2851, 1587, 1252, 1053, 804 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 9.54-9.51 (m, 1H), 8.37- 

8.34 (m, 2H), 8.02-7.84 (m, 4H), 7.79-7.68 (m, 2H), 7.60-7.54 (m, 2H), 7.52-7.46 (m, 1H), 3.75 

(d, J = 22.5 Hz, 2H), 3.66 (d, J = 10.8 Hz, 6H); 
13

C NMR (100 MHz, CDCl3) δ 154.9 (d, J = 3.6 

Hz), 146.8 (d, J = 2.5 Hz), 139.5, 138.4 (d, J = 9.3 Hz), 133.7, 132.2, 129.5, 129.0, 128.5, 

127.79, 127.78, 127.6, 127.2, 125.3, 124.2 (d, J = 5.1 Hz), 121.2 (d, J = 1.5 Hz), 121.0 (d, J = 

6.5 Hz), 53.3 (d, J = 6.7 Hz), 30.3 (d, J = 138.2 Hz). Anal. Calcd for C22H20NO3P: C, 70.02; H, 

5.34; N, 3.71. Found C, 69.69; H, 5.42; N, 3.88. 
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(E)-2-(6-(2-Phenylbenzo[h]quinolin-4-yl)hex-5-en-1-yl)isoindoline-1,3-dione (5.64) 

Phosphonate 5.62 (377 mg, 1.00 mmol) and lithium chloride (63 mg, 1.50 mmol) were combined 

in a flask under argon and 5 mL of anhydrous THF was added followed by DBU (228 mg, 224 

µL, 1.50 mmol). Aldehyde 5.49 (347 mg, 1.50 mmol) was dissolved in 5 mL anhydrous THF 

under argon. The aldehyde solution was then transferred to the stirred phosphonate solution 

dropwise at room temperature. After stirring for 24 h, the reaction was diluted with water and 

extracted with ethyl acetate. The combined organic extracts were dried with MgSO4, filtered, and 

concentrated under vacuum. Purification by silica gel chromatography (20% ethyl acetate / 80% 

hexanes) provided 330 mg (68%) of olefin 5.64 as a yellow solid.  

5.64. mp = 135-144 °C; TLC Rf = 0.67 (30% ethyl acetate / 70% hexanes); IR (KBr) 3059, 2934, 

2872, 1705, 1581, 1398, 1368, 1036, 721 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 9.52-9.50 (m, 1H), 

8.37-8.35 (m, 2H), 8.02 (s, 1H), 8.00 (d, J = 9.2 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.86-7.82 (m, 

2H), 7.80 (d, J = 9.1 Hz, 1H), 7.76-7.67 (m, 4H), 7.59-7.54 (m, 2H), 7.50-7.46 (m, 1H), 7.19 (d, 

J = 15.7 Hz, 1H), 6.53 (dt, J = 15.7, 6.9 Hz, 1H), 3.79 (t, J = 7.3 Hz, 2H), 2.47 (q, J = 7.1 Hz, 

2H), 1.85 (p, J = 7.5 Hz, 2H), 1.67 (p, J = 7.6 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) δ 168.6, 

155.1, 146.6, 144.0, 140.1, 137.1, 134.0, 133.7, 132.21, 132.19, 129.2, 128.9, 128.1, 127.7, 

127.6, 127.1, 126.9, 126.1, 125.3, 123.3, 122.9, 121.2, 115.6, 37.9, 33.1, 28.3, 26.4. Anal. Calcd 

for C33H26N2O2: C, 82.13; H, 5.43; N, 5.81;. Found: C, 82.44; H, 5.13; N, 5.84. 
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2-(4-(3-(2-Phenylbenzo[h]quinolin-4-yl)oxiran-2-yl)butyl)isoindoline-1,3-dione (5.65) 

Olefin 5.64 (4.76 g, 9.86 mmol) was dissolved in 62 mL of CHCl3. To this solution was added 3- 

chloroperbenzoic acid (approx. 70%, 5.11 g, approx. 29.6 mmol). The mixture was heated to 

reflux for 18 h. The reaction was then allowed to cool to rt, and the excess peracid was consumed 

by vigorously stirring the solution with 10% aq. Na2SO3. The mixture was poured into sat. aq. 

NaHCO3 and extracted with DCM. The combined organic extracts were washed once with brine, 

dried with Na2SO4, and concentrated under vacuum. The crude solid was triturated with 

methanol and filtered to provide 3.00 g of epoxide 5.65 (61%) as a tan solid.  

