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ABSTRACT 

The aim of this study is to investigate effective and sustainable measures to contain heavy 

metal contaminated sediments inside a geotextile tube during dewatering process. The 

efficacy of cellulosic materials (Jute fibers, Peanut hull, and Kraft pulp) on adsorption of 

selected heavy metals (Pb2+, Cu2+, Zn2+, and Cd2+) and dewatering performance inside a 

geotextile tube was studied by a series of Batch Adsorption and Pressure Filtration tests 

(PFT). The cellulosic materials were chosen keeping in mind their cost, accessibility, 

ease of handling and use, and sustainability. The studied adsorbents are inexpensive, 

easily available, and sustainable. In order to understand the optimum amount of cellulosic 

materials to be added into the slurry as well as the optimum mixing time for maximum 

removal, an independent study was conducted with the heavy metal ions and the cellulose 

materials. In this study, batch adsorption tests were conducted on a 500 ppm metal 

solution by changing the amount of cellulose materials from 0.5 g to 2g equilibrated for 4 

hours. Two filtrate samples were collected at tested for metal concentration using 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) at 0.5hr, 1 hr, 2 

hr, and 4 hr to understand the time of mixing on removal efficiency of studied heavy 

metal ions. The adsorption data were fitted using Langmuir isotherm to quantify their 

maximum adsorption capacity to heavy metal ions. It was found out that among the 

studied metals, all adsorbents exhibited highest affinity towards Pb ions, the order being 

jute> peanut hull> kraft pulp. A removal efficiency of 47% and maximum adsorption 

capacity of 100 mg/g Pb ions was highest for all combinations of adsorbents and metal 

ions. A maximum removal efficiency of 28% of Cu was achieved by the kraft pulp and 

the decreasing affinity was kraft pulp>peanut hull>jute. The maximum adsorption 



 

 

capacity of kraft pulp determined from Langmuir isotherm for Cu was 13 mg/g. 

Similarly, kraft pulp exhibited highest affinity for Cd and Zn followed by peanut hull and 

jute. The removal efficiency of Cd and Zn by kraft pulp was almost 28%, significantly 

higher than 13% removal of Cu or Pb. The maximum adsorption capacity of kraft pulp 

for Cd and Zn were 24 mg/g and 11 mg/g respectively.  

It has been seen that the dredged sediments contain soil particles with varying sizes and 

properties. Hence, understanding the role of different sediments in adsorption and 

retention of heavy metal ions inside geotextile tube is very important to predict the fate of 

contaminants leaching out from the tubes. To address this issue, a separate study was 

conducted where two soil sediments, Tully coarse (55% coarse and 45% fine fractions), 

and Tully fines (100% fine fractions) were mixed with heavy metal solution (500 ppm-

2500 ppm) to form a 15% solid concentration slurry. The slurries was mixed for 1 hour 

and the filtrate samples collected after mixing were tested for metal concentration using 

ICP-OES. Moreover, Kaolinite clay was also used in this study. It was seen from these 

tests that the presence of fine fractions, hydrous oxides of iron and aluminum, reactive 

clay minerals Illite and Chlorite, surface charge, and pH of a soil play dominant role in 

adsorption and retention of heavy metal ions specially Pb and Cu. Tully fine sediments 

exhibited excessively high affinity towards Pb as the more than 99% of Pb was adsorbed 

and retained. Tully coarse also had high affinity to Pb and Cu with removal efficiency 

ranging between 85-95%. Kaolinite (1:1 clay) being less reactive and having high 

molecular stability than most of the 2:1 clays (e.g. Illites, Smectites) exhibited less 

affinity towards Pb and Cu. However, Kaolinite had better affinity towards Cd ions 

(approximately 3 times) than both Tully fine and Tully coarse soils. In terms of 



 

 

adsorption of Zn, both Tully soils adsorbed more than Kaolinite. Generally, it was 

concluded that the presence of reactive clay minerals plays a significant role in 

adsorption of Pb and Cu. 

After the understanding of the role of cellulose materials as well as soil sediments in 

studied heavy metal adsorption, PFT tests were conducted to see the role of cellulose 

materials in dewatering performance. A 15% solid concentration contaminated slurry was 

prepared by mixing soil, cellulose materials (2% weight of solids) and heavy metal 

solution (1000 ppm Pb+500 ppm Cu+500 ppm Cd+500 ppm Zn). It was observed from 

the PFT tests that in both sediment slurries, the addition of cellulose materials except 

kraft pulp significantly increased the dewatering rate irrespective of the contamination. 

However, profound effect of jute fibers and peanut hull on increasing dewatering rate was 

observed in case of contaminated slurries. A reduction in turbidity of more than 80% was 

observed with the addition of jute fibers. Peanut and kraft pulp were successful in 

reducing the turbidity of the filtrate by 78 and 69% respectively. Addition of peanut hulls 

and jute on contaminated Tully coarse increased the solid content by approximately 33% 

and 46% respectively. However, in case of contaminated Tully fines a minor increase of 

12% was achieved with the addition of jute. The addition of kraft pulp had no significant 

effect in the solids content. The filtrates collected from dewatering of contaminated Tully 

fines showed that approximately 98-99% of Cu and Pb was retained, whereas, in Tully 

coarse slurries 89% Cu and 96% Pb were retained. Although not very high adsorption, 

both Tully soils were able to retain more than 75% Cd and Zn. 
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CHAPTER 1  

GEOTEXTILE DEWATERING AND ITS FUNDAMENTALS 

1.1 Introduction 

Geotextile tube technology has gained significant popularity because of its use in wide 

range of civil and environmental engineering applications. Geotextile tubes are 

manufactured by sewing layers of permeable and high strength geotextile to form tubes 

that serve to contain and dewater the pumped high-water-content sediments (Satyamurthy 

and Bhatia 2009).The main application areas are hydraulic, marine, and environmental 

remediation (Lawson 2008). In hydraulic and marine applications, geotextile tubes are 

hydraulically or mechanically filled with dredged sands and functions to control flood, 

prevent erosion, and protect shorelines. Water permeates through the pores of the 

geotextile during filling and the retained sediments form a stable mass inside the tube. In 

hydraulic and marine applications, the fill material is predominantly sand as it would not 

undergo consolidation thereby preventing a change in the geometry of a tube. In 

environmental applications, geotextile tubes are widely used to contain and dewater high 

water content contaminated slurries (Yee and Lawson 2012), mine tailings, fly ash 

(Kutay and Aydilek 2004), and industrial and municipal sludge (Worley et al. 2008).  As 

most of these wastes are in slurry form, they pose a major problem in handling and 

disposal. Geotextile tubes not only reduce the volume of the slurry, it also changes the 

consistency of waste from liquid to semi solid or solid so that handling and disposal 

becomes easy. High water content slurries in the past were treated by allowing them to 

settle in sedimentation ponds. However, since most of these slurries contain fine 
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particulates and would take long time to settle, treatment using sedimentation tanks 

would require large area for settling ponds and is not time effective. In order to expedite 

the settling of fine particulates, chemicals are added to flocculate and coagulate the 

suspension. Although this approach is time effective, it poses environmental issues as the 

chemical additives often spill to the water bodies. Some mechanical methods such as 

centrifuge and belt filter press have been effective in dewatering wastes; however the 

energy required to run these machines is significant (Newman et al. 2004). Geotextile 

tubes in addition to being relatively simple to utilize compared to other mechanical 

methods, they can be fabricated to sizes and numbers that fits the scale of the dewatering 

operation (Satyamurthy and Bhatia 2009). 

The origin of geotextile tubes goes back to 1980s where it was used in Europe for erosion 

control and containment purpose (Moo-Young and Tucker 2002). The earliest application 

of geotextile tubes was as containment dikes in Brazil and France (Bogossian et al.1982) 

and to fill scour holes in the Netherlands (Jagt1988). In the United States, the enactment 

of some stringent legislations such as Clean Water Act has prevented the disposal of 

wastes in the natural water bodies. Specifically 40 CFR, Part 503, enforced and regulated 

by US Environmental Protection Agency (US EPA), requires wastewater managers to 

discontinue use of lagoons and find a suitable alternative for dewatering and disposal. 

United States Army Corps of Engineers estimates that more than 250 million cubic 

meters of dredged sediments needs to be removed to maintain harbors and ports (Moo-

Young and Tucker 2002). With this in context, hundreds of geotextile tubes have been 

successfully employed all over United States to contain and dewater low solids content 

sediment slurries.   
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1.2 Stages in geotextile dewatering 

The geotextile tube dewatering can be defined in three processes namely: containment, 

dewatering, and consolidation. The stages involved during dewatering has been shown in 

Figure 1.1 (after Lawson 2008). In the containment process the geotextile tube is filled 

with the slurry. The geotextile should have enough strength to withstand the tensile 

stresses generated during filling. The capacity of tube is governed by several factors such 

as its dimensions, tensile strength of the geotextile and seams (Lawson 2008).  As the 

slurry is pumped inside the tube, the coarser particles in the slurry settle first followed by 

the fines. As the soils settle they form a filter cake and the rate of dewatering decreases 

due to the formation of a filter cake. Once all the free water has drained out from the 

tube, the filter cake begins to consolidate because of its own weight. The tubes are filled 

multiple times and the final consolidation may take up to 6 months depending upon the 

slurry and final solids concentration (Lawson 2008). 

 

Figure 1.1 Stages in geotextile dewatering process (Lawson 2008) 
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1.3 Fundamentals of geotextile dewatering 

The final solids concentration and contained volume of the filter cake is of particular 

interest in geotextile dewatering projects. In addition, the properties of the filter cake and 

the effluent quality also determines the success of the geotextile dewatering process. 

Lawson (2008) presented a simple relationship between the contained volume, and solids 

concentration with the dewatering time and given by Equation 1.1. 

  1
1t t

o o

to

V S
S S
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 [Equation 1.1] 

where, Vt and St are the volume and solids concentration at time “t” and Vo and So are the 

volume and solids concentration at time 0 or the start of dewatering. It can be seen that 

initially the contained volume is high (Vo) and the solids concentration is low (So). As 

dewatering proceeds, the contained volume decreases and simultaneously the solids 

concentration increases because of the formation of filter cake. 

If ∆Vt is the reduction in volume after time “t”, the solids concentration at same “t” can 

be expressed by using Equation 1.2 given by Lawson (2008). 
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The relationship between the contained volume, dewatering time, and solids 

concentration can be represented graphically as shown in Figures 1.2 (a) and (b).  
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Figure 1.2 (a) Volume and solids concentration change with time during dewatering (b) 

Dewatering and consolidation phase (Lawson 2008) 

The addition of flocculants and coagulants has been a standard practice in geotextile 

dewatering projects. Specifically, polyacrylamide-based polymer flocculants have been 

used to increase the retention of suspended solids and the rate of dewatering (Gaffney et 

al. 2011; Maurer et al. 2012).These chemical conditioners or accelerants bind the fine 

sediments to form flocs by bridging and/or charge neutralization. The formation of larger 

flocs of fine sediments increases the permeability of the filter cake and maximize 

retention of fines. Since it maximizes the retention of fines, the turbidity of the effluent is 

greatly reduced. Bhatia et al. (2013) investigated the role of polymers on dewatering 

efficiency and performance by conducting lab tests on slurries with and without chemical 

conditioning. It was found that the dewatering efficiency was 12-15% higher with the use 

of flocculants. Also, it was found that the solid concentration was 4-7% higher with the 

use of flocculants. However, the use of flocculants resulted in an increase in the water 

content of the filter cake. Similar results were found by Worley et al. (2007), Myers and 

Elton (2010), and Khachan et al. (2011). 

Vo

VtSo

St

(a) (b)
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1.4 Tests to assess geotextile dewatering performance 

Various types of performance tests have been conducted to understand the dewatering 

performance of the slurry at full scale. The performance tests are small-scale laboratory 

scale tests performed on small representative sample of the slurry, or medium scale that 

may be performed in the lab or field (Grzelak 2011). These tests not only help to 

characterize the sample and provide information about dewatering efficiency, but also 

aids in finding the optimum type of chemical conditioner keeping in mind the project 

guidelines and specifications. The small scale tests that have been widely used are 

pressure filtration test (PFT) and the falling head test (FHT). Specially, PFT tests have 

been used by many researchers to assess the dewatering performance (Moo-Young et al. 

2002; Kutay and Aydilek 2004; Liao and Bhatia 2005; Muthukumaran and Ilamparuhti 

2006; Satyamurthy and Bhatia 2009). Some of the commonly used medium-scale tests 

are hanging bag test (HBT) and geotextile tube dewatering test (GDT). Grzelak et al. 

(2011) compared the lab scale tests (FHT and PFT) with medium scale tests (HBT and 

GDT) using a woven geotextile and silt slurry at 33% solids concentration. It was found 

out that the dewatering efficiency was similar for the PFT, HBT, and GDT, while 

filtration efficiency was similar for the HBT and GDT. However, FHT was determined to 

be a poor indicator to assess the dewatering performance compared to other test methods 

studied. It was concluded that because of the simplicity, ease of use, and cost, the PFT 

was determined to be a good indicator to assess the dewatering performance.  

The schematic of typical geotextile dewatering is shown in Figure 1.3. 
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Figure 1.3 Geotextile dewatering process (schematic) 

1.5 Scope of the study 

Generally the geotextile dewatering technology is used in conjuction with wastewaer 

treatment technlogy to ensure the effluent meets the regulatory standards. The dewatered 

effluent is collected and discharged in the treatment facility. Various treatment methods 

such as activated carbon adsorption or sand filtration are generally used to treat the 

dewatered effluent. In recent years, researchers and practitinioers have realized the need 

to investigate sustainable measures to effectively contain contaminated slurries so that the 

cost incurred during post treatment can be reduced. Studies have been performed to 

investigate different additives inside the geotetile tube to improve the dewatering 

performance. Maurer et al (2012) investigated the use of flexible polyvinyl alcohol 

(PVA) resin bundled chopped fibers to dewater class F and C fly ash slurries. The effects 

of these fibers on dewatering performance and filter cake characteristics were studied by 

performing Pressure Filtration Tests (PFT). It was concluded that the strength of the filter 

cake improved significantly using randomly dispersed fibers. It was also found out that 
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polymer flocculants signficantly increased the dewatering rate and strength of the 

retained solids but heavy metal still leached out. Koerner and Huang (2005) investigated 

the use of reactive additives such as activated carbon and phosporic rock to retain organic 

pollutants and heavy metals inside the geotextile tube. It was found out that adding a 

small fraction (0.5 wt%) of charcoal can cause signifcant reduction (an order of 

magnitude) in concentrations of the organic and inorganic pollutants. Although many 

studies have investigated the measures to effectively contain contaminated slurries, very 

few studies have been performed to investigate the dewatering of heavy metal 

contaminated slurries using geotextile tubes. Moreover, studies focusing on sustainable 

measures to contain these heavy metal contaminated sediment slurries is scarce. 

Hence, this study aims to investigate the effective and sustainable measures not only to 

contain heavy metal contaminated sediments but also to improve the dewatering 

performance. For this purpose, dewatering tests using PFT were conducted on heavy 

metal contaminated slurries in the lab using three cellulosic materials (Peanut hulls, jute 

fibers, and kraft pulp). The contaminated slurries were preapred with two soil sediments 

retrieved from local quarry at Tully, NY. In addition to measuring the concentration of 

metal ions in the effluent using Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES), various dewatering parameters such as solid content of the 

filter cake , filtrate quality were measured.  

1.6 Organization of thesis 

In order to investigate the effectiveness of the cellulosic materials and sediments in heavy 

metal adsorption as well as retention, it is imperative to quanitfy their adsorption capacity 

to the metal ions. For this purpose, this study has been divided into 5 chapters. Chapter 1 
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of this study describes about the basic fundamentals of the geotextile dewatering 

technology inluding different test methods to assess the dewatering performance, and the 

scope of the study. In chapter 2, the effectiveness of cellulosic materials to adsorb heavy 

metals have been studied using batch adsorption tests. Specifically, different amounts of 

cellulosic materials (0.5g, 1g, 1.5g, and 2g) have been used to investigate 500 ppm of 

heavy metal solution (Pb, Cu, Cd, and Zn). Chapter 3 describes the adsorption capacity of 

three soil sediments (Tully fines, Tully coarse, and Kaolinite) to adsorb the above 

mentioned heavy metals. Batch adsorption tests were employed to understand the role of 

studied sediments to adsorb metal ions on a 15% concenration slurry. In Chapter 4, 

results of the dewatering tests conducted on a slurry with cellulosic fibers using PFT in 

the lab are presented. Chapter 5 concludes the major findings of the study including 

future recommendations.  
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CHAPTER 2  

A STUDY ON ADSORPTION OF SELECTED HEAVY METALS BY 

CELLULOSIC MATERIALS 

2.1 Introduction 

 The large industrial and municipal activities over the last forty years has contaminated 

many waterbodies around the world with many organic and inorganic pollutants. 

Specifically, many inland and coastal waters have been polluted with heavy metals as a 

result of discharge from industrial processes including mining operations, smelting, metal 

plating, tanning, battery manufacturing and rubber manufacturing (Bailey et al.1999; 

Shukla et al. 2002; Mackie et al. 2007). Since the heavy metal ions cannot be degraded or 

destroyed, they pose a stable and persistent environmental problems to aquatic life and 

human health (Demirbas 2008).  

 Heavy metals have been defined in different ways based on specific gravity, atomic 

number, and atomic weight. Heavy metals are elements that have atomic weight greater 

than sodium (Bennet 1986). Heavy metals are wide range of metals of high atomic 

weight, particularly those transition metals that are toxic and cannot be processed by 

living organisms, such as lead (Pb), mercury (Hg), cadmium (Cd) (Harrison and 

Waites1998). Based on atomic number, heavy metals are any metals with an atomic 

number beyond calcium (Venugopal and Luckey1975).Particularly, they are metals with 

an atomic number between 21 (scandium) and 92 (uranium) (Lyman1995). Heavy metals 

are elements having atomic weights between 63.5 and 200.6, and specific gravity greater 

than 5 (Srivastava and Majumder 2008). More than 20 heavy metals are classified as 
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toxic with half of them emitted in the environment in concentrations that pose great risks 

to human health (Akpor and Muchie 2010). The common heavy metals found in polluted 

water are lead, cadmium, arsenic, copper, chromium, zinc, nickel, and mercury. The 

release of these metals without proper treatment expose living organisms to reduced 

growth, organ and nervous system damage, cancer, and even death.  

