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General Abstract 

 

Detrital provenance analysis is an important tool in our understanding paleo-fluvial 

drainages, erosion of landscapes, paleogeographic reconstructions, and regional geologic and 

tectonic histories. Here, we examine the utility of multiple provenance analysis techniques 

through their application to paleo, modern, and synthetic detrital datasets. Zircon is a common 

accessory mineral found in most detrital sediments, primarily due to its refractory nature. During 

formation, zircon preferentially incorporates the element U and Th into its crystal lattice while 

excluding Pb, making it ideal for radiometric dating. Inexpensive and time-efficient U/Pb age 

acquisition techniques make zircon the mineral of choice for a majority of provenance studies.  

The sedimentary basins between the Yangtze River and Red River have long been used to 

argue for a Mississippi River-scale paleo-drainage. We examine the U/Pb zircon ages of 

Cenozoic deposits ranging from Eocene to Pliocene age from basins surrounding the first bend of 

the Yangtze River and upper reaches of the Red River. We combine this data with a 

comprehensive suite of zircon grain-ages from contemporaneous deposits, modern fluvial 

sediments, and bedrock source units from previously published literature. Using the new 

technique developed here, of combining age spectra deconvolution and age component 

interpolation maps, it becomes clear that Cenozoic deposits of the Southeastern margin of the 

Tibetan Plateau do not share provenance with offshore sediments associated with the Paleo Red 

River in the Yinggehai Song-Hong Basin. This, coupled with detailed stratigraphic 

measurements and interpretations, as well as paleoflow measurements strongly suggests that at 

least since the Eocene, there was no connectivity between the Yangtze and Red Rivers.  

In a modern setting, examination of provenance of fluvial sediments collected throughout 
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a known catchment can provide insight into regional erosional patterns. The modern Yangtze 

River, the largest river in Eurasia, provides a perfect setting to apply detrital zircon provenance 

analysis. We use a previously published zircon U/Pb age distribution dataset of fifteen trunk 

stream samples and ten samples of the largest tributaries feeding the Yangtze. We apply a series 

of age-distribution analysis techniques to examine both downstream changes in provenance of 

trunk stream samples as well as identify the key bedrock and tributary sources of sediment to the 

trunk stream samples throughout the Yangtze's reach. The original work using this dataset 

argued that increasing anthropogenic influences, primarily agricultural, lead to a greater than 

expected influence of the Han, Yuan, and Xiang Rivers, whose confluence with the Yangtze 

occur in the middle-to lower reaches. The quantitative analysis developed here, however, shows 

a consistent distribution of U/Pb ages for Yangtze River trunk stream sediments is established in 

the upper reaches of the Yangtze after the first bend and is maintained some 3000km 

downstream. The signal is most likely derived from the erosion of the geologic terranes of the 

Songpan Ganze Terrane and the Longmenshan range, which are sourced primarily by the 

Yalong, Min, and Dadu rivers. These sources of sediment are consistent with known areas of 

greater stream power due to higher slopes, exhumation rates, and tectonic activity.  

One technique that has recently been applied to detrital zircon datasets is 

multidimensional scaling, or MDS. MDS transforms pairwise dissimilarity measurements of 

sample U/Pb age distributions into Euclidian distances and then some optimal configuration, 

where greater distances between sample points represents greater dissimilarity between their 

respective age distributions. While MDS is not new, its application to detrital zircon datasets has 

never been rigorously tested. We examine several important issues in the application of MDS to 

detrital zircon research, including how intra-sample variation is represented as well as how 
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dissimilarities are calculated; how random sampling associated with dating a limited number of 

zircon grain ages can and does affect the resulting MDS configuration; and how MDS 

differentiation is affected by samples containing either varying degrees of overlapping, shared, or 

unique age components. In application of MDS to both synthetic and real-world datasets, we 

illustrate the usefulness of the approach in the interpretation of detrital zircon age data; which 

suggests that thoughtful application of MDS mapping to detrital zircon data can afford 

significant advantages in the geologic interpretation of zircon grain ages.  
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Abstract  

The Cenozoic deposits of the Tibetan Plateau's southeastern margin are often cited as part of 

a continental-scale river system connecting the paleo-Yangtze River with the Paleo-Red River. 

Confirming the purported connection and any subsequent drainage reorganization, has garnered 

significant attention and varied proposed ages for reorganization. This study presents detrital 

zircon U/Pb ages and paleocurrents in Eocene to Pleistocene sedimentary basin deposits 

distributed over a broad area of the southeast Plateau margin within the area of proposed paleo-

river connectivity. When combined with previously published studies, our U/Pb ages allow 

examination of the temporal and spatial distribution of provenance throughout the Cenozoic. We 

identify six key age components of the detrital U/Pb age distributions and use these to examine 

the patterns of sediment provenance for different Cenozoic Epochs. Detailed analysis of these 

components shows provenance for both on- and offshore deposits is best described by local 

bedrock sources and provides little to no evidence of regional changes in provenance. This 

suggests that a stable fluvial system similar to the modern drainage network has existed since the 

Eocene with no evidence for major provenance-altering river capture. Paleoflow measurements 

taken throughout the SE margin further corroborate the results of detrital zircon provenance. The 

combination of U/Pb age components and paleocurrent directions suggests no Cenozoic 

connection between the Paleo-Yangtze and Paleo-Red Rivers. 

  



3 

 

 

 

Introduction  

Today, many of the great rivers of Asia have their headwaters in the Tibetan Plateau. The 

history and development of the rivers of the SE margin of the Plateau has captured the attention 

of geologists for decades (Koons, 1995; Clark et al., 2004; Hallet and Molnar, 2001; Clift, 

Blusztajn, et al., 2006; Lee, 1934; Gregory and Gregory, 1936; George and George, 1936; 

Abendanon, 1908; van Hoang et al., 2009; Wei et al., 2015; Zheng et al., 2013; Kong et al., 

2012). Their temporal and spatial evolution is believed to hold important clues to the topographic 

evolution of the Tibetan Plateau. The southeast margin of the Plateau, with its overall gentle 

topographic gradient (Clark and Royden, 2000) yet large number of strike-slip fault systems with 

tens to hundreds of kilometers of displacement (Wang et al., 2000; Tapponnier et al., 1986), 

hosts several of these rivers (Figure 1.1). Clark et al., (2004) presented a comprehensive attempt 

to reconstruct the river networks of the southeastern margin. Their reconstruction advocates for 

an initially integrated, Mississippi-scale drainage basin that combined the upper reaches of 

today’s large Southeast Asian rivers, principally with the connected Yangtze River and Red 

River forming the trunk stream (Figure 1.2). The integrated drainage was subsequently 

fragmented throughout the Cenozoic via a series of river captures and flow reversals that evolved 

into today’s drainage basins (e.g. Clark et al., 2004; Clift et al., 2006a; Kong et al., 2012; Yan et 

al., 2012). The disconnection of the upper Yangtze and Red Rivers, often viewed as the key 

change in the network's evolution, is envisioned to have occurred at or near the Yangtze’s “first 

bend” (Figure 1.2) and to have coincided with the capture of the upper Yangtze by the middle 

Yangtze, though the timing of this has been contested (e.g. Clark et al., 2004; Clift and Sun, 

2006; Kong et al., 2012; van Hoang et al., 2009).  

Since fluvial systems theoretically respond rapidly to tectonic perturbations (e.g. Whipple 
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and Tucker, 1999), an increase in incision rates may reflect a tectonic driver of river 

reorganization. Based on low temperature thermochronology data, Clark et al. (2005, 2004) and 

Ouimet et al. (2010) favored a middle to late Miocene regional surface uplift which may have 

driven the breakup of the SE margin fluvial system to coincide with passive surface uplift 

induced by lower crustal flow from the central Tibetan Plateau towards its SE Margin. However, 

recent stable isotope paleoaltimetry estimates from the SE margin suggests similar to modern 

day elevations since at least the Eocene (Hoke et al., 2014; Li, Currie, et al., 2015), complicating 

the link to late Miocene lower crustal flow (Hoke et al., 2014). Furthermore, recent work has also 

indicated that river capture in this area and the formation of elevated low relief surfaces may be 

driven by subtle differences in local relief and base level changes starving catchments not 

obviously linked to discrete episodes of tectonic activity, such as lower crustal flow (Yang et al., 

2015).  

Detrital zircon U/Pb age-distributions are commonly applied as a provenance tool to 

constrain the routing of sediment through time, and therefore may be used to reveal otherwise 

elusive changes in paleo-flow patterns of drainage networks. The underlying assumption of this 

technique is that major changes in measured zircon age distributions reflect coeval changes in the 

contributing bedrock source areas. A previous Yangtze-Red River connection should be 

manifested by a continuity of U/Pb ages in deposits of the SE margin, located between the 

modern Yangtze and the Red Rivers, and offshore deposits of the Red River, indicating 

connection along the hypothetical integrated catchment (Figure 1.1 and 1.2). Shared provenance 

of these deposits, hypothetically, would also cease in subsequent deposits postdating the capture 

of the upper Yangtze by its modern middle-lower reach. This assumes that the provenance of 

deposits derived from the upper Yangtze differ from those of the Red River catchment. Lastly, 
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further evidence of a hypothetical paleo-Red-Yangtze system could come from paleo-flow 

directions of sediments from large river deposits. These predictions have yet to be rigorously 

tested, because prior work in this region has typically been spatially or temporally limited to 

areas either near to or far downstream of proposed capture points (Kong et al., 2012, 2009; Wei 

et al., 2015; Yan et al., 2012; Clift and Sun, 2006; van Hoang et al., 2009; Zheng et al., 2013).  

To overcome some of these limitations, we sampled Cenozoic strata within a 250,000km
2
 

area along the SE margin surrounding the First Bend of the Yangtze and the upper reaches of the 

Red River (Figure 1.1 and 1.2). This study combines 33 new detrital zircon U/Pb age samples 

and combines them with 27 previously published samples to create a synoptic spatial overview 

of zircon U/Pb age-distributions from the Eocene to the Pliocene; a dataset that spans over 

600,000km
2
. The previously published data include offshore sediment samples of the Yinggehai-

Song Hong Basin of Oligocene to Quaternary in age (Yan et al., 2011; Zhao et al., 2015). In 

addition, we compiled a suite of 37 U/Pb zircon age distributions of modern fluvial samples from 

the Red (Clift, Carter, et al., 2006; van Hoang et al., 2009), Yangtze (He et al., 2013; Clift, 

Blusztajn, et al., 2006), and Lancang Rivers (Chen et al., 2014; Clift, Carter, et al., 2006) 

(Appendix I.; Figure I.1). Finally, we assemble a comprehensive compilation of 97 bedrock U/Pb 

distributions throughout and immediately surrounding the study area to help identify the bedrock 

provenance of the detrital samples (Figure 1.1 and Appendix I. Figure I.2). It is important to 

note, the modern samples from Hainan Island, the Nanpan River, and Ou River are used as both 

bedrock and modern samples as they represent integrated bedrock samples in areas where we 

have poor U/Pb age coverage and minimal shared catchment area with the Cenozoic sediments 

examined here. Lastly, we pair the detrital zircon data with paleoflow measurements of Cenozoic 

strata to better understand regional transport patterns. Our analysis shows a lack of evidence for a 
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connection between the Paleo-Yangtze and Paleo-Red Rivers since at least Eocene time. 

Regional Geomorphic Background 

The Tibetan Plateau is characterized by steep, high relief margins with the exception of the 

SE Plateau margin (Figure 1.1) (Clark and Royden, 2000). Here, the topography is characterized 

by high-elevation, low-relief surfaces commonly interpreted as remnants of a relict landscape 

passively uplifted by ductile lower crustal flow (Royden et al., 1997; Clark and Royden, 2000; 

Clark et al., 2005; Schoenbohm et al., 2006; Cook and Royden, 2008). The low relief landscape 

of the southeast margin is often treated as relict paleotopography and used as a datum (Clark et 

al., 2004, 2005; Ouimet et al., 2010; Clift and Sun, 2006). Paleoaltimetry data suggests that the 

southeastern edge of the plateau attained its modern elevations by at least Eocene time (Hoke et 

al., 2014; Li, Currie, et al., 2015). Recent work, however, strongly suggests that what is 

commonly described as the relict landscape of the southeast plateau margin may instead be the 

product of an autogenic river capture process (Yang et al., 2015). This process, driven by 

differences in local base levels in adjacent basins, does not necessitate a continuous, uplifted 

relict topography as envisioned by Clark et al. (2004).  

The Modern Yangtze, Lancang, and Salween Rivers all have their headwaters on the 

Tibetan Plateau and drain parallel to the curvature of the eastern syntaxis (Figure 1.1; Hallet and 

Molnar, 2001). The rivers have incised ~2 km deep, parallel canyons, separated by narrow 

mountain ranges along their southward flow paths off the plateau. The Yangtze River, however, 

makes a sharp turn at the First Bend and begins flowing eastward (Figure 1.1 and 1.2), 

eventually draining into the East China Sea. In contrast to these main rivers, the Red River’s 

headwaters are not on the plateau and its course is largely controlled by the Ailao Shan-Red 
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River fault system (Allen et al., 1984; Leloup et al., 1993, 2006) before draining into the 

Yinggehai-Song Hong Basin (YSHB) in the northwest corner of the South China Sea.  

Previous Work 

Geochemical, thermochronologic, and geochronologic data have been used in various 

attempts to constrain the Cenozoic history of drainage (Clift and Sun, 2006; Clift, Blusztajn, et 

al., 2006; Kong et al., 2009; Robinson et al., 2014; van Hoang et al., 2009; Yan et al., 2012; 

Zheng et al., 2013), with timings of fluvial changes ranging from Eocene to Plio-Pleistocene. 

Using (U-Th)/He and fission track ages of bedrock apatites, Richardson et al. (2010) noted an 

Eocene change in fluvial incision rates from the middle Yangtze River. This was interpreted to 

be possible evidence for the capture of the upper Yangtze by the lower and its possible 

disconnect from the Red River. Changes in Nd isotopic data, seismic analysis, and sediment 

budgets of deposits of the YSHB and Hanoi Basin by Clift and Sun (2006) and Clift et al. (2006) 

were interpreted as significant changes in the Red River drainage occurring between the middle 

Miocene to late Oligocene. Sediment budget estimates from Clift et al. (2006) may be under 

represented as they estimate the total mass lost below the 'stable' paleosurfaces of the SE margin 

proposed by Clark et al. (2004). Using a modern average erosion rate of 90m/Ma of these 

purported paleosurfaces calculated near the Yangtze First Bend by McPhillips et al. (2016), and 

applying it to the modern Red River catchment, one arrives much closer to the estimated offshore 

volumes. Clift et al.’s (2006) sediment budgets do not consider inputs from Vietnam and Hainan 

Island, making the loss of Red River drainage unnecessary to close the sediment budget gap 

(Zhao et al., 2015). Interpreted changes in provenance in the late Oligocene are not unique to the 

YSHB, as evidenced by a study correlating zircon ages with sequence stratigraphic relations in 

the Jianchuan Basin, considered to be the most likely location of a Red River–Yangtze 
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connection (Yan et al., 2012). Oligocene provenance changes were interpreted as a drainage 

response to regional strike-slip deformation along the Ailao-Shan Fault Zone (Yan et al., 2012).  

The Pliocene to Pleistocene reorganization proposed by Kong et al. (2012) is linked to large-

scale deformation associated with clockwise rotation of the Eastern Himalayan syntaxis. The 

middle to late Miocene incision reported by McPhillips et al., (2016) below the wind gap of 

purported paleoflow, all but precludes the timing of Kong’s et al. (2016). Overall stability of the 

Red River drainage (van Hoang et al., 2009) and the lower Yangtze River Drainage (Zheng et al., 

2013) since at least the late Miocene and Oligocene, respectively, have been interpreted from 

lack of local temporal variation in zircon distributions.  

A series of recent studies calls into question the previously assumed connection of the 

Yangtze and Red River. Analysis of sediment cores and stratigraphy of the southern Jianchuan 

Basin found no evidence of a southward flowing fluvial system in the basin in Eocene and 

younger deposits (Wei et al., 2015). This is supported by recent river incision data at the first 

bend, documented from cosmogenic nuclide dating of cave deposits, which precludes late 

Miocene or younger capture (McPhillips et al., 2016). Study of the offshore YSHB finds no 

geochemical evidence of capture in Oligocene and younger deposits, favoring instead consistent 

flux of sediment from Hainan Island and Central Vietnam since the late Oligocene (Zhao et al., 

2015). Despite extensive study, no conclusive consensus has been reached for the evolution of 

the modern drainages along the southeastern plateau, though most lean towards Miocene or 

earlier capture. Our study attempts to better constrain when or if connectivity of the Yangtze and 

Red River existed using a much greater spatial and temporal detrital zircon record than 

previously published.   
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Methodology 

Sampling strategy 

For this study, we collected samples from basins near several hypothesized capture points as 

well as other exposures of Cenozoic deposits. These basins include the Jianchuan, Yanyuan, and 

Jinggu basins, as well as exposures near the cities of Lühe, Dali, Lanping, Lijiang, Midu, and 

Jianshui (Figure 1.1 and 1.2).  

The samples collected in the Jianchuan Basin, as well as those from near Lijiang, Lanping, 

and Dali fall within the area of hypothesized connectivity, south of the modern Yangtze to the 

northern headwaters of the Red River (Figure 1.2). A connected fluvial system passing through 

these basins would be reflected as a continuous and relatively uniform distribution of U/Pb ages 

from the SE margin deposits to along the course of the hypothesized river and the offshore 

deposits in the YSHB. The sedimentary facies throughout the SE margin include axial river, 

alluvial fan, large fluvial, lacustrine, and eolian deposits. Fluvial facies on the scale of paleo 

Yangtze-Red River are restricted generally to the Paleogene of the Jianchuan and Jinggu basins, 

while other sedimentary deposits reflect axial rivers or alluvial fans associated with transverse 

drainage systems. The U/Pb age signal from the upper Yangtze and the basins between the first 

bend and headwaters of the Red River would be transmitted downstream by a connected 

Yangtze-Red River. This signal would therefore be imparted to any YSHB and paleo Red River 

deposits.  

The Jianchuan Basin (Figure 1.2) is a ~100km long and ~30km wide basin and is the largest 

exposure of Cenozoic deposits within the SE Tibet margin. The center of the basin lies ~30km to 

the west of the First Bend and is the best-sampled basin of the SE Plateau margin. Two Eocene 
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samples were collected in the Baoxiangsi formation. The lower, middle, and upper Baoxiangsi 

formation consist of massive clast supported conglomerates with interbedded massive poorly 

sorted sandstones (Wei et al., 2015); thickly bedded and well-sorted mature cross bedded 

sandstones in the north and channel fills of braided rivers in the south; and red fluvial sandstones 

siltstones and mudstones a well developed floodplains, respectively. Detrital samples were 

collected from the middle and upper Baoxiangsi Formation. One Oligocene sample was collected 

in the northern Jianchuan Basin from the massive well-sorted sandstones intercalated with 

conglomerates and mudstones of the Jinsichang formation (Figure 1.2). Two additional Eocene 

samples were collected in central Jianchuan Basin near the city of Shigu from transverse fluvial 

deposits, and three Miocene samples were collected in the southern basin from medium-thickly 

bedded trough and planer cross-bedded sandstones, which were interbedded with mudstones. In 

addition, four previously published samples from the southern Jianchuan Basin (Yan et al., 

2012), one from each Epoch from the Eocene to Pliocene, were included in our dataset. Poor 

depositional age constraints place the well-sorted, medium to thickly bedded fluvial deposits 

collected near Midu, located within the modern catchment of the Red River, as very late Eocene 

age (given a significant proportion of Priabonian age zircon) or Oligocene age. An Eocene 

sample from lenticular sandstone lenses intercalated with imbricated conglomerates was 

collected in the deposits near Lijiang ~40km east of the First Bend (Figure 1.2). Additional 

Pliocene samples were collected just south of the Jianchuan Basin near Dali from medium-

thickly bedded sandstones overlying massive conglomerates (one sample) and ~100 km west of 

the Jianchuan Basin near Lanping in the Shuanghe Formation, consisting primarily of grey to red 

interbedded mudstone, siltstones, and sandstones and marl deposits (three samples) (Figure 1.2).  

The Cenozoic sedimentary rocks of the Jinggu basin collected ~60km east of the Lancang 
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River and ~125km west of the Red River, fall completely within the modern drainage of the 

Lancang, and borders the drainage divide of these two rivers. The Jinggu Basin may represent 

the path of the Paleo-Lancang River and possibly a point of connection where the Lancang River 

drained into the Red River (Figure 1.1 and 2). The Paleogene sample collected from the fluvial 

red-beds of the basin is poorly constrained as either Eocene or Oligocene age. The five Neogene 

samples were collected from periodic massive sandstones beds within the primarily lacustrine 

deposits of the Miocene Shanhaogou and Huihuan Formations. By examining the provenance of 

these units, we will be able to better constrain the existence of the modern Lancang–Red River 

divide in the late Paleogene-Miocene.  

The Yanyuan Basin lies to the northeast of the First Bend ~40km west of the Yalong River, a 

major tributary of the Yangtze River often included in the Paleo Yangtze-Red River 

reconstructions. Eocene samples of the Yanyuan Basin are from the northern and southern 

extremes of the basin in sand lenses within conglomerates and alluvial fan deposits, respectively, 

and should provide insight into the U/Pb age signal of deposits derived from bedrock sources in 

the NE. The basin's proximity to the modern Yalong River, a major tributary of the upper 

Yangtze, allows for the reasonable expectation of shared provenance between modern and paleo 

deposits in the event of Yalong-Yangtze-Red River connectivity. With high exhumation on the 

Longmenshan documented to be as early as Eocene (Wang, Kirby, et al., 2012), it would likely 

impart the Yalong’s unique U/Pb age character on the Yanyuan Basin to the on- and offshore 

deposits of the Yangtze-Red River system. The four Pliocene samples were collected from point 

bar and active channel deposits from Yanyuan and may help establish any major changes in 

provenance between the Eocene and Pliocene. 

Samples collected near the city of Jianshui are Pliocene deposits, which vary from imbricated 
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pebble-cobble conglomerates to finely laminated mudstones. We collected three Pliocene 

samples within the western border of the Nanpan River Catchment and 45km from the modern 

Red River. The location of these samples helps establish the position of the drainage divide 

between the Nanpan and the Red River in the late Neogene.  

The late Miocene sample collected in the Lühe coalmine is from the Huanggang formation 

consisting of primarily interbedded brown medium to coarse tuffaceous sandstone with trough 

cross beds and black organic rich grey-black coal deposits. It lies within the Red River catchment 

~100 km to the west of Midu, just south of the modern Yangtze-Red River divide and may help 

define the drainage divide in the Miocene.  

In addition to these SE margin deposits, we use six Miocene samples from fluvial 

deposits analyzed by van Hoang et al. (2009), five from along the modern Red River and the 

sixth from the Nanpan River catchment (Figure 1.1B). These data are grouped with our Miocene 

samples. Miocene connectivity would give rise to matching provenance of these deposits to those 

of the northern basins associated with the upper and middle Yangtze River.  

We compiled U/Pb data of offshore deposits of the Red River in the YSHB. Two 

Oligocene, nine Miocene, and five Pliocene samples from the previously published works of Yan 

et al. (2011) and Zhao et al. (2015) are also included in our detrital dataset. The modern fluvial 

deposits (Appendix I. Figure I.1) include 23 detrital samples from the modern Yangtze sediment 

(He et al., 2013), three samples from the Lancang River (Chen et al., 2014; Clift, Carter, et al., 

2006), and two from the Red River (van Hoang et al., 2009). Lastly, a literature review produced 

a dataset containing 31,276 zircon ages from 97 potential contributing bedrock source 

distributions spanning much of East Asia (Figure 1.1, Appendix I. Figure I.2). Ages for compiled 
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data were primarily measured using LA-ICP-MS analysis; however, sensitive high-resolution ion 

microprobe (SHRIMP) and thermal ionization mass spectrometry (TIMS) ages are included in 

the bedrock data when no LA-ICP-MS data were available, despite the lower analytical 

uncertainties of the aforementioned methods, as we do not make direct analytical comparisons of 

distributions measured using varying methodologies. 

Sample Processing  

All samples were collected from medium to very coarse-grained sandstones. Zircon 

grains were collected between the size fraction of 60-250 µm. Zircon was separated using 

standard magnetic and heavy-liquid separation techniques and handpicked at random under a 

binocular microscope avoiding grains with obvious fractures or large inclusions. Grains were 

mounted in epoxy and imaged using an electron microprobe, acquiring cathodoluminescence 

images. U and Pb isotope ratios were measured via laser ablation ICP-MS at the University of 

Arizona LaserChron Center using a Micromass Isoprobe multicollector equipped with a DUV 

193 laser ablation system following the procedures outlined in Gehrels et al., (2008). 
206

Pb/
238

U 

ages were used for ages <900Ma and 
206

Pb/
207

Pb ages for those >900Ma. Ages exceeding 20% 

discordance or 5% reverse discordance were excluded from the dataset. Ages with uncertainties 

exceeding 10% of the determined age were also excluded. All uncertainties are reported to 1σ 

(See Appendix I. Material). In total, we measured 2,614 ages for 33 detrital samples. Zircon 

grains were imaged using cathodoluminescence to identify and avoid areas of strong zonation.  

Component Analysis and Spatial Interpolation 

Zircon U/Pb distributions for a given sample can be thought as the summation of one or more 

discrete age components. We define a ‘component’ as a discrete suite of zircon ages centered on 

a mean value. Each age component theoretically represents some zircon-forming event that 
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exhibits age variance about a mean value. A detrital sample U/Pb age frequency distribution 

consists of one or more of these components. Probability distribution functions (PDF), used here, 

or kernel density estimations (KDE) are typically employed to represent the distribution of ages 

within a sample (Figure 1.2 and 1.3).  

In addition to a distribution for each sample, we created a distribution representing the 

overall variance within the 60 Eocene-Pliocene detrital samples (this study and compiled) by 

summing the PDFs of each sample into a single distribution that was renormalized to unity. 

Equal weight is given to each distribution in the aggregate, regardless of the number of zircon 

grains dated within each sample, creating a representative average frequency distribution of the 

dataset (Figure 1.3a; Black Line). By giving equal weight to each sample, the data is not biased 

towards samples with more measured ages. Summation of PDFs or KDEs yields similar curves 

(Figure 1.3a); however, we choose to work with PDFs, because KDEs require the use of a 

bandwidth to define the size of the kernels, much like a bin-width of a histogram. Optimal 

bandwidth algorithms exist (e.g. Botev et al., 2010) but the bandwidth is strongly dependent on 

the number and distribution of ages, which vary from sample to sample. KDE bandwidths can be 

predefined to reduce data heterogeneities; however, doing so can result in an overly smoothed or 

noisy probability function. In contrast, PDFs sum the Gaussian representation of the measured 

analytical ages and uncertainties, which are consistently computed for the samples of the 

aggregate summation. 

To identify key components in our summed distribution, we use a deconvolution 

algorithm, which fits a Gaussian curve to each component while minimizing the mean square 

error for each (Figure 1.3a). This defines a mean and standard deviation for each identified 

component. The components are calculated as the mean ±2 standard deviations. The algorithm 
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runs until ≥90% of the variance of our summed distribution is described. 

 Identification of these discrete components in the aggregate, denoted henceforth as 

“master” components, allows for calculation of the approximate proportions of each master 

component present in all individual samples. The proportion of a given master component is 

approximated by integrating the PDF for a sample over the master’s age range (x-values; Figure 

1.3c). This proportion is applied as the vertical axis of a 3D plot, where X and Y values are the 

longitude and latitude of the sampling location. After each master component proportion is 

determined for all samples for a given time slice map (Figure 1.3), a Kriging interpolation is 

applied to the X, Y, Z coordinates to calculate the spatial distribution of a master component for 

all samples plotted. We use an X, Y grid resolution of 0.1° (Figure 1.3d). The node value at a 

point X, Y (Zxy) is calculated using the equation:  

          
 
    (1) 

where Zi is the value of a sample location with the given weight Wi. One major advantage 

of using a Kriging function is that all weights will sum to unity, which serves to remove biases 

related to multiple-sample sections. Kriging also allows for empty sections of the grid to be 

calculated creating a smooth, continuous surface (Sunila and Kollo, 2007). For each master 

component, we create six interpolation maps (Figures 1.5-1.10). These six maps include modern 

fluvial detrital samples (Figures 1.5-1.10a), detrital results of four Epochs of the Cenozoic 

(Pliocene-Eocene; Figure 1.5-1.10b-e), and possible contributing bedrock source samples 

(Figures 1.5-1.10f). We assume, for the sake of simplicity, that the position of samples relative to 

one another is approximately fixed from Eocene time to present. The Jinggu and Lanping 
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localities are potential exceptions to this assumption because they lie west of Red-River Ailao 

Shan Shear Zone of strike-slip motion and its northern extension.  

Paleoflow Measurements 

Paleoflow measurements were collected in measured sections and scattered Cenozoic 

outcrops throughout the SE margin. This provides a second set of observations that complements 

the detrital zircon data. Paleoflow data was collected at 45 separate sites with the majority from 

conglomerate clast imbrications, as these were the most abundant paleoflow indicators 

regionally. For these, at least 10 orientation measurements of imbricated clasts were taken at 

each location to determine paleoflow. Within the northern Jianchuan basin, large scale, trough 

cross-beds were measured in eolian dune deposits. For these measurements, left and right limbs 

were measured to calculate paleoflows. Paleoflow direction was determined from the trend and 

plunge of the axis of the trough as determined from the two populations of fold limb 

measurements. All paleoflows are adjusted for regional tilting and were calculated and plotted 

using Stereonet software (Allmendinger et al., 2013; Cardozo and Allmendinger, 2013). We 

supplement our paleoflow dataset with additional measurements from seven sites reported by 

Wei et al. (2015) (Figure 1.4). While paleoflows measured from conglomerate imbrications 

likely represent flow directions of transverse river systems, and thus not necessarily a large axial 

river, they do provide information on the local character of the drainage basins where transverse 

rivers may have fed into axial through-going rivers.  
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Results  

Spatial Interpolation 

In our aggregate dataset, seven age components describe >90% of the total variance of 

the summed population. These components, defined by μ ± 2σ (given as μ-2σ-μ+2σ) are: 32-40 

Ma; 89-125 Ma; 203-239 Ma; 216-288 Ma; 377-495 Ma; 695-895 Ma; and 1816-1926 Ma 

(Figure 1.3). Due to overlapping components, we reduce the Permo-Triassic component to 239-

288 so it falls outside of the late Triassic component. This is necessary because of the bimodal 

ages and geographically distinct locations of Mesozoic (primarily Triassic) volcanism in the 

headwaters of the Yangtze and Hainan Island (Figure 1.7 and Figure 1.8). We group samples 

from the Jinggu Basin and Midu Basins as Paleogene because of depositional constraint 

uncertainties and thus include them in both Paleogene Epoch maps. The proportions of each 

master component above are calculated for all samples, creating the spatially interpolated maps 

of Figures 1.5-1.10. For consistency we divide the proportions or concentrations of master 

components into categories of absent, very low (1-5%), low (6-10%), moderate (11-20%), high 

(21-30%), and very high (> 30%) (Figures 1.5-1.10). The 377-495 Ma component has no strong 

spatial patterns and is included in the Appendix I. material. The remaining six master 

components, and their potential utility in recognizing linkages the paleodrainage development, 

are described below.  

Paleogene component (32-40 Ma) 

 Paleogene age zircon, between 32-40Ma, are present in Late Eocene to Pliocene deposits 

within the SE margin and in the YSHB (Figure 1.5). High concentrations are localized in the area 

between the First Bend and the upper reaches of the Red River Catchment near the city of Dali. 

Three of five Miocene samples adjacent to the Red River contain Cenozoic zircon of very low 
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and moderate proportions, with a moderate peak that quickly reduces in samples to the north or 

south. Proportions of this component are very low in Oligocene-Pliocene deposits of the YSHB, 

consistent with the 1% concentrations of modern Red River sediment (Clift, Carter, et al., 2006). 

High concentrations are centered near the first bend where the ~2000 km Ailao Shan-Jinshajiang 

potassic igneous belt occurs (Chung et al., 1998) (Figure 1.5f). 

Cretaceous component (89-125 Ma) 

The mid-Cretaceous component (89-125 Ma) has consistently higher concentrations in 

Oligocene to Pliocene deposits of the YSHB with concentrations reaching >60% for several 

samples from Miocene deposits and >20% for an Oligocene sample (Figure 1.6). Very low 

concentrations are found within the deposits of the SE margin, regardless of depositional age. 

The mid-Cretaceous zircon component reaches its highest (5-10%) in the Jinggu Basin, Yanyuan 

Basin, and near Midu and Lanping. There is a notable absence of Cretaceous zircon south-

southeast and east of the first bend near Dali, Jianshui, and Lijiang as well as in the Jianchuan 

Basin. Miocene deposits from within the present-day Red River catchment have absent to low 

concentrations of mid-Cretaceous zircon. This component is also notably absent in modern river 

deposits of the Yangtze River near the first bend, the Lancang River west of our study area and 

the modern Red River deposits. Modern fluvial sediment from Hainan Island within the S. China 

Sea has the highest concentrations, reaching moderate levels comparable to Cenozoic sediments 

of the YSHB. 

Late Triassic component (203-239 Ma) 

Late Triassic zircon ages are found in multiple regions throughout the study area and are 

related to Indosinian post-collision magmatism following the closure of the Paleo-Tethyan 

Ocean (Dong et al., 2013; Peng et al., 2014a, 2014b; Figure 1.7). There are several potential 
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sources for zircon of this age (see Figure 1.7f), including: the arc volcanics of the Eastern Yidun 

block (YA) (Reid et al., 2007; Peng et al., 2014b); Lincang granitic intrusions (LG) (Dong et al., 

2013), and Qiangtang Block volcanics (QV) (Peng et al., 2014a). Recycling of Mesozoic strata is 

another potential source of Late Triassic zircon. Moderate-high concentrations are found within 

the Eocene deposits of the Yanyuan Basin, while low-moderate concentrations are more 

common for deposits west and south of the First Bend (Figure 1.7a). Concentrations increase 

from moderate in the Eocene to very high in Oligocene deposits of northern Jianchuan Basin, 

while moderate concentrations are found throughout the remaining SE margin. The Oligocene 

deposits of the YSHB display moderate-high concentrations. However, a closer inspection 

reveals that the modal zircon ages within these deposits fall primarily in the Permo-Triassic 

component (see below) and not in the Late Triassic. In Miocene deposits of the SE margin, the 

Jinggu Basin's Late Triassic zircon concentrations are moderate-very high. The remaining 

onshore Miocene sediments throughout the SE margin, including those along the Red River have 

low late Triassic zircon concentrations. Miocene samples of the YSHB have low concentrations 

in northern samples and moderate concentrations in southern samples. In the Pliocene, 

concentrations are highest near Lanping (moderate-high), while elsewhere, concentrations 

remain low including in the YSHB. In modern rivers, moderate concentrations are found in 

Lancang River deposits (Figure 1.7a) as it flows west of the Qiangtang Volcanics and in 

tributaries of the Yangtze downstream of the first bend. The Red River has low concentrations of 

late Triassic zircon.  

Permo-Triassic component (239-288 Ma) 

The Permo-Triassic component, spanning 216-288 Ma (Figure 1.8), and adjusted to 239-

288Ma, with a mean of 254Ma, is related to the emplacement of basaltic Emeishan LIP (Figure 
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1.8; EIP) (Shellnutt, 2014); Jomda-Weixi arc volcanics (Figure 1.8; WV) (Yang, Ding, et al., 

2014); western Yidun arc (Figure 1.8; YA) (Reid et al., 2005; Peng et al., 2014b; Reid et al., 

2007); early emplacement of the southern Lincang complex (Figure 1.8; LG) (Dong et al., 2013) 

and Hainan Island volcanics (Figure 1.8; HI) (Xu, Sun, Yi, et al., 2014; Wang, Liang, et al., 

2015). Concentrations in Eocene sandstones from the Jianchuan basin are very high in the north, 

moderate-high just west of the first bend and low-moderate in the southern basin. Northeast 

(Yanyuan Basin) and southeast (Jinggu) samples have low concentrations. Oligocene samples 

found in southern Jianchuan and the YSHB both contain very high proportions of Permo-Triassic 

zircon in Oligocene deposits, with apparently strong gradients away from these locations. 

Miocene deposits show the highest concentrations of this age component in the southernmost 

YSHB, with a marked decrease towards moderate concentrations similar to that of onshore 

Miocene deposits found within the Red River catchment. Within the suite of Miocene deposits of 

the SE margin, concentrations are very low to low in the Jinggu Basin and Jianchuan basin, the 

latter being dominated by Cenozoic volcanics. Modern samples from the Red River, Yangtze and 

Lancang Rivers have moderate concentrations and Hainan Island deposits are moderate-high. 

Neoproterozoic component (695-895 Ma) 

The Neoproterozoic age component (Figure 1.9) is primarily related to a series of 

Neoproterozoic volcanic terranes of both continental arc and back arc extensional regimes 

associated with the subduction and convergence of North and South China Blocks (Druschke et 

al., 2014). Today, Neoproterozoic bedrock exposures are found in the Longmen and Qingling 

Mountains (LM in Figure 1.9f) (Pei et al., 2009), the Yanbian Terrane east of our study area 

(YT) (Zhou et al., 2006) and the related Luliang Formation (Zhuo et al., 2013). In Paleogene and 

Neogene detrital samples, a longitudinal and latitudinal decreasing gradient in the concentration 



21 

 

 

 

of Neoproterozoic zircon moving away from the Yanyuan Basin is apparent. Notably, 

concentrations are low for most samples collected along the SE margin of the Plateau (Figure 

1.9b-e). One Miocene sample from the southern Jianchuan Basin with strikingly high 

Neoproterozoic zircon concentrations is an exception (Yan et al., 2012). Neoproterozoic age 

zircon are absent in Oligocene YSHB deposits. Miocene YSHB samples, however, have a clear 

latitudinal gradient offshore, with increasing concentrations toward the northern margin. The 

highest offshore concentrations in the Miocene match the moderate-high values found in onshore 

Miocene deposits of the Red River catchment. Miocene, Pliocene, and modern samples collected 

along the Red River all show similar trends of high-very high concentrations in northern samples 

to moderate concentrations approaching the coast of Vietnam. The Neoproterozoic age 

component constitutes a major proportion of zircon components in modern Yangtze River 

sediment downstream of the first bend (He et al., 2013, 2014). Following the incorporation of the 

Yalongjiang, which contains 63% Neoproterozoic ages, concentrations exceed 15% in modern 

Yangtze trunk stream samples east of this juncture. 

Paleoproterozoic component (1,816 to 1,926 Ma) 

The 1,816-1,926 Ma Paleoproterozoic zircon age component (Figure 1.10) is associated 

with extensive granitic plutons throughout the Western Yangtze Block (Figure 1.10; YB) (Sun et 

al., 2009), and, to a lesser extent, the North China Craton and Eastern Cathaysian Block. The 

Paleoproterozoic component is an important component of zircon in the Mesozoic deposits of the 

Sichuan Basin (SB) and is common in contemporaneous deposits throughout the region (She et 

al., 2012; Weislogel and Robinson, 2010; Fei et al., 2013). Within the SE margin, Eocene 

samples of the Jianchuan and Yanyuan Basin contain moderate-high concentrations, while other 

onshore Eocene samples have low concentrations. Within the Oligocene, Miocene, and Pliocene 
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similar patterns emerge with low concentrations found throughout most of the SE margin and 

slightly higher concentrations in the Jianchuan Yanyuan and Jinggu Basins. In the Pliocene, the 

samples from Jianshui also show moderate concentrations. Paleoproterozoic zircon in Oligocene 

to Miocene deposits of the YSHB never exceeds low concentrations, similar to the onshore 

Miocene deposits along the Red River. Within modern deposits, Neoproterozoic concentrations 

are low in the Yangtze and Lancang Rivers despite the high concentrations found in bedrock of 

their headwaters. Samples from the modern Red River show similarly low concentrations to 

those of the Miocene deposits and the northern YSHB basin.  

Paleoflow Results 

Individual paleoflow measurements were compiled into regional and temporal trends 

(Figure 1.4). Eocene paleoflows in both Northern and Southern Jianchuan Basin indicate flow in 

all non-southward directions. The Eocene in the Jianchuan Basin is part of the Baoxiangsi 

formation; the lower is composed of breccias and clast supported conglomerates. Here, the lower 

Baoxiangsi of the northern Jianchuan Basin reveals paleoflows towards the north, consistent with 

similar measurements of Wei et al. (2015). Southern Jianchuan Basin Eocene deposits indicate 

westward flow. The middle Baoxiangsi formation in the northern Jianchuan Basin, interpreted as 

eolian dune deposits (Cui 2013), have cross-beds with measured flow directions consistently 

eastward. Wei et al., 2015 found similar cross-bed flow directions of northeast to north in fluvial 

derived cross-beds of the southern Jianchuan Basin. Eocene deposits near Jianshui (Figure 1.4) 

indicate northeastward flow. Aside from Eocene deposits in the southern Jianchuan basin that 

show westward flow, all Eocene paleoflow directions in the Jianchuan basin show northward to 

eastward paleoflow directions.  
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Imbricated conglomerate flow directions of Oligocene deposits of the Jianchuan Basin 

change from westward to eastward flow moving up section, the latter consistent with the results 

and interpretations of Wei et al. (2015) (Figure 1.4). Near Lijiang, Oligocene conglomerates 

reveal southwestward flow (Figure 1.4). Neogene deposits throughout the SE margin are 

characterized by lower depositional energy regimes yielding fewer paleoflow indicators. Two 

Miocene paleoflow measurements were taken from imbricated conglomerates near Jianchuan 

and Jianshui (Figure 1.4). Westward flow is indicated in imbricated conglomerates near 

Jianchuan while imbrications near Jianshui indicate flows to the northwest, consistent with 

tributary flows of the modern Nanpan River. Near Yanyuan, eastern and western flanking 

Pliocene deposits indicate eastward flow while the central deposits show southward flow. The 

southward flow parallels the modern drainage pattern of the Yanyuan Basin.  

Discussion 

A connection between the Yangtze and Red River should be recorded in the detrital 

zircon record as a spatially consistent stretch of age components ranging from the SE margin of 

the Tibetan Plateau towards the contemporaneous deposits in the YSHB (Figures 1.5-1.11). 

While we recognize that the majority of sampled deposits along the southeast Plateau margin do 

not represent large fluvial deposits, the characteristic ages of northern derived zircons from 

actively eroding areas should comprise important components of any integrated paleodrainage. 

As sediment is routed into progressively larger parts of the river networks, and given the areal 

extent of the Jianchuan, Jinggu and Yanyuan Basins (Figure 1.2), they must have been important 

sources of sediment for a connected Yangtze-Red River. Similarly, if the middle Yangtze once 

flowed southwest (current eastward) as a segment of the Red River, U/Pb age distributions 

offshore of the YSHB and any onshore fluvial deposits, should carry a middle Yangtze signature. 
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A connection between any portion of the Yangtze, SE margin basins, and YSHB would require a 

commensurate change in U/Pb distributions following any reversal or capture of the middle and 

upper Yangtze. 

The use of distinct Gaussian age components determined from the summation of zircon 

age frequencies from Cenozoic deposits spanning a wide area of the SE margin provides 

constraints on the temporal and spatial evolution of the river networks. Conventional comparison 

techniques, which serve to reveal similarities and differentiate components, such as likeness 

(Satkoski et al., 2013), probability density crossplots (Saylor et al., 2013), and Kolmogorov-

Smirnov tests (Wilk and Gnanadesikan, 1968) which are common in detrital zircon work, often 

become difficult to apply as datasets grow. This is, in part, because they provide a quantitative 

metric of dissimilarity, but cannot describe the root of the similarities or discrepancies.  

Deposits in the basins of the SE margin and YSHB have zircon components that are 

largely consistent with local bedrock. Notably, detrital zircon distributions containing moderate 

to very high concentrations of a particular Gaussian component, are consistent with local 

bedrock sources with similarly high concentrations of the same component (Figures 1.5-1.10). 

For example, high concentrations of Paleogene zircon in the southeast margin are localized, 

lacking spatial continuity and occur near igneous bodies related to the Ailao Shan-Jinshajiang 

potassic igneous belt (e.g. Wang et al., 2001; Yan et al., 2012). Both Cretaceous and Permo-

Triassic components, found in higher proportions within the YSHB basin, are explained by the 

associated high concentrations found in Hainan Island and bedrock within the modern Red River 

Catchment (Xu, Sun, Cai, et al., 2014). Similarly, the deposits of the southeast margin outside 

the Red River Catchment have low concentrations of these components, rejecting a correlation 

between the basins of the SE margin and the YSHB. Offshore YSHB deposits are dominated by 
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the Permo-Triassic age volcanics attributed to deposits from Western Hainan Island and Vietnam 

(Cao et al., 2015). This is further supported by the work of Yan et al. (2011), who documented 

euhedral zircon grains of the YSHB as evidence of a local source for the YSHB. In contrast, the 

majority southeast margin sediments show a much stronger affinity for late Triassic zircons. The 

clear consistent offshore gradients of the YSHB basin, with samples proximal to the Red River 

closely resembling on-shore Miocene deposits and more distal samples more closely matching 

Hainan Island distributions, indicates little to no provenance change since at least the Oligocene 

(Zhao et al., 2015; Wang, Liang, et al., 2014). Higher concentrations of Late Triassic zircon in 

the Eocene deposits of Yanyuan (Figure 1.7e) and Miocene of Jinggu (Figure 1.7c) are easily 

linked to the nearby Yidun Arc Volcanics (Reid et al., 2007) (Figure 1.7f; YA) and Lincang 

Granites (Figure 1.7f; LG), respectively. High concentrations of the late Triassic component in 

Miocene deposits of the southern Jinggu Basin are most likely derived from the nearby Lincang 

Volcanic Complex (Dong et al., 2013).  

We assert that a large integrated network would show a certain degree of continuity 

following the incorporation of a bedrock or zircon source units into its catchment. Instead, within 

the entire Cenozoic sedimentary record examined here, we only observe “hot spots” in certain 

Gaussian components that are best explained by local sources. Temporary sediment storage 

along the trunk stream and major tributaries has the potential to mask provenance signals. In one 

case, deposition, storage and remobilization in a river system with an anomaolous U-shaped map 

pattern, results in significant sediment remobilization downstream (Nie et al., 2015). Yet, in 

other environments, with typical trunk stream geometry, there is little evidence for storage 

impacting sediment delivery downstream (e.g. Dobson et al., 2001; He et al., 2013; Reiners, 

2005). While we cannot necessarily rule out sediment storage as a possibility, a major reduction 
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in the upstream signal would require a large fraction of river transported sediment be sequestered 

in partial sediment storage.  

A critical component for demonstrating connectivity of the upper Yangtze and basins of 

the SE margin with the paleo-Red River are late Triassic zircon ages between 203-239 Ma. 

Modern deposits collected from the Yangtze, Lancang, and Red River show that the source of 

modal components are indicative of sources north and west of the Yangtze at the first bend. The 

late Triassic zircon components are absent to low from sandstones collected within the Red River 

catchment. However, the abundance of late Triassic zircon ages in samples from the adjacent 

Lancang River are approximately three times that of the Red River; the Yangtze at the first bend 

has approximately double. Only 3% of the zircon from the Red River fall within the late Triassic 

component and do not define a clear age mode. Higher late Triassic zircon concentrations found 

in the Paleogene, Neogene, and modern deposits of the southeast Margin, while minimal 

concentrations are found in the modern and ancient deposits within the current Red River 

Catchment and YSHB, suggesting no connectivity between the Red River and the upper Yangtze 

River over much of the Cenozoic. 

Neoproterozoic age zircon is an important age component of the middle Yangtze River, 

ancient and modern Red River deposits, and the YSHB. Therefore, the presence of this 

component in offshore sediments does not preclude connectivity between the two rivers. The 

Red River catchment encompasses exposures of Neoproterozoic rift related volcanics (Zhuo et 

al., 2013), providing a clear source for zircon of this age, while not requiring connectivity. With 

respect to the southeast margin, there is a significant decrease in concentrations of 

Neoproterozoic zircon moving from east to west throughout the basins of the SE margin. 

Neoproterozoic ages are found within these sedimentary basins, but in concentrations far lower 
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than those of modern fluvial deposits of the middle Yangtze where concentrations often exceed 

15% (He et al., 2013, 2014). This conspicuous lack of Neoproterozoic, and therefore middle 

Yangtze signal, suggests the paleo- middle Yangtze was not flowing westward through the SE 

margin in our Eocene-Pliocene deposits. 

Consistent similarities between zircon U/Pb age components of northern deposits of the 

YSHB, the Miocene deposits along the Red River, and modern Red River fluvial deposits are 

indicative of little change in catchment area in the Cenozoic record, consistent with the findings 

previous studies (van Hoang et al., 2009; Jiang et al., 2015; Cao et al., 2015). There is a clear 

increase in Hainan Island component in deposits further south and east in the YSHB as 

Indosinian and Cretaceous age zircon concentrations rise.  

Offshore detrital zircon U/Pb records only extend to the Oligocene. Therefore, any 

inferences we make predating the Oligocene must be based paleoflows, stratigraphic 

interpretations, and zircon distributions of the SE margin. Paleocene deposits of the southern 

Jianchuan Basin are primarily mudstone and siltstone with interbedded lacustrine limestone 

deposits (Wei et al., 2015) that are not indicative of a large fluvial network. Eocene 

sedimentation within the Jianchuan Basin is primarily alluvial (Wei et al., 2015) with paleoflows 

indicating both northward and westward flow, depositional facies suggesting axial fluvial 

systems, while Eocene proximal alluvial fan deposits in Yanyuan do not have paleoflow 

indicators. Though not inconsistent with a large southward draining large fluvial system, the lack 

of regionally contemporaneous fluvial deposits does not support such a hypothesis. The late 

Eocene deposits of the Baoxiangsi formation are eolian deposits in the northern Jianchuan Basin 

and fluvial in the southern basin. Even assuming all late Eocene trough cross-bed deposits of the 

Jianchuan Basin represent fluvial deposits from a large through-going river, cross-bed 



28 

 

 

 

paleoflows in the northern and southern basin indicate eastward and northward flow, and not a 

southward flowing fluvial system.  

The northeastward Eocene flows of the Jianshui Basin suggest that the divide between 

the Nanpan and Red River catchments existed in the Eocene. Oligocene imbricated deposits of 

the SE margin do indicate southward flow, although there are a limited number and geographic 

distribution of sites and little other evidence for southward flow, particularly on cross-bedded 

strata. Miocene paleoflows measure no discrepancies between paleo-directions and modern 

fluvial drainages.  

Most studies calling for connectivity between the Red and Yangtze Rivers, suggest a 

major change in catchment area. However, a telling and consistent feature of our spatial 

interpolation maps is the temporal consistency in offshore deposits of the Yinggehai-Song Hong 

Basin and their effective discontinuity with the basins of the southeast plateau margin. Oligocene 

to Pliocene detrital zircon age spectra of samples from the YSHB exhibit no major changes, 

which points towards a consistent sediment source. The dramatic loss of area associated with the 

capture of the Upper Yangtze River should be apparent in the detrital record, but is not observed. 

Conservatively, integrating only the catchment of the Yangtze upstream of the first bend (the 

commonly purported capture point) would increase the total catchment area of the Red River 

from ~158,000km
2
 to ~466,000 km

2
. Assuming the integrated network included the first major 

tributary of the Yangtze, the Yalong River, would add an additional ~180,000 km
2
 the total 

catchment area of the Red River. The > 400% larger catchment area and distinct set of zircon age 

components in both the upper and middle Yangtze make it unlikely that the zircon age signature 

would not be imparted to the detrital zircon record deposits downstream on the connection point 

in a once integrated network. However, we find no evidence for zircon provenance outside of the 
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modern drainage areas feeding the Yinggehai Song Hong Basin throughout the history of 

deposition of this basin. 

We recognize the variability in lithologic types represented in the bedrock interpolation 

maps is inconsistent with the character of solely detrital sample maps; however, the purpose of 

the bedrock plots remains the same, to spatially represent approximate zircon age concentrations. 

Unlike the detrital samples, bedrock units are of variable age and lithology. Because we do not 

necessarily know which lithologic units were eroding during the deposition of sediments, we 

need a spatially averaged representation of all bedrock distributions. A geologic bedrock map 

where proportion boundaries are divided by lithologies may provide greater clarity, but problems 

arise; particularly for paleo-sediments, which can and do vary in provenance by stratigraphic 

age, changing vertically (within the column) but not spatially. Therefore, for consistency and 

simplicity, bedrock interpolation maps contain points for all included distributions regardless of 

age or lithology.  

Multi-dimensional scaling (MDS) plots potentially aid in the visualization of detrital 

zircon age datasets (Vermeesch, 2013). For MDS plots of detrital zircon, a matrix of 

dissimilarities for each sample is transformed into N-dimensional coordinates (often two or 

three), where the distances between points represents the dissimilarities between samples 

(Vermeesch, 2013). In an MDS plot, each sample, with its own unique distribution of zircon 

ages, is represented as a point in space; greater distances between two points indicate greater 

differences between the two sample U/Pb age distributions. Here, we calculated likeness 

dissimilarities (Satkoski et al., 2013) of pairwise PDF comparisons for detrital samples of the 

southeast margin of Tibet; Cenozoic samples from the YSHB; Miocene onshore Red River 

deposits (van Hoang et al., 2009); modern fluvial samples of the Yangtze, Red, and Mekong 
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River; and of idealized distributions of the six Gaussian components above. Using the table of 

likeness values, we apply metric MDS to plot the measures of dissimilarity as a function of 

distance in 3-dimensions (Figure 1.11). Note, in Figure 1.11, circles are scaled in size for relative 

distance into the page as calculated from their X and Y coordinates for clarity in their 

configuration and the axes are unitless. Several interesting patterns emerge in MDS space. 

Samples from the onshore SE margin and the offshore YSHB are clearly distinguishable based 

on their relative clustering (Figure 1.11; blue and red circles). Sediment from the modern 

Yangtze and Lancang Rivers are clearly associated with the sources related to the SE margin, 

while ancient deposits from the YSHB form two distinct groupings, one around the Red River 

and the other around Hainan Island. We note that the samples most associated with Hainan 

Island are greater distances from the mouth of the Red River, suggesting an increase in 

contributions from Hainan Island further offshore. The clustering near the Red River and Hainan 

Island of the Cenozoic YSHB deposits does strongly indicate similar or shared provenance of 

both paleo and modern sediment. Onshore Miocene samples of the Red River catchment also 

show a stronger affinity than samples collected to the north to the Red River rather than to the 

Yangtze and Lancang River. The clear separation of the Cenozoic deposits of SE margin and 

their affinity for sediments associated with the modern Lancang and Yangtze River further 

supports our claim of little to no shared provenance, nor change in sediment source for the 

sediments of the Paleo-Red River. Lastly, we observe here that the Paleogene, late Triassic and 

Neoproterozoic Gaussian age components are indicative of northern sources and thus onshore 

basins of the SE margin, while the Cretaceous and Permo-Triassic components more closely 

reflect provenance from the area sourcing the deposits of the YSHB, consistent with the spatial 

interpolation maps above. 
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Interpolation maps based on component age present within a detrital dataset provide a 

novel approach to visualizing detrital age data (Figures 1.5-1.10). This approach could be used to 

characterize detrital distributions for any period of deposition over any appropriate spatial scale. 

What it uniquely provides compared to the majority of distribution comparison measures is a 

geographic relationship of components between detrital samples. Limitations of this method 

include its dependence on component proportions, its potential to be skewed by components with 

high concentrations, dependence on the distribution of samples collected in space, and on 

defining the time slices and components to plot. Random sampling biases do have the potential 

to skew the apparent age distributions of samples, which will vary the interpolation map output. 

However, multiple samples from specific regions have the potential to average random sampling 

errors closer to the mean. Additionally, by using ranges of proportions rather than exact values, 

random sampling uncertainties become less impactful. By capping the proportions at >30%, the 

focus of the map sharpens on components containing less unimodal abundances while also 

establishing regions of clear, high proportions. The dependence of the overall spatial distribution 

of collected samples relies primarily on rock exposure and sample number. We provide a 

quantitative approach to major component identification; eliminating potential user biases in age 

bracket selection as well as establishing a clear set of components that describe the dataset. Our 

paired method of component identification and spatial interpolation of U/Pb age distributions is a 

potentially powerful tool in the detrital geochronologist's tool belt as it provides a much-needed 

method of viewing and comparing U/Pb age distributions in geographic space. 

Conclusions 

Despite the numerous studies identifying purported large-scale river captures and 

reorganizations in the Cenozoic along the SE margin of the Tibetan plateau, the detrital zircon 
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record does not support an integrated Yangtze-Red River in the Cenozoic. We combined bedrock 

sources, onshore Cenozoic and modern sediment samples, and samples of the YSHB to monitor 

changing sediment flux by way of changing zircon U/Pb age patterns. Detrital zircon age 

analysis shows that most age components associated with Paleogene and Neogene detrital 

samples of the SE Tibetan margin can be attributed to local sources, which are not present in the 

offshore record of the Yinggehai-Song Hong Basin. Stratigraphic analysis of deposits along the 

margin does not suggest a large integrated fluvial system, but rather that alluvial and lacustrine 

systems dominated sedimentary basins of SE Tibet throughout the Cenozoic. The preserved 

stratigraphy is not indicative of a fluvial system on the order of 500,000 km
2
 in a portion of the 

Cenozoic sedimentary record we examined. It is therefore likely that they Yangtze and Red 

River were not part of a single river network since at least Eocene time and possibly throughout 

the entire Cenozoic.  
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Figures  

 

Figure 1.1. Maps of study area A: DEM of Southeast Asia. Detrital samples are 

indicated by green squares. Potential contributing bedrock sources are indicated by grey circles. 

