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Abstract 

While the opportunity to learn mathematics via textbooks is well documented at the 

secondary and elementary levels, research on the opportunity to learn mathematics via textbooks 

at the undergraduate level has received little attention. Furthermore, research that examines the 

role of mathematics textbooks in students’ learning of important concepts such as marginal 

change in applied calculus is scarce. Research on students’ quantitative reasoning at the post-

secondary level is lacking. This qualitative study investigated the opportunity to learn about 

optimization problems, marginal change, and quantitative reasoning in an economic context via a 

business calculus textbook and from lectures in a business calculus course. The study also 

investigated students’ quantitative reasoning, using task based interviews conducted with 12 

pairs of business calculus students, about optimization problems and marginal change in an 

economic context. 

 This study found that the textbook’s presentation of optimization problems and marginal 

change was largely procedural with limited attention to the underlying concepts and that 

opportunities for students to reason about relationships between or among economic quantities 

such as the relationship between marginal cost and marginal revenue at a profit maximizing 

quantity received little attention. The presentation of optimization problems and marginal change 

in course lectures closely followed the presentation of these topics in the textbook. Students’ 

interpretations of marginal change varied in different contexts and representations depending on 

the tasks they were given. This study provided insights into students’ quantitative reasoning 

when analyzing multivariable situations in an economic context: students created new quantities 

that helped them to solve the problems in the tasks and helped them to reason about relationships 



 

 

 

 

among several quantities. Implications for different stakeholders including business calculus 

instructors and suggestions for further research are included. 
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Chapter 1 – Introduction 

Much research over the last three decades has documented difficulties encountered by 

undergraduate students when reasoning about real-valued functions of a single variable when 

solving calculus problems that are situated in a purely mathematics context or a physics context. 

Much of this research (e.g., Oehrtman, Carlson, & Thompson, 2008) has focused on students’ 

understanding of key concepts in pre-calculus and calculus respectively, namely average rates of 

change and instantaneous rates of change. A growing body of research (e.g., Moore & Carlson, 

2012) has focused on how undergraduate students reason about quantities and relationships 

between quantities when analyzing mathematical situations, an idea that has come to be known 

as quantitative reasoning (Thompson, 2011). Other research on students’ understanding of 

calculus has focused on students’ understanding of optimization problems (Klymchuk, Zverkova, 

& Sauerbier, 2010; Swanagan, 2012). 

Little research has specifically investigated students’ understanding of real-valued 

functions of two or more variables and how students engage in quantitative reasoning when 

solving optimization problems in an economic context. There is a dearth of research on what 

students’ reasoning about an economic context reveals about their interpretation of important 

concepts in business or economics such as marginal change (e.g., marginal cost). Furthermore, 

research on students’ algebraic reasoning when solving optimization problems, especially those 

that are situated in a business or economics, context is lacking. In this study, algebraic reasoning 

refers to students’ reasoning about the algebra of continuous functions and their derivatives when 

solving economic-based optimization problems using algebraic methods. Algebraic reasoning 

when solving optimization problems in an economic context includes reasoning about critical 

numbers (e.g., profit maximizing quantities), reasoning about extrema (e.g., maximum profit), 

identifying constants and variables in a given problem situation, and finding an objective 
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function (e.g., profit function) that relates constants and variables. While research on students’ 

opportunity to learn mathematics via textbooks is well documented at the pre-university level 

(e.g., Alajmi, 2012; Wijaya, van den Heuvel-Panhuzen, & Doorman, 2015), research on 

students’ opportunity to learn mathematics via textbooks at the undergraduate level is scarce.  

There are five bodies of research literature that are related to this study: opportunity to 

learn mathematics via textbooks, calculus learning, learning in context, students’ understanding 

of optimization problems, and quantitative reasoning. This study sought to add to the research 

base on the role of context on students’ learning of calculus by investigating undergraduate 

students’ interpretation of marginal change and quantitative reasoning when solving optimization 

problems that are situated in the economic context of cost, revenue, and profit. 

The term quantity has been defined in similar ways by several researchers (e.g., 

Ärlebäck, Doerr, & O'Neil, 2013; Moore & Carlson, 2012; Smith & Thompson, 2008; 

Thompson, 1994a; Thompson, 2011). This study used the definition of quantity proposed by 

Ärlebäck et al. (2013): “a quantity is the result of conceiving a quality (an attribute) of an object 

to have an explicit or implicit unit that enables a process of measurement” (p. 317). Using this 

definition, Ärlebäck and colleagues argued that a rate of change (average or instantaneous rate of 

change) “can be considered a quantity created by the ratio of the covariational change of two 

quantities” (p. 318), namely the input variable as one quantity and the output variable as the 

other quantity. Thompson (1994a) refers to the process of forming a new quantity from other 

quantities as a quantitative operation. In this study, the term quantity refers to marginal change, 

number of items (products) produced or sold, as well as the cost, revenue, and profit obtained by 

making or selling a product(s).  
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This study used Thompson’s (1993) definition of quantitative reasoning: analyzing a 

situation in terms of the quantities and relationships among the quantities involved in the 

situation. According to Thompson, what is important in quantitative reasoning is not assigning 

numeric measures to quantities but rather reasoning about relationships between or among 

quantities. The term, reasoning quantitatively, as used in this study, refers to how students 

described and represented relationships between or among quantities and how they created and 

used new quantities to solve the problems they were given. 

Much research has investigated how students engage in quantitative reasoning in a 

kinematics context (e.g., Beichner, 1994; Monk, 1992; Moore & Carlson, 2012; Smith & 

Thompson, 2008; Thompson, 1994a; Thompson, 2011). There is no study that has investigated 

students’ quantitative reasoning in an economic context. The term, discrete reasoning, as used in 

this study, refers to the treatment of continuous quantities as if they were discrete quantities 

when reasoning about relationships among several quantities in an economic context. Treating 

the continuous quantities (number of units produced and sold, total cost, total revenue, and 

profit) in Task 3 (Appendix A) as if they were discrete quantities when creating the profit graph 

is an example of discrete reasoning. 

The terms derivative and instantaneous rate of change are used interchangeably to refer to 

the same concept. The terms, slope and average rate of change, refer to the same concept. 

Similarly, the term marginal change is used to refer to marginal cost, marginal revenue, and 

marginal profit collectively. Marginal cost refers to the cost per additional unit produced, 

marginal revenue refers to the revenue generated per additional unit sold, and marginal profit 

refers to the profit per additional unit produced and sold. Marginal change is a discrete quantity 

that can be approximated using a continuous function, the derivative. Mathematically, marginal 
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change can be calculated using average rate of change which can be approximated using 

instantaneous rate of change. 

The Aim of this Study  

The aim of this study was twofold: (i) to examine opportunities provided by a business 

calculus textbook (Haeussler et al., 2011) and classroom instruction for business calculus 

students to learn about optimization problems, marginal change, and quantitative reasoning in the 

economic context of cost, revenue, and profit and (ii) to examine business calculus students’ 

(undergraduate business or economics majors) algebraic reasoning, interpretation of marginal 

change, and quantitative reasoning when solving optimization problems that are situated in the 

economic context of cost, revenue, and profit. The following research questions guided this 

investigation: 

1. What opportunities to learn about (a) optimization problems, (b) the concept of marginal 

change and (c) quantitative reasoning in the context of cost, revenue, and profit do 

business calculus textbooks and classroom instruction provide to business calculus 

students?  

2. How do business calculus students reason algebraically about optimization problems that 

are situated in the context of cost, revenue, and profit? 

3. How do business calculus students interpret marginal change when solving optimization 

problems that are situated in the context of cost, revenue, and profit? 

4. What do business calculus students’ responses to optimization problems involving 

multiple covariates that are situated in the context of cost, revenue, and profit reveal 

about their quantitative reasoning? 
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Rationale for this Study 

Much of the research that has investigated students’ reasoning when solving optimization 

problems has been based on problems that lack a real-world context and require students to recall 

geometric properties such the Pythagorean Theorem. There is only one study (Dominguez, 2010) 

that examined students’ reasoning about an optimization problem in an economic context. 

Dominguez studied how students modeled a multivariable situation involving three quantities: 

the profit of a historic hotel, the number of rooms booked, and the daily charge for renting a 

room. The focus of that study was on developing an algebraic model (profit function) for this 

multivariable situation. However, the study did not examine students’ quantitative reasoning 

while modeling the multivariable situation. There is a need for more research that investigates 

students’ ability to model multivariable optimization problems in an economic context and their 

quantitative reasoning, that is, their reasoning about quantities and relationships among 

quantities involved when analyzing multivariable situations. This study sought to address this 

gap. 

Reasoning about optimization problems involves reasoning about rates of change, 

including the concept of the derivative. There is a large body of research that investigated 

students’ understanding of rates of change in a motion context (e.g., Beichner, 1994; Bingolbali 

& Monaghan, 2008; Berry & Nyman, 2003; Cetin, 2009; Christensen & Thompson, 2012; 

Marongelle, 2004). Of the research that investigated students’ understanding of rates of change 

in non-motion contexts, only a few (e.g., Herbert & Pierce, 2008; Wilhelm & Confrey, 2003) 

examined students’ understanding of average rates of change in a business or economic context. 

This study contributes to what we know about undergraduate students’ understanding of rates of 

change in an economic context. The scarcity of research that examines the opportunity to learn 

how to solve context problems provided by college mathematics textbooks, is another motivation 
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for this study. This study examined the opportunity to learn how to solve realistic context 

problems (optimization and marginal change problems) that occur in business or economics 

provided by a business calculus textbook. 

There are several reasons that warrant the investigation carried out in this study. First, 

students’ learning of mathematics has been shown to be largely dependent on mathematics 

textbooks as an opportunity to learn (e.g., Reys et al., 2004; Begle, 1973). Second, a large 

number of students enroll in business calculus nationwide every year. According to Gordon 

(2008), this number is more than 300,000 students. Third, given the importance of quantitative 

skills in business or economics (e.g., Butler, Finegan, & Siegfried, 1998; Von Allmen, 1996), 

there is a need to investigate students' quantitative reasoning in a business or economic context. 

Fourth, understanding optimization problems and marginal change in a business or economic 

context is vital in fields such as marketing, managerial accounting, supply chain management, 

finance, and economics. 
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Chapter 2 – Related Literature 

Five bodies of research literature are related to this study. These bodies of research are: 

(1) opportunity to learn via mathematics textbooks, (2) calculus learning, (3) learning in context, 

(4) students’ understanding of optimization problems, and (5) quantitative reasoning. This 

chapter is organized as follows: it begins with a description of the theoretical frameworks 

guiding the study followed by a review of research literature in each of the aforementioned 

bodies of research. The chapter concludes with a discussion of knowledge gaps in the research 

literature.  

Theoretical Frameworks 

This study draws on two theories, namely the theory of realistic mathematics education 

(RME) and the theory of quantitative reasoning. 

The theory of realistic mathematics education. Realistic mathematics education is a 

theory of teaching and learning in mathematics education that originated in the Netherlands in 

the early 1970s. This theory has been used as a theoretical perspective for research in several 

nations of the world including the United States, England, South Africa, and Japan to name but a 

few (Zulkardi, 1999). Although Hans Freudenthal is widely recognized as the founder of RME, 

other researchers (e.g., Gravemeijer, 1994; Treffers, 1987) have significantly contributed to the 

development of RME. As a theory of learning, RME emphasizes that students should be asked to 

solve realistic contextual problems which are not only realistic in the sense of being connected to 

a real-world context but also that the context of these problems should be experientially real to 

the students. That is, the students should be asked to solve “problem situations which they can 

imagine” (van den Heuvel-Panhuizen, 2000, p. 4).  
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The idea of vertical and horizontal mathematising is an important feature of RME 

(Barnes, 2004; Freudenthal, 1991; Gravemeijer, 1994; Treffers, 1987). Treffers (1987) explained 

vertical and horizontal mathematising as follows: 

We distinguish horizontal and vertical mathematisation in order to account for the 

difference between transforming a problem field into a mathematical problem on the one 

hand, and processing within the mathematical system on the other hand. In the horizontal 

component the way towards mathematics is paved via model formation, schematizing, 

and symbolising. The vertical sketch [mathematising] is concerned with mathematical 

processing and level raising in the structuring of the problem field under consideration. 

We admit that this distinction between horizontal and vertical components is a bit 

artificial given the fact that they may be strongly related. (p. 247). 

According to Freudenthal (1991), horizontal mathematising “leads from the world of life to the 

world of symbols” (p. 41) while vertical mathematising involves the manipulation of symbols. I 

illustrate my understanding of horizontal and vertical mathematising using the following 

example: Given an experientially real optimization problem (in text form) and asked to 

determine the maximum profit that a particular company makes in a given time period, 

horizontal mathematising involves the formulation of an algebraic model (objective function) 

based on the information given in the problem situation. Vertical mathematising involves finding 

the derivative of the model, finding a zero (critical number) for the derivative of the model, 

evaluating the model at the critical number to find the relative maximum, and comparing the 

relative maximum with the values of the model at the end points of the domain to determine the 

absolute maximum which is the maximum profit.  
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Influence of RME on this study. The design of my study was influenced by RME in 

three phases, namely task design, data collection, and data analysis. Using RME as a theoretical 

framework for my study, I designed mathematical tasks with the exception of Task 1 in 

Appendix A that are realistic to the students. Some of the tasks, especially Tasks 1 which I used 

to collect data that provided answers to the first research question, were designed in such a way 

that they afforded my study participants (students) the opportunity to engage in both horizontal 

and vertical mathematising. RME also influenced the recruitment of participants for my study: 

only business calculus students for whom the real-world context of cost, revenue, and profit as 

used in the tasks may be experientially real were recruited to participate in the study. During data 

analysis, I used the RME ideas of vertical and horizontal mathematising to create a data 

codebook. Part of my coding of data focused on the nature of horizontal and vertical 

mathematising demonstrated by the students as they reasoned about the tasks. 

RME does not specifically address the type of mathematising that takes place when 

moving from the world of symbols back to the world of life. This could, for example, include 

interpreting the relative maximum of the model as the maximum profit realized by the company 

for the time period under consideration. It could also mean starting with a mathematical model 

and have students imagine a realistic situation that could be modeled using the model. I think of 

this as reverse horizontal mathematising which in a language similar to that used by Freudenthal 

(1991) would mean moving from the world of symbols back to the world of life. According to 

van den Heuvel-Panhuizen (2010), critics of RME argue that the adoption of RME has come 

with a de-emphasis on algorithmic calculations in favor of context problems in mathematics 

instruction. These critics argue that “mathematics should not be taught in context” (p. 1) which 

implies that mathematics should not be learned in context either. This means that from the 
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critics’ point of view, real-world contexts do not play a significant role in students’ learning of 

mathematics. 

The theory of quantitative reasoning. The theory of quantitative reasoning is an 

evolving theory in mathematics education whose origin can be traced to the early work of 

Thompson (1990). Quantitative reasoning, as defined by Thompson (1993), is the analysis of a 

situation in terms of the quantities and relationships among the quantities involved in the 

situation. According to Thompson, what is important in quantitative reasoning is not assigning 

numeric measures to quantities but rather reasoning about relationships between or among 

quantities. In economics, for instance, one may analyze how the total profit of a particular 

company changes with increased production and sales of the company’s product by analyzing 

how the total cost and total revenue of the company are changing qualitatively, that is, without 

mentioning numerical values of total cost, total revenue, and total profit. For example, saying 

that total cost decreases steadily with increased production of the company’s product while total 

revenue and total profit increases rapidly with increased production and sales of the company’s 

product is an example of reasoning quantitatively that does not focus on numerical values of total 

cost, total revenue, and total profit but rather on the relationships among the quantities: total cost, 

total revenue, and total profit. 

Thompson (2011) describes three tenets that are central to the theory of quantitative 

reasoning. These tenets are: a quantity, quantification, and quantitative operations. According to 

Thompson (1990), “a quantity is a quality of something that one has conceived as admitting 

some measurement process” (p. 5). Thompson added that “part of conceiving a quality as a 

quantity is to explicitly or implicitly conceive of an appropriate unit” (p. 5). In his recent work, 

Thompson (2011) clearly stated that a quantity is a mental construction. Thompson (1993) 
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distinguished between a quantity and a numerical value: a quantity has a unit of measurement 

and a numerical value does not. Thompson (1993) added that “quantities, when measured, have 

numerical value, but we need not measure them or know their measures to reason about them” 

(pp. 165-166). For example, we can think of Company A’s profit for a given trading period, 

Company B’s profit for the same trading period, and the amount by which Company A’s profit is 

bigger (or smaller) than Company B’s profit, without having to know the actual profit values. 

The second tenet of the theory of quantitative reasoning is quantification. According to 

Thompson (2011), quantification “is the process of conceptualizing an object and an attribute of 

it so that the attribute has a unit of measure, and the attribute’s measure entails a proportional 

relationship (linear, bi-linear, or multi-linear) with its unit” (p. 37). In a sense, the process of 

quantification entails assigning numerical values to the attributes of an object. Thompson (2011) 

asserted that the process of quantification may vary from as little as taking a few minutes to as 

long as taking generations. 

The third tenet of the theory of quantitative reasoning is a quantitative operation. A 

quantitative operation is the process of forming a new quantity from other quantities (Thompson, 

1994b). Thompson (1993) stated that “comparing two quantities with the intent to find the excess 

of one against the other” (p. 166) is a specific example of a quantitative operation formed by 

comparing two quantities additively. In economics, for example, comparing (by way of finding 

the difference) total revenue and total cost with the intent to find the excess (profit or loss) of 

total revenue against total cost is a quantitative operation known as a quantitative difference. 

Thompson (1993) distinguished between a numerical difference and a quantitative difference. 

According to Thompson, a numerical difference is “the result of subtracting” (p. 166). A 

quantitative difference, however, “is not always evaluated by subtraction, and subtraction may be 



 

 

12 

 

used to evaluate quantities other than a quantitative difference” (p. 166). For example, saying 

that Company A’s profit for a given trading period was by far more than Company B’s profit for 

the same trading period is an example of a quantitative difference which has not been evaluated 

by subtraction. 

Influence of the theory of quantitative reasoning on this study. The design of my study 

was influenced by the theory of quantitative reasoning in three phases, namely task design, data 

collection, and data analysis. Drawing on the theory of quantitative reasoning as a theoretical 

framework for my study, I designed mathematical tasks (appendix A) that provided students with 

opportunities to reason about relationships between or among quantities. Task 2, for example, 

provided opportunities for students to reason about relationships among sales (number of 

computers sold), the discount, and the revenue generated when the Smith family business sells 

computers to a school. The tasks were also designed to provide opportunities for students to 

engage in performing quantitative operations. For example, students had the opportunity to 

reason about quantitative differences when determining marginal cost (e.g., the cost of producing 

the second unit in Task 2). My interview protocol (Appendix A) allowed me to engage students 

in reasoning about relationships among quantities during the data collection process. For 

example, one of my prompts in Task 4 asked students about how the company’s total cost, total 

revenue, and profit is changing across the production and sales levels shown in the table that 

appears in the task. Finally, my data analysis phase focused on looking for evidence for when 

students created new quantities (engaging in quantitative operation), how they used these 

quantities to reason about relationships between or among quantities, and whether or not these 

quantities helped the students to solve the problems posed in the tasks. 
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Opportunity to Learn via Mathematics Textbooks 

The concept of opportunity to learn (OTL) as it relates to mathematics instruction dates 

back to the early 1960s. Carroll (1963) defined OTL as the time allowed for learning a particular 

topic. To Carroll’s definition of OTL, Schmidt and colleagues (Cogan & Schmidt, 2015; Schmidt 

& Burroughs, 2015; Schmidt, Burroughs, Zoido, & Houang, 2015) added that there is a 

relationship between what students have an opportunity to learn on a particular topic and their 

performance in that topic. Cogan and Schmidt (2015) defined OTL as “the idea that the time a 

student spends in learning something is related to what that student learns” (p. 207). That is, 

there is a direct correspondence between students’ learning outcomes on a particular topic and 

the amount of time they spend learning about that topic. Husen (1997) defined OTL as “whether 

or not … students have had the opportunity to study a particular topic or learn how to solve a 

particular type of problem” (pp. 162-163). This study used Husen’s definition of OTL which, 

according to Floden (2002), is also the most common definition of OTL used in the mathematics 

education research literature. In my study, I examined how students reason and solve a particular 

problem type, optimization, they had an opportunity to learn about via a business calculus 

textbook (Haeussler et al., 2011) and via course lectures. 

Emphasizing the importance of mathematics textbooks in students’ learning of 

mathematics, Reys, Reys, and Chavez (2004) argued “that the choice of textbooks often 

determines what teachers will teach, how they will teach it, and how their students will learn” (p. 

61). Similar sentiments have been shared by other researchers (e.g., Alajmi, 2012; Kolovou et 

al., 2009). Begle (1973) asserted that “most student learning is directed by the text rather than the 

teacher” (p. 209). Begle’s view of the significant role mathematics textbooks play in students’ 

learning of mathematics is consistent with the views of other researchers such as Törnroos 
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(2005) and Wijaya et al. (2015). Charalambous, Delaney, Hsu, and Mesa (2010) presented a 

moderate viewpoint on the importance of mathematics textbooks in students’ learning of 

mathematics. These researchers posited that “textbooks afford probabilistic rather than 

deterministic opportunities to learn mathematics” (p. 118). That is, students’ opportunities to 

learn mathematics need not be limited to only textbooks as there may be other opportunities 

(e.g., classroom instruction) through which students can learn mathematics besides mathematics 

textbooks. 

 The role of mathematics textbooks as an opportunity to learn mathematics is well 

documented in the research literature on the learning of K-12 mathematics. Some of this research 

focuses on students’ opportunities to learn mathematical topics such as linear functions and 

trigonometry (e.g., Wijaya, van den Heuvel-Panhuzen, & Doorman, 2015), addition and 

subtraction of fractions (e.g., Alajmi, 2012; Charalambous et al., 2010), probability (e.g., Jones 

& Tarr, 2007), statistics (e.g., Pickle, 2012), reasoning and proof (e.g., Stylianides, 2009; 

Thompson et al., 2012), proportional reasoning (e.g., Dole & Shield, 2008), and deductive 

reasoning (e.g., Stacey & Vincent, 2009). Research on students’ opportunities to learn about 

other mathematics topics such as optimization and marginal change and at the upper secondary 

and undergraduate level is lacking.  

One study at the undergraduate level by Mesa, Suh, Blake, and Whittemore (2012) 

examined the opportunity to learn about exponential functions, logarithmic functions, and the 

transformations of functions provided by college algebra textbooks. Mesa and colleagues 

analyzed the cognitive demands of examples and the representations of these examples given in 

ten textbooks. Five of these textbooks were used at community colleges, three textbooks were 

used at four-year institutions, and the other two textbooks were used at both community colleges 
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and at four-year institutions. Mesa and colleagues found that “textbooks, independent of the type 

of institution in which they are used, present examples that have low cognitive demands, expect 

single numeric answers, emphasize symbolic and numerical representations, and give very few 

strategies for verifying correctness of the solutions” (p. 76). These results suggest that the 

opportunity to learn about a wide range, in terms of cognitive demand and problem 

representation (e.g., graphical), of exponential and logarithmic-related problems is limited if not 

totally absent in college algebra textbooks. It would be important to examine opportunities to 

learn about other context areas such as marginal change that are provided by undergraduate 

mathematics textbooks such as business calculus textbooks. 

In a preliminary study at the undergraduate level, Mkhatshwa and Doerr (in press) 

examined the opportunities to learn about optimization problems provided by six textbooks that 

are commonly used in the teaching of business calculus in the United States. These researchers 

analyzed a total of 195 optimization tasks (examples and practice problems). There were 24, 29, 

29, 56, 32, and 25 tasks respectively in the six textbooks. The textbook (Haeussler et al., 2011) 

used in my study has 29 tasks. A majority of the tasks in the six textbooks had unrealistic 

contexts; all the tasks had the exact amount of information needed to solve the task; and only 

three textbooks had cognitively demanding tasks (three tasks in one textbook, one task in another 

textbook, and six tasks in another textbook). None of the cognitively demanding tasks were in 

the textbook that was used in my study. Mkhatshwa and Doerr argued that these six business 

calculus textbooks offered limited opportunities to learn about solving a wide range (in terms of 

types of context, types of information, and cognitive demands) of optimization problems. In my 

study, I analyzed the opportunity to learn on two other topics (marginal change and quantitative 

reasoning) in addition to the optimization problems that were analyzed by Mkhatshwa and Doerr.  
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A related line of research on the concept of opportunity to learn (OTL) shows that there is 

a relationship between the opportunity to learn a particular content area and students’ 

performance in that content area at the secondary school level (Cogan & Schmidt, 2015; Schmidt 

et al., 2015, Schmidt & Burroughs, 2015). Schmidt and Burroughs analyzed questions designed 

to measure students’ opportunity to learn different mathematical content (e.g., change and 

relationships) that were given in the 2012 Programme for International Student Assessment’s 

(PISA) study. More than 500,000 secondary school students from 62 different countries 

participated in the mathematics portion of the PISA study (Schmidt & Burroughs, 2015). These 

students were randomly selected using a stratified sampling technique. Schmidt and Burroughs 

found that “OTL is strongly related to students’ performance” (p. 25) within schools, between 

schools, and between the 62 countries that participated in the mathematics portion of the PISA 

study. Schmidt and Burroughs added that students who had more exposure to certain 

mathematics content areas performed better in those content areas than did students who had less 

exposure to the same content areas. 

Regardless of the level (elementary level, secondary level or undergraduate level), 

common themes that emerge from the research that has looked into the opportunity to learn 

mathematics via textbooks include: (1) types of context, (2) types of information, and (3) 

cognitive demands.  

Types of context. The term, context, has been defined in several ways by researchers in 

mathematics education. My view on the meaning of context is consistent with that given by 

White and Mitchelmore (1996). These researchers posited that “in calculus, the context of an 

application problem may be a realistic or artificial “real-world” situation, or it may be an 

abstract, mathematical context at a lower level of abstraction than the calculus concept that is to 
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be applied” (p. 81). White and Mitchelmore’s understanding of the term context is consistent 

with that of other researchers (e.g., Gravemeijer & Doorman, 1999; van den Heuvel-Panhuizen, 

2005). According to Wijaya et al. (2015), a mathematical task could have a relevant and essential 

(realistic) context, a camouflage context, or they could have no context (only mathematical 

symbols). Alajmi (2012) refers to mathematical tasks with no context as tasks that are situated in 

a “purely mathematics context” (p. 243). Tasks with a camouflage context “are merely dressed 

up bare problems, which do not require modeling because the mathematical operations needed to 

solve the task are obvious” (Wijaya et al., 2015, p. 45). Examples of tasks with each type of 

context identified above, namely relevant and essential, camouflage, and no context are given in 

the methods chapter.  

Types of information. Several researchers (e.g., Maass, 2007; Maass, 2010; Wijaya et 

al., 2015) have identified three types of information that a mathematical task may have: 

matching, missing, and superfluous. A mathematical problem with matching information is one 

in which all the information required to solve the problem is stated in the problem statement. A 

mathematical problem has missing information if some of the information needed to solve the 

problem is not immediately available to the student, that is, the student has to deduce this 

information from the problem statement. A mathematical problem with superfluous information 

is one in which the problem statement not only contains the necessary information needed to 

solve the task but it also contains other extraneous or irrelevant information that may not be 

helpful in solving the posed problem. Wijaya et al. (2015) argued that: 

Providing more or less information than needed for solving a context-based task is a way to 

encourage students to consider the context used in the task and not just take numbers out of 

the context and process them mathematically in an automatic way. (p. 45) 
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Maass (2010) recommended that students should be given opportunities to deal with these three 

different types of information.  

Types of cognitive demands. A related line of research (e.g., Charalambos et al., 2010; 

Kolovou et al., 2009; Mesa et al., 2012; Wijaya et al., 2015) has investigated the types of 

cognitive demands in tasks that are presented in mathematics textbooks. The types of cognitive 

demands are: reproduction, connection, and reflection. These types of cognitive demands are 

similar to the levels of cognitive demands discussed by Stein, Smith, Henningsen, and Silver 

(2000). Reproduction tasks are routine problems that require the lowest level of cognitive 

demand to solve. These problems can be easily solved using memorized mathematical 

algorithms such as the first derivative test when solving optimization problems. Connection tasks 

are non-routine in nature and may require the student to represent concepts in multiple 

representations: algebraically, numerically, graphically, and verbally. Reflection tasks require the 

highest level of cognitive demand to solve. These tasks “include complex problem situations in 

which it is not obvious in advance what mathematical procedures have to be carried out” (Wijaya 

et al., 2015, p. 46). Examples of tasks with each type of cognitive demand identified above, 

namely reproduction, connection, and reflection, are given in the methods chapter. 

In summary, the literature on opportunity to learn via mathematics textbooks presented 

above suggests the need to examine features that tasks may have such as representation (e.g., 

algebraic, tabular, graphical, or verbal) in addition to types of context, types of information, and 

types of cognitive demands. Only one study (Mesa et al., 2012) examined the representations of 

tasks in mathematics textbooks. Given that much of the research on opportunity to learn 

mathematics via textbooks focused on content areas covered at the elementary and middle school 
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level, I argue that there is a need to examine students’ opportunity to learn mathematics via 

textbooks at the undergraduate level. 

Calculus Learning 

The birth of the calculus reform movement at a calculus conference held at Tulane 

University in the late 1980s led to a lot of research on students’ learning of calculus (Garbier & 

Garnier, 2001; Hallet, 2006; Schoenfield, 1985; Tucker & Leitzel, 1995). One of the major 

problems with collegiate calculus instruction that led to the calculus reform movement was a 

growing trend of students developing proficiency in executing symbolic calculus procedures 

with very little or no conceptual understanding of the procedures, something that in turn limited 

their ability to solve real-world application problems (Tucker & Leitzel, 1995; Hallett, 2006; 

Garner & Garner, 2001). Garner and Garner (2001) stated that there was a great need for a “shift 

in emphasis from rote memorization and symbol manipulation to conceptual understanding and 

practical application” (p. 165) in the teaching and learning of college calculus. 

Understanding the concept of a function and being able to engage in covariational 

reasoning is essential for students’ learning of key ideas in calculus such as rate of change. 

Following is a review of research literature on students’ conceptual understanding of the concept 

of function and the idea of covariational reasoning. 

Students’ understanding of functions. The importance of the concept of function in 

students’ learning of calculus cannot be overemphasized. Oehrtman, Carlson, and Thompson 

(2008) argued that “the concept of function is central to undergraduate mathematics, 

foundational to modern mathematics, and essential in related areas of the sciences” (p. 27). 

Functions form an integral part of the middle and high school mathematics curriculum (National 

Governors Association Center for Best Practices & Council of Chief State School Officers, 2010; 
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NCTM, 2000). Students’ difficulties with the concept of function from middle school through 

university level are well documented in the research literature (e.g., Beichner, 1994; Carlson, 

1998; Habre & Abboud, 2006; Oehrtman, Carlson, & Thompson, 2008; Yerushalmy, 2000; 

Yerushalmy & Swidan, 2012). Following is a review of literature on students’ understanding of 

the concept of function in multiple representations followed by a review of literature on students’ 

understanding of real-valued functions of two variables.  

Students’ understanding of the concept of function in multiple representations. This 

section contains a review of research literature on students’ understanding of the concept of 

function in multiple representations with respect to the following themes: (1) students’ 

preference for the algebraic representation, (2) students’ difficulties with graphs, and (3) 

students’ difficulties with translating between representations of functions.  

Students’ preference for the algebraic representation. In his review of research literature 

about students’ understanding of functions, Thompson (1994c) argued that “tables, graphs and 

expressions might be multiple representations of functions” (p. 23) to teachers and researchers 

but that they are not “multiple representations of anything to students” (p. 23). Evidence from 

research (e.g., Habre & Abboud, 2006; Haciomeroglu et al., 2010; Ibrahim & Rebello, 2012; 

Thompson, 1994b; Weber & Thompson, 2014) shows that students often have a stronger 

inclination towards the use of functions in algebraic form compared to other representations. 

Habre and Abboud (2006) examined calculus students’ understanding of functions and 

derivatives at a large university. Nine of the ten students who participated in this study were high 

achieving students. A qualitative analysis of two semi-structured interviews with each student 

revealed that a majority of the study participants had a stronger inclination for the function 

concept in algebraic form than in any other form. When the students were asked to talk about 
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their understanding of the concept of a function, Habre and Abboud reported that “except for 

Mark and Denise, all interviewees thought of the function in one way or another as a formula” 

(p. 62). Even after receiving formal instruction about functions in multiple representations, the 

students’ reasoning about functions was dominated by the algebraic representation.  

Undergraduate students’ preference to work with equations while solving mathematics 

problems has also been reported by Ibrahim and Rebello (2012) who studied how 19 engineering 

students enrolled in a calculus-based physics course solved calculus problems situated in the 

context of work and kinematics. The problems were presented in multiple representations, 

namely algebraic, textual, and graphical. Each student completed four written tasks in four 

different sessions that were videotaped over a two months period followed by a follow up 

interview that was audio taped. Analysis of the written tasks and transcripts of the interviews 

revealed that the students preferred “manipulating equations irrespective of the representational 

format of the task” (p. 1).  For instance, in one of the problems that the students solved, Ibrahim 

and Rebello reported that “all 19 students utilized equations or calculus with the majority (17 in 

19) of them not recognizing the applicability of a qualitative approach for attempting the 

problem” (p. 4). Ibrahim and Rebello stated that the students occasionally did not recognize 

powerful qualitative ways (such as sketching graphs) of thinking about the problems because of 

their tendency to prioritize an algebraic approach over a qualitative approach.   

Results similar to that of Ibrahim and Rebello were also reported by Thompson (1994b) 

who investigated students’ understanding of the Fundamental Theorem of Calculus (FTC). 

According to Thompson, students’ difficulties with understanding the FTC are an immediate 

consequence of their limited understanding of functions. The research participants were a 

combination of 19 senior and graduate students majoring in mathematics and mathematics 
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education. To gain information on students’ understanding of the theorem, Thompson analyzed 

students’ written responses in an exam given at the end of an experimental teaching unit that 

lasted for 15 hours spread over ten meetings. Thompson also conducted follow-up interviews 

with each of the 19 students. Consistent with the findings of other researchers (e.g., Habre & 

Abboud, 2006; Ibrahim & Rebello, 2012), Thompson found that: 

Students repeatedly made remarks that suggested a figural image of function-an image of 

a short expression on the left and a long expression on the right, separated by an equal 

sign. This was not the only image students could conjure, but it seemed to be many 

students’ working image-what came to mind without conscious effort whenever 

“function” was mentioned. This often oriented them away from grappling with 

conceptual connections entailed in dealing with covarying quantities. (p. 268) 

In other words, the students had a stronger preference for the function concept in algebraic form, 

something that in turn limited them from developing a rich conceptual understanding of the FTC. 

Thompson’s findings together with those of other researchers (e.g., Habre & Abboud, 2006; 

Ibrahim & Rebello, 2012) shows that students prefer working with algebraic functions when 

solving calculus problems and that this preference tends to limit them from developing good 

understandings of important ideas in calculus such as the FTC.  

Students’ difficulties with graphs. Research that has looked at students’ difficulties with 

graphs of functions shows that high school and undergraduate students have difficulty 

interpreting or constructing accumulation graphs from rate graphs and understanding rates that 

are changing from increasing to decreasing and vice versa (points of inflection) from graphs of 

functions (e.g., Beichner, 1994; Carlson et al., 2002; Tsamir & Ovodenko, 2013). The research 

further shows that students tend to have a pointwise understanding (seeing a function as a set of 



 

 

23 

 

isolated points) of the concept of function which sometimes helps them avoid iconic translation 

(seeing the graph of a function as a picture of a physical event) (e.g., Monk, 1992). 

Beichner’s (1994) examination of students’ understanding of kinematics graphs (position 

versus time, velocity versus time, and acceleration versus time graphs) revealed that interpreting 

rates of change from kinematics graphs is problematic both for high school and college students. 

A t-test analysis that was used to compare the performance of 524 high school and college 

students in a multiple choice written task about kinematics graphs showed that there was no 

difference in the performance of these two groups of students. The researcher also found that: (1) 

only 51% of the students could correctly determine velocity from a position versus time graph, 

(2) only 40% could determine acceleration from a velocity versus time graph, (3) only 49% 

could determine displacement from a velocity versus time graph, (4) only 23% could determine 

change in velocity from an acceleration versus time graph, and (5) only 38% could correctly 

match two kinematics graphs that showed the same information (e.g. match a velocity versus 

time graph with the corresponding acceleration versus time graph). These results indicate that 

high school and beginning undergraduate students have difficulty interpreting kinematics graphs 

and that these students have difficulty interpreting or constructing accumulation graphs from rate 

graphs and vice versa.   

Research by Carlson et al. (2002) and Tsamir and Ovodenko (2013) shows that 

undergraduate students have difficulty understanding points of inflection from graphs of 

functions. In their investigation of students’ understanding of inflection points, Tsamir and 

Ovodenko (2013) found that even undergraduate students who have completed a course in 

differential equations have numerous difficulties or misconceptions about the concept of an 

inflection point when presented in a graph. Each of the 52 students who participated in this study 



 

 

24 

 

had completed at least a course in differential equations. The students responded to six written 

tasks aimed at assessing their understanding of inflection points followed by interviews with 15 

of the students.  In a task where the students were given graphs of functions and asked to mark 

inflection points, Tsamir and Ovodenko reported that “no student correctly identified all 

inflection points on the five graphs” (p. 416).  The students were generally successful at 

identifying inflection points that lie on the horizontal axis, and tended to either ignore or not 

recognize other inflection points that do not lie on the horizontal axis. Twenty-seven percent 

(n=52) of the students incorrectly identified critical points where either a relative minimum or 

maximum occured as points of inflection. The findings of this study show that even 

undergraduate students who have taken several mathematics courses have difficulty identifying 

points of inflection from graphs of functions and that the concept of an inflection point is not 

well understood by these students. 

Research by Monk and colleagues shows that the use of physical models has proven to be 

effective in revealing other students’ difficulties with graphs of functions: pointwise 

understanding and iconic translation (Monk, 1992; Monk & Nemirovsky, 1994). Monk (1992) 

used a physical model of a ladder to investigate students’ understanding of a function that 

models a dynamic situation. The students who participated in this study consisted of 12 freshmen 

who were enrolled in the first quarter of an introductory calculus course and eight other students 

who had completed a calculus sequence. The students were asked to draw a graph of a function 

that shows the rate of change of the vertical position of the ladder as it slid down a vertical wall. 

Data for the study included transcripts of task-based interviews and work done by students 

during the interviews.  
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Only nine students drew a correct graph. A majority of the students used the Pythagorean 

Theorem to calculate the height of the ladder for specific distances between the wall and the foot 

of the ladder, thus demonstrating a pointwise understanding of the function in this situation. 

Monk found that only three students created tables to record horizontal and vertical positions 

which they later used to construct the graph of the function they were asked to draw. While this 

is yet another demonstration of pointwise understanding of the function they were asked to draw, 

the researcher argued that sometimes a pointwise understanding of functions is “effective in 

helping students avoid iconic translation” (p. 191). Overall, only eight students demonstrated a 

global view (an understanding of the rate of change of the ladder’s vertical position over time) 

while the rest demonstrated a pointwise understanding of the situation. I argue that it might be 

important to examine students’ ability to construct accumulation graphs in a business or 

economic context such as the graph of a profit function when given the graph of a total cost 

function and total revenue function. 

Findings of a cross sectional investigation of high achieving undergraduate students’ 

understanding of the function concept conducted by Carlson (1998) shows that iconic translation 

is not only problematic for high school and beginning undergraduate students but also for 

undergraduate students who have completed a second semester of calculus (Monk, 1992; Monk 

& Nemirovsky, 1994). A total of 60 high achieving students; 30 precalculus students, 16 second 

semester calculus students, and 14 second semester graduate students participated in Carlson’s 

(1998) study. After completing a written exam on the concept of function, Carlson conducted 

follow-up interviews with fifteen students, five from each group. These students were chosen in 

such a way that their responses in the exam were representative of other students’ responses in 

their group.  



 

 

26 

 

In one of the items, the students were asked to comment on the position of two cars 

whose speed was given by two curves (one concave up and increasing and the other concave 

down and increasing) that intersect at a certain time. This task proved to be problematic for a 

majority of the undergraduate students but not for the graduates. Referring to the intersection of 

the two curves, 88% of the precalculus students either said that the cars were at the same position 

or that one was passing the other, 29% of the second semester calculus students gave similar 

interpretations, thus using iconic translation (Monk, 1992). All second semester graduate 

students correctly interpreted the graph. The findings of this study suggest that a majority of the 

precalculus students conflated accumulation (total distance travelled) with rate of change (the 

speed of the cars). I argue that while iconic translation may not occur in a business or economic 

context, undergraduate students are likely to conflate accumulation and rate of change in this 

context (e.g. conflating marginal cost with total cost).  

Translating between representations of functions. Translating between representations of 

functions refers to the act of moving from one function representation to another function 

representation, such as representing a graphically defined function using an algebraic equation. A 

major finding of research that has looked at students’ ability to translate from one function 

representation to another (e.g., Beichner, 1994; Carlson, 1998; Martinez-Plunell & Gaisman, 

2012) is that this translation is problematic both for high school and undergraduate students. For 

instance, other findings of Beichner’s (1994) study of high school and college students’ 

understanding of kinematics graphs revealed that the students had difficulty translating between 

the graphical and verbal (textual) representations. Beichner found that only 39% could correctly 

select a textual description when given a kinematics graph while only 43% could correctly select 

a corresponding graph when given a textual motion description. These findings suggest that 
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translating functions from a graphical representation to a verbal representation and vice versa is 

particularly difficult for high school and college students alike in the context of motion. 

In her cross-sectional investigation of students’ understanding of the concept of function, 

Carlson (1998) found that high achieving precalculus students “are not able to translate verbal 

function language to algebraic function notation” (p. 122) for linear functions. One of the items 

in the study asked the participants to give an example of a function all of whose values are equal. 

Carlson found that 7% (n=30) of the students gave a correct example. A common erroneous 

example given by students was 𝑦 = 𝑥. Another student mentioned the graph of the absolute 

value function, 𝑦 = |𝑥| as an example while two other students stated that an example of such a 

function is one in which all the input values are equal. The findings of this study suggest that 

translating linear functions from a verbal representation to an algebraic representation is 

particularly difficult for beginning undergraduate students. 

 Research by Martinez-Planell and Gaisman (2012) shows that translating real-valued 

functions of two variables from one representation to another is problematic for students who 

have completed a calculus sequence. These researchers examined students’ understanding of 

real-valued functions of two variables. The participants in the study were 13 students of mixed 

abilities who had recently completed a multivariable calculus course. Each student participated 

in a semi-structured task-based interview. During the interviews, students were asked to 

represent numerically (table) and algebraically defined functions using graphs and to match 

graphs of functions with their algebraic formulas. Martinez-Planell and Gaisman reported that 

six students had “difficulties with conversions among different representations” (p. 374). 

Specifying the correct domain was a common difficulty that a majority of these students had 

when translating functions from one representation to another. Referring to one of the students 
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who had difficulty translating functions in multiple representations, Martinez-Plunell and 

Gaisman stated that although this student “was able to represent points in three-dimensional 

space by doing a conversion from a tabular representation to a physical [verbal] representation of 

a function, he could not carry out conversions from a graphical representation to an algebraic 

one” (p. 375). Being able to translate real-valued functions of two or more variables from one 

representation to another is an important understanding that that students need in different fields 

such as economics. 

In summary, the review of literature on students’ understanding of functions shows that 

students have several difficulties or misconceptions about the concept of a real-valued function 

of a single variable. First, undergraduate students have a tendency to think of functions only as 

algebraic equations when solving calculus problems and that this tendency limits them from 

developing good understandings of important ideas in calculus such as average and instantaneous 

rates of change. Second, identifying or interpreting points of inflection from graphs of functions 

is problematic for undergraduate students. Third, translating functions from one representation to 

another in de-contextualized situations and in a motion context is problematic both for high 

school and undergraduate students.  

 Students’ understanding of real-valued functions of two variables. Research on 

students’ understanding of real-valued functions of two variables (𝑅2 → 𝑅1) is limited (Martinez-

Planell & Gaisman, 2012; Weber & Thompson, 2014; Yerushalmy, 1997). Yerushalmy (1997) 

studied six Israeli secondary school students’ reasoning while modeling a multivariable situation. 

These students were enrolled in an algebra class that followed an “innovative algebra 

curriculum” (p. 433) that was organized around three ideas central to the learning of the function 

concept, namely describing, comparing, and “generalizing various aspects of functions” (p. 433). 
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The researcher investigated how the students related three variables (cost, days, and number of 

kilometers driven) as well as how they described the various representations they used to relate 

the variables. A computer program was used in the teaching of the course to support students’ 

understanding of the concept of function in multiple representations. Over a period of four one-

hour meetings, the students worked in two groups to determine the relationship between the cost 

of renting a car from a rental car company that charges its customers “1000 shekels for a day and 

an additional 5 shekels per kilometer” (p. 435).   