 As the contamination of water sources with heavy metal pose such severe problems, 

several guidelines and legislations have been enacted in recent years to reduce pollution 

sources and remediate polluted water resources. US EPA under the Clean Water Act 

implements, enforces and regulates the standards for level of pollutants discharged into 

navigable water bodies.  Of the 75,243 water bodies listed as impaired by the United 

States Environmental Protection Agency (USEPA), 7,143 are impaired as a result of 

heavy metals other than mercury (US EPA 2014). These metals include lead, copper, 

arsenic, manganese, zinc, cadmium, aluminum, nickel silver and chromium, impacting 

both water and sediments. As per U.S. EPA estimates, every year in the U.S, 1.2 trillion 

gallons of sewage from household, industry and restaurants is dumped in to U.S. water 

annually of which most are contaminated with the heavy metals previously mentioned. 

National Primary Drinking Water Regulations (NPDWRS or primary standards), a legally 

enforceable standards that apply to public water systems, have been enacted by US EPA 

to limit the maximum contaminant level (MCL) for various metals and contaminants. The 

summary of MCL for several metals along with their potential health effects and sources 

of production is shown in Table 2.1.  
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Table 2.1 Maximum contaminant level (National Primary Drinking Water Regulations, 

Title 40 Part 141) 

Contaminant 

Maximum 

contaminant 

level (ppm) 

Potential health effects Sources 

Lead (Pb) 

(Atomic 

wt.=207.2) 

0 

Delays in physical or 

mental development in 

children, kidney problems 

and high blood pressure in 

adults 

Corrosion of household 

plumbing systems; 

erosion of natural 

deposits 

Mercury (Hg) 

(Atomic 

wt.=200.59) 

0.002 Kidney damage 

Erosion of natural 

deposits; discharge from 

refineries and factories; 

runoff from landfills and 

croplands 

Cadmium 

(Cd) 

(Atomic 

wt.=112.4) 

0.005 Kidney damage 

Corrosion of galvanized 

pipes; erosion of natural 

deposits; discharge from 

metal refineries 

Arsenic (As) 

(Atomic wt.= 

74.9) 

0.010 
Skin damage or problems 

with circulatory systems 

Erosion of natural 

deposits; runoff from  

Copper 

(Atomic wt.= 

63.5) 

1.300 
Gastrointestinal distress, 

Kidney or liver damage 

Corrosion of household 

plumbing systems; 

erosion of natural 

deposits 

Zinc (Atomic 

wt.= 65.38) 
NA 

Metal fume fever, 

carcinogenic to animals, 

long term chronic health 

effects 

Mining, coal and waste 

combustion, steel 

processing 

 

The processes generally involved in the removal of heavy metals from aqueous solution 

are chemical precipitation, ion exchange, membrane filtration, adsorption, 

electrochemical processes, coagulation-flocculation etc. (Fu and Wang 2011). A brief 

summary of some of these processes is presented below.  
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 Chemical precipitation 

Chemical precipitation is an effective and the most widely used process in industry 

because of its relative simplicity and inexpensiveness in operation (Ku and Jung 2001). 

Heavy metal ions react with chemicals to form insoluble precipitates which are removed 

by sedimentation or filtration. The most common precipitation techniques are hydroxide 

and sulfide precipitation.  

 Ion exchange 

 Ion exchange is a widely used technology because of its high removal efficiency, great 

removal capacity, and fast kinetics (Kang et al. 2004). Although synthetic as well as 

natural resins are used, synthetic resins are most commonly used because of its higher 

ability to exchange cations with the heavy metals from the aqueous solution (Alyüz and 

Veli 2009). 

 Membrane filtration 

 Membrane filtration uses different types of membranes and have gained wide popularity 

in heavy metal removal due to its high efficiency, easy operation and space saving. The 

membrane processes are ultra-filtration, reverse osmosis, nanofiltration, and 

electrodialysis.  

 Coagulation and flocculation 

 Coagulation and flocculation in conjunction with sedimentation and filtration is also a 

popular method to remove heavy metals from polluted water.  Coagulation destabilizes 

the colloids by neutralizing the force that keep them apart. Aluminum, ferric chloride, 

ferrous sulfate are some of the widely used coagulants used in the wastewater treatment. 
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Flocculation is binding of the particles into large clumps or flocs by forming bridges 

between the fine particulates. The flocs of suspended particles are removed by filtration 

or floatation. Commonly used flocculants are polyacrylamide (PAM), polyferric sulfate 

(PFS), and polyaluminum chloride (PAC). 

 Adsorption 

 Adsorption is realized as an economical and effective method of removing heavy metal 

ions from the aqueous solution. Adsorption, in general, is the accumulation of solute 

molecules at an interface, which can be liquid-liquid, gas-liquid, gas-solid or liquid-solid. 

Chemical adsorption results in the formation of a monomolecular layer of the adsorbate 

(material being adsorbed) on the surface. Physical adsorption results from molecular 

condensation in the capillaries of the solid.  Adsorption is considered superior because of 

its high effectiveness to reduce metal ions to a very low concentration. Removing heavy 

metal ions using adsorbents (material that adsorbs) such as activated carbon, aerogel, 

zeolites is quite common. However, recently many studies have focused on use of low 

cost and effective adsorbents for the removal of heavy metals. Low cost, high efficiency, 

reduced contaminated sludge, regeneration of adsorbent are the major advantages of these 

materials over conventional adsorbents or treatment methods. Some of the popular low 

cost adsorbents are sawdust (Bryan et al.1992), lignin (Masri et al.1974; Srivastava et 

al.1994), rice hulls (Roy et al.1993), zeolites (Leppert 1990), fly ash (Grover and 

Narayanaswamy1982), peat moss (Chen et al.1990), peanut husk (Li et al. 2006a), 

unmodified, dye loaded, and oxidized jute (Shukla and Pai 2005). 

The adsorption of heavy metals from aqueous solutions by low cost lignocellulosic 

materials has proven to be very promising in removing contaminants from aqueous 
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effluents (Demirbas 2008). A brief summary of some of the previous studies conducted 

on the adsorbents to adsorb heavy metals used in this study is presented. 

Peanut hulls, an abundant agricultural by-product in the south-eastern United States, are 

plentiful, inexpensive, and a renewable resource. Previously thought of as a waste 

product, peanut hulls are gaining status as a useful commodity. Recently developed 

applications include their use in agriculture as a carrier for soil conditioning chemicals 

and pesticides, and as filler in chicken feed. Periasamy and Namasivayamk (1995) 

investigated the removal of Cu by activated carbon prepared from peanut hull and 

compared it with commercial granular activated carbon. It was shown from the 

adsorption studies that the time required for maximum removal of 25 mg/L Cu by peanut 

hull carbon (120 min) was 2.5 times less than that required by the granular activated 

carbon (300 min). In addition, the maximum adsorption capacity of peanut hull carbon 

was 65.57 mg/g, which is significantly higher than 3.60 mg/g achieved by commercial 

granular activated carbon. Johns et al. (1998) investigated the adsorption of peanut shells 

and other adsorbents to Pb, Cu, Cd, Zn and Ni ions. They found that the peanut shell 

exhibited highest affinity towards Pb followed by Cu, Cd, Ni and Zn. Brown et al. (2000) 

evaluated the adsorption capacity of peanut hull pellets to Pb, Cu, Cd, and Zn ions and 

compared their performance to that of raw peanut hulls and ion exchange resin. 

Adsorption capacities of 30 mg/g of Pb, 8 mg/g of Cu, 9 mg/g of Zn, and 6 mg/g of Cd 

was reported to have been achieved by peanut hull pellets. The kinetic study showed that 

for all cases, over 85% of the total metal ion capture occurred within the first 10 minutes 

of mixing, over 90% within the first 20 minutes, and over 96% within 40 minutes. It was 

also shown that pelleting the raw peanut hulls had little effect on the adsorption capacity. 
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Ricordel et al. (2001) studied the adsorption of Pb, Zn, Ni, and Cd over a range of initial 

metal ion concentration (0.15mM) onto carbon prepared from peanut husks. Adsorption 

in excess of 98% Pb and, 87%, 83%, and 75% of Zn, Ni, and Cd, respectively were 

found. In general, the amount of metal ion adsorbed increased in the order of 

Cd<Ni<Zn<Pb, and was related to the ionic radii, hydration energy, ionic mobility, and 

diffusion coefficient.  The maximum adsorption capacities for Pb, Cd, Ni, and Zn were 

0.87 mg/g, 0.47 mg/g, 0.26 mg/g, and 0.19 mg/g, respectively. Zacaria et al. (2002) 

investigated the potential of peanut hulls to adsorb heavy metals. They found the 

adsorption capacities of 30.04 mg/g Pb, 8 mg/g of Cu, 8.96 mg/g of Zn, and 5.96 mg/g of 

Cd ions by the peanut hulls. Qin et al. (2007a) investigated the kinetics and adsorption of 

Pb, Cr, and Cu from aqueous solution by modified peanut husk and sawdust. Batch 

adsorption tests were conducted by mixing 0.2 g of the adsorbent with metal solutions 

with concentrations varying from 5 to 50 ppm.  Although the equilibrium reached after 6 

hours, the rate of uptake of heavy metals by modified peanut was faster than the sawdust. 

The maximum adsorption capacity for Pb of 29.14 mg/g was highest among the studied 

metals, followed by 10.15 mg/g Cu, and 7.67 mg/g Cr. Qin et al. (2007b) studied the 

adsorption of same metals by peanut husk under different pH, initial concentration of 

metal ions, time and temperature. They found that adsorption was very poor in acidic 

medium and increased in the alkaline medium. For a peanut hull amount of 2 g/L and 

initial metal ion concentration of 10 mg/L, the adsorption capacities were 3.34 m/g Pb, 

3.34 mg/g Cr and 2.96 mg/g Cu.  Zhu et al. (2009) studied the removal of Cu from 

aqueous solution by peanut hull. They found the adsorption of Cu to be highly pH 

dependent, reaching maximum at pH 5.5, and the sorption reaching equilibrium at 2 
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hours. The equilibrium adsorption capacity determined from Langmuir isotherm was 

21.25 mg/g.  Krowiak et al. (2011) investigated the biosorption of Cu and Cr ions from 

aqueous solution by peanut shell as a function of pH, initial concentration and 

temperature. A maximum adsorption capacity of 25.39 mg/g Cu and 27.86 mg/g Cd was 

found. The majority of studies have focused on modifying the properties of peanut in 

order to increase its adsorption capacity to heavy metals from aqueous solution. Also, 

many forms of peanut such as peanut hull carbon, peanut hull, peanut shell, peanut hull 

pellet, peanut husk have been found to be used in the literature. However, this study 

focuses not only to investigate the adsorption capacity of ground peanut husk (called as 

peanut hull) to adsorb heavy metals, but also to study its interaction in a slurry 

comprising soil sediments and heavy metal solution. No studies have yet been conducted 

to investigate the potential use of peanut hulls in geotextile dewatering technology. 

Jute fibers are primarily composed of cellulose and lignin, hence are partially textile fiber 

and partially wood. Being one of the most abundant natural fiber, it is very cheap and 

easily found.  Studies have shown them to be an excellent adsorbent for various heavy 

metal ions. Shukla and Pai (2005a) investigated the adsorption of Cu, Ni, and Zn from 

aqueous solutions by unmodified, dye loaded, and oxidized jute. The adsorption capacity 

of unmodified jute reported was 4.23 mg/g Cu, 3.37 mg/g Ni, and 3.55 mg/g Zn. They 

found higher adsorption capacity with the use of dye loaded or oxidized jute as compared 

to the unmodified jute. Shukla and Pai (2005b) investigated the removal of Pb ions using 

cellulose containing materials; jute (1 cm long), sawdust, and groundnut shells. It was 

observed that the adsorption attained equilibrium around 2 hours. The maximum 

adsorption capacity of unmodified and modified jute were 25.5 mg/g and 29.47 mg/g 
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respectively. Phan et al. (2006) studied the efficacy of fibrous activated carbon prepared 

from natural jute (cellulose content: 58-63%, lignin content: 12-15%) and coir fibers on 

removal of Cu and organic contaminates. The adsorption capacity of raw jute fibers to Cu 

ions was found to be 22.7 mg/g. Furthermore, raw jute fibers were found to be more 

efficient than modified fibers for Cu ions removal because of the greater influence of 

carboxylic –COOH surface groups. The majority of studies have focused on investigating 

the adsorption capacity of jute fibers from aqueous solution. However, in this study jute 

fibers have been ground to increase its specific surface area for adsorption. In context of 

geotextile dewatering tests, long jute fibers might create blinding spots or might even 

clog the geotextile leading to reduced dewatering and performance. The ground jute 

fibers also help to form homogenous slurry with the soil and is believed to enhance 

dewatering rate. 

Kraft pulp is made by mixing wood fibers with a solution of caustic soda and sodium 

sulfide, and cooking them inside a digester. The cooking process attacks and dissolves 

the phenolic material called lignin that glues the fibers to each other in the wood. After 

cooking, they are blown by reducing the pressure to the atmospheric pressure in the 

blowing process. The finished product is brown in color and fluffy in nature termed kraft 

pulp. Although significant number of studies have been done on the adsorption of metal 

ions by kraft lignin, studies involving kraft pulp are very limited. Sciban and Klasnja 

(2004) investigated the abilities of different types of wood sawdust and wood originate 

such as kraft pulp of 1mm length for removing Cu, Zn, Cd, and Ni. Among the 

investigated adsorbents, pulp had a fair adsorption efficiencies of 17.1% Cu, 6% Zn, 10% 

Cd, and 8.2% Ni.  
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It can be seen that most of the studies have been performed at lower concentration of 

metal ions and under controlled pH. Also, many studies have focused on modifying the 

adsorbents to increase its adsorption capacity. However in order to design effective 

amendment strategies to treat heavy metal solutions, the interaction of the adsorbent with 

heavy metal ions has to be studied under different conditions such as time of contact and 

amount of adsorbent. In this study, the adsorption capacity of all adsorbents to 500 ppm 

metal ion solutions have been assessed by sampling and Inductively Coupled Plasma 

Optical Emission Spectrometry (ICP OES) testing the effluents at regular time interval 

(30 min, 1 hr, 2hr, 4hr). Moreover, in order to optimize the amount of these adsorbents to 

be mixed, all the tests have been performed with 0.5g, 1g, 1.5g, and 2 g of adsorbents. 

Since wide range of pH is found at many heavy metal contaminated environments, setting 

the pH of the system to a predetermined constant value is not realistic and practical. 

Hence, all the adsorption tests in this study is not pH controlled. 

2.2 Objectives 

The primary objective of this study is to investigate the efficacy of three cellulosic 

materials (peanut hulls, jute fibers, kraft pulp) to adsorb most commonly encountered 

heavy metal ions (Pb2+, Cd2+, Cu2+, and Zn2+) from aqueous solutions. The cellulosic 

materials were chosen keeping in mind their cost, accessibility, ease of handling and use, 

and sustainability. The studied adsorbents are inexpensive, easily available, and 

sustainable. Peanut shells are produced in large quantities in US, and are very cheap and 

accessible. Jute fibers is one of the most common and economical natural fiber grown in 

most tropical parts of the world. Kraft pulp is a waste produced during the paper pulping 

process and large quantities of such waste is produced worldwide. All the adsorbents 
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were ground to ease its mixing with the metal solution and also to increase the specific 

surface area for adsorption. The studied metals are listed by USEPA as the most common 

and dangerous heavy metal ions found in water. 

The overall objective of this study is to investigate the efficacy of these cellulosic 

adsorbents not only to prevent heavy metals leaching out in effluents during geotextile 

dewatering but also to improve dewatering performance. However, proper information 

about the amount and time of mixing the adsorbents with the particular metal ion species 

is very important for its effectiveness. If the amount of adsorbents to be added is not 

properly determined in geotextile dewatering application, it might lead to clogging of bag 

and reduced dewatering rate, higher turbidity of the filtrate and weaker filter cake. Hence, 

the results from this study will be used to quantify as well as optimize the amount and 

time of mixing for geotextile dewatering tests.   Also, the performance and the 

advantages of these adsorbents are compared. 

2.3 Materials and Test Method 

 Materials 

Peanut husks were obtained from Birdsong Peanuts, a peanut shelling company out of 

Suffolk, VA. The jute fibers 1 cm in length were obtained from Korea through Bast 

Fibers LLC, headquartered in Cresskill, NJ. Kraft pulp was obtained from kraft pulping 

process at State University of New York, College of Environmental Science and Forestry 

(SUNY-ESF).  

 All of the adsorbents were ground to particulate form to increase its specific surface area 

for adsorption. Adsorbents with greater surface area possess an increased number of 
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available active sites for binding with metal ions (Bozic et al. 2009). To determine the 

impact of surface area on adsorption, Brown tested the uptake of copper onto peanut hulls 

sieved through 80,40 and 25 mesh seives (Brown et al. 2000). It was determined that 

particles passing sieve size 80 had the greatest adsorption capacity; thus showing that 

increased external suface area increases adsorption capacity. 

The peanut husks (shown in Figure 2.1a) were ground using a blender for 10 minutes and 

sieved through US sieve no 60 to obtain fine particles ranging from 50 µm to 250 µm 

(see Figure 2.1b). Preparation of jute also involved grinding the fibers in a blender for 10 

minutes. The fibrous nature of the jute prevented sieving. The ground 1 cm jute fibers 

(see Figure 2.2a) resulted in approximately 300 µm long fibers with diameter around 50 

µm (see Figure 2.2b). Kraft pulp (see Figure 2.3a) after drying in oven for 24 hours at 

100°C was ground for 45 minutes using a blender. During grinding, the small chunks of 

pulp expanded into large volume and resulted into fluffy fiber bundles approximately 350 

µm and larger (see Figure 2.3b).  The Scanning Electron Microscope (SEM) image of 

peanut hulls, jute fibers and kraft pulp are shown in 2.1c, 2.2c and 2.3c respectively. 

 

Figure 2.1 (a) Peanut husk, (b) Ground peanut husk, and (c) SEM image of ground peanut 

hull 

(a) (b) (c)
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Figure 2.2 (a) Jute fibers, (b) Ground jute fibers, and (c) SEM image of ground jute fibers 

 

Figure 2.3 (a) Kraft pulp, (b) Ground kraft pulp, and (c) SEM image of ground kraft pulp 

2.3.1.1 Characterization of adsorbents 

The adsorbents were characterized for their cellulose and lignin content.  The TAPPI 

standard test (T203 cm-99) was carried out to measure the amount of cellulose and 

hemicellulose. The amount of lignin was calculated using the Kappa number. The lignin 

content was estimated by using TAPPI standard test (T222 om-06). The adsorbent was 

mixed with 100 mL of Sodium Hydroxide reagent and was stirred until it was fully 

dispersed in the reagent. Then 100 mL of water was added and mixing was continued for 

one hour at temperature of 25°C. This adsorbent suspension was then filtered and 25 mL 

of filtrate was taken and mixed with 10 mL of 0.5N potassium dichromate solution in a 

250 mL conical flask. Then 50 mL of concentrated sulfuric acid was added carefully with 

swirling.  The mixture was allowed to rest for 15 minutes and then 50 mL of water was 

added to bring it to the room temperature. Then, 2 to 4 drops of ferroin indicator was 

(a) (b) (c)

(a) (b) (c)
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added and titrated with 0.1N ferrous ammonium sulfate till the color changed to purple. 

