Syracuse University

SURFACE

Dissertations - ALL SURFACE

December 2016

Understanding and Improving Security of the Android Operating
System

Edward Paul Ratazzi
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

b Part of the Engineering Commons

Recommended Citation

Ratazzi, Edward Paul, "Understanding and Improving Security of the Android Operating System" (2016).
Dissertations - ALL. 592.

https://surface.syr.edu/etd/592

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/592?utm_source=surface.syr.edu%2Fetd%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Successful realization of practical computer security improvements requires an understanding
and insight into the system’s security architecture, combined with a consideration of end-users’
needs as well as the system’s design tenets. In the case of Android, a system with an open,
modular architecture that emphasizes usability and performance, acquiring this knowledge and
insight can be particularly challenging for several reasons. In spite of Android’s open source
philosophy, the system is extremely large and complex, documentation and reference materials
are scarce, and the code base is rapidly evolving with new features and fixes. To make matters
worse, the vast majority of Android devices in use do not run the open source code, but rather

proprietary versions that have been heavily customized by vendors for product differentiation.

Proposing security improvements or making customizations without sufficient insight into the
system typically leads to less-practical, less-efficient, or even vulnerable results. Point solutions to
specific problems risk leaving other similar problems in the distributed security architecture
unsolved. Far-reaching general-purpose approaches may further complicate an already complex
system, and force end-users to endure significant performance and usability degradations
regardless of their specific security and privacy needs. In the case of vendor customization,
uninformed changes can introduce access control inconsistencies and new vulnerabilities. Hence,
the lack of methodologies and resources available for gaining insight about Android security is
hindering the development of practical security solutions, sound vendor customizations, and

end-user awareness of the proprietary devices they are using.

Addressing this deficiency is the subject of this dissertation. New approaches for analyzing,
evaluating and understanding Android access controls are introduced and used to create an

interactive database for use by security researchers as well as system designers and end-user

product evaluators. Case studies using the new techniques are described, with results uncovering
problems in Android’s multiuser framework and vendor-customized System Services. Finally, the
new insights are used to develop and implement a novel virtualization-based security
architecture that protects sensitive resources while preserving Android’s open architecture and

expected levels of performance and usability.

UNDERSTANDING AND IMPROVING SECURITY
OF THE ANDROID OPERATING SYSTEM

by

Edward Paul Ratazzi

B.S., Rensselaer Polytechnic Institute, 1987
M.S., Syracuse University, 1992

M.S., Rensselaer Polytechnic Institute, 2006

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical & Computer Engineering

Syracuse University

December 2016

Thisis a work of the U.S. Government and is not subject to copyright protection in the United

States. Foreign copyrights may apply.

DISCLAIMER
The views expressed in this dissertation are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

Dedicato a mio nonno, Edward Ratazzi, Sr.

Dedicated to my grandpop, Henry Paul, Jr.

Vi

Acknowledgments

My deepest gratitude goes to those around me who made completing this dissertation possible.

First, to my advisor, Prof. Wenliang Du. Even though | met you with a career’s worth of experience
already behind me, your insights about conducting research, distilling problems and critical
thinking have changed my professional life. | will consider myself a great success if | can pass along
to others even a fraction of what I learned from you. | am especially thankful for your patience,

approachability, friendly style, and understanding of my outside commitments to work and family.

To my defense committee, Prof. Joon Park, Prof. Shiu-Kai Chin, Prof. Jian Tang, Prof. Yuzhe Tang,
and Prof. Heng Yin, for taking time out of your busy schedules to read this dissertation, provide

valuable feedback and serve on my committee.

To the Information Directorate of the Air Force Research Laboratory for its commitment to
career-long learning and professional development. To my past and present colleagues there,
including Dr. Warren Debany, Jr., Dr. Kamal Jabbour, Dr. Davy Belk, Joe Camera, Lt. Col. David
Bibighaus, Dr. Dan Pease, and Dr. Lok Yan. You supported and guided my return to graduate
school, and provided much-needed encouragement along the way. | am particularly indebted to
my supervisor and friend, Jim Perretta. For the last four years you have sheltered me from many
day-to-day distractions so that | could focus on conducting and documenting my in-house
research. Now that | am done, | hope to rise to the new challenges and opportunities your

leadership brings to me.

To the current and former students of the Computer Security Research Group at Syracuse,

Vil

especially Amit Ahlawat, Francis Akowuah, Ashok Bommisetti, Nian Ji, Dr. Yousra Aafer, Dr. Xiao
Zhang, Jiaming Liu, Kailiang Ying, Yifei Wang, Hao Hao, Haichao Zhang, and Lusha Wang. lam in
awe of your technical skills and grateful for the countless hours of discussions we’ve had, both in
group meetings and one-on-one. I wish you all the best and hope we can collaborate again in the

future.

To everyone at the Griffiss Institute, especially Bill Wolf, Regan Johnson, Tracy DiMeo, Dr. Josh
White, and Jim Hanna. You provided a comfortable, quiet and well-connected environment in
which to study, research, collaborate, and write. Without your support, completing this

dissertation would have been tremendously more difficult and lengthy.

To my parents, Randa and Ed Ratazzi. By example, you taught me the value of education, the need
for perseverance, and the importance of optimism, all ingredients | found to be essential for

completing my studies.

Finally and most importantly, to my wife Shirley and children Emily and Nicholas. You encouraged
me when things were tough, cheered my successes, and made countless sacrifices along the way.

Your love and confidence are the cornerstone of this and all other accomplishments of mine.

Syracuse, New York

December 2016

viii

Contents

Abstract
List of Figures Xiv
List of Tables XVi
1 Introduction 1
1.1 Security enhancements proposed by the scientific literature 3
1.2 Security enhancements availabletoend-users 4
1.3 Thesisand Contributions 7
1.4 Dissertationorganization L 9
2 Background 10
2.1 Uniguenessof Mobile Devices 10
2.2 Tutorialon Android Security 12
221 Development 12
222 Download 14
2.2.3 Installationo 15
224 Run-time e 17
225 Removal. 19
3 Android Access Control Evaluation Methodology 20
30 Introduction 21
311 ThreatModel 24

3.2 Background 25
3.21 Framework-userldo 25
3.2.2 Framework-Permissions 27
3.2.3 Framework - Package Management L. 28
3.2.4 Filesystem 31
325 Kernel . . . o 32
326 Run-time 32

3.3 MethodandModel 33
3371 SCOPE . . o o 34
3.3.2 Questions&lInsights L 37
3.3.3 Hypotheses About Multi-User Security 38

3.4 CaseStudyFindings 40
3.41 Unprotected Activities 40
3.4.2 Unrestricted Administrative Functions 43
3.4.3 Shared Package Information. 43
3.4.4 Use of Sensors and Hardware Devices by MultipleUsers. 50

4 Access Control Characterization 54

41 Introduction 54
411 System Services Customizationo oL oo 55
412 MotivatingExample 55
413 Research Questions 57

4.2 Characterizing Android AccessControls 57
421 AccessControl FeatureSet 63
4.2.2 FeatureVector Extraction oL 66

4.3 Comparing Android AccessControls 69

4.4 CaseStudy 69
440 Procedure. 70

4.4.2 Characterization Analysis
4.4.3 Differential Analysis
4.4.4 Method-level Evaluation
445 Results
4.5 OtherApplications
4.6 Limitations and Future Directions

4.7 Conclusion

Protecting Sensitive and Vulnerable Resources

51 Introduction

52 DesignSpace
521 Tradeoffanalysis

53 DesignConcept
5.3.1 Hypervisorvs. Hypovisor
5.3.2 High-leveldesignoverview
5.3.3 Methodology

5.4 Case Studyon Android System Service
5.4.1 Android System Services
5.4.2 PINPOINTIng System Services i
5.4.3 Security DISCUSSION o o o o e
5.4.4 Policy Configuration
5.4.5 Limitations

5.5 Applications
551 LocationService
5.5.2 Subscriber Information Service
5.5.3 InputMethod Service
554 SensorService

5.6 Evaluation

Xi

5.6 Performance 130

5.6.2 Qualitative Assessment 130

5.6.3 DISCUSSION o 132

57 FutureDirections. 133

6 Related work 135
6.0 Security Analysis 135
6.2 Resource Protection 138

7 Conclusion 142
Appendices 144
A Android Security Statements 145
B Android Image Extraction Procedures 160
B.1 AOSP, Android KitKatversion4.4.4 160
B.2 AOSP, Android Lollipopversion5x 161
B.3 AOSP, Android Marshmallow version 6.x 162
B.4 CyanogenMod 11-20150901, Android KitKat version4.4.4 162
B.5 CyanogenMod 12.1-20151121, Android Lollipop version 511 163
B.6 XiaomiMIUl, Android KitKatversion4.4.4 163
B.7 Fire0S32.4.6.5, Android KitKatversion4.4.4 164
B.8 Fire0S 37.5.2.2,Android Lollipop version5.0.2 164
B.9 LG,Android KitKatversion4.4.2 165
B.10 LG, Android Lollipop version5.x. oo 165
B.11 HTC RUU, Android Jellybeanversion4.2.x 166
B.12 HTC RUU, Android KitKat and laterversions 166

C Permission Configuration Extraction 167

Xii

D Power Query Import Script

E AOSP System Service Pivot Analysis
F Vendor System Service Pivot Analysis
G LG-5.0.2 Test Results

H S4-5.0.1 Test Results

| MotoX-5.0 Test Results

J Linux Namespaces Analysis

J1 Background ...

J.2° Namespace Traits and Their Value to Our Work

K Android servicemanager hypovisor code

References

Vita

Xili

170

173

206

211

232

239

248
248

250

254

257

202

List of Figures

2.1 Android security mechanisms across the app lifecycle. 13
2.2 APKfilestructure. 13
2.3 Sandboxes (- - -), escape paths (D), @), @) and enforcement points (¢). 18
3.1 Warning messages encountered while creating additional user accounts. 23

3.2 Investigation problem space showing various subject-object combinations. Adapted

from [36] with the permission of O’Reilly Media, Inc. 35
3.3 Android communication paths showing access control points. 36
3.4 Packageinstallation and updateprocedure. L 47

3.5 New package installation is denied due to existing package with the same name but

differentsignature. 50
4.1 High-level accesscontrolmodel. 58
4.2 Process for extracting access control features from an Android device. 67

4.3 Count vs. access control feature for AIDL methods in various AOSP versions of Net-
workManagementService. 72
4.4 Pivot chart showing count vs. service name for AIDL methods added or changed in

SamsungS4 19505XXUHOB7 5.0.1 image as compared with AOSP [rx210 5.0.1image. . 75

5.1 Simplified Android architecture. o 94
5.2 PINPOINT concept showing minimized isolation to address security goals, with max-
imized sharing of systemobjects. L 102

5.3 Interactionswith System Services. Lo 105

XiV

5.4 Design overview showing the service hypovisor and policy definition (), virtual ser-

vice plug-ins @, and application Q). 107
5.5 PINPOINTing LocationManagerService. 120
5.6 RunKeeper fitness app running in alternate location namespaces. 121
5.7 IMEl Analyzer running in different iphonesubinfo/phone namespaces. 123
5.8 Input method framework architecture. 125
5.9 PINPOINTing InputMethodManagerService. 126
5.10 Non-critical and critical apps running in different IME namespaces. 126

5.1 AndroSensor running in global sensor namespace showing normal traces for gyro

(D), light (), magnetic (®) and orientation (@) sensors. 128
5.12 AndroSensor running in alternative sensor namespaces. 129
5.13 Benchmarking results for 0-, 1-, 2- and 3-namespace configurations. 131

5.14 Average memory footprintin kB (VmSize) for 0-, 1-, 2- and 3-namespace configurations. 131

XV

List of Tables

2.1

4.1

4.2

4.3
4.3

4.3

5.1

52

5.3
5.4

55

Al

Ea

Fi

A comparison of mobile vs. fixed computing platform attributes. n
Casestudyimages. 7
SamsungS4-5.0.2 System Services containing new methods protected by dangerous-

level permissions. 76
Count of new 3'9-party-accessible methods vs. service for three testimages. 78
Count of new 3'9-party-accessible methods vs. service for three testimages. 79
Count of new 3'9-party-accessible methods vs. service for three testimages. 80
Summary of Isolation Design Alternatives 97
Summary of Namespace Traits and the Value to Android Security (see Appendix J for

details). 99
PINPOINT Methodology. e 104
Evaluation benchmarksused. 130
PINPOINT prototype measured against qualitative metrics related to effectiveness

and efficiency (L=low/small; M=medium/some; H=high/large). 132
Android security statements. L 146
Feature counts for each System Service in AOSP baselineimages. 174

Number of added or modified AIDL methods in each vendor service compared with

the corresponding AOSP baseline. 207

XVi

G Method-level test results for LG-5.0.2. 212

H.1 Method-level test results for S4-5.0.7. 233

1 Method-level test results for MotoX-5.0. 240

XVil

Chapter1

Introduction

| for one welcome our new android overlords.
- Robin Sloan, Mr. Penumbra’s 24-Hour Bookstore

Over the near-decade since its 2008 introduction, Google’s Android has been a stunning success,
eclipsing the market share of every other mobile operating system by a huge margin. Android is
shipping on well over 1 billion new devices annually [1], and over 1.5 million new devices are being
activated every day [2]. This growth, however, has not been without its pains. Recent measures
estimate that 96-97% of today’s mobile malware targets the Android operating system [3,4], and
73% of these are designed specifically to satisfy profit motives [4]. Also, as the system becomes
more popular and scrutinized, the number of identified vulnerabilities has skyrocketed. For the
years 2009-2014, the National Vulnerability Database (NVD) maintained by the National Institute of
Technology (NIST) issued a total of 43 Common Vulnerabilities & Exposures (CVE) reports for
Android. In 2015, this jumped to 125, and 2016 had seen 346 by August with four months still to go
[5].

In light of this, end-users are increasingly concerned about privacy and protecting their personal

information. Unfortunately, most have a hard time using available security indicators to discern

the trustworthiness of apps [6]. Even if they can determine that a particular app warrants extra
caution, many users possesses little or none of the specialized technical expertise necessary to
fully understand the relevant security controls. Finally, secure modes of operation often degrade
performance or usability, sometimes to levels that far outweigh users’ willingness to compromise.
Faced with this lack of information, complexity, and unattractive trade-offs, many users become
complacent, careless, or make mistakes in performing what amounts to critical system

administration tasks.

Security researchers and developers are also working hard to address the problems with Android.
Although successive releases continue to enhance and improve security and user controls [7],
balancing security with usability has proven difficult for system designers and security researchers.
For example, while evidence of the shortcomings of Android’s permission system has been
present in the literature as early as its initial release [8], no real user control over permission
granting was provided until the advent of the ill-fated App Ops hidden feature in July 2013. This
selective permission-granting mechanism was removed less than 6 months later, apparently due
to usability concerns that quickly surfaced when it was first released [9]. Because developers
could not anticipate the endless security configurations App Ops makes possible, many apps

failed to function or simply crashed when their permissions were selectively revoked by the user.

Although App Ops was technically sound, and many useful 3 party apps were created to “unhide”
it, Google removed it nonetheless. To understand why a useful security feature was removed
(much to the chagrin of security and privacy advocates [9]), the original goals of the Android
project must be revisited. Android’s design is based on several strong tenets that are unlikely to be
put aside, even for dramatically increased security or privacy. According to AOSP’s on-line security

documentation [10]:

+ “Android is a modern mobile platform that was designed to be truly open.”
« “Android was designed with developers in mind. Security controls were designed to reduce

the burden on developers.”

« “Android was designed with device users in mind. Users are provided visibility into how
applications work, and control over those applications.”
+ “Android seeks to be the most secure and usable operating system for mobile platforms...”

(emphasis added).

In the case of App Ops, Google’s commitment to making things easy for developers and end-users
outweighed security, and it was removed. After all, as Felten and McGraw state in [11], “given a
choice between dancing pigs and security, users will pick dancing pigs every time.” Because of
Google’s caution in this regard, even later releases of Android 5.0 did little to help end-users
protect themselves from software they chose to install. Only with the advent of Android 6.0 did
selective permissions and run-time confirmations become part of the Android mainstream [12,13].
With this example, we can see that developing and deploying viable security and privacy
improvements in Android requires considerations beyond those that are purely technical. Taking
a look at other examples of Android security enhancements, we consider two categories: those
proposed via the scientific literature, and those present in actual products and apps available to

end-users.

1.1 Security enhancements proposed by the scientific literature

Going beyond the App Ops example, it’s not hard to conclude that Android’s architects are unlikely
to embrace other solutions to security problems that would make the system more closed or
restrictive, increase developers’ burden, relinquish control from or inconvenience users (to
include noticeable performance degradation). If technical improvements are pursued without
consideration of these tenets, the result may run counter to one or more of them, and most likely
prevent its widespread adoption. In fact, there’s no shortage of interesting and sound technical
Android security improvements in the scientific literature that have had no direct impact on the
open source project, which instead has improved incrementally and with bug fixes for specific

vulnerabilities [7]. Obviously the many proposed solutions found in the literature have technical

merit or they wouldn’t have appeared in peer-reviewed forums. However, from Google’s point of
view most are impractical because they represent radical system redesigns or run counter to the
vision of Android being open and easy to use and develop for. In addition, many fail to account for
end-users’ specific security and privacy needs and instead trade usability, performance and even
basic device functionality for security that the user may not want or need. A more detailed

discussion of these related works is contained in Chapter 6.

1.2 Security enhancements available to end-users

Although AOSP may shun security improvements that have negative effects on usability or
performance, even if they are technically sound, there are a number of products that are
successfully marketed to end-users via Google Play as “add ons”. These are successful because
they “fit in” with Android’s design tenets, and are perceived by end-users as filling an important
security need. One example is Android virus detectors (AVD), the most popular of which have as

many as 500 million downloads from Google Play [14].

AVDs are examples of security solutions that naively apply traditional (i.e., PC) security concepts to
Android, without adapting to Android’s fundamental differences. A great deal of their success in
the marketplace is due to end-users’ fear coupled with a misunderstanding of their theory of
operation. Specifically, the very basis for anti-virus’ effectiveness on PCs, 3™ party access to
administrative privileges, doesn’t exist on production Android devices [15]. Thus, AVDs are limited
to providing warnings based on the limited system information Android makes available to apps.
Moreover, the current design of Android’s ActivityManager, PackageManager, system broadcasts,
and various Linux facilities such as build.prop and /proc filesystem, can leak critical
information about an AVD’s running state to malware, dramatically increasing the chance of AVD
evasion [16]. Google has addressed this somewhat with its centralized malware scanning strategy
for the Play Store, but users are able to negate this by allowing Unknown sources or disabling Verify

apps. Chapter 2 includes a discussion of other important differences that must be addressed

when developing security products for mobile devices.

Whether it be sound-yet-impractical proposals from the research community, or easily-installable
security apps that give a false sense of security, it is clear that developing practical and effective

security for Android requires three things:

1. Adherence to Google’s design tenets which emphasize openness and usability.

2. Consideration of users’ and developers’ interests in terms of security needs and the burden
imposed.

3. Thorough technical knowledge of the system, especially that related to its unique

architecture, characteristics, and existing security mechanisms.

Although the design tenets are relatively straightforward, and users’ security needs are readily
identified, acquisition of the unique system knowledge necessary for security insights is difficult

and and time-consuming for three reasons.

First, the Android system is extremely complex. In April 2016, the Black Duck Open Hub free and
open source software (FOSS) directory reported that the Android Open Source Project (AOSP)
includes 13,499,670 lines of code (LoC) representing 4,271 years of effort by 3,448 contributors.
This massive code base is composed of 36 different programming languages, with the vast
majority written in Java (40%), C (29%), and C++ (18%) [17]. Besides making the system difficult to
understand, this complexity also has ramifications to security. As Bruce Schneier remarked in 2012,
“complexity is the worst enemy of security” [18]. When this complexity is coupled with a
distribution and stakeholder model that makes rapid patching nearly impossible, the real-world
impact of the problem is amplified. Indeed, a 2015 study revealed that overall, at any given

moment, a majority of Android devices are running a vulnerable version [19].

Second, access controls in Android use multiple means of identifying the subject, are
implemented across multiple layers of software, and usually reside with the object being

accessed rather than in a centralized reference monitor. This makes identification of all factors in

an access control decision difficult. For example, for an app to access location, it must first obtain
permission from the user. This is accomplished via a dialog box that identifies the app to the user
making the decision by common name. Next, a binder token issued by the kernel binder driver
after consideration of the requester’s uid and pid allows the app to communicate with the native
ServiceManager running in userspace and obtain the location service handle. Distribution of some
of these service handles are restricted to specific uids and is enforced by the native code. Next,
when the app uses the handle to request location from the service, an IPC_DESCRIPTOR value
from each side of the IPC channel is compared to ensure the calling process’s transaction matches
the interface of the reciever. Next the caller’s manifest permissions are checked by the specific
service thread running in the native systemserver, again using the uid and pid. Finally, a
“location blacklist” is consulted using the package name. Underlying each of these steps is
enforcement of mandatory access controls (MAC) determined by the device’s SE for Android (i.e.,
SELinux) policy. With so many checks and decisions spread out across many parts of the system,
addressing security or privacy concern with apps’ use of location is difficult and the solutions can

take many forms with various tradeoffs.

Lastly, security documentation of the Android system leaves much to be desired, which results in
more mistakes by developers and end-users, while increasing the learning challenges for security
researchers. Although the situation has improved since, a 2011 study found that only 6.2%
(78/1,259) of application programmer interface (API) calls with permission checks are
documented, and of those, nearly 8% (6/78) were incorrectly documented [20]. Moreover, official
documentation of Android internals is virtually non-existent, making understanding how access
controls and security mechanisms are implemented within the vast code base a daunting task.
Doing so requires painstaking source code review and consultation with informal (and possibly
incorrect or outdated) sources such as blogs, forums and on-line tutorials. Finally, for vendor
customizations of Android, gaining this knowledge is even more difficult since vendor code and
their modifications are typically closed-source. In fact, the vast majority of devices in use are not

running pure Android, but many different versions each customized differently by numerous

competing vendors.

1.3 Thesis and Contributions

Providing the means to acquire the necessary system knowledge and insight so that practical
security and privacy improvements can be designed for Android is the subject of this dissertation.

This dissertation’s thesis is as follows:

It is possible to design and implement practical security and privacy improvements
for Android when the following conditions are met:
1. Insights are gained from a systematic understanding of Android security and
its unique characteristics;
2. End-users’ security and privacy needs are accounted for; and

3. Android’s design tenets are preserved.

Because of its complexity, Android system understanding requires a systematic approach to
gathering knowledge. Chapter 3 describes the development of such an approach and its

application to the first and only known security evaluation of Android’s multi-user architecture.

In spite of the successes derived from this effort, it’s clear that manual analysis of the system is too
time-consuming and error-prone to be practical for a platform like Android that evolves so rapidly.
The problem is further compounded when vendors make proprietary modifications to the
platform in order to customize and differentiate their product. The lack of source code in these
cases makes gathering the required knowledge difficult at best. Addressing this problem led to
the development of an efficient, automated modeling and analysis technique described in
Chapter 4. This technique enables security researchers to gain insight about the design of access

controls in System Services, rapidly identify specific vendor customizations of System Services,

and focus their testing on the most interesting portions of code.

Combined, these efforts yielded deep insights regarding the protection, or lack thereof, of
common system resources in Android and its vendor-specific derivatives. Unfortunately, directly
addressing many of the problematic situations uncovered would be difficult due to Android’s
open design and the number of stakeholders involved. For example, while patching a vendor’s
insecure System Service with an appropriate access control might fix that specific problem, it
would do nothing to address future modifications by other vendors or stakeholders that may
make mistakes. Instead, a more general solution was sought. Chapter 5 describes PINPOINT, a
novel, lightweight isolation-based solution to protect sensitive, or vulnerable, resources and
information from untrusted apps. The effectiveness of PINPOINT is independent of vendor
customizations and any shortcomings of resources’ access controls. Moreover, PINPOINT offers a
practical alternative to existing isolation architectures that force users to sacrifice convenience,

performance and usability for security features they may not need.
In all, this dissertation describes the following contributions:

1. Aninsightful model and systematic methodology for analyzing access controls in
Android (see Chapter 3, Section 3.3).

2. The first and only known systematic security evaluation of Android’s multiuser
architecture, also serving as a case study to demonstrate the efficacy of the
aforementioned methodology (see Chapter 3, Section 3.4).

3. Anovel Android access control feature set, useful for characterizing Android access
controls (see Chapter 4, Section 4.2).

4. Afeature set-based differential analysis methodology, useful for identifying and
understanding closed-source vendor modifications to Android System Services (see
Chapter 4, Section 4.3).

5. A case study of 12 closed-source vendor images, that applies the feature-set based

differential analysis to reveal specific shortcomings and actual access control issues

stemming from vendor modifications to Android System Services (see Chapter 4, Section
4.4).

6. Two access control feature databases containing over 35,000 methods from System
Services of 19 Android images, allowing security researchers to interactively query and
compare System Service access controls.

7. Anovel, lightweight hypovisor-based approach to protecting sensitive and vulnerable
resources from untrusted apps and sensitive apps from untrusted resources. Known as
PINPOINT, the concept deliberately addresses Android’s unique open architecture, while
simultaneously respecting its design tenets (see Chapter 5, Section 5.3).

8. Aworking prototype implementation of PINPOINT that demonstrates a new isolation
capability for the full range of Android System Services. The prototype is evaluated using

four System Service case studies (see Chapter 5, Sections 5.4 and 5.5).

1.4 Dissertation organization

The remainder of this dissertation is organized as follows:

« Chapter 2 includes background material on Android security and discusses some important
characteristics of the Android architecture;

« Chapter 3 describes the systematic access control analysis methodology as well as the
multiuser case study;

« Chapter 4 describes the design of the access control feature set, feature extraction
methodology, and feature vector-based case study of 19 real Android images;

« Chapter 5 describes PINPOINT, its design, implementation, application and evaluation;

« Chapter 6 discusses previous work by others and relates it to the contributions claimed; and

« Chapter 7 concludes the dissertation and proposes some future opportunities.

Chapter 2

Background

I wonder, he wondered, if any human has ever felt this way before about an
android.

- Philip K. Dick, Do Androids Dream of Electric Sheep?

Since this dissertation focuses on understanding and improving security of Android devices, this
chapter gives a brief overview of the unique characteristics impacting mobile security
architectures, followed by a tutorial on Android security. Background information specific to

material discussed only in a single chapter is included within the respective chapter.

2.1 Unigueness of Mobile Devices

Android is an operating system designed specifically for lightweight mobile devices. As such, it has
unique characteristics that set it apart from traditional platforms. Identifying and understanding
these differences is an important prerequisite when studying the system and proposing

improvements.

Table 2.1 compares mobile devices with fixed computers in terms of features, characteristics, and

environment. Each of these has an impact on security and potentially the design of the platform’s

N

Table 2.1: Acomparison of mobile vs. fixed computing platform attributes.

Category

Typical attributes

Mobile

Fixed

Input

Soft keyboard, tap

Full keyboard, mouse, tap

Authentication

PIN, pattern, short password,
fingerprint

Long password, multi-factor

Sensors Motion, position, sound, light, | None
etc.

Media Multiple high-resolution Webcam
cameras

Communication 4G, cellular, Bluetooth, NFC, Ethernet

WiFi, peer-to-peer, etc.

Connectivity

Traverse multiple
untrusted/insecure networks

Direct, trusted connection

Enterprise
connectivity

VPN or direct-app connection
to enterprise

Direct, trusted connection

Administration

Lacks “root” access; OS limits
security apps

Full administrative access

Patch/update Carrier- and Owner-dependent
device-dependent
Special uses ID/financial proxy, billed

services (e.g., SMS)

Physical security

Vulnerable to loss, theft

Secured

security architecture.

The lack of a full-size keyboard on mobile devices makes entering long, complex passwords
difficult as well as inconvenient. As a result, several other authentication options are typical of
mobile devices. However, not all of these are as secure as the strong passwords and multi-factor
authentication common to fixed systems. Moreover, the combination of these with sensors and
other features unique to mobile devices can further exacerbate security problems. For example, it
has been shown that lock screen PINs can be inferred through a device’s camera and microphone

[21] or by other sensors such as the accelerometer [22,23,24,25].

2.2 Tutorial on Android Security

The foundation of any operating system security architecture is the security of the device itself. In
fixed systems, much of this is based on an assumption of strong physical security such as a locked
room or secure enclosure. Since mobile devices are inherently more susceptible to theft and
tampering, modern Android devices include several features to secure the device itself. This

includes:

« Bootloader locking. Prevents new firmware from being flashed onto the device.

. OEM signature check. Prevents 3"-party or tampered firmware from being flashed onto the
device.

« Secure boot. Requires firmware integrity check at boot time.

« Partition lock. Bootloader prohibits changes to system partition and other sensitive storage
areas.

« Read-only mounts. Kernel prohibits changes to system partition and other sensitive storage

areas.

Filesystem encryption. Prevents side-channel access to user data.

To organize an overview tutorial of Android security and its mechanisms, the application life-cycle
depicted in Figure 2.1is used as a road map. The following subsections correspond to the five

steps of the app life-cycle.

2.2.1 Development

Android applications are packaged as APK archive files, with the structure shown in Figure 2.2. A
key component of this file is the manifest, AndroidManifest.xml. This is where the developer
must declare needed permissions as well as any public interfaces and their associated access

control requirements. Most platform resources and actions that can affect the system, other apps,

13

/..7\ - Download /.f\ /_m /.—7\
* Manifest * Permissions * Residue

* Sign * Alternate « Sandbox e Confirmation
sources e |solation

e Develop B b Install B ham Remove

Figure 2.1: Android security mechanisms across the app lifecycle.

' ™
Manifest
(AndroidManifest.xml)

p. vy
4 ™ ' Y

Signatures Assets
(META-INF) (assets/)
p. vy p. vy
' ™ ' ™
Compiled resources Native libraries
(resources.arsc) (Lib/)
. "y . "y
4 ™ ' ™
Dalvik bytecode Resources
(classes.dex) (res/)
p vy p. vy

Figure 2.2: APK file structure.

orincur costs require permissions. These include accessing location, Bluetooth, phone, camera,
Internet, contacts databases, logs, etc. A full list of permissions allowed in the manifest is found in

[26].

Permissions are categorized as normal, dangerous, signature or signatureOrSystem. Normal and
dangerous permissions are available to all apps, with the latter requiring an explicit approval from
the end-user. Signature permissions are only granted to apps signed with the platform key, while
signatureOrSystem permissions may be granted to apps that are signed with the platform key or

part of the system partition that is defined at system build time.

Uniform Resource Identifier (URI) permissions enable a calling app to grant a callee access to a
specific resource, such as a specific file, owned by the calling app. It is also possible for an app
developer or system vendor to define custom permissions in the manifest, and use them to

implement custom protections for their apps’ public interfaces.

Al APK files must be digitally signed with the developer’s certificate. This allows the author to be
identified and is used to establish a security relationship among applications signed with the
same certificate. APK signing certificates do not require a certificate authority (CA) and may be
self-signed. Also, in order to publish apps in Google’s Play store, developers must use certificates
that are valid for at least 25 years when registered. This is because any updates to the app must be
signed with the same key or the update installation will fail. Unfortunately, there is no standard
mechanism for revoking compromised keys, so developers must strictly protect their private keys.
In fact, the entire certificate management system of Google Play (or lack thereof) has led to
several problems including developers signing all of their apps with a single key, 3-party
developers signing thousands of different customers’ apps with a single key, and apps signed with

publicly-known private keys [27].

2.2.2 Download

By default, Android is configured to only allow app installation from Google Play. This restriction is
part of Google’s market-based anti-virus and malware prevention strategy. For the reasons
discussed in the example of Section 1.2, 3"-party anti-virus tools are largely ineffective on stock,
unrooted Android devices. To address this, Google scans offerings in the Play store for the
presence of malicious libraries and other malware indicators (the exact nature of this scanning
algorithm is unknown outside Google). By restricting the installation source to only the Play store,
this market-based protection is extended to end-users. Users who opt-in to allow unknown
sources bypass this protection and open themselves to significant threats from repackaged and

pirated apps. Significant portions of repackaged and pirated apps in these markets have been

shown to contain malicious ad libraries, additional functionality, and request more permissions

than the originals in Google Play [28].

In order to offer malware protection even to users that install from unknown sources, Google
includes a device-based app verification feature starting with version 4.2. Because it is part of the

Android system, Verify apps does not suffer from the same limitations as 3-party anti-virus apps.

2.2.3 Installation

Prior to Android 6.0, permissions were granted to apps at install-time, in an all-or-none fashion.
Presented with a partial list (only those permissions categorized as dangerous), users would have
to accept all requested permissions or forgo installation. Once accepted, permissions could not be

revoked without uninstalling the app.

Beginning with Android 6.0, users do not interact with the permission system at install-time.
Instead, permission granting is deferred until a run-time action requires it. At that moment, the
user is presented with an allow/deny dialog. In addition, all permissions can be individually

granted or revoked at any time via Settings.

When an app is installed, it is assigned a Linux uid that is used as subject identification in
kernel-level access control decisions, just as in standard Linux. This kernel-level identification is
the basis for the application sandbox that all apps are subject to at run-time. However, unlike
standard Linux, in Android the Linux uid is separated into fields that have special meanings in the
Android Framework. The two most significant digits of the uid correspond to the Android user/d,
while the remaining five correspond to Android’s appld. This allows the same app to run with
different Linux uids and pids for different human users or different managed provisioning profiles.
In this way, sandbox isolation is maintained among users and profiles, even for the same app
used by two users. Chapter 3 contains more detailed specifics about Android’s multiuser features

and related security mechanisms.

16

Android’s application sandbox is anchored in the process and user isolation afforded by the Linux
kernel. From the kernel and Linux userspace point of view, apps are differentiated just as Linux
users are on a traditional system. Each app and all of its data files are assigned a unique uid and
gid. For example, a data file for an app assigned uid 0010068 would have the following mode,
owner and group: -rwx--- u0_a68 u0_a68, where u0_a68 is the Android “username” for uid
0010068. Thanks to this kernel-enforced isolation, by default apps cannot read/write files other
than their own, manipulate or access other apps, access peripheral devices, access the network,
incur costs (e.g., send SMS), or access user data stores (e.g., contacts). One exception are apps
whose APKs are signed with the same developer certificate. If so specified in the manifest, these
apps are allowed to share the same uid and pid. This enables developers to share common

databases and files among multiple apps in their suites.

To escape the sandbox, apps must have been granted specific permissions by way of the manifest.
Certain manifest permissions, such as those controlling access to some hardware resources (e.g.,
Bluetooth, Internet), logging subsystem, etc., are translated to additional gids. Apps possessing
the corresponding permission(s) are then granted membership in the group(s) and the Linux
permissions on the corresponding file or device allow group access. For example, the manifest
permission android.permission. INTERNET is mapped to gid 3003 (inet), and an app with
this permission declared in its manifest is granted membership in this group at install-time.
Networking-related sockets are then set with modes, owners, and groups that allow access to this
group. These settings are controlled dynamically at boot-time by the init process via settings in
init.rcandueventd.rc, or statically during the system build. For example, the socket
dnsproxyd, which enables Internet-capable apps to query the Domain Name Service (DNS) via a
proxy daemon, has the following mode, owner and group: stw-rw-- root inet. This allows the
resource to be accessed from within the sandbox directly via system calls, with access control
enforced by the kernel. This approach prevents native code from attempting to bypass Framework

controls.

17

Other manifest permissions are checked and enforced by the Android Framework at run-time and
are effectively gates that allow different forms of inter-process communication (IPC) between an
app and the resources and other apps on the device. In order to enable initial IPC requests, all
apps have default permissions to communicate with the kernel’s binder driver, accessed via
ioctls with /dev/binder. This character device is owned by root but is world-readable and

world-writable.

2.2.4 Run-time

Started by init, zygote is a privileged process which is responsible for launching apps. When an
app is launched, zygote forks a new process, sets the assigned uid and gid(s), and finally drops
unneeded privileges and capabilities. Process isolation courtesy of the Linux kernel ensures that
an app cannot interfere with other running apps and processes. A running app can attempt to

escape its sandbox by two mechanisms as shown in Figure 2.3: Binder IPC (D) and (2)) and system

calls (®).

Binder IPC provides a pathway to Framework resources and components of other apps. Binder
itself has no security; instead, access control is enforced at the destination (indicated by ¢ in

Figure 2.3) by way of permission checking.

In the case of apps accessing System Services (path (), the freely accessible binder driver allows
access to a directory service, ServiceManager. ServiceManager dispatches capabilities known as
handles for registered System Services such as LocationManagerService, SensorService, etc.

Additional specifics about ServiceManager and its security is included in Chapter 5.

Apps use these capabilities to invoke public methods of the corresponding service via Binder IPC.
Any access controls are enforced within each method, usually by checking whether the caller has
been granted the necessary manifest permission(s). For example, at the entry point of method

getLastLocation() in LocationManagerService, checks are made to determine whether the

Linux / Linux kernel
Raw resources (storage, settings db, hardware devices)

Figure 2.3: Sandboxes (- - -), escape paths (1),), 3)) and enforcement points ().

caller has been granted android.permission.ACCESS_FINE_LOCATION,
android.permission.ACCESS_COARSE_LOCATION, or no permission at all. The result of this
checkis used to return a most-accurate, less-accurate, or null location, respectively. It is important
to note that this access control check is done by the specific method(s) implementing access to
the Location object, not by a central reference monitor. This pattern of placing access controls as
close to resources as possible is a key insight in understanding the security architecture of

Android.

As mentioned earlier, Android 6.0 introduces the concept of run-time permission granting. In fact,
in this new model, no permissions are granted at install time. When the app is launched and
encounters a situation which requires use of a dangerous permission declared in the manifest, the
user is prompted. By choosing allow at this prompt, the app is permanently granted the

permission, which must then be manually revoked via Settings.

2.2.5 Removal

When apps are uninstalled, the assigned uid is freed up for reuse and its data directories are
removed. In some cases, remnants of the installation persist, such as credentials, capabilities,

settings, history, etc., and may cause security problems [29]. This continues to be an active

research area.

20

Chapter 3

Android Access Control Evaluation

Methodology

The only truly secure system is one that is powered off, cast in a block of
concrete and sealed in a lead-lined room with armed guards.
- Gene Spafford

The Android operating system is rapidly evolving, with major releases now occurring
approximately every six months. Each of these releases contain new features, enhancements, and
refinements that have significant security implications. These implications must be understood,
especially when devices are employed for critical and sensitive applications or in adversarial
environments. Unfortunately, Android is a very complex system, and as explained in Chapter 2, its
security architecture has been designed as an open system whereby access controls are placed as
close to the corresponding resource as possible. In this architecture, access control policy and
implementation are the responsibility of the resource itself. While this modular approach makes
adding new or unique resources easier, evaluating the soundness of platform-wide changes as
they relate to every resource becomes very difficult because of the many access control points

involved.

21

This chapter introduces a methodology for modeling, discovering and evaluating access controls
in Android. It is especially well-suited to evaluating how platform-wide architectural changes or
feature additions impact the security of the many separate resources whose access controls may
have been designed under earlier, potentially invalidated assumptions. The chapter also
describes the results from a case study which demonstrates the effectiveness of the method. The
case study applied the method to evaluating the security of Android’s multi-user framework, a
significant platform change which was first introduced in the 2012-2013 time-frame. The multi-user
extensions to Android represent exactly the kind of platform change that results in security

problems involving resources previously designed under assumptions invalidated by the change.

3.1 Introduction

The impressive growth of Android includes not only the number of traditional smartphone
devices running it, but an expansion to other “keyboardless” and embedded devices such as
tablets, home entertainment equipment, automobile dashboards, and home appliances. While
the typical smartphone is a personal single-user devices, many of the others are intended for use
by several individuals. Thus, one major driving force behind the features included in recent
releases of Android is the need for multi-user support, which has grown along with its expansion
from strictly personal devices to those with varied purposes in multi-user environments. Today,
the vast majority of fielded Android devices are multi-user capable, with Google Dashboards
reporting in June 2016 that 89.2% of active devices were running a multi-user-capable version [30]

(up from 27% in 2014).

Multi-user features take two different forms in Android: Multiple Users (MU), introduced in version
4.2 (API117) in November 2012, and Restricted Profiles (RP), introduced in version 4.3 (API18) in July
2013. With each subsequent release, the multi-user functionality was refined and expanded to fit

other contexts such as corporate environments.' Targeted towards sharable devices such as

'Since the time of this study, Managed Provisioning was introduced in Android version 5.0 (API 21) to allow enterprise-

22

tablets, these enhancements strive to provide individual, isolated user spaces on a single physical
device. Each user space supports a separate set of accounts, apps, settings, files, and user data,
distinct from those of the primary owner [32], however there are slight differences in the

functionality they provide.

Multiple Users (MU) designates the main account as Owner. Through the device settings, the
owner account may create additional MU accounts. These secondary accounts are
essentially the same as the owner, except for the fact that they cannot manage (i.e., create,
modify, delete) other users. MU accounts enjoy most of the other privileges and
functionality of the owner, including managing the device’s wireless and network settings,
pairing Bluetooth devices, customizing sound and display settings, installing/removing
their own apps, adjusting privacy settings (e.g., location access), and configuring security
features (e.g., screen lock, credentials). Each account also has a separate virtual SD card
storage area within the physical SD card.

Restricted Profiles (RP) are similar to MU accounts, but they lack several key functionalities
compared to owner and MU accounts. Like MU accounts, RP accounts cannot manage users.
In addition, RP accounts are restricted from installing apps. Instead, the owner account

“turns on” specific apps from the set of installed apps for the RP account.

Areasonable layperson might assume that these enhancements would provide user and profile
isolation similar to that provided by today’s desktop multi-user systems. However, end-users
working with multi-user features immediately encounter warning signs that this may not be the
case. When creating new users on a device, two telling confirmation dialogs appear as shown in
Figure 3.1. The dialog shown in Figure 3.1a warns that “any user can update apps for all other
users”, while that of Figure 3.1b implores the new user to “only share this phone with people you

trust”.

managed apps to coexist with personal apps in the same user account and launcher. My own brief investigation [31]
revealed that the underlying technical implementation of Managed Provisioning is very similar to that described here
for Multiple Users and Restricted Profiles. As such, many of the security concerns outlined here are applicable to Man-
aged Provisioning.

23

Set up new user

Add new user? You've been added to this phone

When you add a new user, that person
needs to set up their space. Important:

Any user can update apps for all other
users.

+ The phone’s owner can uninstall your apps or
remove your space

CANCEL OK
+ Any other user can accept updated app
permissions

+ Only share this phone with people you trust

Continue

Cancel and remove new user

(a) Warning to device owner. (b) Warning to new user.

Figure 3.1: Warning messages encountered while creating additional user accounts.

To security-minded individuals, these kinds of warnings raise red flags. Combined with the fact
that multi-user features were basically “bolted on” to an existing design, and the obvious security
implications of multi-user features for any system, there is plenty of reason to worry about the
soundness of these new capabilities. In fact, Android’s evolution towards a multi-user system is
not unlike that which happened with Microsoft’s Windows operating systems in the 1990s, which
started out as a single-user system. Compared to Unix, which was designed from the outset with
multiple users in mind, Windows’ later inclusion of these features was much more problematic in
terms of security [33]. Thus, is important to assess whether Android’s new multi-user framework
accounts for the fact that the single-user assumption of the original design has been invalidated,

as Microsoft arguably failed to do with initial multi-user versions of Windows.

However, rather than conducting an evaluation specific to the multi-user framework, this work
contributes a systematic access control evaluation methodology that is tailored to the unique
characteristics of Android, but generic enough to be suitable for use in evaluating any aspect of
the system’s access controls. The method enables one to gain security (and vulnerability) insights,

which then lead to hypotheses about potential security problems. These hypotheses can be

24

tested by way of focused experimentation. The efficacy of the method is proven via a case study
on Android’s multi-user framework, a recent, security-related addition to the system, which had

not been studied before.?

3.1.1 Threat Model

Most security evaluations focus their scope by defining a threat model. In fact, as stated earlier,
Google recommends sharing multi-user devices only with trustworthy people. Unfortunately,
varying definitions of trust, different expectations for security and privacy, and a wide variety of
use cases make this a very ambiguous statement. Because of this, and since the methodology is
intentionally generic with respect to the types of Android access controls being evaluated, we do
not immediately identify a specific threat or scenario. Instead, insights and knowledge are
produced first, through a systematic, exhaustive analysis, independent of any particular threat

mindset. The hypotheses which can then be generated factor in the specific threat scenarios.

The rest of the chapter is organized as follows: a background on how multi-user has been
implemented in Android is first provided in Section 3.2 so that later descriptions of the
methodology can include the multi-user case study context for clarity and as an example. Next,
Section 3.3 describes the systematic methodology for gaining insights into relevant access
controls and hypothesizing about potential vulnerabilities. A sampling of the most interesting
hypotheses are given in Section 3.3.3. Finally, Section 3.4 presents the findings from experiments

designed to test the hypotheses. Related work is consolidated in Chapter 6.

2Ahigh confidence anonymous reviewer of [34], the peer-reviewed publication describing this work, stated that the
paper is “...the first work that I'm aware of that looks at the security of Android’s multi-user framework.”

25

3.2 Background

Before describing our investigation, a brief technical overview of Android’s implementation of
multiple users is needed. The following section expands on the general background material of
Chapter 2, and is divided into four subsections: Android framework extensions, filesystem
configuration, kernel mechanisms, and run-time considerations. Each subsection may contain a
brief security discussion in order to emphasize aspects that are important for later discussions.
Throughout the chapter, the Linux user ID and group ID are referred to as uid and gid, respectively,

while IDs within the Android framework are denoted by userid, and appld.

3.2.1 Framework - userld

Version 4.2 added android.os.UserHandle class to represent multiple users on the device. This
class designates userld 0 as the device owner, and several special userlds to represent all users
(userld -1), the current user (userld -2), the current user or self (userld -3) and the null user (userld
-10000). Actual userlds are assigned by the UserManagerService class (also introduced in 4.2) when
new users or new restricted profiles are created by the device owner. This class defines the
starting userld as 10, and increments it by 1 every time a new user or profile is created, until the
number of current users equals the maximum number defined by the system property
fw.max_users from build.prop. State is maintained in /data/system/users/userlist.xml,
where a list of currently-assigned users and the next available userld is stored. On devices where
users or profiles have been repeatedly added and deleted, the userlds may be re-used, although
the next available counter continues to increment as shown by the example of Listing 3.3. userlds

are assigned in the same way regardless if they are for a secondary user or a restricted profile.

For example, Listing 3.1 shows a representative userlist.xml file from a fresh device with one
secondary user and one restricted profile added. After deleting these two accounts and adding a

third secondary user, the file appears as shown in Listing 3.2.

(ST N OV R N R [T, B R OURE N T

(S, I N OV R N R

26

Listing 3.1: userlist.zml showing users 0 (owner), 10, 11, and next available userld 12.

<?xml version=’1.0’ encoding=’utf-8’ standalone=’yes’ 7>
<users nextSerialNumber="12" version="4">

<user id="0" />

<user id="10" />

<user id="11" />
</users>

Listing 3.2: userltst.zml after deleting users 10, 11, and adding a user, showing users 0, 12 and next

available userld 13.

<?xml version=’1.0’ encoding=’utf-8’ standalone=’yes’ 7>
<users nextSerialNumber="13" version="4">

<user id="0" />

<user id="12" />
</users>

Listing 3.3: userltst.zml after deleting users 10, 11, and adding a user, showing users 0, 12 and next

available userld 13.

<?xml version=’1.0’ encoding=’utf-8’ standalone=’yes’ 7>
<users nextSerialNumber="27" version="4">

<user id="0" />

<user id="11" />
</users>

As has always been the case in Android, each installed application is assigned an appld.?
android.os.Process class defines ranges of applds that can be assigned to different types of

apps. Normally, these IDs range from 10000 to 99999.

In the past, applds were the same as the Linux uid, thus enabling process, memory and filesystem
isolation among the different apps installed on a device. With the advent of the multi-user
framework, the most significant bits of the Linux uid take on the semantics corresponding to
userld, while the remaining bits continue to correspond to appld. Specifically, the Linux uid is

obtained by concatenating the userld and appld as follows:

3Before the introduction of multi-user, uid and userld were used interchangeably to refer to the unique identifier for
each app installed on the system. In versions with multi-user extensions, userld is used to denote the actual user, while
appld is the designation for each app’s unique ID. However, there are still several instances of code and files that use
userld to refer to apps. For example, the sharedUserld tag in AndroidManifest.xml actually refers to package names
which will share the same appld.

27

uid = userld x PER_USER_RANGE + (appld mod PER_USER_RANGE), (3.7)

where the default PER_USER_RANGE is 100000.

Likewise, userld and appld can be recovered from uid using

userld = uid div PER_USER_RANGE (3.2)

and

appld = uid mod PER_USER_RANGE , (3.3)

where div denotes integer division and mod the modulo operation. The UserHandle class

includes methods getUid, getUserId, and getAppld for performing these conversions.

Thus, the Linux uid is comprised of a two-digit Android userld (00, 10, 11, 12, ...) concatenated with a
five-digit Android appld (10000, 10001, ...). For example, an app with app/d 10056 will run with
Linux uid 0010056 when started by the owner (userld 0), and Linux uid 1010056 when started by the

first secondary user or restricted profile (userld 10).

System uids not directly associated with apps are still in the range 0-9999. For example, root is

uid 0, system is uid 1000, radio is uid 1001, and shell is uid 2000.

3.2.2 Framework - Permissions

Several new permissions have been introduced with the advent of multi-user support. These
include MANAGE_USERS, INTERACT_ACROSS_USERS and INTERACT _ACROSS_USERS_FULL, which

are used to protect some types of inter-user functionalities such as startActivityAsUser ().

28

Generally, checks for these permissions are bypassed if the calling process has a root or system
uid. Several are also bypassed for processes running as shell. As signatureOrSystem permissions,
they will not be granted to apps not in the /system partition or signed with the platform key, and

thus are not obtainable by 3'-party apps.

3.2.3 Framework - Package Management

To accommodate multiple users, Android’s package management system was modified so that
secondary users can choose different sets of installed apps, and the owner can choose which
apps are enabled or disabled for RPs. However, as currently implemented, package management
is still largely platform-centric rather than user-centric. Although it may appear that each user has
their own independent set of apps installed, in reality, each app is installed once for the entire
platform, and then either enabled or disabled for each user. Evidence of this is seen in the fact that
a device with multiple users still has only one, platform-wide packages . 1ist file to map package
names to corresponding data directories, applds, and gids. This can be seen in the example
packages.list file shown in Listing 3.4. This file is from a multi-user device with two additional
accounts configured. For example, the package jackpal .androidterm shown in Listing 3.4 was
installed by the secondary user and is not visible at all to the owner or other users. However,
packages.list only contains the package name, appld, flag, data directory path, signing key

name, and gid assignments.

Listing 3.4: packages. list excerpt showing the lack of user-specific information.

com.android.soundrecorder 10051 0 /data/data/com.android.soundrecorder release
3003,1028,1015

com.android.voicedialer 10014 0 /data/data/com.android.voicedialer release 3002

com.android.defcontainer 10003 0 /data/data/com.android.defcontainer platform
1028,1015,1023,2001,1035

com.android.launcher 10008 0 /data/data/com.android.launcher shared none

com.android.quicksearchbox 10050 0 /data/data/com.android.quicksearchbox shared 3003

com.android.contacts 10002 0 /data/data/com.android.contacts shared 3003,1028,1015

com.android.inputmethod.latin 10035 0 /data/data/com.android.inputmethod.latin shared
1028,1015

com.android.phone 1001 0 /data/data/com.android.phone platform 3002,3001,3003,1028,1015

com.android.calculator2 10020 O /data/data/com.android.calculator2 release none

com.android.proxyhandler 10012 O /data/data/com.android.proxyhandler platform 3003

(ST N VR N R

29

com.android.htmlviewer 10033 0 /data/data/com.android.htmlviewer release 1028

com.android.providers.calendar 10001 O /data/data/com.android.providers.calendar release
3003,1028,1015

com.android.bluetooth 1002 0 /data/data/com.android.bluetooth platform
3003,3002,3001,1028,1015,3005,1016,3008

jackpal.androidterm 10058 0 /data/data/jackpal.androidterm default 3003,1028,1015

Moreover, there is also only one platform-wide packages . xm1 file for associating package names
and applds with signature keys, native library paths, code paths, granted permission(s), and
special conditions such as sharedUserlds. As illustrated by the packages.xml excerpts in Listing
3.5, the file has four major sections: a <permissions> block where permissions for the entire
platform are defined; one or more <package> blocks where each installed package is associated
with its signature identifier, code path, native library path, ApplicationInfo flags, permissions,
appld (shown in file as userld for historical reasons explained earlier), and other package-specific
settings; one or more <shared-user> blocks where shared applds (indicated by sharedUserld)
are associated with permissions; and a <keyset-settings> block where signature identifiers are

mapped to the actual public key.

Listing 3.5: packages . zml excerpts showing the lack of user-specific information.

<packages>
<last-platform-version internal="19" external="19" />
<permission-trees />
<permissions>
<item name="android.permission.CHANGE_WIFI_MULTICAST_STATE" package="android"
protection="1" />
<item name="android.permission.WRITE_CALL_LOG" package="android" protection="1" />
<item name="android.permission.CLEAR_APP_CACHE" package="android" protection="1" />
<item name="android.permission.AUTHENTICATE_ACCOUNTS" package="android" protection="
1" />
<item name="android.permission.ACCESS_WIMAX_STATE" package="android" />
<item name="android.permission.ASEC_ACCESS" package="android" protection="2" />
<item name="com.android.browser.permission.WRITE_HISTORY_BOOKMARKS" package="android
" protection="1" />
<item name="android.permission.INTERNAL_SYSTEM_WINDOW" package="android" protection=
"on />
<item name="android.permission.CAMERA_DISABLE_TRANSMIT_LED" package="android"
protection="18" />
<item name="android.permission.ACCESS_MOCK_LOCATION" package="android" protection="1
n />
<item name="android.permission.ACCESS_NETWORK_STATE" package="android" />
<item name="android.permission.CHANGE_BACKGROUND_DATA_SETTING" package="android"
protection="2" />
<item name="android.permission.GET_DETAILED_TASKS" package="android" protection="2"
/>

</permissions>
<package name="com.android.contacts" codePath="/system/priv-app/Contacts.apk"
nativelLibraryPath="/data/app-1lib/Contacts" flags="1078509125" ft="155316fb3a0" it="

22
23
24
25
26

27
28
29
30
31
32

33
34

35
36
37
38
39
40
a
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

62
63
64
65
66
67

68
69
70
n
2
73
74
IE]
76
7
78

155316fb3al0" ut="155316fb3a0" version="19" sharedUserId="10002">

<sigs count="1">

<cert index="2" />
</sigs>
<signing-keyset identifier="3" />
</package>

<package name="com.android.providers.userdictionary"
UserDictionaryProvider.apk" nativelibraryPath="/data/app-1lib/UserDictionaryProvider"

codePath="/system/app/

flags="572933" ft="155316d2f18" it="155316d2f18" ut="155316d2f18" version="19"

sharedUserId="10002">
<sigs count="1">

<cert index="2" />
</sigs>
<signing-keyset identifier="3" />
</package>

<package name="jackpal.androidterm"

codePath="/data/app/jackpal.androidterm-1.apk"

nativeLibraryPath="/data/app-1ib/jackpal.androidterm-1" flags="572996" ft="1567
f5e9058" it="1567f5e928b" ut="1567f5e928b" version="63" userId="10058">

<sigs count="1">

<cert index="4" key="30820242308201
ab02044adb879a300d06092a864886£f70d01010405003067310b30090603550406130275733

.ll />
</sigs>
<perms>

<item name="android.permission.
<item name="android.permission.

<item name="android.permission

<item name="android.permission.
<item name="android.permission.

</perms>
<signing-keyset identifier="1" />
</package>

<shared-user name="android.uid.shared"
<sigs count="1">
<cert index="2" />
</sigs>
<perms>
<item name="android.permission

<item name="android.permission
<item name="android.permission

<item name="android.permission
</perms>
</shared -user>

<keyset -settings>
<keys>

<public-key identifier="1" value
MIGEMAOGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnrCftbkq1488N8niHENFCL5XJ/Fb. ..

</keys>
<keysets>
<keyset identifier="1">
<key-id identifier="1" />

</keysets>

<lastIssuedKeyId value="1" />

<lastIssuedKeySetId value="0" />
</keyset-settings>

</packages>

READ_EXTERNAL_STORAGE" />
WAKE_LOCK" />

.ACCESS_SUPERUSER" />

WRITE_EXTERNAL_STORAGE" />
INTERNET" />

userId="10002">

.READ_EXTERNAL_STORAGE" />
<item name="android.permission.
.WRITE_CALL_LOG" />
.REBOOT" />

<item name="android.permission.
<item name="android.permission.
<item name="android.permission.
<item name="android.permission.
<item name="android.permission.
.READ_PHONE_STATE" />

WRITE_EXTERNAL_STORAGE" />

READ_SOCIAL_STREAM" />
ACCESS_COARSE_LOCATION" />
READ_CONTACTS" />
GET_ACCOUNTS" />
WRITE_CONTACTS" />

="

"

/>

31

Notably, this file also associates the aggregate permission list for <shared-user> packages to
appld without regards to any particular framework userld. For example, the packages
com.android.contacts and com.android.providers.userdictionary each declare
sharedUserlds of 10002 which means they are each granted all of the permissions defined by

shared user android.uid.shared.

Because the content and structure of the above files was not changed when multi-user features
were added to Android, PackageManager must have a way of keeping track of each user’s specific
app installation status. This is accomplished by way of individual package-restrictions.xml
files for each user (default location: /data/system/users/<userId>/). When an individual user
installs an app for themselves, the app is really installed on the platform (as indicated by the
platform.list and platform.zxml files, and then simply “hidden” from other users by tagging
the package name with inst=false in that user’s package-restrictions.xml. In the
jackpal.androidterm example used earlier, the package-restrictions.xml file for the user

who installed the package contains
<pkg name="jackpal.androidterm" stopped="true" nl="true"/>,
while the same file for all other users and profiles contains
<pkg name="jackpal.androidterm" inst="false" stopped="true" nl="true"/>.

We confirmed that the inst="false" parameter controls app visibility to users by manually

editing the file to remove it and observing that the app becomes available.

3.2.4 Filesystem

To support multi-user, several changes to the filesystem organization were made. Whereas the
single user’s app data was previously stored under /data/data/<package_name>, this data is

now isolated for each user under /data/user/<userId>/<package>. To maintain backwards

32

compatibility, the owner’s (userld 0) app data is still stored under /data/data/<package>, with
a symbolic link from /data/user/0 to /data/data. Subdirectories in these locations are owned
by the uid for the respective user and app. Strong isolation is achieved through the use of Linux

bind mounts and filesystem namespaces [35].

3.2.5 Kernel

Since Linux is naturally a multi-user system, implementing Android’s multi-user extensions at the
kernel level did not require any changes to the kernel itself. For all versions of the Linux kernel
used in Android, the Linux uid is an unsigned 32-bit integer which can represent over 4 billion
unique uids. Thus, the uid discussed above, formed from the Android userld and appld, uniquely
identifies both the user and app, and is directly used as the Linux uid. In this way, standard Linux
discretionary access control (DAC) can provide isolation not only among apps, but also among

each user’s data files for a particular app.

3.2.6 Run-time

On a running device, only one user can be “logged in” at any one time. However, through the
switch users function, multiple users introduced the concept of the current user, which refers to
the user interacting with the device. We refer to other users who may have been using the device
before it was switched to the current user as “inactive users.” Although these users cannot interact
with the device, many of the underlying processes associated with their active session, are left
running, as shown in Listing 3.6 where app processes from both the owner (uids beginning with
u0_) and a secondary user (those beginning with u10_) are running while the owner is using the
device. The inactive user’s apps are paused and their background services may be left to run. On
builds we have used, there is a limit of 3 to the number of users that can be inactive before their

processes are completely removed.

33

Listing 3.6: Partial process listing from a multi-user device showing processes from two users running

simultaneously.

root 224 1 552688 57232 ffffffff b7676770 S zygote

media 225 1 78740 23504 ffffffff b75f4586 S /system/bin/mediaserver
system 551 224 650404 58416 ffffffff b767807b S system_server

u0_a7 607 224 602888 68144 ffffffff b767807b S com.android.systemui
radio 713 224 583828 40852 ffffffff b767807b S com.android.phone

u0_a8 726 224 615000 52292 ffffffff b767807b S com.android.launcher
u0_ab5 791 224 560552 30312 ffffffff b767807b S com.android.smspush
u0_a40 805 224 562260 32440 ffffffff b767807b S com.android.music

wifi 883 1 5424 2156 c021a64f b75f6770 S /system/bin/wpa_supplicant
dhcp 1146 1 1620 488 c021a64f b76dal46 S /system/bin/dhcpcd
ulO_a8 1239 224 592460 64512 ffffffff b767807b S com.android.launcher
ulO_a7 1269 224 566924 42024 ffffffff b767807b S com.android.systemui
ulO_ab 1368 224 565424 38488 ffffffff b767807b S android.process.media
ul0_a25 1515 224 565728 35796 ffffffff b767807b S com.android.deskclock
ul0_a29 1532 224 572716 37892 ffffffff b767807b S com.android.email
ul0_a40 1585 224 562260 32432 ffffffff b767807b S com.android.music
system 1598 224 572196 33272 ffffffff b767807b S com.android.settings

ulO_system 1614 224 572196 33276 ffffffff b767807b S com.android.settings

ul0_a32 1636 224 605964 41540 ffffffff b767807b S com.android.gallery3d

u0_a35 1669 224 570692 38484 ffffffff b767807b S com.android.inputmethod.latin
u0_a48 1682 224 561888 31144 ffffffff b767807b S com.android.printspooler

u0_a2 1702 224 563436 36836 ffffffff b767807b S android.process.acore

u0_al 1732 224 565668 35076 ffffffff b767807b S com.android.providers.calendar
ulO_al 1748 224 563640 35132 ffffffff b767807b S com.android.providers.calendar
u0_a21 1904 224 573064 33828 ffffffff b767807b S com.android.calendar

ulO_a9 1921 224 565712 34396 ffffffff b767807b S com.android.mms

ulO_radio 1943 224 563976 32948 ffffffff b767807b S com.android.phone

ul0_a21 1958 224 569984 34872 ffffffff b767807b S com.android.calendar

u0_ab 1995 224 564904 34964 ffffffff b767807b S android.process.media

u0_a9 2011 224 567784 34968 ffffffff b767807b S com.android.mms

u0_a25 2046 224 563640 34508 ffffffff b767807b S com.android.deskclock

3.3 Method and Model

At the core of any security investigation lies the question of whether the system design is based on
valid assumptions. As Android evolves into a multi-user system, what once may have been a set of
valid assumptions may suddenly be undermined by emerging system characteristics and/or
usage models. In the case of the multi-user framework, the original assumption of a benign,
single-user environment is no longer valid. Rather than a single owner who has administrative
authority over most aspects of system configuration and would not attack or intentionally
mis-configure his own system, there is now an environment where it is plausible for secondary

users to bypass restrictions, attack other users, or deliberately reconfigure the system in an

34

unauthorized way. This insight gives us a way to focus the scope of the investigation.

3.3.1 Scope

To define the scope of this evaluation, we consider the overall architecture of Android depicted by
Yaghmour’s [36] high-level architectural view shown in Figure 3.2. This diagram is not specific to
multi-user, which enables us to employ the methodology below to other types of access control
evaluations besides the multi-user case study discussed here. This diagram shows broad
categories of system resources such as stock apps and system services, which become the subject
and object categories. The goal is to enumerate all relevant subject-object combinations and then
evaluate the suitability of the access control path(s) between them, where suitability is dependent
on whatever case is being looked at. In the case study presented here, our scope is limited to
scenarios whereby a secondary user exercises all possible paths to access resources and/or gain

privileges.

3.3.1.1 Identify subjects

With the above in mind, the subjects considered are apps and user interface (Ul) elements that the
users can install or use. This list includes user-installed as well as stock apps (e.g., Settings), with
the key difference being privilege (i.e., stock apps can have signatureOrSystem permissions
while user-installed apps cannot). In Figure 3.2, these are labeled as SUBJECT A for the case of a
user-installed app making API requests to other parts of the system, and SUBJECT B for cases

whereby the user interacts with stock apps to access resources.

For the example multi-user case, the subjects we identify are restricted to those apps that a
secondary user can install or use. A very important difference about the secondary user subjects
considered compared to those of the single-user case is that the secondary user who launched

the app may not necessarily still be the current user of the device. For example, components of an

35

A
OBJECT 1 hm:‘“m"m“”"’ o SUBJECT A
r one AlarmCloc
SUBJECT B |gmail Settings Camera e Market
Galery Mms DeskClock G
(Calendar Browser Bluetooth
Calculator Contracts
AppAPl == == mmmmmmmmmmmmmmmmmmmmmmmmmm—mm——————————
android.*
WO e i ol o B e W . . G 9 e 9 U e e
System Services | OBJECT 2 java.*
Power Manager Mount Service Status Bar Manager % Y
Activity Manager Notification Manager Sensor Service
Package Manager Location Manager Window Manager
Battery Service Surface Hinger <
Dalvik / Android Runtime / Zygote
Nlmmmm e e e e ee e ecccecccecccemc—————————————
Libraries Hardware | OBJECT 3
Bionic / OpenGL / Abstraction Native Daemons Init / Toolbox
WebKit / ... Layer
Linux Kemel OBJECT 4
Wakelocks / Lowmem / Binder / Ashmem / Logger 7RAM Concole /...

Figure 3.2: Investigation problem space showing various subject-object combinations. Adapted from
[36] with the permission of O’Reilly Media, Inc.

app launched by a secondary user prior to switching to another user may still function.

3.3.1.2 Identify objects

The resources available to the subjects discussed above are represented as the object in the
access control investigation. Examples from Figure 3.2 include public interfaces of other apps
(OBJECT 1), services (OBJECT 2), abstracted hardware devices (OBJECT 3) and kernel objects
(OBJECT 4).

The most important difference about the objects considered for the multi-user case study
compared to the single-user case is that some resources may be shared with other users on the
device. For example, hardware devices such as the camera, or common settings databases are

objects that are shared among multiple users on the device.

36

3.3.1.3 Identify access control paths

Between these subjects and objects are communication paths that may include access control
mechanisms. We draw upon the work of [10], [20], and [37] to present the simplified models of
Figure 3.3 that show communication paths pertinent to our investigation. This simplified model
gives us an Android-specific frame of reference with which we can consider each

SUBJECT-OBJECT path’s adequacy for whatever aspect of access control is under investigation.

N\

NN

N
N

N
NN

N
:\\

8

S
N

o
2
A
3
3
2
8

Linux / Linux kernel
Raw resources (storage, settings db, hardware devices)

(a) System access control points.

(b) Person-based access control.

Figure 3.3: Android communication paths showing access control points.

Figure 3.3a depicts each app and system service contained by separate sandboxes as indicated by
the dotted lines around them. Communication among these sandboxes (denoted by
bi-directional arrows) is done through Intents and Binders. Using Binders, apps obtain access to

services or providers (path (1)), and using Intents may launch exported activities of other apps

37

(path). These paths include access control points provided either by the system (e.g., as part of
the Intent or Binder mechanism), or at the public interface of the object itself. Using the native
interface, apps may also make system calls to directly request resources controlled by the Linux
kernel (path (3)), and these are subject to Linux DAC. These three paths are permission-based,

access control list (ACL)-based, or based on some combination of these.

Figure 3.3b shows another communication path with access control typical of smartphones and
tablets, that performed by the user (path &@). In this case, the current user makes the decision to
allow or disallow access to a resource such as location, for instance. We refer to this as

person-based access control to avoid confusion with the notion of users on the device.

Afifth type of path, not shown, are those that have no access control along them.

3.3.2 Questions & Insights

As we study the inner-workings of Android’s multi-user features, we are able to make two
observations. First, the new features have introduced important new considerations for the
subjects and objects shown in Figure 3.2. Examples of this include the concept of apps run by a
userld that is different than that of the current user, and person-based access control decisions
being made by multiple individuals. Second, even though none of the access control paths of
Figure 3.3 are unique or dedicated to the extensions, some have been modified to account for the
presence of multiple users on the device. Examples include methods that include checks for
INTERACT_ACROSS_USERS permission and apps that express different versions of their Ul to

restricted users than they do to the device owner.
These observations lead us to the following top-level questions for our investigation:

1. Do Android’s access control points properly account for the new considerations regarding
subjects and objects?

2. If not, can a secondary user exploit these shortcomings, and what is the potential damage?

38

In order to answer these questions, we enumerate all of the meaningful subject-object
combinations within the broad categories identified by Figure 3.2, and identify the corresponding
access control paths from Figure 3.3. This gives us a comprehensive list of specific things to study.
For example, a user-installed app (SUBJECT A) can send an Intent using startActivity () to
launch any exported activity of any other app (OBJECT 1). Thus, we study the system’s Intent
mechanism and the specifics of how these activities are exported. Specifically, we examine the
source code in order to determine what considerations, if any, do the Intent mechanisms and
exported activities give to multiple users. If none or partial, we consider whether there should be

protections and how a secondary user might exploit the shortcomings.