5.65. mp = 55-69 °C; TLC Rf = 0.61 (30% ethyl acetate / 70% hexanes); IR (KBr) 3059, 2933, 

2858, 1710, 1590, 1466, 720 cm-1 ; 
1
H NMR (400 MHz, CDCl3) δ 9.51 (dd, J = 7.9, 0.8 Hz, 

1H), 8.37-8.34 (m, 2H), 7.95 (s, 1H), 7.93-7.89 (m, 2H), 7.88-7.83 (m, 2H), 7.80 (d, J = 9.0 Hz, 

1H), 7.78-7.69 (m, 4H), 7.58-7.52 (m, 2H), 7.50-7.45 (m, 1H), 4.36 (d, J = 1.9 Hz, 1H), 3.78 (t, J 

= 7.2 Hz, 2H), 3.04-3.01 (m, 1H), 2.07-1.98 (m, 1H), 1.95-1.80 (m, 3H), 1.75-1.62 (m, 2H); 
13

C 

NMR (100 MHz, CDCl3) δ 168.6, 155.7, 146.0, 144.0, 139.7, 134.2, 133.6, 132.3, 132.2, 129.5, 

129.0, 128.4, 127.93, 127.90, 127.7, 127.3, 125.4, 123.4, 123.2, 120.0, 114.2, 62.9, 55.9, 37.8, 

32.1, 28.6, 23.5. Anal. Calcd for C33H26N2O3: C, 79.50; H, 5.26; N, 5.62. Found: C, 79.46; H, 

5.28; N, 5.65. 
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5,7-Dichloroindoline-2,3-dione (5.51) 

Lit Ref: Ribeiro, N. M.; Da Silva, B. V.; de Almeida Violante, F.; Rezende, C. M.; Pinto, A. C. 

5- Chloro- and 5,7-dichloroisatin by chlorination of isatin with trichloroisocyanuric acid. Org. 

Prep. Proc. Int. 2005, 37, 265-267. 

Isatin 5.50 (14.7 g, 100 mmol) and trichloroisocyanuric acid (23.2 g, 100 mmol) were combined 

in a flask and cooled to -78 °C with a dry ice-acetone bath. Concentrated sulfuric acid (75 mL) 

was added dropwise to the mixture via an addition funnel. The mixture was allowed to slowly 

warm to room temperature. After stirring for 3 days, the mixture was poured over ice and stirred 

until all the ice had melted. The precipitate was collected by vacuum filtration and washed twice 

with water. The orange-red solid was then washed with acetone until only a white solid 

(isocyanuric acid) remained. The filtrate was concentrated under vacuum to yield 19.8 g (92%) 

of dichloroisatin 5.51 as an orange-red solid.  

5.51. mp = 211-217 °C; TLC Rf = 0.65 (50% ethyl acetate / 50% hexanes); 
1
H NMR (300 MHz, 

DMSO-d6) δ 11.59 (br s, 1H), 7.85 (d, J = 2.0 Hz, 1H), 7.57 (d, J = 2.0 Hz, 1H). 
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1-(Adamantan-1-yl)ethanone (5.51s) 

Lit Ref: Novotny, J.; Collins, C. H.; Starks, F. W. Synthesis and screening of potential 

antimalarial agent alpha -(2-piperidyl)-2-(1-adamantyl)-6,8-dichloro-4- quinolinemethanol 

hydrochloride. J. Pharm. Sci. 1974, 63, 1264-1267. 

1-Adamantanecarboxylic acid (7.20 g, 40.0 mmol) was dissolved in 40 mL of diethyl ether under 

argon. The mixture was maintained at approximately -5 °C with a NaCl-ice bath while methyl 

lithium (1.6M in diethyl ether, 52.5 mL, 84.0 mmol) was added dropwise with vigorous stirring. 

After complete addition, the cooling bath was removed and the slurry was allowed to stir for one 

hour at room temperature. The reaction was quenched and diluted by the addition of water and 

extracted with diethyl ether. The combined organic extracts were dried with MgSO4, filtered, 

concentrated under vacuum, and purified by silica gel chromatography (10% ethyl acetate / 90% 

hexanes) to yield 5.70 g (80%) of ketone 5.51s as a white solid.  