Finally, blank titration was carried out with just NaOH and water. The alpha cellulose 

was calculated using the following equation. 

Alpha-Cellulose % = 100 – ((6.85(V2-V1)*N*20)/ (A*W)) 

where, V1= titration of filtrate, mL 

V2= Blank titration mL 

N = normality of ferrous ammonium sulfate 

A = volume of filtrate 

W= dry weight of adsorbent 

For the determination of gamma cellulose 50 mL of adsorbent filtrate was mixed with 50 

mL of sulfuric acid. The mixture was heated using a 70-90°C hot water bath for few 

minutes to `pipette, 50 mL of clear solution was added to 10 mL of 0.5N potassium 

dichromate solution in a beaker and 90 mL of concentrated sulfuric acid was added 

carefully. The solution was kept in the hot water bath for 15 minutes and the titration 

followed the same procedure as the alpha cellulose.    

 Gamma Cellulose % = [6.85(V4-V3)*N*20]/ [25*W]  

Beta Cellulose % = 100- (alpha %+gamma %) 
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Figure 2.4 (a) & (b) Pulp Filtrate solution after extracting with NaOH, (c) Pulp filtrate 

with potassium dichromate and sulfuric acid, and (d) Color change after the addition of 

ferrous ammonium sulfate 

Lignin content was determined by calculating the Kappa number. The lignin content in 

adsorbents was estimated by using TAPPI standard test T222 om-06. In this method, the 

carbohydrates in wood and pulp are hydrolyzed and solubilized by sulfuric acid. The acid 

insoluble lignin is filtered off, dried and weighed. 15 mL of 72% sulfuric acid for jute 

fibers and peanut hulls and 40 mL for pulp powder was added to the beaker containing 

the test specimen. During the addition of sulfuric acid the beaker containing the test 

specimen was kept stirring using magnetic stir bar. After the complete addition of sulfuric 

acid, the beaker was placed in a bath at 2  0◦C and kept macerating using a glass rod. After 

the specimen was completely dispersed in sulfuric acid, the beaker was covered with 

watch glass and kept in a bath at 20     C for 2 hours. The material was stirred frequently 

during this time to ensure proper mixing. The material in the beaker was diluted to 3% 

sulfuric acid, by the addition of water. This solution was then boiled for 4 hours, 

maintaining the constant volume, either by using reflux condenser or by the frequent 

addition of hot water. Then the beaker was kept in an inclined position overnight to allow 

the insoluble material (lignin) to settle. Without disturbing the precipitate, the solution 

was decanted through a filtering crucible, and then the precipitate (lignin) was washed 

(a) (b) (c) (d)



 

27 

 

with hot water, kept in the oven at 105 C, cooled and weighed. Lignin content was then 

calculated using the formula: 

Lignin% = A*100/W 

where, A = Weight of lignin, gm 

W = Oven-dry weight of test specimen, gm         

The percentages of cellulose and lignin for the selected adsorbents are given in Table 2.2. 

Table 2.2 Cellulose and Lignin Content of the Adsorbents 

Adsorbent % Cellulose % Lignin 

Peanut hulls 55.1 27.6 

Jute fibers 85-88 12-15 

Kraft pulp 98 2.7 

 

 Reagents 

All the compounds used to prepare reagent solutions were of analytic grade. The reagents 

were purchased from Sigma Aldrich. Stock solutions of the test reagents were made by 

dissolving Pb (NO3)2, Cu (NO3)2.3H2O, Zn (NO3)2.6H2O, Cd (NO3)2.4H2O in de-ionized 

water. The initial concentration of the all heavy metal ions was 500 ppm. 

 Method 

Batch adsorption tests were carried out by fixing the concentration of metal ion and 

varying the amount of adsorbent. 500 ppm single heavy metal solutions were prepared by 

adding a calculated amount of Lead Nitrate, Copper Nitrate, Cadmium Nitrate, or Zinc 

Nitrate into 1,000 mL of distilled water. To ensure proper mixing, each metal solution 

was stirred with a magnetic stirrer for 15 minutes prior to the start of each test.   
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For each adsorbent material, samples were prepared by adding 0.5, 1, 1.5, and 2 grams of 

adsorbent into 500 mL of the prepared 500 ppm single heavy metal solutions. The blanks 

were also collected and measured, and the initial concentration as measured from blanks 

were 500 ppm Pb, 456 ppm Cd, 516 ppm Cu, and 510 ppm Zn. The samples were mixed 

continuously using a magnetic stirrer for 4 hours. Sampling was conducted at 30 min, 1 

hour, 2 hours and 4 hours. At each sampling point, two samples were taken by extracting 

using a 15 mL pipette and filtering with 41 Whatman filter paper. Hence, for each heavy 

metal, for three adsorbents, 48 samples were prepared. Following filtering, samples were 

centrifuged in Champion S-50 D centrifuge meter and decanted into new vials to reduce 

the potential for remaining adsorbent particles to clog the testing instrument. Each filtrate 

sample was tested for heavy metal ions using Inductively Couple Plasma Optical 

Emission Spectrometry (ICP-OES).  

Presence of some small chunks that remained ungrounded during the grinding of kraft 

pulp prevented to form a homogenous mix with the metal solution. However, a 

homogenous mix was achieved for peanut hulls and jute fibers (see Figure 2.5a and 2.5b).  

 

Figure 2.5 (a) 2 grams of adsorbents (From left to right: jute, peanut hull and kraft pulp) 

mixed with the metal solution, (b) Mixing, and (c) Sampling at 0.5, 1, and 4 hours 

(a) (b) (c)
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2.4 Results and Discussion 

 Kinetics and removal percentages 

To understand the effect of time on adsorption of heavy metal ions, adsorption tests were 

carried out for 4 hours. The samples were collected at 0.5, 1, 2, and 4 hours, and at each 

sampling point, two samples were filtered into a 15 mL vial and centrifuged. The results 

presented are the average of readings conducted on two samples at each sampling point. 

The samples were tested for metal concentration using ICP-OES. Kinetic studies were 

performed with 0.5, 1, 1.5, and 2 grams of adsorbents.  The removal percentage was 

calculated from the initial concentration (Ci) of the heavy metal solution and the final 

concentration (Cf) in the filtrate, and is given by: 

Removal Efficiency (%)= *100%
i f

i

C C

C


 

The adsorption of metal ions by different dosage of peanut hulls as a function of time is 

shown in Figure 2.6 and the summary of removal efficiencies is given in Table 2.3. It can 

be seen that although equilibrium was reached at different times, majority of the 

adsorption of all metal ions occurred during the first 30 minutes and the adsorption 

proceeded at a slow rate till equilibrium was attained. From Figure 2.6 (a), it can be seen 

that the removal of Pb ions increased with the increase in amount of peanut as evident by 

the decrease in filtrate concentration with time for all dosage of peanut hull. The 

maximum removal efficiency of 38% of Pb achieved by 2g of peanut hull was almost 

double compared to 21% achieved by dosage of 0.5g. However, for all dosage of peanut 

hull except 2g, the concentration of Pb in the filtrate did not decrease beyond 1 hr mixing 

referring to adsorption equilibrium. For 2g dosage of peanut hull, equilibrium for 
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adsorption of Pb was achieved in 2 hrs. It was also observed that for all dosage of peanut 

hull after equilibrium time, concentration of Pb in the filtrate increased. This increase in 

concentration could be because of desorption of Pb ions in the solution from the adsorbed 

sites. From Figure 2.6 (b), it can be seen that the adsorption of Cd ions increased with the 

increase in dosage of the peanut hull from 0.5 g to 2g, and a maximum removal 

efficiency of 21 % was achieved with 2 g dosage. Except one anomaly shown by 1.5 g 

peanut hull, the adsorption of Cd ions by all dosage of peanut hull reached equilibrium at 

4 hours. Compared to Pb ions, the adsorption of Cd into all dosage of peanut hull took 

longer to reach equilibrium, and the maximum removal efficiency was found to be 11-

17% lower. The adsorption of Cu into all dosage of peanut hull is shown in Figure 2.6 

(c). It can be seen that all dosage of peanut hull reached equilibrium at different times. 

The maximum removal efficiency of 20.78% was achieved by 1.5 gram dosage at 2 hrs. 

(Refer Table 2.3). The removal efficiency for Cu decreased slightly when the dosage of 

peanut hull was increased from 1.5 g to 2g. The adsorption of Zn by all dosage of peanut 

is shown in Figure 2.6 (d). It was observed that the adsorption of Zn ions into peanut hull 

did not depend upon the dosage as opposed to Pb, Cd, and Cu. A maximum removal 

efficiency of 15-17% was achieved by peanut hull irrespective of the dosage. The 

adsorption of Zn was also observed to be slow as the equilibrium was attained at 4 hrs.  
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Figure 2.6 Kinetic study: peanut hull (a) Adsorption of Pb, (b) Adsorption of Cd, (c) 

Adsorption of Cu, and (d) Adsorption of Zn 
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 Table 2.3 Summary of removal percentages for all dosage of peanut hulls 

PEANUT 

HULL 

Amount 

(g) 

Initial 

Concentration 

(ppm) 

Equilibrium 

time (hours) 

Equilibrium 

concentration 

(ppm) 

Removal % 

P
b

 
0.5 500.00 1 390.42 21.92 

1 500.00 1 339.09 32.18 

1.5 500.00 1 335.93 32.81 

2 500.00 2 309.42 38.12 

C
d

 

0.5 456.24 4 409.05 10.34 

1 456.24 4 390.09 14.50 

1.5 456.24 2 369.99 18.90 

2 456.24 4 359.93 21.11 

C
u

 

0.5 516.09 2 430.98 16.49 

1 516.09 1 437.64 15.20 

1.5 516.09 2 408.85 20.78 

2 516.09 4 416.33 19.33 

Z
n

 

0.5 510.70 4 422.58 17.26 

1 510.70 4 428.62 16.07 

1.5 510.70 4 429.95 15.81 

2 510.70 4 424.12 16.95 

 

The kinetics of adsorption of Pb, Cd, Cu, and Zn ions on jute fibers is shown in Figure 

2.7 (a), (b), (c), and (d) respectively. The summary of removal percentages for all dosage 

is given in Table 2.4. It can be seen that for all dosage of jute fibers except 2 g, 

adsorption of Pb reached equilibrium in approximately 4 hours. The equilibrium of 

adsorption of Pb into 2 g dosage of jute fibers reached equilibrium much faster (2 hours) 

than other dosage of jute. Although different dosage of jute fibers reached equilibrium at 

different times, maximum removal efficiency of 47% Pb was achieved by all dosages. 

Interestingly, the removal efficiency of 0.5 g jute to Pb was highest compared to the 

higher dosages (Refer Table 2.4). In case of 2 g dosage of jute fibers, increase in 

concentration of metal at the filtrate was observed past the equilibrium state.  The 
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adsorption of Cd onto different dosage of jute fibers is shown in Figure 2.7 (b).  It can be 

seen that all other dosage of jute fibers except 0.5 g took 4 hours to reach equilibrium for 

adsorption of Cd. The equilibrium in case of 0.5 g dosage was achieved much faster (2 

hour). The adsorption capacity of jute fibers to Cd increased very slightly with the 

increase in its dosage.  When the dose of jute fibers was increased from 0.5 g to 2g, only 

2% increase in removal efficiency of Cd was observed (Refer Table 2.4). The maximum 

removal efficiency of Cd that could be achieved by jute fibers was 12%. Based on these 

results, it can also be seen that the removal efficiency of Cd by jute fibers is 

approximately 8% lower than that of peanut hull. The adsorption of all dosage of jute 

fibers to Cu is shown in Figure 2.7 (c). The adsorption of Cu by all dosage except 0.5 g 

reached equilibrium at 2 hours. However, adsorption of Cu by 0.5 g jute fibers attained 

equilibrium faster (1 hour). The removal efficiency of Cu by jute fibers could not be 

related to the dosage. Maximum removal efficiency of 15% Cu was achieved by 1.5 g 

jute fiber. However, the removal efficiency dropped to 11% when the dosage was 

increased from 1.5 g to 2 g of jute fiber.  It can be seen that the adsorption capacity of 

jute fibers to Cu is approximately 6-7% lower than the peanut hulls.  The adsorption of 

Zn onto jute fibers is shown in Figure 2.7 (d). The equilibrium of Zn adsorption for all 

dosage of jute except 0.5 g reached at 4 hours. The removal efficiency of Zn increased 

with the increase in the dosage of jute fibers. However, a minor increase of 3% in 

removal efficiency was observed when the dose of jute fibers was increased from 0.5 g to 

2 g. Also, jute fibers had lesser affinity (3-4%) than peanut hull to Zn ions.  In summary, 

it can be concluded that jute fibers exhibited highest affinity to Pb as the removal 

efficiency of Pb (47%) was approximately 3-5 times greater than that of Cu, Cd, and Zn 



 

34 

 

ions (10-15%). Also, it was seen that although different dosages of jute fibers (0.5-2g) 

reached equilibrium at different times, same removal efficiency of Pb was achieved by all 

of them.  

 

 
Figure 2.7 Kinetic study: Jute fibers (a) Adsorption of Pb, (b) Adsorption of Cd, (c) 

Adsorption of Cu, and (d) Adsorption of Zn 
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Table 2.4 Summary of percentages for all dosage removal of jute fibers 

 

JUTE 

FIBERS 
Amount 

(g) 

Initial 

Concentratio

n (ppm) 

Equilibrium 

time (hours) 

Equilibrium 

concentration 

(ppm) 

Removal % 

 
P

b
 

0.5 646.33 4 342.43 47.02 

1.0 646.33 4 346.43 46.56 

1.5 646.33 4 343.79 46.81 

2.0 646.33 2 348.34 46.11 

C
d

 

0.5 496.33 2 442.18 10.91 

1.0 496.33 4 435.56 12.24 

1.5 496.33 4 432.96 12.77 

2.0 496.33 4 435.63 12.23 

C
u

 

0.5 504.84 1 438.26 13.19 

1.0 504.84 2 446.78 11.50 

1.5 504.84 2 429.25 14.97 

2.0 504.84 2 448.71 11.12 

Z
n

 

0.5 519.75 2 462.92 10.93 

1.0 519.75 4 461.19 11.27 

1.5 519.75 4 448.72 13.67 

2.0 519.75 4 449.82 13.46 

 

The adsorption of Pb, Cd, Cu , and Zn into kraft pulp are shown in Figures 2.8 (a), (b), 

(c), and (d), respectively. It can be seen from Figure 2.8 (a) that all dosage of kraft pulp 

except 0.5 g reached equilibrium at 2 hours, whereas 0.5 g took 4 hours to reach 

equilibrium for the adsorption of Pb. The adsorption increased with the increase in 

dosage of kraft pulp till 1.5 g and the maximum removal efficiency obtained was 28%. 

The removal efficiency of Pb achieved by kraft pulp was 10-20% lower than that of 

peanut hull and jute fibers (Refer Table 2.5). All dosage of kraft pulp reached equilibrium 

at 1 hour for the adsorption of Cd ions. The removal efficiency increased with the 

increase in dosage of kraft pulp with a maximum of 29% for the adsorption of Cd. It can 

be seen that all dosage of kraft pulp attained equilibrium at 1 hr for the adsorption of Cd. 
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In case of 2g kraft pulp dosage, the concentration of Cd in the filtrate increased after the 

equilibrium (Refer Figure 2.8 (b)). Kraft pulp exhibited better affinity to Cd compared to 

jute or peanut hull. The maximum removal efficiency of kraft pulp to Cd was 10-15% 

higher than that of jute fiber or peanut hull. All dosage of kraft pulp reached equilibrium 

at 2 hours for the adsorption of Cu, and except 0.5 g, the removal efficiency increased 

with the increase in dosage. The maximum removal efficiency of Cu was 28%, which is 

greater than that achieved by jute (14%) or peanut hull (20%). As seen in case of Cd and 

2g dosage of kraft pulp, there was increase in the concentration of Cu after the 

equilibrium state of adsorption.  The adsorption of different dosage of kraft pulp to Zn 

ions is shown in Figure 2.8 (d) and the results are summarized in Table 2.5.  The 

equilibrium of adsorption of Zn by kraft pulp occurred much slower (2 hrs.) with the 

lower dosage (0.5g and 1g) than the higher dosage (1.5 g and 2g). The adsorption 

capacity of kraft pulp to Zn increased with the increase in dosage except 1 g (Refer Table 

2.5). Similar to the Cd ions, maximum removal efficiency of 30% of Zn was much higher 

than that achieved by jute fibers or peanut hull. 
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Figure 2.8 Kinetic study: Kraft Pulp (a) Adsorption of Pb, (b) Adsorption of Cd, (c) 

Adsorption of Cu, and (d) Adsorption of Zn 
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Table 2.5 Summary of removal percentages for all dosage of kraft pulp 

KRAFT 

PULP 

Amount 

(g) 

Initial 

Concentration 

(ppm) 

Equilibrium 

time (hours) 

Equilibrium 

concentration 

(ppm) 

Removal 

% 
P

b
 

0.5 517.24 4 458.89 11.28 

1 517.24 2 411.19 20.50 

1.5 517.24 2 371.67 28.14 

2 517.24 2 374.17 27.66 

C
d

 

0.5 517.24 1 397.49 23.15 

1 517.24 1 398.33 22.99 

1.5 517.24 1 378.37 26.85 

2 517.24 1 366.115 29.22 

C
u

 

0.5 517.24 2 397.92 23.07 

1 517.24 2 408.23 21.08 

1.5 517.24 2 392.36 24.14 

2 517.24 2 367.63 28.92 

Z
n

 

0.5 517.24 2 384.29 25.70 

1 517.24 2 394.32 23.77 

1.5 517.24 1 370.64 28.34 

2 517.24 1 363.39 29.74 

 

In general, it can be concluded from the kinetic study that all adsorbents exhibited high 

affinity for Pb with the removal efficiency between 30-50%. Jute and peanut hull did not 

show high affinity towards Cu, Cd, and Zn ions, and the removal efficiency varied 

between 15-20%. However, it can be seen that kraft pulp exhibited good affinity towards 

Cu, Cd, and Zn compared to jute fibers and peanut hull. The maximum removal 

efficiency as high as 30% was achieved by the kraft pulp for all metal ions.  

 Adsorption Isotherms 

Adsorption isotherms are often used as empirical models which are mainly used to 

quantify adsorption parameters such as maximum adsorption capacity. They are obtained 
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from measured data by means of regression analysis. The most frequently used isotherms 

are the linear isotherm, Freundlich isotherm, Langmuir isotherm, and the BET model. 

