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ABSTRACT

Two major security challenges in information systems are detection of anomalous data patterns

that reflect malicious intrusions into data storage systems and protection of data from malicious

eavesdropping during data transmissions. The first problem typically involves design of statistical

tests to identify data variations, and the second problem generally involves design of communi-

cation schemes to transmit data securely in the presence of malicious eavesdroppers. The main

theme of this thesis is to exploit information theoretic and statistical tools to address the above

two security issues in order to provide information theoretically provable security, i.e., anomaly

detection with vanishing probability of error and guaranteed secure communication with vanishing

leakage rate at eavesdroppers.

First, the anomaly detection problem is investigated, in which typical and anomalous patterns

(i.e., distributions that generate data) are unknown a priori. Two types of problems are investi-

gated. The first problem considers detection of the existence of anomalous geometric structures

over networks, and the second problem considers the detection of a set of anomalous data streams

out of a large number of data streams. In both problems, anomalous data are assumed to be gen-

erated by a distribution q, which is different from a distribution p generating typical samples. For

both problems, kernel-based tests are proposed, which are based on maximum mean discrepancy

(MMD) that measures the distance between mean embeddings of distributions into a reproducing

kernel Hilbert space. These tests are nonparametric without exploiting the information about p and

q and are universally applicable to arbitrary p and q. Furthermore, these tests are shown to be sta-

tistically consistent under certain conditions on the parameters of the problems. These conditions

are further shown to be necessary or nearly necessary, which implies that the MMD-based tests are

order level optimal or nearly order level optimal. Numerical results are provided to demonstrate

the performance of the proposed tests.



The secure communication problem is then investigated, for which the focus is on degraded

broadcast channels. In such channels, one transmitter sends messages to multiple receivers, the

channel quality of which can be ordered. Two specific models are studied. In the first model, lay-

ered decoding and layered secrecy are required, i.e., each receiver decodes one more message than

the receiver with one level worse channel quality, and this message should be kept secure from all

receivers with worse channel qualities. In the second model, secrecy only outside a bounded range

is required, i.e., each message is required to be kept secure from the receiver with two-level worse

channel quality. Communication schemes for both models are designed and the corresponding

achievable rate regions (i.e., inner bounds on the capacity region) are characterized. Furthermore,

outer bounds on the capacity region are developed, which match the inner bounds, and hence the

secrecy capacity regions are established for both models.
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1

CHAPTER 1

INTRODUCTION

Two major security challenges in information systems are detection of anomalous data patterns

that reflect malicious intrusions into data storage systems and protection of data from malicious

eavesdropping during data transmissions. The first problem typically involves design of statistical

tests to identify data variations, and the second problem generally involves design of communi-

cation schemes to transmit data securely in the presence of malicious eavesdroppers. The main

theme of this thesis is to exploit information theoretic and statistical tools to address the above

two security issues in order to provide information theoretically provable security, i.e., guaranteed

anomaly detection with vanishing probability of error and guaranteed secure communication with

vanishing leakage rate at eavesdroppers.

1.1 Nonparametric Anomaly Detection

Anomaly detection is an important problem that has attracted intensive interest in various research

areas and application domains. The goal of anomaly detection problems is to identify data patterns

(typically captured by statistical distributions of data) that do not conform to a certain expected pat-

tern in a dataset. In order to solve the anomaly detection problem of interest, most previous studies

have focused on parametric scenarios, assuming the typical and anomalous distributions are known
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a priori, although practical applications typically provide only raw data. Implicitly, these studies

assumed that the distributions are learned from the data. However, since the ultimate goal is to

detect anomalies, learning the distributions first and then constructing the detection rules may not

yield optimal performance. It is thus desirable to design data-driven nonparametric tests, which

directly perform anomaly detection using data without estimating the distributions as an interme-

diate step. Furthermore, since such tests do not exploit any information about the distributions,

they can be designed to provide universal performance guarantee for arbitrary distributions.

In the first part of the thesis, we investigate nonparametric anomaly detection problems in

which both typical and anomalous distributions are unknown, and can be arbitrary. More specifi-

cally, we study two classes of anomaly detection problems: 1) detection of an anomalous geometric

structure over a network and 2) detection of anomalous data streams out of a large number of data

streams.

1.1.1 Anomalous Geometric Structure Detection

For the anomalous geometric structure detection problem, each node in the network observes a

random sample. An anomalous structure, if it exists, corresponds to a cluster of nodes in the

network that take samples generated by a distribution q. All other nodes in the network take

samples generated by a distribution p that is different from q. If there does not exist an anomalous

structure, then all nodes receive samples generated by p. The distributions p and q are arbitrary

and unknown a priori. Designed tests are required to distinguish between the null hypothesis

(i.e., no anomalous structure exists) and the alternative hypothesis (i.e., there exists an anomalous

structure). Due to the fact that the anomalous structure may be one of a number of candidate

structures in the network, this is a composite hypothesis testing problem.

Such a problem models a variety of applications. For example, in sensor networks, sensors are

deployed over a large range of space. These sensors take measurements from the environment in

order to determine whether or not there is intrusion of an anomalous object. Such intrusion typi-

cally activates only a few sensors that cover a certain geometric area. An alarm is then triggered if
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the network detects an occurrence of intrusion based on the sensorsŠ measurements. Other appli-

cations can arise in detecting an anomalous segment of DNA sequences, detecting virus infection

of computer networks, and detecting anomalous spot in images.

As an interesting topic, detecting existence of an anomalous geometric structure in networks

has been intensively studied in the literature. A number of studies focused on networks with nodes

embedded in a lattice such as one dimensional line and square. In [1], the network is assumed

to be embedded in a d-dimensional cube, and geometric structures such as line segments, disks,

rectangles and ellipsoids associated with nonzero-mean Gaussian random variables need to be

detected out of other nodes associated with zero-mean Gaussian noise variables. A multi-scale

approach was proposed and its optimality was analyzed. In [2], detection of spatial clusters under

the Bernoulli model over a two-dimensional space was studied, and a new calibration of the scan

statistic was proposed, which results in optimal inference for spatial clusters. In [3], the problem

of identifying a cluster of nodes with nonzero-mean values from zero-mean noise variables over a

random field was studied.

Further generalization of the problem has also been studied, when network nodes are associated

with a graph structure, and existence of an anomalous cluster or an anomalous subgraph of nodes

needs to be detected. In [4], an unknown path corresponding to nonzero-mean variables needs to

be detected out of zero-mean variables in a network with nodes connected in a graph. In [5], for

various combinatorial and geometric structures of anomalous objects, conditions were established

under which testing is possible or hopeless with a small risk. In [6], the cluster of anomalous nodes

can either take certain geometric shapes or be connected as subgraphs. Such structures associated

with nonzero-mean Gaussian variables need to be detected out of zero-mean variables. In [7]

and [8], network properties of anomalous structures such as small cut size were incorporated in

order to assist successful detection. More recently, in [9], the problem of detecting connected sub-

graph with elevated mean out of zero-mean Gaussian random variables was studied. An algorithm

was proposed to characterize the family of all connected sub-graphs in terms of linear matrix

inequalities. The minimax optimality of such an approach was further established in [10] for
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exponential family on lattice networks.

However, previous studies focused on parametric or semiparametric models, which assume

that samples are generated by known distributions such as Gaussian or Bernoulli distributions,

or the two distributions are known to have mean shift. Such parametric models may not always

hold in real applications. In many cases, distributions can be arbitrary, and may not be Gaussian

or Bernoulli. They may not differ in mean either. The distributions may not even be known in

advance. Hence, it is desirable to develop nonparametric tests that are universally applicable to

arbitrary distributions.