B: Zoom in on detrital zircon data. Squares denote samples from this study. Other shapes 

indicate data from the literature. Areas in shades of gray mark the modern catchments of SE 

Asia. Crosshairs indicate paleoflow measurement locations. 
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Figure 1.2. Sample locations, probability density plots and possible paleo drainages. 

Probability Density Functions (PDF) of U/Pb ages of detrital zircon collected along the SE 

margin. Included are four samples from the Jianchuan Basin collected by Yan et al., 2012. Each 

curve represents zircon age-distributions between 0-2750 Ma. The locations of samples collected 

are numbered by PDF and colored by depositional age. Dashed lines indicate possible flow paths 

for paleo-drainage history of the SE margin. JCB = Jianchuan Basin; JGB = Jinggu Basin; YYB 

= Yanyuan Basin.  
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Figure 1.3. Visual representation of method. A: The black and thin red curves 

represent the summed probability curves for all Cenozoic detrital zircon samples. The Gaussian 

Components identified are given as dashed colored lines. B: Plot showing the sampling locations 

for Miocene detrital zircon samples, HI = Hainan Island, SCS = South China Sea, YSHB = 

Yinggehai-Song Hong Basin. C: 3-representative probability curves of Miocene age. The grey 

bar represents one of the Gaussian components. Values are integrated between the grey bars and 

applied as Z values for interpolation maps. D: The full interpolation map of 695-895Ma age 

zircon in Miocene deposits throughout our study area. Interpolation map is contoured by 

proportion: higher proportion means greater probability of finding zircon of this age range. 
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Figure 1.4. Paleoflow measurements taken throughout the southeastern Margin. 

Paleoflow measurements taken throughout the southeastern Margin. Colors of circles represent 

depositional age of sediment and arrows indicate flow direction. Black arrows are for 

imbrications measurements and white arrows are for cross-bed flow measurements. Note that 

only in the Oligocene to flows indicate southward flow. 
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Figure 1.5. Paleogene Component (32-40Ma). Each map represents a different 

sampling suite with (a) – (e) are interpolation maps based on depositional ages and (f) of bedrock 

units of depositional or emplacement age of Eocene or older. Interpolation points are indicated 

by small red dots. Colors are scaled to interpolated concentrations of zircon of Paleogene age for 

each depositional time slice. Component concentrations are in percents. Opacity of interpolation 

map decreases with cubic distance from nearest sampling location. ASJ in (f) is for the Ailao 

Shan-Jinshajiang potassic igneous belt.  
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Figure 1.6. Cretaceous Component (89-125Ma). Each map represents a different 

sampling suite with (a) – (e) are interpolation maps based on depositional ages and (f) of bedrock 

units of depositional or emplacement age greater than the Eocene. Interpolation points are 

indicated by small red dots. Colors are scaled to interpolated concentrations of zircon of 

Paleogene age for each depositional time slice. Component concentrations are in percents. 

Opacity of interpolation map decreases with cubic distance from nearest sampling location. 
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Figure 1.7. Late Triassic Component 203-239Ma. Each map represents a different 

sampling suite with (a) – (e) are interpolation maps based on depositional ages and (f) of bedrock 

units of depositional or emplacement age greater than the Eocene. Interpolation points are 

indicated by small red dots. Colors are scaled to interpolated concentrations of zircon of 

Paleogene age for each depositional time slice. Component concentrations are in percents. 

Opacity of interpolation map decreases with cubic distance from nearest sampling location. In (f) 

QV = Qiangtang Volcanics; LG = Lincang Granitic Complex; YA = Yidun Arc Volcanics; HI = 

Hainan Island. 
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Figure 1.8. Permo-Triassic Component 239-288Ma. Each map represents a different 

sampling suite with (a) – (e) are interpolation maps based on depositional ages and (f) of bedrock 

units of depositional or emplacement age greater than the Eocene. Interpolation points are 

indicated by small red dots. Colors are scaled to interpolated concentrations of zircon of 

Paleogene age for each depositional time slice. Component concentrations are in percents. 

Opacity of interpolation map decreases with cubic distance from nearest sampling location. In (f) 

JW = Jomda-Weixi Arc Volcanics; LG = Lincang Granitic Complex; YA = Yidun Arc 

Volcanics; HI = Hainan Island; EIP = Emeishan Flood Basalts. 
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Figure 1.9. Neoproterozoic Component 695-895Ma. Each map represents a different 

sampling suite with (a) – (e) are interpolation maps based on depositional ages and (f) of bedrock 

units of depositional or emplacement age greater than the Eocene. Interpolation points are 

indicated by small red dots. Colors are scaled to interpolated concentrations of zircon of 

Paleogene age for each depositional time slice. Component concentrations are in percents. 

Opacity of interpolation map decreases with cubic distance from nearest sampling location. In (f) 

LM = Longmenshan Mountains; YT = Yanbian Terrane. 
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Figure 1.10. Paleoproterozoic Component 1816-1926Ma. Each map represents a 

different sampling suite with (a) – (e) are interpolation maps based on depositional ages and (f) 

of bedrock units of depositional or emplacement age greater than the Eocene. Interpolation 

points are indicated by small red dots. Colors are scaled to interpolated concentrations of zircon 

of Paleogene age for each depositional time slice. Component concentrations are in percents. 

Opacity of interpolation map decreases with cubic distance from nearest sampling location. In (f) 

YB = Yangtze Block; SB = Sichuan Basin. 
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Figure 1.11. MDS plot of detrital deposits. Metric Multidimensional scaling plot of 

Cenozoic deposits in three dimensions. Greater distances represent greater degrees of 

dissimilarity as measured using likeness. Circle sizes are scaled for distance into page. Colors 

represent location deposits were derived. Blue circles are deposits collected in the area 

surrounding the Yangtze First Bend and upper reaches of the Red River catchments that are 

between Eocene and Pliocene in depositional age. Yellow circles are the Miocene deposits 

collected by van Hoang et al., 2009 along the trace of the modern Red River. Red circles are 

samples collected offshore in the deposits of the YSHB of Oligocene to Pliocene in age. Grey 

circles are modern fluvial detrital samples and black circles are the six Gaussian components 
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discussed. Solid and dashed lines between sample points are nearest and second nearest neighbor 

lines with respect to measured likeness values. Note the obvious divide between samples of the 

SE margin (blue) and samples of the YSHB (red). The YSHB basin shows two clear groupings, 

samples resembling modern Red River sediments and samples resembling modern Hainan Island 

sediments. The similarities of the SE margin deposits are closely associated with deposits of the 

Lancang and Yangtze River. 
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Chapter 2. Eastern margin of Tibet supplies most sediment to the Yangtze River 

 

 

Submitted as: 

 

Wissink, G.K., Hoke, G.D. (2016). Eastern margin of Tibet supplies most sediment to the  

Yangtze River. Lithosphere (in review) 
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Abstract 

Zircon provenance studies of modern and ancient fluvial systems help reveal the relative 

contributions and importance of upstream sediment sources. A previous study by He et al. (2014) 

of detrital zircon U/Pb age distributions from the Yangtze River and its tributaries proposed a 

strong anthropogenic control on sediment flux. Their data, along with other data from the region, 

is reanalyzed using multiple detrital zircon U/Pb age-distribution comparison techniques and a 

distribution-mixing model to construct an improved and quantitative view of provenance. The 

variability in the Yangtze River trunk stream U/Pb age-distributions is evaluated with respect to 

trunk-to-trunk stream comparisons, trunk-to-tributary comparisons, as well as in mixture models 

that consider contributions purely from the tributaries and trunk stream samples themselves. In 

addition to the modern river sands, contributions from a comprehensive compilation of bedrock 

source terranes across China are also evaluated. Uniformity in the zircon age distribution of the 

Yangtze’s trunk is established in the upper reaches of the Yangtze and maintained to its outlet 

based on inter-trunk comparisons of detrital zircon distributions. Whether considering the 

bedrock source terranes or only the modern Yangtze sediments, the major source of sediments 

contributing to Yangtze is clearly the eastern edge of the Tibetan Plateau (e.g. Songpan Ganze 

Terrane, Longmenshan Range) were rock uplift rates are high. The purported increase in 

anthropogenic impact on sediment yield in the lowlands, at least as viewed through detrital 

zircon age distributions, is insignificant. 
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Introduction 

With its headwaters in the Tibetan Plateau, the Yangtze River is the longest river in Asia. 

The Yangtze traverses the eastern two thirds of China and integrates multiple large tributaries 

draining crustal terranes with characteristic detrital zircon U-Pb age signatures. Zircon U-Pb ages 

may help fingerprint the dominant sediment sources to the trunk stream of the Yangtze River and 

thus the spatial pattern of erosion across the catchment. Accurate constraints on the zircon 

contribution from different catchments enhance our understanding of the catchment wide 

erosional patterns and may help frame future studies on how the river’s course has evolved over 

time.  

The expeditious and inexpensive acquisition of data made possible by laser ablation – 

inductively coupled mass spectrometry (LA-ICPMS) (e.g. Gehrels et al. 2008) has made zircon 

the mineral of choice for many modern and ancient provenance studies. In ancient settings, 

detrital zircon ages are routinely used to deduce drainage network reorganization and the timing 

of local and regional tectonic events (e.g., Gehrels et al. 2003; Darby & Gehrels 2006; van 

Hoang et al. 2009; Gehrels et al. 2011; Yan et al. 2012; Wang et al. 2013; He et al. 2013; Wang 

et al. 2014). At its simplest, erosion and rock uplift control the zircon contributions of 

progressively unroofed rock to fluvial sediments; thus, measured zircon ages should be traceable 

to a unique source. Studies have shown that variable zircon concentrations in source areas 

(Malusà et al., 2015, 2013; Moecher and Samson, 2006) can affect downstream age distributions, 

and that U/Pb age distributions of detritus may differ significantly from its source over very short 

distances (Bonich et al., in review). The interpretation of U-Pb ages from larger river systems 

may be further complicated by spatial variability in erosion due to climate change, or large but 
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irregular influxes of sediment, for example from coseismic landslides (Gallen et al., 2015). 

However, despite some limitations, detrital zircon U/Pb ages have proven a valuable provenance 

tool in studies of basin evolution (Yan et al., 2012; Zheng et al., 2013; Wang, Liang, et al., 

2014), crustal evolution (e.g. Xu et al. 2014; Wang et al. 2010), tectonics and erosional histories 

(e.g. Weislogel et al. 2010; Lang et al. 2013).  

Much of the landscape traversed by the Yangtze is tectonically inactive with the 

exception of the eastern and southeastern margin of the Tibetan Plateau. Punctuated episodes of 

rapid river incision into the eastern and southeastern margins of the Plateau reached localized 

rates of >300m/Ma (Ouimet et al., 2010; Clark et al., 2005), with an abrupt decrease at ~ 7 Ma 

(McPhillips et al., 2016). The Yangtze catchment, like much of China, is subject to moderate to 

intense agricultural activity (He et al., 2014). At values of 30 m/Ma, 
10

Be-derived erosion rates in 

the main course of the upper Yangtze (Jinsha River) are remarkably low, yet some small modern 

tributaries are rapidly eroding at 500 m/Ma (Henck et al., 2011). Immediately following large 

earthquakes, such as the 2008 Wenchuan earthquake, the mountain rivers of the eastern plateau 

margin become choked with material shed off the failed hillslopes (Parker et al., 2011). Active 

rock uplift decreases dramatically east of the plateau margin (Richardson et al., 2008), and 

variations in anthropogenic activity, principally from agriculture, likely become important agents 

of erosion (Wilkinson and McElroy, 2007). Indeed, previous work examining detrital zircon 

U/Pb age distributions from the Yangtze and its tributaries concluded that a major portion of the 

zircons are derived from tributaries characterized by high agricultural land use (He et al., 2014). 

We revisit this data through a more detailed analysis of the modern U/Pb age-distributions, and 

include an extensive compilation of bedrock zircon data across the Yangtze catchment. Our 

attempt to resolve the provenance of zircon in the Yangtze includes multiple visual 
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representations of qualitative and quantitative zircon U-Pb age distribution comparisons and two 

mixing models that consider 1) the modern fluvial distributions and 2) potential bedrock sources 

within the modern drainage area to determine their relative contributions of zircon to the Yangtze 

River sedimentary budget. By combining multiple approaches to describe the provenance of the 

Yangtze River, we are able to better characterize the age distributions of the Yangtze River and, 

as a result, reinterpret their implications for spatial variability in erosional throughout its 

catchment. 

Datasets 

We reanalyze the modern Yangtze River dataset comprising of 25 sand samples spanning 

nearly the entire length of the river and its major tributaries first reported by He et al. 

(2013)(Figure 2.1). As part of He et al.'s 2013 study, samples were collected in 2008 and 2009 

from channel deposits (mid-channel, lateral, and point bars) exposed at low river levels. They 

collected riverbed sand in multiple locations around each sampling site to sample a 

representative mixture at each local (He et al., 2013).  

The detrital zircon age data (Figure 2.3) is coupled with the zircon age distributions of 35 

potential bedrock sources compiled from the literature (Figure 2.1). The major geologic 

provinces encompassed by the Yangtze catchment and described by these 35 bedrock units 

include the Songpan Ganze Terrane, the eastern Qiangtang Terrane, the Yidun Terrane, the 

Sichuan Basin, the Yangtze Craton, the Longmenshan, the Qinling-Dabieshan fold belt, the 

South China Fold Belt, and several smaller geologic provinces that also may contribute zircons 

(Figure 2.1 and Figure 2.2). The majority of the 35 bedrock U/Pb age-distributions represent the 

combined zircon ages of multiple genetically related samples. For example, sandstone samples 
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with similar geographic extent, sedimentary facies, depositional age, and age distributions were 

combined to generate an average distribution for a particular suite of samples, simplifying the 

dataset. Unimodal bedrock units, particularly plutonic outcrops, were only combined when age 

distributions were statistically indistinguishable.  

Zircon distributions are represented as probability density functions (PDFs; e.g. Hurford et 

al., 1984), which represent the summed probabilities of U/Pb ages as measured by the Gaussian 

representation of U/Pb ages and their associated analytical uncertainties.  

Methods 

We apply multiple conventional and new approaches of detrital zircon data analysis in 

our re-examination of the spatial distribution of provenance changes for the modern Yangtze 

River.  

Kolmogorov-Smirnov Test, Likeness, and Crossplot R
2
 values 

The two-sample Kolmogorov-Smirnov Test (K-S test) is one of the most widely utilized 

non-parametric statistical tests in detrital zircon geochronology (e.g. Press et al. 1987; Guynn & 

Gehrels 2010). The null hypothesis of the K-S test is that the two sample distributions are 

derived from the initial same distribution, thus a rejection implies they are drawn from distinct 

distributions. The results of the K-S test are contingent on the K-S statistic, or sample effect size 

(KSSE), which is the maximum difference between the empirical cumulative distribution 

functions for each sample. The KSSE is used to calculate the K-S Test’s p-value to evaluate the 

null hypothesis. The K-S test provides a binary representation of whether any pair of 

distributions are statistically unique from one another (Table 2.1). The goal of this approach is to 
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statistically test if downstream samples are in fact derived from the same or different 

distributions than their upstream counterparts.  

As the K-S test is both binary and weighted towards the center of age distributions, other 

comparison metrics are better suited to highlight differences between zircon age distributions. 

Likeness (Satkoski et al., 2013) and probability function crossplot R
2
 (CPR) values (Saylor et al., 

2013) have been proposed as alternative quantitative metric of comparison. The value of CPR 

and likeness is their sensitivity to both shapes of components within the distributions and the 

presence and absences of components. Likeness (Satkoski et al., 2013), or its inverse, percent 

area mismatch (Amidon et al., 2005a), is a measure of the absolute difference between two 

probability curves. Likeness varies from 0 to 1, with a value of 1 representing two identical 

distributions (Figure 2.4). Probability function crossplots are generated by plotting the 

probabilities of two distributions against each other over a given range of ages (Saylor et al., 

2013). The coefficient of determination (R
2
 value), calculated from a linear fit to the plot, 

provides the CPR value. Similar to likeness, values range from 0 to 1 with, 1 reflecting identical 

distributions.  

Multidimensional Scaling 

Multidimensional scaling (MDS) is a technique common in statistical analysis of datasets 

(e.g. Hayward and Smale, 1992; Carroll and Arabie, 1980; Smosna et al., 1999), however is 

relatively new in its application to detrital zircon U/Pb age datasets (Vermeesch, 2013; Spencer 

and Kirkland, 2015; Vermeesch and Garzanti, 2015). MDS in detrital zircon geochronology, 

attempts to translate pairwise dissimilarities measured between sample age-distributions (e.g. 

Likeness, CPR, or KS-Statistic) into Euclidian distances, generally into 2-dimensional 
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configurations (Vermeesch, 2013). In this construct, greater Euclidean distances between two 

samples, represented as points in MDS configurations, indicate increasing degrees of 

dissimilarity. MDS attempts to find the optimal spatial distribution of the sample points for the 

matrix of distances (e.g. translated dissimilarities). There are multiple evaluative loss functions 

for MDS, but the most common is stress (S) (Kruskal, 1964a). Lower stress values, generally 

below 0.10 indicating a good fit of the translated dissimilarity configuration while S >0.2 

generally indicates a poor fit. MDS can be applied to detrital data using either metric or 

nonmetric MDS. Metric MDS uses the absolute measures of the dissimilarities to solve for the 

configuration and stress value simultaneously (Vermeesch, 2013). Nonmetric MDS ranks the 

dissimilarities (i.e. ordinal data) and numerically (e.g. isotonic regression) finds the optimal 

configuration by minimizing the loss function (Vermeesch, 2013). Along with the stress value, a 

Shepard plot is a good tool for MDS evaluation; here, the measured dissimilarities are plotted 

against the translated distances, and a better fit to either a linear (metric MDS) or some 

nonparametric monotonically increasing function (nonmetric MDS) indicates a better 

configuration. 

For this study, we follow a similar approach to that outlined in (Wissink et al., in review) 

2016), where dissimilarities are a measure of the likeness, rather than KSSE as originally applied 

by Vermeesch (2013). Here, we use nonmetric MDS as it yields lower stress values. MDS will 

highlight any differences in the Yangtze’s trunk stream samples and identify which tributaries 

appear to the most similar to trunk stream samples (Figure 2.5), if any. For example, if several 

tributaries account for the majority zircon in the trunk streams, these tributaries should surround 

and possibly be clustered within the trunk stream samples from which they are derived, while the 

remaining, low zircon source tributaries should fall at greater distance from the trunk samples 
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around the periphery. Assuming a dramatic shift in provenance following the incorporation of a 

specific tributary, we would also expect an obvious downstream and upstream clustering of trunk 

stream samples, with the downstream samples closer in MDS space to the major contributing 

tributary. Should an upstream catchment dominate zircon supply, there would be little to no 

differentiation between up- and downstream trunk samples.  

Gaussian Component Breakdown 

He et al. (2014) broke the Yangtze dataset down into 6 age brackets. Their age intervals 

were 0-65 Ma, 100-300 Ma, 300-600 Ma, 600-1000 Ma, 1700-2000 Ma, and 2000-2700 Ma. 

However, closer inspection of both their detrital dataset and bedrock source data, suggests these 

age brackets do not adequately represent distinct geologic emplacement events within the 

Yangtze Catchment. Instead, we break the dataset down into individual Gaussian components 

that more effectively describe the trunk stream distributions. Here, a component is, at its simplest 

represent, a normally distributed suite of ages around some mean that represent some discrete 

geologic zircon producing event. Since our goal is to identify the variation in the Yangtze's trunk 

stream samples in relation to its tributaries and associated bedrock sources, we isolate the major 

components associated with the trunk stream distributions. We follow the approach outlined in 

Wissink (2016), where the probability density curves of all trunk stream samples are summed 

and normalized to unity. Following the summation, unique age components are identified using a 

deconvolution algorithm that fits a Gaussian curve to each of the largest, (in integrated area) age 

modes, minimizing the mean square error for each (Figure 2.6A). The mean and two standard 

deviations of each curve define an age component. The sum of the individual Gaussian functions 

approximates the original dataset. Similarly to He et al. (2014) we calculate the proportions of 

zircons within the Yangtze River sediments for each defined component. This is achieved by 
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integrating the PDFs for each sample between the endpoints defined by each component. Using 

this approach, we identify the major components and their overall variance within trunk stream 

samples, which we can use to make more robust inferences on provenance.  

Mixing Models 

We apply a simple mixing model modified from Lang et al. (2013) to assess whether 

changes in sediment source explain age-distribution variations observed in the Yangtze trunk 

stream detrital zircon dataset. Lang et al.’s (2013) mixing model determines the optimal mixing 

proportions of potential contributing sources with no a priori knowledge of which sources to 

include. Source distributions, here represented by probability functions, are mixed at varying 

proportions over a range of possible combinations, with the resulting mixture compared against 

the detrital sample. Mixtures are generated by multiplying the PDFs of each 'source' distribution 

by their respective percent contribution to that mixture and summing each, creating the mixed 

PDF. An optimal mixing of sources corresponds to that with the highest comparison metric (e.g. 

likeness, CPR, and KS-Statistic) of mixture to sample comparisons. We use Likeness (Satkoski 

et al., 2013) as it best represents the overall shape of the distributions (i.e. height and width of 

component). Here, we separately apply the mixing model to the detrital sediments of the Yangtze 

using two different constructs of source – bedrock and tributary rivers.  

For the first model, sources are defined as any possible contributing lithologic unit, 

ranging from large sedimentary sequences to localized plutons. The contribution of a bedrock 

unit to a trunk stream sample is contingent on its inclusion within the drainage area upstream of a 

sample collection location. The compilation of lithologic units are presented in Figure 2.1, with 

either the exact geographic coordinate given for single representative sample, or approximate 
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locations for aggregates of related samples.  

In the second approach, we assume that the sources of the Yangtze River trunk stream 

sediments are described by the U/Pb age-distributions of the main stem tributaries. Ideally, the 

model would exclusively use tributary distribution to represent the fluvial system. However, the 

10 major tributaries sampled by He et al., (2013 & 2014) represent at most only 58% and as little 

as 25% of upstream areal catchment at any trunk stream sampling location collected downstream 

of the Yalongjiang (Figure 2.1, 2.2, 2.7B). Thus, only considering the tributaries means 

potentially ignoring ~50% of possible contributing area. To mitigate this, we include all 

upstream tributary and trunk sample distributions as possible source contributors for the mixing 

model. This model is predicated on each fluvial sample adequately and accurately representing 

the integrated U/Pb distributions of their upstream catchments.  

In practice, it is difficult to identify more than 10 unique sources with confidence due to 

the small percentages of each source and random sampling uncertainties associated with 100 age 

draws as well as large computational times. For the bedrock-source scenario, there are over 30 

possible contributing sources for trunk samples collected in the lower Yangtze reaches. 

Therefore, we modify how the mixing algorithm is applied depending on the number of potential 

contributing sources. When less than seven sources are identified as possible contributors, the 

mixing algorithm uses all combinations of source PDF's at 5% incremental changes. At eight to 

12 possible sources, the incremental changes in mixing proportions are increased to 10% for 

computational efficiency. If the total number of possible contributing sources exceeds 12, we use 

a grid search technique that prioritizes those sources with the highest initial similarity metric 

values of source to sample comparisons (see Appendix II) to determine the optimal mixture for 
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each detrital sample. 

Results 

Results of K-S Test; Likeness; and Crossplot R
2
 Values  

The K-S test was used for each pairwise coupling of the Yangtze River trunk and 

tributary samples. The results are summarized in Table 2.1, where an F indicates a failure to 

reject the null hypothesis and therefore the samples cannot statistically be said to have derived 

from different distributions. Two-thirds of all Yangtze trunk-to-trunk sample comparisons fail to 

reject the null hypothesis, with no obvious differentiation between the upper and lower reaches 

of trunk stream samples. The trunk samples that appear to have the strongest differentiation, i.e. 

reject the null hypothesis most frequently, are at the first bend of the Yangtze (Shigu), and at 

Yibin (Figure 2.1; B, Figure 2.2 and 2.3; Table 2.1). In contrast to the trunk-to-trunk 

comparisons, only 18% of trunk-to-tributary comparisons fail to reject the null hypothesis, 

indicating far greater variance within the tributary age-distributions compared to the trunk. The 

shaded portion of Table 2.1 indicates the tributaries that are upstream of the trunk samples of the 

same row (also those falling below the bolded black line). The tributaries most closely 

resembling trunk samples using the K-S test are from the Xiangjiang, one of the tributaries 

identified by He et al. (2014) as a principle sediment contributor, and Yuanjiang. This is despite 

the merger of these tributaries with the Yangtze River occurring in the lower quarter of the 

catchment (Figure 2.1; Table 2.1). The tributaries associated with the upper and middle reaches 

of the Yangtze River (the Yalongjiang, Daduhe, and Minjiang) exhibit seemingly unique 

characteristics; failing to reject the null hypothesis for most trunk stream comparisons. Of the 

tributary-to-tributary comparison, only three pairs of tributaries fail to reject the null-hypothesis: 
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the Daduhe – Minjiang, the Xiangjiang – Ganjiang samples, and the Hanjiang – Ganjiang 

samples. The trunk-to-tributary and tributary-to-tributary comparisons suggest far greater 

differentiation amongst tributary samples, possibly making more focused and less binary 

characterization possible. It is important to note, that although a trunk stream sample may reject 

the null hypothesis in trunk-to-tributary comparison, this does not preclude the possibility of the 

tributary contributing to the trunk stream's sediment budget. All it suggests is the trunk stream 

sample is not exclusively derived from a given tributary.  

Likeness and CPR values, which are more sensitive to the overall similarities and 

differences in the detrital U/Pb age distributions, are similar to the K-S test results (Figure 2.4). 

Likenesses of trunk-to-trunk comparisons vary between 37-63%, with an average of 52±6% 

(Figure 2.4A). Despite the wide range of ages in the Yangtze samples, the mean value for trunk-

to-trunk sample comparisons is relatively close to the lower threshold of maximum likeness 

value of 72±6% established by sampling a single, multimodal parent distribution for multiple 

100-age samples (Satkoski et al., 2013). Tributary-to-trunk comparisons yield lower likenesses 

from 23-61% with an average of 46±7% (Figure 2.4B). Inter-tributary comparisons yield the 

lowest values of 42±10% (Figure 2.4C). CPR values follow a similar pattern to Likeness (Figure 

2.4D-F), though exhibiting more scatter and lower average values with an average of trunk-to-

trunk CPR values of 0.26±0.13. The tributaries with the highest CPR
 
and likeness values in 

trunk-to-tributary comparisons are the Dadu, Min, Yuan and Han tributaries, with no relationship 

between downstream incorporation and high values (see Appendix I; Table I.1. and I.2.). 

Assuming a significant single shift in provenance, one would expect a certain bimodality in 

likeness values of the inter-trunk comparisons. Samples downstream of such a shift would 

exhibit a positive increase in comparative likeness and decrease compared to the upstream 
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samples. It is clear there is no such step function present in the measures of similarity of down 

vs. upstream samples. Trunk samples exhibit strong overall similarities, particularly at the 

confluence of the Yalong River at Panzhihua. 

Results of Multidimensional Scaling 

The variability in the Yangtze dataset using Multidimensional Scaling is summarized in 

Figure 2.5. The MDS configuration results in a strong clustering of trunk stream samples (filled 

circles) in the center of the MDS Map, highlighting their overall similarity while also lending no 

evidence of significant changes in provenance further downstream. This is not unexpected given 

the results of the likeness test. The four trunk samples, nearest the mouth of the Yangtze (Hukou, 

Datong, Nanjing, and Changxing Island), show no significant differentiation in MDS with 

samples collect from the upper vs. lower reaches. The trunk samples furthest from the center 

include Tuotuohe, Shigu, Yueyang-2 and Yibin, though even this differentiation is not 

particularly robust. Tuotuohe and Shigu represent the upper reaches of the Yangtze and thus 

possibly differing provenance or limited contributions to the river downstream of Panzhihua. 

Yibin and Yueyang are both more closely linked to the Yalongjiang and Xiangjiang tributaries, 

respectively; both tributaries represent the immediately preceding large tributary for each of the 

respective trunk stream samples. The tributaries themselves (unfilled circles) fall to the outer rim 

of MDS map (Figure 2.5), ringing the trunk samples. While this configuration may suggest all 

tributaries are contributors in some fashion, the clustering of trunk stream samples demonstrates 

a lack of downstream differentiation. Of the 10 Yangtze tributaries, those closest to the trunk 

sample cluster are the Minjiang, Daduhe, and Jialingjiang tributaries; all of which occupy the 

northwestern portion of the Yangtze Catchment.  
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Results of Gaussian Component Analysis  

We identify 15 prominent components, which define ~80% of the overall variance within the 

Yangtze River trunk stream distributions (Figure 2.6; A). However, just six describe 75% of the 

total variance and, in decreasing order of proportional contribution and given as μ-2σ:μ+2σ, are 

675-904 Ma, 1,734-1,974 Ma, 389-481 Ma, 199-225 Ma, 2,417-2,605 Ma, and 2,342-2,492 Ma. 

These ranges represent substantial revisions to those previously described by He et al. (2014). 

Using the Gaussian components defined above, we calculate the proportions of each in every 

Yangtze sediment sample, uniquely, and the average proportion of each component for the trunk 

sediment samples. This average allows us to examine the deviation of each sample age 

distribution from the trunk stream mean value for each component (Figure 2.6B). The mean 

value for each component is normalized to zero, and the deviation for each sample is given as a 

percentage point difference between the mean value and the proportion within that sample. For 

example, if component one has a mean value of 20% and sample one's age distribution is 25% 

component one, it would be given as a +5 percentage point (pp) deviation from the normalized 0 

mean value. In Figure 2.6B, we plot the deviations of the six components described above as 

well as the Cenozoic component of 34-48Ma to more similarly match the components of He et 

al. (2014). The deviations for the remaining components can be seen in Appendix II. A striking 

feature revealed in Figure 2.6B, is the low deviation from the mean value for nearly all 

components for trunk stream distributions, generally falling within ±5 pp, throughout most of the 

fluvial system. The same cannot be said for the tributary component proportions, which differ 

widely, deviating 10-20 pp from the mean trunk values for the same components.  

The establishment of the mean component values for the trunk stream appears to occur in the 
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upper Yangtze between Shigu, where component deviations are high (10-20 pp), and Panzhihua, 

where trunk stream proportions settle around the mean (Figure 2.6B). Following Panzhihua, 

trunk stream proportions rarely deviate significantly from mean proportions. There are clear 

spikes of certain components at trunk stream sites near Yibin (676-904 Ma) and Yueyang (389-

481 Ma). Both increases occur after the incorporation of tributaries containing higher than 

average proportions of those specific age components (see tributaries Minjiang and Daduhe, and 

Xiangjiang, respectively). Nonetheless, they immediately return to proportions closer to the 

mean value by the next downstream trunk sample. The trunk samples with the greatest distance 

downstream from the incorporation of any major tributary are Yichang, Nanjing, and Changxing 

Island, and are likely the most homogenized. These samples show roughly equal proportions to 

those established at Panzhihua. The low deviation in values around mean of the trunk samples 

(Figure 2.6B) and the relatively high deviation for tributary samples (Figure 2.6C) match well 

with the results of the K-S test, and calculated dissimilarity values. The high deviations in values 

of tributary samples, and thus the uniqueness of these age distributions, also suggests that any 

major flux of sediments from one or more tributaries, should appear and persist downstream of 

its incorporation.  

We construct a simple model for comparison with Figure 2.6B. Here, an essentially 

infinite age-distribution comprised of seven unique components with proportions equal to the 

seven mean values of the components of Figure 2.6B (legend), is randomly drawn from 15 100-

age samples. The results of a single model run are given in Figure 2.6C. The results of this model 

yield nearly indistinguishable curves from the majority of trunk stream samples found 

downstream of the First Bend of the Yangtze. In multiple model runs, components with of a 

mean value between 1-4% yield standard deviations generally of ±1.5-2.5pp (1σ), 5-10% 
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components have standard deviations of approximately ±2-3 pp, and components with >10% 

yield standard deviations of ±2.5-5.5 pp (Figure 2.6C). Therefore, the possible deviations of a 

single random sampling can be >±10pp, particularly for larger components, but < ±10 pp 

deviations are difficult to distinguish from random draws. Samples from Yibin and Yueyang-2, 

which show the largest and likely not randomly derived, deviations, are easily associated with 

immediately upstream tributaries. The remaining trunk samples at and downstream of Panzhihua 

exhibit striking resemblance to the simple model, suggesting shared provenance.  

Results of Yangtze River Mixture Models  

The results of the mixture model applied to the Yangtze River dataset are described here and 

illustrated in Figure 2.7. The optimal mixtures of bedrock sources achieved likeness values of 

ranging from 57-75% when comparing the mixed distributions to the original sample 

distributions. Of these bedrock mixtures, the Yangtze trunk samples, with the exception of 

Tuotuohe in the headwaters, yielded maximum average likenesses of 67 ± 4%, within the 

maximum achievable resampled likeness of 72±6% described by Satkoski et al. (2013). 

Tributaries also return similar averages of 67 ± 5.5% (See Appendix II. for tables). The bedrock 

source distribution dataset consisted of a maximum of 35 possible source units. The results of the 

optimal mixtures excluded nine from any of the sample optimal mixtures. For geographic and 

geologic simplification, we can further reduce the number of geologically distinct bedrock units 

to 17 units that contribute in one or more optimal mixtures. The full 26-source mixture model 

can be found in Appendix II.  

The units of the Songpan Ganze Terrane (SGT), the Triassic flysch deposits found near the 

headwaters and left-bank tributaries of the upper-Yangtze (Figure 2.1; XVI, XVII, XVIII, XIX; 
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Figure 7A) show a clear dominance in zircon supply to modern trunk stream sediments. Deposits 

related the southern depocenter of the SGT (Weislogel et al., 2010) make up the majority of 

contributing sediments from this Terrane (Appendix II). Sediments from the Qamdo Basin, 

which shares a depositional history with the SGT (Shang et al., 2016), and the Jurassic 

Sediments of Yunnan Provence (Su et al., 2014), are included in two-thirds of trunk optimal 

mixtures. These units each have likeness values exceeding 45% with the SE depocenter of the 

SGT and thus may be difficult for the mixing model to differentiate, though all are present in the 

northwestern margin of the Yangtze catchment. By simply grouping sources derived from 

geologic terranes upstream of sample Panzihua-2, optimal trunk mixtures are 65-100% 

comprised of these bedrock units, averaging ~85% for the 15 trunk stream distributions. 

Together this grouping constitutes <20% of the overall area of the Yangtze catchment.  

Two volcanic units associated with the Longmenshan Range and South China block both 

share Neoproterozoic emplacement ages and make clear contributions to the trunk stream 

samples. These units, in dark red and pink in Figure 2.7, respectively, are essentially unimodal 

and share a 33% likeness. While less likely to affect the final mixture output of <12 sources, 

these units may be difficult for the grid-search mixture model to differentiate. Following the 

incorporation of the Ganjiang and Yuanjiang Rivers, which both have very high South China 

components; we observe an increase in South China derived units at the apparent expense of 

Longmenshan units. Neoproterozoic ages account for ~5-25% of the overall composition of our 

mixtures. Other minor contributors include Cenozoic volcanics, the Laji and Dabieshan 

mountain ranges and sediments from the Sichuan basin.  
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The second mixture model using major tributaries and upstream trunk samples as sources 

for the downstream trunk distributions (Figure 2.7B), yields optimal mixtures with far stronger 

trunk stream contributions than tributary contributions. Twelve trunk stream samples contain at 

least one major tributary within their catchment; eight of which are best described by mixtures 

contain >70% trunk stream zircon (red outlined wedges of pie charts). These require minimal 

contributions from tributaries to push the mixing model toward higher optimal metric values. 

The remaining samples, those near Yibin, Fuliang, Yichang, and Wuhan range from 30-55% 

trunk stream contributions. Yibin, due to its high Neoproterozoic concentrations favors the 

incorporation of the Yalongjiang. Interestingly, this is despite the obvious lack of strong 

Neoproterozoic age proportions at Panzihua-2 immediately following the incorporation of the 

Yalongjiang (Figure 2.7B). Fuliang and Yichang have elevated incorporation of the Wujiang 

tributary (Figure 2.7B - purple) grains in the mixing model. This is notable given the Wujiang 

River only accounts for ~8% of the total catchment area at the sample locations. Figure 2.7 

shows these two samples both have slightly higher than average Paleoproterozoic age zircons 

and may be why Wujiang, which shares this characteristic, is favored in the model. Samples at 

both Yibin and Yueyang-2 mirror the results observed in Figure 2.7, where higher than average 

concentrations of particular age modes of the most immediately incorporated tributaries leads the 

mixture model to include higher than expected tributary concentrations. 

Discussion 

Each analysis of zircon ages explored here demonstrates that the zircon U/Pb age distribution 

of the Yangtze River is established early in its upper reaches near the sampling location of 

Panzhihua-2 and remains continuous downstream. This refutes the claim of He et al., (2014) who 

argue that the tributaries of the Han, Xiang and Jialing Rivers constitute the largest contributions 
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of sediment to the Yangtze. Their conclusion relies heavily on a coarse grouping of zircon age 

components and just eight bedrock units to characterize the structural blocks of the Yangtze 

catchment, a total that we have expanded upon and refined here. Our more robust bedrock 

dataset, Gaussian component analysis, and multiple analytical techniques to explore zircon age 

distributions argue for the more tectonically active and steeper topographic regions of the 

Yangtze Catchment to dominate the sediment budget of the modern river.  

The K-S test demonstrates consistent shared provenance for the vast majority of the trunk 

stream samples along the length of the Yangtze fluvial system. This argument is bolstered by the 

rejection of the K-S test null hypothesis in most trunk-to-tributary comparisons, demonstrating 

the lack of impact tributaries have on the trunk stream. If the contributed in sediment in equal 

amounts, the incremental addition of zircon from tributaries should result in a measurable change 

in zircon age distributions and would be noted moving downstream. The K-S test, Likeness, 

CPR, and component deviations from the mean trunk values all point towards a uniform 

character of the detrital zircon component downstream of Panzhihua. The few trunk samples that 

do exhibit large variations in components occur immediately downstream of specific tributaries 

(Figure 2.6B). It is plausible to assume the upward spike in zircon contributions is indicative of 

higher than average erosion or so-called zircon fertility from these tributaries. However, 

following these jumps in contribution from the nearest upstream tributary (often just tens of 

kilometers upstream), the signal is consistently absent at the next downstream trunk sample 

(Figure 2.6B). This most likely suggests poor homogenization of the tributary and trunk 

sediments at the sampling locality. For the remaining samples, the deviations from mean trunk 

stream values are essentially impossible to distinguish from the noise of random sampling 

(Figure 2.6C).  
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 MDS analysis also supports a zircon source for trunk of the Yangtze derived primarily from 

the upper portions upstream of Panzhihua. Within MDS space, the progressive incorporation and 

dominance of zircon ages from downstream tributaries would result in a drift in zircon ages 

across MDS space. Instead, we observe the majority of trunk stream samples clustering together 

in MDS space centered on the Panzhihua trunk stream samples suggesting little deviation in 

zircon age downstream of those sampling localities. The tributaries nearest the trunk cluster are 

also primarily tributaries of the northwest Yangtze catchment, indicting they are important zircon 

sources. 

Our mixture models, both of bedrock mixtures and upstream tributary mixtures further 

support our supposition of a quickly established and maintained zircon age distribution for the 

Yangtze. In the bedrock model, we find that high concentrations of eastern Tibetan Plateau 

bedrock units yields the highest likeness values of any mixture model, reaching likenesses near 

the proposed threshold of 72±6% of shared provenance established by Satkoski et al. (2013). 

Although we do not test all possible mixtures for samples containing >11 possible contributing 

sources, nor can we guarantee that similar age distributions are not substituted at the expense of 

the “correct” source, the corroborating results of the bedrock mixture model with the previously 

described methods suggests a high confidence in the overall results of the bedrock-mixing 

model. The U/Pb age distribution of the Yangtze is fixed after the river traverses the upper 

reaches of the Yangtze, which largely sources the Songpan Ganze Terrane and the Longmenshan 

(i.e. the catchment of upstream of Panzihua-2, and the Yalongjiang, Minjiang, Daduhe, and 

Jialingjiang tributaries). Thus, the high exhumation rates at the eastern margin of the Tibetan 

Plateau (Kirby et al. 2002; Wang, 2012; Densmore et al. 2007) provide much of the Yangtze’s 

overall sediment load. This is consistent with well-documented large sediment flux to valleys 
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(Parker et al., 2011) after large earthquakes. Such persistent, far-traveled, geochemical signals 

that traverse 1000s of kilometers of lowlands are not unique to the Yangtze, as is evidenced by 

data from the Amazon River (e.g. Dobson et al., 2001; Wittmann et al., 2011). Importantly, our 

results are consistent with those with other detrital studies of the Yangtze, which focus on non-

zircon systems. Zhang et al. (2014) characterized Pb isotopic composition of potassium feldspar 

and demonstrated erosion of the Longmenshan and neighboring regions are the important 

sediment suppliers to the middle-lower Yangtze. The recent high-resolution petrographic and 

heavy-mineral analysis of Vezzoli et al. (2016) finds that left-bank tributaries draining the 

topographic front of the Longmenshan and Qinling Mountains (believed to be a major source of 

sediment to the Songpan Ganze Terrane (Weislogel et al., 2010) are the principle contributors to 

sediment reaching the East China Sea. Both studies note the higher contributions of these 

tributaries and regions correlates well with well with their slope steepness, precipitation, stream 

power, and tectonic hazard (Vezzoli et al., 2016; Zhang et al., 2014).  

Finally, the results of the fluvial sediment-mixing model (Figure 2.7B) are not inconsistent 

with the previously established results that the sediment of the trunk stream and not the 

downstream tributaries dominates the U/Pb age signal of trunk samples. The majority of 

subsequent trunk stream samples following Panzhihua are best described by mixtures of almost 

exclusively trunk stream sediments. Notable exceptions, such as samples near Yibin and 

Yueyang-2 can be attributed to high proportions of particular components linked closely to 

recently incorporated tributaries that do not maintain consistently high proportions downstream.  

 Based on our analysis, the interpretation of enhanced erosion within the Han, Jialing, and 

Xiang river catchments due to anthropogenic activity proposed by He et al. (2014) cannot be 
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substantiated. In no analysis performed in this paper is there evidence that these tributaries 

contribute disproportionately to the overall trunk stream catchment. This mischaracterization of 

zircon sources is likely the result of only considering broad age ranges and over generalized 

bedrock age distributions. The notable increase in contributions associated with Neoproterozoic 

zircon related to the South China block in downstream samples is the one exception to the 

dominance of the upper and northern reaches of the Yangtze. However, the contributions of the 

South China block never exceed 20% in optimal mixtures, averaging ~11%, which closely 

resembles the 6-10% areal proportions of the Xiangjiang and Ganjiang tributaries that source the 

South China Block. Without more data to distinguish Longmenshan from South China 

Neoproterozoic ages, it is difficult to determine whether these Neoproterozoic zircons are 

correctly grouped with the South China units or merely incorrect substitutions of their western 

Longmenshan counterpart.  

Our analysis of provenance is limited exclusively to U/Pb zircon ages and could 

potentially be refined with a second layer of data such as cooling ages (e.g. Reiners et al. 2005), 

εHf (e.g. Andersen et al. 2011), or using Th/U ratios (e.g. Wang et al. 2014). Other limitations 

endemic to nearly all regional and continental scale detrital zircon provenance include potentially 

incomplete descriptions of zircon ages from source terranes, since these are typically complex 

composites of igneous, metamorphic and sedimentary rocks. Here, we have attempted to more 

robustly characterize the bedrock units of the Yangtze Catchment with an exhaustive compilation 

of bedrock zircon geochronology. Even with this compilation, it is difficult to completely 

discount spatial heterogeneity in zircon concentration (fertility) (Moecher and Samson, 2006; 

Malusà et al., 2015) or age spectra and thus may not be an accurate representation when 

combined. The problem is only exacerbated given the size of the Yangtze watershed (~1.8 
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million km
2
). For example, despite the Wu and Yuan River catchments both encompassing a 

significant portion of South China block, their zircon ages are strikingly different. The Wu River 

mixture (Appendix II; Figure II.2.) is predominantly derived from Sichuan Basin despite its 

relatively minor areal contribution to the Wu's catchment. The Yuan River catchment does not 

contain the Sichuan Basin and results in a very different mixture despite the shared South China 

Block catchment. This implies either that the Sichuan Basin is exhuming faster than the South 

China Block or that there is greater abundance of zircons in the Sichuan Bedrock relative to the 

South China Block. However, the consistency in our results from method to method, as well as 

independent constraints on exhumation and erosion rates, and independent provenance data, 

support our conclusion that the upper reaches dominate the supply of zircon, and thus sediment 

to the Yangtze River.  

Conclusions 

We reinterpret the Yangtze River detrital zircon data of He et al. (2014) concluding that 

the upper Yangtze, and more specifically the catchment sourcing zircon from the northwestern 

portion of the basin, are the largest contributors of sediment to the Yangtze River. He et al. 

(2014) interpreted the Yangtze detrital zircon data to represent an increase in erosion rates in 

three tributaries of the Yangtze, the Han, Xian and Jialing Rivers, related to Holocene human 

disturbance and high specific stream power. Our interpretation is supported by the results of K-S 

test, likeness and CPR analysis, Gaussian component analysis, and mixing models of bedrock 

and fluvial distributions. The U/Pb age-distributions of trunk samples are established 

approximately 400 km downstream of the first bend of the Yangtze at Panzhihua (Figure 2.1) 

and maintained throughout the rest of the river. The majority of trunk stream samples are best 

described by high percentages of both the Songpan Ganze Terrane and the Longmenshan 
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consistent with K-feldspar and petrographic and heavy mineral analysis of Zhang et al. (2014) 

and Vezzoli et al. (2016), respectively. The tributaries of the Yalong, Min, Dadu, and Jialing 

Rivers help establish and maintain this signal for the remainder of the catchment. Intersample 

KS-Tests and dissimilarity measures establish a clear high degree of similarity between trunk-to-

trunk sample comparisons, a fact further supported in MDS of the distributions. We argue that if 

specific downstream tributaries contributed disproportionate zircon fluxes to the main stream, 

there would be evidence seen in one more of the systematic approaches of detrital analysis 

performed here. However, there is no evidence of significant variation within the overall trunk 

stream sample distributions downstream of Panzhihua that cannot be explain by poor 

homogenization of recently incorporated tributaries. Our comprehensive approach can be applied 

to any detrital zircon provenance system as it relies on multiple quantitative comparison 

techniques.  
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Figures 

Figure 2.1. The Yangtze River catchment and sampling locations. Letters are for the trunk 

stream location of river sediment samples and roman numerals are for the tributary samples from 

He et al. (2013 and 2014). Black dots indicate the approximate sampling locations of potential 

bedrock source zircon age components (For bedrock names and references, see Appendix II; 

Figure II.1.). Source sampling locations may represent geologically contiguous units. Trunk 

Samples: A - Tuotuohe; B - Shigu (First Bend of Yangtze); C - Panzhihua-1; D - Panzhihua-2; E 

- Yibin; F - Chongqing; G- Fuliang; H - Yichang; I - Yueyang-1; J - Yueyang-2; K - Wuhan; L - 

Hukou; M - Datong; N - Nanjing; O - Changxing Island. Tributary Samples: I - Yalongjiang; II - 

Daduhe; III - Minjiang-1; IV - Minjiang-2; V - Jialingjiang; VI - Wujiang; VII - Yuanjiang; VIII 

– Xiangjiang; IX - Hanjiang; X – Ganjiang. Sample B at Shigu contains data from both He et al., 

(2014) and Kong et al., (2012). 
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Figure 2.2. Geologic Terrane Map for the Yangtze River catchment. Terranes are colored if 

they are areally extensive in the Yangtze River catchment (Bold Black Line). OB = Ordos Basin; 

SP = Shanxi Plateau; THB = Taikang Hefei Basin; SYSB = Subei Yellow Sea Basin; LSB = 

Lanping Simao Basin.  
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Figure 2.3. Probability density curves for each of the Yangtze River samples. On the Right 

are the 15 trunk stream samples and the left are the ten tributaries samples. Groups and solid 

lines extending from the tributaries indicate approximate confluence of these tributaries to the 

trunk stream. 
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Figure 2.4. Intersample likeness and CPR values. Results of using the Likeness comparison 

metric (left) and CPR values (right) for trunk -to-trunk, trunk-to-tributary, and tributary-to-

tributary intersample comparisons. N equals the number of comparisons per histogram. Higher 

values indicate higher similarity between pairwise comparisons. Note the trunk-to-trunk 

comparisons yield on average higher comparison values than all other sample type combinations. 
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 Figure 2.5. Multidimensional scaling plot of Yangtze River data. The nonmetric MDS plot 

(main) and Shepard Plot (inset) for the translated dissimilarities (likeness) for the Yangtze River 

dataset. Trunk stream samples are given as filled colors with warmer colors indicating further 

downstream sampling; Tributary point edge colors indicate downstream location. Solid and 

dashed lines indicate the closest neighbors and second closest neighbors in likeness, respectively. 

(Inset) The Shepard plot for the given data. Points represent the scatter plot of the measured 

dissimilarities (likeness values) vs. the distances in MDS space. Because the MDS is nonmetric, 

the monotonic function which best translates the data (red line) is calculated numerically. Better 

fits plot closer along function line. A stress value of ~0.14 indicates a fair translation of the data 

(Kruskal, 1964a) into MDS space.  

  



76 

 

 

 

Figure 2.6. Gaussian breakdown of the Yangtze River dataset and deviations from means. 

A) The black line indicates the summed curve of all trunk stream samples of the Yangtze River. 

The colored curves are the Gaussian curves which best describe the overall variance of the 
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dataset. The range of each curve at ±2σ from the mean value is given in the legend. B) The 

deviations (in percentage points) in proportion of the seven components, which account for 

>75% of the overall variance of the Yangtze River, at each sampling location from the mean 

value (μ) of that component. μ is given as a percentage in the legend). Top are trunk samples; 

bottom are tributary samples. Vertical dashed lines indicate the confluence point of the 

tributaries. Note the Daduhe and Minjiang Tributaries share a confluence point as do the 

Xiangjiang and Yuanjiang tributaries. C) Model of deviation plot for synthetic unique 

components with proportions equivalent and color coordination to the seven components in B. 

Note the similarity in curve shapes to trunk samples of B.  
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Figure 2.7. Mixture model results for the Yangtze River dataset. The Yangtze catchment 

outlined with the heavy black line; tributaries are outlined by thin black lines. Model results for 

mainstream samples are labeled with roman numerals (See Figure 2.1) Pie charts represent 

optimal mixtures of bedrock (A) and fluvial (B) components for each sample. A – Model results 

of mainstream samples of the Yangtze River mixed using bedrock zircon age data. Trunk stream 

samples contain disproportionate zircons from the Songpan Ganze Terrane and Longmenshan. 

Major Geologic Terranes are colored and labeled as follows: QT – Qiangtang Terrane; SPGT – 

Songpan Ganze Terrane; SB - Sichuan Basin ; TU – Transitional Unit; YC – Yangtze Craton; 
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CA-SC – Cathaysia-South China; QDS – Qinling Dabie Shan Fold Belt; LMS – Longmenshan 

Fold Belt; Y – Yidun Unit; NYB – Nanyang Basin. Geologic Terranes modified from Burchfiel 

and Zhiliang (2013) and Hearn et al. (2000). B – Results of mainstream samples of the Yangtze 

River using its upstream fluvial samples as sources. Colored map regions represent the 

corresponding catchments for each tributary and correspond with colors of the pie chart. Trunk 

stream samples within the pie charts are represented as red outlined 'slices' and show continual, 

disproportionate inclusion of ages derived trunk rather than tributary sources. 
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Table 2.1. Results of the K-S test. Trunk stream samples are given as bold labels, tributaries are 

italicized. A value of F indicates the K-S test failed to reject the null hypothesis that the two 

sample distributions were derived from the same distribution, while a dash indicates a rejected 

null hypothesis. Results falling below and to the left of the bold line (shaded area) within the 

tributary-to-trunk portion of the table are tributaries that fall within the trunk stream catchment 

indicated by the row.   
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TABLE 1. K-S TEST RESULTS

Upstream to the Left (Trunk Samples) Upstream to the left (Tributary Samples)

B. Shigu

C. Panzhihua-1

D. Panzhihua-2

E. Yibin

F. Chongqing

G. Fuling

H. Yichang

I.Yueyang-1
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Abstract 

Development of high efficiency and low cost techniques for the acquisition of U/Pb ages 

has led to the rapid expansion of detrital zircon analysis and interpretation over the last several 

decades. This abundance of information affords unparalleled means to better understand histories 

of sediment dispersal, but also requires effective approaches for qualitative and quantitative 

interpretation. Multidimensional scaling (MDS) is one of the more recent approaches for 

visualizing and understanding U/Pb age data and is applied by translating the dissimilarities 

between sample U/Pb age distributions into Euclidean space, with greater distances between 

sample points equating to greater dissimilarities. Here we examine several important issues in the 

application of MDS to detrital zircon research; these include: 1) different methods of 

representing intra-sample variation and intra-sample dissimilarity in grain ages 2) the 

consequences of random sampling and dating a limited number of grains on MDS results, and 3) 

the effects on MDS differentiation among samples with varying degrees of overlapping, shared, 

and unique age components. We then apply this methodology to several real-world detrital 

zircon datasets in order to illustrate the usefulness of the approach in the interpretation of detrital 

zircon age data. Results from both synthetic and real-world examples suggest that the application 

of MDS mapping to detrital zircon data affords significant advantages in the geologic 

interpretation of grain ages.  
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Introduction 

Zircon is a common accessory mineral in clastic sedimentary deposits, making it widely 

used in provenance analysis. Its durability, resistance to chemical and physical weathering, high 

concentrations of U and Th, and low concentrations of initial Pb make it a robust 

geochronometer and thus a useful mineral for provenance. The widespread use of single-grain 

detrital zircon age data are, in large part, due to the development of rapid and inexpensive age 

acquisition techniques, primarily through laser ablation inductively coupled mass spectrometry 

(LA-ICP-MS). LA-ICP-MS compromises the higher analytical precision of Thermal Ionization 

Mass Spectrometry for the ability to determine the ages of hundreds of zircon grains per day. As 

the number of zircon grains analyzed per sample and the number of samples per study grows, the 

management, visualization, and interpretation of such data becomes increasingly challenging. 

Efficient, effective, and meaningful techniques to envisage, compare, and evaluate zircon U/Pb 

age distributions has therefore garnered considerable attention. This is particularly critical in the 

representation of differences among detrital zircon samples arrayed over broad geographic 

regions and/or through geologic time. 

What are the best approaches to illustrate the variation within a suite of samples arrayed 

in time and/or in space? Most commonly, differences in sample grain ages are evaluated 

qualitatively by visual comparison. However, given the growing size of datasets and increasing 

desire for more robust characterization of inter-sample variation, differences in zircon age-

frequency distributions are increasingly being treated more quantitatively. This allows one to 

examine such variation within an entire detrital dataset, as opposed simply to sample pairs. 

Methodologies employed thus far include mixture modeling (e.g. Sambridge and Compston, 

1994), hierarchical cluster analysis (e.g. Sircombe and Hazelton, 2004), principal component 
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analysis (e.g. Fedo et al., 2003; Sircombe, 2000), and age spectrum deconvolution (Sambridge 

and Compston, 1994). Additional insight can be obtained from multidimensional scaling 

(Vermeesch, 2013). 

The multivariable ordination method, called multidimensional scaling (MDS), 

significantly enhances the capability to visualize differences among samples based on quantified 

pairwise differences in their zircon age-frequency distributions (Vermeesch, 2013). Here, using 

zircon ages from both synthetic-model and real-world datasets, we assess strengths of the MDS 

approach by exploring changes in ordination that result from: 1) choice of pairwise dissimilarity 

metric, 2) sample complexity (i.e. number of age components in a sample), and 3) issues 

associated with random sampling. In the following, we employ the terms ‘age component’ to 

represent a suite of grain ages comprising a single mode, ‘age population’ as a suite of grains 

encompassing one or more age components, and a ‘sample’ as grain ages determined for a 

limited number of grains drawn at random from some population of nearly infinite size. In this 

construct, age components are analogous to classic source provinces (e.g. Grenvillian) whereas 

populations comprise one or (usually) more Gaussian components. 

Variation in grain ages 

In order to characterize spatial and temporal differences in zircon ages among various 

samples using multidimensional scaling, two rather independent steps must first be taken. These 

are: 1) the implementation of one of several methodologies for representing the relative 

abundances of different age components in an individual sample, and 2) the application of one or 

more of a number of metrics by which to quantify the degree of dissimilarity between any pair of 

samples based on the abundances of ages present in each. With these pairwise differences among 
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samples in hand, it is then possible to visualize degrees of sample age differences in time and/or 

space. 