Students attempted to model the relationship among the three variables using three 

representations, namely real-valued algebraic functions of two variables, three-column tables, 

and a three dimensional graph. Some of the algebraic relationships created by the students were 

𝑓(𝑛) = 𝑛 ∗ 100 + 𝑥 ∗ 5 and 𝑓(𝑛, 𝑏) = (𝑛 ∗ 100) + (𝑏 ∗ 5) where the variable 𝑛 represents 

number of days for renting a car while the variables 𝑥 and 𝑏 represent number of kilometers 

driven. Yerushalmy argued that sometimes the notations 𝑓, 𝑓(𝑛), and 𝑓(𝑛, 𝑥) meant one and the 

same thing to the students. Yerushalmy reported that the use of three-column tables helped some 

of the students to correctly determine an algebraic equation relating the three variables. Only one 

student attempted to represent the relationship in a three dimensional plane by combining a pair 

of two dimensional planes (cost versus day and cost versus kilometers driven). The findings of 

this study suggest that modeling multivariable situations using multiple representations of real-

valued functions of two variables in the context of cost is particularly difficult for students. The 

findings of this study also suggest that the correct mathematical notation for representing these 

functions algebraically is not well understood by secondary school students. 

 Research by Weber and Thompson (2014) shows that even after receiving formal 

instruction about graphs of real-valued functions of two variables, constructing and interpreting 
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these graphs is problematic for undergraduate students. These researchers investigated two 

undergraduate students’ mental images (schemes) of real-valued functions of two variables that 

are algebraically and graphically defined. The students, Jesse and Lana, participated in a three 

week teaching experiment whose aim was to help them develop robust understandings of graphs 

and algebraic equations of real-valued functions of two variables. During each session of the 

teaching experiment, the students were encouraged to use a graphing computer program to 

visualize surfaces on a three dimensional plane and to graph three dimensional surfaces they 

were attempting to graph on paper. Neither of the students had seen real-valued functions of two 

variables before. At the time of participating in the teaching experiment, the students were 

concurrently enrolled in a first semester calculus course. The study reported on an activity that 

the students worked on during the experiment: constructing and interpreting the graph 

of  𝑓(𝑥, 𝑦) = 𝑥2𝑦2. 

Analysis of interviews conducted with each student prior to the teaching experiment 

revealed that Jesse’s understanding of a function was that of a “rule” (p. 76) that relates two 

variables and the graph of a function as a visual representation of the rule “for every point” (p. 

76). Lana, on the other hand, understood a function as “two variables connected by an equal 

sign” and that a graph is a “picture” of an equation (p. 79). Weber and Thompson argued that 

Jesse had a covariation view of a function. When asked to explain how he was thinking about the 

function  𝑓(𝑥, 𝑦) = 𝑥2𝑦2, Jesse not only stated that “two variables vary in different directions” 

(p. 77) but he went on to explain what he would see in the 𝑧𝑥, 𝑧𝑦, and 𝑥𝑦 planes. Thus Jesse 

attended to three images simultaneously while thinking about the graph of a real-valued function 

of two variables. When Lana was asked about how she was thinking about the function 

𝑓(𝑥, 𝑦) = 𝑥2𝑦2, unlike Jesse, there was no evidence of her imagining several variables changing 
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in tandem as the surface is created. She stated that the equation “has squares” (p. 81) which made 

her “think of parabolas right away” (p. 81) and when probed about where the parabolas come 

from, she said that “algebra says they are there” (p. 81). Weber and Thompson argued that 

Jesse’s covariation view of functions of one variable helped him to extend his understanding of 

real-valued functions of one variable to real-valued functions of two variables. The findings of 

this study suggest that a covariation view of the concept of function is a powerful and essential 

understanding that students hoping to understand real-valued functions of several variables need. 

In their investigation of students’ understanding of real-valued functions of two variables, 

Martinez-Planell and Gaisman (2012) reported that three students did not recognize the 

uniqueness of a function’s output while eight students had weak understandings of restricted 

domains of real-valued functions of two variables. These researchers found that finding domains 

of functions “that were restricted to a specific region in the 𝑥𝑦 plane” (p. 365) was problematic 

for a majority of the students. Six students had difficulties describing and determining the range 

of real-valued functions of two variables in multiple representations, three students showed a 

lack of an understanding of the uniqueness of the output of real-valued functions of two 

variables, and two students had a conception of the “domain as 𝑥 axis and range as 𝑦 axis” (p. 

374). Furthermore, Martinez-Planell and Gaisman reported that eight students had a strong 

conception of a real-valued function of two variables as a formula. Martinez-Planell and 

Gaisman argued that students’ difficulties with real-valued functions of two variables are similar 

to students’ difficulties with real-valued functions of one variable. The findings of this study 

suggest that even students who have taken multivariable calculus do not have robust 

understandings of properties of the concept of function, namely the domain, range, and the 

uniqueness of a function’s output.  



 

 

32 

 

Together, the research on students’ understanding of real-valued functions of two 

variables suggests that secondary school and undergraduate students have difficulty representing 

these functions using graphs (Martinez-Planell & Gaisman, 2012; Weber & Thompson, 2014; 

Yerushalmy, 1997). I argue that this difficulty would be compounded when students are asked to 

interpret multivariate graphs situated in real-world contexts such as the profit function in 

economics. I would expect that determining a meaningful domain and range of the graph of a 

profit function when given the graphs of the total cost and total revenue function to be 

particularly difficult for some undergraduate students. 

Covariational reasoning. A solid understanding of the covariational relationship that 

exists between a function’s input values and its output values is essential for students to 

understand average rates of change and instantaneous rate of change in pre-calculus and calculus 

respectively. According to Carlson et al. (2002), covariational reasoning refers to “the cognitive 

activities involved in coordinating two varying quantities while attending to the ways in which 

they change in relation to each other” (p. 354). For functions, this means being able to 

simultaneously attend to the changing output values of a function and the rate at which the output 

values are changing as the values of the input variable change on a given interval of the 

function’s domain (Oehrtman et al., 2008). The last 25 years have seen a growing body of 

research on the topic of covariational reasoning as it relates to students’ understanding of 

functions and their rates of change (e.g., Carlson, 1998; Carlson et al., 2002; Johnson, 2012; 

Monk, 1992; Monk & Nemirovsky, 1994; Oehhrtman et al., 2008; Thompson, 1994b; Zeytun, 

Cetinkaya, & Erbas, 2010).   

A common finding of research studies that have looked at how students engage in 

covariational reasoning while modeling dynamic events is that high school, undergraduate, and 
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graduate students have difficulty interpreting varying rates of change while modeling dynamic 

situations (e.g., Carlson, 1998; Carlson et al., 2002; Johnson, 2012; Monk; 1992, Monk & 

Nemorovsky, 1994; Thompson, 1994b).  An important finding of Carlson’s (1998) cross 

sectional investigation of high achieving students’ understanding of the concept of function was 

that even second semester graduate students have difficulty understanding changing rates in an 

imagined dynamic situation. In a task that asked students to sketch a volume versus height graph 

by imagining a spherically shaped bottle filling with water, Carlson found that 28% (n=14) of the 

graduate students constructed graphs that were either strictly concave up or strictly concave 

down “for the portion of the graph corresponding to the spherical portion of the bottle” (p. 124). 

This was also found to be a common misconception for 74% (n=16) of the second semester 

calculus students. Overall, only 51% of the graduate students constructed correct graphs while 

only 13% of the second semester calculus students were able to do so. None of the pre-calculus 

students (n=30) constructed a correct graph. A majority of the pre-calculus students constructed 

increasing straight lines. 

Later research (Carlson et al., 2002) confirmed Carlson’s earlier finding that high 

achieving undergraduate mathematics majors have difficulty understanding changing rates in 

dynamic situations. Carlson and colleagues examined students’ ability to reason about covarying 

quantities in continuously changing situations. The researchers stated that the 20 students who 

participated in their study were representative of students who had recently completed a second 

semester calculus course and earned a grade of A in the course. Each student was asked to graph 

the height as a function of the amount of water in a spherically-shaped bottle that was being 

filled with water at a constant rate. Only two of these students constructed correct graphs in this 

task while the rest of the students demonstrated difficulties that were similar to those exhibited 
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by students in Carlson’s (1998) study. A complete analysis of each student’s response to the task 

and follow up interviews with six of the students revealed that “very few of these high-

performing 2nd-semester calculus students were able to form accurate images of the 

continuously changing instantaneous rate for this dynamic event function” (p. 364). In particular, 

the students had difficulty understanding and interpreting the continuously changing rates at 

which the height was changing as the bottle was being filled with water. Taken together, these 

studies (Carlson, 1998; Carlson et al., 2002) suggest that poor covariational reasoning abilities 

limit undergraduate students from understanding continuously changing rates in a geometric 

context. 

 Other research suggests that secondary school students who have not taken calculus have 

powerful ways of applying covariational reasoning while reasoning about constant and varying 

rates of change (Johnson, 2012). Johnson investigated how a tenth grade student, Hannah, who 

had completed a year of algebra reasoned about rates of change by engaging the student in five 

weekly task-based interviews that had seven tasks one of which was the filling bottles task. For 

the filling bottles task, Hannah was given a graph that showed the relationship between the 

height of a liquid in a bottle and the volume of the liquid in the bottle as the “liquid was being 

dispensed into the bottle at a constant rate” (p. 318). She was asked to sketch an image of the 

bottle described in the task. While sketching the bottle, Hannah commented while moving her 

fingers on the graph that “as you go along” (p. 326) the volume “definitely increases” (p. 326). 

She added that “it gets smaller as you go to the cap of the bottle” (p. 326). Hannah created an 

acceptable graph. Johnson stated that the student “simultaneously coordinated variation in the 

intensity of change in volume with smooth chunks of increase in height” (p. 326). The findings 

of this study suggest that students who have not taken calculus may have powerful informal 
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ways of reasoning about varying rates in dynamic situations. Throughout the interviews, Hannah 

demonstrated powerful mathematical understandings of rate of change by simultaneously 

attending to how one or two quantities covaried with another.  

Research by Carlson, Larsen, and Lesh (2003) shows that the integration of a models and 

modeling perspective (Lesh & Doerr, 2003; Lesh & Zawojewski, 2007) in modeling dynamic 

events promotes the development of students’ covariational reasoning abilities. In their 

investigation of 22 undergraduate students’ reasoning about a modification of the bottle problem 

(Carlson et al., 2002) so that it adheres “to the six principles of model eliciting activities,” 

Carslon et al. (2003, p. 469) found that all the students were successful in constructing an 

acceptable graph for the bottle problem. Analysis of video interviews taken while students 

worked on this task in groups of two to four students revealed that requiring students to verbalize 

their reasoning, getting and giving feedback to their peers, and requiring students to refine their 

graphs are some of the major factors that contributed to the students’ success in this activity. 

Carlson and colleagues asserted that the activity was effective in developing the students’ 

covariational reasoning abilities. 

Other research on students’ engagement in covariational reasoning while modeling a 

dynamic situation shows that the use of physical enactments of the situation enhances students’ 

understanding of varying rates in these situations (Carlson, 1998; Carlson et al., 2002; Monk, 

1992). In their investigation of students’ ability to engage in covariational reasoning while 

modeling dynamic events, Carlson et al. (2002) asked the students in their study to describe the 

speed of the top of a ladder sliding down a vertical wall, a modification of task used by Carlson 

(1998) and Monk (1992). Eight students (40%) gave a correct response. Carlson and her 

colleagues posited that the students’ success was a result of having visualized the ladder sliding 
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down the wall, something that was later confirmed during the follow-up interviews. During the 

interview with two of the students who provided correct responses, the researchers observed that: 

When one of the students (Student B) was prompted to explain his correct response, he 

performed a physical enactment of the situation, using a pencil and book on a table. As he 

successively pulled the bottom of the pencil away from the book by uniform amounts, he 

explained, “as I pull the bottom out, the amount by which the top drops gets bigger as it 

gets closer to the table”…Student A provided a similar response, except that her 

enactment involved her hand and a book to model the situation. (Carlson et al., 2002, p. 

371) 

Carlson et al. asserted that the use of physical enactments of the situation by the students 

provided them with powerful tools that enhanced their understanding of the covariatioanl 

relationship of the vertical and horizontal speed of the ladder as it slid down the wall. This 

finding is consistent with that of other researchers who have used this task with undergraduate 

students (Carlson, 1998; Monk, 1992). In other contexts, such as in business or economics, this 

finding suggest that the use of simulations (e.g., spreadsheets and other business or economic 

softwares) could support students’ understanding of a dynamic situation such as profit which 

changes in tandem with changes in cost, revenue, and number of items produced and sold 

respectively. 

Research by Thompson (1994b) shows that failure to engage in covariational reasoning in 

dynamic situations limits students in developing deep and conceptual understandings of 

important concepts in calculus such as rates of change. While investigating students’ 

understanding of the FTC, Thompson observed that the students (n=19) had a weak 

understanding of rates of change. This weak understanding was noted when students were asked 
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to give the units of the average rate of change of volume for “a cooling object 𝑡 hours after 

removing a heat source” (p. 265). Only seven of the 19 students correctly stated that the units 

would be cubic meters per hour. Four students gave units of amount of change such as hours, 

thus demonstrating a lack or limited understanding of the dependent variable and independent 

variable changing in tandem. This finding suggests that students’ tendency to conflate rate of 

change with amount of change in a physics context can be attributed to failure to recognize rate 

of change as a quantity that results from a co-variation of two quantities (input and output). 

Being able to distinguish between the amount of a substance and the rate of change of a 

substance is an important understanding that students in business or economics, for instance, 

need to be able to distinguish between marginal cost and total cost. 

 In summary, the literature reviewed in this subsection reveals that coordinating changes 

in two quantities that are changing simultaneously is particularly problematic for undergraduate 

students. The findings of the research suggest that the use of physical enactments of dynamic 

situations and model eliciting activities can be effective in revealing students’ difficulties with 

changing rates and that these activities can be used to promote students’ development of 

covariational reasoning abilities. I argue that there is a need to investigate undergraduate 

students’ covariational reasoning when modeling multivariable situations such as the profit 

function in economics which has multiple covariates, namely total cost, total revenue, and 

number of items produced and sold. 

Learning in Context 

 This section contains a review of research literature on: (1) the importance of context in 

the teaching and learning of mathematics and (2) students’ understanding of context problems.  
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The importance of context in the teaching and learning of mathematics. This section 

contains a review of literature on the importance of context in students’ learning of mathematics. 

In particular, I discuss different meanings of the term context as used in the mathematics 

education research literature followed by a synthesis of rationales given by mathematics 

education researchers and widely cited national curriculum documents for using real-world 

contexts in the teaching and learning of mathematics. These documents include, among others, 

the Common Core State Standards for Mathematics (National Governors Association Center for 

Best Practices & Council of Chief State School Officers, 2010) that have been recently adopted 

by more than 45 states and the NCTM Principles and Standards for School Mathematics 

(NCTM, 2000). The section concludes with a discussion of the role of real-world contexts in 

students’ learning of mathematics from two perspectives, namely modeling activities and 

application problems.  

Meanings of context. According to van den Heuvel-Panhuizen (2005), the term context, 

as used in educational settings, refers to either a learning environment or a characteristic of a 

mathematical task (problem) that is presented to students. The context of a learning environment 

could include students’ opportunities to learn provided by the instructor (e.g. lectures) and 

teaching/learning materials in the classroom such as textbooks and manipulatives among other 

things. The context of a mathematical task, on the other hand, refers to “the words and pictures 

that help the students to understand the task, or concerning the situation or event in which the 

task is situated” (van den Heuvel-Panhuizen, 2005, p. 2). Borasi’s (1986) explanation of the 

context of a mathematical task is consistent with that given by van den Heuval-Panhuizen 

(2005). For other researchers (e.g., Davis, 2007; Zandieh, 2000), the context of a mathematical 
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task refers to the ways in which a concept such as instantaneous rate of change in the task could 

be represented i.e. algebraically, numerically, graphically, or textually (also called verbally). 

According to Freudenthal (1993), the term context in mathematics could also refer to a 

domain of application, that is, the application of mathematical ideas in other disciplines besides 

mathematics. This includes, for instance, an interpretation of the concept of marginal change in 

economics as instantaneous rate of change in mathematics. Marrongelle (2004) stated that “in the 

mathematical problem solving literature, context typically refers to non-mathematical meanings 

present in the problem situation” (p. 258). Marrongelle added that such problems often require 

the solver to interpret and translate textually represented information given in the problem 

situation to “familiar mathematical form” (p. 258) such as using algebraic notation. White and 

Mitchelmore (1996) asserted that “in calculus, the context of an application problem may be a 

realistic or artificial “real-world” situation, or it may be an abstract, mathematical context at a 

lower level of abstraction than the calculus concept that is to be applied” (p. 81). White and 

Mitchelmore’s definition of context is consistent with Gravemeijer and Doorman’s (1999) view 

of the notion of context in calculus. A realistic or artificial situation is one that may not 

necessarily be real but rather a situation can that can be imagined by the solver of an application 

problem (Gravemeijer & Doorman, 1999; van den Heuvel-Panhuizen, 2005).  

Rationales for using contexts in the teaching and learning of mathematics. The use of 

real-world contexts in mathematics instruction and in the assessment of students’ understanding 

of mathematics has received considerable attention in national curriculum documents over the 

last 25 years. The Common Core Learning Standards for Mathematics (National Governors 

Association Center for Best Practices & Council of Chief State School Officers, 2010) calls for 

the engagement of students in solving problems that are situated in real-world contexts. These 
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standards stipulate that the teaching and learning of school mathematics should provide students 

with opportunities to analyze, explain, describe, and interpret mathematics concepts such as rates 

of change in real-world contexts. The Principles and Standards for School Mathematics (NCTM, 

2000) state that “all instructional programs from pre-kindergarten through grade 12 should 

enable all students to analyze change in various contexts” (p. 40). Following is a review of 

research literature that discusses some of the rationales for using real-world contexts in 

mathematics instruction or in assessing students’ understanding of mathematics. 

Evidence from research shows that engaging students in solving mathematical problems 

that are situated in real-world contexts helps to reveal students’ conceptual understandings and 

conceptual difficulties or misunderstandings of certain mathematical concepts and procedures 

(Ärlebäck, Doerr, & O'Neil, 2013; White & Mitchelmore, 1996; Wilhelm & Confrey, 2003; 

Yoon, Dreyfus, & Thomas, 2010). In their investigation of undergraduate students’ 

understanding of average rates of change in the context of an exponential decay function 

modeling voltage drop across a discharging capacitor, Ärlebäck et al. (2013) found that students’ 

reasoning about the context revealed that all the students were able to correctly interpret the 

vertical intercept of the function in the context of the problem situation. Ärlebäck et al. stated, 

with evidence, that “a focus on the context made visible students’ reasoning about rates of 

change, including difficulties related to the use of language when describing changes in the 

negative direction” (p. 314). In essence, reasoning with the context of a discharging capacitor 

made visible students’ understandings of rates of change in a physics context. 

Other researchers (e.g., White & Michelmore, 1996; Michelsen, 2006) have shown that a 

focus on students’ reasoning about the context of motion while solving calculus problems reveals 

that undergraduate students have impoverished understandings of the concept of a variable. 
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These researchers argue that students see variables as algebraic symbols that are to be 

manipulated instead of quantities that are to be related. Research by Monk and colleagues in the 

context of motion and volume shows that undergraduate students have a static view (pointwise 

view) of the concept of function instead of a dynamic view (global view) of the concept (Monk, 

1992; Monk & Nemirovsky, 1994). Research by Carlson et al. (2002) shows that even high 

achieving undergraduate students who have completed a second semester course in calculus have 

weak understandings of instantaneous rates of change that are changing from increasing to 

decreasing and vice versa, that is, points of inflection in the real-world context of modeling 

dynamic situations such as the height of water in a spherically shaped bottle that is filling with 

water. 

In light of the fact that much research has documented students’ difficulties with 

transferring their knowledge of mathematics to other contexts, there is a need to find ways of 

helping students overcome these difficulties (Carlson et al., 2002; Herbert & Pierce, 211; 

Ibrahim & Rebello, 2012; Michelsen, 2006, White & Mitchemore, 1996; Wilhelm & Confrey, 

2003). In his discussion of the need to integrate the teaching and learning of mathematics and 

science topics through modeling as a means of enhancing students’ ability to transfer their 

understanding of mathematical ideas to new contexts, Michelsen (2006) argued that “teaching 

mathematics in relation to science supports students’ learning by providing meaningful contexts 

in which the students can see the application of abstract mathematical concepts” (p. 273). 

Michelsen added that this motivates students to study mathematics. Consistent with Michelsen’s 

argument on the importance of integrating real-world contexts in mathematics instruction, Yoon 

et al. (2010) stated that using real-world contexts in mathematics instruction gives “students the 

chance to see the utility of the mathematics they have learned” (p. 143) in real life. Taken 
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together, Michelsen (2006) and Yoon et al.’s (2010) views about the use of real-world contexts 

in the teaching and learning of mathematics suggest that these contexts have a potential for 

enhancing students’ ability to transfer their understanding of mathematical ideas to other fields 

of study.  

A common finding of research that has looked at the role of contextual modeling (e.g., 

Kaiser & Sriraman, 2006) in mathematics instruction is that engaging students in modelling 

activities that are situated in real-world contexts reveals students’ difficulties with certain 

mathematical concepts and procedures and that these activities have the potential to “motivate 

students to develop the mathematics needed to make sense of meaningful situation” (Ärlebäck et 

al., 2013, p. 316). Through the use of a sequence of modeling activities, namely model eliciting 

activities (MEAs), model exploration activities (MXAs), and model application activities 

(MAAs) in a six-week summer course, Ärlebäck and colleagues were successful in developing 

beginning engineering “students’ abilities to describe and interpret rates of change in the context 

of exponential decay” (p. 314). Similar results were reported by Dominguez (2010) who engaged 

students in an MEA situated in an economic context. The use of MEAs with 22 pre-service 

teachers revealed the teachers’ thought processes about co-varying quantities in the real-world 

contexts of kinematics and volume, something that prompted the researchers to start “developing 

model eliciting activities to promote students’ development and understanding of the major 

conceptual strands of introductory calculus” (Carlson, Larsen, & Lesh, 2003, p. 478). In sum, the 

use of model eliciting activities has the potential to promote students’ development and 

understanding of essential ideas (e.g., functions and rates of change) in the study of calculus. 

Another well documented rationale in the mathematics education literature (Freudenthal, 

1993; Gravemeijer & Doorman, 1999; Lesh, Hoover, Hole, Kelly, & Post, 2000; Michelsen, 
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2006; Yoon et al., 2010) for using real-world contexts in the teaching and learning of 

mathematics is that this provides students with opportunities to mathematise, “which means, 

turning a non-mathematical matter into mathematics, or a mathematically underdeveloped matter 

into more distinct mathematics” (Freudenthal, 1993, p. 72). Mathematising realistic context 

problems has the potential to help students develop deep and conceptual understandings of the 

mathematical ideas rooted in the problems (Lesh et al., 2000). I argue that the process of 

mathematising realistic situations enhances students’ development of robust understanding of 

mathematical concepts and that this process makes visible students’ conceptions of the formal 

mathematical ideas that are rooted in the situation.  

Modeling activities and application problems. Much research in mathematics education 

has advocated for the integration of real-world contexts in the teaching and learning of 

mathematics as a way of helping students recognize the importance of mathematics in solving 

real-world problems (e.g., Freudenthal, 1968; Lesh et al., 2000; Pollak, 1968). Yoon et al. (2010) 

argued that connecting mathematics and real-world contexts can be accomplished through the 

use of modeling activities and application problems. My study used Yoon et al.’s distinction 

between modeling activities and application problems. According to Yoon and colleagues, 

“modeling activities require students to develop a mathematical model by mathematising a real 

world situation, whereas application problems require students to apply a previously learned 

mathematical model to a real world context” (p. 142). In the mathematics education research 

literature, application problems are sometimes referred to as word problems (Ubuz & Ersoy, 

1997) or story problems (Garner & Garner, 2001; Gerofsky, 1996).  

Proponents of modeling activities such as Lesh and Doerr (2003) and Stillman (2012) 

argue that modeling activities are more beneficial than application problems in that engaging 



 

 

44 

 

students in MEAs during instructional units offers students opportunities to deepen their 

conceptual understanding of mathematics ideas through the process of mathematising. In their 

review of research literature on the advantages and disadvantages of using either MEAs or 

application problems, Yoon et al. (2010) found that: 

When MEAs are implemented before any direct instruction on the topic, they serve their 

intended role of encouraging students to develop their own understandings through the 

process of mathematising. In contrast…when MEAs are implemented at the end of an 

instructional unit, they resemble application problems, in which students can apply what 

they have already been taught” (p. 142). 

In light of Yoon and colleagues’ distinction of modeling activities and application 

problems, my research study used application problems (Appendix A) instead of modeling 

activities. My study focused on investigating how students applied mathematical knowledge they 

had opportunities to learn in the textbook (Haeussler et al., 2011) and through course lectures to 

solve application problems that are situated in the real-world context of cost, revenue, and profit.  

Students’ understanding of context problems. Context problems are those that require 

reasoning about mathematical ideas such as functions, covariation, and rates of change in 

situations that are experientially real to students. Following is a review of research literature on 

what students’ reasoning about context problems reveals about their difficulties or 

misconceptions about rates of change and rate-related concepts.  

One major finding that emerges from research that has looked at students’ reasoning 

about rates of change is that students have weak understandings of points of inflection both in 

real-world contexts (Carlson et al., 2002; Johnson, 2012) and in a purely mathematics context 

(Tsamir & Ovodenko, 2013). Research by Carlson et al. (2002) and Johnson (2012) shows that 
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students have a poor understanding of points of inflection in the context of temperature and heat. 

Referring to students’ difficulties in constructing a temperature rate graph, Carlson et al. stated 

that “their inability to note and represent the rate changing from increasing to decreasing (i.e., the 

inflection point), as shown by their concave up construction and remarks, suggested weaknesses 

in their understanding” (p. 370). Similar difficulties were exhibited by Hannah (Johnson, 2012) 

in a variation of the temperature problem given in Carlson et al.’s (2002) study. 

Research by Tsamir and Ovodenko (2013) shows that in a purely mathematics context 

(i.e., absence of a real-world context) the concept of an inflection point is not well understood by 

students. In their study of students’ understanding of inflection points, these researchers found 

that the students held “four erroneous images of inflection points: (1) 𝑓′(𝑥) = 0 as a necessary 

condition, (2) 𝑓′(𝑥) ≠ 0 as a necessary condition, (3) 𝑓′′(𝑥) = 0 as a sufficient condition” (p. 

409), and (4) the identification of critical points where either a relative minimum or maximum 

occurs as a point of inflection. Inflection points could determine crucial moments of a business 

such as when profit changes from increasing at an increasing rate to increasing at a decreasing 

rate. Hence, it would be important to investigate students’ understanding of points of inflection 

in a business or economics context.   

Other research studies show that secondary school and undergraduate students’ robust 

understandings of rate of change in a motion context do not necessarily transfer to non-motion 

contexts (Cetin, 2009; Herbert & Pierce, 2008; Herbert & Pierce, 2011; Ibrahim & Rebello, 

2012). Another finding of Ibrahim and Rebello’s (2012) study of engineering students’ strategies 

when solving problems in the contexts of kinematics and work respectively was that students’ 

robust understandings of rate in the former context did not transfer to the latter context. For 
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instance, in the problems where students were required to give detailed interpretations of 

equations: 

The data indicate that in kinematics all 19 students formulated an explanation of the 

physics depicted by the position equation, while in the topic of work, a high proportion of 

students (16 in 19) formulated a description focusing on apparent information and surface 

features of the representation. (p. 7) 

A similar observation was made when the students were asked to interpret graphs in the two 

contexts. Based on the findings of this study, one may argue that undergraduate students have 

difficulty transferring their understandings of rate from one physics context (kinematics) to 

another (work). 

In their study of 27 secondary school students’ ability to transfer their understanding of 

rates of change from a motion context to another motion context and from a motion context to a 

context of cost, Herbert and Pierce (2008) found that the students were more successful in the 

former transfer (motion to motion) and less successful in the latter transfer (motion to cost). 

Collected data for the study consisted of students’ written responses on two tests given during a 

teaching experiment on average rates of change, classroom observations, and transcriptions of 

follow up interviews with four students after completing the two tests. Herbert and Pierce found 

that the students were generally able to transfer their understanding of rate in a vertical motion 

context (speed of moving elevators) to a horizontal motion context (speed of a walking person). 

For one of the students, the researchers reported that this student was able to use his 

understanding of speed in the context of a moving elevator (model of) as a ‘model for’ 

understanding the horizontal motion context. A complete analysis of the data revealed that “a 

smaller majority of the students were able to use their, often incomplete, ‘model of’ rate of 
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change” (p. 231) in a motion context “as a ‘model for’ reasoning about rate of change in a non-

motion context” (p. 231). The findings of this study suggest that students’ understandings of rate 

of change in a motion context do not transfer to non-motion contexts. 

Similar findings were reported by Herbert and Pierce (2011) who examined the influence 

of context and representation on 20 secondary school students’ reasoning about rates of change. 

The students’ prior instruction on rates of change used two interactive multiple representation 

computer programs to broaden their understanding of constant and variable rates of change in the 

contexts of area versus height and distance versus time. Each student participated in a video 

recorded interview designed to assess their understanding of rate of change based on computer 

simulations displayed on the technologies described above. Herbert and Pierce found that nearly 

all the students were able to clearly explain their understanding of rate of change when presented 

with tasks about distance and time whereas about half of them could do so when presented with 

tasks about area and height. The researchers argued that although the students demonstrated a 

solid understanding of rates of change in the context of walking, this understanding did not 

transfer to the context of area and height. In other words, students’ understandings of rate of 

change in a motion context did not transfer to a non-motion context. 

Research by Cetin (2009) shows that projecting understandings of rates of change from a 

kinematics context onto a volume context is problematic for undergraduate students. Cetin 

examined science and engineering students’ understanding of functions and their derivatives in 

the context of motion and volume respectively. Each of the 104 students who participated in the 

study was engaged in an untimed task-based interview consisting of motion-related and volume-

related tasks. Referring to students’ understanding of rate of change in the tasks that were 

situated in a motion context, Cetin reported that “subjects were successful by referring to their 
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intuition in answering these questions” (p. 241). However, when the context was volume, only 

43% showed evidence of understanding functions and their derivatives. The findings of this 

study together with those of other studies (e.g., Herbert & Pierce, 2008; Herbert & Pierce, 2011; 

Ibrahim & Rebello, 2012) suggest that while rates of change are often well understood in a 

motion context, projecting understandings of these concepts onto non-motion contexts is 

problematic for high school and college students. It might be important to examine students’ 

ability to project their understanding of rates of change, marginal change in particular, in a 

purely mathematics context onto a business or economic context.  

Other research suggests that students do not have to completely understand rates of 

change in a motion context to be able to understand rates of change in a non-motion context and 

vice versa (Wilhelm & Confrey, 2003). Wilhelm and Confrey studied four algebra I students’ 

ability to project their understanding of average “rate of change in the context of motion onto the 

context of money” (p. 887). Motion detectors were used in a teaching experiment for teaching 

the concept of average rate in the former context and a banking software was used for teaching 

the same concept in the latter context. Analysis of clinical interviews conducted with each 

student at the end of the teaching experiment revealed that the students did “not have to 

completely understand the relationship between rate of change and accumulation graphs within a 

single context in order to be able to understand and project the concepts of rate of change and 

accumulation separately into multiple contexts” (p. 890). In this study, some of the students who 

seemed to have incomplete understandings of rate of change and accumulation in a motion 

context were able to project these concepts onto a banking context. 

Another major idea from research is that representing rates of change in multiple 

representations is problematic for undergraduate students (Klymchuk et al., 2010; Villegas et al., 
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2009). Student A in Villegas et al.’s (2009) study of students’ use of multiple representations 

when solving optimization problems was not successful in solving some of the problems because 

of failure to represent the derivative in multiple representations. Students’ inability to set up an 

objective function for a routine optimization problem in Klymchuk et al.’s (2010) study was a 

result of students’ inability to extract rate-related information given in text and writing it 

algebraically. When students were asked about challenges they had with this problem, some 

indicated that they “did not know how to convert the real life problem into one to solve 

mathematically” (p. 85). Taken together, the findings of Klymchuk et al. (2010) and Villegas et 

al. (2009) suggest that translating rates of change from one representation to another, especially 

from a verbal (textual) representation to an algebraic representation, is problematic for 

undergraduate students when solving optimization problems that are situated in a physics 

context. It would be important to investigate the nature of difficulties students have when asked 

to solve verbally-represented optimization problems that are situated in other contexts such as in 

economics.  

Several studies have reported on undergraduate students’ tendency to conflate the rate of 

change of a quantity with either the amount of change of the quantity (e.g., Lobato, Hohensee, 

Rhodehamel, & Diamond, 2012; Mkhatshwa, 2014; Prince, Vigeant, & Nottis, 2012; Rasmussen 

& King, 2000; Rasmussen & Marrongelle, 2006) or the accumulation of the quantity (e.g., Flynn, 

Davidson, & Dotger, 2014) when solving application problems that are situated in various 

contexts. Prince et al. (2012) used a concept inventory to investigate 373 engineering students’ 

understanding of the concepts of heat and energy, before and after the students had received 

formal instruction in these concepts. Nine of the 36 items in the inventory targeted students’ 

understanding of rates of change and amount of heat transfer. Following the last administration 
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of the questionnaire, a convenience sample of 50 students responded to “open-ended conceptual 

questions” (p. 417) that were analyzed for common patterns in students’ reasoning about rate and 

amount of heat transfer. Analysis of student responses to the questions revealed that the students 

had “difficulty distinguishing between factors that influence the heat transfer rate vs. the amount 

of heat transferred in a given situation” (p. 427). A quantitative analysis of students’ responses 

on the rate versus amount of heat transfer questions revealed that there was no difference in 

students’ performance on these questions in the two administrations of the questionnaire. Hence, 

the findings of this study suggest that students’ difficulties with distinguishing between the rate 

of change and the amount of change of a quantity in a thermodynamics context persist even after 

students receive formal instruction in these concepts. 

Students’ tendency to conflate the rate of change of a quantity with the amount of change 

of the quantity has also been observed in the context of differential equations (Rasmussen & 

King, 2000; Rasmussen & Marrongelle, 2006). Through a semester-long teaching experiment, 

Rasmussen and King (2000) analyzed tasks that engaged undergraduate students in reasoning 

about approximate solutions to first order differential equations. Collected data for the study 

consisted of video recordings of classroom observations, copies of students’ written work, and 

video recordings of interviews with a group of three students (Jerry, Bill, and Sean) whose work 

was considered to be representative of students’ reasoning in the class. Analysis of students’ 

work while working on a task where they were asked to describe how they would use a first 

order differential equation to approximate the number of fish in a pond revealed that Bill and 

Jerry did not “conceive of the situation as rate, and therefore did not make a distinction between 

rate of change and change” (p. 168). That is, the students did not distinguish between the rate of 

change of the number of fish in the pond and the amount of change of the number of fish in the 
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pond for a given time period. In another study situated in the context of differential equations but 

not directly related to students’ learning, Rasmussen and Marrongelle (2006) reported that 

“students were not making a conceptual distinction between rate of change in the amount of salt 

and amount of salt” (p. 408). In particular, the students confused the amount of salt flowing in a 

tank at any given time with the rate at which the salt is flowing in. I argue for the need to 

investigate students’ ability to distinguish between the amount of change of a quantity and the 

rate of change of the quantity in other context areas. In economics, for instance, this could mean 

investigating students’ abilities to distinguish between the amount of profit generated in a given 

time period and the rate at which profit increased in the same time period. 

A related line of research suggests that conflating rate of change and amount of change is 

common among students when dealing with functional situations where the input changes by a 

unit each time i.e. marginal change being per a unit of one (Lobato, Hohensee, Rhodehamel, & 

Diamond, 2012; Mkhatshwa, 2014). Lobato and colleagues investigated 24 eighth grade 

students’ understanding of average rate of change in a kinematics context. The students were 

given a numerical table showing time (in increments of 1 second) and altitude (height above 

ground measured in feet) of a remote-controlled airplane at the end of a 15-hour instructional 

unit on quadratic functions. They were asked to describe the speed of the airplane. A qualitative 

analysis of a clinical interview with one of the students revealed that the student treated marginal 

change as an amount of change and not as a rate of change when he indicated that the speed of 

the airplane would be in feet instead of feet per second. In a pilot study that examined 

undergraduate business calculus students’ reasoning about marginal change in the context of 

cost, revenue, and profit (Mkhatshwa, 2014), nine of the ten students who participated in the 

study stated that the units of marginal cost, marginal revenue, and marginal profit would be 
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dollars instead of dollars per unit of production. Because of the importance of the concept of 

marginal change in economics, I argue that there is a need for more research on students’ 

understanding of marginal change in an economic context. 

Research by Flynn et al. (2014) suggests that distinguishing between the rate of change of 

a quantity and the accumulation of the quantity in the context of water flow is particularly 

problematic for undergraduate students. These researchers used a rate and accumulation 

inventory to investigate the understandings of rate for 90 sophomore students enrolled in an 

engineering course. The inventory was administered twice: at the beginning and at the end of the 

course. Fifteen students were invited to participate in video and audio recorded interviews that 

were used to gain insight into the students’ understanding of “groundwater flow and water flows 

on a green roof” (p. 2). Analysis of these transcripts revealed that the students confused rate 

processes with accumulation processes: 

For instance, several students stated that the rate of water flowing into the roof drain 

could be represented by an upward curve with no maximum, which suggest that they may 

have been representing the total amount of water accumulated over time rather than flow 

rate into the drain. (p. 3) 

There is a need for more research that investigates what students’ reasoning about other contexts 

that are experientially real reveal about their ability to distinguish between rates of change and 

accumulation. Taken together, these studies suggest that undergraduate students have difficulty 

distinguishing between the concepts of rate and amount of change as well as between rate and 

accumulation in context (Flynn et al., 2014; Lobato et al., 2012; Mkhatshwa, 2014; Prince, 

Vigeant et al., 2012; Rasmussen & King, 2000; Rasmussen & Marrongelle, 2006).  
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Research by Ärlebäck et al. (2013) and Orton (1983) suggest that interpreting negative 

rates of change is problematic both for high school and undergraduate students. Over a period of 

two consecutive summers, Ärlebäck and colleagues investigated students’ ability to interpret and 

communicate their understanding of negative rates of change by exploring two models of 

changing phenomena: light intensity and a discharging capacitor. The 49 freshmen who 

participated in this study were enrolled in a six weeks modeling-based course designed to help 

prospective engineering majors develop a robust understanding of average rate of change. A 

qualitative analysis of students’ written work from small groups and projects revealed that 29 

students correctly “interpreted the values of the sequence of average rates of change while 

simultaneously referring to both the behavior of the function [exponential] and the context of the 

discharging capacitor” (p. 328). That is, 20 students had difficulty interpreting a sequence of 

negative and increasing rates of change of voltage in the context of a discharging capacitor.  

Students’ difficulties with interpreting negative rates of change were also reported by 

Orton (1983) who examined high school and college students’ understanding of elementary 

calculus concepts in a mathematics context. Analysis of task-based interviews conducted with 60 

high school students and 50 college students revealed that these students had difficulties 

interpreting negative and zero instantaneous rates of change, a problem that could be linked to a 

poor conceptual understanding of the derivative concept. Reporting about one task, Orton stated 

that “twelve students could not respond at all when asked to interpret 𝑑𝑦/𝑑𝑥 = −2, and a further 

ten students could only say “decreasing” or “decreasing gradient,” or “similar”, rather than 

“decreasing function” (p. 241). Being able to reason about negative rates of change is essential 

for business and/ economics majors hoping to understand the rate at which a company’s deficit 

(negative profit) changes over a given time period.  



 

 

54 

 

Altogether, the findings of the literature reviewed in this section suggest that students’ 

reasoning about application problems situated in real-world contexts reveals that average rates of 

change, instantaneous rates of change, and inflection points are not well understood by students. 

In particular, students have: (1) a tendency to confuse rate and amount of change, (2) a tendency 

to confuse rate and accumulation, (3) difficulty transferring their understanding of rates of 

change from a motion context to non-motion contexts, and (4) difficulty interpreting negative 

rates of change. In my study, I investigated some of these issues in the economic context. 

Students’ Understanding of Optimization Problems 

Optimization is a mathematical technique used for finding minimum and maximum 

values of real-valued mathematical functions. Following is a review of research literature on 

students’ understanding of problems concerned with finding minimum or maximum function 

values. There are generally two types of optimization problems in the research literature: (1) 

geometric (Brijlall & Ndlovu, 2013; Heid, 1988; Swanagan, 2012; Ubuz & Ersoy, 1997; 

Villegas, Castro, & Gutiérrez, 2009; White & Mitchelmore, 1996) and (2) non-geometric 

(Borgen & Manu, 2002; Klymchuk, Zverkova, & Sauerbier, 2010; Maharaj, 2013). The former 

refers to optimization problems whose method of solution requires the solver to recall some 

fundamental geometric rules and properties such as the Pythagorean Theorem, area of a 

rectangle, and volume of a rectangular prism while the latter refers to optimization problems 

whose method of solution does not require the solver to use geometric rules and properties. 

Geometric optimization problems. The review of research on students’ understanding 

of functions revealed that translating from one representation of a function to another is 

problematic for students. Evidence from research shows that translating rate-related information 

from one representation to another is one major difficulty that students have when solving 
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geometric optimization problems (Swanagan, 2012; Villegas et al, 2009; White & Mitchelmore, 

1996). White and Mitchelmore (1996) studied the conceptual knowledge of 40 undergraduate 

mathematics majors when solving application problems at the level of introductory calculus. 

Each student provided a written response to four problems, two of which were routine (common 

calculus textbook problem) geometric optimization problems. Analysis of students’ performance 

on the optimization problems revealed that a majority of the students “could not identify and 

symbolize an appropriate variable by translating one or more quantities in the item to an 

appropriate symbolic form” (p. 89). White and Mitchelmore argued that students’ difficulties in 

symbolizing instantaneous rates of change while solving optimization problems can be linked to 

the students’ poor conceptual understanding of the concept of a variable. White and Mitchelmore 

found that most of the students in their study treated variables as algebraic symbols to be 

manipulated and not as quantities to be related. Being able to relate quantities such as marginal 

cost, marginal revenue, and marginal profit is an essential understanding that undergraduate 

business and economics majors need to be able to understand optimization problems that occur 

in business or economics. 

Students’ difficulties in translating rate-related information among different 

representations while solving optimization problems have also been reported by Villegas et al. 

(2009). These researchers studied how three senior undergraduate mathematics majors used 

multiple representations (verbal, tabular, algebraic, and graphic) when solving optimization 

problems. Following a think aloud protocol, the researchers asked each student to verbalize their 

reasoning while they individually solved three optimization problems. The first problem was 

about finding the minimum cost of laying an electrical cable from a power station to a factory 

across a river, the second problem was about finding the maximum area of a Norman window, 
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and the third problem was about finding the maximum area of a rectangle inscribed in a triangle. 

Analysis of students’ written work and transcriptions of each problem solving session revealed 

that identifying rates (instantaneous rates of change) in the problems they were given was a 

challenge and that representing these rates in multiple representations was problematic for the 

students. Villegas and colleagues found that one of these students frequently had “trouble 

understanding the word problems, drawing out the information from them and making 

translations from the word problem to any other representation” (p. 302). The findings of this 

study suggest that there is a link between students’ success in solving optimization problems and 

their understanding of rates of change in multiple representations.  

Other research shows that the algebraic procedure used to determine optimal function 

values (minimum or maximum) is not well understood by students (Brijlall & Ndlovu, 2013; 

Swanagan, 2012; White & Mitchelmore, 1996). Brijlall and Ndlovu (2013) studied the mental 

constructions of ten South African 12th grade students while solving three optimization problems 

in groups of students of mixed abilities. To better understand each group’s written solution, 

follow-up interviews were conducted with one member of each group. Analysis of students’ 

group work and transcriptions of the individual interviews revealed that the students were 

proficient in solving questions “where rules were required” (p. 15) but they had difficulty 

explaining the process of finding a minimum or maximum value when probed. For instance, in a 

task where the students were asked to find the minimum volume of a box with dimensions 𝑥 

units, 5𝑥 units, and (9 − 2𝑥) units, one group member during the follow-up interview correctly 

formulated the volume function, took the derivative and set it to zero, and then correctly found 

two critical numbers and stopped. The researchers posited that the students either did not know 
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which critical number gives the minimum value or that they simply assumed that the critical 

numbers were the minimum values for the volume function. 

Similar findings were reported by Swanagan (2012) who studied the relationship of five 

AP calculus students’ understanding of the concept of the derivative and their ability to solve 

routine and non-routine (authentic and not a common problem to the students) optimization 

problems. Each student solved, on paper, three optimization problems: two routine and one non-

routine problem. The first and second routine tasks included a task about finding the minimum 

cost for fencing a rectangular plot of land bounded by a straight road on one of its longer sides 

and another task about finding a point on the parabola, 𝑦 = 𝑥2, that is closest to the point (1,0). 