In contrast to previous studies, we study the nonparametric problem of detecting an anomalous

structure, in which distributions can be arbitrary and unknown a priori. In order to deal with

nonparametric models, we apply maximum mean discrepancy (MMD) as a distance metric. This

approach has been applied to solving the two sample problem in [11], in which the quantity of

MMD was used as a metric of distance between mean embeddings of two distributions.

We are interested in the asymptotic scenario in which the network size goes to infinity and the

number of candidate anomalous structures scales with the network size. Thus, the number of sub-

hypotheses under the alternative hypothesis also increases, which causes the composite hypothesis

testing problem to be difficult. On the other hand, since the distributions can be arbitrary, it is in

general difficult to exploit properties of the distributions such as mean shift to detect existence of

an anomalous structure. Furthermore, as the network size becomes large, in contrast to paramet-

ric models in which the mean shift can scale with the network size, here it is necessary that the

numbers of samples within and outside of each anomalous structure should scale with the network

size fast enough in order to provide more accurate information about both distributions p and q and

guarantee asymptotically small probability of error. Thus, the problem amounts to characterize

how the minimum and maximum sizes of all candidate anomalous structures should scale with the

network size in order to consistently detect the existence of an anomalous structure.

We list our main contributions as follows.

(1) We construct MMD-based distribution-free tests for various networks.
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(2) We analyze the performance guarantee for the proposed MMD-based test. For the problem

of detecting an anomalous interval in a line network, we show that as the network size n goes to

infinity, if the minimum size Imin of candidate anomalous intervals satisfies Imin = Ω(log n) 1, and

the maximum size Imax of candidate anomalous intervals satisfies n−Imax = Ω( log · · · · · · log︸ ︷︷ ︸n
arbitrary k number of log

),

then the proposed test is consistent, i.e., the probability of error is asymptotically small.

(3) We further derive necessary conditions on Imin and Imax that any test must satisfy in order to

be universally consistent for arbitrary p and q. Comparison of sufficient and necessary conditions

yields that the MMD-based test is order level optimal in terms of Imin and nearly order level optimal

in terms of Imax for the line network.

(4) We further generalize such analysis to other networks and obtain similar type of results.

Our results also demonstrate the impact of geometric structures on performance guarantee of tests.

Our technical analysis is very different from that for parametric problems. The obvious differ-

ence is due to significantly different approaches applied to the two types of problems. Furthermore,

the nonparametric nature also affects the asymptotic formulation of the problem. The lower and

upper bounds (such as Imin and Imax in line network) on the sizes of all candidate anomalous

structures must scale with the network size in order to guarantee enough samples in and outside

the anomalous structure if it occurs. This is significantly different from parametric models where

problems can still be well posed even with a single node or the entire network being anomalous, so

long as a certain distribution parameter (such as mean shift between the two distributions) scales

with the network size. Consequently, the asymptotic analysis for the nonparametric problem re-

quires considerable new technical developments.

Although the kernel-based approach has been used to solve various machine learning problems,

it is not widely applied to solving detection problems with only few exceptions such as the two

1We adopt the following notations to express asymptotic scaling of quantities with n:
• f(n) = O(g(n)): there exist k, n0 > 0 s.t. for all n > n0, |f(n)| ≤ k|g(n)|;
• f(n) = Ω(g(n)): there exist k, n0 > 0 s.t. for all n > n0, f(n) ≥ kg(n);
• f(n) = Θ(g(n)): there exist k1, k2, n0 > 0 s.t. for all n > n0, k1g(n) ≤ f(n) ≤ k2g(n);
• f(n) = o(g(n)): for all k > 0, there exists n0 > 0 s.t. for all n > n0, |f(n)| ≤ kg(n);
• f(n) = ω(g(n)): for all k > 0, there exists n0 > 0 s.t. for all n > n0, |f(n)| ≥ k|g(n)|.
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sample problem [11]. Since the nature of our problem necessarily involves geometric structures

in networks, the technical analysis requires substantial efforts to deal with scaling of the size of

geometric structures and analyze the impact of geometry on consistency of tests, which are not

captured in the two sample problem.

1.1.2 Anomalous Data Stream Detection

For the anomalous data stream detection problem, there are totally n sequences out of which s

anomalous sequences need to be detected. Each typical sequence consists of m independent and

identically distributed (i.i.d.) samples drawn from a distribution p, whereas each anomalous se-

quence contains i.i.d. samples drawn from a distribution q that is distinct from p. The distributions

p and q are assumed to be unknown. The goal is to build distribution-free tests to detect the s

anomalous data sequences generated by q out of all data sequences.

Solutions to such a problem is very useful in many applications. For example, in cognitive

wireless networks, signals follow different distributions either p or q depending on whether the

channel is busy or vacant. A major issue in such a network is to identify vacant channels out of

a large number of busy channels based on their corresponding signals in order to utilize vacant

channels for improving spectral efficiency. This problem was studied in [12] and [13] under the

assumption that p and q are known, whereas here, we study the problem with unknown p and q.

Other applications include detecting anomalous DNA sequences out of typical sequences, detecting

virus infected computers from other virus free computers, and detecting slightly modified images

from other untouched images.

The parametric model of the problem has been well studied, e.g., [12], in which it is assumed

that the distributions p and q are known in advance and can be exploited for detection. However,

the nonparametric model is less explored, in which it is assumed that the distributions p and q are

unknown and can be arbitrary. Recently, Li, Nitinawarat and Veeravalli proposed the divergence-

based generalized likelihood tests in [14], and characterized the error decay exponents of these

tests. However, [14] studied only the case when the distributions p and q are discrete with finite
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alphabets, and their tests utilize empirical probability mass functions of p and q.

For this problem, we study the nonparametric model, in which distributions p and q can be

continuous and arbitrary. The major challenges to solve this problem (compared to the discrete case

studied in [14]) lie in: (1) it is difficult to accurately estimate continuous distributions with limited

samples for further anomalous data stream detection; (2) it is difficult to design low complexity

tests for continuous distributions; and (3) building distribution-free consistent tests (and further

guaranteeing exponential error decay) is challenging for arbitrary distributions.

For this problem, we apply MMD as a metric to construct our tests for detecting anomalous data

sequences. In contrast to consistency analysis in classical theory as in [14], which assumes that the

problem dimension (i.e., the number n of sequences and the number s of anomalous sequences) is

fixed and the sample size m increases, our focus is on the regime in which the problem dimension

(i.e., n and s) increases. This is motivated by applications, in which anomalous sequences are

required to be detected out of a large number of typical data sequences. It is clear that as n

(and possibly s) becomes large, it is increasingly challenging to consistently detect all anomalous

sequences. It then requires that the sample size m correspondingly increases in order to guarantee

more accurate detection. Hence, we are interested in characterizing how the sample size m should

scale with n and s in order to guarantee the consistency of our tests.

Our main contributions for the problem of anomalous data stream detection are listed as fol-

lows.

(1) We construct MMD-based distribution-free tests, which enjoy low computational complex-

ity and are proven to be powerful for nonparametric detection.