3.3.3 Hypotheses About Multi-User Security

This last step allows us to develop a set of hypotheses which can be used to design experiments
for testing the adequacy of access controls and demonstrating the consequences. Because they
must be testable, the hypotheses may include additional details about the threat model or
scenario required to exploit the potential vulnerability. We present a partial list of our most

interesting hypotheses for the multi-user case study here:

Hypothesis 1: Secondary users may be able to bypass their restrictions by exploiting the
unprotected public interfaces of system apps. Secondary users are supposed to lack certain
capabilities that the owner has, such as mobile plan settings. However, from our study of
how access control restrictions are implemented in Settings, we see that many are
accomplished by way of hiding portions of the Ul, while the corresponding activities are
exported publicly. This situation corresponds to a particular OBJECT 1in Figure 3.2
(Settings) that is shared among all users without adequate access control along path @) of
Figure 3.3a. Results from testing this hypothesis are contained in Section 3.4.1.

Hypothesis 2: Secondary users may be able to maliciously reconfiqure critical platform-wide

settings that are persistent across user switches. Secondary users possess certain

39

administrative capabilities (e.g., network settings) that are normally reserved for privileged
users on mature multi-user systems such as Linux. Under Android’s single user assumption,
some of these settings are protected by person-based access control since Ul interaction by
the benign user is required to prevent malicious apps from making invisible changes
programmatically. However, when the benign user assumption is invalid, Figure 3.2’s shared
resources protected only by Figure 3.3b’s person-based access controls (path @) can be
maliciously manipulated. The consequences are even more severe for cases where the
configurations are persistent across user switches, such as in the case of network
configuration. Results from testing this hypothesis are contained in Section 3.4.2.

Hypothesis 3: Inactive users may be able to spy on active users by exploiting improper access
control enforcement on shared hardware resources. As mentioned above, multi-user
extensions introduce the concept of current and background users. However, unlike a true
multi-user system such as Linux, which generally allows multiple remote logins
simultaneously, there can only be one active user “logged in” an Android tablet at any one
time. However, our enumeration of Figure 3.2 objects discovered apps and services that
have access to shared objects and are allowed to continue operations even after a user
switch occurs. Of these, certain ones such as audio, camera and location have obvious
privacy implications if used without the current user’s knowledge or consent. From an
analysis of the implicated access control paths (1) and @ in Figure 3.3, we find that
authorizations granted when the secondary user is the current user may not be properly
reconsidered after a user switch. Results from testing this hypothesis are contained in
Section 3.4.4.

Hypothesis 4: sharedUserId permissions may not be properly separated when sharedUserId
apps are installed by different users. Multiple users extensions bring with them the idea that
each user may have different settings, preferences, and apps. Obviously, these should be
isolated such that one user cannot accidentally inherit permissions or capabilities from

another. Because our enumeration of all subject and object combinations of Figure 3.2

40

included apps that leverage the sharedUserId feature, we discovered problematic
situations with overprivilege that can occur when different users install apps with
sharedUserIds. In particular, we see that access controls at Figure 3.3a locations (1),),
and @ fail to differentiate the subject because each sharedUserId app’s permissions are
commingled with others of the same appld in a single packages . xml file shared among all
users. Results from testing this hypothesis are contained in Section 3.4.3.

Hypothesis 5: A malicious user may be able to exploit the shared package management system to
modify another user’s app bytecode or prevent them from installing apps with package names
identical to ones installed by the attacker. The shared package management mechanism
that led to Hypothesis 4 is also the cause of other problems. Since package installation is
platform-centric rather than user-centric, changes by any user authorized to install apps will
affect all users on the platform. Specifically, if a secondary user upgrades a package, the
bytecode changes affect all users that have that package installed. Likewise, if a malicious
user installs a fake app with a real app’s package name, all users are prevented from

installing the real app. Results from testing this hypothesis are contained in Section 3.4.3.

To test these hypotheses, experiments were designed and conducted using builds of Android
4.4.2_r1 branch of the open source project [38]. The details of these experiments and findings are

the subject of Section 3.4.

3.4 Case Study Findings

3.41 Unprotected Activities

Hypothesis 1 states that secondary users may be able to bypass their restrictions by exploiting the
unprotected public interfaces of system apps. To find out if this is true, our experiment must first
identify the intended restrictions placed on a secondary user, and then compare them with the

full set of exposed interfaces.

[N NS, B U OV N

4

To understand the intended restrictions on secondary users, the device Ul elements accessible to
a secondary user were systematically mapped and compared with those of the owner. A privileged
app where significant differences have been observed is Settings. Settings is important to consider
from a security point of view because it is granted SignatureOrSystem permissions such as
WRITE_SECURE_SETTINGS. This permission allows Settings to make changes to variables defined
in Settings’ protected nested classes Settings.Global and Settings.Secure via the settings
provider [39]. With these special permissions, Settings is the means by which the owner can
perform device management tasks, such as adding, removing & restricting users, changing mobile

data/plan settings, changing locations settings, changing WiFi settings, performing backups, etc.

From the Ul mapping, we observed that Settings implements a number of Ul restrictions based on
type of user by hiding certain menu items. As such, we infer that these are capabilities that
secondary users are not supposed to have. As an example, virtual private network (VPN) settings
are hidden from the secondary user by way of logic within WirelessSettings. java, as shown
in Listing 3.7. This logic compares the current user’s userld with that of the owner and executes

removePreference (KEY_VPN_SETTINGS) if not equal.

Listing 3.7: Settings code which hides VPN menus for secondary users.

public void onCreate(Bundle savedInstanceState) {

final boolean isSecondaryUser = UserHandle.myUserId() != UserHandle.USER_OWNER;
if (isSecondaryUser) { // Disable VPN

removePreference (KEY_VPN_SETTINGS) ;
}

With an understanding of how Settings presents a restricted Ul to secondary users, we compared
the list of restricted Ul elements with exported activities in the app’s manifest to find which of
these elements can be launched directly via Intent [40]. Listing 3.9 contains an excerpt from
Settings’ AndroidManifest.xml showing an Intent filter in VpnSettingsActivity, implying
that it can be launched from components of other applications [40]. As expected the code shown

in Listing 3.8 was used in a test app to confirm that a secondary user could bypass the Ul

NSO SR

42

restrictions and access VpnSettingsActivity directly.

Listing 3.8: Code for direct access to VpnSettingsActivity

Intent intent = new Intent();

intent.setClassName ("com.android.settings",
"com.android.settings.Settings$VpnSettingsActivity");

startActivity (intent);

Similar examples were found in Mobile network & Mobile plan settings (under Wireless & Network
settings), and in Backup & reset settings (under Personal settings). Secondary users can access
these activities because of a lack of access control along path @ of Figure 3.3a, such as a check
based on UserHandle.myUserId (). Thus, each of these examples represent potentially
dangerous situations since these activities allow a secondary user to manipulate configuration

settings that may be able to be used to negatively affect the owner or other users of the device.

As it turns out, the VPN example contains additional access control checks in Vpn. java that do
properly identify the subject and prevent restricted users from connecting VPNs. Thus, for VPNs at
least, the hypothesis is only partially true. Because of the numerous cases of restricted Ul

elements also being exported to all users, other cases will be investigated in the future.

Listing 3.9: AndrotdMani fest.aml excerpt showing an Intent filter in VpnSettingsdctivity.

<activity android:name="Settings$VpnSettingsActivity"
>
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<action android:name="android.net.vpn.SETTINGS" />
<category android:name="android.intent.category.DEFAULT"/>
<category android:name="android.intent.category.VOICE_LAUNCH"/>
<category android:name="com.android.settings.SHORTCUT"/>
</intent-filter>

<meta-data android:name="com.android.settings.FRAGMENT_CLASS"
android:value="com.android.settings.vpn2.Vanettings"/>

<meta-data android:name="com.android.settings.PARENT_FRAGMENT_CLASS"
android:value="com.android.settings.Settings$WirelessSettingsActivity"/>
</activity>

43

3.4.2 Unrestricted Administrative Functions

Hypothesis 2 states that secondary users may be able to use device configurations which are
persistent across user switches to attack other users. Although related to Hypothesis 1, this case
does not involve a user bypassing restrictions, but simply implementing a malicious environment

using the Ul elements freely available to them.

To test this hypothesis, we built an experiment around network configuration, since this function
is usually reserved for administrative users on standard multi-user platforms. We found that all
users, secondary, restricted profile or otherwise, have full access to WiFi settings and can add and
configure network connections as they choose. Furthermore, these settings are common to all
users since they are ultimately stored by the system in a single
/data/misc/wifi/wpa_supplicant.conf file that has no provisions foridentifying the user
who has authorized a particular connection. Finally, our experiment showed that WiFi

connections are persistent across user switching.

This arrangement enables a secondary user to connect a multi-user device to a malicious hotspot
and control all traffic to/from the device while it is being operated by other users. The hypothesis
is true and the situation represents the fifth case mentioned in the Figure 3.3 discussion, that of no

access control.

3.4.3 Shared Package Information

Hypotheses 4 and 5 state that specific problems may occur due to the fact that Android apps

belonging to different users share critical package information:

1. Apps sharing the same appId in different users share permissions. As a result, the effective
permission of these apps is the union of the declared permissions for each app and the

sharedUserId apps escalate their permissions. This is the essence of Hypothesis 4.

44

2. An app installed for different users shares the same app package information.
Consequently, one user may trigger a package update to modify the app’s manifest file or

code without other users’ consent. This is Hypothesis 5.

To design an experiment to confirm these two problems, we need to first understand more about
how PackageManager stores and uses an installed app’s package and its relevant information. In
PackageManager, all the package information among users are stored in a global hash map

mPackages as shown in Listing 3.10.

Listing 3.10: Global hash map storing package information.

final HashMap<String, PackageParser.Package> mPackages =
new HashMap<String, PackageParser.Package>();

// Keys are String (package name), values are Package. lJ

The keys of this hash map are package names, and the values are packages including permissions
and code information of the packages. Hence, we realize that mPackages is app name-based,
rather than user-based, confirming the platform-centric approach to package management that
remains in Android, in spite of the addition of the multi-user framework. With this as a basis for

our understanding, we can now discuss the testing of each of these hypotheses separately.

3.4.3.1 Permission leakage in sharedUserId apps

Android’s sharedUserId feature allows apps signed with the same key to share permissions and
data. Previous work in the single user environment has shown this convenience feature to have
risks due to implicit capability leaks among apps [41]. Although sharedUserId app’s data ends
up being properly isolated in multi-user due to Linux’s use of the uid (which accounts for both
appId anduserId), thisis not the case with permissions. In fact, these capabilities are leaked
across user boundaries, even if a particular user only has one of the sharedUserId apps installed.

This occurs because of the platform-centric design of PackageManager.

During installation, permission sets are stored in packages . xm1, while installation status is stored

B SN, N S OV R R

45

in separate package-restrictions.xml files for each user. For sharedUserId apps,
permissions from each app are combined within the <shared-user> block in packages.xml, as
explained previously in Section 3.2.3. During boot, PackageManager loads this permission list into
the hash map mPackage in a way that makes it impossible to separate the individual permissions
from each sharedUserId app in case a particular user does not have them all installed. As a
result, when sharedUserId apps from the same developer are installed in varying combinations
by different users on the same device, every single app gains the union of permissions from all of
the sharedUserId apps installed on the platform, regardless of which sharedUserId apps have

been installed by that particular user.

To confirm this, we created a pair of sharedUserId apps. shareduidapp! declares INTERNET
permission, and shareduidapp2 declares READ_CONTACTS permission. We then installed
shareduidappi under the owner’s account only, and shareduidapp2 under a secondary account

only. After these installations, packages . xml contained the entries shown in Listing 3.11:

Listing 3.11: packages.xml excerpt showing permissions associated with shareduidapp1 and share-

duidapp?2.
<package name="com.example.shareduidappl" ... sharedUserId="10056">
<package name="com.example.shareduidapp2" ... sharedUserId="10056">
<shared-user name="com.example" userId="10056">

<perms>

<item name="android.permission.READ_CONTACTS" />
<item name="android.permission.INTERNET" />
</perms>

As Listing 3.11 shows, shareduidapp1 and shareduidapp2 share userId 10056 per the <package>
blocks. Separate from the package names, within the <shared-user> block, userId 10056 is
then associated with the two permissions. However, no structure retains the fact that the
INTERNET permission was contributed by shareduidapp1, while READ_CONTACTS was contributed
by shareduidapp2. The record of which users have these apps installed is contained in each user’s
separate package-restrictions.xml file. As Listings 3.12 and 3.13 show, user 0’s (Owner)

package-restrictions.xml shows inst=false for shareduidapp?2, while user10’s

46

(secondary user) shows inst=false for shareduidappl.

Listing 3.12: package-restrictions.aml for user 0 (Owner).

<pkg name="com.example.shareduidapp2" inst="false" stopped="true" nl="true" />

Listing 3.13: package-restrictions.zml for user 10 (secondary user).

<pkg name="com.example.shareduidappl" inst="false" stopped="true" nl="true" />

Because of the commingling of permissions within packages .xml, when user 10 runs
shareduidapp?2, the system grants both INTERNET and READ_CONTACTS permissions even
though shareduidapp1 is not installed for the user. Meanwhile, Settings reports shareduidapp?2
only holds READ_CONTACTS permission. This condition also occurs for shareduidappl run by
user 0. Each user is unaware of the permission leakage and over-privilege. Moreover, if user 10 is a
restricted profile for which the owner carefully enabled apps based on their reported permissions,

this leakage could allow the restricted profile accesses they should not have.

3.4.3.2 Package-based code sharing across users

Android’s app install and update procedure is depicted in Figure 3.4. When PackageManager
receives an install request, it first checks whether the package has been previously installed on the
platform. If the package has been previously installed by at least one user, it’s treated as a package

replacement. Otherwise it’s treated as a new install.

For new installs, a new mapping is created in the hashmap mPackages, and the app is marked as
installed for the installing user (or in some cases, all users) by passing the appropriate user/d(s) to
the setInstalled method of the new package’s PackageSetting, as shown in Listing 3.14.

Hence, package meta-data, in the form of an instance of PackageSetting, solely determines

47

install package

replace

replace existing package
install new pacakge

replace system package

is not sys pkg

replace nonsystem package

update package

Figure 3.4: Package installation and update procedure.

whether the package is installed for a particular user. This is further evidenced by the code of
method installExistingPackageAsUser within PackageManagerService, shown in Listing 3.15.
Here we see that an existing package is installed for a particular userld simply by changing the

values within an instance of PackageSetting.

Listing 3.14: Per-user package installation state is maintained within package meta-data.

PackageSetting p = mPackages.get (name);

// The caller has explicitly specified the user they want this
// package installed for, and the package already exists.

// Make sure it conforms to the new request.

List<UserInfo> users = getAllUsers();

if (users != null) {
for (UserInfo user : users) {
if (installUser.getIdentifier() == UserHandle.USER_ALL
|l installUser.getIdentifier () == user.id) {

boolean installed = p.getInstalled(user.id);
if (!installed) {
p.-setInstalled(true, user.id);
writePackageRestrictionsLPr (user.id);

-/

Listing 3.15: Existing packages are “installed” for additional users by modifying the package meta-

data.

© N o v~ W N o

public int installExistingPackageAsUser (String packageName, int userId) {

mContext.enforceCallingOrSelfPermission(android.Manifest.permission.INSTALL_PACKAGES,
null);
PackageSetting pkgSetting;

if (!pkgSetting.getInstalled (userId)) {
pkgSetting.setInstalled (true, userId);
pkgSetting.setBlocked (false, userId);
mSettings.writePackageRestrictionsLPr (userId);
sendAdded = true;

48

Since installation state for each user is maintained within the package meta-data, it is impossibl

for users to maintain different versions of the same package. In fact, PackageManager uses the

e

package signature to ensure that updates replace old versions of the package. Listing 3.16 shows

that a package update passing the signature check is then used to replace the old package by way

of replaceSystemPackageLl or replaceNonSystemPackageLI. Moreover, per-user package
installation state is preserved with the new package installation, as evidenced by the passing of
perUserInstalled to these methods. As a result of this design, a user who updates a package

updates it for all other users of the device.

Listing 3.16: Package signature is checked prior to replacement during an update.

private void replacePackageLI (PackageParser.Package pkg,
int parseFlags, int scanMode, UserHandle user,
String installerPackageName, PackageInstalledInfo res) {

oldPackage = mPackages.get (pkgName) ;
if (compareSignatures (oldPackage.mSignatures, pkg.mSignatures)
!= PackageManager .SIGNATURE_MATCH) {

Slog.w(TAG, "New package has a different signature: " + pkgName);
res.returnCode = PackageManager.INSTALL_PARSE_FAILED_INCONSISTENT_CERTIFICATES;
return;

}

boolean sysPkg = (isSystemApp(oldPackage));
if (sysPkg) {
replaceSystemPackageLI (oldPackage, pkg, parseFlags, scanMode,
user, allUsers, perUserInstalled, installerPackageName, res);
} else {
replaceNonSystemPackageLI (oldPackage , pkg, parseFlags, scanMode,
user, allUsers, perUserInstalled, installerPackageName, res);

The most significant security impacts of this design are as follows:

49

First, one user may escalate the permissions of apps belonging to a second user. For example, the
latest version of Twitter requires an extra permission, READ_SMS, compared to the old version. The
owner may choose not to upgrade to the latest one for privacy concerns related to SMS. However,
a secondary user may choose to update the app through Google Play because she likes the new
features. As a result, this update event will update all users’ version of Twitter without their
consent. The newly updated package requests more permissions and performs different
computing logic than the old one. In this scenario, a secondary user grants a new permission to

Twitter on behalf of all the users instead of just herself.

Second, a user may have a chance to affect other users’ app installation by creating denial of
service (DoS) attacks in two ways. First, a user can fake a package and create package installation
denial-of-service (DoS) by installing a fake version of an app before other users install the
legitimate one. In such a case, because of the signature matching requirement, no one else can
install the legitimate app, or uninstall the faked package through the user interface. Only the
owner can force uninstalls using adb. Moreover, if other users do not notice that the app is fake,
the attacking user can update the fake app and include malicious logic that attacks other users’

sensitive information.

Another negative side-effect of all users sharing the same app1d, is that one user may use up all
the appId values which prevents other users from installing any apps. We confirmed this by
installing 50,000 dummy apps on a Nexus 10 running KitKat 4.4 as a secondary user, thus using up
all available appIds. As a result, any other user, including the owner, cannot install apps anymore.
The logcat will show that the installation failure is because
INSTALL_FAILED_INSUFFICIENT_STORAGE, but actually there is still space in data partition. The

failure is because all users must share the same appId range.

The root cause for this code sharing problem is that Android does not provide code separation for
different users. All users share the same code for each package, appIds, and their privileges for

installing apps is mixed together. The package manager fails to isolate the code space of each

50

Angry Birds

X App not installed.

An existing package by the same name with a conflicting signature is already installed

Figure 3.5: New package installation is denied due to existing package with the same name but dif-
ferent signature.

user, although this design significantly saves the valuable disk space.

3.4.4 Use of Sensors and Hardware Devices by Multiple Users

Hypothesis 3 from Section 3.3.3 was tested by a colleague, and therefore only summarized here as
a way to provide additional evidence of how the methodology described earlier was put to use.

Further details pertaining to the sensor and hardware testing are found in [34].

In this section, we aim to answer Hypothesis 3 from Section 3.3.3. That is, non-logged in
secondary users can exploit improper access control enforcement on shared hardware resources
to spy on current users. In fact, if Android does not enforce proper access control on shared
hardware resources based on user status, a non-current user can still use a hardware interface to
infer various information about the logged in users and spy on them. For example, if a non-current
user can query the light and accelerometer sensors over a time interval, he can infer potential
activities about current user such as whether he is sitting indoors, or jogging outdoors. Moreover,
if he can query the GPS service, he can even infer where he is sitting or jogging. Even more
concerning, if he can launch the sound and camera recorders, he can know easily more details

such as with whom he is and what type of conversation he is having.

Under single-user assumptions, all hardware interfaces belong to the same user without any
concerns of misuse. Ideally, with multi-user features, a hardware resource should only be bound
to asingle user at a time, corresponding to the currently logged-in user. Since the hardware
interfaces are shared among the users on an Android device, the transition from single to multiple

user framework requires changing the access control model on all hardware resources to make

51

sure that use of a hardware resource is only granted to the logged in user.

To ensure that a hardware resource is only bound to the currently logged in user, Android should
be able to identify if the user requesting a resource is logged in. Also, it should track if the user who
initiated the request is continuously logged in during the service lifetime. More specifically, if
user-switching occurs, Android should be able to revoke any resource access from non-logged in
users. Thus, the hypothesis testing in this section focuses on whether or not Android access
control enforcement for shared hardware resources factors in user status. Media resources and
common sensors are each tested against the hypothesis: for each resource, an test app is
designed that will attempt to access a resource even if the user running the app is not logged in.
This approach exploits the fact that ActivityManager does not kill all non-current user processes.
Thus, the attacking app can be launched when the malicious user is logged in, and continues to
run after he logs out and the victim user logs in. A non-owner user is deliberately chosen to be the
attacker, and the owner to be the victim since non-owner is less privileged compared to the owner

and represents the worst case. Findings for each of the resource categories are summarized below.

3.4.4.1 Media resources

To check if relevant access control points take into account multiple users, an test app was
designed to launch the camera (without a preview window) and start video recording while the
victim is using the device. The app is launched from the attacker user account (user/d 10) and then
the device is switched to the victim account (userld 0). The test app was observed to continue
recording video while the victim is using the device. Since the test app is running as the attacker,
the recorded video is saved under the attacker’s data directory and can be retrieved by the
attacker later. The success of the attack reveals that the media resource access controls only come

into play at request-time and do not consider the changing of user status.

52

3.4.4.2 Motion, environmental and position sensors

Most Android devices have numerous built-in sensors such as motion, environmental, and
position. Motion sensors include accelerometers, gravity, rotational vector sensors, and
gyroscopes. Environmental sensors measure ambient air temperature, pressure, illumination and
humidity, while position sensors measure the physical orientation of a device. Unlike the media
devices discussed above, activity from these sensors follow an event-driven approach. In other
words, an app first registers a listener to receive sensor events through the SensorManager, then

SensorService will deliver the sensor data to the registered listeners.

To test whether Android’s sensor access controls consider user state, a test app was developed to
continuously log sensor data. Similar to how the video recording app was used, the sensor app is
launched from the attacker account and then the device is switched to the victim user. Even after
user switching, the app continues to receive sensor events, silently while the victim is using the
device. Sensor data logs are stored in the attacker’s data directory and may be retrieved later. This
success indicates that no access controls exist for the sensor devices, either at listener registration
time or during sensor data delivery. The conclusion is that the sensor subsystem fails to consider

the new

3.4.4.3 Location sensor

Tests similar to those above were performed on the GPS location sensor and found that a
non-current user cannot succeed in getting GPS location updates of the logged in user. A review of
LocationManagerService code revealed that it does indeed apply proper access controls that
consider user status when location data is dispatched. Specifically,
handleLocationChangedLocked () will only dispatch location updates to registered listeners
belonging to the current user. In this case, LocationManagerService properly tracks the current

user and updates its instance variable, mCurrentUserId, each time the useris switched. A similar

design should be applied to other shared hardware resources.

53

54

Chapter 4

Access Control Characterization

You can’t secure what you don’t understand.
- Bruce Schneier, Schneier on Security, 1999 [42]

4.1 Introduction

The previous chapter highlights the need to consider Android’s unique factors when evaluating or
improving the platform’s security. These factors include its open design, decentralized,
resource-centric access controls, and emphasis on usability. Besides these, the phenomenon of
vendor and carrier customization is another reality that sets Android apart from other mobile

operating systems—and introduces a whole new dimension of security concerns.

Nearly all of the Android devices in use throughout the world are those which have been
customized by manufacturers and service carriers. Unlike devices running the open-source AOSP
baseline, these customized devices run versions of Android that are proprietary and closed source.
Designed to create a competitive advantage through product differentiation, typical modifications
include the addition of pre-loaded apps, custom launchers, mobile device management (MDM)

features, carrier-specific enhancements or restrictions. Previous work has studied the security

55

implications of some of these modifications, including hanging attributes references [43],
problems with pre-loaded apps [44,41,45], security configuration changes [46], and access control
inconsistencies [47]. Other work has focused on automated detection of bugs in the Linux kernel
[48,49,50] and and inconsistencies in its configuration options [51,52]. These and other related

works are discussed in more detail in Chapter 6.

4.1.1 System Services Customization

One type of customization that has not been thoroughly explored, but is seen in nearly all vendor
images, is that of customized System Services. As described in Sections 2.2.4 and 5.4.1, Android
employs a modular System Services architecture, whereby system resources are accessed via
separate managers, such as LocationManager and TelephonyManager. These managers
communicate via IPC with the corresponding service which in turn accesses the actual hardware
or software resource. The service is responsible for enforcing its own access control policy. Under
this resource abstraction, specific resources can be presented via one or more managers with
different APIs. For example, NetworkManager and ConnectivityManager both manipulate the
device’s networking infrastructure, but via different APIs intended for different purposes. This
modularity allows 3" parties to easily add and modify System Services, creating custom resource
interfaces without affecting other parts of the system. Unfortunately, since access control is
implemented in each service rather than centrally, it also opens the door for new vulnerabilities

and access control inconsistencies if not done properly.

4.1.2 Motivating Example

To illustrate the types of customization problems that can occur, consider the following example.
In Lollipop 5.0, AOSP’s NetworkManagementService contains 81 remotely-callable public interface

methods which collectively are protected by 64 permission enforcement points that check the

56

CONNECTIVITY_INTERNAL permission. Since this is a signatureOrSystem-level permission, itis only
obtainable by apps signed with the platform key or residing in the system partition (i.e., trusted
system apps). In no instances does AOSP’s NetworkManagementService rely on credentials
obtainable by 3"-party apps (i.e., normal- or dangerous-level permissions) to enforce access
control. As such, itis evident that Android’s designers intended this service to be used exclusively

by system apps.

In contrast, Motorola’s customized NetworkManagementService obtained from a Moto X device
running their version of Android 5.0 contains 8 additional remotely-callable methods:
addUpstreamV6Interface(),blockDataTrafficInternal (), enableTrafficMonitor (),
getSapAutoChannelSelection(), getSapOperatingChannel (),
removeUpstreamV6Interface (), runIpLogCmd (), and setChannelRange (). None of the

other 81 methods are changed from their AOSP version.

Of the eight added methods, only two, enableTrafficMonitor () and
blockDataTrafficInternal (), require system-only credentials such as those in AOSP’s
NetworkManagementService. Specifically, enableTrafficMonitor () requires
CONNECTIVITY_INTERNAL permission, while blockDataTrafficInternal () requires the calling

process to be running as uid 1000 (a privileged uid, reserved for system processes).

Those that appear to deviate from Google’s system-only design for NetworkManagementService
include addUpstreamV6Interface () and removeUpstreamV6Interface (), which are
protected with the normal-level permission ACCESS_NETWORK_STATE. Also,
getSapAutoChannelSelection(), getSapOperatingChannel (), and setChannelRange ()
are protected with the dangerous permission CHANGE_WIFI_STATE. Finally, runIpLogCmd () has
no apparent access controls at all. A test app was written to verify that these six methods could
indeed be invoked by a non-system app with only normal- or dangerous-level permissions. Each

was successfully invoked.

57

4.1.3 Research Questions

This example illustrates several aspects of system customization that are important to understand,
and thus translate into the research questions for this investigation. First, “what is the type and
nature of access controls in System Services?” Second, “has a vendor customized System Services for
their devices and, if so, how?” Finally, “if present, how do the customizations compare with a known
baseline, AOSP?” Answering the first research question requires a characterization of access
control, while answering the second two requires a comparison, or differential analysis, of the
vendor image vs. the baseline AOSP. As such, this chapter first introduces a new method for
characterizing Android access controls (Section 4.2), and then describes how these

characterizations are compared to highlight interesting aspects of their differences (Section 4.3).

4.2 Characterizing Android Access Controls

The purpose of any characterization is to describe the distinctive features of something so that it
can be distinguished from otherwise similar objects. For example, accurate automatic facial
recognition relies on careful selection and quantification of various facial features extracted from
an image of the subject. These features alone are then used in distinguishing one subject from
another or when matching against a library of subjects. Thus, to accurately characterize access
controls of a particular entity in Android, we must first determine the features that are most useful
for capturing the nature of the entity’s access controls and in turn allow it to be distinguished from
its customized counterpart. Before proposing a feature set, we capture some specifics of Android
access control and its implementation. To this end, we begin with “first principles” and consider

the high-level diagram of Figure 4.1, as well as the background material provided in Chapter 2.

The core of this diagram shows a subject, s € Subyj, requesting access to an object, o € Obj, by
way of a central access control mechanism, m € Mech. This well-known simple model is extended

in two ways here. First, an assignment step ((D) is added to indicate how the subject gets its

58

T T T T T T T T T hl
:Assignment :
! |
| ! oy
| : 2)
L I N I 0
= i | Enforcement !
| | I
: J: : Access Control :
Subject : Mechanism Object
i (types) !

Figure 4.1: High-level access control model.

privileges when it’s created or elevated. These privileges, p € Priv,come in the form of capabilities
that the subject possesses (such as a Binder token), or labels (such as uid or gid). Second, an
enforcement boundary () is shown to indicate that the set of mechanisms may include those

that are implemented by the resource, as well as those that are central system mechanisms.

In order to make this generic diagram useful for representing Android access controls, the

following questions must be answered for Android:

1. What are the possible subjects, Subj?

2. What labels and capabilities, Priv, can be assigned to the subject?
3. What enforcement mechanisms, Mech, are used for access control?
4. What are the possible objects, Obj?

5. Are there other interesting access control-related mechanisms?

In general, there are several ways in which these questions could be answered, including
comprehensive code analysis, by inferences made from system observations, from
documentation, or information provided by experts. As a starting point, since formal
specifications for Android do not exist, a collection of security documents from the Android Open
Source Project (AOSP) [10,7] and several key papers [20,53,37] were manually parsed for
security-related assertions. This analysis found 146 security statements, 110 of which were related
to access control (see Appendix A). From these, all mentions of different subjects, objects,

assignments, and enforcement mechanisms were extracted. These lists were further refined and

59

confirmed using the results of the subject-object-path identification process described in Chapter

3. The result, summarized below, provides answers for the questions above:

1. What are the possible subjects? Subjects are initiators of requests governed by access
controls. In Android, these are apps, services and native processes. According to the default SE for
Android [53] policy, apps are further refined as isolated apps, platform apps, system apps,
untrusted apps, and shell apps. This refinement is important in this model since the assignment
process is different for different types of apps. For example, platform and system apps can obtain

special permissions that untrusted apps cannot. Thus,

Subj = {isolated_app, platform_app, system_app, untrusted_app, service, native} .

2. What labels and capabilities can be assigned to the subject? Assignment is when the
subject get its powers. These powers come in the form of labels and capabilities. Labels are simply
properties or meta-data that are used to identify the subject during access control decisions. In
Android, labels include Linux user ID (uid), Linux group ID (gid), SELinux security identifier (SID),

appld/userId (these are related to uid [34]), package name, and signing certificate.

Manifest permissions are assigned to apps at installation and run-time. Permissions have a
protection level of normal, dangerous, signature, or signatureOrSystem, corresponding to the
potential risk involved, and affecting which subjects can obtain them and whether the user is

consulted when they are granted [54].

Capabilities are tokens (tickets) that are actually held by the subject and presented to the
enforcement system when access is needed. In Android, Binder tokens and file descriptors are

examples of capabilities that are used to control access. Hence,

Priv = {uid, gid, SID, package_name, cert, perms, Binder_token, file_desc} ,

60

where uid is a combination of userId and appId, and perms is the set of all possible manifest

permissions.

Akey insight that was gained during this analysis is related to label assignment. It was found that
assignments may take two forms, which this work terms dynamic and fixed. Dynamic assignments
are those that are dependent on some external input or environment. For example, the device
owner may choose to deny certain permissions when installing an app or make the app available
to only certain secondary users. In another example, assignment of signatureOrSystem
permissions is dependent on whether the app is signed with the platform key or located within
the system partition. Apps not meeting one of these criteria will be denied the system permission.
In both of these cases, the resulting label(s) depend on the specific circumstances at the time of
assignment. On the other hand, fixed assignments are those that are hardcoded into the system,
such as the permissions assigned to native daemons by init per init.rc, or the SID labels
applied to files and directories when the system image is built. Thus, the assignment itself may be
subject to access controls, and some of these are discretionary (i.e., up to the user) and some are

mandatory (i.e., hardcoded or fixed by mandatory policy).

3. What are the enforcement mechanisms used for access control? When a subject requests
something, itis usually the system’s job to make an access control decision based on the subject’s
identity, capabilities it may posses, and system policy. In many cases in Android, access control
points are implemented by resources themselves and may factor into the chain of access controls.

The study identified five basic types of enforcement mechanisms in Android:

« Capability-based. In the Binder driver, these come in the form of Binder tokens which are
issued to processes requesting access to IPC targets like services and other apps. The kernel
Binder driver maintains a structure of issued tokens for each process so as to enforce this
access control. This category also includes standard Linux capabilities such as file
descriptors which are also enforced by the kernel.

« Linux pseudo-capability-based. When apps are launched as new processes forked by zygote,

61

various Linux capabilities are added or dropped from the forked process. While not true
capabilities, these nonetheless represent specific powers that the forked process may
possess. These are enforced by the Linux kernel in the same way as in traditional Linux
systems.

« Linuxid-based. Every file and running process is owned by a Linux uid, one or more gids,
and is labeled with an SELinux S/D. Running processes are also assigned a Linux process
identification (pid) and SID. All of these identities are maintained and protected by the
kernel and are used by traditional Linux access control mechanisms and, with the exception
of SID, relied upon throughout the Android Framework. In the Framework, these checks are
based on the caller’s id as reported by the kernel Binder driver that is mediating the IPC.

« Android permissions-based. At installation-time, a record of an app’s permissions, as
requested via the manifest file, is stored by PackageManager. When an app makes a request,
the presence of a needed permissions is looked up by the system and/or the resource
requested. This mechanism is exclusive to the Framework, as manifest permissions have no
meaning to the kernel. Enforcement points typically include calls to checkPermission ()
or its variants.

« User-based. As explained in Section 3.3.1, some access control decisions are accomplished
via direct interaction with the user. Many of these involve actions that would incur financial
obligations, such as premium SMS, or revealing private information, including location,
contacts, and photos. With the recent addition of run-time permissions to Android, the role

of this mechanism has been greatly expanded.

In summary,

Mech = {cap, linux_cap, id, perm, user} .

Important to the discussion of access control mechanisms is the fact that ultimate access to a

62

particular Android resource usually requires several steps and involves more than one of the
above mechanisms. For example, access to a resource managed by a system service requires the
app to first obtain a capability (Binder token) for the service, which is permitted or denied based
on the app’s uid and SID. Once the app holds the capability, it may attempt to communicate with
the service via IPC, which is allowed only if the caller continues to hold the capability and the
kernel can verify this. Finally, the app’s request must pass any access controls present in the the
service method being remotely called. These are usually permission- or Linux id-based, and may

also include user-based confirmations.

4. What are the possible objects? Objects are the target of an access control request. The
document analysis and enumeration of Section 3.3 reveals that objects in Android include System
Services, apps (when their components are called by others), Linux files and sockets, and many
different Framework objects including the certificate store, modular frameworks such as Device

Administration, DreamService, etc.

5. Are there other interesting access control-related mechanisms? Security decisions in
Android are based on the identity of the subject, Subj. However, there are times when System
Services, acting on behalf of the subject, need to perform operations that the subject does not
have permission for. For example, before returning the appropriate Location object,
getLastLocation() in LocationManagerService first checks the location blacklist, whether the
available location provider(s) are allowed, how often the app has requested location, and if the
location object contains a mask flag. These internal operations require privileges not granted to
apps, so they are placed in a block wrapped with clearCallingldentity() and restoreCallingldentity().
clearCallingldentity() resets the identity on the current thread so that these operations are
peformed with the privileges of the systemserver process, not the caller. When finished,

restoreCallingldentity() restores the identity on the current thread to that of the orignal caller.

63

4.2.1 Access Control Feature Set

Knowing the sets of possible subjects, objects, labels and access control mechanisms in Android
allows for the definition of a feature set that can capture the nature of access control present in
code. Just as in facial recognition algorithms that rely on extraction of geometric feature sets, the
access control feature set does not attempt to capture every aspect of the object, but strives to
represent certain aspects well enough to be useful. Moreover, the object’s representation in terms
of a feature set should be resilient to uninteresting changes in the object. For example, effective
facial recognition systems need to be robust against superficial changes such as skin tone, scars,
or facial hair. While these may change the original image enough that a direct comparison would
fail, a set of numerical features that capture the unique geometry of the face can be more efficient
as well as independent of the superficial changes. In the same way, the access control feature set
should be independent of superficial code changes, such as the addition or removal of logging

statements.

Choosing the right set of features to accomplish this is non-trivial and may require significant
domain knowledge. This process of feature definition is known as feature engineering. Feature
engineering uses domain knowledge to identify numerical features for use in machine
automation [55]. In feature engineering, intuition and domain-specific insights into what’s being
represented are just as important as the technical aspects of using the features for automation
[56]. The insights and experience gained from the research and solutions described in the
previous chapters, combined with the initial NetworkManagementService study and systematic
Android access control analysis described above, form the foundational domain knowledge

necessary to establish a useful feature set.

The focus of this work, Android System Services, are typically large Java classes containing public,
private and protected methods. In addition, a subset of each service’s public methods are

remotely callable via Android’s Binder IPC. These are referred to here as AIDL methods, and are

64

special interest since they represent the entry points accessible to untrusted apps and potential

malware. Hence, it is of first-order importance that the AIDL methods be fully understood in terms

of access control. As such, the Android access control feature set, Feat, used in this work is as

follow

where

S!

Feat = {methodType, isAIDL, getCallingUid, getCallingPid,
clearCallingldentity, restoreCallingldentity, checkPermission,
checkCallingOrSelfPermission, checkCallingPermission,
enforcePermission, enforceCallingPermission, (4.7)
enforceCallingOrSelfPermission, securityException,
permissionNormal, permissionDangerous, permissionSig,

permissionUndef },

method Type = public, private, or protected,

iISAIDL = 1 if method is remotely callable; 0 otherwise,

getCallingUid = 1 if method calls getCallingUid(); O otherwise,

getCallingPid = 1 if method calls getCallingPid (); 0 otherwise,

clearCallingldentity = 1 if method calls clearCallingIdentity();0 otherwise,
restoreCallingldentity = 1if method calls restoreCallingIdentity(); 0 otherwise,
checkPermission = 1 if method calls checkPermission(); 0 otherwise,
checkCallingOrSelfPermission = 1 if method calls checkCallingOrSelfPermission();
0 otherwise,

checkCallingPermission = 1 if method calls checkCallingPermission(); 0 otherwise,
enforcePermission = 1 if method calls enforcePermission(); 0 otherwise,

enforceCallingPermission = 1 if method calls enforceCallingPermission();0

ENEN ORI N

® - o v

65

otherwise,

enforceCallingOrSelfPermission = 1 if method calls
enforceCallingOrSelfPermission(); 0 otherwise,

securityException = 1 if method can raise a SecurityException; O otherwise,
permissionNormal = 1 if method is protected with a normal-level permission; 0 otherwise,
permissionDangerous = 1 if method is protected with a dangerous-level permission; 0
otherwise,

permissionSig = 1 if the method is protected with a signatureOrSystem-level permission; 0
otherwise, and

permissionUndef = 1 if the method is protected with a unknown-level permission; 0

otherwise.

For every method m in the class under study, a feature vector, f,, is extracted that contains specific

values corresponding to each element of Feat. By way of example, Listing 4.1 shows the Java

source code for method addUpstreamV6Interface(), reconstructed from the . class file

containing Motorola’s customized NetworkManagementService discussed above.

Listing 4.1: Reconstructed Java source for method addUpstreamVé6Interface() in Motorola’s cus-

tomized NetworkManagementService.

public void addUpstreamV6Interface(String paramString)

{

}

throws IllegalStateException

this.mContext.enforceCallingOrSelfPermission("android.permission.ACCESS_NETWORK_STATE",
NetworkManagementService") ;

Slog.d("NetworkManagementService", "addUpstreamInterface(" + paramString + ")");
try
{
NativeDaemonConnector.Command localCommand = new NativeDaemonConnector.Command("tether",
new Object[] { "interface", "add_upstream" });

localCommand . appendArg (paramString) ;
this.mConnector.execute(localCommand) ;
return;
}
catch (NativeDaemonConnectorException paramString)
{
throw new IllegalStateException("Cannot add upstream interface");

}

66

A review of this code for the features defined in Feat reveals that method Type = public and
enforceCallingOrSelfPermission = 1. Also, since the permission ACCESS_NETWORK_STATE is
defined as a normal-level permission in the image’s manifest, permissionNormal = 1. Finally, by
matching the method to one defined by the corresponding interface,
INetworkManagementService, isAIDL = 1. Therefore, the feature vector for this method is as

follows:

faddUpstreamV6/nterface - [pUb//Cv 1: O, O, O, O, O, O, O, O, O, 1, O, 1, 01 01 O]

4.2.2 Feature Vector Extraction

In production Android devices, there can be dozens of System Services containing thousands of
methods and representing 10s of thousands of lines of code. Practical extraction of the feature
vectors for every method in every System Service therefore requires automation. For the feature
set defined above, standard static analysis tools can easily perform the task of analyzing code and
writing feature vectors to a database. The feature vectors used for the results presented herein
were automated using Java static analysis to extract feature vectors from key . jar files found in
Android system images. An overview of the entire extraction process is shown in Figure 4.2 and

summarized below.

The process begins with either an actual device or image archive file. If an actual device is
available, and it can be rooted, a shell on the device itself can be used to extract the system
partition (D)) by dding the partition to a file, system. img. This dumped image can then be
transferred off the device and mounted via the Linux loop device which enables access to the files

within the system partition.

67

Unpack Framework é fm
1
_ JARs Extract
Device ~—— feature fm
S/ Yy services.jar 2
/ 010101 vectors
/) 1010101 framework. jar f
(. 2/ Extract uomo frameworkz jar m,
system.img ° s WALA @
Dump permission e
configuration ©) 80 fm

AndroidManifest.xml

Figure 4.2: Process for extracting access control features from an Android device.

Image archive files, typically available from vendor support sites, can be unpacked and their
contents accessed using procedures similar to those described in Appendix B for the images

studied in this work.

In either case, of interest to the feature extraction described here are the JAR files services. jar,
framework. jar and, if present, framework?2. jar (). services. jar contains most of the
service manager classes instantiated by apps (e.g., LocationManagerService), while

framework. jar and framework?2. jar contain the interface classes containing the stub and

proxy subclass implementations of the interface (e.g., ILocationManager).

AndroidManifest.xml files (3)) from each app installed in the image are also required to
determine the actual configuration of permissions on the device (i.e., permission protection levels
and custom permissions). This information is obtained by using apktool to decode all of the APK
files in the image, followed by parsing of the manifest files to find permission names and

associated protection levels. Code for accomplishing this is shown in Appendix C.

Extraction (@) of the actual feature vectors specified here is accomplished with FeatureExtraction,
a project developed by a colleague using the WALA libraries [57] to extract the features specified
above. This code takes the JAR files and permission configuration file as input and writes a feature
vector file for each System Service found in the image. The functionality of this code is

summarized here.

68

From the WALA ClassHierarchy, System Services present in the JARs are discovered by searching
the call graph for methods that register services to ServiceManager with addService () or
publishBinderService (). The declaring class for methods using these are stored as a binder

name and service name key-value pairin a hashmap, SSClasses.

Each class in SSClasses has a ServiceClassRecord that identifies the outer class, interface classes
and inner classes for the service. All of the methods from each of these are combined to form a
call graph which is then used for feature extraction. Each node in the graph is checked for the
presence of a feature. If the feature is permission-related (e.g., checkPermission(),
enforceCallingOrSelfPermission, etc.), the permission configuration data is consulted so that the
permission-level features can be populated. Finally, a hash map is populated with the state of all
features and then written to the feature vector file as comma-separated values. For
addUpstreamV6Interface () discussed above, the record containing the feature vector is

written to the file NetworkManagementService. csv as follows:

““[AIDL] public < Application, Lcom/android/server/NetworkManagementService,
addUpstreamV6Interface(Ljava/lang/String;)V >*,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0

Processing of the images studied here was accomplished on an 8-core i7 laptop with 32GB of
main memory running WALA master branch' and Super CSV? in Eclipse Platform? v3.8.1. Generally,
processing times for complete feature extraction ranged from less than an hour for some images
to 10s of hours for others. Some highly-customized images, with many additional System Services
required these longer processing times. For a small number of services, WALA threw exceptions
and feature extraction for those services failed. This is believed to be related to errors encountered

during deodexing (see Appendix B).

'https://github.com/wala/WALA
’http://super-csv.github.io/super-csv
Shttp://www.eclipse.org/

https://github.com/wala/WALA
http://super-csv.github.io/super-csv
http://www.eclipse.org/

69

4.3 Comparing Android Access Controls

To highlight changes introduced by the vendor, a differential analysis of the feature vectors may
be performed. This could be done during static analysis if both AOSP and vendor JARs are
available simultaneously. Although this may shorten static analysis times, it would preclude full
characterization of the image since only differences would be subject to feature extraction.
Instead, the approach taken here is to difference the corresponding AOSP and vendor full System
Service feature vector files generated earlier and store the result as a file that contains only feature
vectors for added and modified methods. These files can then be analyzed to gain insights about

the vendor modifications.

Differencing is accomplished by way of standard Linux scripts. First, each image’s feature vector
files are filtered for AIDL methods and combined into a single CSV for that image, all_aidl.csv.

Next, pairs of these combined files are compared using diff in unified mode, as follows:

diff -u <baselinelmageDir>/all_aidl.csv <vendorlmageDir>/all_aidl.csv | grep ~+ >
<baselinelmageDir>_<vendorlmageDir>_AIDL_change . csv

Following this, some minor processing of the file is needed to remove unnecessary diff lines and
add a column index header. The result is a single file which contains a method-level list of every
feature vector from the vendor image that is different in some way from the corresponding AOSP

feature vector.

4.4 Case Study

The utility of the access control feature vectors and differencing procedure introduced above is
demonstrated by way of a case study on AOSP and vendor images in which the research questions
above were addressed. Specifically, for characterization, “what is the type and nature of access

controls in System Services?” For comparison, “has a vendor customized System Services for their

70

devices and, if so, how?” and “if present, how do the customizations compare with a known
baseline, AOSP?” Ultimately, these questions lead to the question of whether there are potential
vulnerabilities introduced by the customization. This question will also be addressed in the case

study.

Images listed in Table 4.1 were gathered from real devices, vendor support sites, and AOSP’s

“stock” firmware site.

4.4.1 Procedure

First, each of the images listed in Table 4.1 was processed through the JAR deodex and feature
vector extraction process. The resulting set of comma-separated values (CSV) files together
contain over 1.8 million feature vectors for all methods in all System Services that were
successfully decompiled and statically analyzed with FeatureExtraction. These CSVs were placed
in a folder hierarchy with a common root node, and then imported into Microsoft®Excel®by way of
the Power Query Formula Language (PQFL) script shown in Appendix D. In total, for all of the
images and services analyzed combined, the resulting database contains 35,802 AIDL method
feature vectors. Difference files are similarly imported using PQFL. In this case study, the database

contains 8,037 feature vectors representing added or modified System Service methods.

4.4.2 Characterization Analysis

Once imported, a pivot table analysis is used for initial high-level characterization of each System
Service for each image. The pivot table enables the method-level feature vector data to be
aggregated into service-level statistics. Going back to the NetworkManagementService example

used earlier, the aggregate feature data for various AOSP versions is displayed in Figure 4.3.

From this top-level graphical representation, it's immediately evident that the number of AIDL

Table 4.1: Case study images.

Image | Android version | AOSP Baseline (if applicable) |
AOSP jdq39 4.2.2 N/A
AOSP ktu84p 4.4.4 N/A
AOSP [my48m 5.0 N/A
AOSP [rx210 5.0.1 N/A
AOSP Irx22g 5.0.2 N/A
AOSP [rx22c 5.1.1 N/A
AOSP mra58n 6.0 N/A
BLU Neo4.5 4.2.2 jdg394.2.2
CyanogenMod 11-20150901 4.4.4 ktu84p 4.4.4
CyanogenMod 12.1-20151121 5.1.1 [rx22¢ 5.1.1
Fire0S 32.4.6.5 4.4.4 —
Fire0S 37.5.2.2 5.0.2 Irx22g 5.0.2
LG D855PC10C_00 4.4.2 ktu84p 4.4.4
LG VS980 5.0.2 Irx22g 5.0.2
LG LS9912V6_00 5.1 [rx22¢ 5.1.1
MotoX LXE22.46-11 5.0 Imy48m 5.0
SamsungEdge G925FXXU2COH8 5.1.1 [,x22¢ 5.1.1
SamsungNote8 N5110UEU2CNE2 4.4.2 ktu84p 4.4.4
SamsungS4 19505XXUHOBY 5.0.1 Irx210 5.0.1
SamsungS5 ATT G900AUCUIANCE 4.4.2 —
SamsungS5 Sprint G900PVPUIANCB' 4.4.2 —
Xiaomi MIUI'V7.0.5.0.KXDMICI 4.4.4 ktu84p 4.4.4

"Static analysis errors precluded full processing and analysis.

72

"92IAUI8SIUSWSDDUDNXIOMIBN JO SUOISISN 4SOV SNOLIDA Ul SPOYISW [y J0J 210103 J0JIUOI SSEIID "SAIUNO)) €t ainbl

0°9-d50v
TT5ds0vm
¢0°5dsovm
T0°5dsSOv =

0°5-dSOv =
¥ vdsovm
CCrdsov e

UON JO Wwns

™

Japunuoissiuuad Jo wng

suolissiwiad Jo wng

3

snolaBueqguolssiwiad Jo wng

adlAIagIuUaWaBeuURAP IOMIBN

[ewioNuolssiwiad JO wnsg

Aynuapiduljenalolsal jo wns

Ainuapj8uijjen sesap jo wns

pIdSul|[eD198 JO wns

IN8ul||eD1ad jo wng

=3
(LB 77

OHL3W J0UNno)

o

=

1
[4
€
14
5
9
L
8
06
00T

o R T Y

e [

73

methods in NetworkManagementService has steadily grown from Android version 4.2.x through
6.0. Also, some methods check the caller’s identity by way of uid, but the vast majority check if the
caller has been granted a signatureOrSystem-level permission, even those that were added by
Google in newer releases. A few in the later releases of Android also have no access controls, a
secondary feature, noAC, derived by checking the state of the others. Notably, the summary
clearly shows what was manually confirmed earlier: none of the methods contain blocks with
elevated privileges (i.e., no clearCallingldentity-restoreCallingldentity blocks), and none rely on
normal- or dangerous-level permissions. Thus, the pivot analysis of the feature vector data has
quickly and clearly revealed key access control characteristics of the service, across a couple of

years of successive Android releases.

The PQFL and pivot functionality allows this analysis to be accomplished for any one or more
services in any one or more images, just by placing the appropriate CSVs in the import directory
structure. Appendix E shows the complete results for all services analyzed in AOSP images

corresponding to Android versions 4.4.2, 4.4.4,5.0,5.0.1,5.0.2, 5.1.1, and 6.0.

This baseline characterization provides insights into the nature of the security design of each
System Service. In the case of NetworkManagementService, it's clear that the designers intended
the service be used only by apps trusted to have signatureOrSystem-level privileges. In contrast, a
service such as LocationManagerService is protected by predominately dangerous-level
permissions, since location is considered sensitive privacy data, but necessary for 3'-party apps if
the user approves. In addition, as shown by the data in Appendix E, LocationManagerService
performs 13-16 (depending on Android version) privileged operations, based on the count of

clearCallingldentity and restoreCallingldentity features.

Many other insights can be gained from the feature vector data and the endless ways to analyze it.
By including the raw feature vector data in a database, complex queries suited to the needs of the
security investigator may be applied. For AOSP images, exploration of the feature set data can

help guide the investigator through the source code using Android source code browsers such as

74

GrepCode* or AndroidXRef°. The feature vector database contributed by this work and its
powerful analysis capabilities can thus be used to answer the question “what is the type and

nature of access controls in System Services?”

4.4.3 Differential Analysis

A pivot analysis is also useful for a differential analysis using the feature vector difference CSVs.
Figure 4.4 shows such an analysis for the SamsungS4 19505XXUHOB7 5.0.1 image as it compares
with the AOSP [rx210 5.0.1 baseline. Here we can quickly see which new and existing services were

added or modified, as well as the relative scope of the customization.

The database allows more detailed analysis to be performed as well. As one example of many
possibilities, Table 4.2 depicts the results of an investigation of the same Samsung image to find
all new or modified AIDL methods that enforce access control with a dangerous-level permission.

This analysis quickly reveals 13 methods spread over 3 services that meet this criteria.

“http://www.grepcode.com/
Shttp://www.androidxref .com/

http://www.grepcode.com/
http://www.androidxref.com/

75

2bDWI 1'0°G 012X)] SOV Y2M paspduiod
So abowil 1'0°S JGOHNXXS0S6] #Sbunswps ur pabupyd 10 pappp SpoyIsw JJjy J0) SWDU 3IIAISS “SA JUN0I buIMOYS LDYD 10AId 7' 9.nbi4

®
o & o
7 &
55 o o RO &
o y 5 F T ST € A A
S %@0 N F &I H &P S P & AR SRS
& v oS o S P N & C S Y
N PRI ITF IS FEAEFTS O Fo O O & ITNFF & &P
& o o P &b &V &V F @V Ve V@V F @V &V D JY R G ROV
F N S o O o TP o P P Ve & o8 & %\w o & & o e,m% o & & nw% o &
o ﬁ%+@@®%%ﬁ@@s®©&ﬁ&@vsomunwao/.n.w @Q&@@%@%ﬁ/oﬁen\%
TSI FTFFTEFSL T I FITFTFFTF L F S
P e 4,6“.? & N P 6%., Pl noms P B mvov s ,wﬂv I S R S S A A /00« Pl Aw_o &
prTrTYETIp I .__ _ _ . ___ TN e b ’
V14
ov
09
08
00T
ot

ort

76

3uins/3ue)/ene1(Buins/3ue)/ene[(:83ulins/3ue)/ene7)poyiaw de”sdm

[(PELNCRERES

[(ECENXCINES

|(‘Buli1S/3ue)/eAe(])eISO0SSESIQIUI0dSSaIOYIOS

A(Japuig|/so/ploipue)piendhayaigeusal

()3s1I91yMmpes.

A(‘8uriis/8ue)/enel7)sdo1ind

3uis/3uey/enef7()ssalppy3 133

3uns/3ue)/enel()1s17eISIUI04SSDI0193

[()BISPRID2UUODWNNIUIOGSS9IOVIS3

Z(meos)geus

L

A)plendAayssiwsip

L

A(Bulns/3due/enelispuig|/so/ploipue)pienghaysigesip

9JINIDS JINIDS 9INIDS poys
juswoaSeuely JaSeuepy JaSeuep
Y4IomiaN yyooanlg Auanoy
9JINIDS
IV = 9UON

IV = Japunuoissiwiiad
IV = bisuoissiwiad

1 = snoJabuedjuoissiwiad
IV = jewopuoissiwad
:eud)

'suoissiuLad jans)-snosabupp Aq pa3ooioid spoyiawt mau buiuipiuod SadINISS WaISAS Z°0°G-FSbunswos 2t 9)go]

7

As with the characterization analysis, there are endless possibilities for querying, analyzing and
manipulating the feature data, depending on the needs of the researcher. As an indication of the
extent of vendor modifications, Appendix F contains the results of a pivot analysis of all 8,037
added and modified System Service methods from 12 vendor images that were compared to their
closest AOSP counterpart. These images contain an average of 670 added or modified AIDL

methods, with a high value of nearly 1600 additions in the Samsung images.

These example comparison analyses represent a few of the many ways that the second two
research questions are answered using the methodology described here. Using the database and
analysis tools, the security researcher can very quickly determine, “has a vendor customized
System Services for their devices and, if so, how?” and “if present, how do the customizations

compare with a known baseline, AOSP?”

4.4.4 Method-level Evaluation

Feature vector analysis can only go so far in yielding security insights about access control and
vendor customizations. Its purpose is to enable the researcher to gain a high-level understanding
quickly and then be able to easily focus in on specific areas of interest. Without the aid of the
various feature vector analyses described above, and the ability to quickly explore the entire
System Services dataset, investigators must resort to time-consuming static analysis or combing

through source code or decompiled JARs.

Once focused in on specific areas of interest, full and complete evaluation depends on traditional
methods such as source code or bytecode review and actual testing. This section provides
examples of how the feature vector analysis enabled rapid discovery of some problematic

conditions in vendor customizations.

The focus now turns to specific methods of three selected images in the dataset: LG VS980 5.0.2

(hereafter referred to as LG-5.0.2), SamsungS4 19505XXUHOB7 5.0.1 (S4-5.0.1), and MotoX LXE22.46-11

78

5.0 (MotoX-5.0). These were chosen for method-level evaluation because actual devices running

these images were available for testing and verification of hypotheses made from the feature

vectors.

Table 4.3 shows the result of querying the database for a count of all methods in each service that

have the potential to be accessible by 3'-party apps. Based on experience, methods that invoke

getCallingUid () dosoin order to check whether the caller has Linux system privileges (i.e, uid

of 0, 1000, or 2000). Also, as discussed earlier, signatureOrSystem-level permissions are not

obtainable by 3™=-party apps. Thus, in terms of the feature set, the database can be queried for all

records that match the following criteria:

fthirdPartyI\/lethod = fgetCalIingUid:O N fpermissionSig:O

Table 4.3: Count of new 3"-party-accessible methods vs. service for three testimages.

Service Image

LG-5.0.2 | MotoX-5.0 | S4-5.0.1
ABTPersistenceService 70
AccessibilityManagerService 16
ActivityManagerService 39 23
ActivityManagerServiceSGmemBinder 30
AlarmManagerService$2 1
AlarmManagerServiceExtSSyncSchedulerSTrafficAnalyzerS2 3
AppDisablerService 1
AppOpsService T 1
AudioService 21
BackupManagerService 1 1
BarBeamService 4
BluetoothManagerService 5 7
BluetoothSecureManagerService 10
ClipboardExService 22
ClipboardService 1

continued. ..

79

Table 4.3: Count of new 3"-party-accessible methods vs. service for three testimages.

Service Image

LG-5.0.2 | MotoX-5.0 | S4-5.0.1
CommonTimeManagementService T
ConnectivityService 25 15
ContentService 1
ContextAwareService 17
CoverManagerService 15
DataSchedulerService 3
DeviceManager3LMService 94
DevicePolicyManagerService 27
DirEncryptService 7
DisplayManagerServiceSBinderService 21
FastDownloadService 18
FMRadioService 96
HarmonyEASService 7
InputManagerService T 15
InputMethodManagerService 9
KiesUsbObserver 39
KtUcaService 25 25
LGEncryptionService T
LocationManagerService 4
LockSettingsService 14
MediaSessionService$SessionManagerimpl 1
MHPService 126
MountService 15
MultiWindowFacadeServiceSBinderService 49
NetworkManagementService 15 6 10
NetworkPolicyManagerService 1
NotificationManagerService$s 2
NotificationManagerServiceS$8 1
OemExtendedApi3LMService 9
PackageManagerService 5 T 9
PersonaManagerService 19
PluginManagerServiceSPluginBinder 13
PowerManagerServiceSBinderService T 10
PowerSaving3LMService
QuickConnectService 2

continued...

80

Table 4.3: Count of new 3"-party-accessible methods vs. service for three testimages.

Service Image

LG-5.0.2 | MotoX-5.0 | S4-5.0.1
RCPManagerService 4
ReactiveService 6
ScepKeystoreProxyService 3
SContextService n
SdpManagerService 1
SearchManagerService 1
SmartCoverService 4
SpenGestureManagerService 12
StatusBarManagerService 2 7
TelephonyRegistry 1
ThemelconManagerService 4
TimaService 44
TwToolBoxService 6
UsageStatsServiceSBinderService 1
UsbService 2
UserManagerService 2
VibratorService 9
VolPInterfaceManager 3
VzwConnectivityService 3
VzwlocationManagerService 1
WallpaperManagerService 1
WiFiAggregationService 6
WiFiOffloadingService 28
WindowManagerService 12 2 20
Total 472 15 758

This focused feature dataset can be used to guide additional detailed analysis. For example,
focusing in on NetworkManagementService, it can be seen that LG-5.0.2 contains 15 new accessible
methods, while MotoX-5.0 and S4-5.0.1 contain 6 and 10 new methods, respectively. A further query
of the feature vector database yields the following list of actual method names, argument types
and return types. These are determined during static analysis and are shown as Java object types

(e.g.,Ljava/lang/String) and symbols (i.e., V for void, Z for boolean and I for integer).

81

o [G-5.0.2:

SKTCatsPortForwarding(Ljava/lang/String;)V

acceptPacket (Ljava/lang/String;)V
addUpstreamV6Interface(Ljava/lang/String;)V

dropPacket (Ljava/lang/String;)V
getRouteList_debug(Ljava/lang/String;)V
packetList_Indrop()Z

packetList_Indrop_view()V
registerObserverEx(Landroid/net/INetworkManagementEventObserverEx;)V
removeUpstreamV6Interface(Ljava/lang/String;)V
resetPacketDrop()V

runShellCommand(Ljava/lang/String;)V
setDhcpv6Enabled(ZLjava/lang/String;)V
setInterfaceAlias(Ljava/lang/String;Ljava/lang/String;)V
setTcpWindowScaling(Z)V

unregisterObserverEx(Landroid/net/INetworkManagementEventObserverEx;)V

« MotoX-5.0:

addUpstreamV6Interface(Ljava/lang/String;)V
getSapAutoChannelSelection()I
getSapOperatingChannel () I
removeUpstreamV6Interface(Ljava/lang/String;)V
runIpLogCmd(Ljava/lang/String;)I

setChannelRange (III)V

« 54-5.0.1:

addUpstreamV6Interface(Ljava/lang/String;)V
appendInterfaceToLocalNetwork(Ljava/lang/String;Ljava/util/List;)V
getAccessPointNumConnectedSta() I
getAccessPointStalist()Ljava/lang/String

readWhiteList()I

removeUpstreamV6Interface(Ljava/lang/String;)V
setAccessPointDisassocSta(Ljava/lang/String;)I

setMaxClient (I)I

setTxPower (I)I

wps_ap_method(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String

It is important to note that the methods included here constitute a superset of those that may be

accessible to 39-party apps. This is because the current feature set does not attempt to capture

everything about the call chain between an entry point and the resources ultimately accessed.

82

Some entry points may depend on access controls further down the call chain or access controls
not captured by the feature set. For example, Samsung’s custom ABTPersistanceService includes
an AIDL method getDeviceld() which appears to have no access control from a feature vector point
of view. However, manual testing revealed that this method in fact calls a private method g),
which requires the caller to have a Linux uid of 1000. As it turns out, all of the AIDL methods in this
service are protected in the same way, using g (). Addressing this in the FeatureExtraction software
is possible, but would require additional static analysis time to follow the call path to find access
control at deeper levels. This ends up being a trade-off between static analysis complexity and

extra testing time to eliminate false positives.

For actual method-level testing, a test app, ServiceApiTest, was developed and used in
conjunction with each physical device to verify that the API methods are indeed exposed to
3-party apps. Using reflection, each candidate method is called with the appropriate arguments
and return types, which are known from the static analysis and indicated in the lists above. For
example, the MotoX-5.0 method setChannelRange() has three integer arguments (denoted by I1T

above), and is return type void (denoted by V).

Listing 4.2 shows the key portion of the code that can be used to invoke any public method in any
service running on the device. To call a method under test, SystemService.getServiceProxyObject()
is first used to get a handle to the service that contains the method. Then a reference to the
method is found in the proxy class of the interface using getMethod() and the method is invoked.

Results from the invocation are written to logcat and captured.

As an example, representative logcat output (for setChannelRange()) is shown in Listing 4.3. This
invocation is successful as evidenced by the status messages from the service. An example of an
unsuccessful invocation is shown in Listing 4.4, which indicates that Samsung’s getDeviceld() is

protected by access controls deeper in the call chain than visible with the current feature set and

static analysis approach.

Listing 4.2: App code to call test methods by reflection.

83

static final String LOG_TAG = "ServiceApiTest::NMS";

static String serviceInterfaceName = "android.os.INetworkManagementService";
static String serviceProxyName = "android.os.INetworkManagementService$Stub$Proxy";
static String serviceManagerRegistrationName = "network_management";

public static void testMethodCall(Context context) throws ClassNotFoundException,
SecurityException, NoSuchMethodException, IllegalArgumentException,
IllegalAccessException, InvocationTargetException,
InstantiationException, IOException {

Class proxyClass = Class.forName(serviceProxyName) ;

Object serviceProxyObject = SystemService.getServiceProxyObject (serviceInterfaceName,
serviceProxyName, serviceManagerRegistrationName);

Log.d(LOG_TAG, "Returned object = " + serviceProxyObject.toString());

try {
// Following depends on the method to be invoked
//0bject result[] = null; // use this if method returns array
Object result = null; // use this otherwise (change below too)

// Following depends on the method to be invoked
Method testMethod =

proxyClass.getMethod("setChannelRange", int.class, int.class, int.class);
// ‘method name ‘arg type(s)
Log.d(LOG_TAG, "Found method = " + testMethod.toString());

//result = (Object[])testMethod.invoke(serviceProxyObject); // use this if method returns array

result = testMethod.invoke(serviceProxyObject, 2, 3, 5); // otherwise use this
(change above too)

// ‘arg(s)

Log.d(LOG_TAG, "Result = " + result); // ObjectUtil.serializeObjectToString(result));

}

catch (NoSuchMethodException e) {
Log.e(LOG_TAG, e.toString());
}

7

Listing 4.3: logcat output from successful invocation of setChannelRange() method in customized

MotoX-5.0 NetworkManagementService.

D/ServiceApiTest::MA(25369): Invoking test method...

D/ServiceApiTest::55(25369): Returned object = android.os.
INetworkManagementService$Stub$Proxy0268a3266

D/ServiceApiTest ::NMS(25369): Returned object = android.os.
INetworkManagementService$Stub$Proxy0268a3266

D/ServiceApiTest ::NMS (25369): Found method = public void android.os.
INetworkManagementService$Stub$Proxy.setChannelRange (int,int,int) throws android.os.
RemoteException

D/NetworkManagementService(933): Set SAP Channel Range

D/ (343): CMD INPUT [set setchannelrange= 2 3 5] [256]

E/ (343): Cmd: setchannelrange Argument : 2 3 5
D/ (343): cmd=setchannelrange, Val: 2 3 5, INI:O
D/ (343): Updated:setchannelrange= 2 3 5

D/ (343):

D/ (343): CMD OUTPUT [success]

D/ (343): len :7

D/ (343):

D/ServiceApiTest ::NMS (25369) : Result = null
D/ServiceApiTest::MA(25369): ...finished.

© © - o v

23

24

25

26

27

28

84

Listing 4.4: logcat output from unsuccessful invocation of getDeviceld() method in customized S4-5.0.2

ABTPersistanceService.

D/ServiceApiTest::MA(2286): Invoking test method...

D/ServiceApiTest::8S(2286): Returned object = com.absolute.android.persistence.
IABTPersistence$Stub$Proxy@274b8d19

D/ServiceApiTest:: ABTPS(2286): Returned object = com.absolute.android.persistence.
IABTPersistence$Stub$Proxy@274b8d19

D/ServiceApiTest :: ABTPS(2286): Found method = public java.lang.String com.absolute.android.
persistence.IABTPersistence$Stub$Proxy.getDeviceId() throws android.os.RemoteException

E/ServiceApiTest::MA(2286): java.lang.reflect.InvocationTargetException

W/System.err(2286): java.lang.reflect.InvocationTargetException

W/System.err (2286): at java.lang.reflect.Method.invoke(Native Method)

W/System.err (2286): at java.lang.reflect.Method.invoke (Method. java:372)

W/System.err (2286): at com.ratazzi.serviceapitest.ABTPersistenceService.
testMethodCall (ABTPersistenceService. java:43)

W/System.err (2286): at com.ratazzi.serviceapitest.MainActivity.onCreate(
MainActivity. java:25)

W/System.err (2286): at android.app.Activity.performCreate (Activity.java:6289)

W/System.err (2286): at android.app.Instrumentation.callActivityOnCreate (
Instrumentation. java:1119)

W/System.err (2286): at android.app.ActivityThread.performLaunchActivity (
ActivityThread. java:2646)

W/System.err (2286): at android.app.ActivityThread.handleLaunchActivity(
ActivityThread. java:2758)

W/System.err (2286): at android.app.ActivityThread.access$900(ActivityThread. java
1177)

W/System.err (2286): at android.app.ActivityThread$H.handleMessage (ActivityThread.
java:1448)

W/System.err (2286): at android.os.Handler.dispatchMessage (Handler.java:102)

W/System.err (2286): at android.os.Looper.loop(Looper.java:145)

W/System.err (2286): at android.app.ActivityThread.main(ActivityThread. java:5942)

W/System.err (2286): at java.lang.reflect.Method.invoke(Native Method)

W/System.err (2286): at java.lang.reflect.Method.invoke (Method. java:372)

W/System.err (2286): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(
ZygoteInit.java:1400)

W/System.err (2286): at com.android.internal.os.ZygoteIlnit.main(ZygoteInit. java
:1195)

W/System.err(2286): Caused by: java.lang.SecurityException: Not authorized to access ABT
Persistence Service

W/System.err (2286): at android.os.Parcel.readException(Parcel. java:1540)

W/System.err (2286): at android.os.Parcel.readException(Parcel. java:1493)

W/System.err (2286): at com.absolute.android.persistence.IABTPersistence$Stub$Proxy.
getDeviceId (IABTPersistence. java:630)

W/System.err (2286): ... 17 more

4.4.5 Results

Because it was done manually in this work, testing of actual methods was limited to a sample. In
total, 81 methods, selected from across the three images were tested using the methodology

described above. Services successfully tested include:

« [G-5.0.2: 54 methods selected from NetworkManagementService, InputManagerService,

85

BackupManagerService, AlarmManagerService, CCModeService, ClipboardService,
ConnectivityService, LGEncryptionService, MHPService, and WiFiOffloadingService.
+ 54-5.0.1:10 methods from ABTPersistanceService, AccessibilityManagerService,
WindowManagerService, AudioService, and ClipboardService.
« MotoX-5.0:17 methods from NetworkManagementService, PowerManagerService,

StatusBarManagerService, VzwConnectivityService, and WindowManagerService.

