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Abstract

Many theoretical and computational methods are based upon the Born-Oppenheimer

approximation. This approximation greatly simplifies the search for a wave function

that describes all electrons and nuclei in a chemical system. This is accomplished

by assuming that the motion of nuclei and electrons are vastly different; the motion

of the two particle types is decoupled. While the BO approximation is ubiquitous

in computational and theoretical studies, it is not always justifiable. There are two

main cases where this approximation is not valid. The first is when nuclear and

electronic motion cannot be decoupled. Decoupling the motion leads to incorrect

observations and conclusions drawn. The second case is when a chemical system

has more than one type of particle to be treated without the Born-Oppenheimer

approximation. For these types of systems, a different and more general interpreta-

tion of the Born-Oppenheimer approximation must be made where multiple particle

types can be investigated whose motion is not decoupled from one another. In order

to investigate systems that are classified in this more inclusive interpretation, new

computational theories and methods are needed. To accomplish this task, the mul-

ticomponent coupled-cluster method has been developed. In its present form, this

new computational method is capable of treating two types of particles without de-

coupling their motion. The fundamental theories and methods for multicomponent

coupled-cluster theory are discussed before the derivation and resulting multicompo-

nent coupled-cluster equations are discussed. This method was then used to study

excited electronic states in molecular systems and semiconductor quantum dots via

the electron-hole representation. It was also used to calculated ground state energy of

the positronium hydride system. These projects sparked further interest in the con-

sequences of the Born-Oppenheimer approximation’s application to chemical systems

and how it compares to a non Born-Oppenheimer treatment.
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1

Chapter 1

Multicomponent systems in

chemistry

1.1 Introduction

The overarching goal of theoretical chemistry is to mathematically describe chemical

and physical properties of chemical systems. Theoretical investigations into chemical

systems have been used to explain thermodynamic and electronic properties, as well as

study the spatial arrangment of atoms in a system. The field is continually growing

by refining methodology, providing more and more accurate results, and by being

applied to larger and more complex chemical systems.

Theoretical chemistry has many tools as its disposal to study chemical systems.

The work discussed in this thesis will focus on methods that employ a wave function

to describe chemical systems. A wave function is a mathematical object that describes

the state of a chemical system, with dependence on the coordinates of every particle

within that system. The wave function is then solved for using the Schrödinger

equation. This equation has a Hamiltonian operator, which calculates the kinetic

and potential energy terms of every particle in the system, operating on the wave



2

function and yielding energy times that wave function back,

HΨexact = EΨexact. (1.1)

Solving this eigenvalue problem for a molecular system is a very difficult task. The

nuclear and electronic particles are in constant motion. On top of that, the positions

of electrons and nuclei are correlated; the electrons repel one another, while simulta-

neously being attracted to the nuclei. The same is true for the nuclei - these particles

repel one another but are attracted to the negatively charged electrons.

Solving the Schrödinger equation in the current form proves to be an incredibly

difficult task. For molecular systems, alleviating the complexity of the problem comes

in the form of the Born-Oppenheimer approximation. This approximation is one of

the most important approximations in the field and has been the foundation of many

quantum chemical methodologies and investigations since its institution in 1927[1].

The next section, section 1.2, will qualitatively describe the BO approximation and

how it relates to quantum chemistry and the molecular Schrödinger equation. While

this section will highlight the utility of the BO approximation, it is not universally

applicable. There are systems where the BO approximation is invalid, and these will

be introduced in section 1.3.

1.2 Single component description

The exact wave function for a chemical system with two particle types (electrons and

nuclei) is defined as,

Ψexact(r,R) =
∑
i

∑
j

wi,jΨ
e
i (r,R)ΨN

j (R). (1.2)
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In the above equation, r are the electronic coordinates while R are the nuclear co-

ordinates. Substituting this form of the wave function into the Schrödinger equation

produces a prohibitively complex problem to solve. The BO approximation simplifies

the description of a chemical system by treating the motion of nuclei and electrons

independently. Using this approach allows the exact wave function be approximated

as

Ψexact(r,R) ≈ Ψe(r; R)ΨN(R). (1.3)

We can see that the electronic wave function is now only parametrically dependent

on the nuclear coordinates, whereas in the exact wave function it was explicitly de-

pendent. The electronic wave function is said to be single component now due to the

fact that there is explicit dependence on a single particle type (the electrons). This

approximation is justified later in subsection 7.2.1.

The BO approximation has been used to great effect for studying both elec-

tronic and nuclear properties of chemical systems. Solution to the single compo-

nent Schrödinger equation provides details about spectroscopic data [2, 3, 4, 5, 6, 7],

molecular structure [8, 9, 10, 11, 12, 13], electron affinities and ionization poten-

tials [14, 15, 16, 17, 18], excitation energies [19, 20, 21, 22], and so on.

Unfortunately, while the BO approximation has proven itself to be very useful, it

is not without flaws. The most common interpretation identifies the particles as either

electrons or nuclei (or in other language BO separated and non BO separated). While

a vast majority of chemical systems fit this classification nicely, or can be abstracted

to be described as such, it is not all-encompassing. Systems that cannot fit this

description require that the wave function be augmented to encompass more particle

types or or for systems where the nuclear and electronic motion is not decoupled.
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1.3 Multicomponent description

The exact wave function for a chemical system with three types of disctinct particles

is defined as,

Ψexact(rI, rII,RN) =
∑
i

∑
j

wi,jΨ
I,II
i (rI, rII,RN)ΨN

j (RN). (1.4)

This exact wave function is written to be more general in there are type I, type II

and nuclei. An appropriate Hamiltonian will be defined that accounts for the extra

potential and kinetic energies due to the addition of the type II particles. The form

of this Hamiltonian is discussed in a later chapter. Solving for this wave function is

an even more complicated process given the addition of extra particle types.

The BO approximation can be extended to this wave function by assuming that

the motion of the nuclear particles is decoupled from that of type I and type II bodies.

This interpretation of the BO approximation is defined below,

Ψexact(rI, rII,RBOS) ≈ ΨI,II(rI, rII; RBOS)ΨBOS(RBOS). (1.5)

Note that the particle types need not be nuclei or electrons but instead are generally

defined as type I, type II, and BOS as this wave function can be applied to many

types of multicomponent systems.

Using the multicomponent wave function is a very useful computational tool for

investigating many interesting chemical systems. It can be used to investigate sub-

atomic particles (such as positron or muon) bound to molecules, study excited elec-

tronic states, and include nuclear motions in the electronic wave function.
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1.3.1 Subatomic particles bound to molecular systems

While it is not thought of as a typical chemical system, subatomic particles like

positron and muon can bind to molecular systems. Positrons have the identical mass

and spin of an electron (1 atomic unit and 1
2
) but have a +1 atomic unit charge.

When electrons and positrons collide, they annihilate one another, emitting high

energy electromagnetic radiation.

Understanding how these particles interact with molecular systems will help to

explain the fundamental properties of matter and physical laws in the universe.

Positrons and their interactions with electrons are used in spectroscopic applications.

Positron emission tomography is a biological imaging technique that can be used to

study and identify abnormalities and processes in living subjects [23, 24, 25, 26, 27].

Positron-based spectroscopic techniques are also used by material scientists to study

defects of solids [28, 29, 30, 31].

In chapter 4, a multicomponent study on positronium hydride (a positron bound

to hydride) is presented.

1.3.2 Quasiparticle representation

Multicomponent wave functions can also be used to investigate electronically excited

states. This fits into the multicomponent point of view by using the electron-hole

representation of excitations. The electron-hole representation is an exact mathe-

matical transformation that great simplifies an all-electron picture to the number of

excited electrons and positively charged holes they leave behind. This quasiparti-

cle transformation is well known and widely used in quantum chemistry and physics

[32, 33].

In Figure 1.1, the single component (all electron) and multicomponent represen-

tation are shown in a diagram. We see that on the left, all electrons in a system

are considered when the excitation is investigated. In contrast, on the right, the
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only electron considered is the one excited into the virtual states (states above the

occupation level). We see that a hole quasiparticle is left behind, which must be con-

sidered in any theoretical treatment. This representation removes the complexity of

considering all electrons, but inherits a different complexity in that multiple particle

types, as well as the interactions between same type particles and different particle

types, must now be accounted for. Higher order excitations can also be treated with

the electron-hole representation.

Figure 1.1: The all electron representation (left) versus the electron-hole representa-
tion (right) of an excited electronic state.

The electron-hole representation is often used to study excited states of systems

with vast numbers of electrons such include bulk metals and semiconductor nanocrys-

tals [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. The research presented in this

thesis was heavily influenced and inspired by the ability to study multiple excitations

in semiconductor nanocrystals as they exhibit very interesting and highly tunable

electronic and optical properties. In chapter 4 and chapter 5, investigations into

these types of systems are presented.
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1.3.3 Non Born-Oppenheimer affects

The multicomponent wave function can also be used to investigate non Born-

Oppenheimer affects. In the single component representation, all nuclei are treated

as fixed in space. There are several examples where nuclear motion is an important

feature of chemical processes and properties of a system. Proton-coupled electron-

transfer reactions are a great example where an electron and proton are transferred

in a reaction nearly simultaneously [47, 48, 49, 50, 51, 52]. This process would be

misrepresented with the BO approximation since the proton motion happens on a

similar timescale to that of the electron. Proton tunneling is another example where

the motion of a nuclear body cannot be ignored [53, 54, 55, 56, 57].

Motion of nuclear bodies can be treated in the multicomponent framework and

presents a large amount of potential application projects for multicomponent meth-

ods. While the work in this thesis was mainly motivated by investigating electron-hole

systems, some preliminary work on nuclear-electron studies was also done and is pre-

sented in chapter 7.

1.4 This work

The work presented here involved using existing computational methods, and more

specifically developing new ones, to study chemical systems where the BO approxima-

tion is inadequate. Before the studies are specifically discussed, the computational

tools will be presented. Since approximate methods to solve the multicomponent

Schrödinger equation is closely tied to the those that solve the single component

Schrödinger equation, the single component methods will be briefly surveyed. These

methods are the Hartree-Fock method, configuration interaction, and coupled-cluster.

These single component theories are briefly surveyed in chapter 2. Next, the mul-

ticomponent extensions of Hartree-Fock and configuration interaction will then be
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discussed in chapter 3. In the following chapter, the multicomponent coupled-cluster

method will be derived and detailed in depth. This method was specifically devel-

oped over the past four years to study complex, multicomponent systems. As stated

earlier, this method was then used to study positron-bound systems (chapter 4) and

excited electronic states in both molecular systems and semiconductor quantum dots

(chapter 4 and chapter 5). This project also sparked curiosities about implications

of the BO approximation and binding behavior of chemical systems treated without

the BO approximation which is discussed in chapter 7.



9

Chapter 2

Single component quantum

chemistry

Single component, or electronic structure, theory is focused on finding solutions to

the electronic wave function. We use the term single component here as a way of

highlighting the fact that the electronic wave function only has explicit dependence

on one particle type (the electrons). The wave function maintains parametric depen-

dence on nuclei in the system. This is a result of invoking the Born-Oppenheimer

approximation, which is detailed in subsection 7.2.1. The Schrödinger equation for a

single component system is defined as,

HeΨe(r; R) = EeΨe(r; R) (2.1)

with the Hamiltonian being,

He = T e(r) + V e,N(r; R) + V e,e(r). (2.2)

The operators in the Hamiltonian calculate the kinetic, electron-nuclear, and electron-

electron energies in the system.
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Solutions for the electronic wave function give important information about chem-

ical reactivity and properties. This chapter will introduce and discuss a select few

explicit forms of the electronic wave function. These are the Hartree-Fock, configura-

tion interaction, and coupled-cluster ansatz. The Hartee-Fock will be introduced first

in section 2.1 as it the basis of many other approximate wave functions, including

configuration interaction and coupled-cluster. The forms of the configuration interac-

tion (section 2.3) and coupled-cluster (section 2.4) wave functions will be detailed as

well. They are significantly more complicated than that of the Hartee-Fock method.

In general, these method are much more accurate, but are more computationally

expensive and have other trade-offs which will be discussed.

2.1 The Hartree-Fock method

Electronic structure theory attempts to solve the electronic Schrödinger equation,

Equation 2.1. The research discussed in this dissertation expands the scope of elec-

tronic structure theory to encompass other particle types. Before that work is dis-

cussed, electronic structure theory will be presented so we have a foundation to build

upon.

The terms of electronic Hamiltonian (which is now simply written as H instead

of He) from Equation 2.2 will be shortened to

H = Hcore + V (2.3)

where Hcore is the one body operator,

Hcore = − h̄

2me

N∑
i

∇2
i −

N∑
i

M∑
A

ZA
riA

(2.4)
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and V is the two body operator,

V =
N∑
i<j

N∑
j

1

rij
. (2.5)

The electronic wave function depends explicitly on the coordinates of electrons. The

coordinates of electrons are both their three-dimensional orientation and spin.

x = {r, ω} (2.6)

The electronic wave function, Φe, depends on the spatial-spin coordinates of all elec-

trons in the system, Φe(x1,x2, . . . ,xN). Including the spin in the coordinates is

important because it will let us enforce the antisymmetry principle which states that

interchange of any two electronic spatial-spin coordinates corresponds to a change in

sign of the wave function.

Φe (. . . ,xi, . . . ,xj, . . . ) = −Φe (. . . ,xj, . . . ,xi, . . . ) (2.7)

Requiring the wave function to be antisymmetric increases the complexity of the

Schrödinger equation. We now must satisfy the eigenvalue problem with an eigen-

function that is antisymmetric.

Constructing an antisymmetric wave function will be approached from the bottom

up. Ultimately, all of the wave functions discussed in this work will consist of at least

one Slater determinant. Slater determinants are constructed from orbitals, which are

single particle wave functions. A molecular orbital is a function of the spatial-spin
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coordinates of a single electron and is shown in Equation 2.8.

χ(x) =


ψ(r)α(ω)

or

ψ(r)β(ω)

(2.8)

Molecular orbitals have dependence on spatial and spin functions which are ψ and

α/β, respectively. The α and β functions are the two distinct Sz spin contributions

an electron can have. The spatial and spin components of the molecular orbitals are

orthonormal, thus molecular orbitals are orthonormal.

∫
drψ∗i (r)ψj(r) = δij (2.9)∫

dωα∗(ω)α(ω) =

∫
dωβ∗(ω)β(ω) = 1 (2.10)∫

dωα∗(ω)β(ω) =

∫
dωβ∗(ω)α(ω) = 0 (2.11)∫

dxχ∗i (x)χj(x) = δij (2.12)

It is more convenient to use Dirac notation, so the orthonormal relationships can be

expressed as

〈ψi|ψj〉 = δij (2.13)

〈α|α〉 = 〈β|β〉 = 1 (2.14)

〈α|β〉 = 〈β|α〉 = 0 (2.15)

〈χi|χj〉 = δij. (2.16)

Dirac notation used for the overlap integrals will also be used to when evaluating the

one and two body molecular integrals from the Hamiltonian. They have the general
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form,

〈p|hcore |q〉 =

∫
dx1χ

∗
p(x1)hcoreχq(x1) (2.17)

〈pq| v |rs〉 =

∫
dx1dx2χ

∗
p(x1)χ∗q(x2)r−1

12 χr(x1)χs(x2) (2.18)

The form of these functions is general though and can be extended to other one or

two body integrals. From this point on, Dirac notation will be the preferred notation.

Slater determinants are then constructed from these molecular orbitals. A Slater

determinant will enforce the antisymmetry principle for electronic wave functions due

to the properties of determinants. Interchanging any two columns would flip the sign

of the determinant. It is shown below, with a normalization factor of 1√
N !

,

ΦSD(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χN(x1)

χ1(x2) χ2(x2) . . . χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.19)

Dirac notation also provides a shorthand notation for writing Slater determinants

with the normalization factor included,

ΦSD(x1,x2, . . . ,xN) = |χi(x1)χj(x2) . . . χk(xN)〉 (2.20)

= |ij . . . k〉 . (2.21)

This simplified notation for Slater determinants will be used extensively.

Next, we must introduce how to compute elements of the Hamiltonian with respect

to a given Slater determinant. These rules are outlined in Table 2.1. These rules are

for evaluating elements between determinants that have all the same orbitals occupied,

have one noncoincidence, or two noncoincidences. All other terms are rigorously
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zero. Note that the subscript A is for the antiymmetrized two body integral, which

is required by the wave function [58]. It is defined as,

〈pq |v| pq〉A = 〈pq |v| pq〉 − 〈pq |v| qp〉 . (2.22)

Table 2.1: Slater-Condon Rules [58]

Case 1: |K〉 = | . . . ij . . . 〉

〈K|Hcore |K〉 =
∑N

i 〈i|hcore |i〉 〈K|V |K〉 =
∑N

i<j 〈ij| v |ij〉A

Case 2: |K〉 = | . . . ij . . . 〉
|L〉 = | . . . aj . . . 〉

〈K|Hcore |L〉 = 〈i|hcore |a〉 〈K|V |L〉 =
∑N

j 〈ij| v |aj〉A

Case 3: |K〉 = | . . . ij . . . 〉
|L〉 = | . . . ab . . . 〉

〈K|Hcore |L〉 = 0 〈K|V |L〉 = 〈ij| v |ab〉A

The Hartree-Fock (HF) method is one of the most widely used computational

methods for solving the Schrödinger equation. In this section, the major points of

the method will be surveyed. The HF method finds a solution for the wave function

by minimizing energy with respect to a single Slater determinant,

EHF = 〈Φ|H|Φ〉 (2.23)

=
N∑
i

〈i|hcore|i〉+
N∑
i<j

〈ij |v| ij〉A (2.24)

∂EHF

∂χi
= 0. (2.25)

In the expectation value calculation of energy, the hcore term is the one-body contribu-

tions from H and the V term is the antisymmetrized two-electron integral. Minimiz-
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ing energy with respect to the mocular orbitals is done by minimizing the coefficients

of individual basis functions in the (unique) spatial portions of each molecular or-

bital. Each spatial wave function can be expanded into a linear combination of K

(theoretically this would be infinite, but a finite expansion is used) basis functions.

ψi(r) =
K∑
µ

Cµiγ(r) (2.26)

The coefficients are minimized via the HF equation,

f |χi〉 = εi |χi〉 (2.27)

where the Fock operator, f , has the following form,

f = hcore + vHF (2.28)

= hcore +
∑
j

Jj −Kj. (2.29)

The J and K terms are the Coulomb and exchange operators, respectively,

Jjχi(x1) =

[∫
dx2χ

∗
j(x2)

1

r12

χj(x2)

]
χi(x1) (2.30)

Kjχi(x1) =

[∫
dx2χ

∗
j(x2)

1

r12

χi(x2)

]
χj(x1). (2.31)

Now, by combining unique spatial contributions to each molecular orbital, we can

rewrite the Hartree-Fock equation in terms of the basis via Equation 2.26 for each

unique spatial orbital ψi,

f
∑
ν

Cνiγν = εi
∑
ν

Cνiγν . (2.32)
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Left multiplying this equation by γ∗µ and integrating over all space yields

∑
ν

Cνi

∫
γ∗νfγν︸ ︷︷ ︸
Fµν

= εi
∑
ν

Cνi

∫
γ∗µγν︸ ︷︷ ︸
Sµν

(2.33)

FC = SCε. (2.34)

With this final step, the Fock equation has been transformed into a matrix eigenvalue

problem which can be solved using linear algebra techniques. The equation is then

be solved self-consistently to optimize the Hartree-Fock wave function[58, 59].

The HF method is a tremendously useful computational tool. The problem is that

the HF wave function can be inadequate to describe chemical systems. Remembering

that the exact wave function is an infinite expansion of all possible states, it becomes

apparent that using a single Slater determinant (even a highly optimized one), is a

significant abstraction from the exact wave function because correlation affects are

not accounted for. Other theories, such as configuration interaction and coupled-

cluster, use many Slater determinants to describe the wave function. These theories

will be discussed after second quantization is introduced.

2.2 Second quantization

Second quantization is a widely used mathematical formulation for many-body prob-

lems in quantum chemistry and quantum physics [60, 32, 59]. This representation

is particularly useful when the number of particles in a system is unknown or am-

biguous; however, the this work focuses on systems with fixed numbers of particles.

In this work, second quantization will be heavily used because it enables operators

in the Hamiltonian and the wave function to be manipulated efficiently and expres-

sively. It is important to note that the formulations presented will apply to fermions.
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That is, the wave function is taken to be antisymmetric. It is constructed from Slater

determinants which consist of single particle basis functions as described earlier.

2.2.1 Creation and annihilation operators

To begin, we will discuss how second quantized creation and annihilation operators

affect the Slater determinants from which the wave function is constructed. A cre-

ation operator, which will be denoted with a dagger, places a particle into the Slater

determinant into a given spin orbital while an annihilation operator will remove a

particle from a given spin orbital

i† |jk . . . z〉 = |ijk . . . z〉 , (2.35)

i |ijk . . . z〉 = |jk . . . z〉 . (2.36)

It’s also important to note that a particle cannot be created in a spin orbital where

one already exists and annihilation cannot occur on and orbital that is unoccupied

(absent) from the determinant,

i† |ijk . . . z〉 = i |jk . . . z〉 = 0. (2.37)

Second quantization also enforces the antisymmetry principle of the wave function.

Creation and annihilation operations occur at the beginning of the Slater determinant.

After the operation occurs, the determinant is lexically ordered and is accompanied

with an appropriate sign based on the parity of the permutation (ηP ),

p† |ijk . . . z〉 = (−1)ηP |ijk . . . p . . . z〉 , (2.38)

p |ijk . . . p . . . z〉 = (−1)ηP |ijk . . . z〉 . (2.39)
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Slater determinants can also be written as a series of creation operations on the

physical vacuum state (denoted by |〉),

i†j†k† . . . z† |〉 = |ijk . . . z〉 . (2.40)

2.2.2 Anticommutation relationships

Second quantized operators obey a set of anticommutation relationships. These rules

govern how groups of SQ operators behave. First we will look at how two creation

operators behave. The operations give two possibilities,

p†q†|ijk . . . 〉 = |pqijk . . . 〉 (2.41)

q†p†|ijk . . . 〉 = |qpijk . . . 〉 = −|pqijk . . . 〉. (2.42)

We see that the two Slater determinants differ in sign, thus

p†q† = −p†q† (2.43)

[p†, q†]+ = p†q† + q†p† = 0. (2.44)

In the above expression, the [A,B]+ notation is the anticommutator relationship

[A,B]+ = AB +BA (2.45)

[A,B]+ = [B,A]+. (2.46)

It is important to note that the above relationship is also zero if either orbitals p or

q are already occupied in the Slater determinant, or if p = q.
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The next case to consider is two annihilation operators,

pq|qpijk . . . 〉 = p|pijk . . . 〉 = |ijk . . . 〉 (2.47)

qp|qpijk . . . 〉 = −qp|pqijk . . . 〉 = −|qijk . . . 〉 = −|ijk . . . 〉. (2.48)

Once again, it is shown that the same determinant is generated, with a different sign,

thus

pq = −qp (2.49)

[p, q]+ = 0. (2.50)

Additionally, if the orbitals p or q do not exist in the determinant, or p = q, the

relationship also resolves to zero.

The third case to consider is one creation and one annihilation operators. In these

cases, one orbital is replaced by another according to the operators,

p†q|ijk . . . q . . . 〉 = |ijk . . . p . . . 〉 (2.51)

qp†|qijk . . . 〉 = q|pqijk . . . 〉 = −q|qpijk . . . 〉 = −|pijk . . . 〉 (p 6= q). (2.52)

Once again, the same Slater determinant has been generated differing in sign, giving

[p†, q]+ = 0 (2.53)

for the case when p 6= q. When p = q, the relationship becomes (with p in the Slater

determinant)

p†p|pijk . . . 〉 = |pijk . . . 〉 (2.54)

pp†|pijk . . . 〉 = 0 (2.55)
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and (with p not in the Slater determinant)

p†p|ijk . . . 〉 = 0 (2.56)

pp†|ijk . . . 〉 = |ijk . . . 〉. (2.57)

The anticommutator relationship for these cases is then

[p†, q]+ = [q, p†]+ = 1. (2.58)

This relationship is broadly defined as

[p†, q]+ = [q, p†]+ = δpq (2.59)

to encompass both cases for p = q and p 6= q.

2.2.3 Fermi vacuum and normal ordering

Manipulating strings of SQ operators will be introduced as it applies to the Fermi

vacuum. The Fermi vacuum is a more convenient formalism to use for many particle

systems as all other Slater determinants will be described relative to to it. It may

also be referred to as the reference state and is denoted by |0〉. This is usually taken

to be the Hartree-Fock Slater determinant. Using the Fermi vacuum also introduces

the particle-hole formalism. Hole states will be described by indices i, j, k, . . . while

particle states will be described by a, b, c, . . . . Letters p, q, r, s, . . . can be used to

describe either particle or hole states, depending on the context. Hole states are

used to describe an orbital in the reference state from which an excitation occurs and

particle states are the orbital where the electron is excited to. Examples of single and
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double excitations are shown below (with |0〉 = |ijk . . . 〉),

|ai 〉 = a†i|0〉 = |ajk . . . 〉 (2.60)

|abij 〉 = a†b†ji|0〉 = |abk . . . 〉. (2.61)

We see that any determinant can be described by some set of operators and the Fermi

vacuum state.

SQ operators can be easily manipulated if they are normal ordered. When normal

ordering operators with respect to the Fermi vacuum state, one must consider what

state is being created and what state is being destroyed. In general, normal ordering

moves creation and annihilation operators to the left or the right, depending on

whether the operators are particle or hole operators. This is accomplished using the

anticommutation relationships which were derived above. Normal ordering of hole

states requires that all creation operators are moved to the left of all annihilation

operators. For particle states, all annihilation operators must the to the left of creation

operators. Normal ordering plays an important part when evaluating matrix elements

in SQ notation. Operators that are in normal order will be in curly braces {AB . . . }.

An important property of normal ordering is that the expectation values of normal

ordered operators with respect to the Fermi vacuum state is zero,

〈0|{ABC . . . }|0〉 = 0. (2.62)

This property will be used extensively used in derivations presented here.

2.2.4 Wick’s theorem

Computing elements of the Hamiltonian represented using SQ notation can be a very

difficult task. Wick’s theorem outlines how to handle this this task succinctly and
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expediently. This is accomplished using what are called Wick’s contractions. These

contractions rely on the anticommutation relationships (which were previously derived

and are summarized below) and normal ordering of SQ operators,

pq + qp = 0, (2.63)

p†q† + q†p† = 0, (2.64)

p†q + qp† = δpq. (2.65)

These rules will now be used to define normal products of SQ operators when comput-

ing expectation values of vacuum states. Creating normal products of SQ operators

uses the anticommutation relationships to move all creation operators to the left of

annihilation operators. The following example highlights how this is done,

pq† = [p, q†]+ − q†p = δpq − q†p. (2.66)

This process used the anticommutation definition which resulted in the appearance

of the delta function and the normal ordered product of pq† which is −q†p. Putting

SQ operators in normal product form is useful as the expectation value with respect

to the vacuum state will be zero.

With the vacuum state to which we relate to, we can now begin to discuss Wick’s

theorem by introducing a contraction. We define a contraction to be

AB = AB − {AB} (2.67)

where the operators in the curly braces are normal ordered. Given this relationship,

the only contractions to be considered are Using the contractions defined above, it

is possible normal order any set of SQ operators in a quick, succinct manner. When
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contractions happen relative to the vacuum state, the only nonzero terms are

i†j = i†j −
{
i†j
}

= i†j + ji† = δij, (2.68)

ab† = ab† −
{
ab†
}

= ab† + b†a = δab (2.69)

For particle and hole operators. When the general indices (p, q, r, s, . . . ) are considered

the above relationship is obeyed,

i†q = δiq (2.70)

p†j = δpj (2.71)

ap† = δap (2.72)

qb† = δqb. (2.73)

These relationships are important when using operators in SQ notation, which is

discussed in the next section.

Wick’s theorem then enables us to write the linear combinations of Kronecker

delta functions and normal ordered SQ operators using contractions. This is generally

expressed as follows,

ABC . . .XY Z . . . = {ABC . . .XY Z . . . }

+
∑

singles

{
ABC . . .XY Z . . .

}

+
∑

doubles

{
ABC . . .XY Z . . .

}
+ . . . (2.74)

where summation of contractions continues until all operators are contracted.

This theorem also holds true for products of normal ordered operators since

{ABC . . . } {XY Z . . . } = {ABC . . .XY Z . . . }. Wick’s theorem is so powerful

because it allows us to immediately identify which terms will equate to zero when
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calculating expectation values with respect to the Fermi vacuum. An operator

expectation value with respect to the Fermi vacuum will be zero unless all SQ

operators are fully contracted,

〈0|A . . . B . . . C . . .D . . . |0〉 =
∑
〈0|A . . . B . . . C . . .D . . . |0〉. (2.75)

2.2.5 Normal ordered Hamiltonian

Now that properties of SQ operators and their relationship to the Fermi vacuum have

been defined, we will define the Hamiltonian in SQ notation as

H =
∑
pq

〈p|h |q〉 p†q +
1

4

∑
pqrs

〈pq| v |rs〉A p†q†sr. (2.76)

Using Wick’s theorem, the Hamiltonian can be normal ordered to give

H =
∑
pq

〈p|h |q〉
{
p†q
}

+
∑
pri

〈pi| v |ri〉A
{
p†r
}

+
1

4

∑
pqrs

〈pq| v |rs〉A
{
p†q†sr

}
+
∑
i

〈i|h |i〉+
1

2

∑
ij

〈ij| v |ij〉A (2.77)

=
∑
pq

〈p| f |q〉
{
p†q
}

+
1

4

∑
pqrs

〈pq| v |rs〉A
{
p†q†sr

}
+ 〈0|H |0〉 . (2.78)

We can see that normal ordering reproduces the Hartree-Fock energy expression from

the previous expression, 〈Φ|H |Φ〉, with the addition of other terms that did not

contribute to that expression, but will in others. Also note that the Fock operator has

been defined in SQ notation during the process of normal ordering of the Hamiltonian

and that the asymmetric two body integrals evolved naturally. The normal ordered
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Hamiltonian is often written as

H = FN + VN + 〈0|H |0〉 (2.79)

H = HN + 〈0|H |0〉 , (2.80)

for convenience.