The third and non-routine task was about finding the “the maximum length of a pole that can be 

carried around a corner joining corridors of widths 8 ft and 4 ft” (p. 32). To better understand 

students’ written responses to the tasks, the researcher conducted follow-up interviews with each 

of the students using a think aloud protocol. A qualitative analysis of both the students’ written 

work and transcriptions of the follow-up interviews revealed that although nearly all the students 

showed some intuition on the process of finding optimal solutions yet only one student 

demonstrated an understanding that this process could sometimes yield several critical numbers 

and that some criteria had to be used in finding the optimal function values. Swanagan stated that 

the other four students appeared to be “relying on guesswork” (p. 102) while at other times some 

students did not realize that the process of finding minimum or maximum values could yield 

more than one minimum or maximum values. Together, the findings of this study and that of 

Brijlall and Ndlovu (2013) suggest that students tend to develop a procedural understanding that 

lacks a conceptual base of the algebraic processes used to solve optimization problems. 
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A common finding of research that has looked at students’ understanding of optimization 

problems is that setting up the objective function, i.e. the function to be maximized or 

minimized, is problematic for both high school and undergraduate students (Klymchuk et al., 

2010; Swanagan, 2012; Villegas et al., 2009; White & Mitchelmore, 1996). Another major 

finding of Swanagan’s (2012) study was that setting up the objective function was a challenge 

for all the students in at least one of the three tasks they were asked to solve. For instance, in the 

task about finding a point on a parabola that is closest to a given point, one student simply used 

the equation of the parabola as the objective function and hence ended up with incorrect results. 

Another student used the perimeter function as the objective function in the task about finding 

the minimum cost of fencing a rectangular plot of land while in all three tasks some students 

used some version of the Pythagorean Theorem as the objective function. Similar difficulties 

were reported in White and Mitchelmore’s (1996) study of students’ conceptual knowledge of 

introductory calculus concepts. In a task where the students were asked to find the maximum 

area of a rectangle inscribed in a given parabola, White and Mitchelmore stated that as soon as 

some students saw the equation of the parabola they found its derivative without taking into 

consideration other important information such as the point where the parabola and rectangle 

intersect. That is, these students incorrectly used the equation of the parabola as the objective 

function. 

Research by Heid (1988) shows that solving routine optimization problems is 

problematic for students who have completed an introductory traditional calculus course and for 

students who have completed a reformed introductory calculus course. Heid compared the 

conceptual understandings of two groups, a control group and an experimental group. The 

control group completed a traditional calculus course where a significant amount of time for the 
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entire semester was spent on skill development such as developing proficiency in finding 

derivatives and solving routine textbook problems. The experimental group completed a 

reformed calculus course where most of the time in the semester was spent solving non-routine 

application problems and developing conceptual understanding of the derivative as a measure of 

rate of change with the aid of a computer program. A total of 135 students majoring in business, 

architecture, and life sciences participated in the study with 100 in the control group and 35 

students in the experimental group.  

 The focus of the study was more on the impact of the sequencing of skills and concepts 

on students’ understanding of fundamental concepts in calculus and less on students’ 

understanding of optimization problems, but the final exam provided a source of data relevant to 

students’ understanding of optimization problems. The final exam consisted of routine questions 

that required procedural knowledge (skill) rather than conceptual knowledge. Heid (1988) 

reported that students’ performance in both groups was similar. There were two different 

questions about two different categories of optimization problems in the final exam; one question 

about finding optimal values (minimum or maximum) of a real-valued function of one variable 

and another question about finding optimal values of a real-valued function of two variables. In 

the former question, Heid reported that 16% of the students in the control group were successful 

in finding optimal values of the function while about 17% of the students in the experimental 

group were successful in the same question. In the question about finding optimal values for a 

function of two variables, Heid reported that 26% of the students in the control group were 

successful while only 11% of the students in the experimental group were successful in this 

question. These results suggest that finding optimal values for a function of two variables was 

difficult for both groups, especially the experimental group. The findings of this study suggests 
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that even after receiving formal instruction on solving optimization problems, solving routine 

geometric optimization is problematic for undergraduate students. Hence, we can hypothesize 

that we can expect students to have even more difficulties when asked to solve non-routine 

optimization problems.  

Taken together, the findings of the studies reviewed in this subsection revealed that 

students have difficulty in translating rate related information from a verbal representation to a 

symbolic representation, something that in turn limits their success in solving geometric 

optimization problems. There is a lack of research that has examined students’ ability to translate 

rate related information from a verbal representation to either a numerical or graphical 

representation when solving optimization problems. Also, the research reviewed in this section 

shows that setting up objective functions is particularly difficult for students and that they have a 

poor conceptual understanding of the algebraic process used to determine optimal values of real-

valued functions. As a result of students having weak understandings of the process involved in 

finding optimal solutions, even routine optimization problems are problematic for high school 

and college students.  

Non-geometric optimization problems. The findings of some of the studies that have 

looked at students’ understanding of non-geometric optimization problems reveal that students’ 

difficulties with these problems are in many ways similar to those that students face when 

solving geometric optimization problems (Borgen & Manu, 2002; Klymchuk et al., 2010; 

Maharaj, 2013). One such difficulty is a poor conceptual understanding of the criteria for 

classifying optimal function values either as a minimum value or a maximum value, a result also 

reported in Brijlall and Ndlovu’s (2013) study of 12th grade students’ understanding of geometric 

optimization problems. Findings of a case study by Borgen and Manu (2002) involving a student 
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who, on paper, “presented a picture-perfect solution to a calculus problem” (p. 151) revealed that 

although the student correctly applied an algebraic procedure she had learned for determining an 

optimal solution, her conceptual understanding of the procedure was poor. The student, Janet, 

was an undergraduate mathematics major who had previously completed a calculus course. She 

worked with a partner to find the critical point of the function 𝑦 = 2𝑥2 − 𝑥 + 1 in addition to 

stating that the function has a relative minimum value at the critical point.  

Having successfully found the critical point (algebraically) and using a calculator to 

graph the function, the two students correctly determined that the function has a minimum value 

at the critical point. To justify why the function has a minimum value at the critical point, Janet 

incorrectly claimed that since the coefficient of the linear term in the function is negative, the 

function had to have a relative minimum value at the critical point. Janet confused the negative 

coefficient of the linear term of the function with the “the concept of the derivative and/or the 

equation of the tangent line” (p. 160).  

Some studies that have looked at students’ understanding of geometric optimization 

problems found that students have weak understandings of the algebraic process used to 

determine optimal solutions (Brijlall & Ndlovu, 2013; Swanagan, 2012; White & Mitchelmore, 

1996). This difficulty has also been reported by Maharaj (2013) who examined 857 university 

students’ understanding of the concept of the derivative when solving a non-geometric 

optimization problem in a life science context. The participants in this study were undergraduate 

students majoring in chemistry, physics, biology, zoology, and pharmacy at a large public 

university in South Africa. They were all enrolled in an introductory calculus course. Students’ 

written responses to six multiple choice questions, two of which were optimization problems, 

were analyzed.  
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In one of the optimization problems, the students were given an algebraic equation that 

models the concentration of a certain drug in a person’s bloodstream and asked to find the time 

at which the concentration of the drug is maximum in the body as well as the maximum 

concentration at this time. This equation had two critical numbers, one positive and the other 

negative. Maharaj (2013) reported that about 46% of the students were successful in this 

question. The researcher asserted that these students had developed an adequate schema for 

finding the optimal solutions of a function. Some of the students who were not successful in this 

question, not only chose the negative critical number as the time at which the concentration of 

the drug is maximum but they went on to substitute this number in the objective function and 

found an incorrect maximum blood concentration. The results of this study suggest that students’ 

rote memorization of the process of finding optimal solutions algebraically limits them from 

recognizing optimal solutions that are not meaningful in a life sciences context. My study 

examined students’ ability to determine, algebraically, meaningful optimal solutions (critical 

numbers or extrema) in an economic context.  

Research by Klymchuk et al. (2010) shows that setting up an appropriate objective 

function is problematic for students when solving geometric and non-geometric optimization 

problems. Klymchuk and colleagues examined university students’ perspectives about the 

difficulties they encounter when solving optimization problems in calculus. The study 

participants were 201 undergraduate students majoring in engineering at two research 

universities, one in New Zealand (92 students) and one in Germany (109 students). The students 

were asked to respond in writing to a mid-semester exam problem that asked them to show that 

the total cost of running a truck on a journey would be minimal if the truck maintains a certain 

constant speed throughout the journey. Klymchuk et al. reported that only ten students in the two 
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institutions combined were successful in this task. To understand why students performed poorly 

in this task, the researchers gave the students in both institutions a questionnaire that asked them 

about the difficulties they had while trying to solve the problem and what they thought could be 

done to help them get better at setting up the objective function when solving optimization 

problems. The response rate was a little over 51% from the two institutions combined.  

A qualitative analysis of the questionnaires revealed two findings about students’ 

perspectives about optimization problems. First, a majority of the students expressed having 

difficulties understanding the wording of the problem and setting up the objective function for 

the problem. Common responses included comments like “the wording was ambiguous,” “I did 

not know how to convert the real life problem into one to solve mathematically,” and “I was 

confused because the result was given” (p. 85). Klymchuk and colleagues reported that the 

students indicated that they were familiar with problems asking them to find the velocity that 

would minimize the cost of running the truck instead of being asked to show that running the 

truck at a given velocity minimizes the total cost of running the truck as was the case in this 

problem. Second, a majority of the students indicated that having more opportunities to practice 

solving application problems in class and during recitations would help them improve their skills 

of solving optimization problems. My study examined students’ difficulties with setting up the 

objective function (a profit function) when asked to solve a routine optimization problem in an 

economic context. 

Research by Dominguez (2010) shows that even when students are successful in setting 

up the objective function and finding the optimal values, interpreting these optimal values is 

problematic for undergraduate students. Ninety-four calculus students working in groups of four 

or five students were asked to develop an economic model that can be used by the manager of a 
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historic hotel to determine the daily rate per room that would maximize the hotel’s profit in 

addition to finding the maximum profit corresponding to this rate. Analysis of observation notes 

and students’ written responses to this task revealed that all the groups correctly constructed an 

objective function for the situation described in the statement of problem and that all the groups 

were successful in finding optimal values for each of the four objective functions that were 

constructed. Although they were successful at developing algebraic models for the situation, 

interpreting the optimal values obtained by using the model was particularly difficult for most of 

these students. I argue that, in part, students’ difficulties with interpreting optimal solutions in an 

economic context could linked to the potential opportunities (e.g., applied calculus textbooks and 

classroom instruction) that students have to learn about context-based problems. Hence, there is 

a need to analyze these opportunities.   

Taken together, the findings of the literature reviewed in this subsection revealed two 

things. First, undergraduate students have a poor conceptual understanding of the algebraic 

process of finding optimal solutions: (1) they cannot distinguish between meaningful and 

meaningless optimal values, (2) they have difficulty setting up objective functions, and (3) they 

have difficulty interpreting optimal values in an economics context. Second, there is a lack of 

research that examines students’ reasoning about non-routine optimization problems, a gap 

addressed by my study. 

Quantitative Reasoning 

 This study used the definition of quantitative reasoning proposed by Thompson (1993): 

the analysis of a situation in terms of the quantities and relationships among the quantities 

involved in the situation. According to Thompson, what is important in quantitative reasoning is 

not assigning numeric measures to quantities but rather reasoning about relationships between or 
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among quantities. There are two types of research literature on the subject of quantitative 

reasoning: (1) empirical research (e.g., Lobato & Siebert, 2002; Moore & Carlson, 2012) and (2) 

non-empirical research (e.g., Ellis, 2011; Thompson, 1990; Thompson, 1994a; Thompson, 2011). 

In this study, the former refers to research studies that has human subjects (in particular, 

students) as participants and the latter refers to research that is theoretical in nature in that it does 

not have human subjects as participants. 

 Empirical research. Research on students’ quantitative reasoning at the undergraduate 

level is scarce: much of the existing research that has looked at students’ quantitative reasoning 

is at the secondary level. In what follows, I review two research studies (Lobato & Siebert, 2002; 

Thompson, 1993) whose findings paint a clear picture on students’ difficulties with engaging in 

quantitative reasoning at the secondary level followed by a review of a study (Moore & Carlson, 

2012) that has looked at students’ quantitative reasoning at the undergraduate level.  

Thompson (1993), through a four-day teaching experiment examined, six fifth grade 

students’ ability to compare quantities using differences. Thompson found that these students 

had difficulty distinguishing between numerical and quantitative differences. 

These children were able to reason in terms of differences as quantitative operations-

additive comparisons between two quantities-but it appeared that they did not distinguish 

between the quantitative operation of comparing two quantities additively and the 

arithmetic operation of subtraction. In fact, it was common for them to confound the two 

(although for some this was true more in the early part of the teaching experiment than in 

the later parts and in the interviews). (p. 203) 

Thompson posited that students’ “confounding of quantitative and arithmetical operations is 

symptomatic of all quantitative operations-ratio, additive and multiplicative combinations, and 
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multiplicative compositions-not just of difference” (p. 203). In economics, for example, this 

means that students are likely not to distinguish between quantitative ratios (e.g., average cost as 

a ratio of quantities, namely total cost and number of units produced) and the arithmetic 

operation of division (e.g., average cost as a numerical value obtained by dividing two numerical 

values).  

 Lobato and Siebert (2002) conducted three semi-structured interviews with nine eight to 

tenth grade students over the course of a ten-day teaching experiment. The general purpose of the 

teaching experiment was to “create an environment in which students could develop sufficient 

quantitative reasoning to allow us to investigate the nature of successful performance in 

quantitatively complex situations” (p. 88). These researchers, however, only reported on how one 

of the students, Terry, an eighth grade student who had recently completed Algebra I, reasoned 

about a wheel chair ramp task which involved “determining how steep any ramp is (and what 

measurements you would need to take)” (p. 93) . Terry reasoned about the quantitative 

relationship among three quantities, namely the length, height, and steepness of a wheel chair 

ramp. Terry was chosen as the focus of the study because his interviews afforded “a detailed 

investigation of quantitative reasoning” (p. 92). 

 Analysis of the first and third interview revealed that Terry’s reasoning about the 

relationship among the length, height, steepness of a wheel chair ramp changed between the first 

and the third interview. Terry progressed from considering the height of the ramp to be more 

important than the length of the ramp in determining the steepness of a wheel chair ramp in the 

first interview to considering both quantities (height and length of the ramp) to be equally 

important in determining the steepness of a ramp in the third interview.  
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Terry’s images of steepness and his understanding of the relationships among the 

quantities of steepness, height, and length changed significantly over the course of the 

two interviews. At the beginning of interview 1, Terry linked the measurement of the 

steepness of a ramp with a series of height measurements. At best, length was an implicit 

quantity, seemingly unconnected to the height and steepness…During Interview 3 Terry 

constructed a different quantitative relationship among steepness, height, and length. As a 

result of being able to extend the incline, Terry appeared to construct length as having 

equal status to height. Subsequently, he was able to create a new image of the ramp 

situation in which he could vary height and length independently of each other. 

This finding suggests that Terry’s initial failure to consider the height and length of a wheelchair 

ramp as co-varying quantities limited him from understanding the relationship among the height, 

length, and steepness of a wheelchair ramp. In my study, I examined how undergraduate students 

reason about relationships among quantities in an economic context. 

 Similar findings were reported by Moore and Carlson (2012) who examined how nine 

students, drawn from three sections of a precalculus course at a large public university, engaged 

in quantitative reasoning while reasoning about the volume of a box “formed by cutting equal-

sized squares from each corner” (p. 51) of an 11 inch by 13 inch sheet of paper and folding the 

sides up. Each of these students participated in a task-based interview where they were asked to 

“write a formula that predicts the volume of the box from the length of the side of the cutout” (p. 

51). Moore and Carlson found that, at first, a majority of the students did not recognize that the 

length and width of the box co-varies with the length of each square that is cut out from the sheet 

of paper. Consequently, the students conceived of the box as having a static base with 

dimensions 13 inches (length) by 11 inches (width) instead of a dynamic base with dimensions 
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(13-2x) inches by (11-2x) where x is the length of each square that is cut out from the sheet of 

paper. 

When initially responding to the box problem, students often did not conceive of the 

length and width of the box as distinct from the length and width of the paper. However, 

these students did conceive of the length and width of the box as measurable attributes, 

although they did not conceive of their values in terms of a relationship between varying 

length of the side of the cutout and the dimensions of the original sheet of paper. (p. 57) 

Conceiving of “the length and width of the box as measurable attributes” shows that these 

students considered the length and width of the box as quantities and not as numerical values 

which, in turn, suggests that they considered the volume of the box to be a quantitative 

relationship among the length, width, and height of the box. The students were eventually 

successful in creating a correct formula for the volume of the box. This was after they were 

prompted by one of the researchers to re-read the problem in an effort to encourage the students 

to consider the context of the problem, that is, the process of making the box. Moore and Carlson 

argued that “it was only after the students imagined the process of making the box and 

considered how the relevant quantities of the situation changed in tandem that they created a 

correct volume formula” (p. 57). In general, this study shows that covariational reasoning is an 

essential understanding that students need if they are to be successful in relating co-varying 

quantities using algebraic equations. 

Taken together, the findings of the studies reviewed in this section suggest that engaging 

in quantitative reasoning is not only problematic for students at the secondary level but also for 

students at the college level. Some of these studies (e.g., Lobato & siebert, 2002; Moore & 

Carlson, 2012) showed that covariational reasoning is an essential understanding that students at 
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the secondary and undergraduate level need in order to reason quantitatively about relationships 

among quantities. 

Non-empirical research. This section reports on the review of three research studies 

(Ellis, 2011; Thompson, 1990; Thompson, 2011) that have looked at the importance of 

quantitative reasoning from a theoretical perspective. This research elaborates on the idea of 

quantitative operations which was first discussed in the theory of quantitative reasoning that was 

presented at the beginning of this chapter. 

In his early work on the theory of quantitative reasoning, Thompson (1990) argued that 

quantities can be related using quantitative operations. He also defined eight different types of 

quantitative operations. These quantitative operations, together with examples to illustrate each 

quantitative operation, are shown in Table 1. 

Table 1. Definitions and examples of quantitative operations reproduced from Thompson (1990, 

pp. 11-12) 

Operation Example 

Combine quantities additively Unite two sets; consider two regions as one 

Compare quantities additively “How much more (less) of this is there than 

that?” 

Combine quantities multiplicatively Combine distance and force to get torque; 

combine linear dimensions to get regions; 

combine force applied and distance travelled 

to get work 

Compare quantities multiplicatively “How many times bigger is this than that?” 

“This is (multiplicatively) what part of that?” 

“How many of these in those?” 
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Generalize a ratio “Suppose this comparison applies generally 

(i.e., suppose it were to continue at the same 

rate).” 

Instantiate a rate “Travel 50 miles per hour for 3 hours.” 

“Travel 5 hours per mile for 6 miles” 

Compose ratios “Jim has 3 times as many marbles as Sally; 

Sally has 4 times as many marbles as Fred. 

Jim has so many times more marbles than 

Fred.” 

Compose rates “A German mark is 75.53 Japanese yen. A 

US dollar is 1.88 marks. A dollar is some 

number of yen.” 

In his recent work on quantitative reasoning, Thompson (2011) argued that “quantitative 

operations are not the same as numerical operations (but they are related)” (p. 38). 

Quantitative operations are those operations of thought by which one constitutes 

situations quantitatively. Numerical operations are the operations by which one 

establishes numerical relationships among their measures. Quantitative and numerical 

operations are certainly related developmentally, but in any particular moment they are 

not the same even though in very simple situations children (and teachers) can confound 

them unproblematically. (p. 42) 

Ellis (2011) provided an example to illustrate the distinction between a quantitative operation 

and a numerical operation: “one might compare quantities additively, by comparing how much 

taller one person is to another, or multiplicatively, by asking how many times bigger one object 
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is than another. The associated arithmetic operations would be subtraction and division” (p. 216). 

In other words, quantitative operations are formed by performing operations (e.g., subtraction) 

on quantities while numerical operations are formed by performing operations on numerical 

values. 

 Ellis (2011) also argued that providing middle school students with opportunities to 

reason about quantities and relationships between quantities is a powerful way to introduce 

students to the concept of function. 

In this chapter I argue that reasoning directly with quantities and their relationships 

constitutes a powerful way to help students build beginning conceptions of function at the 

middle-school level. In particular, reasoning with quantities can directly support a 

covariation approach to function, while also providing a foundation for reasoning more 

flexibly with functional relationships later on. (p. 215) 

Ellis’s argument suggests that engaging middle-school students in quantitative reasoning 

supports them in developing a covariational view (Confrey & Smith, 1995) of the concept of 

function and provides a solid foundation for reasoning about functions and phenomena (e.g., 

exponential growth) that can be modeled using different families of functions (e.g., exponential 

functions) beyond middle-school level. 

Knowledge Gaps in the Literature 

The research literature reviewed in this chapter revealed several knowledge gaps 

regarding students’ learning of calculus, learning mathematics in context, students’ 

understanding of optimization problems, students’ quantitative reasoning, and the opportunity to 

learn from mathematics from textbooks. First, while students’ understanding of real-valued 

functions of a single variable is well documented, little research has attended to students’ 



 

 

72 

 

understanding of real-valued functions of two variables or more and their applications in real life 

situations. Second, of the research that has looked at students’ understanding of real-valued 

functions of two variables, none has particularly investigated students’ quantitative reasoning 

while modeling multivariable situations in an economic context. Much of the research that has 

looked at students’ quantitative reasoning (e.g., Moore & Carlson, 2012) has been with real-

valued functions of one variable and mainly in other contexts besides economics.  

Third, research that has looked at the derivative (a continuous function) as an 

approximation of marginal change (a discrete quantity) is lacking. A related line of research 

(Lobato et al., 2012; Mkhatshwa, 2014) suggests that students treat marginal change as the 

difference (amount of change) and not as the difference quotient (rate of change per unit of one) 

in a kinematics and economics context respectively. I argue that, to some extent, students’ 

confusion of marginal change and amount of change could be linked to the opportunities (e.g. 

textbooks and lectures) that students have to learn about these ideas. Because of the importance 

of the idea of marginal change in business or economics, there is a need to examine the treatment 

of marginal change (i.e. marginal change as a rate of change or marginal change as an amount of 

change) in business mathematics textbooks as well as how marginal change is presented to 

students during classroom instruction. 

Fourth, there is a shortage of studies investigating students’ understanding of non-

geometric optimization problems especially those that are situated in real-world contexts such as 

economics. From the literature on students’ understanding of geometric problems we know that 

high school and undergraduate students have difficulty: (1) setting up objective functions (e.g. 

Klymchuk et al., 2012; Swanagan, 2012; Villegas et al., 2009; White & Mitchelmore, 1996), (2) 

determining optimal values from critical numbers (e.g. Brijlall & Ndlovu, 2013; Swanagan), and 
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(3) symbolizing and relating variables (e.g. Villegas et al., 2009; White & Mitchelmore, 1996). I 

believe that these students’ difficulties may show up when students solve non-geometric 

optimization problems that are situated in other contexts such as economics. Only one study 

(Dominguez, 2010) has particularly investigated students’ understanding of non-geometric 

optimization problems in an economics context. Given the importance of calculus in the study of 

economics (Butler, Finegan, & Siegfried, 1998; Von Allmen, 1996), I argue that there is a need 

for more research that looks at students’ understanding of non-geometric optimization problems 

in an economic context. I hypothesize that students might experience some difficulty in solving 

economic optimization problems that are situated in other context representations (graphical, 

tabular, and verbal) besides the algebraic context representation. 

Fifth, research on the opportunity to learn mathematics via textbooks at the 

undergraduate level is scarce. Only one study by Mesa et al. (2012) has examined students’ 

opportunity to learn about exponential and logarithmic functions at the undergraduate level. This 

research focused, among other things, representation of examples as well as the cognitive 

demands of those examples. There is a need for research on the opportunity to learn about 

various content areas such as optimization problems and marginal change at the undergraduate 

level. Also, none of the research on opportunity to learn mathematics via textbooks and the 

research on calculus learning has particularly focused on examining how students engage in 

quantitative reasoning when analyzing multivariable situations in an economic context.  

My study sought to address some of the gaps identified in the research literature. In 

particular, my study examined business calculus students’ quantitative reasoning when solving 

optimization problems that are situated in the economic context of cost, revenue, and profit. The 

following research questions guided me in this examination. 
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1. What opportunities to learn about (a) optimization problems, (b) the concept of marginal 

change and (c) quantitative reasoning in the context of cost, revenue, and profit do 

business calculus textbooks and classroom instruction provide to business calculus 

students?  

2. How do business calculus students reason algebraically about optimization problems that 

are situated in the context of cost, revenue, and profit? 

3. How do business calculus students interpret marginal change when solving optimization 

problems that are situated in the context of cost, revenue, and profit? 

4. What do business calculus students’ responses to optimization problems involving 

multiple covariates that are situated in the context of cost, revenue, and profit reveal 

about their quantitative reasoning? 
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 Chapter 3 – Methodology 

 In this chapter, I discuss the design of my study, the participants, the data I collected, how 

the data were analyzed, and how I addressed the research questions. 

Research Design 

To answer my research questions, I conducted a qualitative study (Creswell, 2014) with 

university students enrolled in five sections of an undergraduate business calculus course. Two 

of the sections were taught in the spring semester of 2015 and three of the sections were taught in 

the fall semester of 2015. Two of the sections offered in the fall semester of 2015 were taught by 

the same professor while the other three sections (two in the spring of 2015 and one in the fall of 

2015) were taught by three different professors. With a focus on examining students’ algebraic 

reasoning, interpretation of marginal change, and quantitative reasoning when solving 

optimization problems that are situated in an economic context, 12 pairs of students were 

recruited to participate in task-based interviews. In conducting the interviews, I followed the 

principles and techniques (e.g., choosing tasks that are accessible to the participants) suggested 

by Goldin (2000). One of the principles, encouraging free problem solving, was unintentionally 

adapted when conducting the interviews in that sometimes I was quick to interject with a prompt 

or probe without giving the participants ample opportunity for free problem solving as described 

by Goldin (2000). The potential influence of adapting Goldin’s free problem principle on the 

results and the interpretation of the results is discussed in the discussion and conclusions chapter. 

There were four tasks in total (Appendix A). These tasks were designed to examine 

students’ algebraic reasoning, interpretation of marginal change, and quantitative reasoning when 

solving optimization problems in an economic context. I classified each of the four tasks as 

either having a continuous representation or as having a discrete representation. The term 
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continuous representation as used in this study refers to a mathematical task in which the given 

function(s) in the task is represented as continuous on some domain. Task 1 has a continuous 

representation because the given functions in the task, namely the total cost function and the total 

revenue function, are given algebraically as continuous on the domain [0,120]. Task 3 is another 

example of a task that has a continuous representation because the given functions in the task, 

namely the total cost function, the total revenue function, and the profit function, are given 

graphically as continuous on the domain [0,7]. Similarly, the term discrete representation as used 

in this study refers to a mathematical task in which the given function(s) in the task is 

represented as discrete on some domain. Task 2 is an example of a task that has a discrete 

(verbal) representation because the revenue function is discrete on the domain [0,1,…,N] where 

N is the maximum number of computers that the Smith family business can supply. Task 4 is 

another example of a task with a discrete representation because the numerical table as the given 

function in the task is discrete on the domain [400, 401,…, 405]. 

The findings of research by Borgen and Manu (2002) and Swanagan (2012) suggest that 

students have difficulty solving routine optimization problems algebraically. These difficulties 

include setting up the objective function in de-contextualized situations. Other research (e.g., 

Brijlall & Ndlovu, 2013) suggests that students have a poor conceptual understanding of the 

algebraic process used to find optimal values (absolute extrema) in a volume-minimization 

context. Informed by findings of this research, I designed Task 1 to examine students’ algebraic 

reasoning when solving optimization problems that are situated in the economic context of cost, 

revenue, and profit. The purpose of Task 1 was to confirm students’ ability as reported in the 

research literature to solve optimization problems algebraically that are similar to those given in 

a standard business calculus textbook in a profit-maximization context.  
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Task 2 was informed by the research of Lobato et al. (2012) and Mkhatshwa (2014). 

Lobato and colleagues found that students treated marginal change as an amount (the difference) 

and not as a rate of change (the difference quotient) in a kinematics context. Mkhatshwa (2014) 

reported similar findings in an exploratory study of business calculus students’ understanding of 

marginal change that was situated in a decision-making context about marginal profit involving 

the addition of an extra jet by an airline. Task 2 helped me gain insight on students’ 

interpretation of marginal change and quantitative reasoning in a revenue-maximization context. 

I designed Task 2 to examine students’ quantitative reasoning about the relationship among three 

quantities, namely sales (the number of computers ordered by a small junior high school), the 

discount offered on orders of over 300 computers, and the revenue that is generated by a small 

family business that has been asked to supply the school with computers. 

Evidence from research (e.g., Carlson, 1998; Carlson et al., 2002) showed that students 

have difficulty creating a graphical representation (a function) that shows how the input and 

output of a real-valued function of a single variable co-vary in a volume and heat context 

respectively. The purpose of Task 3 was to examine students’ quantitative reasoning when 

analyzing a multivariable situation in a graphical context. I designed Task 3 to examine students’ 

reasoning about relationships among quantities: creating the graph of a fourth quantity (profit) 

when given a graph of three quantities (number of units produced and sold, total cost, and total 

revenue) that co-vary. In addition to examining students’ understanding of the relationship 

between marginal cost and marginal revenue at a profit-maximizing quantity (production and 

sales level at which profit is maximized) in Task 3, I also examined students’ interpretation of 

marginal cost (the cost of producing the second unit).  
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The purpose of Task 4 was to examine how students interpret marginal change in a 

profit-maximization context. Research by Lobato et al. (2012) and Mkhatshwa (2014) suggest 

that students tend to think of marginal change as an amount of change (the difference) and not as 

a rate of change (the difference quotient). I designed Task 4 to help me gain insight into this 

issue by examining students’ interpretation of marginal change (the cost of producing the 401st 

computer chip). This task also provided me with insight regarding students’ quantitative 

reasoning, that is, students’ understanding of the relationship among number of computer chips 

produced and sold, marginal cost, marginal revenue, and marginal profit. I also used each of the 

four tasks to examine new quantities (e.g., total revenue in Task 1) that students created and how 

they reasoned about these quantities when solving the problems posed in the four tasks. A 

complete description of each task is given in Appendix A. 

I used a classroom observation protocol (Appendix B) to collect data that helped me 

understand the calculus knowledge students had an opportunity to learn in the business calculus 

course, through course lectures, prior to participating in the task-based interviews. My focus 

during classroom observations was on the definition or interpretation of marginal change (e.g., 

marginal change as a rate or marginal change as an amount of change), the type(s) of context (no 

context, camouflage context, relevant and essential context), the type(s) of information 

(matching, missing, superfluous), and the type(s) of cognitive demands (reproduction, 

connection, reflection) used in examples of optimization problems given during classroom 

instruction. A description of the types of context, types of information, and types of cognitive 

demands is shown in Appendix D. I observed three classes (only for the three sections taught in 

the fall of 2015) covering the following content areas: (1) the derivative, (2) the derivative as a 

rate of change (applications of rate of change to economics), and (3) applied maxima and 
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minima. How and what the students were taught did, to some extent, have an influence on how 

they engaged with the mathematical ideas rooted in the four tasks. Details on this are discussed 

in the last chapter: Discussion and Conclusions. Each classroom observation lasted for as long as 

the meeting time for each section observed, that is, about 80 minutes. 

I used a textbook analysis protocol (Appendix C) to collect data that helped me 

understand the calculus knowledge the students had an opportunity to learn in the business 

calculus course, through examples and assigned practice exercises given in the textbook 

(Haeussler, Paul, & Wood, 2011), prior to participating in the task-based interviews. According 

to Mkhatshwa and Doerr (in press), the textbook analyzed in this study is one of six widely used 

textbooks in the teaching of business calculus in the United States. My focus in analyzing the 

course textbook was on the definition or interpretation of marginal change given in the textbook 

(e.g., marginal change as a rate or marginal change as an amount of change), the type(s) of 

context (no context, camouflage context, relevant and essential context), the type(s) of 

information (matching, missing, superfluous), and the type(s) of cognitive demands 

(reproduction, connection, reflection) used in assigned or practice problems and examples of 

optimization problems given in the textbook. I also analyzed sections of the course textbook that 

dealt with the treatment of marginal change and optimization problems. I analyzed examples and 

assigned homework or practice problems corresponding to three content (topics) areas that are 

presented in the textbook: (1) the derivative, (2) the derivative as a rate of change (applications 

of rate of change to economics), and (3) applied maxima and minima. Students’ reasoning about 

the four tasks (Appendix A) was, to a large extent, influenced by the opportunities that students 

had to learn about optimization problems and marginal change via the textbook. Nearly all the 

examples that were discussed in course lectures in the three sections that I observed were either 
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the same or minor adaptations of the examples given in the textbook. Details on this are 

presented in the results chapter. 

Benefits of the design. I have identified four advantages for using this design: 

1. This design allowed me to conduct in-depth interviews that helped examine how students 

reason about economic quantities such as marginal cost, marginal revenue, and profit and 

how these quantities are related while solving optimization problems that are situated in a 

business or economic context. In essence, the use of this design enabled me to focus more 

on students’ quantitative reasoning as opposed to just correct and incorrect answers. 

2. The interviewing of pairs of students used in this design shifted the students’ focus from 

the researcher to the tasks (Appendix A). Having two students interact with each other 

while engaging in the task-based interview, which is something fostered by this design, 

helped to reveal the students’ detailed understanding of the mathematical ideas (e.g., 

marginal change in Task 3) rooted in the tasks. This could have been harder to achieve 

when interviewing individual students. 

3. The use of this design allowed me to analyze opportunities (course lectures and a course 

textbook) the students had to learn about marginal change and how to solve optimization 

problems in an economic context. Analysis of the classroom observations (course 

lectures) and the course textbook: (1) provided possible explanations why students 

reasoned about the tasks the way they did in addition to (2) helping me understand the 

extent to which students were able to apply mathematical knowledge they were taught on 

how to solve realistic optimization problems in an economic context. 

4. Implementing this design did not require a large number of participants which greatly 

minimized the challenge of recruiting many students to participate in the study especially 
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because some of the task-based interviews were administered towards the end of the 

semester, a time of the academic year when students are busy. Consequently, recruiting a 

large pool of students to participate in this study would have been a challenge. 

Limitations of the design. I have identified four disadvantages of using this design: 

1. The success of this design in producing rich data that was helpful in answering my 

research question depended, to a large extent, on two things: the quality of the tasks and 

my skills as an interviewer in conducting the interviews. To minimize the effect of this 

limitation on my research, I drew on my learning experiences from my previous research 

(Mkhatshwa, 2014) where I used a similar design. In particular, drawing from my 

experiences in my previous research helped me develop thought-revealing tasks 

(application problems) and also to apply effective interviewing skills. 

2. The analysis and interpretation of the findings obtained by implementing this design may 

have been influenced by my bias as a researcher which includes my prior knowledge of 

some difficulties (through tutoring and teaching business calculus) similar to those 

examined in the task-based interview that students experienced when reasoning about 

context problems. The effect of this limitation was minimized by having other 

researchers scrutinize my data analysis on two occasions during our weekly mathematics 

education seminar.  

3. In light of the small number of participants, findings of this study may not be externally 

valid, that is, they may not be generalized to other settings. Since my goal in this study 

was not to generalize findings from this study to other settings but rather to gain insights 

on how students interpret marginal change and how they engage in quantitative reasoning 

when solving context problems in economics, this was not an issue of concern.  
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4. I did not analyze the influence of an economics background on the students’ reasoning 

about the tasks (Appendix A) they were given in this study. Students with a prior 

economics background might have had more learning experiences to draw on during the 

task-based interviews than did students who had only taken business calculus. 

Participants 

 Participants of the study were 24 undergraduate students. Twenty-two of these students 

were business majors (e.g., management, marketing, accounting, etc.) while the other two 

students were considering majoring in business-related programs even though at the time of 

conducting this study they had not yet officially declared their majors. All the students had taken 

business calculus either in the spring semester of 2015 or in the fall semester of 2015. Table 2 

shows a summary of the participants and their background data. The names appearing in Table 2 

are pseudonyms. 

Table 2. Summary of participants 

Name Major Level Taken 

Calculus 

Before 

Taken AP 

Economics 

Taken Some 

College 

Economics/ 

Business 

classes 

Final 

Course 

Grade 

GPA 

Ivy   Business Sophomore  Yes No  Yes  A 3.863 

Denise Business Sophomore Yes Yes Yes B 3.226 

Ruth Business Sophomore No No Yes C 2.789 

Eric Undecided Sophomore No No Yes F 2.374 

Joy Business Sophomore No Yes Yes A 3.695 

Nancy Business Sophomore No No Yes B 3.438 

Nevaeh Business Sophomore Yes No Yes A 3.765 

Zoe Business Sophomore Yes Yes Yes B 3.315 

Mark Business Sophomore Yes Yes Yes A 3.667 

Carlos Business Sophomore No Yes Yes B+ 3.578 

Kierra Business Sophomore No Yes Yes A- 3.388 

Isaac Business Sophomore No No Yes A 3.748 

Abby Business Freshman No No Yes A- 3.680 

Shawna Business Freshman No No No A 3.375 

Jacie Business Freshman Yes No Yes A- 3.216 
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Derby Business Freshman Yes No Yes A 3.471 

Casey Undecided Freshman No No Yes A 3.370 

Nikki Business Freshman Yes Yes No A 3.353 

Sarah Business Freshman No No Yes A 3.750 

Alan Business Freshman No Yes Yes C+ 2.771 

Fred Business Freshman Yes Yes No A 3.938 

John Business Sophomore Yes Yes Yes B+ 3.206 

Yuri Business Sophomore Yes No Yes A 3.784 

Kyle Business Sophomore Yes No Yes B+ 3.458 

In addition to taking business calculus: (1) twelve students had taken a calculus course 

(high school or college), (2) ten had taken AP economics (AP microeconomics and AP 

macroeconomics) at high school, and (3) twenty-one students had taken at least a college-level 

economics or business class (e.g., intermediate microeconomics, managerial accounting) prior to 

participating in this study. Fifty percent of the students took business calculus in the spring of 

2015 semester while the other 50% (n=12) of the students took business calculus in the fall 

semester of 2015.  

Together, there were four different professors who taught business calculus in the spring 

of 2015 and fall of 2015 semesters respectively. Each of the two sections of business calculus 

offered in the spring of 2015 semester were taught by two different professors while two of the 

three sections of business calculus offered in the fall of 2015 semester were taught by the same 

professor. The other section of business calculus offered in the fall of 2015 semester was taught 

by a different professor. All the professors have Ph.D.’s in mathematics, they taught from the 

same textbook, they covered the same content, and they used similar syllabi. Each professor 

created his/her semester exams and quizzes. Students in the two sections of business calculus 

taught in the spring semester of 2015 took a common final exam. All three sections of business 

calculus taught in the fall of 2015 semester also had a common final exam. The two common 

final exams, one given at the end of the spring of 2015 semester and the other given at the end of 
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the fall of 2015 semester, were different in terms of the questions asked but similar in terms of 

the content tested. Each of the five sections met twice a week for 80 minutes during each 

semester. Students from each section also meet once a week for an additional 55 minutes every 

week for recitation with graduate teaching assistants.  

The students in this study were recruited through a self-selection process at a medium-

sized research university in the northeastern part of the United States. All the students were 

recruited via email using official class roasters (with student names and emails) obtained from 

their business calculus professors. The mathematical ideas examined in the task-based interview 

and the context of cost, revenue, and profit were familiar to all the students who participated in 

this study. The students were chosen based on: (1) their willingness to participate in the study 

and (2) their major (business or economics). The 24 students combined had an average GPA of 

3.426. Judging by each student’s course grade in business calculus and cumulative GPA shown 

in Table 2, a majority of the participants were above average performing students. Students’ 

background information (Appendix E) such as major, academic year, whether or not they have 

taken an economics class before, and whether or not they have taken a calculus course before 

were collected at the time of recruitment.  

Each student was compensated at a rate of $20 per hour for the amount of time spent 

during the task-based interview. Each interview, on average, lasted for about one hour fifteen 

minutes. There is some variation in the amount of time taken by each pair of students to 

complete each task. Table 3 lists the duration of time, in minutes, spent by each of the twelve 

pairs of students discussing each of the four tasks they were engaged in during each task-based 

interview session. Most of this time was spent on the first three tasks and the least amount of 

time was spent on the last task. It is rather surprising that, on average, students spent nearly as 
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much time in Task 1 as they did in Task 2 and Task 3 even though Task 1 was a routine problem 

that all the students acknowledged having seen or even solved a problem similar to it prior to 

participating in this study. On the other hand, Task 4 was a task all the 24 participants had never 

seen and took the least amount of time to complete. 

     Table 3. Task duration in minutes 

Student Pair Task 1 Task 2 Task 3 Task 4 Average 

Completion 

Time for 

each Task 

by Pair 

Ivy & Denise 11 22 19 13 16.25 

Ruth & Eric 9 24 23 8 16 

Joy & Nancy 29 19 24 11 20.75 

Zoe & Nevaeh 24 20 22 13 19.75 

Mark & Carlos 21 24 25 15 21.25 

Kierra & Isaac 12 21 23 16 18 

Abby & Shawna 21 27 16 8 18 

Jacie & Derby 14 14 23 10 15.25 

Nikki & Casey 27 14 23 7 17.75 

Sarah & Alan 28 11 16 8 15.75 

Fred & John 17 10 25 15 16.75 

Yuri & Kyle 23 30 22 14 22.25 

Average 

Completion 

Time for each of 

the Four Tasks 

by all the Pairs 

19.67 19.67 21.75 11.5  

Data Collection 

Data for the study came from three sources: task-based interviews which also included 

work written by students during each task-based interview session, classroom observations, and 

the textbook used in the course. I conducted task-based interviews with twelve pairs of 

undergraduate students using carefully designed tasks that are experientially real to the students. 

The students were paired based on their availability and willingness to participate in the task-

based interviews. The tasks were piloted with two pairs of students from a business calculus 
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course offered in the summer of 2015 prior to administration in the fall semester of 2015. 

Piloting the tasks helped me identify deficiencies in both the tasks and the task-based interview 

protocol which led to the improvement of the qualities of the tasks and interview protocol. One 

important improvement I made was to use three short paragraphs instead of two to improve the 

readability of the problem statement of Task 2. Thought-revealing prompts and probes were 

added, following the piloting of the task, in the interview protocol in an effort to elicit students’ 

thinking about the relationship among quantities (e.g., number of computers sold, discount, and 

revenue generated in Task 2).  

Six pairs of students were recruited from two sections of a business calculus course that 

was taught in the spring semester of 2015 and another six pairs of students were recruited from 

three sections of a business calculus course that was taught in the fall semester of 2015. In 

particular, three pairs of students were recruited from one section of the business calculus course 

taught by one professor in the fall of semester of 2015 and the other three pairs of students were 

recruited from the other two sections of the business calculus course taught by a different 

professor in the fall semester of 2015. The students were not paired by section but rather based 

on their availability (date and time) to participate in the interview. Each interview was video 

recorded and later transcribed for analysis.  

Work written by students during each interview session was also collected as part of the 

data for the study. This data consisted of graphs of functions, equations, and textual descriptions 

of changing economic quantities such as profit. This data helped me get a better understanding of 

students’ thinking about some of the mathematical ideas such as marginal change (in multiple 

representations) mentioned by the students during the task-based interview. Students also wrote 

some of their thoughts as they worked through the tasks. These written thoughts were helpful in 
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understanding students’ reasoning about the mathematical ideas rooted in the tasks. The video 

recordings were used for checking what students were referring to when they pointed at 

something during the task-based interview in cases when such information could not be easily 

obtained from the students’ written work that was collected as part of the data for the study.  

Following each interview, I wrote a brief memo where I documented my initial 

impressions about each pair of students’ responses to each of the four tasks. Each memo also 

contained an elaboration of my jottings (brief notes) taken during the interview. Lastly, each 

memo served as a quick reminder of an interview session at a later date.  

The two professors who taught business calculus in the fall of 2015 taught from the same 

textbook and their teaching approach was similar. I am not aware whether or not they shared 

teaching materials. I observed three classes of each of two sections of business calculus taught in 

the fall semester of 2015: three classes of one of the two sections of business calculus taught by 

one professor and three classes of another section that was taught by a different professor. 

During my first observation, I observed how each professor explained the concept of the 

derivative to students. The focus of my observation was on the professors’ attention to the 

covariation of the input and output variables in their discussion of the difference quotient. During 

my second observation, I observed how each professor explained the concept of marginal change 

(as a rate of change-the difference quotient or as an amount-the difference) and the relationship 

between the derivative and marginal change (marginal change as the derivative or the derivative 

as an approximation of marginal change). During my third observation, my focus was on each 

professor’s discussion of the algebraic procedure for finding optimal values (critical numbers and 

extrema) for an objective function. In particular, I observed each professor’s effort(s) to 

encourage students to interpret critical numbers and extrema in context and to verify the type(s) 
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of extrema (maximum/minimum) that the objective function has. Details of the areas of focus 

during each of my classroom observations can be seen in the classroom observation protocol 

which appears in Appendix B. 

I used a textbook protocol (Appendix C) to collect data that helped me understand 

opportunities provided in the course textbook that students had to learn about quantitative 

reasoning (relationships among quantities such as relationships among number of units produced 

and sold, marginal cost, marginal revenue, and profit), marginal change, and solving 

optimization problem that are situated in a business or economic context using algebraic 

methods. This data collection focused on the treatment of the following topics: (1) the concept of 

the derivative, (2) marginal change, and (3) solving optimization problems using algebraic 

methods in the course textbook. I also collected information about the type(s) of context (no 

context, camouflage, relevant and essential), type(s) of information (matching, missing, 

superfluous), and cognitive demands (reproduction, connection, and reflection) used in examples 

or practice problems from the course textbook. All four professors taught from the same 

textbook. Hence, the students had similar learning opportunities to learn how to solve context-

based tasks using algebraic methods from the textbook. 