 

Representation of Sample Ages  

Intra-sample abundances of different grain ages have long been represented as age 

frequency distributions (AFD; e.g. Machado et al., 1996), as probability density functions (PDF; 

e.g. Dodson et al., 1988) or as Kernel Density Estimations (KDE; e.g.  Sircombe and Hazelton, 

2004). Each approach strives to identify the presence of one or more age components within 

some sample, the relative frequencies of which can then be further interpreted in some geologic 

context. The application of any of the three approaches necessitates the imposition of certain 

assumptions and biases. The determination of AFDs requires utilization of some bin size (Figure 

3.1A). Determination of PDFs involves the summed probabilities of measured grain ages and 

their associated Gaussian analytical uncertainties, and hence implicit in the method is the rather 

specious notion that that calculated age abundance (e.g. probability density) is somehow related 

to analytical error (Figure 3.1B). Representation of sample ages as KDEs is accomplished by 

arranging the measurements in a similar sense to that in an age frequency distribution, over 

which is imposed a kernel of predetermined bandwidth (Figure 3.1C), and the shape of the KDE 

function is highly dependent on the chosen kernel (band) width. Some use uniform predefined 

bandwidths, (e.g., Andersen, 2014), some adaptive bandwidths that vary by age (e.g. Breiman et 

al., 1977), while still others employ various algorithms to identify the ‘optimal bandwidth’ for a 

given distribution of ages (Botev et al., 2010; Botev, 2007; McPhillips and Brandon, 2010) 

In theory, zircon ages in any sample reflect the differential contribution of one or more 

genetic zircon age components, each representing some duration-restricted zircon growth event 
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whose ages were acquired during the formation of some source province. To the degree that this 

is correct, the absolute importance of any one or several genetic age components can be 

quantified by imposing best-fit Gaussian distributions to any sample AFD, PDF, or KDE (Figure 

3.1D). Regardless of the approach employed to characterize inter-sample variation, it is this 

characterization of intra-sample grain age abundances that ultimately serves as the basis for 

distinguishing variation among samples and their representation as geologically meaningful 

changes in the histories of sediment dispersion. 

 

Calculation of Differences among Sample Age Distributions 

A variety of approaches have been employed to quantitatively represent the differences in 

grain age distributions among sample pairs (e.g. Figure 3.2A). Such comparison techniques (e.g. 

Figure 3.2) include the Kolmogorov-Smirnov (K-S) Test that determines whether a statistically 

significant difference exists between two distributions (e.g. Press et al., 1988), PDF overlap that 

examines the proportion of age intervals that contain some number of zircon ages from either 

distribution (Gehrels, 2000), and PDF similarity that calculates the portions of two distributions 

with overlapping ages (Gehrels, 2000). The K-S statistic is not widely used to describe degrees 

of difference between two distributions, as it was designed to evaluate the probability that two 

samples are drawn from the same distribution. However, Vermeesch (2013) suggests that the 

maximum difference between two cumulative age frequency distributions (Figure 3.2B), a metric 

which serves as the basis for the K-S Test, is a useful measure of sameness among sample zircon 

ages in the context of MDS.  

 An alternative approach for measuring sample dissimilarities employs the determination 

of degrees of correlation (e.g. the Pearson product-moment correlation, or R
2
 value) between 
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sample ages through cross-plots of PDFs (Figure 3.2C; Saylor et al., 2013) or cumulative ages 

frequencies (Wilk and Gnanadesikan, 1968). In practice, such comparison through correlation 

can be based on either frequencies or cumulative frequencies, and either of these could be 

derived from age abundances, their PDFs, their KDEs, or their best-fit Gaussian distributions.  

Lastly, more inclusive metrics of inter-sample difference are exemplified by the percent 

area mismatch approach (Amidon et al., 2005a, 2005b) and closely-associated sample-to-sample 

Likeness statistic (Satkoski et al., 2013). Both of these measures are determined by summing, at 

some temporal scale of resolution, the absolute value of differences between all “coeval” age 

frequencies (Figure 3.2D). 

 

Multidimensional scaling (MDS) 

Multidimensional scaling is an iterative ordination technique that graphically represents 

the relative dissimilarities among samples arrayed in N-dimensional space, typically two. MDS 

is not new to geologic applications (e.g. Doveton, 1976; Hayward and Smale, 1992; Honarkhah 

and Caers, 2010; Hounslow and Morton, 2004). Indeed, paleontologists have been using the 

technique for decades to visualize relative dissimilarity among fossil assemblages based on the 

abundances of included species (e.g. Brower et al., 1978; Prentice, 1980; Shi, 1993). Over the 

past several years, there has been a significant increase in its application to detrital zircon 

datasets (Arboit et al., 2016; Spencer and Kirkland, 2015; Vermeesch and Garzanti, 2015; 

Vermeesch, 2013). In the case of detrital zircons, data are generally presented in two dimensions 

(though we will demonstrate the possible additional benefits of a third dimension), with each 

plotted point representing one sample's distribution of grain ages and the distance between points 

reflecting the degree of dissimilarity between those samples. In so doing, MDS reduces datasets 
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with large numbers of variables (in this case, age components) into relatively simple 

visualizations that describe the dispersion among samples. As multiple variables are collapsed 

into 2D and 3D space, some distortion of their N-dimensional configuration occurs and the 

degree of distortion is measured by a goodness-of-fit statistic, often called stress.  

In the context of detrital geochronology, MDS transforms a matrix of pairwise 

dissimilarities of sample zircon age distributions into coordinates in Euclidean space. In essence, 

it takes the differences between zircon age distributions and creates a spatial distribution of 

sample points that are spaced as a function of their dissimilarities. The axes of MDS maps are 

unitless, and the orientation of the MDS map is arbitrary; only the relative proximities and 

distances between points have meaning. It is important to note that here we apply MDS purely as 

a visualization and interpretation aiding technique, meant to help identify overall relationships 

between samples that are otherwise difficult to indentify using more commonly used techniques.  

Intersample dissimilarities are transformed into Euclidean distances, resulting in a 

disparity matrix of fitted distances (d) using a transformation function (f) applied to a matrix of 

dissimilarities (δ). For two samples, i and j, this can be represented as:  

 

           (1) 

 

where f(δij) is a monotonically-increasing function that transforms the dissimilarities to 

'disparities' or fitted distances. MDS uses the disparities to produce a configuration of points in 

N-dimensions. If f(δij) = δij (i.e. if the disparity transformation is the same as the identity matrix) 

and if the dissimilarities are metric, then the configuration of points can be solved via linear 
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algebra (Carroll and Arabie, 1980), and is known as classical MDS or principle component 

analysis.  

 

Metric and nonmetric MDS  

The two variants of MDS used in detrital age analysis are metric and nonmetric MDS. 

Metric MDS, a superset of classical MDS (Torgerson, 1952) and also known as principal 

coordinate analysis, simultaneously calculates configurations of the matrix d and the fit of the 

transformation via eigenanalysis (Torgerson, 1952; Borg and Groenen, 2005). Metric MDS, in its 

application to zircon ages, maximizes the linear relationship between measures of sample-to-

sample dissimilarities and calculated disparities. For nonmetric MDS, the rank of the 

dissimilarities (ordinal data), not the absolute differences, is approximated (Kruskal, 1964a, 

1964b). The transformation function (f) can be any nonparametric function as long as it is 

monotonically-increasing. Because the data are ordinal in nonmetric MDS, the implicit 

assumption of metric MDS that there is a true configuration of d is eliminated. Solutions to 

nonmetric MDS are solved numerically (e.g. isotonic regression) and iteratively, by finding first 

an optimal monotonic transformation of σ, then minimizing the stress between the scaled data by 

testing multiple configurations, stopping when the configuration most closely matches f(σ) 

(Kruskal, 1964a). Configurations are evaluated by a loss function, which is minimized while best 

preserving the ordinal dissimilarities. It is important to note that in nonmetric MDS, only the 

ranks of dissimilarities are truly preserved in the disparities, and thus MDS distances determined 

using nonmetric MDS will hold far less significance than those of metric MDS with respect to 

the original sample-to-sample dissimilarities. The advantage however, is that nonmetric MDS 

assumes nothing about the underlying distribution. 
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Loss Function/Goodness-of-Fit  

Both metric and nonmetric MDS are evaluated by a loss function, or goodness-of-fit 

(GOF) criterion, for the best achieved configuration for a given matrix of dissimilarities (δ). For 

metric MDS, the loss function is calculated simultaneously with the calculated configuration of 

f(σ); for nonmetric MDS, the loss function is minimized numerically to optimize the 

configuration solution. A commonly-used loss function, stress (S; Kruskal, 1964), can be 

expressed as: 

 

     
             

 
   

    
 

   
  (2) 

 

For nonmetric scaling, the normalization is to the sum of squares of interpoint distances, whereas 

in metric scaling, stress is normalized by the sum of squares of the dissimilarities. Other loss 

functions include is squared stress, which follows formula (2), but the normalization parameter is 

raised to the fourth power, and Sammon’s Stress (Sammon, 1969). 

A strength of MDS is that the particular choice of metric versus nonmetric MDS, or the 

particular measure of loss function, does not drastically change the resulting Euclidean 

transformation for detrital sample comparisons (see Appendix III. examples). We wish to 

suppose, however, that an actual configuration of the data exists based on inter-sample 

dissimilarities as populations should theoretically represent some fixed mixture of components. It 

is ideal if the distances between coordinates to approximate actual dissimilarity measured values, 

thus metric MDS is more appropriate. Lastly, metric MDS provides a global solution that won’t 

get trapped in a local optima (stress minimum) and require changes in the initial configuration to 

find the true, optimal solution. We therefore focus on the application of metric MDS and utilize 
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stress (S) as the loss function as it is the most well-established. 

Often included in evaluation of the goodness of an MDS fit is the Shepard plot, a diagram 

using Cartesian coordinates to display values of the interpoint distances (disparities; d) against 

the non-transformed dissimilarities (δ). In a Shepard Plot, if points fall along a 1:1 line for metric 

scaling or along the nonparametric function for nonmetric scaling, the MDS solution likely 

represents well the real differences among samples. A final feature of MDS plots are nearest-

neighbor and second-nearest neighbor lines, which reflect least and second least dissimilar 

pairings; these can also aid in the visual interpretation of MDS scaling (Vermeesch, 2013).  

Dissimilarities and Multidimensional Scaling 

As noted above, the initial steps affecting an MDS analysis are selecting some 

representation of samples ages (frequency, PDF, KDE, Gaussian fit) and choosing some 

measurement of sample-to-sample dissimilarity that serves as the basis for MDS visualization. 

Vermeesch (2013) outlined the requirements for good measures of age population dissimilarity, 

positing that the chosen metric should be: 1) independent of sample size; 2) non-negative; 3) 

symmetric [δij =δji]; and 4) exhibit triangular inequality [δik ≤ δij + δjk]. In the construct of detrital 

geochronology, the measure of dissimilarity should also linearly scale with proportions of 

different age components that are incorporated into various sand populations. As also noted 

previously, we use the word ‘component’ as some modal age equivalent to that of the simplest 

bedrock source (i.e. plutonic zircon without recycling). The Mazatzal-Yavapai, Amarillo-

Wichita, and Grenvillian (Figure 3.1D) zircon ages are examples of such ‘components’. Clastic 

units containing one or more components comprise populations of grain ages; a (presumably 

more or less homogeneous) unit of the Devonian Temple Butte Formation of the Grand Canyon 

(Figure 3.1) displays a population of grain ages. Any limited number of grain age analyses drawn 
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from some population (stratal unit) embodies a sample, which is then represented by a point in 

an MDS plot. For example, 100 or so ages drawn from the Temple Butte or Surprise Canyon 

Formations of the Grand Canyon are samples of infinitely larger populations of grain ages 

(Figure 3.2). 

To a first order, the way zircon U/Pb age distributions are described, whether as age 

distributions, PDFs, KDEs, or as Gaussian fits (e.g. Figure 3.1), has a major effect on how intra-

sample dissimilarities are calculated. Moreover, the choice of particular method used can 

drastically change how distributions are evaluated for dissimilarity. The KDE (Figure 3.1B) and 

PDF (Figure 3.1C) for a sample of the top of the Devonian Temple Butte Formation in the Grand 

Canyon (Gehrels, Blakey, et al., 2011), for example, are quite different despite the fact that they 

represent the same grain age frequencies (e.g. the arguably single component at ~1400Ma in 

Figure 3.1B vs. the apparent multiple components at ~1400Ma in Figure 3.1C) . Any 

computation of dissimilarities between the two curves of Figure 3.1B and 1C (KDE and PDP) 

would be suspect as they are calculated in fundamentally different ways. For a choice of either 

KDEs or PDFs, the nature of intra-analytical comparisons requires uniformity of initial 

parameters. For example, the kernel bandwidths of KDEs should be uniform for all dissimilarity 

calculations. While optimal bandwidth algorithms (e.g. Botev, 2007; Botev et al., 2010; 

McPhillips and Brandon, 2010) may provide more statistically robust bandwidths for a given 

distribution, they will vary, potentially by 10s of millions of years from sample to sample of a 

single dataset. For PDFs, analytical uncertainty is directly related to methods of data acquisition 

and therefore dissimilarity measures of PDFs derived by thermal ionization mass spectrometry 

ages versus laser ablation inductively coupled plasma mass spectrometry ages are suspect. 
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The selection of method by which to represent differences between sample age 

frequencies (e.g. Figure 3.2) also affects the choice of measure of dissimilarity. For cumulative 

data, the commonly used dissimilarity measure in provenance studies is the maximum difference 

between cumulative frequencies (MDCF; Figure 3.2B); this is the measure widely used in 

computing the p value for the Kolmogorov-Smirnov Test (Press et al., 1987), and is the metric 

used by Vermeesch (2013). Other measures of difference exist for sample KDEs and PDFs but, 

in principle, all attempt the same thing, to quantify the differences between sample ages. Here, in 

addition to MDCF, we examine cross-plot R
2
 values (CPR; Figure 3.2C ; Saylor et al., 2013) and 

likeness (LK; Figure 3.2D; Satkoski et al., 2013), as each satisfies the parameters outlined by 

Vermeesch (2013). 

 

Evaluating Dissimilarity Measures  

Although each of these three dissimilarity measures (MDCF, LK, and CPR) satisfy the 

criteria described by Vermeesch (2013), it is not immediately apparent which produces the MDS 

ordination reflecting the truest representation of dissimilarity within a dataset. To examine the 

impact of different metrics of dissimilarity on MDS mapping, we construct a simple, three-

component model. The three components are defined by Gaussian distributions of 100 ± 10, 200 

± 10, and 300 ± 10 Ma, and mixed in increments of thirds, resulting in 10 populations (Figure 

3.3). The two-dimensional MDS map generated from such a model should resemble a ternary 

diagram with each single-component sample (representing 100% of one component) positioned 

at vertices, and all distances between sample points being near some multiple of one-third the 

distance between any of the three vertices. This requires the calculated intersample 

dissimilarities to be linearly-correlated with the percentage of each component (Figure 3.3). 
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Using metric MDS and stress (S) as the loss function, we produce MDS configurations 

based on dissimilarities measured as LK (Figure 3.3A), CPR values also known as cross-

correlation (Figure 3.3B), and MDCF (Figure 3.3C). Of the three measures (Figure 3.3), LK 

results in clearly the best approximation to the ternary nature of the model dataset with nearly 

uniform spacing between all points in the plot. The stress of this translation (S = 0.07) only 

suggests a good, but not excellent fit (based on Kruskal (1964a)’s rule of thumb for the goodness 

of fit for S; 0 = Perfect, 0.025 = Excellent, 0.05 = Good, 0.1 = Fair, 0.2 = Poor). It is not possible 

in two dimensions to distribute perfectly all 10 points. For each sample, there exists four or more 

equally dissimilar samples, which, ideally, would be plotted equidistantly but cannot in 2D; this 

is a product of three variables (age components) involved in the dataset. For example, a truly 

optimal configuration would require each sample point falling along an edge of the diagram to be 

equidistant from its opposite vertex, a feat not possible without outward curvature of the edge 

and poorer fit of the remaining sample points or additional dimensions. However, S =0.07 

suggests a good fit to the data and the ternary representation provides the optimal 2D 

approximation for the dissimilarities. The configurations for CPR and MDCF both define 

components as vertices and have stresses comparable to LK (S = 0.08), but both are less accurate 

representations of the model data. For mixed multi-modal populations, CPR results in clustering 

of populations closer to their most similar vertices; this results in decidedly unequal spacing 

among points. For MDCF, the vertices are similarly established, but the mixed data are clearly 

displaced toward the 200 Ma component. 

In order to further explore relations between choice of dissimilarity metric and 

differences among model age populations, we calculate the LK, CPR, and MDCF values 

between the three component model populations noted above, and plot these measures of 
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dissimilarity against the known proportions of components within each sample. Using one-tenth 

mixing proportions (Figure 3.4A), we demonstrate that LK yields a perfectly linear correlation in 

ideal populations with the proportion of component present in the sample and the measured LK 

value of the sample against that component. Using CPR values as a measure, samples with lesser 

degrees of end-member component mixing (e.g. 0 - 40%) yield higher CPRs (more dissimilar 

values) than expected; the opposite relation exists for samples with higher degrees of component 

mixing (60 - 100%). In essence, the utilization of CPR imposes an apparent ‘pull’ towards the 

MDS vertices (Figure 3.4A).  

Utilization of MDCF produces even poorer correlation between component proportion 

and dissimilarity, with significant scatter of lower than expected dissimilarities for a proportion 

of mixed component comparisons. Because cumulative distributions are continuous functions, 

the summation of any age leads to an increase in the cumulative distribution (Figure 3.4C). An 

important caveat lies in comparing age distributions with 'sandwiched' age populations; that is, 

one population contains components that are both younger and older than some other component 

of intermediate modal age exclusively present in the other population (Figure 3.4B). In such 

cases, cumulative frequencies will cross below a cumulative value of unity (Figure 3.4C), forcing 

the calculated MDCF value to be less than unity, despite containing no overlapping ages. Most 

real-world samples are composed of grains drawn from a number of components representing 

several sediment provinces. Moreover, any sample containing a significant contribution of, e.g., 

100 Ma grains, is no more or less likely to be mixed with a 200 Ma component than with a 300 

Ma component. As a result, MDS configurations using CPR and MDCF yield equally accurate 

representations of the dissimilarities, but not the distributions of grain ages. Hence, S values are 

similar for all three dissimilarities, despite obvious variations in their 2D configurations. Given 
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that neither CPR nor MDCF yield the same linear relationship between degree of component 

incorporation and measure of dissimilarity that is attained using LK, and given the significant 

likelihood of encountering this 'sandwiching' effect in real detrital data, we judge LK to be the 

best metric of sample-to-sample dissimilarity for MDS. 

Synthetic Data 

Employing LK as the measure of dissimilarity, and stress (S) as the loss function in 

metric MDS mapping, we can now explore the influences of several variables common to detrital 

geochronology on MDS. These are: 1) the effects of considering a limited number of zircon ages 

sampled at random from some nearly infinite population, 2) the degree of dissimilarity that must 

exist between pairs of age frequencies before MDS can no longer effectively assess real sample 

differences; 3) the effects of the random sampling of both unique and shared age components 

among pairs of age frequencies 4) the effects of random sampling on variably overlapping age 

components; and 5) the effects of multiple components on MDS mapping with respect to 

increasing MDS dimensionality. 

 

Effect of Limited Sample Size –  

What is the influence of considering a limited number of grain ages, presumably drawn at 

random from some nearly infinite population, on MDS mapping? One major source of 

uncertainty associated with detrital geochronology studies is random sampling error, imposed by 

the limitation of sampling and analysis of a finite number of detrital grains from essentially 

infinitely large pools of grains. The question of the 'correct' number of grains needed to 

accurately represent the population of ages in any deposit has plagued the geochronology 

community for some time (Dodson et al., 1988; Vermeesch, 2004; Pullen et al., 2014). Most 
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studies currently strive to analyze about 100 grains per sample, with the assumption that fewer 

ages (and their derived abstraction as PDFs or KDEs) may produce incomplete or distorted 

representations of the actual distribution of population ages. The influence of this number on 

MDS mapping can be explored by examining MDS maps of samples of multiple components 

versus those samples drawn from one component. With respect to the 3-component model 

described above (Figure 3.3; 100 ± 10, 200 ± 10, and 300 ± 10 Ma), we consider 100 ages drawn 

at random from mixtures of these end-members. Moreover, because ages comprising these model 

components do not include associated analytical errors requisite for calculation of PDFs, we 

represent sample age frequencies as KDEs with a bandwidth at 10Ma.  

Plots based on one and three samples, each comprising 100 random age draws from the 

10 original perfectly-distributed mixtures (e.g. Figure 3.3A) closely replicate the actual MDS 

spatial configuration (Figure 3.5). However, differences comparing randomly drawn samples and 

the ideal populations are larger for samples containing two or more age components (Figure 

3.5A). While not surprising, this difference lends itself to a consideration of the real meaning of 

'clustering' in MDS space. Visually, some distributions from single-draw samples, such as group 

1 in Figure 3.5A, appear to be more similar while samples from group 2 appear to be less so. By 

model formulation, we know this is not the case, and this degree of clustering simply reflects the 

effect of the random sampling of 100 grain ages containing more- or less-heterogeneous grain 

ages. 

For this reason alone, caution should be used when interpreting the significance of data 

clustering in MDS plots. This effect is greatly reduced when considering three 100-age samples 

per population (Figure 3.5B), as the mean of each set of ‘triplets’ falls approximately at the node 

for the ideal population. Samples of shared provenance in this case are easily distinguishable. 
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Multiple samples would serve to reduce uncertainties associated with limited numbers of age 

determinations, and the corollary that measuring more grains per sample should help reduce 

random sampling uncertainties.  

Despite the incertitude associated with limited numbers of random samples, MDS 

adequately characterizes dissimilarities among model populations (Figure 3.5). It is worthwhile 

to explore what degree of dissimilarity renders MDS ineffective in assessing sample differences 

at the level of 100 grains per sample. This can be explored by examining the impact of limited 

sampling of model populations with variable degrees of component dissimilarity. 

 

Limited sampling of variable proportions of shared components 

The effect of random sampling of populations with shared but unequal proportions of age 

components is an important issue in interpreting detrital geochronological data. Because 

sampling numbers are finite, the proportions of particular age components are inherently variable 

in any sample. This aspect of detrital zircon age data perhaps favors approaches focused more on 

determinations of component (and presumed associated provenance) presence or absence 

(Gehrels, Blakey, et al., 2011) rather than interpretations based on their relative abundances, but 

also brings focus to the issue of just how different the proportions of two distinct, non-

overlapping age components in a 100-grain sample need to be in order to ascertain their relative 

contributions. We approach this question by considering variable proportions of two age 

components (100 ± 10 and 200 ± 10Ma) in order to generate five sets of population pairings, 

each containing a bimodal population of varying component proportions (Figure 3.6). From each 

bimodal population, three samples of 100 ages each were randomly drawn. Thus, for each of five 

MDS analyses, we compare six samples total, three each from the two bimodal populations 
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(Figure 3.6). For simplicity, one population contains equal proportions of the two age 

components, while components in the second population vary in increments of 5% per MDS 

analysis (Figure 3.6). This results in an incremental LK change of 0.05 among the five model 

MDS sets, starting at an initial dissimilarity likeness value of 0.05 between the 50-50 and 45-55 

populations (Figure 3.6; column 1). On the basis of 10 iterations for each of the 5 model sets, it 

seems apparent that a LK value of 0.20 or greater is needed to effectively differentiate 

populations in MSD space (Figure 3.6). That is to say, sample pairs in which there is less than 

20% overlap of KDEs determined at a fixed bandwidth will not be visually separated in MDS 

space. 

 

Limited sampling of variable proportions of different components  

Following a similar construct, we can examine how quickly MDS differentiation occurs 

between random samples drawn from two populations that contain one shared and one unique 

component, each. We consider three age components (100 ± 10, 200 ± 10, and 300 ± 10 Ma) and 

let the 200 ± 10 Ma component be shared in equal proportion between the two populations. The 

100 ± 10 and 300 ± 10 Ma components are unique to one or the other population, respectively 

(Figure 3.7). We again consider the average degree of differentiation among 10 iterations of each 

model set (Figure 3.7). The consequence of these model datasets is that MDS differentiation only 

becomes apparent as LK meets or exceeds a value of ~0.1 (mixtures B and C), and demonstrates 

that MDS mapping is far more sensitive to the inclusion of unique age components (Figure 3.7) 

than the variably-shared populations discussed above (Figure 3.6).  

The dependency of MDS visualization on the exclusivity of different age components 

may be both a boon and a nuisance to detrital geochronologists. A 5% difference in the 
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abundance of some unique component (LK = 0.05) among different model populations was 

enough to produce differentiation in the randomly drawn, 100-age, samples in one of the ten 

model iterations. In some instances, the ability to potentially identify unique contributions from 

individual provenances that represent relatively small variance in zircon sample age distributions 

may be of considerable geologic importance. However, the limited number of grain ages 

typically drawn at random from some infinitely larger multimodal population may result either in 

the inclusion or exclusion of certain age components, purely from random sampling and the 

effect of that sampling on MDS mapping.  

Unique age components in detrital zircon data can also be an artifact of the depiction of 

zircon sample age data. Representation of zircon ages from the sample of the Devonian Temple 

Butte Formation in the Grand Canyon as a KDE (Figure 3.1C), for example, might be taken as 

evidence of the presence of several distinct age components. However, when these same ages are 

represented as a PDF (Figure 3.1B), the number of identifiable age components is roughly 

halved. The reason for this is that width and ‘inclusion’ of ages in PDFs is directly dependent on 

analytical uncertainty in zircon age determination, whereas the shape of the KDE functions is 

highly dependent on bandwidth. In the case of the Temple Butte sample, average analytical 

errors (n = 100; errors range 45.1 ± 22.4 Ma) are greater than the 10 Ma bandwidth used to 

calculate the KDE. It is therefore essential for MDS users to examine the sorts of representations 

applied to their data to weigh the strengths and weakness of each style of representation, and to 

consider how these may affect MDS mapping. Here, we consider perfect age distributions with 

no analytical uncertainties. As a result, model results almost surely yield greater MDS 

differences than would be the case for real-world datasets comprising true U/Pb ages. 
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Nonetheless, representations of age data as PDF frequencies provide a valuable baseline against 

which to evaluate MDS mapping. 

 

Random Sampling of Overlapping Distributions 

Given that the inclusion of a unique age component in grain age populations serves to 

improve the resolving power of MDS, we might then ask if there is a limit of age overlap 

between two populations that can be resolved by MDS. To address this question, we consider 

two unimodal populations (essentially components), whose mean ages differ by increments of 

1Ma (Figure 3.8). As before, each distribution is resampled 3 times, at 100 ages per sample, and 

then evaluated using MDS (Figure 3.8). In this example, MDS appears to have considerable 

power to resolve different age components, even if their mean ages are only slightly different 

(<3%). Moreover, the validity of this result appears less dependent on component standard 

deviations than the mean ages of the components in question. To some detrital geochronologists, 

this outcome may be disconcerting. Significant differences in ages may exist between 

‘cogenetic’ zircons formed in pluton cores versus pluton margins (e.g. Schoene et al., 2012), or 

along an volcanic arc (e.g. Reid et al., 2007), and analytical uncertainties of zircon age 

measurements are typically several percent that of measured age (e.g. ~100 Ma for a 1 Ga age). 

In this regard, it is important to note that if a third population were included, one whose mean 

age differed greatly from those comprising the overlapping distributions, then the less dissimilar 

samples would be sufficiently close in MDS space that their difference would be seemingly 

negligible compared to the magnitude of difference established by the far more dissimilar 

component as the actual distance between the cluster is small (~0.1 dimensionless units).  

The apparent sensitivity of MDS mapping to differences in mean age does, however, 
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argue for the importance of MDS users to consider how differing representations of probabilities, 

as PDFs or KDEs, might influence perceptions of component mean values. As noted above, the 

dependence of PDFs on analytical uncertainties can easily skew population modes by several 

million years and several percent. KDEs, on the other hand, with the dependency on measured 

ages and bandwidths, may lead to possibly unique but overlapping age components being 

smoothed into one. Conversely, truly cogenetic age components might be divided if the kernel 

bandwidth is too small.  

 For all these 100-age models, chance groupings or clusters may occur in perfectly 

homogenous distributions. Although less common when only three samples are drawn from each 

population (e.g. Figure 3.5B), these incidences become more frequent with greater numbers of 

samples. This difficulty gives rise to the suggestion that more weight perhaps be given to 

determining the presence or absence of different age components rather than to assessing their 

apparent abundances (e.g. Fedo et al., 2003; Andersen, 2005). It therefore seems sensible that 

users of MDS plots challenge and evaluate the reality of sample ‘clusters' as possible 

coincidences of random sampling. On a similar note, clusters of samples that include an outlier 

(because we known the origin of each sample in the model) are also common in larger MDS 

configurations, a phenomenon also associated with random sampling. We suggest that the 

presence of such outliers in clusters when source is known, should serve to temper conclusions 

based on MDS visualizations of unknown samples, where conclusions should be limited to 

general characteristics of such plots and not inclusion of a single sample within such a cluster.  

 

Numbers of Components and MDS Dimensionality  

Thus far, we have only considered systems composed of two and three endmember age 
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components. In practice, however, an MDS user may wish to examine distributions containing 

four or more such components. It is important to reiterate that a component is defined as a 

unimodal population; a unique contributor of grain-ages to one or more samples of a dataset, 

presumably reflecting in its simplest the contribution of grains of delimited ages from some 

source province. A theoretical set of data comprised of various mixtures of four equally-

dissimilar components (e.g. 100 ± 10, 200 ± 10, 300 ± 10, and 400 ± 10 Ma), requires a spatial 

MDS configuration of four equidistant points. To achieve this configuration (in which equally-

distinct components are evenly spaced), N-1 dimensions are required. As we noted above, only 

with 2 components can MDS perfectly configure the dissimilarities of detrital samples in two 

dimensions. While MDS is often characterized as a useful tool by which to evaluate generalities 

large datasets containing multiple components, the N-1 dimensional requirement potentially 

limits the application of MDS for multi-component detrital zircon datasets.  

Here we briefly show how a four-component model projected onto a 2D MDS surface 

can result in incorrectly transformed configurations, and further show how this problem is 

significantly resolved when scaling to 3D. To do so, we use a mixture model based on quarters 

of the four age components noted above (similar to the method described above for three-

component ideal mode; Figure 3.3). We will then translate the dissimilarity matrix of this dataset 

into 2D (Figure 3.9A) and 3D (Figure 3.9C) MDS configuration. Theoretically, a properly 

translated four-component data set plot should resemble a tetrahedron (triangular pyramid); the 

configuration required to equally space the four vertices. Distances between points should be 

some multiple of one-fourth the distance between any of the four vertices.  

2D MDS essentially tries to project the triangular pyramid into the two available 

dimensions. In this instance, nearest neighbor lines seem directed towards one of the 
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tetrahedron’s corners, the projected peak of the pyramid (Figure 3.9A). The essence of the poor 

fit of 4 components in 2D space is further highlighted by the corresponding Shepard plot (Figure 

3.9B), with poor linear agreement between LK and distances, and the elevated and poor stress 

value (S = 0.23). While the vertices do indeed represent each of the four age components, the 

internal character of the data are highly suspect, as the distances between points do not correlate 

well with dissimilarities, as evidenced by the 'long' neighbor lines connecting 'least-dissimilar' 

points over great MDS distances (Figure 3.9A) and large vertical scatter in the Shepard plot. 

Conversely, a 3D MDS translation of the same data reproduces the predicted pyramidal shape 

and uniform spacing of sample points. Moreover, the stress value is good at S = 0.9% (does not 

equal 0 for the same reasons as 3 component example above) and the Shepard plot (Figure 3.9D) 

shows the far better correlation between distances and dissimilarities and highlighting the more 

correct dimensionality for the data. 

We have attempted to illustrate strengths and weaknesses of MDS mapping in the study 

of detrital zircon ages employing various mixtures of idealized model components. For two and 

three component systems, MDS is very effective at translating dissimilarities into distances in 2D 

space, and four component systems are readily evaluated in three-dimensional space. Generally, 

the desired effect in detrital zircon provenance studies is to characterize a single shift in 

provenance (e.g. Vermeesch, 2013); which may not require increasing dimensionality or low S 

values. While this is often the case, here we do urge caution and careful evaluation of the dataset 

when applying MDS to detrital zircon age datasets.  
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Phanerozoic Examples from North America 

We have considered various aspects of model age distributions derived from variable 

mixtures of ideal components with no analytical uncertainties. Our goal in utilizing this approach 

is in part to develop a better feeling for the formulation of MDS visualizations from detrital 

zircon age data, and in part to highlight those aspects of such data that most significantly 

influence MDS maps. While modeled data provide a valuable baseline against which to evaluate 

MDS mapping, we conclude by considering MDS analyses of three real-world datasets. Our 

intent here is to demonstrate the utility of the approach in highlighting sample age variation in 

both time and in space. The particulars of such differences would of course then serve as the 

basis for further investigation of the regions in question. 

 

The Colorado Plateau 

Remarkable exposures of Paleozoic and Mesozoic strata across the Colorado Plateau 

offer a nearly unparalleled opportunity to examine changes in detrital zircon provenance of 

Cambrian through Jurassic sandstones across of the southwestern United States. Recent LA-ICP-

MS determinations of 2,529 zircon U/Pb grain ages from 26 Paleozoic samples (Gehrels, Blakey, 

et al., 2011) and 3,444 grain ages from 36 Triassic and Jurassic samples (Dickinson and Gehrels, 

2009, 2008) afford an excellent opportunity to compare more traditional representations of grain 

ages with those derived through the application of MDS. 

As noted by Gehrels et al. (2011), detrital zircons from Cambrian through Devonian 

strata yield mainly 1.7 and 1.4 Ga ages derived from basement rocks of the Yavapai-Mazatzal 

Province and the Amarillo-Wichita uplift, respectively. Mississippian through Permian rocks 

contain predominantly 1.1 Ga and younger Paleozoic grains derived from the Grenville and 
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Appalachian orogen, respectively. Mesozoic sands record a greater number of age components 

but exhibit little directional upsection stratigraphic/secular variation (Dickinson and Gehrels, 

2008, 2009).  

Given the multiple components within the detrital samples that vary in their presence and 

proportions upsection, as well as the relatively large number of samples, an MDS plot in 3-

dimensions affords an opportunity view clear changes in provenance in stratigraphic sequence in 

a single plot. MDS mapping of age differences among these 65 samples reveals that differences 

among samples (LK values calculated amongst PDFs) as revealed on axis one largely correlate 

with stratigraphic position (Figure 3.10B). Sample ages also define three general clusters, which 

correspond closely with those age groups that could be discerned qualitatively from sample age 

abundances. In particular, the three clusters in the MDS visualization (Figure 3.10B) are 

coincidentally almost exactly the same as the groupings of Cambrian through Devonian, 

Mississippian through Permian, and Mesozoic that are apparent in sample PDFs (Figure 3.10A). 

Upsection, these are: 1) zircons derived from Yavapai-Mazatzal Province and the Amarillo-

Wichita sources; 2) the grains with a significant admixture of Grenvillian zircons; and 3) 

Grenvillian grains with a significant admixture of Appalachian zircons. Similar clusters can be 

approximated in 2-dimensions; however, the additional dimension more clearly demonstrates the 

upsection variations. 

Moreover, those samples that exhibit somewhat anomalous distances in MDS mapping 

also become apparent in sample PDFs. Among these are an early Jurassic (Moenave Formation; 

Utah) sample which contains an anomalously high concentration (40 of 93 grains, 43%) 

spanning only 40 Ma of the late Paleozoic (202-242 Ma; labeled 1 in Figure 3.10B), and two 

Late Cretaceous samples (north eastern New Mexico and south western Utah) which are 
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dominated by ~1.7 Ga Mazatzal-Yavapai ages, the only two Mesozoic samples in this 

compilation containing significant numbers of pre-Grenville grains (labeled 2 in Figure 3.10B). 

While the specifics of the geologic history of these localities have surely served to give rise to 

these deviations, it is their clear deviance in MDS that serves to bring their differences into 

sharper view. 

The Bighorn Basin 

Dissimilarities in abundances of different age components in any population of zircon 

grains potentially reflect changes in the tectonic history of basins or of variations in climate and 

sea level, all of which possibly impact paleogeography and sediment dispersal patterns. May et 

al. (2013) have recently compiled zircon age data from Phanerozoic units exposed in the Bighorn 

Basin of Wyoming in order to better understand the tectonostratigraphic evolution of that region. 

Based on 4,104 U/Pb detrital zircon ages from 44 samples, they subdivided Upper Mississippian 

through Paleocene units into four “tectonostratigraphic assemblages” based on perceived patterns 

in sample zircon age frequencies: 1) a Paleozoic–Triassic proximal continental margin 

assemblage, 2) a Jurassic–early Cretaceous (early Albian) assemblage associated with 

organization of Cordilleran orogeny; 3) a late Cretaceous (late Albian through Maastrichtian) 

interior seaway foreland basin assemblage, and 4) a Paleogene assemblage accumulated during 

structural segmentation during the Laramide orogeny. Owing to the fact that these interpretations 

are largely based on qualitative inspection of probability density plots, and because of the 

abundance of zircon age data generated during the study, it serves as an excellent case study to 

which to apply MDS. A three dimensional MDS plot should prove adequate in resolving such a 

four component system. Are the four hypothesized “assemblages” apparent in MDS 

visualizations, and are differences among these samples sufficient to affect separation between 
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presumably genetic clusters in MDS? 

Conclusions based on visual examination of sample PDFs are largely confirmed by 

quantitative evaluation via MDS. Three of the four proposed assemblages are well-resolved by 

MDS. The posited fourth assemblage, comprising three Paleogene samples, does not separate as 

a distinct group or cluster. Each of the resolved assemblages contains either a unique component 

or component with anomalously high proportions. The samples of the fourth assemblage, 

however, share components with each of the stratigraphically older assemblages, likely 

contributing to its poor differentiation. In addition, with MDS mapping as a guide, it is apparent 

that differences that serve to differentiate the first (Paleozoic) and second (lower Mesozoic) 

assemblages are much less than those that serve to distinguish the second from the third (upper 

Cretaceous) assemblage; the clusters appear closer together in MDS space indicating that mean 

populations are less dissimilar. Qualitative differences among sample PDFs support this 

conclusion; abundant Grenvillian (~1.1 Ga) grains persist upsection through Paleozoic and lower 

Mesozoic units, but are largely absent above the early Albian Greybull Sandstone at the top of 

association (the sample 22, Figure 3.11A).  

In addition to largely furnishing verification of the actuality of most of the 

tectonostratigraphic assemblages identified by May et al. (2013), MDS provides two additional 

insights in the interpretation of detrital zircon data. It serves to identify those samples within any 

assemblage that are least dissimilar to those in any other, and it allows for a visualization of the 

relative degrees of difference between groups of samples; both provide motivation for the further 

examination of spatial and/or temporal attributes that might not be apparent in the absence of 

MDS. 
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The Gulf Coast 

In addition to better understanding secular differences among various zircon samples, 

such as those upsection in the Colorado Plateau and Bighorn Basin, MDS should be equally 

useful in the discrimination of lateral heterogeneities within stratal units of similar age. To this 

end, we conclude by examining age data from samples of the Paleocene Wilcox Formation 

collected from along ~2,000 km of its outcrop belt, extending northwest from western Alabama 

to the head of the Mississippi embayment south of St. Louis, Missouri, and then southwest 

toward San Antonio, Texas (Blum and Pecha, 2014). 

Cenozoic-scale persistence of several major fluvial axes supplying sediment to the 

northwestern Gulf of Mexico coastal plain (e.g. Galloway et al., 2011) served to impart 

prominent along-strike variation in the dominance of the same major age components comprising 

grains in the Colorado Plateau and Bighorn Basin (Figure 3.12A). Blum and Pecha (2014) report 

2,564 ages from 27 along strike samples of the Wilcox Formation. Dominant age components 

consist of ~1.7 Ga Mazatzal-Yavapai, ~1.4 Ga Amarillo-Wichita, and younger Western 

Cordillera (~170 Ma) and Laramide (~60-75 Ma) province grains along the western third of the 

belt, and ~1.1 Ga Grenvillian grains along the eastern two-thirds of the section (Figure 3.12A). 

Once again, the multiple components and numerous samples provide an excellent application of 

3D MDS configurations; 2D will not adequately represent the component variance of the detrital 

dataset. MDS mapping of these age data results in excellent agreement between qualitative 

assessments of lateral variations based on PDF inspection and variations based on quantified 

differences (Figure 3.12B). Variation in the MDS distribution of these 27 samples corresponds 

closely with position along the outcrop belt. Eastern sampled dominated by Grenville grains are 
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more closely clustered than other samples; more western samples are noticeably more dispersed, 

an aspect reflecting the incorporation of a larger number of modal ages (Figure 3.12A). 

Conclusions 

MDS has the potential to be a valuable resource in the tool belt of the detrital 

geochronology community. Proper recognition of its strengths and limitations is necessary, 

however, if valid conclusions are to be drawn from MDS data configurations. MDS based on 

synthetic data suggest that use of MDCF and CPR as dissimilarity measures can significantly 

distort resulting configurations. Use of LK results in a strong linear correlation with degrees of 

age component incorporation into various populations, and their sample-to-sample dissimilarity. 

MDS is more sensitive to the presence of unique age components than variable proportions of 

shared components; differences in as little as 5% can lead to MDS differentiation. However if a 

5% difference is due to uncertainties attendant with random sampling, the resulting MDS 

configuration may exhibit significant divergence from reality. This is more likely when 

considering multi-modal populations or when considering under- or over-smoothed 

representations of sample age frequencies. MDS is also relatively sensitive to degrees of overlap 

of different age modes; as little as a 2% difference in the mean ages of different components can 

result in MDS differentiation. This effect also makes the choice of the function (KDE, PDF) used 

to calculate dissimilarities significant, as each will have an important effect on perception of the 

actuality of different modal ages. It is also critical for the user of MDS to recognize the 

possibility that more than two dimensions may be required to properly transform the 

dissimilarity matrix. A four-component system requires, at minimum, a third dimension to 

properly represent data; five requires a fourth dimension, and so on. Insufficient dimensions can 

lead to oversimplified solutions where inter-sample distances do not accurately represent inter-
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sample dissimilarities. That said, in the case of detrital zircon, the number of components and 

how they relate to the contributing sources lie at the heart of the issue. MDS should be effective 

at configuring dissimilarities of samples derived from two multi-component sources, as this is 

essentially a two end-member mixing model. More sources and more components require 

increasing dimensions to effectively resolve variation in MDS. MDS does have considerable 

resolving power in detrital zircon datasets, but its application, like any other tool must be used 

with an understanding of its limitations. Use of MDS in conjunction with other analytical tools 

serves to improve the accuracy of interpretations and conclusions. 

 Application of MDS to three datasets representing sediment accumulation in North 

American platform, intermontane basin, and passive margin settings reveals that MDS mapping 

provides informative visualizations of relative differences among sample zircon ages and the 

degree to which these differences can be related to their disposition in time and/or space. In each 

application, MDS configurations in three-dimensions improved the resolving power due to the 

complexities of the detrital samples. MDS affords an important tool for understanding the nature 

of the distributions of zircon ages and ultimately, to the geologic processes and histories 

reflected in these sorts of data. 
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Figures 

 

 

Figure 3.1. Four representations of within-sample variations in detrital zircon ages. In this 

case in a sample from the top of the Devonian Temple Butte Formation (n = 100) exposed in the 

Grand Canyon (Gehrels, Blakey, et al., 2011). A) Age frequency distribution (AFD) binned at 5 

Ma; B) Probability Density Plot (PDF), where peaks (e.g. ~1,430 and 1,725 Ma) reflect abundant 

grains presumably derived from different (e.g. Amarillo-Wichita and Mazatzal-Yavapai) 

provinces. C) Kernel Density Estimation (KDE) derived using a fixed bandwidth of 10 Ma, and 

D) the resulting best-fit Gaussian distributions to four recognized age components (1,722, 1,426, 

1,913, and 509 Ma) of the PDF, which account for 99% (88.3%, 3.4%, 4.6%, and 0.3%, 

respectively) of the observed variance in zircon ages for this sample 
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Figure 3.2. Examples of several measures of zircon age dissimilarity. Dissimilarities are 

represented by two (rather dissimilar) samples from the Grand Canyon, one from the Devonian 

Temple Butte Formation (as in Figure 3.1) and one from the Upper Mississippian Surprise 

Canyon Formation (n = 101; also from Gehrels et al. (2011). A) PDFs showing dominance 

~1,725 Ma Mazatzal and Yavapai ages in the Temple Butte sample replaced by ~1,035 Ma 

grains of Grenvillian age in the Surprise Canyon sample. B) Intra-sample difference represented 

as the maximum difference between cumulative frequency distributions of the two samples 

(vertical black line), in this case, 66%. C) Inter-sample difference shown as the correlation (grey 

line) of cross plot of the two PDFs (open circles). D) Dissimilarity between Temple Butte and 

Surprise Canyon ages represented as differences between age frequencies (gray bars), PDF 

values (gray curve), and KDE values (black curve). Each of these three measures might serve as 
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the basis for computation of inter-sample difference employing the Likeness (LK) metric (one 

minus the sum of all absolute differences divided by two). These are 7%, 27%, and 16%, 

respectively. 
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Figure 3.3. MDS configuration using varying dissimilarity measures. Metric MDS images 

employing different measures of dissimilarity (δ) based on variable mixing of three components 

(100 ± 10, 200 ± 10, and 300 ± 10 Ma) at 33.3% intervals. Rectangular insets are probability 

curves representing population ages for the nearest point in the MDS plot. Nearest neighbor lines 

(with respect to calculated dissimilarity) are solid back; second nearest neighbors are connected 

with dashed gray lines. S = Stress value. A) MDS using Likeness (LK). B) The same model 

dataset and parameters but using CPR as the measure of dissimilarity. C) As A and B, but using 
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the maximum difference between cumulative functions (MDCF) as the measure of dissimilarity. 

Note that only LK (A) produces the theoretically correct (and desired) configuration. 
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Figure 3.4. Differences in dissimilarity measures for MDS. Differences in dissimilarity 

measures based on variable mixing of three components (100 ± 10, 200 ± 10, and 300 ± 10 Ma) 

at 33.3% intervals (Figure 3.3). A) Percent of component in each of 10 model populations (X 

axis) versus calculated measures of dissimilarity. B) Probability curves of two hypothetical 

population age distributions. C) Cumulative amounts of each sample; note that the maximum 

difference is only 50% even though the two populations have no grain ages in common. 

Compare this with somewhat overlapping samples in Figure 3.2B with a MDCF of 66%. 
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Figure 3.5. MDS configurations for randomly drawn samples. MDS configuration of samples 

defined by 100 ages each (circles) drawn from the 10 three-component mixtures in Figure 3.3. 

A- 1 sample from each population; B- 3 samples from each population; C- ideal MDS map (true 

populations). Note that typical zircon age samples sizes (on the order 100 grains) closely 

replicate the actual MDS map, but that variance in spacing is larger among samples containing 2 

or 3 age components. Moreover, MDS separation based on 1 draw of 100 ages (A) suggests 

lesser (samples containing more evenly-distributed components; e.g. “1”) or greater (samples 

containing greater proportions of an end-member component, e.g. “2”) dissimilarity than actually 

exists. 
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Figure 3.6. Models incorporating variable proportions of two age components. Probability 

curves affording 5 possible mixtures (columns) of 2 (upper row) age populations with variable 

contributions of 100 ± 10 Ma and 200 ± 10 Ma components. LK = Likeness values between 

population age frequencies. Bottom Row- averages of 10 metric MDS results, each comprising 

three, random, 100-age draws from the two distributions; S = Stress. Note that actual sample 

differences manifest as MDS separation only becomes apparent at likeness values in excess of 

~0.2 (mixtures D and E). 
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Figure 3.7. Models incorporating variable proportions of three age components. Probability 

curves affording 3 possible mixtures (columns) of 2 (upper and middle rows) bimodal age 

distributions with variable contributions of 100 ± 10, 200 ± 10 Ma, and 300 ± 10 Ma. LK = 

Likeness values between top and middle row frequencies. Bottom Row- averages of 10 metric 

MDS results, each comprising three, random, 100-age draws from each of the two distributions 

in each of the 5 sets of mixtures; S = Stress. Note that actual sample differences manifest as 

MDS separation only becomes apparent as likeness approaches a value of ~0.1 (mixtures B and 

C). 
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Figure 3.8. Models incorporating two distributions containing variably- overlapping age 

components. Top row- Idealized probability curves of the two (black and gray lines) unimodal 

distributions (LK = Likeness). Bottom Row- metric MDS plots for three 100-age draws from 

each of the two distributions (S = Stress). Note that sample differences manifest as MDS 

separation becomes increasingly apparent as likeness values decrease and mean age difference 

increases. 
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Figure 3.9. Two versus three dimensional MDS for four component mixtures. A- 2D MDS 

for a four component (100 ± 10, 200 ± 10, 300 ± 10, and 400 ± 10 Ma) mixture model (solid and 

dashed gray lines = nearest and next-nearest neighbors). B- Shepard plot for 2D MDS. The poor 

linearity between dissimilarities and distances indicates poor translation of the dissimilarity 

matrix. C- 3D MDS for the four component mixture model (circles size scaled to distance of 

point from viewer). D- Shepard plot for 3D MDS. The improved fit demonstrates the value of the 

added dimension in resolving sample differences. 

  



124 

 

 

 

Figure 3.10. Detrital zircon analysis of sediment from the Colorado Plateau. Detrital zircon 

ages from the Paleozoic (Gehrels, Blakey, et al., 2011)- Mesozoic (Dickinson and Gehrels, 2009, 

2008) succession across the Colorado Plateau. A- Age probability density of 65 samples (black 

horizontal lines) ranging from the Cambrian Tapeats Sandstone at the base through the Jurassic 

Morrison Formation at the top. Predominant modal age components as vertical tan lines. B- 

MDS plot of sample age dissimilarities colored by stratigraphic height. Samples points are scaled 

for distance into page and nearest neighbor lines are positioned to reflect fore vs. background 

sample points (solid and dashed gray lines = nearest and next-nearest neighbors; circles size 

scaled to distances of points from viewer). Three sample clusters are: 1) dominated by ~1.7 Ga 

Mazatzal-Yavapai and ~1.4 Amarillo-Wichita province grains (below ~420); 2) dominated by 

~1.7 Ga Mazatzal-Yavapai and ~1.1 Grenvillian grains (between ~420 and 1,100 m); and 3) 
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dominated by ~1.1 Grenvillian and younger province grains (above ~1,100). Note several 

obvious anomalies in both PDF (A) and MDS (C) visualizations. These are an early Jurassic 

Moenave sample which contains numerous late Paleozoic grains (“1” and blue arrow in A and 

B), and two Late Cretaceous samples which are dominated by ~1.7 Ga Mazatzal-Yavapai ages 

(“2” and red arrows in A and C). C- Shepard plot for the 3D MDS.   
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Figure 3.11 Detrital zircon analysis of sediment from the Bighorn Basin. Upper 

Mississippian to Paleocene detrital zircon ages from the Bighorn Basin, Wyoming (May et al., 

2013). A- Probability densities of 44 samples (black horizontal lines). Dominant age components 

as vertical tan lines. B- MDS plot of sample age dissimilarities colored by tectonostratigraphic 

assemblage membership as inferred by May et al. (2013). Sample points are scaled to distance 

into page and nearest neighbor lines are positioned to reflect fore vs. background sample points. 

Three of the four assemblages are well-resolved by MDS: 1) Upper Mississippian - Triassic 

samples (blue bar and points), 2) Jurassic - lower Albian samples (green bar and points), and 3) 
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upper Albian – Cretaceous samples (yellow bar and points). A posited fourth assemblage 

comprising three Paleogene samples (red bar and points) does not well segregate as a distinct 

population. Also note that the closer association between assemblage 1 (blue) and 2 (green) than 

between 2 and 3 (yellow) evident in MDS, can be seen in sample PDFs as a persistence of ~1.1 

Ga Grenvillian grains through the first two. D- Shepard plot for the 3D MDS.  

  



128 

 

 

 

 

 

Figure 3.12. Detrital zircon analysis of sediment from the Wilcox Formation Lateral 

variation in zircon ages along ~18,000 km of outcrop of the Paleocene Wilcox Formation from 

near Meridian, MS, to St. Louis MO, to San Antonio, TX (Blum and Pecha, 2014). A- Age 

probability density of 27 samples (vertical colored lines); dominant modal age components as 

horizontal tan lines. Qualitatively, note abundant ~1.7 Ga Mazatzal-Yavapai, ~1.4 Amarillo-

Wichita, and Western Cordillera and Laramide grains along the western third of the transect 

(left), and ~1.1 Grenvillian grains along the eastern two thirds of the section. B- MDS plot of 

sample age dissimilarities colored by lateral geographic location (solid and dashed gray lines = 
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nearest and next-nearest neighbors; circles size scaled to distances of points from viewer). Note 

strong correspondence of MDS and geographic separation among most samples. C- Shepard plot 

for the 3D MDS. 
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Appendix I: Chapter 1 

Figures 

 

Figure I.1. Sample Locations of modern fluvial detrital samples. [1] Hong-11-01 (This 

study); [2] Mek-11-02 (This Study); [3] Lancang (Clift, Carter, et al., 2006); [4-5] Red River 

(van Hoang et al., 2009); [6] Hainan Island (Chen et al., 2014); [7-31] Yangtze River and Major 

Tributaries (He et al., 2013, 2014); [8] Yangtze River First Bend (He et al., 2013, 2014; Kong et 

al., 2012); [32] Ou River (Xu et al., 2007); [33] Nanpan River (Xu et al., 2007); [34-35] Lancang 

River (Chen et al., 2014)  
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Figure I.2. Bedrock (sources) approximate locations. [0] Qinling-Dabieshan (Clift, Carter, et 

al., 2006; Hacker et al., 1998); [1-2] Lhasa Terrane (Leier et al., 2007; Clift, Carter, et al., 2006; 

Gehrels, Kapp, et al., 2011; Chu et al., 2006); [3] Jomda-Weixi Arc (Yang, Ding, et al., 2014); 

[4] Laji Shan (Lease et al., 2007); [5] Lanping Simao Basin (Wang, Liu, et al., 2014a); [6] Amdo 

Basement (Guynn et al., 2006; Zhang et al., 2013); [7] Gaoligong Batholith (Xu et al., 2012); [8] 

Tengliang and E. Yinjiang (Xu et al., 2012) [9] Chizhou Bedrock (Song et al., 2014); [10-11] 

Yidun Arc (Wang, Hu, et al., 2014); [12] Mengyejing Formation (Wang, Liu, et al., 2015); [13] 

Tengchong Block (Qi et al., 2015); [14] Jiaojiguanliangzi Formation (Cao et al., 2014); [15] 
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Jurassic SS Sichuan Basin (Luo et al., 2014); [16] Jurassic SS Yunnan (Su et al., 2014); [17-30] 

Qamdo Basin (Shang et al, in review); [31- 38] Yidun Terrane (Wang, Wang, et al., 2013; Reid 

et al., 2007; Peng et al., 2014b) (Shang et al, in review); [39] Loei (Burrett et al., 2014); [40] 

Indochina (Burrett et al., 2014); [41-42] Qiangtang Terrane (Gehrels, Kapp, et al., 2011) [43] 

Triassic SS Sichuan Basin (She et al., 2012); [44] NE Vietnam (Burrett et al., 2014); [45-54] 

Zheduo-Gonggar massif (Li, Chen, et al., 2015); [55] Yangtze Block (Su et al., 2014); [56] 

Khorat Plateau (Carter and Moss, 1999; Clift, Carter, et al., 2006; Carter et al., 2001; Carter and 

Bristow, 2003; Nagy et al., 2001); [57]Qiangtang Volcanics (Peng et al., 2014a; Zhai et al., 

2013); [58] Lincang (Dong et al., 2013; Hennig et al., 2009); [59] Kontum (Clift, Carter, et al., 

2006; Nagy et al., 2001); [60] Emeishan (Shellnutt, 2014); [61] Youjiang Basin (Yang et al., 

2012); [62] Sukhothai (Burrett et al., 2014); [63-65] Songpan Ganze Terrane; [66] Yangtze 

Craton (Zheng et al., 2006; Li, 1999; Zhang et al., 2006a, 2006b; Gao et al., 2011) [67] Ailao 

Shan (Leloup et al., 1993, 1995; Lin et al., 2012; Cao et al., 2011; Clift, Carter, et al., 2006; 

Harrison and Leloup, 1996; Wang et al., 1998; Jolivet et al., 1999; Maluski et al., 2001); [68] 

Cathaysia (Li, 2005; Clift, Carter, et al., 2006; Xianhua et al., 1989); [69] Gangdese Arc (He et 

al., 2007; Wen et al., 2008; Ji et al., 2009); [70] Tarim Platform (Gehrels, Kapp, et al., 2011); 

[71] North China (Darby and Gehrels, 2006; Guan et al., 2002; Gao et al., 2004); [72] 

Longmenshan (Pei et al., 2009); [73] Qilian Shan (Gehrels, Kapp, et al., 2011; Gehrels et al., 

2003); [74-75] Yanbian Terrane (Zhou et al., 2006; Sun et al., 2009); [76] Luliang (Zhuo et al., 

2013); [77] Altunshan (Gehrels, Kapp, et al., 2011); [78] Kunlunshan (Chen et al., 2008; 

Gehrels, Kapp, et al., 2011); [80] Yangtze Craton West (Sun et al., 2009; Greentree and Li, 

2008; Zhao et al., 2010); [81] Ailaoshan (Burrett et al., 2014); [82] Baoshan Granite (Liu et al., 

2009); [83] W. Yingjiang (Xu et al., 2012); [84-85 South China (Wang et al., 2011; Li et al., 
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2011) [86-90] Sibumasu Terrane (Cai et al., 2015); [91] W. Yingjiang (Xu et al., 2012); [92] 

Hainan Island (Xu, Sun, Cai, et al., 2014); [93] Laojunshan (Feng et al., 2012, 2008); [94] 

Guizhou (Zhou et al., 2009); [95] Darongshan (Chen et al., 2011); [96-97] Cathaysia (Xu et al., 

2007) 
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Figure I.3. Middle Paleozoic (377-495 Ma) Interpolation Concentration Maps. Each map 

represents a different sampling suite with (a) – (e) are interpolation maps based on depositional 

ages and (f) of bedrock units of depositional or emplacement age of Eocene or older. 