(2) We analyze the performance guarantee for the proposed MMD-based test. We bound the

probability of error as a function of the sample size m, the number s of anomalous sequences, and

the total number n of sequences. We then show that with s known, the constructed test is expo-

nentially consistent if m scales at the order Ω(log n) for any p and q, whereas with s unknown, m

should scale at the order ω(log n) (i.e., strictly larger than Ω(log n)). Thus, lack of the information

about s results in order level increase in sample size m needed for consistent detection. We further



8

develop low complexity consistent tests by exploiting the asymptotic behavior of s and n.

(3) We further derive a necessary condition which states that no test can be consistent for

arbitrary p and q if m scales at the order O(log n), thus establishing the order level optimality of

the MMD-based test.

(4) We also provide an interesting example study, in which the distribution q is the mixture

of the distribution p and the anomalous distribution q̃. In such a case, the anomalous sequence

contains only sparse samples from the anomalous distribution. Our results for such a model quan-

titatively characterize the impact of the sparsity level of anomalous samples on the scaling behavior

of the sample size m, in order to guarantee consistency of the proposed tests.

We further provide numerical results to demonstrate our theoretical assertions and compare

our tests with other competitive approaches. Our numerical results demonstrate that the MMD-

based test has a better performance than the divergence-based generalized likelihood test proposed

in [14] when the sample size m is not very large. We also demonstrate that the MMD-based test

outperforms (or performs as well as) other competitive tests via a real data set.

1.2 Secure Communications over Broadcast Networks

In wireless networks, communication signals are transmitted via the open medium of the free

space, and hence can be easily eavesdropped upon by any receiver within transmission ranges. This

broadcast nature of radio channels is one of the major challenges to the design of secure wireless

communications. Some commonly used security approaches employed in current wireless systems

may encounter potential problems as wireless networks incorporate more communication patterns

and flexible structures. For example, a popular approach to secure wireless communications is

to pre-deploy a secret certificate into mobile devices, based on which devices can establish keys.

However, for device-to-device (D2D) communications recently proposed for LTE networks, such

an approach cannot adapt easily for a mobile device to directly communicate with a large set of

devices in a unicast fashion. Furthermore, public-key based encryption is also not applicable in
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many cases, as mobile devices may not be equipped with sufficiently high computational resources

for implementing public-key algorithms.

In the seminal work by Wyner [15], a physical layer approach to secrecy was proposed, which

exploits randomness in statistical communication channels as resources to achieve secure commu-

nications. Without inherently employing secret keys, such a new security approach, if applied to

wireless networks, can significantly reduce requirements on the infrastructure and improve com-

munication flexibility and dynamics. Wyner’s result was further generalized to the case in which

the transmitter further sends one common message to both the legitimate receiver and the eaves-

dropper by Csiszár and Körner in [16].

Following the initial studies in [15] and [16], broadcast channels with various decoding and

secrecy constraints have been studied intensively (see [17] and [18] for more references). Wyner’s

wiretap model was further studied when the legitimate and eavesdropping channels take specific

forms. As some key examples, the Gaussian wiretap channel was studied in [19]; the multiple-input

multiple-output (MIMO) wiretap channel with the transmitter, the legitimate receiver, and/or the

eavesdropper equipped with multiple antennas was studied in [20–25]; and the compound wiretap

channel, in which there are multiple legitimate receivers and single/multiple eavesdroppers, was

studied in [26–30].

Csiszár and Körner’s broadcast model was further studied for the Gaussian fading channel

in [31], and for the MIMO channel in [32]. This model was generalized in [33] to two compound

scenarios, in which the legitimate receiver (i.e., receiver 1) and the eavesdropper (i.e., receiver

2) are respectively replaced by two receivers with the same decoding and secrecy requirements.

Furthermore, Csiszár and Körner’s model was also generalized in [34] to the compound scenario,

in which each receiver is replaced by multiple users. And such a model was further generalized

in [35] to the case with one legitimate receiver and multiple eavesdroppers, in which the legitimate

receiver is required to decode all messages, and the eavesdroppers are required to satisfy the layered

secrecy requirements, i.e., one more message is required to be secured as channel quality gets one

level worse.
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As further generalizations of the Wyner and Csiszár-Körner models, a class of broadcast chan-

nels with an additional eavesdropper were intensively studied. In the model considered in [36]

and [37], a transmitter has two independent messages intended for two legitimate receivers, re-

spectively, and wishes to keep the two messages confidential from an (additional) eavesdropper.

Such a model was further studied in [38], when the channel is corrupted by additive Gaussian noise.

The multiple antenna version of the above model was studied in [39] and [40]. Furthermore, the

multi-antenna channel was generalized in [41] to the compound scenario with each receiver and

the eavesdropper being replaced by a group of co-located users. The model was also generalized

and studied in [42] for the case with an arbitrary number of legitimate receivers (and hence with an

arbitrary number of independent messages respectively for each receiver), and the fading channel

of such a model was studied in [29].

Apart from the above class of broadcast channels, another class of models consisting of re-

ceivers that are expected to not only receive certain information from the transmitter but also be

kept ignorant of certain other information have also been studied. In the model studied in [43], a

transmitter has two independent messages with each intended for one receiver and required to be

kept secure from the other receiver. The MIMO version of such a model was studied in [44–46].

Furthermore, such a model was generalized in [47] to the case in which the transmitter has one

more common message for both receivers, and users are equipped with multiple antennas. The

compound scenario of the preceding model with each receiver being replaced by a group of co-

located users was studied in [47].

In fact, these models can be unified under a more general framework, in which a transmitter

sends a number of messages to a set of receivers over a broadcast channel, and the receivers’

channel quality can be ordered in a certain way. Each receiver can possibly serve as a legitimate

user expecting a certain subset of messages, and/or as an eavesdropper that should be kept ignorant

of a certain subset of messages.

In the second part of the thesis, we study two broadcast models: the degraded broadcast chan-

nels with layered decoding and layered secrecy and the degraded broadcast channel with secrecy
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outside a bounded range. Layered decoding requires that as the channel quality gets one level

better, one more message is decoded, and layered secrecy requires that as the channel quality gets

one level worse, one more message is kept secure. Here, we focus on degraded channels for two

reasons: 1) degraded channels often arise naturally in practical applications such as in the context

of Gaussian fading channels that model wireless communication channels; 2) the performance for

degraded channels can often be characterized in simpler forms that can facilitate the illustration of

central ideas. However, all achievable schemes designed for degraded channels are applicable to

non-degraded channels except that the optimality of the schemes are not easy to prove (due to the

difficulty in developing outer bounds that match achievable regions).

1.2.1 Degraded Broadcast Channel with Layered Decoding and Lay-

ered Secrecy

In the degraded broadcast channel with layered decoding and layered secrecy (see Fig. 4.1), a

transmitter wishes to transmit K messages to K receivers. The channel outputs at receivers nat-

urally satisfy the degradedness condition, i.e., from receiver K to receiver 1, the quality of their

channels gets worse gradually. It is required that receiver k decode one more message Wk than

receiver k − 1 for k = 2, . . . , K, and this additional message Wk should be kept secure from all

receivers with worse channel outputs, i.e., with lower indices.

Such a model captures practical scenarios in which users are ranked to receive files with differ-

ent security levels. For example, a WiFi network in a company consists of a number of legitimate

users. Users with certain ranks are allowed to receive files up to certain security levels, and should

be kept ignorant of files with higher security levels. Hence users with higher ranks are able to see

more files. It is also possible to set the channel quality based on users’ ranks by assigning more

communication resources to higher ranked users. Another example is in social networks in which

one user wishes to share more resources with close friends and fewer resources with other friends.