Normal ordering the Hamiltonian is a very useful mathematical tool because the

expectation value of a normal ordered operator, with respect to the vacuum state,

will always resolve to zero [60, 61],

〈0|HN |0〉 = 0. (2.81)

This relationship will come up again when deriving the coupled-cluster equations later

this chapter in section 2.4 and again in chapter 4.

2.2.6 Slater-Condon rules

Using SQ notation, it is also possible to derive expressions for the matrix elements

between Slater determinants. The derivation of these expressions is somewhat labori-

ous as strings of SQ operators are written out, all possible full contractions are made,

and resulting expressions are summed to give a final expression. Many times, the

number of contractions is quite large (especially with two body operators), so these

contractions are often done by computer. The resulting expressions were summarized

in Table 2.1.
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An illustrative derivation of a one-body matrix element is shown,

〈0|h |ai 〉 =
∑
pq

〈p|h |q〉 〈0|
{
p†q
}{

a†i
}
|0〉 (2.82)

=
∑
pq

〈p|h |q〉 〈0|
{
p†q
}{

a†i
}
|0〉 (2.83)

=
∑
pq

〈p|h |q〉 〈0| δpiδqa |0〉 (2.84)

= 〈i|h |a〉 . (2.85)

Notice that the contraction

{
p†q
} {

a†i
}

(2.86)

is zero. The generalized Wick’s theorem lets us skip these internal contractions since

they resolve to zero due to the fact that the operators are already normally ordered.

Only contractions across normally ordered strings need to be resolved. A one-body

term has been chosen simply because the number of possible contractions as the size

of the SQ strings grow becomes unmanageable. As more SQ operators are included,

the complexity arises from all possible permutations of contractions. Resolving all

of these possibilities is time consuming and somewhat tedious, which is why such a

simple example has been chosen. We see though, that this is the expression from

Case 2 in Table 2.1.

2.3 Configuration interaction theory

Configuration interaction is a theory that builds upon the Hartree-Fock model. The

wave function is defined as a linear combination of Slater determinants. These Slater

determinants include the reference (HF) state, and a collection of excited determi-
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nants. Configuration interaction, or CI, is a rich field with many ways to approach

the CI Schrödinger equation [58, 59].

2.3.1 Full configuration interaction

One such approach is to use the full configuration interaction (FCI) wave function.

This wave function includes all excitations up to N − tuply excited determinants

(where N is the number of electrons and M is the number of virtual orbitals). It has

the following form,

∣∣ΨFCI
〉

= c0 |0〉+
N∑
i

M∑
a

c(i,a)a
†i |0〉

+
N∑
i<j

M∑
a<b

c(ij,ab)a
†b†ji |0〉

+
N∑

i<j<k

M∑
a<b<c

c(ijk,abc)a
†b†c†kji |0〉+ . . . (2.87)

=
∑
α

cα |Φα〉 (2.88)

The summation would continue until all possible electrons from the reference HF

state (|0〉) were excited to virtual spin orbitals, which are spin orbitals above the

Fermi level. Each excitation in the wave function also has an associated weight, c,

that it contributes to the overall wave function. The shorthand from Equation 2.88

is adopted to easily discuss give determinants and their weights without concern for

the actual form of the determinants.

The CI methodology is concerned with solving for these weights to understand

what determinants are important in the overall wave function. This is done by sub-

stituting the CI wave function into the Schrödinger equation which gives,

H
∣∣ΨFCI

〉
= Etot

∣∣ΨFCI
〉
. (2.89)
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The Schrödinger equation is then left multiplied by the FCI wave function to give

〈
ΨFCI

∣∣H ∣∣ΨFCI
〉

= Etot
〈
ΨFCI|ΨFCI

〉
. (2.90)

The energy is then minimized with respect to the c coefficients,

Etot = min
c

〈
ΨFCI

∣∣H ∣∣ΨFCI
〉

〈ΨFCI|ΨFCI〉 (2.91)

Elements of the Hamiltonian matrix and overlap matrix are as follows,

Hα,β = 〈Φα|H |Φβ〉 (2.92)

Sα,β = 〈Φα|Φβ〉 . (2.93)

The c coefficients represent the weights on each determinant in the wave function and

are used to minimize total energy of the system.

The total energy can be written as reference (HF) energy plus correlation energy,

Etot = Eref + Ecorr. (2.94)

Correlation energy is the energy contribution from all Slater determinants aside from

the HF determinant. Usually it is orders of magnitude smaller than the reference

energy, but is immensely important in accurately describing physical properties.

In CI theory, FCI is particularly important because it represents an exact solution

for a system with a finite basis. This property makes FCI one of the most useful

methods, especially when highly accurate calculations are needed. Unfortunately, this

also limits its applicability. If all possible excitations are included in the expansion of

the CI wave function (as is the case with FCI), we quickly run into a scaling problem.
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The FCI method scales factorially as

(
2K

N

)
=

2K!

(2K −N)!N !
(2.95)

where 2K is the number of spin orbitals (K being number of spatial orbitals) and N

is the occupation number. With this scaling, FCI is limited to calculations on smaller

systems that have small numbers of electrons and/or small basis sets.

2.3.2 Configuration interaction singles and doubles

While FCI is prohibitively expensive in many cases, there are truncations to the FCI

wave function that are more computationally feasible. One of the most widely used

used truncations is configuration interaction singles and doubles, or CISD for short.

The ansatz includes the reference HF state and all single and double excitations; it

has the following form,

∣∣ΨCISD
〉

= c0 |0〉+
N∑
i

M∑
a

c(i,a)a
†i |0〉

+
N∑
i<j

M∑
a<b

c(ij,ab)a
†b†ji |0〉 . (2.96)

As was the case with FCI, this wave function can be substituted into the Schrödinger

equation and then the eigenvalue problem can be solved with standard linear algebra

methods.

Using a truncation to the FCI wave function like CISD can be very useful. FCI

scales very poorly as seen from Equation 2.95 where the expression for the total

number of determinants was given. CISD will only include the single and double
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excitations, so the number of excited determinants is given by,

(
N

1

)(
2K −N

1

)
+

(
N

2

)(
2K −N

2

)
. (2.97)

The number of determinants of a given excitation level is given by

(
N

n

)(
2K −N

n

)
(2.98)

where N is the number of electrons, K is the number of spin orbitals, and n is the

excitation level. The size of the FCI versus the CISD space is illustrated below in

Table 2.2. It becomes immediately apparent how useful the CISD truncation truly is.

In the larger systems, it eliminates orders of magnitudes of determinants. By elim-

inating vast numbers of determinants, it’s possible to extend the method to larger

systems, in terms of both electrons and basis functions, without incurring insurmount-

able computational cost. It is also worth noting that the table only shows the number

of determinants in the expansion of the wave function, but the Hamiltonian matrix

would be Ndet × Ndet, which further illustrates the savings that the truncated wave

function has.

2.3.3 Consequences of truncating the CI wave function

Unfortunately, truncating the CI wave function is not a perfect solution. The trun-

cated CI wave functions do save on computational storage costs and CPU times, but

lose some properties of the FCI wave function that were desirable.

Firstly, by truncating the FCI wave function, we no longer have an exact solution

for a given basis due to the loss of higher order excitations. By extension then,

CISD calculations will capture less correlation energy than their FCI counterparts.

Sometimes this can mean inaccurate or incorrect insight into the physical properties

of a chemical system. Secondly, truncating the CI wave function breaks a property
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Table 2.2: Number of determinants in the CISD and FCI wave functions.

N K NCISD
det NFCI

det

2 10 190 190
2 15 435 435
2 20 780 780
2 25 1225 1225
4 10 785 4845
4 15 2055 27405
4 20 3925 91390
4 25 6395 230300
10 10 2126 184756
10 15 8751 30045015
10 20 19876 847660528
10 25 35501 10272278170

called size consistency. Size consistency is a preferred, but not required, feature of

any quantum chemical method. It states that the energy of some system XY , where

X and Y are infinitely separates chemical systems, should be equal to the summed

individual energies of X and Y . Mathematically, this is defined as [60],

lim
RXY→∞

E(X + Y ) = E(X) + E(Y ). (2.99)

At an infinite distance, two chemical systems should behave as independent particles,

so intuitively size consistency should always be obeyed. If a method is size consis-

tent, it will (more likely) predict dissociation curves and produce a more trustworthy

potential energy surface.

2.3.4 Recent developments in configuration interaction

In the past few years, CI theory has seen great strides towards applying the method-

ology to larger chemical systems. This new method, full configuration interaction

quantum Monte Carlo (FCIQMC)[62, 63, 64], and its relative, semistochastic quan-

tum Monte Carlo (SQMC) [65], in principle, solves for the FCI wave function using
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Monte Carlo techniques by generating excited determinants on-the-fly and computing

the weighted contribution to the overall wave function. Based upon the coefficient

c that is calculated, the determinant is either accepted or rejected. Determinants

are continually generated until satisfactory convergence is achieved. In addition to

reducing storage and computational costs, this new methodology will also retain size

consistency.

FCIQMC represents a significant advancement for CI theory, which is worth not-

ing. The theory won’t be detailed further, though it remains an area of great interest

for future work.

2.4 Coupled-cluster theory

Similar to CI, coupled-cluster (CC) theory uses a collection of determinants to define

the wave function [60, 60, 61]. CC theory, uses an exponential ansatz for the wave

function,

∣∣ΨCC
〉

= eT |0〉 (2.100)

with T being some excitation operator. In practice, the exponential operator is ex-

paneded into a Taylor series to give,

eT = 1 + T +
1

2
T 2 +

1

3!
T 3 +

1

4!
T 4 + . . . (2.101)

This expression can then be substituted back into the Schrödinger equation which

will be the functional form for deriving the CC equations. Before that, though, we

will discuss the choice of the T operator.
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2.4.1 Choosing an excitation operator

The choice of the T operator is critical, as it defines how complex the wave function

will be. The general form of a T excitation operator is

Tx =
1

x!2

N∑
ij...

M∑
ab...

tab...ij...

{
a†ib†j . . .

}
(2.102)

where i, j are summed over occupied states and a, b are summed over virtual states

and the t is an amplitude for the excitation. The two most common choices for the

T operator are

T = T2 (CCD) (2.103)

T = T1 + T2 (CCSD). (2.104)

The CCD operator was the original choice in CC theory, and includes only double

excitations with respect to some reference state. The CCSD operator soon followed

and has seen extensive use in quantum chemical investigations. It is more thorough

than the CCD operator as it also includes all single excitations on the reference

wave function and now resembles the CISD ansatz. In principle, the CC operator

can be defined to include further excitations, though computational cost, once again,

becomes a reason to exclude such contributions. The form of the T1 and T2 operators

are as follows,

T1 =
N∑
i

M∑
a

tai
{
a†i
}

(2.105)

T2 =
N∑
i<j

M∑
a<b

tabij
{
a†b†ji

}
. (2.106)
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The CCSD T operator will be used when deriving the CC equations. It is accompa-

nied by much more complexity than the CCD operator, but it is ultimately a more

interesting wave function and will be built upon in later chapters.

The T amplitudes obey the antisymmetric nature of the wave function as well.

That is, permuting indices in the excitation operator (which is accompanied by a

permutation of the t amplitude indices), results in a change of sign which is illustrated

using the T2 amplitude,

tabij = −tabji = tbaji = −tbaij . (2.107)

Symmetry must also be taken into account when products of t amplitudes are present.

Once the T operator is defined, the wave function can be substituted back into

the Schrödinger equation yielding

H |ΨCCSD〉 = Etot |ΨCCSD〉 (2.108)

HeT |0〉 = EtoteT |0〉 (2.109)

HNe
T |0〉 = EcorreT |0〉 . (2.110)

Moving from Equation 2.109 to Equation 2.110 was done by subtracting Eref from

both sides. The cluster operator is then expanded into a Taylor series which gives

the following expression

eT |0〉 =

[
(1) + (T1 + T2) +

1

2
(T1 + T2)2 +

1

3!
(T1 + T2)3 + . . .

]
|0〉 (2.111)

= |0〉+ T1 |0〉+ T2 |0〉+
1

2
T 2

1 |0〉+ T1T2 |0〉+
1

2
T 2

2 |0〉

+
1

3!
T 3

1 |0〉+
1

2
T1T

2
2 |0〉+

1

2
T 2

1 T2 |0〉+ . . . (2.112)
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Though the summation is infinite, many terms in the expansion can be ignored. This

will be addressed shortly.

2.4.2 Similarity transformation and the Baker-Campbell-

Hausdorff expansion

The Hamiltonian will then be similarity transformed by multiplying the Schrödinger

equation on the left by e−T , which gives,

e−THNe
T |0〉 = Ecorre−T eT |0〉 . (2.113)

Using the similarity transformed Hamiltonian enables a much more compact form

the CC equations to be written by using the Baker-Campbell-Hausdorff expansion

[60, 61]. This expansion lets e−THNe
T to be rewritten using the anticommutator

relationship of second-quantized operators as follows,

e−THNe
T =

(
1− T +

1

2
T 2 − 1

3!
T 3 + . . .

)
HN

(
1 + T +

1

2
T 2 +

1

3!
T 3 + . . .

)
(2.114)

= HN + [HN , T ] +
1

2
[[HN , T ] , T ] +

1

3!
[[[HN , T ] , T ] , T ] +

1

4!
[[[[HN , T ] , T ] , T ] , T ] .

(2.115)

Using Wick’s theorem and the anticommutator relationship, the expression can be

simplified via,

[HN , T ] = HNT − THN = {HNT}+

{
HNT

}
− {THN} −

{
THN

}
(2.116)

[HN , T ] =

{
HNT

}
−
{
THN

}
(2.117)
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where the curly braces indicate a normal product and the contraction brace repre-

sents the sum of all normal products. Notice that all the terms that do not fully

contract cancel as they contribute zero to the overall expression. Terms that do not

full contract are called disconnected terms, while ones that fully contract are called

connected. The CC expressions become very complex, so we only consider connected

terms. If a subscript c is ever present in and equation, it assumes that only connected

terms are including.

2.4.3 The CCSD equations

Using the similarity transformed Hamiltonian we then derive the CC equations using

a series of projections. To arrive at the energy expression, the Schrödinger equation is

left multiplied by the reference state, while the singles and doubles amplitudes equa-

tions are derived by left multiplying by singly and doubly excited Slater determinants

which gives

〈0| e−THNe
T |0〉c = Ecorr (2.118)

〈S| e−THNe
T |0〉c = 0 (2.119)

〈D| e−THNe
T |0〉c = 0. (2.120)

The singles and doubles projections are a set of all possible excitations on the reference

state. Expanding the cluster operator gives the following equations,

〈0|HN

[
T1 +

1

2!
T 2

1 + T2

]
|0〉c = Ecorr (2.121)
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〈S|HN

[
T1 + T1T2 +

1

2!
T 2

1 +
1

3!
T 3

1 + T2

]
+
[
−T I

1

]
HN

[
T1 +

1

2!
T 2

1 + T2

]
|0〉c = 0 (2.122)

〈D|HN

[
T1 + T1T2 +

1

2!
T 2

1 +
1

2!
T 2

1 T2 +
1

3!
T 3

1 +
1

4!
T 4

1 + T2 +
1

2!
T 2

2

]
+
[
−T I

1

]
HN

[
T1 + T1T2 +

1

2!
T 2

1 +
1

3!
T 3

1 + T2

]
+
[
−T I

2

]
HN

[
T1 +

1

2!
T 2

1 + T2

]
+

[
1

2!
T 2

1

]
HN

[
T1 +

1

2!
T 2

1 + T2

]
|0〉c = 0. (2.123)

The expanded CC equations are very complex quantities, especially considering that

each T operator is actually a summation over occupied and virtual indices. In the

expansion, we also see that the singles and doubles equations are coupled as t1 and

t2 amplitudes show up in both amplitude equations. Additionally, the non-linearity

of the CC equations is now obvious as the quadratic, cubic, and quartic terms are

present shown.

In each CC equation, the excitation level (after operation by excitation operators)

is, at most, two above the bra state. This is understood by contracting SQ operators

using Wicks’ theorem. This explains why the expansion of the eT operator only

went up the fourth order terms in Equation 2.115. It also becomes apparent as

to why further excitations are excluded from the T operator. Including triples or

quadruples (CCSDT, CCSDTQ) would lead to enormous expressions. While solving

the CC equations would become computationally prohibitive, equations that include

the triples and quadruples amplitudes have been derived [60, 66, 67], though the

amplitudes are calculated using different methodology, which we won’t discuss.
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2.4.4 Size consistency and the CC wave function

One concept that must be further addressed is the truncation of the T operator. In

subsection 2.3.3, the consequences of truncating the FCI wave function was explored.

We established that a truncated CI wave function will not capture as much correlation

energy as the FCI wave function. In fact, the FCI method will exactly solve a given

basis. Furthermore, a truncated CI wave function breaks size consistency (defined in

Equation 2.99). It is important to then discuss how the CC wave function behaves

when the T operator is truncated.

In principle, one could define a full CC wave function that includes all possible

excitations by using Equation 2.102. As with the FCI wave function, this would

yield an exact solution to a given basis. Once again, the exorbitant computational

cost prohibits using an FCC wave function. We also saw that CC equations become

complex much more quickly when compared to the CI equation which further stresses

the need to truncate the wave function. As for size consistency, a truncated CC wave

function (such as CCD or CCSD), will retain size consistency. This makes the CC

method attractive as it can be used for calculating reaction coordinate diagrams and

dissociation curves more reliably.

2.4.5 Relating CC to CI

A few final comparison must be made between the CC and CI methods. This discus-

sion will use CCSD and CISD as examples, but it can be applied to any truncation of

either wave function. The wave functions of of note are Equation 2.96 for the CISD

wave function and Equation 2.111 for the CCSD wave function.

First, we will compare the CCSD amplitudes to the CISD coefficients. In the CISD

method, each determinant gets a unique coefficient. In CCSD, that is not necessarily

the case. CCSD assigns amplitudes, or products of amplitudes, to given excitations.

Expanding the eT operator causes cross terms to be present. Consequently, the
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amplitudes and coefficients cannot necessarily be compared one-to-one. One has

to use the non-linear terms in CC to equate the two,

cS ≈ tS (2.124)

cD ≈ tD +
1

2
tStS (2.125)

where the S and D subscripts are for single or double excitations. This relationship

grows in complexity quickly, as the triple and quadruple (T and Q) excitation terms

would be

cT ≈ tT + tDtS +
1

3!
tStStS (2.126)

cQ ≈ tQ +
1

2
tDtD +

1

2
tDtStS +

1

4!
tStStStS. (2.127)

These terms are not present in the CCSD or CISD equations shown earlier, but

illustrate the difficulty of directly comparing the two wave functions. This complexity

is further exacerbated by the fact that t amplitude symmetry has to be taken into

account when products of lower order terms are present. Using the double excitation

as and example we would have

c(ij,ab) ≈ tabij +
1

2
(tai t

b
j − taj tbi + tbjt

a
i − tbitaj )︸ ︷︷ ︸

tStS

(2.128)

with the further excitations having even more permutation complexity.

Secondly, in the CI section we discussed the number of determinants encompassed

by CISD and FCI calculation (summarized in Table 2.2). The number of determinants

in FCI was computationally prohibitive, but CISD proved to be a useful method

to reduce this constraint. With CCSD, determinants have not yet been discussed.

CC theory can avoid the complexity of Slater determinants by using SQ operator

relationships and Wick’s theorem. Wick’s theorem still eliminates a vast number of
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states in the CC equations just as the Slater-Condon rules did in CI theory. This is

why the energy equation (Equation 2.121) couples only up to double excitations, why

the singles amplitude equation (Equation 2.122) only couples up to triple excitations,

the doubles amplitude equation (Equation 2.123) couples to quadruple excitations at

most.

An important similarity that CCSD and CISD share is the number of optimizable

parameters. The CISD method searches for coefficients for the ground state, singly

excited states, and double excited states in the wave function. Similarly, the CCSD

method searches for all single and double t amplitudes. The difference is in how

these coefficients and amplitudes relate to the wave function. Since the CISD wave

function is a linear combination, each state has a single coefficient value. In CCSD,

the (expanded) cluster operator allows for combinations of t amplitudes to describe

a given state. Additionally, exponential cluster operator in CCSD theory can use

the higher order, non-linear terms to explain higher order excitations (such as triple

and quadruple excitations) in a wave function, which is not possible in CISD without

redefining the wave function.
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Chapter 3

Multicomponent methods in

quantum chemistry

The previous chapter briefly surveyed the basics of single component (electronic struc-

ture) theories. It focused on solutions to the electronic Schrödinger equation using

the Hartree-Fock, configuration interaction, and coupled-cluster forms of the wave

function.

This chapter will introduce multicomponent quantum chemical theories. These

theories are used to investigate quantum chemical systems where the BO approxima-

tion is inadequate. Some of these types of systems were discussed earlier in chapter 1.

To begin, this chapter will assume that we are solving for the multicomponent wave

function using the multicomponent Schrödinger equation,

H I,II(rI, rII; RBOS)ΨI,II(rI, rII; RBOS) = EI,II(RBOS)ΨI,II(rI, rII; RBOS). (3.1)

The obvious difference from the single component case being that our wave function

is now directly dependent on the coordinates of two particle types. BO separated

bodies still have parametric dependence in this wave function. The Hamiltonian for
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a multicomponent system is defined as

H I,II = T I(rI) + V I
ext(r

I,RBOS) + V I,I(rI)

}
H I

+ T II(rII) + V II
ext(r

II,RBOS) + V II,II(rII)

}
H II (3.2)

+ V I,II(rI, rII)

}
V I,II

The Hamiltonian for a multicomponent system includes all terms in the single com-

ponent Hamiltonian for each particle type. These are the kinetic energy, repulsive

potential between particles of the same type, and external potential from BO sepa-

rated bodies (see Equation 2.4 and Equation 2.5). Adapting the single component

operators to the multicomponent form also requires the addition of qI and qII to the

external potential and two body operators to give

Hcoreα = − h̄

2mα

N∑
i

∇2
i −

N∑
i

M∑
A

ZAq
α

riA
(3.3)

V = qαqα
N∑
i<j

N∑
j

1

rij
. (3.4)

where α is either I or II. There as also the addition of a type I-II coupling term. The

explicit forms of these terms can be taken from earlier definitions, with the exception

of the V I,II coupling term which as the following form,

V I,II(rI, rII) = qIqII

N I∑
i

N II∑
i′

r−1
ii′ . (3.5)

The goal of the remainder of this chapter is to draw parallels between single and

multicomponent schools of thought. Extension and expansion of Hartree-Fock theory

(section 3.1) and the configuration interaction method (section 3.3) will presented in

a way that builds upon the familiar single component theories. The key additions
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and differences between the single component and multicomponent theories will be

highlighted, while the underlying principles remains consistent.

3.1 Multicomponent Hartree-Fock

The multicomponent Schrödinger equation is a complex problem to solve. Like the

single component counterpart, it is not exactly solvable, so we must approximate

solutions. This approximation is the extension of Hartree-Fock theory to multicom-

ponent chemical systems [68, 69, 70]. Similar to the single component formulation,

multicomponent HF theory will use a single Slater determinant as an ansatz. The

multicomponent theories presented in this and the following sections and chapter are

for fermionic particles only. The ommission of a formulation for bosonic particles is

not because it is impossible to extend the theory; this choice was made due to the

systems of interest.

We begin by defining the multicomponent wave function as a product of type I

and type II functions,

ΨI,II(rI, rII; RBOS) = ΦI(xI; RBOS)ΦII(xII; RBOS). (3.6)

In this equation, the spatial spin coordinate has been reintroduced from Equation 2.6

Both the type I and type II wave functions must obey the antisymmetry principle

defined in Equation 2.7. This antisymmetric property is enforced by defining each

wave function to be a Slater determinant (Equation 2.19).
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Each Slater determinant has its own, unique set of molecular orbitals. Particles

from type I cannot occupy orbitals in the type II space and vice versa,

∣∣ΦI
(
xI

1,x
I
2, . . . ,x

I
N

)〉
=
∣∣χI

i

(
xI

1

)
χI
j

(
xI

2

)
. . . χI

k

(
xI
N

)〉
(3.7)

= |ij . . . k〉 (3.8)∣∣ΦII
(
xII

1 ,x
II
2 , . . . ,x

II
N

)〉
=
∣∣χII

i

(
xII

1

)
χII
j

(
xII

2

)
. . . χII

k

(
xII
N

)〉
(3.9)

= |i′j′ . . . k′〉 . (3.10)

As with the Hamiltonian, type II indicies are accompanied by primes to easily distin-

guish them.

Elements of the multicomponent Hamiltonian are evaluated as such,

〈
ΦI,II

∣∣H I,II
∣∣ΦI,II

〉
=
〈
ΦI
iΦ

II
i′

∣∣ (H I +H II + V I,II
) ∣∣ΦI

jΦ
II
j′

〉
=
〈
ΦI
i

∣∣H I
∣∣ΦI

j

〉 〈
ΦII
i′ |ΦII

j′

〉
+
〈
ΦII
i′

∣∣H II
∣∣ΦII

j′

〉 〈
ΦI
i|ΦI

j

〉
+
〈
ΦI
iΦ

II
i′

∣∣V I,II
∣∣ΦI

jΦ
II
j′

〉
. (3.11)

The Hamiltonian is partitioned in such a way that the single component Slater-

Condon rules can be applied from Table 2.1 to the H I and H II terms. The result is

the multiplied by the delta of the off type determinant. Note that these two terms do

not include any type I-II interaction, as that is done in the V I,II term. The coupling

term between type I and type II is resolved using its own set of rules since it has

dependence on the coordinates of both type I and type II particles. The Slater-

Condon rules for evaluation is shown in Table 3.1. The integral form the the V I,II

expression between spin orbitals is defined as,

〈pp′| vI,II |qq′〉 =

∫
dxI

1dx
II
1 χ
∗
p(x

I
1)χ∗p′(x

II
1 )r−1

I,IIχq(x
I
1)χq′(x

II
1 ) (3.12)
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Table 3.1: Type I-II coupling term Slater-Condon Rules

Case 1: |KI〉 = | . . . ij . . . 〉
|KII〉 = | . . . i′j′ . . . 〉〈

KIKII
∣∣V I,II

∣∣KIKII
〉

=
∑N I

i

∑N II

i′ 〈ii′| vI,II |ii′〉

Case 2A: |KI〉 = | . . . ij . . . 〉
|LI〉 = | . . . aj . . . 〉
|KII〉 = | . . . i′j′ . . . 〉

Case 2B: |KI〉 = | . . . ij . . . 〉
|KII〉 = | . . . i′j′ . . . 〉
|LII〉 = | . . . a′j′ . . . 〉〈

KIKII
∣∣V I,II

∣∣LIKII
〉

=
∑N II

i′ 〈ai′| vI,II |ai′〉
〈
KIKII

∣∣V I,II
∣∣KILII

〉
=
∑N II

i 〈ia′| vI,II |ia′〉

Case 3: |KI〉 = | . . . ij . . . 〉
|LI〉 = | . . . aj . . . 〉
|KII〉 = | . . . i′j′ . . . 〉
|LII〉 = | . . . a′j′ . . . 〉〈

KIKII
∣∣V I,II

∣∣LILII
〉

= 〈ii′| vI,II |aa′〉

We now write the energy expression for a multicomponent system, below. The

energy is a sum of single component energies for type I and type II particles as well

as the the coupling term.

EmcHF =
〈
ΦIΦII

∣∣H ∣∣ΦIΦII
〉

(3.13)

=
N I∑
i

〈i|hI |i〉+
N I∑
i<j

N I∑
j

〈ij| vI,I |ij〉A

+
N II∑
i′

〈i′|hII |i′〉+
N II∑
i′<j′

N II∑
j′

〈i′j′| vII,II |i′j′〉A

+
N I∑
i

N II∑
i′

〈ii′| vI,II |ii′〉 . (3.14)

The energy is minimized with respect to the the molecular orbitals,

∂EmcHF

∂χI
i

=
∂EmcHF

∂χII
i′

= 0 for i = 1, . . . , N I, i′ = 1, . . . , N II (3.15)



46

Each set of molecular orbitals, for type I and type II particles, has a set of spatial

orbitals. These spatial orbitals can be expanded into a set of the basis functions from

Equation 2.26. These coefficients can be optimized via the Fock equation. There are

now two Fock equations, one for each type, with the following form,

f I
∣∣χI

i

〉
= εIi

∣∣χI
i

〉
(3.16)

f II
∣∣χII

i′

〉
= εIIi

∣∣χII
i′

〉
. (3.17)

An important step in mcHF theory is choosing the form of the Fock operator.

3.1.1 Choice of the multicomponent Fock operator

There are two obvious choices for the Fock operator that will be discussed. Both

choices are valid, though one will be preferred over the other as it should provide a

better approximation to the wave function and provide a lower energy.