Data Analysis  

Analysis of the collected data was done in three phases: (1) analysis of the business 

calculus course textbook, (2) analysis of classroom observations, and (3) analysis of task-based 

interviews. Following is a description of how data was analyzed in each of the three phases.  

Analysis of the course textbook. The analysis of the textbook was done in two steps. In 

the first step, I used an adaptation of the textbook analysis framework developed by Wijaya 

(2015) (Appendix D) to analyze optimization tasks in the business calculus course textbook 
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(Haeussler et al., 2011). This analysis focused on the types of context, types of information, 

types of cognitive demands, and types of representation (algebraic, tabular, graphic, verbal). I 

coded a task: (1) as algebraic if an algebraic formula was given in the task, (2) as tabular if a 

numerical table was given in the task, (3) as graphic if a graph was given in the task, and (4) as 

verbal (textual) if there were no algebraic equations, numerical tables, and graphs that were 

given in the task. Since the focus of my study was on students’ reasoning about application 

problems and not on modelling problems, I replaced the purpose of context based task dimension 

in the framework (Appendix D) with the representation of task dimension which I have described 

above. I analyzed a total of eleven optimization tasks (six optimization examples and five 

assigned optimization practice problems). Following is an illustration of how I used the textbook 

analysis framework to analyze three of the eleven optimization tasks:  

Example 8 (Profit Maximization): Suppose that the demand equation for a 

 monopolist’s product is 𝑝 = 400 − 2𝑞 and the average-cost function is 

𝑐̅ = 0.2𝑞 + 4 +
400

𝑞
, where 𝑞 is the number of units, and both 𝑝 and 𝑐̅ are expressed in 

 dollars per unit. Determine the level of output at which profit is maximized. (Haeussler et 

 al., 2011, pp. 614-615). 

I coded this example as: (1) algebraic because there are algebraic equations in the task, (2) 

having a camouflage context because the context can be ignored when solving this problem, (3) 

having matching information because it contains the exact amount of information needed to 

solve the problem posed, and (4) a reproduction task because this problem could be solved by 

simply recalling a memorized procedure. Similar problems were solved in the textbook prior to 

this example. 
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 Example 6 (Maximizing TV Cable Company Revenue): The Vista TV Co. currently 

 has 100, 000 subscribers who are each paying a monthly rate of $40. A survey reveals 

 that there will be 1000 more subscribers for each $0.25 decrease in the rate. At what rate 

 will maximum revenue be obtained, and how many subscribers will there be at this rate? 

 (Haeussler et al., 2001, pp. 613-614).  

I coded this example as: (1) verbal because there are no equations, numerical tables or graphs 

that are given in the task, (2) having a relevant and essential context because reasoning about the 

context of the problem is needed to solve the problem, (3) having matching information because 

it contains the exact amount of information needed to solve it, and (4) a connection task because 

to solve this problem, the solver must interpret the problem situation (to determine the revenue 

function) which is something that requires the solver to engage in simple mathematical 

reasoning.  

Example 5 (Economic Lot Size): A company annually produces and sells 10,000 units 

of a product. Sales are uniformly distributed throughout the year. The company wishes to 

determine the number of units to be manufactured in each production run in order to 

minimize total annual setup costs and carrying costs. The same number of units is 

produced in each run. This number is referred to as the economic lot size or economic 

order quantity. The production cost of each unit is $20, and carrying costs (insurance, 

interest, storage, etc.) are estimated to be 10% of the value of the average inventory. 

Setup costs per production run are $40. Find the economic lot size. (Haeussler et al., 

2001, pp. 612-613). 

I coded this example as: (1) verbal because there are no equations, numerical tables or graphs 

that are given in the task , (2) having a relevant and essential context because reasoning about the 
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context of the problem is needed to solve the problem, (3) having matching information because 

it contains the exact amount of information needed to solve it, and (4) a reflection task because 

the student must construct original mathematical approaches e.g., formulating the objective 

function (the total of the annual carrying costs and setup costs) is not straight forward.  

Although there is no optimization task with no context given in the textbook, the 

following example, which I made up, illustrates what I mean by an optimization task with no 

context in this study: 

 Made up example (No Context): What value of 𝑥 maximizes 𝑦 = −2𝑥2 + 3𝑥 + 2? 

I coded this example as: (1) algebraic because there is an algebraic equation in the task, (2) 

having no context because the is no story line (camouflage or realistic) that goes with the 

problem, (3) having matching information because all the information needed to the maximum 

value of the given function is given in the statement of the problem, and (4) a reproduction task 

because this problem can be easily solved by performing explicit routine computations or 

procedures (e.g., completing the square in 𝑥, using first/second derivative test, or using a 

graphing calculator to determine the value of 𝑥 that maximizes the given function). 

In the second step, I analyzed the opportunities provided by the textbook through which 

students could learn about optimization and marginal change problems in a business or economic 

context. In particular, analysis of the course textbook in this step focused on three themes: (1) 

textbook conceptual opportunities to learn about optimization and marginal change problems, (2) 

textbook treatment of quantitative reasoning, and (3) textbook treatment of marginal change.  

Textbook conceptual opportunities to learn about optimization problems are opportunities 

designed to help students develop a conceptual understanding of quantities (e.g., marginal cost) 

involved in the process of solving optimization problems in an economic context. Under this 
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theme, I analyzed the opportunities provided in the textbook to encourage students to : (a) 

interpret quantities (e.g., critical numbers) in an economic context, (b) give appropriate units of 

quantities in an economic context (e.g., units of critical numbers in a profit maximization 

context), (c) distinguish reasonable critical numbers or extrema from those that are not 

reasonable, (d) verify mathematical results involving quantities in an economic context (e.g., 

verify that a particular critical number is a profit maximizing quantity), (5) the textbook’s 

discussion of a procedure(s) for solving applied optimization problems, and (6) relative extrema 

versus absolute extrema optimization problems. 

Textbook treatment of quantitative reasoning refers to opportunities provided in the 

textbook to engage students in analyzing economic situations in terms of quantities and 

relationships among quantities. Under this theme, I analyzed (a) the textbook’s explanation of 

quantities such as marginal cost, and (b) the textbook’s explanation of relationships among 

quantities such as number of units produced or sold, cost, revenue, and profit (e.g., with an 

increase in production and sales of units, costs per unit decrease while both revenue and profit 

per unit increase gradually). 

Textbook treatment of marginal change refers to opportunities provided in the textbook 

that students had to learn about the concept of marginal change. Under this theme, I analyzed: (a) 

the definition or interpretation of marginal change given in the textbook (e.g. as a rate of change 

(difference quotient), as a change in amount (the difference), as an amount, or as both a rate of 

change and change in amount, (b) the relationship between marginal change and the derivative 

(marginal change being the derivative or the derivative being an approximation of marginal 

change) given in the textbook, (c) ways used to represent marginal change in the textbook (e.g. 

algebraically, tabular, graphically, or verbally), (d) the relationship between extrema and 
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marginal change given in the textbook (e.g. maximum profit occurs when MR=MC provided 

total revenue exceeds total cost), (e) the textbook’s attention to interpreting marginal change-

related results, and (f) the textbook’s attention to (assigning of ) units for marginal change.  

Analysis of classroom observations. The analysis of classroom observations was done 

in two steps. In the first step, I adapted (by replacing purpose of context-based task with types of 

representation as explained in the previous section) the textbook analysis framework (Wijaya, 

2015) (Appendix D) to analyze optimization examples given by each of the two professors who 

taught business calculus in the fall semester of 2015, herein referred to as Professor A and 

Professor B. The purpose of doing this was to see how the opportunities students had to learn 

about optimization problems in an economic context, through course lectures, compare with the 

opportunities they had to learn about optimization problems through optimization examples 

given in the textbook. This analysis focused on the types of context, types of information, types 

of cognitive demands, and types of representations. I analyzed a total of five economic 

optimization examples given in class: two examples presented in Professor A’s class and three 

examples that were presented in Professor B’s class.  

In the second step, I analyzed the opportunities students had, through course lectures to 

learn about optimization problems and marginal change in a business or economic context in 

each of the two sections I observed: one taught by Professor A and the other taught by Professor 

B. Analysis of course lectures focused on three themes: (1) classroom conceptual opportunities 

to learn about optimization problems, (2) attention to quantitative reasoning, and (3) discussion 

of marginal change.  

Classroom conceptual opportunities are opportunities designed to help students develop a 

conceptual understanding of quantities (e.g., marginal cost) involved in the process of solving 



 

 

94 

 

optimization problems in an economic context. Under this theme, I discussed opportunities 

students had, through examples given in course lectures, to learn about the importance and need 

to: (a) interpret quantities (e.g. critical numbers) in an economic context, (b) give appropriate 

units of quantities (e.g., units of critical numbers in a profit maximization context), (c) 

distinguish between reasonable critical numbers or extrema from those that are not reasonable, 

and (d) verify mathematical results involving quantities in an economic context (e.g., verifying 

that a particular number of units is the profit-maximizing quantity). This also includes a clear 

presentation of the purpose of each step of a procedure(s) introduced as a guide (if any) for 

students when solving applied optimization problems and a presentation of relative extrema 

optimization problems versus absolute extrema optimization problems.  

Attention to quantitative reasoning refers to opportunities students had, through course 

lectures, to engage in analyzing economic situations in terms of quantities and relationships 

among quantities. Under this theme, I discussed (a) the professors’ explanation of quantities such 

as marginal cost and (b) the professors’ explanation of relationships among quantities such as 

number of units produced or sold, cost, revenue, and profit (e.g. with increase in production and 

sales of units, costs per unit decrease while both revenue and profit per unit increase gradually). 

Discussion of marginal change refers to opportunities students had, through classroom 

instruction, to learn about the concept of marginal change. Under this theme, I analyzed (a) the 

definition or interpretation of marginal change given by the professors during lectures (e.g., as a 

rate of change (difference quotient), as a change in amount (the difference), as an amount, or as 

both a rate of change and change in amount (or amount)), (b) the relationship between marginal 

change and the derivative given by the professors during lectures (marginal change being the 

derivative or the derivative being an approximation of marginal change), (c) ways used by the 
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professors to represent marginal change such as when giving examples or when lecturing (e.g., 

algebraically, tabular, graphically, or verbally) (d) the relationship between extrema and 

marginal change given by the professors when giving examples during lectures (e.g., maximum 

profit occurs when MR=MC provided total revenue exceeds total cost), (e) the professors’ 

emphasis on the need for students to interpret marginal change-related results, and (f) the 

professors’ use of units of marginal change in examples given in lectures.  

Analysis of task-based interviews. Data analysis in this phase proceeded in two stages. 

In the first stage, I used a priori structure, that is, pre-determined codes. In particular, I carefully 

read through each interview transcript and coded instances where students reasoned about: (1) 

new quantities (e.g., diminishing marginal returns), (2) relationships between or among 

quantities (e.g., marginal profit equals marginal revenue minus marginal cost), (3) 

representations of relationships among quantities (e.g., using graphs and algebraic equations), (4) 

quantities in context (e.g., critical numbers in a profit-maximization), (5) how to solve each 

problem, and (6) how to verify the correctness or reasonableness of their solution(s). I also coded 

unanticipated instances that were of interest such as unanticipated solution strategies. Table 4 

shows a sample of codes and examples from the data. 

Table 4. Sample codes and examples from the data 

Codes Definition of Code Examples 

Discrete reasoning Treating continuous 

quantities as if they were 

discrete quantities when 

reasoning about relationships 

among several quantities in 

an economic context.  

 

Sarah and Alan reasoned discretely in 

Task 3 when they created a discrete 

profit graph despite the fact that the 

total cost function and total revenue 

function (given in the task) which they 

used to create the profit graph are 

continuous functions.  

 

Marginal change as 

a rate 

 

Interpreting marginal change 

as a rate. This includes giving 

units of marginal cost (MC) 

Researcher:  What are the units of  

  these numbers [MR and 

  MC values in Task 4,  

  Appendix A]? 
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and marginal revenue (MR) 

in dollars per unit. 

Yuri:   Dollars per unit 

Researcher:  Why dollars per unit? 

Yuri:   Marginal revenue is  

  additional, extra  

  revenue per unit 

 

Marginal change as 

a consecutive 

relationship between 

one value and the 

next value. 

 

 

Refers to the use of phrases 

or words such as “from one 

to two, ” “next, ” and 

“additional” without 

computing specific values 

when interpreting marginal 

change 

Researcher: How much does it cost 

  this company to  

  produce the second  

  unit, not the first two  

  units? 

Fred:  The cost of two units is 

  400  

John:  It’s only a hundred  

Fred:  Oh yah, that’s going  

  from the first to the  

  second, so you are  

  saying? 

 

Verifying extrema Using a formal procedure 

(e.g., the first derivative test) 

or an informal procedure 

(e.g., graphing a profit 

function on a graphing 

calculator and using the 

maximum function in a 

graphing calculator) to 

determine the profit 

maximizing quantity. 

 

 

Researcher: How would you  

  convince someone that 

  that profit [pointing at 

  the maximum profit that 

  Sarah and Alan found] 

  is the maximum profit? 

Sarah:  Because, because, I  

  don’t know 

Alan:  It shows here [pointing 

  at the critical number  

  40 in the number line  

  for the first derivative 

  test], it’s maximum at 

  40 [units], because it’s 

  [profit] increasing and 

  then decreasing,  

  whenever it [profit]  

  goes from increasing  

  to decreasing you  

  have a max [maximum 

  profit] and that’s at 40 

  so that  proves that the 

  maximum profit is at 40 

  [units]  
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 In the second stage, I looked for patterns (common understandings or difficulties with 

concepts or procedures) in students’ responses to the tasks. I also looked for differences in 

students’ reasoning about the mathematical ideas rooted in the tasks. In Task 1, for example, this 

consisted of looking for common understandings or difficulties in: (1) setting up the objective 

function, (2) finding critical numbers using algebraic methods, (3) interpreting critical numbers 

in a profit-maximization context, (4) interpreting extrema in a revenue-maximization context, (5) 

determining extrema from critical numbers, and (6) verifying extrema as minimum or maximum 

values of the objective function.  

Looking for patterns in students’ reasoning about Task 2 consisted of looking for 

common understandings or difficulties around: (1) thinking about the relationship among the 

number of computers ordered, the discount, and the revenue that is generated (e.g. thinking about 

how the discount affects revenue when the school orders more than 300 computers), (2) 

reasoning about marginal change in a problem situation that is verbally (textually) represented, 

and (3) giving a reasonable advice in a revenue-maximization context. 

 Looking for patterns in students’ responses to Task 3 consisted of looking for common 

understandings or difficulties around: (1) reasoning quantitatively about relationships among 

four quantities, namely the number of units produced and sold, total cost, total revenue, and 

profit,  (2) marginal analysis from a graph (reasoning about marginal cost and marginal revenue 

at a critical number), (3) determining critical numbers or absolute extrema from a graph, and (4) 

making a reasonable decision in a profit-maximization context.  

Looking for patterns in students’ responses to Task 4 consisted of looking for common 

understandings or difficulties around: (1) thinking about the relationship among number of units 

(computer chips) produced and sold, marginal cost, marginal revenue, and marginal profit (or 
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profit), (2) marginal analysis from a numerical table (e.g., interpreting the significance of 

MR=MC in a profit-maximization context), (3) understanding of marginal change (giving units 

of marginal cost and marginal revenue), (4) interpreting marginal change (the cost of producing 

the 401st computer chip), and (5) making a reasonable decision in a profit-maximization context. 

I then used the common difficulties or understandings (including differences) in students’ 

reasoning found in the second stage of the task-based interview analysis to address my research 

questions. Details about how I did this are given in the following section.  

Addressing the Research Questions 

The analysis of the textbook, the analysis of course lectures, and the analysis of the task-

based interview data (phase three) led to answers to the research questions for my study. To 

answer the first research question: 

1. What opportunities to learn about (a) optimization problems, (b) the concept of marginal 

change and (c) quantitative reasoning in the context of cost, revenue, and profit do 

business calculus textbooks and classroom instruction provide to business calculus 

students?  

I used results obtained by using the four dimensions of the analytical framework (Appendix D) 

to describe the opportunities that students have to learn about optimization problems, marginal 

change, and quantitative reasoning via the textbook and via course lectures. I discussed students’ 

opportunities to learn about optimization problems via the textbook and via course lectures in 

terms of types of context, types of information, types of cognitive demand, and types of 

representations of the optimization examples that were given in the textbook and in course 

lectures. I also discussed other opportunities to learn about optimization problems that were 

presented in the textbook and in course lectures. These opportunities included, among others, 
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interpreting critical numbers in context and stating units of critical numbers and extrema. 

Opportunities to learn about marginal change consisted of definitions or interpretations of 

marginal change (e.g., marginal cost) as well as the use of units in the presentation of marginal 

change examples given in the textbook and in course lectures. Opportunities to learn about 

quantitative reasoning included the analysis of economic situations, in the textbook and in course 

lectures, in terms of quantities and relationships between or among quantities.  

To answer the second research question: 

2. How do business calculus students reason algebraically about optimization problems that 

are situated in the context of cost, revenue, and profit? 

I used patterns of students’ understanding or difficulties when solving Task 1. These patterns 

included common understandings or difficulties in: setting up objective functions, interpreting 

critical numbers in context (e.g., interpreting a profit maximizing quantity), interpreting extrema 

in context, verifying extrema as a minimum or maximum value of an objective function, and 

determining which critical number gives a minimum or maximum value of the objective 

function.  

To answer the third research question: 

3. How do business calculus students interpret marginal change when solving optimization 

problems that are situated in the context of cost, revenue, and profit? 

I used patterns of students’ understandings or difficulties when solving Task 1, Task 2, Task 3, 

and Task 4. For Task 1, these patterns included students’ common understanding of the 

derivative of the total cost function given in the task as marginal cost. For task 2, these patterns 

included common understandings or difficulties in reasoning about marginal change in a verbal 

[textual] context, and giving a reasonable advice in a revenue-maximization context. For task 3, 
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these patterns included common understandings or difficulties in: (1) determining marginal 

change from a graph (e.g., the cost of producing the second unit), (2) being able to see marginal 

change from a graph (e.g. showing the cost of producing the second unit on a graph), and (3) 

understanding the relationship between maximum/minimum profit and marginal change (e.g., 

maximum profit occurs at a production and sales level where marginal cost equals marginal 

revenue provided total revenue exceeds total cost at that level). For task 4, these patterns 

included students’ common understandings or difficulties in: (1) giving units of marginal change, 

(2) interpreting marginal change (e.g., the cost of producing the 401st computer chip), and (3) 

reasoning quantitatively about the relationship among the number of computer chips produced 

and sold, marginal cost, marginal revenue, and profit. 

To answer, the fourth research question: 

4. What do business calculus students’ responses to optimization problems involving 

multiple covariates that are situated in the context of cost, revenue, and profit reveal 

about their quantitative reasoning? 

I used patterns of students’ understandings or difficulties when reasoning about the four tasks. 

These patterns included common understandings or difficulties around: (1) relationships among 

quantities in multivariable situations (e.g., the relationship among sales (number of computers 

sold), discount, and revenue in Task 2) and (2) new quantities (e.g., average cost in Task 1) that 

students created and used (or did not use) in an attempt to solve the problems posed in the four 

tasks. 
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Chapter 4 – Results: Opportunity to Learn and Algebraic Reasoning 

In this chapter, I present the results from the analysis of the data I collected with the 

purpose of answering the first two research questions on opportunity to learn and algebraic 

reasoning: 

1. What opportunities to learn about (a) optimization problems, (b) the concept of marginal 

change and (c) quantitative reasoning in the context of cost, revenue, and profit do 

business calculus textbooks and classroom instruction provide to business calculus 

students?  

2. How do business calculus students reason algebraically about optimization problems that 

are situated in the context of cost, revenue, and profit? 

In the first section of this chapter, I address my first research question by presenting results from 

the analysis of opportunities to learn (via the textbook and course lectures) about solving 

optimization problems, the concept of marginal change, and quantitative reasoning in the context 

of cost, revenue, and profit. In the second section of this chapter, I address my second research 

question by presenting results from the analysis of students’ algebraic reasoning when solving 

optimization problems in the context of cost, revenue, and profit. 

Opportunity to Learn 

To examine the opportunity to learn about optimization problems, marginal change, and 

quantitative reasoning in the context of cost, revenue, and profit via the textbook and course 

lectures, I analyzed examples and assigned practice problems that are presented in the textbook 

and examples that were presented in course lectures. There are four results from this analysis. 

First, the opportunity to learn to solve a range of realistic and cognitively demanding 

optimization problems in an economic context via the textbook (examples and practice 
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problems) and examples given in class were limited. Second, several conceptual opportunities to 

learn about optimization problems were presented through optimization tasks (examples and 

assigned practice problems) given in the textbook and through examples given in course lectures. 

Third, the presentation of the concept of marginal change both in the textbook and in course 

lectures was largely vague and procedural. Fourth, opportunities for students to engage in 

quantitative reasoning, especially about relationships between or among economic quantities, via 

the textbook and in course lectures were limited. 

Opportunity to learn solving a range of realistic and cognitively demanding 

optimization problems. There are eight optimization examples given in the textbook (Appendix 

H), six of which are situated in an economic context and the other two examples (example 4 and 

example 7 in Appendix H) are situated in non-economic contexts. Since one major reason for 

analyzing the textbook was to examine opportunities students had to learn about solving 

optimization problems in an economic context, the two non-economic optimization problems 

were not included in the analysis. Two economic examples were given in course lecture A. 

These examples were exactly the same as two examples (example 1 and example 2 in Appendix 

H) given in the textbook. Three economic examples (Appendix G) were given in course lecture 

B. These examples were minor adaptations of three examples given in the textbook (example 2, 

example 3, and example 8 in Appendix H). Since the examples given in course lectures were 

generally similar to the examples given in the textbook, the results of the analysis of optimization 

problems given in the textbook and optimization problems given in course lectures are similar. 

Hence, I only report the findings from the analysis of optimization examples given in the 

textbook. 
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Table 5. Results from analyzing optimization examples in the textbook 

 

Analysis of optimization examples in the textbook focused on four dimensions of 

analysis, namely types of context, types of information, types of cognitive demand, and 

representation of example. These dimensions of analysis are described in the task analysis 

framework (Wijaya, 2015) that appears in Appendix D. The results of the analysis of 

optimization examples are summarized in Table 5. 

There are four major results from the analysis of optimization examples. First, a majority 

(67%) of the optimization examples have a camouflage context (examples 1, 2, 3 and 8 in 

Appendix H), only a few had a realistic (relevant and essential) context (examples 5 and 6 in 

Appendix H), and none of the examples had no context (an example of an optimization task with 

no context is given in the methods chapter). This result means that business calculus students 

have limited exposure, via the textbook, to realistic optimization problems that are situated in an 

economic context. Second, all six examples (examples 1, 2, 3, 5, 6, and 8 in Appendix H) have 

the exact amount of information students need to solve the problems posed in the examples. 

Consequently, students do not have to make sense of the context (if any) of the examples in order 

to either deduce missing information or identify important information (in the case of 

Number 

of 

Economic 

Examples 

Type of Context Type of Information Type of Cognitive 

Demand 

Representation of 

Example  

6 No context: 0 Matching: 6 (100%) Reproduction: 4 (67%) Algebraic: 3 (50%) 

Camouflage 

context: 4 (67%) 

Missing: 0 Connection: 1 (17%) Tabular: 0 

Relevant and 

essential context: 

2 (33%) 

Superfluous: 0 Reflection: 1(17%) Graphical: 0 

   Verbal: 3 (50%) 
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superfluous information) that is necessary to solve the problems posed in the problem statements 

of the examples. 

Third, the opportunity to learn how to solve optimization problems with higher cognitive 

demands (reflection tasks) via examples given in the textbook is extraordinarily low: only one 

reflection task (example 5 in Appendix H) was given in the textbook. Most of the examples 

(examples 1, 2, 3, and 8 in Appendix H) were reproduction tasks. That is, they were tasks of 

lower cognitive demand.  

Fourth, three of the six optimization problems were represented algebraically (examples 

2, 3, and 8 in Appendix H) while the other three examples were represented verbally/textually 

(examples 1, 5, and 6 in Appendix H). This suggests that the textbook does not provide 

opportunities for students to reason about economic optimization problems from either a tabular 

or graphical representation. Taken together, the results from analyzing optimization examples 

suggests that students’ opportunity to learn to solve a wide range of optimization problems in an 

economic context both from the course textbook and through examples given in course lectures 

is limited.  

Students in the course were assigned five practice problems (problems 1 through 5 in 

Appendix H) that were selected from the textbook. All five practice problems were situated in an 

economic context. Analysis of assigned optimization practice problems focused on types of 

context, types of information, types of cognitive demand, and representation of practice problem. 

These dimensions of analysis are explained in the textbook analysis framework which appears in 

Appendix D. The results of the analysis are summarized in Table 6. 
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Table 6. Results from analyzing assigned optimization practice problems in the textbook 

To some extent, the results from analyzing assigned optimization problems are similar to 

those obtained from the analysis of optimization examples. All the practice problems (problems 

1 through 5 in Appendix H) contain the exact amount of information needed to solve the 

problems. The opportunity to learn to solve optimization problems with higher cognitive 

demands (reflection tasks) via practice problems given in the textbook is extraordinarily low: 

only one reflection task (problem 4 in Appendix H) was assigned as a practice problem in the 

textbook. A majority of the practice problems (problems 1 through 3 in Appendix H) were 

reproduction tasks. That is, they were tasks of lower cognitive demand. 

It is, however, worth noting that a majority of the assigned practice problems (problem 2, 

problem 4, and problem 5 in Appendix H) have a realistic (relevant and essential) context so that 

the student has to reason about the context of these tasks in the process of solving the problems 

posed in these tasks. This result means that business calculus students had more exposure 

through homework problems to realistic optimization problems that are situated in an economic 

context than they did with optimization examples given in the textbook. Finally, a majority of the 

practice problems (problem 1, problem 3, and problem 5 in Appendix H) were algebraic. Hence, 

business calculus students had limited opportunities to practice solving optimization problems 

Number 

of 

Practice 

Problems 

Type of Context Type of Information Type of Cognitive 

Demand 

Representation of 

Practice Problem  

5 No context: 0 Matching: 5 (100%) Reproduction: 3 (60%) Algebraic: 3 (60%) 

Camouflage 

context: 2 (40%) 

Missing: 0 Connection: 1 (20%) Tabular: 0 

Relevant and 

essential context: 

3 (60%) 

Superfluous: 0 Reflection: 1 (20%) Graphical: 0 

   Verbal: 2 (40%) 
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that are represented in multiple ways such as using graphs or numerical tables. These results 

suggest that the opportunity to learn to solve a wide range of realistic and cognitively demanding 

optimization problems in an economic context via assigned optimization practice problems in the 

textbook is limited. 

Conceptual opportunities to learn about optimization problems. As earlier defined, 

conceptual opportunities to learn about optimization problems are opportunities provided in the 

textbook and in course lectures that are designed to help students develop a conceptual 

understanding of quantities (e.g., marginal cost) involved in the process of solving optimization 

problems in an economic context. In this section, conceptual understanding includes attention to: 

(1) the interpretation of  quantities (e.g. critical numbers) in an economic context, (2) giving 

appropriate units of quantities in an economic context (e.g., units of critical numbers in a profit 

maximization context), (3) distinguishing between reasonable critical numbers or extrema from 

those that are not reasonable, (4) verifying mathematical results involving quantities in an 

economic context (e.g., verifying that a particular number of units is the profit-maximizing 

quantity), (5) the explanation of a procedure(s)/guide(s) given in the textbook or in course 

lectures that was intended to help students when solving applied optimization problems in an 

economic context, and (6) relative extrema versus absolute extrema optimization problems.  

Interpreting quantities in an economic context. Analysis of optimization tasks 

(examples and assigned practice problem in Appendix H) given in the textbook as well as 

optimization examples (Appendices F and G) given in class revealed that the textbook and 

course lectures generally encouraged students to interpret critical numbers and extrema in 

context. Critical numbers and extrema were interpreted in the six economic-based optimization 

examples given in the textbook. For example, in their concluding remarks regarding the solution 
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to Example 5 in Appendix H, Haeussler et al., 2011 stated that “the number of production runs is 

10,000/632.5 ≈15.8” (p. 613). Haeussler and colleagues added that “for practical purposes, 

there would be 16 lots, each having the economic lot size of 625 units” (p. 613), thus Haeussler 

interpreted both the critical number [16 lots] and the extreme value [625 units] in the context of 

the problem i.e., economic lot size.  

Also, students were required to interpret critical numbers and extrema in the five assigned 

optimization problems (all economic-based) that appeared at the end of the applied extrema 

minima and maxima section in the textbook. For example, the problem statement in problem 2 

(Appendix H): “what rate will yield maximum revenue, and what will this revenue be?” 

(Haeussler et al., 2001, p. 618) implies that to answer the question, students had to interpret the 

critical number (monthly rate in dollars per month) that will yield maximum revenue and the 

extreme value (the maximum revenue in dollars). Interpretations, in context, of critical numbers 

and extrema were also given in all the optimization examples given in course lectures A and B. 

These interpretations were similar to those given in the textbook.  

Encouraging students to include units. Analysis of optimization tasks given in the 

textbook and in class revealed that the textbook and course lectures rarely encouraged students to 

include units for critical numbers and extrema when solving optimization problems. Units for 

critical numbers were included in only three of the six economic optimization examples 

presented in the textbook while units of extrema (e.g., dollars for maximum profit) were included 

in only two of these examples. For example, when answering the question posed in example 6 

(Appendix H), Haeussler et al. (2011) stated that “the monthly rate is $40 − $7.50 = $32.50” 

(p. 614) and that “the number of subscribers at this rate is 100,000 + 30(1000) = 130,000” (p. 

614), thus Haeussler and colleagues stated both the units of the critical number (dollars) and the 
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units of the extreme value of the revenue function (number of subscribers that yields maximum 

revenue). It is, however, confusing that the units of the monthly rate were only stated as dollars 

and not as dollars per month. When answering the question posed in optimization example 2 

(Appendix H), Haeussler and colleagues did not include units of either the critical number 

(revenue maximizing quantity) or the extrema (maximum revenue). Instead, these authors 

concluded: 

Thus, 40 is the only critical value. Now we see whether this gives a minimum. Examining 

 the first derivative for 0 ≤ 𝑞 < 40, we conclude that 
𝑑𝑟

𝑑𝑞
> 0, so 𝑟 [revenue] is increasing. 

 If 𝑞 > 40, then 
𝑑𝑟

𝑑𝑞
< 0, so 𝑟 is decreasing. Because to the left of 40 we have 𝑟 increasing, 

 and to the right r is decreasing, we conclude that 𝑞 = 40 gives the absolute maximum 

 revenue, namely 𝑟(40) =
80(40)−(20)2

4
= 400 (p. 611) 

In the above section of the textbook, Haeussler et al. only verified that 40 is the value of 𝑞 that 

maximizes the revenue function but they did not specifically say that q is the number of units 

that maximizes revenue and that 400 is the maximum revenue in dollars. 

None of the five optimization practice problems (Appendix H) specifically requested 

students to give units of critical numbers or extrema. Only in one of the two optimization 

examples (Appendix F) given in course lecture A were units of extrema given: 

Of the two optimization examples that were given in course lecture A, units for extrema 

 were only included in one example (dollars for minimum total cost in optimization 

 example 1, Appendix F). In both optimization examples, units for critical numbers 

 (length of fence needed to minimize the cost of fencing a rectangular storage area in 

 example 1, Appendix F, and number of units that must be produced to minimize average 

 cost in example 2, Appendix F) were not given. Students were also not encouraged, 
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 verbally or through a written comment on the chalkboard, to include units for critical 

 numbers and extrema when solving applied optimization problems. (Thembinkosi, 

 Classroom Observation 3A, 12/01/2015). 

Units for critical numbers and extrema were not given in any of the three examples (Appendix 

G) that were given in course lecture B.  Hence, the importance and need for students to include 

units of critical numbers and extrema when solving contextualized optimization problems was 

not emphasized in course lectures.  

Distinguishing between reasonable critical numbers and extrema and those that are 

not reasonable. An objective function can have more than one critical number or extremum, 

some of which may not be reasonable based on the context of the problem. For example, if a 

revenue function has two critical numbers (number of items that must be sold to maximize 

revenue), one positive and the other negative, it is reasonable to keep the positive critical number 

and discard the negative one as number of units sold cannot be a negative number. Analysis of 

optimization tasks in the textbook and in class revealed that students had limited opportunities to 

work with objective functions that have more than one critical number and that when they did, 

deciding between reasonable and unreasonable critical numbers did not go beyond discarding 

negative critical numbers and keeping positive critical numbers. Three of the six economic-based 

optimization examples given in the textbook (examples 1, 3, and 5 in Appendix H) have 

objective functions (e.g., the total cost function in example 1, Appendix H) that have two critical 

numbers, one positive and the other negative. In all three examples, the negative critical number 

was always discarded. In these three examples, the domain of the objective function was given as 

a justification for discarding the unreasonable (negative) critical number. As a result of 

discarding the unreasonable (negative) critical numbers, the objective functions yielded only one 
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extremum (e.g., minimum total cost). None of the five optimization practice problems (problems 

1 through 5 in Appendix H) had objective functions with more than one critical number. Hence, 

the practice problems did not give students enough practice dealing with objective functions 

where they have to decide which critical numbers are reasonable and which are not.  

Students were encouraged, through examples given in class, to write and consider the 

domain of the objective function when determining which critical numbers are reasonable and 

which ones are not. Identifying the appropriate domain for the objective function when solving 

an applied optimization problem is key to recognizing unreasonable critical numbers or extrema. 

In course lecture A, for instance, the importance of identifying the correct domain for the 

objective function was emphasized through a verbal and a written explanation on the chalkboard 

about what the appropriate domain of each of the objective functions in examples 1 and 2 

(Appendix F) should be. Specifying the domain of the objective function was mentioned as a 

rationale for discarding the unreasonable critical numbers in optimization example 1 and 2 

(Appendix F). Students were verbally encouraged to always write the domain of the objective 

function when solving applied optimization problems. 

The challenge of having to decide which critical numbers are reasonable and which ones 

are not did not come up in course lecture B. This is because all of the objective functions (e.g., 

profit function in optimization example 3, Appendix G) in the three optimization problems 

(Appendix G) that were given in course lecture B had only one reasonable critical number. 

However, the importance of identifying the correct domain for the objective function when 

solving applied optimization problems was emphasized in course lecture B. In all the three 

optimization examples (examples 1 through 3 in Appendix G), the appropriate domain was 

stated. Students were asked, verbally, to include the appropriate domain of the objective function 
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when solving applied optimization problems. Hence, I argue that a criterion (specifying the 

domain of the objective function) for identifying reasonable critical numbers from those that are 

not was also discussed in course lecture B, even though this was done in an implicit manner.  

Verifying mathematical results. In this study, to verify a mathematical result means 

reasoning about whether or not a critical number (e.g., profit-maximizing quantity) is indeed the 

input to an objective function (e.g., profit function) that yields an absolute maximum value (e.g., 

maximum profit) of the function. Analysis of the six economic optimization tasks in the textbook 

and optimization examples given in lectures revealed that the textbook and course lectures 

encouraged students (especially via examples) to verify their results, using various methods (first 

derivative test, second derivative test, comparing values of objective function at critical points 

including endpoints of the domain for the objective function), when solving applied extrema 

problems in an economic context. Verification of critical numbers was carried out in all six 

examples. For example, the textbook’s presentation of the solution to example 6 in Appendix H: 

Solution: Let 𝑥 be the number of $0.25 decreases. The monthly rate is then 40 − 0.25𝑥, 

 where 0 ≤ 𝑥 ≤ 160 (the rate cannot be negative), and the number of new subscribers is 

 1000𝑥. Thus, the total number of subscribers is 100,000+1000𝑥. We want to maximize 

 the revenue, which is given by 

𝑟 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠)(𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟) 

   = (100,000 + 1000𝑥)(40 − 0.25𝑥) 

   = 1000(100 + 𝑥)(40 − 0.25𝑥) 

   = 1000(4000 + 15𝑥 − 0.25𝑥2) 

Setting 𝑟′ = 0 and solving for 𝑥, we have 

  𝑟′ = 100(15 − 0.5𝑥) = 0 
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     𝑥 = 30 

Since the domain of 𝑟 is the closed interval [0,160], the absolute maximum value of 𝑟 

 must occur at 𝑥 = 30 or at one of the endpoints of the interval. We now compute 𝑟 at 

 these endpoints: 

  𝑟(0) = 1000(4000 + 15(0) − 0.25(0)2) = 4,000,000 

  𝑟(30) = 1000(4000 + 15(30) − 0.25(30)2) = 4,225,000 

𝑟(60) = 1000(4000 + 15(160) − 0.25(160)2) = 0 

Accordingly, the maximum revenue occurs when 𝑥 = 30. (Haeussler et al., 2011, pp. 

 613-614). 

This solution shows that the value of the revenue function at the critical number 𝑥 = 30 

was compared with the values of the revenue function at the endpoints of the domain [0, 60] of 

the revenue function in an effort to verify that 𝑥 = 30 is the revenue maximizing quantity. 

However, none of the assigned optimization problems required students to verify that a critical 

number maximizes/minimizes a given objective function. For example, students were not asked 

to show that the critical number (130 units in problem 3, Appendix H) would maximize the profit 

for the monopolist mentioned in the problem. The first or second derivative test was used to 

verify that critical numbers minimized or maximized (depending on the problem) the objective 

function in the optimization examples that were given in course lectures: two examples 

(appendix F) in course lecture A and three examples (Appendix G) in course lecture B. For 

instance, the first derivative test was used in optimization example 1 (Appendix G) given in 

course lecture B to verify that the critical number 𝑞 = 25 is the number of units that must be sold 

to maximize revenue. 
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Explanation of a procedures for solving applied optimization problems. The textbook 

gives a five-step guide for solving applied optimization problems (Haeussler, Paul, & Wood, 

2011, p. 611): 

Step 1:  When appropriate, draw a diagram that reflects the information in the  

   problem. 

Step 2:  Set up an expression for the quantity that you want to maximize or   

   minimize. 

Step 3:  Write the expression in step 2 as a function of one variable, and note the  

   domain of this function. The domain may be implied by the nature of the  

   problem itself. 

Step 4:  Find the critical values of the function. After testing each critical value,  

   determine which ones gives the absolute extreme value you are seeking. If 

   the domain of the function includes endpoints, be sure to also examine  

   function values at these endpoints. 

Step 5:  Based on the results of step 4, answer the question(s) posed in the   

   problem. 

Each step is illustrated using the first of the six economic-based examples given in the 

textbook (example 1 in Appendix H). For example, when illustrating step 5 using example 1 in 

Appendix H, Haeussler et al. (2011) stated that “the questions posed in the problem must be 

answered…120 ft of the $3 fencing and 180 ft of the $2 fencing are needed. The minimum cost 

can be obtained from the cost function…and is C(120)=720” (p. 610). In particular, Haeussler 

and colleagues answered the first question by stating the amount of each type of fence (120 ft 

and 180 ft respectively) so that the total cost of the fence will be a minimum. They also answered 
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the second question regarding the minimum cost by stating that the minimum cost would be 720 

(without units). Even though step 1 was illustrated by drawing a rectangular sketch of the storage 

area mentioned in optimization example 1 (Appendix H), none of the assigned optimization 

practice problems or examples that are given in the course textbook or examples (besides 

example 1, Appendix H) that were given in lectures (Appendix F and G) have or require the 

drawing of diagrams that may be appropriate for economics problems. 

In the rest of the examples, the steps were not explicitly shown in the process of working 

through each example as is the case in the first example. The five-step guide for solving applied 

optimization problems does not provide details on the purpose of each step, hence it is not 

conceptual in my view. For example, while noting the domain of the objective function is 

emphasized in step 3 of the five-step guide, no details are given on the importance of noting the 

domain of the objective function e.g., determining unreasonable critical numbers such as a 

negative number of units sold when calculating revenue. This five-step guide promotes one 

specific way of thinking about optimization problems, that is, algebraically. It does not support 

students’ reasoning about applied optimization problems that are represented in non-algebraic 

ways (e.g., using graphs and numerical tables).  

A similar but nine-step guide was given in course lecture A: 

Step 1: Read the question carefully 

      Step 2: When appropriate, draw a diagram that reflects the information in the problem 

Step 3: Label variables 

Step 4: Set up an expression for the quantity that you want to minimize or maximize 



 

 

115 

 

Step 5: Write the expression in step 4 as a function of one variable using the given  

  relations e.g., the area of a rectangle in the cost-minimization problem 

Step 6: Write the domain of the function 

Step 7: Find the critical points 

Step 8: Compare the values of 𝑓 at critical points. If the domain     

  involves the endpoints, then examine the values of the function at this   

  point 

Step 9: Give your answer 

As in the textbook, this nine step guide was illustrated using example 1 in Appendix F which is 

the same example (example 1 in Appendix H) used to illustrate the five step guide in the 

textbook. As in the textbook, details on the purpose of each of the nine steps were not given. 

This includes, for example, an explanation why drawing a diagram (when appropriate) might be 

helpful in step 2. There is no guide (procedure) on how to solve applied optimization problems 

that was given in course lecture B.  

Relative extrema and absolute extrema optimization problems. In this study, a relative 

extrema optimization problem is one in which the domain of the objective function is an open 

interval such as in example 3 (Appendix H) where the domain of the objective function (average 

cost function) is the open interval (0, ∞). An absolute extrema optimization problem, on the 

other hand, is one in which the domain of the object function is a closed interval such as example 

6 (Appendix H) where the domain of the objective function (revenue function) is the closed 

interval [0, 160]. Analysis of optimization tasks in the textbook and in course lectures 

(Appendices F and G) revealed that the opportunity to learn solving absolute extrema 
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optimization problems in an economic context is low. For example, in the six economic 

optimization examples given in the textbook, only one example (example 6 in Appendix H) is an 

absolute extrema optimization problem. Only one practice problem (problem 2 in Appendix H) 

of the five practice problems in Appendix H is an absolute extrema problem. This problem is a 

variation of the only economic absolute extrema example (example 6 in Appendix H) given in 

the textbook. In essence, there is no variation in terms of context and cognitive demand in the 

two economic absolute extrema optimization problems that students were exposed to via 

textbook examples and practices problems. Also, none of the optimization examples given in 

course lectures A and B (Appendix F and G respectively) were absolute extrema optimization 

problems.  

Textbook and lecture treatment of marginal change. As stated in the methods chapter, 

textbook and lecture treatment of marginal change refers to opportunities provided in the 

textbook and through course lectures that students had to learn about the concept of marginal 

change. Analysis of marginal change related tasks (Appendix I) and examples that were given in 

course lectures A and B (Appendices F and G) which I observed revealed that: (1) the definition 

of marginal change and the interpretation of marginal change given in both the textbook and 

during classroom instruction were not consistent with each other, (2) the importance of giving 

units when solving marginal change related tasks received little attention both in the textbook 

and in course lectures, (3) the textbook and lecture presentation of marginal change was more 

procedural and less conceptual, and (4) the discussion of the relationship between marginal 

change and profit (maximum or minimum) received little attention in the textbook and no 

attention in course lectures.    
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Definition and interpretation of marginal change. The definition of marginal change 

given in the textbook is not consistent with the interpretation of marginal change given in the 

same textbook. Marginal cost is defined as the derivative of the total cost function which means 

that marginal cost is a rate with units such as dollars per item. Haeussler at al. (2011) stated: “we 

interpret marginal cost as the approximate cost of one additional unit of output” (p. 513). This 

interpretation means that marginal change is an amount with units such as dollars. This 

inconsistency between the definition and interpretation of marginal change in the textbook can 

be seen in some of the marginal change examples given in the textbook. For example, when 

presenting their solution to marginal change example 1 (Appendix I), Haeussler et al. interpreted 

𝑐’(50) = $3.75, a rate, as an amount in dollars. The same definition and interpretation of 

marginal change was given in course lectures A and B. This finding suggests that the 

presentation of the concept of marginal change both in the textbook and in course lectures was 

inconsistent in that the same concept (marginal change) is treated as both an amount and a rate at 

the same time. 

Units of marginal change. Including units of marginal change was not emphasized when 

solving marginal change related problems in the textbook and in course lectures. Analysis of the 

seven marginal change related tasks (Appendix I) in the textbook revealed that units of marginal 

change (dollars per unit) were not included in the two examples given in the textbook (examples 

1 and 2 in Appendix I) while only one practice problem (problem 5 in Appendix I) out of five 

assigned practice problems in the textbook required students to give units of marginal change 

which would have to be given as a rate (dollars per year). Units of marginal change (dollars per 

unit) were given in the only two examples (examples 4 and 5 in Appendix G) given in course 

lecture B where it was necessary to state units of marginal change. The other three marginal 
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change examples (examples 1, 2 and 3 in Appendix G) given in course lecture B only required 

students to find algebraic formulas for the derivative: a formula for the derivative of the total cost 

function, a formula for the derivative of the revenue function, and a formula for the derivative of 

the average cost function. Units of marginal change (dollars per unit) were not given in the two 

marginal change examples (example 1 and example 2 in Appendix F) given in course lecture A. 