As we show in Chapter 4, this model is equivalent to a secret sharing problem.

For the problem of degraded broadcast channel with layered decoding and layered secrecy, we
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list our main contributions as follows.

(1) We establish the secrecy capacity regions for both the discrete memoryless channel (DMC)

and Gaussian MIMO channel.

(2) We construct the achievable scheme based on superposition coding and random binning.

More specifically, for each message, Wk, one layer is designed and superposed on the layer de-

signed for Wk−1. The codewords within each layer are further divided into a number of bins, and

the corresponding message is encoded as the bin number, which the index inside the bin serves as a

random source to protect the message. Thus, the receivers that are required to decode this message

can tell which bin the codeword is in and hence decode the message, while those receivers with

worse channel quality are kept ignorant of the message.

(3) We provide a more involved analysis of leakage rates than the cases with two or three

receivers, which generalize the current techniques for two or three receivers. For the DMC, we

develop a novel generation of the analysis of the leakage rate provided in [48] for one legitimate

receiver to multiple receivers. This approach carries complementary insights for analyzing the

leakage rate for scenarios with layered decoding and secrecy constraints.

(4) We provide converse proofs for the DMC and Gaussian MIMO channel which require care-

ful constructions of auxiliary random variables (covariance matrices) in a recursive form, which

also generalizes the existing techniques for two or three receivers.

1.2.2 Degraded Broadcast Channel with Secrecy Outside a Bounded

Range

For the model with layered decoding and secrecy described in the previous section, the additional

message decoded by a better receiver needs to be kept secure from the receiver with only one level

worse channel quality (layered secrecy, zero secrecy range). Although such a model is feasible for

broadcast channels with discrete states (i.e., quality of receivers can be captured by discrete channel

states), it cannot capture the scenarios with receivers’ channel quality varying continuously. For

such a case, it is more reasonable to require the message to be secured from the receivers with
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a certain amount of worse channel quality, instead of being secured from the receiver with one

level worse channel quality, which is not even well defined for continuous channel quality. To

be more explicit, we use an example to illustrate the motivation of such a model. Consider a

degraded broadcast channel with infinite number of receivers, in which h denotes the amplitude of

the channel gain (the larger h, the better the channel). In this case, it is impossible to require that

the message intended for receivers with h ≥ h0 to be secured from receivers with h < h0, because

no positive secrecy rate can be achieved. Instead, it is more nature to require that the messages

intended for receivers with h ≥ h0 to be secured from receivers with h ≤ h0 −∆, where ∆ > 0.

We refer to such a secrecy requirement as secrecy outside of a bounded range.

In this thesis, we study the four-receiver case of the above model (see Fig. 5.1), in which a

transmitter sends information to four receivers over a discrete memoryless channel. The chan-

nel quality is assumed to gradually degrade from receiver 4 to receiver 1. There are in total four

messages W1,W2,W3,W4 intended for four receivers with the following decoding and secrecy

requirements. Receiver k is required to decode messages W1, . . . ,Wk, for k = 1, 2, 3, 4. Further-

more, messageW3 needs to be kept secure from receiver 1, and messageW4 need to be kept secure

from receiver 1 and receiver 2. Thus, each message is required to be kept secure from receivers

with two-level worse channel quality.

For the problem of degraded broadcast channel with secrecy outside a bounded range, we list

our main contributions as follows.

(1) We establish the secrecy capacity region for the four-receiver model.

(2) We propose a novel achievable scheme which is based on the following techniques: (1)

superposition coding, which encodes each message into one layer in order to satisfy the layered

decoding requirements at the four receivers; (2) embedded coding, which exploits the secrecy

requirement outside a bounded range to use lower-layer messages as random sources to secure

higher-layer messages; (3) random binning, which provides further randomness to secure each

message at its corresponding layer; and (4) rate splitting and sharing, which turns out to be critical

for this model to further enlarge the achievable region.
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(3) We develop a converse proof which exploits the insight obtained from the achievable

scheme.

We mainly illustrate why rate splitting and sharing is useful here. Consider the case where layer

3 is sufficient to secure layer 4. Random binning is then not necessary in layer 4. Hence, simply

using techniques superposition coding and embedded coding yields the rate of W4 to be bounded

by the decoding capability of receiver 4 given decoding of the three other messages. It turns out to

be very difficult to develop the converse proof for the resulting achievable region, which suggests

that such an achievable region may not be large enough. Indeed, the previous achievable scheme

ignores the fact that under assumption of this case, part of layer 3 (say W31) is good enough to

secure the remaining part of layer 3 (say W32) and layer 4 from receiver 2. Hence, W32 can be

counted towards either the rate R3 or the rate R4, which provides the flexibility to enlarge R4 and

correspondingly the achievable region. Such an idea motivates our development of splitting W3

into two parts W31 and W32 and sharing W32 between R3 and R4. The converse for this resulting

achievable region can be developed, suggesting that rate splitting and sharing are important for

establishing the secrecy capacity region.

We further note that during the preparation of this thesis, we were able to establish the se-

crecy capacity region for the case with arbitrary k-receiver case. The results will be drafted for

conference and journal submissions in the near future.

1.3 Summary of Contributions and Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present our results for the problem

of anomalous geometric structure detection over networks. In Chapter 3, we present our results

for the problem of anomalous data stream detection. In Chapter 4, we present our results for

the problem of degraded broadcast channel with layered decoding and layered secrecy, and its

application to multi-secret sharing problem. In Chapter 5, we present our results for the problem

of degraded broadcast channel with secrecy outside a bounded range. In Chapter 6, we summarize
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our results and discuss about future works.

As a summary, works reported in this thesis has led to two journal publications, two journal

submissions and one journal in preparation, together with eleven conference publications [49–61].

We provide a list of these publications as follows.
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1. S. Zou, Y. Liang, L. Lai, and S. Shamai (Shitz), “An information theoretical approach to

secret sharing," IEEE Trans. Inform. Theory, vol. 61, no. 6, pp. 3121-3136, 2015.

2. S. Zou, Y. Liang, L. Lai, H. V. Poor, and S. Shamai (Shitz), “Broadcast networks with layered
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no. 10, pp. 1841-1856, 2015.
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11. Y. Bu, S. Zou, Y. Liang, and V. V. Veeravalli, “Estimation of KL Divergence Between Large-
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CHAPTER 2

ANOMALOUS GEOMETRIC STRUCTURE

DETECTION

In this chapter, we study the problem of anomalous geometric structure detection. In Section 2.1,

we introduce our problem model and the performance metric in the context of detecting existence

of anomalous interval over line networks. In Section 2.2, we introduce the metric MMD. In Section

2.3, we present our results for the line network. In Section 2.4, we generalize our approaches to

higher dimensional networks. In Section 2.5, we present the numerical results.

2.1 Problem Statement

In this section, we introduce our problem formulation in the context of line network that we study

in Section 2.3. We describe generalization of this problem to other networks in Section 2.4 when

we present the corresponding results for these networks.

We consider a line network, which consists of nodes 1, . . . , n, as shown in Figure 2.1. We use

I to denote a subset of consecutive indices of nodes, which is referred to as an interval. Here, the

length of an interval I refers to the cardinality of I , and is denoted by |I|. We assume that any

interval with the length between Imin and Imax can be a candidate anomalous interval, and collect
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Fig. 2.1: A line network with an anomalous interval.

all candidate anomalous intervals into the following set I(a)
n

I(a)
n = {I : Imin ≤ |I| ≤ Imax}. (2.1)

As we explain towards the end of this section, the two problem parameters Imin and Imax play an

important role in determining whether the problem is well posed.