The first form of the operators be the familiar single component Fock operator

from Equation 2.28. This choice neglects any coupling term that was present in the

Hamiltonian and has the form,

f̃ I = hI + vI
HF (3.18)

f̃ II = hII + vII
HF. (3.19)

The Fock equation can then be solved self consistently and energy will be minimized

independently for type I and type II particles. The scheme is shown below,

〈
0̃I
∣∣H I

∣∣0̃I
〉

= min
Φ̃I

〈
Φ̃I
∣∣∣H I

∣∣∣Φ̃I
〉

(3.20)〈
0̃II
∣∣H II

∣∣0̃II
〉

= min
Φ̃II

〈
Φ̃II
∣∣∣H II

∣∣∣Φ̃II
〉
. (3.21)
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The |0̃I〉 and |0̃II〉 are the optimized Slater determinants that are the Hartree-Fock

wave function. Using the same scheme discussed in single component Hartree-Fock,

we will arrive at the following matrix eigenvalue equation (originally described in

Equation 2.33),

FICI = SICIεI (3.22)

FIICII = SIICIIεII. (3.23)

Once these decoupled equations are solved, the overall mcHF wave function is a

product of the two Slater determinants,

∣∣∣ΦI,II
mcHF

〉
=
∣∣0̃I
〉 ∣∣0̃II

〉
=
∣∣0̃I0̃II

〉
. (3.24)

In summary, this choice of the Fock operator solves the Fock equations in a decoupled

manner and takes the product of results to be the mcHF wave function.

The second way to construct the Fock operator is to include a coupling term from

the Hamiltonian. For the two particle types, the Fock operator is defined as

f I = hI + vI
HF +

N II∑
i′

〈i′| vI,II |i′〉 (3.25)

f II = hII + vII
HF +

N I∑
i

〈i| vI,II |i〉 . (3.26)

We can see that the vI,II coupling term has been added to the f̃ operators just dis-

cussed. With this procedure, the minimization of energy will occur over the type I

and type II Slater determinants simultaneously,

〈
0I0II

∣∣H ∣∣0I0II
〉

= min
ΦI,ΦII

〈
ΦIΦII

∣∣H ∣∣ΦIΦII
〉
. (3.27)



48

This choice of the Fock operator will give rise to the following matrix equations,

FI
[
CII
]
CI = SICIεI (3.28)

FII
[
CI
]
CII = SIICIIεII. (3.29)

We see the manifestation of the coupling term in the matrix equations as well. The

type I Fock matrix is dependent on the type II coefficients, and vice-versa. This

coupled behavior is absent in the previous formulation of the Fock equations. Upon

convergence, the multicomponent Hartree-Fock wave function will be determined and

the energy will have been minimized over type I and II determinants simultaneously.

The mcHF wave function generated from the coupled type I-II Fock operators is

preferred. Qualitatively, the particles of different types should experience a Coulombic

potential from the other particles present in the system. Quantitatively, this method

of constructing the wave function is preferred because it will provide a lower energy

than that of the uncoupled construction of the wave function. This is a manifestation

of the variational principle,

Eexact <
〈
0I0II

∣∣H ∣∣0I0II
〉
≤
〈
0̃I0̃II

∣∣H ∣∣0̃I0̃II
〉
. (3.30)

As the coupled Fock equations provide a lower energy approximation (that is still

above the exact energy), the wave function constructed with this method is a better

approximation to the exact wave function.

With the choice of Fock operator decided, the eigenvalue equation can be self-

consistently satisfied until convergence is met, and the mcHF wave function will be

found. As was the case in single component theory, sometimes a single Slater determi-

nant will not yield enough information about a chemical system or energy will not be

accurate enough. For these cases, we will look extend configuration interaction and

coupled-cluster theory to multicomponent chemical systems. Before these theories are
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discussed, we must first address second quantization as it relates to multicomponent

systems.

3.2 Multicomponent second quantization

Multicomponent wave functions and the Hamiltonian are quite a bit more complicated

than their single component counterparts. This section is meant to clarify and explain

how second quantized operators and their rules should be applied to multicomponent

systems. The rules and restrictions discussed here are all in addition to what is

discussed in section 2.2.

Creation and annihilation operators work the same as they did in single component

theories. The only caveat being that there are now type I and type II operators.

The type II operators will carry a prime. These type I and type II operators only

operate in their space. A type I creation operator cannot put a particle of type I

into a molecular orbital of type I within type II space, and vice versa. Creation and

annihilation operations are contained to type space. A couple illustrative examples

are as follows,

i†i′†
∣∣ΦI,II

〉
= i† |jk . . . z〉 i′† |j′k′ . . . z′〉 (3.31)

= |ijk . . . z〉 |i′j′k′ . . . z′〉 (3.32)

ii′
∣∣ΦI,II

〉
= i |ijk . . . z〉 i′ |i′j′k′ . . . z′〉 (3.33)

= |jk . . . z〉 |j′k′ . . . z′〉 . (3.34)

These creation and annihilation operators for type I and type II particles then in-

herit all properties and rules previously discussed. Most notably, is that type I and

type II particles are subject to Wick’s theorem. Consequently, connected (non-zero)
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expressions involving SQ operators must fully contract in type I and type II space

simultaneously.

The multicomponent Hamiltonian will have the following form in SQ notation,

H I,II =
∑
pq

〈p|hI|q〉p†q +
∑
pqrs

〈pq|vI,I|rs〉p†q†sr
}
H I

+
∑
p′q′

〈p′|hII|q′〉p′†q′ +
∑
p′q′r′s′

〈p′q′|vII,II|r′s′〉p′†q′†s′r′
}
H II (3.35)

+
∑
pqp′q′

〈pp′|vI,II|qq′〉p†p′†qq′
}
V I,II.

We see that it has two single component terms (H I and H II) and the coupled V I,II

term. Since the multicomponent creation and annihilation operators obey all of the

single component SQ laws, the multicomponent Hamiltonian can also be normal or-

dered. This will be presented in the following chapter though, as it won’t be used

when discussing multicomponent confiugration interaction. Since all operators occur

in their own type space, Wick’s theorem can be applied independently to strings, and

products of strings, of SQ operators. Wick’s contractions will only happen between

operators of the same type. Each contraction for a given type must be complete, as

was the case with single component theory, in order to be considered a connected

(non-zero) expression. This is the SQ extension of what was first presented in Equa-

tion 3.11.

The addition of the type two particles does not greatly complicate the SQ rules and

operations. It simply adds a greater level of computational complexity as products

of contractions of type I and type II must now be considered. Since the resolution

of SQ operations involving H I and H II were covered in the previous chapter, we will
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focus solely on an example of a Hamiltonian element with the V I,II
N coupling term.

〈0I0II|V I,II
N |ai a

′

i′ 〉 =
∑
pq

∑
p′q′

〈pp′| vI,II |qq′〉
〈
0I
∣∣ {p†q}{a†i} ∣∣0I

〉 〈
0II
∣∣ {p′†q′}{a′†i′} ∣∣0II

〉
(3.36)

=
∑
pq

∑
p′q′

〈pp′| vI,II |qq′〉
〈
0I
∣∣ {p†q}{a†i} ∣∣0I

〉 〈
0II
∣∣ {p′†q′}{a′†i′} ∣∣0II

〉
(3.37)

=
∑
pq

∑
p′q′

〈pp′| vI,II |qq′〉
〈
0I
∣∣ δpiδqa ∣∣0I

〉 〈
0II
∣∣ δp′i′δq′a′ ∣∣0II

〉
(3.38)

= 〈ii′| vI,II |aa′〉 . (3.39)

We can see that the expression is the vI,II element times the product of contractions for

type I particles times contractios for type II particles. This result is seen in Table 3.1

as Case 3.

3.3 Multicomponent configuration interaction

The multicomponent Hartree-Fock method finds a single Slater determinant wave

function for reach particle type that minimizes the total energy of a given multicom-

ponent system. There are times when a single determinant simply is not enough

to adequately describe a system, however. Multicomponent configuration interaction

(mcCI) approximates the wave function to be a linear combination of determinants for

type I and type II particles. This section will extend single component configuration

interaction theory to multicomponent systems [68, 69, 70].
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3.3.1 Multicomponent full configuration interaction wave

function

As stated, the wave function is a linear combination of Slater determinants for type

I and type II particles. This is a greatly more complex wave function than the single

component form. If we recall from section 2.3, the CI wave function is a combination

of all possible excitations on the reference state, |0〉. For multicomponent theory, we

must include all possible excitations on reference states, |0I0II〉. The mcFCI wave

function can be written as,

|ΨmcFCI〉 = cI,II
(0,0),(0′,0′)|0I0II〉

+
N I∑
i

M I∑
a

cI,II
(i,a),(0′,0′)a

†i|0I0II〉

+
N I∑
i<j

N I∑
j

M I∑
a<b

M I∑
b

cI,II
(ij,ab),(0′,0′)a

†b†ji|0I0II〉+ . . .

+
N II∑
i′

M II∑
a′

cI,II
(0,0),(i′,a′)a

′†i′|0I0II〉

+
N II∑
i′<j′

N II∑
j′

M II∑
a′<b′

M II∑
b′

cI,II
(0,0),(i′j′,a′b′)a

′†b′†j′i′|0I0II〉+ . . .

+
N I∑
i

M I∑
a

N II∑
i′

M II∑
a′

cI,II
(i,a),(i′,a′)a

†ia′†i′|0I0II〉

+
N I∑
i<j

N I∑
j

M I∑
a<b

M I∑
b

N II∑
i′<j′

N II∑
j′

M II∑
a′<b′

M II∑
b′

cI,II
(ij,ab),(i′j′,a′b′)a

†b†jia′†b′†j′i′|0I0II〉

+ . . . (3.40)

The mcFCI wave function is such a complex quantity because the determinant space

is a direct product of the type I FCI space and the type II FCI space. The mcFCI

coefficients are not products of the single component counterparts, however. The

coefficients of the mcFCI wave function are unique to each product of type I and type
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II determinants. For ease, the mcFCI wave function can be written as,

|ΨI,II
mcFCI〉 =

N I,II
mcFCI∑
α

cI,II
α |ΦI,II

α 〉. (3.41)

The mcFCI wave function can be then solved by substituting the mcFCI wave function

into the Schrödinger equation and left multiplying by the mcFCI wave function, then

solving the resulting matrix eigenvalue equation,

H I,II|ΨI,II〉 = EmcFCI|ΨI,II〉 (3.42)

〈ΨI,II|H I,II|ΨI,II〉 = EmcFCI〈ΨI,II|ΨI,II〉 (3.43)

N I,II
mcFCI∑
α

N I,II
mcFCI∑
β

cI,II
α cI,II

β 〈ΦI,II
α |H I,II|ΦI,II

β 〉 = EmcFCI

N I,II
mcFCI∑
α

N I,II
mcFCI∑
β

cI,II
α cI,II

β 〈ΦI,II
α |ΦI,II

β 〉 (3.44)

Hc = eSc. (3.45)

The mcFCI matrix equations are then solvable using standard techniques. The energy

acquired by the mFCI method is exact for a given basis and is size consistent. These

features make mcFCI an extremely power computational tool for studying chemical

systems. Unfortunately, like its single component relative, mcFCI does not scale well

as system and basis size increase. The mcFCI space is a product of the type I and

type II single component FCI spaces.

3.3.2 Truncating the multicomponent configuration interac-

tion wave function

In order to alleviate some of the computational cost inherent in the mcFCI method,

the wave function can be truncated. Reducing the number of excited determinants

accomplishes this task. Commonly, this will mean only including single and double

excitations, though other truncations are also possible.
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Truncating the mcCI wave function is very similar to what was done in the single

component case first discussed in subsection 2.3.2. In mcCI, truncating the wave

function is more flexible than in the single component space since the wave function

is a product of both single component (type I and type II) CI spaces. This allows more

freedom when in comes to considering computational cost and enables the correlation

effects to be scaled via the wave function.

Due to the sheer size of the mcCI space, a highly truncated wave function is usually

the only option for multiparticle systems. In Table 2.2, the number of determinants

in a truncated wave function was shown for a single particle type. The mcCI wave

function, which is a product of these spaces, scales very poorly which restricts the

choice of truncation.

Unfortunately, any truncation of the mcFCI wave function has two negative ef-

fects. First, size consistency is broken. This concept was covered in subsection 2.3.3.

Additionally, a truncated mcFCI wave function will not produce an exact solution for

a give basis. Outside of modestly sized systems, one must accept these consequences

if the mcCI method is to be used.
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Chapter 4

Multicomponent coupled-cluster

theory

The theory and implementation details of the multicomponent coupled-cluster

method will discussed at length in this chapter. The theory is built upon the prin-

ciples of single component coupled-cluster theory that was discussed in section 2.4.

The implementation details focus on reducing the memory footprint and reducing

the CPU time (specifically in reference to Wick’s contractions). The mcCC method

was then used to study a few benchmark systems. The results gathered from mcCC

will be compared against results from other researchers as well as configuration

interaction results to verify validity. For the sake of completeness, this chapter briefly

summarizes concepts covered in previous chapters.

4.1 Introduction

Systems that are made up of more than one type of quantum mechanical particle

are defined as multicomponent systems. Multicomponent systems are ubiquitous in

chemistry. Atoms and molecules, which are the building blocks of complex chemical

systems, contain both electrons and nuclei and are intrinsically multicomponent in
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nature. Similarly, molecules bound to other sub-atomic particles, such as positrons

bound to molecular substrates [71] and muon-substituted compounds [72] also form

multicomponent systems. Multicomponent terminology can also be extended to sys-

tems containing quasiparticles, [73] such as multiexcitons which are useful for describ-

ing electronic excitations in many-electron systems.

A multicomponent system is intrinsically a collection of interacting single com-

ponent systems. Consequently, it inherits all of the complexity associated with the

treatment of correlation in single component systems. The central challenge in the-

oretical investigations of multicomponent systems is the accurate description of the

particle-particle correlation that exists not only between identical particles but also

between particles of different types. The multicomponent wave function is a math-

ematically complex quantity and it is desirable to introduce simplifications to the

exact form of the wave function for practical applications. For molecules, the Born-

Oppenheimer (BO) approximation is a well-known approximation that introduces

parametric dependence of the nuclear coordinates in the electronic wave function.

As a consequence of the BO approximation, the exact multicomponent Schrödinger

equation can be expressed as a set of two coupled single component equations for

electrons and nuclei, respectively. Although the BO is a very useful approxima-

tion, it important to recognize that it is still an approximation and there is an ever-

increasing collection of experimental and theoretical findings that demonstrate its lim-

itations. [74, 75, 76, 77, 78, 79, 68, 80, 81, 82, 83, 84, 85, 86] There are also other multi-

component quantum mechanical systems where the BO approximation is not a useful

approximation. For example, electron-positron [87, 88, 89, 90] and multiexitonic

(electron-hole) systems [91, 36, 92, 37, 35, 34, 44, 41, 42, 93, 94, 95, 39, 40, 69, 70, 38]

are systems where introducing BO separation leads to an unacceptable deviation from

qualitative results.
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In this work, we focus on multicomponent treatment of only two different types

of particles, which are denoted as type I and II for the remainder of this article.

The approach assumes that the coordinates of the heavy nuclei are BO separated

(BOS) from the coordinates of the type I and II particles. Consequently, the exact

multicomponent wave function is approximately factored as

Ψexact(r
I, rII,RBOS) ≈ Ψ(rI, rII; RBOS)χ(RBOS). (4.1)

In the above expression, BO separated coordinates are collectively represented as

RBOS. The exact multicomponent Hamiltonian can be written as the sum of two

operators

Hexact(r
I, rII,RBOS) = H(rI, rII; RBOS) + TRBOS (4.2)

where, TRBOS is the kinetic energy operators associated with the BO separated co-

ordinates. The general form of the Hamiltonian for the multicomponent system is

defined as

H(rI, rII; RBOS) = H I(rI; RBOS) +H II(rII; RBOS) + V I,II(rI, rII) (4.3)

where H I and H II are single component Hamiltonians for particle type I and II, re-

spectively. The interaction between the two types of particles is described by the

potential energy term, V I,II. The total multicomponent Hamiltonian also admits

parametric dependence on coordinates of particles (denoted by RBOS) that have been

assumed to be BO-separated (BOS) from type I and II particles in the multicompo-

nent wave function. Consequently, the multicomponent Hamiltonian presented above

does not contain any kinetic energy operators associated with the BOS coordinates.

The BOS coordinates in H are the generators of the external potentials vI
ext(r

I; RBOS)
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and vII
ext(r

II; RBOS) experienced by the type I and II particles, respectively. For ex-

ample, in the case of multicomponent molecular systems, type I and II particles can

be represented by electrons and protons and the remaining nuclei in the molecules

will be treated by the BOS coordinates. In the case of quasiparticle systems, the

(quasi) electrons and holes are treated as type I and II particles while all the nuclei

in the system are treated using BOS coordinates. In both cases, the BOS coordi-

nates will be responsible for the generation of the external potential experienced by

the type I and II particles. This form of the multicomponent Hamiltonian has been

used to describe various multicomponent interactions such as electron-proton inter-

action, [96, 97, 98, 71, 99, 100, 101, 76, 102] electron-positron interaction,[87, 89, 90]

and electron-hole quasiparticle interaction. [36, 92, 37, 35, 34, 70, 69, 38] It is impor-

tant to note that this approach is different from other multicomponent approaches

such as the exact factorization method [103, 104, 105, 106, 107, 108, 109, 110, 111]

and multicomponent (N -particle) density functional theory [75] that involve non-BO

treatment of all particle types in a chemical system.

The overarching goal of this work is to present an approximate solution of the

following multicomponent Schrödinger equation

HΨ(rI, rII; RBOS) = E(RBOS)Ψ(rI, rII; RBOS) (4.4)

using a multicomponent coupled-cluster (mcCC) ansatz for the many-particle wave

function. Coupled-cluster (CC) theory has been used successfully for studying

electron-electron correlation in many-electron systems. [112, 113, 114, 115, 116, 117,

118, 119, 120, 121, 7, 122, 123, 124, 125, 126] In the context of multicomponent

systems, the CC ansatz provides a balanced framework for a size-consistent and size-

extensive treatment of many-particle correlation. The general theory of multicompo-

nent CC for molecular Hamiltonian has been described earlier by Monkhorst. [127]
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Application of CC to excitons has also been demonstrated by Sundholm et al. [69]

and Vänskä et al. [70] for a two-band effective mass approximation Hamiltonian

model. In this work we present a systematic derivation of the mcCC equation that

is based on a multicomponent Hartree-Fock vacuum state. Coupled-cluster theory is

a well known method with a large body of literature that describes its theory and

implementation in electronic structure theory. [58, 60, 128, 61, 129, 130, 131, 132]

The focus of this article is not to repeat the well-known derivations, but to high-

light the key differences between the single component (electronic structure) and

multicomponent coupled-cluster equations. In this work, we used the mcCC method

to calculate ground state energies of multicomponent Hooke’s atom, positronium

hydride, and to calculate exciton and biexciton binding energies in multiexcitonic

systems. Multiexcitonic systems are of particular interest due to the tremendous

potential they have in photovoltaic and light harvesting applications. Theoretical

investigations have been performed using an array of methods including configuration

interaction,[39, 91, 70, 93, 133] quantum Monte Carlo,[39, 40] path integral Monte

Carlo,[41, 38] Green’s functions,[134] pseudopotentials,[95, 135] and coupled-cluster

theory. [136, 69, 70] For each case, the mcCC results were benchmarked against

full configuration interaction (FCI) calculations. The derivation of the mcCC equa-

tions, computer implementation of the t-amplitude equations, and details of the

multiexcitonic systems are presented in the following sections.
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4.2 Theory

4.2.1 Construction of the vacuum states

The multicomponent Hamiltonian in second quantized notation is defined as

H =
∑
pq

〈p|hI|q〉p†q (4.5)

+
∑
pqrs

〈pq|vI,I|rs〉p†q†sr

+
∑
p′q′

〈p′|hII|q′〉p′†q′

+
∑
p′q′r′s′

〈p′q′|vII,II|r′s′〉p′†q′†s′r′

+
∑
pqp′q′

〈pp′|vI,II|qq′〉p†p′†qq′

where, the unprimed and primed operators represent type I and II particles, respec-

tively. The form of the 1-particle and 2-particle operators are given (in atomic units)

as

hα(rα,RBOS) =
−h̄
2mα

∇2
α + vαext(r

α,RBOS) α = I, II, (4.6)

vα,α(rα) = qαqαε−1r−1
αα, (4.7)

vI,II(rI, rII) = qIqIIε−1r−1
I,II. (4.8)

For electron-nuclear and electron-positron systems, the dielectric function is a con-

stant (ε = 1). For multiexcitonic systems, the electron-hole interaction is screened,

and the screening can be described either by a constant dielectric value[92, 36, 137]

or by a position dependent dielectric function. [94, 95]
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We define the mcCC wave function by the following exponential ansatz,

ΨI,II
mcCC(rI, rII; RBOS) = eT

I,II

ΦI,II
0 (rI, rII; RBOS), (4.9)

where the BOS coordinates are shown explicitly using the standard semicolon conven-

tion. Traditionally in single-reference electronic structure coupled-cluster theory, the

vacuum state Φ0 is obtained from a Hartree-Fock (HF) calculation. For multicompo-

nent systems, there are two different ways to construct the single component vacuum

state. The first method involves the Hartree-Fock solution of the single component

Hamiltonian as shown below with the states labeled as |0̃I〉 and |0̃II〉 for type I and II

particles

〈0̃I|H I|0̃I〉 = min
ΦI

SD

〈ΦI
SD|H I|ΦI

SD〉, (4.10)

〈0̃II|H II|0̃II〉 = min
ΦII

SD

〈ΦII
SD|H II|ΦII

SD〉. (4.11)

The minimization in the above equations is performed over a set of single Slater

determinants (ΦSD). The total vacuum energy the above determinants is given as

〈0̃I0̃II|H|0̃I0̃II〉 = 〈0̃I|H I|0̃I〉+ 〈0̃II|H II|0̃II〉+ 〈0̃I0̃II|V I,II|0̃I0̃II〉. (4.12)

The second method for construction of the single component vacuum states is by

solution of the multicomponent HF equation. We label these determinants by as |0I〉

and |0II〉 for type I and II particles, respectively and they are determined using the

following energy minimization procedure

〈0I0II|H|0I0II〉 = min
ΦI

SD,Φ
II
SD

〈ΦI
SDΦII

SD|H|ΦI
SDΦII

SD〉. (4.13)
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The vacuum state |0I0II〉 constructed from the multicomponent HF should be lower in

energy than the vacuum state |0̃I0̃II〉 obtained using the single component HF method

due to the variational principle,

〈0I0II|H|0I0II〉 ≤ 〈0̃I0̃II|H|0̃I0̃II〉. (4.14)

Because of this property, we have used multicomponent HF for construction of the

single component vacuum states in all the calculations presented in section 4.5. Mul-

ticomponent HF method has been used in earlier work for treating electron-proton

correlation and the details of the method are not presented here to avoid repetition.

[68, 77, 76, 138]

4.2.2 Effective normal-ordered Hamiltonian

The use of multicomponent HF instead of single component HF as the vacuum state

has important implications on the general form of the CC equations, the vacuum

energy, and the normal-ordering of the operators. The minimization procedure for

multicomponent HF (shown in Eq. (4.13)) results in Fock operators for type I and II

particles and is given as,

f I = hI + vI
HF +

N II∑
j′=1

〈j′|vI,II|j′〉 (4.15)

f II = hII + vII
HF +

N I∑
j=1

〈j|vI,II|j〉. (4.16)

However, the Fock operators for the two types of particles are not independent of

each other and are coupled because of the presence of the I-II coupling term. The
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mcHF calculation is performed by iterative solution of the coupled SCF equation

f IχI
i = εIiχ

I
i (4.17)

f IIχII
i′ = εIIi′χ

II
i′ . (4.18)

The eigenfunction of the multicomponent Fock operators from Eq. (4.15) and Eq.

(4.16) are used as the single-particle states in representing the creation and annihila-

tion operators. The total vacuum energy obtained from the SCF step is additive and

is made up of three components

〈0I0II|H|0I0II〉 = 〈0I0II|H I|0I0II〉+ 〈0I0II|H II|0I0II〉+ 〈0I0II|V I,II|0I0II〉. (4.19)

This relationship will be used in the definition of the normal-ordered Hamiltonian.

Using Eq. (5.1), the single component normal ordered Hamiltonian is defined as

H I = H I
N + 〈0I|H I|0I〉 (4.20)

where

H I
N =

∑
pq

〈p|hI|q〉{p†q}+
∑
pqi

〈pi|vI,I|qi〉A{p†q}+
1

4

∑
pqrs

〈pq|vI,I|rs〉A{p†q†sr} (4.21)

The subscript ”A” implies that both symmetric and antisymmetric combination of

the integral are in cluded in the expression shown below

〈pq|vI,I|rs〉A = 〈pq|vI,I|rs〉 − 〈pq|vI,I|sr〉. (4.22)
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The type I-II coupling operator in Eq. (7.32) can be expressed as the sum of three

normal-ordered operators as shown below

V I,II = V I,II
N +W I

N +W II
N + 〈00′|V I,II|00′〉 (4.23)

where

V I,II
N =

∑
pq

∑
p′q′

〈pp′|vI,II|qq′〉{p†q}{p′†q′} (4.24)

W I
N =

∑
pq

∑
i′

〈pi′|vI,II|qi′〉{p†q} (4.25)

W II
N =

∑
i

∑
p′q′

〈ip′|vI,II|iq′〉{p′†q′} (4.26)

The total multicomponent Hamiltonian can then be written as sum of following

normal-ordered operators,

H = H I
N +H II

N + V I,II
N +W I

N +W II
N + 〈0I0II|H|0I0II〉 (4.27)

It is useful to define the following effective single component Hamiltonians H̃ I
N and

H̃ II
N by incorporating WN terms in expressions

H̃ I
N = H I

N +W I
N (4.28)

H̃ II
N = H II

N +W II
N . (4.29)

Using the above relationship, the total normal-ordered Hamiltonian is defined as

H̃N = H − 〈0I0II|H|0I0II〉 (4.30)

= H̃ I
N + H̃ II

N + V I,II
N . (4.31)
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4.2.3 The mcCC Equations

Using the normal-ordered Hamiltonian, the CC equation can be written in terms of

the total correlation energy ∆EmcCC

H̃Ne
T |0I0II〉 = ∆EmcCCe

T |0I0II〉 (4.32)

where ∆EmcCC = EmcCC − 〈0I0II|H|0I0II〉 and T is the cluster operator. In this

work, we restrict the form of the cluster operator to include only single and double

excitations as shown below

T =
2∑
ij

[
T I,II
ij + (T I

i + T II
i )δij

]
(4.33)

= T I
1 + T I

2 + T II
1 + T II

2 + T I,II
11 + T I,II

12 + T I,II
21 + T I,II

22 . (4.34)

The T I
1 and T I

2 operators are identical to the single component CCSD operators and

operate only on the type I space. The same holds true for the corresponding type

II operators. The indices i, j are summed over the occupied space denoted by N

while a, b indicies are summed over the virtual space, M . The type II operators have

primed indices to distinguish them from their type I counterparts.

T I
1 =

N∑
i

M∑
a

tai {a†i} (4.35)

T I
2 =

1

4

N∑
ij

M∑
ab

tabij {a†b†ji} (4.36)

T II
1 =

N ′∑
i′

M ′∑
a′

ta
′

i′ {a′†i′} (4.37)
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T II
2 =

1

4

N ′∑
i′j′

M ′∑
a′b′

ta
′b′

i′j′ {a′†b′†j′i′} (4.38)

The type I,II operators produce connected excitations in both the type I and II spaces.

These operators are expanded below,

T I,II
11 =

N∑
i

M∑
a

N ′∑
i′

M ′∑
a′

taa
′

ii′ {a†i}{a′†i′} (4.39)

T I,II
12 =

1

4

N∑
i

M∑
a

N ′∑
i′j′

M ′∑
a′b′

taa
′b′

ii′j′ {a†i}{a′†b′†j′i′} (4.40)

T I,II
21 =

1

4

N∑
ij

M∑
ab

N ′∑
i′

M ′∑
a′

taa
′b′

iji′ {a†b†ji}{a′†i′} (4.41)

T I,II
22 =

1

16

N∑
ij

M∑
ab

N ′∑
i′j′

M ′∑
a′b′

taba
′b′

iji′j′ {a†b†ji}{a′†b′†j′i′} (4.42)

The cluster operator, as presented above, defines a multicomponent CCSD space.

The energy and the t amplitude expressions can be obtained by performing similarity-

transformation on the normal-ordered Hamiltonian from Eq. (4.30),

e−T H̃Ne
T |0I0II〉 = ∆EmcCC|0I0II〉 (4.43)
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which can be evaluated using the standard Baker-Campbell-Hausdorff (BCH)

expansion[61, 60] shown below,

e−T H̃Ne
T = H̃N + [H̃N, T ] +

1

2
[[H̃N, T ], T ] +

1

3!
[[[H̃N, T ], T ], T ] +

1

4!
[[[[H̃N, T ], T ], T ], T ]

(4.44)

However, because of the multicomponent nature of the system, the number of terms in

the BCH expansion is much larger than the single component expression. Substituting

the expression with the Hamiltonian in Eq. (4.30) and the t amplitudes from Eq.

(4.34), we arrive at the following set of equations,

[H̃N, T ] = [
3∑
K1

H̃
(K1)
N ,

8∑
L1

T (L1)] =
3∑
K1

8∑
L1

[H̃
(K1)
N , T (L1)] (4.45)

[[H̃N, T ], T ] =
3∑
K1

8∑
L1,L2

[[H̃
(K1)
N , T (L1)], T (L2)] (4.46)

[[[H̃N, T ], T ], T ] =
3∑
K1

8∑
L1,L2,L3

[[[H̃
(K1)
N , T (L1)], T (L2)], T (L3)] (4.47)

[[[[H̃N, T ], T ], T ], T ] =
2∑
K1

8∑
L1,L2,L3,L4

[[[[H̃
(K1)
N , T (L1)], T (L2)], T (L3)], T (L4)] (4.48)

where H̃
(K)
N and T (L) are compact notations for the Hamiltonian and cluster operator

and are defined as

H̃N =
3∑
K

H̃
(K)
N = H̃ I

N + H̃ II
N + V I,II

N (4.49)

T =
8∑
L

T (L) = T I
1 + T I

2 + T II
1 + T II

2 + T I,II
11 + T I,II

12 + T I,II
21 + T I,II

22 . (4.50)

For the present ansatz of the mCC wave function, the number of commutators in the

above expression is 9940 terms. However, not all of these terms contribute in all the
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equations mentioned above, and the list of contributing terms in Eqs. (5.10)-(4.60)

are presented in the supporting information.