In general, the textbook and course lectures barely encouraged students to include units of 

marginal change when solving marginal change related tasks. 

Procedural and conceptual understanding of marginal change. The presentation of 

marginal change in both the textbook and in course lectures appears to have valued a procedural 

understanding of marginal change over a conceptual understanding of marginal change. A 

majority of the marginal change related tasks in the textbook and examples given in course 

lectures were algebraic, something that has the potential to promote a procedural understanding 

of marginal change. More specifically, of the seven optimization tasks (examples 1 and 2, and 

practice problems 1 through 5 in Appendix I), only one task (practice problem 5) required 

interpretation of marginal change (the dollar amount by which a certain machine depreciates on a 

yearly basis). The rest of the tasks, such as marginal change practice problem 1 (Appendix I), 

only required students to find the formula for the derivative of some function (e.g., total cost 

function in problem 1 below) and then evaluate it at a given quantity (number of units).  

Problem 1. 𝑐 = 500 + 10𝑞 is the total cost of producing q units of a product. 

  Find the marginal-cost function. What is the marginal cost when 

  𝑞 = 100? (Haeussler et al., 2011, p. 516). 

Of the five marginal change examples given in course lecture B, only two examples (examples 4 

and 5 in Appendix G) were interpretation questions while the other three examples (examples 1 
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through 3 in Appendix G) were computational questions. Also, of the two marginal change 

examples given in course lecture A, only one example (example 2 in Appendix F) was an 

interpretation question while the other example (a question with four parts) was a computational 

task. The marginal change tasks given in the textbook and during classroom instruction did not 

offer students opportunities to reason about the concept of marginal change in multiple 

representations (e.g., from numerical tables and graphs) and only limited opportunity to reason 

about it algebraically. 

Relationship between marginal change and profit. The relationship between marginal 

change (marginal cost and marginal revenue) and profit (maximum or minimum) received little 

attention in the textbook and no attention at all in course lectures. There are two instances in the 

textbook where the relationship between marginal change and maximum profit is discussed. The 

first instance occurred in the concluding section on solving applied optimization problems 

(shown in Appendix J). In this section of the textbook, Haeussler et al. (2011) stated that 

maximum profit occurs at a production and sales level where marginal cost equals marginal 

revenue provided total revenue is greater than total cost at that level. There is, however, no 

discussion of what it means for marginal cost to equal marginal revenue at production and sales 

level when total cost is less than total revenue, that is, where profit is minimal.  

The second instance where the relationship between marginal change and maximum 

profit comes up is through assigned practice problem 1 in Appendix H: 

Problem 1. (Profit) For XYZ Manufacturing Co., total fixed costs are $1200, material 

  and labor costs combined are $2 per unit, and the demand equation is 

𝑝 =
100

√𝑞
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  What level of output will maximize profit? Show that this occurs when  

  marginal revenue is equal to marginal cost. What is the price at profit  

  maximization? 

In particular, the above task requires that students evaluate the marginal cost and the marginal 

revenue function, separately, at the profit-maximizing quantity. These separate evaluations 

should yield the same result to verify that marginal cost equals marginal revenue at the profit 

maximizing quantity. 

Textbook and classroom treatment of quantitative reasoning. To reiterate, this study 

used the definition of quantitative reasoning proposed by Thompson (1993): analyzing a 

situation in terms of the quantities and relationships among the quantities involved in the 

situation. Analysis of the textbook and course lectures revealed that: (1) reasoning about 

economic quantities (e.g., marginal cost) received considerable attention in the textbook and 

during lectures while (2) reasoning about relationships between or among quantities (e.g., 

relationship among marginal cost, marginal revenue, and marginal profit) received little attention 

in the textbook and in course lectures. 

Reasoning about quantities. Since the examples presented in course lectures are 

generally the same as the examples and practice problems presented in the textbook, I only refer 

to the textbook for evidence on students’ opportunity to reason about economic quantities. 

Nearly all the optimization and marginal change related situations (tasks) presented in the 

textbook and in course lectures involved reasoning about different economic quantities. In 

particular, five of the six economic optimization problems presented in the textbook involved 

analyzing economic situations with a focus on one quantity (e.g., analyzing average cost in 

example 2, Appendix F) and four of the five optimization practice problems (Appendix H) 
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involved analyzing economic situations with a focus on one quantity (e.g., analyzing total cost in 

problem 5, Appendix H). Also, all the marginal change examples involved analyzing economic 

situations with a focus on one quantity (e.g., analyzing marginal revenue in example 2, Appendix 

I). All the marginal change examples involved analyzing economic quantities with a focus on 

one quantity (e.g., analyzing marginal cost in problem 3, Appendix I). Hence, students had 

plenty of opportunities to reason about economic quantities in the textbook and in course 

lectures. 

Reasoning about relationships between or among quantities. Relationships between or 

among economic quantities (e.g., relationship between total cost, total revenue, and profit) were 

rarely presented in the textbook and in course lectures. Of the six economic optimization 

problems presented in the textbook only one example (example 8 in appendix H) involved 

analyzing an economic situation (profit) with a focus on the relationship among three quantities, 

namely the demand for a product, average cost, and profit). Two of the five optimization practice 

problems (problem 1 and problem 3 in Appendix H) given in the textbook involved analyzing 

economic situations with a focus on relationships among economic quantities. Problem 1 in 

Appendix H, for instance, emphasizes the relationship among marginal cost, marginal revenue, 

and maximum profit.  

The other, and final instance, where a relationship among quantities is presented in the 

textbook was in an expository section of the textbook which is shown in Appendix J. 

Commenting about the relationship between marginal cost, marginal revenue, and marginal 

profit and referring to the last figure in the expository section that appears in Appendix J, 

Haeussler et al. (2011) stated that:  
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For production up to 𝑞1, the revenue from additional output would be greater than the 

cost of such output, and the total profit would increase. For output beyond 𝑞1, 𝑀𝐶 >

𝑀𝑅, and each unit of output would add more to total costs than to total revenue. Hence, 

total profits would decline. (p. 616) 

This example highlights the fact that as a firm approaches maximum profit, the number of units 

produced and sold increases and that this happens at the same time that total cost, total revenue, 

and total profit increases respectively. This process is reversed after the profit maximizing 

quantity. Overall, the opportunities to reason about relationships among quantities in an 

economic context via the textbook were rare. The relationship among total cost, total revenue, 

and profit was briefly discussed in optimization example 3 that was given in course lecture B 

when formulating the profit function. Besides this instance, relationships between or among 

economic quantities were not discussed in course lecture B. There was no discussion of 

relationships between or among the economic quantities that were discussed in any of the 

optimization and marginal change examples (Appendix F) that were given in course lecture A. 

Hence, the opportunity to reason about relationships between or among economic quantities via 

the textbook and course lectures was limited. 

Summary of opportunity to learn results. In summary, analysis of the textbook and 

course lectures revealed that the presentation of problems (e.g., optimization and marginal 

change related problems) is largely algebraic which has the potential to promote a procedural 

understanding of optimization problems and the concept of marginal change. A majority of these 

problems are reproduction tasks and have the exact amount of information that students need to 

solve them. This suggests that students might experience difficulties when reasoning about non-

algebraic and cognitively demanding tasks such as those that were given to students in this study 
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(with the exception of Task 1 in Appendix A). Verification of critical numbers (e.g., as a profit 

maximizing quantity), using formal techniques such as using the first derivative test, is generally 

encouraged in the textbook. The presentation of marginal change as both a rate (the difference 

quotient) and an amount (the difference) in the textbook and in course lectures might be 

confusing to students. There were almost no opportunities (in the textbook and in course 

lectures) for students to reason about important relationships between or among economic 

quantities such as the relationship between marginal cost and marginal revenue at a profit 

maximizing quantity. Finally, given that the presentation of optimization problems and marginal 

change in course lectures closely followed the presentation of these topics in the textbook, this 

shows that the textbook had a major influence on the instructors on their teaching of the above 

mentioned topics. 

Algebraic Reasoning 

To examine students’ algebraic reasoning when solving optimization problems in the 

economic context of cost, revenue, and profit, I analyzed students’ verbal responses and written 

work to the problem posed in Task 1 which appears in Appendix A. In general, this analysis 

revealed that reasoning about this optimization problem was problematic for a majority of the 

students. This is despite the fact that all the students acknowledged having seen and even solved 

a problem similar to the one posed in Task 1. Of the 12 pairs of students who attempted the 

problem posed in Task 1, only three pairs of students correctly solved this problem and one of 

those pairs made a computational error. In what follows, I discuss how the students reasoned 

about: (1) the context of the problem, (2) the profit function, (3) critical numbers and extrema, 

(4) verifying extrema, and (5) relative extrema versus absolute extrema. 
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 Students’ reasoning about the context of Task 1. Eight pairs of students, at one point 

or another, reasoned about the context of Task 1 in their attempt to solve the problem posed in 

the task. In what follows, I discuss how two pairs who are representative of the eight pairs of 

students reasoned about the context of the task. Nikki and Casey are one of the pairs of students 

who reasoned about the context of Task 1 in their attempt to solve the problem posed in the task, 

that is, to find maximum profit. The following excerpt, which occurred at the beginning of 

working on Task 1, illustrates how Nikki reasoned about the context of the task while reasoning 

about the manufacturer’s profit. Prior to this excerpt, Nikki had determined the profit to be $1.33 

by evaluating the second derivative of the total cost function given in the task, which she 

considered to be the profit function, at 120 units, the maximum number of units the manufacturer 

can produce and sell per year. 

Researcher: Nikki, you got one point three three [1.33] as your maximum profit and 

you said it was not correct. What did you expect? 

Nikki: I feel like that the profit should be a bigger number 

Researcher: Like? 

Nikki: I feel like it should be over ten thousand [pointing at the 10,000 fixed cost 

in the total cost function, c =
2

3
q3 − 40q2 + 10,000] 

Researcher:  Why? 

Nikki: Because that’s the total cost [pointing at the fixed costs of 10,000 in the 

total cost function]. If you want to earn profit which means the number 

[1.33] should be higher than total cost, than the cost [pointing at the 

10,000 fixed cost] 
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 By reasoning about the fixed cost of $10,000 of the manufacturer, Nikki recognized that 

something was likely not right about her maximum profit of $1.33. In particular, Nikki 

recognized that it is unlikely for a company that produces in the thousands of jackets to make a 

maximum profit of only $1.33. Before giving up on this task, Nikki and Casey indicated that 

they needed the revenue function in order to be able to find the maximum profit. In the following 

excerpt, which occurred at the end of the task, Nikki and Casey talk about how they might have 

determined the maximum profit if they were given an algebraic form of the revenue function. 

Prior to this excerpt, Nikki and Casey had indicated that they needed an algebraic equation for 

the total revenue in order to find the maximum profit. 

Researcher: If the revenue function was given just like the cost function is given, what 

would you do with it?  

Nikki:  I feel like you would take the derivative for some reason because that’s 

how you gonna find the profit. I don’t know but I know you don’t just like 

do addition or subtraction [writing P=R-C], you have to like do the 

derivative 

Casey:  I don’t remember  

Nikki:  I’m not sure. It’s [this task] like beyond calculus, like business calculus 

level, right? 

Casey: No, I think we did it but I don’t remember how to do it 

Nikki:  I don’t know but, why is it so hard? 

Casey:  I think we did it but I don’t remember. The step by step guide [guideline 

for solving applied extrema problems given in her class] is like you find 

the derivative and then one value [possibly critical number] 
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Nikki:  Do you want to try another problem [task 2]? I have no clue for this one 

[Task 1] and I feel like we should try something else 

Casey:  I feel like if I saw what I did in my notes I would be like alright 

In the above conversation, Casey and Nikki both reasoned correctly when they, at different 

times, indicated that in order to find the maximum profit algebraically, they would have to take 

the derivative, presumably of the profit function. They, however, appeared to be uncertain about 

the significance of taking the derivative other than as a procedure they learned in class or in the 

textbook. Nikki and Casey gave up on the task and decided that they wanted to try another task. 

 Yuri and Kyle are the second pair of students who also reasoned about the context of 

Task 1 while solving the problem posed in the task. These students determined the domain of the 

profit function by considering the context of the task. After they had found the profit function, 

algebraically, Yuri and Kyle correctly determined the two critical numbers (40 and 80) of the 

profit function using algebraic methods. They then used the first derivative test to determine 

which of the two critical numbers is the profit maximizing quantity. In the following excerpt, 

which occurred towards the end of working on Task 1, Yuri and Kyle used the context of the 

task (minimum and maximum number of units that can be produced and sold) to correctly 

determine the minimum and maximum possible test values that can be used in the first derivative 

test based on the context of the task. Prior to this excerpt, Yuri and Kyle had verified that 40 

units is the profit maximizing quantity by using the test values 10 and 81 in the first derivative 

test. The excerpt begins with the researcher asking them about how they chose these test values. 

Researcher:  You chose 10 for the first one [test value]. Could you have chosen like 

minus fifteen [-15] instead? 

Yuri:  No 
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Researcher:  Why? 

Yuri:  Quantity [number of units produced] should be positive 

Researcher:  What do you think Kyle? 

Kyle:  No 

Researcher:  Why? 

Kyle:  Like he said quantity can’t be negative in a real life situation 

Researcher:  You also chose 81 for the other test value. Could you have chosen 150? 

Yuri:  No 

Kyle:  No 

Researcher:  Why? 

Kyle:  Because the most you can produce is one twenty [120 units] 

By imagining Task 1 as a real life situation, Yuri and Kyle used the context of production in the 

task to restrict the domain of the profit function to the closed interval, [0, 120]. In other words, 

Yuri and Kyle used the context of the task to determine the minimum and maximum number of 

units that can be produced by the manufacturer: 0 units and 120 units, respectively. The rest of 

the pairs of students generally ignored the context of the task when solving the problem posed in 

the task. In sum, eight pairs of students reasoned about the context of Task 1 while trying to 

solve the problem posed in the task. One of the representative pairs of students, Nikki and Casey, 

used the context of the task to reason about reasonable amounts of profit that the company 

mentioned in the task can make. The second representative pair of students, Yuri and Kyle, used 

the context of the task to reason about the domain of the profit function, that is, the minimum and 

maximum number of units that can be produced by the company mentioned in the task. 
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 Students’ reasoning about the profit function. Only six pairs of the students who 

participated in this study were successful in setting up the profit function for the optimization 

problem posed in Task 1. Sarah and Alan, who are representative of these students correctly 

determined, algebraically, the profit function needed to solve the problem posed in the task. At 

first, Sarah and Alan incorrectly treated the demand equation (p = q2 − 100q + 3200) as the 

profit function. They proceeded to find the critical number (50) of the demand equation, 

algebraically. They then used the first derivative test to check if the critical number was a profit 

maximizing quantity. Instead, the first derivative test showed that the critical number is a profit 

minimizing quantity. In the following excerpt, which occurred early in the discussion of the task, 

Sarah realized that the demand equation is not the profit function. This occured shortly after they 

had tested the critical number of the demand equation to see if it is a profit maximizing quantity. 

Sarah: But we did like something wrong somewhere [after the first derivative test 

showed that the critical number of the demand equation 

 (p = q2 − 100q + 3200) is a profit minimizing quantity]. I think we need 

to back up, profit, so this [derivative of demand equation] is wrong 

because p, in this situation is price and not profit, profit is revenue minus 

cost [writing P=R-C in Figure 1] 

Alan: Yah 

Sarah: And revenue is p times q, so we have to times [multiply] this [demand 

equation] by q [to get the revenue function] and then subtract the cost 

[total cost function from the revenue function] to get the profit function 

Researcher: Alan, what do you think about what she just said? 
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Alan: Yah, I think that’s right, but do we need to use this [derivative of demand 

equation], so this [derivative of demand equation] is irrelevant, right? 

Sarah: Yah, all this [derivative and critical numbers of demand equation] is 

irrelevant. So this becomes [writing out the profit function, 

 P =
1

3
q3 − 60q2 + 3200q − 10,000 in Figure 1]. Ok, so this is the profit 

function [pointing at the profit function]. I think we now do the derivative 

of this [profit function] and then do this [sign chart for the first derivative 

test] 

Alan:  Oh, ok, and then we put the critical points [critical numbers] here [first 

derivative test] 

Sarah:  Yeah 

Alan:  Oh, ok 

 

Figure 1. Sarah and Alan's work leading to the determination of the profit function. 

Not only did Sarah correctly set up the profit function but she also convinced Alan that the profit 

function she found is correct and that they should not use the derivative of the demand equation 

to determine maximum profit.  



 

 

130 

 

Three other pairs of students correctly stated what needed to be done in order to set up 

the profit function even though, eventually, they were not successful in setting up the profit 

function. In particular, these students verbalized the relationship between cost, revenue, and 

profit but they struggled to express this relationship algebraically. Isaac and Kierra are 

representative of these students. Isaac said that “profit equals revenue minus cost.” At another 

time, Kierra stated that “they are not telling us how much each unit is being sold for, so without 

that piece of information we can’t figure out the revenue for every time we are selling 

something.” Essentially, Kierra and Isaac knew how to set up the profit function (subtracting the 

total cost from the total revenue) but they struggled to use the information given in the problem 

statement of Task 1 to determine an algebraic representation of the revenue function, something 

that could have been done by multiplying the demand equation (p = q2 − 100q + 3200) by the 

number of units sold, 𝑞.  

Another pair of students who incorrectly determined the profit function, Ivy and Denise, 

created a new quantity, which they understood to be the profit function, by dividing the total cost 

function by the number of units produced, 𝑞. That is, Ivy and Denise incorrectly referred to the 

average cost function as the profit function. In the following excerpt, which occurred at the 

beginning of working on the task, Denise and Ivy reasoned about what they needed to do in order 

to solve the problem posed in the task; finding maximum profit. The excerpt begins with Denise 

giving her thoughts about what they needed to do. Prior to this excerpt, Denise had suggested 

equating the total cost function to the demand equation both of which were given in the task. 

Denise: Part of me thinks we need to divide the cost [c =
2

3
q3 − 40q2 + 10,000] 

by q because it’s already cubed and then we have that [cost function] over 

q and then  
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Researcher: So if you divide the cost by q, what do you get? 

Denise:  I forget, there is a whole thing, it starts with one thing, if you multiply by 

q then it goes to something, if you divide by q it goes to something else, 

like I forgot. I don’t think we set them [cost function and demand 

equation] to each other 

Ivy:  Isn’t it profit if you divide cost by q, won’t that be profit? 

Denise: Oh, maybe [dividing the cost function by q and writing  

2

3
q2 − 40q +

10,000

q
= profit (? )] 

Ivy:  I feel like it would be profit [writing 
2

3
q2 − 40q +

10,000

q
→ profit], 

because if you divide cost by the number of things made, won’t that be 

profit? 

Even though Ivy and Denise appeared not to be sure if the profit function they have determined 

is correct, throughout their reasoning about Task 1, they kept referring to it as the profit function. 

In the above excerpt, Denise tried to recall economic quantities that are formed by multiplying 

one quantity by another. In particular, when she said “if you multiply by q then it goes to 

something,” she might have been thinking of the revenue function which they could have found 

by multiplying the demand equation by the number of units produced and sold. When she said 

“if you divide by q it goes to something else,” she might have been thinking of average cost 

which is obtained by diving the total cost function by the number of units produced. 

 Another pair of students, Jacie and Derby, incorrectly referred to the revenue function as 

the profit function. In the following excerpt, which occurred at the beginning of working on Task 

1, Derby reasoned about how to determine the profit function. Prior to this excerpt, these 
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students, had, in response to the researcher’s question acknowledged having seen a problem 

similar to the one given in Task 1 prior to participating in this interview. 

Derby:  So, yesterday I did a problem like this [Task 1] in WeBWork [online 

homework environment] like for c [total cost equation] don’t you find the 

derivative of that one [total cost function] and for p [demand equation] 

don’t you divide by q? Wait, this one [demand equation] you divide by q 

and this one [total cost function] 

Jacie:  Yes, this is the demand equation [pointing at the demand equation: 

 p = q2 − 100q + 3200 ], then profit, is that p [demand equation] times q? 

Derby:  Yah, so that’s why you multiply this one [demand equation] by q 

Jacie:  Yah [writing pro=pq in Figure 2] so profit equals p times q. 

Derby:  [writing an expression for the profit: q(q2 − 100q + 3200) in Figure 2]   

Researcher:  And what’s that [pointing at the expression written by Derby] 

Jacie:  Profit function 

Derby:  That’s the profit function [equating the expression q(q2 − 100q + 3200) 

to the letter p in Figure 2]. And this one [pointing at the total cost 

function], you divide it by q, do you remember exactly why? I do 

remember doing this problem, you just divide by q 

Researcher:  What do you get when you divide it by q? 

Derby: [smiling] It’s a good question 

Jacie:  Because then we will only get c over q, that’s not really anything. So this 

is profit [pointing at the revenue function: p = q(q2 − 100q + 3200) in 

Figure 2] 
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Figure 2. Jacie and Derby's work leading to the determination of the profit function. 

In Jacie and Deby’s view, the revenue function they created is the profit function. Derby referred 

to the expression for profit as an equation, which suggest that an expression is the same as an 

equation in her view. Her statement that “that’s not really anything” when one divides the total 

cost function by the number of units produced to get a new quantity suggests that this quantity, 

which is actually the average cost function, is a meaningless quantity to Derby. 

Another pair of students, Ruth and Eric, equated the total cost function to the demand 

equation (Figure 3), made one side of the resulting equation to zero by moving terms to one side, 

and presumably treated the nonzero side (
2

3
q2 − 39q + 100q + 6,800 in Figure 3) as the profit 

function. They then evaluated the nonzero side at 120 units and got -30,800 as a result which 

they claimed is the maximum profit they were asked to determine in the task. In the following 

excerpt, which occurred in the middle of working on Task 1, Eric and Ruth reasoned, following a 

question from the researcher, about how they would answer the question posed in the task based 

on their work in Figure 3. Prior to this excerpt, Ruth and Eric had evaluated the expression 

2

3
q2 − 39q + 100q + 6,800 in Figure 3 at 120 (the maximum number of units the manufacturer 

can produce and sell per year) to get a result of -30,800. 
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Researcher:  How would you answer the question? The question is, find the maximum 

profit 

Ruth:  It [profit] can’t be a negative. I mean it can be a negative that means they 

are losing profit 

Eric:  If this was an exam, I would just say that the maximum profit is 30,800 

just leave it and go to the next one 

Ruth:  Yeah, throw away the negative 

Researcher:  Tell me one more time, what did you do to get to that result? 

Ruth:  We just made each equation equal to each other, made all the common 

terms like the q squared and q’s, put them together, plug in one twenty 

[maximum number of units that can be produced by the manufacturer] for 

q and we got thirty thousand eight hundred 

 

Figure 3. Ruth and Eric's work leading to the determination of maximum profit. 

Even though Eric and Ruth never explicitly referred to the expression 
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2

3
q2 − 39q + 100q + 6,800 as the profit function, yet by stating that the result they got by 

evaluating this expression at 120 units is the maximum profit implies that, in their view, this 

expression is the profit function.   

 In summary, a majority of the students knew how to set up the profit function even 

though some of them had difficulties in determining an algebraic form for the profit function. 

Nearly all the students created algebraic quantities that helped them to solve the problem posed 

in the task. At other times, however, students created quantities that were meaningless to them. 

For example, Derby indicated that the quantity obtained by dividing the total cost function by the 

number of units produced is “not really anything” when, in fact, this quantity is generally 

referred to as the average cost function in economics. 

Students’ reasoning about critical numbers and extrema. Analysis of students’ 

reasoning about the optimization problem posed in Task 1 revealed that only a few students (five 

pairs) were successful in determining the critical numbers for the profit function. In what 

follows, I present results from the analysis of the multiple ways used by these students to 

determine the critical numbers, followed by a presentation of results from the analysis of how 

three of these pairs of students correctly interpreted critical numbers in context, followed by a 

presentation of results from the analysis of how two other pairs of students treated critical 

numbers as absolute extrema. 

Students’ use of multiple ways to determine critical numbers. There were three methods  

that were used by five pairs of students to determine the critical numbers (maximizing or 

minimizing quantities) of the profit function for the problem posed in Task 1. Four pairs of 

students used algebraic methods to determine the critical numbers of the profit function. In 

particular, three pairs of students correctly found the critical numbers by factoring the derivative 
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of the profit function, equating each factor to zero and solving for the critical numbers. Another 

pair of students, Joy and Nancy, correctly used the quadratic formula to determine the critical 

numbers. These students, however, made a computational error while evaluating the discriminant 

of the quadratic formula which resulted in them getting incorrect critical numbers. Nevaeh and 

Zoe were the only pair of students who used a non-algebraic method to determine the critical 

numbers of the profit function. These students correctly determined the critical numbers by using 

a graphing method: graphing the derivative of the profit function and determining its zeros. Prior 

to graphing the derivative, Nevaeh had indicated that “finding the max and min, you have to do 

the first derivative test and then. I feel like we need boundaries of some sort.” Nevaeh and Zoe 

correctly determined the endpoints (0 units and 120 units) of the domain for the profit function. 

They referred to these endpoints as bounds of the profit function. In the following excerpt, which 

occurred in the middle of working on Task 1, Nevaeh reasoned about how she found the critical 

numbers in addition to stating, following a question from the researcher, her understanding of 

what these numbers represent. Prior to this excerpt, Neveah had determined the critical numbers 

of the profit function to be 40 and 80 respectively. 

Researcher: You just came up with x=40 and x=80 [critical numbers], how did you get 

these numbers? 

Nevaeh: The graph on the calculator looks like this [showing the researcher a 

concave up parabola which was the graph of the derivative of the profit 

function] and I did second function, trace, zero and tried to find the zeros. 

Researcher: So which one [function] did you graph on the calculator? 

Neveah: This [pointing at the derivative of the profit function which is denoted as 

𝜋′ in Figure 4] 
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Researcher: So what does that [the zeros] give you? 

Nevaeh: It gives me the place where the graph crosses the x-axis 

Researcher: What do those numbers [x=40 and x=80] represent?  

Neveah: I guess those will be our new bounds, I think [deleting the older bounds, 0 

and 120] 

Researcher:  Why are you deleting the older bounds? 

Nevaeh:  They don’t seem to make sense to me anymore. It doesn’t make sense, 

like this [pointing at 120 units in Task 1] is the maximum they can sell, 

you know, just putting [pointing at 120 units in Task 1], it doesn’t make 

sense 

 

Figure 4. Nevaeh's work leading to the determination of 40 units as the profit maximizing 

quantity. 

In the above excerpt, Nevaeh used a sequence of graphing calculator steps to determine 

the zeros of the derivative of the profit function. Saying that the bounds 0 and 120 do not make 

sense anymore meant that Nevaeh did not consider these bounds to be important when finding 
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maximum profit for the problem posed in Task 1. Zoe did not say anything about the new 

bounds.  

Interpreting critical numbers in context. Three of the five pairs of students who were 

successful in determining critical numbers for the profit function for the problem posed in Task 1 

also correctly interpreted the critical numbers. Joy and Nancy are representative of these 

students. In the following excerpt, which occurred toward the end of the task, Joy and Nancy 

interpreted the critical numbers for the profit function, following a question from the researcher. 

Prior to this excerpt, Joy and Nancy made a computational error (which they never realized) 

using the quadratic formula, which resulted in them getting the incorrect critical numbers, 

11.9375 and 268.06, instead of 40 and 80 respectively. 

Researcher: What do these numbers [pointing at the critical numbers 11.9375 and 

268.06] mean?  

Joy: Possible values that would just give you maximum profit 

Researcher: Possible values of what? 

Joy: Of q  

Nancy:  The number of units   

Joy’s statement that the critical numbers are “possible values that would just give maximum 

profit” suggests an awareness that something else might be going on or perhaps that something 

else need to be checked. Joy and Nancy checked, by evaluating the profit function at the critical 

numbers (11.9375 and 268.06), which of the critical numbers they found is the profit maximizing 

quantity. They concluded that 11.9375 is the profit maximizing quantity. Joy and Nancy, 

however, did not check whether or not profit is maximized at the endpoints of the domain of the 

profit function.  
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Treating critical numbers as extrema. Two pairs of students, at one point or another, 

incorrectly interpreted critical numbers as extrema. These students incorrectly referred to the 

profit maximizing or minimizing quantities as the maximum and minimum profit. Abby and 

Shawna are representative of these students. In the following excerpt, which occurred towards 

the end of working on Task 1, Abby and Shawna interpreted the critical number 40. Prior to this 

excerpt, Abby had expressed being confused about where they would use the 120 units given in 

the task which is the maximum number of units the manufacture can make and sell per year. This 

was after they had correctly determined, using the first derivative test, that the critical number 40 

they had previously found is a profit maximizing quantity. The excerpt begins with the 

researcher telling Abby to assume the 120 units was not given in an effort to focus her attention 

on giving an interpretation for the critical number 40. 

Researcher:  Suppose the 120 wasn’t there 

Abby: Then I would say 40 is the answer [$40 is the maximum profit] 

Shawna: I wouldn’t 

Researcher: Shawna, why? 

Shawna: Because I feel like we need to plug in 40 into one of these [pointing at the 

total cost function and the demand equation] but I don’t know which one. 

Maybe we would have to take the derivative again [second derivative of 

profit function] and plug in 40 

Abby: It’s asking for the maximum profit   

Shawna: I know but what’s all this [pointing at the notations for average cost, 

derivative of total cost, and second derivative of total cost: 𝑐 ,̅  𝑐’, and 𝑐’’]. 

This is what we learned yesterday. 
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Abby: I don’t remember what part this is. 

Shawna: Me either but I’m guessing 

Researcher: What’s your final thought on this? 

Shawna: Ok, 40 [dollars] is our answer 

Since the students were asked to find the maximum profit for the problem posed in Task 1, 

saying that “40 is their answer,” means that Abby treated the profit maximizing quantity of 40 

units as the maximum profit. Seven pairs of students never found or even talk about critical 

numbers in their reasoning about Task 1. One of these seven pairs of students, Ruth and Eric 

(who’s reasoning about Task 1 was presented in the previous section on students’ reasoning 

about the profit function) only evaluated the expression 
2

3
q2 − 39q + 100q + 6,800  in Figure 3 

to determine the maximum profit without saying anything about critical numbers. 

Students’ reasoning about verifying extrema. Analysis of students’ reasoning about 

the optimization problem posed in Task 1 revealed that verifying extrema (maximum profit) was 

particularly difficult for a majority of the students. In particular, only four pairs of students 

attempted to verify that the maximum profit they found was indeed the maximum profit. Three 

of these pairs of students correctly used the first derivative test to verify that the maximum profit 

they found was indeed maximum and the other pair of students incorrectly stated that maximum 

profit would occur when the manufacturer produces the maximum number of units (120) he can 

produce. Alan and Sarah are representative of the three pairs of students who used the first 

derivative test. In the following excerpt, which occurred towards the end of Task 1, Alan and 

Sarah, following a question from the researcher, reasoned about how they would convince 

someone that the maximum profit they found is indeed the maximum profit. Prior to this excerpt, 

Alan and Sarah had, in addition to correctly determining the critical numbers (40 and 80) 
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algebraically, also determined using the first derivative test (Figure 5) that the critical number 40 

is the profit maximizing quantity. 

Researcher: How would you convince someone that that profit [pointing at the 

maximum profit that Sarah and Alan found] is the maximum profit? 

Sarah: Because, because, I don’t know 

Alan: It shows here [pointing at the critical number 40 in Figure 5], it’s 

maximum at 40 [units], because it’s [profit] increasing and then 

decreasing, whenever it [profit] goes from increasing to decreasing you 

have a max [maximum profit] and that’s at 40 so that proves that the 

maximum profit is at 40 [units]  

 

Figure 5. Sarah and Alan's work leading to the determination of the critical number 40 as the 

profit maximizing quantity. 

In verifying that the profit they found is maximum, Alan explained the first derivative 

test they used to find the profit-maximizing quantity (40 units). He evaluated the first derivative 

of the profit function at a test value less than 40. This evaluation yielded a positive result which 

he understood to mean that profit increases when production and sales are increased from zero 

units to 40 units. This is shown by the positive sign and up-pointing arrow on the left-hand side 

of 40 in Figure 5. Alan repeated this process with a test value greater than 40 but less than 80 and 

found a negative result which he understood to mean that profit decreases when production and 
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sales are increased from 40 units up to 80 units. This is shown by the negative sign and down-

pointing arrow on the right-hand side of the number 40 in Figure 5. Finally, Alan evaluated the 

derivative of the profit function at a test value greater than 80, found a negative result which he 

understood to mean that profit increases when production and sales are increased above 80 units. 

This is shown by the positive sign and up-pointed arrow on the right-hand side of the number 80 

in Figure 5.  

Another pair of students, Kierra and Isaac, incorrectly stated that maximum profit would 

occur when the manufacturer produces the maximum number of units (120) he can produce. 

Kierra stated that “if at most, if the uppermost limit is a hundred and twenty [units], you can’t 

sell a unit more and by not selling a unit more you can’t generate a bigger profit.” Kierra’s way 

of verifying that the profit they got was indeed maximum suggests that she assumed that increase 

in production results in increase in total revenue and total cost in such a way that profit is 

maximized when the manufacturer produces and sells the maximum number of units he can 

possibly produce, 120 units. Other students simply said they “don’t know” how they could verify 

that the profit they claimed was maximum was indeed the maximum profit the manufacturer can 

generate. 

Relative extrema versus absolute extrema. Analysis of students’ reasoning about the 

optimization problem posed in Task 1 revealed that none of the five pairs of students who found 

critical numbers considered this problem to be an absolute extrema problem: they all considered 

it as a relative extrema problem. The students did not evaluate the profit function at the endpoints 

of the domain [0, 120] of the profit function in their determination of maximum profit. Instead, 

they only evaluated the profit function at the profit-maximizing quantity which they identified as 

40 units (or 11.9375 units in the case of Joy and Nancy). Had it been the case that maximum 
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profit occurred at one of the endpoints of the domain of the profit function, say at 120 units, only 

one of the pairs of students, Kierra and Isaac, might have correctly determined the maximum 

profit. In general, a majority of the students who participated in this study tended to disregard 

information about the endpoints of the domain of the profit function when determining 

maximum profit. In the following excerpt, which occurred at the end of working on Task 1, Joy 

and Nancy reasoned about the 120 units given in the task as the maximum number of units the 

manufacturer can produce and sell per year. The excerpt begins with the researcher asking Joy 

and Nancy if there is something else they had to say about Task 1 in an effort to conclude the 

discussion of this task. 

Researcher: I think we are done with this task [Task 1], is there anything else you 

would like to say about it? 

Joy: The only thing I can say is the 120 units [from the problem statement] 

because we didn’t use that [120 units] 

Nancy: Yeah 

Joy: But I’m not sure where it would be  

Nancy: Well, there used to be always extra numbers in the problems we used to 

have 

Joy: Maybe, that’s true 

In the above except, Joy is concerned about the 120 units (maximum number of units that 

the manufacturer can produce) even though she is not sure how she and Joy could have used the 

120 units in the process of finding the maximum profit. Joy, however, seems to consider the 120 

units as extraneous information that does not need to be taken into consideration when 

determining maximum profit for the problem posed in Task 1. 
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Summary of findings regarding students’ algebraic reasoning when solving 

optimization problems. Almost all the students, at one point or another, correctly reasoned about 

the context of the problem posed in Task 1. This included being able to recognize reasonable 

results and those that are not. For example, Nikki correctly reasoned that it is unlikely that a 

manufacturer that produces and sells thousands of jackets would make a profit of only $1.33. 

Nearly half of the students had difficulty setting up the profit function even though a majority of 

the students had an idea of what they needed to do to be able to set up the profit function. A 

majority of the students could verbalize how the quantities, namely cost, revenue and profit are 

related (profit equals revenue minus cost) but they had difficulty representing this relationship 

among these quantities algebraically which was key to solving the problem posed in the task. 

Fewer than half of the students correctly determined and interpreted critical numbers in context. 

A majority of these students also correctly determined the maximum profit from the critical 

numbers. A few students treated critical numbers as extrema. Providing proof that the maximum 

profit they found (for those who did) was indeed maximum was problematic for the majority of 

the students. Finally, none of the students who were successful in determining critical numbers 

for the profit function in Task 1 considered the problem posed in Task 1 to be an absolute 

extrema problem: these students did not check if profit is maximized at the endpoints of the 

domain [0,120] of the profit function. Instead, once students had determined (e.g., using the first 

derivative test) that the critical number 40 is the profit maximizing quantity, they only evaluated 

the profit function at 40 units to get the maximum profit. That is, they did not bother checking if 

profit is, perhaps, maximized at a production and sales level of 120 units. 
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Chapter 5 – Results: Interpretation of Marginal Change and Quantitative Reasoning 

In this chapter, I present the results from the analysis of the data I collected with the 

purpose of answering the third and fourth research questions on interpretation of marginal 

change and quantitative reasoning: 

3. How do business calculus students interpret marginal change when solving optimization 

problems that are situated in the context of cost, revenue, and profit? 

4. What do business calculus students’ responses to optimization problems involving 

multiple covariates that are situated in the context of cost, revenue, and profit reveal 

about their quantitative reasoning? 

In the first section of this chapter, I present results from the analysis of students’ interpretation of 

marginal change in the economic context of cost, revenue, and profit. In the second section of 

this chapter, I present results from the analysis of students’ quantitative reasoning when dealing 

with multivariable situations in the context of cost, revenue, and profit. 

Interpretation of Marginal Change 

To examine how students interpret marginal change when solving optimization problems 

that are situated in the context of cost, revenue, and profit, I analyzed students’ verbal responses 

and written work to the problems posed in the four tasks shown in Appendix A. In general, my 

analysis revealed that the 12 pairs of students who participated in this study interpreted marginal 

change differently, at different times, and in different representations (continuous or discrete) 

during the task-based interviews. In particular, (1) ten pairs of students interpreted marginal cost 

as total cost, (2) two pairs of students interpreted marginal cost as a difference between two 

quantities, (3) three pairs of students interpreted marginal change as a consecutive relationship 



 

 

146 

 

between one value and the next value, and (4) three pairs of students interpreted marginal change 

as the derivative. 

Interpreting marginal cost as total cost. At one point or another, ten pairs of students 

incorrectly interpreted marginal cost as total cost in different contexts. In particular, four pairs of 

students interpreted marginal cost as total cost in a continuous representation (Task 3) and in a 

discrete representation (Task 4). Three other pairs of students interpreted marginal cost as total 

cost only in a continuous representation (Task 3). Another three pairs of students interpreted 

marginal cost as total cost only in a discrete representation (Task 4).  

Interpreting marginal cost as total cost in a continuous representation and in a discrete 

representation. There were no pairs of students where both partners consistently interpreted 

marginal cost as total cost in Task 3 and in Task 4. If however, one of the partners in a pair of 

students consistently interpreted marginal cost as total cost in Task 3 and in Task 4, and the other 

partner interpreted marginal cost as total cost in one of the tasks, the entire pair was considered 

to have interpreted marginal cost as total cost in the continuous representation (Task 3) and in the 

discrete representation (Task 4) since my unit of analysis is a pair of students and not individual 

student’s interpretations of marginal change. Yuri and Kyle are representative of the four pairs of 

students who interpreted marginal cost as total cost in a continuous representation (Task 3) and 

in a discrete representation (Task 4). 

In the following excerpt, which occurred towards the end of discussing Task 3, Yuri and 

Kyle reasoned about the cost of producing the second unit and the cost of producing the first two 

units from the total cost graph shown in Task 3 (Appendix A). The excerpt begins with a 

question from the researcher about the cost of producing the second unit. Prior to this excerpt, 
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Yuri and Kyle had been reasoning about how marginal cost and marginal revenue compare at the 

profit maximizing quantity (which they had earlier identified as five units).  

Researcher: How much does it cost this company to produce the second unit, not the 

first two units? 

Yuri: Four hundred 

Researcher: Kyle? 

Kyle: Four hundred 

Researcher: And how much does it cost them to produce the first two units? 

Yuri: Seven hundred 

Researcher: And how did you get seven hundred? 

Yuri: Yah, seven hundred 

Researcher: And how did you get seven hundred? 

Yuri: Three hundred plus four hundred 

Researcher: What’s the three hundred for? 

Kyle: The first unit, the cost of the first unit 

Researcher: And the four hundred? 

Kyle: The cost of the second unit 

In the above excerpt, Yuri and Kyle incorrectly interpreted marginal cost (the cost of producing 

the second unit) as total cost (the cost of producing the first two units). More generally, it 

appears that these students interpreted the total cost graph 𝐶(𝑛) in Task 3 (Appendix A) to be a 

marginal cost graph. In other words, for Yuri and Kyle, the value of 𝐶(𝑛) represents marginal 

cost (the cost of producing the 𝑛𝑡ℎ unit) and not the total cost of producing the first 𝑛 units for 𝐶, 

a total cost function. 
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Yuri and Kyle’s interpretations of marginal cost differed from each other when they 

reasoned about the MC (marginal cost) and MR (marginal revenue) values shown in the table 

that appears in Task 4. In particular, Kyle interpreted marginal cost as total cost while Yuri 

interpreted marginal cost as a rate. In the following excerpt, Yuri and Kyle respond to the 

researcher’s question about the units of the MC and MR values in the table shown in Task 4. 

Prior to this excerpt, Yuri and Kyle had been giving rationales to justify their claim that the cost 

of producing the 401st computer chip (which they both said would be “fifty four”) is an estimated 

cost and not the exact cost of producing the 401st computer chip. 

Researcher:  What are the units of these numbers [MR and MC values]? 

Kyle:  Dollars 

Researcher:  Yuri? 

Yuri:  Dollars per unit 

Kyle:  or cents 

Researcher:  Yuri, why did you say dollars per unit? 

Yuri:  Marginal revenue is additional, extra revenue per unit 

Researcher: Tell me more about that 

Yuri: [Silence] 

Saying that “marginal revenue is additional, extra revenue per unit” in the above excerpt 

suggests that Yuri sees marginal change as a rate, the rate, 
R(q+1)−R(q)

1
,  for a total revenue 

function R(q). Kyle’s initial response that the units of the marginal cost and marginal revenue 

are “dollars” suggests that he was interpreting marginal cost and marginal revenue as total cost 

and total revenue respectively. This was confirmed later in the interview when Kyle stated that 

the company mentioned in Task 4 breaks even (i.e., total cost equals total revenue) at a 
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production and sales level of 402 computer chips in the table shown in Task 4 (Appendix A) 

when, in fact, marginal cost equals marginal revenue. However, when he added “or cents” after 

Yuri had said that the units of marginal cost and marginal revenue would be “dollars per unit,” 

Kyle was either agreeing with Yuri that the units were dollars per unit or cents per unit, or he 

was still interpreting marginal cost as total cost. Regardless of the units given by each student for 

marginal cost and marginal revenue, the fact that Kyle and Yuri assigned units to the marginal 

cost and marginal revenue values suggests that these students also interpreted marginal cost and 

marginal revenue as quantities and not as numerical values. Taken together, Yuri and Kyle’s 

interpretation of marginal change suggests that Yuri’s interpretation of marginal change varied 

with representation (marginal cost as total cost in a continuous representation (Task 3) and 

marginal cost as a rate in discrete representation (Task 4)) while Kyle’s interpretation of 

marginal change did not change with representation (marginal cost as total cost in Task 3 and in 

Task 4). 

 Interpreting marginal cost as total cost only in a continuous representation. Three pairs 

of students interpreted marginal cost as total cost only in a continuous representation (Task 3). 

The pair of students, Joy and Nancy, is representative of these three pairs of students. In the 

following excerpt, initiated by a question from the researcher, Joy and Nancy reasoned about 

marginal cost (the cost of producing the second unit) and total cost (the cost of producing the 

first two units) from the graph of a total cost function (Task 3). Prior to this excerpt, the students 

had been reasoning about how marginal cost and marginal revenue compare at the profit 

maximizing quantity (which they had earlier identified to be 4.5 units). 

Researcher: How much does it cost this company to produce the second unit? 
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Joy: So then to make it, it would be [drawing a vertical line where q=2 on the 

q-axis to the total cost curve and then a horizontal line to the vertical axis 

on the graph shown in Figure 6] 

Nancy: Four hundred dollars 

Joy: Four hundred dollars 

Researcher: How much does it cost the company to make the first two units? 

Nancy: The first is two fifty plus four hundred, the cost of the first one is 300, 

right? 

Joy: Yeah, plus the cost of the second is 400, so seven hundred [writing 

300+400=700] 

 

Figure 6. Graph used by Joy and Nancy to determine the cost of producing the second unit. 

When asked about the cost of the second unit, Joy drew the vertical line where q=2 which 

appears in Figure 6 which Nancy then read as four hundred dollars. Joy restated the quantity of 

four hundred dollars, which was taken by the researcher to be their understanding of the cost of 

the second unit. However, $400 according to the graph (Figure 6) is the total cost of producing 
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the first two units, not the cost of producing the second unit. The researcher then asked about the 

cost of producing the first two units and Joy and Nancy, consistent with their interpretation of the 

total cost of producing the first two units as the cost of producing the second unit, gave the 

accumulated cost of producing the first two units (sum of the cost of producing first unit and the 

cost of producing the first two units) which was taken by the researcher to be their understanding 

of the cost of producing the first two units. Hence, Joy and Nancy’s reasoning about the cost of 

producing the second unit shows that they interpreted marginal cost (the cost of producing the 

second unit) as total cost (the cost of producing the first two units). 