Langmuir adsorption isotherm, originally developed to describe gas–solid-phase 

adsorption onto activated carbon, has traditionally been used to quantify and contrast the 

performance of different sorbents (Langmuir 1916). In its formulation, this empirical 

model assumes monolayer adsorption (the adsorbed layer is one molecule in thickness), 

with adsorption can only occur at a finite (fixed) number of definite localized sites, that 

are identical and equivalent, with no lateral interaction and steric hindrance between the 

adsorbed molecules, even on adjacent sites.  

The adsorption data, for each combination of adsorbent and heavy metal, at each mixing 

time, was linearized using the Langmuir isotherm to quantify the adsorption capacity of 

each adsorbent.  The linear form of the Langmuir equation is given by, 

max max

1

*

e e

e

c c

q q K q
   

where qe is the amount of adsorbent at equilibrium (mg/g), K is the Langmuir constant 

(L/mg), qmax is the maximum adsorption capacity, ce is the equilibrium solute 

concentration (mg/L). The Langmuir isotherm assumes that the adsorbent poses a 

homogenous surface with uniform adsorption potential (Argun et al. 2007). When 
ce
qe

 is 

graphed versus ce, a straight line plot should result with a slope of 1/ qmax (Tasar et al. 

2014).  

The summary of maximum adsorption capacities of peanut hull, jute fibers, and kraft 

pulp for four heavy metals have been shown in Table 2.6, 2.7, and 2.8 respectively. The 

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Henry_adsorption_constant
https://en.wikipedia.org/wiki/Freundlich_isotherm
https://en.wikipedia.org/wiki/Langmuir_isotherm
https://en.wikipedia.org/wiki/Adsorption#BET
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plot of isotherms for peanut hull, jute fibers, and kraft pulp are shown in Figures 2.9, 

2.10, and 2.11 respectively. 

It can be seen from Table 2.6 and Figure 2.9 (a) that adsorption of Pb into peanut hulls 

fitted well into Langmuir isotherm with high regression coefficient of 0.98-0.99. The 

maximum adsorption capacity of peanut hull to Pb ranged from 11-23 mg/g. Brown et al. 

(2000) evaluated the adsorption capacity of 0.25 g peanut hull to Pb and other metals 

(Cu, Cd, Zn) by conducting a batch adsorption test on a 1000 mg/l metal solution 

equilibrated for 4 hours. They reported the maximum adsorption capacity of peanut hull 

to Pb to be 30 mg/g. The Langmuir isotherm plot of Cd into all dosage of peanut hull 

presented in Figure 2.9 (b) shows that a good fit was obtained with regression 

coefficients between 0.93-0.96. The maximum adsorption capacity of peanut hull to Cd 

ranged from 2.2-3.6 mg/g, which is very low compared to the adsorption of Pb. Brown et 

al. (2000) reported the adsorption capacity of peanut hull to Cd to be 6 mg/g, and the 

preference of the adsorbent to studied metal ion was Pb>Zn>Cu>Cd. Also, the adsorption 

of Cu into peanut hull fitted well into Langmuir isotherm with regression coefficients 

ranging between 0.95-0.98 and is shown in Figure 2.9 (c). The maximum adsorption 

capacity determined was 11.88 mg/g (Refer Table 2.7). It is slightly higher than the 

adsorption capacity reported by Brown et al. (2000) for the adsorption of Cu by peanut 

hull (8 mg/g). The adsorption of Zn into peanut hulls fitted using Langmuir isotherm 

(Refer Figure 2.9 (d)) produced a fair regression coefficient of 0.88-0.95, and the 

maximum adsorption capacity was 4.1 mg/g.  

As shown in Figure 2.10 (a), the adsorption of Pb into jute perfectly fit the Langmuir 

isotherm with very high regression coefficient (0.99-1.00). Jute’s 100mg/g capcity for Pb 
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adsorption is an order of magnitude greater than any other adsorption capacity observed 

during the testing. Shukla and Pai (2005b) reported the maximum adsorption capacity of 

1 cm jute fibers to Pb to be 25.5 mg/g. However, the grinded jute fibers used in this study 

exhibited adsorption capcaity almost 4 times greater than that reported by them. The 

adsorption of Cd into jute fibers fit the Langmuir isotherm with fair regression coefficient 

(0.92-0.98) and is shown in Figure 2.10 (b). The maximum adsorption capcity of jute 

fibers to Cd ions was 2.69 mg/g. As the adsorption of Cu into jute fibers did not produce 

consistent data and couldnot be modeled using isotherm, hence the maximum adsorption 

capacity couldnot be reported. Similarly, the adsorption of Zn onto jute fibers produced a 

good linear fit with mamximum adsorption capacity of 4.10 mg/g (Refer Figure 2.10 (c)). 

Shukla and Pai (2005a) reported a similar adsorption capacity (3.55 mg/g) for the 

adsorption of Zn by jute fibers. 

The summary of Langmuir isotherm parameters for adsorption of all metals into kraft 

pulp is shown in Table 2.8. It can be seen that the adsorption of Pb into kraft pulp fitted 

well into the Langmuir isotherm with high regression coefficeint of 0.94-0.99, and is 

shown in Figure 2.11 (a). The maximum adorption capacity of kraft pulp to Pb was16 

mg/g, significantly lower than that of jute fibers. Kraft pulp exhibited better affinity 

towards Cd ions as the maximum adsorption capacity was 24 mg/g, higher than that of 

jute fiber and peanut hull and isotherm is shown in Figure 2.11 (b).Unlike jute, a good fit 

was obtained on adsorption of Cu into kraft pulp (Refer Figure 2.11 (c)) with maximum 

capacity of 13 mg/g. The adsorption of Zn into kraft pulp produced a good linear fit with 

regression coefficient of 0.96-0.99. The maximum adsorption capacity was 10.82 mg/g 

which is hgher than that of jute fibers and peanut hulls (Refer Figure 2.11 (d)). 
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Table 2.6 Maximum adsorption capacity for different dosage of peanut hull 

PEANUT HULL Amount (g) qmax (mg/g) r2 

P
b

 

0.5 21.69 0.98 

1 22.88 0.99 

1.5 11.57 0.98 

2 15.90 0.99 

C
u

 

0.5 11.88 0.96 

1 5.05 0.98 

1.5 3.68 0.98 

2 2.78 0.99 

C
d

 

0.5 3.16 0.96 

1 2.29 0.96 

1.5 3.62 0.93 

2 3.41 0.97 

Z
n

 

0.5 4.10 0.88 

1 2.69 0.88 

1.5 3.00 0.95 

2 2.21 0.94 

 

Table 2.7 Maximum adsorption capacity for different dosage of jute fibers 

 

 

JUTE FIBERS Amount (g) qmax (mg/g) r2 

P
b

 

0.50 100.00 0.99 

1.00 56.18 1.00 

1.50 33.22 1.00 

2.00 22.52 0.99 

C
d

 

0.50 2.69 0.92 

1.00 NA NA 

1.50 1.85 0.93 

2.00 1.54 0.98 

Z
n

 

0.50 4.10 0.97 

1.00 2.50 0.96 

1.50 1.53 0.97 

2.00 1.54 0.98 
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Table 2.8 Maximum adsorption capacity for different dosage of kraft pulp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

KRAFT PULP Amount (g) qmax (mg/g) r2 

P
b

 

0.5 14.39 0.94 

1 16.13 0.99 

1.5 10.73 0.99 

2 7.44 0.99 

C
u

 
0.5 13.00 0.96 

1 7.10 0.99 

1.5 6.18 0.99 

2 8.68 1.00 

C
d

 

0.5 23.98 1.00 

1 9.30 0.98 

1.5 10.10 1.00 

2 9.15 1.00 

Z
n

 

0.5 10.82 0.96 

1 6.02 0.99 

1.5 5.20 0.98 

2 4.18 0.97 
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Figure 2.9 Langmuir isotherms: Peanut hulls (a) Adsorption of Pb, (b) Adsorption of Cd, 

(c) Adsorption of Cd, and (d) Adsorption of Zn 
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Figure 2.10 Langmuir isotherms: Jute fibers (a) Adsorption of Pb, (b) Adsorption of Cd, 

and (c) Adsorption of Zn 
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Figure 2.11 Langmuir isotherms: Peanut hulls (a) Adsorption of Pb (b) Adsorption of Cd 

(c) Adsorption of Cd (d) Adsorption of Zn 

2.5 Conclusions 
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varying the adsorbent amount from 0.5 to 2g each sampled at 0.5, 1, 2, and 4 hours 

adding up to 192 tests in total. All of the adsorbents tested in this study removed selected 

metal ions (Pb, Cu, Cd, Zn), but with varying degree and affinity. Based on the results 

and observations from batch adsorption test following conclusions can be drawn. 

 All dosage of jute exhibited very high affinity towards Pb ion with a maximum 

removal of 47% attained at 4 hours. The removal efficiency of Pb did not 

correlate with the dosage of jute. The removal of Pb ions increased with the 

increase in dosage of peanut hull, and a maximum removal efficiency of 38% was 

achieved in equilibrium time of 2 hours. The adsorption of Pb ions increased with 

increase in dosage of kraft pulp from 0.5 to 1.5g, and its maximum removal 

efficiency of 28% was much lower than that of jute and peanut hull. The 

maximum adsorption capacity of jute, peanut hull and kraft pulp for adsorption of 

Pb ions, determined using Langmuir isotherms, were 100 mg/g, 23 mg/g, and 16 

mg/g respectively.  

 In case of adsorption of Cu, kraft pulp had the highest removal efficiency of 28% 

compared to 20% of peanut hull and 15% of jute. Also, different dosage of jute 

and peanut hull achieved equilibrium at different times unlike an equilibrium time 

of 2 hours for all dosage of kraft pulp. The removal efficiency of Cu could not be 

correlated with the dosages of jute fibers and peanut hull. However, the removal 

efficiency of Cu increased with the increase in dosage of kraft pulp from 0.5 to 

1.5g. As seen in case of Pb, desorption of Cu ions took place beyond kraft pulp’s 

dosage of 1.5g as indicated by the increase in metal concentration in the filtrate. 

The adsorption of Cu by jute fibers did not fit the Langmuir isotherm. The 
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maximum adsorption capacity of kraft pulp and peanut hull to Cu ions were 13 

mg/g and 11.88 mg/g respectively.  

 Kraft pulp exhibited high affinity to Cd ions compared to peanut hull and jute 

fibers. The maximum removal efficiency of 29% was attained at 1 hour. The 

removal efficiency of Cd ions increased with the increase in dosage of peanut and 

kraft pulp. However, no correlation was found in case of jute fibers. The 

maximum removal efficiencies achieved by peanut hull and jute fibers were 21% 

and 13% respectively. Langmuir adsorption capacities for jute fibers, peanut hull, 

and kraft pulp were 2.69 mg/g, 3.62 mg/g, and 23.98 mg/g respectively.  

 The adsorption of Zn followed the same pattern as Cd with kraft pulp having the 

highest removal efficiency of 29%. The removal efficiency of Zn could not be 

correlated with the dosage for all adsorbents. The maximum adsorption capacity 

of jute fibers and peanut hull was 4.81 mg/g, whereas, kraft pulp had 

comparatively very high adsorption capacity of 10.82 mg/g.  

Hence, it can be seen that the low cost materials rich in cellulose and lignin can be used 

to remove heavy metal ions like Pb, Cd, Cu, and Zn from the aqueous solution. 
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CHAPTER 3  

A STUDY ON ADSORPTION AND RETENTION OF HEAVY 

METALS ON SOIL AND SOIL CONSTITUENTS 

3.1 Introduction 

Many inland and coastal water bodies have been polluted with heavy metals as a result of 

discharge from industrial processes including mining operations, smelting, metal plating, 

tanning, and battery manufacturing and rubber manufacturing (Bailey et al.1999, Shukla 

et al.2002, Mackie et al. 2007). As a result of these toxic discharges, concentrations of 

heavy metals such as Pb, Cr, Cd, Cu, Zn, Co, Ni and Mn are often found to be elevated in 

suspended sediments, bed sediments and the water column.  

Among the various components of environment such as air or water, soils have been 

found to possess higher metal adsorption and retention capacity. Soil being a three phase 

heterogeneous system consisting of solid phase (minerals and organic matters) and void 

phase (water and air), the heavy metals have higher possibility of spreading amongst 

these phases. Heavy metals have tendencies to react with soils, change oxidation states 

and precipitate (Fein et al.1999). Heavy metals are associated with soil components in 

several ways, (i) adsorption onto soil particle surfaces, (ii) co-precipitation with major 

hydroxide or carbonate phase, (iii) binding with organic matter, (iv) occlusion in iron or 

manganese hydroxides as coatings on soil particles, (v) binding in lattice positions in 

aluminosilicates (Patterson1987). As the behavior of heavy metals is controlled to some 

extent by surface reactions, clay and organic colloid matters can be the primary soil 

components affecting metal adsorption as well as retention (Sposito and Page 1984). The 
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negative charge on clay particles, developed mostly by hydroxyl groups disposing 

hydrogen ion (pH dependent process), act as a perfect binding site for the heavy metal 

ions. The negative charge on clay particles can also be developed through pH 

independent isomorphous ion replacement (Si4+ is replaced by Al3+) (Dube et al. 2001). 

The reactivity of clay particles to positively charged ions also depends upon whether the 

clay is 1:1 or 2:1. In 1:1 clays, 1 sheet of silicon and oxygen are joined to 1 sheet of 

aluminum and oxygen. The layers are joined by strong hydrogen bonding so the space 

between the layers is fixed. It is typical for kaolinite clay and its chemical formula is Al2 

(OH) 4(Si2O5). They shrink or swell very little on drying and wetting. 2:1 clays are 

typical for clays montmorillonite and illite where the unit cell is built from two silica 

tetrahedral layers surrounding an aluminum octahedral layer. The layers are joined by 

weak oxygen to oxygen or oxygen to cation exchange which promotes the swelling when 

it comes in contact with water. As a result, 2:1 clays have higher surface area than 1:1 

clays. 2:1 clays have higher negative charge and hence higher adsorption capacity than 

1:1 clays (Brown 1998). A brief literature review on the factors affecting the adsorption 

capacity of selected heavy metal ions (Pb2+, Cu2+, Cd2+, Zn2+) ,commonly encountered in 

the contaminated sites,  to soil constituents and  minerals has been presented. 

 Literature review on adsorption of heavy metal ions on soil 

The most important parameters controlling heavy metal adsorption and their distribution 

are soil type, metal concentration, soil pH, solid: solution mass ratio, and contact time 

(Cavallaro & McBride 1980, Stahl & James1991, Martinez & Motto 2000). In addition, 

the degree of retention and low solubility of metals from soils is affected by soil 

parameters such as soil mineralogy (Tiller et al.1963; Jenne1968; Kinniburgh et al.1976; 
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Cavallaro & McBride1984;  Ziper et al.1988), cation exchange capacity (Ziper et 

al.1988), organic matter content (Elliot et al.1986), amount of metal (Garcia-

Miragaya1984), pH (McBride and Blasiak 1979; Cavallaro and McBride1980).  

In order to quantify the maximum adsorption capacity of soil to heavy metal ions, 

generally batch adsorption tests are carried out. The data from the adsorption tests are 

fitted using adsorption isotherms. An adsorption isotherm is a curve relating the 

equilibrium concentration of a solute on the surface of an adsorbent, qe, to the 

concentration of the solute in the liquid, ce, with which it is in contact. It is also an 

equation relating the amount of solute adsorbed onto the solid and the equilibrium 

concentration of the solute in solution. Among many available isotherm models, 

Langmuir and Freundlich isotherm models are most commonly used to find out the 

adsorption parameters such as maximum adsorption capacity and diffusion constants. The 

mathematical expression and the linear form of the Langmuir equation are given in 

Equations 3.1a and 3.1b respectively. 
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where, 𝑞𝑒 is the amount of adsorbent at equilibrium (mg/g), K is the Langmuir constant 

(L/mg), qmax is the maximum adsorption capacity (mg/g), ce is the equilibrium solute 

concentration (mg/L). The inverse of the slope of linear Langmuir plot gives the maximum 

adsorption capacity in mg/g. 
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3.1.1.1 Adsorption of Pb 

Lead (Pb2+) is one of the most hazardous and common heavy metal which inhibits 

growth, reduces photosynthesis in plants, reduces water absorption, and promotes 

defoliation and ATP synthesis (USEPA 1979). The Pb concentration in soil is mainly 

dependent upon the clay fraction content, therefore the abundance of Pb is higher in 

argillaceous (clayey) soils compared to the sands and sandy soils (USEPA1986). 

Background levels of Pb in dry soils in the United States have been reported at 38 ppm in 

the east and 32 ppm in the west by U.S. EPA (Raji & Anirudhan1998). Clays, peats, Fe 

oxides and usual soils exhibit excellent affinity towards Pb ions (Basta & 

Tabatabai1992). The behavior of Pb is also significantly affected by the carbonate 

content in soils (Heike 2004). However, in noncalcareous soils, the solubility of Pb is 

controlled by lead hydroxides and phosphates (Elkhatib et al.1991).  

Honging et al. (2000) investigated the adsorption of various heavy metals onto Kaolinite, 

Illite and Ca-montmorillonite. They found that at pH 3.10 the sorption ratio 

(adsorbed/added) was 7.72 and at pH 4.65 the sorption ratio increased to 25.67 for Illite. 

Similarly, the sorption ratio for Ca-montmorillonite was 35.84 at pH 3.06, 84.09 at pH 

4.53, and 90.91 at pH 5.96. The selective adsorption of Kaolinite and Illite for heavy 

metals was Pb>Zn>Cu> Cd and Pb>Cu>Zn>Cd respectively. However for Ca-

montmorillonite the trend was Cu>Zn>Cd>Pb. Naseem and Tahir (2001) investigated the 

adsorption of Pb ions on commercial grade Bentonite clay at a concentration of 20 mg of 

Pb per 1 g of Bentonite. It was found that Bentonite had high affinity to Pb ions and the 

adsorption followed Langmuir isotherm with a maximum adsorption capacity of 52.6 

mg/g. The adsorption of Pb increased from 30 to 94.5% with an increase in pH of the 
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solution from 1.4 to 3.4 and decreased to 40% at pH 5.0. They also found out that more 

than 96% Pb uptake by Bentonite occurred within 10 mins of interaction.  Abollino et al. 