5.51s. mp = 52-54 °C; TLC Rf = 0.43 (10% ethyl acetate / 90% hexanes); 
1
H NMR (300 MHz, 

CDCl3) δ 2.09 (s, 3H), 2.04 (br s, 3H), 1.82-1.64 (m, 12H). 
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2-(Adamantan-1-yl)-6,8-dichloroquinoline-4-carboxylic acid (5.52) 

Lit Ref: Novotny, J.; Collins, C. H.; Starks, F. W. Synthesis and screening of potential 

antimalarial agent alpha -(2-piperidyl)-2-(1-adamantyl)-6,8-dichloro-4- quinolinemethanol 

hydrochloride. J. Pharm. Sci. 1974, 63, 1264-1267. 

Dichloroisatin 5.51 (33.8 g, 157 mmol, 2.0 equiv), ketone 5.51s (14.0 g, 78.7 mmol, 1.0 equiv), 

and potassium hydroxide (28.6 g, 501 mmol, 6.4 mmol) were combined with 78 mL ethanol and 

26 mL H2O and heated to reflux for 48 h. The mixture was then allowed to cool to room 

temperature and concentrated under vacuum to leave a brown paste, which was taken up in H2O 

and diethyl ether. The organic layer was discarded and the aqueous layer was washed once more 

with diethyl ether. The aqueous layer was then acidified (pH 4 to 5) by the dropwise addition of 

concentrated HCl. The resulting precipitate was isolated by vacuum filtration and recrystallized 

from ethanol to provide 12.7 g (43%) of carboxylic acid 5.52 as a tan solid.  

5.52. mp = 152-157 °C; TLC Rf = 0.15 (30% ethyl acetate / 70% hexanes); IR (KBr) 3462, 2902, 

2848, 2651, 1703, 1591, 1268, 1193 cm
-1

; 
1
H NMR (300 MHz, DMSO-d6) δ 8.71 (s, 1H), 8.16- 

8.12 (m, 2H), 2.68 (br s, 6H), 2.11 (br s, 3H), 1.79 (br s, 6H); 
13

C NMR (100 MHz, DMSO-d6) δ 

169.4, 166.9, 142.2, 136.1, 134.5, 131.1, 129.7, 124.6, 123.6, 120.8, 40.9, 36.0, 28.0 (One signal 

in the aliphatic region was not resolved). Anal. Calcd for C20H19Cl2NO2: C, 63.84; H, 5.09; N, 

3.72. Found: C, 64.18; H, 5.03; N, 3.87. 
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2-(Adamantan-1-yl)-6,8-dichloroquinolin-4-yl)methanol (5.53) 

 Carboxylic acid 5.52 (3.48 g, 9.26 mmol) was dissolved in 10 mL of anhydrous THF under 

argon. After cooling the mixture to 0 °C, borane-tetrahydrofuran complex (1 M in THF, 18.5 

mL, 18.5 mmol) was slowly added to the mixture. After hydrogen gas evolution ceased, the 

cooling bath was removed and the mixture was allowed to stir at room temperature overnight. 

The mixture was again cooled to 0 °C and quenched with 20 mL 3M NaOH. The cooling bath 

was removed and, after stirring at room temperature for 6 h, the mixture was extracted with 

diethyl ether. The combined organic extracts were dried with MgSO4, filtered, concentrated 

under vacuum, and purified by silica gel chromatography (30% ethyl acetate / 70% hexanes) to 

yield 2.00 g (60%) of alcohol 5.53 as a beige solid.  

5.52. mp = 190-198 °C; TLC Rf = 0.56 (30% ethyl acetate / 70% hexanes); IR (KBr) 3278, 2899, 

2845, 1596, 1448, 1081, 1060 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.83 (d, J = 2.3 Hz, 1H), 7.77 

(d, J = 2.2 Hz, 1H), 7.68 (s, 1H), 5.13 (dd, J = 5.7, 0.9 Hz, 2H), 2.16 (br s, 3H), 2.13 (br s, 6H), 

1.91 (t, J = 5.8 Hz, 1H), 1.83 (br s, 6H); 
13

C NMR (75 MHz, CDCl3) δ 170.1, 145.1, 142.5, 

135.9, 130.9, 129.7, 126.0, 121.1, 117.0, 62.3, 41.9, 40.6, 37.0, 28.9. Anal. Calcd. for 

C20H21Cl2NO: C, 66.30; H, 5.84; N, 3.87. Found: C, 66.44; H, 5.59; N, 3.69. 
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2-(Adamantan-1-yl)-6,8-dichloro-4-(chloromethyl)quinoline (5.54) 

Alcohol 5.53 (8.36 g, 23.1 mmol) was dissolved in DCM (250 mL). Thionyl chloride (2.52 mL 

34.66 mmol) was then added. The mixture was stirred at 0 °C for 1 h and then quenched with sat. 

aq. NaHCO3. The organic layer was separated and the aqueous layer was extracted with DCM. 