Joy and Nancy, however, did not interpret marginal cost as total cost when reasoning 

about the cost of producing the 401st computer chip in the discrete representation presented in 

Task 4. In the following excerpt, Joy and Nancy reasoned about how to determine the cost of 

producing the 401st computer chip using the information given in the table that appears in Task 

4. The excerpt begins with a question from the researcher about the cost of producing the second 

unit. Prior to the excerpt that follows, Joy and Nancy were asked by the researcher about the 

units of the MC and MR values in the table shown in Task 4. Both students stated that the units 

would be “dollars.” 

Researcher: How much does it cost this company to produce the four hundred and first 

computer chip? 

Nancy: Fifty four dollars 

Joy: Yeah, because cost is what you will be paying for it 

Researcher: How did you get the fifty four dollars? 

Joy: Because if you look at 401, it says 54 [pointing at the MC value of 54 in 

the column where q=401 in the table shown in Task 4] 
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When asked about the cost of producing the 401st computer chip, Joy and Nancy said it would be 

“fifty four dollars” which according to the table shown in Task 4 is the cost of producing 402nd 

computer chip. In other words, Joy and Nancy interpreted marginal cost at 401 units as the cost 

of producing the 401st computer chip and not as the additional cost to produce one more 

computer chip after the 401st computer chip which, in this case, would have been the 402nd 

computer chip. Across the two tasks (Task 3 and Task 4) Joy and Nancy’s interpretation of 

marginal cost was inconsistent in that in Task 3 they interpreted marginal cost (cost of producing 

the second unit) as total cost (cost of producing the first two units) while in Task 4 they 

interpreted marginal cost (cost of producing the 401st computer chip) as another marginal cost 

(cost of producing the 402nd computer chip). 

Interpreting marginal cost as total cost only in a discrete representation. Three pairs of 

students interpreted marginal cost as total cost only in a discrete representation (Task 4). Denise 

and Ivy are representative of these pairs of students. Before I discuss how these students 

interpreted marginal change in Task 4, I present an analysis of their interpretation of marginal 

change in the continuous representation given in Task 3. Prior to the excerpt given below, Denise 

and Ivy had, at the researcher’s prompt, reasoned about how marginal cost and marginal revenue 

compare at a profit maximizing quantity which they identified as 4.75 units using the graph 

given in Task 3. In their reasoning about marginal cost and marginal revenue at the profit 

maximizing quantity, Denise had indicated that she “really doesn’t remember what marginal is” 

while Ivy thought that “marginal is the difference between revenue and cost.” They concluded 

their reasoning about marginal cost and marginal revenue at the profit maximizing quantity by 

saying that they “don’t know what it [marginal means].” To further examine Denise and Ivy’s 

interpretation of marginal change in the continuous representation (Task 3), the researcher asked 
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Denise and Ivy about the cost of producing the second unit in Task 3. In the following excerpt, 

Denise and Ivy reasoned about marginal cost (the cost of producing the second unit) and total 

cost (the cost of producing the first two units). 

Researcher: How much does it cost this company to produce the second unit, not the 

first two units? 

Ivy: So it would be like the second cost minus the first cost 

Researcher: Can you write that down for me? 

Denise: The cost for two is four hundred dollars [reading off C(2) from the graph 

given in Task 3], the cost for one is three hundred dollars [reading off C(1) 

and writing cost 1&2=400, cost 1=300, cost 2=$100] so $100 

Researcher: How did you get $100? 

Ivy: The cost of one and two minus the cost of just one 

Researcher: How about the cost for two units? 

Ivy: It would be $400 

To determine the marginal cost (the cost of producing the second unit), Denise and Ivy 

calculated the difference between the total cost of producing the first two units and the cost of 

producing the first unit. Even though Denise and Ivy did not explicitly state the units of the cost 

of producing the first unit and the units of the cost of producing the first two units, yet by saying 

that the $100 is “the cost of one and two minus the cost of just one” suggests that they 

interpreted marginal cost (the cost of producing the second unit) as a quantitative difference and 

not as a numerical difference. 

 When prompted to reason about marginal cost in the discrete representation (Task 4), 

Denise and Ivy interpreted marginal cost as total cost and they interpreted it as a numerical 
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difference. The following excerpt illustrates how Denise and Ivy reasoned about marginal cost 

(the cost of producing the 401st unit) in the process of which they interpreted marginal cost as 

total cost and marginal cost as a numerical difference. Prior to this excerpt, Denise and Ivy had 

reasoned about how marginal cost, marginal revenue, and marginal profit are changing over the 

production and sales level shown in Figure 7 in a way that was understood by the researcher to 

be consistent with a view of marginal cost as total cost and marginal revenue as total revenue. 

Researcher: How much does it cost this company to produce the 401st computer chip? 

Ivy: Two dollars 

Denise:  Two dollars 

Researcher: How did you get that? 

Denise: Because it cost to make the first one fifty two dollars [pointing at the MC 

value when q=400 in Figure 7]. For the second one, fifty four [pointing at 

MC value when q=401 in Figure 7] and the difference between 54 and 52 

is two, so we said two dollars 

Ivy: [Writing down the calculation (on the right of Figure 7) for the cost of 

producing the 401st computer chip] 

 

Figure 7. Diagram used by Ivy and Denise to calculate the cost of producing the 401st computer 

chip. 
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To determine the cost of producing the 401st computer chip, Denise and Ivy interpreted the 

marginal cost at a production level of 400 computer chips as the total cost for producing 400 

computer chips and the marginal cost at a production level of 401 computer chips as the total 

cost of producing the 401 computer chips. They then subtracted the marginal cost at a production 

level of 401 units from the marginal cost at a production level of 400 units to get a difference of 

“two dollars” which was taken by the researcher to be their understanding of the cost of 

producing the 401st computer chip. The combination of Denise’s statement in the above excerpt 

that “the difference between 54 and 52 is two, so we said two dollars” and Ivy’s calculation of 

the cost of producing the 401st computer chip on the left of Figure 7 further suggests that Denise 

and Ivy interpreted marginal cost as a numerical difference and not as a quantitative difference 

even though they identified this difference of two, from 54-52, as having units of dollars.   

 In summary, given that six pairs of students interpreted marginal cost differently in Task 

3 than they did in Task 4, it would appear that students’ interpretations of marginal change 

varied with representation. For instance, Ivy and Denise interpreted marginal cost as a 

quantitative difference in a continuous representation (Task 3) but then they interpreted it as total 

cost in a discrete representation (Task 4). 

Interpreting marginal cost as a difference between two quantities. Two pairs of 

students interpreted marginal cost as a difference between two quantities when reasoning about 

two different representations: a continuous representation (Task 3) and a discrete representation 

(Task 4). Zoe and Nevaeh are representative of these two pairs of students. In the following 

excerpt, which occurred towards the end of discussing Task 3, Zoe and Nevaeh reasoned about 

marginal cost (the cost of producing the second unit) after they were asked by the researcher 
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about this cost. Prior to this excerpt, Zoe and Nevaeh had reasoned about marginal cost and 

marginal revenue at the profit maximizing quantity of 4.5 units. 

Researcher: How much does it cost the company to produce the second unit? 

Zoe: Like from here [pointing at the point (1,C(1)) in Figure 8 to here [pointing 

at the point (2,C(2)) in Figure 8]. Is that what you are asking? 

Nevaeh: [joining the two points identified by Zoe using a line segment] So it will 

be like a difference in cost between these two [pointing at the points 

(1,C(1)) and (2, C(2) in Figure 8] units, that’s how much it cost to produce 

that second unit. So it will be four hundred minus three hundred [writing 

400-300=100]. So it cost a hundred dollars to produce the second unit 

Zoe: Yeah 

In the above excerpt, Zoe and Nevaeh determined marginal cost (the cost of producing the 

second unit) by calculating the difference between the total cost of producing the first two units 

and the cost of producing the first unit. Saying that the cost of producing the second unit will be 

a “difference in cost between these two [pointing at the point (2,C(2)) in Figure 8]” suggests that 

Nevaeh interpreted marginal cost (the cost of producing the second unit) as a difference between 

two quantities. Even though Nevaeh concluded that the cost of producing the second unit would 

be “a hundred dollars,” her unitless calculation, 400-300=100, suggests that she might have been 

interpreting the cost of producing the second unit as a difference between two numerical values. 

When asked to show the cost of producing the second unit in Figure 8, Zoe and Nevaeh’s 

interpretation of marginal cost shifted from being a difference (of either two quantities or two 

values) to being the length of a line segment in Figure 8. This is illustrated in the following 

excerpt which occurred immediately after the previous excerpt where Nevaeh and Zoe reasoned 
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about the cost of producing the second unit. The excerpt begins with the researcher asking 

Nevaeh and Zoe to show him the cost of producing the second unit in Figure 8. 

 

Figure 8. Zoe and Nevaeh's graphical illustration of the cost of producing the second unit. 

Researcher: Can you show me the cost for producing the second unit on the graph? 

Nevaeh: Yeah, this is the 300 and this is the 400 [pointing at the point labeled 300 

in Figure 8 and the point labeled 400 in Figure 1]. Here is the difference 

[joining the points (1, C(1)) and (2, C(2) in Figure 8 using a line segment]. 

This distance [moving her hand over the length of the line segment joining 

the points (1, C(1) and (2, C(2)) in Figure 8] is too much to calculate. 

Researcher: If you calculated this distance, what would it give you? 

Zoe: The change between unit 1 and unit 2 

Researcher: Change in what? 

Zoe: Price 
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Researcher: Nevaeh? 

Nevaeh: Yes, change in price 

Zoe and Nevaeh recognized that the length of the line segment which they thought would 

represent the cost of producing the second unit would not be easy to calculate as shown in the 

above excerpt. Somehow, this was not a conflict for them even though they had earlier calculated 

the cost of producing the second unit and determined it to be “a hundred dollars”. This suggests 

that sometimes students interpret marginal change differently within the same situation (Task 3). 

In particular, this shows that even when reasoning about the same representation (Task 3), the 

concept of marginal change has different meanings for students. 

 Later in the interview, Zoe and Nevaeh interpreted marginal change as a difference 

between two quantities when reasoning about marginal cost (the cost of producing the 401st 

computer chip) in the discrete representation presented in Task 4. In the following excerpt, which 

occurred midway through discussing Task 4, Zoe and Nevaeh interpreted marginal cost (the cost 

of producing the 401st computer chip) as a difference between two quantities in response to the 

researcher’s question. Prior to this excerpt, Zoe and Nevaeh had been reasoning about how total 

cost and total revenue were changing as production increases from 400 units to 405 units in 

Figure 9 and concluded that “total cost is increasing” while “total revenue is decreasing.” 

Researcher: How much does it cost this company to produce the 401st computer chip, 

not 401 computer chips, the 401st computer chip? 

Nevaeh: Oh we just find the difference, two dollars [writing $2] 

Researcher:  How did you get two dollars? 

Nevaeh: Fifty four dollars minus the fifty two dollars  

Researcher: Zoe, let me hear from you. 
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Zoe: Yeah, like because it’s the same column [pointing at the third row in 

Figure 9] 

Researcher: So what does the 54 represent? 

Zoe: The total, oh no, not total, it’s like how much this one costs them but the 

two dollars is representing the change 

Nevaeh: Yeah, the change in the cost from the four hundred to the four hundred 

and first computer chip 

Zoe: Yeah  

 

Figure 9. Diagram used by Zoe and Nevaeh to reason about the cost of producing the 401st 

computer chip. 

In the above excerpt, Nevaeh and Zoe interpreted marginal cost (the cost of producing the 401st 

computer chip) as the difference between marginal cost at 401 (Figure 9) and the marginal cost at 

400 (Figure 9). Nevaeh’s statement that the two dollars represents “the change in cost from the 

four hundred to the four hundred and first computer chip” shows that she interpreted marginal 

cost (the cost of producing the 401st computer chip) as a difference between two quantities. Zoe’s 

statement, on the other hand, that “the two dollars is representing the change” could either mean 

that she interpreted the cost of producing the 401st computer chip as a numerical difference or as 

a quantitative difference (earlier in their reasoning about Task 4, Task Zoe and Nevaeh identified 

the MR and MC numbers in Figure 9 as quantities with units of dollars). In sum, Zoe and Nevaeh 
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interpreted marginal cost (the cost of producing the second unit in Task 3 and the cost of 

producing the 401st computer chip in Task 4) as a difference between two quantities in a 

continuous representation (Task 3) and in a discrete representation (Task 4). 

 Interpreting marginal change as a consecutive relationship between one value and 

the next value. The coding category, consecutive relationship between one value and the next 

value, refers to the use of phrases or words such as “from one to two,” “next,” and “additional” 

without computing specific values when interpreting marginal change (e.g., marginal cost). 

Three pairs of students interpreted marginal change as a consecutive relationship between one 

value and the next value. Two of these pairs of students interpreted marginal change as a 

consecutive relationship between one value and the next value in a continuous representation 

(Task 3) and in a discrete representation (Task 4) while the other pair of students interpreted 

marginal change as a consecutive relationship between one value and the next value only in a 

discrete representation (Task 2).  

Interpreting marginal change as a consecutive relationship between one value and the 

next value in a continuous representation and in a discrete representation. John and Fred are 

representative of the two pairs of students who interpreted marginal change as a consecutive 

relationship between one value and the next value in a continuous representation and in a 

discrete representation. The following excerpt, which occurred towards the end of Task 3, 

illustrates how John and Fred first interpreted marginal change as a consecutive relationship 

between one value and the next value while reasoning about the cost of producing the second 

unit. The excerpt begins with a question from the researcher about the cost of producing the 

second unit. Prior to this excerpt, John and Fred had been reasoning about how marginal cost and 

marginal revenue compare at a production and sales level of five units in Figure 10. 
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Researcher: How much does it cost this company to produce the second unit, not the 

first two units? 

Fred: The cost of two units is 400  

John: It’s only a hundred  

Fred: Oh yah, that’s going from the first to the second, so you are saying? 

Researcher: How much does it cost the company to produce the second unit? 

John: A hundred 

Fred: That’s basically the marginal cost, right? 

Researcher: Yes 

Fred: Then it’s a hundred 

Researcher: How did you get the hundred? 

John: From one to two [units], it [cost] increases by a hundred  

Researcher: Where can I see the hundred on this graph [pointing at Figure 10]? 

John: This is three hundred [showing the cost of producing the first unit on the 

vertical axis in Figure 10] and this is 400 [showing the cost of producing 

the first two units on the vertical axis in Figure 10], it increases by one 

hundred [marking the cost of producing the second unit using an upward 

arrow at q=1 in Figure 10] 
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Figure 10. John's graphical illustration of the cost of producing the second unit. 

The combination of John’s statement that “from 1 to 2 [units], it [cost] increases by a hundred” 

and Fred’s statement that “that’s going from the first to the second” shows that John and Fred 

interpreted marginal cost (the cost of producing the second unit) as a consecutive relationship 

between the first unit and the first two units.  

Later in the interview, while reasoning about the same task (Task 3), John and Fred’s 

interpretation of marginal cost shifted from being a consecutive relationship between one value 

and the next value to being the cost of producing one more unit. The following excerpt, which 

occurred towards the end of Task 3, illustrates how John and Fred interpreted marginal cost as 

the cost of producing one more unit while reasoning about how marginal cost and marginal 

revenue compares at a production and sales level of three units in Figure 10. 

Researcher: What can you say about marginal cost and marginal revenue at three 

units? 

Fred: The marginal revenue is greater than the marginal cost 

John: I agree 
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Researcher: What did you say again? 

Fred: At three [units], the cost of producing one more unit is less than the 

revenue of producing one more unit  

Researcher: Marginal cost is less than marginal revenue? 

John: Right 

In the above excerpt, John and Fred talked about marginal cost at three units as “the cost of 

producing one more” and marginal revenue at three units as “the revenue from producing one 

more unit,” thus John and Fred interpreted marginal cost at three units as additional cost for 

producing one more unit. 

John and Fred reverted to interpreting marginal change as a consecutive relationship 

between one value and the next value while reasoning about marginal cost (the cost of producing 

the 401st computer chip) in Task 4. The following excerpt, which occurred midway through 

discussing Task 4, illustrates how John and Fred reasoned about the cost of producing the 401st 

computer chip. The excerpt begins with a question about the cost of producing the 401st 

computer chip which was posed by the researcher. Prior to this excerpt, John and Fred had been 

reasoning about the units of the MC (marginal cost) and MR (marginal revenue) values shown in 

the table that appears in Task 4 which they concluded would be “dollars.”  

Researcher: How much does it cost to produce the 401st computer chip? 

John: fifty two 

Fred: The four hundred and first? 

Researcher: Yes 

John: You do, because this [pointing at the MC value at 400 units in the table 

shown in Task 4] is for the next one, this will be for the next one, wouldn’t 
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it? The marginal cost of four hundred [pointing at the MC value at 400 

units in the table shown in Task 4], that’s the marginal cost of producing 

the four hundred and first, I think 

Fred: Ok ok, I get what you are saying. You are right, the marginal cost is fifty 

two 

John’s repeated use of the phrase “for the next one” while reasoning about the cost of producing 

the 401st computer chip in the above excerpt shows that he interpreted marginal cost (the cost of 

producing the 401st computer chip) as a consecutive relationship between one value and the next 

value. Both John and Fred stated that the cost of producing the 401st computer chip would be 

“fifty two,” the marginal cost at 400 units, which is consistent with their interpretation of 

marginal cost as a consecutive relationship between one value and the next value.   

Interpreting marginal change as a consecutive relationship between one value and the 

next value only in a discrete representation. Joy and Nancy are the only pair of students who 

interpreted marginal change as a consecutive relationship between one value and the next value 

only in a discrete representation (Task 2). The following excerpt, which occurred early in the 

discussion of Task 2, illustrates how Joy and Nancy interpreted marginal change as a consecutive 

relationship between one value and the next value in the context of supplying computers and 

receiving revenue. The excerpt, begins with a question from the researcher about the revenue that 

the Smith family will receive when they supply the junior high school with 300 computers. Prior 

to this excerpt, Joy and Nancy had been reasoning about finding an algebraic equation they could 

use to determine the revenue that the Smith family will get when they supply the school with any 

number of computers. 
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Researcher: How much revenue do they [Smith family] get if they supply the school  

  with 300 computers? 

Joy:  Twenty seven thousand 

Researcher: How did you figure out that? Can you show me how you got that? 

Joy:  [writing 900*300=27,000] 

Nancy:  It’s two hundred and seventy 

Joy:  Another zero, two hundred and seventy? 

Nancy:  Yeah 

Joy:  [adding an extra zero on her figure to get 270,000] 

Researcher: What if they sell 301 computers, how much revenue do they get? 

Nancy:  It would be this number [pointing at the 270,000] plus 

Joy:  Plus nine hundred minus two point five times one 

Nancy:  Yeah 

Researcher: Can you just write that down for me? 

Nancy:  [writing 270,000+(900-2.5(1)] 

Researcher: Why did you put a one here [pointing at the 1 that is multiplied by 2.5 in  

  the expression that Nancy wrote]? 

Nancy:  Because there is only one laptop, because it’s for every additional over  

  [the first three hundred laptops] 

In the above excerpt, Joy and Nancy made reference to the revenue from selling the first 300 

laptops (270,000) when talking about the additional revenue (900-2.5(1)) from selling the 301st 

laptop. This is the only instance in the entire interview where Joy and Nancy can be said to have 

interpreted marginal change as a consecutive relationship between one value and the next value. 
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As I reported earlier in the section on interpreting marginal cost as total cost, Nancy and Joy 

interpreted marginal cost as total cost when reasoning about Task 3. These students gave the cost 

of producing the 402nd computer chip in Task 4 as the cost of producing the 401st computer chip. 

In sum, Nancy and Joy’s interpretation of marginal change shifted across different tasks. 

Interpreting marginal change as the derivative. Three pairs of students interpreted 

marginal change as the derivative while reasoning about Task 1 and Task 4. In particular, two of 

these pairs of students interpreted marginal change as the derivative only in a continuous 

representation (Task 1) and the other pair of students interpreted marginal change as the 

derivative only in a discrete representation (Task 4). None of these three pairs of students 

consistently interpreted marginal change as the derivative in both tasks (Task 1 and Task 4) or 

even in the other tasks (Task 2 and Task 3). 

Interpreting marginal change as the derivative only in a continuous representation. 

Alan and Sarah are one of the two pairs of students who interpreted marginal change as the 

derivative while reasoning about how to solve the problem posed in Task 1. The following 

excerpt, which occurred early in the interview, illustrates how Sarah and Alan reasoned about 

what they needed to do in order to answer the question posed in Task 1. Prior to this excerpt, the 

researcher had asked Sarah and Alan if they had seen a problem similar to the one given in Task 

1 (to which they both answered in the affirmative) and what they needed to do in order to solve 

the problem posed in Task 1. 

Sarah: Take the derivative of the demand equation [p = q2 − 100q + 3200] 

Researcher: What do you get when you take the derivative of the demand equation? 

Alan: Is it the marginal? 

Sarah: That would be the marginal cost 
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Researcher: What is marginal cost? 

Sarah: The derivative of the total cost [function], right? 

Alan: Yah yah, you are right 

In the above excerpt, Alan wondered if taking the derivative of the demand equation would give 

them the “marginal” while Sarah stated that by taking the derivative of the demand equation 

what they will get “would be the marginal cost.” Alan’s wondering about the derivative of the 

demand equation being “the marginal” and Sarah’s assertion that marginal cost is “the derivative 

of the total cost” were taken by the researcher to be the students’ interpretations of the derivative 

of the demand equation by Alan (or the total cost function by Sarah) as marginal cost. Alan and 

Sarah, did not reason any further about the idea of marginal cost in solving the problem posed in 

Task 1. It would appear that they associated the act of taking the derivative of an equation (e.g., 

the demand equation in this case) with the term “marginal.” 

 Abby and Shawna are the second pair of students who interpreted the derivative as 

marginal change while reasoning about how they would create the profit function in Task 1. The 

following excerpt, which occurred at the beginning of Task 1, illustrates how Abby and Shawna 

reasoned about how to get started in solving the problem posed in the task. Prior to this excerpt, 

Abby and Shawna had answered in the affirmative to the researcher’s question on whether or not 

they had seen or even solved a problem similar to the one posed in Task 1. 

Shawna:  Do we have to find the derivative for something? 

Abby: Yah, we have to find the derivative, ok wait. Marginal is just the 

derivative [pointing at the total cost function, c =
2

3
q3 − 40q2 + 10,000] 

but average is like you have to divide [total cost function] by q [number 

units produced]. This is like you take the derivative two times 
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Shawna:  That’s for concave up and concave down though 

Abby:  I feel like that’s also finding the maximum 

Shawna:  The maximum profit is taking it [derivative] once but I don’t know which 

one [moving her pen over the total cost function, c =
2

3
q3 − 40q2 +

10,000 and over the demand equation, p = q2 − 100q + 3200]. I am 

guessing this one [pointing at the total cost function] because the 3s will 

cancel out. 

In the above excerpt, Abby’s remark that “marginal is just the derivative” while pointing at the 

total cost function suggests that she was interpreting the term marginal as the derivative of the 

total cost function. There is, however, no evidence that Shawna also thought that way even 

though she did not object to Abby’s remark that “marginal is just the derivative.” Instead, 

Shawna related the action of differentiating a function twice with the idea of concavity when she 

said that “taking the derivative two times” is for “concave up and concave down.” Like Alan and 

Sarah, Abby and Shawna did not use the idea of “marginal” in their reasoning about Task 1 

beyond what can be seen in the above excerpt. 

Interpreting marginal change as the derivative only in a discrete representation. Joy 

and Nancy are the only pair of students who interpreted marginal change as the derivative while 

reasoning about the units of the MC (marginal cost) values and MR (marginal revenue) values in 

in Figure 11. The following excerpt, which occurred towards the end of Task 4, illustrates how 

Joy and Nancy reasoned about the units of the MC and MR values in Figure 11. The excerpt 

begins with a question from the researcher about the units of the MC and MR values in Figure 

11. Prior to this excerpt, Joy and Nancy had been reasoning about how the profit of the company 

mentioned in Task 4 is changing across the production and sales levels shown in Figure 11. 
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Researcher: What do you think are the units of these numbers [pointing at the MR and 

MC values]? 

Nancy: Oh, dollars 

Joy: Dollars 

Researcher: How do you know it’s dollars? 

Joy: Because revenue and cost is dealing with money 

Researcher: But that’s marginal cost and marginal revenue, is it the same thing? 

Nancy: Yah 

Researcher: Joy? 

Joy: I think, if you like take the, like if you take the derivative of the revenue it 

gives you the marginal revenue, so then like 

Nancy: You have to have the same units [pointing at the MR and MC values in the 

table shown in Table 4] to get this profit [pointing at the profit row in the 

Table 4], so profit is always in dollars, so you can’t have anything 

[pointing at the MR and MC values in the table] other than dollars to get 

profit 

Joy:  Yah 
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Figure 11. Diagram used by Joy and Nancy to reason about the units of marginal cost and 

marginal revenue. 

Joy’s statement that “if you take the derivative of the revenue, it gives you the marginal revenue” 

suggests that she was interpreting the marginal revenue as the derivative of the revenue function. 

There is, however, no evidence that Nancy also thought the same way even though she did not 

object to Joy’s statement about the derivative of the revenue function being the marginal 

revenue. Joy and Nancy calculated differences (which they labeled as profit in the third row in 

Figure 11) between marginal revenue and marginal cost which means they also interpreted 

marginal cost as total cost and marginal revenue as total revenue. 

 Summary of students’ interpretations of marginal change. In summary, ten pairs of 

students, at one point or another, interpreted marginal cost (the cost of producing the second 

unit) as total cost (the cost of producing the first two units) while reasoning about the cost of 

producing the second unit in Task 3, a continuous representation. A majority of these students 

further interpreted marginal cost as total cost when they interpreted the profit maximizing 

quantity of 402 units in Task 4 (a discrete representation) as a break-even quantity. These 

students stated that the company makes no profit at a production and sales level of 402 units 

where marginal cost equals marginal revenue. Saying that the company makes no profit at a 

production and sales level of 402 units means that the students interpreted marginal cost at a 
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production level of 402 units as total cost for producing 402 units and marginal revenue at a sales 

level of 402 units as total revenue from selling 402 units. Taken together, these results show that 

students’ view of marginal cost as total cost did not vary with different task representations. 

Also, a majority of these students interpreted marginal change as a numerical difference and not 

as a quantitative difference in that they, for example, they did not consider units when 

determining the cost of producing the second unit in Task 3. To determine the cost of producing 

the second unit, these students calculated the difference between the total cost of producing the 

first two units and the cost of producing the first unit without considering the cost of producing 

the first two units and the cost of producing the first unit as quantities, each with units of dollars, 

but rather as numerical values without units. A majority of these students also considered the 

result of this calculation, which they called the cost of producing the second unit, to be unit-less 

in that they did not talk about it as a quantity with units of dollars but rather as a numerical value. 

Three pairs of students of students, in different contexts and representations, interpreted 

marginal change as a consecutive relationship between one value and the next value. For 

example, John interpreted marginal change as a consecutive relationship between one value and 

the next value when he used the words “that’s going from the first to the second” when talking 

about the cost of producing the second unit in a profit maximization context and continuous 

representation (Task 3). Fred interpreted marginal change as a consecutive relationship between 

one value and the next value when he repeatedly used the words “for the next one” when talking 

about the cost of producing the 401st computer chip in a profit maximization context and discrete 

representation (Task 4). Joy and Nancy interpreted marginal change as a consecutive relationship 

between one value and the next value in a revenue maximization context and discrete 

representation (Task 2). Taken together, these results suggest that the students’ interpretation of 
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marginal change as a consecutive relationship between one value and the next value not only 

varied with context but also with the representations of the functions given in each of the four 

tasks.  

Three pairs of students associated the term “marginal” (e.g., marginal cost) with the act 

of taking the derivative of a function (e.g., total cost function in Task 1) algebraically. For 

example, while reasoning about Task 1, Sarah and Alan indicated that “the marginal cost” would 

be the derivative of the total cost function. They, however, did not use the idea of a marginal cost 

as they further reasoned about the task. Joy’s statement when reasoning about Task 4 that “if you 

take the derivative of the revenue, it gives you marginal revenue” also suggests that she 

associated taking the derivative of the revenue with marginal revenue. Like Sarah and Alan, Joy 

did not use the idea of marginal revenue as the derivative of the revenue as she reasoned further 

about Task 4. Taken together, students’ association of the term marginal with taking the 

derivative algebraically suggests that students’ understanding of the relationship between the 

idea of marginal change and the concept of the derivative is only limited to the world of algebra. 

In other words, these students demonstrated more of a procedural understanding of the idea of 

marginal change and almost no conceptual understanding of the idea of marginal change as it 

relates to the concept of the derivative. 

Students’ interpretations of marginal change tended to change within and across tasks. 

For example, Nevaeh and Zoe at one time interpreted the cost of producing the second unit in 

Task 3 as the difference between two quantities but at another time within the same task, these 

students interpreted the cost of producing the second unit as the length of a line segment on a 

graph. Denise and Ivy, for example, interpreted marginal change differently across two tasks. 

They interpreted marginal cost as a difference between two quantities in Task 3 but then they 
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interpreted marginal cost as total cost in Task 4. Taken together, these results suggest that the 

students who participated in this study had weak understandings of the concept of marginal 

change and that their interpretations of marginal change varied in different contexts and 

representations of economic situations. 

Quantitative Reasoning 

  This study used Thompson’s (1993) definition of quantitative reasoning: analyzing a 

situation in terms of the quantities and relationships among the quantities involved in the 

situation. According to Thompson, what is important in quantitative reasoning is not assigning 

numeric measures to quantities but rather reasoning about relationships between or among 

quantities. The term, reasoning quantitatively, as used in this study, refers to how students 

described and represented relationships between or among quantities and how they created and 

used new quantities to solve the problems they were given. This study used the definition of a 

quantity proposed by Ärlebäck et al. (2013): “a quantity is the result of conceiving a quality (an 

attribute) of an object to have an explicit or implicit unit that enables a process of measurement” 

(p. 317). Examples of quantities in this study include total cost, total revenue, profit, marginal 

cost, marginal revenue, marginal profit, and number of units produced and sold. As defined 

earlier, the term, discrete reasoning, as used in this study, refers to the treatment of continuous 

quantities as if they were discrete quantities when reasoning about relationships among several 

quantities in an economic context. 

To examine students’ quantitative reasoning when solving optimization problems 

involving multiple covariates that are situated in the context of cost, revenue, and profit, I 

analyzed students’ verbal responses and written work to the four tasks in Appendix A. This 

analysis revealed that: (1) eleven pairs of students created new quantities (the accumulation of 
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the discount, diminishing marginal returns, and the rate at which the revenue is increasing) which 

they used to reason about relationships among sales, the discount, and the revenue in a revenue 

maximization context (Task 2), (2) ten pairs of students reasoned discretely about relationships 

among several quantities (number of units produced and sold, total cost, total revenue, and 

profit) while creating a profit graph in a continuous representation (Task 3), and (3) two pairs of 

students interpreted a sequence of positive and decreasing quantitative differences (differences 

between marginal revenue and marginal cost) to mean that marginal profit is increasing while 

reasoning about a profit maximization context (Task 4).  

Creating and reasoning about new quantities in a revenue maximization context. To 

solve Task 2, students had to reason about the context of the task which is captured in the 

following statement:  

For any supply of more than 300 laptops, the school will receive a $2.50 discount per 

computer (on the whole order) for every additional computer over 300 supplied (Task 2, 

Appendix A). 

Of the eleven pairs of students who created new quantities while reasoning about the problem 

posed in Task 2, six pairs of students reasoned with the context of the task but not as intended: 

they applied the discount only on the additional number of computers over 300 ordered. These 

students created a new quantity, the rate at which the revenue is increasing, which they used to 

reason about the relationship among sales (number of computers sold), the discount, and the 

revenue.  

Another five pairs of students reasoned with the context of the task. Consequently, these 

students applied the discount on the whole order. They also created a new quantity, the 

accumulation of the discount, which they used to reason about the relationship among sales, the 
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discount, and the revenue. The only pair of students, Abby and Shawna, who did not create any 

quantity with which to reason about relationships among sales, the revenue, and the discount 

stated that they needed to have the demand and supply equations (which were not given in Task 

2) in order to solve the problem posed in the task. In what follows, I discuss how the six pairs of 

students who applied the discount only on the additional computers ordered over 300 reasoned 

about the new quantity they created (the rate at which the revenue is increasing), followed by a 

discussion of how the other five pairs who applied the discount on the whole order reasoned 

about the new quantity they created (the accumulation of the discount). 

Applying the discount only to the additional computers over 300 ordered. Six pairs of 

students reasoned with the context of Task 2 but not as intended when solving the problem posed 

in the task: advising the Smith family business on whether or not to sign the contract. These 

students applied the discount only to the additional computers over 300 ordered by the school. 

Students’ failure to apply the discount to the whole order (as was intended in the task) may likely 

be the result of lack of experience with everyday situations where the discount is applied on the 

whole order as described in Task 2. It may also be a result of limited exposure to optimization 

problems where reasoning with the context of a task (as intended) is key to solving the problem 

in the task. As shown in the results section on opportunity to learn that was presented earlier, a 

majority of the optimization problems that the students in this study were exposed to, through the 

textbook and course lectures, had a camouflage context. Students can ignore the context of a 

camouflage problem and still be successful in solving the problem (Wijaya et al., 2015). Kierra 

and Isaac are representative of the six pairs of students who applied the discount only to the 

additional computers over 300 ordered. These students created a new quantity (the rate at which 

the revenue is increasing) which they used to reason about the relationship among the quantities: 
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sales, the discount, and the revenue. Kierra and Isaac are the only pair of students (out of the six 

pairs of students) who created a graph (Figure 12) to show the relationship among these 

quantities.  

When explaining their understanding of Task 2 following a question from the researcher, 

Kierra and Isaac both indicated that each computer will sell for $900 for any order of at most 300 

computers and that for any order of more than 300 computers, the additional computers over 300 

sold will each sell for $897.50 which is $2.50 (the discount) less than the selling price of a 

computer for any order of at most 300 computers. By applying the discount only on the 

additional computers over 300 sold, Kierra and Isaac came to the conclusion that the relationship 

between the revenue and sales is such that the revenue will continue to increase as more 

computers are sold. That is, there will never be a time when the discount will decrease the Smith 

family’s revenue.  

In the following excerpt, which occurred just after Kierra and Isaac had explained their 

understanding of Task 2, Kierra and Isaac reasoned about how the relationship between the 

number of computers that are sold and the revenue could be represented using a graph (Figure 

12). The excerpt begins with Kierra asking if the Smith family business will know, at the time of 

signing the contract, the number of computers that the school would want to order. 

Kierra: Question, will the family know how many computers the school will buy 

at the time they sign the contract? 

Researcher: Yes 

Isaac: Well I think it’s, I think, I kind of picture it as almost like a graph 

Researcher: How would it look like as a graph? 
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Kierra: Like it would, for the first 300 [computers] it [revenue] would go up at the 

same rate like at one rate of $900 and then like once it hits that 300, like 

301, it slightly changes the slope of the line of going up of each laptop by 

$897.50 so I guess like, there is never gonna be a time when like they will 

be losing money. They will just be like slightly gaining money, nine 

hundred minus $2.50  

Researcher: You said something about the slope changing at like 300, right? 

Isaac: Yeah, because like anything above 300 is when they give that discount of 

$2.50  

Kierra created a new quantity (the rate at which the revenue is going up) when she stated that the 

revenue “would go up at the same rate like one rate of $900.” Her statement that “there is never 

gonna be a time when like they be losing money” suggests that she viewed the application of the 

discount on orders of more than 300 computers as insignificant in that the revenue continues to 

increase no matter the size of the order. Kierra and Isaac recognized that graphically, the effect 

of applying the discount will be a slight change in the slope of the graph of the revenue function 

after 300 computers as shown in Figure 12. In the following excerpt, which occurred after the 

above excerpt, Isaac and Kierra continued to reason about the change in slope of the graph of the 

revenue function. The excerpt begins with the researcher probing Kierra and Isaac about the 

change in slope in the graph of the revenue function. 

Researcher: So how will the slope change?  

Isaac: [silent] 

Kierra:  [writing something] 

Researcher: Can you just show me how the graph will look like? 
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Isaac: Oh, it will go [sketching the vertical and horizontal axis in Figure 12] 

 

Figure 12. Kierra and Isaac's illustration of the relationship among the number of computers 

sold, the revenue, and the discount. 

Researcher: So what goes on the horizontal axis? 

Isaac: It will be the units [writing ‘units’ on the horizontal axis on Figure 12] 

Researcher: And what goes on the vertical axis? 

Isaac: It will be, I guess the sale, like the contract price like the sale price not per 

unit but the total sale [writing ‘total sale’ on the vertical axis on Figure 12]  

Kierra: [Watching and listening to Isaac] 

Isaac: [Sketching Figure 12] and so it will go up like a steep rate of a, for each 

and like up here this would be whatever 900 times three hundred is 

[marking the point (300, 270000) on his graph] and then from here [the 

point (300, 270000)] like at that point, anything above that like the slope 
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would be less steep because it’s going, because they give that $2.50 

discount so just like over exaggerated [meaning Figure 12 is not accurate] 

it would go up like at a lesser slope [sketching the less steep line segment 

in Figure 12] but obviously it would still be pretty close to that line 

[steeper line segment] because it’s only $2.50 

Researcher: And what would you call that graph if you were to give it a name? 

Isaac: I don’t know [smiling], I took, I took both of these classes last year, I can’t 

remember 

Researcher: What is it that you said it will keep going? 

Isaac: Oh like their, their profit will keep going, oh like the family, like the 

revenue will keep going. They will never hit a point where those units, the 

sale units would like cause them to go like to lose money on the deal, I 

guess 

Figure 12 is a graphical representation of the relationship among the number of computers sold, 

the revenue, and the discount. According to Figure 12, the more units (computers) that are sold, 

the more revenue that the Smith family will make. The effect of the discount in the relationship 

is indicated by the change in the steepness of the revenue function at 300 units in Figure 12. The 

absence of units for the numbers on the vertical and horizontal axis labeled as “total sales” and 

“units” respectively may either suggest that Isaac interpreted the number of computers sold and 

the revenue received as numerical values instead of quantities or that they did not consider units 

to be an important part of quantitative reasoning. Isaac’s statement that the revenue “will go up 

like a steep rate” as more computers are sold up to 300 suggests that he also created a new 

quantity, the rate at which the revenue will go up. Isaac continued to reason about this new 
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quantity when he indicated that “the slope would be less steep” when he referred to how the 

revenue continues to increase as more computers are sold over 300.  

 Applying the discount to the whole order. Two pairs of students are representative of the 

five pairs of students who, as a result of reasoning with the context of Task 2 as intended, applied 

the discount to the whole order. These students created a new quantity (the accumulation of the 

discount and diminishing marginal returns) which they used to reason about the relationship 

among sales, the discount, and the revenue in a revenue maximization context (Task 2). The first 

pair of students (who are representative of four other pairs of students in this group of five), Yuri 

and Kyle, created and reasoned about the accumulation of the discount as a new quantity. In 

addition to reasoning about the accumulation of the discount, the second pair of students, John 

and Fred, created and reasoned about another quantity, the diminishing marginal returns.  

 In addition to verbalizing the relationship among sales, revenue, and the discount, Yuri 

used an algebraic equation shown in Figure 13 to represent this relationship and Kyle used a 

graphing calculator to graph Yuri’s revenue equation. Kyle’s graph was a concave down 

parabola. Yuri and Kyle described the discount as “cumulative.” They explained what a 

cumulative discount is by giving examples. Kyle indicated that “if you buy three hundred and 

two you get five dollars off each computer.” Yuri added that “if you sold three hundred and ten 

computers, you get twenty five dollars discount per computer you sell.” With the understanding 

of the discount as cumulative, Yuri and Kyle calculated the discount from selling 310, 350, and 

400 computers respectively. They found that the revenue of 271250 from selling 310 computers 

is the same as the revenue from selling 350 computers and that the revenue of 260000 from 

selling 400 computers is less than the revenue from selling 310 computers. Yuri and Kyle then 

advised the Smith family to consider the size of the order placed by the school prior to signing 
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the contract. They indicated that an order of “315 computers” will generate more revenue “than 

if they sold 415 computers.” This suggests that Yuri and Kyle recognized that, in the long run, 

the accumulation of the discount will cease to increase the Smith family’s revenue and will, 

instead, result in loss of revenue. In giving their advice, Yuri and Kyle explicitly talked about the 

two quantities: sales (number of computers sold) and the revenue which they referred to as 

“money” while the other quantities, namely the discount and accumulation of the discount were 

not explicitly referred to. 

 In the following excerpt, which occurred immediately after they gave their advice to the 

Smith family, Yuri and Kyle reasoned about the maximum revenue the Smith family could get 

by supplying computers to the school. The excerpt begins with the researcher asking about the 

maximum revenue, in an effort to probe Yuri and Kyle about how they were thinking about the 

accumulation of the discount. 

Researcher: Do they [Smith family business] ever get any maximum revenue? 

Kyle: Yes 

Researcher: When? 

Yuri: We need a function [algebraic function for computing revenue] 

Researcher: You need a function? 

Yuri: Yes 

Researcher: Can you find a function? 

Yuri: Yes 

Researcher: The function you are finding is function for what? 

Kyle: Revenue [doing something on the calculator] 
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Yuri: [writing the revenue function, [900 − (𝑞 − 300)2.5]𝑞 = 𝑅, 𝑞 ≥ 300 in 

Figure 13] 

Researcher: What did you get? 

Yuri: If it’s bigger than 300 [number of computers supplied], then we can get 

this function for revenue [pointing at the revenue function, 

 [900 − (𝑞 − 300)2.5]𝑞 = 𝑅, 𝑞 ≥ 300 in Figure 13] 

Researcher: Kyle what did you get? 

Kyle: I’m having trouble 

The use of the word “maximum” in the researcher’s question about maximum revenue in the 

above excerpt appears to have prompted Yuri to reason algebraically about the relationship 

between the two quantities, namely number of computers sold and the revenue generated. The 

researcher’s question prompted Yuri to find an algebraic function, the revenue function denoted 

by the letters 𝑅 and 𝑟 in Figure 13, which shows the relationship between R (which is the 

revenue) and q (which is the total number of computers sold). Yuri’s statement that “if it’s bigger 

than 300, then we get this function for revenue” suggests an awareness that there is, perhaps 

another revenue function, besides the one shown in Figure 13, that can be used to determine 

revenue for orders that are at most 300 computers. That is, the discount or the accumulation of 

the discount only has an effect on revenue on orders of more than 300 computers. Yuri 

concluded by saying that the Smith family business should sign the contract if the school orders 

at most 330 computers. He, however, did not talk about much of his work in Figure 13 such as 

when he took the derivative of the revenue function. 

 Kyle, on the other hand, indicated “having trouble” in finding an algebraic function that 

relates the quantities: the number of computers sold, the revenue, and the discount. He then used 
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a graphical approach (graphing Yuri’s revenue function on his calculator) to represent the 

relationship between the revenue and the number of computers sold. When the researcher asked 

him about his graph, he said, “I did second calc max to find the maximum and the max quantity 

is three hundred and thirty for a revenue of two hundred and seventy two, two hundred and 

fifty.”  Not stating the units of the revenue maximizing quantity (330 computers) and the 

maximum revenue ($272,250) suggests that Kyle did not consider units to be an import part of 

quantitative reasoning. He then advised the Smith family to sign the contract if the school orders 

330 computers “since that’s the most money they can make on this deal [contract].”  

 

Figure 13. Yuri's representation of the relationship between the revenue and the number of 

computers sold using an algebraic equation. 

In sum, even though there are several quantities involved (number of computers sold, 

revenue, and the discount), Yuri and Kyle tended to talk, explicitly, about the relationship 

between the number of computers sold and the revenue while the discount and the accumulation 

of the discount were often not explicitly referred to in the relationship. Also, Yuri and Kyle 
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almost never explicitly mentioned units when talking about the discount or the revenue which 

means that they might not have considered the use of units to be important when reasoning about 

quantities and relationships between or among quantities. 

John and Fred are the second pair of students who, in addition to reasoning about the 

accumulation of the discount also created and reasoned about a new quantity which they referred 

to as “diminishing marginal returns,” when reasoning about the relationship among sales, 

revenue, and the discount. Since their reasoning about the accumulation of the discount is the 

same as that of Yuri and Kyle, in what follows, I only report on how they reasoned about the 

new quantity they created, diminishing marginal returns. In the following excerpt, which 

occurred within the first three minutes of working on Task 2, John and Fred explained what they 

mean by “diminishing marginal returns” and they drew on their understanding of the economic 

context to argue that selling more computers will result in more revenue being generated until 

the point of “diminishing marginal returns” is reached. The excerpt begins with Fred, in response 

to the researcher’s question, talking about the revenue the Smith family business will get when 

they sell 310 computers. Prior to this excerpt, John and Fred had reasoned about the effect of the 

revenue on orders of 301 and 302 computers respectively. 

Fred:  So at 310 computers you still make $1,250 more than you would when  

   selling 300 computers 

John: We have to have that point where it starts going down again  

Fred: Right, so, what is it called? Diminishing returns 

John: We need, it would be easier with an equation 

Researcher: You said diminishing returns? 