Detailed test results and test notes are located in Appendices G, H, and | for LG-5.0.2, S4-5.0.1, and

MotoX-5.0, respectively. Overall findings are summarized as follows:

« All15 of the new methods in LG’s customized NetworkManagementService identified as
3"9-party-accessible by the feature vector data were confirmed to be so. Of particular
interest were methods that involved enumeration or manipulation of the device’s network
interfaces, routing tables, and firewall (iptables). In addition, LG’s use of
non-signatureOrSystem permissions in this service contrasts with AOSP’s exclusive use of
them.

+ LG’s customized ConnectivityService includes several “getter” methods that have no
permission requirement. This contrasts with AOSP’s use of ACCESS_NETWORK_STATE to
protect network state information. Also, several “setter” methods, such as setDataBlock()
and setRoamingDataEnabled_RILCMD() had no permission requirement, which contrasts
with AOSP’s typical use of CHANGE_NETWORK_STATE to protect changes to network settings.

« LG includes a custom service, MHPService (related to mobile hotspot settings) which
contains 126 3"-party-accessible methods, all with no access control features. Of the five
selected for testing, all were confirmed to have no access control and were invocable. All
five changed important device settings or returned sensitive information. Examples are
enabling and disabling the mobile hotspot, getting and setting the WiFi Protected Access
(WPA) keys, and getting and setting the mobile hotspot Service Set Identifier (SSID). At a

minimum, to be consistent with AOSP, these methods should be protected with

86

CHANGE_NETWORK_STATE or ACCESS_NETWORK_STATE. More likely, they are methods that
should only be accessible to bundled LG system apps and thus should be protected with
CONNECTIVITY_INTERNAL or a custom signatureOrSystem-level permission.

LG includes a custom service, WiFiOffloadingService which includes 24 methods with no
access controls. disableWifi() was confirmed to be invocable and change device network
state. The lack of access control in this service is inconsistent with AOSP’s typical use of
CHANGE_NETWORK_STATE or ACCESS_NETWORK_STATE to protect network information and
state changes.

Samsung’s customized AccessibilityManagerService contains 16 new methods with no
access control features. Of the 3 tested, two has no access controls and appeared to make
changes to the device’s display. The third requires the system permission REBOOT. The
permission is enforced elsewhere, explaining the lack of access control features.
Samsung’s AudioService contains 21 new methods, 2 of which have the getCallingGid
feature, while the others have no access control features. Three of these were tested and
appear to have effect, as the log reports activity in VolumePanel.

Motorola’s NetworkManagementService contains 6 new methods that are potentially
available to 3"-party apps. Five of these use normal- or dangerous-level permissions and 1
has no access control features. All 6 were tested. Execution of 2 seemed to be blocked by
SELinux denials, while the others were successful. Access control for all 6 methods is
inconsistent with AOSP’s use of signatureOrSystem-level permissions in this service, and the
unprotected method, runlpLogCmd() should be considered for access controls, since it
passes raw commands to a native daemon and is thus high risk for misuse.

Motorola’s PowerManagementService contains one accessible method with no reported
access control features. It was successfully invoked during testing.

Motorola’s StatusBarManagerService contains two methods without access control features.
These were confirmed to change the state of the device’s display by revealing or hiding a

search widget.

87

4.5 Other Applications

Generically, the feature extraction, characterization, and comparison methodologies introduced
here may have applicability to analyzing access controls in systems other than Android. Overall,
the feature vector-based approach is most useful when analyzing presence or absence of access
control at interfaces between components of a larger system. Systems that have these
characteristics include modular and client-server architectures, especially those that have a

well-defined common security framework that should be used when building extensions.

An example of such a system are Linux kernels with a common security framework such as Linux
Security Modules (LSM) [58]. LSM provides kernel developers with a general-purpose framework

for implementing standard access controls in future modules and extensions.

The standardization afforded by LSM is analogous to the insights gained in this work about
Android’s relatively standard use of specific access control patterns throughout the system and
specifically in System Services. Just as these insights enabled the definition of a feature set
applicable to many System Services, the LSM API can be translated to a feature set. Appropriate
static analysis tools can then be applied to source or binary representations of the kernel or kernel
modules to examine how, where, and if standard access controls are implemented. Moreover,
kernel changes or customizations can be assessed via differential analysis of feature vector
databases from different kernel versions, just as was done in this work for vendor customizations

of Android System Services.

Client-server web applications represent another class of systems that may benefit from a feature
set-based approach. Implementations of these systems have also benefitted from standard
security frameworks such as [59] and [60]. APIs describing the framework can be translated into a
feature set which can then be extracted from code using static analysis tools. Various efficient

analyses and comparisons are then facilitated by the resulting feature vector database.

88

4.6 Limitations and Future Directions

Some images were not able to be fully analyzed due to errors in unpacking or during static
analysis. It is believed that this is due to variances in vendor image formats, non-standard files,
deodex tool limitations, and the usual limitations of static analysis. Unfortunately, this means that
in some cases, not all System Services are represented in the feature vector files. To address this,
more robust unpacking and deodexing tools must be developed. Nevertheless, even partial
feature vector analysis can provide meaningful insight into portions of a vendor’s propietary

image.

More complex features would also improve the fidelity and usefulness of the results. For example,
adding features that describe how the return value of getCallingUid and getCallingPid is used
would help in understanding access controls that require the caller to have specific Linux-based
credentials. Also, feature extraction from deeper along the call chain would reduce the number of
methods thought to be without access controls, and in turn reduce the amount of verification

testing.

Finally, common analysis macros could be developed to avoid having to manually build queries
over the feature vector databases. These would be tailored to the domain of Android access

control, as opposed to the generic data analysis tools available in Microsoft®Excel.®

4.7 Conclusion

This chapter described a feature vector-based approach to studying and understanding access
controls in Android. The method was used to develop an interactive database of access controls
in the System Services of 19 Android images. Seven of these are AOSP images and are used as a
baseline in a case study to analyze the changes introduced by the vendors of the other 12. This

differential analysis is captured in a second interactive database. Selected changes from three of

89

the vendor images were further studied on actual devices, in order to confirm the feature vector
data, its utility and show that the methodology can be used practically to find potential
shortcomings in vendor customizations. The case study revealed a number of issues and

inconsistencies with the vendor code.

90

Chapter 5

Protecting Sensitive and Vulnerable Resources

Traditionally, we've thought about security and usability as a trade-off. a
more secure system is less functional and more annoying, and a more
capable, flexible, and powerful system is less secure. This “either/or” thinking
results in systems that are neither usable nor secure.

- Bruce Schneier

Chapters 3 and 4 describe security analysis methodologies that provide insights into the inner
workings of Android access controls, in both open source and vendor implementations. As the
results show, the advantages of an open, modular system, whereby each resource is responsible
forimplementing its own access controls, can be offset by security problems arising from
mistakes and inconsistencies. In particular, protections implemented by resources can be partially
or completely nullified when changes to the platform architecture or vendor customizations
invalidate the assumptions implicit in the original design. To address these situations, each and
every resource must be reevaluated and redesigned every time the platform changes. If system
designers and vendors use the methodologies of the previous chapters, then these mistakes can
be fixed before the platform is deployed. However, once deployed, end-users have virtually no
way of addressing any remaining problems unless the platform itself contains a flexible, generic

means of isolating any vulnerable resource(s) from untrusted apps.

91

Many of the system insights gained during the course of work described in earlier chapters relate
to the mechanisms by which Android’s modular system resources are requested, protected, and
accessed. The knowledge gained from the systematic, top-down subject-object access control
path evaluation, combined with that from the detailed method-level feature vector-based
characterization and comparison led to new insights. These led to the realization that almost any
current or future system resource could be transparently isolated from apps that may take
advantage of access control shortcomings or, for critical apps, fall victim to poorly designed or
malicious resources. This chapter describes the concept and design methodology that emerged
from these realizations, and demonstrates through an actual implementation and case study how
the novel approach is simultaneously efficient, effective, and consistent with Android’s unique

architecture and design tenets.

5.1 Introduction

Security and privacy compromises by malware and faulty apps is a persistent concern of
smartphone users. While many users may not fully understand the technical aspects of security
architectures, permissions, access control mechanisms, or measuring trust, most have no trouble
articulating which high level objects, resources or capabilities they are most concerned with. For
example, it’s common to find users worried about how apps might misuse or leak their location,
sensitive data such as personal contacts, or personally-identifiable information (Pll) like phone
number and International Mobile Station Equipment Identity (IMEI). In response to this, numerous
solutions to address these concerns have been proposed, and many of these involve some form

of virtualization combined with access control to isolate untrusted applications.

Although every approach to isolation has its own unique strengths and weaknesses, all include
trade-offs in terms of sharing and communication. In Android’s open architecture, where resource
sharing and inter-process communication (IPC) are fundamental to the platform’s basic operation

and usability, careful attention must be paid to fully understanding how a particular isolation

92

boundary impacts the system’s functionality and performance. If this trade-off is not considered at
the outset of a design, significant performance, usability, and functionality issues can arise.
Countering these negative side-effects requires designers to overcome challenging system
problems, typically resulting in substantial modifications to the operating system, and significant
second-order complexities not directly related to the initial security goals. These problems are
especially prevalent in general-purpose designs that attempt to provide isolation containers for
entire apps or virtual phones, without the benefit of a priori knowledge of specific threat(s) or

end-user security goals.

This chapter introduces PINPOINT, a resource isolation strategy that forgoes general-purpose
solutions in favor of a lightweight approach that addresses only specific end-user security goals.
By addressing the end-users’ stated security goals and no more, PINPOINT yields an effective
result using only the minimum amount of isolation. This significantly reduces or even eliminates
the negative side-effects that inevitably emerge when large parts of Android’s open, shared
architecture are isolated. Because isolation of resources can occur at many places within the
system architecture, and with varying degrees of granularity, the chapter begins with a discussion
of the tradeoffs in the design space in Section 5.2. This is followed by Section 5.3, which contains a
high-level description of the chosen concept. Section 5.4 describes a case study whereby we
implemented the PINPOINT concept as a lightweight hypovisor' within Android’s Context
Manager, facilitating isolation of any System Service. Since resources available to apps are
typically presented as System Services, this case study implementation addresses a wide range of

practical security and privacy problems.

5.2 Design Space

In a layered architecture such as Android, isolation of a particular resource could be accomplished

at many levels, from the most abstract all the way down to the hardware device itself. Each of

'See Section 5.3.1 for an explanation of this new term.

93

these alternatives has both advantages and disadvantages in terms of its impact on the system
and the end-user’s experience. With this in mind, this section contains an analysis of the
alternatives within the design space such that we can find the best solution given the metrics
deemed important. In this work, that includes solutions that are effective for specific threats or
classes of threats (as required by the end-user), while remaining transparent to developers,
negligible in their performance impacts, free of complex changes to the system, and low-cost to
the end-user in terms of usability and convenience. As we traverse the design space, we consider

the following qualitative aspects as our measures of merit for each design alternative:

1. Range of threats: does the design address a wide range and variety of threats?
2. Adequacy: is the design adequate in containing the threats it is intended to address?
3. Isolation “size”: is the isolation comprehensive, resulting in a small attack surface (few things

shared)?

Together, these measures relate to the notion of effectiveness, while an aggregation of the

following contribute to efficiency:

1. Complexity: does the design require far-reaching or complex modifications to the Android
system in order to restore basic platform functionality or compensate for loss of end-user
usability/convenience?

2. Transparency: does the design require special considerations on the part of the application
developer, i.e., do apps need to be modified to function?

3. Performance: does the design have a significant impact on overall device performance in
terms of start-up, application launch, user interface response, etc.?

4. Usability and convenience: will the end-user face significant concessions in terms of usability

and/or convenience in order to realize their security goals?

94

System
Services

Binder |

Binder |
(w)

App 1 App 2

Native Android Runtime

]] 2)

Android Kernel

Hardware

Figure 5.1: Simplified Android architecture.

5.2.1 Tradeoff analysis

Consider the simplified Android architecture diagram of Figure 5.1. Here we see that all
applications and high-level system services share a single runtime, with inter-app communication
facilitated by Binder, Android’s lightweight IPC subsystem [61]. Now consider the situation where
we don’t trust App 2 and wish to isolate it in some way. This diagram now represents our
tradespace, where we can consider the overall ramifications of different approaches to isolating

App 2, in terms of the seven qualitative measures of merit introduced above.

First, we could totally isolate App 2 by running it on an entirely different instance of the kernel and
operating system (i.e., “dual boot”), where the only thing shared between the two apps is the
device hardware (Figure 5.1, location (). Using a mechanism like the open source BootManager
project [62], this approach provides a strong isolation between untrusted App 2, App 1, and the
system services on the OS instance we wish to protect. However, this very strong isolation comes
with a very high price. Usability and convenience suffer greatly since switching between apps
involves a full reboot, and interactive sharing of data and resources becomes impossible. Also, as

iscommon in Android, App 2 may depend on components of App 1 for full functionality, requiring

95

separate copies of App 1to be installed in both boot partitions. On the other hand, the isolation is
very strong, and even if App 2 is able to exploit kernel vulnerabilities, it cannot escape its isolation

and affect App 1.

Inserting a virtualization layer at location () to enable simultaneous virtual machines (VM) is
another approach that recent work has shown possible [63]. This is the “bare metal” or Type 1
hypervisor design that would increase convenience somewhat by precluding the need for full
reboots to switch between apps. Isolation with a native hypervisor is still very comprehensive,
presenting App 2 with a very small attack surface. However, many of the sharing and open
communication tenets of the Android design are still broken and would require a significant

amount of added complexity to restore.

If we instead allow the isolated app to share both the hardware, kernel and some native Android
operating system resources with the trusted app (Figure 5.1, location (2)), one major aspect of
usability improves somewhat. Similar to Type 2 hypervisor architectures, the user no longer has to
reboot the device to switch apps. While the shared kernel and native processes represent
additional attack surfaces (App 2 can now use a kernel vulnerability to escape its isolation and
attack App 1), it enables low-level sharing of raw resources and communication channels, and the
design is still general enough to address a wide variety of common threats. Unfortunately, Android
fundamentally assumes a common runtime, and breaking this assumption introduces many
difficulties. To address these difficulties, one must undertake challenging and complex side
projects, such as those described in [64] and [65], which both use different variations of this

approach to isolation.

Another possibility would be to allow the apps to share the same hardware, kernel and runtime,
but not share the entirety of a frequently-misused subsystem such as Binder (Figure 5.1, location
). From results described in [66], where this approach was taken, we see that although the
effectiveness is limited to threats promulgated through IPC, nasty system problems (and

additional corrective complexity) that come with isolating the Android runtime have been

96

avoided. Usability and convenience also benefit, since an isolated IPC subsystem likely has much
less negative effect on performance than does concurrent instances of the Android runtime
environment. App 2’s attack surface is also greater, since it now has the opportunity to exploit
vulnerabilities in aspects of the framework other than IPC. Again, whether this was a prudent

trade-off depends on the end-user’s expectations and the threats they need addressed.

As can be seen by the design alternative summary in Table 5.1, it’s clear by now that things like
complexity, usability, and the range of threats addressed appear to be strongly correlated to how
much of the system is shared by the isolated app and how much is part of the isolation itself
(isolation size). If large portions of the system are part of the isolation (i.e., not much is shared
between trusted and untrusted apps), many threats are addressed, but usability drops off,
countered only by a commensurate increase in complexity to fix things. Conversely, as more
system components are shared among all apps, fewer threats are addressed, but usability suffers
less and fewer complex system modifications are required to compensate. At this level of analysis,
all designs are assumed to be adequate in addressing the threats they were designed to address,
and transparent to apps (i.e., apps can run unmodified without crashing). Thus, we can
summarize the more interesting aspects of the design tradespace by noting a few apparent

correlations among several of our measures of merit:

1. Range of threats addressed increases as isolation size increases (i.e., the attack surface
decreases).

2. Complexity increases (i.e., having to fix things broken by the isolation) as isolation size
increases.

3. Usability and convenience decreases as isolation size increases.

Thus, when the security goal is to address a specific threat or threats, the best solution would be
one that isolates only what’s necessary and nothing more. In this way, all relevant threats are
addressed without sacrificing any more usability than necessary and without increasing ancillary

complexity (that which is not directly related to the security goals) any more than necessary. In

97

poo9 1U3)192X3 SOA MO llews SOA M Jd| pa1ejos|

10S

wnipap poo9 SOA wnipap wnipap SOA Auep || -inaedAy z adAL

10S

+MOT 1U3)192X3 SOA Y31H 23d.ieT SOA 1SOW || -indadAy | adAL

MO 1U3)192X3 SOA Y31H 2d.ieT SOA 1SON 100g-1eng

dUudIu

-9AU0D 9zIs sjyealyy

/Amigesn dduew.0449d juaiedsuels) Auxa)dwo) || uonejos| || 21enbapy || jo 33uey usisaqg

SoAlbUIR]lY C@.\me uonp|os| Jo \OGEEBW 1°G9|gn]

98

[66], this mindset is what allows their approach to isolating IPC to be termed “lightweight.” In this
work however, we consider this as a more general design principle that is potentially applicable to
many different aspects of the Android Framework, not just IPC. The next section describes a

design concept that embodies this mindset.

5.3 Design Concept

Having explored the tradeoffs related to the various approaches to achieving resource isolation in
Android, it is now possible to establish a more concrete design concept that addresses security
needs without sacrificing key features and convenience. As mentioned earlier, several previous
efforts have used isolation to address the problem of untrusted apps having access to sensitive or
private information. Some of these address specific types of data, such as location, while others
look for more general solutions (see Chapter 6 for more details). Two approaches that influenced
this work tremendously are Cells[65] and AirBag [64]. Cells leverages Linux Namespaces to allow
multiple Android user spaces, or virtual phones, to run simultaneously on a single hardware
platform. AirBag also leverages Linux Namespaces, but achieves isolation at the native runtime

boundary.

As an isolation mechanism, Linux Namespaces have several traits which correspond well to the
favorable characteristics of minimal isolation described in Section 5.2. Because of this, a
systematic analysis of Linux Namespaces, detailed in Appendix J, was undertaken to better define
these traits and their specific value to Android security. This analysis identified six key traits that
have value to the goal of providing effective yet efficient security, and are summarized in Table 5.2.
However, when comparing these benefits to the existing work that leverages Linux Namespaces, it
becomes apparent that much of the positive value of Namespace isolation was not realized in

these solutions. Understanding why is key to proposing a design concept that avoids this pitfall.

Looking at the Linux Namespace-based solutions in more detail, one finds that while effective for

99

Table 5.2: Summary of Namespace Traits and the Value to Android Security (see Appendix J for details).

Namespace Trait Value to Android Security
Fine-grained isolation of spe- || Tailored isolation environment for each application, address-
cific resources ing specific threat and/or user goal
Resource-centric isolation Match user perspective on security; increase usability; sim-
plicity
High efficiency Negligible performance impact; design simplicity
Share-by-default Preserve open system design; avoid breaking things unre-

lated to the isolated resource

Transparent to host and apps || System retains control over apps; apps run unmodified

Small footprint (files, mem- || Little impact on performance & resources; OTA updates
ory)

a broad range of threats, each introduces a number of significant challenges that must be
addressed before the overall system can function anywhere near what was intended and/or
acceptable to the user. For example, approaches that isolate untrusted apps in a separate runtime
[64] or virtual phone [65] require special customization of many shared hardware drivers, such as
those of the framebuffer and graphics processing unit (GPU), resulting in a great deal of additional
complexity which may have little or nothing to do with the end-user’s primary security objectives.
In fact, in order to work at all, these designs require duplication of a number of system processes
and resources that may also have little or nothing to do with security objectives. In these
architectures, fundamental Android features such as IPC, which have a direct relationship to
usability and convenience, become problematic due to isolation of the Android runtime.
Compensating for these negative impacts can result in significant additional complexity in the
design. In the case of IPC, this requires the addition of special communication channels to

partially bridge the isolated runtime with the rest of the system.

In spite of the practical limitations of these designs, their use of Linux Namespaces is intriguing, as
Namespaces are generally considered to be a lightweight and efficient form of isolation. In

traditional Linux systems, Namespaces are a useful tool for abstracting system resources so that

100

different applications have an isolated view of the resource. Namespaces have been used to
facilitate checkpoint/restart in high-performance computing (HPC) [67,68] and as the basis for
Linux Containers (LXC) to provide efficient security and resource containers [69]. The typical uses
of these technologies require only certain resources to be virtualized, and thus do not require the
creation of multiple instances of the operating system kernel. This allows higher density than
would be possible with traditional virtual machines. This advantage of container-based
virtualization has been long-recognized and put to good use in HPC and cloud environments

[70,71].

Why then haven’t Linux Namespace-based approaches to application isolation in Android been all
that practical, efficient, or successful at being accepted into the mainstream? The answer lies in
the fact that Android applications do not access system resources directly, but rather through the
layers of abstraction presented by the Android Framework, which runs on top of the Linux system.
Thus, the use of Linux Namespaces in Android presents an isolated view of resources to the entire
Android Framework, rather than to just individual applications. Because the Framework was not
designed exist in multiple instances of the global namespace, many problematic side-effects arise.
These side-effects and the additional complexity needed to overcome them, negate the positive

traits that Namespaces have for their traditional applications.

Realizing the benefits of namespace-based isolation, without causing the problems and
side-effects seen by their direct use is the goal of this design. Thus, the concept introduced here is
to adopt the Linux Namespace concept of fine-grained isolation, but do so with a new
implementation that is better suited to the resource abstractions of the Android Framework. In
essence, this work seeks to move the point of isolation as close as possible to the object(s)
requiring isolation, based on the stated security goals, while allowing continued sharing of
everything else. Put another way, the goal is to realize the benefits of lightweight isolation in
Android by identifying strategic locations where Linux Namespace concepts can be implemented.

As we will show, the result is a simpler implementation free of problems and far-flung platform

101

side-effects. When specific security goals are taken into account, the result can be just as effective

as general-purpose solutions.

5.31 Hypervisor vs. Hypovisor

Before describing the high-level concept for PINPOINT, a brief aside on terminology is warranted.

In IBM’s System/360 Operating System, the supervisor was a program that had complete control
over everything running on the system. Later, and in most other systems, this program was known
as the kernel [72]. When IBM introduced full virtualization to System/360, the result was a
hypervisor that enabled software virtual machines and essentially supervised multiple supervisors

[73]. The stronger prefix hyper- was chosen to imply a larger scope of authority than that of super-.

As stated earlier, the goal of this work is to move the point of isolation as close to the resource(s)
as possible, thus reducing the size of the virtualization and preserving the authority of the kernel.
In essence, this work proposes to introduce the opposite of a hypervisor. Just as hypothyroidism
and hyperthyroidism are opposites, the term hypovisor is used in this work to refer to a virtual
object manager with a very limited scope of authority compared to that of a hypervisor. Where
hypervisors have authority over one or more virtual machines and their kernels, hypovisors have

authority only over specific objects within the operating system.

The term hypovisor is also used in [74], where LXCs were used as a hypovisor to allow multiple,
separate, independent instances of the Android Framework to run simultaneously on the same

hardware.

5.3.2 High-level design overview

Figure 5.2 depicts the overall concept at a high level. Given a specific security goal that relates to

App 2’s interaction with objects A and B, our goal is to place the point of isolation (i.e., the

102

App 1 App 2
Py A) A
(1) 8 © 3)3 ©
Applications 4] I @ I
> S ~—+ =
: 22 > 2@
O x @) o
\J \i
Resources
Resources | \o 5 ¢
5 § @ /LVirtualized Resources
ependent !)
Resource G4 | A A, B B
Kernel

Figure 5.2: PINPOINT concept showing minimized isolation to address security goals, with maximized
sharing of system objects.

hypovisor) at a strategic location that enables virtualization of only these objects such that App 1
and App 2 see different instances of each, while everything else about the system is common and
unmodified. When trusted App 1requests A and C ((T)), the hypovisor returns instances of A and
C (®@). On the other hand, when untrusted App 2 presents the same request ((3)), the hypovisor
returns instances of A" and C (®). Since C and other resources D, E, F and G are not related to
the security goal, they are not virtualized, and either app may share them. Thus, the isolation size
is minimized to just A and B according to the threat and stated requirements. Resources that can
and must be shared for transparent operation remain shared as intended. In this way, Framework

complexities that would arise from utilizing kernel-level isolation mechanisms are completely

avoided.

A non-trivial challenge that can sometimes arise when PINPOINTing certain resources is when
there are other operating system components or resources, shown in Figure 5.2 as resource G,

that depend on interactions (&) with A or B and are unaware that now multiple virtual copies of

103

them exist. In these cases, G must also be modified to account for this. Since this represents
additional complexity, one must always consider whether this extra complexity will negate the
lightweight benefits of the PINPOINT approach. If Ais a large and complex object that has many
dependencies throughout the system, it’s likely that creating virtual copies of A will break many
things that assume there is only one A. In cases like these, it may be better to use a coarser
isolation such as the approaches in previous works. On the other hand, if A has few dependencies,
then the modifications to G (if in fact there are any) will be straightforward. Two of our four case
study applications described in Section 5.5 exhibit this characteristic, and these details are

included there.

Another challenge that can arise is when the same sensitive information can be revealed by more
than one object. For example, let’s say both A and C are capable of returning a piece of sensitive
data such as IMEI. It is important that all of these paths be identified, and either blocked or added
to the isolation boundary. Our case study encountered one example of this which will be

described in Section 5.5.

When designing and implementing the hypovisor, care must be taken to ensure that the system
does not allow any form of delegation of the hypovisor’s duties. For example, if the hypovisor is
responsible for dispatching a capability, there must be no other ways for an entity to acquire that
capability. Any other ways must be blocked in order to maintain the integrity of the isolation.
Section 5.4.3 contains a specific example of this and how we addressed it using mandatory access

controls (MAC).

5.3.3 Methodology

A summary of the PINPOINT methodology is found in Table 5.3.

Identifying the best place to instantiate the hypovisor is key to achieving a balance between

flexibility and specificity. In our experiences thus far, we have found that the best isolation points

104

Table 5.3: PINPOINT Methodology.

Step | Description Example
1 Define/collect security goal(s) Protect IMEI from app A
2 Identify relevant resource(s) iphonesubinfo and phone system services
3 Identify point(s) of resource access / capabil- | servicemanager
ity dispatch = implement hypovisor(s) & gen-
eralize
3a | Security analysis Preventinter-app passing of service binder to-
kens (modify MAC policy)
4 | Identify and address dependency(ies) com.android.phone and ProxyController

(service startup)

are places in the Framework where classes of objects and/or their capabilities are managed or

dispatched to apps. In Android, many resources are abstracted as system services, and their

capabilities are dispatched by ContextManager (i.e., the native servicemanager process). As

such, our initial work has focused on PINPOINTing system services, and our accomplishments

thus far in this regard are described in Sections 5.4 and 5.5. However, we see future opportunities

for implementing complementary hypovisors in key places other than system services, including:

1. High level data objects, such as ContentProvider. These may leak personal data [75].

Binder and Intents. These may be used as a path for a malicious app to attack or trick other

apps[76].

Camera, audio. These have obvious privacy implications if miused, e.g., [21].

Clipboard. Can be used as an attack channel [77].

5. Accessibility subsystem. May be malicious toward critical apps [78].

Notifications. Potential misuse [79].

105

N (1

@)

®

App Runtime .
getSystemService()

ServiceManager (a/k/a
ContextManager)

—T©

System Server
- Service A
- Service B

A

'y

©
®

Figure 5.3: Interactions with System Services.

5.4 Case Study on Android System Service

In order to evaluate the PINPOINT concept, we undertook a case study using Android’s system
services framework in both Android 4.4.4 (KitKat) and 5.1 (Lollipop) on a Nexus 5 device. Since a
wide variety of key resources are abstracted as system services, this choice illustrates that if the
point of isolation is wisely chosen, a single PINPOINT hypovisor can be used for a variety of

situations. To illustrate this point, we first provide some background on system services.

5.4.1 Android System Services

Interactions between Android applications and system services is enabled by the Binder and
ServiceManager subsystems. Binder relies on capability-based security and implements a “call by
invitation” mechanism to allow communication among apps, system services and
ServiceManager. As such, before an app is allowed to call a service, it must receive an invitation in

the form of an IBinder token.

Figure 5.3 shows an overview of the process by which apps access resources presented as system

services. Invitations are first created when services are registered with the central directory of

106

services known as ContextManager. By design, there can be only one ContextManager, a
designation granted exclusively to the native servicemanager process early during the boot
process, by way of its privileged relationship with Binder.? Once ServiceManager becomes
ContextManager, SystemServer registers core system services using the addService () method of
ServiceManager (path ©)). The result of this registration process is that ServiceManager now holds
an invitation (IBinder) for every system service running on the device. When an app needs an
invitation for one of these services, it contacts ContextManager (path (D). ContextManager then
passes a copy of this invitation to the app (path (2)), and upon seeing this transaction, Binder
updates its protected list of invitations held by the app. Invitations cannot be forged because any
forged invitation will not have a corresponding entry in the protected list maintained by Binder.

Once the app has the invitation, it can interact directly with the service running in SystemServer

(paths @ and @).

All requests for system services, even those made by system components, must go through
ContextManager. Thanks to Binder, the native servicemanager process has access to the trusted
identity of the caller, in the form of the Linux uid, which corresponds to the Android userl/d and
appld. This makes servicemanager an excellent place to implement a system service hypovisor
that can regulate applications’ interactions with virtualized system services. In this way, this
hypovisor represents the PINPOINT “sweet spot” of being specific enough to limit
inter-dependencies with other parts of the system, but flexible enough to apply to a large class of

objects and the mechanism whereby their capabilities are dispatched.

5.4.2 PINPOINTing System Services

The case study implementation is presented in three parts as shown in Figure 5.4, beginning with

the central enabling core, the system service hypovisor, labeled (). The hypovisor exists within the

%In fact, in the Android source (frameworks/native/cmds/servicemanager/binder . h), ServiceManager is de-
scribed as “The One Magic Handle”.

107

Application
getSystemService () - Service A
| @ 4 Service A’
Request (service, uid) '
+ Service A"
System Service @
Hypovisor
servicemanager Service B
@T Service B’
Policy : "
/etc/ns/nspolicy Service B
<uid, service, namespace>

Figure 5.4: Design overview showing the service hypovisor and policy definition (D), virtual service plug-
ins @), and application 3).

native servicemanager process, where all service lookups are processed and capabilities
dispatched. Lookup requests by apps (), are initiated with a call to
Context.getSystemService(), and arrive in the form of a Binder transaction containing the
name of the service requested (e.g., Location and other values as defined in Context class).
Because the requests are Binder IPC transactions, they are identified by the app’s Linux uid and

pid. This identification can be trusted because it is applied in the kernel driver.

The native servicemanager looks up and returns the capability (handle) for the requested

service to the caller in the do_find_service () function. This function uses the service string,

108

along with the caller’s uid and pid to decide whether the caller is allowed to receive an invitation
to call the service. First, the device’s mandatory access control (MAC) policy may prevent the
calling process from receiving the handle, based on the subject’s and object’s SELinux security
context. Second, the service itself may disallow the dispatch of its handle to isolated apps (i.e.,
those with vids in the range [AID_ISOLATED_START , AID_ISOLATED_END]). The
PINPOINT hypovisor is placed within this function, following the pid security context check, and
prior to the uid range check. Refer to Listing K.1in Appendix K during the following description of

the modified do_find_service () function.

Following the MAC policy check, the modified code consults a secure namespace policy file,
nspolicy, using the requester’s uid as the index. Namespace policy is defined by a set of 3-tuples
of < uid, service_name, namespace >, where uid corresponds to the appld of the app assigned
to service_name namespace namespace. If the uid key appears in the policy, then
servicemanager invokes the local function add_ns () (see Listing K.2) to concatenate
_hamespace to the service_name string that was passed to the function. A pointer to the string,
along with a length value are passed to the function find_svc where the actual handle is
retrieved. For uids that do not appear in the policy file, add_ns () is not called and the original
requested string is at the pointer location. Either way, find_svc () returns the actual handle of
the service corresponding to the resulting modified or unmodified string. The policy may specify
more than one service_name and namespace for a given uid to contain apps that present a
multi-dimensional threat. Since handle lookup requests can occur once or many times during the

lifecyle of an app, the design also supports dynamic policy changes.

An example policy file is shown in Listing 5.1. In this example, apps represented by uid 10052 and

10065 are assigned to location namespace 1, while app 10063 is assigned to location namespace 2
and iphonesubinfo namespace 1. 10064 is also assigned to iphonesubinfo namespace 1. Finally, as
directed by the special uid value 99999, all apps are assigned to sensorservice namespace 1. Note

that the uid can be chosen to address security needs related to multiple device users, such as the

1
2
3

109

multi-user framework issues identified in Chapter 3. For example, to assign app 10063 to an
alternate location namespace only for userld 10, nspolicy would contain the line 1010063

location 2.

Listing 5.1: Example /etc/ns/nspolicy showing
how apps are assigned to different namespaces

(for the device Owner, userId0).

10063 location 2
10063 iphonesubinfo 1
10064 iphonesubinfo 1
10065 location 1
10052 location 1
99999 sensorservice 1

[NS U N T

Currently, virtual services shown in Figure 5.4 at @) (e.g., A’, A”, B’ and B") are preconfigured at
build time. For example, the existing SensorService code can be duplicated as SensorService_1 and
SensorService_2. The semantics of these duplicates is then modified such that they implement
the required characteristics of the alternate namespaces, such as random data, “fuzzed” data, or
adjustments to specific sensors or sensor families. These additional services are started at boot
time, along with the normal global service. SystemServer is modified to start the additional
services along with their global counterparts, A and B. An example of how SystemServer was
modified to accomplish this for LocationManagerService and two alternate location namespaces
is shown in the code excerpt of Listing 5.2. In this example, the running device will have two new
services available, location_1 and location_2, in addition to the original service, location.
Listing 5.3 is an excerpt from Android’s service list command, showing services with multiple
namespaces for iphonesubinfo, location, input_method, and sensorservice running on the test

device.

Listing 5.2: SystemServer excerpt showing how multiple instances of LocationManagerService are

started.

public final class SystemServer {

LocationManagerService location = null;

LocationManagerService_1 location_1 = null;
LocationManagerService_2 location_2 = null;
if (!disablelLocation) {
try {
Slog.i(TAG, "Location Manager");
location = new LocationManagerService(context);

ServiceManager.addService (Context.LOCATION_SERVICE, location);
} catch (Throwable e) {

reportWtf ("starting Location Manager", e);
}
// register additional location namespace (1)
try {
Slog.i(TAG, "Location Manager 1");
location_1 = new LocationManagerService_1(context);
ServiceManager.addService("location_1", location_1);
} catch (Throwable e) {
reportWtf ("starting Location Manager 1", e);
}
// register additional location namespace (2)
try {
Slog.i(TAG, "Location Manager 2");
location_2 = new LocationManagerService_2(context);
ServiceManager.addService("location_2", location_2);

} catch (Throwable e) {
reportWtf ("starting Location Manager 2", e);

}

10

2/

Listing 5.3: List of services running on a Nexus 5 device, showing multiple namespaces for iphone-

subinfo, location, input_method, and sensorservice.

$ adb shell service 1list

Found 105 services:

0 sip: [android.net.sip.ISipService]

phone: [com.android.internal.telephony.ITelephony]

isms: [com.android.internal.telephony.ISms]

iphonesubinfo_1: [com.android.internal.telephony.IPhoneSubInfo]
iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]

W N e

36 location_2: [android.location.ILocationManager]
37 location_1: [android.location.ILocationManager]
38 location: [android.location.ILocationManager]

62 input_method_1: [com.android.internal.view.IInputMethodManager]
63 input_method: [com.android.internal.view.IInputMethodManager]

91 batterystats: [com.android.internal.app.IBatteryStats]
92 sensorservice_4: [android.gui.SensorServer]

93 sensorservice_3: [android.gui.SensorServer]

94 sensorservice_2: [android.gui.SensorServer]

95 sensorservice_1: [android.gui.SensorServer]

96 sensorservice: [android.gui.SensorServer]

104 drm.drmManager: [drm.IDrmManagerServicel

Although not required, the alternate services usually have interfaces identical to their global

counterpart, and differ only in semantics. For example, the global location service returns the
actual current location, while the other location services return noisy, random or preset locations
via an identical public interface. This example is illustrated by Listing 5.4 where latitude and
longitude data received from the provider are overwritten with random values before being

passed to the handler.

Listing 5.4: Modified reportLocation () excerpt from LocationManagerService_1 showing how the

API’s semantics are changed from that of the standard LocationManagerService. In this case, the

method overwrites the Location object with random lat/long values.

public class LocationManagerService_1 extends ILocationManager.Stub {

@Override
public void reportLocation(Location location, boolean passive) {
// This is the random location namespace, so overwrite real location that came from provider
double lat = Math.random()*181.0-90.0; // -90 to +90
double lon = Math.random()*361.0-180.0; // -180 to +180
Log.d(TAG, "reportLocation() randomizing lat/lon to: "+ lat + "/" + lon);
location.setLatitude (lat);
location.setLongitude (lon);

mLocationHandler.removeMessages (MSG_LOCATION_CHANGED, location);
Message m = Message.obtain(mLocationHandler , MSG_LOCATION_CHANGED, location);
m.argl = (passive 7 1 : 0);
mLocationHandler.sendMessageAtFront0OfQueue (m) ;

}

As mentioned in Section 5.3.2, some services may have dependencies outside the PINPOINTed
virtualization boundary. An example of this is LocationService which receives “push” updates in
the form of callbacks from native code. The implication of this is that the alternate location
namespaces will not receive callbacks from the native code, since the native code was not
designed with multiple location service instances in mind. Thus, this native code must be
modified to support the additional services, resulting in additional complexity. In the case of
location service, this additional complexity is relatively small, and is implemented by changing
the scalar callback object to an array of callback objects with length equal to the number of
location namespaces. Listing 5.5 shows how this was done for the native function

location_callback() in the GPS provider.

12

Listing 5.5: Locatton_callback() from native GPS provider modified to push location updates to

all registered location services by way of an array of callback objects.

static void location_callback(GpsLocation* location)
{
JNIEnv* env = AndroidRuntime::getJNIEnv();
//env->CallVoidMethod (mCallbacksObj, method_reportLocation, location->flags,
for (int i = 0; i < 3; i++) {
if (mCallbacksObj[i]) {
env->CallVoidMethod (mCallbacksObj[i]l, method_reportLocation, location->flags,
(jdouble)location->latitude, (jdouble)location->longitude,
(jdouble)location->altitude,
(jfloat)location->speed, (jfloat)location->bearing,
(jfloat)location->accuracy, (jlong)location->timestamp);
checkAndClearExceptionFromCallback (env, __FUNCTION__);

5.4.3 Security Discussion

The PINPOINT case study introduces a lightweight services hypovisor into the native portion of
ServiceManager. The purpose of the hypovisor is to isolate particular apps from various services
as specified by the user’s policy. This security discussion is included to provide a sense of the
strength of this isolation. We begin with Binder, since most of the isolation strength derives from

Binder’s security model.

Every process using Binder, including system service threads within system_server has a
protected representation in the kernel as an instance of a binder_proc structure. Each remote
capability that a process holds is represented by one or more binder_node structures attached
to the binder_proc instance. These nodes are known only to the kernel module and are used to
determine the recipient of the communication, based on a handle provided from userspace.
Handles are local references and mappings from handles to nodes are also stored securely in
binder_proc. Hence, only the kernel knows how to map a particular handle to the

corresponding node.

When SystemServer registers system services with ContextManager using addService() (as

13

shown in the example of Listing 5.2), the kernel adds the service’s binder_node to the
binder_proc corresponding to the servicemanager process. ContextManager also allocates a
local index to each registered service. When an app asks ContextManager for a handle to a service,
servicemanager returns the handle and the kernel binder driver adds the service’s
binder_node to the app’s binder_proc, thus recording the validity of the app’s newly acquired
capability. Apps can also send handles they posses to other apps via Intent. Upon seeing the
handle within the transaction, the kernel driver adds the node to the receiver’s binder_proc so

that the recipient is now a valid holder of that capability. This is known as a binder transfer.

The addition of a services hypovisor does not change anything about how handles are looked up
and provided by ContextManager or how capabilities are propagated by way of the kernel binder
driver. All apps, native and Java alike, are subject to the intervention of the hypovisor when
requesting service handles from ContextManager. Thus, any vulnerabilities in the prototype
regarding how service handles are obtained from ContextManager, or vulnerabilities in the binder

driver itself, are also vulnerabilities of stock Android and thus outside the scope of this discussion.

What the design does change is which handles are given out. PINPOINTIing services introduces the
notion of remote service handles that should be unobtainable by certain apps. For example, an
app assigned to an alternate location namespace should never be allowed to get the capability to
the global location namespace, either directly from ServiceManager or from another app. This is
different than stock Android where ContextManager acts as an open directory service, and
obtaining a service handle via binder transfer from another app does not represent a capability
leak. In fact, the kernel binder driver itself facilitates these transfers through the
BINDER_READ_WRITE command of the driver’s ioctl interface. When a transaction is made, the
driver simply updates the target’s binder_node to reflect the newly-acquired capability. These
app-to-app binder transactions do not involve servicemanager and therefore do not involve the
PINPOINT services hypovisor. Thus, in order to maintain isolation among namespaces, these

transfers must be regulated or blocked.

114

In essence, the hypovisor design turns an unprivileged instruction for transferring binder
capabilities into a privileged one. Thus to enforce this new privilege, all ways to transfer binder
capabilities must be controlled. Thankfully, all binder transactions, including transfers, are

processed in one place, binder_transaction() function of the binder driver code, binder. c.

Binder’s ioctl interface supports five commands: BINDER_WRITE_READ,
BINDER_SET_MAX_THREADS, BINDER_SET_CONTEXT_MGR, BINDER_THREAD_EXIT, and
BINDER_VERSION. Of these, only BINDER_WRITE_READ is of interest for the analysis of binder
transfers, as it is the basis for all IPC operations. BINDER_WRITE_READ’s purpose is to copy a
binder data buffer from userspace into the kernel for processing, and then back to userspace
when processing is finished. The bufferincludes a binder_transaction_data structure which
contains the handle of the target, transaction code, and other information about the transaction

including the sender’s pid and effective uid.

The BINDER_WRITE_READ command is handled by a switch statement in function
binder_ioctl() inbinder.c. The BINDER_WRITE_READ case branches to two places,
binder_thread_write() and binder_thread_read().Binder transactions are ultimately

accomplished through the former, so the focus now turns to binder_thread_write().

binder_thread_write() does a lot of bookkeeping, but for binder transactions, itin turn relies
onbinder_transaction().After validating the source and target of the requested transaction,
the core of binder_transaction() includes a switch statement where each of the three
possible types of binder objects are processed accordingly. These include binders, handles and
file descriptors. Because they take the form of binders and handles, the focus of controlling
transfers lies within these two parts of the switch. Inside the case blocks for binders and handles,
the binder_proc and binder_node kernel data structures are updated according to the
transaction. These are the only two places in the driver where this is done. Hence, we add an
access control point in these two locations to enforce the new privilege associated with binder

transfers.

115

Theoretical transfers of capabilities by means other than a binder ioct1, such as through UNIX
sockets, will be ineffective as the kernel binder driver will not record the transaction and will not

update the target’s binder_proc. The received capability will be useless.

The PINPOINT system services prototype blocks app-to-app transfers of system services
capabilities in the kernel binder driver’s binder_transaction() function, through an extension
of existing SEAndroid MAC policy. Specifically, the security_binder_transfer_binder ()
hook, present in each of the two relevant cases of the transaction type switch, is extended to
also pass the task_struct of the binder_ref (for references) or binder_node (for handles)
under consideration. This allows the hook function to extract the owner’s SELinux security
identifier (SID) and use it as the subject in an access control decision. To enforce the prohibition
on app-to-app transfers of system service handles, the prototype contains modified type
enforcement rules pertaining to untrusted_apps, so as to disallow transfer of
u:r:system_server:s0 binders between apps with an SELinux security context
ofu:r:untrusted_app:s0. In addition, a new neverallow rule was added to further ensure at
policy build-time that there are no allow rules elsewhere in the policy that are inconsistent with
this. This effectively blocks any attempted bypass of the hypovisor, while allowing all other normal

binder transfers among apps and the system to proceed.

In assessing the impact of this new binder transfer restriction, a legitimate use of the function was
sought out, with no findings. In fact, even after extensive testing of many apps, none that exploit
this possibility have ever been found. Seemingly, the normal design patterns have apps getting
system services directly from servicemanager rather than relying on other apps. Thus, there is

high confidence that blocking these transfers will have no affect on any legitimate app.

116

5.4.4 Policy Configuration

As explained in Section 5.4.2, the servicemanager hypovisor consults a secure policy file to
determine if the requester has been assigned to any alternate service namespaces. This policy can
be created and updated by a variety of means: via the system Settings app, via launcher
configuration, from hard-coded (i.e., build-time) mandatory policy, via over-the-air (OTA) updates
in a mobile device management (MDM) architecture, via adb, using a privileged text editor on the
device, etc. In the prototype, a default policy file was included in the system build, and it was
updated via adb over USB and directly on the device using a text editor with root privileges. The
system was also integrated with a custom launcher application being developed by another
student. In terms of user-friendliness, the custom launcher enables the end-user to drag-and-drop
app icons to and from different containers, each representing a specific PINPOINT configuration.
For example, a particular container might be configured to protect two sensitive resources,
location and IMEI, from the apps placed within it. When an app is dropped into this container, the
launcher app automatically updates the policy with the uid and service names corresponding to
the protected resources. This update takes effect immediately since servicemanager consults

the policy each time the app makes a request.

5.4.5 Limitations

Currently, the case study prototype requires all global and virtual system services to be running
whether or not any apps are assigned to them. In terms of overhead, this fact manifests itself as
additional memory use by the system_server process. Although data presented in Section 5.6.1
shows that this overhead is small, this aspect of the design should be made more elegant and

efficient in the future.

Itis also important to note that the design does not provide full security domain isolation in the

sense that it does not prevent apps from passing high-level sensitive information to other apps.

117

5.5 Applications

This section describes application and evaluation of the system services PINPOINT prototype in
four practical applications involving system services. Each application involves a specific security
goal that is used as the motivation for the scenario. All implementations were tested using AOSP
branches of Android 4.4.4 (KitKat) and Android 5.1 (Lollipop) on a Nexus 5. The four services and

corresponding security scenarios discussed here are as follows:

1. LocationManagerService: A widely used location-finding service that binds with a
number of abstract provider mechanisms. Security goal is to prevent untrusted apps from
obtaining accurate location information[80]. See Section 5.5.1.

2. IPhoneSubInfo: A “hidden” service for accessing phone subscriber information, called only
by other system services such as TelephonyManager. Security goal is to prevent untrusted
apps from accessing sensitive subscriber information [37]. See Section 5.5.2.

3. InputMethodManagerService: A service that arbitrates communications between apps
and a variety of installed input methods, and has complex interactions with other system
objects including WindowManager. Security goal is to protect critical apps from falling
victim to malicious input methods[81]. See Section 5.5.3.

4. SensorService: A native service that interfaces directly with hardware sensors. Security
goal is to prevent untrusted apps from obtaining accurate sensor data to steal data[23][82],

eavesdrop [83], or track movement/location[84]. See Section 5.5.4.

By and large, porting from 4.4.4 to 5.1 was straightforward. In fact, the implementation of the
hypovisor within servicemanager is virtually identical, even across the major version releases.
Most of the difficulty in porting to different Android versions is due to changes in the design of the
services themselves, especially for internal services that are not designed to be directly accessed
by developers and are thus not subject to deprecation. For example, between Android versions 4

and 5, the underlying architecture of (IPhoneSubInfo) changes substantially, requiring an

18

expansion of the isolation boundary in order to continue to meet the security goal. This is

discussed below.

5.5.1 Location Service

Although location services provide great convenience and enable new functionality for users, they
have significant security and privacy implications if misused. While some apps require accurate
location to fulfill their main purpose, others utilize location information only to enrich their
primary function. For example, a social networking app’s primary function is to interact with
friends via photo and status updates. These apps usually enrich this interaction by attaching
location to these updates. If the end-user wishes to prevent only this one app from knowing
location, and still enjoy its primary friend-interaction functions, she must rely on the
trustworthiness of the app’s own settings and controls. This is because current location privacy
support from Android itself is too coarse-grained to achieve the user’s goal of isolating only this
one aspect of this one app. If the app is poorly-written or malicious in its handling of location data,
privacy leaks may occur despite the user’s best efforts to prevent them. By PINPOINTing the
location service resource, and placing only this app in the new location namespace, we can
transparently and effectively address this user’s security goal without inconveniencing her or

introducing the complex system modifications and overhead of general-purpose solutions.

To demonstrate this, we PINPOINTed the location service to provide three separate location
namespaces for assigning apps, each with different semantics but identical interfaces. The global
location namespace functions normally and is used with trusted apps. A fuzzy location namespace
provides reduced-accuracy location information by adding noise to location objects. Finally, a

random location namespace returns totally random location data to assigned apps.

We implemented these two additional location namespaces by adding two additional system

services, LocationManagerService_1 (LMS’) and LocationManagerService_2 (LMS”), as

119

shown in Figure 5.5. These present the exact same API as the stock service, and thus are

indistinguishable from the app’s perspective.

Each location service binds to the standard set of common location providers such as
GpsLocationProvider that interfaces through native code to actual hardware. However, as
alluded to in Section 5.3, these providers represent dependent resources (G in Figure 5.2) that are
designed based on an assumption of only one location service. Thus, these must also be modified
slightly to make callbacks to all three location services. Otherwise, LMS’" and LMS" will never get
location update callbacks since the providers are not otherwise aware of the virtualized services.
Since the specifics of these modifications was provided as an example in Section 5.4.2, they are

not repeated here. Instead, refer to Listings 5.2, 5.4, and 5.5.

The semantics of the additional services are as follows: LocationManagerService_1 replaces
location updates returned from the providers with random data, while
LocationManagerService_2 adds random offsets to the same. Since each namespace is
indistinguishable from the global location namespace in, apps in alternate namespaces behave

normally and process the virtual location data as if it were real.

Figure 5.6 shows screenshots of a popular fitness app, RunKeeper?, that we used to demonstrate
the isolated location namespaces. The version used for testing accesses LocationManagerService
directly and not through a proxy (see discussion below). Figure 5.6a shows points collected during
an activity while the app is assigned the noisy location namespace. Figure 5.6b shows the same
app while assigned to the random location namespace. Note that in both cases, the app’s display
indicates “Good GPS”, demonstrating the complete transparency of these namespaces to this

unmodified app.

In some cases, applications may use Google Play Services to access resources such as location
[85]. In fact, the latest version of the RunKeeper app used for testing this namespace now accesses

location in this way. In these cases, handles for LocationManagerService are obtained by the Play

3https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro

120

App 1 App 2
2 4 D A
m .
- O -
Applications 2 c 4} =
> = 5
s 32 3 3@
\ ¥
System Service Hypovisor
Framework Other
Resources RShared Virtualized
esources Services
\‘

] Location Providers ‘J @
Y

Kernel / Hardware

Figure 5.5: PINPOINTing LocattonManagerService.

Services package, com.google.process.gapps, on behalf of the client app. Since this package
runs as a separate app process, the system services hypovisor does not have access to the uid of
the client. While the uid of the Play Services app can be assigned to a namespace, doing so will
result in all apps using Play Services to be subject to the semantics of that namespace. While this
is recognized as another type of dependent resource, G, addressing it is outside the scope of this
work, since Play Services source code is not available. However, modifying Play Services to

include an extension of the system services hypovisor would be possible.

5.5.2 Subscriber Information Service

iphonesubinfo is a hidden service used exclusively by TelephonyManager to service app
requests for subscriber information such as IMEI, mobile equipment identifier (MEID), electronic
serial number (ESN), phone number, voicemail number, private/public user identities, home
network name, etc. Several of these values have significant security and privacy implications and

are known to be malware targets [37]. Although protected by Android’s READ_PHONE_STATE

121

Qv M343 Qv M356
TIME 1:35 \ TIME 0:00
AVG MIN/MI AVG MIN/MI
01:48 00:55
° 27 O] ° 19
Good GPS CALORIES Good GPS CALORIES
L \ S\
c TN Rl LS " \
C Kazakhstan ST H
E; 4 - N Mongolia
- vilsee acsll
g’: i ' China L
A R South K
3{<: Iragi[(|é] Afa

(Fak\slalﬁ/

Saudi Arabia India

‘ Th‘atlg[,!g‘

{

| sudan N
SN s

Hall Lyman Hall

L Ethiopia-

East Zone
Life Sciences

Complex
Botswanal Madagascar

South Africa

(a) RunKeeper running in location names- (b) RunKeeper running in location names-
pace with noisy locations. pace with random locations.

Figure 5.6: RunKeeper fitness app running in alternate location namespaces.

permission, misusing or malicious apps can easily legitimize declaration of this permission since it

is necessary for a number of common features, such as those provided by PhoneStateListener.

To isolate an untrusted app from or more of the data values returned by iphonesubinfo, we
PINPOINTed this system service. We enabled the non-global namespace by modifying the internal
telephony ProxyController to instantiate PhoneSubInfoController_1 as well as
PhoneSubInfoController. The former starts iphonesubinfo_1 service with an APl identical to
iphonesubinfo, started by the latter. When an untrusted app is assigned to the alternate
iphonesubinfo namespace, it can obtain the same instance of TelephonyManager as trusted
apps can, but any subsequent calls to getDeviceId (), getLinelNumber (), etc. by the

untrusted app are processed by iphonesubinfo_1. iphonesubinfo_1 returns different values

122

for sensitive subscriber parameters.

When porting this design to Android 5.1, we found that the underlying structure of the telephony
service had changed significantly. In particular, the ITelephony (phone service) interface was
enhanced to include its own getDeviceId () call, and TelephonyManager was modified to
obtain the device ID from this interface rather than IPhoneSubInfo as was the case in 4.4.4. Thus,
apps assigned to iphonesubinfo_1 would still get the device’s real IMEI because our isolation
did notinclude every object that could return that sensitive data. This necessitates an expansion
of the isolation boundary to include both iphonesubinfo and phone services, and is a good
example of needing to identify all possible means of access to the sensitive resource related to the

end security goal.

To demonstrate effectiveness of our PINPOINTed subscriber information service, we obtained the
popular app IMEI Analyzer.* Figure 5.7 shows this app running unmodified in both global (Figure
5.7a) and fake (Figure 5.7b) iphonesubinfo/phone namespaces. In the global namespace, the
actual, valid IMEI of our test device is returned, while a fake IMEl is returned to the app after it has
been assigned to the alternate iphonesubinfo_1/phone namespace by adding its uid to the

nspolicy file.

5.5.3 Input Method Service

Input Method Editors (IME) are screen controls that enable users to enter text. Currently, there are
about 900 third-party keyboard apps published on the Google Play store, with at least 10 having
more than one million downloads. Most require INTERNET or WRITE_EXTERNAL_STORAGE
permissions, which enable the IME to log or transmit any data that’s typed in. In an empirical study
of keyboard apps, it was found that more than 61% require three or more permissions giving them

the ability to exploit keylogging and man-in-the-middle attack vectors [81]. To illustrate this threat,

*https://play.google.com/store/apps/details?id=org.vndnguyen.imeianalyze

S 4
IMEI Analyzer

Enter the IMEI number (14 or 15 digits):

352584063205063 MY IMEI

Also fetch data from www.imei.info
CLEAR ANALYZE

The Check Digit is correct.
The IMEI looks valid.

* Type Allocation Code: 352584
+ Reporting Body Identifier: 35

* Mobile Equipment Type: 2584
+ Final Assembly Code: 06

» Serial Number: 320506

+ Check Digit: 3

+ Luhn Check Digit: 3

L4
IMEI Analyzer
Enter the IMEI number (14 or 15 digits):

010000440000014 MY IMEI
Also fetch data from www.imei.info
CLEAR ANALYZE

The Check Digit is correct.
The IMEI looks valid.

* Type Allocation Code: 010000
+ Reporting Body Identifier: 01

+ Mobile Equipment Type: 0000
+ Final Assembly Code: 44

» Serial Number: 000001

+ Check Digit: 4

+ Luhn Check Digit: 4

123

Data from www.imei.info: Data from www.imei.info:
* Brand * Brand: N/A

Cast everything you love [>!%

ici Cast everything you love SRR ici
Official Official your phone to your TV, for $35.

q h t TV, fi 35. q
Chromecast Site » your phone to your TV, for § Chromecast Site »

< O O < O O

(a) IMEI Analyzer running in global
iphonesubinfo/phone namespace.

(b) IMEI Analyzer running in alternate
iphonesubinfo/phone namespace.

Figure 5.7: IMEl Analyzer running in different iphonesubinfo/phone namespaces.

consider sensitive apps like banking or purchasing apps, which often require users to enter bank
card numbers or passwords for authentication. All entry of these values is done via the current

IME, selected by the user. If the IME is malicious, an attacker can easily collect these values [86].

The overall working architecture of IMEs is shown in Figure 5.8. In every application’s context
space, there exists an instance of InputMethodManager (path 1) which is used to communicate
with a system-wide service, InputMethodManagerService. When an input field comes into
focus, the app’s InputMethodManager invokes this system service (paths 4 and 5) after obtaining
its handle via ServiceManager (paths 2 and 3). With this handle, the app may obtain a unique
InputConnection Binder token from InputMethodManagerService for making direct calls to

the IME keyboard app. Using this token, the system is able to secure and control interactions

124

among multiple applications and multiple IMEs [87].

Currently, apps do not have control over the IME selected by the user. Instead, the system will
bring up the user’s selected IME whenever any text field comes into focus. While Google has
recognized the security and privacy issues associated with this design [88], the current measures
rely on the user to make wise choices regarding IME installation and selection. Using session
information attached to each window instance by WindowManager, the Input Method Framework
(IMF) ensures that only the active activity can get access to the data being entered. Furthermore,
InputMethodManagerService ensures that all messages received from running IME
applications are from the current user. Importantly, this includes messages for changing IMEs (i.e.,
messages resulting from calls to InputMethodManager . set InputMethod ()), which are guarded
with the token to ensure that they originated from explicit user selection. However, none of these

protections will help if the IME itself is malicious or compromised and the user selects it.

PINPOINTing the InputMethodManagerService provides an effective mechanism to shield
sensitive apps from falling victim to a malicious IME selected by a tricked user. Figure 5.9 shows
the PINPOINT concept applied to input methods. This is accomplished by using the our PINPOINT
service hypovisor prototype to virtualize InputMethodManagerService. In the figure, IMMS
corresponds to the “real” InputMethodManagerService (input_service), while IMMS' is a
second service (input_service_1), with an identical interface and features except for the fact

that it holds only a subset of all available IMEs.

As suggested in Section 5.3, there are additional complexities with virtualizing IMEs due to
dependencies with other objects in the system. Because of interactions with WindowManager
mentioned above, minor modifications to WindowManager are necessary so that it can be aware
of the all the InputMethodManagerService namespaces running and push updates about the
current activity to all of them. As with location service, this situation corresponds to dependent
resource G in Figure 5.2. To enable independent InputConnection from each app’s

InputMethodManager instance to each service, we created a Java interface which all of the

125

A 2
1 Input Method - .
App ___: | servicemanager
Manager -
) 3
A
5 :
.| Input Method Manager
4 : Service
Apps Framework

Figure 5.8: Input method framework architecture.

InputMethodManagerService instances implemented.

A demonstration of IME namespaces is illustrated by Figure 5.10. Figure 5.10a depicts a non-critical
app, Eat St.,° assigned to the global IME namespace, where any IME can be used, including a
representative untrusted IME, SwiftKey.® Here, the Choose input method dialog shows all installed
input methods. In contrast, the critical banking app, Chase Mobile,” in Figure 5.10b has been
assigned to the alternate IME namespace in order to protect its data from possible malicious IMEs.
As shown, the chooser only allows selection of trusted IMEs, with SwiftKey excluded due to the

alternate IME namespace isolation.

5.5.4 Sensor Service

Modern mobile devices have a rich set of environmental and motion sensors available to apps.
Unfortunately, the Android security architecture does not extend to most of these sensors, making
it all too easy for malware to utilize them to compromise user data entry [23,82], eavesdrop on

voice communications [83], track user movements, and infer location [84]. By PINPOINTing

Shttps://play.google.com/store/apps/details?id=com.eatSt.app
®https://play.google.com/store/apps/details?id=com.touchtype.swiftkey
"https://play.google.com/store/apps/details?id=com.chase.sig.android

App 1 App 2
& A Py A
@ %)) h
ke n
§ fe]
s S - S
Applications -~ = @ =
S 2(2) S .
5 g 5 g ®
¥
Eramework . ‘ System Service Hypovisor
Resources _ IMMS IMMS'
Shared
Resources 'YKB1|KB2|KB3| |KB1|KB2
Other Virtualized
WMS @ Services
Kernel

Figure 5.9: PINPOINTing InputMethodManagerService.

Change keyboard

O English (US) Change keyboard

Android Keyboard (AOSP) ® English (US)
. . Android Keyboard (AOSP)
O Google voice typing

(O Google voice typing

O Japanese
Japanese IME

O Japanese

® SwiftKey @ Japanese IME

SwiftKey

CHOOSE KEYBOARDS
CHOOSE KEYBOARDS

(a) Non-critical app running in global IME (b) Critical banking app running in alternate
namespace, showing all input methods, in- IME namespace, showing only built-in input
cluding a 3 party (1)), as selection options. methods as selection options.

Figure 5.10: Non-critical and critical apps running in different IME namespaces.

126

127

SensorService, we enable the user to take advantage of apps without needing to also trust their

handling of sensor data.

In the Android platform, apps may acquire sensor data by getting an instance of SensorManager,
which in turn accesses raw sensor data via SensorService, a native system service. SensorService’s
threadLoop () collects raw sensor data in a structured data buffer of type sensor_event_t,
which is then returned to the app via its SensorManager’s SensorEventConnection. The buffer
structure contains raw sensor data for each of the device’s sensors including acceleration,

magnetic, orientation, gyro, temperature, distance, light, pressure, and relative humidity.

To PINPOINT sensor resources, we followed the same general approach as with previous
examples, by adding two additional native SensorServices to the device, and registering them with
ContextManager as sensorservice_1 and sensorservice_2. For demonstration purposes, we
hardcoded sensorservice_1 to overwrite the gyro, magnetic, and orientation structure
members of the buffer structure with random data before it is returned to the app’s
SensorManager. Likewise, sensorservice_2 is hardcoded to overwrite only the light structure
member of the structure with random values. Structure members containing data from other

sensors are passed through unmodified.

With three possible sensor service handles on the device, SensorManagers of apps assigned to
one of the two alternate sensor namespaces are always given handles to sensorservice_1 or
sensorservice_2, depending on their assignment. To demonstrate the effectiveness of this, we
installed AndroSensor,® a popular Google Play Store app, and ran it in each of the three sensor
namespaces. Figure 5.11 shows AndroSensor running in the global sensor namespace, with all
sensor traces steady, indicating a stable physical environment. In contrast, Figures 5.12a and 5.12b
show AndroSensor running in the alternate sensor namespaces of sensorservice_1 and
sensorservice_2, respectively. For all three cases, the physical envronment was approximately

the same.

8https://play.google.com/store/apps/details?id=com fivasim.androsensor

128

|
0 | AndroSensor X ®

M x:215.00

43.31

®

-4331

WX 4178
Y:13.34 :57.213

Wz 3674

6000

-180.00
M x: 289.77

Y: 216
MWz o268

Figure 5.11: AndroSensor running in global sensor namespace showing normal traces for gyro (),
light (2)), magnetic (3)) and orientation (&) sensors.

L Ea 9 £ <= m10710

X ©

M | AndroSensor

X:264.00
Y: 6.00
Wz 2500

3:265.249

-360.00

(./ M x: 45.00

Y:91.00
Wz 24200

0.00

M X 173.00 @
~/ \ \

-360.00

M X 153.00
Y: 288.00 5:330.559
Wz 5400

M X: 345.69
Y:-1461

Wz -4831

(a) AndroSensor running in 1°t alternative
sensornamespace showing normal trace for
light sensor ((2)), and random traces for gyro
(D), magnetic (3)) and orientation (@) sen-
sors.

ml] 9 = W15

K ©

M | AndroSensor

~ z:+0.0312 m/s?
2:+0.0643 m/s?

Y:-0.01
Wz 000

3:57.952

-180.00

M X 28095 @

Y:-2.52
Wz235

(b) AndroSensor running in 2M glternative
sensor namespace showing normal traces
for gyro (D)), magnetic (3)), and orientation
(@) sensors, and random trace for light sen-

sor ().

Figure 5.12: AndroSensor running in alternative sensor namespaces.

129

130

Table 5.4: Evaluation benchmarks used.

Name Version || Workload type
Linpack 1.2.8 CPU
Quandrant Advanced Edition 2.1 File1/O
Quandrant Advanced Edition 2.1.1 2D & 3D
SunSpider 1.0.2 CPU &1/0

5.6 Evaluation

5.6.1 Performance

Evaluation of the overall performance impact of PINPOINTing services was accomplished with the
benchmarking tests shown in Table 5.4, with and without namespaces. For each benchmark,
performance under four different device configurations was measured: ONS represents stock
Android without any PINPOINT capability or namespaces, while 1NS, 2NS, and 3NS represent
devices configured with one, two and three PINPOINTed services, respectively. Figure 5.13 shows

the average value of 10 runs of each benchmarking test.

The impact on memory of adding PINPOINTed services was also measured. Since each running
service represents additional threads within SystemServer, we measured VmSize of the
system_server process by reading its /proc/<pid>/status under each of the same four
configurations. Figure 5.14 shows the average value of 10 measurements of memory footprint for

each configuration.

5.6.2 Qualitative Assessment

Having described four representative PINPOINTed services, and measured overall system

performance impacts, we now recall the qualitative metrics related to effectiveness and efficiency

125

8

175

100

W ONS
M iNS
W 2NS

NS

(a) Average LINPACK CPU performance score
vs. number of namespaces.

2600

2200

1800

Scove

1400

1000

[[t
[R
W 2NS

INS

(c) Average file |/O performance score vs.
number of namespaces (Quadrant file 1/0).

Figure 5.13: Benchmarking results for 0-, 1-, 2- and 3-namespace configurations.

1000000
Qo000
BOO000

VidSize fh kB

TO0000

GOO000

Seore

Score

BOOD

G000

4000

2000

131

Hl ONS
NS
H 2NS

INS

(b) Average file 1/0 performance score vs.
number of namespaces (Quadrantfile 1/0).

D00
TO0
500
300
100

oS
M s
M zns

INS

(d) Average browser performance score vs.

number of namespaces (SunSpider).

M ons
B 1nS
M 2ns

ANS

Figure 5.14: Average memory footprint in kB (VmSize) for 0-, 1-, 2- and 3-namespace configurations.

132

Table 5.5: PINPOINT prototype measured against qualitative metrics related to effectiveness and effi-
ciency (L=low/small; M=medium/some; H=high/large).

Metric (best) PINPOINT Comparative Approaches
of [64] and [65]
Location | Sub. Info. | Input Method | Sensor
Range of L L L L H
threats (H)
ﬁ Adequacy H H H H H
e
< | (H)
>
S | Isolation L L L L H
95| size (H)
Complexity L L L L H
(L)
Transparency H H H H M
(H)
- Performance H H H H M
= (H)
S | Usability H H H H M
4=
w | & conve-
nience
(H)

introduced in Section 5.4, and assess the prototype against them. Table 5.5 shows these results.

5.6.3 Discussion

Performance evaluation results presented in Section 5.6 indicate that increasing numbers of

PINPOINTed services has a negligible effect on CPU, browser, and graphics performance. On the

other hand, data indicates a clear correlation between the number of PINPOINTed services and

file 1/0. Decreases in this score with increasing numbers of namespaces is expected due to an

increase in policy file size and associated data structures being parsed and searched by

servicemanager during every service lookup request in order to support namespace

reassignments of running apps. In our current, unoptimized design, file I/O performance degrades

133

by an average of 1.57% of the ONS value for each additional namespace represented in the policy
file. Although this degradation is negligible for simple policy files, we feel that this is an area for
improvement. Future implementations will include an optimization of this code, and policy

options to configure how often policy lookups are performed.

We also observed a growth in system_server’s memory size that is correlated to the the number
of additional service objects (i.e., namespaces) available for use in the system_server process.
On average, we observed this increase to be approximately 0.64% of the ONS value per each
additional service. For a system with one additional IMEI namespace, two additional location
namespaces, one additional input method namespace, and two additional sensor namespaces,
system_server would have an approximately 3.84% larger memory footprint than the stock
process. Note that an unused namespace still consumes additional memory, but since it does not
add to the policy file, it will not contribute to file I/O degradation. This is another area target for

improvement in the future.

5.7 Future Directions

In our present work, we have gained a tremendous insight into the trade-off between isolation
design alternatives, system complexity, usability, convenience and effectiveness. We plan to
further quantify these relationships so that we can make informed choices when addressing the
high-level requirements typically stated by end-users. Ultimately, we plan to formalize the
PINPOINT methodology, so that security designers can easily understand the trade space of

PINPOINT designs vs. general-purpose approaches.