The combined organic extracts were dried over sodium sulfate, filtered, concentrated under 

vacuum, and purified by silica gel chromatography (1% ether / 99% hexanes) to provide 4.40 g 

(50%) of chloride 5.54 as a white solid.  

5.54. mp = 155-158 °C; TLC Rf = 0.34 (100% hexanes); IR (KBr) 2900, 2847, 1672, 1597, 1450, 

721 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.94 (d, J = 2.2 Hz, 1H), 7.80 (d, J = 2.4 Hz, 1H), 7.58 

(s, 1H), 4.91 (s, 2H), 2.17 (br s, 3H), 2.12 (br s, 6H), 1.83 (br s, 6H); 
13

C NMR (75 MHz, CDCl3) 

δ 170.0, 142.9, 141.5, 136.2, 131.4, 130.1, 126.1, 121.3, 119.9, 42.8, 41.8, 40.6, 36.9 28.8. Anal. 

Calcd. for C20H20Cl3N: C, 63.09; H, 5.29; N, 3.68. Found: C, 63.28; H, 5.63; N, 3.57. 

 

Dimethyl ((2-(adamantan-1-yl)-6,8-dichloroquinolin-4-yl)methyl)phosphonate (5.55) 

Chloride 5.54 (1.20 g, 3.15 mmol) and trimethyl phosphite (6.27 mL, 53.2 mmol) were 

combined in a flask with 3.5 mL toluene under argon. The mixture was refluxed for 3 days, 
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concentrated under vacuum, and purified by silica gel chromatography (40% ethyl acetate / 60% 

hexanes) to provide 1.06 g (74%) phosphonate 5.55 as a white solid.  

5.55. mp = 152-153 °C; TLC Rf = 0.33 (60% ethyl acetate / 40% hexanes); IR (KBr) 2952, 2902, 

2847, 1772, 1711, 1594, 1398, 1239, 1075, 1031, 856, 830 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 

7.91 (d, J = 2.1 Hz, 1H), 7.78 (d, J = 2.1 Hz, 1H), 7.54 (d, J = 3.6 Hz, 1H), 3.66 (d, J = 11.1 Hz, 

6H), 3.55 (d, J = 22.5 Hz, 2H), 2.16 (br s, 3H), 2.11 (br s, 6H), 1.82 (br s, 6H); 
13

C NMR (75 

MHz, CDCl3) δ 169.4 (d, J = 3.9 Hz), 142.9 (d, J = 2.3 Hz), 137.5 (d, J = 9.2 Hz), 135.9, 131.0, 

129.8, 127.4 (d, J = 4.7 Hz), 122.0 (d, J = 1.3 Hz), 121.7 (d, J = 7.0 Hz), 53.3 (d, J = 6.9 Hz), 

41.8, 40.4, 36.9, 30.1 (d, J = 139.1 Hz), 28.8. Anal. Calcd. for C22H26Cl2NO3P: C, 58.16; H, 5.77; 

N, 3.08. Found: C, 57.97; H, 5.57; N, 2.94. 

 

2-((E)-6-(2-(Adamantan-1-yl)-6,8-dichloroquinolin-4-yl)hex-5-en-1-yl)isoindoline-1,3-dione 

(5.56)  

Phosphonate 5.55 (454 mg, 1.00 mmol) and lithium chloride (63 mg, 1.50 mmol) were combined 

in a flask under argon. Anhydrous THF (5 mL) was then added followed by DBU (152 mg, 149 

µL, 1.00 mmol). Aldehyde 5.49 (347 mg, 1.50 mmol) was dissolved in 5 mL anhydrous THF 

under argon in a separate flask. The aldehyde solution was then transferred to the stirred 

phosphonate solution dropwise at room temperature. After stirring for 24 hours, the reaction was 

diluted with H2O and extracted with ethyl acetate. The combined organic extracts were dried 
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with MgSO4, filtered, and concentrated under vacuum. Purification by silica gel chromatography 

(10 % ethyl acetate / 90% hexanes) provided 402 mg of olefin 5.56 (68 %) as a white foam.  