Interpolation points are indicated by small red dots. Colors are scaled to interpolated 

concentrations of zircon of Middle Paleozoic age for each depositional time slice. Population 

concentrations are in percents. Transparency of interpolation map increases with cubic distance 

from nearest sampling location.  
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Tables 

Table I.1 U-Pb Geochronologic Analyses  

 

Table. U-Pb geochronologic analyses. 

    

 

Apparent ages (Ma) 

Analysis 206Pb* ± 207Pb* ± 206Pb* ± Samp 

  238U* (Ma) 235U (Ma) 207Pb* (Ma) # 

        Dali-13-04-02  1655.6 127.2 1799.9 73.9 1971.5 15.1 13 

Dali-13-04-03  1817.7 26.3 1849.7 14.5 1885.8 6.7 13 

Dali-13-04-04  1027.7 16.5 1023.0 13.9 1012.7 25.9 13 

Dali-13-04-06  250.6 3.2 243.7 9.3 177.0 95.7 13 

Dali-13-04-07  327.5 6.8 330.5 9.4 352.3 57.7 13 

Dali-13-04-09  874.8 37.7 885.8 27.9 913.5 21.1 13 

Dali-13-04-10  444.1 7.3 433.3 19.3 376.7 117.3 13 

Dali-13-04-100  1708.4 35.9 1719.9 20.0 1733.9 6.5 13 

Dali-13-04-101  2521.4 45.7 2499.6 20.6 2481.9 6.6 13 

Dali-13-04-102  250.3 11.7 240.4 27.7 145.0 282.3 13 

Dali-13-04-103  291.0 5.8 286.3 12.0 247.4 100.1 13 

Dali-13-04-104  883.7 15.3 885.9 11.3 891.5 9.9 13 

Dali-13-04-105  247.5 2.8 248.5 13.6 258.1 139.0 13 

Dali-13-04-11  514.1 21.2 582.9 22.1 860.8 52.7 13 

Dali-13-04-12  1896.3 13.2 1885.7 9.5 1874.1 13.7 13 

Dali-13-04-13  1742.3 96.0 1842.3 53.5 1957.1 3.5 13 

Dali-13-04-14  839.0 11.0 834.1 18.9 821.3 62.9 13 

Dali-13-04-15  192.9 8.4 231.6 56.2 645.1 584.1 13 

Dali-13-04-16  247.7 9.0 237.6 13.2 138.5 117.4 13 

Dali-13-04-18  244.8 6.3 237.8 12.1 169.0 118.3 13 

Dali-13-04-19  181.4 15.3 312.4 94.7 1458.2 667.6 13 

Dali-13-04-20  459.6 6.5 459.0 9.0 456.1 43.2 13 

Dali-13-04-21  2022.0 119.1 2244.0 62.7 2453.0 16.1 13 

Dali-13-04-22  806.9 20.4 799.3 22.1 777.9 62.2 13 

Dali-13-04-23  443.4 8.8 438.3 11.4 411.5 54.9 13 

Dali-13-04-25  408.0 7.7 410.9 15.9 426.9 95.6 13 

Dali-13-04-26  686.1 6.6 694.7 8.3 722.5 27.5 13 

Dali-13-04-27  2417.8 32.0 2479.7 14.8 2530.8 3.2 13 

Dali-13-04-28  412.2 3.5 425.3 5.9 496.9 32.3 13 

Dali-13-04-29  338.8 6.7 343.0 6.8 371.9 25.4 13 

Dali-13-04-30  1909.0 39.5 1892.6 20.7 1874.6 6.2 13 

Dali-13-04-31  255.8 4.0 260.8 9.0 306.0 81.7 13 

Dali-13-04-32  2639.2 44.8 2624.6 19.7 2613.3 5.3 13 
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Dali-13-04-34  265.4 7.9 267.0 8.8 280.9 51.2 13 

Dali-13-04-35  801.3 17.7 802.4 24.3 805.4 77.3 13 

Dali-13-04-36  251.0 3.5 256.7 9.9 309.0 94.3 13 

Dali-13-04-37  468.3 21.0 435.4 78.5 265.0 501.4 13 

Dali-13-04-38  2414.7 16.9 2462.5 8.1 2502.1 4.2 13 

Dali-13-04-39  290.8 7.5 279.2 17.4 183.0 154.6 13 

Dali-13-04-40  257.8 9.2 245.9 45.9 133.1 491.1 13 

Dali-13-04-41  252.5 4.4 255.8 8.1 285.6 71.1 13 

Dali-13-04-42  1387.8 34.2 1409.8 21.0 1443.2 3.7 13 

Dali-13-04-43  335.5 6.0 306.5 21.0 90.8 183.0 13 

Dali-13-04-44  1815.9 13.7 1854.5 7.8 1898.2 4.9 13 

Dali-13-04-45  734.8 26.6 734.0 30.2 731.6 91.6 13 

Dali-13-04-46  250.5 4.9 262.9 12.1 374.7 108.6 13 

Dali-13-04-47  174.8 3.8 176.0 6.1 193.1 71.3 13 

Dali-13-04-48  217.0 2.2 220.6 3.7 258.5 35.5 13 

Dali-13-04-49  2306.2 35.0 2400.2 33.6 2480.9 53.7 13 

Dali-13-04-50  448.8 9.9 450.0 16.9 455.9 89.9 13 

Dali-13-04-51  217.8 6.7 229.2 22.5 347.9 238.8 13 

Dali-13-04-52  2013.0 26.0 2056.9 14.2 2101.2 10.2 13 

Dali-13-04-54  914.9 15.6 919.3 14.3 929.7 30.6 13 

Dali-13-04-55  940.9 12.5 956.7 10.3 993.3 17.3 13 

Dali-13-04-56  227.6 6.1 250.2 8.0 467.4 52.1 13 

Dali-13-04-57  292.8 8.6 283.0 41.8 202.8 389.0 13 

Dali-13-04-58  175.1 4.0 171.6 17.0 122.5 248.9 13 

Dali-13-04-60  364.8 3.7 370.7 5.8 408.0 34.5 13 

Dali-13-04-61  443.3 13.6 448.0 15.0 472.6 58.9 13 

Dali-13-04-62  2058.6 122.7 2282.3 64.7 2489.1 24.8 13 

Dali-13-04-63  217.2 6.5 224.0 9.1 295.5 76.4 13 

Dali-13-04-64  2350.7 15.8 2345.5 7.5 2340.9 3.1 13 

Dali-13-04-65  272.6 6.2 295.3 19.6 479.3 161.1 13 

Dali-13-04-66  1829.6 56.2 1850.4 30.1 1873.7 6.0 13 

Dali-13-04-67  274.9 11.9 265.6 34.4 184.4 328.6 13 

Dali-13-04-68  279.0 5.8 277.5 10.3 265.5 84.1 13 

Dali-13-04-69  975.4 11.4 975.2 23.0 974.8 70.2 13 

Dali-13-04-71  881.0 17.4 887.3 13.2 903.0 15.0 13 

Dali-13-04-72  255.5 6.9 266.7 20.5 366.4 187.2 13 

Dali-13-04-73  217.1 6.1 212.6 18.6 163.1 217.4 13 

Dali-13-04-74  249.1 4.9 248.8 9.8 245.5 91.5 13 

Dali-13-04-75  274.2 3.7 276.3 8.5 294.3 73.9 13 

Dali-13-04-76  1803.2 10.1 1832.6 6.4 1866.1 7.4 13 

Dali-13-04-77  930.2 14.5 925.9 14.8 915.7 36.5 13 
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Dali-13-04-78  983.6 13.3 986.2 11.2 991.7 20.4 13 

Dali-13-04-80  758.2 11.5 759.1 10.5 762.0 24.0 13 

Dali-13-04-81  245.8 4.6 251.0 15.8 299.1 155.9 13 

Dali-13-04-82  233.5 12.7 252.6 21.0 434.1 169.4 13 

Dali-13-04-83  437.7 8.7 443.9 11.4 476.3 53.6 13 

Dali-13-04-84  538.5 34.0 620.9 31.2 934.4 27.1 13 

Dali-13-04-86  276.6 8.7 291.1 9.5 409.4 42.9 13 

Dali-13-04-88  1874.2 23.8 1866.6 19.1 1858.1 30.6 13 

Dali-13-04-89  832.8 6.2 832.8 8.8 832.7 27.7 13 

Dali-13-04-90  764.0 25.9 765.9 46.2 771.5 164.2 13 

Dali-13-04-91  288.4 3.9 289.5 5.9 297.8 42.9 13 

Dali-13-04-92  972.7 18.6 971.0 13.3 967.1 11.6 13 

Dali-13-04-93  236.6 6.9 250.1 22.7 378.5 221.3 13 

Dali-13-04-94  2210.7 112.1 2334.4 54.9 2444.4 6.0 13 

Dali-13-04-95  256.6 5.1 251.6 12.3 204.6 119.0 13 

Dali-13-04-96  896.1 15.9 885.0 17.9 857.3 49.0 13 

Dali-13-04-98  2249.6 54.8 2392.9 26.6 2517.2 2.7 13 

Dali-13-04-99  171.1 5.1 173.6 22.6 207.8 321.5 13 

                

Hong-11-01-01  292.3 8.7 275.0 28.1 130.2 265.6 38 

Hong-11-01-02  39.5 1.0 42.3 4.0 202.9 217.5 38 

Hong-11-01-03  290.4 5.9 294.4 14.5 325.9 119.9 38 

Hong-11-01-05  36.5 1.7 37.2 5.5 83.1 338.3 38 

Hong-11-01-06  1605.2 17.3 1713.4 10.7 1848.3 7.7 38 

Hong-11-01-07  501.5 47.5 522.5 44.8 615.2 104.3 38 

Hong-11-01-08  1635.9 26.2 1710.4 15.5 1803.0 8.4 38 

Hong-11-01-100  198.1 7.9 204.3 15.9 276.3 173.0 38 

Hong-11-01-101  1713.1 12.7 1795.2 9.0 1892.0 11.8 38 

Hong-11-01-103  1884.3 14.3 1886.2 7.8 1888.3 4.8 38 

Hong-11-01-104  178.5 11.1 156.6 39.1 -164.0 660.9 38 

Hong-11-01-105  441.8 3.0 445.8 7.1 466.5 41.1 38 

Hong-11-01-11  36.7 2.0 39.3 7.7 204.9 449.9 38 

Hong-11-01-12  176.7 5.0 177.8 10.8 191.8 138.2 38 

Hong-11-01-13  189.3 1.7 194.5 15.4 257.7 199.2 38 

Hong-11-01-15  1541.2 24.5 1547.6 15.8 1556.2 16.2 38 

Hong-11-01-16  439.5 9.7 448.0 15.2 492.0 77.3 38 

Hong-11-01-18  294.1 8.5 291.7 16.6 272.9 134.6 38 

Hong-11-01-19  36.3 1.4 37.4 6.1 104.7 381.8 38 

Hong-11-01-20  2143.1 30.0 2160.6 15.1 2177.3 6.6 38 

Hong-11-01-21  1715.6 34.2 1719.4 19.6 1724.1 12.1 38 

Hong-11-01-22  305.1 5.2 302.9 12.3 286.6 100.1 38 
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Hong-11-01-23  285.3 10.3 300.4 16.2 419.5 112.3 38 

Hong-11-01-24  828.7 18.2 839.7 19.2 868.9 50.2 38 

Hong-11-01-26  176.4 2.1 188.1 8.9 337.5 114.5 38 

Hong-11-01-27  880.3 18.2 888.3 29.0 908.1 89.9 38 

Hong-11-01-28  1888.3 26.0 1952.3 18.3 2020.9 24.8 38 

Hong-11-01-29  1875.0 63.7 1889.7 34.9 1906.0 19.4 38 

Hong-11-01-30  149.1 6.2 157.1 10.7 280.0 138.2 38 

Hong-11-01-34  35.6 0.4 35.7 1.3 41.7 81.7 38 

Hong-11-01-35  1124.6 27.7 1122.0 23.0 1117.0 41.1 38 

Hong-11-01-36  36.1 0.6 40.4 1.8 304.9 97.5 38 

Hong-11-01-38  1894.3 33.1 1888.4 18.0 1881.9 10.2 38 

Hong-11-01-39  36.7 2.4 32.1 7.4 -302.6 580.9 38 

Hong-11-01-414  1627.5 35.6 1638.0 20.2 1651.6 4.4 38 

Hong-11-01-42  361.4 5.0 376.0 9.8 466.8 61.5 38 

Hong-11-01-43  2003.3 72.3 2153.6 43.2 2300.2 41.3 38 

Hong-11-01-44  36.1 1.5 40.6 4.1 316.5 214.8 38 

Hong-11-01-46  967.8 39.9 975.7 27.9 993.5 7.8 38 

Hong-11-01-47  1684.6 59.0 1770.6 33.4 1873.6 2.6 38 

Hong-11-01-48  1003.7 42.5 1067.1 31.8 1199.0 29.7 38 

Hong-11-01-49  36.8 0.8 36.7 2.7 31.3 172.1 38 

Hong-11-01-50  177.1 5.6 181.5 20.0 239.4 267.7 38 

Hong-11-01-51  179.4 4.7 175.4 15.3 121.3 214.6 38 

Hong-11-01-52  187.1 3.9 192.1 4.6 254.1 35.4 38 

Hong-11-01-53  2116.8 60.8 2158.1 30.1 2197.7 2.2 38 

Hong-11-01-54  528.1 8.8 575.8 9.2 769.0 24.7 38 

Hong-11-01-55  228.6 11.4 230.1 11.3 246.4 47.1 38 

Hong-11-01-58  254.3 5.4 259.8 6.4 309.7 40.8 38 

Hong-11-01-59  1940.8 70.0 2034.2 38.8 2130.2 25.2 38 

Hong-11-01-60  318.9 7.8 339.4 22.6 481.7 164.0 38 

Hong-11-01-61  400.9 21.1 395.9 19.3 366.8 50.8 38 

Hong-11-01-62  35.6 1.1 36.7 4.9 113.7 311.8 38 

Hong-11-01-63  254.9 4.3 249.7 10.9 201.0 107.0 38 

Hong-11-01-64  268.0 12.9 243.7 59.4 15.9 657.1 38 

Hong-11-01-65  268.0 3.3 271.7 6.0 304.0 49.8 38 

Hong-11-01-66  36.8 1.4 37.6 6.4 90.2 406.0 38 

Hong-11-01-67  1711.1 46.3 1773.1 26.3 1847.0 11.0 38 

Hong-11-01-70  228.7 3.1 230.7 11.2 252.0 120.7 38 

Hong-11-01-72  271.0 8.4 268.3 30.0 244.7 285.1 38 

Hong-11-01-73  438.8 5.5 430.5 13.1 386.3 78.6 38 

Hong-11-01-74  757.1 11.8 749.7 23.6 727.6 87.5 38 

Hong-11-01-75  2767.9 64.7 2700.0 27.3 2649.7 5.9 38 
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Hong-11-01-76  371.8 4.6 373.9 21.8 386.5 153.9 38 

Hong-11-01-77  396.7 4.6 389.5 10.0 347.1 64.6 38 

Hong-11-01-79  2548.2 18.0 2526.0 8.1 2508.2 2.9 38 

Hong-11-01-80  268.1 16.3 294.6 24.0 509.7 155.7 38 

Hong-11-01-81  167.2 3.2 172.3 6.7 242.5 87.0 38 

Hong-11-01-82  262.8 13.0 257.6 21.0 210.3 178.8 38 

Hong-11-01-84  2243.1 26.7 2353.8 24.9 2451.2 39.3 38 

Hong-11-01-85  35.8 1.0 33.8 5.2 -108.3 377.5 38 

Hong-11-01-86  820.1 26.9 830.3 22.4 857.9 38.2 38 

Hong-11-01-87  451.1 6.8 481.0 14.9 626.0 77.0 38 

Hong-11-01-88  358.2 1.5 356.3 5.8 343.7 42.8 38 

Hong-11-01-89  36.1 0.8 37.1 5.9 103.0 378.4 38 

Hong-11-01-90  417.9 9.7 410.9 32.9 371.6 212.8 38 

Hong-11-01-92  35.1 2.3 30.5 5.8 -320.7 467.0 38 

Hong-11-01-93  253.3 6.3 231.1 24.8 10.3 282.8 38 

Hong-11-01-94  888.5 64.3 881.4 47.0 863.7 38.9 38 

Hong-11-01-95  250.3 2.9 255.9 7.4 307.0 69.2 38 

Hong-11-01-96  262.5 2.7 264.2 8.9 278.8 84.3 38 

Hong-11-01-97  181.5 4.2 179.6 12.3 154.6 166.6 38 

Hong-11-01-98  649.6 29.8 673.0 24.5 751.9 25.5 38 

Hong-11-01-99  36.6 0.4 38.3 1.6 150.3 95.3 38 

                

Jian-11-06-01  457.3 10.8 458.3 31.0 463.1 178.5 9 

Jian-11-06-02  229.2 5.1 192.4 54.6 -238.4 800.2 9 

Jian-11-06-03  1861.3 11.0 1871.3 8.1 1882.5 12.1 9 

Jian-11-06-05  1876.0 56.6 1868.9 29.7 1860.9 2.8 9 

Jian-11-06-06  1844.5 26.8 1857.9 14.4 1872.9 3.8 9 

Jian-11-06-07  383.9 10.1 378.8 30.4 347.9 209.1 9 

Jian-11-06-08  275.9 8.0 270.6 32.2 225.1 307.1 9 

Jian-11-06-10  529.0 19.5 535.1 26.5 561.3 110.7 9 

Jian-11-06-101  40.4 2.4 41.1 4.1 81.3 194.6 9 

Jian-11-06-102  41.0 1.2 39.1 2.7 -74.7 157.9 9 

Jian-11-06-103  254.1 6.8 264.9 11.4 361.3 91.7 9 

Jian-11-06-104  1815.1 32.8 1839.5 17.9 1867.2 6.7 9 

Jian-11-06-105  244.8 9.0 241.0 18.2 203.6 176.3 9 

Jian-11-06-106  440.3 6.2 446.5 9.8 478.9 50.6 9 

Jian-11-06-108  222.1 5.0 230.2 11.8 313.9 119.5 9 

Jian-11-06-109  932.5 20.6 938.9 24.3 953.9 64.9 9 

Jian-11-06-11  1897.0 48.5 1891.2 26.0 1884.9 12.0 9 

Jian-11-06-110  279.7 22.6 284.8 33.2 326.2 238.8 9 

Jian-11-06-111  154.5 4.2 152.4 16.6 119.4 269.5 9 
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Jian-11-06-112  673.1 16.1 694.4 20.4 764.2 66.9 9 

Jian-11-06-113  1761.0 31.5 1758.8 20.9 1756.1 26.3 9 

Jian-11-06-114  402.4 13.1 396.0 26.5 358.8 166.2 9 

Jian-11-06-12  272.7 6.1 281.1 46.2 351.8 424.5 9 

Jian-11-06-13  247.5 9.3 236.2 33.3 125.0 362.8 9 

Jian-11-06-14  330.2 6.0 334.7 20.9 365.6 159.6 9 

Jian-11-06-15  233.0 7.6 217.0 23.5 46.8 277.2 9 

Jian-11-06-16  849.8 27.8 884.2 22.4 971.5 30.0 9 

Jian-11-06-17  2328.2 37.5 2449.6 18.2 2552.0 7.7 9 

Jian-11-06-18  44.0 2.4 43.3 2.9 5.1 98.2 9 

Jian-11-06-19  231.9 6.9 228.7 11.4 195.7 107.9 9 

Jian-11-06-21  224.3 9.8 220.7 23.1 182.2 251.4 9 

Jian-11-06-22  179.0 4.4 187.1 16.0 290.7 206.8 9 

Jian-11-06-23  217.8 5.5 215.5 9.0 190.0 89.4 9 

Jian-11-06-24  243.4 8.8 271.5 36.0 521.0 323.2 9 

Jian-11-06-25  1001.5 20.4 1000.1 15.0 997.0 17.3 9 

Jian-11-06-26  1859.0 43.3 1859.2 23.3 1859.5 9.8 9 

Jian-11-06-27  890.2 41.1 900.1 30.6 924.7 28.0 9 

Jian-11-06-28  1778.4 22.1 1822.6 12.3 1873.5 5.3 9 

Jian-11-06-29  1886.8 52.7 1885.1 27.7 1883.2 5.6 9 

Jian-11-06-30  456.0 21.0 447.2 57.3 402.7 339.7 9 

Jian-11-06-31  898.6 52.0 925.5 38.3 990.1 23.2 9 

Jian-11-06-32  1911.3 52.8 1890.7 27.4 1868.2 2.5 9 

Jian-11-06-33  329.1 11.2 334.3 20.9 370.4 145.7 9 

Jian-11-06-34  1772.8 58.6 1815.1 32.1 1864.1 6.0 9 

Jian-11-06-36  38.6 1.4 38.8 2.4 52.8 124.5 9 

Jian-11-06-37  2147.1 85.5 2316.5 44.5 2469.3 22.9 9 

Jian-11-06-38  755.3 69.8 795.0 57.1 908.1 69.2 9 

Jian-11-06-39  535.4 17.2 558.6 16.0 654.3 35.0 9 

Jian-11-06-41  1784.7 38.0 1791.7 31.3 1799.9 51.1 9 

Jian-11-06-43  248.6 9.5 240.7 18.9 164.8 184.6 9 

Jian-11-06-45  222.8 5.6 228.4 9.3 287.3 86.0 9 

Jian-11-06-46  215.3 5.8 219.1 13.9 260.8 149.7 9 

Jian-11-06-48  36.3 2.1 35.0 5.2 -55.1 341.2 9 

Jian-11-06-49  1531.5 95.2 1555.7 60.7 1588.6 56.9 9 

Jian-11-06-50  796.6 20.9 808.0 29.4 839.7 93.4 9 

Jian-11-06-51  370.7 20.9 367.4 19.7 346.8 61.7 9 

Jian-11-06-52  1670.3 49.8 1679.2 41.5 1690.3 69.2 9 

Jian-11-06-53  35.4 1.8 34.7 6.3 -11.0 429.2 9 

Jian-11-06-54  213.6 4.4 214.3 7.4 222.1 75.2 9 

Jian-11-06-57  1699.7 53.1 1772.0 29.9 1858.3 4.7 9 
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Jian-11-06-58  42.5 1.2 45.5 7.7 207.2 401.5 9 

Jian-11-06-59  763.8 21.2 772.2 18.3 796.6 35.2 9 

Jian-11-06-60  645.6 27.2 647.0 21.4 652.1 12.4 9 

Jian-11-06-61  254.4 6.8 266.3 16.8 372.2 149.2 9 

Jian-11-06-62  1858.9 73.9 1859.0 39.2 1859.1 6.8 9 

Jian-11-06-63  1852.8 78.6 2013.5 63.2 2182.5 92.4 9 

Jian-11-06-64  1665.4 44.1 1634.4 26.1 1594.6 21.0 9 

Jian-11-06-65  2472.3 68.5 2438.0 30.9 2409.5 4.9 9 

Jian-11-06-66  261.6 5.4 265.7 8.7 301.5 69.7 9 

Jian-11-06-67  178.9 5.5 169.3 9.7 37.0 128.4 9 

Jian-11-06-68  1927.9 10.5 1974.1 17.2 2022.8 33.3 9 

Jian-11-06-69  439.1 12.0 443.7 30.2 467.6 175.3 9 

Jian-11-06-70  1071.8 35.1 1068.3 23.8 1061.3 12.8 9 

Jian-11-06-71  417.8 20.9 421.0 18.9 438.1 41.0 9 

Jian-11-06-72  157.5 4.5 161.3 10.0 218.9 140.2 9 

Jian-11-06-74  921.9 21.8 922.7 16.4 924.6 18.9 9 

Jian-11-06-75  495.6 8.3 494.7 7.7 490.4 20.5 9 

Jian-11-06-77  36.5 1.2 35.4 5.2 -35.3 352.4 9 

Jian-11-06-78  286.4 19.8 300.1 39.3 407.4 300.1 9 

Jian-11-06-79  43.5 1.5 45.9 5.1 171.7 253.6 9 

Jian-11-06-81  2574.6 45.4 2549.2 20.7 2528.9 9.8 9 

Jian-11-06-82  2659.2 133.2 2589.5 57.4 2535.5 5.9 9 

Jian-11-06-83  2267.9 64.4 2402.4 31.2 2518.4 7.3 9 

Jian-11-06-84  37.8 1.5 36.6 8.2 -40.6 549.3 9 

Jian-11-06-85  1775.6 31.8 1812.9 18.5 1856.1 13.7 9 

Jian-11-06-87  219.1 3.3 219.9 7.0 228.0 74.5 9 

Jian-11-06-88  842.8 11.8 843.5 14.6 845.3 42.9 9 

Jian-11-06-89  253.8 6.1 250.3 12.3 218.1 115.5 9 

Jian-11-06-91  42.1 0.5 41.6 1.6 10.8 93.1 9 

Jian-11-06-92  838.6 22.6 838.5 17.6 838.2 23.5 9 

Jian-11-06-93  1320.4 26.3 1306.2 17.3 1282.8 16.1 9 

Jian-11-06-94  909.5 17.8 912.8 13.7 920.9 18.6 9 

Jian-11-06-95  275.7 10.8 277.2 31.1 289.9 278.9 9 

Jian-11-06-96  265.5 9.1 264.0 11.4 251.2 79.3 9 

Jian-11-06-97  425.5 3.5 422.7 9.1 407.4 55.5 9 

Jian-11-06-98  1860.2 28.7 1859.5 15.3 1858.6 5.1 9 

Jian-11-06-99  411.1 11.0 431.6 12.5 542.2 48.8 9 

                

Jian-11-18-01  34.7 2.0 33.0 3.6 -88.7 235.7 8 

Jian-11-18-02  37.2 1.0 34.1 5.9 -177.0 434.0 8 

Jian-11-18-03  36.8 0.9 35.2 2.9 -73.3 193.3 8 
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Jian-11-18-04  35.3 0.9 36.5 3.4 115.5 217.1 8 

Jian-11-18-05  37.3 1.1 37.0 3.6 19.4 228.5 8 

Jian-11-18-06  37.4 2.3 39.6 6.9 172.4 392.7 8 

Jian-11-18-07  36.0 0.6 36.0 2.4 32.8 157.6 8 

Jian-11-18-08  36.8 0.5 36.6 2.0 24.7 131.3 8 

Jian-11-18-09  36.4 1.3 36.6 8.2 47.4 542.5 8 

Jian-11-18-10  35.8 0.6 31.6 4.3 -275.9 347.4 8 

Jian-11-18-100  46.3 1.2 46.8 5.0 75.2 251.1 8 

Jian-11-18-101  37.5 2.1 37.0 7.7 2.2 499.2 8 

Jian-11-18-103  37.6 1.3 49.6 6.3 673.5 268.4 8 

Jian-11-18-105  37.5 1.0 36.4 6.8 -39.9 463.1 8 

Jian-11-18-106  35.8 0.8 37.9 3.8 169.9 230.7 8 

Jian-11-18-107  35.9 0.8 35.1 2.2 -21.4 146.1 8 

Jian-11-18-108  35.8 0.9 31.4 4.8 -289.1 392.4 8 

Jian-11-18-109  35.7 0.6 35.0 4.9 -7.5 345.0 8 

Jian-11-18-11  35.9 0.5 37.0 3.4 107.0 215.6 8 

Jian-11-18-110  36.0 0.8 33.4 13.2 -153.1 1033.4 8 

Jian-11-18-12  37.6 0.7 37.1 3.4 4.9 218.7 8 

Jian-11-18-13  37.2 1.1 37.6 3.7 65.8 230.4 8 

Jian-11-18-14  36.8 1.6 43.7 6.6 440.9 332.1 8 

Jian-11-18-15  36.3 0.9 40.1 4.0 274.3 226.7 8 

Jian-11-18-17  35.7 0.7 34.9 2.3 -15.9 155.0 8 

Jian-11-18-18  36.5 1.6 34.6 3.4 -95.9 224.9 8 

Jian-11-18-19  816.3 8.6 818.4 6.7 824.1 8.6 8 

Jian-11-18-20  36.5 1.1 31.9 4.0 -302.6 316.3 8 

Jian-11-18-21  386.7 21.0 467.1 54.0 884.5 276.0 8 

Jian-11-18-22  36.7 1.6 35.4 5.7 -49.5 385.6 8 

Jian-11-18-23  36.1 0.7 33.7 4.1 -136.3 302.0 8 

Jian-11-18-24  37.1 1.2 38.9 4.3 148.2 255.2 8 

Jian-11-18-25  224.9 11.7 279.3 13.4 764.4 28.4 8 

Jian-11-18-26  226.9 4.7 215.8 13.4 96.6 155.4 8 

Jian-11-18-27  36.8 1.1 40.3 3.1 254.0 170.5 8 

Jian-11-18-29  36.3 1.2 35.9 3.7 12.1 243.1 8 

Jian-11-18-30  35.9 0.8 37.4 2.7 134.1 166.3 8 

Jian-11-18-31  35.8 1.4 34.7 6.6 -45.9 466.4 8 

Jian-11-18-32  35.9 1.5 32.6 8.0 -201.2 623.6 8 

Jian-11-18-33  35.1 1.0 35.7 3.6 78.3 234.0 8 

Jian-11-18-34  37.6 0.8 37.5 6.1 35.4 393.9 8 

Jian-11-18-35  36.3 3.0 36.3 6.3 35.4 377.0 8 

Jian-11-18-37  38.1 1.3 32.8 5.6 -337.1 439.0 8 

Jian-11-18-38  35.7 1.1 36.3 5.2 69.6 343.1 8 
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Jian-11-18-39  627.7 13.7 684.5 11.9 875.9 13.8 8 

Jian-11-18-40  36.2 1.0 35.9 3.7 17.5 243.1 8 

Jian-11-18-41  36.2 1.2 38.6 6.5 189.1 395.7 8 

Jian-11-18-42 41.9 2.3 53.7 15.0 617.3 617.4 8 

Jian-11-18-43  35.7 0.7 37.0 5.7 120.9 367.4 8 

Jian-11-18-44  247.6 2.6 246.7 3.7 237.4 30.1 8 

Jian-11-18-45  35.6 0.8 30.3 5.3 -369.2 457.8 8 

Jian-11-18-46  36.6 1.9 35.5 4.4 -34.0 282.3 8 

Jian-11-18-47  36.4 0.9 37.6 2.9 117.2 175.7 8 

Jian-11-18-49  36.0 0.7 36.8 2.7 87.8 170.2 8 

Jian-11-18-50  36.0 0.5 36.3 4.6 58.4 308.3 8 

Jian-11-18-52  36.1 0.7 35.8 2.5 13.6 166.2 8 

Jian-11-18-53  36.3 0.7 38.4 2.0 169.4 112.0 8 

Jian-11-18-54  35.9 1.1 35.5 5.8 6.4 397.9 8 

Jian-11-18-55  799.7 7.3 814.3 7.7 854.6 20.3 8 

Jian-11-18-56  35.8 1.6 39.0 6.9 240.3 407.0 8 

Jian-11-18-57  36.2 0.8 36.6 3.2 65.2 208.7 8 

Jian-11-18-58  448.0 10.7 440.3 31.1 400.6 186.9 8 

Jian-11-18-59  35.8 1.4 31.4 5.5 -290.1 447.5 8 

Jian-11-18-60  36.1 1.5 34.8 7.0 -54.8 494.0 8 

Jian-11-18-61  36.2 0.5 36.1 4.2 27.5 285.0 8 

Jian-11-18-62  36.0 0.9 36.5 5.7 65.1 375.4 8 

Jian-11-18-63  36.9 1.0 36.6 5.3 18.4 347.8 8 

Jian-11-18-64  37.5 1.2 37.8 6.3 59.1 402.0 8 

Jian-11-18-65  36.9 0.6 32.7 5.6 -267.7 446.9 8 

Jian-11-18-66  37.0 1.0 41.0 2.8 282.2 146.0 8 

Jian-11-18-67  855.2 20.4 854.3 15.5 852.0 18.1 8 

Jian-11-18-68  721.1 29.6 748.6 23.1 831.6 10.4 8 

Jian-11-18-69  37.2 1.0 40.9 7.2 263.0 412.2 8 

Jian-11-18-70  1890.8 20.5 1890.8 11.4 1890.7 7.7 8 

Jian-11-18-71  36.2 0.6 36.1 2.3 28.8 151.7 8 

Jian-11-18-72  1923.0 54.3 1910.1 28.2 1896.1 4.0 8 

Jian-11-18-73  35.5 0.6 34.7 5.2 -19.8 369.5 8 

Jian-11-18-74  36.2 2.2 36.6 3.8 57.5 206.1 8 

Jian-11-18-75  37.1 1.2 33.2 6.4 -237.7 489.2 8 

Jian-11-18-76  36.0 1.9 34.1 8.5 -102.8 618.7 8 

Jian-11-18-77  791.5 51.8 798.2 40.0 817.1 42.4 8 

Jian-11-18-78  37.8 2.2 37.8 8.3 40.7 522.3 8 

Jian-11-18-79  315.4 20.1 378.6 21.2 785.5 30.7 8 

Jian-11-18-80  36.9 1.0 37.9 6.1 105.2 381.6 8 

Jian-11-18-81  36.9 1.0 36.8 2.8 34.3 173.3 8 
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Jian-11-18-84  37.4 2.6 36.3 4.8 -33.8 281.8 8 

Jian-11-18-85  37.0 1.0 35.2 3.4 -89.0 232.3 8 

Jian-11-18-86  460.0 11.4 507.4 11.1 727.4 22.8 8 

Jian-11-18-87  37.3 1.6 31.7 5.2 -370.4 418.6 8 

Jian-11-18-88  36.5 0.9 38.6 4.1 168.5 247.6 8 

Jian-11-18-89  37.5 1.3 35.4 7.2 -103.8 506.4 8 

Jian-11-18-90  36.7 0.7 37.9 6.1 113.2 388.6 8 

Jian-11-18-91  40.2 1.1 47.7 8.9 439.8 426.0 8 

Jian-11-18-92  36.3 0.5 37.3 6.0 103.4 389.9 8 

Jian-11-18-93  57.3 3.7 45.1 15.6 -562.5 962.6 8 

Jian-11-18-94  36.4 1.7 40.8 4.5 306.1 230.9 8 

Jian-11-18-96  37.2 0.9 34.3 8.4 -162.4 624.3 8 

Jian-11-18-99  36.0 0.7 36.4 4.7 64.5 308.9 8 

                

Jian-11-39-01  36.0 0.6 39.5 3.2 255.3 189.2 7 

Jian-11-39-02  216.9 4.5 217.1 5.2 219.2 37.0 7 

Jian-11-39-03  469.5 6.2 460.9 10.0 418.6 51.8 7 

Jian-11-39-04  36.8 3.3 31.3 10.5 -375.9 877.6 7 

Jian-11-39-05  39.8 1.5 42.2 3.0 177.8 144.0 7 

Jian-11-39-10  36.0 1.7 35.2 3.0 -21.8 173.7 7 

Jian-11-39-100  39.2 0.6 40.8 2.8 135.4 158.1 7 

Jian-11-39-101  254.1 9.8 251.9 15.1 231.9 127.0 7 

Jian-11-39-102  1911.9 147.8 1902.0 76.9 1891.2 4.7 7 

Jian-11-39-103  37.9 1.9 35.4 10.1 -131.6 717.8 7 

Jian-11-39-104  35.6 0.9 35.2 6.3 7.0 436.7 7 

Jian-11-39-105  1605.5 34.3 1644.4 19.8 1694.6 6.2 7 

Jian-11-39-106  39.5 1.9 39.6 6.7 46.4 399.0 7 

Jian-11-39-107  35.8 1.6 35.2 9.0 -6.6 630.8 7 

Jian-11-39-108  42.2 1.3 39.0 3.2 -152.6 190.3 7 

Jian-11-39-109  461.9 8.2 467.5 16.0 494.7 84.9 7 

Jian-11-39-11  37.9 1.2 40.3 7.8 186.8 456.7 7 

Jian-11-39-110  41.5 0.9 42.2 3.8 80.0 211.0 7 

Jian-11-39-112  37.5 2.8 40.3 12.9 210.5 755.0 7 

Jian-11-39-114  38.2 0.7 34.9 2.2 -191.4 153.7 7 

Jian-11-39-116  251.2 8.1 251.3 9.6 252.5 63.0 7 

Jian-11-39-117  36.2 1.1 35.7 4.4 4.6 294.9 7 

Jian-11-39-118  37.4 1.4 32.7 6.7 -293.3 524.7 7 

Jian-11-39-119  36.3 0.8 38.5 3.0 176.2 175.9 7 

Jian-11-39-12  39.4 1.8 34.7 4.4 -275.1 309.8 7 

Jian-11-39-120  942.6 17.4 939.9 17.8 933.6 43.5 7 

Jian-11-39-121  978.4 10.9 977.6 9.9 975.8 20.8 7 
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Jian-11-39-122  37.8 1.1 36.4 5.9 -56.3 395.9 7 

Jian-11-39-123  2528.0 28.4 2685.2 13.0 2805.9 3.6 7 

Jian-11-39-124  37.1 1.8 27.7 12.5 -731.1 1328.4 7 

Jian-11-39-125  36.7 1.9 42.2 7.4 365.1 386.2 7 

Jian-11-39-126  38.5 1.2 41.8 5.2 234.8 282.8 7 

Jian-11-39-128  37.7 1.0 38.9 1.6 115.2 79.8 7 

Jian-11-39-129a  41.4 1.5 42.2 3.6 88.7 189.3 7 

Jian-11-39-129b  39.1 1.1 39.9 1.8 90.4 82.8 7 

Jian-11-39-13  40.7 1.1 39.8 3.0 -13.2 175.8 7 

Jian-11-39-130  38.5 1.1 40.1 3.1 136.8 173.3 7 

Jian-11-39-133  194.4 10.3 198.7 10.2 251.1 38.9 7 

Jian-11-39-134  38.8 0.5 37.3 1.3 -59.7 77.3 7 

Jian-11-39-135  42.1 1.1 42.9 2.6 92.6 135.8 7 

Jian-11-39-137  37.4 1.4 31.1 13.0 -433.5 1159.1 7 

Jian-11-39-14  35.7 1.9 31.8 4.3 -256.9 321.1 7 

Jian-11-39-15  37.1 2.5 42.0 9.9 333.7 529.1 7 

Jian-11-39-16  37.2 1.2 36.6 6.4 -3.9 425.1 7 

Jian-11-39-17  37.4 1.4 36.7 5.0 -8.0 324.9 7 

Jian-11-39-18  38.4 1.9 37.0 2.7 -54.1 139.0 7 

Jian-11-39-19  39.1 1.6 38.1 4.0 -30.2 241.2 7 

Jian-11-39-20  1954.6 42.4 1910.5 21.9 1862.9 6.6 7 

Jian-11-39-21  36.1 0.7 35.1 5.2 -30.6 366.0 7 

Jian-11-39-22  40.1 3.0 40.7 5.8 78.1 300.6 7 

Jian-11-39-23  39.8 1.2 40.3 3.1 65.9 171.6 7 

Jian-11-39-24  38.4 1.0 40.8 4.7 180.4 267.5 7 

Jian-11-39-27  36.9 1.0 34.7 7.6 -114.8 548.7 7 

Jian-11-39-28  39.0 0.6 41.0 2.4 159.1 132.8 7 

Jian-11-39-29  446.1 8.4 442.6 11.8 424.8 59.0 7 

Jian-11-39-30  79.7 5.6 91.2 8.4 401.9 147.3 7 

Jian-11-39-31  39.2 1.0 39.9 2.5 84.4 135.2 7 

Jian-11-39-33  702.8 15.3 718.9 12.8 769.3 19.7 7 

Jian-11-39-34  837.5 10.6 834.8 27.0 827.4 94.7 7 

Jian-11-39-35  37.7 1.4 41.5 5.8 267.2 319.9 7 

Jian-11-39-36  42.6 1.4 40.0 3.4 -109.1 197.2 7 

Jian-11-39-37  338.4 7.3 345.2 16.6 391.1 117.6 7 

Jian-11-39-38  37.7 0.9 37.1 3.2 -5.7 204.3 7 

Jian-11-39-39  41.4 1.3 43.5 2.0 159.1 84.1 7 

Jian-11-39-40  41.3 1.2 41.1 4.9 24.8 284.3 7 

Jian-11-39-43  57.7 7.0 57.9 17.2 65.3 679.1 7 

Jian-11-39-44  36.7 0.8 37.3 8.1 76.1 528.1 7 

Jian-11-39-46  42.5 3.6 46.3 12.5 248.7 613.8 7 
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Jian-11-39-47  39.8 0.4 38.9 1.9 -17.2 117.4 7 

Jian-11-39-50  36.9 1.3 29.2 8.3 -561.8 787.4 7 

Jian-11-39-52  35.3 0.8 33.4 3.6 -99.5 260.4 7 

Jian-11-39-53  39.5 1.4 40.8 5.5 118.2 311.8 7 

Jian-11-39-54  42.7 0.6 41.6 2.9 -19.8 167.1 7 

Jian-11-39-55  33.9 3.4 44.9 20.5 679.3 1025.7 7 

Jian-11-39-56  37.5 0.9 36.8 4.9 -6.9 324.2 7 

Jian-11-39-57  244.9 4.6 260.7 31.1 405.6 301.3 7 

Jian-11-39-58  44.1 2.2 44.1 4.4 45.5 215.8 7 

Jian-11-39-59  41.9 0.9 43.6 2.5 137.5 126.6 7 

Jian-11-39-6  38.0 0.6 38.2 2.0 46.1 122.5 7 

Jian-11-39-60  39.5 2.9 37.9 9.5 -65.2 606.1 7 

Jian-11-39-61  36.8 2.3 33.0 8.5 -236.8 647.2 7 

Jian-11-39-62  36.3 2.4 40.0 7.4 265.7 404.6 7 

Jian-11-39-63  38.6 1.4 35.0 4.5 -202.5 313.2 7 

Jian-11-39-64  36.6 2.1 44.0 9.9 467.2 496.0 7 

Jian-11-39-65  38.2 2.4 40.7 9.0 193.0 506.2 7 

Jian-11-39-66  43.5 6.7 58.6 26.5 729.5 977.4 7 

Jian-11-39-69  43.0 3.2 35.0 11.2 -483.5 860.8 7 

Jian-11-39-7  37.2 2.2 36.8 3.5 9.2 187.8 7 

Jian-11-39-70A  42.3 2.5 41.3 3.1 -19.3 121.9 7 

Jian-11-39-71  42.2 2.9 40.4 3.9 -67.2 175.4 7 

Jian-11-39-72  34.6 2.1 25.3 13.0 -785.0 1545.1 7 

Jian-11-39-74  2217.3 97.1 2283.1 52.1 2342.6 42.1 7 

Jian-11-39-75  42.0 1.0 41.4 3.3 6.2 190.0 7 

Jian-11-39-76  36.1 2.4 38.0 4.0 154.8 194.5 7 

Jian-11-39-77  457.0 7.1 457.0 9.6 457.0 45.7 7 

Jian-11-39-78  429.8 5.5 432.9 11.2 449.4 64.1 7 

Jian-11-39-79  251.0 5.6 230.2 29.4 21.8 340.0 7 

Jian-11-39-8  2294.3 81.7 2439.8 39.3 2563.3 7.0 7 

Jian-11-39-80  38.5 1.0 41.3 3.6 210.1 200.1 7 

Jian-11-39-81  33.9 4.0 35.9 6.1 174.7 289.8 7 

Jian-11-39-82  38.7 0.6 37.7 3.4 -26.3 219.5 7 

Jian-11-39-83  1746.2 23.9 1755.3 40.3 1766.2 83.3 7 

Jian-11-39-84  43.4 0.5 44.7 2.6 112.9 137.5 7 

Jian-11-39-84  270.2 10.4 333.5 12.7 802.2 43.7 7 

Jian-11-39-85  43.3 1.3 45.5 3.2 163.0 154.0 7 

Jian-11-39-87  41.4 0.5 41.5 2.3 42.2 133.4 7 

Jian-11-39-89  38.2 0.7 37.2 3.0 -25.8 191.8 7 

Jian-11-39-9  322.6 1.8 332.2 10.7 400.0 83.6 7 

Jian-11-39-91  250.2 6.4 240.7 17.7 149.4 184.5 7 
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Jian-11-39-93  39.8 1.6 41.2 4.2 121.8 228.1 7 

Jian-11-39-94  40.6 3.3 60.4 27.1 940.5 982.1 7 

Jian-11-39-95  1847.8 64.1 1856.3 34.9 1865.9 16.7 7 

Jian-11-39-97  253.1 5.0 265.1 12.5 372.5 111.9 7 

Jian-11-39-98  39.1 1.1 39.0 4.9 32.1 301.0 7 

                

Jians-13-05-01  1756.4 33.5 1728.6 20.6 1695.2 21.8 24 

Jians-13-05-02  2279.0 37.2 2373.4 18.1 2455.6 5.7 24 

Jians-13-05-03  1874.5 52.8 1849.7 29.8 1822.0 24.0 24 

Jians-13-05-04  451.1 9.0 452.1 12.8 457.2 63.2 24 

Jians-13-05-05  783.0 33.3 777.1 32.2 760.3 80.9 24 

Jians-13-05-06  1846.4 9.6 1855.8 5.4 1866.4 3.7 24 

Jians-13-05-08  506.5 6.8 547.1 13.9 720.2 63.1 24 

Jians-13-05-09  875.2 16.5 882.7 17.8 901.7 46.2 24 

Jians-13-05-10  1746.4 30.7 1741.0 39.8 1734.4 79.4 24 

Jians-13-05-11  263.1 4.0 266.4 8.5 295.5 75.1 24 

Jians-13-05-12  243.6 9.5 276.8 25.5 567.5 212.7 24 

Jians-13-05-13  1905.8 20.9 1897.6 11.1 1888.6 4.2 24 

Jians-13-05-14  2915.7 21.2 2925.4 9.3 2932.1 5.8 24 

Jians-13-05-15  440.1 2.4 445.6 7.0 474.4 41.1 24 

Jians-13-05-16  263.1 6.5 272.8 9.7 356.4 71.7 24 

Jians-13-05-17  2498.5 28.8 2464.1 15.3 2435.9 15.2 24 

Jians-13-05-18  1778.5 20.4 1766.9 39.3 1753.2 82.5 24 

Jians-13-05-19  417.1 12.2 411.1 19.5 377.5 110.7 24 

Jians-13-05-20  1964.6 47.5 2033.6 25.4 2104.4 12.3 24 

Jians-13-05-21  1868.5 10.9 1862.4 7.7 1855.5 10.9 24 

Jians-13-05-22  2408.9 19.8 2455.8 9.2 2494.8 2.4 24 

Jians-13-05-23  276.9 3.8 280.0 7.7 306.2 63.8 24 

Jians-13-05-24  1899.5 14.9 1895.3 7.8 1890.8 1.9 24 

Jians-13-05-25  258.4 5.5 266.7 13.0 340.4 116.1 24 

Jians-13-05-26  321.7 4.3 334.3 11.3 422.2 83.3 24 

Jians-13-05-27  1895.5 10.0 1891.4 6.0 1886.9 6.0 24 

Jians-13-05-28  247.3 2.0 254.8 5.8 323.6 55.6 24 

Jians-13-05-29  1230.9 40.2 1227.4 25.7 1221.3 7.9 24 

Jians-13-05-30  1733.1 25.3 1732.3 20.2 1731.3 32.5 24 

Jians-13-05-31  256.1 2.0 259.1 8.1 286.2 79.3 24 

Jians-13-05-32  1766.9 10.7 1766.1 8.4 1765.2 13.3 24 

Jians-13-05-34  263.5 5.1 256.2 27.9 189.8 283.7 24 

Jians-13-05-35  1797.3 47.4 1842.5 39.0 1893.9 62.0 24 

Jians-13-05-36  465.3 42.1 468.9 53.7 486.6 238.5 24 

Jians-13-05-37  1879.1 4.6 1877.3 3.1 1875.4 4.2 24 
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Jians-13-05-39  471.5 8.0 471.0 27.2 468.5 155.0 24 

Jians-13-05-41  812.2 11.3 812.1 22.2 812.0 76.9 24 

Jians-13-05-42  420.7 2.8 428.8 7.5 472.2 44.8 24 

Jians-13-05-45  252.6 6.3 257.0 21.1 297.3 203.8 24 

Jians-13-05-46  1599.6 60.1 1572.2 34.6 1535.6 15.1 24 

Jians-13-05-47  1903.3 33.7 1890.4 18.1 1876.4 9.3 24 

Jians-13-05-48  372.7 12.2 384.7 21.3 457.2 127.2 24 

Jians-13-05-50  1879.4 18.8 1880.1 10.0 1880.9 3.5 24 

Jians-13-05-53  1898.0 13.6 1892.5 7.5 1886.4 5.0 24 

Jians-13-05-54  621.6 9.4 616.1 9.9 596.2 31.7 24 

Jians-13-05-55  246.5 4.5 249.5 9.8 277.9 92.6 24 

Jians-13-05-56  2203.1 26.2 2194.7 12.9 2186.8 5.3 24 

Jians-13-05-57  1099.4 7.5 1098.4 5.6 1096.3 7.8 24 

Jians-13-05-58  1974.9 15.3 1970.6 8.6 1966.1 7.3 24 

Jians-13-05-59  241.7 4.5 250.1 10.8 329.2 101.5 24 

Jians-13-05-60  1086.4 33.2 1105.4 25.5 1143.0 35.7 24 

Jians-13-05-61  851.0 17.9 840.8 14.5 813.9 24.9 24 

Jians-13-05-62  423.5 9.5 438.0 13.2 514.8 63.6 24 

Jians-13-05-63  299.3 7.2 298.8 13.7 294.7 106.7 24 

Jians-13-05-64  802.8 20.8 798.8 29.7 787.7 96.9 24 

Jians-13-05-65  382.0 11.0 371.0 15.9 302.5 94.9 24 

Jians-13-05-67  1924.9 27.4 1895.4 14.3 1863.2 4.8 24 

Jians-13-05-68  2123.8 49.8 2234.5 27.2 2337.5 21.1 24 

Jians-13-05-69  293.4 4.1 303.1 9.2 378.3 72.2 24 

Jians-13-05-70  1899.0 27.5 1881.3 14.5 1861.9 5.1 24 

Jians-13-05-71  1852.9 50.1 1874.4 27.5 1898.3 15.0 24 

Jians-13-05-73  2562.9 21.1 2540.2 9.4 2522.1 3.1 24 

Jians-13-05-74  1852.6 29.2 1848.8 15.5 1844.4 3.7 24 

Jians-13-05-75  298.5 11.8 314.8 23.0 437.3 166.3 24 

Jians-13-05-76  1892.9 41.1 1875.0 21.8 1855.3 8.8 24 

Jians-13-05-77  1974.3 36.4 1955.3 18.6 1935.2 3.7 24 

                

Jians-13-07-01  2201.4 184.4 2346.2 90.9 2474.7 13.1 23 

Jians-13-07-02  814.3 15.0 819.6 38.8 833.8 137.7 23 

Jians-13-07-03  813.6 24.1 835.7 47.3 894.9 158.8 23 

Jians-13-07-04  255.5 4.8 263.4 12.1 334.2 109.7 23 

Jians-13-07-05  1708.5 67.1 1676.7 43.1 1637.1 51.2 23 

Jians-13-07-07  283.6 8.2 289.7 19.4 339.4 161.0 23 

Jians-13-07-08  803.0 13.1 796.7 17.8 779.1 57.3 23 

Jians-13-07-09  2629.1 99.5 2644.3 46.1 2655.9 27.9 23 

Jians-13-07-10  795.1 7.3 805.1 9.5 833.2 29.2 23 
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Jians-13-07-102  830.8 4.8 833.0 8.2 839.0 27.0 23 

Jians-13-07-104  247.1 7.1 250.8 30.9 285.1 311.6 23 

Jians-13-07-12  1066.9 30.6 1100.0 33.1 1165.9 75.8 23 

Jians-13-07-13  247.5 5.1 243.5 9.2 205.4 85.1 23 

Jians-13-07-14  813.0 10.8 823.7 13.3 852.8 39.0 23 

Jians-13-07-16  1021.7 18.8 1035.5 20.0 1064.7 47.1 23 

Jians-13-07-17  807.2 29.0 855.4 31.1 982.6 76.9 23 

Jians-13-07-18  788.8 14.7 796.2 16.5 817.0 46.8 23 

Jians-13-07-19  834.1 20.9 826.2 30.3 805.0 97.3 23 

Jians-13-07-20  1642.8 37.6 1717.1 21.7 1808.9 5.8 23 

Jians-13-07-22  2705.2 39.9 2700.8 17.4 2697.5 5.9 23 

Jians-13-07-23  1236.2 16.3 1235.9 12.4 1235.5 19.0 23 

Jians-13-07-24  836.3 14.8 833.9 17.8 827.7 52.0 23 

Jians-13-07-25  1650.9 21.3 1724.5 13.2 1815.0 11.4 23 

Jians-13-07-26  296.6 5.8 295.0 8.0 282.6 55.1 23 

Jians-13-07-27  1432.2 46.3 1509.7 34.4 1620.1 46.2 23 

Jians-13-07-28  772.2 12.4 769.3 11.8 761.0 28.9 23 

Jians-13-07-29  830.7 29.5 855.3 45.2 919.8 140.8 23 

Jians-13-07-30  936.2 32.8 977.8 61.8 1072.5 182.7 23 

Jians-13-07-32  1709.2 22.5 1716.2 14.3 1724.8 15.6 23 

Jians-13-07-34  212.7 2.3 213.9 9.6 226.6 112.8 23 

Jians-13-07-35  833.0 22.0 830.6 24.7 824.2 69.3 23 

Jians-13-07-36  232.6 3.3 224.2 9.8 137.0 109.8 23 

Jians-13-07-37  442.7 5.1 442.2 16.0 439.5 95.8 23 

Jians-13-07-39  2119.0 151.2 2325.5 76.9 2512.0 12.6 23 

Jians-13-07-40  1880.2 31.9 1873.8 17.8 1866.7 13.0 23 

Jians-13-07-41  2312.1 72.0 2416.7 34.2 2506.1 4.1 23 

Jians-13-07-42  1354.9 32.2 1375.6 21.2 1407.8 19.0 23 

Jians-13-07-43  241.6 5.9 274.9 12.3 568.9 97.6 23 

Jians-13-07-44  1396.9 13.4 1401.9 9.8 1409.6 13.9 23 

Jians-13-07-46  779.2 35.4 779.5 33.0 780.4 76.9 23 

Jians-13-07-47  245.1 15.6 317.6 55.4 890.3 400.6 23 

Jians-13-07-48  820.7 14.6 818.6 32.5 812.7 114.4 23 

Jians-13-07-49  221.3 3.4 228.1 11.1 297.9 119.1 23 

Jians-13-07-50  247.9 5.5 246.6 13.8 234.2 135.5 23 

Jians-13-07-51  879.3 11.0 881.9 8.8 888.4 14.0 23 

Jians-13-07-53  1176.8 19.7 1173.1 23.6 1166.2 56.4 23 

Jians-13-07-55  212.9 5.4 207.0 10.2 140.8 113.3 23 

Jians-13-07-56  1863.6 40.8 1849.9 33.0 1834.4 53.5 23 

Jians-13-07-57  690.5 45.1 715.1 36.1 793.0 29.1 23 

Jians-13-07-58  439.4 4.1 453.3 9.2 524.3 51.1 23 
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Jians-13-07-59  252.1 4.9 246.6 19.1 195.0 198.1 23 