(2003) investigated the adsorption of heavy metals on Na-montmorillonite by studying 

the effect of pH and organic substances on adsorption. They concluded that the effect of 

pH is more pronounced on adsorption of Cu, Pb, and Cd ions because decreasing pH 

promotes protonation of aluminol (Al-O-H) and silanol (Si-O-H) groups present in clay 

minerals. Since Pb and Cd ions have larger ionic radius and lower charge density, they 

are more affected by protonation of the surface groups. Wahba and Zaghloul (2007) 

compared three different soil minerals (Montmorillonite, Kaolinite and Calcite) for their 

ability to adsorb heavy metals. They found out that the maximum Pb metal removed from 

the solution was found in Calcite by about 74.2% as compared to Cd or Zn. The 

increasing trend of adsorption capacity to these metals had the order Calcite> 

Montmorillonite > Kaolinite. Ming et al. (2010) investigated the adsorption of Pb, Cd, 

Ni, and Cu ions onto natural Kaolinite clay. They studied the effect of contact time, pH, 

initial concentration, competitive adsorption, and ionic strength on the adsorption. They 

found that 30 min mixing time was optimum for the adsorption as 92 % of Pb was 

adsorbed within that time. Also, it was reported that 98 % of Pb ions was adsorbed at pH 

6.0 when the pH of the solution was increased from 2 to 8. The percentage removal of Pb 

ions decreased by increasing the initial metal concentration. The adsorption capacity of 

natural Kaolinite to Pb calculated from Langmuir isotherm was 2.35 mg/g. The 

adsorption capacity decreased to 1.35 mg/g for competitive adsorption (Pb-Cd-Ni-Cu). It 

can be seen that most of these studies have been focused on understanding the adsorption 

of Pb onto pure clay minerals. Also very few studies have studied the adsorption as well 
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as retention of Pb ions by soil particles in presence of other heavy metal ions. Hence, this 

study aims to study the adsorption of Pb not only on commercial grade pure Kaolinite but 

also on natural soils. 

3.1.1.2 Adsorption of Cu 

The average total copper (Cu) contents in soils all over the world ranges between 20 and 

30 mg/kg (Alloway 1995). The availability of Cu ions in soil depends upon cation 

exchange capacity, organic matter content and clay content, soil pH, and amorphous Fe, 

Al, Si and Mn oxides (Chen et al.1997). Omer et al. (2003) investigated the removal of 

Cu, Ni, Co and Mn from aqueous solution by Kaolinite. They studied the effect of 

equilibrium time and thermodynamics on adsorption of the studied heavy metals. The 

equilibrium time for Kaolinite was found to be 2 hours. Also, adsorption of Cu on raw 

Kaolinite was shown to follow Langmuir isotherm with a maximum adsorption capacity 

of 11.0 mg/g. Bhattacharyya and Gupta (2008) investigated the removal of Cu from 

aqueous solution by Kaolinite, Montmorillonite and their modified derivatives. They 

found the adsorption capacity of Kaolinite to be 4.4 mg/g. However, Montmorillonite had 

the high adsorption capacity for Cu of 25.5 mg/g. Sipos et al (2008) investigated the 

adsorption of Cu, Pb, and Zn on soil mineral phases. Four soils, 8% clay (60 % 

Vermiculite and 40% Illite), 15% clay (80% Vermiculite and 20 % Illite), 7% clay (75% 

Chlorite and 25% Illite), and 45% clay (90% Montmorillonite and 10% Illite) were 

spiked with heavy metal solutions. It was observed that sample containing significant 

Chlorite and Illite had the highest adsorption capacity (166 mg/g for Pb, 130.02 mg/g for 

Cu, and 68.76 mg/g for Zn). Wang et al. (2009) in their study found that the adsorption of 

Cu on natural Kaolinite was sensitive to pH over the range of 2 to 6. The removal 
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efficiency at pH 2 was 38.46%, whereas it doubled (75.27%) at pH 6. Also, the 

adsorption capacity was found to decrease from 30.39 mg/g to 5.98 mg/g when the 

Kaolinite concentration was increased from 0.25 to 5 g/L. Ming et al. (2010) found that 

the maximum adsorption of Cu was observed within 30 mins for Kaolinite. Also, the 

removal percentage decreased with the increase in initial concentration of Cu in the 

solution. The adsorption capacity of 1.22 mg/g for Cu decreased to 0.50 mg/g for in 

presence of other metal ions (Pb-Cd-Ni-Cu).  

3.1.1.3 Adsorption of Cd 

Cadmium (Cd) exists as Cd2+, Cd (OH) 2 (aq), Cd (OH) 3
-, Cd (OH)4

2- and CdCO3 and in 

various other organic and inorganic complexes in aquatic systems (Moore 1991). In soils, 

they occur as CdCl+, CdOH+ and CdHCO3+ cations and anions such as CdCl3
-, Cd(OH)4

2- 

and Cd(HS)4
2- (Merian et al. 2008). Like other heavy metal ions, Cd is retained in soils 

through adsorption and precipitation reactions. Adsorption of Cd increases with the 

increase in pH of the soil and hence mobility of Cd is greatest in acidic soils (Dijkstra et 

al. 2004). Bhattacharyya and Gupta (2007) used Kaolinite, Montmorillonite and their 

other derivatives for removal of Cd from water and concluded that the adsorption was 

influenced by pH and the amount adsorbed increased with decreasing acidity. For 

Kaolinite, there was an increase in removal efficiency from 4.3 to 29.5 % by increasing 

pH from 1 to 10. They found the adsorption capacity of Kaolinite to be 9.9 mg/g and 

Montmorillonite to be 32.7 mg/g. 

3.1.1.4 Adsorption of Zn 

The adsorption of zinc (Zn) on soil is a function of pH, clay content, CEC, soil organic 

matter and soil type. Abdelhamid and Chegrouche (1997) used natural Bentonite for the 
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removal of Zn ions from the aqueous solution and found the Langmuir maximum 

adsorption capacity between 25.8 to 52.9 mg/g. Bayat (2002) investigated the adsorption 

of Zn ions by two Turkish fly ashes. It was found out that the fly ash with high calcium 

content was better adsorbent with the maximum adsorption capacity of 0.251 to 1.194 

mg/g in the pH range of 3 to 6. The adsorption capacity of local soil (pH=7.40, 1.81% 

organic matter, 65% sand, 12.8% silt, 21 % clay) had maximum adsorption capacity of 

8.26 mg/g. Sanchez et al. (2003) used Na-bentonite and Ca-bentonite for the adsorption 

of Zn ions and found that the adsorption followed the Langmuir isotherm model with 

maximum adsorption capacity of 23.1 mg/g for Na-bentonite and 5.8 mg/g for Ca-

bentonite. 

The majority of studies on heavy metal adsorption are conducted on pure clay minerals 

such as Kaolinite, Bentonite, Illite, Chlorite, Vermiculite, and/or mixtures of clay to 

heavy metal ions. The studies have shown that these minerals have varying preferences to 

heavy metal ions. It has also been shown that among other heavy metal ions, Pb and Cu 

are most readily adsorbed and retained in the clay minerals. These studies have confirmed 

that adsorption of heavy metal ions on soil is highly dependent on pH. However, each 

heavy metal ion has its own range of pH for maximum adsorption and the range seems to 

be quite wide as reported by many studies. Also, since the contaminant solution generally 

encountered in the field contains many metal ions rather than individual ions, hence 

controlling pH to a single value is not feasible. Hence, in this study the all the tests have 

been conducted without manipulating or controlling the pH. Among the many 

mathematical models available to model the adsorption of heavy metals in soils, 

Langmuir isotherm model have been commonly used. These models by linearizing the 
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adsorption data helps to quantify the maximum adsorption capacity of the metal ions on 

the soil. 

3.2 Objectives 

Dewatering high water content contaminated sediment slurries using geotextile tubes has 

gained huge popularity especially in the United States because of its effectiveness in 

dewatering and containment. This technology is used in conjunction with wastewater 

treatment technologies like adsorption using activated carbon, sand filtration, and others 

as the filtrate coming out from the tubes need further treatment before they can be 

discharged to natural water bodies. In recent years, some studies have focused in 

investigating low cost amendment strategies in order to reduce the cost incurred during 

the post treatment of the effluent from geotextile tubes. Koerner and Huang (2005) 

investigated the use of charcoal and phosphoric rock to adsorb organic and inorganic 

contaminants inside the geotextile tubes and have reported only preliminary results 

showing that more than 90% containment of these contaminants was achieved with the 

use of those materials. The overall objective of our study is to investigate effective and 

low-cost materials to contain heavy metal ions inside the geotextile tube. The 

effectiveness of these materials in enhancing the dewatering performance is also 

investigated. In order to have better understanding of the dewatering of heavy metal 

contaminated sediment slurries, it is imperative to understand the adsorption and 

retention capacity of soils to metal ions under varying conditions such as contact time and 

initial concentrations. The understanding of the dewatering behavior of such sediments 

will not only help to design efficient treatment strategies, it will also help to optimize the 

amount of flocculants and coagulants to be used in dewatering operations. 
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Although researchers have investigated the role of pure clay minerals in adsorption and 

retention of heavy metal ions from aqueous solutions, few studies have focused on the 

capacity of naturally available sediments. Also, very few studies have been performed to 

understand the adsorption behavior in an environment that contains mixture of heavy 

metals rather than just individual metal ions. The dredged sediment in most of the 

geotextile dewatering projects generally contain particles of varying soil sizes (medium 

to fine sands, silts, clays, and organics).Hence, in order to better represent to the field 

conditions, this study is focused on investigating the role of natural sediments and pure 

Kaolinite for individual as well as competitive adsorption and retention of heavy metal 

ions. For this purpose, sediments collected from a local quarry at Tully, New York (Tully 

coarse and Tully fines) and commercial grade Kaolinite were used to adsorb four 

commonly encountered heavy metals in contaminated sediments and wastewater Pb, Cu, 

Cd, and Zn. Stock solutions of the test reagents were made by dissolving Pb (NO3)2, Cu 

(NO3)2.3H2O, Zn (NO3)2.6H2O, Cd (NO3)2.4H2O in de-ionized water. 

3.3 Materials and Reagents 

 Soils 

The soils used for this study were obtained from Clarks Aggregate, a local quarry located 

at Tully, NY.  The coarse soil, identified as Tully coarse (TC), was prepared by removing 

fractions coarser than US sieve No. 4.  Fine soil, identified as Tully fines (TF), was 

prepared by wet-sieving through a US sieve No. 200 and oven drying the passing 

fraction. The Kaolinite clay was purchased from Sigma Aldrich. The Scanning Electron 

Microscope (SEM) image of the Tully coarse, Tully fines, and kaolinite are shown in 

Figures 3.1(a), 3.1(b) and 3.1(c), respectively. 
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Figure 3.1 SEM image of (a) Tully coarse, (b) Tully fines, and (c) Kaolinite 

 Characterization of soils 

3.3.2.1 Particle size distribution, Atterberg limits, Mineral composition, and Specific 

gravity 

The particle size distribution of soils was carried out using sieve and hydrometer analysis 

following ASTM D6913-04 and D422-63.The particle size distribution of the soils is 

shown in Figure 3.2. It can be seen that Tully coarse is compsoed of 55 % coarse 

fractions (>0.075 mm) and 45% fine fractions with 39% silt and 6 % clay. Tully fines is 

100% fines (<0.075 mm) with 85% silt and 15% clay whereas kaolinite is 100% fines 

with 70% clay size.  

(a) (b)

(c)
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Figure 3.2 Grain size distribution of soils 

The plasticity of Tully fines was determined following ASTM D4318-10. Since the 

particle size distribution and composition of Kaolinite is very similar to that used by 

Maher and Ho (1994), the physical and chemical properties reported by them have been 

used in this study.  

The mineralogical composition of the soils was determined using X-ray diffraction 

(XRD) at University of Wisconsin, Madison. For Tully coarse and Tully fines, normal 

clay analyses were performed (3 patterns: air dry, glycol, heated) for the extracted clay 

minerals (soaked in water). For Kaolinite, XRD was measured for bulk powder sample 

The result of the quantitative analyses for Tully coarse, Tully fines and Kaolinite is 

shown in Figure 3.3(a), 3.3(b), and 3.3(c), respectively. The specific gravity of the soils 

was determined following ASTM D854-14. 
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Figure 3.3 Mineral composition of (a) Tully coarse, (b) Tully fines, and (c) Kaolinite 

3.3.2.2 Permeability 

ASTM D2434-68, used to determine permeability of coarse grained soil employing 

constant head method was followed to find the permeability of Tully fines and Tully coarse.  

3.3.2.3 Surface Charge 

The amount of charge in soils (specific charge density) was determined using Mutek 

PCD 02 Particle Charge Detector by performing polyelectrolyte titration. The titrant used 

was Potassium Polyvinyl Sulfate solution (N/400). The endpoint was identified when the 

steaming potential reaches 0 mV. The average volume of titrant from three trials to attain 

isoelectric point (0 mV) was used to calculate the specific charge density. The test setup 

is shown in Figure 3.4. The charge density of Kaolinite could not be determined with this 

method.  

 

Figure 3.4 Measurement of charge density in the PCD 02 setup 

(a) (b) (c)
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3.3.2.4 Organic Content 

The organic content is the ratio, expressed as percentage, of the mass of organic matter in 

a given mass of soil to the mass of the dry soil solids. The organic contents in soils was 

determined using ASTM D 2974.  

3.3.2.5 pH 

The pH of the soils were measured in a distilled water. Approximately 10 g of air dried 

soils were placed into a glass jar containing 10 mL of distilled water. It was mixed and 

the pH was taken after 1 hour.  The properties of the soils have been summarized and 

given in Table 3.1. 

Table 3.1 Properties of the soils 

Properties Tully coarse Tully fines Kaolinite 

Atterberg limit Not applicable 
LL: 26%, PL: 14%, 

PI: 12* 

LL: 35%, PL: 19%, 

PI: 16* 

USCS 

Classification 
SP-SM CL CL 

Mineral 

composition 

Illite:36.9%, 

Chlorite: 22.2%, 

Quartz: 34.1%, 

Dolomite: 4.6%, 

Calcite: 2.2% 

Illite:36.7%, 

Chlorite: 31%, 

Quartz: 24.6%, 

Dolomite: 6.8%, 

Calcite: 1.7% 

Kaolinite: 95.1%, 

Illite: 4.9% 

Specific gravity 2.71 2.63 2.65 

Permeability 

(cm/sec) 
8.2E-4 1.68E-5 3.6E-8 

Surface charge 

(meqµg-1) 
11.36 36.23 

Couldn’t be 

measured 

Organic content (%) 0.49 0.83 0.00 

pH 6.5 7.2 4.5 

 

 Reagents 

All the compounds used to prepare reagent solutions were of analytic grade. The reagents 

were purchased from Sigma Aldrich. Stock solutions of the test reagents were made by 
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dissolving Pb (NO3)2, Cu (NO3)2.3H2O, Zn (NO3)2.6H2O, Cd (NO3)2.4H2O in de-ionized 

water.  

3.4 Method 

Stock solution of heavy metal was prepared by adding metal salt in de-ionized water. The 

solution was mixed for 30 minutes to ensure complete solubility of the metal salt. Batch 

adsorption test was carried out by mixing soil-metal solution. The typical initial solids 

concentration of the dredged sediments during geotextile dewatering varies between 10-

14% (Lawson 2008). In this study, a 15% solid concentration slurry was made by mixing 

75 grams of soil to 425 mL of the metal solution. It was allowed to mix in a shaker using 

magnetic stirrer for 1 hour. After mixing, three samples were collected in a 15 mL vial by 

filtering the slurry through a 2 micron filter paper. The filtered samples were centrifuged 

for 1 hour at 1600 rpm to settle the soil particles that passed the filter paper. It was again 

filtered and the filtrate was tested in ICP-OES at SUNY ESF to determine the 

concentration of metal ions in the filtrate. For each heavy metal, Pb, Cu, Cd, Zn, metal 

solution with concentration of 500 ppm, 1000 ppm, 1500 ppm, 2000 ppm, and 2500 ppm 

were prepared and mixed with 15% sediments of Tully coarse, Tully fine and Kaolinite. 

Generally, in the field, a mixture of metal ions are found rather than the individual ions. 

Hence, an aqueous solution containing mixture of the studied metal ions were prepared. 

For this purpose, metal solution was prepared by mixing equal volumes (106.25mL) of 

1000 ppm Pb and 500 ppm each of Cu, Cd and Zn. The higher adsorption of Pb ions 

compared to other studied metal ions by soils was seen from individual adsorption tests. 

Therefore, higher concentration of Pb ions was used for the competitive adsorption tests. 

The slurry was mixed for four hours and sampling was done at 0.5, 1, 2 and 4 hours. At 
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each sampling point, two samples were collected in a similar way as was done for 

individual adsorption test. The test setup is shown in Figure 3.5. The test combinations 

for individual adsorption of metal ions is shown in Table 3.2. 

Table 3.2 Test combinations for individual and competitive adsorption 

 

 

Figure 3.5 Test setup 

Batch adsorption Sample collection

Centrifuge before ICP testing

Soils 
Individual adsorption initial 

concentrations (ppm) 

Competitive adsorption 

initial concentrations (ppm) 

Tully 

coarse 

Pb Cu Cd Zn 

1000 ppm Pb+ 500 ppm Cu+ 

500 ppm Cd+ 500 ppm Zn 

500 500 500 500 

1000 1000 1000 1000 

1500 1500 1500 1500 

2000 2000 2000 2000 

2500 2500 2500 2500 

Tully 

fines 

Pb Cu Cd Zn 

1000 ppm Pb+ 500 ppm Cu+ 

500 ppm Cd+ 500 ppm Zn 

500 500 500 500 

1000 1000 1000 1000 

1500 1500 1500 1500 

2000 2000 2000 2000 

2500 2500 2500 2500 

Kaolinite 

Pb Cu Cd Zn 

Not performed 

500 500 500 500 

1000 1000 1000 1000 

1500 1500 1500 1500 

2000 2000 2000 2000 

2500 2500 2500 2500 
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3.5 Results and Discussion 

To quantify the maximum adsorption capacity of soils to the individual metal ions, the 

adsorption data has been fitted using Langmuir isotherm. The Langmuir adsorption 

isotherm of soils to single metal ions over the range of initial concentrations is presented 

and discussed. The effect of initial concentration of single metal ion on its adsorption and 

retention is also discussed. Lastly, the effect of time on the competitive adsorption of 

metal ions in a slurry is presented. 

 Adsorption of lead (Pb) 

The adsorption of Pb on Tully coarse soils followed Langmuir isotherm (shown in Figure 

3.6 a). The maximum adsorption capacity of Tully coarse to Pb ions calculated from 

Langmuir isotherm was 33.1 mg/g. The high affinity of Tully coarse soil to Pb ions can 

also be attributed to its mineralogical composition, charge density, and particle size 

distribution. Tully coarse soil is very similar to Tully fines in mineralogical composition 

except it contains less fines (45%) and calcite content than the Tully fines soil. Also, 

Tully coarse is slightly acidic (pH 6.5) than Tully fines (pH 7.2). Hence, the adsorption 

capacity of Tully coarse soil was observed to be less than the Tully fines.   