The solution of the BCH expansion for the total multicomponent correlation en-

ergy results in the following expression,

∆EmcCC = 〈0I0II|H̃ I
N[T I

1 +
1

2!
T I2

1 + T I
2]|0I0II〉 (4.51)

+ 〈0I0II|H̃ II
N [T II

1 +
1

2!
T II2

1 + T II
2 ]|0I0II〉

+ 〈0I0II|V I,II
N [T I,II

11 + T I
1 + T I

1T
II
1 + T II

1 ]|0I0II〉.

As expected, the total correlation energy can be written as the sum of correlation

energies from the two components and the interaction between the two components.

Analogous to the electronic CCSD expression, the correlation energies for type I and

type II particles depend only on t1 and t2 amplitudes. In contrast, the contribution

from I-II interaction depends only on t1 and t11 amplitudes. It is important to note

that although the expression for the type I correlation energy is identical to electronic

CCSD, the t amplitudes in the expressions are not independent of type II t amplitudes

but depend on type II amplitudes via Eq. (5.11) and Eq. (5.12). The determination

of the total correlation energy depends on the converged t amplitude equations which

require the simultaneous solution of a set of non-linear, coupled equations. Obtaining

the t amplitude equations require projecting the similarity-transformed Hamiltonian

onto a series of excited states denoted by 〈KIKII|. The following set of equations is

the result of choosing 〈KIKII| to be all combinations of vacuum, singly, and doubly

excited states (represented as 0, S, and D, respectively) in both type I and type II
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space.

〈0I0II|e−T H̃Ne
T |0I0II〉c = ∆EmcCC correlation energy equation (4.52)

〈SI0II|e−T H̃Ne
T |0I0II〉c = 0 tI1 amplitude equation (4.53)

〈DI0II|e−T H̃Ne
T |0I0II〉c = 0 tI2 amplitude equation (4.54)

〈0ISII|e−T H̃Ne
T |0I0II〉c = 0 tII1 amplitude equation (4.55)

〈0IDII|e−T H̃Ne
T |0I0II〉c = 0 tII2 amplitude equation (4.56)

〈SISII|e−T H̃Ne
T |0I0II〉c = 0 tI,II11 amplitude equation (4.57)

〈SIDII|e−T H̃Ne
T |0I0II〉c = 0 tI,II12 amplitude equation (4.58)

〈DISII|e−T H̃Ne
T |0I0II〉c = 0 tI,II21 amplitude equation (4.59)

〈DIDII|e−T H̃Ne
T |0I0II〉c = 0 tI,II22 amplitude equation (4.60)

The expanded forms of these equations are shown below.

Energy expression (〈0I0II|e−THNe
T |0I0II〉 = ∆EmcCC)

〈0I0II|V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
II
1 + T II

1 ] + H̃ II
N [1 + T II

1 + 1
2!
T II2

1 + T II
2 ] + H̃ I

N[1 + T I
1 +

1
2!
T I2

1 + T I
2]|0I0II〉 = ∆EmcCC

Type I single amplitude (〈SI0II|e−THNe
T |0I0II〉 = 0)

〈SI0II|V I,II
N [1 +T I,II

11 +T I
1 +T I

1T
I,II
11 +T I

1T
II
1 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1 +T II

1 +T I,II
21 +T I

2 +T I
2T

II
1 ]

+ [(−T I
1)]V I,II

N [1 + T I,II
11 + T I

1 + T I
1T

II
1 + T II

1 ] + H̃ II
N [T I,II

11 + T I,II
12 + T I

1 + T I
1T

II
1 + T I

1
1
2!
T II2

1

+ T I
1T

II
2 + T II

1 T
I,II
11 ] + [(−T I

1)]H̃ II
N [1 + T II

1 + 1
2!
T II2

1 + T II
2 ] + H̃ I

N[1 + T I
1 + T I

1T
I
2 + 1

2!
T I2

1 +

1
3!
T I3

1 + T I
2] + [(−T I

1)]H̃ I
N[1 + T I

1 + 1
2!
T I2

1 + T I
2]|0I0II〉 = 0

Type I double amplitude (〈DI0II|e−THNe
T |0I0II〉 = 0)

〈DI0II|V I,II
N [T I,II

11 + T I
1 + T I

1T
I,II
11 + T I

1T
II
1 + T I

1T
I,II
21 + T I

1T
I
2 + T I

1T
I
2T

II
1 + 1

2!
T I2

1 + 1
2!
T I2

1 T
I,II
11

+ 1
2!
T I2

1 T
II
1 + 1

3!
T I3

1 + 1
3!
T I3

1 T
II
1 +T I,II

21 +T I
2 +T I

2T
I,II
11 +T I

2T
II
1 ] + [(−T I

2)]V I,II
N [1 +T I,II

11 +T I
1
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+ T I
1T

II
1 + T II

1 ] + [(−T I
1)]V I,II

N [1 + T I,II
11 + T I

1 + T I
1T

I,II
11 + T I

1T
II
1 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1 + T II

1

+ T I,II
21 + T I

2 + T I
2T

II
1 ] + [ 1

2!
T I2

1 ]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
II
1 + T II

1 ] + H̃ II
N [T I

1T
I,II
11 + T I

1T
I,II
12

+ T I
1T

II
1 T

I,II
11 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1 + 1

2!
T I2

1
1
2!
T II2

1 + 1
2!
T I2

1 T
II
2 + T II

1 T
I,II
21 + T I,II

21 + T I,II
22 + T I

2 +

T I
2T

II
1 + T I

2
1
2!
T II2

1 + T I
2T

II
2 ] + [(−T I

2)]H̃ II
N [1 + T II

1 + 1
2!
T II2

1 + T II
2 ] + [(−T I

1)]H̃ II
N [T I,II

11 + T I,II
12

+ T I
1 + T I

1T
II
1 + T I

1
1
2!
T II2

1 + T I
1T

II
2 + T II

1 T
I,II
11 ] + [ 1

2!
T I2

1 ]H̃ II
N [1 + T II

1 + 1
2!
T II2

1 + T II
2 ] + H̃ I

N[1

+T I
1 +T I

1T
I
2 + 1

2!
T I2

1 + 1
2!
T I2

1 T
I
2 + 1

3!
T I3

1 + 1
4!
T I4

1 +T I
2 + 1

2!
T I2

2 ] + [(−T I
2)]H̃ I

N[1 +T I
1 + 1

2!
T I2

1

+ T I
2] + [(−T I

1)]H̃ I
N[1 + T I

1 + T I
1T

I
2 + 1

2!
T I2

1 + 1
3!
T I3

1 + T I
2] + [ 1

2!
T I2

1 ]H̃ I
N[1 + T I

1 + 1
2!
T I2

1 +

T I
2]|0I0II〉 = 0

Type II single amplitude (〈0ISII|e−THNe
T |0I0II〉 = 0)

〈0ISII|V I,II
N [1 + T I,II

11 + T I,II
12 + T I

1 + T I
1T

II
1 + T I

1
1
2!
T II2

1 + T I
1T

II
2 + T II

1 + T II
1 T

I,II
11 + 1

2!
T II2

1 +

T II
2 ] + [(−T II

1 )]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
II
1 + T II

1 ] + H̃ II
N [1 + T II

1 + T II
1 T

II
2 + 1

2!
T II2

1 + 1
3!
T II3

1

+ T II
2 ] + [(−T II

1 )]H̃ II
N [1 + T II

1 + 1
2!
T II2

1 + T II
2 ] + H̃ I

N[T I,II
11 + T I

1T
I,II
11 + T I

1T
II
1 + 1

2!
T I2

1 T
II
1 +

T II
1 + T I,II

21 + T I
2T

II
1 ] + [(−T II

1 )]H̃ I
N[1 + T I

1 + 1
2!
T I2

1 + T I
2]|0I0II〉 = 0

Type II double amplitude (〈0IDII|e−THNe
T |0I0II〉 = 0)

〈0IDII|V I,II
N [T I,II

11 +T I,II
12 +T I

1T
II
1 +T I

1T
II
1 T

II
2 +T I

1
1
2!
T II2

1 +T I
1

1
3!
T II3

1 +T I
1T

II
2 +T II

1 +T II
1 T

I,II
11

+T II
1 T

I,II
12 +T II

1 T
II
2 + 1

2!
T II2

1 + 1
2!
T II2

1 T I,II
11 + 1

3!
T II3

1 +T II
2 +T II

2 T
I,II
11 ] + [(−T II

2 )]V I,II
N [1 +T I,II

11

+ T I
1 + T I

1T
II
1 + T II

1 ] + [(−T II
1 )]V I,II

N [1 + T I,II
11 + T I,II

12 + T I
1 + T I

1T
II
1 + T I

1
1
2!
T II2

1 + T I
1T

II
2 +

T II
1 + T II

1 T
I,II
11 + 1

2!
T II2

1 + T II
2 ] + [ 1

2!
T II2

1 ]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
II
1 + T II

1 ] + H̃ II
N [1 + T II

1

+ T II
1 T

II
2 + 1

2!
T II2

1 + 1
2!
T II2

1 T II
2 + 1

3!
T II3

1 + 1
4!
T II4

1 + T II
2 + 1

2!
T II2

2 ] + [(−T II
2 )]H̃ II

N [1 + T II
1 +

1
2!
T II2

1 + T II
2 ] + [(−T II

1 )]H̃ II
N [1 + T II

1 + T II
1 T

II
2 + 1

2!
T II2

1 + 1
3!
T II3

1 + T II
2 ] + [ 1

2!
T II2

1 ]H̃ II
N [1 +

T II
1 + 1

2!
T II2

1 + T II
2 ] + H̃ I

N[T I,II
12 + T I

1T
I,II
12 + T I

1T
II
1 T

I,II
11 + T I

1
1
2!
T II2

1 + T I
1T

II
2 + 1

2!
T I2

1
1
2!
T II2

1 +

1
2!
T I2

1 T
II
2 + T II

1 T
I,II
11 + T II

1 T
I,II
21 + 1

2!
T II2

1 + T I,II
22 + T I

2
1
2!
T II2

1 + T I
2T

II
2 + T II

2 ] + [(−T II
2 )]H̃ I

N[1 +

T I
1 + 1

2!
T I2

1 + T I
2] + [(−T II

1 )]H̃ I
N[T I,II

11 + T I
1T

I,II
11 + T I

1T
II
1 + 1

2!
T I2

1 T
II
1 + T II

1 + T I,II
21 + T I

2T
II
1 ]

+ [ 1
2!
T II2

1 ]H̃ I
N[1 + T I

1 + 1
2!
T I2

1 + T I
2]|0I0II〉 = 0
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Type I, II single, single amplitude (〈SISII|e−THNe
T |0I0II〉 = 0)

〈SISII|V I,II
N [1 + T I,II

11 + T I,II
12 + T I

1 + T I
1T

I,II
11 + T I

1T
I,II
12 + T I

1T
II
1 + T I

1T
II
1 T

I,II
11 + T I

1
1
2!
T II2

1 +

T I
1T

II
2 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1 + 1

2!
T I2

1
1
2!
T II2

1 + 1
2!
T I2

1 T
II
2 + T II

1 + T II
1 T

I,II
11 + T II

1 T
I,II
21 + 1

2!
T II2

1 +

T I,II
21 +T I,II

22 +T I
2 +T I

2T
II
1 +T I

2
1
2!
T II2

1 +T I
2T

II
2 +T II

2 ] + [(−T I,II
11 )]V I,II

N [1 +T I,II
11 +T I

1 +T I
1T

II
1

+T II
1 ] + [(−T II

1 )]V I,II
N [1 +T I,II

11 +T I
1 +T I

1T
I,II
11 +T I

1T
II
1 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1 +T II

1 +T I,II
21 +T I

2

+ T I
2T

II
1 ] + [(−T I

1)]V I,II
N [1 + T I,II

11 + T I,II
12 + T I

1 + T I
1T

II
1 + T I

1
1
2!
T II2

1 + T I
1T

II
2 + T II

1 + T II
1 T

I,II
11

+ 1
2!
T II2

1 + T II
2 ] + [(−T I

1)(−T II
1 )]V I,II

N [1 + T I,II
11 + T I

1 + T I
1T

II
1 + T II

1 ] + H̃ II
N [T I,II

11 + T I,II
12 +

T I
1 + T I

1T
II
1 + T I

1T
II
1 T

II
2 + T I

1
1
2!
T II2

1 + T I
1

1
3!
T II3

1 + T I
1T

II
2 + T II

1 T
I,II
11 + T II

1 T
I,II
12 + 1

2!
T II2

1 T I,II
11 +

T II
2 T

I,II
11 ] + [(−T I,II

11 )]H̃ II
N [1 + T II

1 + 1
2!
T II2

1 + T II
2 ] + [(−T II

1 )]H̃ II
N [T I,II

11 + T I,II
12 + T I

1 + T I
1T

II
1

+ T I
1

1
2!
T II2

1 + T I
1T

II
2 + T II

1 T
I,II
11 ] + [(−T I

1)]H̃ II
N [1 + T II

1 + T II
1 T

II
2 + 1

2!
T II2

1 + 1
3!
T II3

1 + T II
2 ] +

[(−T I
1)(−T II

1 )]H̃ II
N [1 +T II

1 + 1
2!
T II2

1 +T II
2 ] + H̃ I

N[T I,II
11 +T I

1T
I,II
11 +T I

1T
II
1 +T I

1T
I,II
21 +T I

1T
I
2T

II
1

+ 1
2!
T I2

1 T
I,II
11 + 1

2!
T I2

1 T
II
1 + 1

3!
T I3

1 T
II
1 + T II

1 + T I,II
21 + T I

2T
I,II
11 + T I

2T
II
1 ] + [(−T I,II

11 )]H̃ I
N[1 + T I

1

+ 1
2!
T I2

1 + T I
2] + [(−T II

1 )]H̃ I
N[1 + T I

1 + T I
1T

I
2 + 1

2!
T I2

1 + 1
3!
T I3

1 + T I
2] + [(−T I

1)]H̃ I
N[T I,II

11 +

T I
1T

I,II
11 + T I

1T
II
1 + 1

2!
T I2

1 T
II
1 + T II

1 + T I,II
21 + T I

2T
II
1 ] + [(−T I

1)(−T II
1 )]H̃ I

N[1 + T I
1 + 1

2!
T I2

1 +

T I
2]|0I0II〉 = 0

Type I, II single, double amplitude (〈SIDII|e−THNe
T |0I0II〉 = 0)

〈SIDII|V I,II
N [T I,II

11 +T I,II
11 T

I,II
12 +T I,II

12 +T I
1T

I,II
11 +T I

1T
I,II
12 +T I

1T
II
1 +T I

1T
II
1 T

I,II
11 +T I

1T
II
1 T

I,II
12 +

T I
1T

II
1 T

II
2 +T I

1
1
2!
T II2

1 +T I
1

1
2!
T II2

1 T I,II
11 +T I

1
1
3!
T II3

1 +T I
1T

II
2 +T I

1T
II
2 T

I,II
11 + 1

2!
T I2

1 T
II
1 + 1

2!
T I2

1 T
II
1 T

II
2

+ 1
2!
T I2

1
1
2!
T II2

1 + 1
2!
T I2

1
1
3!
T II3

1 + 1
2!
T I2

1 T
II
2 + T II

1 + T II
1 T

I,II
11 + T II

1 T
I,II
12 + T II

1 T
I,II
21 + T II

1 T
I,II
22 +

T II
1 T

II
2 + 1

2!
T II2

1 + 1
2!
T II2

1 T I,II
11 + 1

2!
T II2

1 T I,II
21 + 1

3!
T II3

1 + T I,II
21 + T I,II

22 + T I
2T

II
1 + T I

2T
II
1 T

II
2 +

T I
2

1
2!
T II2

1 + T I
2

1
3!
T II3

1 + T I
2T

II
2 + T II

2 + T II
2 T

I,II
11 + T II

2 T
I,II
21 ] + [(−T I,II

12 )]V I,II
N [1 + T I,II

11 + T I
1 +

T I
1T

II
1 + T II

1 ] + [(−T I,II
11 )]V I,II

N [1 + T I,II
11 + T I,II

12 + T I
1 + T I

1T
II
1 + T I

1
1
2!
T II2

1 + T I
1T

II
2 + T II

1 +

T II
1 T

I,II
11 + 1

2!
T II2

1 + T II
2 ] + [(−T II

2 )]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
I,II
11 + T I

1T
II
1 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1

+ T II
1 + T I,II

21 + T I
2 + T I

2T
II
1 ] + [(−T II

1 )]V I,II
N [1 + T I,II

11 + T I,II
12 + T I

1 + T I
1T

I,II
11 + T I

1T
I,II
12 +

T I
1T

II
1 + T I

1T
II
1 T

I,II
11 + T I

1
1
2!
T II2

1 + T I
1T

II
2 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1 + 1

2!
T I2

1
1
2!
T II2

1 + 1
2!
T I2

1 T
II
2 + T II

1

+ T II
1 T

I,II
11 + T II

1 T
I,II
21 + 1

2!
T II2

1 + T I,II
21 + T I,II

22 + T I
2 + T I

2T
II
1 + T I

2
1
2!
T II2

1 + T I
2T

II
2 + T II

2 ] +
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[(−T I,II
11 )(−T II

1 )]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
II
1 + T II

1 ] + [ 1
2!
T II2

1 ]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
I,II
11

+T I
1T

II
1 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1 +T II

1 +T I,II
21 +T I

2 +T I
2T

II
1 ] + [(−T I

1)]V I,II
N [T I,II

11 +T I,II
12 +T I

1T
II
1

+ T I
1T

II
1 T

II
2 + T I

1
1
2!
T II2

1 + T I
1

1
3!
T II3

1 + T I
1T

II
2 + T II

1 + T II
1 T

I,II
11 + T II

1 T
I,II
12 + T II

1 T
II
2 + 1

2!
T II2

1 +

1
2!
T II2

1 T I,II
11 + 1

3!
T II3

1 + T II
2 + T II

2 T
I,II
11 ] + [(−T I

1)(−T II
2 )]V I,II

N [1 + T I,II
11 + T I

1 + T I
1T

II
1 + T II

1 ] +

[(−T I
1)(−T II

1 )]V I,II
N [1 + T I,II

11 + T I,II
12 + T I

1 + T I
1T

II
1 + T I

1
1
2!
T II2

1 + T I
1T

II
2 + T II

1 + T II
1 T

I,II
11 +

1
2!
T II2

1 + T II
2 ] + [(−T I

1) 1
2!
T II2

1 ]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
II
1 + T II

1 ] + H̃ II
N [T I,II

11 + T I,II
12 + T I

1 +

T I
1T

II
1 + T I

1T
II
1 T

II
2 + T I

1
1
2!
T II2

1 + T I
1

1
2!
T II2

1 T II
2 + T I

1
1
3!
T II3

1 + T I
1

1
4!
T II4

1 + T I
1T

II
2 + T I

1
1
2!
T II2

2 +

T II
1 T

I,II
11 +T II

1 T
I,II
12 +T II

1 T
II
2 T

I,II
11 + 1

2!
T II2

1 T I,II
11 + 1

2!
T II2

1 T I,II
12 + 1

3!
T II3

1 T I,II
11 +T II

2 T
I,II
11 +T II

2 T
I,II
12 ]+

[(−T I,II
12 )]H̃ II

N [1+T II
1 + 1

2!
T II2

1 +T II
2 ]+[(−T I,II

11 )]H̃ II
N [1+T II

1 +T II
1 T

II
2 + 1

2!
T II2

1 + 1
3!
T II3

1 +T II
2 ]

+ [(−T II
2 )]H̃ II

N [T I,II
11 +T I,II

12 +T I
1 +T I

1T
II
1 +T I

1
1
2!
T II2

1 +T I
1T

II
2 +T II

1 T
I,II
11 ] + [(−T II

1 )]H̃ II
N [T I,II

11

+ T I,II
12 + T I

1 + T I
1T

II
1 + T I

1T
II
1 T

II
2 + T I

1
1
2!
T II2

1 + T I
1

1
3!
T II3

1 + T I
1T

II
2 + T II

1 T
I,II
11 + T II

1 T
I,II
12 +

1
2!
T II2

1 T I,II
11 + T II

2 T
I,II
11 ] + [(−T I,II

11 )(−T II
1 )]H̃ II

N [1 + T II
1 + 1

2!
T II2

1 + T II
2 ] + [ 1

2!
T II2

1 ]H̃ II
N [T I,II

11 +

T I,II
12 +T I

1 +T I
1T

II
1 +T I

1
1
2!
T II2

1 +T I
1T

II
2 +T II

1 T
I,II
11 ] + [(−T I

1)]H̃ II
N [1 +T II

1 +T II
1 T

II
2 + 1

2!
T II2

1 +

1
2!
T II2

1 T II
2 + 1

3!
T II3

1 + 1
4!
T II4

1 + T II
2 + 1

2!
T II2

2 ] + [(−T I
1)(−T II

2 )]H̃ II
N [1 + T II

1 + 1
2!
T II2

1 + T II
2 ] +

[(−T I
1)(−T II

1 )]H̃ II
N [1 + T II

1 + T II
1 T

II
2 + 1

2!
T II2

1 + 1
3!
T II3

1 + T II
2 ] + [(−T I

1) 1
2!
T II2

1 ]H̃ II
N [1 + T II

1 +

1
2!
T II2

1 +T II
2 ] + H̃ I

N[T I,II
11 T

I,II
21 +T I,II

12 +T I
1T

I,II
12 +T I

1T
II
1 T

I,II
11 +T I

1T
II
1 T

I,II
21 +T I

1
1
2!
T II2

1 +T I
1T

I,II
22

+ T I
1T

I
2

1
2!
T II2

1 + T I
1T

I
2T

II
2 + T I

1T
II
2 + 1

2!
T I2

1 T
I,II
12 + 1

2!
T I2

1 T
II
1 T

I,II
11 + 1

2!
T I2

1
1
2!
T II2

1 + 1
2!
T I2

1 T
II
2 +

1
3!
T I3

1
1
2!
T II2

1 + 1
3!
T I3

1 T
II
2 +T II

1 T
I,II
11 +T II

1 T
I,II
21 + 1

2!
T II2

1 +T I,II
22 +T I

2T
I,II
12 +T I

2T
II
1 T

I,II
11 +T I

2
1
2!
T II2

1

+T I
2T

II
2 +T II

2 ] + [(−T I,II
12 )]H̃ I

N[1 +T I
1 + 1

2!
T I2

1 +T I
2] + [(−T I,II

11 )]H̃ I
N[T I,II

11 +T I
1T

I,II
11 +T I

1T
II
1

+ 1
2!
T I2

1 T
II
1 + T II

1 + T I,II
21 + T I

2T
II
1 ] + [(−T II

2 )]H̃ I
N[1 + T I

1 + T I
1T

I
2 + 1

2!
T I2

1 + 1
3!
T I3

1 + T I
2] +

[(−T II
1 )]H̃ I

N[T I,II
11 +T I

1T
I,II
11 +T I

1T
II
1 +T I

1T
I,II
21 +T I

1T
I
2T

II
1 + 1

2!
T I2

1 T
I,II
11 + 1

2!
T I2

1 T
II
1 + 1

3!
T I3

1 T
II
1

+T II
1 +T I,II

21 +T I
2T

I,II
11 +T I

2T
II
1 ] + [(−T I,II

11 )(−T II
1 )]H̃ I

N[1 +T I
1 + 1

2!
T I2

1 +T I
2] + [ 1

2!
T II2

1 ]H̃ I
N[1

+ T I
1 + T I

1T
I
2 + 1

2!
T I2

1 + 1
3!
T I3

1 + T I
2] + [(−T I

1)]H̃ I
N[T I,II

12 + T I
1T

I,II
12 + T I

1T
II
1 T

I,II
11 + T I

1
1
2!
T II2

1 +

T I
1T

II
2 + 1

2!
T I2

1
1
2!
T II2

1 + 1
2!
T I2

1 T
II
2 + T II

1 T
I,II
11 + T II

1 T
I,II
21 + 1

2!
T II2

1 + T I,II
22 + T I

2
1
2!
T II2

1 + T I
2T

II
2 +

T II
2 ] + [(−T I

1)(−T II
2 )]H̃ I

N[1 + T I
1 + 1

2!
T I2

1 + T I
2] + [(−T I

1)(−T II
1 )]H̃ I

N[T I,II
11 + T I

1T
I,II
11 + T I

1T
II
1

+ 1
2!
T I2

1 T
II
1 + T II

1 + T I,II
21 + T I

2T
II
1 ] + [(−T I

1) 1
2!
T II2

1 ]H̃ I
N[1 + T I

1 + 1
2!
T I2

1 + T I
2]|0I0II〉 = 0
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Type I, II double, single amplitude (〈DISII|e−THNe
T |0I0II〉 = 0)

〈DISII|V I,II
N [T I,II

11 +T I,II
11 T

I,II
21 +T I,II

12 +T I
1 +T I

1T
I,II
11 +T I

1T
I,II
12 +T I

1T
II
1 +T I

1T
II
1 T

I,II
11 +T I

1T
II
1 T

I,II
21

+ T I
1

1
2!
T II2

1 + T I
1T

I,II
21 + T I

1T
I,II
22 + T I

1T
I
2 + T I

1T
I
2T

II
1 + T I

1T
I
2

1
2!
T II2

1 + T I
1T

I
2T

II
2 + T I

1T
II
2 + 1

2!
T I2

1

+ 1
2!
T I2

1 T
I,II
11 + 1

2!
T I2

1 T
I,II
12 + 1

2!
T I2

1 T
II
1 + 1

2!
T I2

1 T
II
1 T

I,II
11 + 1

2!
T I2

1
1
2!
T II2

1 + 1
2!
T I2

1 T
II
2 + 1

3!
T I3

1 +

1
3!
T I3

1 T
II
1 + 1

3!
T I3

1
1
2!
T II2

1 + 1
3!
T I3

1 T
II
2 + T II

1 T
I,II
11 + T II

1 T
I,II
21 + T I,II

21 + T I,II
22 + T I

2 + T I
2T

I,II
11 +

T I
2T

I,II
12 + T I

2T
II
1 + T I

2T
II
1 T

I,II
11 + T I

2
1
2!
T II2

1 + T I
2T

II
2 ] + [(−T I,II

21 )]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
II
1

+ T II
1 ] + [(−T I,II

11 )]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
I,II
11 + T I

1T
II
1 + 1

2!
T I2

1 + 1
2!
T I2

1 T
II
1 + T II

1 + T I,II
21

+ T I
2 + T I

2T
II
1 ] + [(−T II

1 )]V I,II
N [T I,II

11 + T I
1 + T I

1T
I,II
11 + T I

1T
II
1 + T I

1T
I,II
21 + T I

1T
I
2 + T I

1T
I
2T

II
1 +

1
2!
T I2

1 + 1
2!
T I2

1 T
I,II
11 + 1

2!
T I2

1 T
II
1 + 1

3!
T I3

1 + 1
3!
T I3

1 T
II
1 + T I,II

21 + T I
2 + T I

2T
I,II
11 + T I

2T
II
1 ] + [(−T I

2)]

V I,II
N [1 + T I,II

11 + T I,II
12 + T I

1 + T I
1T

II
1 + T I

1
1
2!
T II2

1 + T I
1T

II
2 + T II

1 + T II
1 T

I,II
11 + 1

2!
T II2

1 + T II
2 ] +

[(−T II
1 )(−T I

2)]V I,II
N [1 + T I,II

11 + T I
1 + T I

1T
II
1 + T II

1 ] + [(−T I
1)]V I,II

N [1 + T I,II
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4.3 Implementation details

The implementation of the t amplitude equations was performed sequentially by first

performing the contraction over one particle type followed by contraction over the

other particle type. For a general t amplitude equation, this procedure is shown by

the following equation

〈KIKII|e−THNe
T |0I0II〉c = 〈KII|〈KI|e−T H̃I

Ne
T |0I〉c|0II〉c (4.61)

+ 〈KI|〈KII|e−T H̃II
N e

T |0II〉c|0I〉c

+ 〈KI|〈KII|e−TVNe
T |0II〉c|0I〉c.

Contraction over indices of one particle type resulted in a set of single component

operators. These operators (labeled as AI, AII, and B) are analogous to the effective

operators in electronic structure CC theory (pg. 328 of Ref. [60]) and are defined in
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Eqs. Equation 4.62-Equation 4.64

〈KII|e−T H̃ II
Ne

T |0II〉c = AI
0 (4.62)

+
∑
ia

AI
ia{a†i}

+
∑
ijab

AI
ijab{a†b†ji}

+ . . . (n-body terms).

In general, the number of operators in the above expression is infinite because of

the presence of the exponential operators. However, because the operator expression

was projected onto a space that contains only at most doubly excited spaces 〈D|, all

three-body and higher operators had zero contribution to the t amplitude equations.