Jians-13-07-60  805.3 8.0 805.0 17.2 804.2 61.1 23 

Jians-13-07-62  2120.2 32.1 2135.0 17.9 2149.3 16.2 23 

Jians-13-07-63  820.1 6.0 817.8 20.3 811.7 74.0 23 

Jians-13-07-64  998.1 17.3 1012.1 14.6 1042.6 26.3 23 

Jians-13-07-65  880.6 19.1 935.9 36.1 1068.5 109.0 23 

Jians-13-07-66  858.1 41.8 872.4 37.2 908.8 75.0 23 

Jians-13-07-67  1669.2 10.7 1667.7 9.7 1665.8 17.4 23 

Jians-13-07-69  447.7 5.4 454.4 13.7 488.1 77.9 23 

Jians-13-07-70  414.8 6.4 422.1 9.7 461.7 51.5 23 

Jians-13-07-73  445.4 8.1 463.1 21.3 552.1 118.3 23 

Jians-13-07-75  1879.0 6.6 1874.7 3.8 1869.9 3.1 23 

Jians-13-07-76  804.0 70.6 829.8 54.8 899.6 50.6 23 

Jians-13-07-77  887.3 7.3 886.2 6.7 883.4 14.7 23 

Jians-13-07-78  404.6 11.8 363.5 56.3 109.0 431.6 23 

Jians-13-07-79  1608.2 5.7 1662.4 4.0 1731.5 5.3 23 

Jians-13-07-80  222.3 2.1 223.4 7.8 235.0 87.4 23 

Jians-13-07-82  824.0 7.4 830.2 8.6 846.8 24.3 23 

Jians-13-07-83  833.0 8.7 849.7 14.3 893.7 45.7 23 

Jians-13-07-85  884.1 5.7 882.1 13.2 877.1 44.0 23 

Jians-13-07-87  521.1 25.6 909.1 33.0 2025.4 36.2 23 

Jians-13-07-88  297.9 3.0 308.9 11.4 392.7 92.9 23 

Jians-13-07-90  807.7 9.4 860.9 22.5 1000.3 74.7 23 

Jians-13-07-92  779.6 9.3 778.5 25.5 775.5 95.0 23 

Jians-13-07-93  1879.9 31.6 1870.3 51.6 1859.6 103.3 23 

Jians-13-07-94  596.9 57.0 689.3 59.5 1003.6 130.3 23 

Jians-13-07-95  2532.1 10.7 2515.3 7.1 2501.7 9.6 23 

Jians-13-07-96  818.0 6.4 828.1 12.6 855.5 43.0 23 

Jians-13-07-97  279.2 2.5 294.5 13.3 417.0 114.2 23 

Jians-13-07-98  466.8 7.6 460.3 11.7 428.0 59.3 23 

Jians-13-07-99  791.3 10.4 793.4 28.8 799.2 105.6 23 

                

Jians-13-08-02  1809.4 27.4 1798.9 15.1 1786.6 8.4 22 

Jians-13-08-03  840.3 7.6 837.9 14.2 831.4 47.8 22 

Jians-13-08-04  876.9 27.0 871.0 19.6 856.2 14.0 22 

Jians-13-08-05  282.3 7.7 278.9 13.1 250.2 106.1 22 

Jians-13-08-06  837.6 20.2 843.1 19.1 857.3 44.0 22 

Jians-13-08-07  1701.2 69.2 1763.3 43.7 1837.7 43.6 22 

Jians-13-08-08  989.2 15.5 995.6 13.2 1009.8 24.4 22 

Jians-13-08-09  832.4 9.9 830.2 11.1 824.3 31.2 22 

Jians-13-08-10  270.8 12.6 266.5 28.7 228.5 261.3 22 
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Jians-13-08-101  850.1 14.4 853.8 17.9 863.4 52.1 22 

Jians-13-08-103  1621.6 52.7 1596.1 32.4 1562.7 30.9 22 

Jians-13-08-104  771.1 9.7 778.9 12.4 801.3 38.6 22 

Jians-13-08-105  221.8 4.9 220.1 8.4 202.3 83.6 22 

Jians-13-08-12  907.4 22.8 899.5 17.1 880.3 20.1 22 

Jians-13-08-14  895.6 10.8 891.1 13.9 879.9 40.3 22 

Jians-13-08-15  1720.7 25.4 1720.1 15.1 1719.5 12.6 22 

Jians-13-08-17  832.5 9.6 827.4 9.4 813.8 23.5 22 

Jians-13-08-18  1368.8 26.0 1395.2 18.9 1435.7 25.5 22 

Jians-13-08-19  1753.8 16.8 1748.3 10.8 1741.7 13.0 22 

Jians-13-08-20  821.2 12.4 813.0 26.8 790.5 94.8 22 

Jians-13-08-21  913.7 15.4 904.7 13.3 882.7 26.7 22 

Jians-13-08-22  823.0 13.1 832.3 12.3 857.0 28.2 22 

Jians-13-08-23  1868.6 25.7 1874.5 13.7 1881.0 4.7 22 

Jians-13-08-25  827.9 11.3 839.3 12.1 869.7 31.8 22 

Jians-13-08-27  836.3 21.4 845.2 18.8 868.8 38.1 22 

Jians-13-08-28  264.5 2.1 269.5 9.6 313.0 90.5 22 

Jians-13-08-29  836.1 29.8 842.6 22.5 859.7 20.9 22 

Jians-13-08-30  860.3 31.5 870.5 26.7 896.5 49.0 22 

Jians-13-08-31  795.5 16.7 821.6 33.7 892.9 114.8 22 

Jians-13-08-33  1047.1 20.8 1040.7 17.4 1027.2 32.0 22 

Jians-13-08-36  912.2 12.2 906.9 12.9 893.8 32.9 22 

Jians-13-08-38  3358.5 21.9 3340.2 8.4 3329.2 2.8 22 

Jians-13-08-39  257.4 4.5 251.1 12.3 193.1 121.8 22 

Jians-13-08-41  316.9 13.1 351.5 68.2 586.6 494.9 22 

Jians-13-08-46  1369.1 7.6 1374.1 8.4 1381.9 17.8 22 

Jians-13-08-47  1862.0 96.1 1883.4 57.8 1907.2 57.2 22 

Jians-13-08-48  809.4 11.5 821.8 20.3 855.5 68.0 22 

Jians-13-08-49  243.2 4.3 244.1 9.0 252.4 86.1 22 

Jians-13-08-50  830.2 15.9 855.3 34.7 920.9 116.1 22 

Jians-13-08-51  1010.2 26.1 1004.3 23.3 991.4 48.0 22 

Jians-13-08-52  444.5 7.4 445.3 10.4 449.5 51.5 22 

Jians-13-08-55  1042.7 22.8 1027.4 16.9 994.9 22.6 22 

Jians-13-08-56  821.1 11.2 863.5 33.6 973.9 114.0 22 

Jians-13-08-57  814.2 8.1 812.9 7.8 809.3 19.0 22 

Jians-13-08-58  796.3 16.3 834.6 33.6 938.0 112.5 22 

Jians-13-08-59  799.4 12.1 816.7 17.7 864.2 56.6 22 

Jians-13-08-61  796.1 6.3 815.9 11.3 870.4 37.7 22 

Jians-13-08-64  825.2 14.6 820.6 12.9 808.3 27.3 22 

Jians-13-08-66  834.2 14.7 833.4 22.6 831.2 73.2 22 

Jians-13-08-67  816.3 16.3 818.0 23.1 822.6 73.5 22 
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Jians-13-08-68  846.8 9.7 845.5 7.4 842.2 8.9 22 

Jians-13-08-69  1920.8 25.2 1928.4 14.2 1936.5 11.4 22 

Jians-13-08-71  270.4 5.4 264.4 13.5 212.0 125.7 22 

Jians-13-08-74  1899.1 59.7 1906.7 31.8 1915.1 12.0 22 

Jians-13-08-75  2628.0 39.5 2616.5 19.0 2607.6 14.3 22 

Jians-13-08-76  1909.9 28.9 1896.0 15.9 1880.8 10.7 22 

Jians-13-08-77  2343.6 39.2 2417.2 18.5 2479.7 4.4 22 

Jians-13-08-78  819.1 11.6 812.8 20.3 795.6 69.1 22 

Jians-13-08-79  820.2 18.5 824.2 19.3 835.0 50.7 22 

Jians-13-08-81  806.7 10.8 807.9 21.6 811.1 75.6 22 

Jians-13-08-82  813.5 14.1 811.6 26.2 806.3 90.4 22 

Jians-13-08-83  887.3 14.0 885.8 12.8 882.2 28.1 22 

Jians-13-08-84  1911.0 23.0 1897.3 12.0 1882.4 3.5 22 

Jians-13-08-85  903.8 15.7 896.2 24.0 877.5 74.0 22 

Jians-13-08-86  1751.9 34.1 1790.7 19.2 1836.2 9.1 22 

Jians-13-08-87  2299.1 46.6 2316.2 22.6 2331.3 10.0 22 

Jians-13-08-88  984.0 22.3 988.6 19.8 998.8 39.8 22 

Jians-13-08-89  801.7 10.2 814.6 10.1 850.1 24.9 22 

Jians-13-08-90  1436.9 14.0 1486.1 10.4 1557.1 14.6 22 

Jians-13-08-91  810.8 16.8 816.7 16.0 832.8 37.7 22 

Jians-13-08-93  1863.7 27.0 1855.7 48.1 1846.7 97.5 22 

Jians-13-08-95  817.9 16.2 822.9 17.3 836.4 46.4 22 

Jians-13-08-96  880.7 11.4 880.5 17.1 879.9 52.8 22 

Jians-13-08-97  846.3 12.8 852.7 15.7 869.4 45.2 22 

Jians-13-08-99  252.6 20.6 281.0 33.4 524.1 236.0 22 

                

Jing-12-01-01  218.1 3.9 222.3 7.6 266.1 76.2 19 

Jing-12-01-04  884.8 9.6 893.9 9.3 916.7 21.8 19 

Jing-12-01-05  1274.8 31.2 1377.0 20.8 1539.2 11.2 19 

Jing-12-01-07  2569.4 21.0 2557.8 9.6 2548.5 4.7 19 

Jing-12-01-08  284.7 10.7 297.9 18.3 402.4 133.2 19 

Jing-12-01-09  443.1 19.7 443.1 19.4 443.0 62.4 19 

Jing-12-01-10  251.3 4.5 251.3 9.7 251.6 91.2 19 

Jing-12-01-100  213.1 4.2 215.1 7.3 237.9 72.7 19 

Jing-12-01-101  1007.1 19.7 1004.8 15.0 999.9 21.0 19 

Jing-12-01-102  213.3 17.4 162.1 266.4 -534.6 0.0 19 

Jing-12-01-103  246.7 7.7 234.9 19.2 117.9 202.6 19 

Jing-12-01-105  949.8 13.3 948.4 12.2 944.9 26.2 19 

Jing-12-01-106  1840.5 41.1 1861.4 22.2 1884.9 8.0 19 

Jing-12-01-108  203.1 6.1 204.3 8.5 218.5 80.3 19 

Jing-12-01-109  1754.8 28.3 1748.5 41.1 1740.9 83.8 19 
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Jing-12-01-10B  644.2 30.4 668.6 27.1 751.9 51.9 19 

Jing-12-01-11  2537.9 37.9 2544.1 17.3 2549.0 7.0 19 

Jing-12-01-111  212.5 3.3 214.9 3.9 241.3 28.5 19 

Jing-12-01-115  967.5 14.0 973.5 11.5 986.9 20.1 19 

Jing-12-01-119  1462.5 30.3 1471.8 19.8 1485.2 20.4 19 

Jing-12-01-12  455.9 7.2 448.8 32.0 412.6 194.1 19 

Jing-12-01-121  1309.6 34.4 1314.3 25.1 1322.1 34.3 19 

Jing-12-01-122  933.4 15.9 936.0 12.0 942.2 14.4 19 

Jing-12-01-123  960.7 32.9 948.2 24.0 919.3 25.6 19 

Jing-12-01-124  2545.7 28.3 2544.3 13.3 2543.2 7.8 19 

Jing-12-01-125  219.9 3.3 220.0 5.1 221.5 48.3 19 

Jing-12-01-126  214.6 7.6 225.0 20.1 335.5 211.2 19 

Jing-12-01-127  440.8 6.2 432.0 9.4 384.8 50.8 19 

Jing-12-01-128  249.4 10.3 228.3 32.0 15.9 364.0 19 

Jing-12-01-13  866.1 7.6 871.6 8.1 885.7 21.2 19 

Jing-12-01-131  828.8 18.7 833.7 15.7 846.8 28.4 19 

Jing-12-01-132  914.5 56.7 903.5 40.9 876.6 32.2 19 

Jing-12-01-133  237.8 5.1 245.2 20.8 317.4 211.2 19 

Jing-12-01-134  311.3 8.5 309.5 9.8 295.6 54.9 19 

Jing-12-01-136  866.6 18.7 877.5 18.1 905.1 41.8 19 

Jing-12-01-137  424.3 6.2 412.7 19.4 348.3 125.2 19 

Jing-12-01-139  836.9 13.7 836.4 10.9 835.2 16.3 19 

Jing-12-01-14  630.6 22.0 661.8 19.6 769.3 36.0 19 

Jing-12-01-140  244.1 3.7 245.7 6.3 260.6 55.8 19 

Jing-12-01-142  815.8 18.7 828.1 16.3 861.2 31.8 19 

Jing-12-01-143  867.0 45.4 870.2 33.1 878.4 17.4 19 

Jing-12-01-147  1606.3 78.2 1579.6 46.7 1544.1 35.6 19 

Jing-12-01-148  440.4 20.8 504.7 83.5 807.7 430.5 19 

Jing-12-01-15  874.9 14.3 875.4 12.9 876.8 27.5 19 

Jing-12-01-150  1738.4 55.1 1749.9 30.8 1763.7 13.2 19 

Jing-12-01-151  711.6 27.8 744.8 25.7 845.6 53.8 19 

Jing-12-01-152  2346.5 39.4 2321.5 19.0 2299.6 9.9 19 

Jing-12-01-153  437.2 6.6 440.6 8.7 458.6 41.1 19 

Jing-12-01-154  343.3 4.9 336.3 20.1 288.4 157.1 19 

Jing-12-01-155  795.4 66.8 838.1 53.1 953.0 53.5 19 

Jing-12-01-158  241.7 4.7 240.6 15.1 229.5 156.6 19 

Jing-12-01-16  413.0 4.4 411.7 8.4 404.4 50.0 19 

Jing-12-01-161  455.6 10.0 455.2 11.9 453.1 51.1 19 

Jing-12-01-162  221.6 7.2 228.1 20.4 295.1 216.0 19 

Jing-12-01-17  279.4 8.3 299.8 39.1 461.9 328.3 19 

Jing-12-01-19  433.5 10.2 431.0 21.2 417.8 123.3 19 
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Jing-12-01-20  1935.3 79.7 2068.6 48.1 2204.2 45.4 19 

Jing-12-01-21  1886.7 55.6 1942.3 33.9 2002.1 34.6 19 

Jing-12-01-22  862.8 18.1 855.6 17.3 837.1 41.2 19 

Jing-12-01-23  1407.8 14.2 1382.5 14.3 1343.6 29.5 19 

Jing-12-01-24  267.8 9.8 262.6 47.6 216.6 471.9 19 

Jing-12-01-25  443.9 5.0 447.1 9.5 463.6 51.8 19 

Jing-12-01-27  528.9 9.0 560.7 39.7 692.1 193.2 19 

Jing-12-01-28  431.9 10.2 435.7 18.1 455.7 99.7 19 

Jing-12-01-30  216.6 5.2 216.0 8.9 209.4 90.1 19 

Jing-12-01-31  837.1 15.2 837.8 11.7 839.5 13.9 19 

Jing-12-01-32  449.3 5.4 461.0 8.6 519.6 43.1 19 

Jing-12-01-34  846.6 16.1 846.0 13.9 844.5 28.0 19 

Jing-12-01-35  1939.5 126.7 1913.8 67.2 1886.0 33.3 19 

Jing-12-01-36  1928.3 142.1 2111.8 76.0 2295.6 9.2 19 

Jing-12-01-37  242.7 4.9 255.6 19.0 374.7 183.3 19 

Jing-12-01-38  712.4 33.1 737.2 25.9 813.3 11.4 19 

Jing-12-01-39  411.6 9.9 408.4 11.8 390.2 55.5 19 

Jing-12-01-40  271.2 9.1 283.0 19.6 382.1 160.7 19 

Jing-12-01-41  1740.8 16.7 1750.6 19.0 1762.4 36.4 19 

Jing-12-01-42  274.4 8.1 274.2 14.0 272.3 113.9 19 

Jing-12-01-44  768.9 24.5 856.1 26.0 1089.2 59.7 19 

Jing-12-01-45  215.2 3.9 213.2 6.1 191.4 60.6 19 

Jing-12-01-46  429.1 7.1 427.6 9.6 419.4 48.2 19 

Jing-12-01-47  561.5 10.6 597.7 10.9 737.8 28.9 19 

Jing-12-01-48  427.0 3.6 427.8 7.6 431.9 44.4 19 

Jing-12-01-50  427.1 6.3 433.9 15.3 470.0 90.0 19 

Jing-12-01-51  1398.6 101.3 1503.6 67.6 1654.9 56.3 19 

Jing-12-01-52  398.6 5.3 408.9 7.8 467.5 40.9 19 

Jing-12-01-53  822.6 11.7 839.6 13.9 885.1 39.5 19 

Jing-12-01-54  2401.4 100.1 2436.7 47.7 2466.3 22.4 19 

Jing-12-01-55  444.3 6.0 454.9 15.5 508.8 88.1 19 

Jing-12-01-56  850.7 12.2 843.6 15.9 824.8 48.1 19 

Jing-12-01-57  2088.9 33.7 2287.6 18.4 2470.3 12.2 19 

Jing-12-01-58  365.6 5.3 364.4 8.9 356.7 56.4 19 

Jing-12-01-59  161.6 3.3 164.1 16.5 200.0 248.6 19 

Jing-12-01-60  255.8 12.3 251.3 44.0 209.6 446.7 19 

Jing-12-01-61  222.5 6.0 211.5 20.5 90.9 247.0 19 

Jing-12-01-62  218.3 5.1 219.8 9.0 236.1 90.0 19 

Jing-12-01-65  853.6 36.7 868.1 27.6 905.1 24.3 19 

Jing-12-01-66  411.2 7.7 391.5 25.3 276.6 173.4 19 

Jing-12-01-67  243.9 13.7 244.4 14.3 248.6 75.0 19 
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Jing-12-01-68  1856.3 25.1 1858.3 15.5 1860.4 17.1 19 

Jing-12-01-69  208.7 5.0 212.2 30.0 251.8 357.6 19 

Jing-12-01-71  736.6 25.4 762.8 21.3 840.4 33.0 19 

Jing-12-01-72  405.9 8.4 412.5 12.5 449.4 67.2 19 

Jing-12-01-74  253.6 4.3 262.3 9.0 341.3 78.7 19 

Jing-12-01-75  817.6 26.6 824.3 20.8 842.4 25.9 19 

Jing-12-01-77  392.6 13.0 400.4 15.3 445.8 69.7 19 

Jing-12-01-78  857.6 6.7 897.6 7.2 997.3 17.7 19 

Jing-12-01-79  778.1 8.4 792.5 7.7 833.3 16.7 19 

Jing-12-01-80  441.4 10.0 420.7 24.1 308.5 150.1 19 

Jing-12-01-81  829.7 11.4 832.5 10.3 840.2 22.6 19 

Jing-12-01-82  827.0 22.9 844.0 21.8 889.1 49.2 19 

Jing-12-01-84  222.7 5.4 221.0 16.8 203.2 188.0 19 

Jing-12-01-86  279.8 10.0 294.9 21.2 416.3 166.1 19 

Jing-12-01-88  645.2 6.8 647.3 13.1 654.6 53.5 19 

Jing-12-01-89  684.9 16.2 713.7 13.3 805.5 15.2 19 

Jing-12-01-90  927.7 15.9 931.9 11.9 941.9 13.8 19 

Jing-12-01-91  256.2 5.8 264.2 9.1 335.8 72.0 19 

Jing-12-01-92  768.4 14.9 787.7 42.4 843.0 155.3 19 

Jing-12-01-93  2004.4 23.8 1989.9 13.8 1974.8 13.5 19 

Jing-12-01-94  142.7 3.1 130.4 13.0 -88.6 254.5 19 

Jing-12-01-95  1010.0 37.2 1056.1 28.5 1152.5 34.8 19 

Jing-12-01-96  1847.3 21.4 1847.0 11.7 1846.6 6.2 19 

Jing-12-01-97  258.9 17.8 280.6 95.1 465.7 871.9 19 

Jing-12-01-98  1811.5 26.3 1810.7 18.4 1809.7 25.5 19 

Jing-12-01-Sl  571.4 7.4 569.1 7.7 559.6 24.8 19 

                

Jing-12-05-01  437.7 13.6 455.5 37.0 546.4 209.3 18 

Jing-12-05-03  311.8 8.5 318.8 9.1 370.3 41.6 18 

Jing-12-05-05  388.7 2.5 396.6 3.0 443.0 14.2 18 

Jing-12-05-06  214.4 7.6 220.4 9.6 285.6 74.0 18 

Jing-12-05-07  241.5 4.5 240.6 11.5 232.1 116.5 18 

Jing-12-05-08  808.3 22.0 817.5 17.0 842.7 17.8 18 

Jing-12-05-09  843.3 18.8 844.6 16.7 848.1 34.6 18 

Jing-12-05-100  277.5 13.1 288.4 15.4 377.5 85.4 18 

Jing-12-05-102  237.4 4.0 232.8 12.2 186.4 130.3 18 

Jing-12-05-103  1123.2 10.0 1111.5 11.1 1088.5 26.7 18 

Jing-12-05-105  270.3 4.3 278.4 14.1 347.4 126.1 18 

Jing-12-05-106  454.7 7.5 458.4 12.3 476.8 63.6 18 

Jing-12-05-109  2504.7 48.5 2487.5 22.9 2473.5 13.3 18 

Jing-12-05-11  714.3 15.6 721.9 23.7 745.4 84.1 18 
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Jing-12-05-110  272.1 3.1 268.5 10.5 237.3 99.2 18 

Jing-12-05-111  19.7 2.6 -266.2 #NUM! NA NA 18 

Jing-12-05-113  163.2 6.9 156.3 34.7 53.7 569.1 18 

Jing-12-05-115  213.4 5.6 221.9 12.8 312.6 132.9 18 

Jing-12-05-118  812.3 20.0 813.6 17.2 817.2 33.3 18 

Jing-12-05-11B  1748.1 41.0 1800.5 23.4 1861.8 13.2 18 

Jing-12-05-12  292.0 5.1 295.9 15.4 326.7 129.9 18 

Jing-12-05-14  429.8 8.5 419.9 25.5 365.9 160.5 18 

Jing-12-05-17  502.7 9.3 490.9 17.3 436.2 89.3 18 

Jing-12-05-18  2062.5 77.6 2336.8 40.3 2585.9 4.5 18 

Jing-12-05-19  226.4 8.5 231.2 11.1 280.2 85.8 18 

Jing-12-05-22  579.0 10.8 579.2 25.3 579.8 117.2 18 

Jing-12-05-23  666.2 35.2 724.3 48.9 908.4 157.0 18 

Jing-12-05-24  501.4 21.8 562.9 21.1 819.9 38.3 18 

Jing-12-05-28  183.7 3.3 184.6 11.7 195.3 155.7 18 

Jing-12-05-30  1838.7 26.6 1953.1 14.7 2076.6 6.0 18 

Jing-12-05-31  227.3 2.3 226.4 11.7 216.6 131.4 18 

Jing-12-05-33  95.9 1.0 96.3 4.5 108.1 112.9 18 

Jing-12-05-35  302.1 3.4 300.0 15.9 283.7 137.4 18 

Jing-12-05-36  1881.1 23.0 2106.5 12.7 2334.5 4.3 18 

Jing-12-05-38  78.5 3.2 71.1 28.7 -170.1 1078.3 18 

Jing-12-05-39  513.8 9.8 515.9 12.5 525.4 52.2 18 

Jing-12-05-40  173.2 2.6 177.1 6.4 229.7 83.4 18 

Jing-12-05-41  432.3 6.8 439.1 10.7 474.9 56.0 18 

Jing-12-05-44  437.3 6.8 418.0 20.5 313.1 131.1 18 

Jing-12-05-45  225.5 4.7 224.8 15.1 217.7 166.5 18 

Jing-12-05-47  359.3 17.2 416.3 65.9 745.7 397.1 18 

Jing-12-05-49  1331.7 52.6 1366.0 34.1 1420.0 22.8 18 

Jing-12-05-50  450.6 5.5 454.5 8.5 473.9 43.0 18 

Jing-12-05-51  224.8 2.8 222.6 8.1 200.1 89.4 18 

Jing-12-05-52  444.9 5.2 445.7 11.1 450.0 63.0 18 

Jing-12-05-53  1852.8 147.3 1871.2 88.4 1891.6 86.1 18 

Jing-12-05-54  963.1 10.0 961.3 19.0 957.1 58.2 18 

Jing-12-05-56  219.0 5.1 216.7 8.4 192.2 83.7 18 

Jing-12-05-57  1904.1 37.7 2174.6 20.6 2440.7 4.7 18 

Jing-12-05-58  461.0 8.9 462.7 12.3 471.4 58.2 18 

Jing-12-05-59  1564.0 45.6 1637.2 26.9 1732.5 6.8 18 

Jing-12-05-60  223.6 9.7 227.3 26.7 266.7 284.1 18 

Jing-12-05-61  313.2 24.1 337.9 25.0 511.4 82.2 18 

Jing-12-05-63  168.2 7.1 184.8 37.3 402.4 489.4 18 

Jing-12-05-66  403.4 6.6 405.2 7.6 415.4 34.1 18 
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Jing-12-05-67  199.2 5.5 199.2 11.8 199.3 137.7 18 

Jing-12-05-68  842.0 21.2 923.1 16.5 1122.1 9.3 18 

Jing-12-05-69  250.0 13.9 268.0 27.7 427.9 229.8 18 

Jing-12-05-70  216.4 3.1 208.4 6.1 119.1 68.6 18 

Jing-12-05-71  591.3 38.4 636.3 59.6 799.6 222.6 18 

Jing-12-05-72  214.4 3.7 223.2 8.6 316.9 89.3 18 

Jing-12-05-75  230.8 6.0 234.0 10.9 266.5 102.9 18 

Jing-12-05-76  215.2 7.2 220.7 14.0 279.7 141.4 18 

Jing-12-05-77  914.8 9.1 916.8 9.2 921.6 22.4 18 

Jing-12-05-79  161.1 2.7 155.4 11.4 68.8 184.7 18 

Jing-12-05-80  285.3 9.2 290.2 31.0 330.6 268.9 18 

Jing-12-05-81  816.2 10.0 812.6 8.4 802.8 16.1 18 

Jing-12-05-83  554.5 13.4 636.6 12.4 940.0 14.0 18 

Jing-12-05-85  315.6 14.6 353.0 23.8 607.0 138.7 18 

Jing-12-05-87  204.9 14.3 213.7 29.6 311.5 311.9 18 

Jing-12-05-88  498.2 11.5 495.7 9.7 484.2 13.0 18 

Jing-12-05-89  1856.7 43.5 1855.2 23.4 1853.5 9.1 18 

Jing-12-05-90  389.3 11.9 383.7 19.7 349.5 119.8 18 

Jing-12-05-91  152.4 2.8 155.7 5.7 205.9 81.5 18 

Jing-12-05-92  1122.5 8.4 1108.9 14.7 1082.4 40.6 18 

Jing-12-05-93  230.9 14.4 246.7 25.8 399.7 222.2 18 

Jing-12-05-94  255.5 6.0 260.2 11.0 302.5 95.1 18 

Jing-12-05-95  440.5 8.9 437.5 12.2 421.5 60.7 18 

Jing-12-05-96  1218.6 31.8 1230.7 20.7 1251.9 8.9 18 

Jing-12-05-97  1913.1 44.5 1894.8 23.3 1874.9 7.1 18 

Jing-12-05-98  967.8 18.3 961.0 16.4 945.5 34.4 18 

Jing-12-05-99  302.4 4.4 310.5 15.7 372.1 127.8 18 

                

Jing-12-16-65  91.6 1.1 90.8 3.0 69.5 76.5 17 

Jing-12-16-09  103.2 1.3 109.9 6.4 257.1 138.8 17 

Jing-12-16-48  109.4 3.5 118.4 14.6 303.3 289.3 17 

Jing-12-16-43  111.0 1.3 113.7 4.8 169.3 101.3 17 

Jing-12-16-17.5  121.1 4.1 110.4 17.3 -114.8 401.3 17 

Jing-12-16-95a  157.1 3.3 159.9 12.9 201.8 197.1 17 

Jing-12-16-102  166.8 5.2 165.4 10.9 146.1 150.8 17 

Jing-12-16-79  167.6 4.6 178.0 12.6 318.4 164.0 17 

Jing-12-16-63  170.8 2.2 172.4 5.8 194.2 79.0 17 

Jing-12-16-02  219.3 1.8 214.7 5.6 164.5 65.3 17 

Jing-12-16-73  220.6 3.9 217.6 10.4 184.6 117.0 17 

Jing-12-16-76  221.6 9.2 224.5 11.8 255.8 93.0 17 

Jing-12-16-61  222.1 2.3 219.6 4.3 192.6 44.1 17 
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Jing-12-16-69  222.2 5.1 222.7 5.7 228.7 36.8 17 

Jing-12-16-112  222.7 2.3 229.1 3.2 294.9 26.1 17 

Jing-12-16-12  223.8 7.6 262.1 45.1 620.0 417.6 17 

Jing-12-16-14  225.0 7.5 228.2 16.0 260.8 162.6 17 

Jing-12-16-110  227.0 3.4 221.4 9.1 161.8 101.2 17 

Jing-12-16-28  233.8 3.8 234.5 13.2 241.7 140.5 17 

Jing-12-16-78  252.8 3.1 255.8 6.3 282.5 57.2 17 

Jing-12-16-30  256.2 3.3 258.5 7.1 279.6 63.9 17 

Jing-12-16-18  264.6 4.4 267.1 10.9 288.9 99.1 17 

Jing-12-16-59  273.5 18.1 415.5 25.8 1306.5 66.7 17 

Jing-12-16-52  277.7 3.5 259.1 13.2 94.1 132.9 17 

Jing-12-16-85  281.3 15.6 306.3 16.9 501.4 65.4 17 

Jing-12-16-62  286.4 3.5 278.6 21.7 213.8 204.4 17 

Jing-12-16-68  287.7 4.3 302.2 10.8 415.7 85.9 17 

Jing-12-16-38  303.5 6.6 300.2 14.9 274.4 120.9 17 

Jing-12-16-44  316.1 5.3 319.2 6.6 342.1 37.9 17 

Jing-12-16-41  319.3 13.3 303.4 53.8 182.4 471.3 17 

Jing-12-16-95  323.6 6.4 341.6 9.9 465.6 61.1 17 

Jing-12-16-60  328.0 12.2 331.3 13.3 354.5 62.3 17 

Jing-12-16-64  330.3 16.7 330.4 48.3 331.2 371.8 17 

Jing-12-16-42  339.4 5.0 331.1 13.2 273.1 101.0 17 

Jing-12-16-57  351.0 13.1 399.5 13.9 691.0 36.1 17 

Jing-12-16-55  360.9 7.6 362.0 14.0 368.6 91.8 17 

Jing-12-16-25  396.8 23.9 557.7 29.9 1283.3 61.1 17 

Jing-12-16-67  416.4 39.3 412.5 43.4 391.0 185.7 17 

Jing-12-16-86  428.2 6.6 421.3 18.1 383.2 112.6 17 

Jing-12-16-81  432.4 32.8 427.8 30.2 403.0 80.7 17 

Jing-12-16-24  436.0 26.1 427.6 26.7 382.9 100.8 17 

Jing-12-16-53  438.2 8.9 438.2 8.4 438.1 24.5 17 

Jing-12-16-47  445.5 36.7 447.0 36.8 455.1 123.2 17 

Jing-12-16-82  453.2 9.0 460.2 18.7 495.1 101.7 17 

Jing-12-16-06  454.2 8.6 455.0 9.0 459.2 32.8 17 

Jing-12-16-91  455.0 5.1 468.0 15.4 531.9 86.3 17 

Jing-12-16-46  483.5 15.5 481.5 14.1 472.3 33.9 17 

Jing-12-16-107  518.7 15.9 524.3 38.3 549.0 192.5 17 

Jing-12-16-104  548.5 44.6 639.5 41.7 975.6 46.1 17 

Jing-12-16-10  607.1 14.3 618.0 19.6 658.1 73.9 17 

Jing-12-16-01  631.8 26.0 673.0 24.4 813.4 50.9 17 

Jing-12-16-77  714.0 11.0 718.0 9.3 730.4 16.8 17 

Jing-12-16-58  770.2 6.9 771.2 7.6 774.3 21.6 17 

Jing-12-16-99  774.2 10.6 772.1 9.5 766.1 20.4 17 
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Jing-12-16-23  774.2 9.2 796.3 26.0 858.5 94.3 17 

Jing-12-16-33  925.5 19.2 927.1 22.3 931.0 59.7 17 

Jing-12-16-07  955.5 8.2 953.6 16.9 949.3 52.5 17 

Jing-12-16-16  859.9 47.8 888.0 36.1 958.7 28.1 17 

Jing-12-16-88  909.2 39.9 925.6 29.0 964.8 15.1 17 

Jing-12-16-17  844.5 27.7 878.6 27.3 965.6 62.4 17 

Jing-12-16-20  1002.9 9.6 1003.9 8.7 1006.2 18.2 17 

Jing-12-16-08  960.7 53.3 985.5 42.0 1041.1 59.1 17 

Jing-12-16-15  1090.9 48.9 1075.8 40.5 1045.5 74.3 17 

Jing-12-16-11  1105.9 25.2 1098.4 17.1 1083.6 11.3 17 

Jing-12-16-71  851.2 16.7 919.6 13.1 1087.4 11.2 17 

Jing-12-16-56  1166.7 21.3 1169.0 20.5 1173.2 43.2 17 

Jing-12-16-109  1065.1 19.6 1218.4 14.6 1501.2 9.5 17 

Jing-12-16-90  1534.1 17.0 1605.0 10.4 1699.3 5.6 17 

Jing-12-16-74  1347.1 27.8 1497.4 23.8 1717.3 36.8 17 

Jing-12-16-22  1618.3 29.9 1713.2 23.8 1831.1 35.7 17 

Jing-12-16-75  1867.5 18.4 1865.0 10.4 1862.3 7.9 17 

Jing-12-16-29  1881.1 56.1 1876.0 29.9 1870.3 11.7 17 

Jing-12-16-98  1923.5 30.2 1898.6 16.7 1871.4 12.3 17 

Jing-12-16-50  1870.0 43.7 1873.9 23.1 1878.3 4.4 17 

Jing-12-16-03  1895.7 14.3 1891.3 10.2 1886.5 14.6 17 

Jing-12-16-87  2119.9 32.9 2299.0 16.6 2462.1 2.4 17 

Jing-12-16-49  2264.3 14.4 2376.1 7.0 2473.5 2.4 17 

Jing-12-16-13  2558.0 35.6 2542.0 23.3 2529.1 31.0 17 

Jing-12-16-89  2556.4 26.3 2552.7 12.0 2549.7 5.2 17 

                

Jing-12-24-01  161.4 4.9 146.0 16.9 -96.9 297.4 16 

Jing-12-24-03  894.5 10.3 910.0 9.1 947.7 17.8 16 

Jing-12-24-04  219.8 1.2 219.4 4.3 214.6 48.5 16 

Jing-12-24-06  468.5 8.5 473.7 12.3 498.8 58.5 16 

Jing-12-24-07  2456.7 20.5 2609.3 10.3 2729.9 7.4 16 

Jing-12-24-09  232.9 19.6 262.2 48.8 533.1 425.2 16 

Jing-12-24-10  548.8 28.9 546.3 23.7 535.5 24.2 16 

Jing-12-24-100  394.4 31.5 479.9 44.6 912.7 170.2 16 

Jing-12-24-101  2511.3 33.4 2515.6 15.5 2519.1 7.4 16 

Jing-12-24-102  1864.9 19.0 1855.5 12.3 1845.0 15.1 16 

Jing-12-24-103  329.7 7.8 326.1 19.0 300.7 145.5 16 

Jing-12-24-104  445.3 7.1 425.8 32.6 321.9 210.0 16 

Jing-12-24-105  967.6 31.8 964.4 22.7 957.1 17.9 16 

Jing-12-24-11  852.2 44.8 876.4 37.4 938.2 61.2 16 

Jing-12-24-12  984.1 23.7 975.3 17.7 955.3 22.9 16 
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Jing-12-24-14  965.7 11.4 966.9 19.8 969.6 59.5 16 

Jing-12-24-15  431.9 24.0 474.6 22.7 686.9 37.1 16 

Jing-12-24-16  1898.8 50.6 1885.9 28.6 1871.6 23.4 16 

Jing-12-24-17  1768.2 26.8 1836.7 14.9 1915.2 4.3 16 

Jing-12-24-18  272.8 5.9 294.0 12.6 465.7 98.1 16 

Jing-12-24-19  994.2 24.1 995.4 17.4 997.9 16.1 16 

Jing-12-24-21  160.6 4.6 165.6 11.4 236.4 158.9 16 

Jing-12-24-22  988.6 23.9 983.2 19.9 971.1 36.4 16 

Jing-12-24-23  156.7 2.9 156.1 6.2 146.5 90.8 16 

Jing-12-24-25  402.1 12.7 401.2 17.6 396.1 93.7 16 

Jing-12-24-26  255.8 10.2 227.3 43.6 -58.1 517.0 16 

Jing-12-24-27  263.4 6.1 261.4 17.2 243.1 163.0 16 

Jing-12-24-28  223.4 5.6 233.5 10.1 336.6 93.3 16 

Jing-12-24-29  227.1 3.3 229.0 8.4 248.2 88.0 16 

Jing-12-24-30  222.5 3.9 222.9 21.7 226.8 247.4 16 

Jing-12-24-32  224.5 4.9 221.0 10.2 183.6 107.9 16 

Jing-12-24-33  490.5 17.0 574.4 22.3 922.2 74.1 16 

Jing-12-24-34  436.2 9.6 458.7 25.5 573.1 142.1 16 

Jing-12-24-35  848.0 25.0 881.4 19.6 966.0 22.2 16 

Jing-12-24-36  2238.5 62.7 2240.4 30.4 2242.2 9.8 16 

Jing-12-24-37  710.4 17.0 710.3 40.6 710.1 160.1 16 

Jing-12-24-38  223.0 4.4 218.5 11.0 170.4 122.4 16 

Jing-12-24-39  2041.7 25.1 2092.9 14.8 2143.6 14.9 16 

Jing-12-24-40  2573.7 45.5 2561.3 21.2 2551.5 12.6 16 

Jing-12-24-41  222.4 9.3 224.8 11.2 250.5 81.7 16 

Jing-12-24-42  874.8 47.6 879.3 40.4 890.8 75.1 16 

Jing-12-24-43  2493.5 99.5 2514.8 45.7 2531.9 16.6 16 

Jing-12-24-44  1911.5 34.4 1895.4 18.1 1877.7 6.6 16 

Jing-12-24-47  797.3 13.5 804.5 15.3 824.5 43.2 16 

Jing-12-24-48  911.0 40.6 921.2 31.5 945.7 42.3 16 

Jing-12-24-49  291.8 4.5 294.4 9.2 315.4 73.8 16 

Jing-12-24-50  219.1 2.8 227.8 5.1 318.2 48.7 16 

Jing-12-24-51  223.0 5.5 232.1 11.4 326.2 111.0 16 

Jing-12-24-52  2171.5 79.3 2316.8 39.3 2447.4 4.4 16 

Jing-12-24-54  2413.2 38.3 2527.7 29.4 2621.0 41.9 16 

Jing-12-24-55  760.1 49.4 786.0 39.6 860.1 44.9 16 

Jing-12-24-56  458.8 12.3 462.8 19.5 482.6 98.5 16 

Jing-12-24-57  249.5 5.7 252.1 7.9 276.6 61.1 16 

Jing-12-24-59  1112.0 26.6 1133.9 46.1 1176.1 123.1 16 

Jing-12-24-60  1055.3 40.9 1060.5 29.1 1071.3 28.0 16 

Jing-12-24-61  222.3 4.8 221.6 10.6 213.1 112.9 16 
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Jing-12-24-62  218.9 4.0 217.7 6.5 204.7 64.6 16 

Jing-12-24-63  753.9 39.9 788.4 31.3 887.5 21.8 16 

Jing-12-24-64  106.3 1.8 91.9 10.7 -266.6 305.5 16 

Jing-12-24-65  895.8 7.8 897.9 14.1 902.9 45.0 16 

Jing-12-24-66  116.1 4.4 112.4 23.3 33.8 522.4 16 

Jing-12-24-67  454.7 10.4 454.0 11.1 450.8 42.1 16 

Jing-12-24-68  248.8 4.0 259.8 12.8 360.4 120.5 16 

Jing-12-24-69  2043.6 41.2 2253.4 21.5 2449.8 4.8 16 

Jing-12-24-70  532.4 9.4 538.7 19.8 565.4 95.3 16 

Jing-12-24-71  2135.5 167.3 2272.2 88.7 2397.7 55.2 16 

Jing-12-24-72  113.5 3.1 113.7 5.2 118.0 93.4 16 

Jing-12-24-73  443.4 6.8 449.4 12.4 480.4 66.8 16 

Jing-12-24-74  562.4 8.6 564.3 7.6 571.6 15.7 16 

Jing-12-24-75  248.7 6.9 247.3 12.4 233.6 113.1 16 

Jing-12-24-76  1825.7 47.5 1851.2 25.9 1880.0 10.2 16 

Jing-12-24-78  231.7 5.5 223.1 10.8 133.4 112.6 16 

Jing-12-24-80  259.3 8.9 253.6 31.4 201.9 315.5 16 

Jing-12-24-83  244.9 7.3 246.6 16.1 263.5 154.2 16 

Jing-12-24-84  264.3 5.1 258.8 14.1 209.7 135.9 16 

Jing-12-24-85  2454.9 37.8 2471.0 17.4 2484.3 5.4 16 

Jing-12-24-87  230.1 4.3 261.5 46.8 553.3 445.1 16 

Jing-12-24-88  2358.6 48.6 2421.7 24.2 2475.2 15.2 16 

Jing-12-24-89  1686.9 88.4 1766.9 50.0 1862.8 7.0 16 

Jing-12-24-91  430.0 8.8 430.3 16.9 432.1 96.2 16 

Jing-12-24-92  260.3 6.1 256.4 11.4 220.6 102.0 16 

Jing-12-24-93  1856.6 36.5 1918.3 20.0 1985.8 9.5 16 

Jing-12-24-94  527.4 30.7 695.4 31.8 1285.1 34.9 16 

Jing-12-24-96  563.4 15.8 552.5 16.2 507.6 53.6 16 

Jing-12-24-98  2121.3 38.5 2148.9 19.8 2175.4 10.8 16 

Jing-12-24-99  704.0 27.0 733.0 21.4 822.8 14.0 16 

                

Jing-12-25-91  154.5 12.2 185.8 54.3 604.9 683.8 15 

Jing-12-25-82  157.2 1.6 157.5 4.8 161.9 72.9 15 

Jing-12-25-73  211.6 5.3 208.7 9.9 175.8 106.8 15 

Jing-12-25-72  212.1 6.1 223.8 9.4 348.7 82.3 15 

Jing-12-25-74  212.2 6.5 206.1 19.9 137.6 240.6 15 

Jing-12-25-89  215.4 5.1 229.3 23.1 374.2 247.7 15 

Jing-12-25-111  215.8 3.8 210.3 13.3 149.4 158.5 15 

Jing-12-25-16  216.5 4.6 216.3 18.3 214.0 212.2 15 

Jing-12-25-64  217.0 4.6 219.9 7.3 251.5 68.6 15 

Jing-12-25-116  217.1 1.5 219.9 8.9 250.8 102.2 15 
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Jing-12-25-54  217.3 3.0 216.1 6.0 202.6 63.9 15 

Jing-12-25-128  217.7 2.3 217.2 9.8 212.3 113.3 15 

Jing-12-25-17  218.0 3.9 219.5 4.9 235.9 37.9 15 

Jing-12-25-98  218.4 3.2 216.6 6.0 196.3 62.7 15 

Jing-12-25-120  219.4 2.4 223.1 11.7 262.4 131.6 15 

Jing-12-25-24  220.4 8.5 231.8 11.2 349.7 83.6 15 

Jing-12-25-100  220.4 3.9 221.3 5.6 230.3 50.0 15 

Jing-12-25-76  220.8 6.2 219.5 14.0 205.5 150.5 15 

Jing-12-25-22  220.9 3.8 232.9 12.7 355.9 132.5 15 

Jing-12-25-11  221.3 1.8 224.3 9.2 256.0 103.5 15 

Jing-12-25-21  221.4 5.4 225.4 7.9 268.0 69.9 15 

Jing-12-25-12  221.8 8.0 216.4 20.3 158.9 229.0 15 

Jing-12-25-109  222.0 1.5 224.7 5.6 252.6 61.5 15 

Jing-12-25-122  222.1 3.7 222.4 6.1 225.3 58.9 15 

Jing-12-25-138  222.5 4.8 221.8 10.5 214.3 110.7 15 

Jing-12-25-90  223.0 2.5 219.1 10.1 176.6 116.9 15 

Jing-12-25-81  223.9 2.1 219.8 9.0 175.9 103.3 15 

Jing-12-25-25  225.6 4.0 220.0 7.4 160.3 77.4 15 

Jing-12-25-41  225.6 2.7 224.0 4.0 206.9 36.3 15 

Jing-12-25-19  226.7 7.7 222.4 8.3 177.7 54.2 15 

Jing-12-25-45  227.4 3.2 227.4 4.0 227.7 31.5 15 

Jing-12-25-139  227.8 8.1 245.3 17.3 416.5 158.3 15 

Jing-12-25-39  228.6 1.9 232.2 7.1 267.8 76.4 15 

Jing-12-25-97  229.2 5.0 234.4 15.1 286.9 157.3 15 

Jing-12-25-57  229.4 6.3 228.3 6.7 217.1 40.0 15 

Jing-12-25-70  231.7 5.6 230.0 14.5 213.2 153.5 15 

Jing-12-25-124  232.3 17.3 259.5 32.3 513.6 261.8 15 

Jing-12-25-52  237.7 6.6 238.6 9.0 247.1 72.3 15 

Jing-12-25-117  248.7 5.2 252.4 7.2 287.4 55.0 15 

Jing-12-25-63  259.5 9.1 282.6 29.7 477.9 255.1 15 

Jing-12-25-58  263.5 4.1 265.5 15.3 283.2 145.8 15 

Jing-12-25-79  333.7 14.1 319.8 16.7 219.7 98.7 15 

Jing-12-25-106  340.2 11.7 318.8 68.5 165.0 586.3 15 

Jing-12-25-51  349.0 33.8 411.5 39.3 779.1 125.7 15 

Jing-12-25-59  366.6 7.2 366.1 8.8 363.2 46.3 15 

Jing-12-25-130  376.1 18.1 384.8 19.8 437.2 82.7 15 

Jing-12-25-43  409.5 32.9 433.5 30.7 563.2 58.5 15 

Jing-12-25-125  412.7 6.3 413.3 8.3 416.4 41.3 15 

Jing-12-25-66  416.3 30.3 511.7 31.8 964.6 50.9 15 

Jing-12-25-01  437.8 8.8 441.8 37.4 462.9 227.4 15 

Jing-12-25-112  441.6 11.1 442.2 12.3 445.1 50.0 15 
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Jing-12-25-62  442.2 8.5 436.5 11.9 406.7 60.5 15 

Jing-12-25-136  443.0 11.3 448.2 11.0 474.8 32.3 15 

Jing-12-25-47  444.7 10.6 457.8 18.0 524.0 92.1 15 

Jing-12-25-103  446.4 8.0 450.8 9.5 473.3 40.3 15 

Jing-12-25-61  452.7 10.1 464.5 10.9 523.5 39.8 15 

Jing-12-25-134  474.9 14.0 474.8 12.5 474.4 26.2 15 

Jing-12-25-37  476.9 7.4 471.3 12.0 443.7 61.2 15 

Jing-12-25-53  494.5 9.5 490.5 16.0 472.0 80.0 15 

Jing-12-25-86  536.0 11.5 598.5 12.8 843.0 36.0 15 

Jing-12-25-44  542.9 18.4 588.6 19.0 769.0 49.3 15 

Jing-12-25-14  571.7 10.4 604.6 9.0 730.0 11.7 15 

Jing-12-25-35  590.7 16.3 634.2 18.8 792.6 57.2 15 

Jing-12-25-129  601.3 7.0 613.1 5.9 657.0 9.6 15 

Jing-12-25-110  690.8 19.6 740.6 16.5 894.3 19.6 15 

Jing-12-25-113  727.2 35.5 759.6 33.2 856.1 71.2 15 

Jing-12-25-32  739.1 44.1 800.0 35.5 973.5 23.0 15 

Jing-12-25-08  766.8 11.5 767.9 24.7 771.1 90.5 15 

Jing-12-25-18  790.9 21.9 783.1 29.2 760.9 94.5 15 

Jing-12-25-26  796.7 64.8 845.7 51.3 976.5 45.1 15 

Jing-12-25-31  808.9 38.9 824.2 31.3 865.5 44.0 15 

Jing-12-25-68  857.7 19.6 885.8 16.7 956.8 29.2 15 

Jing-12-25-42  956.6 29.4 958.1 21.3 961.6 18.1 15 

Jing-12-25-33  972.0 12.4 974.8 9.1 981.0 9.4 15 

Jing-12-25-133  990.7 15.8 996.1 13.5 1007.9 25.2 15 

Jing-12-25-29  793.9 34.4 853.6 29.1 1012.2 41.5 15 

Jing-12-25-34  821.1 17.5 878.2 13.8 1024.9 12.9 15 

Jing-12-25-99  979.3 21.2 995.6 18.2 1031.8 33.5 15 

Jing-12-25-40  1001.8 11.3 1011.7 16.5 1033.2 46.0 15 

Jing-12-25-48  890.6 26.0 939.9 19.4 1057.6 9.7 15 

Jing-12-25-07  1053.7 18.3 1062.1 15.6 1079.4 28.6 15 

Jing-12-25-107  1078.8 35.9 1084.2 25.1 1095.0 20.8 15 

Jing-12-25-132  872.8 43.5 941.8 33.4 1106.9 21.8 15 

Jing-12-25-02  1121.5 16.1 1139.4 13.2 1173.8 22.0 15 

Jing-12-25-71  1064.4 42.3 1101.1 33.2 1174.4 48.0 15 

Jing-12-25-10  851.6 19.7 952.0 15.9 1192.1 13.6 15 

Jing-12-25-09  1244.6 17.8 1248.9 12.2 1256.4 12.6 15 

Jing-12-25-105  1175.8 28.1 1232.1 25.3 1332.2 46.3 15 

Jing-12-25-06  1488.8 18.6 1523.4 11.1 1571.9 2.3 15 

Jing-12-25-13  1882.9 42.6 1869.1 26.5 1853.8 30.3 15 

Jing-12-25-05  1817.7 15.9 1845.6 8.8 1877.2 4.4 15 

Jing-12-25-88  2001.4 26.8 1974.0 14.5 1945.5 10.4 15 
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Jing-12-25-131  1753.4 53.7 1918.9 30.3 2102.8 5.1 15 

Jing-12-25-55  1667.9 40.5 1925.9 30.2 2216.4 37.4 15 

Jing-12-25-101  1825.9 41.0 2050.6 22.9 2284.9 6.0 15 

Jing-12-25-114  2137.7 83.5 2289.9 41.9 2428.6 6.3 15 

Jing-12-25-137  2117.5 89.4 2294.9 45.4 2456.9 10.0 15 

Jing-12-25-83  2492.3 16.5 2512.4 8.8 2528.8 8.7 15 

Jing-12-25-28  2353.7 129.5 2453.9 60.8 2538.1 3.6 15 

Jing-12-25-36  2364.9 116.6 2481.7 55.4 2578.7 15.9 15 

Jing-12-25-03  2516.1 84.4 2579.9 38.4 2630.3 11.2 15 

Jing-12-25-65  2865.6 19.0 2859.2 10.1 2854.7 10.9 15 

                

Jing-13-01-01  427.3 38.8 451.4 34.5 576.1 26.1 20 

Jing-13-01-02  439.1 9.1 418.1 74.4 303.6 496.5 20 

Jing-13-01-03  451.0 12.8 503.4 16.3 749.2 60.1 20 

Jing-13-01-04  178.8 2.7 177.6 9.6 161.6 133.4 20 

Jing-13-01-05  1908.2 26.1 1895.9 14.1 1882.5 8.1 20 

Jing-13-01-06  501.9 5.6 505.7 6.2 522.8 22.2 20 

Jing-13-01-07  572.9 20.4 663.6 22.7 985.3 56.9 20 

Jing-13-01-08  570.8 12.4 610.4 25.9 760.2 109.0 20 

Jing-13-01-09  1434.6 24.4 1482.5 16.3 1551.7 16.3 20 

Jing-13-01-10  1078.6 33.7 1087.4 24.5 1105.2 28.0 20 

Jing-13-01-12  376.6 15.2 375.8 13.4 371.2 20.0 20 

Jing-13-01-13  1681.3 84.6 1708.0 47.5 1741.0 10.2 20 

Jing-13-01-14  869.4 56.9 907.2 42.2 1000.3 13.9 20 

Jing-13-01-16  2572.4 56.8 2538.9 25.1 2512.2 4.8 20 

Jing-13-01-17  178.8 4.9 179.9 7.3 193.5 80.4 20 

Jing-13-01-18  266.9 8.9 268.1 16.1 278.3 136.2 20 

Jing-13-01-19  451.5 10.3 451.5 13.1 451.4 60.4 20 

Jing-13-01-20  1002.2 19.1 995.1 13.6 979.3 11.4 20 

Jing-13-01-22  2544.6 27.8 2532.6 15.3 2522.9 16.4 20 

Jing-13-01-24  122.6 6.1 116.5 18.7 -7.9 394.0 20 

Jing-13-01-25  222.7 5.5 223.2 9.1 228.3 86.8 20 

Jing-13-01-27  1812.9 28.5 1844.9 15.9 1881.3 8.7 20 

Jing-13-01-29  219.4 4.4 221.5 12.0 245.0 130.8 20 

Jing-13-01-30  176.5 5.7 122.1 44.0 -841.3 1121.4 20 

Jing-13-01-32  988.1 14.6 988.5 11.4 989.4 16.8 20 

Jing-13-01-33  484.6 12.9 482.1 11.7 470.6 28.4 20 

Jing-13-01-34  115.3 2.0 116.6 7.2 143.0 148.6 20 

Jing-13-01-36  276.5 3.2 277.7 12.5 287.7 114.9 20 

Jing-13-01-37  288.5 4.0 284.8 9.7 254.3 83.2 20 

Jing-13-01-38  221.1 3.9 223.1 8.0 243.9 82.8 20 
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Jing-13-01-39  434.6 20.6 460.1 100.1 589.0 584.5 20 

Jing-13-01-40  312.9 8.1 338.1 10.1 515.5 51.1 20 

Jing-13-01-42  162.2 2.8 155.0 11.8 46.4 192.0 20 

Jing-13-01-43  184.2 6.7 175.0 27.1 53.2 395.1 20 

Jing-13-01-44  2161.7 45.1 2314.4 23.3 2452.0 11.7 20 

Jing-13-01-45  1762.5 78.2 1737.7 43.6 1707.9 24.0 20 

Jing-13-01-46  156.4 3.8 158.5 20.0 190.4 313.6 20 

Jing-13-01-48  1755.4 101.6 1814.8 56.2 1883.8 10.4 20 

Jing-13-01-49  211.8 3.8 213.9 6.3 237.7 62.4 20 

Jing-13-01-50  435.0 9.0 564.8 18.9 1129.3 75.8 20 

Jing-13-01-51  1432.6 45.3 1490.5 27.8 1573.8 8.1 20 

Jing-13-01-52  226.5 7.1 229.5 14.2 260.1 140.9 20 

Jing-13-01-53  370.6 6.6 375.4 9.2 404.8 51.5 20 

Jing-13-01-54  254.4 4.3 254.7 8.3 258.0 75.2 20 

Jing-13-01-55  106.2 2.4 108.7 9.0 162.5 197.2 20 

Jing-13-01-56  175.9 6.0 173.6 14.3 142.0 194.2 20 

Jing-13-01-57  251.1 4.8 252.6 7.3 267.1 60.6 20 

Jing-13-01-58  276.0 4.8 279.7 6.5 311.4 44.8 20 

Jing-13-01-59  330.0 6.4 318.6 13.8 236.3 106.9 20 

Jing-13-01-60  861.2 25.7 863.4 49.2 868.9 162.3 20 

Jing-13-01-61  223.0 2.9 220.5 8.4 193.2 93.8 20 

Jing-13-01-64  2543.2 50.4 2530.3 22.6 2519.9 5.6 20 

Jing-13-01-65  1505.5 26.9 1520.5 16.9 1541.3 14.3 20 

Jing-13-01-66  261.4 4.7 262.4 11.0 271.0 100.7 20 

Jing-13-01-67  454.6 10.7 455.4 14.8 459.3 71.3 20 

Jing-13-01-68  272.5 4.7 273.1 10.3 278.4 90.3 20 

Jing-13-01-69  207.4 4.3 210.5 8.4 244.8 89.8 20 

Jing-13-01-70  332.3 4.6 339.2 19.2 387.1 146.3 20 

Jing-13-01-71  468.5 13.5 465.9 13.5 453.1 45.4 20 

Jing-13-01-72  1869.9 10.3 1870.6 5.6 1871.3 2.5 20 

Jing-13-01-73  239.8 13.0 247.3 19.4 319.1 156.4 20 

Jing-13-01-74  433.9 9.9 447.1 31.9 515.2 187.0 20 

Jing-13-01-75  296.1 8.1 289.9 12.6 239.9 95.1 20 

Jing-13-01-77  117.9 4.0 111.4 16.0 -25.9 360.2 20 

Jing-13-01-78  223.5 2.2 217.7 10.6 155.6 125.0 20 

Jing-13-01-80  150.4 6.5 153.9 9.7 207.8 121.3 20 

Jing-13-01-81  231.3 12.1 238.2 13.1 307.0 71.3 20 

Jing-13-01-82  1917.8 53.1 1898.7 27.7 1877.8 6.9 20 

Jing-13-01-83  438.9 7.5 443.4 22.7 466.5 134.7 20 

Jing-13-01-84  533.1 4.2 544.2 6.3 590.7 27.1 20 

Jing-13-01-85  168.1 2.9 172.5 14.0 233.4 200.6 20 
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Jing-13-01-86  329.1 6.2 332.6 13.5 356.5 98.5 20 