The adsorption of Pb was excessively high on Tully fines soil. At all initial 

concentrations (500 ppm to 2500 ppm), almost all the Pb ions were adsorbed by Tully 

fines. The maximum removal capacity of more than 99% was achieved by Tully fines for 

all initial concentrations. Hence, the adsorption of Pb into Tully fines did not follow 

Langmuir isotherm models. Instead, the adsorption of Pb into Tully fines was perfectly 

linear meaning a linear relationship was established between initial and final 

concentrations (see Figure 3.6 b). One of the main reasons for such high adsorption and 
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retention of Pb ions by Tully fines is the pH range. Kinniburgh and Jackson (1981) 

reported the critical pH ranges for the adsorption of divalent metal ions on hydrous iron 

and aluminum oxides and is shown in Table 3.3. It can be seen that the critical pH range 

for maximum adsorption of Pb is 3-5. The pH was measured for all initial concentrations 

of Pb before the test and it was found that the pH ranged from 3.7 to 4.9. Since the pH 

was within the critical range, maximum adsorption of Pb ions was achieved by Tully 

fines soil. Other reason for high adsorption could be attributed to the presence of high 

amount (31%) of chlorite or hydrous oxides of iron, magnesium and aluminum. Jenne 

(1968) and Jenne (1977) reported that among the other factors responsible for adsorption 

of metal ions into soils and sediments, presence of hydrous oxides of iron and aluminum 

play the most predominant role in sorption and retention of heavy metal ions. The other 

factor contributing to such a high adsorption of Pb by Tully fines is the presence of very 

reactive Illite mineral (36.7%). Sposito (1984) and Ranville and Schmiermund (1999) 

based on their investigation concluded that metal adsorption by soils and sediments 

generally increase with decreasing grain size. As the grain size decreases, the specific 

surface area of the particle increases, hence for finer particles more adsorption sites are 

available for adsorption of metals. Tully fines is predominantly fines and hence possess 

large surface area for adsorption of metal ions. Tully fines soil has a surface area of 11.83 

m2/gm and high surface charge density of 36.23meq/µg, which are one of the dominant 

factors for adsorption of metal ions.  

The adsorption of Pb ions into kaolinite also followed Langmuir isotherm model with a 

maximum adsorption capacity of 14.9 mg/g (see Figure 3.6(c)). The primary reason for 

low adsorption capacity of kaolinite compared to Tully fines and coarse is due to its low 
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reactivity and molecular stability. Kaolinite is non-expanding and least reactive clay 

unlike Illite and Smectite (Suraj et al.1998). Because of its high molecular stability, 

isomorphous substitution is limited or even non-existing (Mitchell 1993).  

Table 3.3 Critical pH ranges for adsorption of divalent metal cations on hydrous iron and 

aluminum oxides (after Kinniburgh and Jackson1981) 

Cation pH range 

Pb, Cu, Hg 3-5 

Zn, Cd, Ni, Co 5-6.5 

 

 

Figure 3.6 Langmuir and linear isotherm for adsorption of Pb into (a) Tully coarse, (b) 

Tully fines (Linear), and (c) Kaolinite 

 Adsorption of copper (Cu) 

The adsorption of Cu into Tully coarse soil is shown in Figure 3. 7 (a). The adsorption 

followed Langmuir isotherm and the maximum adsorption capacity was 6.54 mg/g. The 

adsorption of Cu into Tully fines followed the Langmuir isotherm and is shown in Figure 

3.7 (b). The adsorption capacity of Tully fines to Cu was not as high as Pb. The 

maximum adsorption capacity of Tully fines to Cu was 6.55 mg/g. It can be seen that 

both Tully fines and Tully coarse soils had same adsorption capacity for Cu unlike Pb. 
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The adsorption of Cu into Kaolinite is shown in Figure 3.7(c). It can be seen the 

adsorption followed Langmuir isotherm with maximum adsorption capacity of 1.99 mg/g. 

As seen in case of Pb, adsorption capacity of Kaolinite to Cu was low compared to both 

Tully soils. 

 

Figure 3.7 Langmuir isotherm for adsorption of Cu on (a) Tully coarse, (b) Tully fines, 

and (c) Kaolinite 

 Adsorption of cadmium (Cd) 

The adsorption of Cd by all soils followed Langmuir isotherm. The adsorption of Cd by 

Tully coarse, Tully fines, and Kaolinite are shown in Figures 3.8 (a), 3.8 (b) and 3.8 (c) 

respectively. It can be seen that Kaolinite exhibited higher affinity towards Cd ions than 

both Tully soils. The maximum adsorption capacity of Kaolinite for Cd was 7.32 mg/g, 

whereas that of Tully fines and Tully coarse were 2.11 and 1.74 mg/g. Hence, it can be 

seen that although kaolinite had lower affinity for Pb and Cu ions, it had fair affinity to 

Cd. Jiang et al (2010) from their study on adsorption of Pb, Cd, Ni, and Cu onto Kaolinite 

clay concluded that the relative affinity of Kaolinite towards studied metal ions was in 

order of Pb>Ni>Cd>Cu. Although similar results were observed in this study in terms of 
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adsorption of Cd and Cu by Kaolinite, the adsorption of Pb did not follow the same order 

as reported by Jiang et al. (2010). 

 

Figure 3.8 Langmuir isotherm for adsorption of Cd on (a) Tully coarse, (b) Tully fines, 

and (c) Kaolinite 

 Adsorption of Zinc (Zn) 

The adsorption capacity of Tully coarse followed Langmuir isotherm with good 

regression coefficient and is shown in Figure 3.9 (a). The maximum adsorption capacity 

of Tully coarse to Zn was 4.65 mg/g. The adsorption of Zn ions on Tully fine soils also 

followed Langmuir isotherm and is shown in Figure 3.9 (b). The maximum adsorption 

capacity of Tully fines to Zn was 3.64 mg/g which is slightly lower than that of Tully 

coarse. Kaolinite had the least affinity for Zn ions with a maximum adsorption capacity 

of 1.30 mg/g (Refer Figure 3.9 (c)). The adsorption capacity of Kaolinite to Zn of 1.30 

mg/g is in the range reported by Kounau et al. (2015) (0.31 mg/g) and Mishra and Patel 

(2009) (3.05 mg/g). 
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Figure 3.9 Langmuir isotherm for adsorption of Zn on (a) Tully coarse, (b) Tully fines, 

and (c) Kaolinite 

 Effect of initial concentration on adsorbed amount 

The concentration of heavy metal ion present varies significantly in site specific basis and 

often a wide range of concentration has been observed and reported. In order to assess the 

suitability of the soils to adsorb and retain heavy metal ions, it is imperative to have 

better understanding of its adsorption capacity at different initial concentrations of the 

metal ions. Keeping mixing time of 1 hour and soil solids content of 15% as a constant, 

the concentration of all the metals are varied from 500 ppm to 2500 ppm. It can be seen 

from Figure 3.10(a) that the amount of Pb adsorbed by all soils increased linearly with 

increase in its concentration in the slurry. However, nonlinear relationship was observed 

between the initial concentration and the adsorbed amount by all soils in case of Cu ions 

as shown in Figure 3.10(b). It can also be seen that the adsorption of Cu by Kaolinite did 

not increase beyond 1500 ppm meaning it is completely saturated around that 

concentration. However, no such saturation could be observed on both Tully soils as the 

adsorbed amount of Cu kept on increasing till 2500 ppm. The effect of initial 

concentration of Cd and Zn on its adsorption by all three soils are shown in Figure 
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3.10(c) and 3.10(d) respectively. It can be seen that the adsorption of Cd ions by 

Kaolinite increased linearly with increase in its initial concentration, and could not be 

saturated till 2500 ppm. Also, the adsorption capacity was higher than both Tully soils. 

Tully soils got saturated with Cd ions as there was no significant change in their 

adsorption capacity beyond initial concentration of 1500 ppm. It can be seen from Figure 

3.13 that the adsorption of Zn on Kaolinite increased with increase in initial concentration 

till 1000 ppm. Beyond 1000 ppm, Kaolinite got saturated with Zn ions and the adsorbed 

amount did not change beyond that concentration. However, the adsorption capacity of 

both Tully soils kept on increasing and could not be saturated till 2500 ppm.  
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Figure 3.10 Effect of initial concentration on adsorption of (a) Pb, (b) Cu, (c) Cd, and (d) 

Zn 

 Competitive adsorption of metal ions 

The competitive adsorption of metal ions was carried out with Tully fines and Tully 

coarse soils only. It was seen from the individual adsorption tests that kaolinite doesn’t 

possess adsorption capacity comparable to other studied soils especially for Pb and Cu 

ions. Hence, kaolinite was not included in the competitive adsorption study. For 

competitive adsorption test; equal volumes (106.25 mL) of the metal ions were mixed 

together. The initial concentration of the metal ions chosen for competitive adsorption 

test was 1000 ppm Pb and 500 ppm Cu, Cd, and Zn each. The slurries (15% 

concentration) were prepared in the same manner as the individual adsorption test. 

However rather than equilibrating for just one hour, the slurry was mixed for 4 hours 

during competitive adsorption study. The sampling was performed at 0.5 hr, 1hr, 2 hr and 

4 hr. At each sampling point, three samples were collected and measured for metal ion 

concentration using ICP-OES.  
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The adsorption of Pb and Cu ions on Tully fines is shown in Figure 3.11(a) while that of 

Cd and Zn is shown in Figure 3.11(b). It can be seen from these Figures that most of the 

adsorption of metal ions occurred within 30 mins of mixing. Beyond 30 minutes, the 

adsorption of these ions proceeded slowly and have been related to time by power 

relationship. As seen in case of individual adsorption study, Pb and Cu ions were 

adsorbed in much higher amounts than Cd or Zn. However, the adsorption capacity of 

Tully fines to Pb decreased in presence of other metal ions. The relative preference of 

Tully fines to the metal ions from competitive adsorption tests followed the order 

Pb>Cu>Cd>Zn. The competitive adsorption of Pb and Cu by Tully coarse is shown in 

Figure 3.12(a), and that of Cu and Cd is shown in Figure 3.12(b). As seen with Tully 

fines, the maximum adsorption of all metal ions occurred within 30 minutes with higher 

affinity for Pb and Cu than Cd or Zn ions. However, the adsorption capacity of Tully 

coarse soil was lower than the Tully fines for all metal ions as seen during individual 

adsorption. 

 

Figure 3.11 Competitive adsorption of (a) Pb and Cu and (b) Cd and Zn, by Tully fines 
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Figure 3.12 Competitive adsorption of (a) Pb and Cu and (b) Cd and Zn, by Tully coarse 

3.6 Conclusions 

In order to design amendment strategies to effectively contain heavy metal contaminated 

slurries inside a geotextile tube, it is very important to understand the interaction between 

sediments and heavy metal ions in a slurry. The adsorption and retention of Pb, Cu, Cd, 

and Zn individually as well as in a competitive environment was studied using batch 

adsorption test in this study. For the study of single ion adsorption, three sediments (Tully 

fines, Tully coarse, Kaolinite) were used to prepare 15% slurry containing heavy metal 

solution with initial concentrations of 500 ppm, 1000 ppm, 1500 ppm, 2000 ppm, and 

2500 ppm. For competitive adsorption study, only Tully fines and Tully coarse sediments 

were used to prepare 15 % slurry containing 1000 ppm Pb, 500 ppm Cu, 500 ppm Cd, 

and 500 ppm Zn. Based on the findings of this investigations following conclusions can 

be drawn. 
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well as retention was achieved by Tully fines soil. In addition to being 

predominantly fines, it contains more than 10% clay minerals such as Illite and 

Chlorite. These clays are known to form strong bond surface complexes with Pb 

ions in aqueous solution. Tully coarse also had fair affinity to Pb. The maximum 

adsorption capacity of 33.1 mg/g was achieved by Tully coarse soils to Pb. Tully 

coarse (55% coarse and 45% fines) also contains Illite, Dolomite, and Chlorite 

clay minerals.  Kaolinite although having more than 70% clay size had least 

affinity to Pb ions (maximum adsorption capacity of 14.9 mg/g) compared to both 

Tully soils. Studies have shown that compared to other clay minerals, Kaolinite is 

considered less reactive because of its high molecular stability (Sposito 1989).  . 

 The maximum adsorption capacity of both Tully soils to Cu was 6.5 mg/g, which 

is significantly lower than that of Pb. Similarly, Kaolinite also had lower affinity 

to Cu ions than Pb. The maximum adsorption capacity of kaolinite to Cu was 1.99 

mg/g. The lower affinity of all soils to Cu compared to Pb could be difference in 

atomic radius. The ionic radius of Pb2+ (119 pm) being higher than Cu2+ (73 pm), 

adsorption of Pb could have been more favorable than Cu.  

 Unlike the adsorption of Pb and Cu, the highest affinity to Cd ions was exhibited 

by Kaolinite. When maximum adsorption capacity of Kaolinite to Cd was 7.32 

mg/g, Tully fines and Tully coarse had maximum adsorption capacity of 2.11 

mg/g and 1.74 mg/g respectively. Based on these results, it can be seen that 

adsorption of Cd was more favorable on Kaolinite clay than other clays like Illite 

or Calcite present in Tully soils. 
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 The maximum adsorption capacity of Tully fines and Tully coarse to Zn was 

observed to be higher than Kaolinite. The adsorption capacity of Tully coarse 

(4.65 mg/g) was slightly higher than Tully fines (3.64 mg/g). The maximum 

adsorption capacity of Kaolinite to Zn was 1.30 mg/g. 

 It was seen from the competitive adsorption tests that the capacity of all metal 

ions to get adsorbed to a soil surface decreased in presence of other metal ions in 

the solution.  

 It was seen that for all soils, the amount of adsorption of Pb increased linearly 

with increase in its initial concentration. The amount of Cu adsorbed by both 

Tully soils increased non-linearly with the increase in its concentration in the 

slurry. However, Kaolinite got saturated with Cu around 15000 ppm.  

 The adsorption of Cd by Kaolinite increased linearly with the increase in its 

concentration in the slurry. However, for Tully soils the adsorption of Cd did not 

increase beyond 1000 ppm suggesting their complete saturation around that 

concentration. The adsorption of Zn increased non-linearly with increase in its 

concentration in Tully coarse slurry. However, Tully fines and Kaolinite got 

saturated with Zn ions around 1500 ppm. 
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CHAPTER 4  

A STUDY ON CONTAINMENT AND DEWATERING OF HEAVY 

METAL CONTAMINATED SLURRIES USING CELLULISIC 

MATERIALS 

4.1 Introduction 

 With the rapid industrialization and municipal activities over the last fifty years and 

limited stringent legislation on the disposal of the wastes, many water bodies have been 

polluted with harmful metals, and organic and inorganic pollutants. Krizek (2000) states 

that approximately one billion cubic meters of contaminated slurries are produced 

annually from industrial, municipal, and marine activities in the United States. According 

to Lawson (2008), such a large volume of wastes especially in slurry form poses a serious 

environmental threat and require cleaning to remove the sediments and sludge so that the 

impoundments can accept further flows. Over the last 20 years, geotextile tubes have 

gained rapid popularity to contain and dewater high water content contaminated slurries, 

mine tailings, municipal wastes and sludge (Moo-Young et al. 2002; Liao and Bhatia 

2005; Cetin et al. 2014; Lawson 2008).Containment and consolidation of fine-grained 

sediments in geotextile tubes have had success in the municipal, industrial, and 

environmental dredging markets with recent innovations in chemical conditioning 

products (Mastin and Lebster 2006; Mastin and Lebster 2007). Since 80’s, hundreds 

geotextile tube dewatering projects have been used in many parts of Europe, Asia, 

Australia, and the United States to contain and dewater high water content slurries. 
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Generally the remediation of contaminated sediments using geotextile tube involves 

further step/s in conjunction with dewatering. The effluent is collected from the lined 

gravel drainage area beneath the geotextile tubes and pumped into the water treatment 

plant. Therefore, water treatment plant has been an essential step in geotextile dewatering 

project to treat the effluents before they are discharged into water course. In recent years, 

there has been an interest to investigate a more sustainable solution to treat contaminated 

sediments using geotextile tubes. The addition of low cost adsorbents such as clay 

minerals, cellulose adsorbents, bio adsorbents and other reactive materials have been 

effective in wastewater treatment to treat heavy metal contaminated sludge. Although 

many studies have been conducted on geotextile tube dewatering, however there are 

limited studies on dewatering behavior and performance of heavy metal contaminated 

sediment slurries and the use of low cost adsorbents and cellulose adsorbents. In addition, 

very few studies have focused on investigating amendment strategies for the geotextile 

tube dewatering project to treat heavy metal contaminated slurries. A short review of the 

case studies on geotextile dewatering of contaminated sediments has been presented. 

Approximately 55000 yd3 of contaminated sediment was dredged and successfully 

contained in forty four geotextile containers from Marina Del Rey, Los Angeles, CA in 

2008 (Risko 1995) . The dredged sediments had 7 to 8 percent fines and was 

contaminated with a number of heavy metals such as lead, zinc and copper. The dredged 

materials also contained polychlorinated biphenyls (PCB), polynuclear aromatic 

hydrocarbons (PAH’s), oil and grease, hydrocarbons, sulfides, and ammonia. For this 

project, the heavy metals in the sediments were above acceptable limits as opposed to 

other contaminates. The concentration of heavy metals in sediment sample was 138 ppm 
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Cu, 400 ppm Pb, and 380 ppm Zn. The concentration of the metals in the effluent was 5 

ppm Cu, 1.3 ppm Pb, and 10 ppm Zn. Further dilution of the effluent was made to make 

sure the effluent meets the water quality criteria before they were discharged. 

The Ottawa River Remediation Project, performed in Toledo, Ohio in 2010, successfully 

dredged 242,000 yd3 of PCB contaminated sediments from the Ottawa River (Cretens 

2011). The dredged materials (226,000 yd3) were dewatered with geotextile tubes placed 

in a landfill facility and capped later in place for disposal. Remaining 16,000 yd3of 

sediments exceeded 50 ppm total PCBs and were therefore dewatered separately and 

hauled off-site for disposal in a Toxic Substance Control Act (TSCA) permitted landfill. 

Non TSCA sediments were screened, thickened, treated with chemical conditioner, and 

dewatered in geotextile tubes. About 38,000 linear feet of geotextile tubes stacked in five 

layers were used. However, TSCA sediments were directly pumped into the geotextile 

bags (2150 linear feet stacked in two layers) without prior screening or thickening. 

Effluent from dewatering process had to be collected and treated on site in a water 

treatment plant, and eventually discharged to the Ottawa River. The treatment plant 

incorporated three processes: flocculation, coagulation and settling, two step filtration: 

and Granular Activated Carbon (GAC) adsorption. 