Through our case study of implementing a services hypovisor, we've acquired a sense for the
difficulty of implementing a representative PINPOINT hypovisor and its companion virtual
resources within the Android Framework. Encouraged by our experiences, we plan to consider the

potential benefits of PINPOINTing other resources, including those outside the purview of Service

134

Manager. Following from this, we envision implementing a container abstraction, whereby
multiple, heterogeneous PINPOINTSs, Linux Namespaces, and other forms of access control and
virtualization can be easily combined by the end-user to form easily-understood security and

» o«

privacy macros such as “incognito,” “banking,” etc.

We recognize the inflexibility of having to define PINPOINTed resources at system build time. As
such, we see opportunities to investigate techniques for establishing new PINPOINTs while the
system is running. Also, we would like to evolve our current rudimentary means of policy
configuration into a more powerful and intuitive means for end-users to configure, combine and

use PINPOINTed resources, possibly through an advanced launcher interface.

Additional project details, status, and instructions for requesting access to our prototype code are

available athttps://goo.gl/2pJelp.

135

Chapter 6

Related work

This chapter is organized as follows: Section 6.1 discusses previous work on security analysis
techniques and specific types security and privacy problems in Android, and compares these with
the contributions of Chapters 3 and 4. Section 6.2 compares the contributions of Chapter 5 with

prior work on resource protection, sensitive data protection, and privacy.

6.1 Security Analysis

Work on systematic security analysis was initially inspired by those who have reported on
confused deputies [89], [90], [91], [92], [93], [94], component hijacking [95], and capability leaks
[41], [96] in Android. However, these are different from the work presented here for two reasons.
First, their goal is to find and explain specific types of vulnerabilities rather than gaining an overall
understanding of how access control is implemented along paths between specific sets of
subjects and objects (Chapter 3), or within the modular resources themselves (Chapter 4). When
subject-object paths are checked, both effective as well as missing or ineffective access controls
are uncovered. These missing or ineffective controls may lead to one or more of the categories
studied in the previous work, but new categories are also uncovered because of the deliberate

choice to focus on subject-object combinations rather than a specific threat model.

136

Second, the contributions of Chapters 3 and 4 include unique case studies that result in findings
different than previous work. The case study on the multiuser framework was described by a
reviewer as the only known at the time of publication, and this still appears to be the case at the
time of this writing. In fact, a fundamental difference is that that all of the previous work focuses
on maliciousness among or by apps, while the multiuser work addresses potential maliciousness
among users. Several studies [97,98], [99], [100] have explored the use of motion sensors available
on smartphones to perform user activity recognition, while [22], [24], [23], [82], [25] have focused
on inferring user keyboard presses, icon taps and secure inputs using accelerometer and
gyroscope sensor. Nonetheless, these do not consider unauthorized use of these sensors by other
users of the device as done here. Finally, [101] and [102] present complete secure multi-user

architectures which may be able to solve some of the problems identified in Chapter 4.

Several works have contributed to finding security flaws and inconsistencies in Android. Kratos
[47] uses static analysis to find access control inconsistencies in System Services. The authors
define these as any condition where two entry points from the same image reach the same sink by
different paths, and the security checks along the two paths differ. As such, Kratos cannot find
missing access controls, or evaluate controls against special conditions such as user switching, as
Chapter 3’s methodology does. In addition, Kratos does not allow comparisons among different
images, as is the case with the differential feature-based analysis of Chapter 4. Finally, Kratos
depends on costly static analysis of the entire code path between entry point and resource, in
contrast to the feature-based approach which favors rapid analysis as well as creation of a

comprehensive feature database that can support a variety of research inquiries.

Identification and evaluation of custom system configurations, including the addition of receivers
and custom permissions by device vendors is the subject of [46]. The authors extract features

from system and app manifests and compare these to a baseline. Although similar in terms of the
feature-based approach of Chapter 4, the actual feature sets are quite different, as are the feature

extraction processes and portions of the system that are evaluated. Hence, the prior work and the

137

work presented herein are complementary.

Problems with pre-loaded apps are addressed in several works [44,41,45]. As is the case with the
custom configuration work just discussed, these evaluations focus on the apps and their

configurations rather than the system code itself.

Hanging attributes are unused references that can be co-opted by malicious apps. [43] describes
a means to identify these in custom system images. At a high level, this is essentially a special case
of the feature extraction introduced in Chapter 4. However, the goal of Chapter 4 is to generate an
overall characterization of access controls to support a variety of inquiries, while this work is
specialized in identifying only hanging attributes. Nevertheless, the two contributions are
complementary in that they each provide important assessments of security within the system

itself.

The Linux kernel has been the subject of security analysis for many years. In 2000, [48] introduced
an automated compiler-based method that finds system-specific rule violations in source code.
Certain features of compiler error output are examined and matched against a set of rules
designed to find security problems and other bugs. At a conceptual level, the features generated
by the compiler extensions have several similarities to the features described in Section 4.2.1. Each
are defined from domain knowledge through a feature engineering process. Each attempts to
capture salient information about the system in an efficient albeit lossy representation. Finally,
each is used to facilitate additional analyses necessary to make various conclusions about the
system. However, in addition to the obvious differences between the Linux kernel and Android
Framework, which make the feature sets entirely incompatible, the features of [48] are specific to
finding particular bugs rather than providing a more general characterization of access controls as
described in Chapter 4. In addition, the compiler-based approach requires source code, while the
extraction process described in Section 4.2.2 is useful for proprietary vendor devices for which

source code is not available.

138

Chou et al. and later Palix et al. used this compiler-based methodology to answer questions about
the nature of bugs in the Linux kernel [49,50]. They studied the location of bugs across different
subsections of the kernel, bug distribution properties, and bug clustering. At a high-level, this type
of analyses and characterization is similar to how the feature vectors are used in Section 4.2 to
study the nature of various Android System Services. They also performed differential analysis
among different kernel versions to learn how long bugs live in a particular kernel and how
different kernels (e.g., OpenBSD vs Linux) compare. Again, at a high level, this is similar to the
vendor comparison discussed in Section 4.3. Thus, the feature database described in Section 4.4

could be used to answer similar questions about the Android codebase in future work.

Zombie features are kernel features which cannot be enabled or disabled at all because of
inconsistencies between the kernel implementation and its representation in the configuration
tool. [51] extracts features from C preprocessor blocks in kernel source and compares them with a
corresponding model generated from the kernel configuration tool to identify inconsistencies and
find zombie features. [52] maps configuration options to related source code files, enabling
identification of sources affected by a change to configuration options. Both of these techniques
could be applied to Android’s Linux kernel, and the results would complement the various

Framework analyses described here.

6.2 Resource Protection

A number of previous efforts have addressed the problem of untrusted apps having access to
sensitive or private information. Some of these address specific types of data, such as location,
while others look for more general solutions. These works can be classified into broad categories

of inspection, permissions, and isolation.

Approaches using inspection, including IPC Inspection [76], Quire [92] and TaintDroid [103], have

provided more access control and tracking of call chains, IPC messages, and information flows,

139

respectively. Although these may identify or prevent privilege escalation and confused deputy
attacks among apps, they do not address an app’s direct access to resources it already has
adequate permissions for, as PINPOINT does. While TaintDroid can identify restricted information

flows, it has no provisions for preventing them.

AppFence [104] leverages TaintDroid monitoring to enable data substitution and blocking. For
information resources, such as location and IMEI, the resulting capability is similar to some of
PINPOINT’s basic namespaces. However, AppFence cannot control the semantics of functional
resources, such as we demonstrated with the input method namespace. Furthermore, AppFence’s
substitution and blocking capabilities affect information resources for the entire platform rather

than being selective for individual apps as is the case in the System Services case study.

Mr. Hide [105] added finer-grained permissions to apps by way of byte code rewriting, while APEX
[106] introduced context-sensitive run-time permissions. Compac [107] allows different
components within apps, such as in-app ads, to have different sets of permissions. The work of
Chapter 5 and otherisolation approaches are fundamentally different from these, as the previous
work strives to enhance inadequate access control mechanisms, while isolation approaches use
virtualization to place untrusted apps in containers where sensitive or vulnerable resources are

simply not present, or exist with redefined semantics.

Previous work in the area of isolation includes MOSES [108], a framework designed to isolate
applications and data for the purpose of protecting sensitive corporate data. While MOSES
represents an effective general solution to securing corporate data leaks on mixed-use
personal/business devices, it is not very suitable for protecting users’ privacy or securing specific
resources because of its security profile-centric architecture that forces explicit switching and

carries performance penalties.

Two significant isolation approaches that influenced the PINPOINT effort tremendously are

Cells[65] and AirBag [64]. Cells leverages Linux Namespaces to allow multiple Android user spaces

140

to run simultaneously on a single hardware platform. Each user space, or virtual phone (VP), is
isolated in a combination of separate Linux Namespaces for file system paths (mount namespace),
process identifiers (pid namespace), IPC identifiers (System V IPC namespace), network interface
names (network namespace), user names (userid namespace), and hardware devices (a new
Linux namespace introduced in the work). Cells introduces the concept of a foreground and
multiple background phones that are isolated from each other so that malicious or buggy apps in

one VP cannot affect others. Isolation in Cells is thus achieved at the virtual phone boundary.

AirBag also leverages Linux Namespaces, but achieves isolation at the native runtime boundary.
This is accomplished by instantiating a separate app runtime that has virtually no interaction with
the original native runtime. Each isolated runtime contains its own copies of key service processes
and daemons, such as vold, binder and servicemanager that are launched in separate
namespaces as compared with the normal runtime. Thus, an untrusted app “sees” an entirely
different set of services, binder objects, file paths, etc. through the lens of its decoupled runtime.
The untrusted app cannot communicate with apps in different runtimes, and the system resources
it can view and control are completely dictated by the isolated runtime. Condroid[109] improves
on AirBag’s design by restoring binder communications via virtual binders and increasing

efficiency by enabling many System Services to be shared among runtimes instead of duplicated.

While Cells, Airbag and Condroid provide excellent general-purpose isolation, their designs are
complex, burden the system, and somewhat intrusive from the user’s point of view. For example,
all three require special modifications to numerous shared hardware drivers, duplication of
system processes and resources not related to the security goals, and introduce significant
usability restrictions. Although they leverage lightweight Linux Namespace isolation, key benefits
of Namespaces (Table 5.2) are lost when the Android Framework is added on top since many
fundamental aspects of Android’s open design are broken by the kernel-level isolation. Fixing
these problems greatly complicates the designs. Thus, PINPOINT’s main difference from these

works is the deliberate choice not to provide a general-purpose solution, but rather one that

141

addresses specific security goals by directly isolating the specific Framework objects associated
with the security goals. For these specific cases, PINPOINT is simpler, less burdensome, and more

usable.

Finally, as location data is widely viewed as having serious privacy implications, there are
numerous works specific to improving location privacy. LP-Guardian [110], LISA [111], and Koi [112]
are examples of these. While each is effective for controlling or preventing the use of location data,
they are not generally applicable to other resources as PINPOINT is. As the case study on
PINPOINTing System Services demonstrates, if the point of virtualization is chosen wisely, the
resulting isolation capability is flexible enough to apply to classes of resources rather than only

specific ones as these works do.

142

Chapter7

Conclusion

Understanding a system’s design tenets and use cases, as well as its security architecture and
implementation details, are important prerequisites to proposing useful improvements and
making sound modifications. In the case of Android, its unique open architecture, emphasis on
usability, and scattered access control points make it very different from previously-seen systems.
In spite of its open source roots, gaining an understanding of Android security is difficult because
of the sheer complexity of the code base, as well as the fact that most Android devices in use run

customized, proprietary versions of the platform.

This dissertation introduces a simplified model of access control that can be used to
systematically analyze and understand access controls as they relate to different aspects of the
system. The systematic process was used in the first and only evaluation of Android’s multiuser
framework. This comprehensive evaluation uncovered a diversity of issues with the framework,
from simple access control omissions to pervasive problems calling into doubt the suitability of

the original architecture for supporting multiple users.

Although a labor-intensive manual investigation such as the one applied to the multiuser
framework may be fruitful, it is hardly suited to rapid assessment of the new Android versions that
appear every few months, or the plethora of custom, closed-source images that are constantly

surfacing. Thus, the next part of the dissertation contributes an access control feature extraction

143

technique which automates the characterization by way of static analysis libraries and database
techniques. Unlike other static analysis-based approaches, which typically slice the problem in
order to achieve great accuracy within a limited scope, the approach here trades off accuracy in
favor of a broad scope that can encompass entire subsystems of many images in a relatively short
time. The technique was applied in a case study of System Services from 19 real-world system
images. The resulting database of over 35,000 methods represents an interactive resource that
can be used to quickly identify and isolate problematic areas of a service or in vendor
customizations. The efficacy of the feature vector approach was demonstrated in a case study that
identified a number of real vulnerabilities and inconsistencies in actual images. It is hoped that
this database can be used by system designers as well as vendors to identify problems before new

images are released to users.

Finally, the insights gained enabled the development of a novel means to employ virtualization
and isolation to solve the problem of protecting sensitive resources and vulnerable services from
untrusted apps, while not diminishing Android’s open design and strong emphasis on usability
and performance. Known as PINPOINT, the hypovisor-based solution isolates only the minimum
necessary objects in order to achieve stated security goals. As a new system framework feature, it
allows problems not directly fixable by end-users, such as those mentioned above, to be
addressed in a flexible, lightweight way, without sacrificing usability or performance. The
prototype demonstrated the effectiveness of the solution with a case study on four System

Services.

144

Appendices

145

Appendix A

Android Security Statements

Table A.1 contains the results of a manual parsing of Android documentation to extract
security-related statements. These statements were one of several sources that formed the basis
for the access control analysis described in Section 4.2. The following documents were included

(index corresponds to entries in “source index” column of table):

1.1: Security overview [113]

1.2: System and kernel security [114]

1.3: Application security [115]

1.4: Security updates and resources [116]

1.5: Security enhancements in Android 5.0 [117]

1.6: Security enhancements in Android 4.4 [118]

1.7: Security enhancements in Android 4.3 [119]

1.8: Security enhancements in Android 4.2 [120]

.

1.9: Security enhancements in Android 1.5 through 4.1 [121]

146

uolle|eisu amn uoI11e|0S| Alowa 4l AJowsw s, g J9sn 1SNeyxa J0U S0P / JaSN aInsul
uolle|eIsu| amn V@ Xnun 4l S9)14 S,g 49SN uipeas WoJj i J9SN JUSAS.d
430039N|q ‘Sd9 ‘Auoyds|ey
uolle|eIsu amn %20] 9|1} 'L | 83 ‘s321nep NdD S8 49SN 1Sneyxe 10U S0P VY J3SN 2INsu3
SwISIuBYd3W Uon
uolle|eisu amn S|eusIs ‘s19x20s ‘pj €L | -eaiunwiwod axl-xINN Jeuonipely 0y Aldde suoissiwiad xnui
uolie|eIsu| amn sdnosdd 4l $92JN0S3I NdD S,g 495N 1SNeYXD J0U S0P Y J3SN aINsuj
uone)esu amn ejep uoned|ddy 'L e1ep J3SN 1991014
uolie|eisu uolssiwiad SENTRUENT 'L suolissiuiad pauljap-uonednddy
SEE
uole|jeisul uolssiwiad |-odwod uonednddy o }Inejop Aq esTeI=110dxe
109/ 1X21U02 A1
-qo JO uoneasd | -nd3s ‘qld/ain $9s5s920.d ‘Sa)14 4l JUSWUOJIAUD 10JIUOD $S920E Alojepue|y
aimn SIdV
plINg ‘uoissiwiad | payosjold ‘S9DINIDS €L | Jasn woljsuoissiwiad 3sanbal jou op suonedydde SO 910D
Xapul
juswudissy | juawadiojul 129[qO | @2unos 79ds / aunjesa4

SJUusWol0lS \Q.:Dumm plroipuy 1y 9]qo|

147

uolssiuad
159)luew uolssiwJiad Ayjeuonouny |dy el suolissiuiad y3m pe1oa3oid S|dy SAIISUSS
uolje|eisu ald/ain Alowaw 1 SS20.d 4l xogpues uopnedidde |9ns1-jauley

unow
pulg ‘soded (98e1015
uole|eIsu| | -SaWweu ‘gin 93el01s €L | “89) soj04 Jo uonesedas Ag paydsiold S92IN0SSI SAIIISUSS
uone)|esu amn Solla 4l]19pow suolssiwiad paseq-1asn
uolje|jeisu amn wis €L | sdde Aued-piiyl 01 91gejieAe 10U SI SS20. PUed N|S |9AS]-MOT
(IS “89) A1)eUOIIDUNY BAIIISUDS
uone)|esu| amn S9INIDS €L | 01ss220e puk sanljigeded 1211saJ 01 S|dY JO %Je] |BuOiIuUSIU|
uolle|eIsu amn Ajowsw 79 $$9001d 4l J94loue sUO0 WO} S92IN0SI J9sN 918)0S|
uolle|eIsu| amn Ajowaw 9 $$800.1d 4l UOI1B|0SI $S920.d
uolje|eisu an Alowaw 1 SS920.d 'L xogpues uonedlddy
uolle|eisu amn Alowaw 13 $$920.d 'L uolje|os! uonedljdde apinoid
uolle|eIsu amn wapow el SpuBWWOD |V Wapouwl $sa20e jouued suoiedljddy
Xapul

juswudissy | juawadiojul 129[qO | @2unos 79ds / aunjesa4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

148

uolssiuad
159)Iuew uolssiwiad |eroueul el |dY 2A11ISUDS-1S0D B S| 3ul)|ig ddy-u|
uolissiuiad suolssiwad payiruspl Alues)d yim
159}luBW uolssiuiad e1ep €L | pa1eald usaq aAey elep Jasn Yim siapinold Juaiuod WaisAs
uolssiuad
1S9}lueW uolssiuiad BJIaWED el |dY pa103104d B S| RIBWED
uolssiuad SjusU asn 03 suoneddde Jsyio
1S9)luew uolssiwiad | -odwod uonednddy €L | Joj suoissiwiad umo J1syy sulep/aie)dep Aew suopiedlddy
uolissiuiad SEE papasu
1S9)luew uoissiwiad | -odwod uonednddy €1 | ade suoissiwiad yolym ssiydads Jsdojensp uonednddy
uolssiwiad
1S9jlueW uolssiuiad Ayjeuonouny |4y el S|4V pa109104d 2JE S|dY UOIIEUWIOUl |BUOSIDd
uolssiwiad
1S9jlueW uolssiuiad Ayjeuonouny |4y el S|dV pa3103104d aJe S|dy 9AI1ISUSS-1S0D)
Xapul
juswudissy | juawadiojul 129[qO | @2unos 79ds / aunjesa4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

149

uolssiwiad S9DIAIDS W]
159)Iuew uolssiwiad S9INIDS €L | -sAs Jo a3uel payiwi) e ssadde Ajuo ued uonedidde qnejap Ag
uolssiuad
159)luew uolssiwiad suoyd el |dV 9A1}ISUSS-1S0D e S| Auoydala |
uolssiuad
159)luew uolssiwiad suoyd el |dV pa1093odd e sisuonouny Auoydsia
uolssiuad
1S9jlueW uolssiwiad U el |dV 9AIISUSS-1S0D B SI $S9228 DN
uolssiuad
1S9jlueW uolssiwiad YJomiau el |dV ©AI1ISUSS-1SOD B S| B1ep/5I0MISN
uolssiwiad
1S9jlueW uolssiwJad elepeaw el B1EPRIDW 9DIASP O] SS9I0B SID1IISDY
uolssiwiad
1S9jlueW uolssiwiad UOoI1ed0] el |dY pa10930id B SI (S4D) PIEP UOIEI0T
xapul
juswudissy | juawadiojul 129[qO | @2unos 79ds / aunjesa4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

150

Jdljouels Ayigeded 23essaw Dd| 'L Jd| 24n29S
uonejjesul (Sd9 21w ‘e
‘uojssiwiad amn -wed “39) $921Aap INd Ul BIBP DAI}ISUSS JO 95N SUISanbal suon
1S9jluew ‘UOISSIULIRG S921nep Indul ¢'1 | -eondde Aued-paiyy 01 uoissiwiad 1211dxe Jued 1snul Jasn
93eJ01S |RUIDIXS ‘BIep
uolssiuad uols | uonedndde ‘Sjusu suonedjdde Jayio wouy erep sy 309304d 03 SY294D
1s9jiuew | -siwdad - ‘gn | -odwod uonedlddy €'l | uoissiuiad asn ued eyep Jasn aienuwndde jeyy suonedddy
uolssiuad
1S9jlueW amn YJomau el |dY P212910Jd B S| SUO[3D3UU0D B1ep/sIOMIBN
uolssiuad
1S9jlueW amn M/ Y30033N|q ol |dV pa129104d B S| suoi3duny y300319n|g
uolssiwiad
1S9jlueW uolssiuiad Sws el |dV ©AI1ISUSS-1S0D B S| SININ/SINS
uolssiwiad
1S9jlueW uolssiuiad Sws el |dY pa129104d B S| suoiouny SWIN/SINS
Xapul
juswudissy | juawadiojul 129[qO | @2unos 79ds / aunjesa4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

151

910847 Ll SAIYd™MIN ON™ L3S ¥d Sye sad mau oN

91084z Ll d0¥a 13S9dvD ™ dd Sye suipunog Ayjiqeded

paseq-iasn uolle|eisul 8l (sddy Ajusp) uonesyian uonedddy

paseq-1asn Jasn ELEl 4l plomssed Jasn alinbal ued sse2e 921N (

S22IAIDS WNIW

-21d $9sN 1BY) BP0D WOYS 01 SINS puss 01 sxdwasne uonedd

paseq-1asn Jasn Swis €1 | -de ji papiroid sI 22104D MO)1B/420]q pUB UOIIEDII0U J3SN

$92IN0SaJ WAISAS ‘S|dy 3unsanbai sjuonedydde suols

paseq-1asn Jasn | parojoid ‘SadIAISS €L | -siwuad 1noge a8essal UMOYS 3Je SI9SN ‘Uofie||eisul 03 Jold

S|dVY 2AIISUDS-1S02 JO asn dupsanbal suon

paseq-1asn Jasn Ayjeuonduny |dy €L | -eondde Aued-paiyy 03 uoissiwiad 321dxe Juei3d snw Jasn

pPaseq-1asn uoissiwiad | suoissiwiad 1sajiuew 'L suolissiuiad pajuesd-1asn

(141m ‘o1p

paseq-1asn }o/uo 2DINSP 2Jempley €1 | -8l ‘'Sd9 “33) A)|eqoi3 Aljeuonouny SWOS Jo UINy Uued Sissn

paseq-1asn JredAay 112Ys ‘gpe Ll uonednuayine gay
Xapul

jJuswuldissy | juswadiojul 123[qo | @2unos Jads / ainjea4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

152

4l 9p0d pa31aidiaiul Se a1ndas se Isn(sIapod aAlleN

4l A31uN2as 9240juUs 0} suolledijdde uo UoDISSI ON

Tl xogpues uonedijdde uiyym uni suoniedidde |1y

'l xogpues uonedndde uiyym sunt swnpunt uonedddy

XOgpues

z'L | uoneondde uiyim uni syusuodwod ylomawely uoedddy

Al xogpues uonedidde uiyym uni sauielql waisAs supnesado

4l Wia1SAs uesado sy 03 sS920E payiwl] aAey suoedlddy

Tl JOYI0URe U0 Yiim Joeiaiul Jouued uoednjdde ‘ynejap Ag

4l $92INn0saJ uoledljdde s931e|0S! pue SaijiIusp|

Tl |2UJ9y JO Sped a1ndasul SAOWSY

'L 3ujugis uoneonddy

L'l $92JN0SaJ WISAS 1091014

91821413492 ulewop 8L duiuuid s1ed11e)
Xapul

juswudissy | juawadiojul 129[qO | @2unos 79ds / aunjesa4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

153

uoneddde Jayio Aue Jo |auisy ‘SO ulkjipow

Z'L | wolj suossiwiad 1004 yum uoiedidde ue jusaaid 30U S90(

SuoISSIwIad 300U Y3im unJ

Z'L | suonedndde 2102 J0 395gNS JjeWS pue |auiay AJuo ‘Y nejap Ag

Suleyd Wed pue

z'L | sAkay a1eand Joj 93eJ03S [e[IUBPRID WISAS 0 SS30D SOPINCI

4l suoneosldde Ag asn 40} S|y 21ydeidoidAud sapirold

dde Jayoue Aq

Z'L | paJoyje o peas agiouued dde suo Ag paiessd sa)i) ‘ynejep Ag

4l suonedldde Aued-paiyy ou Yiim 300G spoul 9jes

4l Ajuo-peas s uoniued waisAS

]2UJY XNuIT 9y3 asiwo.d

Z'L | -wod 03 S| xogpues uoiedljdde ayj JO N0 yealq 03 Aem AjuQ

uolesljdde ps3dnuiod ay3 JO XS3U0d a3 Ul Ajuo

Z'L | uonndaxa 9pod Asesjigle moje s1ole uondniiod Alowsiy
Xapul

jJudwugissy | judwaddiojul 123[qO | @2unos J9ds / ainjea4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

154

4l S$2IN1E3} UOIIRIISIUILUPE 3DIASP SOPINOI
so)nu Ayixa)d
Z'L | -wod piomssed pue piomssed 39S UBD JOJRAISIUILIPE 9DIAD(
4l plomssed 321A3p UO SYoe1e Aleuoidip 1sulede $309101d
pJomssed
Z'L | 921A3p Jo 3uissand piomssed d13ewWISAS Jsulede 1091044
9SCYHS'AISST pue Dgd Yiim
z'L | 821S3vy sadAnwp 3uisn uondAious weisAsa)ly 11N} SapIACI
Aoy uondAious 109}
z'L | -o0id 03 plomssed 921Aap ay3 sasn uondAidus waisAss)l N4
4l a.npadold yo0jun jo 1ed Se elep Jasn sasels Jopeooog
4l gsn pue j0J3u02 [eaisAyd yim SO mau jjeasul ued
4l 19peo300q 320jun 031 Ajljige syl 9AeY SIasn
elep
z'L | uoneondde e pue suonedidde |je 03 Sse22€ [N} Sey J00Y
Xapul
jJudwugissy | judwaddiojul 123[qO | @2unos J9ds / ainjea4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

155

uolissiwiad noge

€L | pawJojul g 03 SI J9SN MOY dUlSP SINGUIIR UOISSIWISd

€L | 19n9) 91g1ssod 159MO] a3 18 pawiopad e $%23YD Uo|ISSIWISd

uon

-edijdde ayy Ag pase)dap Jou sainies; payosjold asn 03 ydwsy

€'l | -6 Jeyy suonedndde 03 yoeq umoiyy ale suondadxe A1indas

el suopedndde pajeisul o} suoissiuad mala Aew sIasn

uoneosidde

€L | 01 parueld suoissiuiad JO PaJIIoU JOU S| IaSN ‘Pa|eISul 9dUQ

el Jasn wodj suolssiwlad 3ssnbai jou op suoleddde W30

ol pajjeisul s se duo) se uonedidde 03 Ajdde suoissiwiad

SuoIs

€L | -siwlad paysanbai s,uoieddde ue jo e saiuap Jo syueld Jasn

ol Spasu 11 saiijigeded ay3 paulap uoned)ddy

ol SO @Y1 y3noJya ajge|ieAe AJuo e $a04n0sal pa3dsiold
Xapul

jJudwugissy | judwaddiojul 123[qO | @2unos J9ds / ainjea4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

156

uoneosijdde

€L | yum pa3eidosse si pin ydiym sauyap o3edliued uonediddy

RIS

€1 | -ul 93exoed ayy Ag paidalal aq yim suonedidde pausisun

el Jadojanap Ag paugis agisnu uonedidde Aiaag

"0jUl UOIIBDIJIIUSPI YJoMIaU/Liempley Jaquinu suoyd

€L | ‘Auoisiy ‘s30] 03 ss920e 2AeY J0U Op suonedldde qnejop Ag

swisiueyoaw

€L | I-XINN Jeuciipes; Aue 3uisn 91e21UNWWOD URD S9559001d

el suoneddde W30 Ag pasn aq Aew sanljigeded swos

suon

¢'1 | -eondde Aued-paiyy 01 3)gejieae 1ou aJe sanljigeded awos

uols

€L | -SiwJad pjoy 03 pamo)|e st oym paulap SaINgl3ie UoissiuIsd
Xapul

jJudwugissy | judwaddiojul 123[qO | @2unos J9ds / ainjea4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

157

Gl AydesdoydAin

Sl V10 eIA M3IAGaM S3epdn

gl apouwl 359n3 ‘9)1y04d pa1duIsal Uasn-INy

QL S19)3SNJ3 %20)eWS

Gl XNUIT3S Y3IM padiojulal xogpues

Gl Syoene 9DIA9P-HO 1sulede paydsiold piomssed ad1ns(

gl Syoe)e 92404-93n4q Jsulede pajoajold piomssed ad1A9(

Gl 1nejap Ag pajgeus si uondAious osip N4

el N¥QJ sepInold

el uoledlliaA uoedndde sjgeus 03 9500 Aew Jasn

Aoy awes ay1 yum paugdis suonedijdde Jayio o3

€L | 9)geieae Ajuo ale eyl suoissiwlad asepdap Aew suonednddy

el paugdis-j1as ag Aew suopedddy

Jadojansp Aq paissnb

€L | -a4 J1 spIn auseys Aew se1e01411490 Sulydlewl yym suonediddy
Xapul

jJudwugissy | judwaddiojul 123[qO | @2unos J9ds / ainjea4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

158

gL d0¥N0S™ A4I11YH04
gL MOTTI0A0N™0 S3duds Jul
8l Suluspiey pjeisul
8l NdA Uo-shemy
8l SINS Wniwald
L'l JaxinAdoiug panosdwi
Ll (0J124) uoiay0id uoned0)as Ajuo-pesy
Ll wa1sAs/ ul pinsou
Ll Salleulq p1d1as/pinies oN
9L 3uiuuid a1ed11149D
9l s3ujuiem pappe 23821114
9l yoddns vsao3
91 NdA Jasn-1ad
QL d0UN0S™ A411Y¥04d
Gl (471SY sorosdwi) poddns 314
Xapul
jJuawugissy | juawsadiojul 323[qO | 92unos >3ds / ainjeaq

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

159

el

pajjeisulun si uoledljdde usym panowal aJe SUOISSIWID

6L

pajgeus 10TI3sa1” 11dy

6l

pa]geus 10TI3se1” 3saup

o'l

(0J124) uoda304d UOIBIO]RI AJUO-peaY

6L

(471SV sanosdwi) poddns 314

6L

d1Sv

6l

Ippe utu deuw

6l

XN 2Jemple

6L

LaT1aInoes-qeWIOIN-

6l

50]|ed

o'l

SUOISUaIXd J0)|eW|p

6L

dot~eJeS

6L

Ioqo930xd-3oeasSI-

jJuswugissy

jusawiad40juy

Palqo

Xapul

924n0S

J9ds / aanjed4

(PaNUIIUOD) SIUBWSIDIS A11INJ3S ploJpuy

160

Appendix B

Android Image Extraction Procedures

This appendix describes the procedures used in this research for extracting JARs and other system
files from Android image files. In general, it was found that every image is different, especially
among different commercial vendors that may use different formats or protection mechanisms.
Also, the tools used are u Thus, development of a fully-automated process is unlikely, unless the
goal is to process a large number of very similar images. However, it was also apparent that many
of the differences disappear once the raw image is unpacked and mounted. The final processing
then becomes a matter of using the right tool depending on what type of files are present (OAT,
ODEX, DEX, JAR, etc.), which is almost entirely dependent on the version of Android (i.e., KitKat,

Lollipop, etc.).

B.1 AOSP, Android KitKat version 4.4.4

Extract the contents of the downloaded tarfile (i.e., tar xz). Convert system.img using
simg2img, mount converted image to system folder, then system/framework contains the

framework JARs and ODEX files. Use baksmali, smali, and dex2jar to convert them to JARs.

simg2img system.img u-system.img

mkdir system

161

sudo mount -o loop system.img system/

cd system

baksmali -d framework/ -x framework/services.jar
smali ./out

dex2jar out.dex

mv out-dex2jar.jar new-services.jar

B.2 AOSP, Android Lollipop version 5.x

Extract the contents of the downloaded tarfile (i.e., tar xz). Convert system.img using
simg2img, mount converted image to system folder, then system/framework/arm contains
boot.oat and framework ODEX files. Use dextra to extract DEX files from boot . oat and and
framework ODEX files, and dex2jar to convert framework ODEX files to JARs. NOTE: baksmali
probably will not work on ODEX files prior to version 56, which roughly corresponds to

Marshmallow [122]. Use dextra as below or alternate method in Windows.

simg2img system.img u-system.img

mkdir system

sudo mount -o loop system.img system/

cd system

dextra -dextract framework/arm/boot.oat

dextra -dextract framework/arm/services.odex

dex2jar system@framework@framework.jar@classes.dex

dex2jar system@framework@services.jar@classes.dex

mv system@framework@framework. jar@classes-dex2jar.jar framework. jar

mv system@framework@services.jar@classes-dex2jar.jar services.jar

Alternate method of deodex: Use JoelDroid Lollipop Batch Deodexer [123] on system folder.

162

B.3 AOSP, Android Marshmallow version 6.x

Extract the contents of the downloaded tarfile (i.e., tar xz). Convert system.img using
simg2img, mount converted image to system folder, then system/framework/arm contains
boot.oat and system/framework/oat/arm contains framework ODEX files. Use dextra to
extract DEX files from boot . oat and framework ODEX files, and dex2jar to convert DEX files to

JARs.

simg2img system.img u-system.img

mkdir system

sudo mount -o loop system.img system/

cd system

dextra -dextract framework/arm/boot.oat

dextra -dextract framework/oat/arm/services.odex

dex2jar system@framework@framework.jar@classes.dex

dex2jar system@framework@services.jar@classes.dex

mv system@framework@framework.jar@classes-dex2jar. jar framework.jar

mv system@framework@services. jar@classes-dex2jar.jar services.jar

B.4 CyanogenMod 11-20150901, Android KitKat version 4.4.4

Unzip the downloaded file. system/framework contains the framework JARs in DEX format. Use

baksmali, smali, and dex2jar to convert them to standard JARs.

baksmali -d framework/ -x framework/services.jar
smali ./out
dex2jar out.dex

mv out-dex2jar.jar services.jar

163

B.5 CyanogenMod 12.1-20151121, Android Lollipop version 5.1.1

Unzip the downloaded file. Convert system.new.dat to system. img using sdat2img. Mount
image to system folder, then system/framework contains the framework JARs. Use baksmali,

smali, and dex2jar to convert them to JARs.

sdat2img system.transfer.list system.new.dat system.img
mkdir m-system

sudo mount -o loop system.img m-system/

cd m-system

baksmali -d framework/ -x framework/services.jar

smali ./out

dex2jar out.dex

mv out-dex2jar.jar new-services.jar

B.6 Xiaomi MIUI, Android KitKat version 4.4.4

Unzip the download, system/framework contains the framework JARs. Use baksmali, smali,

dex2jar to convert them to JARs.

baksmali -d framework/ -x framework/services.jar
smali ./out
dex2jar out.dex

mv out-dex2jar.jar services.jar

164

B.7 FireOS 32.4.6.5, Android KitKat version 4.4.4

Extracting the JARs from this image is problematic and not completely working. This version of
FireOS contains ODEX files coded as version 39, which is different than other Kitkat images and
not supported by the Smali tools. Hexedit was used to rewrite the version field to 36, which
enabled baksmali to run, but it produced many errors. Inspection of the resulting JARs revealed
that they are incomplete and have many classed replaced with //INTERNAL ERROR. Otherwise,

the process is the same as other KitKat images.

Renamethe .binfileto .zip and unzip. system/framework contains the framework JARs in DEX
format. Use a hexeditor to change the version fields to 36. Use baksmali, smali, and dex2jar to

convert them to standard JARs.

B.8 FireOS 37.5.2.2, Android Lollipop version 5.0.2

Rename the .binfileto .zip and unzip. Convert system.new.dat to system. img using
sdat2img. Mountimage to system folder, then system/framework/arm contains boot . oat and
framework ODEX files. Use dextra to extract DEX files from boot . oat and and framework ODEX
files. dex2jar to convert framework ODEX files to JARs. NOTE: baksmali probably will not work
on ODEX files prior to version 56, which roughly corresponds to Android Marshmallow version 6.x

[122]. Use dextra as shown below or alternate method in Windows.

sdat2img system.transfer.list system.new.dat system.img
mkdir m-system

sudo mount -o loop system.img m-system/

cd m-system

dextra -dextract framework/arm/boot.oat

dextra -dextract framework/arm/services.odex

165

dex2jar system@framework@framework.jar@classes.dex
dex2jar system@framework@services. jar@classes.dex
mv system@framework@framework. jar@classes-dex2jar.jar framework.jar

mv system@framework@services.jar@classes-dex2jar.jar services.jar

Alternate method of deodex: Use JoelDroid Lollipop Batch Deodexer [123] on system folder.

B.9 LG, Android KitKat version 4.4.2

Use LG Firmware Extract [lg_extract] on downloaded file to extract KDZ, DZ, and merge
system-bin into system. img. Mount system. img to system folder, then system/framework
contains the framework JARs and ODEX files. Use baksmali, smali, dex2jar to convert them to

JARSs.

mkdir system

sudo mount -o loop system.img system/

cd system

baksmali -d framework/ -x framework/services.jar
smali ./out

dex2jar out.dex

mv out-dex2jar.jar new-services.jar

B.10 LG, Android Lollipop version 5.x

Use LG Firmware Extract [lg_extract] on downloaded file to extract KDZ, DZ, and merge
system-bin into system. img. Mount system. img to system folder, then
system/framework/armcontains boot.oat and framework ODEX files. Use dextra to extract

DEX files from boot . oat and and framework ODEX files, and dex2jar to convert framework ODEX

166

files to JARs. NOTE: baksmali probably will not work on ODEX files prior to version 56, which
roughly corresponds to Android Marshmallow version 6.x [122]. Use dextra as below or alternate

method in Windows.

mkdir system

sudo mount -o loop system.img system/

cd system

dextra -dextract framework/arm/boot.oat

dextra -dextract framework/arm/services.odex

dex2jar system@framework@framework.jar@classes.dex

dex2jar system@framework@services.jar@classes.dex

mv system@framework@framework.jar@classes-dex2jar.jar framework. jar

mv system@framework@services.jar@classes-dex2jar.jar services.jar

Alternate method of deodex: Use JoelDroid Lollipop Batch Deodexer [123] on system folder.

B.11 HTC RUU, Android Jellybean version 4.2 .x

Get rom.zip from RUU exe file by either 1) running RUU in Windows, finding temporary location of
extracted rom.zip and copy it; or 2) use unruu [124] in Linux to extract rom.zip. Use ruuveal
[125] to decrypt rom. zip, then use standard methods to extract system. img, convert (if
necessary), mount. Finally, use the standard baksmali-smali-dex2jar toolchain to produce

JARSs.

B.12 HTC RUU, Android KitKat and later versions

Unfortunately, KitKat and later ROMs from HTC use strong encryption and known methods, such

as ruuveal, do not work for decrypting the ROM archive.

167

Appendix C

Permission Configuration Extraction

This appendix contains source code of the scripts written to capture the permissions and
associated protection levels from unpacked Android images. xtract_perms. py, shown in Listing
C.,is run from the root folder of an unpacked image. It uses apktool to decode each APK found
in the image and store its manifest. Once all manifest files are found, xtract_perms_config.py
is called to search each manifest for permission names and their protection level. This combined

information is written to a text file which is read by FeatureExtraction.

Listing C.1: xtract_perms.py

#!/usr/bin/python

import os
import subprocess

decode_dir = "./apk_decode"
exclude = set (["WORKING"])
top = "../"

try:

os.makedirs (decode_dir)
except OSError:
if not os.path.isdir(decode_dir):
raise

for subdir, dirs, files in os.walk(top, topdown=True):
dirs[:] = [d for d in dirs if d not in excludel
for file in files:
#print os.path.join(subdir, file)
filepath = subdir + os.sep + file

if filepath.endswith(".apk"):
print ("Decoding: " + filepath)
out_dir = decode_dir + "/" + file
subprocess.call(["apktool", "4", "-s", "-o", out_dir, filepathl])

26
27
28
29
30

51
52
53
54
55

168

print "apktool finished; extracting permissions from manifest files..."

fd = open("allpermsV2.txt", "w")
subprocess.call(["xtract_perm_config.py", decode_dir], stdout=fd, shell=False)

Listing C.2: xtract_perm_config.py

#!/usr/bin/python

import sys

from xml.dom.minidom import parse
import xml.dom.minidom

import os

from os import path

import csv

argv[1] is name of directory containing the manifest files
inputDir = sys.argv[1]

images = []
class Image():
name = ""
files = ""
def __init__(self, name):
self.files = []
self .name = name

for path, subdirs, filenames in os.walk(inputDir):
if not (path == inputDir):
image = Image (path)
for filename in [f for f in filenames if (f.endswith(".xml")) 1]:
image.files.append(os.path. join(path, filename))
if not (path == inputDir):
images .append (image)

for image in images:
for filename in image.files:

try:

DOMTree = xml.dom.minidom.parse(filename)
except:

continue
manifest = DOMTree.documentElement

permissions_m = manifest.getElementsByTagName ("permission")

for permission_m in permissions_m:
nn

name =
level ="-1" #"No Level Specified"
if permission_m.hasAttribute ("android:name"):

name = permission_m.getAttribute("android:name")

if permission_m.hasAttribute ("android:protectionLevel"):

level = permission_m.getAttribute("android:protectionLevel")
if (level == "signature") or ("Signature" in level)
or ("system" in level) or ("System" in level):
level = "3"
if level == "dangerous":
level = "2"
if level == "normal":

level = "1"

56
57
58
59
60

#print " Permission Name

sys.
sys.
sys.
sys.

stdout.
.write(’:?)
stdout.
stdout .

stdout

write (name)

write(level)
write(?;?)

" + name + " Protection Level

" + level

169

170

Appendix D

Power Query Import Script

This appendix contains the PQFL script used to import a directory tree of feature vector CSVs into

Microsoft®Excel®. The root of the CSV filename is used to identify the System Service

corresponding to the feature vector content.

Listing D.1: PQFL script to import multiple feature vector CSV files into Microsoft” Excel” for analysis.

let

Source = Folder.Files("E:\CSVs"),

#"Removed Other Columns" = Table.SelectColumns (Source,{"Content", "Name", "Folder Path"
b,

#"Reordered Columns" = Table.ReorderColumns (#"Removed Other Columns",{"Content", "Folder
Path", "Name"}),

#"Filtered Rowsl" = Table.SelectRows (#"Reordered Columns", each true),

#"Split Column by Delimiter" = Table.SplitColumn (#"Filtered Rowsl","Folder Path",

Splitter.SplitTextByDelimiter ("\", QuoteStyle.Csv),{"Folder Path.1", "Folder Path.2"
"Folder Path.3", "Folder Path.4"}),

#"Removed Columns" = Table.RemoveColumns (#"Split Column by Delimiter",{"Folder Path.1",
"Folder Path.2", "Folder Path.4"}),

#"Split Column by Delimiterl" = Table.SplitColumn (#"Removed Columns","Name",Splitter.
SplitTextByDelimiter (".", QuoteStyle.Csv),{"Name.1", "Name.2"}),

#"Removed Columnsl" = Table.RemoveColumns (#"Split Column by Delimiter1l" ,{"Name.2"}),

#"Renamed Columns" = Table.RenameColumns (#"Removed Columnsl1" ,{{"Folder Path.3", "IMAGE"
}, {"Name.1", "SERVICE"}}),

#"Add and Import" = Table.AddColumn(Source, "Custom", each Table.PromoteHeaders(Csv.
Document ([Content],[Delimiter=",", Encoding=1252]1))),

#"Removed Columns2" = Table.RemoveColumns (#"Add and Import",{"Extension", "Date accessed
", "Date modified", "Date created"}),

#"Expanded Custom" = Table.ExpandTableColumn (#"Removed Columns2", "Custom", {"METHOD", "
is_AIDL", "getCallingUid(", "getCallingPid(", "clearCallingIdentity (", "
restoreCallingIdentity (", "checkPermission(", "checkCallingOrSelfPermission(", "
checkCallingPermission(", "enforcePermission(", "enforceCallingPermission(", "
enforceCallingOrSelfPermission(", "security_exception_raised", "permission_normal",
"permission_dangerous", "permission_sig", "permission_undef"}, {"Custom.METHOD", "
Custom.is_AIDL", "Custom.getCallingUid(", "Custom.getCallingPid (", "Custom.
clearCallingIdentity (", "Custom.restoreCallingldentity (", "Custom.checkPermission(",

"Custom.checkCallingOrSelfPermission(", "Custom.checkCallingPermission(", "Custom.
enforcePermission(", "Custom.enforceCallingPermission(", "Custom.
enforceCallingOrSelfPermission(", "Custom.security_exception_raised", "Custom.
permission_normal", "Custom.permission_dangerous", "Custom.permission_sig", "Custom.

22

23

24

25

26
27

28

29

30

31

32

33

34

17

permission_undef"}),

#"Removed Columns3" = Table.RemoveColumns (#"Expanded Custom",{"Attributes"}),

#"Split Column by Delimiter2" = Table.SplitColumn (#"Removed Columns3","Folder Path",
Splitter.SplitTextByDelimiter ("\", QuoteStyle.Csv),{"Folder Path.1", "Folder Path.2"

"Folder Path.3", "Folder Path.4"}),

#"Changed Type" = Table.TransformColumnTypes (#"Split Column by Delimiter2" ,{{"Folder
Path.1", type textl}, {"Folder Path.2", type text}, {"Folder Path.3", type text}, {"
Folder Path.4", type textl}}),

#"Removed Columns4" = Table.RemoveColumns (#"Changed Type",{"Folder Path.1", "Folder Path
2"},

#"Renamed Columnsl" = Table.RenameColumns (#"Removed Columns4" ,{{"Folder Path.3", "IMAGE"
D,

#"Removed Columns5" = Table.RemoveColumns (#"Renamed Columnsi",{"Folder Path.4"}),

#"Filtered Rows" = Table.SelectRows (#"Removed Columns5", each [Custom.is_AIDL] = "1"),

#"Split Column by Delimiter3" = Table.SplitColumn(#"Filtered Rows","Custom.METHOD",
Splitter.SplitTextByDelimiter (",", QuoteStyle.Csv) ,{"Custom.METHOD.1", "Custom.
METHOD.2", "Custom.METHOD.3"}),

#"Changed Typel" = Table.TransformColumnTypes (#"Split Column by Delimiter3",{{"Custom.
METHOD.1", type text}, {"Custom.METHOD.2", type text}, {"Custom.METHOD.3", type text
b,

#"Renamed Columns2" = Table.RenameColumns (#"Changed Typel" ,{{"Custom.METHOD.3", "METHOD"
1,

#"Split Column by Delimiter4" = Table.SplitColumn (#"Renamed Columns2","Name",Splitter.
SplitTextByDelimiter (".", QuoteStyle.Csv),{"Name.1", "Name.2"}),

#"Changed Type2" = Table.TransformColumnTypes (#"Split Column by Delimiter4" ,{{"Name.1",
type text}, {"Name.2", type text}}),

#"Removed Columns6" = Table.RemoveColumns (#"Changed Type2",{"Name.2"}),

#"Reordered Columnsl1" = Table.ReorderColumns (#"Removed Columns6",{"Content", "IMAGE", "
Name.1", "Custom.METHOD.1", "Custom.METHOD.2", "METHOD", "Custom.is_AIDL", "Custom.
getCallingUid (", "Custom.getCallingPid (", "Custom.clearCallingIdentity (", "Custom.
restoreCallingIdentity (", "Custom.checkPermission(", "Custom.
checkCallingOrSelfPermission(", "Custom.checkCallingPermission(", "Custom.
enforcePermission(", "Custom.enforceCallingPermission(”, "Custom.
enforceCallingOrSelfPermission(", "Custom.security_exception_raised", "Custom.
permission_normal", "Custom.permission_dangerous", "Custom.permission_sig", "Custom.
permission_undef"}),

#"Split Column by Delimiter5" = Table.SplitColumn (#"Reordered Columnsl1","Custom.METHOD.1
",Splitter.SplitTextByDelimiter (" ", QuoteStyle.Csv) ,{"Custom.METHOD.1.1", "Custom.
METHOD.1.2", "Custom.METHOD.1.3", "Custom.METHOD.1.4"}),

#"Changed Type3" = Table.TransformColumnTypes (#"Split Column by Delimiter5" ,{{"Custom.

METHOD .1.1", type text}, {"Custom.METHOD.1.2", type textl}, {"Custom.METHOD.1.3",
type text}, {"Custom.METHOD.1.4", type textl}}),

#"Removed Columns7" = Table.RemoveColumns (#"Changed Type3",{"Custom.METHOD.1.1"}),

#"Renamed Columns3" = Table.RenameColumns (#"Removed Columns7",{{"Custom.METHOD.1.2", "
METHOD TYPE"1}}),

#"Removed Columns8" = Table.RemoveColumns (#"Renamed Columns3",{"Custom.METHOD.1.3", "
Custom.METHOD.1.4"}),

#"Renamed Columns4" = Table.RenameColumns (#"Removed Columns8",{{"Custom.METHOD.2", "
CLASSPATH"}, {"Custom.is_AIDL", "isAIDL"}, {"Custom.getCallingUid(", "getCallingUid"
}, {"Custom.getCallingPid (", "getCallingPid"}, {"Custom.clearCallingldentity (", "
clearCallingIdentity"}, {"Custom.restoreCallingldentity (", "restoreCallingldentity"
}, {"Custom.checkPermission(", "checkPermission"}, {"Custom.
checkCallingOrSelfPermission(", "checkCallingOrSelfPermission"}, {"Custom.
checkCallingPermission(", "checkCallingPermission"}, {"Custom.enforcePermission(", "
enforcePermission"}, {"Custom.enforceCallingPermission(", "enforceCallingPermission"
}, {"Custom.enforceCallingOrSelfPermission(", "enforceCallingOrSelfPermission"}, {"
Custom.security_exception_raised", "securityException"}, {"Custom.permission_normal"
, "permissionNormal"}, {"Custom.permission_dangerous", "permissionDangerous"}, {"
Custom.permission_sig", "permissionSig"}, {"Custom.permission_undef", "
permissionUndef"}, {"Name.1", "SERVICE"}}),

#"Changed Type4" = Table.TransformColumnTypes (#"Renamed Columns4" ,{{"isAIDL", Int64.Type
}, {"getCallingUid", Int64.Type}, {"getCallingPid", Int64.Typel}, {"
clearCallingIdentity", Int64.Typel}, {"restoreCallingldentity", Int64.Typel}, {"
checkPermission", Int64.Type}, {"checkCallingOrSelfPermission", Int64.Type}, {"
checkCallingPermission", Int64.Type}, {"enforcePermission", Int64.Type}, {"
enforceCallingPermission", Int64.Type}, {"enforceCallingOrSelfPermission", Int64.
Type}, {"securityException", Int64.Type}, {"permissionNormal", Int64.Typel}, {"
permissionDangerous", Int64.Type}, {"permissionSig", Int64.Type}, {"permissionUndef"

35
36

in

, Int64.Typel}})

#"Changed Type4"

172

173

Appendix E

AQSP System Service Pivot Analysis

This appendix contains the results of a pivot analysis of System Service feature vectors from
various versions of official “stock” AOSP images. Blank columns indicate either that the service is
not present in that particular version of AOSP, or that FeatureExtraction was unable to process the

JAR/class for that image.

The Count of METHOD rows show the total number of AIDL methods in the service. Sum rows show
the total number of occurances of each feature among the AIDL methods. Sum of None reveals the

total number of AIDL methods that have no access control features.

174

" 'DONUIIUOD

Gl 0] el 6 6 0c¢ 3l SUON Jo wng
0 0 0 0 0 0 0 Jopunuolssiuiad jJo wng
6 6 44 L L v 9z disuoissiwlad jo wng
0 0 € 0 0 L L snoJaduequolssiuiad Jo wng
L 0 0 0 0 0 0 JeWJIONUOISSIWIad JOo wng
S S ol 14 14 Ll Gl Auspl8ul)jeDs101sal Jo WNg
g g oL 14 14 Ll Gl Auapiduljensea)d jo wng
6 6 44 L L v 9¢ p1d3ul)eD1as jo wnsg
6 6 €e L L Ge 9z pIN38uljjeD19s Jo wng
T4 6l 6¢ ol ol Ly 14 AJOH14W JO1UNnoy
931M9S 98 URNAYAIDY
L 9 9 9 9 S 14 SUON Jo wng
0 0 0 0 0 0 0 Jopunuolssiwiad Jo wng
L 9 S g g 4 0 disuoissiwiad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewoNuolssiwad Jo wng
1T /T T4 Gz Sz Iz Iz Auspi3uljjeDa10isal jo wing
1T It Sz Sz 14 1T 1z Auapidurjjedies)d jo wng
rd v €z €z €C 6l 6l pId3ul)eD1as jo wnsg
43 e 6¢ 6¢ 6¢ ¢ lc pIN8uljjeD198 Jo wWng
6¢ l€ Ge GE Ge o€ 14 JOHL3W jo3uno)
92IAI9SI98RURNIUNOIDY
ol ol ol ol o] 6 6 QUON JO Wns
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
0 0 0 0 0 0 0 disuolssiwiad Jo wng
0 0 0 0 0 0 0 snoJaduequoissiuiad Jo wng
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
0 0 0 0 0 0 0 Ayuap|3uljjeDaloisal Jo wns
0 0 0 0 0 0 0 Anuapiduljenses)d jo wng
L L L L L L L pid3ul)eDn1asd jo wns
0 0 0 0 0 0 0 pIN8ulj1eD198 Jo wWng
Ll Ll Ll Ll Ll ol ol AOHL3W 40 3UN0)
921195 198eURNAM]IGISS9IDY
0°9-dSOV L'L'S-dSOV T'0°S-dSOV P.o.wn_mo< 0°S-dSOQv V¥'v'¥-dSOv T'T-dSOV 92IAIDS

aSew|

'SobDWII 2UJJ9SDG SOV Ul 9IS WSISAS Y203 10) SIUNOD 81N3IDS :1'F 8]0

“Panuiluod

175

Japuigwas$adiniasiaseue iAoy

0¢ 6¢ 6¢ 6¢ 6c 8¢ 9¢ QUON JO Wng
0 0 0 0 0 0 0 Jopunuolssiwiad Jo wns
L L L L L L L disuoissiwad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
0 0 0 0 0 0 0 Apuspi8ul)jeDs101sal Jo WNg
0 0 0 0 0 0 0 Anuap|dunjenies)d jo wng
L L L L L L L pId3ul)eDn1asd jo wns
[4 [4 4 4 [4 4 [4 pIN8uljjeD19s Jo wng
€e [43 [43 [43 43 Le 8¢ AQOHL13W jouno)
Japuigsoiydesnsadiniasiadeue pANAIDY
0€ 6¢ 6¢ 6¢ 6¢ 8¢ 9¢ SUON Jo wng
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
L L L | L L L disuoissiwlad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wns
0 0 0 0 0 0 0 JewlonuolssiwIad Jo wng
0 0 0 0 0 0 0 Auapidul)ena103sal Jo WNg
0 0 0 0 0 0 0 Auapidulyjenses)d jo wng
L L L L L L L p1d8ul)|eD1as jo wns
[4 [4 14 4 [4 4 C pINSu1|eD198 Jo Wns
€e 43 [43 [43 [43 Le 8¢ AOH13W JOIUNoH
J9puigqasadiniasiadeue AUy
0¢ 6¢ 6¢ 6¢ 6c 8¢ 9¢ QUON JO Wng
0 0 0 0 0 0 0 Jopunuolssiuiad Jo wns
L L L L L L L disuolssiwad jo wng
0 0 0 0 0 0 0 snoJaduequoissiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
0 0 0 0 0 0 0 Ausp|8ul)jeDa101sal Jo WNg
0 0 0 0 0 0 0 Anuap|dunenies)d jo wng
L L L L L L L pid3ul)eDn1asd jo wns
[4 [4 4 4 [4 4 [4 pINduljjeD19s Jo wng
13 [43 [43 [43 43 Le 8¢ AQOHL13IW Jouno)
Japuignd)$adiniasiadeue N ALY
0°9-dSOV L'l'S-dSOV T°0°S-dSOV P.o.mm.n_mo< 0°'S-dSOVY V'¥'v-dSOv ¢'T'¥-dSOov 9JINIBS
adew

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

176

panuiuod

0

dOH1dWjounog

— O O OO0 O0O0OOo—

OO O OO OOOooOo

OO O OO OOOoOoOo

OO O OO OOOoOOoOo

OO OO OOOOooOo

OO OOOOOOooOo

OO O OO0 OOooOo

dInI9SI98RUR N WLIR)Y
SUON JO wns
Japunuolssiuiad Jo wns
disuolssiwiad Jo wng
snoJaduequolssiwiad jo wng
JewlonuolssiwIad Jo wng
Ausp|3ul)jeDs101sal Jo WNS
AuapidulenJes)d jo wng
pid3ul)eD1sd Jo wns
pin38ulj|en1es jo wng

JOHLI JoIuNnod

MO OO OO OOoOoN

— O O OO0 Oo0oOo

— O OO OO0 O0OoOo

— O OO OO0 O0OOoOo

— O O OO0 0OO0OoOo

— O O OO0 0OOoO0oOo

9DINIBSOJU|SSDI0Id$DD1INIS IS RURNANAIDY

— O O OO0 0OOo0oOo

SUON JO WNS
Japunuoissiuiad Jo wng
disuoissiwliad jo wng
snoJaduequolssiwiad Jo wng
JewIoNuoIssIwWIad Jo wng
Auap|3ul)jena103sal Jo WNS
Ayuap|3uenJead jo wng
pid3uljien3ad jo wns
piN3ul]|eD3as jo wns
AOH13IW JOIUNoy

™M o
MAN— OO OO — O

(@]
[\

N— O O OO —O

[43

[D
MmN — OO OO — O (K

[(@]
MmN — OO OO — O (K

FN—ocoooco—o0f

e0]
— O O OO — Oy

o~

e

N—ocooo—oYf

0
N

J9]10.43u0)UOISSIWIRd $dDINIRS IS RUR N AYIAIDY

SUON JO wns
Jopunuolssiuiad jJo wng
disuolssiwiad Jo wng
snoJaduequolssiwiad jo wns
Jewlonuolssiwad Jo wng
Auap|3ul)jeDs101sal Jo WNS
Auap|3uljedJtes)d Jo wng
pid3ul)en1sd Jo wns
pin3ul)en1ss jo wng
JOHL3IW JoIunod

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°'G-dSOV 0°'S-dSOV V'¥'¥-dSOV TT'v-dSOV
a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

177

" 'DINUIILOD
0 0 0 0 0 0 14 pIN3ul) D198 Jo WNg
0 0 0 0 0 €c G¢ AOH13W JOuNnoH

931M195398pimddy

Ll oL oL oL oL 6 0 SUON Jo wng
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
S 14 14 14 14 € 0 disuolssiwiad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
C 0 0 0 0 0 0 Ayuap|3uljjeDaloisal Jo wng
[4 0 0 0 0 0 0 Auspidulyjenses)d jo wng
S 14 14 14 14 € 0 pld8ul)|eD19s jo wns
8 9 9 9 9 € 0 pINSu1|eD198 Jo Wns
ol ol 9L 9l oL cl 0 QOHL3W jouno)
9InI9ssdoddy

4 L L L L 0 0 SUON JO WNS
0 0 0 0 0 0 0 Japunuolssiuiad Jo wng
4 14 4 4 14 0 0 disuolssiwliad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wns
L L L L L 0 0 JewIONUOISSIWIad Jo wng
L L L L L 0 0 Ayuap|3uljjeDal03sal Jo Wng
L L L L L 0 0 Auapidulyjenses)d jo wng
[4 L | L L 0 0 pld8ul)|eD1as jo wnsg
[4 L L L L 0 0 pIN3ul}|eD198 Jo Wns
9 S q S S 0 0 AOH13IW JOIUNoH
T$9d1nI9S 193 URNWLIR)Y

0 0 0 0 0 4 9 QUON JO wng
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
0 0 0 0 0 4 L disuoissiuiad jo wng
0 0 0 0 0 0 0 snoJaduequoissiuiad Jo wng
0 0 0 0 0 L L JewlonuolssiwIad Jo wng
0 0 0 0 0 L L Ayuap|3uijjeDaloisal Jo wns
0 0 0 0 0 L L Auap|duljenses)d jo wng
0 0 0 0 0 L 0 pid3ul)eDn1asd jo wns
0 0 0 0 0 L 0 pIN8ul1eD198 Jo Wng
0°9-dSOV L'L'G-dSOV T'0°S-dSOV L'0°§-dSOV 0°S-dSOV ¥'v'¥-dSOvV T'T'v-dSOV 9JIAISS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

178

panunuod

8
8l
cl

8
4!

4

4

cl

Naee!