We assume that each node, say node i, is associated with a random variable, denoted by Yi, for

i = 1, . . . , n. We consider two hypotheses about the distributions of the line network. For the null

hypothesis H0, Yi for i = 1, . . . , n are independently and identically distributed (i.i.d.) random

variables, and are generated from a distribution p. For the alternative hypothesis H1, there exists

an interval I ∈ I(a)
n over which Yi (with i ∈ I) are i.i.d. and are generated from a distribution

q 6= p, and otherwise, Yi are i.i.d. and generated from the distribution p. Thus, the alternative

hypothesis is composite due to the fact that I(a)
n contains multiple candidate anomalous intervals,

and these intervals differentiate from each other by their length and location in the network. We

further assume that under both hypotheses, each node generates only one sample. Putting the

problem into a context, H0 models the scenario when the observations Yi are background noise,

and H1 models the scenario when some Yi (for i ∈ I) are observations activated by an anomalous

intrusion.

In contrast to previous work, we assume that the distributions p and q are arbitrary and un-

known a priori. For this problem, we are interested in the asymptotic scenario, in which the

number of nodes goes to infinity, i.e., n → ∞. The performance of a test for such a system is

captured by two types of errors. The type I error refers to the event that samples are generated

from the null hypothesis, but the detector determines an anomalous event occurs. We denote the
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probability of such an event as P (H1|H0), or PH0(error). The type II error refers to the case

that an anomalous event occurs but the detector claims that samples are generated from the null

hypothesis. We denote the probability of such an event as P (H0|H1), or PH1(error). We define

the following minimax risk to measure the performance of a test:

R(n)
m = P (H1|H0) + max

I∈I(a)n

P (H0|H1,I). (2.2)

Definition 2.1. A test is said to be consistent if the minimax risk R(n)
m → 0, as n→∞.

It can be seen from the definition of I(a)
n that Imin and Imax determine the number of candidate

anomalous intervals. Furthermore, if there exists an anomalous interval, Imin determines the least

number of samples generated by q and n− Imax determines the least number of samples generated

by p. As n → ∞, to guarantee asymptotically small probability of error, both Imin and Imax must

scale with n to provide sufficient information about p and q in order to yield accurate distinction

between the two hypotheses. This suggests that as the network becomes larger, only a large enough

but not too large anomalous object can be detected. Therefore, our goal in this problem is to

characterize how Imin and Imax should scale with the network size in order for a test to successfully

distinguish between the two hypotheses. Such conditions on Imin and Imax can thus be interpreted

as the resolution of the corresponding test.

2.2 Introduction to MMD

We adopts the emerging technique based on mean embedding of distributions into a reproducing

kernel Hilbert space (RKHS) [62, 63]. The idea is to map probability distributions into a RKHS

with an associated kernel such that distinguishing the two probabilities can be carried out by distin-

guishing their corresponding embeddings in the RKHS. Since RKHS naturally carries a distance

metric, mean embeddings of distributions can be compared easily based on their distances in the

RKHS. Such a metric is referred to as the maximum mean discrepancy (MMD) [11, 64]. In the
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following, we briefly introduce the idea of mean embedding of distributions into RKHS and the

metric of MMD.

Suppose P is a set of probability distributions, and supposeH is the RKHS with an associated

kernel k(·, ·) (see [65, 66] for an introduction of RKHS). We define a mapping from P to H such

that each distribution p ∈ P is mapped to an element inH as follows

µp(·) = Ep[k(·, x)] =

∫
k(·, x)dp(x).

Here, µp(·) is referred to as the mean embedding of the distribution p into the Hilbert space H.

Due to the reproducing property ofH, it is clear that Ep[f ] = 〈µp, f〉H for all f ∈ H.

It is desirable that the embedding is injective such that each p ∈ P is mapped to a unique

element µp ∈ H. It has been shown in [63, 67–69] that for many RKHSs such as those associ-

ated with Gaussian and Laplace kernels, the mean embedding is injective. In order to distinguish

between two distributions p and q, [11] introduced the following quantity of MMD based on the

mean embeddings µp and µq of p and q in RKHS:

MMD[p, q] := ‖µp − µq‖H. (2.3)

It is clear that the MMD equals the distance between the mean embeddings µp and µq of the two

distributions p and q, and can be used to distinguish between p and q due to the injectivity of mean

embedding.

It can also be shown that

MMD[p, q] = sup
‖f‖H≤1

Ep[f(x)]− Eq[f(x)].

Namely, MMD[p, q] achieves the maximum of the mean difference of a function between the two

distributions over all unit-norm functions in the RKHSH.
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Due to the reproducing property of kernel, it can be easily shown that

MMD2[p, q] =Ex,x′ [k(x, x′)]− 2Ex,y[k(x, y)] + Ey,y′ [k(y, y′)], (2.4)

where x and x′ have independent but the same distribution p, and y and y′ have independent but

the same distribution q. An unbiased estimator of MMD2[p, q] based on l1 samples of X and l2

samples of Y is given as follows,

MMD2
u[X, Y ] =

1

l1(l1 − 1)

l1∑
i=1

l1∑
j 6=i

k(xi, xj) +
1

l2(l2 − 1)

l2∑
i=1

l2∑
j 6=i

k(yi, yj)

− 2

l1l2

l1∑
i=1

l2∑
j=1

k(xi, yj). (2.5)

We note that other estimators of the MMD2[p, q] are also available, which can be used for our

problem. We focus on the unbiased estimator given above to convey the central idea.

2.3 Detection of Anomalous Interval in Line Network

2.3.1 Test and Performance

We construct a nonparametric test using the unbiased estimator in (2.5) and the scan statistics. For

each interval I , let YI denote the samples in the interval I , and YĪ denote the samples outside the in-

terval I . We compute MMD2
u,I(YI , YĪ) for all intervals I ∈ I(a)

n . Under the null hypothesis H0, all

samples are generated from the distribution p. Hence, for each I ∈ I(a)
n , MMD2

u,I(YI , YĪ) yields an

estimate of MMD2[p, p], which is zero. Under the alternative hypothesisH1, there exists an anoma-

lous interval I∗ in which the samples are generated from distribution q. Hence, MMD2
u,I∗(YI∗ , YĪ∗)

yields an estimate of MMD2[p, q], which is bounded away from zero due to the fact that p 6= q.
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Based on the above understanding, we build the following test:

max
I:I∈I(a)n

MMD2
u,I(YI , YĪ)


≥ t, determine H1

< t, determine H0

(2.6)

where t is a threshold parameter. It is anticipated that with sufficiently accurate estimate of MMD

and an appropriate choice of the threshold t, the test in (2.6) should provide desired performance.

The following theorem characterizes the performance of the proposed test.

Theorem 2.1. Suppose the test in (2.6) is applied to the nonparametric problem described in

Section 2.1. Further assume that the kernel in the test satisfies 0 ≤ k(x, y) ≤ K for all (x, y).

Then, the type I and type II errors are upper bounded respectively as follows:

P (H1|H0) ≤
∑

I:Imin≤|I|≤Imax

exp

(
−t

2|I|(n− |I|)
8K2n

)

=
∑

Imin≤i≤Imax

(n− i+ 1) exp

(
−t

2i(n− i)
8K2n

)
, (2.7)

P (H0|H1,I) ≤ exp

(
−(MMD2[p, q]− t)2|I|(n− |I|)

8nK2

)
, for I ∈ I(a)

n (2.8)

where t is the threshold of the test that satisfies t < MMD2[p, q].