5.56. mp = 63-69 °C; TLC Rf = 0.29 (5% ethyl acetate / 95% hexanes); IR (film) 2903, 2848, 

1771, 1712, 1396, 719 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.92 (d, J = 2.1 Hz, 1H), 7.86-7.83 

(m, 2H), 7.74-7.69 (m, 3H), 7.53 (s, 1H), 6.95 (d, J = 15.6 Hz, 1H), 6.40 (dt, J = 6.9, 15.6 Hz, 

1H), 3.77 (t, J = 6.9 Hz, 2H), 2.42 (q, J = 6.9 Hz, 2H), 2.19-2.10 (m, 9H), 1.86-1.76 (m, 8H), 

1.68- 1.56 (m, 2H); 
13

C NMR (75 MHz, CDCl3) δ 169.7, 168.6, 143.1, 142.8, 137.8, 135.6, 

134.1, 132.2, 130.3, 129.5, 126.4, 125.4, 123.4, 121.8, 115.8, 41.9, 40.4, 37.8, 37.0, 33.1, 28.9, 

28.3, 26.4. Anal. Calcd for C33H32Cl2N2O2: C, 70.84; H, 5.76; N, 5.01. Found: C, 70.57; H, 5.90; 

N, 5.03. 

 

2-(4-(3-(2-(Adamantan-1-yl)-6,8-dichloroquinolin-4-yl)oxiran-2-yl)butyl)isoindoline-1,3- 

dione (5.57) 

Olefin 5.56 (3.27 g, 5.84 mmol) and 3-chloroperbenzoic acid (approx. 70%, 3.03 g, approx. 17.5 

mmol) were dissolved in 34 mL of chloroform. The mixture was refluxed for 15 h. After cooling 

to room temperature, the reaction was quenched with 10% aqueous Na2SO3, diluted with DCM, 

and then washed with saturated sodium bicarbonate and brine. The organic layer was dried with 

sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by silica gel 

chromatography (10% ethyl acetate / 90% hexanes) to provide 2.52 g (75%) epoxide 5.57 as a 

white foam.  
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5.57. TLC Rf = 0.26 (30% ethyl acetate / 70% hexanes); IR (KBr) 2904, 2849, 1772, 1713, 1596, 

1397, 720 cm
-1

; 
1
H NMR (300 MHz, CDCl3) δ 7.87-7.83 (m, 3H), 7.77 (d, J = 2.1 Hz, 1H), 7.74- 

7.70 (m, 2H), 7.48 (s, 1H), 4.14 (d, J = 1.8 Hz, 1H), 3.76 (t, J = 7.1 Hz, 2H), 2.93-2.88 (m, 1H), 

2.14 (br s, 3H), 2.10-1.96 (m, 8H), 1.88-1.76 (m, 8H), 1.70-1.58 (m, 2H); 
13

C NMR (75 MHz, 

CDCl3) δ 170.3, 168.6, 142.9, 142.2, 136.1, 134.1, 132.2, 131.0, 129.7, 126.4, 123.4, 120.6, 

114.9, 62.9, 55.5, 41.8, 40.6, 37.7, 36.9, 31.9, 28.9, 28.5, 23.4. Anal. Calcd for C33H32Cl2N2O3: 

C, 68.87; H, 5.60; N, 4.87. Found: C, 68.98; H, 5.84; N, 4.92. 

 

(2-Phenylbenzo[h]quinolin-4-yl)methanaminium chloride (5.68). 

 

Chloride 5.61 (304 mg, 1.00 mmol), phthalimide (177 mg, 1.20 mmol), and potassium carbonate 

(276 mg, 2.00 mmol) were suspended in 10 mL DMF and heated to 80 °C for 24 h. The mixture 

was cooled to rt and decanted to remove inorganic solids. The organic portion was diluted with 

40 mL methanol to produce a precipitate, which was filtered, washed with methanol, and dried to 

provide 344 mg (83%) of quinolyl phthalimide 5.61A as a tan solid.  
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5.61A. mp = 215-218 °C; TLC Rf = 0.26 (20% ethyl acetate / 80% hexanes); IR (KBr) 2922, 

2851, 1714, 1642, 1391, 1105 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 9.52-9.50 (m, 1H), 8.31-8.25 