M~

N~
O

pId3ul)|eD1as jo wns
pin38ul)eD1e8 jo wng
JOH13W J03uno)

MO OO OO OOOMmM

MO OO OO OOOMmMm

MO OO OO OOOMmM

MO OO OO OOOmM

MO OO OO OOOoMmMm

MO OO OOOOOomM

oNoNoololNololoNelNe

921AI9S0IpNY
SUON Jo wns
Japunuoissiuiad Jo wng
disuoissiwad jo wng
snoJaduequolssiwiad Jo wng
JewJoNuolssiwIad Jo wng
Auap|3ul)ena103sal Jo wWng
Auapiduljenses)d jo wng
pid3uljien3ad jo wns
pin3ul]|eD3as Jo wns
JOHLIW JO3UN0YH

OANNOOXNOM

[foN @]
NN

DoaNNOoOONOM

<t
N —

QoaNNoOoOoONO™M

<
N —

Jo2onNnooNOom

DoaNNOoOONOM

<t
N —

O OO OO0 OooOo

eceoNooNoNolNoloNelNe)

9JIAI9SSe|IYIeSSY

SUON JO WNS
Jopunuolssiwiad jJo wng
disuoissiwad jo wng
snoJaduequolssiuiad Jo wng
JewIoNuoIsSIuIad Jo wng
Auap|3ul)jena103sal Jo WNs
Aypuapidulyjensea)d jo wng
pid3ul]|eD3es jo wng
pIN3ul)|e23ad Jo wns
JOHL3IW JO3uno)y

OO OO OoOoOo

0

OO O OO oo

0

OO O OO OoOo

0

ol ololololole)

0

O OO OoOOooOo

0

™
(@]

O O OO oo

0

tT O o000 00K

1dwiad1ni98398pimddy
SUON JO WNS
Jopunuolssiuiad Jo wns
disuoissiwiad jo wng
snoJaduequolssiwiad jo wng
JewIoNUoIsSIuIad Jo wns
Ausp|8ul)jeDa101sal Jo WNg
Auap|duneniesd jo wng
pid3ui)|eD1sd Jo wing

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°G-dSOVY 0°S-dSOVY Vv'¥'v-dSOV ¢'T'¥-dSOvV

a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

179

" paNUNUOD
0 0 0 0 0 0 0 Apuapidulyjensea)d jo wng
1 L I L L 0 0 p1d3ul)eD1as jo wnsg
[4 [4 4 14 [4 0 0 pIN3uljjeD19s Jo wng

e ee 23 23 €t 0 0 AOH14IN JOIUNoy
921IAI9SI9puUIg$INIRSAIaIRg

0 0 0 0 0 LS 0§ SUON Jo wng
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
0 0 0 0 0 L L disuolssiuiad jo wns
0 0 0 0 0 0 0 snosaduequoissiwiad jo wng
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
0 0 0 0 0 L 0 Apuapi3ul)jena103sal Jo WNS
0 0 0 0 0 L 0 Anusp|8ulyjenses)d Jo wng
0 0 0 0 0 L L pId3uleDn1asd jo wns
0 0 0 0 0 4 14 pIN3dulj1eD19s Jo wng
0 0 0 0 0 125 [4S) QOHL3IW JOouno)
dd1n19shianeg

0 0 L [4 [4 L L QUON JO wng
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
0 0 0¢ 6l 6l Ll Ll disuoissiuiad jo wns
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
0 0 L 9 9] v Ayuapi3ul)jena103sal Jo Wng
0 0 L 9 9 S 14 Ayiauap|3ujenJead jo wng
0 0 L 0 0 L L PId3ul]1eD193 JOo Wng
0 0 9 S S 9 9 pin3uljien1ss jo wng
0 0 1 1 St [4¢ [44 AOHL13I jo3unod
931n19s 98U dNYDRY

0§ 6§ 08 0§ 0§ 59 99 QUON 4O Wng
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
€l Ll 8 8 8 L ¢ 3isuoissiwlad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wns
€ ¥ ¥ 14 14 S g JewJoNuolssiwIad Jo wng
4 4 C C 4 14 | Ayuap|3ul)jena103sal Jo WNS
4 4 4 4 4 4 L Anuap|duljedlesld Jo wng
0°9-dSOV L'L'G-dSOV T'0°S-dSOV L'0°§-dSOV 0°S-dSOV ¥'v'¥-dSOvV T'T'v-dSOV 92IAIDS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

180

panunuod

0

~O O O

~O O O o

~WOW O O O

~O o O o

~WOW O OO

O OO oo

loNoNeoNeNe)

Auspl8ul)jeDa101sal Jo WNS
Ayiusp(dunjenies)d jo wng
pid3ul)jen1sd Jo wng
pin3ulj|en1ss jo wng
dOH1dWjounog

Qoo ~O0— O I~

—

Moownwnowoo <

O oo o oA

—
—

O oo oo

—
—

OO O oA

—
—

O oo oo

—
—

QLo oOwo o —

—

2dInI9spIeoqdi))

SUON JO WNS
Japunuolssiuiad Jo wns
disuoissiwiad Jo wng
snoJaduequolssiwiad jo wng
JewIoNUOISSIWIad Jo wng
Auspl8ul)jeDa101sal Jo WNS
Auap|dunenies)d jo wng
pid3ul)en1sd Jo wng
pin38ulj|en1ss jo wng
JOHLIW Jounod

o ™M

[oNeNe)

19
19
IZA

O N

19

O O O

€9
€9
69

o ©
QooocoogBoan

O N
O O

o o ©
SPoococogow

(9} O
OO0 O oA

O o
O O

o

Ly

O O O

144
144

921MI9S198eURNYI003ON|]
SUON JO wns
Japunuolssiuiad jo wns
3iSuoissiwiad Jo wng
snoJaduequolssiwiad jo wnsg
JewlonuolssiwIad Jo wng
Auap|8ul)jeDa101sal Jo WNS
Anuap|3uljedJtes)d Jo wng
pid3ul)eD1sd Jo wns
pin3ulen1ss jo wng
JOH.LIW Jo 3uno)

oo — O

0

0¢

o O — O

0

o
™

oo — O

0

o
o

o O — O

0

O O O oo

0

O O O oo

0

INIaSSIRISAI9)IRg
SUON JO wns
Japunuoissiuiad Jo wng
disuoissiwiad Jo wng
snosaduequoissiwiad jo wng
JewoNuolssiwIad Jo wng
Anuap|dulyjedaloisal Jo wng

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°G-dSOVY 0°S-dSOVY Vv'¥'v-dSOV ¢'T'¥-dSOvV

a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

181

panunuod

[4

Mo O oo

MO OO oA

MO OO oA

MO OO oA

MO OO oA

MO OO oA

O O OO oo

JewlonuolssiwIad Jo wng
Ayuapi3ul)jena103sal Jo WNS
Auapidulyjenses)d jo wng
pid3ul)jen1sd Jo wing
pin3ul]|eD3a8 jo wns
JOH13W JouNno)

Noxow

< <
o v

O o
CLOOJ—xgoOeo

O O
O N

O o
CLOLO—xgoOeo

O O
O N

O o
CLO— O

O O
O N

Mmoo RoRRow

omnstRor~od

ee]
<

92IAI9SJ|I3WINSUO)

SUON Jo wns
Jopunuolssiwiad jJo wng
disuoissiwlad jo wng
snoJaduequolssiwiad jJo wng
JewJIONUOISSIWIad Jo wng
Auapi3ul)ena103sal Jo wns
Auapidulyjenses)d jo wng
pId3ul]|eD3es jo wng
pIN3u1)|eD1ad Jo wns
JOHL3IW JO3uno)y

N—ocooo—0O%

<
<~

ov

RN —ocococo—o

o
Nv—OOOOv—Oﬂ_

™
<

™ o
<I.(\lv—OOOO'—Oﬂ_

o
F

PN—ococooco—o

()]
N— O O OO — O 5

N
<

[©)] N~
AN — OO OO — Om

92IAIDSAUAIIIDUUO)

SUON JO WNS
Jopunuolssiuiad Jo wns
disuoissiwiad jo wng
snoJaduequolssiwiad jJo wng
JewIoNuoIssIuIad Jo wns
Auspl8ul)jeDai01sal Jo wWns
Auap|3uneniesd jo wng
pid3ul)jeD1sd Jo wng
pin3ulj|en1ss jo wng
JOHLIW Jounod

L
0
0
0

0

O O O —

0

O O O —

0

O O O —

0

O O O —

0

O O O o

0

O O O o

0

921AI9SUdWRSeURHBWI | UOWWO)

SUON JO WNS
Japunuolssiuiad jo wns
disuolissiwiad Jo wng
snoJaduequolssiwiad jo wng
JewJIoNuoIssIwIad Jo wns

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°'G-dSOV 0°'S-dSOV V'¥'¥-dSOV TT'v-dSOV
a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

182

ponuiuod

0

———— O

L0

OO OO OOoOo

OO OO OooOo

OO OO Oooo

O OO OO OoOo

OO OO OoOoOo

OO OO0 OoOo

snoJaduequolssiwiad jo wns
JewIoNUOISS|WIad Jo wng
Aynuap|3ul)|eDal03sal Jo Wng
Auap|3uneniesd jo wng
pid3ul)jen1sd Jo wng
pin3uljien1ss jo wng
JOHL13W J0Iuno)

MO OO OO OOOMmM

MO OO OO OOOMmM

MO OO OO OOOMmM

MO OO OO OOOMmM

MO OO OO OOOoMmMm

MO OO OOOOOomM

MO OO OO OOOMmM

921AI9S13pUIg$49]]10.3U0D)PIIINDQ
SUON JO wns
Japunuoissiuad Jo wng
diSuoissiwiad Jo wng
snoJsduequolssiwiad Jo wng
JewloNuolssiwIad Jo wng
Ayuapi3ul)jena103sal Jo WNS
Auspidulyjenses)d Jo wng
pid3ul]jeniad jo wng
pin3uljed1e8 jo wng
JOH13W o 3uno)

— OO <
QIFoNnom

<
NI

o ~Nnom

921A13S103233}9@AI3UuNn0)
SUON JO WNS
Japunuoissiuiad Jo wng
disuoissiwlad jo wng
snoJsduequolssiwiad Jo wng
JewJIoNuoIssiwIad Jo wng
Ayauap|3uljjeDalo3sal Jo wng
Ayiuap|3ujenJead jo wng
pid3ul)jen1sd Jo wing
pin3ul]|eD3as Jo wns
JOHL3W O 3unod

o O —

0

O O —

0

O O —

0

O O —

0

O O —

0

O O —

0

O O O

0

921A19SIUDUOD
SUON Jo wns
Japunuoissiuiad Jo wng
disuoissiwlad jo wng
snosaduequoissiuiad Jo wng

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°G-dSOVY 0°S-dSOVY Vv'¥'v-dSOV ¢'T'¥-dSOvV 9JIAISS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

183

ponuiuod

0

— O OO O0OOoOo

— O O O OO OoOo

— O O OO0 OoOo

— O O OO0 OoOo

— O O O OO oo

O OO OO OooOo

OO OO0 OoOo

o

disuoissiwliad jo wng
snoJagduequolssiwiad Jo wng
JewJIoNuoIsSIwWIad Jo wng
Ayuap|3uljjeDal03sal Jo Wng
Ayiuap|3ujenead jo wng
pid3uljien3ad jo wns
pin3ul]|eD3as jo wns
AOH13W JOIUNnoH

OO OO OOOOoOoOo

OO O OO OOOOoOo

OO OO OOOOOoOo

OO O OO OOOoOoOo

OO OO OOOOooOo

Jan1asqoeiegaseydedayde)$adiniasioluoa8elolsadinag

M~ ™
ﬂ_m'—OOOO'—O#

[44

MmM— O OO o —O

LN
<

SUON JO wns
Japunuolssiuiad jo wns
diSuoissiwiad Jo wng
snoJaduequolssiwiad jJo wns
JewlonuolssiwIad Jo wng
Auap|8ul)jeDa101sal Jo WNg
Aynuap|3uljedJtes)d Jo wng
pid3ul)eD1ed Jo wns
pin3ulen1ss jo wng
JOHLIW JOIuNnod

a4

SLL

9Ll

9Ll

A

(@]

14
%

LS
oLl

o <

o
LN

N~
<@ OO0 o

GS

~ N~
JoooocoFor~

514

92IN19S10}1UON28eI0)SIIIND(Q
SUON JOo wns
Japunuoissiuiad Jo wng
disuoissiwiad jo wng
snosaduequoissiwiad jo wng
JewloNuolssiwIad Jo wng
Auapi3ul)jena103sal Jo WNg
Anuspidulyjenses)d jo wng
pid3uljjeD3ad jo wns
pin3ul|eD1e8 jo wng

JOHL3I Jounod

LL
0
.v

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

9d1n19S198eURNAdI0d9d1NQ
SUON Jo wns
Japunuoissiuad Jo wng
disuolssiulad jo wng

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°G-dSOVY 0°S-dSOVY Vv'¥'v-dSOV ¢'T'¥-dSOvV

a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

184

paNuURuUOD
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
L L L L L 0 0 disuoissiwiad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiwiad jo wns
0 0 0 0 0 0 0 JewloNuolssiwIad JOo wng
oL oL ol 9l 9l 0 0 Auapi3ul)jena103sal Jo WNS
al al ol ql al 0 0 Ayipuap|3unenJesd jo wng
€ € € € € 0 0 pid3uleDniasd jo wns
¢ ¢ € € ¢ 0 0 pIN3ul)1eD198 Jo Wng
9l ol ol ol ol 0 0 JOH1dWW JO1UNnoH
adINIDSIapuUIgSadInIaSIadeuepAe)dsiq

0 0 0 0 0 0 C SUON JO WNS
0 0 0 0 0 0 0 Jopunuolssiuiad Jo wns
0 0 0 0 0 8 0 disuoissiwad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewJIONUOISSIWIad Jo wng
0 0 0 0 0 €l 9 Auap|3ul)jena101sal Jo WNS
0 0 0 0 0 €l 9 Ayiusp(dunenies)d jo wng
0 0 0 0 0 € L p1d3ul)eD1as jo wnsg
0 0 0 0 0 € 0 pIN38uljjeD198 Jo wWng
0 0 0 0 0 1 6 JOH.LIW Jouno)
InIas198eueAe)dSIg

LE 0¢ 0¢ 0t 0¢ 6¢ Xé SUON Jo wng
0 0 0 0 0 0 0 Jopunuolssiwiad Jo wng
L L L L L L L disuolssiwad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
0 0 0 0 0 0 0 Ausp|8ul)je)a101sal Jo WNS
0 0 0 0 0 0 0 Ayiuep(3unenies)d jo wng
0 0 0 0 0 0 0 pId3ul)eDn1asd jo wnsg
L L L L L L L pIN8uljjeD19s Jo wng
e €e €e €€ €e [43 6¢ AQOHL3IW jojuno)
9JIAI3SSIeISYSIA

I L I I L 0 0 SUON JO WNS
0 0 0 0 0 0 0 Japunuoissiuiad jo wng
0°9-dSOV L'l'G-dSOV T'0°S-dSOY L'0°S-dSOV 0°S-dSOV ¥'v'¥-dSOV T°T'¥-dSOV 92IAIDS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

185

" 'PaNUNUOD
0 0 0 0 0 0 0 SUON JO WNS
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
0 0 0 0 0 0 0 disuoissiwlad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
ol ol oL ol ol 0 0 Auap|3ul)jena103sal Jo wng
oL ol ol ol ol 0 0 Auapidulyjensea)d jo wng
0 0 0 0 0 0 0 pld3ul)|eD1as jo wnsg
0 0 0 0 0 0 0 pPIN3ueD198 Jo wng
ol oL oL oL oL 0 0 AOH13W jo3uno)

921N19SI9puIg$IdINIaSIDSRUR N WEDIQ
0 0 0 0 0 0 0 SUON JO WINg
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
0 0 0 0 0 L L disuoissiuiad jo wns
0 0 0 0 0 0 0 snoJaduequolssiwiad jo wns
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
0 0 0 0 0 L L Auap|8ul)jens103sal Jo WNg
0 0 0 0 0 L L Anuap|duledses)d jo wng
0 0 0 0 0 L i pid3ul)en1asd jo wns
0 0 0 0 0 0 0 pINdulj1eD19s Jo wng
0 0 0 0 0 3 8 JOH13W Jouno)
ad1nIasIaSeueyweaiq
1€ 0€ 0€ 0€ 0€ 0 0 SUON JO Wng
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
L L L | L 0 0 diSuoissiwiad jo wng
0 0 0 0 0 0 0 snosaduequoissiwiad Jo wng
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
L L L L L 0 0 Auapi3ul)jeDa103sal Jo WNS
L L L L L 0 0 Anuspidulyjenses)d jo wng
I L L L L 0 0 pId8uen3198 jJo wng
14 14 4 4 C 0 0 pIN3ul)1eD198 Jo wng
e €e ee €e et 0 0 QOHL13W jo3uno)
3dINI9SI9pUIg$IanIasqOXd0d
0 0 0 0 0 0 0 SUON JO WNS
0°9-dSOV L'L'S-dSOV T'0°S-dSOV F.o.mw.n_mo< 0°S-dSOQv V¥'v'¥-dSOv T'T-dSOV 92IAIDS
aSew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

186

" 'DINUIILUOD
921MI98SsIRISSOIYdeln

9 0 0 0 0 0 0 SUON JO WNS
0 [4 4 4 4 0 0 Jopunuolssiwiad jJo wng
9 € € € € 0 0 disuoissiwad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewJIONUOISSIWIad Jo wng
0 0 0 0 0 0 0 Auap|3uljje)aloIsal Jo wing
0 0 0 0 0 0 0 Auapiduljensea)d jo wng
0 0 0 0 0 0 0 p1d3ul)|eD1as jo wnsg
| 0 0 0 0 0 0 pIN3duljjeD19s Jo wng
Cl q q q S 0 0 AOH14IW JOIUNoH
Jaddespadiniasiunidiasuid$adiniasiutidiaduly

0 o o o o L€ g QUON JO WINg
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
0 0 0 0 0 0 0 disuolssiuiad jo wns
0 0 0 0 0 0 0 snoJaduequolssiwiad jo wng
0 0 0 0 0 0 0 JewoNuolssiwIad Jo wng
0 0 0 0 0 0 0 Ayauap|3uijjeDaloisal Jo wns
0 0 0 0 0 0 0 Ayiuap|3ujenesd jo wng
0 0 0 0 0 0 0 pid3uleDniasd jo wns
0 L L L L L L pIN3dulj1eD19s Jo wng
0 [4% (4% (4% [4% 6 9¢ AOH13I Jounod
JaxinAdosyug

L L I L L L C SUON JOo wns
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
L L L | L L L disuoissiwiad jo wns
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
L L L L L L 0 Auapi3ul)jena103sal Jo WNS
L L L L L L 0 Ayipuap|3uenJead jo wng
0 0 0 0 0 0 0 pld8ul)|eD1as jo wns
0 0 0 0 0 0 0 pIN3dulj1eD198 Jo wng
€ € € € € € € JOH1dW JO1UNnoH
ao1n9s198eueyxogdoag

0°9-dSOV L'L'G-dSOV T'0°S-dSOV L'0°§-dSOV 0°S-dSOV ¥'v'¥-dSOvV T'T'v-dSOV 9JIAISS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

187

" 'PaNUNUOD
1914 9¢ 9¢ 9¢ 9¢ 0€ 6C AOH13I Jounod
921n9s 98U poyloiIndu|
Ll Ll Ll Ll L 6 6 SUON Jo wng
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
S S S S S 14 14 disuolssiwiad jo wns
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
0 0 0 0 0 L L Ayuap|3uljjeDaloisal Jo wng
0 0 0 0 0 L L Ayiuap|3ujenJead jo wng
9 9 9 9 9 9 9 pid3ulj|eD3as jo wns
S S S S S S S pINSu1|eD198 Jo Wns
Ll Ll Ll Ll Ll Gl Gl AOHL13W Jo3unod
921n9sI98eueyIndu|
€e €e 43 43 [43 0 0 SUON JO WnS
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
0 0 0 0 0 0 0 disuoissiwliad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wns
0 0 0 0 0 0 0 JewlJoNuolssiwIad Jo wng
0 0 0 0 0 0 0 Ayuap|3uljjeDaloisal Jo wng
0 0 0 0 0 0 0 Auapiduljenses)d jo wng
0 0 0 0 0 0 0 p1d3ul)|eD1as jo wns
0 0 0 0 0 0 0 pIN3u1|eD198 Jo Wns
€e ee 43 43 [43 0 0 AOH13IW JOIUNoy
92IA19S19pUIg$DIINIDG]|0IUODIWPH
0 0 0 0 0 0 0 QUON JO WNg
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
0 0 0 0 0 0 0 disuolssiwiad Jo wng
0 0 0 0 0 0 0 snoJadueqguoissiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
| 0 0 0 0 0 0 Auap|3ul)jeDs101sal Jo WNS
L 0 0 0 0 0 0 Anuap|dunenies)d jo wng
L 0 0 0 0 0 0 pid3uleDniasd jo wns
L 0 0 0 0 0 0 pIN38ulj1eD198 Jo wng
1 0 0 0 0 0 0 QOH13W jo3uno)
0°9-dSOV L'L'S-dSOV T'0°'S-dSOV F.o.mw.n_mo< 0°S-dSOQv V¥'v'¥-dSOv T'T-dSOV 9JIAISS
aSew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

188

'DONUIIUOD

0 0 0 0 0 0 0 pINS8ulj|eD198 JO WNg
0 0 0 0 0 14 € JOH13I Jouno)
921AI3SSIYSI
4 4 4 4 4 0 0 SUON JO wns
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
0 0 0 0 0 0 0 disuolssiwiad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiwiad Jo wns
0 0 0 0 0 0 0 JewlonuolssiwIad Jo wng
9 9 9 9 9 0 0 Ausp|8ul)jeDs101sal Jo WNg
9 9 9 9 9 0 0 AnuapidulenJea)d jo wng
0 0 0 0 0 0 0 pid3ul)eDniasd jo wns
0 0 0 0 0 0 0 pINdulj1eD19s Jo wng
8 8 8 8 8 0 0 QOHL13IW }03uNno)
Jdwisddyiaydunesasiniassddylayoune
0 0 0 0 0 0 0 SUON Jo wnsg
0 0 0 0 0 0 0 Japunuolssiuiad Jo wng
0 0 0 0 0 0 0 disuolssiwliad jo wng
0 0 0 0 0 0 0 snoJaduequolssiwiad jo wng
0 0 0 0 0 0 0 JewlonuolssiwIad Jo wng
14 14 ¥ 14 14 0 0 Ausp|duiyjeDaloisal Jo wng
14 14 14 14 14 0 0 Auapidulyjenses)d jo wng
1 L | L L 0 0 pld8ul)|eD1as jo wnsg
14 14 14 14 14 0 0 pIN3dulj1eD198 Jo wng
¥ ¥ ¥ v 14 0 0 AOH13IW JOIUNoH
qn1S43)NpaydSqors$adInIaSIdNpaydIsqor
144 6l 61 61 6l 8l Ll SUON Jo wng
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
9 14 14 14 14 L L disuoissiwad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiwiad jo wns
0 0 0 0 0 0 0 JewlonuolssiwIad Jo wng
[l Ll [l Ll Ll Ll [l Apusp|8ul)jeDs103sal Jo WNS
[l Ll [l Ll Ll Ll Ll Auap|duljenses)d jo wng
[4 0 0 0 0 0 0 pId8ul)en3198 jJo wng
zl 0l 0l oL 0l L L pIN3u1)|eD198 Jo wng
0°9-dSOV L'L'S-dSOV T'0°S-dSOV P.O.Wn_mo< 0°S-dSOQv V¥'v'¥-dSOv T'T-dSOV 92IAIDS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

189

ponuiuod

0
0
L

(@]
o
o
(@]
(@]

0 pidsul]|eD198 Jo wng
0 pIN3u1)ed1as jo wns
0 JOHL3W Jo3uno)

~ O
~ o
~ o
~ O
oo

92IAI9SI9puUIg$INIDSID3RURBNUOIDD[0IdRIPON
SUON Jo wns
Japunuoissiuiad Jo wng
disuoissiwad jo wng
snoJaduequolssiwiad Jo wng
JewJoNuolssiwIad Jo wng
Auap|3ul)ena103sal Jo wWng
Ayuap|3ujenJead jo wng
pid3ul)jen1sd Jo wing
pin3ul]|eD3as Jo wns
JOHLIW Jounod

MO MMO O M~O®
tTnmoocoocoomood
MmMooOooOoMmMOO
MNMOOOOMOMO <
MOOOOMOO <
Mmoo oomwo N
Movooooooouwm

Ln
O
O
O

921NI9SS3UINRSH D07

SUON JO WNS
Jopunuolssiwiad jJo wng
disuoissiwad jo wng
snoJaduequolssiuiad Jo wng
JewIoNuoIsSIuIad Jo wng
Auap|3ul)jena103sal Jo WNs
Aypuapidulyjensea)d jo wng
pid3ul]|eD3es jo wng
pIN3u1}|eD193 Jo wns
JOHL3IW JO3uno)y

—o~Nno X
— oo N O Q@
—o o9
— oo NOo Q9
— oo N o
0 N O

N o © W
N~ ©©
NN ©©
NN ©©
N~ ©©
O N X <
B~ —0—0 o

™
o
N
o
o
™
o
™
A
(90)
(c¢]
Q]

91AI3S 198 URNUOIIRIOT
SUON JO WNS
Jopunuolssiuiad jJo wng
disuoissiwiad jo wng
snoJaduequolssiwiad jo wng
JewWJIONUOISSIWId JOo wng
Ausp|8ul)jeDa101sal Jo WNg
Auapidulyjensea)d jo wng

0 0 0 0 0 0 0 pI43ul)1eD193 Jo WNS

O OO O OOoOo
O OO OO oo
O O OO OOoOo
O O OO OoOo
O OO OoOOooOo
OO O OO Oo
OO OO OoOomMm

0°'9-dSOVY L'L'S-dSOVY T°0°S-dSOV F.O.Wn_mo< 0°'G-dSOY ¥'¥'¥-dSOV T'T'¥-dSOV 9JIAIBS
aSew

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

190

ponuiuod

—“ <t o«

O O O o
O O O o
O O O o
O O O o
O O O o

O O O o

Apuapidulyjensea)d jo wng
pid3ul)jen1sd Jo wing
pin3uien1a8 jo wns

JOHLIW JouNnod

VO OWOWOWOOOoOoAN

VO OWWOWOWOOoOOoOoAN
VOOWOWOWOOoOOOoAN
VOO OWOWOoOOoOOoOoOoAN
AVDOWOWWOWWOWOOOOoN
OO OOOOOOooOo

OO O OO0 OOoOo

o

9JINIBSIPIN

SUON JO WNS
Japunuolssiuiad Jo wns
disuoissiwiad jo wng
snoJaduequolssiwiad jo wng
JewIoNuoIsSIuIad Jo wns
Aynuap|3ul)|eDal0isal Jo Wng
Auap|3unjedesd jo wng
pid3ul)jen1sd Jo wng
pin3uljien1ss jo wng
JOHL13W J0Iuno)

N~~~ O O — 0O

N ~M~OO— OO
N —N~M~OO— OO0
N —N~M~OO— OO0
N~ O - OO
N —N~M~OO— OO

|dwjia8euepuoISSaS$IIINIISUOISSISRIPIN

0

O OO OO O0OOoOo

SUON JO wns
Japunuoissiuad Jo wng
disuoissiwiad Jo wng
snoJsduequolssiwiad Jo wng
Jewlonuolssiwad Jo wng
Ayuapi3ul)jena103sal Jo Wng
Auspidulyjenses)d jo wng
pId3uI|eD3as jo wns
pin3ul)eD1e8 jo wng
JOH13W 40 3uno)y

O O O O WO —

O O O OWoOo —
O O O O WO —
OO O O WO —
O O O O WO —

O O OO oo

0

O O OO oo

0

921AI9SI9IN0YRIPIN
3UON Jo wnsg
Japunuoissiuiad Jo wng
3isuoissiwlad jo wng
snoJsduequolssiwiad Jo wng
JewJoNuolssiwIad Jo wng
Ayuap|3ul)jena103sal Jo WNS
Anuap|duljedlesld Jo wng

0°9-dSOV

I'L'S-dSOY T°0°S-dSOY L'0°G-dSOVY 0°S-dSOV v'¥'v-dSOv ¢°T'¥-dSOvV

a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

191

ponuiuod

0
0
0
6
88

[\
o0 © O OO

HOWo oo

HOooo

oW o oo

(@]
~© O O o

O
o © O oo

Ayauap|3ulj|eDaJ03sal Jo Wng
Auspidulyjenses)d jo wng
pid3ul]jen1ad Jo wng
pIN3ul]|eD3o8 Jo wns
QOH13W jo3unoy

™ TolPaaep]
Guosstoo@Bold

w—oooocwo®

L0
<

O
Nn— O OO0 O0WOo .,

L0
<

™ <
<N — OO0 OWwOo .y

™ A
qm-—oooogoom

N~ o]
MmN — O OO OWwOoY

O 0
mﬂ"'—OOOOkOON

92IAI9SIUd WIS RURHIOMIDN
SUON JO WNS
Japunuoissiuiad Jo wng
disuoissiwlad jo wng
snoJsduequolssiwiad Jo wng
JewJIoNuoIssiwIad Jo wng
Ayuap|3uljjeDal03Isal Jo Wng
Ayiuap|3ujenJead jo wng
pid3ul)jen1sd Jo wing
pin3ul]|eD3as Jo wns
JOHL3W 0 3unod

tNococooo~NnooA

— —

—

NP ocoocoooYNoow

— —

©COoocoocoodNoo

— —

©COoocoocooNoo

— —

<

—

OO ooocoNo o

— —

O OO OO0 OooOo

eoeoNooNoNolNoloNelNe)

9JIAIDSIUNOW
QUON JO WNS
Japunuoissiuiad Jo wng
disuoissiwad jo wng
snoJaduequolssiwiad jJo wng
_mELOZco_mm_C\zmo_ Jowns
Auap|3ul)jenai0isal Jo wns
Auapidulenses)d jo wng
pId3ul]|eD3es jo wng
pIN3ul)|e23ad Jo wns
dOH13W Jouno)

O O O oW

[

O O O oo

0

O O O oo

0

O O O oo

0

O O O oo

0

O O O oo

0

O O O oo

0

92INI9SI9pUIg$I9)04gIDINIDSSWN
SUON JO wns

Japunuoissiuiad Jo wng
disuoissiwiad Jo wng
snosaduequoissiwiad jo wng
JewoNuolssiwIad Jo wng
Anuap|dulyjedaloisal Jo wng

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°G-dSOVY 0°S-dSOVY Vv'¥'v-dSOV ¢'T'¥-dSOvV 9JIAISS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

192

panunuod

L

OS~Nomm

—

ONO MM —
O NO NN —
O NO NN —
O NO NN —

O NO NN —

O NO NN —

JewlonuolssiwIad Jo wng
Ayuapi3ul)jena103sal Jo WNS
Auapidulyjenses)d jo wng
pid3ul)jen1sd Jo wing
pin3ul]|eD3a8 jo wns
JOH13W JouNno)

MO O OO O TOOo

MO OOOOJTOOo
MO O OO O TOOo
MO OOOOJTOOo
LHMNO OOOOJTOOo

O OO OO0 OooOo

eoNeoNooNoNoNoloNelNe)

9JINI9SSIRISHIOMIDN
SUON Jo wns
Jopunuolssiwiad jJo wng
disuoissiwlad jo wng
snoJaduequolssiwiad jJo wng
JewJIONUOISSIWIad Jo wng
Auapi3ul)ena103sal Jo wns
Auapidulyjenses)d jo wng
pId3ul]|eD3es jo wng
pIN3u1)|eD1ad Jo wns
JOHL3IW JO3uno)y

N omm—o o~

—
—
—
—

Cooanan—o Yo~

OCooanan—oNYo~—

OCooanan—oNo~—

OCooanan—o Yo~
©

—

Moo —O=Z O —

Moo ™N—OZ O —

921N I19SI00SYIOMIDN
SUON JO WNS
Jopunuolssiuiad Jo wns
disuoissiwiad jo wng
snoJaduequolssiwiad jJo wng
JewIoNuoIssIuIad Jo wns
Auspl8ul)jeDai01sal Jo wWns
Auap|3uneniesd jo wng
pid3ul)jeD1sd Jo wng
pin3ulj|en1ss jo wng
JOHLIW Jounod

Ll
0
69
0
0

gor
For
For

o=

9
0
0 0 0 0

o
o
o

o O

€L
0
0

L
0
65
0
0

921n19SI93euR N Ad1)10d)IOMIBN
SUON JO WNS
Japunuolssiuiad jo wns
disuolissiwiad Jo wng
snoJaduequolssiwiad jo wng
JewJIoNuoIssIwIad Jo wns

0°9-dSOV

I'L'S-dSOY T°0°S-dSOY L'0°G-dSOVY 0°S-dSOV v'¥'v-dSOv ¢°T'¥-dSOvV

a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

193

" 'PaNUNUOD
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wns
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
0 8 0 0 0 0 0 Ayusp|duiyjeDaloisal Jo wng
0 8 0 0 0 0 0 Ayiuap|3ujenJead jo wng
0 9 0 0 0 0 0 p1d8ul)|eD1as jo wns
0 8 0 0 0 0 0 pIN3dul)1eD198 Jo wng
0 ee 0 0 0 0 0 JOHLI Jo1unod

9$adINI9SI98RURNUOIIRIYIION

6l 0 Cl Cl Cl 0 0 QUON JO Wns
0 0 0 0 0 0 0 Jopunuolssiuiad Jo wng
L 0 ol oL ol 0 0 disuolssiwlad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
€l 0 3 3 8 0 0 Ausp|8ul)jeDa101sal Jo WNS
€l 0 8 8 8 0 0 Ayiuap|3unjenes)d jo wng
L 0 9 9 9 0 0 pid3ul)en198 Jo wng
il 0 8 8 8 0 0 pIN3duljjeD19s Jo wWng
1% 0 43 [43 [43 0 0 QOH13W JOIUN0)H
G$9INIDSI93RURNUOIIBIIIION

0 0 0 0 0 14 4 QUON JO Wng
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
0 0 0 0 0 z 0 disuoissiwlad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wns
0 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
0 0 0 0 0 14 14 Auap|3ul)jeDa103sal Jo WNS
0 0 0 0 0 14 14 Auapidulyjenses)d jo wng
0 0 0 0 0 14 14 pld8ul)|eD1as jo wns
0 0 0 0 0 6 S pINSul|eD198 Jo Wns
0 0 0 0 0 ol 6 QOHL3I J03UNoH
921AI9SI95RUR N UOIIRIJIION

€ L L L L L L QUON JO Wng
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
9 L 9 9 9 9 9 disuoissiwlad jo wng
0 0 0 0 0 0 0 snoJaduequolssiwiad Jo wns
0°9-dSOV L'L'G-dSOV T'0°S-dSOV L'0°§-dSOV 0°S-dSOV ¥'v'¥-dSOvV T'T'v-dSOV 92IAIDS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

194

paNuURuUOD
¥S LE LE LE JAS 23 0t disuolssiuiad jo wng
0 14 4 14 4 14 z snoJaduequolssiuiad Jo wns
L L L L L L L JewloNuolssiwIad Jo wng
LL 9 9 9 9 9 € Ayusp|duijjeDaloisal Jo wng
Ll 9 9 9 9 9 € Ayiuap|3ujenead jo wng
0 0 0 0 0 0 0 p1d3ul)|eD1as jo wnsg
¥S 6¢ 6¢ 6¢ 6¢ 33 o€ pIN3u1|eD198 Jo WNnS
A SLL LLL LlL LLL 66 68 AOHL3IW Jounod
931nI9S 198 UR DS RYDRY
0 0 0 0 0 0 0 SUON JO WNS
0 0 0 0 0 0 0 Jopunuolssiuiad jJo wng
L L L L L L L disuoissiwiad jo wng
0 L L | L L L snoJaduequolssiuiad Jo wng
L 0 0 0 0 0 0 JewJIONUOISSIWIad Jo wng
0 0 0 0 0 0 0 Auap|3uljje)al0Isal Jo Wing
0 0 0 0 0 0 0 Auapidulyjensea)d jo wng
0 0 0 0 0 0 0 p1d3ul)eD1as jo wng
0 0 0 0 0 0 0 pIN3duljjeD1es Jo wng
[4 [4 4 4 [4 4 [4 JOHL13WJouno)y
9JIAIBSPSN
! L | L L 0 0 SUON JO WNS
0 0 0 0 0 0 0 Jopunuolssiuiad Jo wns
0 0 0 0 0 0 0 disuoissiwad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JeWJIONUOISSIWIad Jo wng
0 0 0 0 0 0 0 Ayuap|3uljjeDalo3sal Jo wns
0 0 0 0 0 0 0 Ayiuep(dunenies)d jo wng
0 0 0 0 0 0 0 pId3ul)eD1as jo wns
0 0 0 0 0 0 0 pIN38uljjeD19s Jo wng
] L L | L 0 0 gOHL13W JOIuno)
J9P)OHUOIIBI1J130NIBGSNIRIS$9D1NI9SI93RUR N UOIIEIIHIION
0 cl 0 0 0 0 0 QUON JO wng
0 0 0 0 0 0 0 Japunuoissiuad Jo wng
0 Ll 0 0 0 0 0 3isuoissiuiad Jo ung
0°9-dSOV L'L'S-dSOV T'0°S-dSOV P.o.mw.n_mo< 0°'5-dSOV v'¥'v-dSOVY T°T'¥-dSOV 92IAIDS
adew

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

195

“panuiuod

0
Gl
0
L
<
Ic
[4
6
144

An

()]

[@)]

—

[@)]

—

()]
OO OOOOOooOo
OO OO OOOOoOo

u_wﬁcho_mm_C\Cwq Jowns

disuoissiwad jo wng

snoJaduequolssiwiad jo wng
JewIoNuoIsSIuIad Jo wns
Aynusp|3ul)jeDal0isal Jo wng

uap|3uljjedJesld jJo wns
pid3ul)en1sd Jo wng
pIN3u1)eD1as jo wns
JOHL3W Jo3uno)

OO OO OOOOooOo

IINIBSIBpUIgSIINIaSIaSeueIaMOd

N~
LO

Ll Ll An

ecNoNoNololNolNolNeoNelNe)
OO OO OO OOoOoOo
OO OO OO OOoOoOo
cNoNolololololeoNele
',:
'|:

2UON JO WNS

0 0 Japunuoissiuiad Jo wng

disuolssiwiad jo wng

0 0 snoJsduequolssiwiad Jo wng
4 14 JewloNuolssiwIad Jo wng
Auapi3ul)jena103sal Jo WNS

usp(3uljjedJesld Jo wns
pId3uI|eD3as jo wns
pIN3ul]|eD1o8 Jo wns
JOH13I Jo3uno)

MO O OO OoO—OoOx

An

~MMMOOOOO— O
MO O OO O0OO0Oo X
~MNO OOOOOoOOo X
~MNO O OO OOoOo X
O OO OO0 OooOo
eNeoNoNoNoNoNoloNelNe

ad1n195 198 URI9MOd
SUON Jo wng

Japunuoissiuiad Jo wng

disuoissiwliad jo wng

snoJaduequolssiwiad jJo wng
JewlIoNuoIssIwIad Jo wng
Ayuap|3ulj|eDal03sal Jo Wng

usp|3uljjedJesd jJo wns
pid3uljieniad jo wns
piN3ul]|eD3as Jo wns
JOH13I O Juno)

[
0

L$9DIAI9SY D0 geIeqIU)ISISIad

99 59 59 59 59 1%

SUON Jo wng

0 0 0 0 0 0 Japunuolissiulad Jo wnsg

0°9-dSOV

L'L'S-dSOY T'0°S-dSOV F.O.Wn_mo< 0°'G-dSOY ¥'¥'¥-dSOV T'T'¥-dSOV
aSew

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

9JINISS

196

ponuiuod

L

MO O OOOOoANO

MO O OO OONO —

MO OO OO ONO —

MO OO OO OoNO —

MO O OO OOoNO —

MO O OO OONO —

OO OO OOOOooOo

SUON JO WNS
Japunuolssiuiad jo wns
disuolssiwiad Jo wng
snoJaduequolssiwiad jo wns
JewIoNuoIssiuIad Jo wng
Ausp|dul)jens101sal Jo wWng
Anuap|dunenies)d jo wng
pid3ul)en1sd Jo wns
pin3ulj|en1ss jo wng
JOHL13W J0Iuno)

~ooPPOoooo—

coWYwOCoooo—

N~

~ocooP®Loooo—

ooV oooo—

coWYWLoooo—

N~

OO OOOO0OOooOo

92INI9SS)1RISSSI04d
SUON JOo wns
Japunuolssiuiad jo wns
diSuoissiwiad jo wng
snoJaduequolssiwiad jo wns
JewloNuolssiwIad Jo wng
Auap|8ul)jens103sal Jo WNg
Auap|3uljedJtes)d Jo wng
pid3uljienisd jo wns
pin3ul)|eD1es jo wng
JOHL3IW JoIunod

loholololololololele]

eoNeoNoNoNoNoNoloNelNe)

ololololololololele]

ololololololololele]

eoeoololoNololoNelNe)

~ocoP®PLoocooo—

]

cNoNoNoNoNoNoNoRoNaoll*YloNoNoNoNoNoNoNoNoNel

w4aSeuepuld$adiniasiaSeuepiulid
SUON JO WNS
Japunuoissiuiad Jo wng
disuoissiwlad jo wng
snoJaduequolssiuiad Jo wng
JewIoNuoIsSIuIad Jo wng
Auap|3uljje)al03Isal Jo Wing
Ayuap|3uenesd jo wng
pid3ul)jen1sd Jo wng
pinduien1ad jo wns
JOHLIW Jounod

L

L

L

L

L

0

0

9d1nI3SI98eURNIULI]
SUON JO WNS

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°G-dSOVY 0°S-dSOVY Vv'¥'v-dSOV ¢'T'¥-dSOvV 9JIAISS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

197

" 'PaNURUOD
JInI9SI98RUR N YIRS
0 0 0 0 0 0 0 SUON JO WNS
0 0 0 0 0 0 0 Jopunuolssiwiad jJo wng
0 0 0 0 0 0 0 disuoissiwad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewJIONUOISSIWIad Jo wng
0 0 0 0 0 0 0 Auap|3uljje)aloIsal Jo wing
0 0 0 0 0 0 0 Auapiduljensea)d jo wng
L L L L L L L p1d3ul)|eD1as jo wnsg
L L L L L L L pIN3duljjeD19s Jo wng
! L | L L L L JOHL13WJouno)y
921M13SAd11043unnpayds
13 €L 39 (39 ee 43 0¢ SUON Jo wng
0 0 0 0 0 0 0 Jopunuolssiuiad Jo wns
L L L L L L L disuoissiwad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JewJONUOISSIWId Jo wng
0 0 0 0 0 0 0 Ayuap|3uljjeDal03sal Jo wns
0 0 0 0 0 0 0 Ayiuep(dunenies)d jo wng
0 0 0 0 0 0 0 pId3ul)eD1as jo wnsg
L L L L L L L pIN38uljjeD19s Jo wng
LE 9¢ 9¢ 9¢ 9¢ Ge [43 JOHLJW JOUNn0)
921A19S43]1j0ud3undwes
! L ! L L 0 0 SUON JO WNS
0 0 0 0 0 0 0 Jopunuolssiuiad Jo wns
0 0 0 0 0 0 0 disuolssiwad jo wng
0 0 0 0 0 0 0 snoJaduequoissiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
14 14 14 14 14 0 0 Ausp|8ul)jeDa101sal Jo WNg
14 14 14 14 14 0 0 Ayiuap|3unenJes)d jo wng
0 0 0 0 0 0 0 pid3ul)eDn1asd jo wns
[4 [4 4 4 [4 0 0 pINduljjeD19s Jo wng
q q q S S 0 0 AOH13IN JO03UNGH
Jdwiia8euepSUOIIIIISOYS$IIINIDSIISRURNSUOIIDLIISDY
0°9-dSOY L'L'S-dSOY T°0°S-dSOY P.o.mm.n_mo< 0°'S-dSOVY V'¥'v-dSOv ¢'T'¥-dSOov 9JINIBS
adew

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

198

" 'DINUIILOD
1o 8¢ 9¢ 9¢ 9¢ 44 lc AQOH13W JOuNo)H
931MI9S 198 URNIRGSNIRYS

0 0 0 0 0 0 0 SUON JO WNS
0 0 0 0 0 0 0 Jopunuolssiuiad jJo wng
0 0 0 0 0 0 0 disuoissiwad jo wng
0 0 0 0 0 0 6 snoJaduequolssiwiad jJo wng
0 0 0 0 0 0 0 JeWJIONUOISSIWIad Jo wng
0 0 0 0 0 0 0 Auap|3uljje)aloisal Jo wng
0 0 0 0 0 0 0 Ayiusp(dunenies)d jo wng
0 0 0 0 0 0 0 p1d3ul)eD1as jo wnsg
0 0 0 0 0 0 € pIN3uljjeD19s Jo wng
0 0 0 0 0 0 6 QOHL3I J03UNo)
2Inasdis

0 0 0 0 0 0 0 QUON JO WNg
0 0 0 0 0 0 0 Jopunuolssiuiad Jo wns
4 4 4 4 14 z z disuoissiwad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
0 0 0 0 0 0 0 Auap|3ul)je)a101sal Jo WNS
0 0 0 0 0 0 0 Ayiuep(3unenies)d jo wng
0 0 0 0 0 0 0 pId3ul)eD1as jo wns
0 0 0 0 0 0 0 pIN38uljjeD19s Jo wng
z z 4 z z z 4 QOHL3W J03UNoH
92INIS|RLISS

9 S q S g S g SUON Jo wng
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
0 0 0 0 0 0 0 disuolssiwiad Jo wng
0 0 0 0 0 0 0 snoJadueqguoissiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
[4 [4 14 14 [4 L 4 Auap|3ul)jeDs101sal Jo WNS
[4 [4 4 4 [4 L C Ayiuap|3unjenesd jo wng
0 L L L L L 0 pid3uleDniasd jo wns
0 L | L L L L pIN38ulj1eD198 Jo wng
8 8 3 3 8 L L QOH13W JOIUN0)H
0°9-dSOV L'L'G-dSOV T'0°S-dSOV L'0°§-dSOV 0°S-dSOV ¥'v'¥-dSOvV T'T'v-dSOV 9JIAISS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

199

panunuod

0
0

o
o

o
o
o
~ O

pIN3ul)|e23ad Jo wns
JOH13Wjo3unoy

O— O — — OO mMmOoLuw

O— O — — OO MmOLuWw
O— O — — OO MmO

O~ O — = OO MmO
O~ O — — OO MmO
O— O — — OO MmO LW
O— O — — O OmMmOLw

9INIDSINOoIY L

SUON JO wnsg
Japunuoissiuiad Jo wng
disuoissiwad jo wng
snoJaduequolssiwiad jJo wng
JewWJIONUOISSIWId JOo wng
Auspl8ul)jeDai01sal Jo WNg
Auapidulensea)d jo wng
pid3ul)jen1sd Jo wing
pin3uljien1ssd jo wng
JOHLIW Jounod

cocoocNoO®

o

0¢
€e

921N 19S198RURNSIIINIDSIXDL
SUON JO WNS
Japunuolssiuiad Jo wns
disuolissiwiad Jo wng
snoJaduequolssiwiad jo wng
JewIoNUOISSIWIad Jo wns
Ausp|8ul)jeDa101sal JO WNS
Anuap|dunenies)d jo wng
pid3ul)jen1sd Jo wng
pin38uljien1ss jo wng
JOHL13W J0Iuno)

€l
0
6l
0
€
ol
oL
q
)

™
<t <twwmo Y ow

—

<t <o mo Y ow
<+t mo L ow
cocooomo o~
cocoocoomodow

Ansi3ayAuoydaal

SUON JO WNS
Japunuolssiuiad jo wns
disuolssiwad Jo wng
snoJaduequolssiwiad jo wns
JewlonuolssiwIad Jo wng
Apusp|8ul)jeDs103sal Jo WNS
Anuspiduljjenses)d Jo wns
pid3ul)jen1sd Jo wns
pin38ul)en1es jo wng

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°'G-dSOV 0°'S-dSOV V'¥'¥-dSOV TT'v-dSOV
a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

200

“panuiuod

9¢
9¢
6¢

e
e

0t
0¢

0¢
o€

0¢
o€

O O O

0
0
0

pid3ul)|eD1sd Jo wng
pin3ul]|eD3as jo wns
JOHLIW Jounod

OANANANNOOM~SO O

M~ — O O O O0OWOoOoOo

O OOOOOWInmOo o

LNHO OO OOOWInmOoOo

O O OOOoOOownmo o

OO OOOOO0OOooOo

dINIBSIapUIgSINIDSIaSeueIndulaL

OO O OOOOOoOo

SUON JOo wns
Japunuolssiuiad jo wng
diSuoissiwiad Jo wng
snoJaduequolssiwiad jo wns
JewloNuolssiwIad Jo wng
Auspi3ul)jeDa103sal Jo WNS
Auap|3uljedJtes)d Jo wng
pid3ul)eD1sd Jo wns
pin3ul)|eD1es jo wng

JOHL3I JOIuNnod

—ocooocoooy

(©9]
N

—ocococoocoocoof

N~
Q]

OO O OO0 OOooOo

ololololololololele]

eoeoNoolNoNololoNelNe)

O OO OO0 OooOo

eceoNooNoNolNoloNelNe)

L$9d1n195 93 URNISNIL
SUON Jo wnsg
Jopunuolssiwiad jJo wng
disuoissiwad jo wng
snoJaduequolssiwiad jJo wng
JewJIONUOISSIWIad Jo wng
Ayuap|duiyjeDalo3sal Jo wng
Ayiusp(dunenies)d jo wng
pid3ul)jen1sd Jo wing
pIN3ul)|e23ad Jo wns
JOHLIW Jounod

ol ololololole)

0

OO O OO oOo

0

OO OO OoOoOo

0

OO OO OoOoOo

0

O OO OO oOo

0

O O OO OooOo

0

OO M~O O OO

0

aunodweu}

SUON JO wnsg
Jopunuolssiuiad jJo wng
disuoissiwiad jo wng
snoJaduequolssiwiad jo wng
JewWJIONUOISSIWId JOo wng
Ausp|8ul)jeDa101sal Jo WNg
Auapidulyjensea)d jo wng
pid3ui)|eD1sd Jo wing

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°G-dSOVY 0°S-dSOVY Vv'¥'v-dSOV ¢'T'¥-dSOvV

a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

201

ponuiuod

0 0 0 0 0 0 0 Apuapidulyjensea)d jo wng
0 0 0 0 0 € € p1d3ul)eD1as jo wnsg
0 0 0 0 0 € € pIN3uljjeD19s Jo wng
0 0 0 0 0 g S QOHLIN Jo1uno)
ddInI9SsIeISadesn

0 0 0 0 0 0 0 SUON JO WNS
0 0 0 0 0 0 0 Jopunuolssiuiad Jo wns
4 4 4 C 14 z z disuoissiwiad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 JeWJIONUOISSIWId Jo wng
0 0 0 0 0 0 0 Ayuap|3uljjeDalo3sal Jo wns
0 0 0 0 0 0 0 Ayiusp(3unenies)d jo wng
0 0 0 0 0 0 0 pid3ul)eDn1as jo wnsg
0 0 0 0 0 0 0 pIN38uljjeD19s Jo wng
[4 [4 4 4 [4 4 [4 JOHL13WJouno)y
2DINIRSHYI0T31epdNn

! L | L L 0 0 SUON JO WNS
0 0 0 0 0 0 0 Jopunuolssiwiad Jo wns
0 0 0 0 0 0 0 disuoissiwiad Jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wng
0 0 0 0 0 0 0 Jewlonuolssiwad Jo wng
14 14 14 14 14 0 0 Apusp|8ul)jeDs101sal Jo WNg
14 14 14 14 14 0 0 Ayiuap(3unenJesd jo wng
0 0 0 0 0 0 0 pid3ul)eDn1asd jo wns
0 0 0 0 0 0 0 pINduljjeD19s Jo wWng
q q q S S 0 0 AOH13W JO03UN0H
G$9d1nIDSI93RURNDPONIN

0 0 0 0 0 0 0 SUON Jo wns
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
L g S g g 0 0 3isuoissiwlad jo wng
0 0 0 0 0 0 0 snoJaduequolssiuiad Jo wns
0 0 0 0 0 0 0 JewJoNuolssiwIad Jo wng
6¢ ce e e 1€ 0 0 Ayusp|dulyjeDaloisal Jo wng
6¢ [43 LE LE LE 0 0 Anuap|duljedlesld Jo wng
0°9-dSOV L'l'G-dSOV T'0°S-dSOY L'0°S-dSOV 0°S-dSOV ¥'v'¥-dSOV T°T'¥-dSOV 92IAIDS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

202

ponuiuod

.v
.v
0
14
€€

Lo
Ao oo

0 O — —

—
—

Ayauap|3ulj|eDaJ03sal Jo Wng
Auspidulyjenses)d jo wng
pid3ul]jen1ad Jo wng
pIN3ul]|eD3o8 Jo wns
QOH13W jo3unoy

QoommooPLoow

— O©

ODOocoocoocoo

—

QocoocoocococoozZow®

DocoocoococoocoozZow®

— O

ODQocoocoocoo

—

DocoocoococoozZow®

—

Dooocoocoool ow

—

921nI9S198RURINIDSN

SUON JO WNS
Japunuoissiuiad Jo wng
disuoissiwlad jo wng
snoJsduequolssiwiad Jo wng
JewJIoNuoIssiwIad Jo wng
Apuapi3ul)jena103sal Jo WNS
Ayiuap|3ujenJead jo wng
pid3uljieniad jo wns
pin3ul]|eD3as Jo wns
AOH13W JOIUNGH

O MmN O O — OO

MO O MmMMO O O OO

MO O MMO O O OO

MO O MMO O O OO

MO O MmMMO O O OO

O OO OO0 OooOo

eoeoNooNoNolNoloNelNe)

2INIBSASN

QUON JO WNS
Japunuoissiuiad Jo wng
disuoissiwad jo wng
snoJaduequolssiwiad jJo wng
_mELOZco_mm_C\zmo_ Jowns
Auap|3ul)jenai0isal Jo wns
Auapidulenses)d jo wng
pId3ul]|eD3es jo wng
pIN3ul)|e23ad Jo wns
dOH13W Jouno)

O O o oo

0

O O O oo

0

O O O oo

0

O O O oo

0

O O O oo

0

O o unoo

o

O O oo

0

9DIAIDSIDpUIgSIIINIDSSIRISOSEeSN
SUON JO wns

Japunuoissiuiad Jo wng
disuoissiwiad Jo wng
snosaduequoissiwiad jo wng
JewoNuolssiwIad Jo wng
Anuap|dulyjedaloisal Jo wng

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°G-dSOVY 0°S-dSOVY Vv'¥'v-dSOV ¢'T'¥-dSOvV 9JIAISS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

203

ponuiuod

.V

€
€
§
I
4!

N MmHMm™M

N

Nt ommm

Mt MMHonom

N

M MmHMm™M

N
—

D= MM MmA

D — Mmoo AN

JewlonuolssiwIad Jo wng
Ausp|3ul)jeDa103sal Jo WNS
Auap|dulyjedJtes)d Jo wng
pid3uljienisd jo wns
pin38ulj|eD1es jo wng

JOHLI JOIuNnod

<SS -Coomoo

—
—

<t - OO0 Mmoo

—
—

Dy elNeleNeoNe]

—
—

<SS -T-Coomoo

—
—

O OO OO0 OooOo

(@)

oNoNoololoNolNeNe)

(@)

9inias198euepaaded)iem
SUON JOo wns
Japunuolssiuad Jo wng
diSuoissiwiad Jo wng
snosaduequoissiwiad Jo wng
JewloNuolssiwIad Jo wng
Auapi3ul)jeDa103sal Jo WNS
Anusp|8ulyjenses)d jo wng
pid3uljjeD3ad jo wns
pin3ulj|eD1e8 jo wng

JOHLI JoIunod

OO MmMMmMO O O —

St OO MmMMmmMmOo OO —

OO MMmMO O O —

St OO MmMMmMO O O —

q -._uwwu_?_ww._wwg.‘_ epuonoselanu _wu_o>mwu_>gwm‘_wwmcm_>_ uolijoelalu|adion

S OO MmMMmmMmO OO —

L

S OO MmMmMmmMmOo OO

<t NONANMO OO —

SUON JO WNS
Jopunuolssiuiad Jo wns
disuoissiwiad jo wng
snoJaduequolssiwiad jJo wng
JewIoNuoIssIuIad Jo wns
Auspl8ul)jeDai01sal Jo wWns
Auap|3uneniesd jo wng
pid3ul)jeD1sd Jo wng
pin3ulj|en1ss jo wng
JOHLIW Jounod

O MO M~

0

O — O M~

0

O — O M~

0

O — O M~

0

O — O M~

0

O NO®

0

QO oOom

0

921IAJIBSI0RIGIN

SUON JO WNS
Japunuolssiuiad jo wns
disuolissiwiad Jo wng
snoJaduequolssiwiad jo wng
JewJIoNuoIssIwIad Jo wns

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°'G-dSOV 0°'S-dSOV V'¥'¥-dSOV TT'v-dSOV
a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

204

ponuiuod

0

OO O OooOo

OO O OO OoOo

OO OO OooOo

O OO OO oo

OO OO OOoOo

< O
-~

o
o~~~

N

™ N
Qoo <

snoJaduequolssiwiad jo wns
JewIoNUOISS|WIad Jo wng
Aynuap|3ul)|eDal03sal Jo Wng
Auap|3uneniesd jo wng
pid3ul)jen1sd Jo wng
pin3uljien1ss jo wng
JOHL13W J0Iuno)

OO OO OOOOoOoOo

OO O OO0 OOooOo

OO OO OOOOoOoOo

OO O OO OOOoOOoOo

OO OO OOOOooOo

NO OOOO— — OO

— O O OO0 —0O0O0o

9IMIBSHIM

SUON JO WNS
Japunuolssiuiad jo wns
disuolissiwiad Jo wng
snoJaduequolssiwiad jo wns
JewIoNuoIsSIuIad Jo wng
Ausp|8ul)jeDa101sal Jo WNS
Anuap|dunenies)d jo wng
pid3ul)en1sd Jo wns
pin38ul)|en1ss jo wng
JOHL13W J0Iuno)

N— — O OO OOOoOo

Nr— — OO OO0 OOo

N— — OO OO0 OOo

N— — OO OO0 OOo

N— — OO OO0 OoOOo

OO OOOO0OOooOo

OO O OOOOOoOOoOo

InISdTdIHIM

SUON JOo wns
Japunuolssiuiad Jo wns
diSuoissiwiad Jo wng
snoJaduequolssiwiad jo wns
JewlonuolssiwIad Jo wng
Auap|3ul)|eDa103sal Jo WNS
Anuap|3uljedJtes)d Jo wng
pid3uljienisd jo wns
pin3ul)|ed1e8 jo wng

JOHLI JOIuNnod

O — O <

O — O <

O — O <

— o <

0

O — O <

— o <

0

9JINIDSIapUIgSadINIaSale _un_D>>w_>Qw>>

v
0
L
0

SUON Jo wns
Japunuoissiuiad Jo wng
disuoissiwlad jo wng
snosaduequoissiuiad Jo wng

0°9-dSOV

L'L'S-dSOY T°0°S-dSOY

1'0°'G-dSOV 0°'S-dSOV V'¥'¥-dSOV TT'v-dSOV
a8ew|

9JINISS

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

205

6¢ 8¢ 8¢ 8¢ 3¢]C 0€ SUON Jo Wng
0 0 0 0 0 0 0 Japunuoissiuiad Jo wng
oY L€ JAS Le Le A% a7 disuolissiuiad jo wns
0 S g S g 14 1% snosaduequoissiwiad jo wng
S 0 0 0 0 0 0 JewloNuolssiwIad Jo wng
44 Iz 0z 0c 0c 0c 6l Aypuspidul)ienaioisal jo wns
44 Iz 0c 0T 0C 0T 6l AnuspiduljieDies)d jo wns
€e [43 43 143 [43 9¢ Ly pId8uen3198 jJo wng
6¢ 9¢ 9t 9€ 9¢ 6¢ oY pIN3dul|1eD19s Jo wng
8 6L 8. 8L 8. 08 6. JOHLIW JOIUN0YH
921n19S198RURNMOPUI

0 0 0 0 0 6 S SUON Jo wng
0 0 0 0 0 0 0 Japunuolssiwiad Jo wng
0 0 0 0 0 6 S 3isuolssiuad Jo wng
0°9-dSOY L'L'S-dSOY T'0°S-dSOY 1'0°S-dSOVY 0°S-dSOV v'¥'¥-dSOV ¢'T'¥-dSOv 9JINIBS

a8ew|

(PaNuIU02) SabDWI SUIIESDG SOV Ul 92IAUSS WBISAS 42DS JOJ SJUNOD 2INIDSH

206

Appendix F

Vendor System Service Pivot Analysis

This appendix contains the results of a pivot analysis of System Service feature vectors from
various vendor images compared with AOSP baselines with a similar Android version. Blank
columns indicate either that the service is not present in that particular version of AOSP, or that

FeatureExtraction was unable to process the JAR/class for that image.

Table entries show the total number of AIDL methods added or modified by the vendor for each
service shown on the row labels, compared to the corresponding AOSP baseline shown in the

column labels.

207

" panuiuod

2DIAISIUBIUOD

7€

43

Se

Se [43 4

54

€L 20IMRSAYIAIPBULOD

20IAISIUBWZRUB AW | UOWWOD)

65

JauleluoDadIAISSIaSRUR NG| 1EID0D

ao1naspIeoqdi)

14

1T

14

ao1nasxgpleoqdi))

20INISSIPONID

8L SDINIDSIHIOSYI003RN|g

88 201A19SY10019N]g

€l

€l

301AISI35BUBN3IND3S10033N g

L 201AIRS 38R R3] 104 UI003aN|g

4t

8l

€l

201195 Ia8RUR N YI001RN|G

Sl 201n9SdpTYYI0038N|g

IMIRSSIEISAISNEY

201195 IBpUIgSdINIaSAIaNE]

Ll ERIINEI RN

DInIBSWeagIeg

9¢

aoInasIa3euednyoeg

8¢

143

L 321AI8S01pNY

|dwjadi1n1a5398pImddy

901M95193pimddy

9o1nassdoddy

aoIMaSIB|qesIgddy

2§ 19zABUYDIYRI | $13NPBYISOUASSIXFOINIBS IS UB N WLIE]Y

£$a0InasIa8eueyULIR)Y

7$a0InasIa8eue LRy

ERlISEISEr R IENY

2DIAIS0JU|SSDI0I4$DINIRSIaBRURNAIANDY

4}

19]]0JIUODUOISSILIDG$9DIAIBSIBZRUB ALY

8¢

Japuiguwa$adInasIadeuANADY

€T

Japuigsoiydesnganiniesiadeue WAy

[43 [43 83

Japuiguwiawo$adiniasiaeur Ay

€z

JapuigqgsaniniasiadeueAianoy

8¢

Japuigndd$eniniasiadeurnAlnnoy

6S

oy

8 €9 1

124

61

20INIaSIaZRUBNAYIAIDY

€

14

€

€

20IAI9S133RUBNIUNODDY

gL

8

0c

e

90InI9SIa3euRNAN|IGISSEIIY

L

L

[3

L

201N IDSUISISIAG LGV

'vv-dSov 1'0°S-dSOV
‘SA *SA
v b-1woerx 1'0'S-FsSunswes

v'v°v-dSov
*SA

T't"v-gajoNSunswes

L'L'S-dSOY
*SA
1'1'5-28p3Sunswes

0°S-dSOvY L'1'S-dSOY T'0°S-dSOV v'v'v-dSov

“SA ‘SN ‘SN ‘SA
0°G-X010N 'S-91 T°0°9-91 Tyv-91
aSew

L'1'S-dSOY
*SA
1'S-S02414

L'L'S-dsov
*SA
L'LIS-WD

TTP-dSov

*SA

zTr-nig 9IINIDS

9UJJ9SDq JSOY bulpu0dsalriod ay3 yum papduiod 821A18S JoPpUSA Y208 Ul SPOYISW TJJY Paljipow 10 pappD JO I8qUINN i1 3]gD]

208

" panuiuod

|dwIa8eUBUOISSES$aDIAIBSUOISSAS LIPS

198eueNS]

cL

ao1nasIa8euepaud]

94

Se

124

14

20INSSS3UMBSHI0T

201195 88 UR N UOIEIOT

ESIINEISSTETR

ERINENTelMe/ eIl o]

St

14

ST ST 14 14

SDINIBSEINIH

B0IIBSYIUMS]IIY

oy

6¢

oy

JEINEN lolsHatET

€T

201M195x3paeoqdiDjeussiu|

oL

cl

ERIINEISEEETE N ol EI leI¥]]

9¢

144

a0InasIa8eueINdU|

a1nI9SIa8eURUORDA(U|

9IM9SSYIAUOWIRH

20InI9SIa8RUR N PIRDAOUR)D

20IN13S3INIS9

16

16

16

INISOIPRY S

Jaddelpadiniasiuudiadui4$aoiniasiundiaduly

2DIAIBSPEOJUMO(ISES

JaxipnAdonug

8¢l

ERIS IS EN el E e IEMTE]

20INI9S3101SAaY)|leWT

|dwiainiasiadeuepa3p]

20IN19S2IN1S99a3p]

90IAIBSIBPUIGS$RDINIRSIaZRUR N WEAI]

a01nSIe8euR N WESIQ

90INIBSIBPUIESIIAIBSGOYO0(

9¢

Iz

20IMIaSIBpUIgSadInIaSIaSeuR AR dSIg

[44

aoinasIadeueAedsig

2INIBSSIEISYSIA

St

14

9l

Sl

4

ER]INEIS e/ SRIVENT]

201N 19510}1UO|33e1015301NS(

95

6v

0L

a0InasIaZeueAd1|0da01naq

6 6 19

20INBSNTEIRSRURNRIINDQ

20IAISSIBINPaLYISEIRQ

SL

14

e

Sl

ERISEISEEERENTEN S}

Ll

Ll

6L

Ll

201AIDSIEMYIXSIUOD)

'vv-dSov
‘SA
¥t p-1woery

1'0°S-dSOV
*SA
1'0'S-FsSunswes

Y'¥v-dSov
*SA
T't"v-gajoNSunswes

L'L'S-dSOY
*SA
1'1'5-28p3Sunswes

0°S-dSOvY L'1'S-dSOY T'0°S-dSOV v'v'v-dSov

0°G-X010N 'S-91
aSew

T°0°5-91 TYv-o1

L'1I'S-dSOY
‘SA *SA *SA *SA *SA
1'§-S03414

L'1'S-dSOY

I'LUS-WD

v'v'v-dSov

Laasih]

TTY-dSoY
*SA *SA *SA
TTr-ng

9JINIDS

(PaNUIIU02) BUIIESDG JSOY buipu0dsa.1103 ay1 Yim paindiiod 921AISS JOPUSA YID3 Ul SPOYIBL 1Y PALIPOU 10 PapPD JO JoqUINN

D
o
N

" panuiuod

SDINIBSIKIUODS

921AI9SAX014R1015Aaydads

20InaSI9)JoIdSundwes

198eueA10S5300YS

DINIDSIAOLDY

13

9€

9€

9€

20IM3SIaZRUR NG DY

20IAI95122ULODDIND

[44

201195 98B URIN3) O]

(44

201AI9SSIRISSSD0l

20IMBSN1ESUINES IaMOd

[44

9C

€T

DINIBSIBPUIGSINIBSISTRUBNIIMOY

£

90IMaSIaTeUR NIIMOd

€l

Iz

€l

Japuiguidnd$aniniasiadeuejyuisnig

20IAISS133RUR|3IEISEUOSID]

€5

49

€9

€5

201AIRSIa3RURNADIO4RUOSIDd

L

1L

(14

[44%

201AISIa3BURNPUOSIA]

20InISSIa3eUR 3| IHeUOSIad

1$90IAISYD0|gRIeQIUBISISIAd

9o1nasIa8euR N USWARY

30IAI3SUONOWIed

9C

0c

67

0c

ERIINEISEE U VRN

20IMBS N EIdYPapuUaXIWa0

INI3SI88eURNUONEDIYI

189S 195U UO eI

123

INI9SI98RURUOEDY!

INI3SI83eUR N UONEDIY!

IS I8 eUB N UO eI

9DINIDSSIRISHIOMISN

30IAIS2I00SHIOMIBN

201185 I83eURNADI OHIOMIDN

oy

8¢

6V

8 6€ 6€ 9€

[44

201A19S UBWGRURMIOMIBN

6V

95

6V

90IAIDSIBPUIGS$DDIAIDSIPRIRIMOPUIII NI

20IAIS3PEIEAMOPUIMAIN

4

4!