Analogous to the type I particles, the operators for the type II particles are defined

as

〈KI|e−T H̃ I
Ne

T |0I〉c = AII
0 (4.63)

+
∑
i′a′

AII
i′a′{a′†i′}

+
∑
i′j′a′b′

AII
i′j′a′b′{a′†b′†j′i′}

+ . . . (n-body terms)

The contraction over the V I,II
N operators is defined as

〈KII|e−TV I,II
N eT |0II〉c =

∑
pq

BI
pq{p†q}

+
∑
pqia

BI
pqia{p†a†iq}

+ . . . (n-body terms)
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The main advantage of defining the single component effective operators AI, AII, and

B is that the form of the operators are similar (but not identical) to the electronic

structure CCSD equations. As a consequence, the evaluation and implementation of

these operators benefited from the development of computer-assisted source code gen-

eration of electronic structure CC methods.[139, 140, 141, 142] In this work we devel-

oped a program to perform algebraic manipulation of the strings of second-quantized

(SQ) operators. This program was largely inspired by the tensor contraction engine

(TCE) [140, 143, 144, 145, 146, 147, 148, 149, 150] which has been used extensively for

implementation of electronic structure CC methods. A subset of techniques used in

the TCE method [151] was used for source-code generation and implementation of the

t amplitude equations. The program uses the well-known results of the Wick’s expan-

sion theorem, in which only fully contracted terms have non-zero contribution for a

vacuum expectation value of the a string of SQ operators (Figure 4.1).[60] In the first

Figure 4.1: Wick’s theorem

step, for a given string of SQ operators, the program generated a list of all valid fully-

contracted terms. In the second step, reduction operations were performed to reduce

the number of terms. The final step involved generation of the mcCC source code.

The reduction operation is the key step for increasing the efficiency of the implemen-

tation. The SQ program performed index permutation operations and consolidated

equivalent expressions to minimize the number of terms in the fully contracted list.

In addition to performing index manipulations, the SQ program performed addi-

tional reduction operations by using the numerical value of the molecular integrals

(hpq and hpqrs). This was performed by eliminating all numerically zero terms from

the set of molecular integrals and mapping the non-unique terms to a set of unique

terms. This mapping of terms is illustrated in Figure 4.2, where set A is the set
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of original integrals and set B is a subset of set A containing only unique, non-zero

terms. In the reduction step, terms with hpq = 0 and hpqrs = 0 were eliminated at a

Figure 4.2: Many-to-one mapping of the molecular integrals. Set A contains the list
of input integrals. Set B is a subset of A that contains the list of non-zero unique
integrals. The terms hp2q2r2s2 and hp3q3r3s3 are assumed to have identical numerical
values and are mapped to a single term in set B. The term hp4q4r4s4 is assumed to be
zero and is not included in set B.

very early stage of the calculation. The reduction process also performed additional

consolidation for expressions with identical numerical values (for example h̃t2u2v2w2 in

Figure 4.2).

There are both advantages and disadvantages of using information from the molec-

ular integrals for the reduction step. The main limitation is that the source code

generation becomes system dependent and therefore the CC source code needs to be

generated for each unique system. However, the advantage of a system dependent

source code is that the generated code is highly optimized for the specific system

under investigation and uses the intrinsic symmetries associated with the given sys-

tem. The mapping of the integrals to the set of unique non-zero terms also helps in

reducing the memory footprint.

The present version of the SQ program is still in the first iteration of its devel-

opment cycle and is neither as general nor as efficient as the TCE. In future work
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we envision interfacing the SQ program with the open-source version of the TCE for

extending the implementation of mcCC theory.

4.4 Computational details

4.5 Results

The mcCC method was applied to a series of model systems to validate the theory

and implementation. These systems are described in greater detail in the following

subsections and their key properties are listed in Table 4.1. Calculations were done

on these systems using three different ansatz for the T operators as shown in the

following equation

|ΨmcCCSD−SD〉 = eT
I
1+T I

2+T II
1 +T II

2 +T I,II
11 +T I,II

12 +T I,II
21 +T I,II

22 |0I0II〉 (4.64)

|ΨmcCCSD−S〉 = eT
I
1+T I

2+T II
1 +T II

2 +T I,II
11 |0I0II〉 (4.65)

|ΨmcCCSD〉 = eT
I
1+T I

2+T II
1 +T II

2 |0I0II〉. (4.66)

The suffix ”-S” and ”-SD” in the above expression are used to denote inclusion of

connect I-II singles, and connect I-II singles and doubles operators, respectively. The

three mcCC wave functions represent three different levels of approximations for

treating correlation between type I and type II particles. We have compared the

quality of these approximations with full configuration interaction calculations and

results from these calculations are presented below.

4.5.1 Model-A single component Hooke’s atom

The Hooke’s atom is one of the few two-electron systems which can be solved exactly,

making it an obvious choice for benchmarking the mcCC method. We label this
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Table 4.1: Important properties for systems studied.

Hooke’s Hooke’s Excitonic Biexcitonic
Property Model A Model B PsH system system
Number of type I particles 2 1 2 1 2
Charge of type I particles -1 -1 -1 -1 -1
Mass of type I particles 1 1 1 1 1
Sz for type I subsystem 0 +1

2
0 +1

2
0

Number of type II particles 0 1 1 1 2
Charge of type II particles - -1 +1 +1 +1
Mass of type II particles - 1 1 1 1
Sz for type II subsystem - −1

2
+1

2
−1

2
0

Total spin(S) 0 0 1
2

0 0
Dielectric constant 1 1 1 1 1

system as ”Model-A” and the Hamiltonian for this Hooke’s atom is given by the

following equation.

HModel−A
Hooke =

2∑
i=1

[−h̄2

2mI
∇2
i +

1

2
kI(rI

i)
2

]
+

1

rI,I
12

(4.67)

Notice that this Hamiltonian only includes type I particles - we do not include any type

II particles and thus any type I-II coupling is absent. This calculation was done to

ensure that the automated generation and solution of the single component CC ansatz

(|ΨCC〉 = eT1+T2|0〉) would be correct. We have performed mcCC calculations on this

Hamiltonian using [4s4p4d] GTO basis functions to allow for direct comparison to

previous work.[152, 153, 154] The details of the GTO basis can be found in Table 4.9

located in section 4.A and the results from the calculations are presented in Table 4.2.

The mcCC energy was found to be in very good agreement with the analytical ground

state energy and was found to be higher than the analytical result by 0.76 mHartree.

This result successfully demonstrates the single-component limit of the mcCC wave

function.
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Table 4.2: Total energy of Model-A Hooke’s atom in Hartrees.

Method Total Energy Ref.
Analytical 2.00000 [152, 153, 154]
mcHF 2.03844 This work
mcCC 2.00076 This work
mcFCI 2.00076 This work
FCI 2.00076 [152]

4.5.2 Model-B multicomponent Hooke’s atom

The Model-B Hooke’s atom is a hypothetical system that consist of treating two

electrons in the Hooke’s atom as distinguishable particles. Specifically, the electron

with alpha spin is labeled as type I particle, and electron with beta is labeled as type

II particle. Using this labeling, the multicomponent Hamiltonian for this system is

defined as

HModel−B
Hooke =

[−h̄2

2mI
∇2 +

1

2
kI(rI)2

]
(4.68)

+

[−h̄2

2mII
∇2 +

1

2
kII(rII)2

]
+

1

rI,II
12

Because there is only one type I and one type II particle is present in the system, only

the T11 term contributes to the correlation energy. Note that the mcCC calculation

done for this system will only include T I
1, T II

1 and T I,II
11 operators in the ansatz due

to only a single type I and single type II particle in the system. This Hamiltonian

was used to perform mcCC calculations and the results are summarized in Table 4.3.

The results from the mcCC calculations were found to be in very good agreement

with previously published FCI results. The results from both Model-A and Model-

B Hooke’s system demonstrates accurate implementation of the (T I
1 + T I

2) and T I,II
11

components of the mcCC ansatz.
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Table 4.3: Total energy of the Model-B Hooke’s atom in Hartrees.

Method Total Energy Ref.
Analytical 2.00000 [152, 153, 154]
mcHF 2.03844 This work
mcCC 2.00076 This work
mcFCI 2.00076 This work
FCI 2.00076 [152]

Table 4.4: Total energy of positronium hydride (PsH) given in Hartrees.

Method Ground state energy (Hartree) Ref.
ENEO−HF −0.666872 [155, 156]
EmcHF −0.666872 This work
EmcCCSD−S −0.754000 This work
EmcCCSD−SD −0.758956 This work
ENEO−FCI −0.758965 [155, 156]

4.5.3 Positronium hydride system

The positronium hydride (PsH) molecule is a multicomponent system which can be

viewed as a positron (e+) bound to the H− anion. The PsH system is a proto-

type for studying electron-positron correlation and has been studies using various

theoretical methods including perturbation theory,[155] full configuration interaction

(FCI),[155, 156] explicitly correlated methods.[157] In this work, we have performed

mcCC calculation on the PsH system, where the two electrons were treated as type

I particles, the single positron was treated at type II particle, and the the proton

was BO separation from the electron-positron subsystem. The mcCC calculations

were performed using a set of [6s3p1d] GTO basis functions (shown in Table 4.10 in

section 4.A) which was used earlier for FCI calculations[155, 156] and comparison of

results between the two methods are presented in Table 4.4. The use of identical set of

basis functions ensured a consistent comparison between the mcCC and FCI calcula-

tions. Comparison between mcCCSD-SD and FCI energies show very good agreement

between the the two methods demonstrating the effectiveness of mcCCSD-SD method
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for treatment many-particle correlation. We note that the results are invariant to the

definition of type I and type II particles and labeling the hole as type I and electrons as

type II generate identical results. These results demonstrate accurate implementation

of the (T I,II
21 + T I,II

12 ) components of the mcCC ansatz.

4.5.4 Excitonic systems

The mcCC method was also used for computation of exciton binding energies. The

external potential was approximated using the 3D parabolic potential defined below

vαext =
1

2
kα|rα|2 α = I, II. (4.69)

A parabolic potential was chosen because they have been used extensively [158, 159,

160, 161, 162, 163, 164, 165, 166, 167, 37, 35, 36] to represent the confinement po-

tential experienced by excitons in nanoparticles. The values of the force constant

parameter, k, were selected such that the confining potential spanned from weakly

confining region (k = 1.0× 10−4 a.u.) to strongly confining region (k = 5.0 a.u.) The

details of the excitonic systems are summarized in Table 4.1. The overall spin for the

exciton was set at Sexciton = 0 and electron-hole pair in the exciton was assumed to

have opposite spins. A set of [spd] GTO functions were used for electron and hole

basis functions and the values for the exponents for each value of k is provided in

section 4.A.

For all the excitonic and biexcitonic systems, the masses for the electron and

holes were selected to be identical to each other. Although this choice of having

identical electron and hole mases is not representative of realistic chemical systems,

however this selection was made to impose stringent condition for testing the mcCC

implementation. Specifically, one of the cornerstones of the BO approximation is the

use of mass ratio (labeled κ = (me/mN)1/4) by Born and Oppenheimer to perform
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pertubative expansion of the multicomponent wave function. [1, 168] By setting the

electron and hole masses to be identical, we simulate the worst case scenario limit

where the BO-approximation is not valid. In the same spirit, we also set the dielectric

constant to one, which is a more stringent condition that found in chemical systems

where the dielectric constant is greater than 1 because of dielectric screening.

In addition to mcCC calculations, we also performed multicomponent full con-

figuration interaction (mcFCI) calculations on the eight excitonic systems in order

to verify validity of the mcCC method. The mcFCI energy was obtained from the

solution of the following equations

ΨmcFCI =

N I
FCI∑
i

N II
FCI∑
i′

cii′Φ
I
iΦ

II
i′ (4.70)

EmcFCI = min
c
〈ΨmcFCI|H|ΨmcFCI〉 (4.71)

and the mcFCI correlation energy (∆EmcFCI = EmcFCI − EmcHF) was compared with

the mcCC results. As shown in Table 4.5, the mcCC energies were found to be in

excellent agreement with the mcFCI results. For the excitonic system, both mcCCSD

Table 4.5: Total exciton energy calculated from mcHF and correlation
energy from mcCCSD, mcCCSD-SD, and mcFCI methods reported in
Hartrees as function of k.

k(a.u.) EmcHF ∆EmcCCSD ∆EmcCCSD−SD ∆EmcFCI

0.0001 -0.06611 0.00000 -0.01008 -0.01008
0.0010 -0.06844 0.00000 -0.01526 -0.01526
0.0100 0.02282 0.00000 -0.02101 -0.02101
0.1000 0.47374 0.00000 -0.02554 -0.02554
0.2500 0.90931 0.00000 -0.02686 -0.02686
0.5000 1.42379 0.00000 -0.02763 -0.02763
1.0000 2.17547 0.00000 -0.02828 -0.02828
5.0000 5.48836 0.00000 -0.02942 -0.02942

and mcCCSD-S form of the CC wave functions are equivalent to the mcHF and
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mcCCSD-SD wave functions, respectively and are not shown in Table 4.5 to avoid

repetition.

The results for the exciton binding energies are presented in Table 4.6. Exci-

ton binding energy (EEBE) is defined as the difference in energies between the non-

interacting and interaction electron-hole pair and is given by the following expression

EEBE = 〈Ψ0|H|Ψ0〉 − 〈Ψeh|Heh|Ψeh〉 (4.72)

Heh = H0 + Veh (4.73)

where Ψeh and Ψ0 are wave functions that minimizes the energy of the interacting

(Heh) and non-interacting (H0) systems, respectively. The exciton binding energies

calculated using the mcCC method were found to be in very good agreement with

the mcFCI results. The exciton binding energy was found to increase with increasing

Table 4.6: Exciton binding energy calculated using mcHF, mcCCSD,
mcCCSD-SD, and mcFCI methods reported in eV as function of k.

k(a.u.) mcHF mcCCSD mcCCSD-SD mcFCI
0.0001 2.615 2.615 2.889 2.889
0.0010 4.444 4.444 4.859 4.859
0.0100 7.542 7.542 8.114 8.114
0.1000 12.924 12.924 13.619 13.619
0.2500 16.073 16.073 16.804 16.804
0.5000 18.981 18.981 19.733 19.733
1.0000 22.437 22.437 23.206 23.206
5.0000 33.194 33.194 33.994 33.994

strength of the confinement potential and its dependence on the force constant of the

external potential is shown in Figure 5.5.

4.5.5 Biexcitonic system

Biexcitons are bound two-electron, two-hole quasiparticles that are formed from two

weakly interacting excitons. Using the mcCC method, we calculated total correlation
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Figure 4.3: Dependence of exciton binding energy calculated using mcCCSD,
mcCCSD-SD, and mcFCI on the strength of the confinement potential.

energy and biexciton binding energy for a set of eight model systems. Total correlation

energy of the biexciton systems was calculated by subtracting the vacuum energy from

total energy,

∆EmcCC = EmcCC − Eref (4.74)

and biexciton binding energy EBBE was defined as the difference between the energies

of the free excitons (EX) and the total biexciton energy EX2 .[39, 93]

EBBE = EX2 − 2EX (4.75)

The biexciton binding energy calculations were performed in three steps. In the first

step, mcCC calculation on the fully interacting biexciton (2e,2h) was performed and

the total biexcitonic energy was obtained. In the second step, mcCC calculation

on the fully interacting exciton (1e,1h) was performed and the total exciton energy

was obtained. In the final step, the biexciton binding energy was calculation using

Eq.(4.75). The details of the biexcitonic systems are summarized in Table 4.1. Each

of the eight biexcitonic systems consisted of electron-hole pairs with unit charges and
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masses (mI = mII = 1a.u.). The dielectric function in Eq. (7.33) was assumed to

be constant and was set to ε = 1. The overall spin for the biexciton was set at

Sbiexciton = 0 and both electrons and holes separately were assumed to be spin-paired.

The correlation energies calculated using mcCCSD, mcCCSD-SD and mcFCI for

the excitonic and biexcitonic systems are presented in Table 4.7. The comparison

between mcCCSD-SD and mcFCI results shows very good agreement between the

two methods for all values of k. The maximum difference between mcCCSD-SD and

mcFCI correlation energy was found to be in the order of 10−5Hartrees. In con-

trast, the mcCCSD calculations were found to underestimate the correlation energy

and recovered only 19 − 34% of the mcFCI correlation energy for all values of the

confinement potential. In contrast, the mcCCSD-S calculations were able to recover

85− 99% of the mcFCI correlation energy. These results highlight the importance of

including connected excitation operator in the mcCC wave function. The results also

show that connected operators are important in both weak and strong confinement

regions. The exciton and biexciton binding energies calculated using the methods

Table 4.7: Total biexciton energy calculated from mcHF and correlation
energy from mcCCSD, mcCCSD-S, mcCCSD-SD, and mcFCI methods
reported in Hartrees as function of k.

k(a.u.) EmcHF ∆EmcCCSD ∆EmcCCSD−S ∆EmcCCSD−SD ∆EmcFCI

0.0001 -0.13221 -0.00501 -0.02291 -0.02666 -0.02666
0.0010 -0.13688 -0.01025 -0.03997 -0.04466 -0.04466
0.0100 0.04564 -0.01965 -0.06562 -0.07044 -0.07044
0.1000 0.94748 -0.03166 -0.09640 -0.10021 -0.10021
0.2500 1.81862 -0.03633 -0.10874 -0.11197 -0.11197
0.5000 2.84759 -0.03956 -0.11753 -0.12028 -0.12028
1.0000 4.35094 -0.04253 -0.12582 -0.12813 -0.12813
5.0000 10.97673 -0.04843 -0.14296 -0.14436 -0.14436

described above are presented in Table 4.8. The mcCCSD-SD binding energies were

found to be in very good agreement with the mcFCI results. The mcCCSD results

deviated from the mcFCI results and recovered 57 − 77% of the mcFCI binding en-
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ergies. The mcCCSD-S calculations were found to recover 42 − 98% of the mcFCI

binding energies. The results from Table 4.7 and Table 4.8 also show the role of

cancellation of errors in biexciton binding energy calculations. For example, the cor-

relation energy data from Table 4.7 clearly show the advantage of the mcCCSD-S over

the mcCCSD method. However, in biexciton binding energy calculations (Table 4.8)

for some systems, the mcCCSD method outperformed the mcCCSD-S method due

to coincidental favorable cancellation of errors. These results underscore the pitfall

of using only biexciton binding energy data to assess quality of theoretical methods.

The results in Table 4.8 also highlight the importance of particle-particle correlation

Table 4.8: Biexciton binding energy calculated using mcHF, mcCCSD,
mcCCSD-S, mcCCSD-SD, and mcFCI methods reported in meV as func-
tion of k.

k(a.u.) mcHF mcCCSD mcCCSD-S mcCCSD-SD mcFCI
0.0001 0 136 75 177 177
0.0010 0 279 257 385 385
0.0100 0 535 642 773 773
0.1000 0 861 1233 1337 1337
0.2500 0 989 1497 1585 1585
0.5000 0 1076 1694 1769 1769
1.0000 0 1157 1885 1948 1948
5.0000 0 1318 2289 2327 2327

in calculations of biexciton binding energy. Specifically, comparison of the mcHF and

mcCCSD-SD results shows that the Hartree-Fock approximation is qualitatively inad-

equate capturing biexcitonic interactions. Comparing with mcCCSD results, we find

that inclusion of e-e and h-h correlation can significantly improve the Hartree-Fock

results. However, the quality of the improvement is a function of confinement poten-

tial. The dependence of the biexciton binding energy on the strength of the potential

is shown in Figure 5.6. As expected, we find that the biexciton is bound strongly

in high confinement regions. This trend is consistent with the quantum confinement

effect observed in optical properties of semiconductor nanoparticles. Figure 5.6 also
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Figure 4.4: Dependence of biexciton binding energy calculated using mcCCSD,
mcCCSD-S, mcCCSD-SD, and mcFCI on the strength of the confinement potential.

shows that the mcCCSD-S method outperforms the mcCCSD method in the high

confinement region and is a computationally cost effective alternative to the much

more expensive mcCCSD-SD method.

The mcCCSD-S calculations ran over ten times faster than the mcCCSD-SD cal-

culations. Amplitude equations were set to converge to 1× 10−8 which took roughly

48 hour fore the mcCCSD-SD calculations and about 4 hours for the mcCCSD-S

calculations. Each calculation was done on TACC Stampede and used a single node

(two Intel Xeon E5-2680 2.7GHz processors) running 16 threads.

4.6 Conclusion

In this work, we present the theoretical development and implementation details of

the multicomponent coupled-cluster theory. This method was developed to investi-

gate particle-particle correlation in many-particle multicomponent systems such as

electron-proton, electron-positron, and electron-hole systems. Specifically, the con-

struction of the multicomponent vacuum state, form of the cluster operator, and the

expressions for the cluster amplitudes were discussed. The coupled-cluster equations
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were implemented using a computer-assisted source code generation strategy em-

ploying an integral-driven approach. The developed method was used to investigate

electron-hole quasiparticle interactions in biexcitonic systems by calculating total cor-

relation energy and biexciton binding energies. These quantities were found to be in

very good agreement with full configuration interaction results. Based on these calcu-

lations we conclude that (1) the mean-field approximation severely underestimates the

biexciton binding energies and is not a suitable approximation for treating biexcitonic

systems and (2) the inclusion of connected excitation operators in the multicompo-

nent coupled-cluster wave function is crucial for accurate calculation of electron-hole

correlation energy. The method presented here provides a foundation for extend-

ing multicomponent coupled-cluster theory and future work will explore perturbative

approaches to connected excitation and linearized version of this method.

4.A Calculation parameters

Table 4.9: Values of the exponents for the [4s4p4d] GTO basis functions (in
atomic units) for the Hooke’s atom calculations.[152]

α
1s 0.231598
2s 0.407633
3s 0.717471
4s 1.262815

1p 0.234844
2p 0.389490
3p 0.645973
4p 1.071350

1d 0.234204
2d 0.400061
3d 0.683376
4d 1.167326
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Table 4.10: Values of the exponents for the [6s3p1d] GTO basis functions
(in atomic units) for the positronium hydride (PsH) system.[156]

αe− αe+

1s 66.011 8.9346
2s 10.002 1.5904
3s 2.3585 0.51619
4s 0.73659 0.11092
5s 0.26847 0.052472
6s 0.049378 0.024562

1p 0.67771 0.47831
2p 0.19922 0.18726
3p 0.075304 0.069729

1d 0.17232 0.15439

Table 4.11: Values of the exponents for the [spd] GTO basis functions (in
atomic units) used for calculating exciton and biexciton binding energies.

k(a.u.) α
0.0001 5.00×10−3

0.0010 1.58×10−2

0.0100 5.00×10−2

0.1000 1.58×10−1

0.2500 2.50×10−1

0.5000 3.54×10−1

1.0000 5.00×10−1

5.0000 1.12
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Chapter 5

Investigating biexcitons in

seminconductor quantum dots

In this chapter, a study carried out with the multicomponent coupled-cluster method

is presented. Previous calculations using the mcCC method were done on benchmark

systems that all had known results. This work investigated how quantum dot material

and size affects exciton, and more importantly biexciton binding energy. This scaling

behavior has been heavily studied for excitons, though little work has been done for

biexcitons.

5.1 Introduction

The electron-hole quasiparticle representation provides an intuitive description of elec-

tronic excitations in semiconductor nanoparticles. The generation of bound electron-

hole pairs, also called excitons, is a central concept for investigating optical properties

of quantum dots (QDs) and has been subject of intense research for a wide variety of

applications in the fields of light-harvesting devices, [169, 170, 171, 172] light emitting

devices, [173, 174, 175, 176] and biological imaging. [177, 178, 179, 180, 181, 182, 183,

184]
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In addition to excitonic states, semiconductor materials have also been shown

to exhibit multiexcitonic states, such as biexcitons, trions, and electron-hole liquid

and droplets. The generation and dissociation of multiexcitons also have been the

focus of intense research because of their application in light-harvesting systems.

[171, 185, 186, 187, 188, 189, 190, 191] Multiexcitonic systems, such as biexcitons and

electron-hole liquid and droplets, are characterized as bound states that consist of

at least two quasiparticles. These systems are intrinsically different than a collection

of non-interacting excitons because their photophysical properties depend strongly

on the strength of the exciton-exciton interaction. In the case of a biexciton, the

strength of this interaction is known as the biexciton binding energy, which is defined

as the energy needed to dissociate a biexciton into a pair of non-interacting excitons

(EBB = 2EX − EXX). Typically, the exciton-exciton interaction is much weaker than

an electron-hole interaction and consequently, biexciton binding energies are generally

an order of magnitude lower than the exciton binding energies. Like excitons, the

optical and electronic properties of biexcitons are also influenced by the quantum

confinement effect. The biexcitonic interactions in QDs are influenced by the size

and composition of the QD. In this work, we present a systematic investigation of the

effect of QD size and composition on electron-hole interactions in biexcitonic systems.

The binding energy can be separated into contributions from mean-field (Hartree-

Fock) and electron-hole correlation. It is well-known from earlier studies[39, 192]

that, unlike exciton binding energies, biexciton binding energies are dominated by

the electron-hole correlation contribution. Because of this, it is imperative to have

a highly accurate quantum chemical method for treating electron-hole correlation

in biexcitonic systems. The dominance of the electron-hole correlation contribution

also suggests that, when compared to excitonic systems, biexciton binding will be

impacted differently by changes in the confinement potential of the QDs.
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In this work, we present a systematic study of the effect of QD size on biexciton

binding energy. Specifically, the work answers three critical questions in the field

of biexcitonic systems: (1) what effect does QD dot size have on biexciton binding

energies, (2) how does material of the QD affect the biexciton binding energies, and

(3) how are the stabilities of biexcitons related to the stabilities of excitons. How-

ever, the theoretical investigation of biexciton binding is challenging for three reasons.

First, the biexciton binding energy is typically in the range of 1-50 meV and requires

high-precision quantum mechanical methods to calculate these quantities. Second,

as previously mentioned, earlier studies have demonstrated that the biexciton bind-

ing energy is dominated by electron-hole correlation energy. Consequently, accurate

descriptions of biexcitonic interaction demand accurate treatment of electron-hole

correlation. Third, an accurate biexciton binding energy calculation requires a size-

consistent treatment of electron-hole correlation. Using a size-consistent quantum

mechanical method like the electron-hole multicomponent coupled-cluster (eh-mcCC)

ansatz [192] will provide a balanced treatment of many-particle correlation (electron-

electron, hole-hole, and electron-hole) for both the biexcitonic and excitonic systems.

5.2 Theory

The excitons and biexcitons are described using the electron-hole (eh) quasiparticle

Hamiltonian, and the quasiparticle interactions are defined using screened-Coulomb

interaction. This well-known Hamiltonian has been used in earlier studies[193, 194,

195, 196, 197] on excitonic and multiexcitonic systems. The electron-hole Hamiltonian
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in second quantized notation is defined as

Heh =
∑
pq

〈p|he|q〉p†q +
∑
pqrs

〈pq|ve,e|rs〉p†q†sr (5.1)

+
∑
p′q′

〈p′|hh|q′〉p′†q′ +
∑
p′q′r′s′

〈p′q′|vh,h|r′s′〉p′†q′†s′r′

+
∑
pqp′q′

〈pp′|ve,h|qq′〉p†p′†qq′

where, the unprimed and primed operators represent electron and hole quasiparticles,

respectively. The material parameters for the Hamiltonian relevant for the systems

investigated in this work are provided in Supporting Information. The multicom-

ponent vacuum state, |0e0h〉, is obtained via multicomponent Hartree-Fock (mcHF)

using the following scheme,

〈0e0h|H|0e0h〉 = min
Φe

SDΦh
SD

〈Φe
SDΦh

SD|H|Φe
SDΦh

SD〉 (5.2)

and the normal-ordered Hamiltonian is written as,

HN = H − 〈0e0h|H|0e0h〉. (5.3)

The form of the mcCC wave function in this work is defined as

|Ψe,h
mcCC〉 = eT

e
1+T e

2+Th
1 +Th

2 +T e,h
11 |0e0h〉 (5.4)

= eT |0e0h〉. (5.5)

where the cluster operators, the T e
1 , T e

2 , T h
1 , and T h

2 are equivalent to single-component

coupled-cluster excitation operators (α being either e or h),

Tα1 =
N∑
i

M∑
a

tai {a†i} (5.6)
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Tα2 =
1

4

N∑
ij

M∑
ab

tabij {a†b†ji} (5.7)

The electronic T operators excite only in electronic space and hole T operators excite

only in hole space. The T e,h
11 operator, which is defined below, is a connected excitation

operator that simultaneously performs single excitations in electronic and hole spaces.