Jing-13-01-87  2052.3 38.8 2255.4 21.9 2445.1 16.9 20 

Jing-13-01-88  1891.5 24.3 1880.1 17.8 1867.6 26.3 20 

Jing-13-01-89  2060.6 24.3 2083.0 12.3 2105.1 2.9 20 

Jing-13-01-91  432.2 6.7 437.0 10.5 462.1 55.1 20 

                

Lan-11-01-02  1788.6 68.7 1776.6 37.4 1762.5 13.2 37 

Lan-11-01-03  445.6 10.6 444.1 11.0 436.3 40.1 37 

Lan-11-01-05  304.7 21.3 306.6 40.6 321.1 309.8 37 

Lan-11-01-06  288.6 10.6 299.1 10.7 382.2 37.5 37 

Lan-11-01-07  263.9 4.6 275.8 11.9 377.4 103.5 37 

Lan-11-01-08  461.5 11.4 494.6 23.4 650.8 115.8 37 

Lan-11-01-10  78.5 2.8 70.6 8.7 -187.4 307.0 37 

Lan-11-01-12  852.8 37.8 853.6 29.4 855.8 39.6 37 

Lan-11-01-13  1383.8 90.2 1599.8 76.8 1897.1 111.2 37 

Lan-11-01-14  1719.6 15.4 1733.8 9.3 1750.9 8.4 37 

Lan-11-01-15  1768.5 59.0 1749.7 32.6 1727.5 15.7 37 

Lan-11-01-16  1581.4 127.1 1701.7 85.9 1853.2 91.6 37 

Lan-11-01-20  443.3 11.2 445.0 12.4 454.0 50.0 37 

Lan-11-01-21  221.6 2.8 219.4 7.2 195.5 79.0 37 

Lan-11-01-22  412.0 5.5 425.9 9.1 501.8 49.1 37 

Lan-11-01-26  77.4 4.9 85.4 17.0 315.1 452.2 37 

Lan-11-01-27  244.2 7.5 252.1 10.1 325.6 73.6 37 

Lan-11-01-29  300.9 9.6 304.9 10.3 335.7 48.1 37 

Lan-11-01-30  220.3 5.0 220.6 6.0 224.0 45.1 37 

Lan-11-01-31  232.7 1.7 235.3 9.1 261.6 97.7 37 

Lan-11-01-32  793.6 15.9 799.1 18.0 814.3 51.3 37 

Lan-11-01-33  2209.8 35.4 2220.5 20.3 2230.4 21.1 37 

Lan-11-01-34  316.3 2.2 320.4 4.9 350.5 37.1 37 

Lan-11-01-35  112.5 1.6 113.4 2.4 133.3 38.9 37 

Lan-11-01-36  715.7 56.0 752.1 45.1 862.2 40.1 37 

Lan-11-01-37  2373.8 108.2 2439.8 50.5 2495.3 7.8 37 

Lan-11-01-38  420.1 4.5 419.1 10.3 413.6 62.1 37 

Lan-11-01-39  255.4 7.3 261.1 13.0 311.8 110.1 37 

Lan-11-01-40  423.7 6.9 406.9 21.8 312.3 143.0 37 

Lan-11-01-41  220.0 3.4 220.4 5.5 224.9 53.0 37 

Lan-11-01-42  449.0 9.6 457.7 15.2 501.8 76.5 37 

Lan-11-01-43  793.3 35.6 789.3 26.9 778.1 22.5 37 

Lan-11-01-46  187.2 14.5 237.2 28.2 766.7 227.1 37 

Lan-11-01-47  173.3 2.6 168.3 21.9 99.7 334.1 37 

Lan-11-01-49  834.3 31.7 865.3 30.5 945.7 67.8 37 
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Lan-11-01-50  223.7 3.6 223.5 12.7 221.4 142.0 37 

Lan-11-01-51  1766.6 27.8 1805.7 16.1 1851.1 11.6 37 

Lan-11-01-52  2638.1 50.1 2641.3 22.0 2643.7 6.2 37 

Lan-11-01-53  288.4 9.3 283.0 73.5 238.4 694.1 37 

Lan-11-01-54  2518.1 18.5 2507.6 8.6 2499.2 4.3 37 

Lan-11-01-55  122.4 2.3 126.3 11.8 200.0 227.6 37 

Lan-11-01-56  234.6 8.4 231.3 13.0 197.9 119.0 37 

Lan-11-01-58  755.8 5.9 757.5 13.6 762.7 50.6 37 

Lan-11-01-59  239.8 3.0 241.9 4.9 262.4 43.3 37 

Lan-11-01-60  1057.6 9.1 1063.6 8.2 1076.2 16.4 37 

Lan-11-01-62  195.4 7.9 204.8 12.0 314.7 114.4 37 

Lan-11-01-63  1126.3 10.2 1124.4 9.4 1120.7 19.3 37 

Lan-11-01-64  217.1 6.0 230.8 18.2 373.0 188.2 37 

Lan-11-01-65  310.9 3.5 312.2 6.6 321.8 49.4 37 

Lan-11-01-66  2198.1 18.0 2157.6 10.1 2119.3 10.4 37 

Lan-11-01-67  903.7 28.4 908.3 21.7 919.4 26.9 37 

Lan-11-01-68  173.1 3.6 186.9 11.3 365.1 141.0 37 

                

Lan-11-02-43  105.9 4.2 109.3 13.2 185.5 283.0 36 

Lan-11-02-85  106.7 3.9 106.6 8.7 104.9 183.6 36 

Lan-11-02-51  111.4 4.8 122.3 14.1 339.1 259.5 36 

Lan-11-02-58  137.2 5.8 125.3 23.4 -93.7 479.5 36 

Lan-11-02-33  212.0 13.7 223.5 21.5 346.3 191.6 36 

Lan-11-02-80  212.3 4.6 216.9 9.8 266.5 104.2 36 

Lan-11-02-42  213.6 4.2 210.5 6.1 175.4 59.2 36 

Lan-11-02-02  217.9 8.6 224.3 16.1 291.6 158.5 36 

Lan-11-02-96  223.3 3.6 227.5 7.2 271.0 72.0 36 

Lan-11-02-89  223.8 13.7 236.2 21.5 361.5 182.1 36 

Lan-11-02-13  225.6 13.9 238.9 30.7 371.4 293.4 36 

Lan-11-02-91  225.7 5.4 234.4 11.3 322.8 109.6 36 

Lan-11-02-77  226.1 10.2 234.4 27.2 318.6 277.4 36 

Lan-11-02-57  230.1 4.7 232.4 5.9 255.8 44.3 36 

Lan-11-02-30  233.1 4.6 228.5 14.3 182.0 156.1 36 

Lan-11-02-64  235.4 7.8 216.0 30.3 9.3 367.4 36 

Lan-11-02-84  237.3 3.4 246.4 10.4 333.7 103.1 36 

Lan-11-02-45  253.3 3.4 249.5 10.4 213.6 104.6 36 

Lan-11-02-90  254.7 3.4 245.1 7.0 153.8 68.5 36 

Lan-11-02-21  260.1 16.1 266.7 19.4 325.2 120.7 36 

Lan-11-02-106  261.5 5.4 260.6 7.6 251.7 58.4 36 

Lan-11-02-103  263.4 7.6 275.9 22.4 383.6 198.1 36 

Lan-11-02-14  269.5 5.6 265.8 12.9 233.6 117.6 36 
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Lan-11-02-107  270.5 4.2 276.5 17.8 328.2 163.1 36 

Lan-11-02-75  271.1 4.4 265.5 8.2 216.7 71.9 36 

Lan-11-02-04  276.0 5.6 276.8 8.4 283.7 63.8 36 

Lan-11-02-55  276.3 2.9 274.7 8.2 261.3 73.9 36 

Lan-11-02-10  276.5 3.8 280.5 14.3 313.7 128.9 36 

Lan-11-02-65  309.9 4.6 313.4 8.1 339.6 58.4 36 

Lan-11-02-59  337.3 8.2 338.4 13.0 346.0 84.9 36 

Lan-11-02-38  343.2 9.3 372.3 25.6 557.8 168.9 36 

Lan-11-02-34  367.2 4.8 354.8 15.0 274.3 110.6 36 

Lan-11-02-100  390.6 20.9 414.9 58.2 552.4 354.5 36 

Lan-11-02-16  401.3 6.5 398.1 25.5 379.5 170.4 36 

Lan-11-02-03  423.3 8.3 430.9 28.7 471.9 175.6 36 

Lan-11-02-08  435.3 3.4 424.6 11.4 366.4 71.8 36 

Lan-11-02-104  438.5 4.4 438.7 6.5 440.1 33.0 36 

Lan-11-02-05  442.5 6.5 442.7 8.3 444.1 39.1 36 

Lan-11-02-81  442.6 7.1 446.7 10.9 467.7 55.9 36 

Lan-11-02-18  443.0 9.0 453.1 15.3 504.4 79.9 36 

Lan-11-02-26  444.9 8.6 447.1 20.8 458.6 119.6 36 

Lan-11-02-112  452.6 16.6 445.3 22.1 408.1 107.8 36 

Lan-11-02-79  459.2 7.9 459.1 11.7 458.2 57.8 36 

Lan-11-02-63  520.3 8.2 506.7 13.6 445.5 66.7 36 

Lan-11-02-105  593.6 23.0 665.9 20.7 918.9 24.9 36 

Lan-11-02-19  700.0 35.8 727.5 29.0 813.1 29.4 36 

Lan-11-02-23  700.3 26.0 741.5 32.3 867.8 97.8 36 

Lan-11-02-32  714.8 44.0 779.2 35.7 968.4 15.8 36 

Lan-11-02-61  716.5 21.6 719.1 27.3 727.1 89.9 36 

Lan-11-02-108  749.8 26.7 753.4 27.7 763.9 75.4 36 

Lan-11-02-83  788.6 8.5 785.4 12.6 776.4 41.9 36 

Lan-11-02-22  826.8 18.0 838.3 25.4 869.1 78.9 36 

Lan-11-02-62  848.5 17.4 844.1 44.0 832.5 153.6 36 

Lan-11-02-68  938.8 22.4 929.4 16.1 907.1 13.4 36 

Lan-11-02-74  891.7 28.7 897.7 20.8 912.2 11.7 36 

Lan-11-02-67  934.4 9.0 930.8 10.3 922.2 27.5 36 

Lan-11-02-49  951.4 24.1 944.3 55.1 927.9 175.3 36 

Lan-11-02-87  882.3 35.4 899.4 39.8 941.7 104.4 36 

Lan-11-02-48  918.3 13.4 926.0 15.4 944.4 40.9 36 

Lan-11-02-70  975.5 13.9 974.8 10.0 973.3 9.0 36 

Lan-11-02-07  986.1 20.7 986.5 22.9 987.4 57.8 36 

Lan-11-02-35  985.6 12.3 1006.2 9.5 1051.2 12.9 36 

Lan-11-02-110  1736.0 17.6 1729.8 10.3 1722.3 8.1 36 

Lan-11-02-72  1786.9 26.5 1777.6 14.9 1766.6 9.8 36 
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Lan-11-02-17  1625.5 38.3 1688.3 24.8 1767.2 25.6 36 

Lan-11-02-111  1662.6 82.8 1734.6 83.8 1822.7 151.2 36 

Lan-11-02-78  1774.4 57.5 1801.4 31.4 1832.9 6.7 36 

Lan-11-02-76  1833.6 32.2 1838.7 17.3 1844.4 4.3 36 

Lan-11-02-82  1873.5 14.4 1866.2 9.3 1858.1 11.5 36 

Lan-11-02-15  1751.5 9.5 1806.9 5.8 1871.3 5.5 36 

Lan-11-02-69  1813.9 51.0 1842.6 27.6 1875.2 6.0 36 

Lan-11-02-56  1888.8 13.0 1883.1 7.2 1876.8 4.8 36 

Lan-11-02-09  1897.7 36.9 1891.2 19.6 1884.1 7.6 36 

Lan-11-02-60  1861.8 12.7 1874.7 7.1 1889.0 4.7 36 

Lan-11-02-27  2094.2 18.1 2088.0 9.1 2081.8 3.0 36 

Lan-11-02-114  2193.7 37.8 2169.9 18.5 2147.5 6.1 36 

Lan-11-02-11  1631.6 122.2 1875.7 78.4 2157.9 59.9 36 

Lan-11-02-113  2301.1 14.4 2270.3 8.1 2242.7 8.5 36 

Lan-11-02-31  2455.0 32.5 2462.9 15.1 2469.4 6.3 36 

Lan-11-02-12  2470.8 43.2 2475.4 20.2 2479.2 9.8 36 

Lan-11-02-39  2417.1 18.7 2465.2 8.9 2505.2 4.4 36 

Lan-11-02-28  2557.6 38.8 2534.3 17.4 2515.7 5.1 36 

Lan-11-02-50  2533.6 34.2 2535.5 15.9 2537.0 8.1 36 

Lan-11-02-52  2568.0 29.4 2553.0 14.8 2541.2 12.7 36 

Lan-11-02-20  3063.8 20.4 3043.7 20.8 3030.4 31.8 36 

Lan-11-02-102  3028.1 43.1 3074.6 18.4 3105.1 10.5 36 

                

Lan-11-04-02  858.4 8.5 869.4 23.2 897.6 79.0 35 

Lan-11-04-03  1919.3 46.3 1897.3 24.2 1873.3 7.1 35 

Lan-11-04-05  229.7 2.7 234.1 3.9 279.3 32.0 35 

Lan-11-04-06  1727.2 33.4 1714.2 38.7 1698.5 76.0 35 

Lan-11-04-07  353.9 26.5 343.2 34.8 271.6 209.8 35 

Lan-11-04-102  236.5 9.3 238.4 25.4 257.5 259.1 35 

Lan-11-04-103  1555.8 28.8 1681.1 17.6 1841.2 8.7 35 

Lan-11-04-104  2113.7 30.8 2087.1 16.9 2060.9 14.8 35 

Lan-11-04-106  717.9 20.3 733.0 40.1 779.6 148.6 35 

Lan-11-04-107  479.8 8.4 462.4 19.8 376.7 112.5 35 

Lan-11-04-109  110.0 8.0 93.7 19.0 -304.6 513.5 35 

Lan-11-04-110  238.9 4.0 240.5 10.5 256.7 105.3 35 

Lan-11-04-111  258.0 5.5 247.6 19.3 150.2 199.7 35 

Lan-11-04-112  827.2 9.6 821.3 11.7 805.2 34.9 35 

Lan-11-04-113  258.8 7.7 255.6 9.7 226.1 70.4 35 

Lan-11-04-115  776.7 13.1 772.6 12.7 760.7 31.7 35 

Lan-11-04-117  281.7 17.6 329.2 33.4 680.7 214.3 35 

Lan-11-04-118  241.5 4.7 245.9 10.9 288.4 105.0 35 
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Lan-11-04-119  262.5 3.5 262.9 9.0 266.7 83.5 35 

Lan-11-04-12  445.5 13.2 449.6 15.4 470.7 65.0 35 

Lan-11-04-120  1861.8 57.9 1871.3 30.7 1881.9 4.1 35 

Lan-11-04-121  474.2 13.0 477.2 26.4 491.7 139.4 35 

Lan-11-04-122  1880.1 34.8 1885.8 18.5 1892.1 6.3 35 

Lan-11-04-123  1752.6 45.0 1756.8 26.3 1761.7 21.1 35 

Lan-11-04-126  239.1 3.2 237.5 6.0 221.7 58.2 35 

Lan-11-04-127  918.4 21.0 916.8 19.6 912.7 43.7 35 

Lan-11-04-129  208.3 5.6 210.8 8.5 238.5 82.0 35 

Lan-11-04-13  124.0 1.5 116.2 12.8 -42.1 283.5 35 

Lan-11-04-130  1296.6 34.7 1299.9 26.2 1305.3 39.3 35 

Lan-11-04-131  212.4 4.8 210.6 19.6 191.3 234.2 35 

Lan-11-04-135  366.9 8.0 390.2 30.5 530.8 200.3 35 

Lan-11-04-14  1919.4 26.9 1904.7 15.3 1888.8 13.5 35 

Lan-11-04-15  258.2 4.4 261.5 7.3 290.9 61.1 35 

Lan-11-04-17  2061.0 115.0 2235.0 65.9 2398.3 55.4 35 

Lan-11-04-18  122.4 2.3 119.7 9.6 65.6 196.7 35 

Lan-11-04-21  462.2 5.3 442.1 30.5 338.7 191.2 35 

Lan-11-04-22  245.7 7.4 246.9 9.6 258.0 72.1 35 

Lan-11-04-23  222.2 7.2 220.8 10.8 205.8 100.4 35 

Lan-11-04-26  1815.2 26.9 1837.7 15.0 1863.3 8.9 35 

Lan-11-04-27  261.2 20.6 256.3 60.1 211.6 593.7 35 

Lan-11-04-33  417.0 9.7 414.9 9.2 403.5 27.5 35 

Lan-11-04-35  242.5 10.0 239.4 19.6 209.1 189.6 35 

Lan-11-04-40  2344.3 48.1 2334.4 22.8 2325.7 8.1 35 

Lan-11-04-41  1101.3 27.6 1098.0 18.6 1091.4 9.9 35 

Lan-11-04-44  573.5 27.2 630.4 25.1 840.5 41.3 35 

Lan-11-04-48  1412.2 34.5 1423.4 21.0 1440.3 6.3 35 

Lan-11-04-49  451.6 5.4 451.7 6.0 452.0 24.3 35 

Lan-11-04-51  1787.9 30.8 1773.1 29.3 1755.7 52.7 35 

Lan-11-04-52  224.4 3.6 216.6 12.2 133.5 141.9 35 

Lan-11-04-53  422.7 10.0 419.6 11.2 402.8 48.1 35 

Lan-11-04-54  952.0 25.9 948.4 20.8 940.0 34.2 35 

Lan-11-04-57  216.5 6.7 220.1 19.7 259.2 216.9 35 

Lan-11-04-58  247.4 4.0 242.8 8.4 199.1 81.7 35 

Lan-11-04-59  172.9 3.3 164.1 16.4 38.8 256.2 35 

Lan-11-04-60  269.3 3.6 267.6 6.2 252.3 51.5 35 

Lan-11-04-61  902.1 21.9 907.4 17.4 920.1 26.4 35 

Lan-11-04-62  447.0 16.3 456.7 21.8 505.9 100.7 35 

Lan-11-04-64  2329.3 48.8 2430.4 23.3 2516.2 6.4 35 

Lan-11-04-66  1880.4 21.3 1893.0 18.3 1906.8 30.3 35 
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Lan-11-04-67  1677.1 33.7 1731.5 23.1 1797.8 28.7 35 

Lan-11-04-68  227.3 4.0 224.9 12.9 199.8 143.0 35 

Lan-11-04-70  323.2 7.7 319.4 14.4 291.3 106.8 35 

Lan-11-04-71  224.6 3.5 225.8 10.1 238.3 109.4 35 

Lan-11-04-72  251.5 2.8 257.1 6.9 308.3 64.4 35 

Lan-11-04-73  1808.7 24.2 1815.3 21.2 1823.0 36.1 35 

Lan-11-04-74  917.4 27.1 915.0 22.2 909.3 38.4 35 

Lan-11-04-75  797.9 40.5 843.8 44.6 966.6 114.6 35 

Lan-11-04-76  435.6 5.1 434.6 10.4 429.4 60.1 35 

Lan-11-04-77  2492.9 21.6 2503.5 11.8 2512.1 12.3 35 

Lan-11-04-78  214.5 7.8 216.6 9.1 239.7 64.3 35 

Lan-11-04-79  316.7 8.9 284.0 47.4 22.2 457.5 35 

Lan-11-04-80  234.8 4.0 228.8 9.1 168.0 95.5 35 

Lan-11-04-82  1766.6 14.2 1769.2 9.3 1772.3 11.6 35 

Lan-11-04-83  1011.9 12.2 1011.0 10.0 1009.1 17.5 35 

Lan-11-04-84  300.4 12.5 285.1 37.0 161.0 335.2 35 

Lan-11-04-86  157.2 10.4 142.5 34.3 -96.2 619.5 35 

Lan-11-04-87  450.3 12.2 452.6 19.8 464.4 102.5 35 

Lan-11-04-89  217.6 3.8 219.7 6.9 241.7 69.8 35 

Lan-11-04-91  953.9 38.2 946.4 28.9 928.9 38.1 35 

Lan-11-04-92  298.2 8.5 297.6 14.5 292.4 109.8 35 

Lan-11-04-94  271.4 10.7 271.5 21.7 272.2 187.8 35 

Lan-11-04-96  936.6 9.7 931.9 8.5 921.0 17.5 35 

Lan-11-04-97  247.8 10.5 246.0 21.3 228.2 202.7 35 

Lan-11-04-99  1003.1 15.0 993.8 17.2 973.5 44.7 35 

                

Lij-12-01-01  440.8 2.8 450.7 9.1 501.5 53.3 14 

Lij-12-01-02  228.4 10.9 238.3 31.2 337.3 314.9 14 

Lij-12-01-05  253.7 2.3 251.1 6.2 226.1 60.2 14 

Lij-12-01-07  1773.4 11.6 1772.2 9.4 1770.7 15.4 14 

Lij-12-01-08  1743.5 78.0 1827.2 43.3 1924.0 3.1 14 

Lij-12-01-09  248.9 12.3 264.6 20.5 406.1 161.5 14 

Lij-12-01-10  986.0 7.4 984.6 10.5 981.4 29.8 14 

Lij-12-01-100  236.5 2.7 243.1 6.7 307.5 65.4 14 

Lij-12-01-101  1862.8 43.2 1875.5 22.9 1889.6 3.7 14 

Lij-12-01-102  815.5 9.7 813.5 14.4 808.1 46.7 14 

Lij-12-01-103  289.6 3.9 297.4 12.2 359.0 101.9 14 

Lij-12-01-105  1807.2 21.1 1821.2 23.1 1837.3 43.1 14 

Lij-12-01-12  395.2 8.3 408.7 21.7 485.6 134.3 14 

Lij-12-01-14  1714.4 35.1 1781.5 19.8 1861.1 5.9 14 

Lij-12-01-15  300.2 4.2 305.8 12.1 348.9 98.8 14 
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Lij-12-01-16  855.5 19.7 851.6 18.0 841.4 39.8 14 

Lij-12-01-17  425.2 7.7 429.0 8.1 449.6 30.6 14 

Lij-12-01-18  899.9 45.1 908.8 33.3 930.5 28.2 14 

Lij-12-01-19  250.7 6.5 335.2 21.1 972.8 140.5 14 

Lij-12-01-20  934.6 13.3 933.0 13.2 929.4 31.3 14 

Lij-12-01-22  1252.8 57.1 1240.5 40.0 1219.3 48.6 14 

Lij-12-01-23  764.9 7.6 763.9 17.1 760.9 63.6 14 

Lij-12-01-26  2521.7 42.2 2505.1 19.1 2491.6 6.2 14 

Lij-12-01-27  261.3 4.5 267.3 17.2 320.2 161.8 14 

Lij-12-01-29  1869.5 45.1 1866.9 23.8 1863.9 3.7 14 

Lij-12-01-30  878.3 9.0 888.1 8.9 912.7 21.3 14 

Lij-12-01-31  417.4 9.7 425.9 25.0 472.3 149.7 14 

Lij-12-01-32  445.4 7.4 446.8 8.4 454.5 35.0 14 

Lij-12-01-33  243.8 3.6 245.2 12.2 258.8 124.2 14 

Lij-12-01-34  718.8 14.3 739.1 34.5 801.0 130.3 14 

Lij-12-01-35  761.1 52.3 779.8 40.3 833.4 28.7 14 

Lij-12-01-36  239.1 5.8 241.7 11.8 266.8 112.7 14 

Lij-12-01-37  346.6 4.5 350.0 14.8 372.9 108.3 14 

Lij-12-01-38  2391.4 55.0 2531.1 26.1 2645.1 8.6 14 

Lij-12-01-39  174.6 5.8 163.9 27.5 10.8 432.7 14 

Lij-12-01-40  59.9 0.7 62.1 4.0 148.2 154.1 14 

Lij-12-01-41  541.2 8.5 529.2 33.9 477.4 178.4 14 

Lij-12-01-42  1437.2 23.0 1451.1 14.9 1471.6 13.5 14 

Lij-12-01-43  234.0 4.0 228.6 12.2 173.3 133.5 14 

Lij-12-01-44  1130.6 17.3 1126.4 13.9 1118.5 23.7 14 

Lij-12-01-45  241.2 10.2 243.1 26.7 261.2 266.9 14 

Lij-12-01-46  207.3 13.0 262.4 51.1 788.9 448.5 14 

Lij-12-01-47  212.1 2.6 215.3 8.2 250.2 92.4 14 

Lij-12-01-48  1106.5 15.6 1101.1 10.5 1090.4 5.6 14 

Lij-12-01-49  248.0 3.5 234.8 18.0 104.1 200.7 14 

Lij-12-01-50  1619.6 25.6 1617.2 14.9 1614.0 8.0 14 

Lij-12-01-51  2401.9 44.6 2442.3 21.1 2476.1 8.3 14 

Lij-12-01-52  2579.9 77.3 2603.2 34.5 2621.4 9.8 14 

Lij-12-01-53  1057.8 21.2 1051.4 17.9 1038.0 33.3 14 

Lij-12-01-55  247.8 4.1 257.8 9.9 349.9 90.5 14 

Lij-12-01-57  2981.8 61.0 3157.6 25.2 3271.3 6.9 14 

Lij-12-01-58  244.0 3.2 241.7 11.4 219.8 118.5 14 

Lij-12-01-59  792.5 9.3 803.2 8.0 833.0 15.3 14 

Lij-12-01-60  1687.1 30.7 1701.8 17.4 1719.9 7.5 14 

Lij-12-01-61  1689.6 9.7 1757.7 5.7 1839.6 3.8 14 

Lij-12-01-62  774.5 21.9 780.0 38.7 795.7 135.3 14 
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Lij-12-01-63  251.3 2.8 252.0 4.4 258.7 37.4 14 

Lij-12-01-64  256.8 10.9 289.6 19.1 564.1 136.0 14 

Lij-12-01-65  433.9 2.1 438.2 6.5 460.6 38.7 14 

Lij-12-01-66  636.9 15.4 649.0 17.5 691.3 55.8 14 

Lij-12-01-67  250.6 4.0 271.7 47.0 457.9 439.0 14 

Lij-12-01-69  220.9 3.0 221.6 13.0 229.0 147.9 14 

Lij-12-01-70  567.4 11.0 569.6 9.7 578.4 19.8 14 

Lij-12-01-71  215.5 2.5 216.9 7.5 231.5 84.3 14 

Lij-12-01-72  823.5 4.0 824.0 4.6 825.1 13.3 14 

Lij-12-01-73  829.3 3.0 829.1 3.9 828.6 11.7 14 

Lij-12-01-74  423.9 6.1 421.7 11.1 410.0 63.4 14 

Lij-12-01-75  1988.3 17.2 2068.0 9.8 2148.5 8.1 14 

Lij-12-01-76  792.8 18.7 821.2 35.9 898.9 121.0 14 

Lij-12-01-77  289.7 13.1 270.2 27.3 105.0 249.4 14 

Lij-12-01-78  1910.6 15.0 1901.5 9.5 1891.6 11.3 14 

Lij-12-01-79  234.2 3.2 231.1 6.5 200.3 65.1 14 

Lij-12-01-81  870.1 16.7 880.6 39.7 907.0 132.3 14 

Lij-12-01-82  412.7 5.8 419.2 16.7 455.0 102.9 14 

Lij-12-01-83  2551.3 44.5 2563.7 20.6 2573.5 10.7 14 

Lij-12-01-85  248.1 11.5 239.4 50.3 155.5 547.2 14 

Lij-12-01-86  465.9 9.2 466.7 29.9 470.7 171.0 14 

Lij-12-01-87  255.2 5.5 242.8 42.1 125.4 459.0 14 

Lij-12-01-88  62.1 2.1 68.7 10.2 303.1 343.7 14 

Lij-12-01-89  219.3 4.9 221.8 16.2 247.7 180.1 14 

Lij-12-01-90  442.1 14.6 452.0 18.7 502.8 84.2 14 

Lij-12-01-91  1937.2 19.1 1966.8 11.0 1998.0 9.5 14 

Lij-12-01-92  717.4 9.1 743.9 8.0 824.6 14.2 14 

Lij-12-01-93  838.9 22.5 838.8 27.9 838.5 82.7 14 

Lij-12-01-94  259.7 10.8 273.1 23.0 389.6 194.1 14 

Lij-12-01-95  820.8 12.4 831.8 14.1 861.3 39.4 14 

Lij-12-01-96  254.4 3.9 242.4 18.9 127.1 202.8 14 

Lij-12-01-97  486.4 11.0 502.7 26.0 577.7 133.2 14 

Lij-12-01-99  390.2 8.6 382.2 26.8 333.7 183.8 14 

Lij-12-01-S06  1910.2 18.5 1907.6 13.2 1904.7 18.8 14 

                

Lim-12-05-1  219.4 11.3 229.4 13.3 333.0 86.3 3 

Lim-12-05-10  327.9 5.6 331.8 17.2 358.8 131.2 3 

Lim-12-05-100  444.0 23.4 443.8 20.6 442.6 39.3 3 

Lim-12-05-101  419.1 5.8 423.7 19.0 448.8 117.9 3 

Lim-12-05-102  411.5 4.0 415.3 8.3 436.5 49.7 3 

Lim-12-05-103  423.8 15.8 417.4 24.8 382.7 138.4 3 
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Lim-12-05-104  317.0 12.2 282.6 58.8 6.7 571.6 3 

Lim-12-05-105  214.8 2.5 213.1 10.2 194.5 120.1 3 

Lim-12-05-107  1847.4 34.9 1877.0 19.2 1909.9 9.9 3 

Lim-12-05-108  245.6 4.5 256.9 11.9 360.9 110.1 3 

Lim-12-05-109  341.7 7.1 341.1 16.9 337.4 123.1 3 

Lim-12-05-11  233.1 5.1 237.5 14.0 281.7 142.4 3 

Lim-12-05-110  458.0 13.1 455.6 12.4 443.8 35.8 3 

Lim-12-05-111  787.1 45.2 792.2 33.7 806.5 11.5 3 

Lim-12-05-112  126.3 2.3 130.6 3.5 209.6 51.8 3 

Lim-12-05-113  422.3 6.8 423.3 8.1 428.3 37.2 3 

Lim-12-05-115  837.5 11.9 837.2 9.1 836.3 10.7 3 

Lim-12-05-116  417.8 5.9 418.5 10.0 422.7 56.1 3 

Lim-12-05-117  258.5 5.3 250.7 13.9 178.4 137.9 3 

Lim-12-05-118  1029.4 7.1 1020.2 8.2 1000.5 20.9 3 

Lim-12-05-119  441.0 4.6 432.9 12.2 390.2 73.6 3 

Lim-12-05-12  779.8 15.9 793.4 17.6 831.9 48.9 3 

Lim-12-05-120  248.8 2.9 242.2 9.4 178.3 97.3 3 

Lim-12-05-121  250.9 4.4 262.3 8.9 365.8 77.1 3 

Lim-12-05-122  934.5 16.4 924.7 12.6 901.2 17.9 3 

Lim-12-05-124  264.7 3.8 246.7 15.8 78.5 167.3 3 

Lim-12-05-125  1169.8 28.6 1159.8 44.6 1141.1 116.7 3 

Lim-12-05-126  246.4 3.1 247.3 9.2 256.4 91.4 3 

Lim-12-05-127  1801.6 29.5 1814.8 49.6 1830.0 100.7 3 

Lim-12-05-128  1875.2 22.1 1862.7 13.8 1848.8 15.8 3 

Lim-12-05-13  2435.0 19.7 2430.4 10.5 2426.5 9.9 3 

Lim-12-05-130  1922.5 15.7 1904.7 8.4 1885.3 4.7 3 

Lim-12-05-131  421.3 12.1 420.0 16.3 413.2 82.4 3 

Lim-12-05-132  215.3 5.6 218.5 8.6 253.0 80.5 3 

Lim-12-05-133  216.8 8.6 213.4 16.0 175.9 170.2 3 

Lim-12-05-134  434.3 16.7 435.4 18.0 441.4 70.6 3 

Lim-12-05-135  221.7 3.1 220.4 19.8 206.4 230.0 3 

Lim-12-05-136  743.8 15.4 763.4 15.9 821.1 41.7 3 

Lim-12-05-14  3192.9 57.2 3143.8 22.1 3112.6 3.4 3 

Lim-12-05-15  949.4 21.5 962.8 21.5 993.6 49.6 3 

Lim-12-05-16  449.8 7.6 445.2 11.6 421.7 60.3 3 

Lim-12-05-17  824.9 13.6 830.0 20.3 843.7 65.1 3 

Lim-12-05-18  279.9 6.6 277.1 19.8 253.5 179.3 3 

Lim-12-05-19  253.7 4.3 237.2 24.8 76.1 276.2 3 

Lim-12-05-21  482.0 14.2 557.3 13.5 878.1 14.8 3 

Lim-12-05-22  864.0 9.0 864.5 9.2 865.6 23.4 3 

Lim-12-05-24  999.7 16.7 995.7 12.5 986.9 16.5 3 
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Lim-12-05-25  840.3 9.5 838.7 16.4 834.3 54.4 3 

Lim-12-05-26  197.9 3.2 210.1 10.4 349.2 117.9 3 

Lim-12-05-27  255.2 9.1 258.8 21.2 291.5 195.1 3 

Lim-12-05-28  264.2 10.1 271.9 14.9 338.6 109.8 3 

Lim-12-05-29  551.9 9.5 550.7 9.6 545.8 29.9 3 

Lim-12-05-3  275.4 8.6 300.6 29.1 500.9 236.4 3 

Lim-12-05-30  229.7 6.3 227.2 11.3 201.2 111.9 3 

Lim-12-05-31  263.0 5.8 259.6 11.5 229.2 104.2 3 

Lim-12-05-32  2258.4 23.6 2309.9 13.0 2355.8 12.3 3 

Lim-12-05-33  1756.9 27.1 1775.0 15.0 1796.3 6.0 3 

Lim-12-05-34  2207.7 39.8 2302.6 21.1 2388.0 15.7 3 

Lim-12-05-35  476.2 12.5 467.1 27.4 422.4 151.5 3 

Lim-12-05-36  1991.0 28.2 1957.0 14.7 1921.1 7.0 3 

Lim-12-05-37  249.2 2.4 248.5 8.5 242.5 86.1 3 

Lim-12-05-38  873.4 30.9 866.3 23.9 848.2 33.4 3 

Lim-12-05-39  2651.2 28.5 2592.2 13.4 2546.3 9.4 3 

Lim-12-05-4  297.5 4.5 284.6 22.6 179.8 209.2 3 

Lim-12-05-40  1044.2 14.0 1040.4 16.3 1032.3 41.0 3 

Lim-12-05-42  901.3 13.2 895.6 18.5 881.6 55.5 3 

Lim-12-05-43  836.9 12.1 829.5 20.4 809.7 68.0 3 

Lim-12-05-44  1881.5 31.4 1857.4 25.0 1830.5 40.1 3 

Lim-12-05-45  906.8 23.7 899.5 31.3 881.6 91.6 3 

Lim-12-05-46  225.6 5.4 219.9 11.8 159.8 127.5 3 

Lim-12-05-47  1132.3 17.7 1261.4 19.1 1489.0 38.3 3 

Lim-12-05-48  390.0 8.3 307.1 47.4 -283.1 455.2 3 

Lim-12-05-49  1498.2 75.6 1585.4 47.4 1703.3 30.9 3 

Lim-12-05-5  462.0 4.2 471.7 15.5 519.2 87.6 3 

Lim-12-05-50  221.5 5.2 223.1 8.5 239.2 81.1 3 

Lim-12-05-51  464.9 4.5 469.6 21.1 492.7 121.6 3 

Lim-12-05-53  837.9 10.4 831.3 15.8 813.7 51.2 3 

Lim-12-05-54  2243.3 31.6 2223.8 16.7 2205.8 13.9 3 

Lim-12-05-55  1067.5 10.5 1057.4 8.0 1036.6 11.7 3 

Lim-12-05-56  435.8 5.7 437.5 11.6 446.7 66.0 3 

Lim-12-05-57  443.4 6.5 445.5 8.4 456.7 38.7 3 

Lim-12-05-58  1631.0 17.6 1631.6 15.5 1632.3 27.2 3 

Lim-12-05-59  2497.7 46.0 2464.0 21.7 2436.3 12.7 3 

Lim-12-05-6  691.6 18.9 723.6 16.8 824.1 31.8 3 

Lim-12-05-60  844.9 12.9 840.7 11.2 829.6 22.4 3 

Lim-12-05-61  226.0 3.3 231.5 6.5 288.1 62.8 3 

Lim-12-05-62  213.2 7.6 229.1 15.0 395.6 143.2 3 

Lim-12-05-63  245.4 3.1 247.7 14.5 270.1 148.3 3 
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Lim-12-05-64  967.3 13.4 968.4 23.1 970.9 69.0 3 

Lim-12-05-65  231.0 5.5 229.4 10.6 212.9 105.2 3 

Lim-12-05-66  241.1 5.7 249.7 15.5 331.5 149.8 3 

Lim-12-05-67  221.2 11.7 229.9 15.9 319.5 125.6 3 

Lim-12-05-68  434.3 9.7 445.3 16.7 502.7 88.8 3 

Lim-12-05-69  249.2 4.3 245.2 18.3 207.1 191.0 3 

Lim-12-05-70  232.0 2.2 232.6 5.1 238.6 51.9 3 

Lim-12-05-72  779.2 4.2 782.9 5.6 793.4 18.0 3 

Lim-12-05-73  214.5 3.0 212.8 6.9 194.1 77.4 3 

Lim-12-05-74  467.4 11.2 508.4 15.3 697.3 61.8 3 

Lim-12-05-75  222.4 4.2 210.6 15.7 80.9 191.0 3 

Lim-12-05-76  247.1 4.3 247.7 13.5 253.0 135.6 3 

Lim-12-05-77  928.2 18.4 928.1 13.6 927.9 14.3 3 

Lim-12-05-78  820.3 13.9 824.4 11.3 835.6 17.8 3 

Lim-12-05-8  1750.5 17.7 1766.1 12.6 1784.7 17.6 3 

Lim-12-05-80  433.2 8.9 435.6 27.4 448.6 165.2 3 

Lim-12-05-81  1929.6 17.0 1911.9 8.9 1892.7 2.7 3 

Lim-12-05-82  224.9 3.0 226.2 8.3 239.8 89.0 3 

Lim-12-05-83  426.9 9.3 434.9 22.9 477.5 134.2 3 

Lim-12-05-85  1872.4 19.0 1877.5 14.1 1883.1 21.0 3 

Lim-12-05-86  2453.4 55.4 2473.2 25.6 2489.5 8.3 3 

Lim-12-05-87  913.4 18.2 910.5 16.6 903.5 36.2 3 

Lim-12-05-88  257.5 8.6 255.4 36.6 235.8 367.1 3 

Lim-12-05-89  2611.9 41.9 2713.2 22.2 2789.6 21.3 3 

Lim-12-05-9  773.6 17.7 792.0 15.0 844.2 25.9 3 

Lim-12-05-90  1261.3 23.6 1416.7 19.7 1658.7 28.5 3 

Lim-12-05-92  415.1 4.4 420.8 7.5 452.5 41.8 3 

Lim-12-05-93  229.6 3.3 227.9 14.9 210.5 166.5 3 

Lim-12-05-95  783.0 7.3 794.7 10.6 827.5 34.5 3 

Lim-12-05-98  477.5 23.8 511.6 21.7 667.0 33.4 3 

Lim-12-05-99  540.2 2.6 535.8 7.6 516.9 38.8 3 

Lim-12-05-99B  264.4 5.9 268.7 15.9 306.4 144.9 3 

                

Lim-12-26-100  218.5 6.1 202.2 17.5 15.0 219.6 2 

Lim-12-26-99  219.8 5.1 216.2 10.6 177.0 114.8 2 

Lim-12-26-97  220.7 3.3 226.0 9.0 280.7 95.6 2 

Lim-12-26-47  224.7 1.9 229.1 7.2 274.9 78.3 2 

Lim-12-26-94  227.0 7.4 231.3 11.3 275.2 99.0 2 

Lim-12-26-68  229.1 5.2 212.9 8.5 37.3 90.1 2 

Lim-12-26-63  238.2 8.8 243.7 14.7 297.1 128.8 2 

Lim-12-26-82  241.6 2.6 242.7 5.1 253.3 47.9 2 
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Lim-12-26-01  246.6 9.8 175.7 63.7 -698.5 1123.7 2 

Lim-12-26-112  246.9 3.2 248.7 6.1 266.5 56.2 2 

Lim-12-26-67  249.2 4.6 236.8 13.5 116.2 143.6 2 

Lim-12-26-32  249.2 5.2 243.3 7.5 186.0 63.2 2 

Lim-12-26-90  249.4 3.5 251.1 10.7 267.2 104.7 2 

Lim-12-26-13  251.3 4.9 260.0 7.7 339.1 61.0 2 

Lim-12-26-17  251.3 3.3 253.1 6.3 269.9 56.4 2 

Lim-12-26-79  253.1 5.4 255.0 8.4 273.2 68.7 2 

Lim-12-26-88  253.1 6.1 247.3 12.8 192.9 123.0 2 

Lim-12-26-70  253.3 3.1 253.4 12.4 254.8 123.5 2 

Lim-12-26-14  253.9 9.5 249.8 11.4 211.0 79.6 2 

Lim-12-26-74  254.5 3.3 248.9 10.3 196.0 104.5 2 

Lim-12-26-73  255.1 6.6 259.4 23.7 298.8 229.3 2 

Lim-12-26-07  258.0 6.1 266.6 12.3 343.1 105.6 2 

Lim-12-26-28  258.8 2.5 255.8 17.2 227.8 174.7 2 

Lim-12-26-66  259.9 2.9 257.1 11.7 231.7 115.8 2 

Lim-12-26-49  260.4 7.0 267.8 16.3 333.4 144.0 2 

Lim-12-26-16  263.5 1.8 264.6 8.6 274.3 82.9 2 

Lim-12-26-77  264.2 4.9 262.7 10.8 249.4 98.2 2 

Lim-12-26-76  265.7 6.0 265.1 12.0 259.6 105.4 2 

Lim-12-26-44  266.1 20.7 344.7 71.5 914.9 481.4 2 

Lim-12-26-110  272.2 4.4 273.0 7.0 280.5 54.8 2 

Lim-12-26-20  274.8 4.9 274.0 6.2 267.4 42.4 2 

Lim-12-26-48  280.6 5.8 279.9 9.3 273.8 72.1 2 

Lim-12-26-54  281.1 6.4 276.8 39.4 240.5 372.9 2 

Lim-12-26-85  283.3 2.9 297.1 10.0 407.1 83.4 2 

Lim-12-26-04  288.5 7.0 280.1 20.8 210.4 188.6 2 

Lim-12-26-21  293.9 3.6 293.9 6.0 294.0 45.3 2 

Lim-12-26-39  310.8 3.4 308.2 7.3 289.3 57.0 2 

Lim-12-26-78  311.6 9.4 321.2 16.7 390.8 117.3 2 

Lim-12-26-26  316.6 2.3 323.5 4.2 373.1 29.4 2 

Lim-12-26-83  336.9 10.3 346.4 18.1 410.4 119.1 2 

Lim-12-26-35  338.3 5.8 324.0 20.2 221.9 163.8 2 

Lim-12-26-24  391.2 11.1 399.4 21.0 446.7 125.3 2 

Lim-12-26-57  406.7 4.8 400.8 6.9 366.5 38.7 2 

Lim-12-26-05  430.2 5.3 439.2 8.9 487.0 47.1 2 

Lim-12-26-69  437.8 3.4 450.8 10.6 517.7 61.3 2 

Lim-12-26-72  448.8 8.0 472.9 28.8 591.8 160.6 2 

Lim-12-26-71  450.2 14.3 450.3 17.0 450.8 74.0 2 

Lim-12-26-75  451.9 20.3 444.7 20.1 407.8 69.1 2 

Lim-12-26-87  460.5 4.8 443.3 13.9 354.5 84.0 2 
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Lim-12-26-34  461.2 7.5 460.4 10.4 456.5 50.1 2 

Lim-12-26-55  462.7 6.9 459.6 13.0 443.7 70.2 2 

Lim-12-26-91  471.7 11.8 481.3 14.5 527.0 60.5 2 

Lim-12-26-107  478.0 6.7 471.8 15.8 442.2 87.4 2 

Lim-12-26-02  498.8 6.9 506.3 6.7 540.2 19.0 2 

Lim-12-26-109  546.8 18.5 561.5 18.6 621.7 53.2 2 

Lim-12-26-40  623.1 11.6 647.9 15.0 735.4 51.6 2 

Lim-12-26-62  671.2 21.4 695.0 17.3 772.6 15.8 2 

Lim-12-26-93  712.6 57.9 756.3 46.9 887.9 39.3 2 

Lim-12-26-56  712.6 16.2 735.7 19.4 806.5 58.9 2 

Lim-12-26-81  712.9 21.7 778.8 17.7 972.7 10.4 2 

Lim-12-26-03  775.5 5.6 773.9 6.8 769.4 21.1 2 

Lim-12-26-11  782.3 40.4 822.0 31.3 930.8 19.4 2 

Lim-12-26-92  825.8 11.1 815.9 18.1 789.0 60.8 2 

Lim-12-26-95  848.1 24.6 846.0 20.2 840.3 34.7 2 

Lim-12-26-27  861.9 7.6 857.4 10.5 845.5 32.1 2 

Lim-12-26-59  919.2 25.1 915.3 18.3 905.9 15.8 2 

Lim-12-26-61  985.2 15.7 985.4 11.4 986.0 11.5 2 

Lim-12-26-105  1031.0 64.9 1018.1 46.4 990.5 48.1 2 

Lim-12-26-19  1005.5 17.2 1000.9 13.5 991.0 20.7 2 

Lim-12-26-101  990.5 14.7 991.4 10.3 993.5 6.3 2 

Lim-12-26-23  892.8 17.3 924.7 13.5 1001.5 16.8 2 

Lim-12-26-80  1031.3 9.2 1031.5 7.7 1031.8 14.2 2 

Lim-12-26-111  1025.9 21.1 1028.9 19.9 1035.2 42.7 2 

Lim-12-26-12  1078.0 35.1 1069.2 23.7 1051.4 11.8 2 

Lim-12-26-96  1122.8 19.1 1117.6 12.9 1107.5 8.9 2 

Lim-12-26-98  1169.5 21.2 1184.5 14.2 1212.0 9.3 2 

Lim-12-26-50  1385.4 24.3 1446.2 16.3 1536.6 15.7 2 

Lim-12-26-103  1862.6 32.5 1867.3 17.8 1872.6 9.8 2 

Lim-12-26-30  1900.2 48.4 1897.1 25.7 1893.6 10.5 2 

Lim-12-26-09  1873.0 26.0 1884.9 13.9 1897.9 4.3 2 

Lim-12-26-51  1959.5 25.0 1933.7 12.9 1906.2 4.0 2 

Lim-12-26-106  578.8 36.3 1072.4 45.6 2285.2 36.2 2 

Lim-12-26-108  2286.8 43.5 2292.5 20.7 2297.6 4.7 2 

Lim-12-26-53  2236.4 66.0 2430.2 32.3 2596.7 2.7 2 

Lim-12-26-15  3304.7 80.4 3435.9 30.5 3513.3 1.9 2 

                

Lim-12-42-02  1308.1 13.8 1333.0 11.3 1373.1 19.0 1 

Lim-12-42-03  437.7 8.8 442.9 7.8 469.8 13.2 1 

Lim-12-42-04  767.7 11.3 767.2 11.0 765.7 27.9 1 

Lim-12-42-05  442.6 15.2 443.4 31.7 447.5 179.8 1 
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Lim-12-42-06  888.1 9.8 901.7 11.9 935.2 33.2 1 

Lim-12-42-07  1722.8 81.3 1787.8 45.3 1864.4 6.7 1 

Lim-12-42-08  225.9 1.8 227.1 5.2 239.9 55.6 1 

Lim-12-42-09  230.6 5.1 233.2 8.6 258.9 79.9 1 

Lim-12-42-10  1866.4 40.9 1876.9 21.7 1888.6 4.4 1 

Lim-12-42-12  247.8 4.4 245.5 10.1 223.5 98.3 1 

Lim-12-42-13  433.6 4.3 431.5 8.4 420.2 48.0 1 

Lim-12-42-15  2427.4 53.1 2402.7 57.6 2381.8 96.9 1 

Lim-12-42-16  216.5 4.7 216.6 10.7 216.9 116.0 1 

Lim-12-42-17  228.0 2.5 228.1 6.0 229.0 62.5 1 

Lim-12-42-18  813.1 17.6 827.4 19.1 865.9 51.3 1 

Lim-12-42-19  750.4 23.4 790.0 20.1 903.6 32.4 1 

Lim-12-42-20  225.3 2.0 229.6 5.3 274.1 55.6 1 

Lim-12-42-21  2353.3 24.7 2422.1 11.7 2480.5 3.6 1 

Lim-12-42-22  376.0 17.7 407.3 18.6 588.5 58.3 1 

Lim-12-42-23  215.3 2.8 229.9 17.1 382.8 184.2 1 

Lim-12-42-24  1877.9 18.3 1884.1 10.4 1891.0 8.2 1 

Lim-12-42-25  967.1 17.1 971.9 13.2 982.8 18.6 1 

Lim-12-42-26  256.8 10.2 252.6 11.0 213.9 63.9 1 

Lim-12-42-27  1226.5 35.2 1247.0 27.7 1282.6 43.0 1 

Lim-12-42-28  223.4 3.6 226.6 6.4 259.4 61.7 1 

Lim-12-42-29  225.4 2.9 230.8 8.0 286.1 83.1 1 

Lim-12-42-30  1884.0 18.5 1877.6 10.8 1870.5 10.1 1 

Lim-12-42-31  797.1 11.5 798.0 19.6 800.7 67.1 1 

Lim-12-42-32  1725.5 37.0 1766.6 20.6 1815.4 4.7 1 

Lim-12-42-33  214.5 1.7 215.8 4.3 229.3 48.2 1 

Lim-12-42-34  216.4 3.1 223.2 6.5 295.5 66.3 1 

Lim-12-42-34B  590.7 14.4 590.9 24.9 591.7 107.0 1 

Lim-12-42-35  309.0 5.0 317.5 32.4 380.3 265.4 1 

Lim-12-42-36  225.9 2.2 225.1 3.8 216.9 36.7 1 

Lim-12-42-37  220.2 3.1 220.9 10.3 228.6 115.7 1 

Lim-12-42-39  2360.8 80.4 2365.3 38.8 2369.2 20.0 1 

Lim-12-42-40  223.7 4.6 223.6 8.5 222.8 85.0 1 

Lim-12-42-41  944.6 75.3 951.6 58.1 967.7 78.4 1 

Lim-12-42-42  225.5 2.5 241.3 19.9 397.2 206.2 1 

Lim-12-42-43  213.5 2.8 219.8 7.9 288.6 86.1 1 

Lim-12-42-45  225.9 3.4 227.4 8.0 243.1 83.6 1 

Lim-12-42-46  227.4 2.5 226.8 6.7 220.2 71.5 1 

Lim-12-42-47  528.2 6.9 530.3 11.3 539.6 51.9 1 

Lim-12-42-48  266.3 7.2 250.5 22.0 104.3 225.0 1 

Lim-12-42-49  221.9 5.2 234.5 23.7 362.3 250.6 1 
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Lim-12-42-50  1946.2 15.9 1956.9 9.1 1968.1 8.0 1 

Lim-12-42-52  241.1 2.7 243.0 16.3 262.0 171.0 1 

Lim-12-42-54  336.9 8.3 362.4 13.8 529.6 82.2 1 

Lim-12-42-55  1348.8 63.0 1539.6 41.4 1812.5 12.6 1 

Lim-12-42-56  216.0 2.6 225.1 7.8 321.9 82.9 1 

Lim-12-42-57  955.0 46.0 956.2 33.2 959.0 28.4 1 

Lim-12-42-58  889.0 10.4 906.8 8.4 950.3 12.8 1 

Lim-12-42-59  240.7 4.6 239.6 10.5 228.6 104.4 1 

Lim-12-42-60  373.6 2.8 378.4 7.8 407.5 52.6 1 

Lim-12-42-61  227.4 5.5 237.2 13.3 335.5 130.9 1 

Lim-12-42-62  245.8 5.7 257.1 9.9 361.9 81.8 1 

Lim-12-42-63  2348.2 47.2 2356.6 22.1 2363.9 5.1 1 

Lim-12-42-64  288.1 10.1 266.2 50.0 77.3 504.6 1 

Lim-12-42-65  1883.2 15.0 1877.5 8.1 1871.1 4.3 1 

Lim-12-42-67  333.4 15.9 355.6 20.4 503.5 103.4 1 

Lim-12-42-68  1324.7 15.1 1317.7 9.7 1306.3 7.3 1 

Lim-12-42-69  1827.8 28.0 1848.6 15.2 1872.0 5.8 1 

Lim-12-42-70  217.8 3.8 213.0 10.5 160.3 121.3 1 

Lim-12-42-71  1490.5 17.9 1539.7 11.6 1607.8 11.0 1 

Lim-12-42-72  255.3 3.9 274.1 12.3 437.5 108.2 1 

Lim-12-42-74  280.6 7.2 292.0 29.8 384.1 257.6 1 

Lim-12-42-75  515.3 9.1 516.0 19.2 519.1 96.0 1 

Lim-12-42-76 186.2 6.0 202.8 9.9 401.0 95.5 1 

Lim-12-42-76B  215.1 3.7 232.0 14.0 407.2 145.4 1 

Lim-12-42-82  2147.5 14.3 2149.5 7.6 2151.4 5.8 1 

Lim-12-42-83  1876.2 16.5 1877.9 9.3 1879.8 7.1 1 

Lim-12-42-84  1887.1 20.0 1876.3 11.1 1864.3 7.8 1 

Lim-12-42-85  238.9 1.8 237.6 11.9 225.6 129.0 1 

Lim-12-42-86  218.4 2.8 215.7 10.0 186.4 116.1 1 

Lim-12-42-87  232.0 4.1 242.1 19.7 341.8 203.7 1 

Lim-12-42-89  1587.7 42.3 1723.2 33.9 1892.0 50.0 1 

Lim-12-42-90  1905.0 8.1 1888.9 5.5 1871.3 7.4 1 

Lim-12-42-91  1906.3 23.0 1894.3 12.2 1881.0 4.9 1 

Lim-12-42-92  369.6 5.1 350.8 20.5 227.9 156.4 1 

Lim-12-42-93  2603.2 44.4 2623.7 20.1 2639.6 9.1 1 

Lim-12-42-94  2533.0 29.5 2523.4 13.4 2515.6 5.4 1 

                

Luhe-11-18-100  213.1 3.5 211.7 19.5 196.1 234.0 21 

Luhe-11-18-101  994.2 20.0 993.4 15.7 991.7 24.1 21 

Luhe-11-18-102  1125.0 33.3 1120.7 44.8 1112.6 115.0 21 

Luhe-11-18-104  219.7 4.5 194.9 25.4 -94.8 349.3 21 
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Luhe-11-18-105  324.1 4.8 327.5 8.6 351.6 60.9 21 