Furthermore, the test (2.6) is consistent if

Imin ≥
16K2(1 + η)

t2
log n, (2.9)

Imax ≤ n− 16K2(1 + η)

t2
log · · · · · · log︸ ︷︷ ︸n

arbitrary k number of log

, (2.10)

where η is any positive constant.

Proof. See Section 2.6.

We note that many kernels satisfy the boundedness condition required in Theorem 2.1, such as

Gaussian kernel and Laplacian Kernel.
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The above theorem implies that to guarantee consistency of the proposed test, the minimum

length Imin should scale at the order Imin = Ω(log n). Furthermore, n − Imax should scale at

the order Ω( log · · · · · · log︸ ︷︷ ︸n
arbitrary k number of log

) which can goes to infinity arbitrarily slow. Hence, the number of

candidate anomalous intervals in the set I(a)
n is Θ(n2), which is at the same order as the number of

all intervals. Hence, at the order sense, not many intervals are excluded from being anomalous.

It can be seen that the conditions (2.9) and (2.10) on Imin and Imax are asymmetric. This can

be understood by the upper bound (2.7) on the type I error, which is a sum over all candidate

anomalous intervals with length between Imin and Imax. Due to the specific geometric structure

of the line network, as the length |I| increases, the number of candidate anomalous intervals with

length |I| equals n − |I| + 1 and decreases as |I| increases. Although the term exp
(
− t2i(n−i)

8K2n

)
in (2.7) is symmetric over i with respect to n

2
, the entire term (n − i + 1) exp

(
− t2i(n−i)

8K2n

)
is not

symmetric, which consequently yields the asymmetric conditions on Imin and Imax.

Theorem 2.1 requires that the threshold t in the test (2.6) to be less than MMD2[p, q]. In

practice, the information of MMD2[p, q] may or may not be available depending on specific appli-

cations. If it is known, then the threshold t can be set as a constant smaller than MMD2[p, q]. If it

is unknown, then the threshold t needs to scale to zero as n gets large in order to be asymptotically

smaller than MMD2[p, q]. We summarize these two cases in the following two corollaries.

Corollary 2.1. If the value MMD2[p, q] is known a priori, we set the threshold t = (1−δ)MMD2[p, q]

for any 0 < δ < 1. The test in (2.6) is consistent, if Imin and Imax satisfy the following conditions,

Imin ≥
16K2(1 + η′)

MMD4[p, q]
log n

Imax ≤ n− 16K2(1 + η′)

MMD4[p, q]
log · · · · · · log︸ ︷︷ ︸n

arbitrary k number of log

, (2.11)

where η′ is any positive constant.

Corollary 2.1 follows directly from Theorem 2.1 by setting η′ = 1+η
(1−δ)2 − 1.
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Corollary 2.2. If the value MMD2[p, q] is unknown, we set the threshold t to scale with n, such that

limn→∞ tn = 0. The test in (2.6) is consistent, if Imin and Imax satisfy the following conditions,

Imin ≥
16K2(1 + η)

t2n
log n

Imax ≤ n− 16K2(1 + η)

t2n
log · · · · · · log︸ ︷︷ ︸n

arbitrary k number of log

, (2.12)

where η is any positive constant.

Corollary 2.2 follows directly from Theorem 2.1 by noting that tn < MMD2[p, q] for n large

enough.

We note that Corollary 2.2 holds for any tn that satisfies limn→∞ tn = 0. It is clear from Corol-

lary 2.2 that for the case when MMD2[p, q] is unknown, Imin should scale at the order ω(log n),

and n − Imax should scale at the order ω( log · · · · · · log︸ ︷︷ ︸n
arbitrary k number of log

). Hence, comparison of the above

two corollaries implies that the prior knowledge about MMD2[p, q] is very important for network

ability to identifying anomalous events. If MMD2[p, q] is known, then the network can resolve an

anomalous object with the size Ω(log n). However, if such knowledge is unknown, the network

can resolve only bigger anomalous objects with the size ω(log n).

We note that Theorem 2.1 and Corollaries 2.1 and 2.2 characterize the conditions to guarantee

test consistency for a pair of fixed but unknown distributions p and q. Hence, the conditions (2.9),

(2.10), (2.11) and (2.12) depend on the underlying distributions p and q. In fact, these conditions

further yield the following condition that guarantees the proposed test to be universally consistent

for any arbitrary p and q.

Proposition 2.1 (Universal Consistency). Consider the nonparametric problem given in Section

2.1. Further assume the test in (2.6) applies a bounded kernel with 0 ≤ k(x, y) ≤ K for any
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(x, y). Then the test (2.6) is universally consistent for any arbitrary pair of p and q, if

Imin = ω(log n)

Imax = n− Ω( log · · · · · · log︸ ︷︷ ︸n
arbitrary k number of log

) (2.13)

Proof. This result follows from (2.9), (2.10), (2.11) and (2.12) and the fact that MMD[p, q] is a

constant for any given p and q.

2.3.2 Necessary Conditions

In Section 2.3.1, Proposition 2.1 suggests the sufficient conditions on Imin and Imax to guarantee

the proposed nonparametric test to be universally consistent for arbitrary p and q. In the following

theorem, we characterize the necessary conditions on Imin and Imax that any test must satisfy in

order to be universally consistent for arbitrary p and q.

Theorem 2.2. For the nonparametric detection problem described in Section 2.1 over a line net-

work, any test must satisfy the following conditions on Imin and Imax in order to be universally

consistent for arbitrary p and q:

Imin = ω(log n)

and n− Imax →∞, as n→∞. (2.14)

Proof. See Section 2.7. The idea of the proof is to first lower bound the minimax risk by the Bayes

risk of a simpler problem. Then for such a problem, we show that there exist p and q (in fact

Gaussian p and q) such that even the optimal parametric test is not consistent under the conditions

given in the theorem. This thus implies that under the same condition, no nonparametric test is

universally consistent for arbitrary p and q.

It can be seen that the necessary condition on Imin in (2.14) matches the sufficient condition

in (2.13) at the order level which implies that the proposed test is order level optimal in Imin.
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Furthermore, the sufficient condition on Imax can arbitrarily slowly converge to n, which is also

very close to the necessary condition on Imax. Thus we have the following theorem.

Theorem 2.3 (Optimality). Consider the nonparametric detection problem described in Section

2.1. The MMD-based test (2.6) is order level optimal in terms of Imin and nearly order level

optimal in terms of Imax required to guarantee universal test consistency for arbitrary p and q.

2.4 Generalization to Other Networks

In this section, we generalize our study to three other networks in order to demonstrate more

generality of our approach. For each network, our study further demonstrates how the geometric

property of the network affects the conditions required to guarantee the test consistency.