T e,h
11 =

N∑
i

M∑
a

N ′∑
i′

M ′∑
a′

taa
′

ii′ {a†i}{a′†i′} (5.8)

The summation limits to N and M are to occupied and virtual states, respec-

tively, and that hole indices are primed while electronic indices are not. The mcCC

Schrödinger equation,

HNe
T |0e0h〉 = ∆EmcCCe

T |0e0h〉 (5.9)

will yield the six mcCC equations we need to solve after performing the similarity

transformation and projecting into the appropriate states,

〈0e0h|e−THNe
T |0e0h〉c = ∆EmcCC (5.10)

〈Se0h|e−THNe
T |0e0h〉c = 0 (5.11)

〈De0h|e−THNe
T |0e0h〉c = 0 (5.12)

〈0eSh|e−THNe
T |0e0h〉c = 0 (5.13)

〈0eDh|e−THNe
T |0e0h〉c = 0 (5.14)

〈SeSh|e−THNe
T |0e0h〉c = 0. (5.15)
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Expanding the energy expression gives,

∆EmcCC = 〈0e0h|V e,h
N [1 + T e,h

11 + T e
1 + T e

1T
h
1 + T h

1 ]+

Hh
N[1 + T h

1 +
1

2!
T h2

1 + T h
2 ]+

He
N[1 + T e

1 +
1

2!
T e2

1 + T e
2 ]|0e0h〉. (5.16)

The resulting singles equations are of the following form,

〈Se0h|V e,h
N [1 + T e,h

11 + T e
1 + T e

1T
e,h
11 + T e

1T
h
1 +

1

2!
T e2

1 +
1

2!
T e2

1 T
h
1 + T h

1 + T e
2 + T e

2T
h
1 ]+

[(−T e
1 )]V e,h

N [1 + T e,h
11 + T e

1 + T e
1T

h
1 + T h

1 ]+

Hh
N[T e,h

11 + T e
1 + T e

1T
h
1 + T e

1

1

2!
T h2

1 + T e
1T

h
2 + T h

1 T
e,h
11 ]+

[(−T e
1 )]Hh

N[1 + T h
1 +

1

2!
T h2

1 + T h
2 ]+

He
N[1 + T e

1 + T e
1T

e
2 +

1

2!
T e2

1 +
1

3!
T e3

1 + T e
2 ]+

[(−T e
1 )]He

N[1 + T e
1 +

1

2!
T e2

1 + T e
2 ]|0e0h〉 = 0. (5.17)
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The expanded doubles equation is,

〈De0h|V e,h
N [T e,h

11 + T e
1 + T e

1T
e,h
11 + T e

1T
h
1 + T e

1T
e
2 + T e

1T
e
2T

h
1 +

1

2!
T e2

1 +
1

2!
T e2

1 T
e,h
11 +

1

2!
T e2

1 T
h
1 +

1

3!
T e3

1 +
1

3!
T e3

1 T
h
1 + T e

2 + T e
2T

e,h
11 + T e

2T
h
1 ]+

[(−T e
2 )]V e,h

N [1 + T e,h
11 + T e

1 + T e
1T

h
1 + T h

1 ]+

[(−T e
1 )]V e,h

N [1 + T e,h
11 + T e

1 + T e
1T

e,h
11 + T e

1T
h
1 +

1

2!
T e2

1 +
1

2!
T e2

1 T
h
1 + T h

1 + T e
2 + T e

2T
h
1 ]+

[
1

2!
T e2

1 ]V e,h
N [1 + T e,h

11 + T e
1 + T e

1T
h
1 + T h

1 ]+

Hh
N[T e

1T
e,h
11 + T e

1T
h
1 T

e,h
11 +

1

2!
T e2

1 +
1

2!
T e2

1 T
h
1 +

1

2!
T e2

1

1

2!
T h2

1 +
1

2!
T e2

1 T
h
2 +

T e
2 + T e

2T
h
1 + T e

2

1

2!
T h2

1 + T e
2T

h
2 ]+

[(−T e
2 )]Hh

N[1 + T h
1 +

1

2!
T h2

1 + T h
2 ]+

[(−T e
1 )]Hh

N[T e,h
11 + T e

1 + T e
1T

h
1 + T e

1

1

2!
T h2

1 + T e
1T

h
2 + T h

1 T
e,h
11 ]+

[
1

2!
T e2

1 ]Hh
N[1 + T h

1 +
1

2!
T h2

1 + T h
2 ]+

He
N[1 + T e

1 + T e
1T

e
2 +

1

2!
T e2

1 +
1

2!
T e2

1 T
e
2 +

1

3!
T e3

1 +
1

4!
T e4

1 + T e
2 +

1

2!
T e2

2 ]+

[(−T e
2 )]He

N[1 + T e
1 +

1

2!
T e2

1 + T e
2 ] + [(−T e

1 )]He
N[1 + T e

1 + T e
1T

e
2 +

1

2!
T e2

1 +
1

3!
T e3

1 + T e
2 ]+

[
1

2!
T e2

1 ]He
N[1 + T e

1 +
1

2!
T e2

1 + T e
2 ]|0e0h〉 = 0. (5.18)
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The complementary singles and doubles equation for the hole particles are not re-

peated here for conciseness. The singles-singles amplitude equation is

〈SeSh|V e,h
N [1 + T e,h

11 + T e
1 + T e

1T
e,h
11 + T e

1T
h
1 + T e

1T
h
1 T

e,h
11 + T e

1

1

2!
T h2

1 +

T e
1T

h
2 +

1

2!
T e2

1 +
1

2!
T e2

1 T
h
1 +

1

2!
T e2

1

1

2!
T h2

1 +
1

2!
T e2

1 T
h
2 + T h

1 + T h
1 T

e,h
11 +

1

2!
T h2

1 +

T e
2 + T e

2T
h
1 + T e

2

1

2!
T h2

1 + T e
2T

h
2 + T h

2 ]+

[(−T e,h
11 )]V e,h

N [1 + T e,h
11 + T e

1 + T e
1T

h
1 + T h

1 ]+

[(−T h
1 )]V e,h

N [1 + T e,h
11 + T e

1 + T e
1T

e,h
11 + T e

1T
h
1 +

1

2!
T e2

1 +
1

2!
T e2

1 T
h
1 + T h

1 + T e
2 + T e

2T
h
1 ]+

[(−T e
1 )]V e,h

N [1 + T e,h
11 + T e

1 + T e
1T

h
1 + T e

1

1

2!
T h2

1 + T e
1T

h
2 + T h

1 + T h
1 T

e,h
11 +

1

2!
T h2

1 + T h
2 ]+

[(−T e
1 )(−T h

1 )]V e,h
N [1 + T e,h

11 + T e
1 + T e

1T
h
1 + T h

1 ]+

Hh
N[T e,h

11 + T e
1 + T e

1T
h
1 + T e

1T
h
1 T

h
2 + T e

1

1

2!
T h2

1 + T e
1

1

3!
T h3

1 + T e
1T

h
2 +

T h
1 T

e,h
11 +

1

2!
T h2

1 T e,h
11 + T h

2 T
e,h
11 ]+

[(−T e,h
11 )]Hh

N[1 + T h
1 +

1

2!
T h2

1 + T h
2 ]+

[(−T h
1 )]Hh

N[T e,h
11 + +T e

1 + T e
1T

h
1 + T e

1

1

2!
T h2

1 + T e
1T

h
2 + T h

1 T
e,h
11 ]+

[(−T e
1 )]Hh

N[1 + T h
1 + T h

1 T
h
2 +

1

2!
T h2

1 +
1

3!
T h3

1 + T h
2 ]+

[(−T e
1 )(−T h

1 )]Hh
N[1 + T h

1 +
1

2!
T h2

1 + T h
2 ]+

He
N[T e,h

11 + T e
1T

e,h
11 + T e

1T
h
1 + T e

1T
e
2T

h
1 +

1

2!
T e2

1 T
e,h
11 +

1

2!
T e2

1 T
h
1 +

1

3!
T e3

1 T
h
1 +

T h
1 + T e

2T
e,h
11 + T e

2T
h
1 ]+

[(−T e,h
11 )]He

N[1 + T e
1 +

1

2!
T e2

1 + T e
2 ]+

[(−T h
1 )]He

N[1 + T e
1 + T e

1T
e
2 +

1

2!
T e2

1 +
1

3!
T e3

1 + T e
2 ]+

[(−T e
1 )]He

N[T e,h
11 + T e

1T
e,h
11 + T e

1T
h
1 +

1

2!
T e2

1 T
h
1 + T h

1 + T e
2T

h
1 ]+

[(−T e
1 )(−T h

1 )]He
N[1 + T e

1 +
1

2!
T e2

1 + T e
2 ]|0e0h〉 = 0 (5.19)



103

Figure 5.1: Hugenholtz skeleton diagrams for one-body operators. The square and
the dot symbols represent the Hamiltonian and the excitation operators, respectively.

The equations for the t-amplitudes can be conveniently derived using the diagram-

matic representation and in this work we have used the Hugenholtz diagrammatic

representation. The Hugenholtz skeleton diagrams representing connected terms for

the all one-body and two-body operators are presented in Figure 5.1 and Figure 5.2,

respectively. Computer implementation of the t-amplitude equations were achieved

using the computer-assisted source code generation procedure where the general-

ize Wick’s contraction of strings of second-quantized operators was performed using

symbolic algebraic manipulation.[148] After successful calculation of the correlation

energy, the exciton binding energies were calculated by subtracting the total exciton

energy (EX) from the non-interacting energy of the electron and hole (Ee and Eh)
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Figure 5.2: Hugenholtz skeleton diagrams for two-body operators. The square and
the dot symbols represent the Hamiltonian and the excitation operators, respectively.

respectively,

EEB = Ee + Eh − EX . (5.20)

Similarly, the biexciton binding energy was obtained by subtracting the total biexciton

energy from a pair of non-interacting excitons.

EBB = 2EX − EXX (5.21)
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5.3 Results

The effect of shape was investigated by performing calculations on QDs with diameters

in the range of 1-20 nm. The effect of material type was investigated by selecting four

semiconductor materials (CdSe, CdS, CdTe, and PbS). Exciton and biexciton binding

energies as well as an estimated crystal formula for the entire set of dots are presented

in Table 5.1. Of the material types investigated here, CdSe QDs have been studied

most extensively and is, therefore, an excellent system for comparison. In Figure 5.3,

we compare exciton binding energies obtained in this work using eh-mcCC to several

other studies.

Figure 5.3: Exciton binding energies (EEB) for CdSe QDs, calculated using eh-mcCC,
are compared with other studies by Inamdar et al.,[198] Franceschetti et al.,[43] Wang
et al.,[199] Querner et al.,[200] Jasieniak et al.,[201] Kucur et al.,[202] Muelenberg et
al.,[203] and Elward et al.[36].
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Figure 5.4: Biexciton binding energies (EBB) for CdSe QDs, calculated using eh-
mcCC, are compared to other studies by Sewall et al.,[204, 205] Acherman et al.,[206]
Bonati et al.,[207] and Dworak et al.[208].

We find that eh-mcCC agrees very well with previous theoretical and experimen-

tal studies. [203, 201, 36, 43, 199] The log-log plot in Figure 5.3 also shows that

the exciton binding energies in CdSe quantum dots scale as Dn. This well-known

scaling behavior has been reported in both experimental and theoretical investiga-

tions. [203, 201, 36, 43, 199] The scaling of biexciton binding energies with respect

to the diameter of CdSe QDs is presented in Figure 5.4. In general, we find that

the biexciton binding energies are much smaller in magnitude than the corresponding

exciton binding energies. The comparison with previously reported experimental re-

sults indicates that the biexciton binding energies are much more sensitive to factors

influencing the confinement potential. This makes determination of biexciton binding
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energies using both experimental and computational techniques challenging. Com-

paring theoretical and experimental results shows that calculated biexciton binding

energies are underestimated for smaller dots, however, this difference decreases with

increasing dot size.

The dependence of exciton and biexciton binding energies on dot size for other

materials studied (CdS, CdTe, and PbS) is shown in Figure 5.5 and Figure 5.6, re-

spectively. In all cases, we find that the trend observed in CdSe QDs is also seen

Figure 5.5: Exciton binding energy (EEB) vs dot size.

in other material types. The analytical expression of the relationship between exci-

ton binding energy to dot diameter can be obtained by performing linear regression

analysis and the expressions for best-fit lines are presented in Table 5.2. We find

that the exponent of QD diameter (Ddot) is close to one and is relatively insensitive

to material type. Comparing the scaling equations of exciton and biexciton binding
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Figure 5.6: Biexciton binding energy (EEB) vs dot size.

Table 5.2: Scaling law for exciton binding energies (EEB) for CdSe, CdS,
CdTe, and PbS quantum dots

Material Scaling Law Root Mean Square Error
CdSe ln[EBE/meV] = -0.956 ln[Ddot/nm] + 6.944 1.015× 10−2

CdS ln[EBE/meV] = -0.952 ln[Ddot/nm] + 7.079 1.122× 10−2

CdTe ln[EBE/meV] = -0.974 ln[Ddot/nm] + 6.814 6.533× 10−3

PbS ln[EBE/meV] = -0.992 ln[Ddot/nm] + 5.938 1.639× 10−3

energies (Table 5.2 and Table 5.3) shows that although both quantities decrease with

increasing dot size, the scaling properties are completely different. Specifically, we

find that the biexciton binding energies scale as e−αD with respect to dot diameter.

We also find that the scaling law for exciton binding energy is D−α, while that of

biexciton binding energy is e−αD (Figure 5.7). However, comparison of the slope of

the two binding energies reveals that with increasing dot diameter the biexciton bind-
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Table 5.3: Scaling law for biexciton binding energies (EBB) for CdSe, CdS,
CdTe, and PbS quantum dots

Material Scaling Law Root Mean Square Error
CdSe ln[EBB/meV] = -0.067[Ddot/nm] + 2.936 2.062× 10−2

CdS ln[EBB/meV] = -0.070[Ddot/nm] + 3.150 1.180× 10−2

CdTe ln[EBB/meV] = -0.034[Ddot/nm] + 2.124 1.077× 10−3

PbS ln[EBB/meV] = -0.009[Ddot/nm] - 0.123 1.555× 10−3

ing energies decrease at a slower rate than do exciton binding energies (Figure 5.7).

The results in Table 5.2 and Table 5.3 also show that biexciton binding energies

Figure 5.7: Relative binding energies for CdSe, CdTe, CdS, and PbS quantum dots.
The binding energies are normalized with respect to the exciton and biexciton binding
energies of the smallest dot, respectively.

are much more sensitive to changes in material type than are exciton binding ener-

gies. The parametric dependence of the two binding energies (Figure 5.8) reveals that
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Figure 5.8: Parametric dependence of exciton binding energies ( EEB) on biexciton
binding energies ( EBB) for the set of QDs investigated in this work.

both exciton and biexciton binding energies are positively correlated, however, this

dependence is highly nonlinear.

5.4 Conclusion

In summary, this work presents a theoretical investigation of the effect of dot size

on exciton and biexciton binding energies in semiconductor QDs. The electron-hole

interactions in these systems were studied using the electron-hole multicomponent

coupled-cluster method, and calculations were performed on four different material

types. The results from these calculations revealed that biexciton binding energies

follow different scaling laws than do excitonic binding energies. The results also
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show that biexcitonic properties are, in general, more sensitive to material type. The

dramatic difference in the scaling equations for biexciton binding energies compared

to excitonic systems shows that the response of the biexcitonic system with respect to

change in the confinement potential is fundamentally very different from the response

shown by excitonic systems. We postulate that this effect is a consequence of many-

body effects present in biexcitonic systems.

5.A Material and basis parameters

The electron-hole Hamiltonian used in this work is defined as follows,

H = He + V e,e +Hh + V h,h + V e,h (5.22)

where the exact forms of the operators (in atomic units) are given as,

Hα =
Nα∑
i

−h̄
2mα

∇2
i,α + vαext(r

α
i ,R

BOS) α = e, h, (5.23)

V α,α =
Nα∑
i<j

qαqα

εrααij
, (5.24)

V e,h(re, rh) =
Ne∑
i

Nh∑
j

qeqh

εre,h
ij

. (5.25)

The ε is the dielectric function. We used a single-particle basis for the electrons and

holes of [spd] Gaussian-type functions. The particles were confined in a parabolic

potential [36, 37, 34, 192] that had the following form,

vαext =
1

2
kα|rα|2 α = e, h. (5.26)

The scheme for determining parameters for the Gaussian functions and force con-

stants per dot size is presented in previous work and will not be discussed here.[36]
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Each composition also had corresponding effective masses for electrons and holes and

dielectric constants.[209] For the systems in this work, the effective masses, dielectric

constants, parameters for the Gaussian functions and force constants are given in

Table 5.4 and Table 5.5, respectively.

Table 5.4: Masses (atomic units) for electron and hole and dielectric con-
stant (ε) by QD composition[209]

me mh ε
CdSe 0.13 0.38 6.2
CdS 0.19 0.22 5.4
CdTe 0.12 0.13 7.1
PbS 0.08 0.075 17.2
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Chapter 6

Applying multicomponent

coupled-cluster method to

molecular systems

The electron-hole representation for investigating electronic excitations is often re-

served for systems with large number of electrons. This chapter will discuss theory

and preliminary results for smaller systems. To begin, traditional methods used to

study excited electronic states will be introduced in section 6.1. We will specifically

focus on configuration interaction singles, equation-of-motion coupled-cluster theory,

and time dependent Hartree-Fock theory as they are some of the most widely adopted

methods. Next, (section 6.3) will introduce and explain the theoretical challenges of

applying the electron-hole representation to molecular systems, and how they were

resolved. The final section of this chapter, section 6.4, will show representative results

for using electron-hole methods to calculate electronic excitation energies.
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6.1 Traditional methods for studying excited elec-

tronic states

Investigating electronically excited states is an important field in chemistry. Often

times, the excited state of a molecular system posesses intersting properties that

govern chemical processes. Information on excited electronic states is particularly

important in fields like spectroscopy. Interpreting spectra relies on understanding

the electronic and molecular structure of a given chemical species. Computationally

studying the excited states is a very useful tool in predicting, justifying, and explaining

features of spectroscopic data. There are also excited states which are optically

inactive and unable to be studied spectroscopically.

Theoretical treatment of excited states is a rich field of study. There is a wide

spectrum of methods designed to study excited state properties of chemical systems.

In many cases, these methods can be derived from their ground state counterparts,

as is the case with configuration interaction and coupled-cluster methodologies which

were detailed earlier in chapter 2. Calculation energy of excited electronic states

permits the computation of the excitation energy. Excitation energy is the difference

in energy between an excited state and the ground state. This is the energy required

to transition from the ground state to the excited state.

This work will introduce a few of the most widely adopted excited state meth-

ods. These methods are the configuration interaction singles (CIS), equation-of-

motion coupled-cluster (EOM-CC), and time-dependent Hartree-Fock (TDHF). CIS

and EOM-CC methods will closely rememble the ground state discussions presented

earlier. The TDHF method will introduce how time depedent methods can be used

to investigate excited states. The key difference these methds have from earlier dis-

cussions will be in the form of the wave function and how it is used to the calculate

excitation energy. The problem with the more highly accurate excited state methods
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is that they are computationally demanding. As was displayed earlier, transform-

ing to the electron-hole represenation can reduce computational cost. Using the

electron-hole representation is accompanied with some issues, but overall should pro-

vide accurate results that are competitive with all electron methods, but at a lower

cost.

One of the main issues with using the electron-hole representation is the presence

of screening. In the all-electron representation, the electron-electron potential terms

are obviously present. In electron-hole representation, all electrons, execept those

excited, have been abstracted away. All of the electron-electron interactions still

must be accounted for in some way, and that is through screening. In electron-hole

representation there is screening between electron-electron, hole-hole, and electron-

hole interactions. The goal of this research is to develop a function that describes

this screening.

Deriving an accurate screening function will be introduced using linear density

response theory. Linear response theory is used in time-dependent density functional

theory to calculate excitation energies. This work will use aspects of the theory to

arrive at a screening function which can be used in electron-hole methodology.

6.1.1 Configuration interaction singles

Configuration interaction singles method, or CIS for short, expands configuration in-

teraction theory (which was introduced in section 2.3) to calculate excitation energies

[210]. In ground state CI calculations, ground state energy was reached by projecting

the Schrödinger equation onto the CI wave function,

〈
ΨCI
∣∣H ∣∣ΨCI

〉
= ECI

〈
ΨCI
∣∣ ΨCI

〉
. (6.1)
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For excited electronic states, a similar approach can be used. The CIS wave function

includes only single excitations on the reference state (which is obtained using the

Hartee-Fock method),

∣∣ΨCIS
〉

=
N∑
i

M∑
a

c(i,a)a
†i |Φ0〉 . (6.2)

The sum i is over the N occupied orbitals while a is over M virtual orbitals. The CIS

energy is then obtained by substituting the CIS wave function into Equation 6.1,

N∑
i

M∑
a

c(i,a)H |ai 〉 = ECIS

N∑
i

M∑
a

c(i,a) |ai 〉 (6.3)

and then projected into elements of the CIS wave function giving

N∑
i

M∑
a

c(i,a)〈bj|H|ai 〉 = ECIS

N∑
i

M∑
a

c(i,a)δijδab. (6.4)

The excitation energy with which we are interested is defined as

ωk = ECIS
k − Eref (6.5)

where k is the desired excitation. To compute this quantity, the reference energy is

subtracted from both sides of Equation 6.4 to give

N∑
i

M∑
a

{(εa − εi)δijδab + 〈ij|v|ab〉A} c(i,a) = ωk

N∑
i

M∑
a

c(i,a)δijδab. (6.6)

The ε values are orbital energies of the single particle orbitals i and a and the V term

is the antisymmetrized two electron integral. This equation can then be solved using

standard linear algebra techniques, which is apparent upon rewriting it in matrix
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form,

AC = ωC. (6.7)

The A matrix is the Hamiltonian elements from the left side of Equation 6.6.

The CIS method is very popular due to its relatively low computational cost. This

low computational cost is associated with reduced accuracy, which other methods,

such as EOM-CC and TDHF address.

6.1.2 Equation-of-motion coupled-cluster

Equation-of-motion coupled-cluster (EOM-CC) is another widely used method for

calculating excited states of chemical systems [60]. It is based upon the CC work first

introduced in section 2.4. In EOM-CC we consider the ground state and an excited

state CC Shcrödinger equation,

HN |Ψ0〉 = ∆E0 |Ψ0〉 HN |Ψk〉 = ∆Ek |Ψk〉 . (6.8)

The goal, is then to calculate the difference in energy between the kth state and the

ground state,

ωk = ∆Ek −∆E0. (6.9)

The ground state wave function is the familiar,

|Ψ0〉 = eT |0〉 (6.10)
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while the kth wave function is given by

|Ψk〉 = Rk |Ψ0〉 . (6.11)

It is worth noting that one need not use the coupled-cluster ansatz from above.

Other EOM methods exist, but CC theory is a focus of this work and is widely used

in applications. The Rk operator excites the ground state wave function into the

desired state. Generally, the similarity transformed Hamiltonian is used which gives

the following equations

H |Ψ0〉 = ∆E0 |Ψ0〉 (6.12)

HRk |Ψ0〉 = ∆EkRk |Ψ0〉 . (6.13)

Left multiplying the top equation by Rk and subtracting it from the second gives

[HRk] |Ψ0〉 = (∆Ek −∆E0)Rk |Ψ0〉 (6.14)

[HRk] |Ψ0〉 = ωkRk |Ψ0〉 . (6.15)

Satisfaction of this eigenvalue equation yields the excitation energy of the kth state.

It’s important to note that the EOM-CC equations directly eliminate shared terms

in the ground and excited state expressions, making it more favorable than solving

the ground state and excited state CC equations independently.

6.1.3 Time dependent Hartree-Fock

Another way excited states are theoretically investigated is by using time dependent

methods. Here, we will discuss time dependent Hartree-Fock (TDHF) theory [210].

TDHF, and time depdent density functional theory (TDDFT) rely on using electronic

density to compute excited electronic states. This is done by using the time dependent
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Kohn-Sham equation shown below (with its adjoint),

i
∂

∂t
C = FC (6.16)

−i ∂
∂t

C† = C†F. (6.17)

These equations yield the KS equation in density matrix form,

FP−PF = i
∂

∂t
P (6.18)

where P = CC† is the electronic density and F is the Fock matrix.

We assume that the system is in the ground state (and is unperturbed) which is

denoted by the superscript (0),

F(0)P(0) −P(0)F(0) = 0 (6.19)

Since we are interested in perturbing the system, the density and Fock matrices will

be expanded,

P = P(0) + P(1) + . . . (6.20)

F = F(0) + F(1) + . . . (6.21)

These expressions can then be substituted into Equation 6.18 to give

F(0)P(1) −P(1)F(0) + F(1)P(0) −P(0)F(1) = i
∂

∂t
P(1) (6.22)

where the time dependent perturbation is give by a Fourier component,

gpq =
1

2

(
fpqe

−iωt + f ∗qpe
iωt
)

(6.23)
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which is a one-electron operator. This perturbation results in a first order Fock matrix

response, that is written in terms of the zeroth order Fock matrix,

F (1)
pq = gpq + ∆F (0)

pq (6.24)

∆F (0)
pq =

∑
rs

∂F
(0)
pq

∂Prs
P (1)
rs . (6.25)

Likewise, the first order density matrix is defined as

P (1) =
1

2

(
dpqe

−iωt + d∗qpe
iωt
)

(6.26)

where dpq elements represent perturbation densities.

Substituting the expressions for F(1) and P(1) into Equation 6.22, and gathering

e−iωt terms gives,

∑
q

F (0)
pq dqr − dpqF (0)

qr +

(
fpq +

∑
st

∂F
(0)
pq

∂Pst
dst

)
P (0)
qr − P (0)

pq

(
fqr +

∑
st

∂F
(0)
qr

∂Pst
dst

)
= ωdpr.

(6.27)

The terms with eiωt yield the complex conjugate of this expression. Given that density

matrices must be idempotent, we show that

∑
q

(
P (0)
pq P

(1)
qr + P (1)

pq P
(0)
qr

)
= P (1)

pr . (6.28)

This restricts the form of the d matrices such that only dia and dai elements will be

non-zero (where i are occupied and a are virtual orbitals).
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This results in the following equations,

F (0)
aa xai − xaiF (0)

ii +

(
fai +

∑
bj

{
∂Fai
∂Pbj

xbj +
∂Fai
∂Pjb

ybj

})
P

(0)
ii = ωxai (6.29)

F
(0)
ii yai − yaiF (0)

aa + P
(0)
ii

(
fia +

∑
bj

{
∂Fia
∂Pbj

xbj +
∂Fia
∂Pjb

ybj

})
= ωyai (6.30)

where xai = dai and yai = dia. This yields the following eigenvalue equation,

A B

B∗ A∗


X

Y

 = ω

1 0

0 −1


X

Y

 (6.31)

where A was seen previously in the CIS equations. It has the following form,

Aia,jb = δijδab(εa − εi) + 〈ij|v|ab〉A. (6.32)

The B matrix elements are given to be

Bia,jb = 〈ib|v|ja〉A. (6.33)

We see that a benefit the TDHF method has over the CIS method and EOM

methods is that only the ground state wave function was needed to calculate the

excitation energy. This can greatly reduce computational complexity while still de-

livering accurate results. It’s worth mentioning that TDDFT extends the TDHF

methodology, with the two body contributions in the A and B matrices includes an

exchange-correlation functional fxc.
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6.2 Electron-hole representation

While methods like CIS and EOM-CC provide accurate calculations, they can be

quite expensive. The wave function depends on N ×D coordinates (N is the number

of electrons and D is the number of dimensions). As system size increases, the wave

function becomes a large quantity. This is especially true given that the CIS and

EOM-CC wave functions must track large sets of excited determinants.

The electron-hole representation of excitations can simply some of the computa-

tional complexity associated with these traditional methods. This concept was first

introduced in section 1.3 and has been used extensively in quantum chemical studies.

These studies and related work were discussed in chapter 4 and chapter 5. Invok-

ing the electron-hole representation is especially useful with large chemical systems,

though it can be used for modestly sized systems as well.

One of the central challenges of using the electron-hole representation is accurately

treating electron-hole screening. In electron-hole representation, an electron exists in

a virtual orbital and a hole exists in an orbital from the Fermi vacuum. The issue

is that, even though they are ”hidden” in the electron-hole representation, other

electrons in the system screen the electron-hole interaction (and electron-electron

and hole-hole in the case where more than one electron and one hole are present).

This screening was present in the work presented earlier via the dielectric constant in

the electron-electron, hole-hole, and electron-hole operators.

This work looks to formulate a screening function that can accurately and quickly

calculate screening to improve the accuracy of electron-hole excited state calcula-

tions. This will be accomplished by using linear response theory, which is heavily

used in time-dependent density functional methodology. A major reason why linear

response theory is attractive is because it only requires information about the ground

state wave function to calculate excited state properties. Furthermore, (TD)DFT

methodology does not require all information of the wave function, only the density,
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to accomplish this which makes the screening function extendible to large, complex

chemical systems.

6.3 Linear response theory

6.3.1 Time dependent many body systems

Thus far, only time independent formalism has been used to describe chemical sys-

tems. In this chapter, use time dependent techniques to investigate properties of

interest.

The Hamiltonian for a system in a time dependent potential v(r, t) is defined as

H(t) = F + V (t) +W (6.34)

where F and is the Fock operator and W is the electron-electron potential operator.

The explicit form of V (t) is

V (t) =
N∑
i

v(ri, t). (6.35)

The corresponding Schrödinger equation for a time dependent system is

i
∂

∂t
Ψ(x1, . . . ,xN , t) = H(t)Ψ(x1, . . . ,xN , t) (6.36)

which propagates over some time. Usually the system is initially in the ground state

and the time dependent potential is enabled at t0. Taking this is always true the

present discussion, the potential can be split into two terms,

v(r, t) = v0(r) + v1(r, t)θ(t− t0). (6.37)



126

For convenience, the Hamiltonian assume the following form,

H(t) = H0 +H1(t) (6.38)

where F and W operators are in H0 and V (t) is H1(t).

The solution to the time dependent Schrödinger equation can be written in terms

of a time evolution operator operating on the ground state wave function,

Ψ(t) = U(t, t0)Ψ0 (6.39)

where t0 < t. The form of the time evolution operator is given as

U(t, t0) = e−iH0(t−t0) (6.40)

where H0 is made up of the time independent contributions to the total Hamiltonian

H(t). These techniques are the foundation of linear response theory, which will be

introduced shortly. The time evolution operator must also be expanded to give

U(t, t0) = e−iH0(t−t0)U1(t, t0). (6.41)

Using the time dependent Schrödinger equation,

i
∂

∂t
U1(t, t0) = e−iH0(t−t0)H1(t)e−iH0(t−t0)U1(t, t0). (6.42)

The firsts order correction to the time evolution operator can then be approximated

as

U1(t, t0) ≈ 1− i
∫ t

t0

dt′e−iH0(t′−t0)H1(t′)e−iH0(t′−t0). (6.43)
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If we assume that

H1(t) = F (t)β (6.44)

where β is some observable coupled to external force F (t), the observable is written

as

β(t) = e−iH0(t−t0)βe−iH0(t−t0). (6.45)

The first order approximation to the time evolution operator is then taken to be

U(t, t0) ≈ e−iH0(t−t0)

{
1− i

∫ t

t0

dt′F (t′)β(t′ − t0)

}
. (6.46)

This expression will be useful in the discussion of linear response theory in the fol-

lowing section.