Fred: Yah 
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Researcher: What does that mean? 

Fred: Diminishing marginal returns, it means after a certain amount like it just 

decreases 

Researcher: What decreases? 

Fred: The revenue 

Researcher: It’s called marginal? 

Fred: Marginal diminishing return. Were you gonna guess and check [asking 

John who was calculating revenue at different sales levels]? 

John: I don’t know 

Fred’s statement that “at 310 computers you still make $1,250 more than you would when selling 

300 computers” suggests that he understood the revenue as a quantity increases with an increase 

in the number of computers (another quantity) sold from 300 to 310. The combination of John’s 

statement on the need “to have that point where it starts going down again” and Fred’s reasoning 

about “diminishing returns” suggests that these students understood revenue to be initially 

increasing with more sales and that at some point the revenue reaches a maximum and 

subsequently begins to decrease when more computers are sold beyond the point of “diminishing 

returns.” Even though John and Fred did not verbally say anything about the discount (as a 

quantity) and how it relates to the number of computers sold and the revenue received, it can be 

argued that they did relate the discount to the number of computers sold and the revenue 

generated. This is because when calculating the revenue from selling 310 computers (310*875) 

which they found to be 271250, John and Fred discounted each computer by $25 (from $900 to 

$875).  
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In an effort to find the point of diminishing returns using the “guess and check” approach 

suggested by Fred in the above excerpt, John and Fred calculated revenue from selling 320, 330, 

350, and 400 computers respectively. After calculating this revenue, John and Fred determined 

the point of “diminishing returns” to be 330 computers. The excerpt begins with the researcher 

asking John and Fred about the calculations of revenue received from selling 320, 330, 350, and 

400 computers respectively.  

Researcher: What have you done so far? 

John: We have done 300 and we did 400, and then we did 310 and then we did 

320 and then we did 350 and now we just did 330 

Researcher: And now he [Fred] is doing? 

John: 331 

Fred: Right, so now, 331 doesn’t work out [revenue from selling 331 computers 

is less than the revenue they got from selling 330 computers] so now I’m 

checking 329 

John: 321 [meaning 331] goes down? 

Fred: Yah, 331 goes down so now I’m checking 329, yep we found the 

maximum, at 330 computers they are maximizing their revenue so 

John: At 330? 

Fred: Yah 

John: At 329, it’s lower? 

Fred: Yah, at 329 it’s lower [revenue is lower than at 330 computers] but it’s 

still rising so the point of diminishing marginal returns is when you sell 
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the 331st computer. I’m sorry, the diminishing marginal returns is 330 

computers so after 330 computers everything goes down afterwards 

To determine the number of computers (330) that that must be sold in order to maximize 

revenue, John and Fred calculated revenue for different orders of computers using a guess and 

check approach. John and Fred’s observation that the revenue is “lower” but “still rising” when 

329 computers are sold, that the revenue is maximum when 330 computers are sold, and that the 

revenue “goes down” when 331 computers are sold suggests that John and Fred observed 

changes in revenue with an increase in the number of computers sold. In particular, John and 

Fred noted that revenue increases with sales less than 330 computers and that revenue decreases 

with sales over 330 computers.  

 The quantity they referred to as the point of “diminishing marginal returns” is actually the 

revenue-maximizing quantity, which is a sales level of 330 computers in this case. John and Fred 

concluded by advising the family to sign the contract if the school orders “330 computers or 

less.” This shows that their quest to determine the numerical value for the “diminishing marginal 

returns” helped them to solve the problem posed in Task 2, that is, to advise the Smith family 

business on whether or not to sign the contract. Unlike the other four pairs represented by Yuri 

and Kyle, John and Fred did not represent their reasoning about the relationships among sales, 

the revenue, and the discount using graphs and equations. 

Taken together, analysis of students’ reasoning about the multivariable context in Task 2, 

revealed several things. First, students created and reasoned about new quantities (“e.g., the 

diminishing marginal returns created by John and Fred) which helped them to solve the problem 

posed in the task. Second, students rarely paid attention to units (especially units of revenue and 

the discount) while reasoning about the relationship among sales, the discount, and the revenue, 
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which suggests that they did not consider units to be an important part of the quantities involved 

in the task. Since any quantity has units associated with it, I argue that units of quantities need to 

be made explicit in quantitative reasoning. Third, in addition to verbalizing relationships among 

sales, the discount, and the revenue, students often used other ways (e.g., the sales versus units 

graph by Kierra and Isaac) to represent these relationships. 

Reasoning discretely about quantities in a continuous representation. As defined 

earlier, the term continuous representation as used in this study refers to a mathematical task in 

which the given function(s) in the task is continuous on some domain. For example, Task 3 uses 

a continuous representation because the given functions in the task, namely the total cost 

function and the total revenue function are represented as continuous on the domain [0,7]. To re-

state, the term discrete reasoning refers to the treatment of continuous quantities as if they were 

discrete quantities when reasoning about relationships among several quantities in an economic 

context. Treating the continuous quantities (number of units produced and sold, total cost, total 

revenue, and profit) in Task 3 as if they were discrete quantities when creating the profit graph is 

an example of discrete reasoning. 

Ten pairs of students reasoned discretely about relationships among several quantities 

(number of units produced and sold, total cost, total revenue, and profit) while creating a profit 

graph in Task 3. These students created a continuous profit graph. Denise and Ivy are 

representative of the ten pairs of students. Sarah and Alan were the only pair of students who 

reasoned discretely about the relationships among the quantities (number of units produced and 

sold, total cost, total revenue, and profit) and created a discrete profit graph. Another pair of 

students, Abby and Shawna, did not reason about relationships among the quantities in Task 3. 

These students indicated that they needed to have an algebraic form of the profit function in 
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order to create the profit graph. In what follows, I discuss how Denise and Ivy reasoned 

discretely while creating the continuous profit graph in Figure 15 followed by a discussion of 

how Sarah and Alan reasoned discretely while creating the discrete profit graph in Figure 16.  

Creating a continuous profit graph. Denise and Ivy created a continuous profit graph 

(Figure 15). Prior to creating this graph, these students reasoned about relationships among 

number of units produced and sold, total cost, total revenue, and profit. In the following excerpt, 

which occurred at the beginning of Task 3, Denise and Ivy compared revenue and cost in order 

to determine production and sales levels where the company (Winter Store) mentioned in the 

task is in debt, breaks-even, and where it makes a profit. The excerpt begins with Denise 

verbalizing her thoughts, after reading the problem statement of the task, on what she thinks they 

have to do to create a profit graph. 

Denise: Ok, so we have to create a graph but first we can identify points like here 

and there [making circles around the first intersection and second 

intersection of the total cost function and the total revenue function in 

Figure 14] 

Researcher: What’s happening at those points? 

Denise: Cost and revenue are equal. They are at equilibrium which is that point 

when cost and revenue are equal [looking at Ivy]? We don’t want the cost 

ever to be greater than the revenue 

Ivy: Yah, so like right here [pointing at the region bounded by cost and revenue 

between the two intersection points of the total cost and total revenue in 

Figure 14], it’s a good time because revenue is greater than cost 

Denise: Yeah, that’s good. That means profit when revenue is greater than the cost 
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Researcher: How about the other areas [regions]? 

Denise: No, we don’t want that. That’s where it costs more to make the jackets 

than to sell them, so they are gonna be in debt. We don’t want that. 

Ivy: [labeling, in Figure 14, the region where Winter Store makes a profit with 

the inequality revenue>cost and the other areas where the store makes a 

loss with the inequality cost>revenue] 

 

Figure 14. Graph used by Denise and Ivy to show production and sales levels where the 

company is in debt, at equilibrium, and makes a profit. 

Denise and Ivy’s description of where Winter Store is in “debt,” “at equilibrium,” and making 

“profit” suggests that these students reasoned about profit as a comparative relationship between 

two quantities: total cost and total revenue. Their understanding of “debt” is when total cost 

exceeds total revenue, profit is when total revenue exceeds total cost, and “equilibrium” when 

total cost and total revenue are equal. In the following excerpt, which occurred after the above 
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excerpt, Denise created a sketch of the profit graph shown on the bottom right corner of Figure 

14 which she eventually crossed out.  

Denise:  Could we do like a graph like this where like profit would start here 

[pointing at the vertical intercept of the graph she sketched in Figure 14] 

and this is zero [marking the origin of the graph in Figure 14] and this is 

zero because now they are like making profit when they get to three 

[moving her pen over the graph she has sketched] but then it’s back down  

Ivy: But then it goes back down. So would it be like, kind of thing. 

Denise: [Looking at the graph she had created]. No that wouldn’t work actually 

[crossing out her graph] 

Ivy:  I mean it could be a parabola 

Researcher: Why wouldn’t it be this [pointing at Denise’s crossed out graph]? 

Ivy: Because this is showing that profit is increasing, profit is decreasing but, I 

guess. Well revenue starts steady, the cost starts to rise more? Each one of 

the points on the graph is gonna be the revenue minus the cost 

According to Denise’s canceled graph, as the number of units that are produced and sold 

increases, the company’s profit increases, reaches a maximum, and then decreases. It is unclear 

why she crossed out her graph since she did not give any rationale for doing that. Ivy appears to 

have imagined a profit graph that is shaped like a parabola. She also imagined that “each one of 

the points on the graph is gonna be the revenue minus cost.” Saying that each point on the profit 

graph is “revenue minus cost” suggest that in Ivy’s view each point on the profit graph should be 

a difference between revenue and cost. With the help of Denise, Ivy proceeded to calculate profit 

in Figure 15 at each of the production and sales levels marked 0 to 7. She then created the profit 
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graph shown in Figure 15 by plotting and joining the points using a continuous curve. Using a 

continuous curve to join the points she plotted in Figure 15 suggests that Ivy understood the 

quantities (total cost, total revenue, and profit) to be continuous on the closed interval [0,7]. 

However, a closer look at her profit graph suggests that she did not attend to how the quantities 

(total cost, total revenue, and profit) co-vary with each other as production and sales increase 

from zero to three units. This is because according to the graph that appears in Task 3 (Appendix 

A), profit is decreasing between zero units and one unit and profit increases steadily between one 

unit and 3 units. Based on Ivy’s profit graph shown in Figure 15, however, profit is increasing 

between zero and three units. Hence, Ivy must have treated the quantities (total cost, total 

revenue, and profit) as discrete and not as continuous when creating the profit graph. 

When asked by the researcher about the vertical and horizontal axes of the graph in 

Figure 15, Ivy stated that “this will be y [labelling the vertical axis as y revenue-cost (profit)] and 

that will be x which is quantity [labeling her horizontal axis as x (quantity)].” According to Ivy’s 

graph, profit increases as production and sales increase up to about five units and then decreases 

afterwards. 

 In summary, Denise and Ivy’s reasoning about Task 3 revealed that they understood 

profit to be a difference between two quantities, namely total cost and total revenue. They, 

however, never explicitly mentioned units when talking about profit. This may suggest that these 

students did not consider the use of units to be important when reasoning about relationships 

among quantities. Also, besides calculating differences between total cost and total revenue, 

using these differences to generate points, and using a curve to join the points to create the 

pointwise profit graph in Figure 17, these students never talked about how the quantities (total 

cost, total revenue, and profit) are continuously changing in tandem as production and sales of 
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units are increased from zero to seven units. This suggests that the students imagined the domain 

of the profit function, [0,7] to be discrete instead of being continuous.  

 

 

Figure 15. Ivy's profit calculations and profit graph. 

 Creating a discrete profit graph. Sarah and Alan are the only pair of students who 

created a discrete profit graph (Figure 16). Like Denise and Ivy, these students considered 

differences between total revenue and total cost when determining profit at each of the 

production and sales levels shown in the graph that appears in Task 3. They then plotted these 
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differences as points to get the profit graph shown in Figure 16. Unlike Denise and Ivy who, 

after plotting points on the profit graph (Figure15) joined the points using a continuous curve, 

Sarah and Alan left their graph as only points as shown in Figure 16. 

 

Figure 16. Alan and Sarah’s profit graph. 

Despite the fact that the total cost and total revenue in the graph shown in Task 3 were given as 

continuous functions, Sarah and Alan left their profit graph as only points, a discrete graph. This 

suggests that when creating the profit graph, these students focused on the discrete nature of the 

economic context in the task, in particular, that number of units produced and sold is discrete, 

and therefore decided that the profit function had to be discrete as well. At one point during the 

interview, Alan spontaneously said that “the quantity [number of units produced and sold] is 

discrete”. A focus on the context of the task seems to have shifted the students’ attention from 

the continuous representation of the quantities in the task. This finding suggests that when 



 

 

195 

 

creating graphical representations of relationships among several quantities in an economic 

context, students tend to focus only on the context of the task: the representation of quantities in 

the task is not taken into consideration. 

When asked about what would go on the vertical axis of the graph shown in Figure 16, 

Alan simply said “profit” without specifying the units of profit as dollars and when asked about 

what would go on the horizontal axis of the graph, Sarah simply said “quantity, units” after 

which Alan labelled the horizontal axis as quantity (in thousands). The absence of dollars as 

units in the vertical axis of the profit graph in Figure 16 may have been a result of Alan having 

thought that it is obvious that profit is measured in dollars and hence the units of profit did not 

have to be stated. Like Denise and Ivy, these students never talked about how the quantities in 

the task continuously changed in tandem as production and sales of units increases from zero 

units to seven units. They considered the domain of the profit function, [0,7] to be discrete and 

not as continuous, which led to them creating the discrete profit in Figure 16. 

Interpreting a sequence of quantitative differences. Two pairs of students interpreted a 

sequence of positive and decreasing quantitative differences (D=MR-MC) to mean that marginal 

profit is increasing. Mark and Carlos are representative of these pairs of students. In the 

following excerpt, which occurred towards the end of working on Task 4, Mark and Carlos 

reasoned about how marginal cost, marginal revenue, and marginal profit are changing across the 

production and sales levels shown in Figure 17. The excerpt begins with Carlos explaining how 

marginal cost and marginal revenue are changing as you “move from left to right” in Figure 17 

in response to the researcher. Prior to this excerpt, Mark and Carlos had advised the company to 

increase production and sales of computer chips up to 402 units and then decrease production 
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and sales afterwards, and they had stated that the units of the MC (marginal cost) and MR 

(marginal revenue) values in Figure 17 would be “dollars.” 

Carlos: As you go from left to right, marginal revenue is decreasing, marginal cost 

is increasing,  

Mark: Increasing 

Carlos: and marginal profit from 400 to 402 is increasing and from 402 on it’s 

going to be 

Mark:  Decreasing 

Carlos: Decreasing, like the negative 

Mark: Negative, yeah 

Carlos: So marginal profit is like increasing or like going to be positive for 400th 

unit, 401st unit, and then at 402 it gonna just be zero or there is none 

because they [MC and MR in Figure 17] all equal each other  

Mark: It should be like this [sketching the graph in Figure 18], and then at 403, 

404 and 405, it’s going to be negative because marginal cost is greater 

than the marginal revenue. 

Researcher: So the curve represents? [Asking about Figure 18] 

Carlos: The peak of the curve represents 

Mark: Marginal profit 

Carlos: Yes, this [pointing at the graph in Figure 18] could represent marginal 

profit because the graph at first like marginal profit is increasing, 

increasing, this could be like 400, 401 and at 402 marginal profit is zero 
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because marginal cost equals marginal revenue and then it starts going 

negative because marginal cost is greater than marginal revenue 

 

Figure 17. Diagram used by Mark and Carlos to reason about the relationship among number of 

units produced and sold, marginal cost, marginal revenue, and profit. 

 

Figure 18. Graph drawn by Mark to illustrate how marginal profit changes across the production 

and sales levels shown in Figure 17. 

When talking about how the quantity, marginal profit, is changing across the production and 

sales levels shown in Figure 17, Carlos indicated that “marginal profit from 400 to 402 is 

increasing and from 402 on it’s going to be decreasing.” Since marginal profit is not explicitly 

shown in Figure 17, when talking about marginal profit increasing or decreasing, Carlos was 

referring to differences between marginal revenue and marginal cost across the production and 
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sales levels shown in Figure 17. Mark added that marginal profit is “decreasing, like the 

negative” as production and sales of computer chips are increased from 403 to 405. Carlos then 

echoed Mark’s words that marginal profit is “negative” when production and sales of computer 

chips is increased from 403 to 405 computer chips. Mark proceeded to give a rationale for why 

he said marginal profit is negative at a production and sales level of 403, 404, and 405 units 

respectively: “because marginal cost is greater than marginal revenue.” This suggests that Mark 

and Carlos interpreted the quantity, marginal profit, to be a difference between marginal revenue 

and marginal cost. With this interpretation of marginal profit, Mark and Carlos must have 

mentally determined marginal profit to be $6 (by calculating the difference, 58-52 in Column 2 

of Figure 19) at a production and sales level of 400 units, marginal profit to be $2 (by calculating 

the difference, 56-54 in column 2 of Figure 19), and so on. Claiming that marginal profit is 

increasing “from 400 to 402,” as Carlos and Mark did, suggests that these students interpreted 

the decreasing and positive sequence ($6, $2, $0) of marginal profit values from 400, 401, and 

402 units respectively to mean that marginal profit is increasing. Mark’s statement (echoed by 

Carlos) that marginal profit is “decreasing, like negative” when referring to marginal profit at the 

production and sales levels of 403, 404, and 405 units respectively suggests that these students 

interpreted a decreasing and negative sequence of negative values of marginal change to mean 

that marginal profit is decreasing. Mark’s profit graph (Figure 18) is consistent with an 

interpretation of marginal profit that is decreasing across all the production and sales levels 

shown in Figure 17. This is in contrast with their claim that marginal profit is increasing up to 

the production and sales level of 402 computer chips and then decreasing afterwards. 

 Summary of students’ quantitative reasoning. Taken together, my analysis of 

students’ quantitative reasoning about multivariable situations in a revenue maximization context 
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(Task 2) and in a profit maximization context (Task 3 and Task 4) revealed several things. First, 

while reasoning about a revenue maximization context, students created new quantities (e.g., the 

diminishing marginal return quantity created by John and Fred) which they used to reason about 

the problem. The creation of these quantities also helped them to solve the problem posed in the 

task: giving reasonable advice to the Smith family business on whether or not to sign the 

contract.  

Second, only five pairs of students (e.g., Yuri and Kyle) reasoned with the context of 

Task 2 as intended. These students applied the discount on the whole order which led to them to 

conclude that at some point (sales level of 330 computers), the discount will cease to increase the 

revenue generated by the Smith family and hence it is important not to supply more computers 

beyond that point. Six other pairs of students also reasoned with the context of Task 2 but not as 

intended. These students (e.g., Kierra and Isaac) applied the discount only on the additional 

computers sold over 300. They concluded that there will never be a time when the discount will 

not increase the revenue generated by the Smith family business. Failure to reason with the 

context of the task as intended may have been a result of a lack of familiarity with real life 

situations where the discount is applied as described in the problem statement of Task 2. That is, 

the context of the task may not have been realistic to the students. 

Third, a majority of the students reasoned discretely about relationships among several 

quantities (number of units produced and sold, total cost, total revenue, and profit) while creating 

a profit graph in a continuous representation (Task 3). This may, in part, be attributed to the fact 

that the context in all the tasks is discrete. It can be argued that students’ focus on the context of 

Task 3 shifted their attention away from the representation of the task, that is, the continuous 
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total cost and total revenue function respectively in the task which is why they reasoned 

discretely and in one case created a discrete profit graph instead of a continuous graph. 

Fourth, students often used different ways to represent relationships between or among 

several quantities in different contexts. For example, the pair of students, Kierra and Isaac used a 

graph to represent the relationship among the number of computers sold, the discount, and the 

revenue in a revenue maximization context (Task 2). Yuri and Kyle used a graph and an 

algebraic equation to represent to represent the relationship between number of computers sold 

and the revenue. Mark and Carlos used a graph to represent the relationship among number of 

units produced and sold, marginal cost, and marginal revenue in a profit maximization context 

(Task 4). 

Fifth, two pairs of students interpreted a sequence of positive and decreasing values of 

marginal profit as production and sales of computer chips is increased from 400 to 402 units in 

the table shown in Task 4 to mean that marginal profit is increasing at these production and sales 

levels. They interpreted a negative and decreasing sequence of marginal profit values to mean 

that marginal profit is decreasing. This finding suggests that interpreting sequences of positive 

and decreasing quantities in an economic context is problematic for undergraduate students. 
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Chapter 6 – Discussion and Conclusions 

This was a qualitative study with a two-fold purpose: (1) to examine opportunities 

provided by a business calculus textbook and classroom instruction for business calculus 

students to learn about optimization problems, marginal change, and quantitative reasoning in the 

economic context of cost, revenue, and profit and (2) to examine business calculus students’ 

interpretation of marginal change and quantitative reasoning when solving optimization 

problems that are situated in the economic context of cost, revenue, and profit. I analyzed a 

business calculus textbook (Haeussler et al., 2011), business calculus lectures, and task-based 

interviews (Goldin, 2000) conducted with 12 pairs of students to answer my research questions: 

1. What opportunities to learn about (a) optimization problems, (b) the concept of marginal 

change and (c) quantitative reasoning in the context of cost, revenue, and profit do 

business calculus textbooks and classroom instruction provide to business calculus 

students?  

2. How do business calculus students reason algebraically about optimization problems that 

are situated in the context of cost, revenue, and profit? 

3. How do business calculus students interpret marginal change when solving optimization 

problems that are situated in the context of cost, revenue, and profit? 

4. What do business calculus students’ responses to optimization problems involving 

multiple covariates that are situated in the context of cost, revenue, and profit reveal 

about their quantitative reasoning? 

Following is a discussion of the main findings of my study. These findings are discussed in light 

of the related literature. I then discuss the limitations of this study and possible areas for future 
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research, followed by a discussion of the implications of this study. The chapter concludes with 

final remarks that highlight the major contributions of this study. 

Discussion of Findings 

Opportunity to learn via the textbook and course lectures. Research on the 

opportunity to learn via mathematics textbooks is well documented at the pre-college level (e.g., 

Alajmi, 2012; Kolovou et al., 2009; Wijaya et al., 2015). However, little is known about the 

opportunity to learn mathematics via textbooks at the undergraduate level, a gap in knowledge 

that this study sought to narrow. 

The first finding from this study is that both the textbook and course lectures provided 

students with limited opportunities to practice solving a wide range, in terms of cognitive 

demands (reproduction, connection, and reflection) and representations (algebraic, graphic, 

tabular, and verbal) of different types of optimization and marginal change problems in an 

economic context. Analysis of the textbook and course lectures revealed that the presentation of 

problems (e.g., optimization and marginal change related problems) was largely algebraic. This 

has the potential to promote a procedural understanding of mathematical ideas such as the 

concept of marginal change. This finding is consistent with that of Mesa et al. (2012) who 

examined the opportunity to learn about the concept of a function from ten college algebra 

textbooks from different learning institutions. These researchers found that “textbooks, 

independent of the type of institution in which they are used, present examples that have low 

cognitive demands, expect single numeric answers, emphasize symbolic and numerical 

representations, and give very few strategies for verifying correctness of the solutions” (p. 76). 

Consistent with the finding of Mesa et al., a majority of the optimization and marginal change 

tasks given in the textbook are algebraic, expect single numeric answers, and are tasks of low 
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cognitive demand (reproduction tasks). It is, therefore, not a surprise that reasoning about non-

algebraic and cognitively demanding tasks such as those used in this study (Tasks 2, 3, and 4 in 

Appendix A) was problematic for a majority of the students. Contrary to the findings of Mesa 

and colleagues, verifying the correctness of mathematical solutions (e.g., verifying that a certain 

critical number is a revenue maximizing quantity such as in Example 8 in Appendix H) was 

generally encouraged in the textbook and in course lectures. Unlike in Mesa et al.’s study, none 

of the tasks (Appendix H and Appendix I) in the textbook emphasized numerical representations 

(numerical tables). 

A second finding from this study is that the opportunity for students to learn how to solve 

optimization and marginal change tasks (Appendix H and Appendix I) that have different types 

of contexts and information is limited in the textbook and in course lectures. All the optimization 

and marginal change tasks presented in the textbook and in course lectures had matching 

information while only a few problems had a realistic and essential context. A majority of the 

optimization and marginal change tasks given in the textbook and in course lectures had a 

camouflage context. Other researchers (e.g., Wijaya et al., 2015) have argued against engaging 

students in solving tasks with a camouflage context as such tasks do not encourage students to 

consider and reason with the context of a problem when solving applications problems. While 

reasoning about Task 1, a task with a camouflage context, a majority of the students did not 

consider the context of the problem. Consequently, they indicated that the manufacturer in the 

task could produce either a negative number of units or more than the number of units that are 

possible to produce per year when reasoning about the first derivative test. Maass (2010) 

recommended that students should be given tasks with different types of information especially 
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tasks with either missing or superfluous information as such tasks encourage students to consider 

the context when solving application problems. 

A third finding from this study is that the concept of marginal change was poorly 

presented in the textbook and in course lectures. In both the textbook and in course lectures, 

marginal change was defined as a rate (the difference quotient) and interpreted as an amount (the 

difference), something that is likely to be confusing to students. It is not surprising that all but 

one of the students who participated in this study treated marginal cost as an amount (difference) 

when they indicated that the units of marginal cost and marginal revenue in Task 4 would be 

dollars instead of dollars per unit. The only student who stated that the units of marginal revenue 

would be in dollars per unit explained that “marginal revenue is additional, extra revenue per 

unit.” This suggests that this student considered marginal revenue as a rate with units of dollars 

per unit and not as a difference with units of dollars. Units of marginal change were not given in 

the two examples given in the textbook (Appendix I) and in the examples given in course lecture 

B (Appendix F). Units of marginal change (in dollars per unit) were given in two of the five 

marginal change examples given in course lecture B (examples 4 and 5 in Appendix G). 

A fourth finding from this study related to opportunity to learn via the textbook and 

course lectures is that opportunities to reason about important relationships between or among 

quantities were extraordinarily low in the textbook and never discussed in course lectures. The 

fundamental principle of economics which states that maximum profit occurs at a production and 

sales level when marginal cost equals marginal revenue provided total cost is greater than total 

revenue at that level received little attention in the textbook and no attention at all in course 

lectures. There were two instances where this principle was discussed, one at the end of an 

expository section in the textbook and the other in one practice problem given in the textbook. I 
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argue that the scarcity of opportunities, in the textbook and in course lectures, that are intended 

to expose students to this principle may be the reason why a majority of the students who 

participated in this study incorrectly indicated that there is no profit when marginal cost equals 

marginal revenue at a production and sales level of 402 computer chips in Task 4, when, in fact, 

profit is maximized at this level. In part, this incorrect reasoning by the students that there is no 

profit at a production and sales level of 402 units could be attributed to a poor understanding of 

the idea of marginal change, which, in turn, could be attributed to the poor presentation of 

marginal change in the textbook and in course lectures. 

In summary, a major finding of this study with regard to the opportunity to learn 

mathematics via textbooks and course lectures at the undergraduate level is that the presentation 

of topics in course lectures closely followed the presentation of topics in the textbook. In 

particular, the presentation of optimization problems and the concept of marginal change in the 

course lectures I observed closely followed the presentation of optimization problems and 

marginal change in the textbook. That is, the textbook had a major influence on the instructors on 

their teaching of optimization problems and the concept of marginal change. In essence, 

students’ opportunities to learn mathematics via classroom instruction are similar to those they 

have to learn mathematics via mathematics textbooks.  

Students’ algebraic reasoning when solving optimization problems. Research on 

students’ algebraic reasoning about routine optimization problems in non-economic contexts is 

well documented in the research literature (e.g., Brijlall & Ndlovu, 2013; Swanagan, 1996; 

White & Mitchelmore, 1996). In what follows, I report on three findings related to students’ 

algebraic reasoning when solving the routine optimization problem posed in Task 1. The first 

two findings are confirmatory in that they have been previously reported in other studies, 
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however, the third finding has not been previously reported in other studies, which makes it a 

new contribution. 

First, nearly half of the students had difficulty setting up the profit function (objective 

function) even though a majority of the students had an idea of what they needed to do to be able 

to set up the profit function. In particular, a majority of the students could verbalize how the 

quantities, namely cost, revenue and profit are related (profit equals revenue minus cost) but they 

had difficulty representing this relationship among these quantities algebraically which was key 

to solving the problem posed in the task. To a large extent, students’ difficulty in setting up the 

profit function was finding the revenue function, which in itself, was a result of not 

understanding what the demand equation given in the task represented. Some students 

interpreted the demand equation as a profit function, others as price, and yet others interpreted it 

as a product. Students’ difficulties in setting up the objective function when solving optimization 

problems in non-economic contexts have also been reported by other researchers (e.g., 

Klymchuk et al., 2010; Swanagan, 2012; Villegas et al., 2009; White & Mitchelmore, 1996). The 

five AP calculus students studied by Swanagan (2012) had difficulty setting up the objective 

function when asked to determine the maximum area for a rectangular plot of land and only ten 

(out of 201) engineering students in Klymchuk’s (2010) study were successful in setting up the 

objective function in a physics context. Essentially, my study confirmed that setting up the 

objective function in an economic context is problematic for undergraduate students. A new 

insight gained from my study is that even when students are unsuccessful in setting up the 

objective function algebraically, sometimes they are able to verbalize the quantities involved in 

setting up the objective function.  
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Second, only five pairs of the students who participated in this study were successful in 

determining the critical numbers for the profit function in Task 1; a majority of the students did 

not even get to the point of determining critical numbers as a result of the difficulty in setting up 

the profit function algebraically. However, only three of these five pairs correctly interpreted one 

of the critical numbers as the number of units that must be sold to maximize profit. The other 

two pairs interpreted critical numbers as extrema. These students indicated that the number of 

units that must be sold to maximize profit is actually the maximum profit. Treating critical 

numbers as extrema has also been reported by Brijlall and Ndlovu (2013). These researchers 

found that the high school students they studied treated the critical numbers (dimensions of a box 

that will result in a box with minimal volume) as if they were possible minimum values for the 

volume of the box. It is surprising that although the students in this study were generally 

encouraged to interpret critical numbers through the examples given in the textbook and in 

course lectures, only a few of the students correctly interpreted critical numbers in this study. 

Third, nearly all the students treated the absolute extrema problem in Task 1 as if it were 

a relative extrema problem. The students who were successful in finding an algebraic form of the 

profit function in addition to determining the critical numbers did not check to see if profit is 

maximized at the endpoints of the domain [0,120] of the profit function. Instead, once they 

determined (e.g., using the first derivative test) that the critical number 40 is the profit 

maximizing quantity, they only evaluated the profit function at 40 units to get the maximum 

profit. That is, they did not check whether or not profit is potentially maximized at a production 

and sales level of 120 units, one of the endpoints of the domain of the profit function. Treating 

the absolute extrema problem as if it were a relative extrema problem in Task 1 may be directly 

related to the limited opportunities the students had to learn about optimization problems via the 
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textbook and course lectures respectively. Only two of the eleven optimization tasks in the 

textbook were absolute extrema problems. None of the optimization examples given in course 

lectures was an absolute extrema problem. There is no research that has reported on students’ 

treatment of absolute extrema problems as if they were relative extrema problems, hence this is a 

new finding.  

Students’ interpretation of marginal change when solving optimization problems. 

Understanding marginal change is vital in several fields such as marketing, managerial 

accounting, supply chain management, finance, and economics. However, there is a dearth of 

research on students’ interpretation of marginal change at all levels. Analyses of students’ 

responses to the four tasks in Appendix A revealed four significant findings related to 

undergraduate students’ interpretation of marginal change in an economic context. 

First, ten pairs of students incorrectly interpreted marginal cost as total cost in different 

profit maximization contexts (Task 3 and Task 4). Four pairs of students interpreted marginal 

cost as total cost in Task 3, a continuous representation, and in Task 4, a discrete representation. 

These students gave the total cost of producing the first two units in Task 3 as the marginal cost 

(the cost of producing the second unit). They also indicated that profit is zero when marginal cost 

equals marginal revenue in Task 4, thus interpreting marginal cost as total cost and marginal 

revenue as total revenue. Three other pairs of students interpreted marginal cost as total cost only 

in Task 3. Another three pairs of students interpreted marginal cost as total cost only in Task 4.  

Taken together, this finding suggests that students tend to interpret marginal cost as total cost in 

profit maximization contexts regardless of the representations (continuous or discrete) of the 

tasks in which the contexts are given. 
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Second, nearly all the students who participated in this study interpreted marginal change 

as an amount (the difference) and not as a rate of change per unit of one (the difference quotient). 

These students stated that the units of marginal cost and marginal revenue in Task 4 would be 

dollars. Only one student interpreted marginal change as a rate of change per unit of one (the 

difference quotient). This student stated that the units of marginal cost and marginal revenue in 

Task 4 would be dollars per unit. Similar results were reported by Lobato et al. (2012) in a 

kinematics context. Essentially, my study has shown that in an economic context, students tend 

to interpret marginal change as the difference and not as the difference quotient. As discussed 

earlier, to some extent, students’ interpretation of marginal change as both a difference and a 

difference quotient can be attributed to the opportunities in the textbook and in course lectures, 

they had to learn about marginal change. Marginal change was defined as a rate per unit of one 

(the difference quotient) and interpreted as an amount (the difference) both in the textbook and in 

course lectures.  

Third, a majority of the students’ interpretations of marginal change tended to change 

within and across the four tasks they were given. One pair of students, John and Fred, interpreted 

marginal change as a consecutive relationship between one value and the next value in Task 3 

and as a difference between two quantities in the same task. Another pair of students, Nevaeh 

and Zoe, interpreted marginal cost (the cost of producing the second unit) in Task 3 as a 

difference between two quantities but at another time within the same task, these students 

interpreted the cost of producing the second unit as the length of a line segment on a graph. Joy 

and Nancy interpreted marginal change as a consecutive relationship between one value and the 

next value in Task 2 but then they interpreted marginal cost as total cost in Task 3. Denise and 

Ivy interpreted marginal change as a difference between two quantities in Task 3 but then they 
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interpreted marginal cost as total cost in Task 4. Taken together, these results suggest that 

students have weak understandings of the concept of marginal change and that their 

interpretations of this concept varied in different contexts and representations of economic 

situations.  

Fourth, three pairs of students interpreted marginal change as the derivative of some 

function while reasoning about two profit maximization contexts, Task 1 and Task 4. One of 

these pairs of students, Sarah and Alan, indicated that “marginal cost” would be the derivative of 

the total cost function while reasoning about Task 1. Another pair of students indicated that “if 

you take the derivative of the revenue, it gives you marginal revenue” while reasoning about 

Task 4. In light of the opportunities that students had to learn about the concept of marginal 

change, it is not surprising that some of the students who participated in this study interpreted 

marginal change as the derivative. The presentation of marginal change in both the textbook and 

in course lectures promoted a procedural understanding of marginal change over a conceptual 

understanding of marginal change. Opportunities for students to interpret marginal change (e.g., 

marginal cost) in the textbook and in course lectures were limited. A vast majority of the 

marginal change tasks given in the textbook and in course lectures did not require students to go 

beyond finding derivatives algebraically (e.g., derivative of the total cost function to get a 

marginal cost function) and evaluating those derivatives at different inputs (e.g., evaluating a 

marginal cost function at a production level of 50 units).  

Students’ quantitative reasoning when solving optimization problems. Much of the 

existing research literature that has looked at students’ quantitative reasoning is at the secondary 

level and scattered. A few research studies (e.g., Ärlebäck et al., 2013; Moore & Carlson, 2012; 

Moore et al., 2014) have looked at students’ quantitative reasoning at the undergraduate level. 
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Analysis of students’ verbal responses and written work to the four tasks in Appendix A revealed 

four findings related to students’ quantitative reasoning at the undergraduate level. 

First, creating new quantities while reasoning about a revenue maximization context 

(Task 2) and a profit maximization context (Task 1) was common among the students who 

participated in this study. Eleven pairs of students created new quantities which they reasoned 

with and which helped them to solve the problem posed in Task 2: advising the Smith family on 

whether or not to sign the contract. Fred and John, who are one of the eleven pairs of students, 

created and reasoned about a new quantity (the point of diminishing marginal return) which is 

the maximum number of computers (330) that must be sold in order for the Smith family 

business to get maximum revenue. Their quest to determine this quantity helped them give 

reasonable advice to the Smith family: sign the contract if the school orders at most 330 

computers. The creation of this quantity also helped the students understand and further reason 

about the relationship among sales (the number of computers sold), the revenue, and the 

discount. On the other hand, only six pairs of students created new quantities (e.g., the profit 

function created by Sarah and Alan in Task 1) which helped them solve the problem posed in 

Task 1. Other students, such as Denise and Ivy, created quantities that did not help them solve 

the problem posed in the task: finding maximum profit for the manufacturer mentioned in the 

task. Denise and Ivy created a new quantity, which they referred to as the profit function, by 

dividing the total cost function by the number of units produced. These students later indicated 

that they needed numbers to plug in their profit function and when they could not determine how 

these numbers could be found, they gave up on the task claiming that they were “bad at math.” 

Second, nearly all the students who participated in this study reasoned discretely about 

relationships among several quantities (number of units produced and sold, total cost, total 
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revenue, and profit) while creating a profit graph in a continuous representation (Task 3). Since 

the context of the task (producing and selling units of jackets) is discrete, it may have been that 

the students’ focus on the discreteness of the context of the task shifted their attention away from 

the continuous representation of the task: the continuous functions (total cost and total revenue) 

in the task. Consequently, when creating the profit graph, the students in this study did not seem 

to realize that these quantities (number of units produced and sold, total cost, total revenue, and 

profit) co-varied and that they were continuous. Similar findings have been reported in other 

non-economic contexts (e.g., Lobato & Siebert, 2002; Moore & Carlson, 2012). Moore and 

Carlson (2012) engaged nine precalculus students in creating a formula for the volume of a box 

“formed by cutting equal-sized squares from each corner” (p. 51).” These researchers observed 

that “it was only after the students imagined the process of making the box and considered how 

the relevant quantities of the situation changed in tandem that they created a correct volume 

formula” (p. 57). It was only when the student studied by Lobato and Siebert (2012) understood 

the length and height of a wheelchair ramp to be co-varying quantities that he began to reason 

correctly about the steepness of a wheelchair ramp. Essentially, this finding shows that reasoning 

about relationships involving co-varying quantities in an economic context is problematic for 

students. Failure to understand co-varying quantities resulted in students treating the continuous 

quantities (number of units produced and sold, total cost, total revenue, and profit) in Task 3 as if 

they were discrete. 

Third, a few of the students who participated in this study demonstrated a lack of 

understanding of what it means for the quantity, marginal profit, to be decreasing. These students 

interpreted a sequence of positive and decreasing quantitative differences (D=MR-MC) as 

production and sales of computer chips is increased from 400 units to 402 units in Task 4 to 
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mean that marginal profit is increasing at these production and sales levels. They also interpreted 

a sequence of negative and decreasing quantitative differences as production is increased from 

403 to 405 units in Task 4 to mean that marginal profit is decreasing. This suggests that in the 

students’ view, a quantity (marginal profit in this case) is only decreasing if it is negative, 

otherwise the quantity is increasing. In contrast, research by Arleback et al., (2013) found that 20 

of the 49 students they studied had difficulty interpreting a sequence of negative and increasing 

rates of change of voltage in the context of a discharging capacitor. Taken together, this finding 

and that of Ärlebäck and colleagues suggests that interpreting, in context, decreasing sequences 

that describe the behavior of a quantity is problematic for undergraduate students.  

Fourth, some of the students who participated in this study used different ways to 

represent relationships between or among quantities in addition to verbalizing these 

relationships. Kierra and Isaac used a graph to represent the relationship among the number of 

computers sold, the discount, and the revenue in a revenue maximization context (Task 2), Yuri 

and Kyle used a graph and an algebraic equation to represent the relationship between the 

number of computers sold and the revenue, and Mark and Carlos used a graph to represent the 

relationship between number of units produced and sold, marginal cost, and marginal revenue in 

a profit maximization context (Task 4). Given that quantitative reasoning received little attention 

in the textbook and in course lectures, it is rather surprising that the students in this study 

verbally reasoned about relationships between or among quantities in addition to using different 

ways to represent these relationships. 

Limitations of this Research and Future Research 

Like any research study, this study has limitations that need to be pointed out. The first 

limitation has to do with the design of my study. In this study, I only examined examples given 
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in course lectures (Appendix F and Appendix G) and examples and practice problems given in 

the course textbook (Haeussler et al., 2011) as opportunities for students to learn about solving 

optimization problems, the concept of marginal change, and quantitative reasoning in an 

economic context respectively. I did not examine weekly online homework problems. 

Second, the examination of students’ quantitative reasoning carried out in this study only 

focused on the creation of new quantities by students, how these quantities helped (or did not 

help) students in solving the problems posed in the tasks, how students talked about relationships 

between or among quantities, and how students represented relationships between or among 

quantities in multiple ways such as using graphs and algebraic equations. Examining how 

students engage in covariational reasoning while modeling multivariable situations such as when 

creating the profit graph in Task 3, is an important aspect of covariational reasoning which I did 

not explore in this study. Future research might look at the nature of covariational reasoning 

exhibited by students when modeling multivariable situations in different context areas including 

economics. 

Third, although the data I collected using task-based interviews is rich in that I was able 

to use it to answer my research questions, the data could have been richer had I consistently 

followed my interview protocol. For example, when asking students about the cost of the 

company mentioned in Task 3 to produce the second unit, sometimes I asked, “how much does it 

cost the company to produce the second unit,” and yet at other times I asked, “how much does it 

cost the company to produce the second unit not the first two units” which I later recognized are 

two different ways of asking about the cost of the second unit. The former approach is preferred 

in that it only asks about the cost of producing the second unit whereas the latter approach makes 

a distinction (for the students) between the cost of producing the second unit and the cost of 
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producing the first two units. Using two different ways to ask about the cost of producing the 

second unit made it harder to know who among my participants could clearly distinguish 

between marginal cost (the cost of producing the second unit) and total cost (the cost of 

producing the first two units). 

Fourth, with regard to the examination of students’ reasoning about the concept of 

marginal change, the scope of this study was limited to the interpretation of marginal change. I 

did not, however, examine the relationship between the derivative and marginal change: the 

derivative (a continuous function) as an approximation of marginal change (a discrete quantity). 

Future research might look at this relationship.  

Fifth, even though some of the participants in this study had taken some business or 

economics classes beyond calculus (or they had taken AP economics at high school) and other 

students had only taken (or were taking) business calculus, this study did not look at how these 

two groups of students compared in their reasoning about important ideas in the tasks such as the 

concept of marginal change. It would be of interest for future research to examine how students 

who have an economics or business background draw on this background to reason about some 

of the ideas rooted in the tasks such as the concept of marginal change (marginal cost, marginal 

revenue, and marginal profit) and how their reasoning about marginal change compares with that 

of students who have only taken business calculus and lack an economics or business 

background.  

Sixth, in light of the fact that a self-selection process was used to recruit the students who 

participated in this study, it is important to highlight the limitations of this process on the sample 

of students who were recruited. One limitation is that only interested students chose to 

participate in this study so that the sample of students who participated in this study were not 
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representative of all the students who took business calculus in the spring or fall semester of 

2015. Consequently, the findings of this study cannot be generalized to all the students who took 

business calculus in the spring or fall semester of 2015. Given that a majority of the students who 

participated in this study were high achieving students (Table 2), little is known about the 

average students or even the low achieving students’ reasoning about optimization problems in 

an economic context.  

Implications of this Study 

The findings of this study have implications for textbook authors and textbook selection 

committees, business calculus instructors, economics instructors, and theory. 

 Implications for textbook authors and textbook selection committees. A vast 

majority of the optimization and marginal change tasks presented in the textbook had a 

camouflage context and matching information. These tasks were largely algebraic in nature in 

addition to being tasks of low cognitive demand. I recommend that business calculus textbook 

authors include a much broader range of economic-based optimization and marginal change 

examples and practice problems in terms of types of context, types of information, types of 

cognitive demands, and representations of tasks to maximize the learning opportunities provided 

by their textbooks. Also, given that this study revealed that students had limited opportunities to 

learn about absolute extrema problems in an economic context, authors of business calculus 

textbooks might want to consider adding more of such problems in their textbooks.  

Opportunities to reason about important relationships in economics such as the 

relationship between marginal cost and marginal revenue at a profit-maximizing quantity 

received little attention in the textbook that was analyzed in this study. My recommendation is 

that business calculus textbook authors need to include more discussions of such relationships in 
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their textbooks if students are to be proficient in reasoning about relationships between or among 

economic quantities by the time they complete a business calculus course. The recommendations 

I made for textbook authors above also apply for textbook selection committees. In particular, 

textbook selection committees need to select textbooks that will provide students with a wide 

range of opportunities to: (1) learn about solving a wide range of optimization problems, (2) 

support students to develop a deep and conceptual understanding of the concept of marginal 

change, and (3) reason about important relationships among quantities in economics.  

Implications for business calculus instructors. According to Reys et al. (2004) “the 

choice of textbooks often determines what teachers will teach, how they will teach it, and how 

their students will learn” (p. 61). This was the case in this study as the examples given in course 

lectures (Appendix F and Appendix G) were either the same or minor adaptations of those given 

in the textbook (Appendix H). Also, the definition and interpretation of marginal change 

presented in course lectures was the same definition and interpretation of marginal change 

presented in the textbook. Given the limitations, highlighted in the preceding paragraphs, of the 

examples and practice problems in the course textbook, business calculus instructors may need to 

supplement the examples and practice problems given in business calculus textbooks to include: 

(1) tasks with realistic contexts, (2) tasks with superfluous (or missing) information, (3) tasks of 

higher cognitive demands, and (4) tasks with multiple representations (e.g., using graphs and 

numerical tables) in order to maximize students’ opportunity to learn from such tasks which are 

rare in the textbook that was analyzed in this study. 