Ansi8ayAuoyda)a wisp

(44

(U4

[44

(44

20IAISIUNON

20IAI2SUORIUS03YUONON

SDINIDSIBPUIGSISN0IGIDINIISSW

9cL 9CL

30IBSHI

'vv-dSov
‘SA
¥t p-1woery

1'0°S-dSOV
*SA
1'0'S-FsSunswes

Y'¥v-dSov
*SA
T't"v-gajoNSunswes

L'L'S-dSOY
*SA
1'1'5-28p3Sunswes

0°S-dSOvY L'1'S-dSOY T'0°S-dSOV v'v'v-dSov
‘SN *SA ‘SN ‘SN
0°G-X010W 1'S-97 T0'S-91 TYv-o1

aSew

L'1'S-dSOY

*SA

1'S-S02414

L'1'S-dSOY v'v'v-dSov

LI'LI'S-WD laaaih]

TTY-dSoY
*SA *SA *SA
TTr-ng

9JINIDS

(PaNUIIU02) BUIIESDG JSOY buipu0dsa.1103 ay1 Yim paindiiod 921AISS JOPUSA YID3 Ul SPOYIBL 1Y PALIPOU 10 PapPD JO JoqUINN

210

e j:7k4}

S9SL

8651

144 685 995 [4k4

qLvL

(443

€€L

9T Jel01 puesn

i

201195 88eURNAILINSS

BINIBSSNININ

201195 I38eURNADI|04UONEIOT

4 124

€z

95

2DINISSI3ZRURMOPUIM

0§

Lt

61 DDINIBSHIM

z CRIMVEISe T

514 8T

201A1953UIpEOIOI4],

921A195U01e32183yI4IM

aoInasuadeueyiaded|iepm

ol 9l 9L

201195 183eUR N UONEIOTMZA

9DIABSANAIIBUUODIMZA

0€

ERIINEINERENEINTY

19

19

J198eueRORUSIU|d|OA

4!

oL

20INISSIOIRIGIA

ERIINEISEEERENIES,

oL

20IMISGSN

o~ |o

o l~|<|o

20IAIBSIBPUIgSOINIBSSIEISades

201M95sIRISa8eSN

30INISSXOG|00] M|

ISSISCINEEENEINERITE

auljodwel|

ERIINEINVRILTR

05

ke

05

05

20IAIBSeWI |

48

2DIAIRSAWAY |

20InI9SIa8RUR N UOD[BWSY |

201195 153eURNSDINIBSIKD |

124 14

Ll

4 Ansi8ayAuoydaja

22IAJIBSISISSYa) 1108

0c

St

i Eal! gmmem@(_m_\fmm_wjuﬁm

€l

[4s

IS a3RURNRINISIO USRS

vl

ERIINEISEEEIEIIENIS

2DIAIBSIBA0I WS

L

L

L

ESIISEINEEENENISIESS

€l

i

€l

aoinasIadeueydps

'vv-dSov 1'0°S-dSOV
‘SA *SA
v b-1woerx 1'0'S-FsSunswes

Y'¥v-dSov
*SA
T't"v-gajoNSunswes

L'1'S-dSOY

*SA

1'1'5-28p3Sunswes

0°S-dSOvY L'1'S-dSOY T'0°S-dSOV v'v'v-dSov
‘SN *SA ‘SN ‘SN
0°G-X010W 1'S-97 T0'S-91 TYv-o1

aSew

L'1'S-dSOY
*SA
1'S-S02414

L'L'S-dsov
*SA
L'LIS-WD

v'v'v-dsov
*SA
Laasih]

TTY-dSoY
*SA

zTr-nig 9IINIDS

(PaNUIIU02) BUIIESDG JSOY buipu0dsa.1103 ay1 Yim paindiiod 921AISS JOPUSA YID3 Ul SPOYIBL 1Y PALIPOU 10 PapPD JO JoqUINN

21

Appendix G

LG-5.0.2 Test Results

212

S panuiuod

"POUSTUTF ' ** : (5066)VW::3s9LTdyedTazeg/q 0=soI (INdNI A-
soTqeadrt/utq/weasks/)puwpuna :(gzg)ISTTOIIUODIEN/A 1TXd dADSXS~}IOI PTOIpPUE ISTTOIJUODIEN
1 (82€)ISTT0IUODIEN/I (Seraxe sey) el 987 ‘wod=8%d eT -88T ‘wWod=10® qULQUI : JUSQUT
‘0Z: PT - jpP93Ie}s 9OTAISGYIT @ ()PUEWWODITRISUO : (ZTZT)OOTAISSYIT @9TAISSTYIT/A *
90TATSS YIT 3%e3s 03 Sutkrl : ()9OTAIOSYITIIRAS :(ZTZT) TTINWIOFIBTJ 9OTAISS VIT/I
1seqtdesdTazes -Tzzejel ‘wod:ofexwoed = QIAQWIY IDVMOVd "UOTIOR 'qULQUT 'PTOJIPUR : UOTIOR
SATOD9YUO : (ZTZT)IOATOOOYIUSAFSATIRN 9OTAISS YIT/Q 9STeF :po3dauuo)IeSrey)isedst ‘osTer
:But8reypst ‘estey :odfrislreypisedsT :(6Z0T)°OTAISSISMOd/q oniy : xewrl dT®S uQ : (9HST
)InTenoddT[1nwe3sAs] /I LIYYIYOd = UOTIBRIUSTIO ‘T = Jusrind3urdreyd 0 = JUSUUBTTYSSOTOITM
‘¢ = xgodA18nTd ‘00T = XATEAST :(9%ST)INTOMOdDT[INWSISAS] /I XHAYALLYE "UOTIOR "3usjut
‘proxpue ‘98T ‘WOD = SATEOSYUO :(9YST)INISMOIHT[INWSASAS] /I osTeF : AdAL dOAAH VEIXE / T
© INIYYNO HNIDYVHO VHIXH QAONVHO XIAYALLYE NOILOV ‘3uelul :(9%ST)Ioatuoysiepdnprendhay/q
£109001Tp I0 OTTF yoms oy :sooxad -dnox8o/g8g69z PTd/19T0T PTN/200e/ uado 01 PaTTeI : (096
)dnox8ssesoxdqiT/M I91us dadexe~}IOI PTOIpUE ISTTOIQUODIEN : (8ZE)ISTTOIIUODIBN/I 000T
: snye3s pupserqesdIuni IeTToI3uU0DIBN [VIVA DT] :(8TE)IOTTOIIUODIBN/I 0=SeI (INdIN0 d-
soTqeadr/utq/weasks/)pupuni :(gzg)ISTTOIIUODIEN/A 1TXe dADSOXe ¥IOI PTOIpUE ISTTOIIUODIEN
1(82€)I9TT0I3U0DIEN/T Iejue dADSXe~YIOF PTOIpUR ISTTOIIUODICN : (8ZE)ISTTOIIUODIBN/I 000T
: snjess pupseTqeaduna IsTToIjUODIRN [VIVA D] :(8ZE)ISTTOI3uo)ieN/I uoradedxgajoway
*so -proxpue smoayy ()dorgasxyoedisser ‘£Axoid$ qnig$ 9OTAIsgIUSWESEUR|HIOMISNI SO
‘proIpue proa oTTqnd = poyzew punog : (5066)SWN: :3SeLTdyeoTaIes/q 9506'ezdAx0I1d$ qnasg
9oTAISg USWSSRURK{IOMION] ‘SO ‘pPTOIpue = 3109(qo psuiniay : (G066)SHN: :3se1TdyedTAIsS/q

9gegeeZpLX01d$ qnisg eoTAIsgIUsWEFeUR|NIOMION] ‘SO ‘proIpue = 399[qo psuinyey

: (5066)SS

1s011dye0TAISg /@ * * "pPoyldW 3591 SUTHOAUT : (G066)VW: :3sertdyedTarss/q

A

J1¥1S HHOMIIN FONYHD

(/dosq19x9041959.1

92IMISIUSWDHDUDWYIOMIDN

S310N

122307

}2OAU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

'2°0°G-D710) S1)NS8. 1587 |aA3]-POYIBI 1D 3]G

213

panunuod

‘RemAue spiom 1,usaop

11 agAew os ‘poyidw Ul [Is]
Jpeuwwoduny, odAy 3)qissod
108181 je uondedxe 01 anp
adessalw ulnas 8uiPss 10N
‘(((,8o))nd"e1ep8),)sjenba
Bumswered;) 3 (0
-,)suleluod ‘Buswesed;)
|| ((.se1983d1,)suteyuod “Bus
-wededj))) I :uonNdSXe asned

01 2130] siyy ssedAg asnp

sxow LT :(99€92) 110 ‘weasks/M (6Lyc erel

*90TAIOG]USW DTTPUSUNI °£X0Id$ qnig$ ©oTAISGIUCWESCURKHIONIONI ‘SO

HIOMIONT) P
‘proxpue e :(G9g9g)ire ‘weasAg/M (g6%T:esel ‘Tesred)uoridesxgpesl ‘[edIed ‘SO ‘pIOIpUER 1B
1 (99g9z) 110 ‘welshS/M (¥HGT:eael - Teoxed)uoradesxgpesi ‘TedIed ‘SO ‘PTOIPUER 1 :(G9E9Z)IIS

‘woqsAg/M pueumod woxy sjeredes oq asnum sjusumSiay :uoradeoxgiueumBiyreSerrr ‘Suer ‘eael :£q
pesne) :(g9g9z)ixe ‘weaskg/M (g0L:eael ‘arturejo8Lz)urew ‘3rTurezo8£z ‘so ‘TeUILIUT ‘PpTOIPUR

‘wod 9e :(G9g9z)IIe ‘welshg/M (806:eaR[‘3TuUIel08AZ)uUni ‘IeTTR)SSIyPUYPOUILH$ITUISL08LZ ‘sO
*{euIsjUT 'PTOIPUE ‘WOD e :(G9E9Z)ITe ‘weaskS/M (zLE:eAel ‘POYIS|)SHOAUT ‘POYId) ‘329TFoX

‘Suet -eael 3e :(G9g9Z)IIs ‘welsAS/M (POUISW SATIEN)SHOAUT ‘Poyld) ‘309TFax ‘Suel -eael
qe :(G9g9z)Ire ‘weasAg/M (Tgeg:eael -pesayrfiTaTioy)uTtew -pesxyrhqrarioy -dde -prorpue
qe :(g9g9z)1re ‘weaskg/M (GeT:eael -xadooT)dooT -Iedoo] ‘so ‘proIpue 1B : (G9E9Z)IID

‘woasAg/M (zoT:eael -IoTpuey)oeSessojyoredsTp ‘ISTPUEH SO 'PTOJIPUER 1® :(G9£9Z)Ixe -weaskg/M

(60cT:eARl ‘peexylhiTATiOy)eBesseyeTpuey -H$peorylhartaTioy -dde ‘proxpue je :(59g£9z)1Ie
‘weyskg/M (TGT:eael -peeaqrdlTATaoy)o0g$sseode ‘peesyrhatatioy -dde -proipue je :(99£9Z)IIL
‘wo3sAg/M (€687 :eARl ‘pPeaIylL31TATIOV)AITATIOVYOUNRTOTPURY peaIyli3TaTioy ‘dde ‘proapue

qe :(G9€9Z)IIe ‘weisAS/M ($8zz:esel -pesayrd31TaTaoy)L3TaTioyydounequroyred ‘pesiylLiTATIOV
‘dde ‘prozpue 3e :(G9£9z)IIe ‘welsAg/M (SO0TT:eAel ‘uUOTIRIUSUMIISUT)S3ESIIUQAITATIOYTTRD
‘uotdejusumzasul ‘dde -proipue e :(g9g9z)ire ‘weasAg/M (0z09:eael ‘£3TAT1OY)e3esrpurozrad
‘£31aT0y dde -proipue je :(59g9Z)Ire ‘welsAg/M (0z:esel - £3TATIOYUTRY)SIRSIJUO
*£aTaTaoyuUTR -3s93TdeadTAISS TZZeJRI ‘WOD 3B : (GOE9Z)IIS ‘welsAS/M (gg:eael
*90TATSgUSWOSRURHIOMION) TTROPOYISNISS] *9dTATegjusweSeue)sIon1a) -1s911desdTAIss
*TzzZeJlel ‘WOD Je :(G9£9g)Ire -welsAS/M (zLEieae[-pPoylIs)SOAUT ‘POYIS 109TIoX ‘Suel
cenel je :(g9€9z)IIe ‘we3sAS/M (POUISH SATIBN)SHOAUT ‘POUIL ~309TFax -Suel -eael

1e :(g9g9z)ire ‘weasAg/M uworadeoxgieSieruoriedoaul ‘1oeTFex ‘Suel -eael :(g9g9z)IId
‘wosAg/M uoTadeoxgireSIefuoTiesoau] -1o97Fex ‘Suer ‘eael :(G9£9Z)VW: :1serrdyesTaIss/q

oUOp pURWWODTTOYSUNI YIYA dDT : (096)odTaregiusweSeueyyroniaN/d T- sorqesdtr Sorrrnd ezepSt
:pud qIeqS PURUMO)TTOYSUNI YIVA™IDT : (096)odTAIegiusweSeue)yioniaN/q uoridedxgejowsy - so

‘prozpue smoayy (Suraiag -Suey -esel)pueuwmonTToYSUNI ‘LXOIJ$ qUIS$ ©OTAISGIUSWSSEUR|YIOMIONT
*so ‘proipue proa or{qud = poyzew punog :(§9€9Z)SKHN: :1seLTdyeoTaTIes/q 9506'eZDAX0Id$ qnIs$

9oTAISg USWESRURK{IOMION] ‘SO ‘PTOIpUR = 109(qo pauiniay : (G9€9Z)SHN: 1591 TdyedTAISS/q

9506eRZPAX0IJ$ qnigg edTAIegIusueSRURYION]ON] ‘SO ‘proIpue = 308[qo peuingey

1 (39€92) 88 19501 1dye0TaLeg/q - *poylew 3593 SUTHOAUI : (G9E9Z)VN: :3seLTdyedTaTes/q

A

311 S HHOMIIN"FONYHD

(Jpubwwo)jaysuni

92INISIUSWSHOUDWYIOMIDN

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

214

" 'panuUOd

Joulay Buluuni uj umousun

19yoed BuiddoipTs| 1ou Aoy

‘POYSTUTI ' * :(0FCET)VW::2seLTdyedTAaIes/q = 1o¥oed Jurddoip~sT mou
pue snxy Sery ATuo FT 3exdedadesse : (096)odTAIeglusweSeue)yIomniaN/q uoridedsxgejouwsy SO
‘proxpue smoiyi (Sutasg ‘Suer -eael)izexoedideooe '£xoid$ qnis$ edOTAISgIUSWSSRURKNIOMISNT

*so ‘proipue proa or{qud = poyzew punog :(0HZET)SHN: :1seLTdyeoTaTes/q 9506veZDAX0Id$ qnas$
soTAISg USWESRURK{IOMIONT ‘SO ‘PTOIpue = 309(qo psuinisy : (OHZET)SHN: :3as91TdyedTAISS/q

9506eRZPAX0IJ$ qnig¢ edTAIegluUsULSRURYION]ON] ‘SO ‘proIpue = 308[qo peuinjey

: (ObZe1)Ss: 11s0o11dyedTAIag /@ * "poylew 3503 SUTYOAUI : (OVZET)VMW: :3sertdyeorates/q

311 S HHOMIIN"FONYHD

(1932043d9230

92INISIUSWHDUDWYIOMISN

‘peysTuUT}

*t 1(2600T)VI: 258 TdyeoTaTeg/(q I9UL)STTPURIIO) SUTPIBAIOIII0dSIRIINS [VIVA EDT] :(8TE

) Ieue3sTIpURUNO)/q 0=S8I (LdHDDV [- serre”meu p- QquyMy0d I- serqeadr/utq/weisLs/)pupunt

1 (82Zg)ISTTOI3UODIRN/A ITX® dadexe~ 103 pTOIpUR ISTTOIFUODFRN 1 (8zZg)ISTTOIjUODIRN/I I9jud
dadexeTIOI pPTOIPUR ISTTOIJUODIBN : (8ZE)ISTTOIIUODIEN/I 000T : sniels pupsarqesdunx
IeTTOIIUODIBN [VIVA™DT] :(8TE)IOTTOIIUODIBN/I 0=S8X (SerTe meu o3- IyNd (- T 'T "89T
*Z6T P- 3°U 3- HNILNOWAMd I- soTqe3dT/utq/weisAs/)pupuni :(gze)ISTTOIIUODICN/A 3TXD
dadexe~yI0F pTOJIpUR ISTTOIIUODIBN : (8ZE)ISTTOIUODIEN/I Io1us dAdexe ¥IOI proIpue
I9TTOIUODIEN : (8ZE)ISTTOIIUODIBN/I 000T : Snieas pu)serqerdIuni ISTTOIIUODIEN
[VIVA™DT] :(82€)ISTTOI3UOJIEN/I SBITE MOU : ISTT0I3UODIEN SUTPIEMIOJII0JSIRDIYS
[VIVQ™@DT] :(8zg)IeTToI3uodieN/p uorideoxgejowey ‘so °prorpue smoIyy (Suridg ‘Suef
‘eae()BuTpIenIo1104s1eDINS ‘£X01d$ qnag$ ooTAISSIUSWRSRUR){IONISN] ‘SO ‘PTOIPUR

proa o1rqnd = poyzew punog :(Z600Z)SHN: :31seLTdyedTaTss/q 9506eeZdAx01d$ qnas$
90TAISgUsWESRURHIOMNIONT SO ‘pPToIpue = 399(qo psuiniay :(Z600Z)SKN: :31saltdyedtaIss/q

9gegeeZpLX01d$ qnisg eoTAIsgIUsWEFeUR|NIOMION] ‘SO ‘proIpue = 399[qo psuinyey

: (26002) SS

1s011dye0TAISg /@ * * "PoyldW 3591 SUTHOAUT :(Z600Z)VW: :3sa11dyedT1aTss/q

A

311 S HHOMIIN_FONYHD

()buIpIDMIO41I04SIDD IS

92INISIUSWDBDUDWYIOMIDN

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POy

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

215

'panunuod

194 ‘02ge pappe a2epau|

‘poUSTUTy ‘-

1 (LL8)V aseTdyedTAaTeg/q **° O=ATTWeI Te (p=sSe[J Te (XXXXX=oURUUOUED Te {(O=USeTIppe TE
: [ozutappe1sd] : (096)PSqIdU-OQIT/J O=XIew {0=PT3dU ‘ (TTNU)=9pow oYded ¢ (TTNU)=°WeUAISS
£XXXXX=8WeUu31soy :[oFurippe3el] : (096)PSqadU-OqIT/Q 9 :UOTIOR (93PTIq :oWeUIT ‘jusrs
NUTTI9U 389 | :(8ZE) PISN/I O=ATTwey Te (y=sSey Te !XXXXX=SWeuuoued Te {(Q=USTIpPpe Te
: [ogutappe3sd] : (096)PSqIdU-OQIT/Q O=3Iew {Q=PT3dU ‘ (TTNU)=9pow aYded ¢ (TTNU)=SWeUAISS
{XXXXX=0Weu3soy : [oFurappe3al] : (096)Psq3du-oqIT/d doud (- padt d- HNILNOWE V- @3noaq 3-
seTqelqs :o8pTIQq ATUT YSTPeI : ($€6) USTPel/Q 6 :UOTIde (o3pTIq :SWeUJIT ‘QUSOAS JUTTIOU
109 W :(8TE€) PION/I ¥ :UOTIOE Q0BPTIq :SWUFT ‘juUeAd YUTTIOU 38D :W :(8TE) PIeN/I

€7 XopuTyT uSTeloF IoF juere YNITMAN WI¥ ©IouSI :1TZ08TU :(geey)arueorrddnsTedm/q dn
008pTaq STJUOOIT :08pPTIq ATUT USTPRI :(HE6) USTPeI/q § :UOTIDE (9SPTIq :oWeUJT ‘1uens
AUTTISU 30 :W :(8ZE) PION/I sw ewry sueirer/0e3priq/ySteu/gadt/jeu/shs/ooxd/ < 01 oyoe
1938pTIqTATUT YSTPRI : (Y€6) UsTpei/q pep oTistwrido/pe8priq/Fuod/gadt/3eu/sks/o0ad/ <

T oydoe :93pTIQTITUT USTPRI :(HEE) USTPRI/Q €C XOPUTJT USTOIOF I0F Juerd YNITMAN WIY
ax0ul3T :1TZ08TU :(€ee¥)aueorTddns™edm/q 7 :uOT3O® (OSPTIQ :OWRUIT ‘IUSAS HUTTISU

38D W :(8TE€) P38N/I 098pTIq Iqppe 1301q :98pTIq 3TUT USTPRI :(HEE) USTPeRI/Q ' "°

de- jeasieu :spuwo~Sngep eSpTIqTYSTPeRI : (P) USTPRI/Q S9ORIISJUTPOTqRUS JISPT
e8praqeweu o3pTaq :(yE6) UYSTPRI/Q MOUS T30Iq :spwo~8nqep e3praq ysTpelx :(ye6) USTPeI/d
1da00y :Aotrod o :serajuwe ‘PNILNOWE :uUTeyd> o8pTig :(YE6) USTPRI/Q :(¥E6) USTPRI/Q
@3noxq :eTqe3 o8prag 1 (¥€6) usTpeI/Q T- °3n0Iq 3- SoIqelqe :spuo~8nqep~e8pTIq ysTpRI

1 (€6) USTpeI/Q SUTUUNI UOWSRD JUSWESTIISAPE I9INOY : (8ZE)ISTTOIIUODISYISL/d

paddoas LpeeiTe uoweep JUSWESTIISAPE I9INOY : (8ZE)ISTTOIIU0DISYISL/Q T- :XOpUT

o0eJT Toqe :odey] weailsdn :()APYIIYYASINSTIUOD: :ISTTOIJUODISYLSL 2UT : (8ZE
)IeTT0I3u0)IoY18L/q £10109ITP I0 STTJ YOS O IOIIS ‘XOPUTIT/Tdoqe/18u/sse(d/sks/

yzed : oTTF peex jouue) () (x IBYD 3SUOD)SORIIIOJXSPUISORFIISS: :ISTTOIIUODISYIS]L

JUT :(8ZE)IBTTOIIUODISYISL/T XOPUTIT/Toqe/30U/sseTd/shs/ ST yaed o1 () (x IeUd
1SU02)90eFII0JXOPUISORFT183: ISTTOIIUODISYISL IUT : (8ZE)ISTTOIIUODISYISL/A T-

:XepuT 90eJT (oqe :8oejyl wesxasdn :()APYIIYOASINITIUOD::ISTTOIIUONISYISL IUT : (8ZE
)I9TT0I3U0)IBYISL/q £103D9ITP I0 STTJ UYOUS O IOIIS ‘XOPUTIT/0Oqe/38u/sse(d/sks/

yzed : oTTJ peel jouue) () (x Ieyd 3SUOD)9DEJIIOJXOPUISORITI83: : ISTTOIJUODISYLSL

JUT :(8ZE)ISTTOIIUODIOYISL/H XOPUTIT/0oqe/30u/sseTd/shs/ sT yred oTTd () (x Ieud
1SU02)90eJII0JXOPUTeORIT103: IDTTOIIUODISYLSL JUT : (8ZE)JISTTOIIUODILSYISL/A * : (8TE
)IeTT0IIU0DILYILL/A (ToqR)edeFIejuIumesIisdnppe :(8g¢)ILTT0I3UODIOYILL/A TOqe
ues11sdn~ppe 90BIISQUT I9YL9] PUBRUWOD : (8ZE)JIousisTTpueummo)/q Ieyisl :[0]aSie *§

:08Je " pURUWO)UNI: :pU)ISYIS] : (8ZE)JIeuelsTIpueumo)/q (Toqe)edseyrsjuruesiisdnppe

1 (096)@dTAIegrUsWESeURyYIOMNION/(uoTadeoxgejouey ‘so ‘proIpue smoryl (Sutiyg ‘Suer
‘eael)ooryiejurgpwesissdnppe -£xoid$ qnig$ ooTAILgIUGWSSRURKNIONISN] ‘SO ‘PTOIpPUE

proa o17qnd = poy3ew punog : (L8)SWN::3seLTdyeoTaIes/q 9506vezdix0I1d$ qnasg
90TAISGUSWESRURHIOMNIONT SO ‘pToIpue = 399[(qo psuiniay :(L.L8)SHN::3sertdyedTazss/q
9go6reZDAX0Id$ qnasg odTAIegIUsWeSeuR|IONISN] ‘SO ‘pToIpue = 358(qo psurnyey

1 (L)8)SS::asel1dysdTAaIeg/Q ** "poylsw 3s93 SUTHOAUT : (L8)VW::3sartdyedTtarss/d

A

J1¥1S HHOMIIN"SSTIIY

90DLIANUIGAWDILSANPPD.

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIy

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

216

'panunuod

uoissiwiad waisks

TYNYTLNIALIALLDINNOD

()9rdoN2)qosIp

22IMISIUSWDDUDYYI0MIDN

uolissiwiad WajsAs

TYNITINIALIALLDINNOD

()9Ad19110x921105.103)2

90IAISIUIWSDOUDPIOMIN

uoissiwiad WwaisAs

Z1zz

TYNSTINIALIALLDINNOD

()9Ad|51n08103)2

501/J3SIUSWSDDUDYYIOMISN

uoissiwiad WajsAs

szow LT 1 (18€Tg)1te weasks/M (g9zeienel
+9dTATeg USWESRUR{IOMIONT) OTI1o Yl T Mo noypusdde ‘£x0i1d$ qniS$ ©dTAISSIUSWLSCURKNIOMNIONT
*so ‘proipue 1e :(78gTg)IIe ‘welskS/M (ge%T:eael -Teoxed)uoradesxypesa ‘TedIed ‘SO

‘proxpue e :(18gTg)ire ‘weaskg/M (0pGT:esel ‘Teored)uoridesxgpesi ‘[edIed ‘SO ‘prOIpUE

qe :(78€Tg)ixe ‘weasAS/M TYNYALNI ALIAILOANNOD ‘uotsstured ‘prorpue sey ssedsoxd quaiind
Iou $9TQT IOSN IsY3ToN :odTAaIsgrusuweSeuejyIomiay :uorideoxghatainoeg -Suer -eael :£q pesne)
1 (18€Tg) I8 ‘we3shg/M (goL:eael ‘3Turejo8fz)urew ‘3TuIel08L7 ‘SO TEUISIUT ‘PTOIPUR ‘WOD

e :(18€Tg)Ire ‘weashg/M (806:eael ‘aTurezo8Lz)uni ‘reTTe)sSIypuUyPOYISN$ITUISI08LZ ‘SO
‘TeUILQUT "PTOIPUER WOD 3e :(I8ETT)Ire ‘weaskg/M (zLE:ene('POUISH)ONOAUT ‘POYISN " 300TFoI
‘SueT -eael qe :(18€TZ)IId ‘welsAS/M (POYISW OATIEN)SHOAUT ‘Poyld) ‘199TFax ‘Suel -eael

qe :(18€Tg)Ire ‘weasAg/M (Tgeg:eael -pesayrfaTaTioy)uTtem -pesryrhqratioy -dde -prorpue

qe :(18€1g)ire ‘weaskg/M (GeT:eael -xedooT)dooT -iedoo] ‘so ‘proipue 1e : (T8ETZ)IID
‘woasAg/M (zoT:eael ‘roTpuey)eSessojyoredsTp ‘ISTPUeq SO 'PTOIPUER 1® :(IQETZ)ITe ‘weaskg/M
(60eT:eARl ‘peexylhiTATIOy)eSesseyeTpuey "H¢peoaylhartaTioy -dde ‘proxpue je :(I8gTg)iIe
‘woaskg/M (TGT:eael ‘peeayrdlTATioy)Q0g$sseode ‘peeayrhatatioy ‘dde ‘proipue je :(I18g1Z)IIe
‘weshg/M (g6€z:eaRl ‘peOIyIA1TATIOV)A1TATIOYYOUNRTETPURY ‘pPeaIylA1TAaTIOy ‘dde ‘prorpue

qe :(18¢Tg)1Ie ‘weyskg/M (Hegg:iesel ‘pesiyrfiTaTioy)L3TaTioyyounequIorIed - pesIylAlTATIOY
‘dde ‘prozpue 3e :(78€Tg)IIe ‘welsAg/M (GOTT:eael ‘uUOTIRIUSUMIISUT)E1ESIJUQAITATIOYTTED
‘uotqejusumasul ‘dde -proxpue e :(Ig8gig)ixe ‘weasAg/M (0z09:eael ‘£3TAT1OY)e3esrpurozrad
‘£31aT30y +dde prospue 3e :(1gefg)iie ‘we3sAg/M (0z:esel ‘AITATIOVUTEY)eOIRSIYUO
*£aTaTioyuUTR -3s93TdeadTATSS TZZeqel ‘WOD 3e : ([8ETZ)IIS ‘welsAS/M (T¥:eael
*90TATOgUSWOSRUR{IOMION) TTRDPOYLSNISO] *9dTATegjusweSeuesIon1a) -1s91T1desdTAIss

*TzZelel ‘wWOd je : (I8ETg)IIe ‘welshs/M (zLEieael[‘pPoylIs)oOOAUT 'POYIS 109TI0X ‘Suel
‘eael qe :(18€Tg)ite ‘welsKS/M (POUISK OATIBN)OYOAUT ‘POYISK °300TFox ‘Suel ‘eael

qe :(78€1g)ixe ‘weasfg/M uworadeoxgieSrefuoriedoaul ‘1oeTFex ‘Suer -eael :(78g7g)IId
‘woasAg/M uotqdeoxgireSIefuoriesoau] ‘1o97Fex ‘Suer ‘eael :(T78T1Z)VW::aselrtdyesTalsg/q
uotadeoxgejowsy ‘SO 'PTOIPUER SMOIY] (OFUISINOY ‘30U ‘prorpue‘qur‘Jurizg ‘Suel
‘eael)oTareyatMernoypusdde ‘Lxoid$ qnagg ooTAISSIUSWRSRUR){IONISON] ‘SO 'PTOIPUR

ueeTooq oTTqnd = poyzew punog :(T8ETT)SHN: :25eLTdyeoTaTIes/q 9506veZdAx01d$ qnass

soTAISg USWESRURK{IOMIONT ‘SO ‘pPTOIpue = 309(qo psuiniay : (T18ETZ)SHN: :ase11dyedTAISS/q

9gegeeZpLX01d$ qnisg eoTAIsgIUsWEFeUR|NIOMION] ‘SO ‘proIpue = 399[qo psuinyey

: (I18€12)SS

1s011dya0TAISg /@ * * "pPoyldW 3591 SUTHOAUT : (I8ETZ)VW: :3sartdyedT1atsg/q

N

TYNITINIALIALLDINNOD

()29 y MmNy pusddn

92INISIUSWDBDUDWYIOMIDN

S310N

182307

}24OAU|

pPapasN (S)UOISSIUIDY

SUWeN POIBIy

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

217

S ST N | IvNSTINI ALALLDINNGD (JordpoNajqous | 92inaS1uawabounpp oM

‘POUSTUTF ' :(Z88LT)VMW: :3seltdyeotazeg/q = 3exoed SurddoapTst

mou pue ostTey Sery A{uo FT 18%0ed doip : (096)edTaIsglusmeSeue|IoMIaN,/q uoTidesxgejouey

*so ‘prorpue smoryy (Suriag ‘Suer ‘eael)jsyoeddorp ‘£xoid$ qnis$ odTAIegIusWESeUR|IONISNT

*so ‘proipue proa or{qnd = poyzew punog :(Z88LZ)SHN: :1SeLTdyeoTaIes/q 9506veZdAX0Id$ qnas$

90TAISgUSWESRURHIOMNIONT SO ‘PTOoIpue = 399(qo psuiniay :(Z88.LZ)SKN: :31saltdyedtarss/q

JauIay SuluuN Ul UMOUNUN 9go6reZDAX0Id$ qnasg odTAIegIUsWeSeuR|IONISN] ‘SO ‘pToIpue = 358(qo psurnyey
12oed 3uiddoip~s| 1ou ey : (288.2)8S: 1aser1dyeoTaIeg/q * * "poylew 3se3 SuTYoAUT :(g88.7)VM::3sertdyestareg/q A | JIVISTHYOMIIN IONVHD (12yo0g4doip | @21AI9SIUWSBDUDNYIOMIBN
S910N 182307 J YOAU| D3PS (S)UOISSIULLIDY SWEN POUIB ENENERNE

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

218

'panunuod

uoissiwiad waisks

TYNYTLNIALIALLDINNQD

()220491UIPINSIDISHIOMISNISD

mu\\(mmgtmgw@OCDS\«\Dime

uoissiwiad WajsAs

TYNITINIALIALLDINNOD

(b

0IAISIUIWSDBOUDPIOMIIN

uoissiwiad Wa1sA

Z1zz

TYNSTINIALIALLDINNOD

()pajgpu7buIpIDMIO49Ad 19D

201MJSGIUBWSDOUDYIOMISN

000L==pIn saJinbay

axow LT :(¥¥eog)11e ‘welskg/M (g69g:esel
*edTATRg USURSRUR{IoM o]) sdFI0 00 I0quT108 ‘£X0Id$ qNIS$ ©OTAISSIUSWLFCURKYIONIONT

*so ‘proipue 1e : ($Hgog)IIe ‘welskg/M (g6T:eael -Teored)uoradesxypesi ‘TedIed ‘SO

‘proxpue 3® :(¥Hz0g)Ire ‘weisAg/M (ovGT:eael -Tedreq)uoridesxygpesi ‘TedIed ‘SO ‘proIpuUR

1e :(¥hgog)xxe ‘weasAg/M WALSAS™AIV 03 orqertese Arug :uoradeoxyfitanoeg ‘Suel -eael :£q
pesne) : (¥hgog)rre ‘weaskg/M (g0L:eael ‘aturejo8Lz)utew ‘qTurszo8£Lz ‘so ‘TeUILIUT ‘PpTOIpUR
‘wod 3e : (Ppgog)Ire -welshg/M (806:eael ‘3TuUIel0SAZ)uUn - I8TTRDSSIYPUYPOUISHGITUILI03LZ sO
*TeUILJUT ‘PTOIPUE ‘WOD e : (HHg0g)Ire ‘weasks/M (zLe:esel -PoYIL)S{OAUT ‘POYIS) - 3D9TFoI
‘Suet -eael 1e : ($H20g)IIe ‘weIsAS/M (POUISW SATIEN)SHOAUT ‘Poyld) ‘299TFax ‘Suel -eael

e :(¥Hgog)Ire ‘weasAg/M (Tgeg:eael -pesayrfiTaTioy)uTtem -pesryrhqratioy -dde -prorpue

1e :(¥Hgog)1re ‘weaskg/M (GeT:eael -xedooT)dooT -xedoo] ‘so ‘proipue 1e : (}HZOE)IID
‘woaskg/M (goT:eael - roTpuey)eSessojyoiredsTp ‘ISTPUeq SO 'PTOIPUER 1® : (FFZ0g)Ire -weaskg/M
(60cT:eARl "peexylhiTATiOy)eSesseyeTpuey -H¢peoaylhataTioy -dde ‘proxpue je :(H¥0g)1Ie
‘woyskg/M (TGT:eael ‘peeayrdlTATioy)00g$sseode ‘peeayrhatatioy -dde ‘proipue je : (y¥Z0g)IID
‘weshg/M (g6€z:eaRl ‘peeIyIA1TATIOV)L1TATIOYYOUNRTETPURY ‘pPeaIylA1TAaTIOy ‘dde -prorpue

1e :(%Fgog) 1o ‘weashg/M (Hezz:iesel ‘pesiyrfiTaTioy)LiTaTioyyounequrozred -pesiylAlTATIOY
‘dde ‘prozpue 3 :($Hg0€)IIe ‘welsAg/M (GO0TT:eAel ‘UOTIRIUSUMIISUT)S3ESIJUQAITATIOYTTRD
‘uotqejusumzasul -dde -proipue je :(ppzog)ire ‘weasAg/M (0z09:eael ‘£3TAT1OY)e3esrpurozrad
‘fa1aTa0y -dde -proxpue je :(ppzog)ire ‘welsAS/M (0z:ieael -£3TATIOYUTER)SIBSIJUO
*£aTaTioyuUTR -3s93TdeadTATSS TZZeJRI ‘WOD 3B : (PHZ0E)IIS ‘welsAS/M (T¥:eael

*90TATOg USWOSRUR{IOMION) TTRDPOYISNISO] *9dTATegjUsweSeuesIon1a) -1s91TdesdTAIsS

‘TZZelel ‘wWOd 1® : (}HZOE)IIS ‘welsAS/M (zLE:enel ‘pPOYIS|)ONOAUT °POYLS| °I1D9TIoX

‘BueT -eael e :(¥pgog)ire ‘welsAS/M (POYISW SATIBN)SYOAUT ‘POYILl ‘300TFoI

‘Suet -eael 1e : ($pgog)iie ‘weiskg/M uotadeoxyreSieluoTqesonu] -109T7Fex ‘Suel

cenel :($Hgog)rIe ‘woashg/M uorideoxgireSrefuoriesoau] ‘1ooTFox ‘Suer ‘eael

1 (PH20E) VI : 3so1TdyeoTATeg /g uoTadedxgejowsy ‘so ‘prorpue smoxyi ()sdgrogeserrsajurial
‘fx01d¢$ qnagg eoTAIsgIUSWESEURKNIOMISNI ‘SO ‘prorpue Surtilg ‘Suer ‘eael

otrqnd = poysew punoj : (¥HZOE)SHN: : 3501 TdyedTaTas/q 9506eRZDAX0Id$ qnas$

soTAISg USWESRURK{IOMION] ‘SO ‘pPTOIpue = 109(qo psuinisy : (¥HZ0OE)SHN: :as91TdyedTAISS/q

9gegeeZpLX01d$ qnigg eoTAIsgIUsWEFeUR|NIOMISN] ‘SO ‘proIpue = 3099[qo psuiniey

: (¥b20g)ss: 1 1s0o11dyedTAIag /@ © "poylew 3503 SUTYOAUI : (FHZOE)VMW: :3sertdyeorates/q

A

UON

()sd310490091up2b

92INISIUSWSHOUDWYIOMIDN

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POyIBIy

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

219

'panunuod

"POUSTUTI " *° :(TE00T)VH::3serTdyeotatss/q

O i pe1geT sem 1sTT doxpaesoed [YIVA IDT] : (096)odTAIegiusweSeueyyIomniaN/q 0=Sol

(dweq~enes~sorqea~dr/eqep/ ./) poulyd/utq/welsAs/)pupuni :(8zg)JISTTOIIUODIBN/A 2TXO

dasexe~yI0F pTOIpUR ISTTOIIUODIBN : (8ZE)ISTTOIUODIeN/I Ioqus dAdexe }IOoI proIpue
I9TTOIIUODIEN : (8ZE)ISTTOIIUODIBN/I 000F : Snjels pupserqerdjuni IsTT0I3UODIEN
[VIVA™DT] :(8TE)ISTTOIIUODIRN/I 0=SoI (dAes-sp-soTqeadT/utq /weishs/)pupunl :(8ze
)IaTToI3u0DIEN/A 2TXe dADSXS ¥IOF PTOIPUER ISTTOIJUODIEN : (8ZE)IOTT0oIIU0DIeN/I £I103091Tp
I0 STTJ yOus ON :pafTey eaes-sp-soTqeadr/urq/weisfs/ Suranosxs :(g£800T)Ieddeamndor/q
1oqus dADeXe ¥IOI PTOIPUE ISTTOIQUODIEN :(8ZE)ISTTOIIUODIBN/I 000T : Snieas
pupsaTqerdIun ISTTOIUODIEN [VLIVA DT] :(8ZE)IeTT0Ijuo)IeN/I uoradedxgejowsdy - SO
‘proxpue smoiyy ()doapui~astTrexdoed ‘£xoxd$ qnis$ odTAIegIUSWESeUR|IOMISN] ‘SO ‘PTOIpUR
ueaTooq >TTqnd = poyzew punog :(TE00T)SHN: :350LTdyedTAIeS/0 95968eZ0AX0Id$ qnass
90TAIag USROS URHIONION] SO 'proIpue = 329(qo psuiniay : (TEO0T)SKHN: :1saLTdyedTaIss/q

9gegreZpLx0Id$ qnasg odTAIegIUsWeSeuUR|YIONION] ‘SO ‘pToIpue = 158(qo psuiniey

: (IE00T)SS: 1389L1dyeoTaIag/q * * *PoYdeu 3593 JUTHOAUI : (TE00T)VW: :35011dye0TaLes/q

YIS HYOMLIN TONYHD

(Jdouquy3si739320d

20INJSSIUBWSHDUDYYIOMISN

0001==pIn sa4INbay

2UON

()p3]qou3Sd304]|DMAIIHS!

22IM9SIUSWDDUDWYI0MIIN

000L==pIN SaJINbay

> - -

UON

()sd3104pinjouondaox3st

0IAISIUIWSDOUDPIOMIIN

‘POUSTUTE “°° i (8%EV

YVW: :aselTdyeoTaTes/q 0: ALW °3N0X [HNGHQ”YIVA EDT] : (096)eOTAIegIUBWLTRURKHIONIBN/
T000: s8eTF 93nox [HNGHA YLIYA EDT] (096)OOTAISSIUSWSTRURKIIONIDN/A

00000000 ©3e8 ®3n0x [HNGAQ”YLIVA ADT] : (096)eoTAIegIUSWLTRURKHIONIBN/A

008YHT00: 3Sep ©3nox [HNEHQVIVA EDT] : (096)eO>TAIegIUSWESRURKHIONIBN/A 0*

LW °3noX [HAFAA VIVA IDT] : (096)ed>TAIegiusweSeueyHIon3aN/d 1000: sSe1s

@3mox [HNFAA VLIVA D] (096)eoTaTegiusmeIeURysIONILN/d 00000000: ©3e3

@Inox [HNgAA VIVA EDT] (096)eoTAIesIusweSeURRIIONIBN/d 0D8VFTO0: 2SOP @Inol
[DNgAA"VIVA TDT] : (096)@oTaregiusmeSeuejyIonleN/d 0: NIW ©3N0I [HNFAQ”VIVA D]

1 (096)@dTaTeglUCWESRURYNIONION/A €£000: SSeTF °3nox [HNFAA VIVA EDT] : (096

)@oTAIRg URWESRURNIONIDN/A 008YFT60: @388 2amox [HNFAQ VIV ADT] : (096
)@oTATegIUBWESRURKYIONIBN/d 00000000 3S8P @3noI [HNFAQ VIVA IDT] : (096
)eoTaTegIusweSeueI0M3a)/q uoTadeoxgejowsy ‘so ‘prorpue smoxyy (Suraiag -Suer
‘eae()3nqepTasTIeanoy31es ‘£xord$ qnasg odTAIsglusweSeue|IOMISNI ‘SO ‘PToIpue proa OTTqnd =
poyzew punog :(8heh)SHN: :15eLTdyeoTaIes/q 9506vezdAx01d$ qniS edTATegIUsUEFRURHYIONIONT
*so -proipue = 308(qo peuiniay :(8YEH)SHN: :1s91TdyeoTATeg/q 9506”RZDLX0Id$ qnass

90TAISgUSWSSRURHHIOMIONT SO “proJpue = 309[qo psuiniay :(8yeh)SS: :asartdyedTarss/q

A

UON

()bngap3s1791n0Y4396

92INISIUSWDBDUDWYIOMIDN

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

220

'PaNuUNUOD

‘POUSTUTF ' * :(TZC8)VM::3s9LTdyedTateg/q 0=SoI (INdNI dA-
sorqeadt/utq/weasks/)pupuni :(gzg)ISTTOIIUODIEN/A 3TXS dADSXS™¥IOF pPTOIpUE ISTTOIJUODIEN
:(82€)I9TT0I3U0DIEN/I I03ue dADSX®™YI0F PTOIPUR ISTTOIJUODIBN : (8ZE)ILTTOIIUODIBN/I 000T

: snje3s pupserqeadiunt Ie{ToI3U0DIEN [YIVA D] :(82€)IOTTOIIUODIBN/I 0=SoI (1NdINO0 d-
soTqeadt/utq/weasks/)puwpuni :(8zg)ISTTOIIUODICN/A 3TX® dADSXS™}IOF PTOIPUER ISTTOIFUODIEN
1 (8ze)I9TTOIIUODIEN/I I93ue dAdSXS {IOJ PTOIpPUR ISTTOIIUODIEN : (8ZE)ISTTOIIUODIBN/I 000T
: snieds pupserqeadIunt ISTTOIUODIBN [VIVA DT] :(8ZE)ILTToI3uopieN/I uotidedxgsjousy

*SO ‘pTOJpUR SMOIUL Avmchauw&ummuwmwh .%xo&m@ qnasg 90 TATOGIUSWOSRURKHIOMNION] SO

‘proxpue proa otTqnd = poylew punoj :(zzzg)SWN: :3selTdyedTaIsg/q 9506°eZdAX01d$ AnIs$
90TATeg UGS URHIONION] SO 'propue = 109(qo psuiniay :(gzz8)SWN: :1selrdyedstarss/q
9gegeeZpAx0Id$ qnasg odTAIegIUsWESeUR|NIONISON] ‘SO ‘pToIpue = 158(qo psuiniey

: (22gg)Ss::3seL1dyedTaIag/q ** poylew 3s93 SUTHOAUI :(2Zg8)VW::3sel1tdyedtates/a

YIS HYOMLIN TONYHD

(Jdoiq19x00419581

20IAJSSIUBWSHDUDNYIOMISN

000L==PIN S2JINbay

2UON

()sd71045U01aUU0 IS

22IM9GIUSWDDUDYYI0MIDN

uoissiwiad WajsAs

TYNITLNIALIALLDINNOD

UOD()P1I9NI042]1N02ISSAOW.

0IAISIUIWSDOUDPIOMIIN

uolssiwiad waishks

=1z

TYNSTINIALIALLDINNOD

(219D YAM3IN0YI)NDISJao0] o

201MJSIUBWSDOUD Y IOMIBN

"POUSTUTF ' * :(ZZTTZ)VM: :3seltdyedTazes/q
UOWSEP USWSSTIIOAPE IO9INOY 1Je]S 01 SOOBRIISIUT OM] 1SeSTq® PN : (8ZE€)ISTTOIIU0DILYISL/d
paddoas uowsep ueWESTIISAPE I91NOY : (8ZE)ISTTOIIUODISYISL/Q T- :XOpuT

oo®JT Toqe :edey] weailsdn :()APYIIYYASINSTFUOD: :ISTTOIJUODISYLSL 2UT : (8ZE
)I9TT0I3U0DIBYISL/q KI02D9ITP IO STTJF UYONS O IOIIS ‘XOPUTIT/]oqe/3ou/sserd/sks/

ysed : oTTF pesaI jouue) () (x IeUD 3SUOD)SDEJTIOJIXSPUISORIT303: i ISTT0IJUONISYIS],

JUT @ (g€)IBTTOIIUODISYISL/H XSPUTFT/TOqe/3ou/sserd/shs/ st ured oTTd () (+ Teud
umnoovwomeHomwwvnHQQNWprw 1I9TTOIIUODISYISL FUT : (8ZE)ISTTOIFUONISYISL/(I8Y3Ie3 “ﬁou>wna
*$:08Ie ‘puURUMIONUNI: :PWYISYISL : (8ZE)ISULASTIpUemmWO)/q (09qe)edeFrsjuruesiysdnssowsr

1 (096)@dTAIegrusWeSeuryIOMN]ON/(UoTadeoxgejowsy ‘SO ‘proIpue smoryy (Sutiys -Suer
eae()eoeyrejurgpuwesigsdnesowsr *£xoxd$ qnas$ edTAIegIUsWESRURHIONISNI "SO PTOIpUR

proa otrqnd = poyzew punod :(ZZTTZ)SHN: :350LTdyedTAIeS/q 95962eZDAX0Id$ qnas$
90TATag UGS URHIONION] SO 'propue = 109(qo psuiniay :(ZZTTZ)SHN: :1saLTdyedtaIss/q
9gegeeZpAx0Id$ qnasg edTAIegIUsWESeuUR|YIONISON] ‘SO ‘pToIpue = 158(qo psuiniey

: (22112)ss: 1aseL1dyedtateg/q * *poyaew 3593 SUTHOAUT : (ZZTTZ)VH: :3S0LTdye0T1ATes/q

YIS HHOMLINSSIDY

()90D1J81UJ9AUWIDSIISANSAOWS.

20INJSSIUBWSHDUDNYIOMISN

X3J9M35q0J9351034

uoissiwiad Wa)sAs

TYNITINIALIALLDINNOD

(pl9NI0 210y opbaTar0wal

0IAISIUIWSDOUDPIOMIIN

1Inu =j

SweNa2epalu_3ngap spasN

"POUSTUTF ' : (¢LPHT)VM: :3seLtdyeotaeg/q uotadeoxgadousy
*so ‘proipue smoiyy ()meta~dozpurTastIrexoed ‘£X01d$ quag$ eoTAIegIUSWESRURKHIOMIONI °SO
‘prozpue proa o1Tqnd = poylew punog :(ZLyYT)SHN: :1seltdyesTazes/q 9geeerzdhx01d$ Anasg
90 TATSG USWEBRURKYION]ON] ‘SO ‘proIpue = 108(qo peuiniey : (ZLbHT)SHN: :3selTdyesTaTes/q
9gegeeZpLX01d$ qnigg eoTAIsgIUsWEFeUR|NIOMISN] ‘SO ‘proIpue = 3099[qo psuiniey

: (2LY1)ss: 1aso11dyedTATeg /@ * "poylew 3503 SUTYOAUI : (TLHYT)VMW: :3sertdyeorares/q

A

UON

(Imain—doiguiisiinnd

92INISIUSWSHOUDWYIOMIDN

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

221

T Panuiuod

(g

0001==pIn sainbay

‘peusTUTy ‘- °

GHTOZ) VI: : 2so9LTdyadTATeg/q uoTadedxgeqowsy ‘SO °PTOIPUR SMOIY] (UBSTOOQ‘IUT)SPIAPexd0Tgerepdn

*£xoxd$ qnasg IeSeuepureryl ‘dde -proxpue proa >TTqnd = poyiew punog

y192) SWV : :3setdyeoTaTeg/q 9G06eRZoLx01d$ qnigg reSeuepureTyl ‘dde ‘proipue = 30efqo peuinjey

: (SPT192) SHY : 1 3591 1dyedTATeg/q 9906RRZDAX0Id$ qnas$ IeSeweywreryl °dde -prozpue = 300[qo

pauiniey :(Gy19z)ss: :3sertdyeotazeg/q * *poyzew 3sey SuroAul :(G¥T9Z)VW::3isertdyestarsg/q

JuoN

(Jspinpaxo0jgaropdn

20I8SI8DDUDULID]Y

Ive
dde ayy punodfiye st Jayyeu
pue paydeal jou s 80| |ye
19]|ed pada)inud(iye Ing inu
s (aweNaSexoed)suleiuod
sdde jasysey asnedaq IdN
SMOJYl peaisul Ing ‘uondad
e Aundes moiyy ,useop

Sye uoissiuad WalsAS

uot3deoxg1e8IeUOTIRO0AUT

+q00Tgex ‘Suel -eael :(ZBTLZ)VW::aselTdyedTazeg/d 1rodsuerlreso] -dnyoeq °TeuIslut
‘proipue ‘wod/proipue uo 1s91TdesdTAIes ‘Tzzejel ‘mwod Jo ()ejeqdnyoegiesTd : (096
yeotazegrafeueydnyoeg/) uotideoxygejowey °'so ‘proxpue smoxyl (Surayg ‘Suer -easel‘Sutilg
‘Suet -eael)ereqdnyoegreso ‘Axoid¢ qnigg reSeueydnyoegr ‘dnyoeq ‘dde ‘proxpue

proa o17qnd = poyjew punoi :(g6TLZ)SWE::2selTdyeoTaTsg/q 95960RZDAx01d$ qnas$
zo8euejdnyoegr ‘dnyoeq ‘dde ‘proapue = 3098(qo psuiniey :(z6TLZ)SWE: :3seltdyedTarss/q
9ge6eezphxoid$ qnagg rsSeuepdnyoegl ‘dnyoeq ‘dde ‘prorpue = 359(qo psurnysy

: (261.2)SS: :35011dye0TAaTeg/q * * *poyaew 3593 SUTHOAUI : (ZETLZ)VH: :3seL1dyeoTates/q

dnyove

()piogdnyo0gI03)>

22195 IbpUDNANYIDG

()UOD1IBAOHWOISN IS

30INIaSI9bouUDWINdU]

uoissiwiad waisAs

TYNSTINIALIALLDINNOD

()2POWIY DI YBIHHINISS

201/J3S1USWSDDUDNYIOMISN

"POUSTUTF **° :(€L2TT)VW: :3salTdyeotaeg/q uotadedxgejousy

*so ‘proIpue smoIyl (uesTooq)SurTesgmoputMdolies ‘LXoid$ qniS$ ©OTAISSIUSUWLSEURNIOMISONT
*so ‘proipue proa oTTqnd = poylew punod :(€£.gzZ)SHN: :3SeLTdyeoTaIeg/q 9506TezpAX0Id$ qnass
90TATeg USRS URHIONION] SO 'proIpue = 309(qo psuiniay :(£.2ZZ)SKN: :asertdyestaIss/q
9gegreZpAx0Id$ qnasg edTAIegIUsWESeUR|YIONISN] SO ‘pToIpue = 158(qo psuiniey

: (£)222)SS: 11501 1dyedTAaTeg/q * *poylem 3591 BUTYOAUT :(£.7ZT)VK::1sertdyeotates/q

()bulposmopuimdalIes

S0IMISSGIUBUIBBOUD Y IOMISN

"POUSTUTF ' * :(98E8T)VM: :3saLtdyedTazeg/q

I9TT0I3U0DLINOYDY : (82E) /A uoradeoxgejowey °'So ‘proipue smoiyl (Surilg ‘Suel
‘ene(‘Sutagg "Suer ‘eael)serTyesegiejuriles ‘£xoid$ qnig$ odTAIegIUsmWESRURKHIOMISN] SO
‘propue proa oTTqnd = POY3SW PUnoy :(98€ST)SHN: 13591 1dye0TAISS/(9Go6RRZDAX0IdS AnIS$
90 TAISG USWEBRURKYION]ON] ‘SO ‘proIpwe = 108(qo peuiniey : (98E8T)SHN: :1seTdyedTaTes/q
9596eeZPLX0Id$ qnasg ooTAIsgjUsWeFeUR|YIOMISN] ‘SO ‘proIpue = 3099(qo peuinyey

: (98681)8S: :as011dye0TAaTeg/q * *poyaew 3593 SUTHOAUT : (98€8T)VH: :3soLTdyeoTates/q

JILYIS HYOMLIN_FONYHD

()SDI]Y220433U19S

0INISSIUSWSBOUDPIOMIN

‘POUSTUTF ' :(LSGCT)VMW::3se11dyeoTATeg/q PPe pueumwod STU3 o1oSuT ‘peTqesTp

ST aanjesy Surieyied 9AdI :(8ZE)JISUsisTIpueumo)/M uoTadedxXgejowsy ‘SO ‘PTOIPUE SMOIYL
(Butaag ‘Suer ‘eael‘uestooq)perqeuggadoygies ‘Lxoid$ qnig$ eo0TAISGIUSWSTRURKHIOMISNI ‘SO
‘proIpue proa oTTqnd = poyzew punog :(LGSZT)SWN: :3seLTdyeoTaTes/q 9506'ezoAx01d$ qnasg
90TAISgUSWESRURHIOMNIONT SO ‘pPToIpue = 399(qo psuiniay : (LSSZT)SKWN: :3asaltdyedtarss/q

9gegeeZpLX01d$ qnisg eoTAIsgIUsWEFeUR|NIOMION] ‘SO ‘proIpue = 399[qo psuinyey

:(16921)8S: 19s011dyedTATeg /@ © "poylew 3501 SUTYOAUI : (LGSZT)VMW: :3sertdyeorares/q

A

311 S HHOMIIN_FONYHD

()pajgou39ndoyqiss

92INISIUSWDBDUDWYIOMIDN

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

222

panunuod

(9¥2q8x0=53e}) gl=]ona1
-uonoajoud) 15911deaninIas
‘lzzees "wod a3eyoed 0}
30O 227SS300V ‘uols
-siwdad 98] ‘wod uoIssiw
-ad Gupnues3 joN (096
)la8euepadeyded/m uols

-siwiad ESS woisn)

exom LT ** i (P69TT)II

‘woasAg/M (LTT:eael ©DTAISGOPORDII)OTqeSTP opow 20 ‘£X0Id$ qniS$ 95TAISSOPOWD)I L1Tandes
‘proxpue e :(y697T)Ire ‘weasAg/M (g6%T:eael ‘Teored)uoridesxgpesl ‘[edIed ‘SO ‘pTOIpUER

e :($692T)IIe ‘weisAg/M (0GT:eael ‘Tedied)uorqdesxygpesi ‘TedIed ‘SO ‘pPrOJIpUR e

1 ($692T) 110 ‘weqsAg/M oTqesTp epow 0o ‘L3Tindes ‘98T ‘wod seitnbax 9970T=pTn ‘$69ZT=pTd
woxy ()LaxedorqueqsAgies :Tetueq uorsstwiag :uorqdeoxghiranoeg -Suer ‘eael :£q pesne)

1 (¥692T) I8 ‘weishg/M (g0L:eael ‘3TureioSfz)urew ‘3TuIe3l08L7 ‘SO TRUISIUT ‘PTOIPUR ‘WOD
e :(¥69¢T)1re ‘weashg/M (806:eAel ‘3Turezo8Lz)uni ‘zeTTe)sSiypuypoylIel$ITUISI08LZ ‘so
*{euIsjuUT ‘pTOIPUER ‘WOD e : ($E9ZT)ITe ‘weaskS/M (zLE:eAel ‘POYIS|)SHOAUT ‘POYIS) ‘329TFoX
‘Suet -eael 3e :($69ZT)II8 ‘wersAS/M (POUISW SATIEN)SHOAUT ‘PoyId) ‘399TFax ‘Suel -eael

e :($69¢T)Ire ‘weasAg/M (Tgeg:eael -pesayrfaTaTioy)uTtew -pesryrhqraraoy -dde -prorpue

qe :(y69¢T)1re ‘weaskg/M (GeT:eael -xadooT)dooT -Iedoo] ‘so ‘proIpue 1e : ($69ZT)IID
‘woasAg/M (zoT:eael -1oTpuey)eSessojyoredsTp ‘ISTPUEH SO 'PTOJIPUER 1® : (FE9ZT)ITe ‘weaskg/M
(60cT:eARl ‘peexyrhiTATIOY)eBesseyeTpuey "H$pPeorylhataTioy -dde ‘proxpue je :($69ZT)1Ie
‘weyskg/M (TGT:eael -peeaqrflTATaoy)00g$sseode ‘peeayrhatatioy -dde -proipue je :(y697T)IIe
‘wo3sAg/M (£6gz:eARl ‘pPeaIylA31TATIOV)AITATIOVYOUNRTETPURY pesIyli3TaTioy ‘dde ‘proapue

1e :($697T) 110 ‘weisAg/M (Hegr:iesel ‘pesiyrfaTaTioy)LiTaTioyyounequrorred -pesiylA1TATIOY
‘dde ‘prozpue 3e :(}697T)IIe ‘welsAg/M (S0TT:eAel ‘uUOTIRIUSUMIISUT)E3ESIJUQLITATIOYTTRD
‘uotqejusumzasul ‘dde -proapue e :($69z1)Ire ‘weasAg/M (0z09:eael ‘£3TAT1OY)e3esrpuroziad
‘£31aT0y ‘dde -proipue je :(yE9zT)Ire ‘welsAg/M (yZiesel - L3TATIOYUTRY)SIRSIJUO
*£aTaTaoyuUTR -3se3TdeadTATSS TZZeJRI ‘WOD 3B : (}69ZT)IIS ‘welsAS/M (g¥:eael
*90TAISSSPOKDD) TTEDPOYISASST *9DTAISSIPORD) *1593TdeedTATIsS *TzZZejel °WOD e

1 (¥692T) 118 ‘welsAS/M (zLe:enel "pPOYLS|)SNOAUT °Poylsdl ‘1o9TFox ‘Suer -eael

1e :($69¢T)ITe ‘weasAg/M (POYIS SATIBN)OFOAUT 'POYId| -1097Iox -Suer -eael e

1 (692T) 110 ‘welsAg/Mm uotqdeoxgireSrefuoTiesoau] ‘1o97Fex ‘Suer -eael :(9ZT)II0

‘wosAg/M uotTqdeoxgireSIefuoriesoau] -1o97Fex ‘Suer ‘eael :($69ZT)VW: :1selrdyedTaTsg/q
oTqesTp epow 2> ‘A1tTandoes 88T ‘wod seirnbex 99T0T=PIn ‘$69ZT=ptd woxy

() £rzedoagquedshgies :Tetusq uoTssTWI®d : (096) HAQOW D0/d uotadeoxgejouwsy °so

‘proIpue SMOIU3 ()oTqesTp opow 2o ‘'£X0Id$ qnaS$ 9OTAISSEPORDDI ‘K3TInoes ‘proIpue

aut o17qnd = poyew punog :(¥69ZT)SHOD: :2seLTdyeoTaTIes/q 9506veZdAx0Id$ qnas$
90TAI8SOPOHDDI ‘A3TIndes ‘proipue = 309[qo peuInisy : (Y69ZT)SWOD: :aseLTdyeoTates/q
9G06eeZpAX0Id$ QIS ©9TAISSEPORDDI “L3Tindoes ‘proipue = 309(qo psuiniey

: (¥6921)SS

1s011dya0TAISg /@ * * "pPoyldW 3591 SUTHOAUT : ($69ZT)VW: :3ser1dyedT1aTsg/q

A

JAOW 2D SSIY

()parioddnssi—apow 22
‘()ajqous~spow 20

‘()2)gosip~apow 20

90IMJ9SIPONID

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

223

'panunuod

‘W€ 4oy ale saBueyd

97 ‘uosyedwod pin 3198ie}

sh 3uied swopad sdoddy

exow T "*° :(gge)ire -weishg/M (LgT:eael ‘preoqdrTpI)drTdAremTidiel ‘Axoid$ qniss
preoqdT)I ‘quUelUOd ‘prOIPUE e :(ZZE)Ire ‘weaskg/M (g6%T:eael ‘Teored)uoridesxgpest
*{edIed ‘SO ‘proIpuR 9e :(ggg)IIe ‘welskS/M (0FST:eael -Teoxed)uoradesxygpesi ‘TedIed

SO ‘proIpue je :(ggg)Ire ‘welskg/M QUY0EdITOQVEY wriogred o3 pamoTTe 30U 99TOT PIR

woxy Trews ‘o387 ‘wod :uorideoxgAitanosg -Suer ‘eael :£q pesne) :(gzg)IIe ‘welsAS/M
(g0L:eael -31urejo8fz)utew -3TuIe3o08L7 ‘SO ‘TRUISIUT 'PTOIPUR ‘WOD 3B :(ZZE)IIS ‘welsAS/M
(806:eael ‘aTuI®303£7)UnI ‘I0TTeDS3IYPUYPOYISN$ITUISI03L7 ‘SO *TeUISIUT ‘PTOIPUR ‘WOD

qe :(gge)axe ‘weyshg/M (zLeieae[-poyls)oyoAUT ‘POYIS -3d9TFex ‘Suel -eael e

1(gge)a11e ‘welsAS/M (POUISK SATIEN)ONOAUT ‘Poyldl ‘3o9TFox ‘Suer ‘eael je :(ggg)IIe
‘meysAg/M (Tgeg:eae(‘peeayrditarioy)urem ‘peeayrlitarioy -dde ‘proxpue je :(gzg)iie
‘woasAg/M (geT:eael -xedooT)door -xedoo] ‘so ‘proipue 1e :(gzg)IId ‘wersAS/M (ZOT:eael

+ 1o Tpuel)oSesso|yoqedsTp ‘IoTpURH ‘SO 'pTOJpUR qe :(ZZE)IIo ‘welskS/M (60€T:eael
‘peeaylh31TATIOy)oSessepeTpuey ‘H$peeIylLaTaTioy ‘dde -proipue e :(zze)ITe -weiskg/M
(157:eAe[‘peeayl£1TAT1OY)(008¢$SSe00R ‘peeaylL1TaTioy ‘dde ‘proipue 3e :(ggg)Ire ‘weisAg/M
(e6€T el "peOIyIA1TATIOY)A1TATIOYYOUNRTETPURY ‘pPeaIylA1TaT10oy ‘dde ‘proipue je :(ZTE
)ize ‘weishg/M (¥8zz:iesel ‘peeayrhaTaTioy)LarTaTioyyounequrogisd -pesiyrditataoy -dde
‘proIpue je :(ggg)Ire ‘we3sAS/M (GOTT:eael ‘UOTIL]USUMIISUT)SIBSIYUQAITATIOYTTED
‘uotgesusumigsul ‘dde ‘prorpue 3e :(gze)IId ‘weisAS/M (0z09:eael -£3TATIOY)e3esapmroFisd
‘£31AaT90y -dde -proxpue je :(ggg)Ire ‘welsAS/M (Yg:ieael -£3TATIOYUTER)SIRSIJUO
*£aTaT1OyUTR) -1S93TdeadTAISS TZZelRI "WOD 1B :(ZZE)IIS ‘welshS/M (g¥:eael
+90TATegPIe0qdT 1)) TTRDPOYISAS] “90TATegpIeoqdTT) ‘1591TdesdTAISS *TZZeIRI 'WOD

qe :(ggg)Ire ‘weasks/M (zLeieael -poyls|)oyoAuUT ‘poyls|y -109T7Iex -Suer -eael e

1(gze)Ire ‘weasAS/M (POUIS| OATIEN)OHOAUT ‘poyls) ‘19oTyel -Suel -eael 1e :(zzg

)ize ‘weaskg/M uoradeoxygie8iejuorqesoaur ‘10oTFel ‘Suel ‘eael :(ggg)ixe ‘weaskg/M
uotqdeoxgre8rejuoTqesoauy ‘3o97Fex ‘Swer ‘eael :(gzg)VW::a1serrdyestazss/d zG00T ATTesx
ST 4T 9nq 99T0T PTN Iepun [rTemws ‘o87 ‘wod> ofexoed peryroeds :TTed> peq :(096) sdoddy/m
uotadeoxgejowsy °‘so ‘prorpue smoays (Sutaig ‘Suer ‘eael)drrphrewriqiel ‘£xoxd$ qnasg
preoqdTITdI ‘3uejuod ‘prorpue eieqdrr) ‘iusiucd -prorpue o1Tqnd = poyrew punoi :(7ze

)SD: :aseLTdyeoTATes/q 9506ezdhx01d$ qnasg preoqdTDI -aueluod ‘prorpue = 30e(qo peuinjey
:(gze)§0::3se1TdyedTaTes/q 9996eRZOAX0Id$ qnas$ preoqdTTDI ‘3uequod ‘proipue = 309[qo

pauInyey : (gge)SS::asel1dysdTAIeg/Q ** "poyzeuw 3s93 SuTHOAUT :(ZZE€)VW: :asartdyedTtarss/q

A

UON

()dipfipwiidiob

ERIVENy I elelelel]b)

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

224

panunuod

ona8

e 5Nl 3] swass asIMIBLI0

153jluew ui 3ey Bumas Aq suo

1se) 9y} Joj anJy e 393 03 9)qe
Ajuo sep) 1sajiuew ul 3ey ejaw

MZA Sey 4o pausis Mz ‘e3ew

‘poUSTUTy ‘-

:(6L292)VN: 9501 Tdye0TAIeS/q § 03 6] Woxy 18s odAL1ONAZANOSUD : (096)OOTAIESAITATIORNUUOD/A
onxy : Sereiel udyddymzpurejquopw osTey : MZAWOIfpouSTgw osTey : oSewrwelsAsu : (096
)eoTaTegA1TATIORUUO)/q Yodew © puty 3.upTtp sdoo Surijegeinseg : (096)oOTAISGAITATIOBUUOY/(
3se3tdesdTazas ‘Tzzejex ‘wod :8yd SurijegeIndeg : (096)OOTAISSAITATIOBUUOD/q

99T0T :@IN I9TTe> Suraiegeindsg : (096)o2TaTegAaTATIDSUUO)/Q UoTideoxgejowsy

*so ‘proipue smoiyy (3ut)edAlieNmzp¥oeys ‘£xoid$ qnagg IeSeuelh1TATIOEUUO)T ‘38U

‘prorpue jut o1Tqnd = poylew punod :(6.g9g)SO::1seLTdyeoTAIes/q 9506RRZOAX0Id$ qnas$
T98eueA1TATOUUOD] ‘30U ‘pTOIpUR = 308[q0 pauiniay :(6.29Z)SD: :asertdyedTaTss/q

9gogeRZpAX0Id$ qnigy IeoSeueyhaTATIDSUUO)I 39U ‘pToIpue = 3159[qo psurnyey

WiR)SAS WOy s1 Ja]ed §i YD) :(6.292)8S: 1a5011dyeoTAaIeg/q * © "poulem 3593 SUTHOAUT : (6.29Z)VW: :3saltdyestates/q A SUON (JodA11oNmzp29Y> AV AT RE Y o)
‘peysTuTy
©t* 1(0Z0%)VW::2se1TdyedTAISS/Q jji oSuex Jo 3no ST 93e31ge3Tu [()93€1§309UU0HSITHO9YD]
1 (096)@2TAISSAITATIORUUO)/(DNIAYLAY == DNIAYIAY ‘93el§ ‘SIURISUODIOQ ‘FIAI ==
d7dI "93e3S “sS3ue3su0)D3OdQ [()93B3SI02UU0YIYTHOIYD] : (096 vmuﬁ;wm%ﬁ\iuquﬁoo\n
T- == 93e318e3TW [()93IB1§I08UU0DITHORYD] : (096)@dTATeSAITATIORUUOD/q i KIjug
()©1218200UU0)ALTHOOYD : (096)OOTAIegA1TATIOOUUO)/q UoTidedxXgel0wey ‘SO ‘proIpuR
SMOIY3 ()©3'3§I0BUUCYEITHOOYD ‘£X01d$ qnag$ IeSeuejA3ITATIOEUUODI "38U "pTOIPUR
qut ot1qnd = poyizew punoi :(0Z0vy)S0::3selrdyeoTareg/d 9596"eZLX0Id$ Anis$
1e8euelA1TATIO0UUO)] ‘30U ‘prOJpue = 190(q0 peuiniey :(0ZOv)SD::aserrdyestalsg/q
9g9geeZpLx01d$ qnasg reSeuel£1TATIOSUUO)YT ‘30U ‘pTOIpUe = 359[qo pauinisy : (0ZO%
)ss: :asertdyestazag/q * poylem 3se3 SUTHOAUI : (0Z0%) VW: :3seltdyedTAIsg/q A SUON ()21015129UU0 D3] 224D ERETAN R Vo)
inu
suinjal yoiym ojuiSngagias *poUSTUTI **° :(9ZHTT)VW::aseltdyedTATeg/q
uavoel190da s|ed XL Suissed aTqestq : oSueyo aanjesq HAJ® : (096)°2TAIegAITATIOSUUO)/Q UoTidedxgejowsy SO
‘00 ssed s)qesip 0y Sye 1'0 ‘proIpUR smoIyi (3uUT‘3ur)ojurdngsqaed ‘Lxoid$ qnisg reSeuelA3TATIOSUUODT ‘38U
ssed ‘sjgeus ol ‘spoylw ‘prorpue (] o1Tqnd = poy3ew punoj :(9ZHIT)SH: :2seLTdyeoTaTIes/q 9506veZdAX0Id$ qnIs$
aleaud pue ongnd iy 108euelA1TATOSUUO)T ‘38U ‘proipue = 305(qo pauiniey :(9ZHTT)SD: 1S9 1dyedTATas/q
-uou Auew ul pasn uesjooq 9gogeRZpAX01d$ qnigg IeSeuehaTATIOSUUO)I 39U ‘pToIpue = 359(qo psurnyey
apopwoade 913301 01 3)qvy 1 (9ZHT11)SS: :ase11dyedTaTsg/q * "poylew 3593 SuTNOAUT : (9ZHTT)VNW::asartdyedtarsg/a A SUON (Jojuibngagiob 9INIISAUAIIIBUUOD)
S310N 122307 j MOAU| D39 (S)UOISSIWISY SWeN POyl EMENERE

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

225

T panuiuod

‘POUSTUTY ' :(§89TT)VW: :3selTdyedTates/q

==VYVYVYVYVYISPH = 2Tnsey :($852Z)SD: :31selTdyedoTateg/q uotadeoxgejousy ‘so ‘prorpue
smoxyl ()siTededeyIperayialiel ‘£Lxoid$ qnisg reSeuelA3TATIOSUUO)NI ‘38U ‘proIpuUR JUTIIS
‘Suer ‘eael7] orrqnd = poyzew punog :($857Z)SO: :350LTdye0TATeS/(95068RZDAX0Id$ ANIS$
To8eueA1TATYO0UUO)] ‘30U "pTOJIpuUR = 309[(q0 pauIniay :(58SZZ)SD: :aserTdyedTaTss/q
9gogeeZpAX0Id$ qnig$ IoSeueyh1TATIDOUUO)I 39U ‘pToIpue = 159[qo psurnyey

: (98922)SS: 13saL1dyeoTaTsg/q * * *poysew 3593 SUTHOAUI :(§852Z)VW: :3seL11dye0Tates/q

YIS HYOMIIN"SSTIIY

()s11D42204IpaIoy131 196

ERENYS T REN N ok)

U0123UL0D H(Jdd AL U0
spuadap Ajgeqoid ‘||nu ueyy

Jayjo nsas Aue 353 1.up|nod

“PeUSTUTI - :(SOTLT)VW::3selTdyeoTaTes/q 110U

= 4Tnsey :(GOTLT)SO::2se1TdyadTATeg/q uoTadedxgejowsy ‘so ‘prorpue smoryy (Sutiys ‘Suer
reae(“Buraag -Suer -eael)sserppyIosodiel -£xoid$ qnasg IoSeuelA1TATAOOUUONT ‘38U "pPTOIPUR
¢Butayg -Suwer -eaelT] or7qnd = poyzew pumog :(GOTLT)SD::3s0LTdyedTAaIsg/q 9506RRZDAX0IdS
quasg Ie8euelA1TATIOEUUO)] 30U ‘PTOIPUR = 359(q0 PoUINISY : (GOTLT)SD: :3s0LTdyedTaTes/d
9GgogeeZpAx0Id$ qnigg IeSeueyhaTATIDEUUO)] 19U ‘pToIpue = 159[qo peuiniey

: (GOTLT)SS: 1389LTdyeoTAIeg/q * * *POYIeU 3593 SUTHOAUI : (GOTLT)VW: :3s01tdye0tates/q

JuoN

()sS2.ppYy2sI4196

201MJ3S/QINID8UL0D

"POLIBW Pa)|ed Ul PadIOJua S|
uolssiwiad (1I4IM73dAL)

L Jo19wesed passed

"PRUSTUTI " :(8S9TE)VM: :3saltdyedTates/q

0 = 3Tns8y :(8597€)SD: :3soL1dyeoTATeg/q osTey = Surweoyeseqsto = Sutuweoyst Sutweoy Ly
104 : (186) VIVA/d iiosTel perqeugSutuweoyugeleqidd : (186) ©d2BIIL]UIUOTIdLUUO)DRIR]/d
osTey = SutuweoyejeqstQ = Sutweoyst Sutweoy IY I04 : (186) VIVA/A iioSTel

perqeugSutureoyugeieqlss : (186) edefIsjuluoTidsuUUO)RIe]/(|ioSTeJ perqeugSutureoyugeleqlss

1 (786) ©oeJISUIUOTID8UUOJRIR(/(ONI1 =palepTTeA ‘Teu / f=adA[¥Iomieu ::

Fey 2y Iog sniejgyronieN1ed [AVM-VIVA EDT] : (7186)edTATegAarTaTioeuuc)/q uotidesxgejowey
*SO ‘pTOIpUR SMOIYY (JUT)Fey 93 I0 snieagyIomiaNi1e8 ‘£Lxoid$ qnagg IreSeueLlTATIO8UUO)T
‘3ou ‘prozpue 3ut oTTqnd = PoUISW PuUNod :(8G9TE)SD: :350LTdYedTAISS/(PASLOFPTOAXOIAS
qnag$ reSeuelfTATIOSUUO)T ‘39U ‘pToIpue = 359(qo paurnisy :(8G91€)SD: :aselTdysdTATss/q
PAspeIPTRAX0Id$ qnasg reSeuelA1TATIOSUUO)YT ‘38U ‘proIpue = 309(q0 pauiniey

:(8597€)8s: :asertdyeotateg/q * * "poysem 3seq BuroAul :(8G9TE)VMW::3serrdyeorareg/q

J1¥IS HHOMIIN"SSIIIY

(101~ p10)_SmDISHIOMIINISD

ERVENSTAISERe%)

uoldsu
-uod9Qdeiessd sjeaud ssHoA
-U1YDIYM Jajaid1aNI8 U el
-90dd oAUl 0} 3|qe ‘|yes
-WN (e Je1eweled Suissed Ag

"POUSTUTF *° :(95CTC)VM: :250LTdyeoTAIeg/q ¢:I10F0Id10N183 : (096)I9NORILHAdS/Q I9IUS
o3e1s e3eaghpesysq [T-DADA®] : (096) DAS/d 3TXe ©3eIS 93VASHIONISUONOQ [T-DADA®] : (096
) DAde/d I93US 93EIS ©IBISHIOMISUONIA [1-DADAd®] : (096) DAde/A sBuTazesIesTd [T-DADAR]
:(096) DAde/Q I93us 93eS 3TNIRISQ [1-DADA®] (096) DAS/A T=PT X ()UOTIDBUUOHH(IeIBDID
: (096)I9¥ORILHAdS/Q X I0IONIISUOD UOTIDIUUODH(AJ® [T-00HAd®] (096) DHAd®/Q I I03ONIISUOD
uoT3o8uu0)dHAd® [T-0addde] : (096) HAd®/d I UOTIOBUUODH(IJSIBSID : (096)ISVORILDHAJ®/A

1 I9yexdiroN3Ie8 o0TAIegA1TATIOBUUO) H(AJe : (096)@OTAIegA1TATIORUU0)/q UOTIdeoxgelomey

*so ‘proipue smorya (Sutiag ‘Suer -eael)isgeiadreNie8 ‘£xoid$ qnigg IeSeuelhlTATIOBUUO)T
‘qeu ‘prozpue jut >17qnd = poylew punog :(95ZTZ)SD: :1s0L1dyedTATeS/q 9506RRTIAX0IdS

anag$ TeBeuelAaTATIOBUUO)] ‘3eU ‘PTOIPUE = 309(qo peuInzey :(95z1Z)SD::31selrdyedTaIes/q
9gepeRZDAX0Id$ qnig$ IeSeuelA1TATIOSUUO)T ‘39U ‘pTOIpuE = 399(q0 pauIngasy