(m, 3H), 8.07 (s, 1H), 7.93-7.85 (m, 4H), 7.78-7.68 (m, 4H), 7.56-7.51 (m, 2H), 7.48-7.44 (m, 

1H), 5.42 (s, 2H); 
13

C NMR (100 MHz, CDCl3) δ 168.2, 155.5, 146.9, 141.6, 139.8, 134.5, 

133.7, 132.3, 132.1, 129.5, 129.0, 128.5, 128.2, 127.9, 127.8, 127.2, 125.4, 123.8, 123.3, 120.7, 

119.6, 39.1. Anal. Calcd for C28H18N2O2: C, 81.14; H, 4.38; N, 6.76. Found: C, 80.79; H, 4.57; 

N, 6.76.  

The quinolyl phthalimide 5.61A (300 mg, 0.72 mmol) was suspended in 4 mL ethanol. 

Hydrazine hydrate (175 µL, 3.6 mmol) was added and the mixture was heated to reflux for 3 

hours. The reaction was then cooled to room temperature and vacuum filtered. The resulting 

precipitate was washed with methanol and the combined filtrates were concentrated and purified 

by silica gel chromatography (5% methanol / 90% dichloromethane) to provide 184 mg of 

quinolyl amine 5.61B (90%) as a white solid.  

5.61B. mp = 121-123 °C; TLC Rf = 0.19 (5% methanol / 95% dichloromethane); IR (KBr) 3446, 

3058, 1625, 1591, 1553, 1499, 1381 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ 9.53 (d, J = 8.2 Hz, 

1H), 8.39-8.36 (m, 2H), 8.10 (s, 1H), 7.94-7.91 (m, 2H), 7.84 (d, J = 9.1 Hz, 1H), 7.78-7.68 (m, 

2H), 7.59-7.55 (m, 2H), 7.52-7.46 (m, 1H), 4.48 (s, 2H); 
13

C NMR (100 MHz, CDCl3) δ 155.6, 

148.7, 146.4, 140.1, 133.7, 132.4, 129.4, 129.0, 128.3, 127.9, 127.7, 127.1, 125.4, 123.3, 120.4, 

116.8, 43.4 (One signal in the aromatic region was not resolved). Anal. Calcd for C20H16N2: C, 

84.48; H, 5.67; N, 9.85. Found: C, 84.44; H, 5.54; N, 9.61.  

The quinolyl amine 5.61B (128 mg, 0.45 mmol) was dissolved in 3 mL methanol and HCl in 

diethyl ether (2 M, 270 µL, 0.54 mmol) was added. The mixture was stirred for 5 minutes and 
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concentrated in vacuo. The resulting oil was triturated with diethyl ether until a yellow 

precipitate formed. This was collected by vacuum filtration, washed with diethyl ether, and dried 

to provide 133 mg (92%) amine hydrochloride 5.68 as a yellow solid.  

5.68. mp = 178 °C (dec.); IR (KBr) 3429, 3080, 2911, 1625, 1513, 1377 cm
-1

 ; 
1
H NMR (300 

MHz, DMSO-d6) δ 9.42-9.38 (m, 1H), 8.80 (br s, 3H), 8.48-8.45 (m, 3H), 8.12-8.03 (m, 3H), 

7.90-7.76 (m, 2H), 7.66-7.52 (m, 3H), 4.74 (q, J = 5.7 Hz, 2H); 
13

C NMR (100 MHz, DMSO-d6) 

δ 154.2, 145.3, 140.9, 138.6, 133.2, 131.0, 129.8, 129.0, 128.6, 128.0, 127.8, 127.4, 127.2, 124.4, 

122.6, 120.9, 118.4, 38.7. Anal. Calcd for C20H17ClN2: C, 74.88; H, 5.34; N, 8.73. Found: C, 

74.49; H, 5.40; N, 8.61. 
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For assignment of which enantiomer represents which HPLC signal, see Ge, X.; Qian, C.; Chen, 

Y.; Chen, X. Tetrahedron Assymetry 2014, 25, 596. 
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1% iPrOH/heptane, 1mL/min, Chiralcel OJ column 

 
 

 

1% iPrOH/heptane, 1mL/min, Chiralcel OJ column 

 
 

 

10% iPrOH/heptane, 1mL/min, Chiralcel OD column 
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For assignment of which enantiomer represents which HPLC signal, see Mikhailine, A. A.; 

Maishan, M. I.; Morris, R. H. Org. Lett. 2012, 14, 4638-4641. 
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