Ashtabula River lying in Northeast Ohio had been subjected to heavy industrial 

development and unregulated discharge from the 1940’s to late 1970’s (Cretens 2012). 

This led the sediments along the river to be highly contaminated with heavy metals such 

as lead, zinc, chromium, mercury and organic compounds such as PCB’s, PAH’s and 

small traces of radionuclides. The navigation was restricted for years because of this high 

buildup of contaminated sediments. A remediation plan involving dredging of 523181 
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yd3 contaminated sediments and pumping the slurry to a geotextile tube dewatering 

facility was made. The dewatering facility was designed to be permanent contaminated 

sediment disposal facility. The effluent water was collected in a pit and was fed to water 

treatment plant before being discharged into the river. The water treatment by sand 

filtration and activated carbon filtration was employed to remove any residual 

concentration of organic and inorganic contaminants on the effluent. It was estimated that 

a total of 14000 kg of PCB’s and other contaminants were removed from the river bed. 

Waukegan harbor is a man-made channel located along the sea horse drive in Waukegan, 

about forty miles north of Chicago. The U.S. EPA had documented PCB contaminant 

level exceeding 1000 ppm in the sediment in a study conducted in 1981. EPA had 

reported that about 50,000 yd3 of sediment had contaminated above 50 ppm PCBs with 

even higher volume containing PCBs at 10 ppm or higher. Infrastructure Alternatives, 

Inc. removed about 117,278 yd3 of Polychlorinated biphenyls (PCB) contaminated 

sediments by hydraulically dredging from the harbor and transferring them to the landfill 

facility for disposal. Prior to geotextile tube dewatering, the sediment was processed 

using a large screen for debris removal and slurry thickener in a gravity thickener. 75-82 

feet circumference geotextile tubes were stacked in three layers over the containment 

facility. A separate water treatment plant was constructed to treat the dewatered effluents. 

The water treatment plant was configured with lamella inclined plate clarifiers, 

pressurized multi-media filter, bag filters and granular activated carbon (GAC) vessels. 

The treated effluent met the target concentration of 0.2 ppm PCB. 

It can be seen from these case studies that the effluent collected from geotextile tubes 

require some sort of post treatment or dilution before they can be discharged into water 
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bodies. It can also be seen that most of the post treatment methods are designed to treat 

organic contaminants such as PCBs and PAHs.  Although a lot of studies have been 

conducted on treating organic contaminants either through pretreatment or post treatment 

methods, there is a shortage of literature on the dewatering of heavy metal contaminated 

slurries using geotextile tubes. Significant number of heavy metal contaminated sites 

around the world requires cleanup and. Hence, in order to use geotextile tube technology 

to contain and dewater such slurries, a proper understanding of metal ion with the 

sediments is essential. Moreover, to increase its effectiveness, it is important to 

investigate amendment strategies that will help to prevent heavy metal ions leaching from 

the tubes.   

The primary objective of this study is to investigate the dewatering behavior of heavy 

metal contaminated slurries and evaluate the effectiveness of low cost adsorbents in 

geotextile tube not only to adsorb the heavy metals but also to enhance the dewatering 

performance. To study the dewatering behavior of heavy metal contaminated slurries,, a 

slurry prepared by mixing soil sediments rich in minerals such as Illite, Chlorite, quartz 

and cellulose adsorbents (Peanut hull, jute fibers, kraft pulp) was investigated using the 

Pressure Filtration Test (PFT) in the lab. 

4.2 Materials 

 Soil  

The soils used in this study are Tully coarse and Tully fines. The soils were obtained 

from Clark’s aggregate pit located at Tully, NY. The properties of the soil sediments are 

given in Table 4.1. 
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Table 4.1 Properties of the soils 

Soil 
D10 

(µm) 

D50 

(µm) 
Cu pH 

Minerals (in 

descending order) 

Surface 

charge 

(meqµg-1) 

Organic 

content 

(%wt.) 

Tully 

coarse 
22 80 3.52 6.5 

Illite, quartz, 

chlorite, calcite, 

dolomite 

11.36 0.59 

Tully 

fines 
1.8 29 27.1 7.2 

Illite, chlorite, 

quartz, dolomite, 

calcite 

24.90 0.81 

 

 Cellulose Materials 

 Three different types of cellulosic materials investigated in this study are peanut hulls, 

jute fibers, and kraft pulp. Peanut husks were obtained from Birdsong Peanuts, a peanut 

shelling company out of Suffolk, VA. The jute fibers 1 cm in length were imported from 

Korea through Bast Fibers LLC, headquartered in Cresskill, NJ. Kraft pulp was obtained 

from Kraft pulping process at SUNY College of Environmental Science and Forestry 

(SUNY-ESF), NY. All the adsorbents were ground to make the mixing with slurry more 

homogenous and also to increase its specific surface area. The percentages of cellulose 

and lignin for the selected adsorbents are given in Table 4.2. The adsorbents have been 

shown in Figure 4.1. 

 

Figure 4.1 Cellulose adsorbents (a) Peanut hulls, (b) Jute fibers, and(c) Kraft pulp 

(c)(b)(a)
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Table 4.2 Cellulose and lignin content in the adsorbents 

Materials % Cellulose % Lignin 

Peanut hull 55.1 27.6 

Jute fibers 85-88 12-15 

Kraft pulp 98 2.7 

 

 Geotextile 

A composite geotextile (woven/non-woven) having an Apparent Opening Size (AOS) of 

100 microns and bubble point of 98 microns was used in this study. The properties of the 

geotextile is given in Table 4.3. 

Table 4.3 Basic Properties of the geotextile 

Fabric and 

Polymer type 

Hydraulic Properties Mechanical Properties 

Apparent 

Opening 

Size (AOS) 

(µm) 

Permittivity 

(sec-1) 

Wide-width 

tensile 

strength CD 

(kN/m) 

Grab 

tensile 

strength 

CD (N) 

Puncture 

(N) 

Polypropylene 100 0.23 625 NR 2000 

Note: CD = cross machine direction, NR = Not Reported 

4.3 Test Methods 

The soil slurry preparation and testing has the following four steps, (1) preparation of 

heavy metal solution (2) mixing heavy metal solution with soil sediments to prepare 15% 

solid slurry (3) mixing cellulose adsorbents with the prepared slurry (4) performing 

pressure filtration tests. For this study, metal solution was prepared by mixing equal 

volumes of1000 ppm Pb, 500 ppm Cu, 500 ppb Cd, and 500 ppm Zn. After the 

preparation of metal solution, soil sediment was added to form 15% solid slurry, and it 

was mixed for one hour. After the contaminated soil slurry was prepared, cellulosic 

adsorbent (2% weight of soil) was added and mixed for further one hour. During the 
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mixing of adsorbents to the soil slurry, kraft pulp formed chunks of 300 µm and larger 

and did not mix well. A glass rod was used frequently to break the chunks while mixing. 

The jute fibers mixed well in the slurry and the fibers got dispersed almost 

homogenously. Peanut hull being fine powder mixed well and formed the perfect slurry 

mix .After the mix was ready, PFT tests were conducted under an air pressure of 1.5 psi, 

and the filtrate was tested for metal concentration using ICP-OES. Pressure filtration tests 

were performed to simulate the geotextile tube dewatering in the field with both kind of 

soils. The test was stopped when the dewatering rate dropped to 1 ml per 3 minutes. The 

dewatering rate was recorded using a digital scale coupled with the computer. After the 

test, total collected filtrate was stirred and the turbidity measurements were taken using 

2100N Turbidimeter. Also, the solid content and height of the filter cake were measured. 

The tests were also conducted on uncontaminated slurries (slurry prepared with DI water 

rather than heavy metal solution) with and without cellulosic materials. The test 

schematic and setup have been shown in Figures 4.2 and 4.3, respectively. 
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Figure 4.2 Experimental steps 
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Figure 4.3 Pressure Filtration Test setup 
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4.4 Results and Discussion 

 Dewatering rate and performance 

4.4.1.1 Polymer optimum dose 

Jar tests were conducted on the uncontaminated and contaminated Tully coarse and Tully 

fine soils to quantify the effect of contamination on the optimum dose of the polymer to 

be added to the slurry. The dosage of polymer was determined to be optimum when the 

turbidity was lower than 20 NTU. Two cationic polymers, zetag 8115 (very low cationic 

charge) and zetag 8185 (very high cationic charge), and two high molecular weight 

anionic polymers, magnafloc 155 and magnafloc 336 were used for the study. The jar test 

results for uncontaminated and contaminated Tully coarse slurries is shown in Figures 4.3 

and 4.4 respectively. The results are summarized in Table 4.4. It can be seen that for both 

uncontaminated and contaminated Tully coarse sediments, cationic polymers (zetag 8115 

and 8185) are more efficient than the anionic polymers (magnafloc 155 and 336). It can 

also be seen that the optimum dose required for contaminated Tully coarse sediments is 

much lower than the uncontaminated sediments. When uncontaminated sediments 

required 3.82 ppm of zetag 8185, the optimum dose for contaminated Tully coarse was 

1.7 ppm. For all polymers studied, contaminated Tully coarse required less polymer 

dosing than the uncontaminated ones. The results of jar test for uncontaminated and 

contaminated Tully fines is shown in Figures 4.5 and 4.6 respectively and the summary is 

presented in Table 4.5. As observed in case of Tully coarse sediments, cationic polymers 

were much more effective than the anionic ones for both contaminated and 

uncontaminated Tully fine sediments. Also, the optimum dose of these polymers were 

very low for contaminated Tully fines than the uncontaminated ones. Since the Tully 
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fines has more fines content (15%), the polymer dosage was higher than that required for 

the Tully coarse sediments. It was observed that the optimum dose of polymer for metal 

contaminated slurries was lower than the uncontaminated sediments. Since, zetag 8185, a 

cationic polymer was most effective for all the slurries, it was selected for the tests. 

Table 4.4 Optimum dose for uncontaminated and contaminated Tully coarse sediments 

Slurries Polymers Optimum dose (ppm) 

Uncontaminated Tully 

coarse 

Magnafloc 155 > 8 

Magnafloc 336 > 29 

Zetag 8115 4.41 

Zetag 8185 3.82 

Contaminated Tully coarse 

Magnafloc 155 1.76 

Magnafloc 336 17.64 

Zetag 8115 1.76 

Zetag 8185 1.17 

 

Table 4.5 Optimum dose for uncontaminated and contaminated Tully fine sediments 

Slurries Polymers Optimum dose (ppm) 

Uncontaminated Tully 

fines 

Magnafloc 155 >29 

Magnafloc 336 >58 

Zetag 8115 41.8 

Zetag 8185 25 

Contaminated Tully fines 

Magnafloc 155 26 

Magnafloc 336 41.2 

Zetag 8115 27.9 

Zetag 8185 16.2 
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Figure 4.4 Optimum dose for uncontaminated Tully coarse 

 

Figure 4.5 Optimum dose for contaminated Tully coarse 

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10

T
u
rb

id
it

y
 (

N
T

U
)

Dosage (ppm)

Magnafloc 155

Magnafloc 336

Zetag 8115

Zetag 8185

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

T
u
rb

id
it

y
 (

N
T

U
)

Dosage (ppm)

Magnafloc 155

Zetag 8115

Zetag 8185



 

100 

 

 

Figure 4.6 Optimum dose for uncontaminated Tully fines 

 

Figure 4.7 Optimum dose for contaminated Tully fines 
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4.4.1.2 Pressure Filtration Tests (PFT) Results: Uncontaminated and contaminated 

slurries without cellulose and polymer 

PFT tests were conducted on contaminated and uncontaminated slurries of both Tully 

fines and Tully coarse to compare their dewatering rate, filter cake properties and filtrate 

quality in terms of turbidity and heavy metals. Typical test results of dewatering of 

uncontaminated and contaminated Tully coarse is shown in Figure 4.8.   It can be seen 

that the contaminated Tully coarse dewatered much faster than the uncontaminated ones. 

It took uncontaminated Tully coarse 70 minutes to dewater whereas the contaminated 

slurry dewatered in approximately 1/3 rd the time (20 minutes). This reduction in 

dewatering time in contaminated sediment is due to the fact that as metal ions get 

adsorbed on the soil particles, negative charges in the soils (due to presence of clay 

minerals) neutralize and flocculation of soil particles takes place. Because of such 

flocculation, the clayey fraction in the soil slurries settled quickly and the dewatering rate 

was much faster. The results of solid content and turbidity is given in Table 4.6. It was 

observed that the solid content of the contaminated Tully coarse filter cake (74%) was 2-

3% higher than the uncontaminated (71%) sediments. Also, turbidity of the filtrate from 

the dewatering of contaminated Tully coarse (32-39 NTU) was found to be much lower 

than the uncontaminated sediment (249-263 NTU).  

The dewatering of contaminated and uncontaminated Tully fines is shown in Figure 4.9. 

As seen with the Tully coarse slurries, contaminated Tully fines also dewatered much 

faster than the uncontaminated fines. While it took uncontaminated Tully fines 1800 

minutes to dewater, the contaminated Tully fines dewatered much faster i.e. around 1/6th 

the time it took for uncontaminated ones (340 minutes). The solid content of the 
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uncontaminated Tully fine filter cake was as high as 67%. The solid content of the 

contaminated Tully fine filter cake increased to 70%. Also, significant reduction in 

turbidity from 1384 NTU to 612 NTU was observed (Refer Table 4.6). Since the soil loss 

especially during the initial stage of dewatering was very minimal for contaminated 

slurry of both soils, the turbidity was significantly low and the solid content was higher. 

Due to high water content of uncontaminated filter cakes of both Tully fines and Tully 

coarse sediments, filter cake heights couldn’t be measured. 

 

Figure 4.8 Dewatering of contaminated and uncontaminated Tully coarse 
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Figure 4.9 Dewatering of contaminated and uncontaminated Tully fines 

Table 4.6 Summary of dewatering parameters without cellulose and polymer 

Test Conditions Trials 
Overall 

turbidity (NTU) 

Solid content of 

filter cake (%) 

Filter cake 

height 

(mm) 

Uncontaminated 

Tully coarse 

Trial 1 249 71.9 
 

Trial 2 263 72.7 

Contaminated 

Tully coarse 

Trial 1 39 74.5 22.36 

Trial 2 32 74 22.17 

Uncontaminated 

Tully fines 

Trial 1 862 66.9 
 

Trial 2 834 67.3 

Contaminated 

Tully fines 

Trial 1 48.78 70.3 24.84 

Trial 2 45.4 70.7 23.15 
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4.4.1.3 PFT Results: Uncontaminated and contaminated slurries with cellulose fibers 

and without polymers 

Cellulosic materials (2% weight of soil) were added to the contaminated and 

uncontaminated slurries and were mixed for one hour to prepare a homogenous soil-fiber 

slurry. After the preparation of soil-fiber slurries, they were transferred to the PFT setup 

and dewatering test was carried out under air pressure of 1.5 psi.  

The dewatering behavior of uncontaminated Tully coarse with cellulosic materials is 

shown in Figure 4.10. It can be seen that the uncontaminated Tully coarse without any 

cellulosic materials took 80 minutes to dewater. No signification reduction in dewatering 

time was observed with the addition of jute fibers or kraft pulp. However, dewatering 

time reduced by almost 40% with the use of peanut hull. The kraft pulp being clumpy and 

fibrous in nature did not form a homogenous mix with the sediment slurries. Few small 

clumps of these fibers were observed during the dewatering test. These clumps 

contributed to form blinding or clogging spots in the filter cake. As a result, no reduction 

in dewatering time was observed with the use of kraft pulp.  

The dewatering of contaminated Tully coarse is shown in Figure 4.11. It can be seen that 

as opposed to a case in uncontaminated Tully coarse, all the cellulosic fibers slightly 

reduced the dewatering time with the fastest achieved with the use of peanut hull. The 

summary of solid content of the filter cake and turbidity is given in Table 4.7. It can be 

seen that there is a significant benefit of using peanut hull and jute fibers since they 

helped to increase the solid content of the filter cake from 72% to 77% and 79% 

respectively. Since the jute fibers and especially peanut hull were almost in particulate 

form, they mixed properly to form homogenous slurry and eventually formed a uniform 
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filter cake. Solid content was generally lower with the use of kraft pulp by almost 10% 

than peanut hulls or jute fibers. As the fibers of kraft pulp have high capacity to adsorb 

water and swell when mixed in a slurry, filter cakes had lower solid contents (or higher 

water contents). One of the measure of success of a dewatering project is the solid 

content of the filter cake. Generally a high percentage solids is targeted in the field. 

Although all adsorbents were able to reduce the turbidity of the filtrate, a reduction in 

turbidity as much as 80% was achieved with the addition of peanut hulls. It was also 

noticed during dewatering tests that some of the pulp and jute fibers escaped through the 

pores of geotextile and contributed to the turbidity. However, no loss of peanut hull were 

noticed under any testing conditions. The results of the dewatering performance (turbidity 

and solids content of the filter cake) of uncontaminated and contaminated Tully coarse 

with cellulose materials have been shown using a bar diagram in Figures 4.12 and 4.13, 

respectively. 

The dewatering of uncontaminated Tully fines with and without cellulosic materials is 

shown in Figure 4.14. It can be seen that jute fibers and peanut hull were efficient in 

reducing the dewatering time from 1800 mins to 1000 mins. A slight increase in solid 

content of the filter cake was also observed with the use of these materials. However, the 

solid content of the filter cake decreased with the addition of kraft pulp as it has the 

capacity to adsorb and retain water (Refer Table 4.8). The solid content of the 

uncontaminated Tully fine filter cake was 4-5% higher with the use of peanut hulls and 

jute fibers than the kraft pulp. The dewatering of contaminated Tully fines with and 

without fibers is shown in Figure 4.15. It can be seen that among the cellulose materials, 

peanut hull and jute fibers were more efficient in reducing the dewatering time. The solid 
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content of the filter cake increased from 70% to 75% and 73.5% with the addition of jute 

fibers and peanut hull respectively. However, no change in solid content of the filter cake 

was seen with the use of kraft pulp. The addition of all the adsorbents reduced the 

turbidity significantly as it dropped from 38 NTU to 2-8 NTU. The results of the 

dewatering performance (turbidity and solids content of the filter cake) of 

uncontaminated and contaminated Tully fines with cellulose materials have been shown 

using a bar diagram in Figures 4.16 and 4.17 respectively. 