1 (95212)SS: :3s0L1dye0TaTeg/q - * *poyaew 3593 SUTHOAUI : (9GZTT)VH: :3soL1dye0TaIes/q

A

auoN

()18j2id19N19D

0INISANAIIULOD

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

226

'panunuod

*Aj|ny 1593 JouuRd 0S

‘Juiweol Ul 921n9p Ind jued

‘PRUSTUTI **° :(8LLOE)VW::3seltdyeotares/q

TTnu = 2nsey :(8LL0€)SD: :aseltdyesTaTeg/q ‘Sutweol YIOMILU UT 30U ST 3T USYM DPOMOTTE
jou st jeseydpdereqeTrqouw [YIVA EDT] : (096)o2TATegAaTaTioeuu0)/q uotadeoxgesouey

‘S0 ‘proxpue smoiyy ()3asoydpdereqerrqou ‘£xoId$ qnag$ IeSeuelAITATIOSUUONT ‘38U
‘proIpue proa oTTqnd = poyzew punog :(8LLOE)SD::3seLTdyedTaTss/q 9506eRZDAX0Id$ qnas$
1o8euelA1TATOSUUO)T ‘38U ‘proipue = 305(qo psuinisy :(8LL0€)SD: :3s9LT1dyedTAaTas/q

9gegeRZpAX01d$ qnagy IeBeurlAlTATIOOUUO)] ‘28U ‘prOIpUe = 398[qo peuingey

:(82408)8S " 19501 1dye0TALeg/q " - *poylew 3593 SUTHOAUI :(8//0E)VNH: :3seLTdyedTaTes/q

A

UON

(hesaydpgpingsjigow

9INIISAUAIIIBUUOD)

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POYIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

227

S ponuiuod

"30IAP U0 10943 10 SU00]
NS pajed Ajnyssaoons
‘UonIpuod sy} Supioy Jayy
19|qeI=soNsLRRIeYD PlINg

‘o) Gyuod |ausey sasnbay

‘POUSTUTF **° :(909ZT)VW::3s8TdyedTazeg/q TTNU = 3TNS8Y : (90921)S0: : 3591 1dyesTates/q
31xe dadexe }I0F PTOIPUR ISTTOIIUOJUIPTAPURY :(8ZE)IOTTOIIUOUIPTMPURE/] I93US
dadexe~¥I03 PTOIPUR IOTTOIFUODUIPTAPURY : (8ZE)ISTTOIIUOJUIPTAPUR/I 000T :

snyels pumpserqesdIunt IeTT0IUODUIPTAPURY [YIVA DT] :(8TE)IOTTOIIUOIUIPTAPURG/T
11x0 dAD9Xe YIOI pTOJIpUR ISTTOIIUOJUIPTMPURY : (8ZE)ISTTOIIUODYIPTMPURY/] ISQUS
dadexe~10F pTOIpUE ISTTOIIUODYIPTMPURY : (8ZE)ISTTOIIUODUIPTMPURG/I 000T *

snyeqs pupserqeadrunt zeTroxjuwodUIPTAPURY [VIVA DT] :(8Z€)IOTTOIIUODYIPTMPURE/T
11%5 dAD9Xe~YI0J PTOIPUE ISTTOIIUOYUIPTMPURY : (8ZE)ISTTOIIUOHUIPTMPURE/] ISJUSD
daoexe~¥I0F PTOIPUR ISTTOIIUOIUIPTAPURY : (8TE) ISTTOIIUOIUIPTAMPUERE/T 000T *

snyeqs pupserqeadiunt IeTTorquoDUIPTAPURY [VIVA™DT] :(82€)IOTTOIIUODYIPTMPURE/T
11%9 dAD9X9~{I0I PTOIPUE ISTTOIIUONYIPTMPURY : (8ZE)ISTTOIIUOHYIPTMPURE/] ISJUSD
daoexe~I10F pTOIpUR ISTTOIIUODYIPTMPURY : (8ZE)IOTTOIIUOIUIPTMPURE/T Q00T : Snieas
pupseqeldruna 1eTT0I3UODYIPTAPURY [VIVA DT] :(8ZE)ISTTOIIUOJUIPTAPURG/I PoY00Td
yooTgeaep : (096)ISNDBIL0Dd/Q ONI1 01 189S YOO0Tgeaep : (096)ISNDeIL0Dd/Q ONII =
oTqeus [()¥o0Tgeae(qaas] : (096)ooTAIeghkqTATIDeUUC)/q UoTadedxgejowey SO ‘pTOIpUE
smoIyy (uesTooq)yooTgereqies ‘£xoid¢ qnigg reSeuelA3TATIOSUUODT 39U ‘pPTOIPUER

proa otrqnd = poyzew punog :(909zT)SD: 13891 T1dYe0TAISS/ 6£d08LPC0AX01d$ qnass
1e8euelA1TATIOUUO)T ‘30U ‘pTOIpuUR = 190[q0 pauiniay :(909Z1)SD: :aserrdyesTaIsg/q

6£908.5Z0£¥01d$ qnas$ TeSewelA1TATIORUUO)] 38U ‘PTOIPTE = 309(q0 peurniey

1 (9092T)$S: 13501 TdyedTATSg/Q * * *POYISW 3503 SUTHOAUT : (909ZT)VW: :3sel1dyeotazes/q
‘PRUSTUTY *°° :(LPT6)VYW::3selrdyeoTazeg/q TINU = 2TNSeY : (LpT6)SD::asertdyestares/q
11x9 dAoeXaTI0J PTOIPUR ISTTOIIUOHYIPTAPURY : (8TE)ILTT0IIUOHYIPTAPURE/I Iolud
daoexs~{I0J pTOJIPUR ISTTOIIUODYIPTMPURY : (8ZE)JISTTOIIUODYIPTMPUERT/I 000T
snije3s pupserqesdIuni reTToIIUOHUIPTAPURG [YIVA DT] :(8CE)ISTTOIIUODUIPTAPURE/T
110 dAoeXe I0F PTOIPUR ISTTOIIUODUIPTAPURY :(STE)ITTOIIUODUIPTMPURH/] Iojus
dadexe~ 103 pPTOIPUR ISTTOIIWOJUIPTMPURY : (8ZE)ISTTOIIWOJUIPTMPURE/I 000T : SMIBIS
pupseTqeddIunt I9TT0IIUCIYIPTAPURY [VIVA D] :(8TE)ISTTOIIUODYIPTAPURY/I POX20TqUN
FooTgeep : (096)I9YOeIL0Dd/Q ©STRF 03 3OS Yd0Tgeaep : (096)IONORIL0Dd/Q OSTeI =
sTqeus [()}ooTgeaeqies] : (096)odTareghiraTiosuuc)/q uoradeoxyejowsy °'so ‘proIpue
smoayy (ueeTooq)yooTgereqies ‘Axoid$ qnigg IeSeuwelA1TATIOPUUO)] ‘38U ‘PTOIPUR
proa otTqnd = poyzew punog :(LpT6)SO::3s91Tdye0TAISS/d 6£408LVZ0AX01d$ Anass
T98eueA1TATIOUUOD] ‘30U ‘pTOIpUR = 309[q0 pauinisy : (LPT6)SD::aserrdyedTarss/q

6£908L7Z0Lx01d$ qnagg reSeuelA3TATIOLUUODT 39U ‘PTOIpUR = 305(qo peuiniey : (LyI6

1s011dye0TAISg /@ * * "pPoyldW 3591 SUTHOAUT : (LHI6)VW: :3sertdyedTarss/q

A

UON

(1420]g9010G195

9INIISAUAIIIBUUOD)

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

228

T panuiuod

(AsedpeOIq PUDS

0) Jasn uieuad ainbal Aepy

‘POUSTUTI **° :(§9LZT)VW::3selTdyedTaTeg/q TTOU = 3Tnsey

1(99L21) S0+ 118591 TdyedTATISg/q <¥oRlsS TTeD JO WO330q> 9Fp:1ORSURILOSXS °I9PUTY ‘SO 'PTOIPUR
186:10esuRIIU0 ‘qnig$IaSeue|jf3TATIO8UUO)T ‘19U ‘PTOIPUR §ZTZ:PoTqeudelesTTqol21TIes
*90TATSSA]TATIOSUUO) “ISAISS °PTOIPUER "WOD £efHT:3sedpeorgpuss ‘Tdurqxsquo) -dde

‘proipue :Iesn paryrTenb e qnoyitm sseooxd weasAs oyl ur poyzew e SUTTTRD : (696
)ytdwraxequo)/M i HP SUTIOOUUODISTP YATA MOU JUSS ST UOTIOR poleTdwod ejep 1T JO

JuejuT oyl [()PeTqeuieIR@eTTqONe1T18S] : (696)@OTAIOSAITATIORUNO)/Q | MOU JUSS ST
9poW~YIOM]OUT18S JO ULQUT oyl [()PeTqeumeleqeTTqoWe1T19s] : (696)O2TAIagA1TATIDOUUOD/q
<¥oels TTed JO W0310Q> 9P :10eSURI[DOX® ‘IOPUTE ‘SO 'PTOIPUR JQE:IDBSURILUO
*qnaggIe8eury A1 TATIOOUUO)] ‘10U 'PTOIPUR J[]Z:POTqeudele e TTqo[e1 189S ‘92 TAISSAITAT]O8UUOD
*I9AISS ‘PTOIPUE ‘WOD gEFT:aseopeorgpuss ‘Tdurixejuo) ‘dde ‘prorpue :xesn paTyrTenb ®
qnoyatm ssedoxd weasAs syz ur poyzew e SurTre) : (696) TAWIIXSIUO)/M OSTEF == STqRUd
[()PeTqeuzRIReTTqOW®1Ta8S] (696)@oTATeghaTaTiosuuo)/q uotideoxgejomey ‘so ‘proipue
SmoIyl (UesT00q)paTqeuzeleqeTIqo|e1T1es ‘Ax0xd$ qnasSg IoSeuelA1TATIOOUUODT 38U

‘proxpue proa otTqnd = poyjem punoj :(§9.zT)SD::3selTdyeoTaIeg/q ZOREOPZIPAX0Id$ ANIS$
To8euelA1TAT]O0UUO)] ‘30U "pTOJIpuR = 109[(q0 pauIniay :(G9.ZT)SD: :aserrdyedTaTss/q

Z0eeopZTofx0o1dg qnigg reSeueyh1TATIDOUUO)T 19U ‘pToIpue = 159[qo psuinyey

:(9922T)SS: 1989 Tdye0TAISS/q * * *POYILW 3593 SUTHOAUT : (§9.ZT)VW: :3selrdyestazes/q
*POUSTUTF *** :(SHBTT)VM::3solTdyedTazeg/q TTNU = 3TNS8Y : (SHTT)SD: :3s91tdyedTazes/q
<oels TTeD JO WO0330qQ> Qp:10RSURILDOX® 'IOPUTY ‘SO ‘PTOIPUR /8E:IORSURILUO
*qnaggIe8eury A1 TATIOOUUO)] ‘10U 'PTOIPUR QZTZ:POTqeUdeIR(oTTqO[e1 189S ‘90 TAISSAITAT]O8UUO)
*I9AISS ‘PTOIPUR ‘WOD gEpT:aseopeoigpues ‘Tduraxejuo) ‘dde ‘proipue :iesn peryrTenb e
quoyatm sseooxd weqshs eyz uUT poyrew e SuTTTR) : (696)TdWIaxequo)/M ; Hy BuryoeUUOD

YaTA MOU jues ST uoT3oe pejerdwoo ejepTel Jo JuequT oyl [()pPeTqeudele(eTTqole1I1es]

1 (696)@2TAISGAITATEOOUUOD/Q j MOU JUSS ST SPOW ¥IOMISU 39S JO USJUT SYL
[()peTqeuUTe1e e TTqONP1T18S] : (696)o9TAISGAITATIOBUUO)/q AT01D0ITP I0 STTF UYOUS O

:sooxd -dnox85/8%,01 PTd/T9T0T PIN/200e/ uwado 01 parTey : (696)dnoi8ssesoxdqri/M

<oels TTeD JO WO110Q> 9pf:10BSURI[DOX® IOPUTY SO ‘PTOIPUR /8@ :IOBSURILUO
*qnag¢Ie8euey A1 TATIO9UUO)] ‘10U 'PTOJIPUR J[]Z:POTqeuUdele aTqo[e1119S ‘9dTAISSAITAT]DoUUO)
*I9AI8S PTOIPUR ‘WOD £EFT:aseopeoigpues ‘Tdurixejuo) ‘dde ‘proxpue :iesn paryrrenb

e qnoyatm sseooxd weashs eyl uT poyzew e SUTTTE) : (696) TdWIIXSIUO)/M ONIL == OTqRUS
[()pPeTqeuUFeIReTTqONP1T28S] : (696)@oTaIeghiTaTiosUU0)/q UoTadeoxgejowey 'SO ‘pPTOIpUR
SMOIU] (UesT00q)peTqeuzeIeeTTqoNe1T1es ‘Axo1d$ qnig$ IeSeuelA1TATIOSUUO)T ‘30U

‘proxpue proa orTqnd = PoY3IsW punoy :(SYETT)SD: 1881 TdyedTAISS/q 0GGT6STOAX0Id$ Anass
1o8euelA]TAT]OOUUO)] ‘18U ‘proIpue = 308(qo peurniey :(SHETT)SH::aselTdyeoTazsg/q

0G8GT6S0Lx01d$ qnigg reSeueyhaTATIdOUUO)I 39U ‘pToIpue = 3159[qo psurnyey

: (S¥6T1)SS: :3s011dyedTATeg /@ * "poylewW 3503 SUTYOAUI : (SPETT)VMW: :3sertdyeorares/q

A

UON

()p2]gouIDIOFS)IGOWSITIOS

9INISSAUAIIIBUUOD)

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

229

" 'PaNuUNUOD

“JLVLS MIOMLIN SSIV
yum papsjoid 2q pinoys

‘suWeu dy usund _suinay A QUON (Jawppizb 30IMBSHHI
JLVLS MYOMLIN SS3D
-V 1o/pue
JLVLS MYOMLIN IONYHD
yum papsjoid 2q pinoys
‘suolssiwiad Aue no
-Yam jodsioy aligow
Jo/uo wm 0] 3|q¥ A SUON ()21qosip ()ajqous S0IMOSHHIN
uolissiwiad Wwa)sk N NEEEENNEILN) ()22112@%420] 20//JaSu0nd ouT9T
‘paysTUTS
Tt 1 (0LSLT)VN: :2selTdyeoTATeg/q TINU = 3TNSOY : (0LGLT)SD: :3selTdyeoTaIes/q 0 = PoTqeus
‘QWOTIY PeTqRUFRIRqSUTWROYIeS [YIVA D] : (696)ooTAIegh3iTaTiouu0)/q uoTidedxgejomsy ‘so
‘pTOIpUR SMOIY] (UWeST00q) WD TIY PeTqeugeseqSutweoydas -£xoxd$ qnisg IeSeuelA3TATIOSUUO)T
‘3eu ‘prorpue proa oTTqnd = poyzew pumod :(0.LGLZ)SO::3selTdyedTAIes/q Z0REOPZTOAX0Id$
qnagg re8eueA1TATIOEUUOY] ‘39U ‘PToIpue = 300(qo peuInisy :(0,GLZ)SD: :389LTdyedTAISS/A
Z0eeopPZIdx01dg qnigg reeueyhaTATIOSUUO)T ‘39U ‘pToIpue = 359[qo psaurniey
1 (0L5.2)SS: sasel1dyedTAaTag/q osTe :9T1qe88nqeQsT ‘I9sn :pring ‘poxd :urewoq
‘uoT1eIn8TIuod SUTHOTJ - JI9SIRJUOTIRINITJUODSOTIISN : (YEGLZ)TRJUOTIRINSTIUODSOTIISN/T
TedquoT4einSTFUO)SOTIIS) :OWRU POJEIUNI]} ‘ISSIRJUOTIRINSTJUONSOTIS) :ouweu [eUrSTIO
¢Sutqeouniy -Suol 003 sem euwreN - 108807dQ : (YEGLZ)I10880TdQ/I 010€I9DOTAISSSOTII|OSEY
ioweUu pejeosuniy ‘L1030eJe0TAIOGSOTI}oNOsey :oweu Teut8tio (Surjeouni] ‘Suol 003 Sem ouwey -
10880740 * (¥€5L2)20880Tda/I ** *Poyzew 3se3 SUTHOAUI :(0LGLZ)VW::3s9LTdyedTaIsg/q POUSTUTF
Tt 1(SEL9T)VN: :aselTdyeoTaTeg/q TINU = 2TNSOY :(GEL9T)SD: :aselTdyeoTaIes/q T = poTqeus
‘aQUOTTH PeTqeugeIeqSuTweOyISsS [VIVA DT] : (696)ooTaTegh3TaTiosuuc)/q uotideoxgesowsy °so
‘proipue smoiyi (uesTooq)aWDTIY PeTqeudereqSutweoyiss ‘£xoid$ qnigg IsSeuelhlTATIOSUUO)T
"3eu ‘proipue proa oTTqnd = poyrew punoi :(GEL9T)SD: :350LTdye0TATIes/d 099T6GVOAX0IS
qnag$ re8eueAITATIOEUUOD] ‘39U ‘PToIpue = 300(qo PouUINILY : (GELYT)SD: :359LTdYe0TATSS/A
"1aynq1e230) 0IpeI e }00] 0S|2 0595T65H0Lx01d$ qnigg IeSeuelA1TATIOSUUO)T ‘38U 'proIpue = 399(qo peuInisy
01 PaaN ‘PIP SIY11eYM INsI1ON : (G£492)SS: :asortdyeoTaag/q " 'poylew 3sel SUTHOAUT : (G€/9Z)YW: :3se11dyedTAIsg/q A QUON (JWDTIY—P3]gou3LIDgbUILID0YI9S ERENSTANREN NV ok)
S310N 102307 ;OAU| P3Pa3N (S)UOISSIULLISg SUWEN POUIB| SWEN 3DIND!

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

230

panunuod

“ILVLS RIOMLINTSSID
v Jo/pue
FLVIS HIOMLIN IONVHD
yum papsjoid 2q pinoys

“POUSTUTF ' ° :(LOCLT)VW::3s9LTdyedTATeS/q oNI3 = 3TUseY : (LOZLT)dHW: : 350L1dyeoTaIes/a
[peund] : arssiesded : (1807)wogreddermpdesontyTm/d peund :@ISsiesdzd : (180T
yuogreddeimpdeasoyTrITM/q uotadeoxgejowsy ‘so ‘prorpue smoryy (Sutiyg ‘Suer -eael)euweyies
‘fxo1d$ qnagg 1odsqogeTTqoI ‘aodsjoyerrtqow ‘Tdwt ‘TFTA 8T ‘wod> wesrooq o>Trqnd

= poy3zew punod :(LOZLT)dJHNW: :3s911dye0TaTeg/q FGOTFLDAX0Id$ qnas$ 30ds3IOHSTTAONT
‘qodsjoyertqow ‘Tdut ‘TFTM ‘08T ‘wod = 100(qo peuIniey :(LOZLT)dJHW: :1s2LtdyeoTaIes/q

75913.20Lx01d$ qnagg 10dsq1oHeTTqolI -2odszoystrqom Tdwt -TFTA ‘88 ‘mwod = 309[qo

“(@Iss) sweu dv__ 39S pauiniey :(L0ZLI)SS::3se1tdyeoTaTeg/q *° *poylew 3589 SUTHOAUT :(JOTLI)VW::3seitdyedtatss/q A SUON SUWIDNIIS IMSSIHI.
J1VIS MIOMIIN SS3D
v Jo/pue
JLVLS MYOMLIN IONYHD
yum_paparoid ag pinoy A auoN WY ZNES IMBSHHI.
‘PRUSTUTI * ' : (PHTET)VM: :3selTdyedTates/q
000000 = 3TNS®Y : (YHZET)dHW: : 3521 TdyeoTaTes/a [000000] Aeyydmiendzd : (180z
yuogreddeapmpdeasoyTyTi/d uotadeoxgejowsy ‘so ‘prorpue smoxyl ()Leyydmaes - £Lxoidg
qnagg aodsjogsTrqonI ‘2odsijoystrqom ‘Tdwr ‘TFTM ‘83T ‘wod Sutizg ‘Suer ‘eael orrqnd
= Ppoyieuw punod : (%zee)dHN: : 350LTdyedTATIeS /A ZOREOPLTOAX0Id$ qnas$ 30ds1oHeTTQONT
‘pIn Waisks 03 3|qis ‘qodsjoysTrqow ‘Tdwt ‘TFTM ‘98 ‘wod = 399(qo pauIngey : (YHTET)JdHW: : 359I TdyedTATSS/(
-s3208 8 AJUO p)noys 1odsioy 20eeopPZT0fx01d$ qnagg a2odsiogsTTqonI -aodsioystrqowm Tdwr "TFTM 88T ‘wod = 3d58(qo
40J A9y WdM 1USLND Suiniay pauInyey : (¥hgeg)SS: :1se11dyedTAIeg/Q * * "poylduW 3s91 SUTHOAUT : (PH2Eg) V' :asartdyedTatss/q A QUON UENTZNEL) ADINIBSHHI.
S910N 122307 j MOAU| D39 (S)UOISSIWISY SWeN POyl EMENERNE

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

231

“JLVLS HIOMLINTSSID

Y lo/pue
JLYIS MHIOMLIN IONYHD
yaum pajdazold aq pinoys eyl

spoyiaw _pajosioidun 1ayio

‘POUSTUTY **° :(EECHT)VW::3s91TdyedTATeg/q TTNU = 3TseY : (EECHT)STOTATM: : 350 LTdyeoTaTas/q
(£=9PODTUOSEBAI) 309UUOISTP TTZ08TU IoATIp vdM : (0TZH)3auedTTddns edm/q sased umop Ies]
:§77aL :(0Tgy)aueorTddnsTedn/q QILATINOD=e1RAS £=UOSEBSI (00:00:00:00:00:00=PTssq Burpuad
9T:69:€T:69:06:0I=PTSSq - @3edTQUSYINEsp 01 3sanbey :Quers :(0Tgy)auedtrddnsTedm/q
qsenbax weos Surrrecue) :ouelm :(0Tgy)aweoTTddns edm/q (IDIANNODSIQ. PUBUWOD ©DBIISIUT
Toxjuo) :Quels :(0Tgy)3weorrddnsTeds/q LOANNODSIQ :UeeT0OgOP :(OY0T)OURTA-SATIRNTITM/A

o3 WeTPuey - 3s| oxd - o8 W

oxd - 300uUN0dSTP - 8qQ80T:¥oRIS LOANNOISIA
[sn $80°952° 220 ¥] :(O¥OT) :OATIBNTITM/E 0 O LDANNODSIA GWDi ©3'3ISPe3deuuo)dZT : (0707
)eUTYIRR21eISTITM/E 000T=PT0 ‘697€=pTd oSTeJ :POTqRUITITMILS :(0Y0T)OOTAISSTITM/Q
@3e3gpelosuuo)zT :Isysseooxd :(OFOT)PUTUYORWEIBISTITM/A O O LOANNOOSIA GWDi ©3'ISPRIdeuuU0)
£ (OP0T)OUTYORReIRISTITM/F <Oe3S T[TeD JO WO0330Q> 9H¥:30RSURILOOXS® 'IOPUTY ‘SO

‘PTOIPUR ZZZ:3ORSURILUO 'qNIS$IeBeURHTITMI "TITM ‘30U 'PTOIPUER GZ9:POTqeUATITHIES
*xgTduTeoTAISOSTITM TFTM *ISAISS 'pTOIpUE ‘WOD ggfT:3iseopeorgpuss ‘Tdurixejuo) ‘dde
‘prorpue :Iesn paTyTrTenb e 3noyztm ssedcoxd weisAs sy3 ur poysew e SUTTTED : (0VOT

) Tduraxequop/M osTeId0LS NOILVDIYDOV IAIM : (0VOT)XATdWIEDTATOSTITM/A ©3BISPOIOLUUOD
:8syssecoad :(OF0T)OUTYIRREIRISTITM/Q GHTTET=1euyn ‘Ssu 7 :oSesssopeTpuey : (00T
)oUTYORNeIeISTITM/Q ©STRF :TITA OPTUSSTRI :POTqeus TITAUSPPTYSINIBIINZANOLUD : (0VOT
)xZTdmIedTAZOSTITM/Q 0007 :we3sks *pTn ‘proIpuwe=smeneSexoed ‘Q00T=PTn ‘697e=pTd 100UNOISTP
1 (007)xFTdmWIedTATSSTITM/Q TTNU : o7qeT ddy ‘000T:weasAs 'prn "prorpue =e8exded ‘Q00T=pPIn
‘69Te=pTd osTeJ :POTqRUATITMIOS :(0%0T)XFTdWIedTAISSTITM/Q 0 « SuroBugpeoryzgles
[WOWIZZAN] :(69T€)@2TAIegBuTpeoTFFQTATM/Q uoTadeoxgesomey 'S0 °PTOIPUR SMOIYL
()TITMOTqesTP ‘£x0xd$ qnag$ SurpeoTFFOTJTMI "Surpeoryyo 'Tdwt ‘TyTA 93T ‘woo proa orTqnd
= poy3zeuw punog :(geZHT)STOTATM: : 350 TdyeoTaIes/q 039FPTOTOAX0Id$ qnag$ SUTPROTIFOTATMI
‘Burpeoryyo ‘Tdwr -‘TyTM ‘88T ‘wod = 308[qo peuIniey :(EETHT)STIOTATH: :3selTdyedTATeg/q

039IP10T0£x01d¢$ qnag$ SuTrpeoTIIFOTATMI ‘Sutpeoryyo ‘Tdwrt -TyTm 98T ‘wod = 399(qo psuinyay

: (6£2¥1)SS: 19s011dyedTATag/Q * "poylew 350 SUTYOAUI : (£8THT)VMW: :3sertdyeorares/q

A

UON

(yima)qosip

22IMISBUIPDOIOIHIM

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POIBIy

SWEN 221N

(PaNUIIUOD) Z°0°G-07 40} SIINSJ 1591 |oAS]-POYISN

232

Appendix H

S4-5.0.1 Test Results

233

" panuiuod

'paIsal Jou
0s ‘Aem awes ul paydajold Spo
-yivW 1AV 4240 "000L==pIN

S92J04Ud ()8 poylaw djeAld

axow LT *'° :(98Zz)iie ‘welsAg/M (0g9:eaR[‘e0oUL3ISTSILdIEYI)PI®OTAS(FRS

*£x01d$ qnas$ 9OULASTSISJIgYI 'odueasTsiad ‘proIpue ‘oINTOSqe "WOD J® : (9877)IIo ‘weasAg/M
(g6¥1:enel Tedreq)uotqdecxygpesi ‘TedIed ‘SO ‘prOJpuR e : (9877)IIe ‘weasks/M (0HST:eael
Teoxed)uotadesxgpess ‘TedIed ‘SO ‘PTOIPUE e : (9877)IT ‘WelsSAS/M SOTAISS 9OUSISTSIDg
1dy sseooe o3 pazrroyjne 3oy :uoradeoxgharanoeg ‘Suel ‘eael :£q pesne) : (9827)Iie
‘woaskg/M (G6TT:eael ‘aturezo8Lz)urew -31urelo8£7 ‘so ‘TRUILSIUT °PIOIPUR "WOD 3B :(98TT
yaxe -we3shg/M (00%T:easel -aTurezo8Lz)unt - IsTTe)DSSIYPUYPOYISK$ITUILL03L7 ‘SO *Teursjut
‘proxpue ‘wod 3e :(98ZZ)IIe ‘welsAS/M (zLE:ieae[‘pPOYIS|)SWOAUT ‘POYIS -3d9TFox -Juel
rene(qe :(98zg)I1e "we1sAS/M (POYISN SATIRN)SNOAUT °POYRd) °3159T7Fox -Suer -eael e

(982)1re ‘weiskg/M (zyeg:iesel -peeayrditarioy)urew ‘peexqrhiraraoy -dde -proipue

e :(987C)IId ‘weisAg/M (gpT:eael -xedooT)door ‘iedoo] ‘so ‘proIpue Je : (9827)IID
‘woasAg/M (g0T:eael -IoTpuey)oSessojyoredsTp "ISTpuey 'SO ‘PTOIPUE 1® :(987Z)IIo ‘welsAg/M
(8¥p1:eael ‘peeayrhaTaTioy)efessepeTpuey ‘H$peaqrhatatioy -dde -proapue e :(98zg)i
‘weasAg/M (LLT:esel ‘peaaylf1TATIOV)006¢$sSeodR peeayrfiTatioy ‘dde ‘proipwe je :(98gz)iIe
‘weaskg/M (85Lz:eael -peerqrhaTaTioy)LaTATioyyouneTeTpURy ‘peeiyrAiTaTioy ‘dde ‘proxpue

qe :(98zz)ixe ‘weasfg/M (9p9z:eael ‘pesaylfaTaTioy)L3TaTioyyouneTurioyred ‘pesIylLlTATIOY
‘dde ‘proipue 3e : (9877)IIe ‘weisAS/M (6TTT:eAel ‘UOTIRIUSWNISUT)S1eSIJUQAITATIOYITED
‘uotgesusumigsul ‘dde -prorpue 3e :(9gzz)Ire ‘welsAS/M (68z9:eael -£3TATIOY)e3eexpUIOoFIad
‘£a1aT90y -dde ‘proxpue je :(98gz)ire ‘weasAg/M (Gzieael -A3TATIOYUTER))S3IRSIUO
‘£aTAaTIOyUTRY -9s93TdeedTATSS ‘TZZeqel ‘WOD J® : (9877)IIS ‘weasAS/M (g% :eael
*90TAISS9OUSSTSISJLAY) TTeDPOYIOISO] 9D TAISSOOUS]STSIDJIAY *1591TdesdTaATss *TZZejel

‘mwod qe :(98z7)IIe ‘welshS/M (gLE:ieael -poYISN)SFOAUT 'POYLS) -109TFox Suer -eael

qe :(98zz)ire ‘weasAg/M (POYISK SATIBN)ONOAUT "POYld) °3097Fox -Suer ‘eael e

1 (982z)iie ‘weiskg/M uoradeoxyie8iejuorqesoau] -30o7Fyex -Suwey -eael :(9g8zz)ixe

‘woasAg/M uotradeoxgireSrefuoriesoaur ‘1ooTFex ‘Suer -eael :(98zz)VW::aseltdyesTareg/d
uotqdeoxgejowey ‘SO ‘proIpue smoryl ()pIredTasqaed ‘£Lxoid$ qnigy oouULISTSILGIAYI
*oousgstTsred ‘propue ‘sjnrosqe ‘wod Suriyg ‘Swer -eael orTqnd = poyzew punod : (9827
)SdLay: :3se11dyedTATes/q 6TP8AYLZOAX0Id$ qnas§ eduelsTsIedlgyl ‘edoueisTsied ‘prorpue
‘ejnrosqe ‘wod> = 308[qo peuiniey :(98¢¢)SdLAY::3selTdyeoTAIss/d 6TP8AYLTOAX0IdS

qnig$ eouelsTSIBdIdyl ‘oousisisied ‘proIpue ‘93nfosqe ‘wod = 359(qo paurniey

:(98gz)ss::asertdyedtarsg/q ‘' -poysswm 3seq SBUTHOAUT :(982Z)VW::aselrdyeorazeg/q

N

SUON

()pio2119g196

90IMISAIUD)SISIOG I GY.

S910N

120307

j 0N

pPapasN (S)UOISSIUIDY

SUWeN POUIBY

ENENESINES

1'0°G-¥S JOJ SIINS3. 1531]oAS]-POYIBN “L'H 9]gDL

234

“panuniuod

*POUSTUTI *** :(8009T)VMW::aselTdyedtazeg/q sdi/sysfsnd3/mrogqerd/seotasp/shs/ uedpg 01 TTR4
(18T)I9BUTT4edRIING/M €€ 'T9 ¢ Sdd : (18T)IeBurrgedering/q iiperenopddyrenopuo :(TT0T
)xeSeuelI9A0)/q TTNU = 3TNSSY :(8009T)SWATTY: :3s911dyeoTazeg/q T=pIferdstp pesowex Aerdstq
1 (TT0T)I08eueA3TATIOV/A NOILVINASIYd DVIA ‘NO 23e3s ‘XyTHAAQ od43 ‘0 uorjezox ‘ENON yonos
‘0 surtpesgsead ‘o yzpoudspdde ‘1dp 0 ‘08% X 0 '08% ‘08% Larsuep ‘[] sereyyseiyeypeiioddns
‘sdy 0 "09 ‘0Z6T X 080T :.JoTFruSejleraan(,,0Furedotasgherdstq :pesowsx aoTasp Leldstq

1 (1107)eoTazegrefeueyle1dstq/I 0968HSH :oFut eureudrys : (10T)ooTAregrefeuwejherdstq/I
esTeg:eTqeus : (77107)Ieadepylerdstqretyrude)/q esTeF:ieTyTudeylerionge1qeus : (10T
yaoTazegaaSeueyferdsTq/q uotadeoxgsjowsy ‘SO ‘pTroIpUe smoxyl ()IeTFTuSeloTqesTp

- fxoxd$ qnasg reSeuelA1TTTIqTSSeoOYI ‘KITTTIQISSeDODOR "MoTA "proipue proa oTTqnd = poyjzsw
punoi :(8009T)SWATTY: :asel1dyeoTaTeg/q Fovyezdcodixo1d$ aAnigy 1o8euelA3TTTqTSSe00Y]
*£3TTTQTISSEO0R "MATA ‘PTOIPUR = 300[q0 peuiniay :(8009T)SWATTV::3selrdyeotazes/q
FOVhezagphxoadg qnagg 1e8euelA3TTTQTSSe00Y] ‘A3ITTTqTSSed0R “MOTA “proIpue = 308(qo
peuIniey :(8009T)SS::asertdyestareg/q sdy/syshsndS/mriogqe1d/seotaep/shs/ uedg o2

TTRd : (187)I0BUTTJeorIIng/M €€ ‘9 : Sdd :(18Z)IeBuTTfeoeying/q Lz3 AITATIOVUTER
*/3se3tdeedTAaTes ‘TZZejel ‘WOD 0N PGLT9P9TPIO0O9YAITATIOY IoF nosuwty osned £3TATIOY

: (1707)Ie8eueyA3TATaOY/M ** "POY3eW 3se3 SUTHOAUT :(8009T)VYW: :3sertdyedtates/a

SUoN

(Jeniubopeiqosip

901N13S126DUDAYI)IGISSaOY

"PeUSTUTI ‘" i (HEETT)VW: :3seLTdyeoTaTeg/q

TInU = 3Tnsey : (PEETT)SWATTY: :ase1TdyedTateg/q ijperenopddyresopuo : (1707)IeSeweyieno)d/q
1=p1fe1dsTp peppe Aerdstq : (1707)IeBeueyA3TATIOY/A NOILVINISTY DY1d ‘NO °3eis

‘AVTHIAD °dA3 ‘0 uoTiezox ‘ENON yomos ‘o surrpesgsead ‘o Fypoukspdde ‘tdp o

'08% X 0 "08% 08y Karsuep ‘[] sejeyysexyeypezroddns ‘sdy 0 ‘09 ‘0Z6T X 080T

i o1 yTude|feTI0A0,,0JuIedTASq R TdSTQ poppe ooTasp Aeldstq@ :(TT0T)odTAaregrsSeuellerdstq/I
(0T ‘OT) O "OT:9Teds sBuryjeguorqesTyTudejres : (T10T)odTAregrafeuelferdstq/q ITUT
ooTasqIaTITUSRY : (TTOT)ooTad@raTITule/d 9LIGCLEEX00/ (TTNU=SUWEU)SORIING 90RIINGS]ESIIUO
1 (1107)Ieadepyferdstgretrtulen/q sdi/sysfsnd3/mrogqerd/seotasp/shs/ uedg 03 TTR4

(182)I9BuTTge0RIING/M TG 09 © Sdd : (I8¢)IeBurrgecezing/q ¢ ()indingeseerex

1 (90g)£LoeSeT 1e8euephoTTOdOTPNY /A ONIY:aTqeus : (TT0T)Ieidepylerdstqretyrusen/q

Z ()andangesesatax :(90g)AoeSer 1o8eueAOTT0JOTPNY/\ ©SESTSI : PUNOS OIRTJISUS]

1 (1291)ereTdsusT/q onii:isTyrudejferrssgarqeus : (1707)odTaregrefeuelerdstq/q
uotadeoxgejowsy ‘SO 'PTOIPUER SMOIYL (3BOTJFIUT‘3uT)IroTyrulejsrqeus -£X0Id$ qnasg
108eueA1TTTqTSS000yYT "A2TTTqTSS8D0R 'MOTA ‘pTOIpuUe PTOA OTTqnd = poylem punog

: (VEETT)SHATTY: 1950 TdyeoTATeS/q FOPHRCAephx01d$ qnagg Ie8euelA1TTTqTSSe0dY]T
*£3TTTQTSSeODR ‘MATA ‘pToIpue = 309[qo peuiniey : (YeeTl)SWATTV: :aselrdyestates/q
Ioppezacohxord$ qnasg IoSeuelA1TTTQTSSeOOYI AITTTIQTSSedde ‘MoTA ‘proxpue = 399(qo

PouINIeY : (HEETT)SS::3180LTdyedTAIOS/q * ' *POYIeW 3593 SUTHOAUI : (HEEZT)VW: :350LTdye0TAaTes/q

A

SUON

(Jayubopajgoud

201M185126DUDWAYIGISSIY

S910N

120307

j 0N

pPapasN (S)UOISSIULIDY

SUWeN POUIBIY

ENENESINES

(PaNUNUOD) 1°0°G-1S 10) S1JNSSJ 158] |9/3]-POYISN

235

~panuiuod

‘uoIssIuad WasAS

exowm LT ** :(17981)I10 ‘weisAg/M

(9pL:eael -108euelA1TTTqTSSOOOYI)200qaT *£X0Id$ qnas$ IoSeueA1TTTqTsSsedOyI ‘£ITTTIQTSS9DOOR
‘meTA "pTOJpUR e :(T798T)Ixe ‘weaskg/M (g6%T:eael ‘Tedred)uoridedxgpest ‘[edIed ‘SO
‘proipue e :(77987)IIe ‘weaskg/M (0pST:eael ‘Tedored)uoradedxgpest '[edIed 'SO ‘pTOIpue

e :(17987)IIe ‘weisAg/M *100gdY¥ ‘uoTsstuied ‘proipue sey sses0Id QUOIIND JIOU GETQT IOST
zoyatepy :uoradeoxyghiranoeg -Suey ‘eael :£q pesne) :(77987)IIe ‘weisAS/M 621 A1TATIOYUTER
+/aseqtdesdTAIes ‘TZZRJeI ‘WOD 0N G8L808EPI009YLITATIOY I0F qnoswrty osned K1TATIOY : (TTOT
)xe3eueLaTATIO /M (S6TT:eARl ‘3TuIejo8Lz)utew '3TuIs308L7 ‘SO °TRUISIUT 'PTOIPUR ‘WOD

e :(17987)xI8 ‘weisAg/M (00¥T:eael ‘31Ture3o8Lz)uni ‘I8TTe)S3IYyPUyPOYIL|$ITUISI0SLZ ‘SO
*TeuIsquUT ‘PTOIPUE ‘WOD e : (TT98T)Ire ‘welsAS/M (ZLE:esel ‘pOYISK)SHOAUT 'POYIS) ‘3109TFoX
‘Buer -eael e :(77987)11e ‘we3skg/M (POUISK OATIEBN)ONOAUT ‘POYIS °309TFox ‘Juel -eael

qe :(77987)1xe ‘weasAS/M (Zpeg:eael ‘pesrylhaTaTioy)urew -pesaylhitataoy -dde ‘proxpue

e :(17987)xI8 ‘weasAg/M (gpT:eael -xadooT)door ‘aedoo] ‘so ‘prorpue e :(T198T)IIS
‘woasAg/M (g0T:eael -IoTpueq)ofSessejyoiedsTp "ISTpueH 'SO ‘PTOIPUE 1® : ([T98T)IIS ‘weasAS/M
(8v¥1:eael ‘peeryrfiTaTioy)eSesseyeTpuey ‘H$peaayLhitatioy "dde -proxpue je :(T198T)IIe
‘weasAg/M (LLT:esel -peaIqIA1TATIOV)006$SSe0dR peetyrflTaTioy -dde ‘prozpwe je :(T1987)II8
‘wolshg/M (85Lz eARl -peeaylliTaTioy)L3TATioyyouneTeTpuRy ‘pesiyrditatioy ‘dde -proxpue

qe :(77987)1xe ‘weasAg/M (9p9z:eael ‘pesiyfartatioy)LataTioyyouneTurioyred ‘pesrylLl1TATIOY
‘dde ‘proxpue 3e :(TT98T)IIo ‘we3sAS/M (GTTT:eAel ‘UOTIRIUSWNIISUT)S3eSIJUQAITATIOYITED
‘uotsejusumiysul ‘dde ‘prorpue 3e :(77987)IIe ‘weisAg/M (68z9:eaR(‘£3TATIOY)e3eeIpUIOFISd
‘£a1aTa0y -dde ‘proipue je :(11987)I1Ie ‘weisAg/M (Gz:ieael -A1TATIOYUTER))S3IBSIDUO
‘fataTioyuTRy ‘3se3TdesdTAISS TZZelRI ‘WOD 3 : (TT98T)IIe ‘weasAg/M (Lp:ieael
*90TAT9gI98RURAL TTTQTSSS00Y) TTRDPOYISNISST 9D TAISGIoTeUeAITTTqTISS900Y 3s93TdeadTATSS
‘Tzzejel ‘wod je :(T7987)IIe ‘wesAg/M (gLeieael ‘poYIS|)SNOAUT ‘POYIS| ‘2D9TFOI

‘Buet ‘eael je :(77987)1I0 ‘we3sAg/M (POUISH SATIRN)SNOAUT "POYIDH '309TFOX

‘Suer -eael qe :(77987)II8 ‘weisAg/M uorideoxyreSIeuoTiedoAu] -329TFox -Suel

reael :(77987)IIe ‘weisAg/M uorqdesxgieSiefuoriesoau] ‘31o97Fex ‘Suer ‘eael
$(TT98T)VKW: :1se TdyeoTaTag /g (3seardesdTares 'Tzzejel ‘wod :ouweyssedoxd [798T

:ptd GETOT :PTN) oSTeJ :4TeMm osTeJ :WITJUOD NUS) JUE]STSSY :UOSeaX 9i : (TTOT
)@oTaTegIeSRURIoN04/q UOTIdedXFel0WeY ‘SO ‘PTOIPUR SMOIY} (URST00Q)300QaI ' LX0Id$

qnagg reSeuelA3TTIqTISse00yI ‘K3TTIQISsedd® 'MaTA 'proipue proa OITqnd = poyjzsw

punog :(1798T)SWATTY: :ase1TdyeoTaTes/q 9G080T6T0AX0Id$ qnas$ IeBeuwelf1T1TqTssedoy]
*£3TTTQTSSeODR ‘MATA ‘pToIpuUE = 309[qo peuiniey :(1T98T)SWATTV::aselrdyestates/q
0G98016T04x01d¢$ qnag$ I1oSeueyhaTTTqISSe00yI "L3TTTqISSeddR "MOTA ‘pToIpue = 323(qo

PpouInIey :(11981)SS::380LTdyedTAISS/q * ' *POYIeW 393 SUTHOAUI : (TT98T)VW: :350LTdyedTAaTes/q

A

10087y

(10021

201M185126DUDWAYIGISSIY

S910N

120307

j 0N

pPapasN (S)UOISSIULIDY

SUWeN POIB Iy

ENENESINES

(PaNUNUOD) 1°0°G-1S 10) S1JNSSJ 158] |9/3]-POYISN

236

" panuniuod

‘uoIssIuad WasAS

axom LT 1(90967) 110 ‘we3skg/M (Tggg:iesel - IeSeuelMOPUTMI)MONYOOT ‘AX0Id$ qnissg
108RURMOPUTM] ‘MOTA 'pPTOJIpPUR e :(90967)Ixe ‘welsAg/M (g6%T:eael ‘Tedred)uoridesxgpest
*TedIed SO ‘PTOIPUR e :(90967)ITe ‘WeasAS/M (OFGT:esel ‘Tedoxed)uoradedxgpesI ‘TedIed ‘SO
‘proIpue je :(90967)IIe ‘we3sAS/M ‘YIMOd IDIAAQ ‘uorssTwrad ‘prorpue sey sseooxd JuULIIND
I0u GTOT Iosn xeyztey :uoradeoxyhyranoeg ‘Swer -eael :£q pesne) :(90967)IId ‘weisAg/M
(g6TT:eael ‘3qTurejo8Az)urew -3Ture108L7 ‘SO ‘TRUILSIUT ‘PTOIPUR ‘WOD 9B :(9096C)IID
‘weaskg/M (00%T:eael -aTurszo8Lz)uni - IeTTe)sSIypUyPOYISN$ITUISI08LZ ‘SO *Teursjut

‘PTOIpUR ‘WOD e :(90967)1I8 ‘weiskg/M (gLgieAe(POYISH)SHOAUT POYId ‘309TFo1 ‘Suel
‘eael 3e :(90967)I1e ‘WeIsKS/M (POUISK SATICN)SYOAUT ‘POYISK °309TFox -Suel -esel je
1(90967) 110 we1sAS/M (ZH6G:eael -peexyrlataTioy)urew -pearyrf1TaT10y ‘dde -proipue

e :(90962)IIo ‘weisAg/M (gpT:eael -xedooT)door ‘iedoo] ‘so ‘proIpue e : (90967)IID
‘woasAg/M (gOT:eael -IoTpuey)oSessojyoiedsTp ‘ISTpuey ‘SO ‘PTOIPUE 1B :(90967)IIo ‘welsAg/M
(8¥p1:eael -pesayrlaTaTioy)efessepeTpuey ‘H$peaIylLa1TaTioy ‘dde ‘propue 3e :(90967)IIe
‘weaskg/M (LLT:eael ‘peerylLaTATIOy)(006$SSed0e ‘pesaylf3iTaTioy ‘dde ‘proapue e :(90967)1xe
‘wosAg/M (8L :eael pesaqrdaTaTioy)L3TATioyyouneIeTpuRy ‘pesrylf1TaTidy ‘dde -proxpue

1e :(90967) 110 ‘weishg/M (9¥9z:eael ‘pesayrhitaTioy)LaraTioyyounequrogred ‘pesIylLlTATIOY
‘dde ‘proxpue e :(90967)I1e ‘welskg/M (61TT:esel ‘UOTIRIUEUMIISUT)S3RSIIUNAITATIOYTTED
‘uotqequsumigsul ‘dde -prorpue 3e :(90967)IIe ‘weIsAS/M (68z9:earl -£3TATIOY)e3eaIpULIOFISd
*£ataT90y -dde -proapue e :(90967)Ire ‘weasAg/M (Gz:ieae[-£1TATIOYUTER|)D3e8IHUO
‘£aTAaTIOyUTRY -9s91TdeedTAISS ‘TZZeqel "WOD 1B :(90967)IIS ‘welsAS/M (8% :eael
*90TAISGIoSRURMOPUTM) TTEDPOYID|1SO] 9D TAIOSISFeUR|MOPUTH *1S91TdeedTAISS *TZZejel

‘mwod 9e :(90967)IIe ‘welshS/M (zLE:eael ‘poYlIeN)oFOAUT ‘pPOyYlL) ‘1d9TFex ‘Suer ‘eael

qe :(90967)Ire ‘welsAS/M (POYISK SATIBN)SNOAUT "POYldl °3o97Fox Suer ‘eael e

1 (90967) 110 ‘weqshg/M uotadesxyie8iejuotqesoau] -3o97Fex ‘Suel -eael :(90967)I11e

‘we3sfg/M uotradeoxgieSrefuorqesosur ‘30oTFex ‘Swer -eael :(90967)VNW::2saLTdyedTATag/q
uotadeoxgejowsy ‘SO ‘PTOIPUR SMOIY] (STPUNG ‘SO 'PTOIPUR)MONHOOT ‘AX0Id$ qnasg
I0BeUCHMOPUTMI ‘MOTA ‘PTOIpue proa >TTqnd = poyzew punog :(9096Z)SHM: :1selTdyedTaTeg/q
61P8AYLZ0AX01d$ qnis§ IeBeuemOpUTMI "MOTA ‘proIpue = 309[qo peurnjey

: (90962) SWM: : 3591 TdYeOTAISS/A 61P8AYLZDAX01d$ qnas$ IeSeuejmOpUTMI “MOTA “proIpue = 399(qo

peuinisy :(9096¢)SS: :31sa11dyedTaTeg/q ‘- *poylew 3s93 SUTYOAUT :(90962)VW::1serrdyseotaisg/q

A

YIMO4_30IA3d

(monyoo]

221M9SI26DUDWMOPUIM

S310N

120307

j 0N

pPapasN (S)UOISSIULIDY

SUWeN POUIBIY

ENENESINES

(PaNUNUOD) 1°0°G-1S 10) S1JNSSJ 158] |9/3]-POYISN

237

' PanuiuOd

‘POUSTUTF - :(TZ8TT)VW::3seLlTdyeoTates/q [1 = 3Tnsey :(TZ811)S¥AdD: :3s01TdyeoTates/q
oSTeJ UIN1SI 9OUSY ‘YHSN ' ST I9SN JUSIINY : (TTOT)XHOTAIaSpIeoqdiT)/I O PIRUOSISd1ad
POTqRUIOMIXOUYST : (TT0T)XHOoTaIagpIeoqdITd/I O : PTIesn jusxind Tde preuosIsdasl : (TT0T
)xgeoTaTagpIeoqdTT)/I uorqdesxygejowey SO ‘pPTOIPUR smoxyl (2ut‘qur)sSuriigpadr)irel
£xoxd$ qnasg eoTaregpreoqdr)I “preoqdITd ‘oes -proipue 3sTTAexry ‘Tran -eael orrqnd

= poyjew punog :(TZ8TT)SXHGD: :3soLTdye0TAaIeg/d FOyezacdhxoad$ qnis$ ooTazegpIeoqdTTol
‘preoqdTTd ‘09s ‘propue = 309(qo peuIniay : (TZ8TT)S¥HALD: :3sel1dyed1aIss/q
Iophezagokxord$ qnasg eotaregpreoqdrdI ‘preoqdITd ‘des ‘proipue = 199[qo peuiniey

1 (12811)SS: sasertdyeotazsg/q sdy/sysfsnd3/wrozrerd/seotaep/shs/ usdg 03 TTRL

(187)I9BUTTJe0RIING/M 9E “TH : Sdd : (I8¢)IeBurrgeseying/q jipersropddyresojuo

: (1701)IeSeuejIea0p/q * * *poyaew 3se3 SUTHOAUT : (TZQTT)VW: :3seLTdyedTATes/q

SUON

(Jsburispadiniehb

301095 PI0OGdI)

"POUSTUTE i (0LLE)VW::3selTdyedTatss/q

TTOU = 3Tusey : (0LLE)SV::3selrdyedTaTes/q 971806%TC = ewriauess (1z9t :PTd 89007 :PTR)
0 :s8ery 0 :3uend : K3raraoyzesn [s] [rde] :(TT0T)edTaTegIeSeuejIonod/d LNOIWIL HSH

: peferegeSessojfadugpuss TTed : INOSWI[ISSSI : (TZ9T)ToURdeumToA/(()2INOSWILISSSI
TTeo : pedueypsumropuo :(1g9])Touedeumtiop/q sdF/sysfsnd8/wrozierd/seotasp/sks/ usdg
01 TTed : (I8¢)IeSurrdedseying/Mm uoridedxgejowsy ‘so ‘prorpue smoiyi (Suriag -Suel
‘eae(‘quT‘quUT)oUMTOATSISC2OS £XO0IJ$ qniS$ ©OTAISGOTPNYI ‘eTpsw ‘proxpue proa >TTqnd
= poyjew punoji :(0LLE)SV::3s911dyedTAIsg/q FOovyeZALoAX0Id$ qnig$ o0TAISSOTPNYI
‘eTpew ‘proipue = 30o[qo peuiniey :(0LLE)SV::3selrdyedTareg/q Fovkerdgoixoid$ qniss
90TAZSGOTPNY] "©TPaW ‘proipue = 309(qo pauinisy :(0LLE)SS::3soLtdyedTATsg/d TL 6§

: Sdd : (I8¢)I9BUTTJeORFANG/Q * ' "POYIewW 3s93 SUTHOAUI :(0LLE)VW::3serrdyedrates/a

SUoN

(JauwnjopIa1SDISS

S2I/SS0IpNY

san
-IAIOR SUIYDUNE] JOj SWN|oA

10942 punos isnlpe 03 swaa

‘POUSTUTF - :(60922) VW' :3seLTdyedoTaTes/q TINU = 3TNS8Y : (60922)SY: 359 Tdye0TATaS/q
uotqdeoxgejowey SO ‘proIpUE SmoIyl (qur)adoarrgpunogkerd -£xoid$ qnig$ eoTAISSOTPNYI
"eTpem ‘proipue pros oTrqnd = poylew punoj :(609zZ)SV: :1selrdyestares/q Fovherdgolxoids
quas$ ©OTAISSOTPUYI "BIPew ‘proipue = 350(qo peuiniey :(6092¢)SY: :1soLTdyeoTaIes/d
FOPeZALDAX0Id$ qNIS$ SOTAISSOTPUYI "eTPSW ‘proipue = 399(qo peuiniey

: (60922) 8" 13saLTdyeoTaIag/q © * poylew 3se3 SUTHOAUT : (6092Z)VH: :3S0L1TdyeoTates/a

SUoN

(J12243punosAold

20IMJ8S0IpNY

"JUSPIA J0U 10843

‘paysTUT]
©tt 1(02S9T)VH: 1asel1dyesTaTeg/q TINU = 3TNSeY : (0ZG9T)SV::asertdyeotares/d zz0TTS0T
= ewtlauens (1g9T :PTd 89007 :pTn) O :s8ely 0 :quens : A3TaTioyresn [s] [tde] :(TT0T

)eoTATegIaBeURKIOMN0d,/d INOAWIL OSH : pokereqeSessepfadugpuss [Ted : Jnoswr[iassl : (1Z9T

) TouedaumTo)/q ()3NOSWI[3SSSI TTed : paSueypsumpopuo : (TZ9T)Teuedeumtop/q uotadedoxgajouwsy

*so ‘prorpue smoxyz (Sutizg ‘Suer ‘eael‘jur‘jur)eumiopreiselids ‘£xoid$ qnig$ eOTAISSOTPNYI

‘erpew ‘proipue proa dtTqnd = poylew punod :(0ZGYT)SY::3s9LTdyedTAISS/(SPTes egphx0o1dg
qnag$ eOTAISSOTPUYI "BTpeW ‘prorpue = 308lqo peurnjey :(0ZG9T)SY: :1seLTdyeoTaTes/q
op1e9,ecpfX0Id$ qniS$ SOTAISSOTPNYI ‘eTpsw ‘proIpue = 359(qo paurniey

: (02S91)SS: tase11dyedTaTag/q * ° "poylsw 1s93 SUTNOAUT : (0ZG9T)VNW: :1sartdyedtarss/q

A

SUON

(Jownjorsa1spWISNIpo.

2011J950IPNY

S910N

120307

j 0N

pPapasN (S)UOISSIULIDY

SUWeN POyISIY

ENENESINES

(PaNUNUOD) 1°0°G-1S 10) S1JNSSJ 158] |9/3]-POYISN

238

“peysTUTy

* 1(TOSOT)VW: :2s91Tdye0TATes/q ==YVYVYVVYVYISYH = 2T0sey :(T0S0T)S¥xEdD: :aselTdyesTates/q

oSTeJ uWInled 9duUey ‘YFSA ® ST IOSN QUaIIN) : (TTQT)XFedTAregpIeoqdTr()d/I (0 PIRUOSIDg108
POTQeUOMIXOUYST : (TTOT)XFeoTATegpreoqdt()/I O : PrIesn querind tde preuosiadass :(T10T
)xgeoTazegpreoqdrT)/I uotadedoxgejowsy ‘SO ‘pTOIpUe SMOIY3 (3uT‘jur)sSuraizgpadrTniel
*£xoxd$ qnasg eortarsgpreoqdrTpI ‘preoqdiTd ‘des ‘proipue 3stTAerry ‘Tran ‘eael orrqnd

= Poyzew punod :(T0S0T)S¥AD: :3s91Tdye0TAIeS/A 6TPEAYLCOLX0Id$ qnas$ ©oTaTespIeoqdTTdI
‘preoqdTTd ‘o8s ‘proipue = 308(qo peuIniay :(T0S0T)S¥HLD: :3selTdyedTaIsg/q
61P8AYLZ0AX01d$ qnag$ ooTaregpreoqdTTHI ‘preoqdITd °o8s ‘prorpue = 159(qo psurnisy

: (10S01)SS: :ase11dyedTaTag/q * ° "poylsw 1s93 SUTNOAUT : (TOGOT)VW::3sartdyedtarss/q

A

SUON

()dipfipwiidiob

EREN oY elelele/]o]

S910N

120307

j 0N

pPapasN (S)UOISSIULIDY

SUWeN POUIBIY

ENENESINES

(PaNUNUOD) 1°0°G-1S 10) S1JNSSJ 158] |9/3]-POYISN

239

Appendix |

MotoX-5.0 Test Results

240

S ponuiuod

*POUSTUTE ' * :(6ELY)VW::3s2L1dyedT1aTas/q
SuTUUNI UOWSEp JUSWSSTIISAPE JI9INOY : (8GE)ISTTOIIU0DILsY3ILL/q peddols ApesiTe uowsep

QUOWSSTAIOAPE I9QNOY : (8GE)ISTTOIIUODISYISL/Q 09qe :9deI]

= UST :90RFTAPYIIUIAPPR
1 (8GE)ISTTOIIU0DIBYISL/A (02qe)edeFIejuiuesadsdnppe : (85€)ISTTOIIUODISYISL/A 0°qR
ues11sdn~ppe 90BIISQUT I9YQ9] PUBRUWOD : (8GE)JIousisTTpuemmo)/q Ieyisl :[0]aSie *§
:08Ie - puUeWWO)UNI: :pW)ISYIS] : (8GE)JILuULlSTIpueumO)/((02qe)edeyrsjuruesiisdnppe

: (226)odoTAaTegusweSeueyyIonIaN/q uoTadeoxgejowsy ‘SO ‘prorpue smoiyz (Sutizg -Suel
‘eael)ooegrejurgpuesigsdnppe ‘£xoid$ qnag$ ooTAISSIUBWLSRUR)YIONISN] ‘SO 'PTOIPUR

proa oTTqnd = poylew punog : (6L)SHN::3s9LTdyedTAIes/q T09EPZETOAX0Id$ qnas$
soTAISg USWESRURK{IOMION] ‘SO ‘pTOIpue = 3109(qo psuinisy : (6€Ly)SHN: :ase1TdyedTAIsg/q

T02€PZETDAX0Id$ qnasg edTAIsgjusweFeUR|NIOMISN] ‘SO ‘proIpue = 199(qo psuiniey

1 (6L)SS: :asartdyesTarsg/a poygew 3593 SUTNOAUI : (BELF)VW::asartdyedtarsg/q

A

J1¥IS HHOMIIN"SSTIIY

()2204193UI9AWDSISANPPD

92IMISIUSWDHDUDWYIOMIDN

S310N

122307

}2OAU|

pPapasN (S)UOISSIUIDY

SUWeN POy

SWEN 221N

'0°G-XOI0)\ JOJ S1)NS3. 158] |98]-POYISN 1] 8]0

241

' panuiuod

exow LT ‘" :(€6EG)ITe ‘welsAg/M (099g:eael

‘90 TATegIUSWESeUR({IOMNTONT) TRUISJUTOTFJRILBIR(HO0Tq ‘LX0Id$ qnig$ ooTAIsgIUsWLFeue|IoMIoNT
‘SO ‘proxpue 1e :(£6EG)IId ‘welskg/M (g6%T:eael - Tedred)uotadeoxgpesi ‘[edIed ‘SO ‘prOIpUR
qe :(geeg)Ire ‘weasAg/M (0pST:esel ‘Tedred)uoridedxgpest -Tedored ‘SO ‘PIOIPUR e : (EBES
yaire -welsAS/M WALSAS™AIV 02 oTqerTeae ATug :uoridedoxgAatanosg -Suer -eael :£q pssne)

1 (€6€S)II9 -welshg/M (969:eael -qTureio8Lz)uTew -3TuUI®108LZ ‘SO TEUISIUT ‘PTOJIPUER WOD

e :(geeg)Ixe ‘weaskg/M (T06:eael -qTurelo8Lz)uni - reTTe)sSiypuypoylIel$ITUIL108LZ ‘SO
*{eUISIUT ‘PTOIPUE ‘WOD e :(£6E§)ITe ‘weaskg/M (gLg:esel -pPoyls|)oyoAUT 'POYId| - 1D9TIoI
‘Buer -eael 1e :(gegg)IIo ‘welsAS/M (POYISW OATIEN)OHOAUT ‘poyls) ‘19oTFel ‘Suel -eael

e :(geeg)Ixe ‘weaskg/M (gTeg:esel ‘pesayrhiTatioy)utem -pesryrhqtatioy -dde -proipue

e :(g6eg)xxe ‘weashg/M (SeT:eael ‘xedooT)doot ‘xedoo] ‘so ‘prorpue 3e :(g6€S)IID
‘weasAg/M (goT:eael -xsTpuey)eSessojuyosedsTp ‘ISTpueH ‘SO ‘pTOIpPUR 3B : (€6EG)IIS ‘weIsAg/M
(z6eT eael -pesxyrfiTaTioy)efessayeTpuey ‘HgpesIy k1taTioy -dde ‘proipue e :(g6€g)IIe
‘woasAg/M (8T:eael ‘pesIylAITATION)Q08¢$SSeOOR ‘pearylA3TaTioy ‘dde ‘proipue 3e :(g6€§)11
‘wosAg/M (88gz:eael ‘peaayrfiTaTioy)LaTaTioyyouneTaTpuey -pesiylf1Tarioy ‘dde -proxpue

qe :(g6Eg)Ire ‘weasAg/M (L9zz:eael -pesayrfaTatioy)LitaTioyydouneTurozrad - pesIylLaTATIOY
+dde -proipue 7e :(geeg)IIe ‘welsAS/M (8ZTT:eAse[‘UOTIRIUSUNIISUT)SQESIYUQAITATIOYTTED
‘uotTrequsumrysur ‘dde -proipue e :(gegg)Ire ‘weasAg/M (g56G:eael ‘£1TaAT10Y)eeaIpUIOFIDd
‘£31atr0y dde -proxpue e :(geg§)Ire ‘welsAg/M (9z:esel - L3TATIOYUTRN)SIRSIJUO
*£aTaTioyuTe) -1se3rTdesdTAIes ‘TZZejqel ‘WOD 1B : (€6EG)IIe ‘welsAS/M (Li:eael

+90TATeg USSR UR{IONIBN) TTRIPOYISNISO] ‘9dTATeg usuweSeue|{Ionia) ‘1se11desdTaIss

‘TZZejel "WOD je :(€6EG)IId ‘welsAg/M (gLEieael ‘pPOYIL|)eNOAUT ‘PoYld| ‘309TFSI ‘Suel
‘eael e :(geeg)1Ie ‘welsAg/M (POYUISK SATIRN)SOAUT ‘pPoylsy '309TFox "Suel -‘eael

qe :(geeg)Ire ‘weasAg/M uoradedoxyreSreluoriesoaul ‘309TFex ‘Suel ‘eael :(g6eg)IIL
‘weasAg/M uotTidedxgireSIefuoTiesoau] -3o97Fex ‘Juer ‘eael :(g6eg)VW::aselrdyedTaTsg/d
P9108UUOD 8OTAISS : (0TT)IUSTINSTIUOD/I PIIOSUUOD SDTAISS : (0TI)OOTAISSYD3948TFU0)/T
uotqdeoxgejowsy SO ‘PTOIPUE SMOIY} (UeST00q) [RUISIUIDTIIRIIRIe(HO0Tq AX0Id$

qnig$ eoTAISgIUSWESRUR|HIONION] ‘SO "propue proa STTqnd = poyzsw punoJ : (£6£S

)SHN: : 3501 1dye0TATeS /0 99ZER89IZOAX0Id$ qnIS§ ©OTAIegIUBWSSRURKYIONGONT SO

‘proxpue = 309(qo peuiniey :(€6€S)SWN: :3s011dyedTAaIsg/q 99Z£R89Z0LX0Id$ anass
90TATag I UeWESRURHIONION] SO ‘proipue = 129[qo peuiniay :(€6€§)SS::aserrdyedTazss/q
yselyouner :(QT6])OOTAISSUD21048TJU0)/I (SeIlxe Sey) odTAIagUd1e48TJuo) ‘STFuod

+/su8 ‘proipue ‘o78008 ‘woo=dm> 3sejrdesdTAIes ‘Tzzejel ‘wod:eSexdoed=1ep QIAAY IOYIOVI
‘UOTIO® ‘JUSJUT ‘PTOIPUR=1D0® JUSIU] PULUWOHIILISUO : (QTET)OITAISSYD3948TFU0)/T

9oTATes STJuod JuUTUINSI puTquo : (GEET)9OTATegSTIU0)/I I¥YLS 'StFuod ‘suS ‘proxpue

+978008 ‘woo uorioe sul ‘proipue ‘78008 ‘woo=8¥d [YylS ‘Styuoo ‘swS ‘proapue ‘a78008

(W3LSAS™AIV) ‘WOO=15® JUSIU] IOJ PUIGUO : (BEET)oOTAISSSTIUOD/I ooeFIsjuT o3epdn Sutuingex
000L=pIn salinbay puUTguUO : (GE6T)ODTAISGITIUOD/T poyzew 3s93 SUTNOAUI :(£6E€G)VNW::3sartdyedtarsg/q N SUON ()]oUI3U D101 DIDFXI0]G 92INISIUSWSHOUDWYIOMIDN
S310N 102307 ;{OAU| P3Pa3N (S)UOISSIULLISg SUWEN POYIB| SWEN 3DIND!