2.4.1 Detection of Anomalous Interval in Ring Network

In this subsection, we consider a ring network (see Figure 2.2), in which n nodes are located over

a ring. We define an interval I to be a subset of consecutive nodes over the ring. We consider the

following set of candidate anomalous intervals,

I(a)
n = {I : Imin ≤ |I| ≤ Imax}, (2.15)

where Imin and Imax are minimal and maximal lengths of all candidate anomalous intervals. De-

spite similarities that the ring network shares with the line network, its major difference lies in

that the number of candidate anomalous intervals with size k is n (which remains the same as k

increases) as opposed to n − k + 1 in the line network (which decreases as k increases). Conse-

quently, the number of sub-hypotheses in H1 is different. Such difference is reflected in the results

that we present next.
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Fig. 2.2: A ring network with an anomalous interval

We construct the test as follows:

max
I:I∈I(a)n

MMD2
u,I(YI , YĪ)


≥ t, determine H1

< t, determine H0

(2.16)

where YI denotes the samples in the interval I , YĪ denotes the samples outside the interval I , and

t is a threshold parameter.

If we apply the test (2.16) with a bounded kernel, then it can be shown (see Section 2.8) that

the type I and type II errors are bounded as follows:

P (H1|H0) ≤ exp

(
2 log n− 2t2 min{Imin(n− Imin), Imax(n− Imax)}

16nK2

)
, (2.17)

P (H0|H1,I) ≤ exp

(
−(MMD2[p, q]− t)2|I|(n− |I|)

8nK2

)
, for I ∈ I(a)

n (2.18)

where t is the threshold of the test that satisfies t < MMD2[p, q]. Furthermore, the test in (2.16) is

consistent, if

Imin ≥
16K2(1 + η)

t2
log n, (2.19)

Imax ≤ n− 16K2(1 + η)

t2
log n, (2.20)

where η is any positive constant. The detailed proof can be found in Section 2.8. Comparing

the above conditions with Theorem 2.1 suggests that although the sufficient conditions on Imin
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are the same, the conditions on Imax reflect order level difference in line and ring network. For

line network, an anomalous interval can be close to the entire network with only a gap of length

Ω( log · · · · · · log︸ ︷︷ ︸n
arbitrary k number of log

). However, for ring network, the gap can be as large as Ω(log n). Such differ-

ence in tests’ resolution of anomalous intervals is mainly due to the difference in network geometry

that further affects the error probability of tests. By carefully comparing the two types of errors, in

fact, the type II error converges to zero as the network size goes to infinity as long as the number

of anomalous samples (i.e., length of anomalous intervals) and the number of typical samples (i.e.,

the gap between anomalous intervals and the entire network) both scale with n to infinity. Thus,

the conditions for the type II error being asymptotically small are the same for the two types of

networks. The situation is different for the type I error. The key observation is that the number

of candidate anomalous intervals with size k is n − k + 1 in a line network (which decreases as

k increases), but is n in a ring network (which remains the same as k increases). Such difference

can be as significant as the order level if k is close to n, say n− Ω(log n). Consequently, the type

I error for a line network can be much smaller than that for a ring network, resulting more relaxed

condition on Imax to guarantee consistency.

Similarly to the line network, setting the threshold t for the test (2.16) can be considered in

two cases with and without the information of MMD[p, q]. If MMD[p, q] is known, set t = (1 −

δ)MMD2[p, q]. Otherwise, t can be chosen to scale to zero as n goes to infinity. Similar results as

in Corollary 2.1 and Corollary 2.2 can then be derived for a ring network.

Furthermore, (2.19) and (2.20) imply that the test (2.16) is universally consistent for any arbi-

trary p and q, if

Imin = ω(log n), and n− Imax = ω(log n). (2.21)

Following the arguments similar to those for the line network, it can be shown that any test

must satisfy the following necessary conditions required on Imin and Imax in order to be universally
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Fig. 2.3: Two-dimensional lattice network with an anomalous disk.

consistent for arbitrary p and q:

Imin = ω(log n), and n− Imax →∞, as n→∞. (2.22)

The detailed proof can be found in Section 2.9.

Therefore, combining the above sufficient and necessary conditions, we conclude the following

optimality property for the proposed test.

Theorem 2.4 (Optimality). Consider the problem of nonparametric detection of an interval over

a ring network. The MMD-based test (2.16) is order level optimal in terms of Imin required to

guarantee universal test consistency for arbitrary p and q.

2.4.2 Detection of Anomalous Disk in Two-Dimensional Lattice Net-

work

We consider a two-dimensional lattice network (see Figure 2.3) consisting of n2 nodes placed at

the corner points of a lattice. Consider the following set of candidate anomalous disks with each

disk centered at a certain node with integer radius:

D(a)
n = {D : Dmin ≤ |D| ≤ Dmax}, (2.23)
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where |D| denotes the number of nodes within the disk D, Dmin := min
D∈D(a)

n
|D| and Dmax :=

max
D∈D(a)

n
|D|. The goal is to detect the existence of an anomalous disk over the lattice network.

Towards this end, we build the following test:

max
D:D∈D(a)

n

MMD2
u,D(YD, YD)


≥ t, determine H1

< t, determine H0

(2.24)

where YD contains samples within the disk D, and YD contains samples outside the disk D. If we

apply this test with a bounded kernel, then the type I error can be bounded as follows:

P (H1|H0) ≤ exp

(
3 log n− 2t2 min{Dmin(n2 −Dmin), Dmax(n2 −Dmax)}

16n2K2

)
, (2.25)

and the type II error can be bounded as follows:

P (H0|H1,D) ≤ exp

(
−(MMD2[p, q]− t)2|D|(n2 − |D|)

8n2K2

)
for D ∈ D(a), (2.26)

where t is the threshold of the test that satisfies t < MMD2[p, q].

It can be further shown that if Dmin and Dmax satisfy the following conditions:

Dmin ≥
24K2(1 + η)

t2
log n, (2.27)

Dmax ≤ n2 − 24K2(1 + η)

t2
log n, (2.28)

where η is any positive constant, then the test (2.24) is consistent. Interestingly, the largest disk

within a two-dimensional lattice network has radius to be n
2

and areas to be πn2

4
≈ 0.79n2, which

contains at most cn2 nodes with c < 1 for large n. This implies that the bound on Dmax in (2.28)

is satisfied automatically when n is large.

Hence, for large n, (2.27) implies that the test (2.24) is universally consistent for any arbitrary
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p and q, if

Dmin = ω(log n). (2.29)

Furthermore, following the arguments similar to those for the line network, it can be shown that

any test must satisfy the following necessary condition required on Dmin in order to be universally

consistent for arbitrary p and q:

Dmin = ω(log n). (2.30)

Therefore, combining the above sufficient and necessary conditions, we conclude the following

optimality property for the proposed test.

Theorem 2.5 (Optimality). Consider the problem of nonparametric detection of a disk over two-

dimensional lattice network. The MMD-based test (2.24) is order level optimal in the size of disks

required to guarantee universal test consistency for arbitrary p and q.

2.4.3 Detection of Anomalous Rectangle in Lattice Network

We consider a r-dimensional lattice network consisting of nr nodes placed at the corner points of

a lattice network. Consider the following set of candidate anomalous rectangles:

S(a)
n := {S = [I1 × I2 × . . .× Ir] : Smin ≤ |S| ≤ Smax},

where Ii for 1 ≤ i ≤ r denotes an interval contained in [1, n] with consecutive indices, |S| denotes

the number of nodes in the rectangle S, Smin := min
S∈S(a)n

|S|, and Smax := max
S∈S(a)n

|S|. The

goal is to detect existence of an anomalous r-dimensional rectangle. Towards this end, we build
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the following test,

max
S:S∈S(a)n

MMD2
u,S(YS, YS)


≥ t, determine H1

< t, determine H0

(2.31)

where YS contains samples within the rectangular S, and YS contains samples outside the rectan-

gular S. If we apply this test with a bounded kernel, then the type I error is bounded as follows:

P (H1|H0) ≤ exp

(
2r log n− 2t2 min{Smin(nr − Smin), Smax(nr − Smax)}

16nrK2

)
, (2.32)

and the type II error is bounded as follows:

P (H0|H1,S) ≤ exp

(
−(MMD2[p, q]− t)2|S|(nr − |S|)

8nrK2

)
, for S ∈ S(a) (2.33)

where t is the threshold of the test that satisfies t < MMD2[p, q].