 

Figure 4.10 Dewatering of uncontaminated Tully coarse with cellulose and without 

polymer 

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

D
ew

at
er

ed
 V

o
lu

m
e 

(m
L

)

Time (min)

W/o fibers

W/o fibers

With jute fibers

With kraft pulp

With kraft pulp

With peanut hull

With peanut hull

Uncontaminated 

Tully coarse  



 

107 

 

 

Figure 4.11 Dewatering of contaminated Tully coarse with cellulose and without polymer 

Table 4.7 Summary of dewatering parameters of Tully coarse with cellulose and without 

polymer 

Test Conditions Trials 
Overall 

turbidity (NTU) 

Solid content of 

the filter cake (%) 

Filter cake 

height (mm) 

Uncontaminated 

Tully coarse 

with kraft pulp 

Trial 1 202 70.8 24.6 

Trial 2 186 69.7 23.1 

Uncontaminated 

Tully coarse 

with jute fibers 

Trial 1 86 73.7 24.2 

Trial 2 94 74.5 25.3 

Uncontaminated 

Tully coarse 

with peanut hulls 

Trial 1 64 72.8 22.4 

Trial 2 71 73.7 23.8 

Contaminated 

Tully coarse 

with kraft pulp 

Trial 1 27 71.2 26.32 

Trial 2 28 70.7 26.64 

Contaminated 

Tully coarse 

with jute fibers 

Trial 1 8 78.4 27.21 

Trial 2 8 79.2 27.08 

Contaminated 

Tully coarse 

with peanut hulls 

Trial 1 23 77.2 26.84 

Trial 2 24 76.5 25.74 
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Figure 4.12 Dewatering parameters (turbidity and solids content) of uncontaminated 

Tully coarse with cellulose materials and without polymer 

 

Figure 4.13 Dewatering parameters (turbidity and solids content) of contaminated Tully 

coarse with cellulose materials and without polymer 
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Figure 4.14 Dewatering of uncontaminated Tully fines with cellulose and without 

polymer 

 

Figure 4.15 Dewatering of contaminated Tully fines with cellulose and without polymer 

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600 1800

D
ew

at
er

ed
 V

o
lu

m
e 

(m
L

)

Time (min)

W/o fibers

With jute fibers

With peanut hull

With kraft pulp

W/o fibers

With jute fibers

With peanut hull

With kraft pulp

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600 1800

D
ew

at
er

ed
 V

o
lu

m
e 

(m
L

)

Time (min)

W/o fibers

With jute

With peanut

With kraft pulp

W/o fibers

With jute

With peanut hull

With kraft pulp

Uncontaminated 

Tully fines  

Contaminated 

Tully fines  



 

110 

 

Table 4.8 Summary of dewatering parameters of Tully fines with cellulose and without 

polymer 

Conditions Trials 

Overall 

turbidity 

(NTU) 

Solid content of 

the filter cake 

(%) 

Filter cake 

height (mm) 

Uncontaminated Tully 

fines with kraft pulp 

Trial 1 317 66.13 23.7 

Trial 2 329 65.53 22.9 

Uncontaminated Tully 

fines with jute fibers 

Trial 1 107 69.83 25.4 

Trial 2 124 70.52 24.3 

Uncontaminated Tully 

fines with peanut hulls 

Trial 1 113 68.36 22.6 

Trial 2 129 70.11 21.8 

Contaminated Tully 

fines with kraft pulp 

Trial 1 11.74 71.23 24.09 

Trial 2 11.89 70.81 24.12 

Contaminated Tully 

fines with jute fibers 

Trial 1 2.54 74.16 27.94 

Trial 2 2.65 73.59 28.89 

Contaminated Tully 

fines with peanut hulls 

Trial 1 8.62 71.68 25.43 

Trial 2 8.28 72.07 24.62 

 

 

Figure 4.16 Dewatering parameters (turbidity and solids content) of uncontaminated 

Tully fines with cellulose materials and without polymer 
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Figure 4.17 Dewatering parameters (turbidity and solids content) of contaminated Tully 

fines with cellulose materials and without polymer 

 

Figure 4.18 Filter cake of Tully coarse without polymer (a) Uncontaminated, (b) 

Contaminated, (c) Contaminated with jute fibers, (d) Contaminated with peanut hull, and 

(e) Contaminated with kraft pulp 

47.09

11.815

2.595

8.45

70.04

71.02

73.87

71.88

68

69

70

71

72

73

74

75

0

5

10

15

20

25

30

35

40

45

50

S
o

li
d

s 
co

n
te

n
t 

(%
)

T
u
rb

id
it

y
 (

N
T

U
)

solids content

(a) (b) (c)

(d) (e)



 

112 

 

 

Figure 4.19 Filter cake of Tully fines without polymer (a) Uncontaminated, (b) 

Contaminated, (c) Contaminated with jute fibers, (d) Contaminated with peanut hull, and 

(e) Contaminated with kraft pulp 

4.4.1.4 PFT Results: Contaminated slurries with cellulose fibers and polymer 

In almost all geotextile dewatering projects, dredged sediments are treated with polymers 

in order to promote flocculation and coagulation of fines to speed up the dewatering as 

well as reduce the turbidity. Hence, the dewatering of contaminated Tully soils in 

presence of cellulose materials were carried by treating the slurries with the optimum 

dose of zetag 8185 determined from the jar test which were 1.17 ppm for Tully coarse 

and 16.2 ppm for Tully fines. The dewatering of contaminated Tully coarse and Tully 

fines with cellulose materials and polymer is shown in Figures 4.20 and 4.21, 

respectively. As expected, the dewatering rate increased significantly with the addition of 

polymer. It can be seen from Figure 4.20 that with the addition of polymer and cellulose 

materials in contaminated Tully coarse slurry, the dewatering completed within 3-5 

minutes. The summary of the solids content of the Tully coarse filter cake and turbidity is 

(a) (b) (c)

(d) (e)

Lumps of kraft
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given in Table 4.9. It can be seen that with the addition of polymer, the turbidity with all 

cellulose materials was very low (3-5 NTU). However, the solids content of the filter 

cakes decreased with the addition of polymer in case of all cellulose materials by 5.-8%. 

It can be seen from Figure 4.21 that the addition of polymer on a Tully fine contaminated 

slurry with cellulose materials reduced the dewatering time from approximately 200-400 

minutes to 25-80 minutes. The summary of solids content and turbidity is given in Table 

4.10. As observed in case of Tully coarse, the addition of polymer reduced the solids 

content of the filter cake. The results of the dewatering performance (turbidity and solids 

content of the filter cake) of uncontaminated and contaminated Tully fines with cellulose 

materials have been shown using a bar diagram in Figures 4.22 and 4.23, respectively. 

 

Figure 4.20 Dewatering of contaminated Tully coarse with cellulose and polymer 
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Figure 4.21 Dewatering of contaminated Tully fines with cellulose and polymer 

Table 4.9 Summary of dewatering parameters of contaminated Tully coarse with 

cellulose and polymer 

Conditions Trials 
Overall 

turbidity (NTU) 

Solids content of the 

filter cake (%) 

Filter cake 

height (mm) 

Contaminated Tully 

coarse with kraft 

pulp and polymer 

Trial 1 2.96 69.87 28.8 

Trial 2 2.21 69.80 29.56 

Contaminated Tully 

coarse with jute 

fibers and polymer 

Trial 1 3.89 70.78 31.14 

Trial 2 3.45 70.06 32.19 

Contaminated Tully 

coarse with peanut 

hulls and polymer 

Trial 1 5.00 69.41 27.98 

Trial 2 4.38 69.31 27.67 
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Table 4.10 Summary of dewatering parameters of contaminated Tully fines with cellulose 

and polymer 

Conditions Trials 
Overall 

turbidity (NTU) 

Solids content of the 

filter cake (%) 

Filter cake 

height (mm) 

Contaminated Tully 

fines with kraft 

pulp and polymer 

Trial 1 7.62 67.43 32.79 

Trial 2 8.37 66.82 32.84 

Contaminated Tully 

fines with jute 

fibers and polymer 

Trial 1 4.12 68.36 34.13 

Trial 2 3.24 68.82 33.27 

Contaminated Tully 

fines with peanut 

hulls and polymer 

Trial 1 4.29 65.96 30.79 

Trial 2 6.19 66.33 29.43 

 

 

Figure 4.22 Dewatering parameters (turbidity and solids content) of contaminated Tully 

coarse with cellulose materials and polymer 
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Figure 4.23 Dewatering parameters (turbidity and solids content) of contaminated Tully 

fines with cellulose materials and polymer 
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Removal Efficiency (%)= *100%
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i

C C
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where, Ci and Cf are initial and final concentrations of heavy metals in the slurry and 

filtrate respectively. The summary of removal efficiencies under different conditions for 
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seen from that the addition of cellulose materials was able to adsorb even higher amount 

of all heavy metals expect Cd. The addition of cellulose materials in contaminated Tully 

coarse had no role in adsorption of Cd. The addition of jute fibers was more beneficial in 

terms of adsorption of Cu as the removal efficiency increased form 90% to 99%. Also, all 

the cellulose materials were able to adsorb Pb with their addition in contaminated Tully 

coarse slurry. The adsorption of 99% Pb, 98% Cu, 86% Cd, and 83% Zn was achieved by 

Tully fines without any adsorbents (see Table 4.12). Among many reasons for such high 

adsorption capacity of both soils, is the presence of high amount of very reactive clay 

minerals such as Illite, Chlorite, and calcite in the Tully fine sediments. Since these 

minerals have high adsorption and retention capacity, they are also commonly used as 

soil amendment. The addition of cellulose materials in contaminated Tully fine sediment 

slurry was more effective in adsorption of Zn unlike in Tully coarse. Although the 

adsorption of heavy metals was very high even without the addition of cellulose 

materials, the cellulose materials had significant benefit for the dewatering performance. 

Also, independent tests conducted on the studied cellulose materials have confirmed that 

they have good adsorption capacity to the heavy metals. In cases where there are non-

reactive soil sediments in a slurry, the addition of cellulose materials might have more 

pronounced effect in metal adsorption and retention. Addition of cellulose reduced 

dewatering time, increased solid content of the filter cake, and decreased turbidity of the 

filtrate in addition to adsorption heavy metal ions. 
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Table 4.11 Summary of % removal by Tully coarse with and without cellulose (without 

polymer) 

Conditions 
% Removal 

Pb Cu Cd Zn 

Contaminated Tully coarse without adsorbents 95.98 89.94 81.41 76.34 

Contaminated Tully coarse with peanut hulls 98.35 95.51 80.61 78.73 

Contaminated Tully coarse with kraft pulp 97.04 93.41 80.95 78.10 

Contaminated Tully coarse with jute fibers 99.37 98.37 80.22 81.59 

 

Table 4.12 Summary of % removal by Tully fines with and without cellulose (without 

polymer) 

Conditions 
% Removal 

Pb Cu Cd Zn 

Contaminated Tully fines without adsorbents 99.74 98.92 88.06 83.83 

Contaminated Tully fines with peanut hulls 99.93 99.46 92.07 87.07 

Contaminated Tully fines with kraft pulp 99.88 99.56 89.08 86.03 

Contaminated Tully fines with jute fibers 99.94 99.75 91.30 87.76 

 

4.5 Conclusions 

This study aimed at addressing the issue of sustainable and effective containment of 

heavy metal contaminated slurries by investigating few low cost cellulose adsorbents not 

only to contain heavy metal contaminated sediments but also to improve the dewatering 

performance. Based on the results and observations from the PFT tests, following 

conclusions can be drawn. 

 The optimum dose required for heavy metal contaminated sediments is very low 

compared to the non-contaminated sediment slurries. The primary reason is the 

presence of few charged surfaces on soils as a result of adsorption of metal ions 

from the contaminated slurry. A reduction in polymer dosage of as much as 50% 

was observed for the heavy metal contaminated sediment slurries. The PFT tests 
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conducted show that the contaminated slurries dewater much faster than the 

uncontaminated slurries because of the flocculation of soil particles with metal 

ions.  

 In both sediment slurries, the addition of cellulose adsorbents except kraft pulp 

significantly increased the dewatering rate irrespective of the contamination. 

However, profound effect of jute fibers and peanut hull on increasing dewatering 

rate was observed in case of contaminated slurries. 

 A significant reduction in turbidity was achieved with the addition of the cellulose 

materials. A reduction in turbidity of more than 80% was observed with the 

addition of jute fibers. Peanut and kraft pulp were successful in reducing the 

turbidity by 78 and 69% respectively. Some cellulose materials like jute provided 

additional benefit in dewatering by increasing the solid content of the filter cake. 

A higher solid content of the filter cake is one indication of successful dewatering 

project. Addition of peanut and jute on contaminated Tully coarse increased the 

solid content by approximately 33% and 46% respectively. However, in case of 

contaminated Tully fines a minor increase of 12% was achieved with the addition 

of jute. The addition of kraft pulp had no significant effect in the solids content. 

 The concentration of heavy metal ions in the filtrate from dewatering of 

contaminated slurries mainly depends upon the type of soil, its grain size and 

mineral composition. The filtrate collected from PFT tests were analyzed using 

ICP OES for metal concentration. It was observed that there is extremely high 

adsorption and retention of Pb and Cu ions by both of these soils. The filtrates 

collected from dewatering of contaminated Tully fines showed that approximately 
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98-99% of Cu and Pb was retained, whereas, in Tully coarse soils 89% Cu and 

96% Pb were retained. Tully soils are essentially composed of active clay 

minerals like Illite, Chlorite and quartz. These clay minerals have very good 

adsorption and retention capacity of metal ions especially Pb. Although not very 

high adsorption, both Tully soils were able to retain more than 75% Cd and Zn. 

Hence, it can be concluded that to enhance the dewatering performance and heavy 

metal retention inside geotextile tubes, addition of reactive minerals like Illite, 

Chlorite and quartz could provide a viable solution.  
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The purpose of this study was to investigate effective and sustainable amendment 

strategies to contain and dewater heavy metal contaminated sediment slurries using 

geotextile tubes. For this purpose, three cellulosic materials (Peanut hulls, jute fibers, and 

kraft pulp) were chosen to be added to the slurry, which was dewatered using Pressure 

Filtration Test (PFT) in the lab. The sediment slurries were prepared using natural 

sediments, Tully coarse and Tully fines obtained from Clark’s aggregate pit located at 

Tully, NY. The obtained soil from the quarry was used to prepare two batches of soil 

sediments. Tully coarse was prepared by removing fractions coarser than US sieve No. 4, 

and contains 55% coarse fractions (>75 µm) and 45% fine fractions (<75 µm). Tully 

fines were prepared by wet sieving through a US sieve No. 200 and oven drying the 

passing fraction. As a result, Tully fines contain 100% fine fractions. The reason behind 

choosing two sediments is to represent various soil sediments encountered in the 

dredging. The mineral composition of both soils, determined using X-ray diffraction 

showed that these soils are rich in clay minerals such as Illite, Chlorite, Dolomite, and 

quartz. Inorder to design effective amendment strategies for geotextile tube applications, 

it was important to understand the role of sediments in the adsorption and retention of 

heavy metals. Hence, adsorption studies were conducted where both soil sediments were 

mixed with heavy metal ions (Pb, Cu, Cd, and Zn). Moreover, Kaolinite clay was also 

used in this sub study. Both Tully soils were able to adsorb and retain more than 90% Pb 

and Cu, whereas Kaolinite clay being less reactive had lesser affinity towards those metal 
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ions. Since both Tully soils had significant fines, very reactive clay minerals, and oxides 

and hydroxides of iron and aluminum they exhibited excessively high affinity towards Pb 

and Cu. However, Kaolinite had better adsorption for Cd than both Tully soils. Based on 

the results of these tests, it can be concluded that the type of clay minerals and grain size 

distribution play a dominant role in metal adsorption and retention. It can also be 

concluded that the abovementioned clay minerals have the potential to be an effective 

and viable additive materials to adsorb and retain Pb and Cu from slurries during 

geotextile dewatering process. Since, most of the studied heavy metal ions were adsorbed 

by Tully soils, an independent study was conducted to investigate the efficacy of 

cellulosic materials to the heavy metal ions. For this purpose, batch adsorption tests were 

carried on a 500 ppm metal solutions by varying the amount of cellulose materials from 

0.5 g to 2g, and mixed for 4 hrs. This study was conducted not only to investigate the 

capacity of these materials to adsorb heavy metal ions, it was also conducted to quantify 

optimum mixing time and amount to be added to the slurry. It was observed from these 

tests that all of the studied materials had adsorption capacity to the heavy metals ions, but 

with varying degree. Jute fibers, peanut hulls and kraft pulp were able to adsorb more 

than 28-47% Pb, 15-28% Cu, 13-29% Cd, and 13-30%Zn. The materials rich in cellulose 

and lignin have been widely used in wastewater treatment technologies to adsorb 

different pollutants. It was determined from these tests that 1.5 g dosage and 1 hr mixing 

with the slurry was optimum. After the thorough knowledge of the role of sediments and 

cellulose materials in heavy metal adsorption, PFT tests were conducted on a slurry of 

both soils with cellulose materials to understand the their role in dewatering performance. 

PFT tests were conducted on a 15% solids concentration slurry with cellulose materials 
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(2% wt. solids) under an air pressure of 1.5 psi. It was observed from these tests that the 

addition of cellulose materials significantly increased the dewatering rate expect kraft 

pulp. Since kraft pulp was clumpy in nature and did not mix well with the soil slurry, it 

had no effect in dewatering rate. The addition of cellulose materials aided to reduce the 

turbidity of the filtrate. Jute fibers and peanut hull were able to reduce the overall 

turbidity of the filtrate by 78-80%, whereas kraft pulp helped to reduce overall turbidity 

by 69%. Added advantage of using jute fibers and peanut hulls were also seen in the final 

solids concentration of the filter cake. Their addition increased the solids content by 

approximately 12-46%. Reduction in solids content with the use of kraft pulp was 

observed. Also, the filtrate collected from the PFT tests had less than 2% Pb and Cu, and 

15% Cd and Zn. Hence it can be concluded that these materials along with some reactive 

clay minerals like Illite and Chlorite can be added inside geotextile tubes not only to 

adsorb heavy metals but also to improve dewatering performance.  

5.2 Future work and recommendations 

With the help of batch adsorption and pressure filtration tests, it was observed that the 

addition of cellulosic materials not only aid in adsorbing and containing heavy metals 

inside geotextile tubes, it also helps in improving the dewatering performance.  However, 

it has been seen that most of the contaminated sites requiring cleanup and remediation 

contains organic contaminants such as PCBs and PAHs in addition to the heavy metal. 

Hence, it is equally important to investigate amendment strategies that will aid in 

containment of organic as well as inorganic pollutants inside the geotextile tube. In this 

study, clean sediments obtained from local quarry has been used to prepare heavy metal 

contaminated slurries. But the dredged sediments in most of the geotextile dewatering 
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projects contain mixture of sediments with significant amount of organics. Hence, it is 

important to test the real dredged soils so that the results would be more representative of 

the field condition and it will also help to develop more effective amendment strategies. 

Also, to use these findings to develop methodology to treat heavy metal contaminated 

slurries using geotextile tubes, it requires testing in large scale.   
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