Luhe-11-18-35  34.2 4.1 34.3 6.6 41.3 365.8 21 

Luhe-11-18-4  756.0 11.4 761.2 34.5 776.6 131.2 21 

Luhe-11-18-45  284.2 4.6 285.2 35.9 293.9 328.4 21 

Luhe-11-18-46  33.4 3.0 49.0 19.3 900.6 842.2 21 

Luhe-11-18-48  43.4 1.6 83.7 24.0 1472.6 575.8 21 

Luhe-11-18-51  782.1 15.1 780.5 37.5 776.1 138.2 21 

Luhe-11-18-52  33.9 2.7 29.9 15.1 -280.4 1360.6 21 

Luhe-11-18-53  428.6 9.1 433.2 12.0 457.7 57.5 21 

Luhe-11-18-58  917.6 15.5 940.4 34.3 994.0 107.4 21 

Luhe-11-18-59  34.2 1.9 49.4 6.6 871.3 261.3 21 

Luhe-11-18-60  33.0 0.9 31.4 3.9 -93.1 302.9 21 

Luhe-11-18-61  34.1 2.6 36.1 12.2 172.4 804.1 21 

Luhe-11-18-62  34.8 1.4 37.1 6.9 192.6 434.5 21 

Luhe-11-18-63  2404.5 72.5 2511.7 33.7 2599.5 3.6 21 

Luhe-11-18-65  37.5 2.8 41.0 7.3 246.2 383.7 21 

Luhe-11-18-66  32.8 1.4 32.1 4.3 -23.2 313.5 21 

Luhe-11-18-67  852.6 22.0 851.6 18.6 849.1 34.4 21 

Luhe-11-18-68  422.9 9.6 424.5 14.0 433.4 73.4 21 

Luhe-11-18-69  36.0 3.8 32.6 14.5 -214.8 1156.5 21 

Luhe-11-18-71  213.0 3.4 214.3 5.1 227.7 48.2 21 

Luhe-11-18-72  370.7 6.4 368.8 26.1 356.6 186.4 21 

Luhe-11-18-73  33.2 4.2 47.8 20.4 854.8 907.2 21 

Luhe-11-18-75  249.8 4.4 233.2 34.5 69.6 393.9 21 

Luhe-11-18-76  2270.4 37.7 2546.6 18.8 2774.6 6.9 21 

Luhe-11-18-78  33.5 2.4 26.7 9.9 -550.9 1022.8 21 

Luhe-11-18-79  32.9 1.6 35.6 9.0 222.6 590.4 21 

Luhe-11-18-80  32.6 1.4 36.4 5.0 290.8 305.1 21 

Luhe-11-18-81  33.3 4.0 53.8 26.1 1099.1 1027.4 21 

Luhe-11-18-82  32.4 1.1 29.2 8.0 -225.2 707.5 21 

Luhe-11-18-83  32.3 1.7 38.0 7.3 417.2 422.2 21 

Luhe-11-18-84  573.1 23.0 593.4 27.3 671.7 93.7 21 

Luhe-11-18-85  33.7 0.5 38.4 4.7 340.2 282.5 21 

Luhe-11-18-86  34.8 1.3 33.3 5.9 -72.4 429.8 21 

Luhe-11-18-87  2581.1 25.4 2566.2 11.5 2554.5 5.1 21 

Luhe-11-18-88  33.7 1.4 40.1 6.4 439.9 349.2 21 

Luhe-11-18-90  814.8 30.3 810.3 28.8 798.2 69.1 21 

Luhe-11-18-91  32.4 1.1 34.4 8.4 173.3 579.3 21 

Luhe-11-18-92  450.3 4.5 460.2 7.8 510.3 40.2 21 

Luhe-11-18-94  33.8 1.5 35.0 5.9 118.8 391.0 21 

Luhe-11-18-95  34.0 1.7 36.9 3.6 229.0 202.6 21 
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Luhe-11-18-96  33.3 1.3 37.7 3.7 326.2 207.6 21 

Luhe-11-18-97  2375.3 64.1 2437.1 29.9 2489.1 3.7 21 

Luhe-11-18-98  221.1 7.6 214.7 14.2 145.5 150.8 21 

Luhe-11-18-99  1006.6 12.3 1014.2 9.3 1030.6 12.0 21 

                

Mek-11-02-01  239.9 4.6 241.8 7.4 260.6 65.2 39 

Mek-11-02-02  259.7 2.4 262.8 4.3 289.9 37.0 39 

Mek-11-02-03  243.7 4.8 255.3 12.8 363.6 119.9 39 

Mek-11-02-04  321.4 10.1 424.8 16.8 1033.6 72.9 39 

Mek-11-02-06  238.1 2.7 237.4 12.3 230.6 132.0 39 

Mek-11-02-08  242.3 2.8 248.0 10.4 301.9 104.7 39 

Mek-11-02-09  522.9 19.7 580.5 18.2 812.6 27.0 39 

Mek-11-02-10  243.1 3.7 242.3 8.0 234.5 77.4 39 

Mek-11-02-11  243.5 3.9 239.2 10.4 197.4 106.2 39 

Mek-11-02-12  929.9 34.6 950.7 25.0 999.2 13.8 39 

Mek-11-02-13  240.3 2.8 233.7 13.8 167.7 151.9 39 

Mek-11-02-15  2139.0 64.2 2311.8 32.8 2468.1 12.2 39 

Mek-11-02-16  553.4 6.4 600.3 8.4 781.7 29.8 39 

Mek-11-02-17  1041.1 45.0 1049.0 31.1 1065.5 16.2 39 

Mek-11-02-18  244.3 4.2 249.7 13.8 300.9 136.2 39 

Mek-11-02-19  242.9 5.8 241.7 17.9 230.3 184.0 39 

Mek-11-02-21  238.2 3.1 237.3 9.3 228.7 96.6 39 

Mek-11-02-22  240.0 2.2 254.0 18.4 385.6 182.7 39 

Mek-11-02-23  385.6 24.0 411.8 25.4 561.2 84.5 39 

Mek-11-02-24  279.1 7.3 280.8 13.2 295.2 106.2 39 

Mek-11-02-25  245.3 2.9 249.0 12.4 283.9 125.5 39 

Mek-11-02-26  276.3 12.0 306.1 18.9 539.4 122.5 39 

Mek-11-02-27  238.4 4.2 238.6 5.6 240.3 44.9 39 

Mek-11-02-29  241.8 2.8 242.2 11.5 245.9 119.6 39 

Mek-11-02-30  334.6 8.9 343.3 10.4 402.6 51.7 39 

Mek-11-02-31 243.5 4.2 260.1 18.5 412.3 175.6 39 

Mek-11-02-32  243.3 2.1 242.9 8.7 238.6 90.6 39 

Mek-11-02-35  591.4 10.4 593.7 24.1 602.3 108.8 39 

Mek-11-02-36  620.4 11.0 619.3 13.3 615.5 46.8 39 

Mek-11-02-39  250.9 4.0 257.5 8.4 318.0 75.6 39 

Mek-11-02-40  270.6 9.8 295.9 16.7 500.2 117.4 39 

Mek-11-02-41  1245.9 36.7 1337.1 26.1 1486.3 25.7 39 

Mek-11-02-42  249.8 8.4 252.2 17.7 273.9 163.5 39 

Mek-11-02-43  249.5 6.0 254.8 9.1 304.3 72.4 39 

Mek-11-02-44  249.4 4.3 257.5 16.5 331.6 160.3 39 

Mek-11-02-45  242.2 4.8 243.6 16.9 257.1 173.4 39 
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Mek-11-02-46  912.9 37.2 977.7 27.6 1126.2 10.3 39 

Mek-11-02-47  248.6 5.2 250.9 9.6 272.1 86.1 39 

Mek-11-02-48  266.4 6.5 267.1 12.1 273.3 103.7 39 

Mek-11-02-49  471.1 21.7 758.9 27.7 1737.5 37.0 39 

Mek-11-02-50  251.5 4.9 253.9 7.3 275.9 58.9 39 

Mek-11-02-52  917.4 54.3 928.1 39.1 953.5 20.4 39 

Mek-11-02-53  249.8 5.2 251.2 7.8 264.2 64.5 39 

Mek-11-02-55  322.0 16.2 335.2 22.8 428.4 135.7 39 

Mek-11-02-56  2033.3 63.7 2193.2 38.7 2346.2 38.8 39 

Mek-11-02-57  297.7 11.5 498.2 53.9 1570.8 246.4 39 

Mek-11-02-58  249.7 6.2 256.7 10.4 321.3 87.3 39 

Mek-11-02-59  249.3 5.1 252.5 7.0 282.4 53.3 39 

Mek-11-02-60  173.8 7.4 209.0 9.6 626.9 58.5 39 

Mek-11-02-61  248.2 2.4 242.9 17.3 191.8 184.6 39 

Mek-11-02-62  250.3 3.8 246.3 14.0 208.1 144.5 39 

Mek-11-02-63  252.1 5.5 251.6 11.5 246.8 107.4 39 

Mek-11-02-64  258.0 5.6 251.5 14.5 190.8 142.2 39 

Mek-11-02-65  255.4 5.3 253.6 9.8 236.7 88.1 39 

Mek-11-02-66  484.8 15.2 537.8 14.1 769.5 17.6 39 

Mek-11-02-68  236.5 5.4 253.6 16.7 415.1 158.1 39 

Mek-11-02-69  515.3 26.3 586.0 26.1 870.5 51.5 39 

Mek-11-02-70  253.3 6.4 250.5 16.0 224.0 155.9 39 

Mek-11-02-72  446.3 7.0 449.9 10.9 468.3 55.5 39 

Mek-11-02-73  253.2 7.6 253.2 13.0 253.3 113.8 39 

Mek-11-02-74  249.7 4.3 249.1 8.4 243.3 77.6 39 

Mek-11-02-76  283.5 18.1 346.9 84.0 796.5 593.4 39 

Mek-11-02-77  254.3 10.1 262.9 11.9 340.0 72.8 39 

Mek-11-02-78  250.5 9.7 248.6 18.9 231.0 176.3 39 

                

Midu-11-01-01  1811.0 42.7 1837.8 24.3 1868.3 17.1 34 

Midu-11-01-02  835.0 7.4 841.1 7.4 857.3 18.3 34 

Midu-11-01-03  1445.5 66.0 1604.2 41.7 1819.4 15.4 34 

Midu-11-01-04  307.1 6.5 313.7 9.9 362.6 67.3 34 

Midu-11-01-05  797.7 11.6 813.0 9.4 854.8 13.2 34 

Midu-11-01-06  250.7 1.9 253.9 10.1 283.9 101.4 34 

Midu-11-01-08  1637.5 107.9 1746.8 62.4 1880.2 8.0 34 

Midu-11-01-09  232.0 5.2 234.1 11.6 255.6 116.8 34 

Midu-11-01-10  428.5 6.2 430.0 11.4 438.1 64.2 34 

Midu-11-01-100  1482.3 32.0 1633.0 19.7 1833.0 3.4 34 

Midu-11-01-101  777.0 6.7 778.3 7.8 782.0 23.2 34 

Midu-11-01-102  254.1 5.6 255.4 11.0 267.8 98.5 34 
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Midu-11-01-103  317.4 9.2 325.5 18.7 383.9 135.3 34 

Midu-11-01-106  318.9 4.9 317.7 12.8 308.3 101.1 34 

Midu-11-01-107  400.2 4.6 399.2 13.5 393.2 87.8 34 

Midu-11-01-108  252.8 4.4 246.5 10.4 187.4 102.4 34 

Midu-11-01-109  227.9 7.8 214.4 29.7 68.0 358.2 34 

Midu-11-01-11  256.8 5.8 250.8 17.3 195.8 173.0 34 

Midu-11-01-111  1878.6 29.2 1873.9 15.9 1868.6 9.4 34 

Midu-11-01-112  1189.3 20.4 1197.1 16.7 1211.1 28.7 34 

Midu-11-01-113  1874.5 67.9 2194.1 37.6 2507.8 5.7 34 

Midu-11-01-114  538.6 21.8 520.0 20.6 439.1 62.9 34 

Midu-11-01-115  1334.6 76.6 1520.3 50.7 1789.3 18.0 34 

Midu-11-01-12  1050.8 25.2 1047.2 17.5 1039.8 13.3 34 

Midu-11-01-13  259.7 7.3 263.0 16.2 292.7 145.4 34 

Midu-11-01-14  2549.7 28.2 2543.1 12.7 2537.9 4.6 34 

Midu-11-01-15  547.9 14.1 530.5 71.2 456.4 379.6 34 

Midu-11-01-17  472.9 8.2 465.9 15.4 431.4 82.5 34 

Midu-11-01-18  1849.1 25.3 1859.5 13.7 1871.2 5.6 34 

Midu-11-01-20  948.1 11.8 949.0 9.1 951.1 13.1 34 

Midu-11-01-20B  1225.5 17.8 1221.7 14.6 1215.2 25.4 34 

Midu-11-01-21  792.1 18.8 793.7 23.6 798.1 72.7 34 

Midu-11-01-22  826.7 37.4 840.3 29.9 876.3 41.8 34 

Midu-11-01-23  2211.4 25.8 2213.7 13.5 2215.8 10.4 34 

Midu-11-01-24  1948.7 31.5 1921.0 16.7 1891.2 8.3 34 

Midu-11-01-25  756.9 21.0 776.4 30.4 832.8 99.6 34 

Midu-11-01-26  415.0 32.3 384.2 75.1 202.3 516.6 34 

Midu-11-01-28  824.2 9.1 826.0 10.2 830.8 28.3 34 

Midu-11-01-29  173.7 5.3 163.1 14.9 12.6 226.2 34 

Midu-11-01-30  412.9 9.8 416.0 10.8 433.2 45.0 34 

Midu-11-01-33  761.4 7.5 761.6 11.9 762.4 41.4 34 

Midu-11-01-34  721.2 23.7 748.9 24.3 832.4 62.5 34 

Midu-11-01-36  193.2 4.7 195.2 5.4 219.7 41.5 34 

Midu-11-01-37  157.9 3.1 161.9 5.7 220.9 75.7 34 

Midu-11-01-38  416.0 7.4 417.1 10.4 423.4 54.2 34 

Midu-11-01-39  405.2 7.3 404.4 14.9 400.1 91.2 34 

Midu-11-01-40  161.4 2.7 166.3 14.4 236.5 213.5 34 

Midu-11-01-41  1784.9 56.4 1833.2 30.8 1888.5 4.5 34 

Midu-11-01-42  145.5 3.2 151.8 5.0 251.3 63.5 34 

Midu-11-01-43  435.2 12.8 453.9 15.3 549.9 62.2 34 

Midu-11-01-44  1325.2 3.7 1362.0 5.1 1420.2 11.6 34 

Midu-11-01-45  448.2 14.4 450.4 15.5 461.5 58.6 34 

Midu-11-01-46  806.2 9.3 817.7 8.8 849.0 20.6 34 
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Midu-11-01-47  357.3 15.9 357.6 46.6 359.6 334.2 34 

Midu-11-01-48  2587.8 119.0 2760.3 55.6 2888.9 28.7 34 

Midu-11-01-50  230.1 5.6 218.7 16.7 98.2 192.9 34 

Midu-11-01-50A  464.7 5.1 467.3 6.8 479.8 31.3 34 

Midu-11-01-51  160.4 5.0 159.8 7.9 150.8 100.7 34 

Midu-11-01-53  435.6 5.8 433.7 7.4 423.7 35.3 34 

Midu-11-01-54  2076.4 148.2 2355.9 78.0 2607.4 27.1 34 

Midu-11-01-55  290.8 5.7 282.8 21.4 217.3 196.1 34 

Midu-11-01-56  486.5 17.6 478.9 16.6 442.5 48.6 34 

Midu-11-01-57  2397.0 48.7 2400.1 24.3 2402.8 17.4 34 

Midu-11-01-59  943.1 16.4 942.2 13.1 940.1 21.5 34 

Midu-11-01-60  836.5 18.6 840.0 17.8 849.2 42.4 34 

Midu-11-01-61  1864.5 21.2 1863.3 11.2 1861.8 1.8 34 

Midu-11-01-62  248.6 4.8 229.8 10.5 41.5 112.4 34 

Midu-11-01-63  431.7 5.6 432.5 8.3 437.1 42.9 34 

Midu-11-01-64  1812.2 38.3 1822.8 20.6 1834.8 3.3 34 

Midu-11-01-65 1701.1 43.5 1670.1 24.5 1631.2 13.3 34 

Midu-11-01-66  916.2 30.6 928.8 22.3 958.6 15.9 34 

Midu-11-01-67  442.6 9.3 447.4 30.3 472.3 179.0 34 

Midu-11-01-69  248.0 7.1 238.7 25.7 148.2 275.9 34 

Midu-11-01-70  963.1 23.9 969.6 17.5 984.3 17.3 34 

Midu-11-01-71  265.1 5.6 266.1 7.8 275.0 58.4 34 

Midu-11-01-72  1839.7 62.7 1851.0 33.7 1863.7 10.8 34 

Midu-11-01-74  980.7 14.8 979.7 13.6 977.4 28.9 34 

Midu-11-01-75  266.5 4.5 276.6 9.1 362.4 75.4 34 

Midu-11-01-76  1887.8 19.0 1881.5 11.6 1874.7 12.3 34 

Midu-11-01-77  434.7 14.6 439.6 23.9 465.3 126.8 34 

Midu-11-01-78  270.6 7.0 256.3 12.7 127.8 117.0 34 

Midu-11-01-79  1145.5 27.1 1132.1 19.2 1106.5 22.5 34 

Midu-11-01-80  226.3 3.9 230.7 5.3 275.2 43.2 34 

Midu-11-01-81  169.1 3.0 168.1 8.7 153.7 124.9 34 

Midu-11-01-82  2007.7 34.7 2007.4 19.4 2006.9 16.5 34 

Midu-11-01-84  2340.4 37.5 2320.4 20.8 2302.8 21.2 34 

Midu-11-01-85  184.1 14.3 215.3 42.7 571.9 450.4 34 

Midu-11-01-86  436.9 4.1 437.5 6.3 440.7 33.3 34 

Midu-11-01-87  830.6 7.3 828.0 6.5 821.0 13.7 34 

Midu-11-01-88  177.4 2.9 173.6 6.5 122.7 88.1 34 

Midu-11-01-89  1320.8 21.2 1315.5 16.6 1306.8 26.9 34 

Midu-11-01-90  2539.3 79.3 2568.8 35.4 2592.1 3.4 34 

Midu-11-01-91  402.5 21.4 431.7 24.6 590.9 94.4 34 

Midu-11-01-92  1853.6 51.1 1866.2 27.5 1880.2 10.5 34 



186 

 

 

 

Midu-11-01-93  817.0 10.6 828.9 8.1 861.1 8.3 34 

Midu-11-01-94  200.3 2.9 207.4 6.6 288.9 73.9 34 

Midu-11-01-95  225.1 4.1 228.1 5.2 259.2 39.9 34 

Midu-11-01-96  1919.9 76.5 1888.5 41.4 1854.1 26.0 34 

Midu-11-01-97  418.8 14.8 421.0 13.0 433.1 22.4 34 

Midu-11-01-98  247.4 6.6 241.4 28.9 183.7 307.9 34 

Midu-11-01-99  164.5 2.9 162.9 7.6 139.0 110.9 34 

                

Midu-11-02  559.4 5.2 561.2 8.3 568.5 36.3 33 

Midu-11-02-01  37.4 0.8 39.5 2.2 170.8 123.7 33 

Midu-11-02-02  35.8 6.5 37.1 6.7 123.0 84.1 33 

Midu-11-02-03  72.6 2.8 72.1 2.9 57.0 32.3 33 

Midu-11-02-03  36.0 3.3 37.0 3.5 104.8 65.3 33 

Midu-11-02-04  36.6 1.2 37.6 2.4 98.7 131.7 33 

Midu-11-02-05  40.8 3.1 46.9 8.1 369.2 362.9 33 

Midu-11-02-05  57.1 1.0 57.1 1.0 57.4 18.5 33 

Midu-11-02-06  36.8 0.5 37.2 1.0 66.7 57.4 33 

Midu-11-02-11  36.2 0.5 36.6 1.1 63.7 67.5 33 

Midu-11-02-12  93.8 1.2 94.8 2.5 120.7 58.8 33 

Midu-11-02-12  75.1 2.2 75.5 3.9 90.5 106.9 33 

Midu-11-02-13  35.6 0.3 36.3 2.1 87.5 138.5 33 

Midu-11-02-14  65.2 3.8 66.6 8.9 117.1 294.6 33 

Midu-11-02-15  35.9 0.6 36.1 1.3 51.0 74.4 33 

Midu-11-02-15  466.1 4.6 459.7 19.3 427.4 114.3 33 

Midu-11-02-16  38.4 3.3 39.5 3.5 106.9 68.8 33 

Midu-11-02-16  35.3 0.6 35.5 1.9 51.1 121.3 33 

Midu-11-02-17  35.4 1.0 36.3 6.1 94.0 402.8 33 

Midu-11-02-18  35.6 1.1 33.8 6.9 -90.5 507.4 33 

Midu-11-02-19  37.2 0.6 39.1 1.9 154.3 111.7 33 

                

Shi-12-01-01  469.4 12.7 474.9 25.7 501.4 135.9 5 

Shi-12-01-02  1909.3 61.0 1893.7 31.7 1876.5 2.9 5 

Shi-12-01-03  1123.6 28.9 1113.0 22.2 1092.3 34.1 5 

Shi-12-01-04  222.1 6.2 228.5 13.2 295.1 131.7 5 

Shi-12-01-05  255.4 2.9 261.9 5.9 321.1 51.7 5 

Shi-12-01-06  472.7 14.3 476.0 14.7 491.8 50.2 5 

Shi-12-01-07  1066.0 15.4 1071.3 11.9 1082.2 17.3 5 

Shi-12-01-08  1002.1 18.4 1017.4 13.0 1050.4 7.2 5 

Shi-12-01-10  220.6 2.2 216.0 5.8 166.0 65.2 5 

Shi-12-01-11  312.1 5.1 327.1 27.9 435.1 219.6 5 

Shi-12-01-12  1893.1 33.9 2051.4 63.0 2214.5 118.7 5 
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Shi-12-01-14  1526.0 79.3 1528.2 46.6 1531.2 16.7 5 

Shi-12-01-15  1799.7 33.4 1831.7 18.3 1868.3 6.2 5 

Shi-12-01-16  2717.8 72.1 2801.6 31.3 2862.4 8.4 5 

Shi-12-01-17  83.1 4.4 79.6 9.6 -22.0 274.6 5 

Shi-12-01-18  259.0 7.3 255.5 35.3 223.8 356.5 5 

Shi-12-01-19  220.3 7.8 214.3 23.3 148.5 269.8 5 

Shi-12-01-20  985.6 12.6 999.9 29.0 1031.4 88.0 5 

Shi-12-01-21  259.6 5.8 255.7 18.1 220.1 177.7 5 

Shi-12-01-22  1726.8 104.8 1790.4 65.7 1865.3 65.0 5 

Shi-12-01-23  1910.1 34.4 1896.1 19.6 1880.8 16.8 5 

Shi-12-01-24  344.6 9.5 338.1 14.2 293.3 92.3 5 

Shi-12-01-25  220.6 3.0 218.4 7.6 195.3 84.0 5 

Shi-12-01-26  2356.4 45.1 2458.6 37.6 2544.2 56.3 5 

Shi-12-01-27  454.6 7.1 453.3 15.6 446.7 87.7 5 

Shi-12-01-29  785.6 13.5 781.2 13.7 768.5 36.4 5 

Shi-12-01-30  44.6 1.5 41.3 10.6 -143.2 651.5 5 

Shi-12-01-31  1924.1 25.1 1897.1 13.6 1867.7 8.4 5 

Shi-12-01-32  444.2 9.3 443.3 14.9 438.5 78.6 5 

Shi-12-01-33  223.0 9.0 217.5 17.5 158.0 186.3 5 

Shi-12-01-34  44.4 1.4 46.5 5.7 159.7 286.8 5 

Shi-12-01-35  1110.9 20.7 1098.2 16.6 1073.1 28.4 5 

Shi-12-01-36  734.7 29.5 730.9 30.2 719.2 83.6 5 

Shi-12-01-38  1934.5 34.8 1900.4 18.2 1863.3 6.9 5 

Shi-12-01-39  438.0 6.8 433.8 15.1 411.4 88.5 5 

Shi-12-01-40  753.1 8.0 753.5 9.0 754.7 26.7 5 

Shi-12-01-41  239.1 12.2 208.3 72.2 -127.5 967.0 5 

Shi-12-01-42  2526.6 61.9 2509.7 27.7 2496.1 4.9 5 

Shi-12-01-43  463.8 8.1 458.4 13.2 431.4 68.6 5 

Shi-12-01-44  45.5 0.9 45.7 4.0 55.2 210.1 5 

Shi-12-01-45  1913.6 38.1 1897.6 26.5 1880.2 37.0 5 

Shi-12-01-46  262.7 5.7 261.1 14.3 247.2 134.2 5 

Shi-12-01-47  443.9 16.7 435.7 17.8 392.4 70.5 5 

Shi-12-01-48  1514.0 39.9 1491.4 26.4 1459.4 31.1 5 

Shi-12-01-49  1870.8 31.0 1863.8 16.7 1855.9 7.7 5 

Shi-12-01-50  260.5 6.2 260.7 8.2 262.7 59.9 5 

Shi-12-01-51  2114.7 38.0 2146.7 19.2 2177.6 7.8 5 

Shi-12-01-52  1936.0 41.1 1902.5 21.5 1866.0 8.4 5 

Shi-12-01-53  2549.4 21.7 2515.0 9.9 2487.3 4.5 5 

Shi-12-01-54  956.5 17.1 954.8 18.9 950.9 48.6 5 

Shi-12-01-55  178.6 10.0 154.0 33.7 -210.9 580.8 5 

Shi-12-01-56  428.5 11.0 422.9 29.0 392.8 178.3 5 
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Shi-12-01-57  431.2 15.8 434.1 17.6 449.5 71.8 5 

Shi-12-01-58  241.6 11.6 241.9 17.4 244.4 148.3 5 

Shi-12-01-59  251.4 20.0 256.7 20.6 305.6 93.9 5 

Shi-12-01-60  371.5 21.0 377.1 148.6 411.6 1095.8 5 

Shi-12-01-61  535.7 11.5 538.0 16.1 547.7 68.8 5 

Shi-12-01-62  248.5 9.8 239.7 22.3 154.1 226.4 5 

Shi-12-01-63  774.1 13.5 768.4 12.7 751.8 30.9 5 

Shi-12-01-64  423.4 7.8 424.0 13.0 426.8 72.1 5 

Shi-12-01-65  1644.0 72.7 1744.1 41.8 1866.2 4.3 5 

Shi-12-01-68  230.9 2.4 234.9 7.4 275.1 77.0 5 

Shi-12-01-69  1929.0 27.8 1922.6 15.5 1915.8 11.9 5 

Shi-12-01-70  752.1 27.0 759.4 28.0 780.8 75.9 5 

Shi-12-01-71  458.2 4.2 457.7 6.3 455.3 31.6 5 

Shi-12-01-72  1823.3 17.9 1833.6 14.8 1845.3 24.0 5 

                

Shi-12-02-01  413.2 21.7 424.2 34.7 484.9 185.5 4 

Shi-12-02-02  2713.2 122.7 2864.3 55.0 2972.4 24.9 4 

Shi-12-02-04  983.0 20.8 986.0 23.6 992.4 60.1 4 

Shi-12-02-05  445.0 9.9 433.3 16.7 371.6 93.1 4 

Shi-12-02-06  1712.7 79.5 1754.6 77.4 1804.9 138.2 4 

Shi-12-02-07  41.7 0.9 41.7 3.2 37.7 182.3 4 

Shi-12-02-08  41.0 0.9 42.7 6.0 137.8 336.8 4 

Shi-12-02-09  40.3 1.3 40.9 3.7 78.4 207.7 4 

Shi-12-02-10  1616.5 22.5 1640.9 22.4 1672.3 41.7 4 

Shi-12-02-100  362.7 11.1 372.2 12.7 431.9 57.8 4 

Shi-12-02-101  255.6 13.6 240.7 26.1 97.5 258.1 4 

Shi-12-02-102  395.9 26.6 404.9 24.7 456.3 58.1 4 

Shi-12-02-103  801.7 29.1 794.5 33.8 774.5 100.5 4 

Shi-12-02-104  1888.9 42.2 1956.9 23.9 2029.6 16.9 4 

Shi-12-02-105  1619.1 75.4 1601.6 47.7 1578.6 50.5 4 

Shi-12-02-106  271.9 7.2 272.1 15.3 274.1 133.7 4 

Shi-12-02-107  42.2 1.2 43.7 3.4 129.2 173.2 4 

Shi-12-02-108  42.7 1.1 44.6 2.7 148.7 130.6 4 

Shi-12-02-109  41.7 1.3 42.4 4.0 87.7 217.4 4 

Shi-12-02-11  40.1 0.8 42.3 3.0 166.3 161.4 4 

Shi-12-02-110  2062.0 76.3 2038.9 38.6 2015.6 13.9 4 

Shi-12-02-111  41.8 1.0 39.7 3.7 -88.2 228.3 4 

Shi-12-02-112  819.8 29.0 823.6 22.6 834.0 28.7 4 

Shi-12-02-113  41.3 1.6 41.2 3.8 38.3 203.6 4 

Shi-12-02-114  1718.6 64.9 1886.1 37.0 2075.9 5.3 4 

Shi-12-02-115  42.1 3.2 38.9 11.4 -152.1 730.5 4 
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Shi-12-02-13  216.9 3.6 224.5 9.0 304.4 94.8 4 

Shi-12-02-14  40.2 1.2 54.4 6.1 735.7 236.6 4 

Shi-12-02-15  755.1 13.3 785.3 21.9 872.2 73.5 4 

Shi-12-02-17  887.5 14.4 910.6 15.2 967.1 37.6 4 

Shi-12-02-18  455.5 17.1 443.7 21.1 383.2 98.8 4 

Shi-12-02-21  759.6 24.2 753.0 55.0 733.5 207.3 4 

Shi-12-02-22  1638.1 22.8 1637.4 12.8 1636.3 2.6 4 

Shi-12-02-23  1457.8 21.0 1454.8 12.6 1450.4 5.3 4 

Shi-12-02-24  256.1 7.6 242.9 30.9 116.8 330.3 4 

Shi-12-02-25  530.8 22.7 533.5 22.5 544.9 67.6 4 

Shi-12-02-26  596.6 33.4 699.9 30.2 1047.4 22.2 4 

Shi-12-02-27  549.3 27.4 539.8 30.2 500.1 109.9 4 

Shi-12-02-28  304.2 14.0 329.0 15.5 508.8 63.0 4 

Shi-12-02-29  249.3 5.5 251.0 13.0 267.2 123.7 4 

Shi-12-02-30  305.7 11.2 317.4 32.2 404.1 251.6 4 

Shi-12-02-32  40.4 1.0 39.1 4.0 -44.8 245.7 4 

Shi-12-02-33  964.3 51.5 972.6 36.5 991.3 18.9 4 

Shi-12-02-34  423.9 4.3 432.0 5.5 475.5 25.2 4 

Shi-12-02-35  1683.4 57.7 1694.2 36.1 1707.6 36.8 4 

Shi-12-02-36  419.5 22.9 434.4 21.8 514.4 55.1 4 

Shi-12-02-37  1743.6 65.8 1743.3 40.8 1742.9 42.5 4 

Shi-12-02-38  1866.4 28.8 1872.1 15.7 1878.4 8.0 4 

Shi-12-02-39  247.9 9.1 257.1 19.5 342.2 175.3 4 

Shi-12-02-40  269.6 8.8 269.8 9.7 271.7 53.9 4 

Shi-12-02-42  2033.4 53.4 2291.0 27.9 2529.5 2.8 4 

Shi-12-02-43  1407.6 27.3 1407.8 43.4 1408.0 100.9 4 

Shi-12-02-44  40.9 1.5 40.2 5.1 -3.5 298.1 4 

Shi-12-02-46  284.0 8.9 291.6 9.4 352.5 41.4 4 

Shi-12-02-47  1915.9 44.8 1909.9 24.3 1903.4 14.4 4 

Shi-12-02-48  42.0 2.4 51.7 12.8 529.3 550.3 4 

Shi-12-02-49  456.5 18.8 452.5 21.3 432.3 89.0 4 

Shi-12-02-50  41.2 0.9 51.8 11.6 575.4 503.6 4 

Shi-12-02-51 42.4 1.2 37.3 4.9 -282.4 337.7 4 

Shi-12-02-52  329.1 16.1 327.9 17.4 319.7 83.3 4 

Shi-12-02-53  260.0 10.6 265.3 22.1 312.1 193.2 4 

Shi-12-02-54  451.5 18.2 490.5 42.9 677.4 218.7 4 

Shi-12-02-55  278.6 6.2 272.9 10.7 223.8 89.4 4 

Shi-12-02-56  2739.4 66.2 2739.8 29.3 2740.1 14.0 4 

Shi-12-02-57  261.3 14.1 260.6 51.2 254.3 500.7 4 

Shi-12-02-58  270.0 5.6 269.6 10.9 265.5 93.4 4 

Shi-12-02-59  252.5 7.2 253.7 11.0 264.3 91.4 4 
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Shi-12-02-60  575.3 17.8 630.8 17.4 835.1 37.6 4 

Shi-12-02-61  441.6 19.8 424.5 27.9 332.4 149.2 4 

Shi-12-02-62  2245.2 48.8 2370.9 24.0 2480.9 7.6 4 

Shi-12-02-63  1749.6 66.0 1723.5 63.8 1691.9 117.3 4 

Shi-12-02-64  1919.7 46.8 1906.1 25.1 1891.2 14.0 4 

Shi-12-02-66  1998.2 36.0 2002.6 18.4 2007.1 4.2 4 

Shi-12-02-67  252.3 7.7 241.7 24.5 140.4 258.3 4 

Shi-12-02-68  275.5 10.1 275.7 14.6 277.5 108.5 4 

Shi-12-02-69  538.8 15.4 557.6 15.7 635.0 45.5 4 

Shi-12-02-70  1057.4 17.3 1063.0 14.0 1074.6 23.1 4 

Shi-12-02-71  248.3 9.3 252.8 14.4 294.4 118.1 4 

Shi-12-02-72  262.7 9.2 307.7 17.4 665.1 118.1 4 

Shi-12-02-73  282.4 13.4 273.4 25.2 197.3 216.7 4 

Shi-12-02-74  41.2 3.0 43.9 5.5 192.9 243.8 4 

Shi-12-02-75  476.7 11.9 558.8 12.5 908.7 27.9 4 

Shi-12-02-76  41.6 1.5 43.2 5.0 130.7 264.1 4 

Shi-12-02-77  232.9 4.3 235.3 5.8 259.0 46.8 4 

Shi-12-02-78  260.3 4.7 265.2 16.7 308.8 157.2 4 

Shi-12-02-79  255.1 4.0 260.6 5.3 310.6 37.8 4 

Shi-12-02-81  1216.7 23.8 1213.8 16.1 1208.6 14.7 4 

Shi-12-02-82  42.3 1.7 49.6 8.4 418.6 381.2 4 

Shi-12-02-83  42.0 1.9 119.6 20.6 2210.9 310.2 4 

Shi-12-02-84  231.4 6.1 238.2 14.7 306.3 145.7 4 

Shi-12-02-85  773.3 25.9 798.1 21.1 868.2 28.6 4 

Shi-12-02-86  429.1 5.4 419.4 30.4 366.1 197.5 4 

Shi-12-02-87  232.9 8.2 257.2 21.5 484.7 193.8 4 

Shi-12-02-88  255.8 6.9 251.6 9.4 212.4 73.7 4 

Shi-12-02-89  931.9 19.3 924.5 30.2 906.7 91.7 4 

Shi-12-02-90  812.2 32.2 824.7 25.5 858.7 33.0 4 

Shi-12-02-91  449.0 15.3 430.3 23.5 330.9 129.5 4 

Shi-12-02-92  250.7 6.2 244.9 17.2 189.3 174.0 4 

Shi-12-02-93  1883.4 76.7 1875.3 40.3 1866.2 6.5 4 

Shi-12-02-94  224.4 6.5 222.5 8.4 201.5 69.8 4 

Shi-12-02-97  1887.7 39.9 1869.6 22.0 1849.5 15.1 4 

Shi-12-02-98  41.1 0.9 41.6 3.1 68.6 171.2 4 

Shi-12-02-99  450.2 8.4 451.7 12.0 459.7 59.4 4 

                

Yany-13-02-01  212.0 5.2 203.9 27.2 111.4 343.6 29 

Yany-13-02-02  536.6 7.5 539.2 8.5 549.9 30.7 29 

Yany-13-02-03  213.1 3.3 215.1 5.6 237.5 55.7 29 

Yany-13-02-04  411.7 6.3 410.1 8.3 400.7 41.8 29 
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Yany-13-02-05  525.0 8.9 518.5 38.4 490.3 205.4 29 

Yany-13-02-07  210.3 4.4 206.9 5.6 168.2 48.7 29 

Yany-13-02-08  761.8 9.6 761.5 7.8 760.5 12.0 29 

Yany-13-02-09  439.8 6.5 440.7 7.6 445.3 32.8 29 

Yany-13-02-10  774.4 16.5 786.1 28.1 819.6 96.4 29 

Yany-13-02-100  1893.9 53.1 1885.9 28.0 1877.2 7.9 29 

Yany-13-02-101  215.3 4.9 209.1 12.4 140.0 144.8 29 

Yany-13-02-102  365.9 19.7 379.8 43.0 465.7 275.1 29 

Yany-13-02-103  456.0 10.6 466.8 16.4 520.1 80.7 29 

Yany-13-02-104  2194.9 74.7 2156.5 36.4 2120.1 11.7 29 

Yany-13-02-105  257.6 6.3 260.1 9.0 282.4 69.6 29 

Yany-13-02-106  1862.5 15.8 1874.0 9.9 1886.8 11.2 29 

Yany-13-02-107  319.0 8.0 315.9 17.9 292.8 139.1 29 

Yany-13-02-108  1246.7 24.6 1243.9 16.7 1239.0 16.8 29 

Yany-13-02-109  1767.7 41.8 1769.7 23.7 1772.0 15.1 29 

Yany-13-02-11  774.8 12.5 775.5 24.7 777.5 88.8 29 

Yany-13-02-111  274.9 12.0 344.3 60.6 844.1 425.1 29 

Yany-13-02-112  1903.7 43.3 1896.7 22.7 1888.9 5.9 29 

Yany-13-02-113  970.2 25.2 971.8 18.6 975.4 21.0 29 

Yany-13-02-114  620.5 14.5 638.6 38.7 703.1 165.8 29 

Yany-13-02-115  1136.4 49.5 1157.4 34.4 1196.7 29.9 29 

Yany-13-02-116  210.0 2.0 213.3 12.4 249.2 146.7 29 

Yany-13-02-117  212.4 3.5 209.7 9.7 180.1 112.6 29 

Yany-13-02-118  495.9 15.6 496.8 29.9 501.0 151.3 29 

Yany-13-02-119  212.0 5.0 218.7 13.9 291.5 152.4 29 

Yany-13-02-12  801.6 10.8 803.8 18.7 809.9 64.0 29 

Yany-13-02-120  87.3 2.2 91.7 5.9 207.6 143.2 29 

Yany-13-02-13  2271.8 23.8 2332.1 14.3 2385.3 16.3 29 

Yany-13-02-14  510.9 8.6 511.3 7.7 513.1 17.5 29 

Yany-13-02-15  1870.3 23.3 1856.5 13.6 1841.0 12.6 29 

Yany-13-02-16  1781.0 19.8 1843.4 11.0 1914.7 4.6 29 

Yany-13-02-17  214.3 3.7 224.1 6.1 329.1 56.3 29 

Yany-13-02-18  1517.8 13.3 1654.6 11.0 1832.9 16.7 29 

Yany-13-02-20  210.7 4.1 214.2 19.1 253.4 223.9 29 

Yany-13-02-21  790.7 22.1 791.9 26.2 795.3 78.2 29 

Yany-13-02-22  1895.3 32.1 1888.9 17.1 1881.8 7.4 29 

Yany-13-02-23  215.9 8.9 214.7 20.0 201.4 219.6 29 

Yany-13-02-24  212.8 4.6 215.1 14.8 240.0 169.2 29 

Yany-13-02-25  90.0 1.9 91.9 5.8 140.9 145.5 29 

Yany-13-02-26  1888.3 20.9 1870.8 11.3 1851.4 6.1 29 

Yany-13-02-27  88.7 1.7 86.5 4.0 26.4 106.6 29 
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Yany-13-02-28  654.2 21.9 656.2 37.9 662.8 150.3 29 

Yany-13-02-29  802.5 15.8 809.7 18.0 829.5 51.3 29 

Yany-13-02-30  795.4 14.5 791.6 28.5 780.9 101.0 29 

Yany-13-02-31  1786.8 14.5 1830.3 8.1 1880.2 3.9 29 

Yany-13-02-32  1815.0 75.4 1834.3 46.4 1856.2 48.5 29 

Yany-13-02-33  214.7 4.3 211.5 15.9 175.6 188.2 29 

Yany-13-02-34  256.3 4.4 259.4 7.7 288.1 65.2 29 

Yany-13-02-35  1874.7 30.9 1870.6 16.5 1866.0 5.6 29 

Yany-13-02-36  271.6 10.8 282.4 28.9 372.4 248.5 29 

Yany-13-02-37  413.6 24.8 435.4 26.5 552.5 91.6 29 

Yany-13-02-38  256.8 3.2 263.1 6.7 319.9 59.4 29 

Yany-13-02-39  106.0 0.9 110.5 3.0 209.1 63.6 29 

Yany-13-02-40  88.5 1.1 90.0 3.1 128.4 79.7 29 

Yany-13-02-41  1019.1 16.2 1017.2 20.6 1013.0 54.9 29 

Yany-13-02-42  216.9 6.0 220.9 11.4 263.6 114.8 29 

Yany-13-02-44  2176.4 24.3 2317.0 12.5 2443.3 6.3 29 

Yany-13-02-45  1656.0 34.3 1651.2 19.3 1645.2 5.1 29 

Yany-13-02-46  765.1 15.1 766.3 13.0 769.8 25.4 29 

Yany-13-02-47  273.0 8.3 263.6 20.2 181.1 189.2 29 

Yany-13-02-48  766.6 10.6 769.0 27.4 776.0 102.4 29 

Yany-13-02-49  219.5 9.4 220.9 24.5 235.8 267.6 29 

Yany-13-02-50  480.0 7.1 481.4 7.9 488.2 30.3 29 

Yany-13-02-51  211.9 5.5 204.4 16.2 119.0 197.5 29 

Yany-13-02-52  468.3 8.8 487.8 16.0 580.9 78.8 29 

Yany-13-02-53  415.0 11.1 429.2 16.3 505.8 82.7 29 

Yany-13-02-54  234.4 3.2 241.4 9.4 309.4 94.1 29 

Yany-13-02-55  2277.1 25.4 2344.8 13.5 2404.2 10.9 29 

Yany-13-02-56  219.2 3.5 217.9 10.1 204.1 113.9 29 

Yany-13-02-57  89.7 2.4 88.2 5.8 48.7 151.2 29 

Yany-13-02-58  281.2 8.4 288.6 41.6 349.0 369.8 29 

Yany-13-02-59  212.1 1.9 216.2 3.0 260.5 28.9 29 

Yany-13-02-60  262.5 4.9 269.8 13.6 333.3 123.3 29 

Yany-13-02-61  2296.8 33.4 2298.1 15.8 2299.3 4.0 29 

Yany-13-02-62  86.6 1.6 106.0 37.3 568.1 831.5 29 

Yany-13-02-63  865.9 33.9 860.1 44.2 845.2 132.6 29 

Yany-13-02-64  1940.8 33.8 1912.8 17.9 1882.6 8.7 29 

Yany-13-02-65  1686.6 53.6 1763.5 30.5 1855.9 8.0 29 

Yany-13-02-66  336.9 7.6 336.1 22.8 330.6 173.4 29 

Yany-13-02-67  631.4 13.7 633.2 12.2 639.8 26.3 29 

Yany-13-02-68  544.5 26.2 600.9 70.0 819.8 305.6 29 

Yany-13-02-69  291.0 6.6 291.0 10.3 290.6 77.1 29 
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Yany-13-02-71  288.0 7.3 276.2 15.5 177.4 136.7 29 

Yany-13-02-72  851.4 12.6 841.3 14.5 814.6 41.6 29 

Yany-13-02-73  1872.8 66.2 1871.3 36.4 1869.6 22.0 29 

Yany-13-02-74  1096.4 17.0 1092.9 22.5 1086.1 58.2 29 

Yany-13-02-75  753.4 25.8 772.7 24.0 829.1 53.5 29 

Yany-13-02-76  2392.5 49.2 2431.3 22.8 2464.0 4.5 29 

Yany-13-02-77  749.5 10.2 756.5 10.5 777.4 28.4 29 

Yany-13-02-78  317.8 5.4 319.1 11.1 329.0 83.1 29 

Yany-13-02-79  88.2 2.1 87.4 16.1 64.5 458.1 29 

Yany-13-02-80  88.3 2.3 87.9 4.9 78.2 124.4 29 

Yany-13-02-82  278.8 9.2 275.3 9.6 245.4 48.3 29 

Yany-13-02-83  1826.1 20.4 1826.4 12.5 1826.8 13.3 29 

Yany-13-02-84  2363.1 62.0 2490.8 29.2 2596.7 4.1 29 

Yany-13-02-85  89.8 1.5 89.8 6.3 92.1 168.0 29 

Yany-13-02-86  1803.0 41.6 1792.6 26.0 1780.6 29.1 29 

Yany-13-02-87  461.1 7.3 458.8 10.9 447.0 54.9 29 

Yany-13-02-88  1665.2 19.1 1747.8 10.9 1848.0 2.2 29 

Yany-13-02-89  302.3 16.4 337.4 40.0 586.7 277.8 29 

Yany-13-02-90  226.1 18.9 245.6 43.8 436.0 407.2 29 

Yany-13-02-91  1707.7 40.2 1780.3 22.7 1866.5 7.1 29 

Yany-13-02-92  804.8 16.5 798.4 21.9 780.5 69.3 29 

Yany-13-02-94  1827.0 78.7 1822.2 49.4 1816.6 56.0 29 

Yany-13-02-95  2382.7 64.3 2448.2 30.6 2503.1 12.6 29 

Yany-13-02-96  2156.8 58.5 2312.3 29.3 2452.7 7.4 29 

Yany-13-02-97  216.2 6.1 215.4 11.1 206.1 115.0 29 

Yany-13-02-98  212.4 5.5 207.0 26.5 145.5 327.9 29 

Yany-13-02-99  804.7 23.0 828.1 52.8 891.6 182.4 29 

                

Yany-13-04-01  884.7 27.0 894.1 28.7 917.6 73.1 31 

Yany-13-04-02  1760.2 36.1 1812.2 20.2 1872.6 8.3 31 

Yany-13-04-03  1303.6 42.9 1429.1 40.2 1621.3 70.3 31 

Yany-13-04-04  445.7 24.6 449.0 27.4 465.4 109.5 31 

Yany-13-04-05  592.4 14.2 587.1 19.8 566.5 79.7 31 

Yany-13-04-06  1759.2 23.5 1763.6 27.1 1768.9 52.1 31 

Yany-13-04-07  322.3 8.0 339.6 26.4 459.6 195.5 31 

Yany-13-04-08  289.3 7.3 288.1 18.2 279.0 155.0 31 

Yany-13-04-09  1107.3 10.1 1110.5 7.0 1116.7 5.8 31 

Yany-13-04-10  213.8 7.1 208.1 8.6 144.4 71.6 31 

Yany-13-04-100  207.0 4.2 205.7 8.9 191.0 100.7 31 

Yany-13-04-101  438.7 11.3 445.4 14.4 480.0 65.3 31 

Yany-13-04-102  209.9 2.0 211.7 2.8 232.8 25.8 31 
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Yany-13-04-103  776.5 15.0 783.3 16.3 802.5 45.6 31 

Yany-13-04-104  475.9 14.5 472.0 13.9 453.2 42.1 31 

Yany-13-04-106  1846.3 113.8 1859.7 60.6 1874.8 5.3 31 

Yany-13-04-107  1841.4 12.1 1864.2 6.9 1889.7 5.3 31 

Yany-13-04-108  535.5 12.7 556.0 16.4 640.6 62.9 31 

Yany-13-04-109  1785.1 96.6 1791.5 68.5 1798.9 95.7 31 

Yany-13-04-11  1895.9 34.4 1890.5 18.1 1884.7 5.3 31 

Yany-13-04-110  1746.5 50.1 1809.1 27.7 1882.0 3.2 31 

Yany-13-04-111  1746.8 18.3 1795.2 11.0 1852.0 9.4 31 

Yany-13-04-112  209.5 4.2 209.5 11.9 209.9 137.8 31 

Yany-13-04-12  334.4 11.5 319.3 43.8 210.9 363.0 31 

Yany-13-04-13  211.8 4.2 206.7 9.3 148.9 107.4 31 

Yany-13-04-14  1912.0 28.2 1895.4 14.8 1877.4 4.3 31 

Yany-13-04-15  1161.4 18.0 1159.2 12.0 1155.1 7.2 31 

Yany-13-04-16  219.3 6.3 213.0 9.6 144.3 94.7 31 

Yany-13-04-17  649.0 10.1 656.8 12.3 684.0 42.0 31 

Yany-13-04-18  1076.1 27.3 1069.3 20.0 1055.4 25.1 31 

Yany-13-04-19  508.1 20.7 517.0 64.5 556.8 336.0 31 

Yany-13-04-20  212.1 4.5 207.3 10.4 153.8 119.2 31 

Yany-13-04-22  213.9 7.4 205.0 34.5 103.7 433.9 31 

Yany-13-04-24  2410.4 23.2 2396.1 14.7 2384.0 18.8 31 

Yany-13-04-25  2038.9 44.2 2222.9 22.9 2397.0 4.7 31 

Yany-13-04-26  212.7 4.1 212.0 11.8 204.0 136.0 31 

Yany-13-04-27  1778.4 16.8 1815.7 10.9 1858.8 12.6 31 

Yany-13-04-28  2115.7 47.6 2300.7 24.1 2469.3 3.9 31 

Yany-13-04-29  253.4 4.4 244.5 18.3 160.3 192.6 31 

Yany-13-04-30  236.1 4.3 246.2 7.9 343.2 69.7 31 

Yany-13-04-31  211.4 3.0 212.7 12.5 226.8 147.6 31 

Yany-13-04-34  433.3 16.1 435.2 15.8 444.9 51.0 31 

Yany-13-04-35  442.9 11.8 452.2 24.4 499.7 133.9 31 

Yany-13-04-36  402.5 13.3 408.1 16.0 440.0 73.7 31 

Yany-13-04-37  812.3 65.1 839.8 50.1 913.2 41.7 31 

Yany-13-04-38  1963.0 27.9 1972.4 14.5 1982.2 3.8 31 

Yany-13-04-39  272.0 3.3 273.2 17.0 283.4 159.8 31 

Yany-13-04-41  250.7 6.9 234.7 34.8 77.7 390.7 31 

Yany-13-04-44  422.2 28.3 426.6 26.3 450.4 66.1 31 

Yany-13-04-45  1880.1 18.9 1877.5 10.3 1874.6 6.0 31 

Yany-13-04-46  769.3 13.1 778.2 44.4 803.8 166.8 31 

Yany-13-04-47  1741.0 19.4 1757.6 14.8 1777.3 22.5 31 

Yany-13-04-48  211.8 5.9 212.5 15.9 220.5 181.1 31 

Yany-13-04-49  214.4 4.4 213.0 10.1 198.0 111.9 31 
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Yany-13-04-50  213.5 3.0 215.5 13.9 237.5 161.7 31 

Yany-13-04-51  982.8 34.2 998.7 29.6 1033.9 55.8 31 

Yany-13-04-52  609.3 11.4 618.9 9.6 654.2 14.1 31 

Yany-13-04-53  806.8 33.8 801.6 27.2 787.3 42.7 31 

Yany-13-04-54  812.2 17.2 825.9 19.5 863.1 54.3 31 

Yany-13-04-55  328.5 18.5 323.3 30.3 286.1 212.9 31 

Yany-13-04-56  242.1 3.7 237.9 13.1 196.7 138.8 31 

Yany-13-04-57  315.3 3.0 319.5 9.0 349.7 71.2 31 

Yany-13-04-58  219.4 3.6 220.7 8.6 234.6 92.3 31 

Yany-13-04-60  801.5 19.6 800.1 23.3 796.2 69.7 31 

Yany-13-04-61  597.8 20.1 638.5 17.5 785.6 23.5 31 

Yany-13-04-62  88.2 1.8 95.8 7.7 287.3 187.0 31 

Yany-13-04-63  840.6 12.9 839.5 15.2 836.5 43.6 31 

Yany-13-04-64  1870.4 16.6 1880.6 8.9 1891.9 2.8 31 

Yany-13-04-65  747.8 28.5 757.6 52.8 786.5 189.6 31 

Yany-13-04-66  822.2 20.5 825.4 17.4 834.2 32.5 31 

Yany-13-04-67  475.7 7.2 470.8 11.4 446.6 57.5 31 

Yany-13-04-68  207.6 2.1 200.9 8.4 123.6 105.3 31 

Yany-13-04-69  611.2 11.3 606.7 10.4 589.8 25.8 31 

Yany-13-04-70  530.3 21.4 562.4 20.7 694.4 48.8 31 

Yany-13-04-71  829.9 12.7 842.8 32.9 877.1 113.9 31 

Yany-13-04-72  2622.1 61.3 2601.1 26.9 2584.8 6.7 31 

Yany-13-04-73  251.7 8.2 250.7 9.2 241.6 56.2 31 

Yany-13-04-74  1904.9 36.3 1888.4 19.1 1870.2 5.5 31 

Yany-13-04-75  1865.4 57.7 1871.2 30.8 1877.5 9.2 31 

Yany-13-04-76  402.5 5.4 405.2 6.1 420.5 27.2 31 

Yany-13-04-77  216.4 7.6 205.5 38.1 81.9 482.5 31 

Yany-13-04-80  282.9 6.4 286.8 11.9 318.2 94.3 31 

Yany-13-04-81  1876.2 62.4 1878.2 33.1 1880.5 8.6 31 

Yany-13-04-82  88.4 1.6 89.1 4.1 108.4 106.1 31 

Yany-13-04-83  442.2 5.4 445.0 8.2 459.7 42.3 31 

Yany-13-04-84  1877.8 33.6 1874.0 17.8 1869.8 5.4 31 

Yany-13-04-85  248.3 6.8 251.7 20.6 283.5 202.2 31 

Yany-13-04-86  222.4 7.1 247.3 29.9 490.7 292.6 31 

Yany-13-04-87  210.8 5.9 213.3 17.5 240.0 199.6 31 

Yany-13-04-88  216.2 6.8 218.4 17.0 242.4 185.2 31 

Yany-13-04-89  88.9 1.5 91.0 7.9 145.5 209.5 31 

Yany-13-04-90  1450.9 107.9 1508.5 65.4 1590.5 9.9 31 

Yany-13-04-91  265.0 8.6 260.6 37.9 221.0 375.7 31 

Yany-13-04-92  407.2 12.6 393.3 19.2 312.2 112.5 31 

Yany-13-04-94  209.8 3.2 207.5 8.6 182.1 100.5 31 
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Yany-13-04-96  1816.8 33.9 1995.1 36.1 2185.2 61.5 31 

Yany-13-04-97  438.0 17.1 455.9 22.0 547.5 96.3 31 

Yany-13-04-98  88.2 3.5 87.9 6.8 81.7 165.3 31 

Yany-13-04-99  812.0 16.4 802.6 23.8 776.5 77.9 31 

                

Yany-11-07-100  787.3 12.0 794.6 37.9 815.3 140.0 32 

Yany-11-07-101  298.9 9.6 290.2 23.6 221.2 202.8 32 

Yany-11-07-102  800.2 8.4 800.0 25.3 799.4 92.9 32 

Yany-11-07-103  216.8 2.7 219.7 6.1 250.8 64.3 32 

Yany-11-07-11  460.3 10.0 478.0 29.6 563.9 162.3 32 

Yany-11-07-12  773.8 7.1 779.1 9.8 794.3 31.6 32 

Yany-11-07-13  214.3 10.2 209.9 11.0 159.9 75.4 32 

Yany-11-07-14  451.0 7.6 453.0 9.7 462.9 44.1 32 

Yany-11-07-16  2416.1 87.9 2436.7 40.5 2453.9 6.4 32 

Yany-11-07-17  807.1 15.8 808.9 13.8 813.8 27.7 32 

Yany-11-07-18  429.7 5.1 438.6 11.4 485.9 65.5 32 

Yany-11-07-19  318.0 9.5 315.2 9.7 294.4 43.0 32 

Yany-11-07-2  2586.1 32.3 2650.9 14.6 2700.7 5.1 32 

Yany-11-07-21  357.2 8.7 358.1 9.7 364.1 45.3 32 

Yany-11-07-22  464.6 4.2 466.0 9.3 473.1 51.0 32 

Yany-11-07-23  2604.7 64.5 2564.4 28.5 2532.6 7.9 32 

Yany-11-07-24  1786.4 26.3 1822.7 14.9 1864.3 9.1 32 

Yany-11-07-25  261.5 4.4 265.1 8.4 297.6 71.7 32 

Yany-11-07-26  800.4 11.0 802.1 26.6 806.7 95.7 32 

Yany-11-07-27  85.5 3.1 90.5 25.5 223.8 688.7 32 

Yany-11-07-28  810.9 7.0 815.0 9.9 826.2 31.3 32 

Yany-11-07-29  272.6 4.7 276.5 11.0 309.0 95.8 32 

Yany-11-07-3  308.7 9.2 314.1 16.9 354.5 123.2 32 

Yany-11-07-30  208.1 4.2 202.8 9.5 141.4 111.7 32 

Yany-11-07-31  769.0 5.4 761.9 11.4 741.0 42.3 32 

Yany-11-07-32  785.2 15.3 784.2 18.5 781.5 56.2 32 

Yany-11-07-33  784.7 10.8 777.5 25.0 756.8 91.9 32 

Yany-11-07-34  316.2 3.9 308.5 14.8 250.6 124.8 32 

Yany-11-07-35  214.0 4.1 213.0 14.8 201.8 173.1 32 

Yany-11-07-36  2147.9 34.2 2137.5 17.5 2127.6 10.1 32 

Yany-11-07-37  2362.1 45.8 2415.5 24.4 2460.7 21.6 32 

Yany-11-07-38  370.4 8.1 361.0 10.4 301.4 58.8 32 

Yany-11-07-39  211.8 3.6 216.8 8.0 270.9 85.5 32 

Yany-11-07-4  209.2 2.0 211.7 3.2 239.9 31.1 32 

Yany-11-07-40  437.6 26.8 433.5 26.6 411.8 91.9 32 

Yany-11-07-41  214.5 8.3 214.1 19.1 210.4 210.7 32 
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Yany-11-07-42  439.2 19.8 432.1 27.1 394.4 137.3 32 