Students’ difficulties with some of the concepts that were examined through the task-

based interviews have implications for business calculus instructors. The presentation of 

marginal change during classroom instruction was limited to the use of algebra. Opportunities to 
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learn about marginal change from other representations such as graphs and numerical tables 

during classroom instruction and in the textbook examples and exercises were totally absent. 

This might be the reason why in Task 4 (a numerical representation of marginal change), some 

of the students in this study interpreted marginal revenue as the derivative of the revenue 

function and not as the revenue generated per additional computer chip that is sold. Business 

calculus instructors need to provide opportunities for students to reason about marginal change 

from graphs and numerical tables in addition to the use of algebra. Given that the presentation of 

marginal change during classroom instruction closely followed the presentation of marginal 

change in the textbook, this study shows the influence of the textbook on business calculus 

instructors. To maximize the opportunity to learn about marginal change during classroom 

instruction, business calculus instructors may need to adapt the presentation of marginal change 

in the textbook to include opportunities for students to reason about realistic and cognitively 

demanding marginal change problems.  

A majority of the students interpreted marginal cost as total cost. Business calculus 

instructors need to be clear in their presentation of marginal change during classroom instruction 

that these quantities (marginal cost and total cost) are not the same. The distinction between 

these quantities can be emphasized through carefully designed homework assignments on 

marginal change. The distinction between marginal cost and total cost was not made clear in the 

examples and practice problems on marginal change that were given in the textbook which 

means that business calculus instructors may either have to create their own problems or adapt 

those given in the textbook to include opportunities for students to reason about these two 

quantities.  
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A majority of the students interpreted marginal change differently in different contexts 

and representations of tasks. For example, some students interpreted marginal change as an 

amount (a difference between two values) in Task 3, a graphical and profit maximization 

context. These same students interpreted marginal change as a rate in Task 4, a numerical 

representation and profit maximization context. There is a need for business calculus instructors 

to help students develop a robust understanding of the concept of marginal change that would be 

invariant in different contexts and representations of tasks. Marginal change was defined as a 

rate and interpreted as an amount in the textbook. Business calculus instructors need to notice the 

discrepancy in the definition and interpretation of marginal change given in the textbook and 

address it during classroom instruction. 

The only way students reasoned about relationships between or among quantities in this 

study was to create new quantities. This may have been influenced by the opportunities they had 

to reason about relationships between or among quantities during classroom instruction and in 

the textbook. There were no opportunities for students to reason about important relationships 

such as the relationship among marginal cost, marginal revenue, and profit that were presented 

during classroom instruction and only two such opportunities in the textbook: one at the end of 

an expository section and another as a practice problem. Given the importance of quantitative 

reasoning skills for economics or business majors, business calculus instructors need to provide 

opportunities for students to engage in reasoning about quantities, relationships among 

quantities, and representing relationships among economic quantities in multiple ways (e.g., 

using graphs and numerical tables). 

Implications for economics instructors. In light of the importance of quantitative skills 

in the study of economics, the findings of this study have implications for economics instructors. 
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A majority of the students in this study could easily and correctly find derivatives of functions 

(e.g., the derivative of the total cost function). However, they had difficulty interpreting calculus 

based results such as critical numbers (e.g., profit maximizing quantity in Task 1). These 

students had weak understandings of the concept of marginal change, a concept that has 

important applications in economics in addition to having had a limited exposure to reasoning 

about important relationships among economic quantities such as the relationship among 

marginal cost, marginal revenue, and profit. Being aware and mindful of students’ difficulties 

with interpreting calculus-related concepts such marginal change and critical numbers might be 

helpful for economics instructors in their teaching of economics classes (e.g., mathematical 

microeconomics) where knowledge of calculus is crucial. 

Implications for theory. The findings of this study have implications for the theories of 

learning used to frame this study. In the theory of realistic mathematics education (RME), 

horizontal mathematising is concerned with moving from the world of life to the world of 

mathematical symbols. This includes developing a mathematical model (e.g., a profit function) 

from a textual problem. As an extension of RME, there is a need to add reverse horizontal 

mathematising which will be concerned with moving from the world of mathematical symbols 

back to the world of life. This includes interpreting critical numbers and extrema for a 

mathematical model in a real-world context.  

The theory of quantitative reasoning deals with explicit quantities and relationships 

between or among quantities. Students in this study sometimes reasoned about quantities 

implicitly; they did not mention the units associated with quantities explicitly when reasoning 

about relationships between or among quantities. For example, when talking about the advice 

they would give to the Smith family in Task 2 on whether or not to sign the contract, several 
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students talked about the number of computers sold and the revenue generated; the discount and 

its units were treated as implicit quantities. A few researchers (e.g., Lobato & Siebert, 2002; 

Moore & Carlson, 2012) have written about students’ use of implicit quantities in quantitative 

reasoning. There is a need to address the issue of how students talk about implicit quantities and 

how they represent these quantities when reasoning about relationships among quantities in the 

theory of quantitative reasoning. 

Final Remarks 

With this study, I sought to add to the knowledge base in three research areas: (1) the role 

of undergraduate mathematics textbooks in students’ learning about optimization problems, 

marginal change, and quantitative reasoning in an economic context, (2) students’ interpretation 

of marginal change in an economic context, and (3) students’ quantitative reasoning: reasoning 

about quantities and relationships between or among quantities in an economic context. In what 

follows, I highlight the major contributions of my study with respect to the aforementioned 

research areas. 

Results from the analysis of the textbook and the course lectures that were observed in 

this study suggest that undergraduate mathematics textbooks play a significant role in 

determining what students learn. The content (e.g., definition and interpretation of marginal cost) 

presented in the course lectures that were observed in this study was generally the same as the 

content presented in the textbook that was analyzed in this study. Also, the optimization and 

marginal change examples that were given in course lectures were either the same examples 

given in the textbook or they were minor adaptations of the examples given in the textbook.  

Engaging students in solving optimization problems in the economic context of cost, 

revenue, and profit revealed that students interpret marginal change differently in different 
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contexts and representations of tasks. For example, some students interpreted marginal change as 

a consecutive relationship between one value and the next value in a revenue-maximization 

context and discrete representation (Task 2). These students interpreted marginal cost as total 

cost in a profit maximization context and continuous representation (Task 3).  

This study also explored students’ quantitative reasoning when analyzing multivariable 

situations in an economic context. A review of the literature on quantitative reasoning indicates 

that there is no research that has previously engaged students in reasoning about relationships 

among several variables in any context area including economics. To reason about relationships 

among quantities while analyzing multivariable situations in an economic context, the students 

who participated in this study created new quantities. These quantities helped them answer the 

questions posed in the tasks. For example, one pair of students created a new quantity, 

diminishing marginal returns, which helped them answer the question posed in Task 2: advising 

the Smith family business on whether or not to sign the contract to supply a school with 

computers. The creation of this quantity also helped the students correctly reason about the 

relationship among sales (number of computers sold), discount, and revenue. Other students 

represented relationships between or among quantities using multiple ways (e.g., using graphs 

and algebraic equations) in addition to making verbal statements about the relationships. 

Vertical and horizontal mathematising are important features of the theory of realistic 

mathematics education (RME). In light of RME, as one of the theoretical frameworks guiding 

this study, I found that engaging in vertical mathematising (manipulation of mathematical 

symbols) was problematic for nearly half of the students in this study. These students had 

difficulty formulating the profit function (objective function) algebraically from the demand 

equation and total cost function given in Task 1. One pair of students that was successful in 
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setting up the profit function made a computational error while evaluating the discriminant of the 

quadratic formula which resulted in them getting incorrect critical numbers, which is another 

example of vertical mathematising. There were almost no opportunities for students to engage in 

horizontal mathematising (translating text to algebraic symbols) as the demand equation and total 

cost function were given in algebraic form in Task 1. Only one student (Yuri) engaged in 

horizontal mathematising in Task 2 when he determined the revenue function algebraically from 

the text of the problem statement of the task. 

Performing quantitative operations (creating new quantities), reasoning about 

relationships between or among quantities, and representing relationships between or among 

quantities are important characteristics of the theory of quantitative reasoning (TQR), another 

theoretical framework guiding this study. In light of these characteristics, several students 

created new quantities which they used to reason about important relationships in this study. 

Fred and John, for example, created the diminishing marginal return quantity which helped them 

analyze the relationship among sales (number of computers sold), the discount, and the revenue 

in Task 2. Creating and reasoning about this quantity also helped them solve the problem posed 

in the task: advising the Smith family on whether or not to sign the contract to supply a school 

with computers. At times, students created quantities that did not help them to solve the problem 

posed in Task 1. Other students used different ways to represent relationships among quantities. 

Kierra and Isaac used a graph to represent the relationship among sales, the discount, and the 

revenue. Yuri and Kyle used an algebraic equation and a graph to represent the relationship 

among sales, the discount, and the revenue. Carlos and Mark used a graph to represent the 

relationship among number of units produced and sold, marginal cost, marginal revenue, and 

marginal profit. 
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Adapting Goldin’s (2000) free problem solving principle might have influenced the 

results of this study and the interpretation of the results. For example, my interjection with 

prompts or probes when students were reasoning about the cost of producing the second unit 

(marginal cost) in Task 2 might have resulted in the loss of additional information on students’ 

interpretation of marginal change. When asking about the cost of producing the second unit, I 

sometimes interjected to clarify that I wanted them to determine the cost of producing the second 

unit (marginal cost) and not the cost of producing the first two units (total cost). Interjecting this 

way may have enabled students to recognize that the cost of producing the second unit and the 

cost of producing the first two units are two distinct quantities, a distinction that was meant to be 

made by the students without the researcher’s help. This made it hard to determine with certainty 

the students who knew that these quantities were distinct from those who did not. Essentially, I 

could not rely only on students’ responses about the cost of producing the second unit as the only 

source of evidence to support the claim that a majority of the students in this study confused 

marginal cost with total cost. To further examine students’ reasoning about marginal cost and 

total cost, I asked them about the relationship between profit, marginal cost, and marginal 

revenue in Task 4. The reliability of the task-based interview protocol (examining the same 

understanding through multiple questions) helped to establish the validity of the claim that a 

majority of the students in this study confused marginal cost with total cost. 

In conclusion, my study makes four significant contributions on the opportunity to learn 

calculus via textbooks and course lectures, students’ algebraic reasoning, students’ interpretation 

of marginal change, and students’ quantitative reasoning at the undergraduate level respectively. 

First, students’ difficulties when reasoning about optimization and marginal change problems are 

related to the opportunities they have to learn about these topics in calculus textbooks and in 
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course lectures. Second, students tend to treat absolute extrema problems as if they were relative 

extrema problems when solving applied optimization problems in an economics context. Third, 

students’ interpretation of marginal change varies with the context and representation of the tasks 

they are given. Fourth, creating new quantities helps students to reason about relationships 

among quantities when analyzing multivariable situations in an economic context.  
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Appendix A: Task-based Interview Protocol 

Task 1 

(Haeussler, Paul, & Wood, 2010, p. 617) 

A manufacturer can produce at most 120 units of a certain product each year. The demand 

equation for the product is 𝑝 = 𝑞2 − 100𝑞 + 3200 and the manufacture’s total cost function 

is 𝑐 =
2

3
𝑞3 − 40𝑞2 + 10,000, where 𝑞  denotes the number of units that are produced and sold. 

Find the maximum profit. 

Anticipations and possible prompts and probes: 

Anticipation: Although, I expect students to be able to solve this problem with ease, they  

        might not have a conceptual understanding of the algebraic procedure for  

        solving this problem. 

Possible prompts and probes: 

 Have you seen a problem like this before? 

 In your own words, explain to me what is going on in this problem. 

 What does taking the derivative do to your function [objective function]? 

 What do these numbers [critical numbers] mean? 

 What are the units of these numbers [critical numbers]? 

 How can you convince someone that this number(s) [critical number(s)] will result 

in maximum profit? 

 How can you convince someone that this is maximum profit? 

 What does the sign of the number you got by evaluating your equation [first 

derivative of objective function/second derivative of the objective function] tell 

you about the profit?  
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Task 2 

(Adapted from Hughes-Hallet et al., 2002) 

The Smith family runs an electronics business in Southern California. The family is considering 

signing a contract to supply a small junior high school with laptops, the exact number to be 

determined by the principal of the school later. For any supply of up to 300 laptops, the price per 

laptop will be $900. 

For any supply of more than 300 laptops, the school will receive a $2.50 discount per computer 

(on the whole order) for every additional computer over 300 supplied. 

The Smith family would like you to advise them whether or not to sign the contract. They want 

to make sure that they make the most amount of revenue possible from this contract. What 

advice can you give to the Smith family on whether or not to sign the contract and why? 

Anticipations and possible prompts and probes: 

Anticipation: Students might experience difficulty getting started on the problem 

Possible prompts and probes: 

 In your own words, tell me what’s going on in this problem. 

 How might you advise the Smith family? 

 What are you basing your advice on? 

 How can you convince the Smith family that this is the maximum revenue they can 

get? 

 Anticipation: Students might not realize the relationship between quantities in the problem. 

 Possible prompts and probes: 

 How does the discount affect the revenue? 

 Can you figure out the revenue when the school orders 300 computers? 

 Will the Smith family get more revenue or less revenue when 310 computers are 

ordered? 

 How do you know that? 

 Tell me more about that 

 Anticipation: Students might not explain in detail about when the Smith family’s revenue  

        will be maximized. 

 Possible prompts and probes: 

 Will there ever be a time when the discounts will not increase the Smith family’s 

revenue?  

 How do you know that?  

 Tell me more about that 
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Anticipation: Students might offer conflicting advice 

What to do in this case: I will have each student take a moment to write down their advice and 

then read it to the other student. I will then ask what each student thinks about the other students’ 

advice. If the conflict persists, I will accept each students’ advice and move on.  

Task 3 

(Adapted from Hughes-Hallet et al., 2002) 

Winter Store is a medium sized company that manufactures and sells high-quality winter jackets 

in northeastern United States. The following graph shows Winter Store’s total cost and total 

revenue when they make and sell up to 7000 jackets. A unit represents a batch of 1000 jackets.  

The store manager knows that the store owner is a visual person and as such he likes graphs. The 

store manager would like to be able to take a graph to the owner of the store that shows the profit 

of the store in order to recommend the number of jackets the store should manufacture and sell in 

order to maximize profit. The store manager has asked you to create a graph for the store owner.  

 

Possible prompts and probes: 

Anticipation: Students might not be able to see the profit on the given graph. 

Possible prompts and probes: 

 What is going on in this graph? 

 How much profit does the company generate by making and selling 1 unit? 
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 How about when the company makes and sells four units? 

 How can the store owner see the maximum profit in the graph above? 

 How can the store owner see the maximum profit in the graph you have created? 

 

Anticipation: students might not spontaneously speak about marginal change and as well as  

        the relationship between marginal change and maximum profit while working  

        on this task. 

Possible prompts and probes: 

 What can you say about marginal cost and marginal revenue where the profit is 

maximum?  

 How do you know that?  

 What is the company’s cost for producing the 2nd unit? How about the cost for 2 

units? 

 How can you find the company’s cost for producing the 2nd unit?  

 How can you see the company’s cost for producing the 2nd unit on the graph 

above? 

 What can you say about the company’s total cost, revenue, and profit at a 

production and sales level of 3 units? 

 What can you say about the company’s marginal cost, marginal revenue, and 

marginal profit at a production and sales level of 3 units? 
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Task 4 

The following table shows the marginal revenue and marginal cost at various production and 

sales levels for SciTech, a company that specializes in producing and selling computer chips.  

The company knows that total revenue is greater than total cost at all the production and sales 

levels shown on the table.  

What advice can you give to the management of the company about when to increase or decrease 

production and sales of computer chips? 

 

 

 

 

 

 

 

 

Possible prompts and probes: 

Anticipation: Students might lack a conceptual understanding of the quantities shown on the 

        table in addition to experiencing difficulty getting started on the problem 

Possible prompts and probes: 

 Explain to me what is going on in this table. 

 What are the units of the MR and MC values given on the table?  

 How do know the units are what you say they are? 

 What do you think the fourth column of this table means in terms of profit? 

Anticipation: In solving this problem students might not talk about the relationship between  

        total cost, total revenue and profit as well as marginal change and its   

        relationship to profit. They may also be able to distinguish between exact  

        marginal change and approximate marginal change. 

Possible prompts and probes: 

 How is the company’s profit changing over the production and sales levels shown 

in the table? 

 What can you say about how the company’s total cost, revenue, and profit are 

changing over the production and sales levels shown in the table? 

q (units) 400 401 402 403 404 405 

MR 

(marginal 

revenue) 

58 56 55 54 53 51 

MC 

(marginal 

cost) 

52 54 55 57 60 62 



 

 

231 

 

 What can you say about how the company’s marginal cost, marginal revenue, and 

marginal profit are changing over the production and sales levels shown in the 

table? 

 How much does it cost this company to produce the 401st computer chip? 

 Is this the exact cost or an approximation? How do you know that? 

 Which is cheaper producing the 401st computer chip or the 402nd computer chip? 

How do you know that? 

 How much profit does the company generate by making and selling the 401st 

computer chip? 
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Description of Tasks 

In the following table, the symbol 𝜋 denotes profit, 𝑅 denotes total revenue, 

𝐶 denotes total cost, 𝑐̅ denotes average cost, 𝑝 denotes the selling price per unit sold, 𝑞 

denotes the number of units produced or sold, 𝑀𝑃 denotes marginal profit, 𝑀𝐶 denotes 

marginal cost, and 𝑀𝑅 denotes marginal revenue. 

 Purpose of Task Quantities 

Involved  

Relationships 

of Quantities 

Representations 

of Quantities 

Context of 

Quantities 

Task 

1 

Examine students’ 

abilities to solve 

optimization 

problems similar 

to those given in 

their textbook.  

 

Examine students’ 

abilities to create 

and reason about 

new quantities 

when solving 

routine 

optimization 

problems in an 

economic context. 

 

Examine students’ 

reasoning about 

relationships 

among quantities: 

number of units 

produced and 

sold, total cost, 

total revenue, and 

profit. 

𝜋, 𝑅, 𝐶, 𝑝, 
and 𝑞 

𝜋 = 𝑅 − 𝐶 

𝑅 = 𝑝𝑞 

𝐶 = 𝑐𝑞 

Algebraic 

 

Profit-

maximization 

Task 

2 

Examine students’  

interpretation of 

marginal change 

(e.g., revenue 

from selling the 

301st computer).  

 

𝑅, 𝑝, 𝑞, 
and 𝑀𝑅 

𝑅 = 𝑝𝑞 Textual (verbal) 

 

Revenue-

maximization 
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Examine students’ 

reasoning about 

the relationship 

among the 

quantities: number 

of computers 

ordered, the 

discount, and the 

revenue that is 

generated. 

Task 

3 

Examine students’ 

interpretation of 

marginal change 

(e.g., the cost of 

producing the 

second unit). 

 

Examine students’ 

reasoning about 

relationships 

among the 

quantities: number 

of units produced 

and sold, total 

cost, total 

revenue, and 

profit. 

𝜋, 𝑅, 𝐶, 𝑞, 
𝑝, 𝑀𝐶, 𝑀𝑅, 
and 𝑀𝑃  

𝜋 = 𝑅 − 𝐶 

𝑀𝑃
= 𝑀𝑅 − 𝑀𝐶 

Graphical Profit-

maximization 

Task 

4 

Examine students’ 

interpretation of 

marginal change 

(e.g., the cost of 

producing the 

401st computer 

chip). 

 

Examine students’ 

reasoning about 

relationships 

among the 

quantities: number 

of computer chips 

produced and 

sold, marginal 

cost, marginal 

revenue, and 

profit. 

𝜋, 𝑀𝑃, 𝑀𝐶,  
and 𝑀𝑅 

𝑀𝑃
= 𝑀𝑅 − 𝑀𝐶 

 

Maximum 

profit will 

occur when  

𝑀𝑅 = 𝑀𝐶 

Since 𝑅 > 𝐶 

Tabular Profit-

maximization 
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Appendix B: Classroom Observation Protocol 

Date of observation: ____________________            Section observed: ____________________ 

Start time: ____________________________            End time: __________________________ 

Mathematical topic of the lecture: ________________________________________________ 

MC: marginal cost MR: marginal revenue C: cost  R: Revenue 

Part I: Optimization Examples 

Context of in-class examples 

 What type(s) of context did the professor use in the optimization examples he gave? 

___ No context (purely mathematical context i.e. algebraic symbols only) 

___Camouflage context 

 ___Relevant and essential context (experientially real) 

Types of information (in-class examples) 

 What type(s) of information did the professor use in the optimization examples he gave? 

___Matching information 

___Missing information 

___Superfluous information 

Levels of cognitive demands of in-class examples 

 What level (s) of cognitive demand was used in the optimization examples given by the 

professor? 

___Reproduction 
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___Connection 

___Reflection 

Representations of examples of optimization problems 

 What representations were used by the professor to represent different examples of 

optimization problems? 

___Algebraic 

___Tabular 

___Graphical 

___Verbal (textual) 

Purpose of in-class example(s) 

 What was the purpose of the optimization example(s) given by the professor? 

___Application (The example(s) was given after the explanation section) 

___Modeling (The example(s) was is given before the explanation section) 

Frequency 

 How many in-class optimization examples did the professor do? 

___How many economic context examples did the professor do? 

___How many non-economic context examples did the professor do? 

 

 

Conceptual emphasis  

 What did the professor do that shows an emphasis on conceptual understanding of the 

mathematical ideas such as critical numbers and extrema during the lecture? 

___He included units of critical numbers or extrema when giving examples 
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___He talked about the importance of identifying the appropriate domain for the objective 

 function 

___He wrote down the appropriate domain of each objective function in the examples he did 

___He asked students to state the appropriate domain of each objective function when 

 solving contextualized optimization problems 

___He showed students an algebraic procedure for solving optimization problems, how to 

 use the procedure, and also explained what each step of the procedure does. 

___He asked students for interpretations of critical numbers in context. 

___He asked students for interpretations of extrema in context. 

___He interpreted critical numbers in context when giving examples. 

___He interpreted extrema in context when giving examples. 

___He verified if a relative extrema was a minimum or maximum value of the objective 

 function (e.g., using the first or second derivative test). 

___He asked students to verify if a relative extrema is a minimum value or maximum value 

 of the objective function. 

___He asked students for interpretations of the significance of MR=MC (when R>C). 

___He asked students for interpretations of the significance of MR=MC (when C>R). 

Procedural emphasis  

 What did the professor do that shows an emphasis on procedural understanding of the 

mathematical ideas such as critical numbers and extrema during the lecture? 

___He did not include units of critical numbers or extrema when giving examples 

___He did not talk about the importance of identifying the appropriate domain for the 

 objective function 
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___He did not write down the appropriate domain of each objective function in the examples 

 he did 

___He did not ask students to state the appropriate domain of each objective function when 

 solving contextualized optimization problems 

___He showed students an algebraic procedure for solving optimization problems, how to 

 use the procedure but never explained what each step of the procedure does. 

___He did not ask students for interpretations of critical numbers in context. 

___He did not ask students for interpretations of extrema in context. 

___He did not interpret critical numbers in context when giving examples. 

___He did not interpret extrema in context when giving examples. 

___He did not verify if a relative extremum was a minimum or maximum value of the 

 objective function. 

___He did not ask students to verify if a relative extremum is a minimum value or maximum 

 value of the objective function. 

___He did not ask students for interpretations of the significance of MR=MC (when R>C). 

___He did not ask students for interpretations of the significance of MR=MC (when C>R). 

Part II: Marginal Change 

Discussion of marginal change 

 How did the professor explain/interpret marginal change (e.g. marginal cost)? 

___He interpreted marginal change as a rate of change (the difference quotient) 

___He interpreted marginal change as an amount or change in amount (the difference) 

___He interpreted marginal change as both a rate and an amount (or change in amount) 
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Conceptual understanding of marginal change 

 What did the professor do to promote students’ conceptual understanding of the idea of 

marginal change? 

 ___He included units of marginal change in the examples about marginal change that he  

  gave in class. 

 ___ He asked students for the interpretation of marginal change (e.g., marginal revenue) 

___He asked students for units of marginal change (e.g. marginal cost) in the examples about 

 marginal change that he worked out in class. 

___He asked students to always include units of marginal change when answering marginal 

change-related questions on exams or homework problems. 

___ He stated that the units of marginal change would be dollars per unit. 

Procedural understanding of marginal change 

 What did the professor do to promote students’ procedural understanding of the idea of 

marginal change? 

___He did not include units of marginal change in the examples about marginal change that 

 he gave in class. 

 ___He did not ask asked students for units of marginal change (e.g. marginal cost) in the  

  examples about marginal change that he worked out in class. 

___He asked students to always include units of marginal change when answering marginal 

 change-related questions on exams or homework problems. 
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Relationship between marginal change and the derivative 

 How did the professor talk about marginal change and its relationship to the derivative? 

___Marginal change is the derivative (e.g. marginal cost is the derivative of the cost 

 function) 

___Marginal change can be approximated using the derivative 

___He never talked about the relationship between marginal change and the derivative 

Representations of marginal change  

 What representations were used by the professor to illustrate or represent marginal 

change? 

___Algebraic 

___Tabular 

___Graphical 

___Verbal (textual) 

Part III: Covariation 

The derivative and covariation 

 How did the professor attend to covariation of quantities while discussing the derivative 

and marginal change? 

___He talked about the derivative as a covariation of two quantities (explained the difference 

quotient) 

___He talked about how quantity produced and sold, revenue, cost, and profit co-vary. 

___He talked about how cost and revenue change to determine profit. 

___He talked about how changes in marginal cost and marginal revenue impacts profit. 

___He never talked about covariation of quantities. 
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Reasoning about covariation in multiple representations 

 What representations were used by the professor when giving examples about the 

derivative in class? 

___Algebraic 

___Tabular 

___Graphical 

___Verbal (textual) 
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Appendix C: Textbook Protocol 

MC: marginal cost MR: marginal revenue C: cost  R: Revenue 

Part I: Textbook Examples 

Context of textbook examples 

 What type(s) of context was used in the optimization examples given in the textbook? 

___ No context (purely mathematical context i.e. algebraic symbols only) 

___Relevant and essential context (experientially real) 

___Camouflage context 

Types of information in textbook examples 

 What type(s) of information was used in the optimization examples given in the 

textbook? 

___Matching information 

___Missing information 

___Superfluous information 

Levels of cognitive demands of textbook examples 

 What level (s) of cognitive demand was used in the optimization examples given in the 

textbook? 

___Reproduction 

___Connection 

___Reflection 
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Purpose of textbook examples 

 What was the purpose of the optimization examples given in the textbook? 

___Application (The example(s) was given after the explanation section) 

___Modeling (The example(s) was is given before the explanation section) 

Representations of examples of optimization examples (problems) in the textbook 

 What representations were used in the textbook to represent different examples of 

optimization problems? 

___Algebraic 

___Tabular 

___Graphical 

___Verbal (textual) 

Frequency 

 How many optimization examples were given in the textbook? 

___How many economic context examples were given in the textbook? 

___How many non-economic context examples were given in the textbook? 

Part II: Textbook Exercises (Assigned/Practice) 

Context of textbook exercises 

 What type(s) of context was used in the optimization exercises given in the textbook? 

___No context (purely mathematical context i.e. algebraic symbols only) 

___Relevant and essential context (experientially real) 

___Camouflage context 
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Types of information in textbook exercises 

 What type(s) of information was used in the optimization exercises given in the 

textbook? 

___Matching information 

___Missing information 

___Superfluous information 

Levels of cognitive demands of textbook exercises 

 What level (s) of cognitive demand was used in the exercises given in the textbook? 

___Reproduction 

___Connection 

___Reflection 

Representations of optimization problems (exercises) in the textbook 

 What representations were used in the textbook to represent different exercises of 

optimization problems? 

___Algebraic 

___Tabular 

___Graphical 

___Verbal (textual) 

Frequency 

 How many optimization exercises were given in the textbook? 

___How many economic context exercises were assigned from the textbook? 

___How many non-economic context excises were assigned from the textbook? 
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Part III: Conceptual Understanding of Optimization Problems 

Conceptual emphasis  

 How does the textbook support students’ conceptual understanding of optimization 

problems in its presentation of mathematical ideas such as critical numbers and extrema? 

___Each step of the algebraic procedure for solving optimization problems is explained (i.e. 

 what each step does) prior to giving examples. 

___Critical numbers in textbook examples are interpreted in context. 

___Exercises in the textbook require students to interpret critical numbers in context. 

___Extrema in the textbook examples are interpreted in context. 

___Exercises in the textbook require students to interpret extrema in context. 

___Extrema in textbook examples are verified as a minimum or maximum value of the 

 objective function (e.g. using the first derivative test). 

___Exercises in the textbook require students to verify extrema as minimum or maximum 

 values of the objective function. 

___Units of marginal change (e.g. marginal cost) are given in textbook examples. 

___Exercises require students to give units of marginal change. 

___The textbook discusses the significance of MC=MR (when R>C) 

___The textbook discusses the significance of MC=MR (when C>R) 

___The textbook discusses the possibility of an objective function having multiple critical 

numbers 

___The textbook discusses how to determine if a critical number is meaningful (reasonable) 

when the objective function has multiple critical numbers 
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Part IV: Procedural Understanding of Optimization Problems 

Procedural emphasis   

 How does the textbook support students’ procedural understanding in its presentation of 

mathematical ideas such as critical numbers and extrema? 

___The steps of the algebraic procedure for solving optimization problems are not explained 

 (i.e. what each step does). 

___Critical numbers in textbook examples are not interpreted in context. 

___Exercises in the textbook do not require students to interpret critical numbers in context. 

___Extrema in the textbook examples are not interpreted in context. 

___Exercises in the textbook do not require students to interpret extrema in context. 

___Extrema in textbook examples are not verified as a minimum or maximum value of the 

 objective function (e.g. using the first derivative test). 

___Exercises in the textbook do not require students to verify extrema as minimum or 

 maximum values of the objective function. 

___Units of marginal change (e.g. marginal cost) are not given in textbook examples. 

___Exercises do not require students to give units of marginal change. 

___The textbook does not discuss the significance of MC=MR (when R>C) 

___The textbook does not discuss the significance of MC=MR (when C>R) 

___The textbook does not discuss the possibility of an objective function having multiple 

critical numbers 

___The textbook does not discuss how to determine if a critical number is meaningful 

(reasonable) when the objective function has multiple critical numbers 
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Part V: Marginal Change 

Discussion of marginal change 

 How is marginal change (e.g. marginal cost) explained/ interpreted in the textbook? 

___As a rate of change (the difference quotient) 

___As an amount or change in amount (the difference) 

___As both a rate and an amount (or change in amount) 

Relationship between marginal change and the derivative 

 How is the relationship between marginal change and the derivative discussed in the 

textbook? 

___Marginal change is the derivative (e.g. marginal cost is the derivative of the cost 

 function). 

___Marginal change can be approximated using the derivative. 

___The textbook does not discuss the relationship between marginal change and the 

derivative. 

Representations of marginal change  

 What representations were used in the textbook to illustrate or represent marginal 

change? 

___Algebraic 

___Tabular 

___Graphical 

___Verbal (textual) 
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Part VI: Textbook Treatment of Covariation 

Covariation 

 

 How does the textbook attend to covariation of quantities while discussing the derivative 

and marginal change? 

___The derivative is explained as a covariation of two quantities (includes an explanation of 

the difference quotient) in the textbook. 

___The textbook discusses how quantity produced and sold, revenue, cost, and profit co-

 vary. 

___The textbook discusses how cost and revenue change to determine profit. 

___The textbook discusses how changes in marginal cost and marginal revenue impacts 

 profit. 

___The textbook does not discuss covariation of quantities. 
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Appendix D: Textbook Analysis Framework  

  

Task Characteristic Sub-category Explanation 

Type of context No context -Refers to only mathematical objects, symbols, or 

structures. 

 Camouflage 

context 

-Experiences from everyday life or common sense 

reasoning are not needed. 

-The mathematical operations needed to solve the 

problems are already obvious. 

-The solution can be found by combining all numbers 

given in the text. 

 Relevant and 

essential 

context 

-Common sense reasoning within the context is needed to 

understand and solve the problem. 

-The mathematical operation is not explicitly given. 

-Mathematical modeling is needed. 

Purpose of context-

based task        

Application 

 

-The task is given after the explanation section. 

Modeling -The task is given before the explanation section. 

Type of 

information 

Matching -The task contains exactly the information needed to find 

the solution. 

 Missing -The task contains less information than needed so 

students need to find the missing information. 

 Superfluous -The task contains more information than needed so 

students need to select information. 

Type of cognitive 

demand 

Reproduction -Reproducing representations, definitions, or facts. 

-Interpreting simple and familiar representations. 

-Memorization or performing explicit routine 

computations/procedures. 

 Connection -Integrating and connecting across content, situations, or 

representations. 

-Non-routine problem solving. 

-Interpretation of problem situations and mathematical 

statements. 

-Engaging in simple mathematical reasoning. 

 Reflection -Reflecting on, and gaining insight into, mathematics. 

-Constructing original mathematical approaches. 

-Communicating complex arguments and complex 

reasoning. 

   

Textbook Analysis Framework Reproduced from Wijaya, 2015 
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Appendix E: Background Information 

Neatly PRINT  

Your name: ______________________________________   

Cell phone #____________________ 

 Email: _________________________ 

Please check all that apply, as you feel comfortable. 

1. My gender is:  ____ male  ____ female  

2. My major is:  ____ economics ____ business (e.g. marketing)  

   ____ Other (please specify: ____________________) 

3. I am a:   ____ freshman  ____ sophomore 

   ____ junior  ____ senior 

4. Have you taken calculus before?  ____ yes   ____ no 

If YES, what year?  ____________ 

If YES, where?  _____ high school  _____ college 

5. Have you taken AP economics before? ____ yes   ____ no 

If YES, what year?  ____________ 

6. What business or economics class (or classes) are you currently taking? 

_________________________________________ 

7. Does your experience in the business or economics class (or classes) that you are 

currently taking (or have taken in the past, if any) help you learn some of the concepts in 

the course? ____ yes ____ no 

If YES, please specify the concepts: ________________________________ 

Office Use Only: 

Prof. _________ 

Room: _______ 

Mtg. times: _______________ 
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8. Please indicate on the following table the days and times that would be best to meet with 

you: 

 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

Morning        

Afternoon        

Evening        
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Appendix F: Optimization and Marginal Change Examples Given in Course Lecture A 

 

Optimization Examples 

Example 1.  For insurance purposes, a manufacturer plans to fence in a 10,800 𝑓𝑡2  

  rectangular storage area adjacent to a building by using a building as one  

  side of the enclosed area. The fencing parallel to the building faces a  

  highway and will cost $3 per foot installed, whereas the fencing for the  

  other two sides costs $2 per foot installed. Find the amount of each type of 

  fence so that the total cost of the fence will be a minimum. What is the  

  minimum cost? 

 

Example 2. A manufacture’s total cost function is given by  

𝑐 = 𝑐(𝑞) = 0.25𝑞2 + 3𝑞 + 400 

  where c is the total cost of producing q units. At what level of output will  

  average cost per unit be a minimum? What is this minimum? 

 

Marginal Change Examples 

 

Example 1. Let 𝐶(𝑞) = 10,000 + √𝑞 

a. Find the marginal cost function 

b. Find the cost of [producing] 10,000 units 

c. Find the marginal cost when 10,000 units are produced 

d. Find the approximate cost for producing 10,001 units 

 

Example 2. Interpret 𝐶’(10.000) = 0.05 
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Appendix G: Optimization and Marginal Change Examples Given in Course Lecture B 

 

Optimization Examples 

Example 1.  Given the demand function 𝑝 = −7𝑞 + 350 where q is quantity [number  

  of units sold] and 𝑝 is the price that consumers will pay when 𝑞 units are  

  demanded, we want to find the price that maximizes revenue. What's the  

  maximum revenue? 

 

Example 2. Given total cost 𝐶 = 0.06𝑞2 + 10𝑞 + 294, find the quantity which  

  minimizes average cost. 

 

Example 3. Given the demand equation 𝑝 = −2𝑞 + 256 and total cost  

  𝐶 = 48𝑞 + 700, find the output level (q) and price (p) which maximizes  

  profit. 

 

Marginal Change Examples 

 

Example 1. 𝐶 = 0.2𝑞2 + 4𝑞 + 50. Find 𝐶’ [marginal cost function] 

 

Example 2. 𝑅 = 𝑞(15 −
𝑞

15
). Find 𝑅’ [marginal revenue function] 

  

Example 3.   𝐶̅ = 5 +
2000

𝑞
. Find 𝐶’  [marginal cost function] 

 

Example 4. What does 𝐶’(10) = 6 mean? 

 

Example 5. What does 𝑅’(10) = 4 mean? 
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Appendix H: Textbook Optimization Examples and Assigned Practice Optimization 

Problems 

Optimization Examples (Reproduced from Haeussler et al., 2011, pp 609-616) 

Example 1.  (Minimizing the Cost of a Fence) For insurance purposes, a   

  manufacturer plans to fence in a 10,800 𝑓𝑡2 rectangular storage area  

  adjacent to a building by using a building as one side of the enclosed area.  

  The fencing parallel to the building faces a highway and will cost $3 per  

  foot installed, whereas the fencing for the other two sides costs $2 per foot 

  installed. Find the amount of each type of fence so that the total cost of the 

  fence will be a minimum. What is the minimum cost? 

Example 2.  (Maximizing Revenue) The demand equation a manufacturer’s product is 

𝑝 =
80−𝑞

4
 0 ≤ 𝑞 ≤ 80 

 where 𝑞 is the number of units and 𝑝 is the price per unit. At what value of 

𝑞 will there be maximum revenue? 

Example 3. (Minimizing Average Cost) A manufacture’s total cost function is given  

  by 𝑐 = 𝑐(𝑞) = 0.06𝑞2 + 10𝑞 + 294 where 𝑐 is the total cost of producing 

  𝑞 units. At what level of output will average cost per unit be a minimum?  

  What is this minimum? 

Example 4. (Maximization Applied to Enzymes) An Enzyme is a protein that acts as 

  a catalyst for increasing the rate of a chemical reaction that occurs in cells. 

  In a certain reaction, an enzyme is converted to another enzyme called the  

  product. The product acts as a catalyst for its own formation. The rate 𝑅 at 

  which the product is formed (with respect to time) is given by 

𝑅 = 𝑘𝑝(𝑙 − 𝑝) 

  where 𝑙 is the total initial amount of both enzymes, 𝑝 is the amount of the  

  product enzyme, and 𝑘 is a positive constant. For what values of p will 𝑅  

  be maximum? 

Example 5. (Economic Lot Size) A company annually produces and sells 10,000 units 

  of a product. Sales are uniformly distributed throughout the year. The  

  company wishes to determine the number of units to be manufactured in  

  each production run in order to minimize total annual setup costs and  

  carrying costs. The same number of units is produced in each run. This  

  number is referred to as the economic lot size or economic order   

  quantity. The production cost of each unit is $20, and carrying costs  

  (insurance, interest, storage, etc.) are estimated to be 10% of the value of  

  the average inventory. Setup costs per production run are $40. Find the  

  economic lot size. 

Example 6. (Maximizing TV Cable Company Revenue): The Vista TV Co.   

   currently has 100, 000 subscribers who are each paying a monthly rate of  

   $40. A survey reveals  that there will be 1000 more subscribers for each  
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   $0.25 decrease in the rate. At what rate will maximum revenue be   

   obtained, and how many subscribers will there be at this rate? 

Example 7. (Maximizing the Number of Recipients of Health-Care Benefits) An  

   article in a sociology journal stated that if a particular health-care program  

   for the elderly were initiated, then 𝑡 years after its start, 𝑛 thousand elderly 

   people would receive direct benefits, where 

                                         𝑛 =
𝑡3

3
− 6𝑡2 + 32𝑡   0 ≤ 𝑡 ≤ 12 

  For what value of t does the maximum number receive benefits? 

Example 8. (Profit Maximization) Suppose that the demand equation for a 

monopolist’s product is 𝑝 = 400 − 2𝑞 and the average-cost function is 

𝑐̅ = 0.2𝑞 + 4 +
400

𝑞
, where 𝑞 is the number of units, and both 𝑝 and 𝑐̅ 

are expressed in dollars per unit. Determine the level of output at which 

profit is maximized. 

Assigned Practice Optimization Problems (Reproduced from Haeussler et al., 2011, pp 617-619) 

(Problems 1, 2, 3, 4, and 5 below are Problems 17, 19, 27, 32, and 33 in the textbook) 

Problem 1. (Profit) For XYZ Manufacturing Co., total fixed costs are $1200, material 

  and labor costs combined are $2 per unit, and the demand equation is 

                           𝑝 =
100

√𝑞
 

  What level of output will maximize profit? Show that this occurs when  

  marginal revenue is equal to marginal cost. What is the price at profit  

  maximization? 

Problem 2. (Revenue) A TV cable company has 6400 subscribers who are each  

 paying $24 per month. It can get 160 more subscribers for each $0.50  

 decrease in the monthly fee. What rate will yield maximum revenue, and  

 what will this revenue be? 

Problem 3. (Profit) The demand equation for a monopolist’s product is 

𝑝 = 600 − 2𝑞 

  And the total-cost function is 

𝑐 = 0.2𝑞2 + 28𝑞 + 200 

  Find the profit-maximizing output and price, and determine the   

  corresponding profit. If the government were to impose a tax of $22 per  

  unit on the manufacturer, what would be the new profit-maximizing  

  output and price? What is the profit now? 
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Problem 4. (Cost of Leasing Motor) The Kiddie Toy Company plans to lease an  

  electric motor that will be used 80,000 horsepower-hours per year in  

  manufacturing. One horsepower-hour is the work done in 1 hour by a 1- 

  horsepower motor. The annual cost to lease a suitable motor is $200, plus  

  $0.40 per horsepower. The cost per horsepower-hour of operating the  

  motor is $0.008/N, where N is the horsepower. What size motor, in  

  horsepower, should be leased in order to minimize cost? 

Problem 5. (Transportation Cost) The cost of operating a truck on a thruway   

  (excluding the salary of the driver) is 

0.165 +
𝑠

200
 

  Dollars per mile, where 𝑠 is the (steady) speed of the truck in miles per  

  hour. The truck driver’s salary is $18 per hour. At what speed should the  

  truck driver operate the truck to make a 700-mile trip most economical? 
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Appendix I: Textbook Marginal Change Examples and Assigned Practice Marginal 

Change Problems 

Marginal Change Examples (Reproduced from Haeussler et al., 2011, pp 513-514) 

(Examples 1 and 2 below are Examples 7 and 8 in the textbook) 

Example 1.  (Marginal cost) If a manufacturer’s average-cost function is  

𝑐̅ = 0.0001𝑞2 − 0.2𝑞 + 5 +
5000

𝑞
 

  Find the marginal-cost function. What is the marginal cost when 50 units  

  are produced? 

Example 2.  (Marginal Revenue) Suppose a manufacturer sells a product at $2 per 

unit. If q units are sold, the total revenue is given by 

𝑟 = 2𝑞 

 The marginal revenue function is 

𝑟′(𝑞) = 2 

 which is a constant function. Thus, the marginal revenue is 2 regardless of 

the number of units sold. This is what we would expect, because the 

manufacturer receives $2 for each unit sold. 

 

Assigned Practice Marginal Change Problems (Reproduced from Haeussler et al., 2011, p. 616) 

(Problems 1, 2, 3, 4, and 5 below are problems 13, 19, 21, 23, and 30 in the textbook) 

 

Problem 1. 𝑐 = 500 + 10𝑞 is the total cost of producing q units of a product. 

  Find the marginal-cost function. What is the marginal cost when 

  𝑞 = 100? 

Problem 2. 𝑐̅ = 0.01𝑞 + 5 +
5000

𝑞
  represents average cost per unit, which is a 

 function of the number of units produced. Find the marginal-cost function 

 and the marginal cost for 𝑞 = 100. 

Problem 3. 𝑐̅ = 0.00002𝑞2 − 0.01𝑞 + 6 +
20,000

𝑞
  represents average cost per unit, 

 which is a function of the number of units produced. Find the marginal-

 cost function and the marginal cost for the following values of 𝑞: 

 𝑞 = 100, 𝑞 = 500 
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Problem 4. 𝑟 = 0.8𝑞 represents total revenue and is a function of the number of units 

 sold. Find the marginal-revenue function and the marginal revenue for the 

 following values of 𝑞: 

 𝑞 = 9, 𝑞 = 300, 𝑞 = 500 

Problem 5. (Depreciation) Under the straight-line method of depreciation, the value 𝑣 

 of a certain machine after 𝑡 years have elapsed is given by 

𝑣 = 120,000 − 15,500𝑡 

 where 0 ≤ 𝑡 ≤ 6. How fast is 𝑣 changing with respect to 𝑡 when 𝑡 = 2? 

 𝑡 = 4? at any time? 
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Appendix J: Relationship between Marginal Change and Profit 
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