(PaNUIIUO2) 0°G-X010 0} SIINSBJ 1591 |oAS]-POYISN

242

" panunuod

sjelu

-9p_XNUI3S ABY 0} SWaaS

"POUSTUTI " :(Q0LETZ)VN: :250LTdyeoTAIeS/Q 0 = 3TNSeY : (00LET)SWN: :2seLTdyeotazes/a
0= Touueyd 388 puoob deijos :(gg6)ooTAIegIUBWESRURKHION]SN/(IOIIS UMOUNUN SINTTRF
00T 0ozdseyueypredg-TeuuweypSutqessdgdegiel : (geg)odTaIsglUsULSRURKHIONIBN/

((€¥E) /@ Tg: ST :(e€he) /A [I011e umOuNUN oiINTTeI] INdIN0 AWD :(€%E) /a

Touueyd peel 03 paTTej :Touueyo Jurieredo 3e8 desb :(ghg) /4 o=eaTssTured
ITp=SSeTD] (S:TOUISYN:I:N=3X03U0D] (OS:P3oU:I:N=1X04U0DS (pH8=0UT ,,001d,,=A0D

«8,,=9WeU (=PI I0J [UDIeSS POTUSP :DA® :(6L:0 '0)3TPNE 00¥T=2dh1 :(9gL£T) sd/M
POTqesTP QdYLISOH :(€¥€) -¥ATOD/A **° [99¢] [Teuueyd 388] LNdNI QWD : (€€) /A
TeuueypSuraeradgdesisl : (g6)odTATegIusWeSeURyNIONIBN/(UoTadedXFej0Wey ‘SO ‘PIOIpUR

smoxyy () TeuueypSuriersdgdegisld - £xoxd$ qnasg odTATegIuswWeSeuUR|YIOMISNI ‘SO ‘PTOIpUER

qut o17qnd = poylew punog :(00LEZ)SHN: :3so11dyeoTaIeg/q geFecdrTolxoid$ qnasg

90TATeg USSR UR{IONION] ‘SO "PToJpue = 399[(qo psuaniay : (00LEZ)SHN: :1seLTdyedTaIss/q
gerecqi1pdxoid$ qnig$ ooTaIeglusweSeue|IoMIaN] ‘SO ‘proJpue = 399(qo peuiniey

: (00,£2) 88 1359L1dyedTAISg/q * * *POYIOW 3593 SUTHOAUI : (00LEZ)VW: :3s01tdye0TaLes/q

JUVLSTIHIM IONYHD
VIS HYOMLIN TONYHD

()jauupyrbunpiadodnsiob

SIINIS! ngEwWBCDS\th%GmZ

BE

-9p_XNUI3S ABY 0} SWaaS

"POUSTUTI " :(6TT0Z)VH: :250LTdyeoTAaTes/q 0 = 3TNSeY : (6TT0T)SWN: :3seLTdyeoTaTes/q

0= Teuueydojne 303 pwoob deijos :(gg6)eodTAIegIUsWESRURKHIONISN/(IOIID UMOUNUN SINTTEF
66 0ozdseyueypradg-uotyoeTegTouneyjoinydesies : (€6)OO TAIoSIUSWLSRURKYIONION/A : (€FE

) /@ 12 ueT :(g€he) /A [I0ire umouxun oiInTrey] INdLNO QWD :(EPE) /Q UWOTIDS[SS TouuURYD
oqne des peax 07 peTeq :uoT1deTes [ouuweys>~oqne des~qe8 desb :(gpg) /3 T01x® 03208
()peTqeus—deljos~sT: uwoT1deTes Teuuweyd-ojne des~ 388 desb :(gpg) /3 0=earssTwred

ITp=SSeTd] (S:[OUISY:I:N=1X9]U0D] (S:pP2oU:I:N=1X01U0DS pHHpg=0uT ,,001d,,=A8pD ,ZT,,=0WeU Q=pTN

IoF yoTess paTUSP :0A® :(9ZF:0 °0)3TPME 00¥T=edL3 :(05T0Z) sd/M POTARSTP AJVISOH :(E¥E)
-4a10b/a *** : Touuweyd-ojne pesx~desb :(epe) /T [957] [Touweyooine 383] IAINI QWD : (EVE
) /@ uotyoeTegTeuuey)oinydes1sl : (g6)odTAIsgIUswEFeURyNIOMISN,/q UoTadedXTajoWey ‘SO
‘propue smoiyi ()uoraosragreuueypoinydegisd ‘£xoid$ qnis$ 9oTAIegIUSWESRUR|HIOMISNT SO
‘proxpue jut o1rqnd = poyew punoi :(6TT0Z)SHN::3selTdyeotareg/q geregqlTphxoid$ Aniss
90TATag USSR UR{IOMNION] ‘SO "proJpue = 399[(qo psuaniay :(6TTOZ)SHN: :1seLTdyedTaTss/q
gerecqi1pdx0Id$ qnig$ ooTAIeglusweSeUe|{IOMION] ‘SO ‘proJpue = 399(qo peuiniey

: (6T102)SS: 1359L1dyeoTAIag/q * * *PoylewW 3593 JUTHOAUI : (6TT0Z)VK: :35011dye0TaIe8/q

A

JUVLSTIHIM IONYHD
YIS HHOMIIN FONYHD

()uo1303)35j2uUDYY0INYADSIH

mUS\mVQCmeWOCOS\v\kDEGMZ

uoissiwiad Wa)sAS

(1021UOWO1YDI1 3]gDUD

92IMJISIUSWDDUDWYIOMIDN

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUUOD) 0°G-X0I0p J0J SINSS. 1S3}]9AS]-POYIB N

243

'panunuod

*POUSTUTE ' * :(0¥98C) VW' :3s9LTdyedTAIaS/q TINU = 3TNSdY : (0¥982) SHN: :3seLTdyed1azeg/q
oAOWSI 07 (OQe 9JBIISJUT PUTJ 3 ,UPTNO) : (€€)ISTTOIIUODISYISL/M Ioyieq :[0]aSIe 3
:08Je pPURWWOHUNI: :pUDISYIS]L : (£HE)IPuelSTTpuemmO)/((02qe)edeyrsjururesiisdnsnrous
: (€€6)odTAaTegIUsWESeUe|YIoNIaN/q uoTadeoxgejowsy ‘SO ‘prorpue smoiyz (Surizg ‘Suel
enel)eoegrejurgpwesidsdnesomes £xoid$ qnig$ ooTAILGIUGWLSRURKNIONISN] ‘SO ‘PTOIpPUR

proa o1Tqnd = poylew punog :(0¥98Z)SHN: :3s9LTdyedTAIes/q 997ER89ZOAX0Id$ qnas$
soTAISg USWESRURK{IOMIONT ‘SO ‘pToIpue = 309(qo psuiniay : (0¥98Z)SHN: :ase1TdyedTAIss/q

99Z£e89Z0AX01d$ qnig$ ooTATegIUeWESeUR|{IOMNISN] SO ‘proipue = 309(qo psuiniey

: (0%982)8s: :asertdyeotazeg/q poyjewm 3593 BUTHOAUT :(0¥98Z) VW: :31se1tdyedTatag/q

A

J1¥IS HHOMIIN"SSTIIY

()2oDL123UI9AWDRISANSAOWI

92INISIUSWDBDUDWYIOMIDN

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POIBIY

SWEN 221N

(PaNUUOD) 0°G-X0I0p J0J SINSS. 1S3}]9AS]-POYIB N

244

panunuod

DIeI} HIOM
-19u aimded 03 a1eyy s Ajig
-15S04 ‘payoddns ale spuew
-UW0 JeUYM MOUY 3 UOP ING LOT

-n2axa spodal Jajj013u0n307d)

exow LT *'° :(TTLLT)ITe ‘we3skg/M

(LLzz:eael -edTAIsgUSWBSEURKYIONLONT) pudSoTdIunt *£X0Id$ qnas$ oOTAIegIUSWESeUR|{IONIONT
*so ‘proipue 1e :(TTLLT)IIo ‘welskS/M (g6%T:eael -Teoxed)uoradesxypesi ‘TedIed ‘SO
‘proxpue e :(TTLLT)Ixe ‘weasAg/M (8%GT:eael ‘Teored)uoridesxgpesl ‘[edIed ‘SO ‘prOIpue
qe :(TTLLT)Ixe ‘weaskg/M ((ssedong) pefTey uorirersdo Sodr 79T 00%¢ UAITM parrey einadeo
So1dt 797, pueumod :uotideoxgeieasTederrI ‘Swer ‘eael :£q pesnep :(TTLLT)IIS "weaskg/M
(969:eael ‘atureso8Lz)urew -3Ture308L7 ‘SO ‘T[EPUISIUT ‘PTOIPUR ‘WOD 3e :(TTLLT)IID
‘weasAS/M (T06:eael ‘aTuI®l03LZ)uUna ‘IoTTe)s3IYPUYPOYISN$ITUISI03L7 ‘SO ‘TeUISIUT ‘pTOIpUR
‘wod ge :(TTLLT)ITe ‘weashS/M (zLe:esel ‘poyls|)efOAUT ‘poyls) ‘1o9T7yex ‘Suer -eael je
$(TTLLT) a9 -wedsAS/M (POUASK SATIEN)ONOAUT ‘Poyld) ‘3o9TFax ‘Suel -eael e :(TTLLI)IIS
‘woasAg/M (gTeg:eael -pesryrfitaTaoy)urtew -pesryrhqtaTioy -dde -proxpue e :(TTLLI)IIS
‘woyskg/M (geT:eael -xedooT)door -asdoo] -so ‘prorpue qe :(TTLLT)IIS ‘wearsAS/M (ZOT:eael
- 1oTpuey) oSesso|yoqedsTp ‘IS9TPURH ‘SO °"pPTOIpUR 1e : (TTLLT)IIo ‘welskS/M (z6gT:eael
‘peoay1A1TATIOY)oFesseeTpuey H$peoayrhaTaTaoy ‘dde ‘propue e :(TTLLT)ITe ‘we3skg/M
(gp1:eael -pesyl3TATIOV)(Q08$SSEO0R peaiylfiTaTioy ‘dde ‘proapue e :(TTLLT)IIS
‘woasAg/M (88ez:eARl ‘pesIylL31TATIOV)AITATIOVYOUNRTOTPURY ‘peaIyli3TaTioy ‘dde ‘prozpue
qe :(TTLLT)ITe ‘weisAS/M (L9zz:esel -pesayrd3TaTaoy)L3TaTioyydounequroyred ‘pesIylLiTATIOV
‘dde ‘prozpue 3e :(TTLLT)IIe ‘welsAg/M (8ZTT:eAel ‘uUOTIRIUSUMIISUT)E3ESIJUQLITATIOYTTRD
‘uotdejusumzasul ‘dde -proapue e :(TTLLT)Ixe ‘weasAg/M (g565:eael ‘£3TAT1OY)e3esIpuwroFIad
‘£31aT0y ‘dde -proxpue je :(TTLLT)ITe ‘weisAg/M (9Z:esel - £3TATIOYUTRY)SIRSIJUO
*£aTaTaoyuUTR -3se3TdesdTATeS TZZejel ‘WOD 3e : (TTLLT)IIS ‘welsAS/M (gg:eael

‘90 TATegIUBWESRURHIONISN) TTRDPOYIPNISeY " edTAIegjusweSeueyIoniaN *3se3tdesdtaIss
‘TzZZeqel ‘wod 1e : (TTLLT)IIS ‘welsAS/M (zLE:eael 'pPOYLS|)ONOAUT °POYLS| °ID9TIoI

‘BueT -eael e :(TTLAT)I%e ‘welsAS/M (POYISW SATIBN)SYOAUT ‘POYel ‘300TFoI

‘Suet -eael qe :(77LL7)II10 ‘weiskg/M uoradeoxyreSreluoTiesonu] -309TFex ‘Suel

cenel :(77.LT)xI0 ‘weasAg/M uoradeoxgireSrefuoriesoau] ‘1ooTFox ‘Suer ‘eael

t(TTLLT)VN: :3serTdyeotazeg/q (TTnu) :pwo Sordr peixoddnsun :(gpe)IeTror3u0pS07dI/a
pupmeyuni : (gy€)IaTTorauop3o1dI/q uoradeoxgejowsy °so ‘proIpue smoryl (Suriag

*Buet ‘eael)pupSordiuna ‘£xord$ qnas$ edTAIegIuswWeSeUR|YIOMISNI ‘SO ‘PIOIpUR

aut o17qnd = poy3ew punog :(TTLLT)SHN::3selTdyedTaTeg/q geFeeqriohxoid$ qnasg

soTAISG USWSSRURK{IOMIONT ‘SO ‘pTOIpue = 309(qo psuaniay : (TTLLT)SHN: :ase11dyedTAIsg/q

gerecqlTpAxoId$ qnigg edTaIegjusweSeuUR|YION]ON] ‘SO ‘proIpue = 308[qo peuingey

:(ITLL1)SS: :asar1dyedT1aTsg/a poysew 3se3 BurioAul :(TTLLT)VW::3seltdyestatsg/q

A

UON

(pwoboidiuns

92INISIUSWSHOUDWYIOMIDN

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUIIUO2) 0°G-X010 0} SIINSBJ 1591 |oAS]-POYISN

245

" panunuod

~

“POUSTUTI" “* : (TLOTE)VYW: :350LTdye0TAIeS/q OSTeF = 3[NSey

1 (TL9T€)SHd: :aseTdyeoTaTeg/q uotTadeoxgejowey ‘SO *PTOIpUER SMOIY3 ()peadeireqaedrerliturxoxd
‘fxo1d$ qnasg IeSeuelIomod] ‘SO ‘proJpue wesTooq OTTqnd = poYlILW PUNOJ

}9T€)SHd: : 4501 Tdye0TATeg/q geFeeqTToiX01d$ qnis$ IeSeueyromodl ‘so ‘proipue = 309(qo peuinjey
1 (TL9TE)SHd: : 3591 TdyedTATeS/q 8eFREqTT0AX0Id$ qnigg reSeuejIamodl ‘SO ‘proxpue = 309[qo

peuInyey :(1.97€)SS::aser1dyedTAaTeg/q ** ‘poyleuw 3se1 SUTHOAUT : (TL9TE)VW::asertdyestaisg/q

SuoN

()pa12a10qiabin fiwixosd

2011J3SI2DDUDIIMO-

‘paystuty” : (69€92) VIU: 14501 TdyeoTaIeg/q TINU = 3TNSeY : (69€5T) SHN se11dyeoTAaIa3/q
$(€¥€) /@ L: wAT :(€¥E) /A [SSO2onS] INdINO0 AWD ‘(EVE) /A :(E¥E) /A S €T
=e8uexTeuueyojes:pejepdn :(€¥E) /A O:INI ‘G € ¢ :TeA ‘eSuexreuueyojes=puwd :(ghg) /d §

€ ¢ @ jueumSiy oSueiTeuueyoles :pw) :(eH€) /I [952] [§ € ¢ =oSueareuueysies 3es] LNJNI
anWp :(€pe) /a 9Suey Teuuey) JyS 39S : (E££6)9OdTaIegrusweSeueyyIoniaN/q uorideoxgejowsy - so
‘proJpueR SMOIU3 (3UT‘3uT‘jur)elueyrsuueyniss ‘£xoid$ qnig$ oOTAIegIUsWESRUR|HIOMIONI ‘SO
‘proIpue proa oTTqnd = poylew punog :(69£5Z)SHN: :3s9LTdyedTATIeS /A 99ZER89ZOAX0Id$ qnas$
soTAISg USWESRURK{IOMIONT ‘SO ‘pTOIpue = 109[qo psuiniay : (69€SZ)SHN: :ase1TdyedTAIsS/q

99Z£e89Z0AX01d$ qnig$ ooTATegIUeWESeUR|{IOMNISN] SO ‘proipue = 309(qo psuiniey

: (69£52)SS: tasar1dyeoTaTsg/a poyjewm 3597 BUTHOAUT :(69EGZ)V: :3sa11dyedTatag/q

A

VLS IHIM IONYHD
311 S HHOMIIN_FONYHD

()26UDY)2UUDY IS

92INISIUSWDBDUDWYIOMIDN

S310N

182307

}240AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUUOD) 0°G-X0I0p J0J SINSS. 1S3}]9AS]-POYIB N

246

(9¥2q8x0=s3e}) gl=]ona1
-uonoajoud) 15911deanInIaS
‘lzzees "wod a3eoed 0}

TOYLINOD NIFHOS WL
X3 cuoissiwled ejolojow
‘wod uorssiwiad Supuesd
10N :(€€6)JaBeuepadexded

-/Mcuoissiwiad Wi9IsAS

axow 4T *** :(19%L)ITe ‘weasAg/M (T8L:eael ‘IefeuelIomodr)IIQN2TNHISS - LX0Id$

qniag$ reSeuejIomod] ‘SO ‘prOIpue e : (T9p.)IIo ‘welsAS/M (g6%T:eael -Tedxed)uoradesxgpesi
*T9dIed 'SO ‘pTOIpUE 3® :(T9%L)IIe ‘weaskg/M (0pGT:eael -Teoreq)uoradecxgpesi ‘TadIed

'so ‘proipue je : (9L)Ire ‘weasAg/M ‘TTOMINOD NIIYOS VYLXH ‘uorsstured -eforojow ‘wod

sey ssedoxd jusiInd Iou GITQT] Iosn Iayzrey :uorideoxghatanosg -Suer ‘eael :£q pesne)
$(T9pL)axe -weisAg/M (969:eael -3TurejoSfz)urew ‘3TuIel08L7 ‘SO TEUISIUT ‘PTOIPUR ‘WOD
e :(19%L)Ire ‘weaskg/M (T06:eael ‘aTursjo8Lz)uni ‘reTTe)sSiypuypoylIel$aTuUILlo8Lz ‘so
*TeuUILjUT ‘PTOIPUE ‘WOD e :(T9%L)Ixe ‘weaskg/M (zLe:esel -pPoyls|)SOAUT ‘POYIS| - 3D9TI0I
‘SueT -eael 2e :(T9%L)IId ‘welsAS/M (POYISW OATIEN)SOAUT ‘poyld) ‘199TFox ‘Suel -eael

e :(19%L)Ixe ‘weasAg/M (gTeg:eael -pesayrfiTaTioy)uTem -pesxyrhqtatioy -dde -prorpue

qe :(79%L)ixe ‘weaskg/M (GeT:eael ‘xedooT)doot ‘iedoo] ‘so ‘proipue 1e : (T9%L)IID
‘weaskg/M (goT:eael ‘roTpuey)eSessojyoredsTp ‘IoTpUuey ‘SO 'pToIpUER e :(]9%L)ITe ‘weaskg/M
(z6gT:earl -peaayrfataTioy)eSesseyeTpuey ‘HgpearylLiTaTioy ‘dde ‘proipue 3e :(T9yL)ITe
‘weysAg/M (8pTienel -pesaIylLlTATIOV)(008¢$SSedoe ‘pearyrhitaTioy ‘dde ‘proxpue je :(19%.L)ITe
‘weasAg/M (8gez:earl ‘peexyrhaTaTioy)AaTATiOyyOUNETRTPURY peelylf3TAaTioy ‘dde ‘proxpue

qe :(T9%L)1Ie ‘weisAg/M (L9zz:esel ‘pesiyrfiTaTioy)L3TATioyyounequrozred ‘pesiylAlTATIOY
‘dde ‘prozpue 3e : (79,)IIs ‘welsAg/M (8ZTT:eael ‘uUOTIRIUSUMIISUT)E1ESIJUQAITATIOYTTRD
‘uotqejusumrasur ‘dde -proxpue e :(19yL)Ixe ‘weasAg/M (g565:eael - £1TAT1OY)e3esIpwIOFIad
‘fq1aT0y -dde -proxpue je :(T9pL)Ire -welsAS/M (9z:eael -£3TATIOYUTER)SIRSIJUO
*£aTaTioyuUTR -1S93TdeedTATSS TZZeqel "WOD qe : ([9pL)IIS ‘welsAS/M (8%:eael
*o9oTATegI9SRUR|ISMN0]) TTRDPOYIO|ISO] ‘oD TAIsgIoSRUeIomOd *1S03TdeadTAISS *TZZelRel

‘wod 1e :(T9pL)IIe ‘welshg/M (zLE:eael ‘pPOYLS|)ONOAUT ‘pPoyldl ‘1o9TFox ‘Suer ‘eael

qe :(79%L)Ixe ‘weasAg/M (POYIS| OATIBN)OFOAUT 'POYId) -1097Fox ‘Suer -eael e

1 (199,)IIe ‘weiskg/Mm uotqdeoxgireSiefuoTiesoau] ‘1oo7Fex ‘Suer ‘eael : (79)IIie

‘woas£g/M uotqdeoxgireSrefuoriesoau] ‘1oo7Fex ‘Suer ‘eael :(T9pL)VW::aserrdyeotalsg/d
uotadeoxgejowsy ‘SO 'pPTOIPUE SMOIYL (3BOTF)FFONOTNPIes ‘Lxoid$ qnig$ IeSeuejremodl

*so ‘proxpue proa oT{qnd = poyzew punog :(T9%.L)SWd::1SeLTdyeoTaIes/q 99ZER8ITOLX0IS
qnagg reBeue|Ianodl ‘SO ‘ProIpue = 308[qo peuIniey :(19¥L)SWd::3selrdyeoTarss/q

OONmmwwN@%%OHmﬁ qnagsg HWMQ—H&ZH@BQ&H ‘SO ‘proipue = Powﬁﬂo pauiniyay : (19%L

)Ss: :asartdyestarsg/a poyzew 3s93 SUTYOAUI :(I9%L)VW::3sartdyedtaisg/q

N

T04LNOD " NIFHIS VL

X3 “UoIssIwIad "DjoI0JOW WD

(Hoyindies

92IAI9SIIBDUDNIIMOH

S310N

182307

}24O0AU|

pPapasN (S)UOISSIUIDY

SUWeN POUIBIY

SWEN 221N

(PaNUUOD) 0°G-X0I0p J0J SINSS. 1S3}]9AS]-POYIB N

247

000L==pIN SaJINbay N SUON (Juonpioyawnsal 20IJ8SI8bDUDMOPUIM
000L==pIN s2JiNbay N SUON (Juonpioyasnod 221/19SI2DDUDWMOPUIM
"suoyd |71y ue aq 0}
Swiaas aouis auoyd siy} uo st
-X9 10U Aew 921AI9S DWeu o
-eJ3sI8a)_90IAI9S_MOUy J.uog 9IS AINIIDUUODMZA
A oUoN ()U012Y2IDISOWOHSPIY 201/18513DDUDYIDGSNIO).
A SUON ()UOIOYY2IDISIUOHMOYS 221M2519bDUD.IDGSNID]
(9¥2q8x0=s3e}) gl=]ona
-uoiyoajoud) 1s9)deadinles
‘lzzeyes 'wod afexyoed 0}
TOYLNOD NIFUDS VL
-X3 1wlad -ejoiojow
‘wod uoissiwiad - Sunueld
10N :(€€6)ie8euepaSexded TOYLNOD NIFHIS L
M___uoissiuiad waisk N X7 "UoISSIuLISd "D]0JOIOW “WOD (wigyInIas 90IAI9SI12DDUDYIIMOY
(972q8x0=s3e}} gl=]9Aa]
-uonoajoud) 15911deanInIaS
‘lzzees "wod a3eoed 0}
TOYLNOD NIFYIS VL
X3 uoissiuiad “ejoiolow
‘wod uorssiwiad Supuesd
10N :(€€6)1o8euepaSexded T04LNOD " NIFHIS VL
-/Mcuoissiwiad Wi9IsAS N X3 “U0IssIwIad "Dj0I0JOW "D (Jwigaid1as 921/9SI9BDUDNIIMOY.
S910N 100307 O] DOPaaN (S)UOISSIULID SWEN PouyIa| ENENESNE

(PaNUUOD) 0°G-X0I0p J0J SINSS. 1S3}]9AS]-POYIB N

248

Appendix J

Linux Namespaces Analysis

This appendix provides a background on Linux Namespaces and the analysis of the traits which
offer value to Android security. These traits and values are used to support the design tradeoffs

discussed in Chapter 5 and are summarized in Table 5.2.

J1 Background

Since their introduction to the mainstream Linux kernel beginning in 2002, Linux Namespaces
have enabled a form of kernel-enforced process-level virtualization, useful for isolating specific
resources within a single instance of the operating system. In contrast to hypervisor-based
approaches, Namespaces represent a lightweight, “only what’s needed,” approach to virtualizing
various aspects of a process’s environment. This container architecture is arguably more scalable
and efficient than full virtualization solutions [71] [70]. Practical uses for Namespaces include
resource sharing [67], checkpointing/migration, [68] vulnerability containment, and binary

isolation [126].

Simply put, namespaces allow different objects to have the same name. For example, the objects
“server1” and “server2” could both have the name “hostname” in different namespaces. In Linux,

the original motivation for including namespace support were the needs of virtual private servers

249

(VPS) and application checkpoint and restart (ACR) [68]. Six namespaces make up the current
Linux implementation discussed here: mount, hostinfo, System V IPC, pid, network, and userid.
Each of these orthogonal namespaces address a different aspect of the system which can be
virtualized for particular applications. They can be used in any combination or individually. Finally,
while the main feature of namespaces can be described as lightweight virtualization, namespaces
also represent a form of isolation since access to namespaces is controlled by the Linux kernel.

Creation and management of Linux namespaces done through privileged system calls.

Namespaces are created and managed by way of three privileged system calls: clone (),
unshare () and setns (). clone () forks a new process into a new namespace, while unshare ()
and setns () allow the calling process to leave and join other namespaces, respectively.
Configuration of each new namespace is specified using some twenty-two different CLONE_* flags

to identify the type, and how the caller’s execution context is to be shared.

Implementation of namespaces within the Linux kernel is accomplished by way of a proxy
structure of pointers, nsproxy. As namespace support was added to the kernel, system calls that
interact with namespace objects were rewritten to use this proxy rather than referencing objects
directly. Hence, one process’s nsproxy may point to different objects as compared with another’s.
From these two processes’ point of view, they are using the exact same name to reference the
object, but are given back different objects. The object returned is determined by the state of
nsproxy, which is out of the process’s control. In a sense, each process is isolated from other
objects with the same name in different namespaces. This isolation is immutable because the

redirection is enforced by the kernel, within the trusted computing base (TCB).

To illustrate this implementation, we use the hostinfo, or UTS' namespace as an example. UTS
namespaces isolate two system identifiers returned by the uname () system call, namely

nodename and domainname. Prior to kernel version 2.6.19, these values were returned by reading

'This name derives from Unix Timesharing System, abbreviated uts in the source code of many Unix-like operating
systems.

250

them from global kernel parameters, system_utsname .nodename and
system_utsname.domainname, respectively. As a result, these objects had the same values for all
processes. Beginning with the introduction of UTS namespace support in kernel version 2.6.19,
these values are read from a private kernel data structure, nsproxy. One member of nsproxy is a
pointer to a structure containing UTS namespace objects such as nodename and domainname.
Processes that have all the same namespaces share nsproxy, but it is copied and its pointers
changed when one of the namespaces is cloned or unshared. In this way, the nsproxy structure
enables the kernel to hold different objects (i.e., values) referenced with the same name (e.g.,

nodename, domainname) by different processes.

In userspace, namespace support adds a set of symbolic links in /proc/<pid>/ns, one for each
namespace supported. These links act as “handles” for processes to use to interact with the
namespaces. For example, the handles can be compared across two processes to determine if
they belong to the same namespace. Also, by passing a file descriptor for one of these links to

setns (), a privileged process may join the namespace [127].

J.2 Namespace Traits and Their Value to Our Work

With a modified Linux kernel at its heart, and resource constraints that may preclude full
virtualization, Android is a great candidate to take advantage of the benefits of Linux Namespaces.
In fact, recent versions supporting multiple users and restricted profiles leverage mount
namespaces to isolate each user’s external storage [35]. It is likely that future Android releases will

make further use of these facilities.

As mentioned earlier, our objective is not to isolate Framework objects using Linux Namespaces
themselves, but to develop a specific virtualization and isolation architecture that reflects the
same high-level benefits as Linux Namespaces. To do this, we conducted a systematic analysis to

extract a list of key traits and link these to specific benefits that our architecture should realize.

251

The following analysis is summarized in Table 5.2.

Trait 1: Namespaces virtualize and isolate specific resources on a per-process basis. Namespaces
provide a level of abstraction that wraps certain resources, allowing them to appear to be
dedicated to a particular process rather than globally shared [127][128]. These virtual
resources are isolated because the kernel controls which processes can join or leave a
namespace.

Value to our work: The fine granularity of namespace isolation allows each process to be
placed in a tailored virtual environment. Processes spawned by untrusted applications can
be presented with a surrogate or subset of sensitive, otherwise global resource(s), thus
making it impossible for the application to misuse the resource(s). This can be done
permanently for some applications or temporarily while trust is established during testing
and debugging [129].

Trait 2: Namespaces are resource-centric. When there is a specific resource that must be isolated,
namespaces are able to address the isolation directly, unlike coarse-grained approaches
such as platform virtualization.

Value to our work: Mobile device users are concerned with their privacy and personal data,
and typically think in terms of these high-level semantics rather than trying to understand
the details of why an application needs certain permissions and how granting that
permission could negatively affect them. At the same time, users want their applications to
work smoothly and provide the functionality they desire (but no more). By isolating
resources using semantics similar to the user’s point of view, namespaces relieve the user
from having to understand low-level access control mechanisms and the
permission-to-resource mappings. This translates to a high level of usability, not just for the
user’s configuration of namespaces, but also for the platform as a whole. Moreover, because
Android is based on an open architecture that facilitates and depends on a high level of
interaction among apps, isolating only certain critical resources preserves other

functionality without having to implement complex workarounds or inconveniencing the

252

user.

Trait 3: Namespaces are efficient. Linux Namespaces share a single kernel and operating system
instance [71][129]. As a result, isolation of a specific resource can be achieved with high
efficiency, and overall performance levels are nearly identical those without any isolation
[71][70][68][67]. Unlike isolation based on platform or application virtualization, there is no
extra startup time for a namespace [71].

Value to our work: By applying the namespace concept to high level semantics of the
Android Framework, we carry forward the efficiency advantages of the namespace concept.
Just as Linux Namespaces share a single kernel and OS instance, our namespaces share a
single Framework and runtime instance. In the constrained environment of a mobile device,
this is an extremely important trait.

Trait 4: Namespaces share by default. Namespaces provide strong isolation of certain resources
while permitting sharing of others [70][68][67] . This contrasts with isolation based on
coarse-grained platform or application virtualization where communication among
processes in different virtual machines is difficult, and may require modifications to either
applications or the virtual machines themselves.

Value to our work: Android is a platform designed around the fact that apps are closely
related and must communicate in order to provide the best usability and efficiency. In fact,
most of the Android system itself uses these same channels for system-app and
system-system communications. Isolating resources by way of fine-grained namespace
virtualization at the Framework level preserves continued sharing of resources unrelated to
the isolated resource. Coarse-grained virtualization breaks many shared resources that have
nothing to do with the isolated resource.

Trait 5: Namespaces are transparent. Namespaces are transparent to the host system, as well as
to the applications inside them [71][68]. This means that processes running in a namespace
appear as normal processes to the host system, and the host system appears normal to an

application. The host system retains the full ability to monitor, analyze, and directly control

253

all processes, and the application need not be modified to run in the namespace. This is not
always the case with other forms of virtualization such as platform and application
virtualization. In the former, the host system loses visibility and control over the individual
processes running within the VM, and in the latter, the application may need to be modified
to account for unrepresented resources.

Value to our work: By applying the namespace concept to the Framework, a single Android
system and kernel retains full control over all applications, and apps do not need
modifications to work properly.

Trait 6: Namespaces have a small footprint Unlike many forms of platform and application
visualization, namespaces do not require persistent files or large binaries, and have a small
kernel footprint, making them lightweight [71][70][68][67].

Value to our work: Mobile devices are resource-constrained and most users will become very
impatient with security features that consume storage or negatively impact performance. By
addressing only a specific, high-level resource, namespaces applied to the Framework can
be implemented with relatively few modifications to the Android system, and only a small
amount of memory consumed. This results in nearly zero impact on storage resources and
device performance. In addition, since mobile devices are usually subject to disadvantaged
or expensive communication links, the small footprint opens the possibility of practical

over-the-air (OTA) configuration or update.

© © - ;AW N o

254

Appendix K

Android servicemanager hypovisor code

This appendix contains the code added to
frameworks/native/cmds/servicemanager/service_manager.c to instantiate the
SystemServices hypovisor within the native servicemanager process. The code is explained in

Section 5.4.2.

Listing K.1: Modified do_ find_service () function.

// Structure to hold records read from /etc/mspolicy.
struct nspace {

unsigned uid;

const char service[32];

const char modifier[1];
};

struct nspace;

uint32_t do_find_service(struct binder_state *bs, const uintl6_t *s, size_t len, uid_t uid,
pid_t spid)
{

struct svcinfo *si;

if (!svc_can_find(s, len, spid)) {
ALOGE("find_service(’%s?’) uid=%d - PERMISSION DENIED\n",
str8(s, len), uid);
return 0;

}

/% K ok K %k %k %k K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K 3 3 3 3 K K K K ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K K 3 K K K K K ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K
* RATAZZI 7/14/2014

Before calling find_svc (), we check /etc/mnspolicy to see if this uid
belongs to a namespace for the service requested. If so, we append the the
namespace identifier to the service name and increase len appropriately.

* X X X X *

/

uintl6_t *ns_val, *ns_s;
unsigned int n;

30
31
32
33
34
35
36
37
38
39
40
7
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6
62

63
64

65
66
67
68
69
70
7

72
73
74
75
76
77
78
79
80
8

82
83
84
85

86
87
88
89
90
91
92
93
94

255

FILE *fd;
// Currently, we support two places for nspolicy to live: a system file in /etc, and a file controlled
// by CSRG’s SecureLauncher in that app’s data directory. The latter supercedes the former if present.

char filenamel[128] = "/data/data/com.syr.csrg.seclauncher/files/nspolicy";
char filename2[128] = "/etc/ns/nspolicy";

char filename[128] = "";

unsigned int nfields = 3; // <uid> <service_name> <modifier>

unsigned int lineno = 0;

int nret;
struct nspace nsp[128];
bool nflag = false;

fd=fopen(filenamel, "r");

if (fd == NULL) {
fd=fopen(filename2, "r");
if (fd == NULL) {

ALOGE ("Unable to open %s or %s policy file: %d (%s)\n",
filenamel, filename2, errno, strerror(errno));

} else {
strcpy(filename, filename2);
}
} else {
strcpy(filename, filenamel);
}
if (fd !'= NULL) {
while (!feof (£fd)) {
++lineno;
while(nfields == (nret = fscanf (fd, "%d %s %s", &nsp[lineno].uid,
&nsp[lineno].service,
&nsp[lineno].modifier))) {
if ((uid == nspl[lineno].uid || (uid > 10000 && nsp[lineno].uid == 99999)
)
&% stri6eq(s, &(nspl[lineno].service))) {
ALOGI ("MATCH in do_find_service(’%s’ requested by uid/pid=%d/%d).
Adding °’_%s’",
str8(s, len), uid, spid, &nsp[lineno].modifier);
nflag = true;
len+=2;
ns_s = add_ns(s, &(nsp[lineno].modifier));
s = ns_s;
}
++lineno;
}
if (ferror (£fd)) {
break;
} else if (nret != EOF) {
ALOGE("Ignoring malformed limne %d in %s\n", lineno, &filename);
fscanf (£d, "%*x[~\nl");
}
}
fclose (fd);
}
si = find_svc(s, len);

if (nflag) ALOGI("check_service(’%s’) handle = %x\n", str8(s, len), si ? si->handle : 0)

if (si && si->handle) {
if (!si->allow_isolated) {
// 1f this service doesn’t allow access from isolated processes,
// then check the uid to see if it is isolated.
uid_t appid = uid % AID_USER;
if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) {
return O;

}

95
96
97
98
99

return si->handle;
} else {
return O;

}

256

Listing K.2: add_ns () function.

/% % sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok K %k %k %k %k sk K K sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok K K K K %k %k K 3k K K ok ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K %k %k K K ok ok ok
* RATAZZI 7/15/2014

*
* Function to concatenate the namespace value from namespace[] to the name in
* the original request.

*

* Pointers made this a royal pain and I was forced to use only 1 char for the
* namespace. I guess this is 0K, ’cause even with only 1 char, we can have a
* lot of namespaces for each service. Maybe 36 or more, not counting special
* chars (are they allowed in service names?7).

*/

const char *add_ns(uint16_t *x, uintl6_t *ns)
{

static char buf [128];

unsigned max = 127;

uint16_t *p=buf;

if (x) {
while (*x && max--) {
*p++ = kX H+;
}
*p++ = Oxbf; // "_"
*p++ = *xns++;
}
*p++ = 03

return buf;

257

References

Gartner, Inc. Gartner Says Worldwide Traditional PC, Tablet, Ultramobile and Mobile Phone
Shipments Are On Pace to Grow 6.9 Percent in 2014. URL:
http://www.gartner.com/newsroom/id/2692318.

Google, Inc. Q2 2013 Earnings Conference Call Transcript. URL:
http://www.nasdaq.com/aspx/call-transcript.aspx?StoryId=1557292.

Out of Pocket: AComprehensive Mobile Threat Assessment of 7 Million iOS and Android Apps.
Tech. rep. Firekye, Inc., Feb. 2015. URL: https:
//www2.fireeye.com/rs/fireye/images/rpt-mobile-threat-assessment.pdf.
Pulse Secure Mobile Threat Center. 2015 Mobile Threat Report. Tech. rep. Pulse Secure LLC,
2015. URL:https://www.pulsesecure.net/download/pages/2819/PulseSecure_
MobilityReport.pdf.

Google Android: Vulnerability Statistics. [Online; accessed 26 Aug 2016]. URL: http:
//www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224.
Erika Chin, Adrienne Porter Felt, Viyas Sekar, and David Wagner. “Measuring User
Confidence in Smartphone Security and Privacy”. In: Proceedings of the Eighth Symposium
on Usable Privacy and Security. SOUPS "12. Washington, D.C.: ACM, 2012, 1:1-1:16.

Security Enhancements | Android Open Source Project. [Online; accessed 9 May 2016]. URL:
https://source.android.com/security/enhancements/.

William Enck, Machigar Ongtang, and Patrick McDaniel. Mitigating Android Software Misuse

http://www.gartner.com/newsroom/id/2692318
http://www.nasdaq.com/aspx/call-transcript.aspx?StoryId=1557292
https://www2.fireeye.com/rs/fireye/images/rpt-mobile-threat-assessment.pdf
https://www2.fireeye.com/rs/fireye/images/rpt-mobile-threat-assessment.pdf
https://www.pulsesecure.net/download/pages/2819/PulseSecure_MobilityReport.pdf
https://www.pulsesecure.net/download/pages/2819/PulseSecure_MobilityReport.pdf
http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://source.android.com/security/enhancements/

258

Before It Happens. Tech. rep. NAS-TR-0094-2008. The Pennsylvania State University, Nov. 21,
2008.

Peter Eckersley. Google Removes Vital Privacy Feature From Android, Claiming Its Release
Was Accidental. Dec. 2013. URL:https://www.eff.org/deeplinks/2013/12/
google-removes-vital-privacy-features-android-shortly-after-adding-them.
Security Overview | Android Open Source Project. [Online; accessed 9 May 2016]. URL:
https://source.android.com/security/

Gary McGraw and Edward W Felten. Securing Java: getting down to business with mobile
code. John Wiley & Sons, Inc., 1999.

Samuel Gibbs. “Why it took us so long to match Apple on privacy —a Google exec explains”.
In: theguardian (June 2015). [Online; accessed 12 May 2016]. URL:
https://www.theguardian.com/technology/2015/jun/09/
google-privacy-apple-android-lockheimer-security-app-ops/

Security Enhancements in Android 6.0 | Android Open Source Project. [Online; accessed 16
May 2016]. URL:
https://source.android.com/security/enhancements/enhancements60.html.
anti-virus - Android Apps on Google Play. [Online; accessed 16 May 2016]. URL:
https://play.google.com/store/search?q=anti-virus&c=apps.

Android Has a Big Security Problem, But Antivirus Apps Can’t Do Much to Help. [Online;
accessed 8 June 2016]. URL:http://www.howtogeek.com/232436/
android-has-a-big-security-problem-but-antivirus-apps-cant-do-much/.
Heging Huang, Kai Chen, Chuangang Ren, Peng Liu, Sencun Zhu, and Dinghao Wu.
“Towards Discovering and Understanding Unexpected Hazards in Tailoring Antivirus
Software for Android”. In: Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security. ASIA CCS"15. Singapore, Republic of Singapore: ACM, 2015,
pp. 7-18. URL:http://doi.acm.org/10.1145/2714576.2714589.

Black Duck Software, Inc. The Android Open Source Project on Open Hub. URL:

https://www.eff.org/deeplinks/2013/12/google-removes-vital-privacy-features-android-shortly-after-adding-them
https://www.eff.org/deeplinks/2013/12/google-removes-vital-privacy-features-android-shortly-after-adding-them
https://source.android.com/security/
https://www.theguardian.com/technology/2015/jun/09/google-privacy-apple-android-lockheimer-security-app-ops/
https://www.theguardian.com/technology/2015/jun/09/google-privacy-apple-android-lockheimer-security-app-ops/
https://source.android.com/security/enhancements/enhancements60.html
https://play.google.com/store/search?q=anti-virus&c=apps
http://www.howtogeek.com/232436/android-has-a-big-security-problem-but-antivirus-apps-cant-do-much/
http://www.howtogeek.com/232436/android-has-a-big-security-problem-but-antivirus-apps-cant-do-much/
http://doi.acm.org/10.1145/2714576.2714589

[20]

[21]

[22]

259

https://www.openhub.net/p/android (visited on 05/07/2016).

Chee-Sing Chan. “Complexity the Worst Enemy of Security”. In: Computerworld, Inc. (Dec.
2012). [Online; accessed 9 May 2016]. URL:http://www.computerworld.com/article/
2493938/cyberwarfare/complexity-the-worst-enemy-of-security.html.

Daniel R. Thomas, Alastair R. Beresford, and Andrew Rice. “Security Metrics for the Android
Ecosystem”. In: Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices. SPSM "15. Denver, Colorado, USA: ACM, 2015, pp. 87-98.
Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. “Android
Permissions Demystified”. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security. CCS’11. Chicago, lllinois, USA: ACM, 2011, pp. 627-638.

Laurent Simon and Ross Anderson. “PIN Skimmer: Inferring PINs Through the Camera and
Microphone”. In: Proceedings of the Third ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices. SPSM "13. Berlin, Germany: ACM, 2013, pp. 67-78.

Liang Cai and Hao Chen. “Touchlogger: Inferring Keystrokes on Touch Screen from
Smartphone Motion”. In: Proceedings of the 6th USENIX Conference on Hot Topics in Security.
HotSec’11. San Francisco, CA: USENIX Association, 2011, pp. 9-9.

Zhi Xu, Kun Bai, and Sencun Zhu. “TapLogger: Inferring User Inputs on Smartphone
Touchscreens Using On-board Motion Sensors”. In: Proceedings of the Fifth ACM Conference
on Security and Privacy in Wireless and Mobile Networks. WISEC *12. Tucson, Arizona, USA:
ACM, 2012, pp. 113-124.

Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy Choudhury.

“Tapprints: Your Finger Taps Have Fingerprints”. In: Proceedings of the 10th International

Conference on Mobile Systems, Applications, and Services. MobiSys ’12. Low Wood Bay, Lake
District, UK: ACM, 2012, pp. 323-336.

Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. “ACCessory:
Password Inference Using Accelerometers on Smartphones”. In: Proceedings of the Twelfth

Workshop on Mobile Computing Systems & Applications. HotMobile 12. San Diego,

https://www.openhub.net/p/android
http://www.computerworld.com/article/2493938/cyberwarfare/complexity-the-worst-enemy-of-security.html
http://www.computerworld.com/article/2493938/cyberwarfare/complexity-the-worst-enemy-of-security.html

260

California: ACM, 2012, 9:1-9:6.

Manifest.permission | Android Developers. URL: https:
//developer.android.com/reference/android/Manifest.permission.html.

Zhi Xu and Jen Miller-Osborn. Bad Certificate Management in Google Play Store. [Online;
accessed 8 Jun 2016]. Aug. 2014. URL:http://researchcenter.paloaltonetworks.
com/2014/08/bad-certificate-management-google-play-store/.

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. “Detecting Repackaged Smartphone
Applications in Third-party Android Marketplaces”. In: Proceedings of the Second ACM
Conference on Data and Application Security and Privacy. CODASPY "12. San Antonio, Texas,
USA: ACM, 2012, pp. 317-326. URL:http://doi.acm.org/10.1145/2133601.2133640.
Xiao Zhang, Kailiang Ying, Yousra Aafer, Zhenshen Qiu, and Wenliang Du. “Life after App
Uninstallation: Are the Data Still Alive? Data Residue Attacks on Android”. In: Proceedings of
the Network and Distributed System Security Symposium (NDSS), San Diego, California, USA.
2016.

Dashboards | Android Developers. [Online; accessed 7 July 2016]. URL:
https://developer.android.com/about/dashboards/.

Quick Look at Android Lollipop’s Managed Provisioning. [Online; accessed 11 June 2016].
URL:https://epratazzi.wordpress.com/2014/07/24/
android-1l-managed-profile-quick-look/.

Android 4.2 APIs | Android Developers. URL: http:
//developer.android.com/about/versions/android-4.2.html#MultipleUsers.
Amit Singh. A Taste of Computer Security. [Online; accessed 12 Aug 2016]. Aug. 2014. URL:
http://www.kernelthread.com/publications/security/uw.html.

Paul Ratazzi, Yousra Aafer, Amit Ahlawat, Hao Hao, Yifei Wang, and Wenliang Du. “A
Systematic Security Evaluation of Android’s Multi-User Framework”. In: Mobile Security
Technologies (MoST) 2014. MoST’14. San Jose, CA, USA, May 2014.

External Storage Technical Information | Android Developers. URL:

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
http://researchcenter.paloaltonetworks.com/2014/08/bad-certificate-management-google-play-store/
http://researchcenter.paloaltonetworks.com/2014/08/bad-certificate-management-google-play-store/
http://doi.acm.org/10.1145/2133601.2133640
https://developer.android.com/about/dashboards/
https://epratazzi.wordpress.com/2014/07/24/android-l-managed-profile-quick-look/
https://epratazzi.wordpress.com/2014/07/24/android-l-managed-profile-quick-look/
http://developer.android.com/about/versions/android-4.2.html#MultipleUsers
http://developer.android.com/about/versions/android-4.2.html#MultipleUsers
http://www.kernelthread.com/publications/security/uw.html

261

http://source.android.com/devices/tech/storage/.

Karim Yaghmour. Embedded Android: Porting, Extending, and Customizing. O’Reilly Media,
Inc., 2013.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. “A Study of
Android Application Security”. In: Proceedings of the 20th USENIX Conference on Security.
SEC1. San Francisco, CA: USENIX Association, 2011, pp. 21-21.

The Android Source Code. URL:http://source.android.com/source/.

Settings | Android Developers. URL:
http://developer.android.com/reference/android/provider/Settings.html.
<activity> | Android Developers. URL:http://developer.android.com/guide/
topics/manifest/activity-element.html#exported.

Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. “Systematic detection of capability
leaks in stock Android smartphones”. In: Proceedings of the 19th Annual Symposium on
Network and Distributed System Security. 2012.

Bruce Schneier. “A Plea for Simplicity: You can’t secure what you don’t understand”. In:
Schneier on Security (Nov. 1999). [Online; accessed 12 May 2016]. URL: https:
//www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html.
Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang,
Xiaoyong Zhou, Wenliang Du, and Michael Grace. “Hare Hunting in the Wild Android: A
Study on the Threat of Hanging Attribute References”. In: Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security. CCS'15. Denver, Colorado,
USA: ACM, 2015, pp. 1248-1259. URL:
http://doi.acm.org/10.1145/2810103.2813648.

Roberto Gallo, Patricia Hongo, Ricardo Dahab, Luiz C. Navarro, Henrique Kawakami,

Kaio Galvao, Glauber Junqueira, and Luander Ribeiro. “Security and System Architecture:
Comparison of Android Customizations”. In: Proceedings of the 8th ACM Conference on

Security & Privacy in Wireless and Mobile Networks. WiSec ’15. New York, New York: ACM,

http://source.android.com/devices/tech/storage/
http://source.android.com/source/
http://developer.android.com/reference/android/provider/Settings.html
http://developer.android.com/guide/topics/manifest/activity-element.html#exported
http://developer.android.com/guide/topics/manifest/activity-element.html#exported
https://www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html
https://www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html
http://doi.acm.org/10.1145/2810103.2813648

[47]

[49]

262

2015,12:1-12:6. URL:http://doi.acm.org/10.1145/2766498.2766519.

Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. “The Impact of Vendor
Customizations on Android Security”. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. CCS ’13. Berlin, Germany: ACM, 2013,

pp. 623-634. URL:http://doi.acm.org/10.1145/2508859.2516728

Yousra Aafer, Xiao Zhang, and Wenliang Du. “Harvesting Inconsistent Security
Configurations in Custom Android ROMs via Differential Analysis”. In: 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016, pp. 1153-1168.
URL:https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/aafer.

Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. “Kratos: Discovering
Inconsistent Security Policy Enforcement in the Android Framework”. In: Proc. 23rd Annual
Network and Distributed System Security Symposium (NDSS’16). ISOC. 2016.

Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. “Checking System Rules
Using System-specific, Programmer-written Compiler Extensions”. In: Proceedings of the
4th Conference on Symposium on Operating System Design & Implementation - Volume 4.
OSDI’00. San Diego, California: USENIX Association, 2000. URL:
http://dl.acm.org/citation.cfm?id=1251229.1251230.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. “An Empirical
Study of Operating Systems Errors”. In: Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles. SOSP ’01. Banff, Alberta, Canada: ACM, 2001, pp. 73-88. URL:
http://doi.acm.org/10.1145/502034.502042.

Nicolas Palix, Gaél Thomas, Suman Saha, Christophe Calves, Julia Lawall, and Gilles Muller.
“Faults in Linux: Ten Years Later”. In: Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems. ASPLOS XVI.
Newport Beach, California, USA: ACM, 2011, pp. 305-318. URL:

http://doi.acm.org/10.1145/1950365.1950401.

http://doi.acm.org/10.1145/2766498.2766519
http://doi.acm.org/10.1145/2508859.2516728
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aafer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aafer
http://dl.acm.org/citation.cfm?id=1251229.1251230
http://doi.acm.org/10.1145/502034.502042
http://doi.acm.org/10.1145/1950365.1950401

(51]

263

Reinhard Tartler, Julio Sincero, Wolfgang Schroder-Preikschat, and Daniel Lohmann.
“Dead or Alive: Finding Zombie Features in the Linux Kernel”. In: Proceedings of the First
International Workshop on Feature-Oriented Software Development. FOSD "09. Denver,
Colorado, USA: ACM, 2009, pp. 81-86. URL:
http://doi.acm.org/10.1145/1629716.1629732

Andreas Ziegler, Valentin Rothberg, and Daniel Lohmann. “Analyzing the Impact of Feature
Changes in Linux”. In: Proceedings of the Tenth International Workshop on Variability
Modelling of Software-intensive Systems. VaMoS "16. Salvador, Brazil: ACM, 2016, pp. 25-32.
URL:http://doi.acm.org/10.1145/2866614.2866618.

Stephen Smalley and Robert Craig. “Security Enhanced (SE) Android: Bringing Flexible MAC
to Android”. In: Proceedings of the 2013 Network and Distributed System Security Symposium
(NDSS). The Internet Society, Feb. 2013.

<permission>| Android Developers. [Online; accessed 20 Sep 2016]. URL:
https://developer.android.com/guide/topics/manifest/permission-element.
html#plevel.

Wikipedia. Feature Engineering. [Online; accessed 23 Sep 2016]. 2016. URL:
https://en.wikipedia.org/wiki/Feature_engineering.

Pedro Domingos. “A Few Useful Things to Know About Machine Learning”. In: Commun.
ACM 55.10 (Oct. 2012), pp. 78-87. URL:
http://doi.acm.org/10.1145/2347736.2347755

Amit Ahlawat. FeatureExtraction (v4.0, “Atlantis”). [Unpublished software]. Syracuse
University, Syracuse, NY. Apr. 2016.

Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman.
“Linux Security Modules: General Security Support for the Linux Kernel”. In: USENIX Security
Symposium.Vol. 2. 2002, pp. 1-14.

J.G.R. Sathiaseelan, S. Albert Rabara, and J. Ronal Martin. “Multi-Level Secure Framework

(MLSF) for Composite Web Services”. In: Proceedings of the 2Nd International Conference on

http://doi.acm.org/10.1145/1629716.1629732
http://doi.acm.org/10.1145/2866614.2866618
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://en.wikipedia.org/wiki/Feature_engineering
http://doi.acm.org/10.1145/2347736.2347755

[60]

[65]

[66]

264

Interaction Sciences: Information Technology, Culture and Human. ICIS’09. Seoul, Korea:
ACM, 2009, pp. 580-585. URL:http://doi.acm.org/10.1145/1655925.1656030.
Maciej P. Machulak, tukasz Moren, and Aad van Moorsel. “Design and Implementation of
User-managed Access Framework for Web 2.0 Applications”. In: Proceedings of the 5th
International Workshop on Middleware for Service Oriented Computing. MW4SOC "10.
Bangalore, India: ACM, 2010, pp. 1-6. URL:
http://doi.acm.org/10.1145/1890912.1890913.

Binder | Android Developers. [Online; accessed 9 May 2016]. URL:
http://developer.android.com/reference/android/os/Binder.html.
Android’s First Multi Boot Application: tntt2winttapps/BootManager. URL:
https://github.com/init2winitapps/BootManager.

Christoffer Dall and Jason Nieh. “KVM/ARM: The Design and Implementation of the Linux
ARM Hypervisor”. In: Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS "14. Salt Lake City,
Utah, USA: ACM, 2014, pp. 333-348.

Chiachih Wu, Yajin Zhou, Kunal Patel, Zhenkai Liang, and Xuxian Jiang. “AirBag: Boosting
Smartphone Resistance to Malware Infection”. In: Proceedings of the 21th Annual Network
and Distributed System Security Symposium (NDSS’14). 2014.

Christoffer Dall, Jeremy Andrus, Alexander Van’'t Hof, Oren Laadan, and Jason Nieh. “The
Design, Implementation, and Evaluation of Cells: A Virtual Smartphone Architecture”. In:
ACM Trans. Comput. Syst. 30.3 (Aug. 2012), 9:1-9:31.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza Sadeghi, and
Bhargava Shastry. “Practical and Lightweight Domain Isolation on Android”. In:
Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices. SPSM11. Chicago, Illinois, USA: ACM, 2011, pp. 51-62.

Eric Biederman. “Multiple Instances of the Global Linux Namespaces”. In: Ottawa Linux

Symposium (OLS) 2006. Ottawa, ON, CAN, Aug. 2006.

http://doi.acm.org/10.1145/1655925.1656030
http://doi.acm.org/10.1145/1890912.1890913
http://developer.android.com/reference/android/os/Binder.html
https://github.com/init2winitapps/BootManager

[75]

265

Sukadev Bhattiprolu, Eric W. Biederman, Serge Hallyn, and Daniel Lezcano. “Virtual Servers
and Checkpoint/Restart in Mainstream Linux”. In: SIGOPS Oper. Syst. Rev. 42.5 (July 2008),
pp. 104-113.

Rami Rosen. “Linux Containers and the Future Cloud”. In: Linux J. 2014.240 (Apr. 2014).
Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
“Container-based Operating System Virtualization: A Scalable, High-performance
Alternative to Hypervisors”. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007. EuroSys ’07. Lisbon, Portugal: ACM, 2007,

pp. 275-287.

David Strauss. “The Future Cloud is Container, Not Virtual Machines”. In: Linux J. 2013.228
(Apr. 2013).

Wikipedia. Supervisory program. [Online; accessed 24 Aug 2016]. 2016. URL:
https://en.wikipedia.org/wiki/Supervisory_program.

Wikipedia. IBM System/360 Model 67. [Online; accessed 24 Aug 2016]. 2016. URL:
https://en.wikipedia.org/wiki/IBM_System/360_Model_67.

Neelima Krishnan. “Android Hypovisors: Securing Mobile Devices through
High-Performance, Light-Weight, Subsystem Isolation with Integrity Checking and Auditing
Capabilities”. MA thesis. Virginia Tech, Dec. 2014.

Xiangyu Liu, Wenrui Diao, Zhe Zhou, Zhou Li, and Kehuan Zhang. “Gateless Treasure: How
to Get Sensitive Information from Unprotected External Storage on Android Phones”. In:
CORR abs/1407.5410 (2014).

Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and Erika Chin.
“Permission Re-delegation: Attacks and Defenses”. In: Proceedings of the 20th USENIX
Conference on Security. SEC'11. San Francisco, CA: USENIX Association, 2011, pp. 22-22.

X. Zhang and W. Du. “Attacks on Android Clipboard”. In: Proceedings of the 11th Conference
on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA). Egham, UK, July

2014.

https://en.wikipedia.org/wiki/Supervisory_program
https://en.wikipedia.org/wiki/IBM_System/360_Model_67

266

Yeongjin Jang, Chengyu Song, Simon P. Chung, Tielei Wang, and Wenke Lee. “A11Y Attacks:
Exploiting Accessibility in Operating Systems”. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. CCS "14. Scottsdale, Arizona, USA:
ACM, 2014, pp. 103-115.

ZhiXu and Sencuno Zhu. “Abusing Notification Services on Smartphones for Phishing and
Spamming”. In: Proceedings of the 6th USENIX Workshop on Offensive Technologies.
Bellevue, WA: USENIX, 2012.

Yves-Alexandre de Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D Blondel.
“Unique in the Crowd: The privacy bounds of human mobility”. In: Scientific reports 3 (2013).
F. Mohsen and M. Shehab. “Android keylogging threat”. In: Collaborative Computing:
Networking, Applications and Worksharing (Collaboratecom), 2013 9th International
Conference Conference on. Oct. 2013, pp. 545-552.

Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith. “Practicality of
Accelerometer Side Channels on Smartphones”. In: Proceedings of the 28th Annual
Computer Security Applications Conference. ACSAC ’12. Orlando, Florida: ACM, 2012,

pp. 41-50.

Lingguang Lei, Yuewu Wang, Jian Zhou, Daren Zha, and Zhongwen Zhang. “A Threat to
Mobile Cyber-Physical Systems: Sensor-Based Privacy Theft Attacks on Android
Smartphones”. In: Trust, Security and Privacy in Computing and Communications
(TrustCom), 2013 12th IEEE International Conference on. July 2013, pp. 126-133.

Keisuke Komeda, Masahiro Mochizuki, and Nobuhiko Nishiko. “User Activity Recognition
Method Based on Atmospheric Pressure Sensing”. In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication.
UbiComp "14 Adjunct. Seattle, Washington: ACM, 2014, pp. 737-746.

Overview of Google Play Services. [Online; accessed 24 Aug 2016]. URL:
https://developers.google.com/android/guides/overview.

Mohammad Mannan and P.C. van Oorschot. “Leveraging personal devices for stronger

https://developers.google.com/android/guides/overview

[96]

267

password authentication from untrusted computers”. In: Journal of Computer Security 19.4
(Jan.201m), pp. 703-750.

Dianne Hackborn. Re: [PATCH 1/6] staging: android: binder: Remove some funny && usage.
June2009. URL:https://1kml.org/1kml/2009/6/25/3.

InputMethodManager | Android Developers. URL:http://developer.android.com/
reference/android/view/inputmethod/InputMethodManager.html.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi, and
Bhargava Shastry. “Towards taming privilege-escalation attacks on Android”. In: 19th
Annual Network & Distributed System Security Symposium (NDSS). Vol. 17. 2012, pp. 18-25.
Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-Reza Sadeghi.
“Xmandroid: A new Android evolution to mitigate privilege escalation attacks”. In:
Technische Universitdt Darmstadt, Technical Report TR-2011-04 (2011).

Yajin Zhou and Xuxian Jiang. “Detecting passive content leaks and pollution in Android
applications”. In: Proceedings of the 20th Annual Symposium on Network and Distributed
System Security. 2013.

Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S Wallach. “Q UIRE:
Lightweight Provenance for Smart Phone Operating Systems.” In: USENIX Security
Symposium. 2011.

Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and Erika Chin.
“Permission Re-Delegation: Attacks and Defenses.” In: USENIX Security Symposium. 2011.
Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. “Flexible and fine-grained
mandatory access control on Android for diverse security and privacy policies”. In: 22nd
USENIX Security Symposium (USENIX Security’13). USENIX. 2013.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. “Chex: statically vetting
Android apps for component hijacking vulnerabilities”. In: Proceedings of the 2012 ACM
conference on Computer and communications security. ACM. 2012, pp. 229-240.

Patrick PF Chan, Lucas CK Hui, and Siu-Ming Yiu. “Droidchecker: analyzing Android

https://lkml.org/lkml/2009/6/25/3
http://developer.android.com/reference/android/view/inputmethod/InputMethodManager.html
http://developer.android.com/reference/android/view/inputmethod/InputMethodManager.html

[100]

[101]

[102]

[103]

268

applications for capability leak”. In: Proceedings of the fifth ACM conference on Security and
Privacy in Wireless and Mobile Networks. ACM. 2012, pp. 125-136.

Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. “Activity Recognition Using Cell
Phone Accelerometers”. In: SIGKDD Explor. Newsl. 12.2 (Mar. 2011), pp. 74-82.

Emiliano Miluzzo, Nicholas D. Lane, Kristéf Fodor, Ronald Peterson, Hong Lu,

Mirco Musolesi, Shane B. Eisenman, Xiao Zheng, and Andrew T. Campbell. “Sensing Meets
Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe
Application”. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems. SenSys '08. Raleigh, NC, USA: ACM, 2008, pp. 337-350.

Young-Seol Lee and Sung-Bae Cho. “Activity Recognition Using Hierarchical Hidden
Markov Models on a Smartphone with 3D Accelerometer”. In: Proceedings of the 6th
International Conference on Hybrid Artificial Intelligent Systems - Volume Part . HAIS'11.
Wroclaw, Poland: Springer-Verlag, 2011, pp. 460-467.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-Ortiz.
“Human Activity Recognition on Smartphones Using a Multiclass Hardware-friendly
Support Vector Machine”. In: Proceedings of the 4th International Conference on Ambient
Assisted Living and Home Care. INAAL12. Vitoria-Gasteiz, Spain: Springer-Verlag, 2012,

pp. 216-223.

Felix Rohrer, Yuting Zhang, Lou Chitkushev, and Tanya Zlateva. “DR BACA: Dynamic Role
Based Access Control for Android”. In: Proceedings of the 29th Annual Computer Security
Applications Conference. ACSAC '13. New Orleans, Louisiana: ACM, 2013, pp. 299-308.
Zemin Liu, Choon-Sung Nam, and Dong-Ryeol Shin. “UAMDroid: A user authority manager
model for the Android platform”. In: Advanced Communication Technology (ICACT), 2011 13th
International Conference on. Feb. 2011, pp. 1146-1150.

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth. “TaintDroid: An Information-flow Tracking System

for Realtime Privacy Monitoring on Smartphones”. In: Proceedings of the 9th USENIX

[104]

[105]

[106]

[107]

[108]

[109]

[110]

269

Conference on Operating Systems Design and Implementation. OSDI'10. Vancouver, BC,
Canada: USENIX Association, 2010, pp. 1-6.

Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall.
“These Aren’t the Droids You're Looking for: Retrofitting Android to Protect Data from
Imperious Applications”. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security. CCS "11. Chicago, Illinois, USA: ACM, 2011, pp. 639-652.

Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy,
Jeffrey S. Foster, and Todd Millstein. “Dr. Android and Mr. Hide: Fine-grained Permissions in
Android Applications”. In: Proceedings of the Second ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices. SPSM ’12. Raleigh, North Carolina, USA: ACM, 2012,

pp. 3-14.

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. “Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Constraints”. In:
Proceedings of the 5th ACM Symposium on Information, Computer and Communications
Security. ASIACCS "10. Beijing, China: ACM, 2010, pp. 328-332.

Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming Liu, and Wenliang Du. “Compac:
Enforce Component-level Access Control in Android”. In: Proceedings of the 4th ACM
Conference on Data and Application Security and Privacy. CODASPY "14. San Antonio, Texas,
USA: ACM, 2014, pp. 25-36.

Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence Fernandes. “MOSES:
Supporting Operation Modes on Smartphones”. In: Proceedings of the 17th ACM Symposium
on Access Control Models and Technologies. SACMAT ’12. Newark, New Jersey, USA: ACM,
2012, pp. 3-12.

W. Chen, L. Xu, G. Li, and Y. Xiang. “A Lightweight Virtualization Solution for Android
Devices”. In: Computers, IEEE Transactions on PP.99 (2015), pp. 1-1.

Kassem Fawaz and Kang G. Shin. “Location Privacy Protection for Smartphone Users”. In:

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security.

[111]

[112]

[113]

[114]

[115]

[116]

M7]

[118]

[119]

[120]

270

CCS"14. Scottsdale, Arizona, USA: ACM, 2014, pp. 239-250.

Zhigang Chen, Xin Hu, Xiaoen Ju, and K.G. Shin. “LISA: Location Information ScrAmbler for
privacy protection on smartphones”. In: Communications and Network Security (CNS), 2013
IEEE Conference on. Oct. 2013, pp. 296-304.

Saikat Guha, Mudit Jain, and Venkata N. Padmanabhan. “Koi: A Location-privacy Platform
for Smartphone Apps”. In: Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation. NSDI'12. San Jose, CA: USENIX Association, 2012, pp. 14-14.
Security program overview. [Online; accessed 2 Nov 2016]. URL:
https://source.android.com/security/#security-program-overview.

System and kernel security | Android Open Source Project. [Online; accessed 2 Nov 2016].
URL:https://source.android.com/security/overview/kernel-security.html.
Application security | Android Open Source Project. [Online; accessed 2 Nov 2016]. URL:
https://source.android.com/security/overview/app-security.html.

Security updates and resources | Android Open Source Project. URL:
https://source.android.com/security/overview/updates-resources.html.
Security Enhancements in Android 5.0 | Android Open Source Project. [Online; accessed 16
May 2016]. URL:
https://source.android.com/security/enhancements/enhancements50.html.
Security Enhancements in Android 4.4 | Android Open Source Project. [Online; accessed 16
May 2016]. URL:
https://source.android.com/security/enhancements/enhancements44.html.
Security Enhancements in Android 4.3 | Android Open Source Project. [Online; accessed 16
May 2016]. URL:
https://source.android.com/security/enhancements/enhancements43.html.
Security Enhancements in Android 4.2 | Android Open Source Project. [Online; accessed 16
May 2016]. URL:

https://source.android.com/security/enhancements/enhancements42.html.

https://source.android.com/security/#security-program-overview
https://source.android.com/security/overview/kernel-security.html
https://source.android.com/security/overview/app-security.html
https://source.android.com/security/overview/updates-resources.html
https://source.android.com/security/enhancements/enhancements50.html
https://source.android.com/security/enhancements/enhancements44.html
https://source.android.com/security/enhancements/enhancements43.html
https://source.android.com/security/enhancements/enhancements42.html

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

271

Security Enhancements in Android 1.5 through 4.1 | Android Open Source Project. [Online;
accessed 16 May 2016]. URL:
https://source.android.com/security/enhancements/enhancements41l.html.
Ben Gruver. Deodex Instructions. [Online; accessed 15 Dec 2015]. Oct. 2015. URL:
https://github.com/JesusFreke/smali/wiki/DeodexInstructions.

joeldroid. JoelDroid Lollipop Batch Deodexer V 2.5. [Online; accessed 15 Dec 2015]. Apr. 2015.
URL:http://forum.xda-developers.com/android/software-hacking/
script-app-joeldroid-lollipop-batch-t2980857

matt95. Unruu HTC RUUs. [Online; accessed 15 Dec 2015]. May 2013. URL:
http://forum.xda-developers.com/showthread.php?t=2264238.

joeykrim. RUUVEAL - Decrypt the rom. z4p file included in the RUU. [Online; accessed 15 Dec
2015]. Jan. 2013. URL:
http://forum.xda-developers.com/showthread.php?t=2084470

Bhushan Jain, Chia-Che Tsai, Jitin John, and Donald E. Porter. “Practical Techniques to
Obviate Setuid-to-root Binaries”. In: Proceedings of the Ninth European Conference on
Computer Systems. EuroSys "14. Amsterdam, The Netherlands: ACM, 2014, 8:1-8:14.

Michael Kerrick. “Namespaces in operation”. In: LWN.net (). [Online; accessed xx]. URL:
http://lwn.net/Articles/531114/

Wikipedia. Namespace. [Online; accessed 12 Aug 2015]. 2015. URL:
http://en.wikipedia.org/wiki/Namespace.

Rami Rosen. “Linux Kernel Networking: Implementation and Theory”. In: New York: Apress,

2014. Chap. 14, pp. 405-426.

https://source.android.com/security/enhancements/enhancements41.html
https://github.com/JesusFreke/smali/wiki/DeodexInstructions
http://forum.xda-developers.com/android/software-hacking/script-app-joeldroid-lollipop-batch-t2980857
http://forum.xda-developers.com/android/software-hacking/script-app-joeldroid-lollipop-batch-t2980857
http://forum.xda-developers.com/showthread.php?t=2264238
http://forum.xda-developers.com/showthread.php?t=2084470
http://lwn.net/Articles/531114/
http://en.wikipedia.org/wiki/Namespace

Vita

Author’s Name: Edward Paul Ratazzi
Place of Birth: Fort Huachuca, Arizona, USA
Date of Birth: August 22,1965
Degrees Awarded:

Bachelor of Science in Electrical Engineering, Rensselaer Polytechnic Institute, 1987
Master of Science in Electrical Engineering, Syracuse University, 1992
Master of Science in Management, Rensselaer Polytechnic Institute, 2006
Professional Experience:
Principal Engineer, Air Force Research Laboratory Information Directorate, July 2006-present
Adjunct Instructor, Syracuse University, February 2005-December 2013
Senior Electronics Engineer, AFRL, November 1997-July 2006
Electronics Engineer, Rome Laboratory, January 1992-November 1997
Electronics Engineer, Rome Air Development Center, June 1987-January 1992

Software Intern, Measurement Concept Corporation, January 1980-January 1981

	Understanding and Improving Security of the Android Operating System
	Recommended Citation

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Security enhancements proposed by the scientific literature
	Security enhancements available to end-users
	Thesis and Contributions
	Dissertation organization

	Background
	Uniqueness of Mobile Devices
	Tutorial on Android Security
	Development
	Download
	Installation
	Run-time
	Removal

	Android Access Control Evaluation Methodology
	Introduction
	Threat Model

	Background
	Framework - userId
	Framework - Permissions
	Framework - Package Management
	Filesystem
	Kernel
	Run-time

	Method and Model
	Scope
	Questions & Insights
	Hypotheses About Multi-User Security

	Case Study Findings
	Unprotected Activities
	Unrestricted Administrative Functions
	Shared Package Information
	Use of Sensors and Hardware Devices by Multiple Users

	Access Control Characterization
	Introduction
	System Services Customization
	Motivating Example
	Research Questions

	Characterizing Android Access Controls
	Access Control Feature Set
	Feature Vector Extraction

	Comparing Android Access Controls
	Case Study
	Procedure
	Characterization Analysis
	Differential Analysis
	Method-level Evaluation
	Results

	Other Applications
	Limitations and Future Directions
	Conclusion

	Protecting Sensitive and Vulnerable Resources
	Introduction
	Design Space
	Tradeoff analysis

	Design Concept
	Hypervisor vs. Hypovisor
	High-level design overview
	Methodology

	Case Study on Android System Service
	Android System Services
	PINPOINTing System Services
	Security Discussion
	Policy Configuration
	Limitations

	Applications
	Location Service
	Subscriber Information Service
	Input Method Service
	Sensor Service

	Evaluation
	Performance
	Qualitative Assessment
	Discussion

	Future Directions

	Related work
	Security Analysis
	Resource Protection

	Conclusion
	Appendices
	Android Security Statements
	Android Image Extraction Procedures
	AOSP, Android KitKat version 4.4.4
	AOSP, Android Lollipop version 5.x
	AOSP, Android Marshmallow version 6.x
	CyanogenMod 11-20150901, Android KitKat version 4.4.4
	CyanogenMod 12.1-20151121, Android Lollipop version 5.1.1
	Xiaomi MIUI, Android KitKat version 4.4.4
	FireOS 32.4.6.5, Android KitKat version 4.4.4
	FireOS 37.5.2.2, Android Lollipop version 5.0.2
	LG, Android KitKat version 4.4.2
	LG, Android Lollipop version 5.x
	HTC RUU, Android Jellybean version 4.2.x
	HTC RUU, Android KitKat and later versions

	Permission Configuration Extraction
	Power Query Import Script
	AOSP System Service Pivot Analysis
	Vendor System Service Pivot Analysis
	LG-5.0.2 Test Results
	S4-5.0.1 Test Results
	MotoX-5.0 Test Results
	Linux Namespaces Analysis
	Background
	Namespace Traits and Their Value to Our Work

	Android servicemanager hypovisor code

	References
	Vita