Yany-11-07-43  211.9 4.0 213.9 10.1 235.6 112.4 32 

Yany-11-07-44  771.2 21.2 776.0 51.1 789.6 188.1 32 

Yany-11-07-45  287.2 26.9 331.5 27.6 655.8 39.7 32 

Yany-11-07-46  1626.3 25.4 1723.1 15.4 1842.7 9.9 32 

Yany-11-07-48  1916.8 13.7 1900.5 9.3 1882.7 12.6 32 

Yany-11-07-49  205.2 4.3 204.1 14.7 191.7 177.7 32 

Yany-11-07-50  221.3 6.9 214.2 15.0 136.4 166.4 32 

Yany-11-07-51  1924.3 48.9 1895.6 26.1 1864.3 13.8 32 

Yany-11-07-54  798.3 17.5 804.6 19.0 822.2 51.9 32 

Yany-11-07-55  368.2 6.0 361.0 8.8 314.6 54.0 32 

Yany-11-07-56  786.6 20.6 782.5 19.7 770.9 48.8 32 

Yany-11-07-57  794.3 29.0 790.5 21.9 779.9 18.6 32 

Yany-11-07-58  1817.3 25.0 1845.2 14.1 1876.8 8.9 32 

Yany-11-07-59  2191.8 91.2 2189.2 44.3 2186.8 8.7 32 

Yany-11-07-61  758.0 15.2 769.9 42.2 804.4 157.7 32 

Yany-11-07-62  2589.4 48.0 2550.7 21.4 2520.1 7.5 32 

Yany-11-07-64  2389.1 16.9 2359.1 8.7 2333.3 7.5 32 

Yany-11-07-66  821.4 6.8 821.2 14.4 820.5 50.3 32 

Yany-11-07-67  500.6 18.5 507.1 20.4 536.7 73.6 32 

Yany-11-07-68  208.7 3.3 208.4 12.0 204.8 142.7 32 

Yany-11-07-69  257.7 7.3 235.6 28.2 20.8 314.9 32 

Yany-11-07-7  444.1 13.2 443.6 17.1 441.2 80.8 32 

Yany-11-07-70  90.0 6.4 89.6 10.2 78.2 227.2 32 

Yany-11-07-72  820.2 10.7 820.8 26.6 822.5 94.4 32 

Yany-11-07-73  767.6 31.5 765.3 25.4 758.5 39.2 32 

Yany-11-07-74  769.0 11.3 782.5 17.2 821.2 57.4 32 

Yany-11-07-75  338.6 6.0 342.4 11.8 368.4 81.7 32 

Yany-11-07-76  1914.3 33.7 1890.9 17.5 1865.2 2.8 32 

Yany-11-07-77  1920.9 77.7 1883.9 40.6 1843.3 13.6 32 

Yany-11-07-79  433.2 12.4 439.6 15.6 473.5 71.7 32 

Yany-11-07-82  518.3 13.5 538.0 23.5 622.2 106.4 32 

Yany-11-07-83  798.0 19.8 795.1 28.5 786.9 93.2 32 

Yany-11-07-84  2911.9 93.4 2842.2 38.3 2793.2 7.8 32 

Yany-11-07-85  1854.5 17.3 1859.3 9.5 1864.6 5.5 32 

Yany-11-07-86  1905.3 34.5 1896.6 18.2 1887.1 6.5 32 

Yany-11-07-87  85.3 4.1 82.3 9.2 -3.8 257.9 32 

Yany-11-07-89  418.3 7.2 421.6 11.2 439.7 60.3 32 

Yany-11-07-9  89.0 5.0 92.4 5.6 179.4 67.7 32 

Yany-11-07-90  800.6 9.6 809.2 19.0 832.9 65.9 32 

Yany-11-07-91  217.0 5.5 215.6 11.2 200.5 120.0 32 
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Yany-11-07-93  219.2 7.2 216.2 9.6 183.3 84.2 32 

Yany-11-07-94  215.0 3.0 218.0 9.5 250.4 107.1 32 

Yany-11-07-95  582.8 10.6 587.1 10.0 603.8 25.8 32 

Yany-11-07-96  1917.0 37.6 1896.9 19.7 1874.8 7.0 32 

Yany-11-07-97  272.4 3.8 270.1 10.6 250.9 97.6 32 

Yany-11-07-98  212.5 3.0 214.4 7.6 235.8 84.5 32 

Yany-11-07-99  773.9 11.6 771.9 11.7 766.0 30.9 32 

                

Yany-13-03-01  211.3 3.0 202.9 15.3 106.4 193.4 28 

Yany-13-03-02  538.2 13.0 519.3 34.2 436.8 179.0 28 

Yany-13-03-03  88.6 1.4 90.9 3.8 151.2 95.2 28 

Yany-13-03-04  1672.3 19.0 1759.9 11.0 1865.5 5.1 28 

Yany-13-03-05  751.2 9.8 760.6 18.1 788.1 65.0 28 

Yany-13-03-06  233.7 4.7 232.9 16.9 225.1 181.4 28 

Yany-13-03-07  208.4 3.8 206.0 25.9 178.3 322.6 28 

Yany-13-03-08  87.0 4.0 82.8 9.1 -36.7 253.3 28 

Yany-13-03-09  2472.8 45.3 2571.5 27.8 2650.2 33.0 28 

Yany-13-03-12  814.6 4.3 814.5 7.9 814.2 27.0 28 

Yany-13-03-13  2446.3 48.5 2404.8 29.6 2369.9 37.0 28 

Yany-13-03-14  1699.6 12.1 1710.0 18.7 1722.7 38.7 28 

Yany-13-03-15  899.1 62.8 915.7 46.8 955.8 40.8 28 

Yany-13-03-16  1893.0 52.4 1889.4 27.9 1885.3 11.9 28 

Yany-13-03-17  240.9 1.6 242.8 8.7 261.4 91.6 28 

Yany-13-03-18  211.9 2.5 208.8 11.4 173.5 137.7 28 

Yany-13-03-19  1840.8 16.3 1857.3 9.1 1875.9 6.2 28 

Yany-13-03-20  2304.0 30.4 2379.6 14.7 2444.9 5.4 28 

Yany-13-03-21  222.0 2.8 226.0 13.7 267.9 152.3 28 

Yany-13-03-22  87.6 0.9 84.6 2.8 -0.3 79.2 28 

Yany-13-03-23  250.3 6.8 259.9 17.1 348.2 156.4 28 

Yany-13-03-24  90.8 1.3 89.9 4.4 66.2 116.3 28 

Yany-13-03-25  1775.4 10.3 1818.7 5.8 1868.6 2.5 28 

Yany-13-03-26  2123.2 26.0 2102.0 13.2 2081.3 7.1 28 

Yany-13-03-27  217.5 2.7 220.3 9.8 250.4 110.7 28 

Yany-13-03-28  1691.7 19.3 1719.2 41.4 1752.8 88.2 28 

Yany-13-03-29  99.3 5.6 149.8 30.6 1049.9 431.9 28 

Yany-13-03-30  253.2 6.6 237.0 36.6 78.6 408.9 28 

Yany-13-03-31  265.3 11.4 287.4 57.2 471.2 501.7 28 

Yany-13-03-32  255.4 4.7 260.7 15.2 308.1 144.2 28 

Yany-13-03-33  531.0 5.1 519.1 18.0 466.7 95.7 28 

Yany-13-03-35  90.9 1.3 97.0 5.2 249.8 125.7 28 

Yany-13-03-36  214.7 3.7 207.6 10.9 127.5 130.9 28 
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Yany-13-03-38  1068.9 26.5 1075.4 20.1 1088.8 27.8 28 

Yany-13-03-39  217.1 1.6 221.1 5.2 264.0 57.7 28 

Yany-13-03-40  2271.5 10.0 2458.5 5.4 2617.0 4.4 28 

Yany-13-03-41  294.7 4.5 282.1 28.8 178.9 271.2 28 

Yany-13-03-42  88.1 1.3 85.8 5.1 21.3 144.2 28 

Yany-13-03-43  457.3 10.1 461.3 22.7 481.3 125.2 28 

Yany-13-03-44  799.3 10.0 819.7 18.3 875.3 61.5 28 

Yany-13-03-45  267.8 1.7 269.6 5.6 284.6 52.4 28 

Yany-13-03-46  798.9 6.4 794.1 18.6 780.7 68.6 28 

Yany-13-03-47  370.5 7.2 345.8 39.5 182.8 311.3 28 

Yany-13-03-48  994.3 4.9 1015.2 6.0 1060.5 15.4 28 

Yany-13-03-49  215.2 6.1 215.4 11.5 217.5 120.0 28 

Yany-13-03-50  774.4 6.7 774.6 8.0 775.4 24.2 28 

Yany-13-03-51  88.4 1.6 88.7 6.3 97.9 169.4 28 

Yany-13-03-52  211.6 1.0 209.8 4.8 189.5 57.6 28 

Yany-13-03-54  411.2 14.9 502.0 85.1 940.8 437.3 28 

Yany-13-03-55  1509.0 18.6 1649.4 12.3 1833.3 10.7 28 

Yany-13-03-56  92.5 3.1 90.8 23.6 46.2 653.4 28 

Yany-13-03-59  1682.2 46.1 1714.3 27.0 1753.7 17.6 28 

Yany-13-03-60  86.9 5.5 71.8 19.4 -404.5 722.1 28 

Yany-13-03-61  86.1 3.5 88.0 7.6 138.3 188.1 28 

Yany-13-03-62  219.5 5.0 216.7 15.3 186.4 174.8 28 

Yany-13-03-63  219.6 3.7 220.3 13.3 227.9 150.6 28 

Yany-13-03-64  250.1 7.2 235.3 17.7 90.2 187.1 28 

Yany-13-03-65  763.5 5.8 761.5 18.3 755.5 69.9 28 

Yany-13-03-66  502.9 7.9 513.5 10.2 561.2 42.0 28 

Yany-13-03-67  90.0 1.9 92.5 4.4 156.8 106.4 28 

Yany-13-03-68  1848.0 24.0 1861.6 13.3 1876.8 8.0 28 

Yany-13-03-70  1484.5 13.0 1631.3 8.7 1826.1 7.9 28 

Yany-13-03-71  2096.6 31.4 2199.7 22.0 2297.2 29.4 28 

Yany-13-03-72  1825.4 23.4 1828.0 17.0 1830.9 24.7 28 

Yany-13-03-73  416.1 4.4 419.0 13.6 434.9 84.8 28 

Yany-13-03-74  209.8 4.4 213.5 11.5 254.0 128.0 28 

Yany-13-03-75  2491.1 44.3 2498.0 20.3 2503.5 7.5 28 

Yany-13-03-76  562.7 5.0 562.7 6.0 562.8 22.5 28 

Yany-13-03-76B  258.5 7.3 253.2 54.6 204.4 567.8 28 

Yany-13-03-77  776.1 14.2 782.6 30.4 801.1 109.4 28 

Yany-13-03-78  1509.2 38.8 1654.1 26.4 1843.4 26.8 28 

Yany-13-03-80  531.9 10.0 530.5 16.2 524.7 74.6 28 

Yany-13-03-81  778.3 14.1 783.9 24.0 799.9 82.6 28 

Yany-13-03-82  227.5 7.8 227.8 9.3 231.6 67.3 28 
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Yany-13-03-83  2636.1 19.6 2662.8 9.7 2683.2 8.0 28 

Yany-13-03-84  2628.4 24.7 2657.8 11.9 2680.2 8.8 28 

Yany-13-03-85  448.5 8.0 441.4 15.3 405.1 86.0 28 

Yany-13-03-86  90.4 2.7 84.4 7.5 -82.6 214.4 28 

Yany-13-03-87  2010.3 29.1 1998.6 15.2 1986.5 7.7 28 

Yany-13-03-88  207.0 5.4 198.3 11.3 95.9 134.4 28 

Yany-13-03-89  442.5 7.4 441.4 10.9 436.0 55.8 28 

Yany-13-03-90  330.7 7.5 421.7 9.3 955.5 27.2 28 

Yany-13-03-91  1889.8 30.3 1889.2 16.8 1888.5 11.5 28 

                

Yany-13-08-01  230.3 2.9 231.3 8.0 241.3 83.7 30 

Yany-13-08-02  450.6 6.1 448.5 18.9 437.8 111.5 30 

Yany-13-08-03  2283.0 14.1 2406.2 6.8 2512.2 1.5 30 

Yany-13-08-04  216.2 4.9 211.6 37.1 160.2 454.2 30 

Yany-13-08-05  87.2 1.4 89.4 9.0 146.6 243.4 30 

Yany-13-08-06  794.0 14.2 787.5 12.9 769.2 29.4 30 

Yany-13-08-07  1905.9 19.5 1900.0 11.4 1893.5 11.1 30 

Yany-13-08-09  936.7 12.3 936.5 9.8 935.9 15.2 30 

Yany-13-08-10  88.7 1.4 90.7 7.3 144.1 195.2 30 

Yany-13-08-100  88.5 4.2 98.8 11.2 356.8 246.5 30 

Yany-13-08-101  217.7 11.0 215.9 11.6 196.4 72.1 30 

Yany-13-08-102  468.1 11.1 471.0 23.5 484.7 126.7 30 

Yany-13-08-103  1171.3 35.3 1158.4 24.4 1134.2 25.2 30 

Yany-13-08-104  431.0 7.8 466.5 29.1 645.3 162.4 30 

Yany-13-08-105  794.1 13.7 793.5 12.5 791.6 28.0 30 

Yany-13-08-12  217.2 6.7 215.4 13.7 196.0 146.4 30 

Yany-13-08-14  222.4 4.7 231.6 14.4 326.2 149.9 30 

Yany-13-08-15  219.0 5.7 220.2 14.5 233.1 158.2 30 

Yany-13-08-16  956.7 12.8 955.7 9.5 953.3 10.4 30 

Yany-13-08-17  1924.5 25.5 1917.3 14.6 1909.4 13.1 30 

Yany-13-08-18  1987.8 18.4 1989.4 11.4 1991.0 13.3 30 

Yany-13-08-19  786.9 21.2 780.8 28.7 763.3 93.2 30 

Yany-13-08-20  770.6 16.9 771.0 23.8 772.2 78.6 30 

Yany-13-08-21  292.8 10.9 245.1 60.2 -189.7 695.2 30 

Yany-13-08-22  1766.9 56.0 1817.1 30.9 1875.1 9.2 30 

Yany-13-08-23  88.8 2.5 82.7 10.1 -91.2 305.3 30 

Yany-13-08-24  1864.7 32.2 1870.3 23.9 1876.6 35.3 30 

Yany-13-08-25  430.7 18.3 428.3 17.4 415.1 53.2 30 

Yany-13-08-26  1881.4 33.4 1874.6 17.6 1867.2 3.5 30 

Yany-13-08-27  216.2 4.1 212.2 18.7 168.2 223.6 30 

Yany-13-08-28  818.5 16.8 820.6 13.6 826.5 21.5 30 
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Yany-13-08-29  1938.7 16.8 1907.3 10.0 1873.3 10.7 30 

Yany-13-08-30  217.2 3.1 221.1 6.3 262.6 64.8 30 

Yany-13-08-31  90.0 3.3 85.4 6.8 -40.3 179.3 30 

Yany-13-08-32  86.6 6.2 79.8 7.6 -119.6 167.3 30 

Yany-13-08-34  256.8 12.5 247.1 36.9 156.2 378.2 30 

Yany-13-08-35  1062.9 12.8 1054.3 8.7 1036.5 5.3 30 

Yany-13-08-37  92.2 6.1 91.3 6.2 68.3 55.9 30 

Yany-13-08-38  260.2 5.1 258.3 12.0 241.2 112.5 30 

Yany-13-08-39  216.0 6.9 210.5 13.6 149.5 149.7 30 

Yany-13-08-40  87.9 2.3 84.9 10.4 3.0 302.5 30 

Yany-13-08-43  205.9 9.8 204.0 10.1 182.1 60.4 30 

Yany-13-08-44  1609.2 37.6 1612.2 23.5 1616.2 22.7 30 

Yany-13-08-45  209.7 9.6 208.5 15.3 195.0 154.0 30 

Yany-13-08-46  2450.7 39.2 2473.7 18.4 2492.7 7.9 30 

Yany-13-08-47  210.6 4.7 210.8 10.9 213.4 122.2 30 

Yany-13-08-48  1926.5 23.5 1906.7 12.5 1885.2 5.9 30 

Yany-13-08-49  89.8 2.8 88.4 4.3 49.9 95.3 30 

Yany-13-08-50  222.7 19.5 216.6 19.1 150.7 93.4 30 

Yany-13-08-51  824.5 17.7 821.5 38.6 813.6 135.1 30 

Yany-13-08-52  206.1 12.9 206.6 16.7 211.6 145.3 30 

Yany-13-08-53  759.4 17.1 771.8 37.7 808.0 137.3 30 

Yany-13-08-54  212.3 7.6 203.7 37.9 105.7 481.6 30 

Yany-13-08-55  767.6 15.1 771.1 13.5 781.2 28.7 30 

Yany-13-08-56  1858.0 60.5 1869.6 32.5 1882.4 12.4 30 

Yany-13-08-57  1121.6 26.7 1121.0 20.1 1119.7 28.2 30 

Yany-13-08-58  2452.1 29.5 2471.4 13.9 2487.3 6.6 30 

Yany-13-08-60  788.4 28.6 803.2 29.3 844.4 75.1 30 

Yany-13-08-62  215.4 7.1 203.4 25.8 65.9 324.3 30 

Yany-13-08-63  1528.8 28.0 1665.8 17.7 1843.1 11.8 30 

Yany-13-08-64  778.9 28.6 775.6 48.5 766.3 169.6 30 

Yany-13-08-65  805.3 34.6 825.3 32.1 879.6 69.9 30 

Yany-13-08-66  814.2 22.8 832.9 49.9 883.2 171.0 30 

Yany-13-08-68  1703.8 23.4 1780.5 13.5 1871.6 6.3 30 

Yany-13-08-69  972.5 29.8 978.9 23.5 993.4 35.6 30 

Yany-13-08-70  764.6 11.2 763.8 11.2 761.5 29.3 30 

Yany-13-08-71  1615.6 31.5 1719.5 18.4 1848.4 4.7 30 

Yany-13-08-72  209.6 6.1 212.9 7.3 249.3 56.1 30 

Yany-13-08-73  456.6 33.1 501.3 45.0 710.8 181.6 30 

Yany-13-08-74  1645.1 30.8 1643.9 18.3 1642.4 13.8 30 

Yany-13-08-75  1893.0 57.4 1924.2 32.0 1958.0 21.7 30 

Yany-13-08-76  216.3 7.2 190.1 29.1 -124.1 408.7 30 
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Yany-13-08-77  800.5 17.7 797.3 17.3 788.3 43.3 30 

Yany-13-08-78  213.9 6.7 206.2 16.4 118.7 193.6 30 

Yany-13-08-79  1764.9 31.7 1815.6 18.3 1874.2 12.2 30 

Yany-13-08-80  212.1 8.3 208.4 15.0 167.0 161.0 30 

Yany-13-08-81  891.3 74.4 911.1 69.1 959.6 147.3 30 

Yany-13-08-82  449.3 7.0 454.0 11.4 477.9 58.6 30 

Yany-13-08-83  264.9 8.0 238.4 39.5 -15.1 446.6 30 

Yany-13-08-84  331.9 10.5 322.6 58.0 256.0 480.5 30 

Yany-13-08-85  87.5 7.0 96.5 24.7 326.6 590.1 30 

Yany-13-08-86  444.5 8.1 443.2 15.6 436.3 87.3 30 

Yany-13-08-87  1005.0 22.3 1003.2 22.0 999.4 50.6 30 

Yany-13-08-88  404.8 7.0 392.8 14.7 322.4 94.3 30 

Yany-13-08-89  1972.9 153.3 1927.8 78.1 1879.7 6.6 30 

Yany-13-08-90  477.6 15.2 484.3 20.1 516.4 89.1 30 

Yany-13-08-91  745.8 33.0 780.7 26.0 881.7 19.1 30 

Yany-13-08-92  734.0 31.5 730.7 26.9 720.3 51.7 30 

Yany-13-08-93  2753.6 92.4 2788.8 40.1 2814.4 14.5 30 

Yany-13-08-94  2338.9 54.5 2334.7 25.8 2331.1 8.7 30 

Yany-13-08-95  841.5 22.8 831.3 26.7 804.0 77.9 30 

Yany-13-08-96  286.7 17.0 282.0 43.0 243.3 379.9 30 

Yany-13-08-97  821.4 14.9 814.1 12.5 794.2 23.9 30 

Yany-13-08-98  1055.3 89.1 1100.7 63.0 1191.6 39.3 30 

Yany-13-08-99  1884.7 24.1 1880.2 12.8 1875.1 4.5 30 

Yany-13-08-S41  422.4 11.7 411.7 14.0 352.4 67.3 30 

                

Yany-13-11-01  809.5 8.5 826.0 15.4 870.9 51.6 27 

Yany-13-11-02  805.9 10.5 804.6 18.4 801.0 63.1 27 

Yany-13-11-03  778.5 11.1 778.7 12.3 779.3 35.6 27 

Yany-13-11-04  805.3 10.3 811.2 35.8 827.7 130.8 27 

Yany-13-11-05  753.6 8.7 755.4 22.5 760.7 85.1 27 

Yany-13-11-06  779.3 11.2 780.1 15.2 782.2 49.1 27 

Yany-13-11-07  765.9 8.2 776.8 19.6 808.3 71.6 27 

Yany-13-11-08  651.7 6.1 687.9 6.5 808.3 17.9 27 

Yany-13-11-09  227.6 2.5 227.8 6.1 230.3 63.6 27 

Yany-13-11-10  804.0 11.8 809.0 38.2 823.0 139.3 27 

Yany-13-11-11  764.9 14.0 761.6 28.3 751.6 103.6 27 

Yany-13-11-12  809.3 5.1 807.0 5.6 800.6 15.6 27 

Yany-13-11-13  538.0 5.2 530.3 19.7 497.4 102.8 27 

Yany-13-11-14  764.2 10.1 763.9 13.8 762.9 45.6 27 

Yany-13-11-15  816.2 7.6 812.1 10.8 800.8 34.6 27 

Yany-13-11-17  795.4 6.8 788.0 18.0 767.1 66.6 27 
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Yany-13-11-18  831.9 10.9 839.5 24.3 859.6 83.4 27 

Yany-13-11-20  768.0 30.3 792.5 24.5 862.1 31.6 27 

Yany-13-11-21  808.3 16.8 803.1 16.6 788.4 42.4 27 

Yany-13-11-22  821.4 12.3 831.1 15.2 857.2 44.8 27 

Yany-13-11-23  783.6 8.4 782.3 12.5 778.6 41.8 27 

Yany-13-11-24  779.5 11.0 778.2 18.0 774.5 62.1 27 

Yany-13-11-25  796.0 3.9 797.1 5.5 800.1 17.9 27 

Yany-13-11-28  760.5 13.3 757.9 28.4 750.3 105.1 27 

Yany-13-11-30  791.3 10.2 789.1 12.8 782.8 39.9 27 

Yany-13-11-32  811.9 5.3 812.6 13.6 814.6 48.8 27 

Yany-13-11-33  692.7 5.9 716.6 8.8 792.1 30.6 27 

Yany-13-11-34  806.4 5.9 803.6 11.1 796.0 38.5 27 

Yany-13-11-35  768.9 13.4 763.7 47.1 748.3 181.3 27 

Yany-13-11-36  718.7 6.1 733.8 7.2 780.3 21.8 27 

Yany-13-11-37  767.2 7.1 766.2 8.6 763.4 26.6 27 

Yany-13-11-38  788.9 7.6 781.4 11.5 760.1 39.1 27 

Yany-13-11-39  779.7 8.5 798.5 13.9 851.2 46.3 27 

Yany-13-11-40  783.6 8.8 794.5 7.8 825.2 15.8 27 

Yany-13-11-41  775.2 5.1 784.3 12.3 810.1 44.7 27 

Yany-13-11-42  18.3 0.6 14.8 5.3 -519.4 989.9 27 

Yany-13-11-43  785.5 21.8 805.2 24.6 860.1 68.5 27 

Yany-13-11-44  784.2 8.9 794.3 8.3 822.8 18.8 27 

Yany-13-11-45  794.1 29.9 792.4 42.1 787.5 137.2 27 

Yany-13-11-46  774.9 6.8 767.9 17.3 747.7 64.7 27 

Yany-13-11-48  781.4 10.7 780.4 32.6 777.5 122.4 27 

Yany-13-11-50  783.2 9.1 789.4 12.2 807.1 38.6 27 

Yany-13-11-51  803.9 12.5 811.1 14.9 830.9 43.6 27 

Yany-13-11-52  752.7 14.3 756.2 21.1 766.7 71.9 27 

Yany-13-11-53  803.1 9.6 816.0 14.0 851.5 44.9 27 

Yany-13-11-54  741.7 18.9 753.0 18.1 786.5 43.3 27 

Yany-13-11-55  927.0 24.2 963.3 18.9 1047.1 23.0 27 

Yany-13-11-56  755.9 35.7 774.9 35.6 830.0 88.5 27 

Yany-13-11-57  807.9 12.9 811.8 12.9 822.6 32.8 27 

Yany-13-11-58  760.7 12.1 758.9 12.5 753.7 34.2 27 

Yany-13-11-59  791.5 10.3 804.8 19.0 841.8 65.1 27 

Yany-13-11-60  776.7 32.9 792.9 25.4 838.7 22.6 27 

Yany-13-11-61  763.3 17.5 765.1 29.0 770.3 101.4 27 

Yany-13-11-62  802.2 16.5 805.0 14.0 812.5 26.3 27 

Yany-13-11-63  885.1 17.7 916.1 20.1 991.5 51.8 27 

Yany-13-11-66  802.7 13.2 803.3 12.2 804.9 27.4 27 

Yany-13-11-67  751.8 12.8 750.5 17.4 746.6 57.9 27 
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Yany-13-11-68  669.8 15.4 694.1 12.6 773.7 12.9 27 

Yany-13-11-69  775.8 19.3 773.2 19.8 765.7 53.4 27 

Yany-13-11-70  530.2 12.6 544.6 18.0 605.4 75.1 27 

Yany-13-11-71  719.9 25.5 732.8 20.4 772.2 22.8 27 

Yany-13-11-73  1228.3 29.0 1233.6 21.7 1242.9 30.8 27 

                

Yany-13-12-01  758.7 13.5 787.1 31.4 868.4 112.2 26 

Yany-13-12-04  825.7 6.3 827.1 9.6 830.9 31.2 26 

Yany-13-12-05  689.1 11.7 694.1 13.3 710.6 41.0 26 

Yany-13-12-07  770.4 12.5 772.9 41.2 780.1 156.2 26 

Yany-13-12-08  777.7 14.1 768.9 15.1 743.6 42.9 26 

Yany-13-12-09  755.6 5.9 771.1 15.3 816.3 56.4 26 

Yany-13-12-11  774.8 14.9 798.9 35.5 866.9 126.4 26 

Yany-13-12-12  919.0 14.6 921.0 21.6 926.0 64.6 26 

Yany-13-12-13  769.1 13.5 768.6 18.4 767.2 60.1 26 

Yany-13-12-14  822.2 13.4 831.7 20.0 857.2 63.6 26 

Yany-13-12-15  793.8 11.5 799.7 48.3 816.2 179.7 26 

Yany-13-12-16  981.7 33.5 969.2 29.9 940.9 62.6 26 

Yany-13-12-17  758.4 12.6 779.9 22.3 842.0 76.9 26 

Yany-13-12-18  768.9 58.0 808.5 49.5 919.3 78.9 26 

Yany-13-12-19  801.6 7.7 796.8 9.7 783.4 29.9 26 

Yany-13-12-20  727.6 20.4 736.2 22.7 762.5 66.8 26 

Yany-13-12-21  772.5 21.0 776.2 34.5 786.6 118.9 26 

Yany-13-12-25  845.5 10.6 844.2 9.4 840.6 19.8 26 

Yany-13-12-26  769.8 17.9 776.2 21.5 794.9 65.1 26 

Yany-13-12-28  775.0 11.8 793.3 17.6 845.0 57.4 26 

Yany-13-12-29  483.3 10.1 489.3 17.8 517.5 89.0 26 

Yany-13-12-30  1038.3 17.3 1040.5 16.0 1045.2 33.7 26 

Yany-13-12-31  858.2 22.1 861.4 16.8 869.4 18.7 26 

Yany-13-12-32  821.4 24.4 834.6 26.4 869.9 70.5 26 

Yany-13-12-33  773.8 15.3 768.0 27.8 751.1 99.4 26 

Yany-13-12-34  776.0 11.7 796.3 52.4 853.6 194.6 26 

Yany-13-12-35  2098.1 27.3 2264.4 14.7 2418.2 9.7 26 

Yany-13-12-37  754.7 28.9 770.7 23.0 817.5 26.7 26 

Yany-13-12-39  767.9 26.8 774.4 21.0 793.0 24.5 26 

Yany-13-12-40  781.1 19.4 773.4 26.2 751.4 85.9 26 

Yany-13-12-41  1103.2 84.1 1102.3 56.6 1100.5 27.0 26 

Yany-13-12-42  727.6 13.3 742.0 36.7 785.8 140.9 26 

Yany-13-12-43  796.0 23.1 810.0 29.5 848.9 89.5 26 

Yany-13-12-44  1799.0 68.7 1843.8 38.0 1894.8 16.0 26 

Yany-13-12-49  788.0 27.6 802.4 45.5 842.7 152.2 26 
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Yany-13-12-50  813.1 17.6 818.6 37.0 833.6 128.7 26 

Yany-13-12-51  781.3 18.4 773.8 36.3 751.9 131.6 26 

Yany-13-12-54  957.3 21.0 964.2 37.2 980.0 111.7 26 

Yany-13-12-55  778.7 18.0 783.8 25.3 798.5 82.6 26 

Yany-13-12-56  802.4 20.6 803.6 18.2 807.0 38.0 26 

Yany-13-12-57  2534.3 115.6 2568.2 53.5 2595.1 24.8 26 

Yany-13-12-58  276.4 17.5 315.1 46.0 612.6 341.0 26 

Yany-13-12-60  797.3 19.1 793.1 23.0 781.3 69.8 26 

Yany-13-12-62  795.4 7.8 788.3 10.1 768.1 32.2 26 

Yany-13-12-64  829.8 47.1 832.1 37.1 838.2 51.1 26 

Yany-13-12-65  751.5 9.3 752.9 10.7 757.1 32.4 26 

Yany-13-12-66  770.0 14.2 763.5 13.9 744.6 35.7 26 

Yany-13-12-67  839.3 37.7 830.9 29.1 808.4 37.8 26 

Yany-13-12-69  789.2 23.5 789.9 26.9 792.0 78.5 26 

Yany-13-12-70  791.1 21.5 801.5 27.8 830.5 85.5 26 

Yany-13-12-71  828.2 15.6 821.0 12.9 801.5 22.9 26 

Yany-13-12-72  792.0 7.7 790.5 12.1 786.0 40.7 26 

Yany-13-12-73  775.2 10.1 782.6 10.3 803.5 27.1 26 

Yany-13-12-74  796.9 15.3 794.2 26.8 786.6 92.5 26 

Yany-13-12-75  780.0 15.2 777.6 14.5 770.6 35.7 26 

Yany-13-12-76  779.1 12.5 778.0 13.2 774.6 36.2 26 

Yany-13-12-77  775.6 11.1 772.6 11.0 764.0 28.4 26 

Yany-13-12-78  761.1 11.0 756.0 11.0 741.1 29.2 26 

Yany-13-12-79  754.7 8.8 751.0 15.6 740.2 56.4 26 

Yany-13-12-80  768.5 12.9 764.1 18.8 751.3 63.6 26 

Yany-13-12-82  614.5 4.9 631.8 7.7 694.4 30.0 26 

Yany-13-12-84  2002.4 43.3 2018.5 25.7 2035.0 26.7 26 

Yany-13-12-85  973.3 21.5 974.2 16.1 976.2 20.1 26 

Yany-13-12-86  775.9 13.7 774.5 12.2 770.3 26.3 26 

Yany-13-12-87  794.7 17.6 801.8 14.8 821.6 26.9 26 

                

Yany-13-13-01  771.6 6.9 769.2 14.6 762.4 53.3 25 

Yany-13-13-02  793.8 19.2 797.0 29.1 806.1 96.3 25 

Yany-13-13-04  817.7 5.3 817.5 7.1 817.2 22.4 25 

Yany-13-13-05  822.5 11.7 826.7 22.9 837.8 78.3 25 

Yany-13-13-06  788.7 12.8 801.7 30.1 838.1 107.1 25 

Yany-13-13-07  822.5 27.1 845.6 25.5 906.6 56.2 25 

Yany-13-13-09  798.1 9.0 797.0 34.9 794.0 130.2 25 

Yany-13-13-10  769.9 10.5 779.4 37.0 806.8 139.3 25 

Yany-13-13-100  792.8 13.5 800.9 32.4 823.4 115.9 25 

Yany-13-13-101  773.7 9.0 770.3 17.2 760.5 62.0 25 
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Yany-13-13-12  531.6 9.9 531.6 22.2 531.2 109.7 25 

Yany-13-13-13  735.0 17.4 768.1 14.9 866.0 23.9 25 

Yany-13-13-14  789.1 9.8 789.8 11.7 791.8 35.0 25 

Yany-13-13-17  778.0 24.6 776.0 55.8 770.3 205.0 25 

Yany-13-13-18  788.9 6.3 789.5 10.6 791.2 36.4 25 

Yany-13-13-19  767.7 8.5 772.9 15.3 788.0 54.0 25 

Yany-13-13-20  779.4 7.6 789.4 23.1 817.8 85.2 25 

Yany-13-13-21  778.9 8.3 792.9 10.7 832.5 32.8 25 

Yany-13-13-22  805.6 5.6 806.9 9.8 810.3 33.5 25 

Yany-13-13-23  765.2 12.7 772.5 35.6 793.7 132.9 25 

Yany-13-13-25  768.1 6.1 776.0 22.1 798.7 83.7 25 

Yany-13-13-26  800.2 7.9 809.4 11.6 835.0 37.3 25 

Yany-13-13-27  862.0 9.1 856.0 13.3 840.4 41.8 25 

Yany-13-13-30  796.7 9.6 811.1 26.4 850.8 94.6 25 

Yany-13-13-31  755.1 4.1 766.1 7.9 798.3 28.5 25 

Yany-13-13-32  739.3 29.2 764.0 26.1 837.1 51.6 25 

Yany-13-13-33  2965.0 46.0 3105.6 19.3 3197.7 7.6 25 

Yany-13-13-34  258.7 4.3 254.1 17.6 211.4 177.1 25 

Yany-13-13-35  778.2 8.3 792.0 26.1 831.2 96.0 25 

Yany-13-13-36  760.1 8.2 781.9 19.3 844.7 69.7 25 

Yany-13-13-37  963.6 18.1 968.5 15.3 979.4 27.8 25 

Yany-13-13-39  772.4 10.2 779.9 12.7 801.3 39.4 25 

Yany-13-13-40  787.0 7.4 778.3 22.6 753.4 85.3 25 

Yany-13-13-42  798.3 8.4 802.5 23.8 814.3 86.5 25 

Yany-13-13-44  957.2 13.6 979.8 12.0 1031.0 23.3 25 

Yany-13-13-45  1424.6 54.7 1529.3 34.2 1677.1 10.9 25 

Yany-13-13-46  787.3 12.4 787.1 14.1 786.3 40.8 25 

Yany-13-13-47  780.6 6.7 774.7 13.0 757.9 46.7 25 

Yany-13-13-49  777.2 8.6 779.2 8.4 785.2 21.1 25 

Yany-13-13-50  776.7 16.8 808.7 30.9 897.8 104.0 25 

Yany-13-13-52  783.1 9.4 784.9 15.5 790.1 53.0 25 

Yany-13-13-53  814.9 6.3 810.9 18.2 799.9 66.0 25 

Yany-13-13-54  769.2 4.9 762.2 10.1 741.6 37.1 25 

Yany-13-13-55  797.1 23.2 816.9 38.6 871.2 127.5 25 

Yany-13-13-56  790.6 14.6 786.1 25.5 773.2 89.1 25 

Yany-13-13-58  764.7 14.6 764.8 16.6 765.2 49.2 25 

Yany-13-13-61  856.1 35.3 846.1 26.1 819.9 23.2 25 

Yany-13-13-62  773.4 14.8 765.9 25.1 743.9 88.7 25 

Yany-13-13-63  770.7 13.8 775.1 15.8 787.9 46.4 25 

Yany-13-13-65  267.3 7.6 268.6 14.5 280.3 124.3 25 

Yany-13-13-66  212.1 4.8 216.0 27.6 258.6 323.0 25 
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Yany-13-13-67  769.3 10.4 768.6 20.9 766.6 76.0 25 

Yany-13-13-68  756.3 12.4 759.8 46.4 769.9 179.2 25 

Yany-13-13-69  766.1 12.6 775.7 26.8 803.4 96.7 25 

Yany-13-13-70  792.3 13.3 796.9 23.9 809.7 82.4 25 

Yany-13-13-72  791.7 18.1 805.3 27.8 843.3 90.8 25 

Yany-13-13-73  811.5 26.5 825.3 28.1 862.5 73.7 25 

Yany-13-13-74  767.5 11.2 767.5 13.5 767.4 41.7 25 

Yany-13-13-76  858.4 13.3 858.0 12.7 856.9 30.0 25 

Yany-13-13-77  800.8 9.1 806.0 14.7 820.3 49.2 25 

Yany-13-13-78  794.2 22.7 800.7 21.7 818.8 51.9 25 

Yany-13-13-79  816.8 14.0 817.3 22.2 818.5 73.4 25 

Yany-13-13-80  801.2 28.2 802.7 29.6 806.8 79.5 25 

Yany-13-13-81  800.4 19.8 812.1 17.1 844.4 33.0 25 

Yany-13-13-85  539.7 12.6 570.3 13.0 694.2 36.4 25 

Yany-13-13-87  795.6 16.7 796.5 21.5 798.9 66.7 25 

Yany-13-13-88  783.8 10.0 782.7 10.8 779.6 30.4 25 

Yany-13-13-89  801.4 10.4 814.3 25.4 849.8 89.9 25 

Yany-13-13-90  782.2 12.4 773.5 13.9 748.6 40.9 25 

Yany-13-13-91  795.4 17.4 806.7 42.4 838.0 151.2 25 

Yany-13-13-92  374.4 8.8 401.2 12.7 558.6 64.6 25 

Yany-13-13-93  1885.2 25.4 1865.2 14.0 1842.9 9.2 25 

Yany-13-13-95  837.1 12.6 826.6 9.9 798.4 14.3 25 

Yany-13-13-98  802.7 32.3 817.8 32.9 859.0 83.0 25 

Yany-13-13-99  766.0 19.7 770.4 38.5 783.2 138.6 25 
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Table I.2. Sample Locations 

Sample 

Name 

Deposit 

Age Latitude Longitude 

Dali-13-04 N2 26.00115 99.81805 

Hong-11-01 Modern 25.140171 100.3168 

Jian-11-06 N1 26.593921 99.847463 

Jian-11-18 N1 26.621358 99.849063 

Jian-11-39 N1 26.621358 99.849063 

Jians-13-05 N2 23.6689 102.84065 

Jians-13-07 N2 23.62689 102.78594 

Jians-13-08 N2 23.62531 102.78457 

Jing-12-01 N1 23.514267 100.70992 

Jing-12-05 N1 23.512033 100.70722 

Jing-12-16 N1 23.509333 100.69743 

Jing-12-24 N1 23.50885 100.68858 

Jing-12-25 N1 23.508417 100.68783 

Jing-13-01 P2-3 23.599785 100.72826 

Lan-11-01 N2 26.461868 99.448518 

Lan-11-02 N2 26.459479 99.446333 

Lan-11-04 N2 26.457338 99.434963 

Lij-12-01 P2 26.885336 100.24008 

Lim-12-05 P2 27.083432 99.576293 

Lim-12-26 P2 27.071417 99.557183 

Lim-12-42 P3 27.0659 99.546117 

Luhe-11-18 N2 25.157047 101.35414 

Mek-11-02 Modern 26.485513 99.69906 

Midu-11-01 P2-3 25.310403 100.41834 

Midu-11-02 P2-3 25.302397 100.39944 

Shi-12-01 P2 26.87055 99.748583 

Shi-12-02 P2 26.870417 99.700367 

Yany-11-07 P2 27.60447 101.55926 

Yany-13-02 N2 27.53774 101.52378 

Yany-13-03 N2 27.53774 101.52378 

Yany-13-04 P2 27.400815 101.53126 

Yany-13-08 P2 27.40416 101.52825 

Yany-13-11 N2 27.541 101.48976 

Yany-13-12 N2 27.54072 101.492 

Yany-13-13 N2 27.49935 101.54014 
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Appendix II: Chapter 2 

A.II.1. Grid Search Technique 

 For samples exceeding 11 possible sources we develop a simple grid search mixing 

model to determine the optimal mixing proportions of potential contributing sources with no a 

priori knowledge of which sources to include in the mixture). Each sample is compared to all 

potential contributing sources using likeness (Satkoski et al., 2013). Sample-to-source likeness 

values are sorted from highest to lowest. Sources are mixed and these mixtures are compared to 

the original sample using likeness values. We do not mix sources with likenesses less than 5% as 

they fall below a reasonable level of identifiable inclusion. We define the optimal mix to be 

when the maximum likeness value is achieved. We choose likeness to better match the shape of 

the curves and the proportional sizes of each mode. 

 In a simple scenario, sample P contains four sources that pass the likeness threshold; S1, S2, 

S3, and S4, with likeness values of 0.5, 0.3, 0.2, and 0.1, respectively. S1 has the highest R
2
, 

therefore in our mixing model is adjusted first in 5% increments starting at S1 = 0% for the first 

mixture. The remaining fraction is split evenly between the other sources [(100-S1)/3] for source 

contributions of 0%, 33.3%, 33.3%, and 33.3% for S1, S2, S3, and S4 respectively. Probability 

density functions of each source are multiplied by their respective proportions and summed, 

creating a mixed probability function. This mixture is compared to the original sample using 

likeness, that value of which is noted (LKmix1).  

The proportion for S1 is varied by 5% for the second mixture, with S2, S3, and S4 taking the 

remaining fraction, and the mixing process is repeated (5%, 31.67%, 31.67%, 31.67%) and 

likeness is calculated again (LKmix2). This continues until S1 reaches 100%. To proceed, we find 
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the mixture with the highest LKmix, so far. The S1 value, S1f, for this mixture is held constant for 

all subsequent mixtures for sample P. S2 has the second highest R
2
 value and is adjusted next in 

5% increments between 0% and maximum value of 100% S1f. The model follows the same steps 

as above. This is repeated until all but one source has been adjusted (i.e. S1f, S2f, and S3f have 

been found) as the last source, S4, is adjusted simultaneously with the previous source, or until 

the fixed values sum to 100%.  

A.II.2. Results of the Yangtze River Tributary Dataset.  

The Yalong tributary sources primarily Neoproterozoic –Longmenshan zircons, as well as 

plutonic zircons the Songpan Ganze Terrane (Fig. 7B). For the Yalong, Dadu, Min and Jialing 

Rivers, which source the eastern flank of the Songpan Ganze Terrane block, as well as the 

Longmenshan block (Fig. 7), we see high Songpan Ganze Terrane signals in each with the rest 

remaining zircons derived from Triassic volcanics (i.e. Qiangtang, Yidun, SPGT), Longmenshan, 

and Jurassic sediments from the Sichuan Basin. The Wu River flows primarily through the 

Sichuan Basin and the mixing proportions reflect the incorporation of Upper Triassic rather than 

Jurassic sediments of the Sichuan Basin and Yangtze Cratonic age zircons, along with minor 

contributions of Neoproterozoic volcanics while seeming to exclude Jurassic sediment. The Han 

River flows roughly ESE, primarily through the Longmenshan and Qinling-Dabieshan fold belt, 

which contribute the majority of the Hanjiang's zircons, with some minor contributions from 

Jurassic Sichuan Basin sediment, which does have an appreciable areal extent within the 

Hanjiang Catchment. The bedrock of the Yuanjiang catchment appears composed primarily of 

zircons derived from the South China Block and Sichuan Basin. The drainages of the Xiangjiang 

and Ganjiang source the Cathaysian block, represented by the North and Oujiang River, as well 

as Caledonian age and Neoproterozoic age (~830 Ma) plutonic zircons associated with South 
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China.  
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Figures 

Figure II.1. Drainage of the Yangtze River. Roman Numerals indicate the sampled locations 

of the Yangtze River and its major tributaries. Small black dots indicate the approximate 

sampling locations of potential source zircon age populations. Source sampling locations may 

represent geologically contiguous units. Sources and their references are: 1. Dabie Shan 

Yangtze Block (Clift, Carter, et al., 2006; Hacker et al., 1998); 2. Yangtze Craton Eastern 

(Clift, Carter, et al., 2006; Li, 1999; Zhang et al., 2006a; Zheng et al., 2006; Gao et al., 2011; 

Zhang et al., 2006b); 3. Ailao Shan (Leloup et al., 1993, 1995; Lin et al., 2012; Cao et al., 2011; 

Clift, Carter, et al., 2006; Harrison and Leloup, 1996; Wang et al., 1998; Jolivet et al., 1999; 

Maluski et al., 2001); 4. Cathaysia (Li, 2005; Clift, Carter, et al., 2006; Xianhua et al., 1989); 5. 

Gangdese Arc (He et al., 2007; Wen et al., 2008; Ji et al., 2009); 6. Qiangtang Triassic 

Volcanics (Peng et al., 2014a; Zhai et al., 2013); 7. Yidun (K) (Reid et al., 2007; Peng et al., 

2014b); 8. Laji Shan and West Qinling (Lease et al., 2007); 9. Longmenshan Neoproterozoic 

Plutons (Pei et al., 2009); 10. Yanbian Terrane Plutons (Zhou et al., 2006); 11. Luliang (Zhuo 
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et al., 2013); 12. Jomda-Weixi Arc (Yang, Liang, et al., 2014); 13. Kunlunshan (Chen et al., 

2008; Gehrels, Kapp, et al., 2011); 14. Cenozoic Volcanics (Clift, Carter, et al., 2006; Liu et al., 

2013; Yang et al., 2013); 15. Yidun East (Reid et al., 2007; Peng et al., 2014b); 16. Yidun West 

(Reid et al., 2007; Peng et al., 2014b); 17. Emeishan (Shellnutt, 2014); 18. Yangtze Craton 

West (Sun et al., 2009; Greentree and Li, 2008; Wang, Yu, et al., 2012; Wu et al., 2012); 19. 

North River (Xu et al., 2007); 20. Oujiang River (Xu et al., 2007); 21. Youjiang Basin (Yang 

et al., 2012); 22. Amdo Basement (Guynn et al., 2006; Zhang et al., 2013); 23. Gaoligong 

Batholiths (Xu et al., 2012); 24. Jurassic Yunnan (Su et al., 2014); 25. Sichuan Basin Triassic 

(She et al., 2012); 26. Chizhou Plutons (Song et al., 2014); 27. Caledonian Plutons (Wang et 

al., 2011; Li et al., 2011); 28. South China Protoliths (Wang et al., 2011; Li et al., 2010); 29. 

Sichuan Basin Jurassic (Luo et al., 2014); 30. Xinduqiao (Weislogel et al., 2010); 31. South 

Yidun Late Cretaceous (Wang, Hu, et al., 2014); 32. North Yidun (Wang et al., 2008) 32-34. 

Songpan Ganze Terrane (Weislogel et al., 2010); 35. Qamdo Basin (Shang et al., 2016) 
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Figure II.2. Flowchart of grid mixing model. The essential steps in determining optimal 

mixing proportions of zircon populations 
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 Figure II.3 Gaussian breakdown of the Yangtze River dataset and deviations from means: 

minor components. A) The black line indicates the summed curve of all trunk stream samples 

of the Yangtze River. The colored curves are the Gaussian curves which best describe the overall 

variance of the dataset. The range of each curve at ±2σ from the mean value is given in the 

legend. B) The deviations (in percentage points) in proportion of the seven components, which 

account for >75% of the overall variance of the Yangtze River, at each sampling location from 

the mean value (μ) of that component. μ is given as a percentage in the legend). Top are trunk 

samples; bottom are tributary samples. Vertical dashed lines indicate the confluence point of the 

tributaries. Note the Daduhe and Minjiang Tributaries share a confluence point as do the 

Xiangjiang and Yuanjiang tributaries. C) Model of deviation plot for synthetic unique 

components with proportions equivalent and color coordination to the seven components in B. 

Note the similarity in curve shapes to trunk samples of B..  
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Figure II.4. Bedrock mixing results of the tributaries. The Yangtze catchment outlined 

with the heavy black line; tributaries are outlined by thin black lines. Model results for 

mainstream samples are labeled with roman numerals (See Figure 1 and 2 of main text) Pie 

charts represent optimal mixtures of bedrock probability curves for each sample. Tributaries of 

the upper reaches show a clear affinity for the Songpan Ganze Terrane. The Sichuan Basin 

dominates at Wujiang. South China Neoproterozoic zircon are common in Yuanjiang and 

Ganjiang (pink); the dark red of the Longmenshan can be seen as a relatively consistent signal of 

the more northern tributaries. Major Geologic Terranes are colored and labeled as follows: QT – 

Qiangtang Terrane; SPGT – Songpan Ganze Terrane; SB - Sichuan Basin ; TU – Transitional 

Unit; YC – Yangtze Craton; CA-SC – Cathaysia-South China; QDS – Qinling Dabie Shan Fold 

Belt; LMS – Longmenshan Fold Belt; Y – Yidun Unit; NYB – Nanyang Basin. Geologic 

Terranes modified from Burchfiel and Zhiliang, (2013) and Hearn et al., (2000)  
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Table II.1. Likeness Results 
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Tuotuohe - 49 49 52 37 46 45 40 54 51 50 38 43 46 42 23 35 35 31 46 43 49 40 38 43

Shigu 49 - 53 53 38 46 46 44 56 55 58 44 46 55 52 27 44 43 35 50 40 52 44 44 50

Panzhihua-1 49 53 - 55 47 58 53 58 63 47 61 54 56 49 60 32 44 47 49 54 54 43 51 42 40

Panzhihua-2 52 53 55 - 46 57 54 53 61 50 58 54 54 55 54 30 45 46 45 51 47 48 45 48 44

Yibin 37 38 47 46 - 54 58 54 46 43 52 56 51 44 50 57 52 52 47 44 39 34 51 56 38

Chongqing 46 46 58 57 54 - 59 55 55 46 56 57 53 50 55 37 52 51 48 49 50 43 49 47 46

Fuling 45 46 53 54 58 59 - 54 55 48 58 55 60 52 54 42 52 51 46 52 58 40 53 48 41

Yichang 40 44 58 53 54 55 54 - 52 43 53 59 57 51 54 34 49 52 55 50 51 37 52 46 43

Yueyang-1 54 56 63 61 46 55 55 52 - 54 62 53 52 54 56 32 41 46 43 61 60 48 45 45 42

Yueyang-2 51 55 47 50 43 46 48 43 54 - 55 45 49 58 44 26 37 41 34 43 42 55 42 49 54

Wuhan 50 58 61 58 52 56 58 53 62 55 - 56 59 62 58 37 51 53 47 53 54 46 54 52 45

Hukou 38 44 54 54 56 57 55 59 53 45 56 - 60 52 61 38 55 61 57 44 48 42 45 53 44

Datong 43 46 56 54 51 53 60 57 52 49 59 60 - 53 56 32 48 52 51 50 50 39 56 51 44

Nanjing 46 55 49 55 44 50 52 51 54 58 62 52 53 - 58 32 48 49 45 45 44 49 53 51 49

Changxing Is. 42 52 60 54 50 55 54 54 56 44 58 61 56 58 - 39 54 56 56 53 45 48 50 55 45

- 40 42 38 25 24 46 25 27 43

40 - 64 63 37 31 52 36 43 47

42 64 - 65 39 37 52 36 38 48

38 63 65 - 42 36 53 36 39 48

25 37 39 42 - 59 35 40 33 44

24 31 37 36 59 - 29 37 30 43

46 52 52 53 35 29 - 41 53 54

25 36 36 36 40 37 41 - 54 41

27 43 38 39 33 30 53 54 - 43

43 47 48 48 44 43 54 41 43 -

Yuanjiang

Hanjiang

Ganjiang

Daduhe

Yalongjiang

Minjiang-1

Minjiang-2

Jialingjiang

Wujiang

Xiangjiang
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Table II.2 Crossplot R
2
 Results 
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Tuotuohe - 2 2 3 2 7 2 1 4 5 2 2 1 2 2 1 0 0 0 2 2 3 1 2 2
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Panzhihua-1 2 22 - 25 27 37 29 49 32 10 37 44 38 23 36 15 28 31 32 18 30 5 27 18 10

Panzhihua-2 3 15 25 - 24 37 26 28 27 13 26 34 25 21 24 16 19 15 16 12 15 11 16 24 17

Yibin 2 8 27 24 - 42 55 36 26 15 37 40 30 24 34 67 19 17 14 23 16 6 42 41 11

Chongqing 7 13 37 37 42 - 46 41 31 16 36 40 31 29 36 30 31 25 24 16 25 9 29 27 19

Fuling 2 9 29 26 55 46 - 30 31 15 35 32 41 23 32 44 16 13 9 27 38 6 33 25 11

Yichang 1 15 49 28 36 41 30 - 31 11 44 50 40 33 35 26 45 42 45 22 25 4 38 29 16

Yueyang-1 4 15 32 27 26 31 31 31 - 21 31 25 20 21 26 19 6 7 7 34 43 11 13 19 7

Yueyang-2 5 26 10 13 15 16 15 11 21 - 20 16 20 35 16 8 4 6 4 6 6 47 16 35 39

Wuhan 2 28 37 26 37 36 35 44 31 20 - 46 40 46 38 27 40 37 33 20 22 9 37 34 17

Hukou 2 17 44 34 40 40 32 50 25 16 46 - 49 41 52 25 55 56 47 12 17 14 31 33 17

Datong 1 17 38 25 30 31 41 40 20 20 40 49 - 41 41 21 33 31 32 19 18 10 47 38 19

Nanjing 2 27 23 21 24 29 23 33 21 35 46 41 41 - 42 19 34 33 32 11 8 19 46 44 30

Changxing Is. 2 19 36 24 34 36 32 35 26 16 38 52 41 42 - 25 38 34 38 21 11 18 35 45 23

- 16 11 10 12 8 31 3 8 46

16 - 82 80 4 2 33 3 15 30

11 82 - 77 3 29 29 2 13 28

10 80 77 - 4 3 35 2 12 30

12 4 3 4 - 33 10 3 2 11

8 2 3 3 33 - 3 2 0 7

31 33 29 35 10 3 - 19 38 47

3 3 2 2 3 2 19 - 34 5

8 15 13 12 2 0 38 34 - 17

46 30 28 30 11 7 47 5 17 -

Xiangjiang

Yuanjiang

Hanjiang

Ganjiang

Yalongjiang

Daduhe

Minjiang-1

Minjiang-2

Jialingjiang

Wujiang



219 

 

 

Table II.3 Mixture Model Bedrock Results. 
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Fuling 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Wujiang 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5

Ganjiang 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0

Xiangjiang 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0

Hanjiang 0 0 0 0 0 0 0 0 10 0 20 40 10 0 0 0 10

Yuanjiang 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0
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Table II.3 Mixture Model Bedrock Results cont. 
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Panzhihua-1 0 0 0 0 0 0 0 0 5 75

Panzhihua-2 0 0 0 0 0 0 0 0 0 61

Yibin 0 0 0 0 0 0 0 0 0 62

Chongqing 0 0 5 0 0 0 0 0 5 67
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Table II.4 Mixture Model Fluvial Results 
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Appendix III: Chapter 3 

Figures 

Figure III.1. Multidimensional scaling plots varying methodologies. Plots demonstrate the 

limited effects of using nonmetric (columns 1 and 2) vs. nonmetric (columns 3-5) MDS and 

using a variety of goodness of fit criterion. The bottom row is the Shepard plots for each 

corresponding configuration. Note that nonmetric MDS does result in lower stress values there is 

little apparent difference in the resulting configuration and spacing.  
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