6.3.2 General linear response theory

The goal of linear response theory is to understand how, in this case time dependent,

perturbations affect some observable of a quantum mechanical system as it relates

to the unperturbed ground state [211, 212]. A observable α is found by taking the

expectation value with respect to the wave function,

αi = 〈Ψi|α |Ψi〉 . (6.47)

In this discussion we are principally concerned with perturbations to the ground

state, so i = 0 unless otherwise noted. In the above equation, Ψi is a many-body

wave function with some accompanying Hamiltonian H0. Note that the subscript 0

indicates that this is the static or t0 = 0 state (introduced in Equation 6.38). The
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perturbation affects the wave function and the expectation value of α is now time

dependent,

α(t) = 〈Ψ(t)|α |Ψ(t)〉 . (6.48)

The difference between this time dependent observation and the static observation

from Equation 6.47, α(t) − α0 is defined as the response of α to the perturbation.

Another notation that can be used with time dependence is the Heisenberg repre-

sentation. In this notation, the time propagator is removed from that of the wave

function and placed on the operator,

α(t) = 〈Ψ(t)|α |Ψ(t)〉 (6.49)

= 〈Ψ(t = 0)| eiHtαe−iHt |Ψ(t = 0)〉 (6.50)

= 〈Ψ|α(t) |Ψ〉 . (6.51)

This notation will be used when the density linear response function is discussed in

the next section.

This response can be expanded into powers of the external force F (t) to give

α(t)− α0 = α1(t) + α3(t) + α2(t) + . . . (6.52)

with the subscripts being the order of the response (linear, quadratic, cubic, and so

on). The linear response, with which we are concerned, can then be defined as

α1(t) = −i
∫ t

t0

dt′F (t′) 〈Ψ0| [α(t), β(t′)] |Ψ0〉 . (6.53)
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Given that the static Hamiltonian H0 is time independent, the commutator above

can be rewritten inside a response function as,

χα,β(t− t′) = −iθ(t− t′) 〈Ψ0| [α(t− t′), β] |Ψ0〉 . (6.54)

The θ function ensures causality, or that the perturbation happens at time t′ ≤ t.

The linear response function can then be written as,

α1(t) =

∫ ∞
−∞

dt′χαβ(t− t′)F (t′) (6.55)

The response function is general for any quantum mechanical observable, but in this

case we are specifically interested in how some external potential v affects the density

response of a system.

6.3.3 Density linear response

Density linear response theory applies the general linear response concept to under-

stand how perturbations to the external potential affect the density of a chemical

system [211, 213, 212, 210]. This shift in density can give information about excited

state properties without using an excited state wave function to do so. The time

independent and time dependent electronic density is defined as

n(r) =
N∑
i

δ(r− ri) (6.56)

and

n(r, t) = 〈Ψ(t)|n(r) |Ψ(t)〉 (6.57)
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respectively. In ground state DFT, the Hohenberg-Kohn theorem stated that a unique

one-to-one map existed between an external potential and a ground state density exist.

The Runge-Gross theorem extended this unique mapping between a time-dependent

potential (v(r, t), introduced in Equation 6.37) and a time-dependent density (n(r, t)).

The time-dependent density can then be written as a functional of the time-dependent

potential,

n(r, t) = n[v](r, t). (6.58)

In this section, we are interested in how the perturbation v1 affects the density. The

density response to this potential can be expanded in terms of this v1 perturbation

as

n(r, t)− n0(r, t) = n1(r, t) + n2(r, t) + . . . (6.59)

where n1(r, t) is the linear term of interest. This linear density response function is

defined as

n1(r, t) =

∫
dt′
∫
dr′χ(r, t, r′, t′)v1(r′, t′) (6.60)

where χ is the density-density response function of interest. The explicit form is given

to be

χ(r, t, r′, t′) = iθ(t− t′) 〈Ψ0| [n(r, t− t′), n(r′)] |Ψ0〉 (6.61)

with Ψ0 being the exact, ground-state wave function.
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This density-density response function can then be Fourier transformed to fre-

quency space (the Lehmann representation) [213, 212], giving

χ(r, r′, ω) =
∞∑
n

{〈Ψ0|n(r)|Ψn〉〈Ψn|n(r)|Ψ0〉
ω − Ωn + iη

− 〈Ψ0|n(r)|Ψn〉〈Ψn|n(r)|Ψ0〉
ω + Ωn + iη

}
.

(6.62)

Using this form of the function, it is easier to see that frequencies where excitations

occur. Using different forms of the wave function will shift the excitation energies via

the Ωn term (which is En − E0).

6.3.4 Perturbation theory approach

In this work, the exact wave function will be expanded into a perturbative series,

|Ψ0〉 =
∣∣∣Ψ(0)

0

〉
+
∣∣∣Ψ(1)

0

〉
+ . . . (6.63)

The perturbative expansion is an infinite series, but this work is only concerned with

the first order wave function, thus other terms are ignored. This truncation will

be explicitly introduced shortly. Substituting the expanded wave function into the

response function gives,

χ(r, t, r′, t′) = iθ(t− t′)
〈

Ψ
(0)
0 + Ψ

(1)
0 + . . .

∣∣∣ [n(r, t− t′), n(r′)]
∣∣∣Ψ(0)

0 + Ψ
(1)
0 + . . .

〉
(6.64)

= iθ(t− t′)
(〈

Ψ
(0)
0

∣∣∣ [n(r, t− t′), n(r′)]
∣∣∣Ψ(0)

0

〉
+〈

Ψ
(1)
0

∣∣∣ [n(r, t− t′), n(r′)]
∣∣∣Ψ(0)

0

〉
+〈

Ψ
(0)
0

∣∣∣ [n(r, t− t′), n(r′)]
∣∣∣Ψ(1)

0

〉
+ . . .

)
(6.65)

Note that these terms are all of the zeroth and first order terms in the expansion.
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The zeroth order term can be pulled out and used to define χ0, which is a reference

contribution to the density response function using the zeroth order (usually Hartree-

Fock) wave function.

χ0(r, t, r′, t′) = iθ(t− t′)
〈

Ψ
(0)
0

∣∣∣ [n(r, t− t′), n(r′)]
∣∣∣Ψ(0)

0

〉
(6.66)

Excluding all terms beyond first order gives,

χ(r, t, r′, t′) ≈ χ0(r, t, r′, t′) + iθ(t− t′)
〈

Ψ
(1)
0

∣∣∣ [n(r, t− t′), n(r′)]
∣∣∣Ψ(0)

0

〉
+ iθ(t− t′)

〈
Ψ

(0)
0

∣∣∣ [n(r, t− t′), n(r′)]
∣∣∣Ψ(1)

0

〉
. (6.67)

The first order wave function can be written as some operator with the zeroth order

wave function,

Ψ
(1)
i = ΩΨ

(0)
i . (6.68)

Substituting this back into the linear response function gives,

χ(r, t, r′, t′) ≈ χ0(r, t, r′, t′) + iθ(t− t′)
〈

Ψ
(0)
0

∣∣∣Ω [n(r, t− t′), n(r′)]
∣∣∣Ψ(0)

0

〉
+ iθ(t− t′)

〈
Ψ

(0)
0

∣∣∣ [n(r, t− t′), n(r′)] Ω
∣∣∣Ψ(0)

0

〉
(6.69)

which can be simplified using the anticommunator relationship,

χ(r, t, r′, t′) ≈ χ0(r, t, r′, t′) + iθ(t− t′)
〈

Ψ
(0)
0

∣∣∣ [[n(r, t− t′), n(r′)] ,Ω]
∣∣∣Ψ(0)

0

〉
. (6.70)

This expression can use any number of forms for the first order wave function. As

one of the main concerns of this project is low computational cost, the CIS and MP2

wave functions will be considered first.
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6.4 Preliminary results

Calculating the excitation energies of ten electron systems has already been done

using the multicomponent coupled-cluster method. To accomplish this, the CIS wave

function was transformed to the electron-hole representation. This will be briefly

surveyed before results are discussed.

As was stated previously, the CIS wave function consists of all singly excited

determinants with respect to the Hartee-Fock reference state,

|ΨCIS〉 =
N∑
i

M∑
a

c(i,a)|Φa
i 〉. (6.71)

The i and a indicies are in the occupied and virtual states, respectively. Excitation

energy, ω, is calculated via

ωCIS = ECIS − Eref (6.72)

= 〈ΨCIS|H|ΨCIS〉 − Eref (6.73)

=
N∑
ij

M∑
ab

c∗iacjb〈Φa
i |H|Φb

j〉 − Eref (6.74)

=
N∑
i

M∑
a

c∗iacia〈Φa
i |H|Φa

i 〉

+
N∑
i 6=j

M∑
a6=b

c∗iacjb〈Φa
i |H|Φb

j〉

+
N∑
i

M∑
a6=b

c∗iacib〈Φa
i |H|Φb

i〉

+
N∑
i 6=j

M∑
a

c∗iacja〈Φa
i |H|Φa

j 〉 − Eref . (6.75)

In order to transform this to the electron-hole representation, we will need the form

of the Hamiltonian and wave function.
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The electron-hole Hamiltonian is defined as

Heh = he + hh + veh. (6.76)

Note that the two body terms are missing as a single excitation in the electron-hole

representation will not have those. The electron-hole wave function is defined as

|Ψeh〉 =
∑
i

ceh
i |ΦeΦh〉i (6.77)

Remember that in the electron-hole representation, virtual states are occupied by

electrons (in an excited state), while holes inhabit the occupied space (from the all

electron representation). This lets us break up the above expression as,

ωCIS =
N∑
i

M∑
a

c∗iacia
(
〈a|he|a〉+ 〈i|hh|i〉+ 〈ia|veh|ia〉

)
+

N∑
i 6=j

∑
a6=b

c∗iacjb〈ja|veh|ib〉

+
N∑
i

M∑
a6=b

c∗iacib
(
〈a|he|b〉+ 〈ai|veh|bi〉

)
+

N∑
i 6=j

M∑
a

c∗iacja
(
〈i|he|j〉+ 〈ia|veh|ja〉

)
(6.78)

=
N∑
ij

M∑
ab

c∗iacjb〈ia|he + hh + veh|jb〉. (6.79)

This formulation allows multicomponent methods to calculate excitation energies

that are as accurate as their single component counterparts. Results for ten electron

systems are summarized in Table 6.1. We are pleased to see that transforming to

the electron-hole space and using the CIS ansatz reproduces those excitation energies

using mcCC. This is to be expected though, as it is an exact transformation of CIS

to multicomponent space.
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Table 6.1: Multicomponent coupled-cluster excitations energies versus CIS,
TDHF, and EOM-CCSD in eV.

System ωmcCC ωCIS ωTDHF ωEOM−CCSD

CH4 11.654 11.654 13.933 13.456
NH3 8.141 8.141 9.051 8.211
H2O 8.477 8.477 9.381 8.497
HF 11.000 11.000 11.823 10.836
Ne 44.604 44.604 50.241 51.215

All systems used standard 6-31G∗ basis set. CIS, TDHF, and EOM-CCSD calcula-
tions were done using GAMESS.

While this is an exciting and important first step, there remains a lot of work to

catch the mcCC results up to EOM-CCSD, which is one of the gold standard methods

for calculating excitation energies. TDHF and EOM-CCSD excitation energies differ

with CIS excitation energies by up to 20%. By augmenting the mcCC formulation,

we should be able to calculate excitaiton energies that more closely agree with these

highly accurate methods. We expect that a screening function will improve accuracy

and include correlation effects that is lacking in the current formulation.
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Chapter 7

Investigating mass and confinement

effects in multicomponent systems

The work in this chapter further investigates effects of invoking the Born-

Oppenheimer (BO) approximation. The BO approximation is very useful, but

its use is not always sufficient. This purpose of this study was to compare how prop-

erties and insight from calculations that avoided the BO approximation compared to

conventional wisdom from application of the BO approximation.

7.1 Introduction

Many theoretical chemistry models are built upon the well known Born-Oppenheimer

(BO) approximation. The BO approximation assumes that the nuclei and electrons

in a chemical system move on different timesclaes. Decoupling the motion of electrons

and nuclei allows the wave function to be written as

Ψexact(r,R) ≈ Ψe(r; R)ΨN(R). (7.1)
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The nuclei are fixed in space, hence the parametric dependence in the electronic

contribution. This approximation is justified earlier in subsection 7.2.1.

The BO approximation has been used to great affect. It has been used to study

chemical reactions [214, 215, 216], bond dissociations [217, 218, 219, 220], and spec-

troscopic signatures [221, 222], among many other applications. While the BO ap-

proximation is certainly a useful and powerful tool, it is not always an appropriate

approximation to make. These failures are well documented, and have been met with

new methodologies that can compensate for, or reapproximate contributions from

nuclear motions [223, 224, 225, 226, 227, 228, 229, 71, 68, 99, 127, 104, 78].

This study is particulary interested in investagting an artifact of solving for the BO

separated wave function via the Schrödinger equation - the potential energy surface.

The potential energy surface is the functional relationship between the total potential

energy of a system versus nuclear geometry. The potential energy surface is a very

useful quantity and has been used to properties for molecular systems such as bond

distance and geometries. The bond distance of the nuclear coordinates is of particular

interest to this study. Using the BO approximation, we understand that there will be

an energy minima at the equilibrium bond distance. If the atoms are spread further

apart, energy will increase until the atoms are noninteracting and total energy is just

a sum of individual energies. If the atoms are pinched together, we expect to see

an increase in potential energy. The internuclear distance decreases, the Coulombic

repulsions would greatly increasing, forcing the molecule back towards a favorable

geometry.

Other studies have avoided using the BO approximation to understand the influ-

ence of this approximation on system properties. Recent work by Ceperley, Hammes-

Schiffer, and others has utilized quantum Monte Carlo techniques such as path inte-

gral Monte Carlo [79] and diffusion Monte Carlo [99, 230] to study small molecular

systems without the BO approximation. Earlier work led by Hammes-Schiffer also
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used the Nuclear-electron orbital approach to look at non-BO affects [68, 71, 96, 77].

Adamowicz and coworkers investigated similar systems using explicitly correlated

methods [74, 231, 232, 233]. Other work by Abedi, Maitra, and Gross solves the time

dependent Schrödinger equation using the exact factorization method [103, 104].

The goal of this study is to investigate how nuclei behave when treated without

the BO approximation. We are specifically interested in looking at how the potential

energy changes as a function of internuclear distance in the H2 molecule. Since the BO

approximation is not made, the internuclear distance will not be governed by setting

stationary points for the hydrogen atoms, but rather, a fully non BO system of two

electrons and two protons will be placed in a parabolic well. This parabolic well will

span weakly confining to strongly confining potentials as a means of influencing this

distance. This study will also be carried out on a two-electron, two-positron system

to see how mass influences the results.

7.2 Theory

The central focus of quantum chemistry is to predict and describe chemical properties

and behavior at the the atomic and subatomic level. A common way to gain insights

about a molecular system is to solve the time-independent Schrödinger equation. The

Schrödinger equation is an eigevalue, partial differential equation. The equation is

defined below,

HΨ(r,R) = EΨ(r,R). (7.2)

The Hamiltonian is the operator that corresponds to the energy of a chemical system.

The wave function has dependence on all of the coordinates in every particle in the

system. The electronic coordinates are in the set r and all nuclear coordinates are in

the set R. The exact form of the wave function is an infinite expansion of all possible
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states that the system may exist in,

Ψexact(r,R) =
∑
i

∑
j

wijΨ
e(r,R)ΨN(R). (7.3)

Solving the Schrödinger equation as an infinite expansion is unpractical, so it is com-

monly approximated to have a different form. A select few of these approximations

will be discussed later in section 2.1, section 2.3, and section 2.4. The Hamiltonian

has the following form for an N electron and M nuclei system,

Hmol = −
N∑
i

h̄

2mi

∇2
i −

M∑
A

1

2MA

∇2
A −

N∑
i

M∑
A

ZA
riA

+
N∑
i<j

N∑
j

1

rij
+

M∑
A<B

M∑
B

ZAZB
RAB

(7.4)

= T e(r) + TN(R) + V e,N(r,R) + V e,e(r) + V N,N(R). (7.5)

The first two terms are differential operators and compute the kinetic energy of the

ith electron and the Ath nuclei in the sytstem. The third term is the nuclear-electron

attraction term, with ZA being the charge of nucleus A and riA being the interparticle

distance between elecron i and nucleus A. The fourth term is the electron-electron re-

pulsion term (where rij is the electron-electron distance) while the last is the nuclear-

nuclear repulsion term (with RAB being the internuclear distance). This form of the

Hamiltonian is called the molecular Hamiltonian since it operates on an both the

nuclei and electrons in a molecule.

Solving the molecular Schrödinger equation with the molecular Hamiltonian is a

difficult task. Chemical systems are collections of dynamic particles that are con-

stantly moving. The electrons repel other electrons, nuclei repel other nuclei, and

the two are also attracting one another. This is known as the correlation problem

in quantum mechanics. It is impossible to exactly solve the Schrödinger equation

because the positions of the particles are correlated. That is to say, an electron in
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space will affect where other electrons may be. The same is true for nuclei. While

the correlation problem will not disappear, we first simplify the Schrödinger equation

to be more manageable since all of the information in a quantum system is difficult

to quantify simulatenously.

7.2.1 The Born-Oppenheimer Approximation for single com-

ponent systems

The Born-Oppenheimer (BO) approximation simplifies the wave function by decou-

pling the motion of nuclei and electrons, which allows us to rewrite the wave function

as

Ψexact (r,R) ≈ Ψe (r; R) ΨN (R) . (7.6)

The wave function is written as a product of electronic and nuclear functions. Note

though, that the electronic wave function, Ψe, is explicitly dependent on electronic

coordintes and parametrically dependent on nuclear coordinates. In order to justify

this approximation, we begin by defining an electronic Hamiltonian, He, which ig-

nores the kinetic energy of nuclei (TN) and the nuclear repulsion term (V N,N) will be

considered a constant since the nuclear positions are fixed in space.

He = T e(r) + V e,N(r; R) + V e,e(r) + V N,N(R) (7.7)

The electronic Hamiltonian can then be used in the electronic structure Schrödinger

equation to solve for electronic energy,

HeΨe(r; R) = EeΨe(r; R) (7.8)
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[
T e(r) + V e,N(r; R) + V e,e(r) + V N,N(R)

]
Ψe(r; R) = EeΨe(r; R) (7.9)

Now, substituting the BO wave function (Equation 7.6) into the Schrödinger equation

(Equation 7.2) yields,

HmolΨe(r; R)ΨN(R) = EtotΨe(r; R)ΨN(R). (7.10)

Expanding this to include the full Hmol is then

[
T e(r) + TN(R) + V e,N(r,R) + V e,e(r) + V N,N(R)

]
Ψe(r; R)ΨN(R) = EtotΨe(r; R)ΨN(R).

(7.11)

If the nuclear motion is to be decoupled from the electronic motion, it is necessary to

inspect how the TN operator will effect the electronic portion of the wave function,

Ψe, since it has dependence on nuclear terms,

TN(R)Ψe(r; R)ΨN(R) =
1

2MA

∇2
AΨe(r; R)ΨN(R) (7.12)

=
1

2MA

[Ψe(r; R)∇2
AΨN(R) + ΨN(R)∇2

AΨe(r; R) (7.13)

+ 2(∇AΨe(r; R)) • (∇AΨN(R))]. (7.14)

Then, substituting Equation 7.8 and Equation 7.12 into Equation 7.11 we get

Ψe(r; R)TN(R)ΨN(R) + (Ee) ΨN(R)Ψe(r; R)−[∑
A

1

2MA

(
2∇AΨe(r; R)∇AΨN(R) + ΨN(R)∇2

AΨe(r; R)
)]

= EtotΨe(r; R)ΨN(R).

(7.15)

The terms in square brackets are said to be the derivative coupling terms as the couple

the motion of the nuclear coordinates with the electronic wave function. To decouple
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the motions, the term in the square brackets must be dropped to give

Ψe(r; R)TN(R)ΨN(R) + ΨN(R)EeΨe(r; R) = EtotΨe(r; R)ΨN(R) (7.16)

can then solve the electronic problem and the nuclear problem separately as the

remaining terms can be factored as

[
TN(R) + Ee(R)

]
ΨN(R) = Etot(R)ΨN(R). (7.17)

This is the nuclear Schrödinger equation. Solutions to the nuclear Schrödinger equa-

tion are not the focuses of the research in this work, so it will not be examined further;

however, there are many great resources that detail it further.

Potential energy surface

Invoking the BO approximation leads to an electronic energy that is dependent on

the nuclear positions. This is called the potential energy surface and it describes the

energy of a chemical system as the nuclear geometry changes.

Qualitatively, this can be understood as using the H2 molecule as an example.

Assume that two individual H atoms exist infinitely far apart. The energy of this

system would simply be the energy of twice a Hydrogen atom. As these two atoms

were brought closer together, they would share electron density, forming a bond,

which would reduce the energy of the system. If the two H atoms were continued to

be pinched together, we would see Ee climb higher due to the fact that the nuclear

repulsion term grows rapidly. This simple example illustrates how nuclear geometries

dictate bonding behavior of molecular systems.

The H2 example is quite simple, but it can be extended to more complex molecules,

though it becomes harder to conceptualize. This is generally how molecular bonding

is taught and understood with regards to the nuclear coordinates. While this is a
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valuable tool for investigators to use, this work will discuss models where the BO

approximation and potential energy surfaces produce erroneous results. When this

happens, one must adopt a new model for investigating such systems that does not

require that the nuclear and electronic motions to be decoupled. Furthermore, we will

look at systems where the BO approximation cannot be used because electrons are

bound to other (non-massive) subatomic particles, such as a positron or a quasi-hole.

7.2.2 The Born-Oppenheimer Approximation for multi-

comonent systems

A multicomponent interpretation of the BO approximation allows for particles to be

classified to as many types as necessary. With this logic, the wave function can be

approximated as,

Ψexact
(
rI, rII, . . . , rN

)
≈ ΨI,II,...

(
rI, rII, . . . ; RBOS

)
ΨBOS

(
RBOS

)
. (7.18)

We see that the wave function still includes BO separated bodies (RBOS), but also on

particles that are not BO separated (rX). As was the case with the BO approximation,

this will lead to a BOS Schrödinger equation for ΨBOS and a non-BOS Schrödinger

equation for Ψnon−BOS. This formulation allows for as many unique particle types

as necessary to be defined. While this is a powerful ability, it need not be liberally

applied to any system. It should be applied to systems where the motion of two types

of particles is coupled.

Unfortunately, approximating the wave function to include an ambigious number

of unique particle types is as powerful as it is impractical. Such a wave function

would be accompanied by a complex Hamiltonian, which would make enumerating

and indexing the states and interactions enourmously challenging. So, we begin by
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using two types of non BO separated particles,

Ψexact
(
rI, rII, . . . ,RBOS

)
≈ ΨI,II

(
rI, rII; RBOS

)
ΨBOS

(
RBOS

)
. (7.19)

with dependence on coordinates rI and rII. Note that this is nearly identical to the

BO approximated single component wave function seen previously (Equation 7.6).

As was the case with the single component wave function, separating the exact wave

function into a product of two wave functions (one for non BO separated bodies

and one for BO separated bodies) must be justified. This justification will be built

upon the assumption that the motion of BO separated particles affects the non BO

separated bodies to a negligible degree.

The Hamiltonian for this system will be of the form,

Hmc = −
N I∑
i

h̄

2mI
i

∇I2

i +
N I∑
i<j

N I∑
j

qIqI

rij
+

N I∑
i

NBOS∑
A

qIZA

riA

− h̄

2mII

N II∑
i′

∇II2

i′ +
N II∑
i′<j′

N II∑
j′

qIIqII

ri′j′
+

N II∑
i′

NBOS∑
A

qIIZA

riA

+
N I∑
i

N II∑
i′

qIqII

rii′

−
NBOS∑
A

h̄

2MA

∇2
A +

NBOS∑
A<B

NBOS∑
B

ZAZB
RAB

. (7.20)

The first and second lines are the kinetic energy, interparticle potential, and external

potential for the type I and type II particles, respectively. The third line is the type I-

II potential term. The final line is the kinetic energy and interparticle potential of the

particles that fall under the BO separated definition. Note that the type II particle

indices are primed so they are more easily distinguished from the type I counterparts.
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This can condensed to

Hmc = T I(rI) + V I,I(rI) + V I
ext(r

I,RBOS)

+ T II(rII) + V II,II(rII) + V II
ext(r

II,RBOS)

+ V I,II(rI, rII)

+ TBOS(RBOS) + V BOS,BOS(RBOS) (7.21)

= H I,II(rI, rII) + V I,II,BOS(rI, rII,RBOS)

+ TBOS(RBOS). (7.22)

The form of H I,II and V I,II,BOS are

H I,II(rI, rII) = T I(rI) + V I,I(rI) + T II(rII) + V II,II(rII) + V BOS,BOS(RBOS) (7.23)

V I,II,BOS(rI, rII,RBOS) = V I
ext(r

I,RBOS) + V II
ext(r

II,RBOS). (7.24)

This form of the Hamiltonian closely resembles the single component form from Equa-

tion 7.4.

The Hamiltonian and exact wave function are then substituted into the

Schrödinger equation,

Hmc(rI, rII,RBOS)Ψexact(rI, rII,RBOS) = EtotΨexact(rI, rII,RBOS) (7.25)

Hmc(rI, rII,RBOS)ΨI,II(rI, rII; RBOS)ΨBOS(RBOS) = EtotΨI,II(rI, rII; RBOS)ΨBOS(RBOS).

(7.26)

If the Hamiltonian in the Schrödinger equation were then expanded as perscribed

by Equation 7.22, it would be analogous to the single component counterpart, Equa-

tion 7.11. The BO extension to multicomponent systems then follows the same logical

flow as the single component derivation, where the coupling terms for BO separated

particle motion is decoupled from particles that are not BO separated. The steps are
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not repeated here, but the following Schrödinger equations are produced,

H I,II(rI, rII; RBOS)ΨI,II(rI, rII; RBOS) = EI,II(RBOS)ΨI,II(rI, rII; RBOS) (7.27)

[
TBOS(RBOS) + EI,II(RBOS)

]
ΨBOS(RBOS) = Etot(RBOS)ΨBOS(RBOS). (7.28)

As was the case with the single component BO approximation, decoupling the motion

of BO separated particles from the others results in two equations that can be solved

separately.

Multicomponent methods focus on solving the first equation above by approximat-

ing and optimizing a multicomponent wave function (ΨI,II). Some of these methods

will be detailed in following sections and the next chapter. Solving the Schrödinger

equation for BO separated particles can be done using existing techniques and is not

the focus of the work presented.

Multicomponent potential energy surfaces

Applying the BO approximation to single component systems resulted in a potential

energy surface. This quantity relates the nuclear geometries to a specific electronic

potential energy.

The multicomponent BO approximation also produces a potential energy surface,

provided that BO separated particles exist. Relating the multicomponent energy

plus the BO separated potential would give similar insights about the effects the BO

separated geometries have on the energy of the system.

Should no BO separated bodies exist, there would be no potential energy sur-

face to speak of. It is important to remember this fact. Potential energy surfaces

are very useful tools for investigating chemical processes, but are the result of an

approximation. Ideally, quantum chemical investigations would avoid using the ap-
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proximation all together since it is an abstraction from reality. This task, however, is

very complex and can be an unnecessary burden. Consequences and analysis of the

BO approximation as it relates to multicomponent systems is further explored later

in chapter 7.

7.3 Method

The two electron-two positron (2e−, 2e+) and H2 systems were investigated using the

multicomponent configuration interaction method. This method is built on top of

the multicomponent Hartree-Fock method, which were both detailed previously in

chapter 3, so only a quick survey will be provided here. We will then discuss the

properties of interest for these systems and how those will be computed.

The mcFCI method was chosen in this study for two reason. First is that the

multicomponent Hartree-Fock method is not descriptive enough for multicomponent

systems. This was highlighted previously in chapter 4 ([192]) and [39]. Correlation

effects are extremely important when investigating multicomponent systems, so a

method beyond mcHF was needed. The mcHF method was still used to construct

the multicomponent molecular orbitals. For treating correlation beyond the mcHF

level, there were two obvious choices of mcFCI and multicomponent coupled-cluster

theory. The second reason that mcFCI was chosen was due to computational cost

considerations. The properties of interest (which are discussed later) were calculated

as an expectation value with respect to the multicomponent wave function. Calculat-

ing expectation values with respect to the mcCC wave function is a very complicated

task. For the mcFCI wave function, it is much more straighforward.
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Both the mcHF and mcFCI methods approximate a solution to the multicompo-

nent Schrödinger equation,

HΨI,II(rI, rII; RBOS) = EΨI,II(rI, rII; RBOS). (7.29)

The Hamiltonian used for solving the multicomponent Schrödinger equation, which

was first introduced explicitly in section 4.2, is defined as

H =
∑
pq

〈p|hI|q〉p†q (7.30)

+
∑
pqrs

〈pq|vI,I|rs〉p†q†sr

+
∑
p′q′

〈p′|hII|q′〉p′†q′

+
∑
p′q′r′s′

〈p′q′|vII,II|r′s′〉p′†q′†s′r′

+
∑
pqp′q′

〈pp′|vI,II|qq′〉p†p′†qq′

with explicit form of the one and two body operators being

hα(rα,RBOS) =
−h̄
2mα

∇2
α + vαext(r

α,RBOS) α = I, II, (7.31)

vα,α(rα) = qαqαε−1r−1
αα, (7.32)

vI,II(rI, rII) = qIqIIε−1r−1
I,II. (7.33)

This Hamiltonain is used for both the mcHF and mcFCI solution. Each particle was

confined with a 3D parabolic potential defined as

vαext =
1

2
kα|rα|2 α = e−, e+,H. (7.34)

The k values are given in Table 7.5.
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The mcHF method approximates the multicomponent wave function as a single

Slater determinant. This determinant is a product of a type I and type II Slater

determinant,

ΨI,II(rI, rII; RBOS) = ΦI(xI; RBOS)ΦII(xII; RBOS). (7.35)

The energy of the system is then minimized with respect to the orbitals with which

the Slater determinant is constructed,

〈
0I0II

∣∣H ∣∣0I0II
〉

= min
ΦI,ΦII

〈
ΦIΦII

∣∣H ∣∣ΦIΦII
〉
. (7.36)

This procedure is done by self consistently solving the coupled Fock equations,

f I
∣∣χI

i

〉
= εIi

∣∣χI
i

〉
(7.37)

f II
∣∣χII

i′

〉
= εIIi

∣∣χII
i′

〉
(7.38)

where the Fock operators are,

f I = hI + vI
HF +

N II∑
i′

〈i′| vI,II |i′〉 (7.39)

f II = hII + vII
HF +

N I∑
i

〈i| vI,II |i〉 (7.40)

In mcFCI theory, the wave function is approximated as a linear combination of

Slater determinants in type I and type II space. The orbitals used to construct these

determinants are the result of the mcHF SCF procedure. The wave function is defined
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as

|ΨmcFCI〉 = cI,II
(0,0),(0′,0′)|0I0II〉

+
N I∑
i

M I∑
a

cI,II
(i,a),(0′,0′)a

†i|0I0II〉

+
N I∑
i<j

N I∑
j

M I∑
a<b

M I∑
b

cI,II
(ij,ab),(0′,0′)a

†b†ji|0I0II〉+ . . .

+
N II∑
i′

M II∑
a′

cI,II
(0,0),(i′,a′)a

′†i′|0I0II〉

+
N II∑
i′<j′

N II∑
j′

M II∑
a′<b′

M II∑
b′

cI,II
(0,0),(i′j′,a′b′)a

′†b′†j′i′|0I0II〉+ . . .

+
N I∑
i

M I∑
a

N II∑
i′

M II∑
a′

cI,II
(i,a),(i′,a′)a

†ia′†i′|0I0II〉

+
N I∑
i<j

N I∑
j

M I∑
a<b

M I∑
b

N II∑
i′<j′

N II∑
j′

M II∑
a′<b′

M II∑
b′

cI,II
(ij,ab),(i′j′,a′b′)a

†b†jia′†b′†j′i′|0I0II〉

+ . . . (7.41)

The energy for the mcFCI method is then minimized via

〈ΨmcFCI|H |ΨmcFCI〉 = EmcFCI 〈ΨmcFCI|ΨmcFCI〉 . (7.42)

The mcFCI method will provide exact solutions to the chosen basis for the systems

of interest.

7.4 Computational details

This study is chiefly concerned with four properties for each system. For the two

electron-two positron system, the relationship between average electron-electron and

positron-positron repulsion energies, as well as the average electron-positron attrac-
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tion energy versus the average positron-positron separation distance will be investi-

gated. For the H2 system, the analogous relationship will be investigated. For this

study, we are curious to see how a non BO treatment of H2 behaves compared to the

two electron-two positron system which has greatly reduced mass for the positively

charged particles.

These properties will be calculated by taking a given operator’s expectation value

with respect to the mcFCI wave function,

〈Ω〉 = 〈ΨmcFCI|Ω |ΨmcFCI〉 . (7.43)

The electron-electron, positron-positron, hydrogen-hydrogen, electron-positron, and

electron-hydrogen operators have been defined above in the Hamiltonian. Note that

the dielectric function (ε) is set to 1. The positron-positron, hydrogen-hydrogen, and

electron-electron interparticle distance operator is defined as,

rα,α
2

1,2 = |rα1 − rα2 |2 α = e−, e+,H (7.44)

The masses for the electron and positron were 1 atomic unit, with charges of -1

and +1 atomic unit, respectively. The protons had a mass of 1836 atomic units. The

confining potentials, k, as well as exponents for the [spd] Gaussian basis functions

are given in Table 7.5.

7.5 Results

The data in this study shows a very interesting deviation when compared to intuition

from the BO approximation. The relationship between average positron distance and

the average electron-electron, electron-positron, positron-positron potential energies,

as well as the total average potential energy, is plotted in Figure 7.1. The correspond-
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ing plot for H2, showing the electron-electron, electron-hydrogen, hydrogen-hydrogen,

and total potential energies versus the average hydrogen-hydrogen distance is given in

Figure 7.2. The inverse relationship between these quantities is plotted in Figure 7.3

and Figure 7.4 to understand the linear relationship. The inverse linear relationships

are summarized in Table 7.1 and Table 7.2.

The results in Figure 7.1 and Figure 7.2 are very striking. As we would expect

the positron-positron and hydrogen-hydrogen potential increases as the particles are

drawn closer together. This agrees with intuition we already have about the bonding

behavior of molecules from the BO approximation. What is unexpected is that the

total potential always outpaces the positron-positron and hydrogen-hydrogen poten-

tial. Typically, the potential energy surface will have greatly increased when nuclear

centers are close together which causes the system to be unbound. In this treatment

of H2, the system is always bound.

While this finding is counter-intuitive from the BO point of view, it does not seems

totally unreasonable. In each system, there are more attractive terms than repulsive.

There are two repulsive terms for the 2e−, 2e+ and H2 systems. The two electrons

in each system and then the positron-positron or hydrogen-hydrogen terms. Each

system then has four attractive terms. Each electron has a negative potential with

each of the two postively charged particles (positrons or hydrogens).

Additionally, there are also artifacts of screening in Figure 7.1 and Figure 7.2. For

both the two electron-two positron system and the hydrogen system, the bare Coulom-

bic potential is plotted alongside the positron-positron and hydrogen-hydrogen po-

tential as the orange line (
〈
r2
e+,e+

〉− 1
2

and
〈
r2

H,H

〉− 1
2 ). We see that this line is slightly

lower than the repulsive potentials. The presence of electrons in the system appears

to be drawing the two positively charged bodies closely together. This finding is also

non-intuitive from the BO perspective since nuclear-nuclear repulsion is treated as a

pure Coulombic potential.
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Figure 7.1: Relationship of potential electron-electron, electron-positron, and
positron-postiron potential energies versus the average positron-positron distance.

Figure 7.2: Relationship of potential electron-electron, electron-hydrogen, and
hydrogen-hydrogen potential energies versus the average hydrogen-hydrogen distance.

7.6 Conclusion

This study investigated the non BO behavior of a two electron-two positron system

and the hydrogen molecule. The systems where investigated by solving the multi-

component full configuration interaction Schrödinger equation. Each particle was
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Figure 7.3: Inverse relationship of potential electron-electron, electron-positron, and
positron-postiron potential energies versus the average positron-positron.

Figure 7.4: Inverse relationship of potential electron-electron, electron-hydrogen, and
hydrogen-hydrogen potential energies versus the average hydrogen-hydrogen distance.

confined by a parabolic potential. The expectation value of the electron-electron,

electron-positron, and positron-positron potentials were plotted versus the expeca-

tion value of positron-positron distance for a set of confining potentials. The same

study was carried out for a hydrogenic system. The findings of this work constrasts
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Figure 7.5: Average positron-positron and hydrogen-hydrogen distance versus average
electron-electron distance.

Figure 7.6: Average electron-electron potential energy versus the average electron-
electron separation distance in the 2e+, 2e− and H2 systems.

with expected behavior from invokation of the BO approximation. It was shown

that, using a parabolic potential, H2 will always be bound, regardless of how closely

the two protons are confined. Additonally, it was seen that the bare Coulombic
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Table 7.1: Linear fits and RMSE of 〈Ve−,e−〉, 〈Ve+,e+〉, 〈Ve−,e+〉, and 〈Vtotal〉 (Eh)
versus 1√

〈r2
e+,e+

〉
(au−1) as calculated by mcFCI for the 2e−, 2e+ system.

Slope Intercept RMSE
〈Ve−,e−〉 1.381 −7.199× 10−4 9.054× 10−4

〈Ve+,e+〉 1.381 −7.199× 10−4 9.054× 10−4

〈Ve−,e+〉 −5.524 2.880× 10−3 3.622× 10−3

〈Vtotal〉 −2.762 1.440× 10−3 1.811× 10−3

Table 7.2: Linear fits and RMSE of 〈Ve−,e−〉, 〈VH,H〉, 〈Ve−,H〉, and 〈Vtotal〉 (Eh)
versus 1√

〈r2H,H〉
(au−1) as calculated by mcFCI for the H2 system.

Slope Intercept RMSE
〈Ve−,e−〉 0.398 3.795× 10−2 1.753× 10−2

〈VH,H〉 1.325 4.412× 10−5 1.749× 10−5

〈Ve−,H〉 −2.149 −0.188 8.061× 10−2

〈Vtotal〉 −0.426 −0.150 6.308× 10−2

hydrogen-hydrogen potential was lower than the calculated value without the BO

approximation.

Further investigations into parabolic confinement on this system and similar sys-

tems will help elucidate the underlying properties of these strongly confined systems.

It is certainly possible that parabolic confinement is only useful for certain systems

and in certain ranges.

7.A System parameters
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Table 7.3: Linear fit and RMSE of
√
〈r2
e−,e−〉 (au) versus

√
〈r2
x+,x+〉 (au) as

calculated with mcFCI.

Slope Intercept RMSE
2e−, 2e+ 1.000 0.000 0.000
H2 0.325 0.010 2.678× 10−2

Table 7.4: Linear fit and RMSE of 〈Ve−,e−〉 (Eh) versus 1√
〈r2
e−,e−

〉
(au−1) as

calculated with mcFCI.

Slope Intercept RMSE
2e−, 2e+ 1.372 2.276× 10−3 6.358× 10−4

H2 1.361 1.041× 10−3 1.977× 10−3

Table 7.5: External potential (k in atomic units) and Gaussian exponent
parameters (α, in atomic units) for each 2e−, 2e+ and H2 calculation.

2e−, 2e+ H2

k αe− αe+ αe− αH

0.0001 0.0050 0.0050 0.0050 0.2143
0.0010 0.0158 0.0158 0.0158 0.6775
0.0100 0.0500 0.0500 0.0500 2.1425
0.1000 0.1580 0.1580 0.1580 6.7752
0.2500 0.2500 0.2500 0.2500 10.7126
0.5000 0.3535 0.3535 0.3535 15.1499
1.0000 0.5000 0.5000 0.5000 21.4252
5.0000 1.1200 1.1200 1.1200 47.9082
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Chapter 8

Conclusion

Every chemical system is a multicomponent system. Often times, it is convenient to

theoretically investigate chemical systems using a single component perspective by

invoking the Born-Oppenheimer approximation. The BO approximation has been,

and will continue to be, one of the most important tools quantum chemistry. It’s

important to remember that it cannot adequately describe every system. For these

cases, multicomponent methods should be used.

Accurate, efficient, and scalable treatment of multicomponent systems is of the

utmost importance for multicomponent methods. While many methods already exist

to theoretically study multicomponent systems, one glaring omission was a coupled-

cluster approach. This thesis detailed how the foundations of single component

coupled-cluster theory could be extended to treat multicomponent systems by using

a multicomponent reference state and a multicomponent excitation operator. We saw

that the multicomponet coupled-cluster equations were enourmous in size, which high-

lights the need for efficient formulations and implementations of numerical solvers.

The accuracy of the mcCC method was also shown using systems with exact an-

alytical results (Hooke’s atom), and by comparing results to other highly accurate
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methods (multicomponent full configuration interaction and Nuclear-electron obrtial

configuration interaction).

The mcCC method was also used to investigate the electronic and optical proper-

ties of semiconductor quantum dots. The study spanned four dot compositions whose

diameters ranged from 2nm to 20nm. Results from mcCC accurately reproduced exci-

ton binding energies and scaling behavior which closely agrees with previous theoret-

ical and experimental findings. Additionally, the mcCC method produced biexciton

binding energies that closely agree with experiment and established a scaling trend

for biexcitons that has not been previously reported.

Work has also been done to apply the mcCC method to smaller molecular systems.

While preliminary results are promising, we realize that electron-hole screening is cur-

rently treated too approximately under the quasiparticle representation. Future work

will build off of the early theoretical efforts reported here. Ideally, accurate treat-

ment of electron-hole screening used with the mcCC method will produce excitation

energies with accuracy competitive with established methods like equation-of-motion

coupled-cluster and time dependent density functional theory.

This work also inspired curiosity about the impliciations of using the Born-

Oppenheimer approximation. The final study investigated how a multicomponent

treatment of the H2 contrasted with the traditional BO treatment. We found that

parabolic confinement of the protons and electrons produced very intersting behavior

- most notably that the system will always be bound. This study was repeated for a

two postiron-two electron system in which we saw the same behavior. This leads to

serious questions about whether parabolic confinement of multicomponent systems is

appropriate for multicomponent systems, particularly those that are highly confined.

The future of applications for the mcCC method looks very bright. There is

an array of potential application projects that would greatly further understanding

of biexcitonic behavior in semiconductor quantum dots. Two immediate projects
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that come to mind are investigating bexcitons in core-shell quantum dots, which has

already been done for excitons by former group member Jen Elward [92]. Additionally,

current group member Jeremy Scher has done work to investigate how quantum

dot shape affects excitonic behavior. This study could be replicated for biexcitons.

These are two of many possible applications for the mcCC method to quantum dot

systems. Continued work on the screening for molecular systems will need further

contributions. One area that the mcCC method has yet to be applied is also to

investigate systems were decoupling electronic and nuclear motion is inadequate.
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[191] M.L. Böhm, T.C. Jellicoe, M. Tabachnyk, N.J.L.K. Davis, F. Wisnivesky-
Rocca-Rivarola, C. Ducati, B. Ehrler, A.A. Bakulin, and N.C. Greenham. Lead
telluride quantum dot solar cells displaying external quantum efficiencies ex-
ceeding 120%. Nano Letters, 15(12):7987–7993, 2015.

[192] Benjamin H. Ellis, Somil Aggarwal, and Arindam Chakraborty. Development of
the Multicomponent Coupled-Cluster Theory for Investigation of Multiexcitonic
Interactions. Journal of Chemical Theory and Computation, 12(1):188–200,
2016.

[193] P. Michler. Single Quantum Dots: Fundamentals, Applications and New Con-
cepts. Physics and Astronomy Online Library. Springer, 2003.

[194] S. Glutsch. Excitons in Low-Dimensional Semiconductors: Theory Numerical
Methods Applications. Springer Series in Solid-State Sciences. Springer Berlin
Heidelberg, 2013.

[195] H. Haug and S.W. Koch. Quantum Theory of the Optical and Electronic Prop-
erties of Semiconductors. World Scientific, 2009.

[196] F. Bechstedt. Many-Body Approach to Electronic Excitations: Concepts and
Applications. Springer Series in Solid-State Sciences. Springer Berlin Heidelberg,
2014.

[197] U. Woggon. Optical Properties of Semiconductor Quantum Dots. Springer
Tracts in Modern Physics. Springer Berlin Heidelberg, 2014.

[198] S.N. Inamdar, P.P. Ingole, and S.K. Haram. Determination of band structure
parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltam-
metry. ChemPhysChem, 9(17):2574–2579, 2008.



178

[199] L.-W. Wang and A. Zunger. Pseudopotential calculations of nanoscale CdSe
quantum dots. Physical Review B - Condensed Matter and Materials Physics,
53(15):9579–9582, 1996.

[200] C. Querner, P. Reiss, S. Sadki, M. Zagorska, and A. Pron. Size and ligand
effects on the electrochemical and spectroelectrochemical responses of CdSe
nanocrystals. Physical Chemistry Chemical Physics, 7(17):3204–3209, 2005.

[201] J. Jasieniak, M. Califano, and S.E. Watkins. Size-dependent valence and
conduction band-edge energies of semiconductor nanocrystals. ACS Nano,
5(7):5888–5902, 2011.

[202] E. Kucur, J. Riegler, G.A. Urban, and T. Nann. Determination of quantum
confinement in CdSe nanocrystals by cyclic voltammetry. Journal of Chemical
Physics, 119(4):2333–2337, 2003.

[203] R.W. Meulenberg, J.R.I. Lee, A. Wolcott, J.Z. Zhang, L.J. Terminello, and
T. Van Buuren. Determination of the exciton binding energy in CdSe quantum
dots. ACS Nano, 3(2):325–330, 2009.

[204] S.L. Sewall, R.R. Cooney, K.E.H. Anderson, E.A. Dias, D.M. Sagar, and
P. Kambhampati. State-resolved studies of biexcitons and surface trapping dy-
namics in semiconductor quantum dots. Journal of Chemical Physics, 129(8),
2008.

[205] S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati.
Direct observation of the structure of band-edge biexcitons in colloidal semi-
conductor CdSe quantum dots. Physical Review B - Condensed Matter and
Materials Physics, 80(8), 2009.

[206] M. Achermann, J.A. Hollingsworth, and V.I. Klimov. Multiexcitons confined
within a subexcitonic volume: Spectroscopic and dynamical signatures of neu-
tral and charged biexcitons in ultrasmall semiconductor nanocrystals. Physical
Review B - Condensed Matter and Materials Physics, 68(24):2453021–2453025,
2003.

[207] C. Bonati, M.B. Mohamed, D. Tonti, G. Zgrablic, S. Haacke, F. Van Mourik,
and M. Chergui. Spectral and dynamical characterization of multiexcitons in
colloidal CdSe semiconductor quantum dots. Physical Review B - Condensed
Matter and Materials Physics, 71(20), 2005.

[208] L. Dworak, V.V. Matylitsky, M. Braun, and J. Wachtveitl. Coherent
longitudinal-optical ground-state phonon in CdSe quantum dots triggered by
ultrafast charge migration. Physical Review Letters, 107(24), 2011.

[209] M. Kuno. Introductory Nanoscience. Garland Science, 2011.



179

[210] Andreas Dreuw and Martin Head-Gordon. Single-reference ab initio meth-
ods for the calculation of excited states of large molecules. Chemical reviews,
105(11):4009–4037, 2005.

[211] C. Ullrich. Time-Dependent Density-Functional Theory: Concepts and Appli-
cations. Oxford Graduate Texts. OUP Oxford, 2012.

[212] Miguel A.L. Marques, Carsten A. Ullrich, Fernando Nogueira, Angel Rubio,
Kieron Burke, and Eberhard K. U. Gross, editors. Time-Dependent Density
Functional Theory. Springer Berlin Heidelberg, 2006.

[213] Carsten A Ullrich and Zeng-hui Yang. A brief compendium of time-dependent
density functional theory. Brazilian Journal of Physics, 44(1):154–188, 2014.

[214] Y. Zhou, S. Wang, and Y. Zhang. Catalytic reaction mechanism of acetyl-
cholinesterase determined by born-oppenheimer Ab initio QM/MM molecular
dynamics simulations. Journal of Physical Chemistry B, 114(26):8817–8825,
2010.

[215] Z. Ke, S. Wang, D. Xie, and Y. Zhang. Born - Oppenheimer ab initio QM/MM
molecular dynamics simulations of the hydrolysis reaction catalyzed by protein
arginine deiminase 4. Journal of Physical Chemistry B, 113(52):16705–16710,
2009.

[216] G.-J. Kroes, A. Gross, E.-J. Baerends, M. Scheffler, and D.A. McCormack.
Quantum theory of dissociative chemisorption on metal surfaces. Accounts of
Chemical Research, 35(3):193–200, 2002.

[217] N.J. Harris and K. Lammertsma. Ab initio density functional computations
of conformations and bond dissociation energies for hexahydro-1,3,5-trinitro-
1,3,5-triazine. Journal of the American Chemical Society, 119(28):6583–6589,
1997.

[218] I.V. Schweigert and B.I. Dunlap. Electronic structure and molecular dynamics
of breaking the RO-NO 2 bond. Journal of Chemical Physics, 130(24), 2009.

[219] W.-R. Zheng, J.-L. Xu, T. Huang, Z.-C. Chen, and Q. Yang. P=O bond dis-
sociation enthalpies: High-level ab initio and DFT study. Computational and
Theoretical Chemistry, 968(1-3):1–7, 2011.

[220] B.S. Jursic. The evaluation of nitrogen containing bond dissociation energies
using the ab initio and density functional methods. Journal of Molecular Struc-
ture: THEOCHEM, 366(1-2):103–108, 1996.

[221] M.E.A. Benmalti, A. Krallafa, and M.-P. Gaigeot. Born Oppenheimer Molec-
ular Dynamics calculation of the o-H IR spectra for acetic acid cyclic dimers.
Journal of Physics: Conference Series, 574(1), 2014.



180

[222] W. Lin and F. Paesani. Infrared spectra of HCl(H2O)n clusters from semiem-
pirical Born-Oppenheimer molecular dynamics simulations. Journal of Physical
Chemistry A, 119(19):4450–4456, 2015.

[223] M. Baer. Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms
and Conical Intersections. 2006.

[224] S. Bubin, M. Pavanello, W.-C. Tung, K.L. Sharkey, and L. Adamowicz. Born-
oppenheimer and non-born-oppenheimer, atomic and molecular calculations
with explicitly correlated gaussians. Chemical Reviews, 113(1):36–79, 2013.

[225] J.M. Bowman. Chemistry: Beyond born-oppenheimer. Science, 319(5859):40–
41, 2008.

[226] T. Yonehara, K. Hanasaki, and K. Takatsuka. Fundamental approaches to nona-
diabaticity: Toward a chemical theory beyond the born-oppenheimer paradigm.
Chemical Reviews, 112(1):499–542, 2012.

[227] M. Cafiero, S. Bubin, and L. Adamowicz. Non-Born-Oppenheimer calculations
of atoms and molecules. Physical Chemistry Chemical Physics, 5(8):1491–1501,
2003.

[228] Ahren W. Jasper, Shikha Nangia, Chaoyuan Zhu, and Donald G. Truhlar.
Non-Born-Oppenheimer Molecular Dynamics. Accounts of Chemical Research,
39(2):101–108, 2006.

[229] Joseph F. Capitani, Roman F. Nalewajski, and Robert G. Parr. Non-Born-
Oppenheimer density functional theory of molecular systems. Journal of Chem-
ical Physics, 76(1):568–573, 1982.

[230] How large are nonadiabatic effects in atomic and diatomic systems? Journal
of Chemical Physics, 143(12), 2015.

[231] S. Bubin, M. Stanke, and L. Adamowicz. Accurate non-Born-Oppenheimer
calculations of the complete pure vibrational spectrum of ditritium using all-
particle explicitly correlated Gaussian functions. Journal of Chemical Physics,
140(15), 2014.

[232] L. Adamowicz, E.I. Tellgren, and T. Helgaker. Non-Born-Oppenheimer calcula-
tions of the HD molecule in a strong magnetic field. Chemical Physics Letters,
639:295–299, 2015.

[233] N. Kirnosov, K.L. Sharkey, and L. Adamowicz. Non-Born-Oppenheimer varia-
tional method for calculation of rotationally excited binuclear systems. Journal
of Physics B: Atomic, Molecular and Optical Physics, 48(19), 2015.



Benjamin H. Ellis
ellis.bh89@gmail.com (414) 305-0784
103 Croyden Ln
Apt B
Syracuse, NY 13224

Personal Statement

My objective is to pursue my professional and personal interest in solving large, complex problems with real
world impact. I am particuarly passionate about computationally challenging problems where creative and
critical thinking provides data driven solutions and expands the boundaries of current technology.

Experience
Syracuse University Syracuse, NY

Graduate Teaching Assistant Fall 2011 – Fall 2013, Fall 2015 – present
• Taught general and organic chemistry
• Led laboratory and discussion sections
• Reviewed and reinforced key concepts

Graduate Research Assistant Spring 2013 – Summer 2015
• Wrote and maintained numerically intensive software
• Deployed software on HPC platforms
• Collected, explored, and analyzed data
• Authored reports and manuscripts for publication

Education

Syracuse University Syracuse, NY
Doctorate of Philosophy, Physical Chemistry October 2016

Thesis: Development of multicomponent coupled-cluster theory and applications to molecular and
semiconductor systems

Syracuse University Syracuse, NY
Master of Philosophy, Physical Chemistry August 2013

Thesis: Development of multicomponent semistochastic quantum Monte Carlo for investigating
nuclear-electron correlation

University of Wisconsin-Madison Madison, WI
Bachelor of Science, Chemistry May 2011

Qualifications

Skills:
• Software development
• Object oriented design principles
• Algorithm development
• High performance and parallel computing
• Numerical methods

• Data analysis
• Problem solving, troubleshooting, and debug-

ging
• Technical reporting and documentation
• Teaching, training, and support

Technologies:
• Python

• FORTRAN

• C and C++

• MPI, OpenMP, and multithreading

• Numerical and data analysis libraries (LAPACK,
BLAS, MKL, SciPy, NumPy, Pandas)

• Microsoft Office (Word, Excel, PowerPoint) and
latex (LATEX)

• Version control and collaboration software (Git)
• Cluster (TACC Stampede) and cloud HPC plat-

forms using SLURM, PBS, and Condor sched-
ulers

• Comfortable with *nix systems

181



Publications and Exhibitions
Exhibitions

National American Physical Society March Meeting 2013 Baltimore, MD
Development of multicomponent semistochastic quantum Monte Carlo, Session W24, Abstract ID:
BAPS.2013.MAR.W24.4

National American Chemical Society Fall Meeting 2015 Boston, MA
Development of the multicomponent coupled-cluster theory for investigating non-adiabatic electron-
nuclear interactions in confined chemical systems, Paper Number: COMP 192

Publications
• Development of multicomponent coupled-cluster theory for investigation of multiexciton interactions,

Journal of Chemical Theory and Computation
• Investigation of many-body correlation in biexcitonic systems using electron-hole multicomponent

coupled-cluster theory (submitted 2016)
• Non-perturbative determination of electron-hole screening from explicitly correlated geminal functions

without using unoccupied states (in prep 2016)

Research Experience

Development of multicomponent coupled-cluster theory
• Formulated coupled-cluster theory capable of quantifying correlation between multiple particle types

• Deigned algorithms, implemented solutions, and optimized code that considered both memory footprint
and CPU cost

• Developed symbolic and numerical software to both derive and automatically implement large sets of
equations

• Deployed code on HPC cluster computing environment (TACC Stampede)

Investigation of exciton and biexciton binding energy in seminconductor quantum dots
• Used multicomponent coupled-cluster method to investigate and predict properties of semiconductor

quantum dots

• Modified theoretical formualtion and implementation of the method to favorably scale computational cost

• Analyzed and explored data to find unique and novel trends

Formulation of electron-hole Hamiltonian for investigating excited electronic states in molecular systems

• Developed theory to treat excitations in chemical systems using multicomponent methods

• Wrote software that transforms single component mathematical models to multicomponent models

182


	Development of multicomponent coupled-cluster theory and its application to nanoclusters and molecular systems
	Recommended Citation

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Multicomponent systems in chemistry 
	1.1 Introduction
	1.2 Single component description 
	1.3 Multicomponent description 
	1.3.1 Subatomic particles bound to molecular systems 
	1.3.2 Quasiparticle representation 
	1.3.3 Non Born-Oppenheimer affects 

	1.4 This work

	2 Single component quantum chemistry
	2.1 The Hartree-Fock method
	2.2 Second quantization
	2.2.1 Creation and annihilation operators 
	2.2.2 Anticommutation relationships
	2.2.3 Fermi vacuum and normal ordering
	2.2.4 Wick's theorem
	2.2.5 Normal ordered Hamiltonian
	2.2.6 Slater-Condon rules 

	2.3 Configuration interaction theory
	2.3.1 Full configuration interaction 
	2.3.2 Configuration interaction singles and doubles
	2.3.3 Consequences of truncating the CI wave function 
	2.3.4 Recent developments in configuration interaction 

	2.4 Coupled-cluster theory
	2.4.1 Choosing an excitation operator 
	2.4.2 Similarity transformation and the Baker-Campbell-Hausdorff expansion 
	2.4.3 The CCSD equations 
	2.4.4 Size consistency and the CC wave function 
	2.4.5 Relating CC to CI 


	3 Multicomponent methods in quantum chemistry
	3.1 Multicomponent Hartree-Fock 
	3.1.1 Choice of the multicomponent Fock operator 

	3.2 Multicomponent second quantization
	3.3 Multicomponent configuration interaction
	3.3.1 Multicomponent full configuration interaction wave function 
	3.3.2 Truncating the multicomponent configuration interaction wave function 


	4 Multicomponent coupled-cluster theory
	4.1 Introduction 
	4.2 Theory 
	4.2.1 Construction of the vacuum states
	4.2.2 Effective normal-ordered Hamiltonian
	4.2.3 The mcCC Equations

	4.3 Implementation details 
	4.4 Computational details 
	4.5 Results 
	4.5.1 Model-A single component Hooke's atom
	4.5.2 Model-B multicomponent Hooke's atom
	4.5.3 Positronium hydride system
	4.5.4 Excitonic systems
	4.5.5 Biexcitonic system

	4.6 Conclusion 
	4.A Calculation parameters

	5 Investigating biexcitons in seminconductor quantum dots
	5.1 Introduction 
	5.2 Theory 
	5.3 Results 
	5.4 Conclusion 
	5.A Material and basis parameters

	6 Applying multicomponent coupled-cluster method to molecular systems
	6.1 Traditional methods for studying excited electronic states
	6.1.1 Configuration interaction singles
	6.1.2 Equation-of-motion coupled-cluster
	6.1.3 Time dependent Hartree-Fock

	6.2 Electron-hole representation 
	6.3 Linear response theory
	6.3.1 Time dependent many body systems
	6.3.2 General linear response theory
	6.3.3 Density linear response
	6.3.4 Perturbation theory approach

	6.4 Preliminary results 

	7 Investigating mass and confinement effects in multicomponent systems
	7.1 Introduction
	7.2 Theory
	7.2.1 The Born-Oppenheimer Approximation for single component systems 
	7.2.2 The Born-Oppenheimer Approximation for multicomonent systems 

	7.3 Method 
	7.4 Computational details 
	7.5 Results
	7.6 Conclusion
	7.A System parameters

	8 Conclusion
	Bibliography
	Curriculum Vitae