It can be further shown that if Smin and Smax satisfy the following conditions:

Smin ≥
16rK2(1 + η)

t2
log n (2.34)

Smax ≤ nr − 16rK2(1 + η)

t2
log n, (2.35)

where η is any positive constant, then the test in (2.31) is consistent.

We here note an important fact that as long as the largest anomalous rectangle is not the entire

lattice network, it can at most contain nr − nr−1 nodes, which satisfies the condition (2.35) for

large n as well as the following condition

nr − Smax →∞ as n→∞. (2.36)

Consequently, (2.35) and (2.36) are equivalent, both requiring the largest anomalous rectangle

not to be the entire network. Thus, the conditions (2.34) and (2.36) imply that the test (2.31) is
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Fig. 2.4: Minimax risk for a line
network.
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Fig. 2.5: Minimax risk for a ring
network.

universally consistent for any arbitrary p and q, if

Smin = ω(log n), and nr − Smax →∞ as n→∞. (2.37)

Furthermore, following the arguments similar to those for the line network, it can be shown

that any test must satisfy the following necessary conditions required on Smin and Smax in order to

be universally consistent for arbitrary p and q:

Smin = ω(log n), and nr − Smax →∞ as n→∞. (2.38)

Therefore, combining the above sufficient and necessary conditions, we conclude the following

optimality property for the proposed test.

Theorem 2.6 (Optimality). Consider the problem of nonparametric detection of a rectangle over

a lattice network. The MMD-based test (2.31) is order level optimal to guarantee universal test

consistency for arbitrary p and q.

2.5 Numerical Results

In this section, we provide numerical results to demonstrate the performance of our tests and

compare our approach with other competitive approaches.

In the first experiment, we apply our test to the line and ring network. We set the network size
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Table 2.1: Minimax risk for a line network

Imin \ Imax 100 110 130 160 190
1 0.73 0.73 0.72 0.76 0.76
11 0.58 0.61 0.55 0.59 0.59
31 0.09 0.11 0.10 0.09 0.27
61 0.03 0.03 0.05 0.06 0.21
91 0.02 0.02 0.04 0.05 0.24

Table 2.2: Minimax risk for a ring network.

Imin \ Imax 100 110 130 160 190
1 0.73 0.78 0.74 0.74 0.71
11 0.58 0.61 0.53 0.60 0.63
31 0.09 0.10 0.12 0.12 0.27
61 0.03 0.03 0.03 0.05 0.27
91 0.02 0.03 0.03 0.05 0.24

n = 200, the distribution p to be Gaussian with mean zero and variance one, and the anomalous

distribution q to be Gaussian with mean one and variance one. We use Gaussian kernel with

σ = 1. In Figures 2.4 and 2.5, we plot the minimax risk (normalized by 2) for line and ring

network as functions of Imin and Imax. For further illustration, we also list some values of the two

risk functions in Tables 2.1 and 2.2. It can be seen from Tables 2.1 and 2.2, and Figures 2.4 and 2.5

that the risk functions decrease as Imin increases and as Imax decreases. This is reasonable because

as Imin increases and as Imax decreases, the number of candidate anomalous intervals decreases,

which reduces the difficulty of detection. The minimum numbers of samples inside and outside

the anomalous interval also increase, respectively, which provide more accurate information about

the distributions.

In the next experiment, we compare the performance of our test with other competitive tests

including the student t-test, the Smirnov test [70], the Wolf test [70], Hall test [71], kernel-based

KFDA test [72] and kernel-based KDR test [73]. We consider a line network with the network

size n = 100. We set the distribution p to be Gaussian with zero mean and variance 2, and set the

anomalous distribution q to be a mixture of Gaussian distributions with equal probability taking

N (−1, 1) and N (1, 1). Hence, distributions p and q have the same mean and variance.
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Table 2.3: Comparison of nonparametric approaches over a line network.

(Imin, Imax) t-test Smirnov KFDA KDR MMD
(10,95) 0.90 0.92 0.70 0.66 0.66
(10,50) 0.88 0.90 0.51 0.56 0.55
(45,95) 0.89 0.93 0.54 0.43 0.43
(45,50) 0.83 0.62 0.06 0.06 0.05

In Table 2.3, we list some values of the risk function of our MMD-based test and other nonpara-

metric tests with respect to various values of Imin and Imax. It can be seen that the student t-test fails,

because the test relies on difference in mean and variance to distinguish two distributions, which

are the same in our experiment. The Smirnov test estimates the cumulative distribution function

(CDF) first and then takes the maximum difference of the two cumulative distribution functions

as the test statistics. For continuous distributions, accurately estimating the CDF from samples

requires a large amount of data, which is not feasible in our experiment. For the three kernel-based

tests KFDA, KDR and MMD, the performance are very close. In particular, for large enough Imin

and small enough Imax, the kernel-based tests yield small risk. Among these three kernel-based

tests, MMD has a slightly better performance. In terms of the computational complexity, KFDA is

much higher than KDR and MMD-based tests.

2.6 Proof of Theorem 2.1: Performance Guarantee

We first introduce the McDiarmid’s inequality which is useful in bounding the probability of error

in our proof.

Lemma 2.1 (McDiarmid’s Inequality). Let f : Xm → R be a function such that for all i ∈

{1, . . . ,m}, there exist ci <∞ for which

sup
X∈Xm,x̃∈X

|f(x1, . . . , xm)− f(x1, . . . xi−1, x̃, xi+1, . . . , xm)| ≤ ci. (2.39)

Then for any probability measure PX over m independent random variables X := (X1 . . . , Xm),
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and every ε > 0,

PX

(
f(X)− EX(f(X)) > ε

)
< exp

(
− 2ε2∑m

i=1 c
2
i

)
, (2.40)

where EX denotes the expectation over PX .

We now derive bounds on P (H1|H0) and P (H0|H1,I) for the test (2.6). We first have

MMD2
u,I(YI , YĪ) =

1

|I|(|I| − 1)

∑
i∈I

∑
j 6=i
j∈I

k(yi, yj) +
1

(n− |I|)(n− |I| − 1)

∑
i/∈I

∑
j 6=i
j /∈I

k(yi, yj)

− 2

|I|(n− |I|)
∑
i∈I

∑
j /∈I

k(yi, yj). (2.41)

Under H0, all samples are generated from distribution p. Hence, E[MMD2
u,I(YI , YĪ)] = 0.

In order to apply the McDiarmid’s inequality to bound the error probabilities P (H1|H0) and

P (H0|H1,I), we evaluate the following quantities. There are n variables that affects the value of

MMD2
u,I(YI , YĪ). We study the influence of these n variables on MMD2

u,I(YI , YĪ) in the following

two cases. For i ∈ I , change of yi affects MMD2
u,I(YI , YĪ) through the following terms,

2

|I|(|I| − 1)

∑
j 6=i
j∈I

k(yi, yj)−
2

|I|(n− |I|)
∑
j /∈I

k(yi, yj). (2.42)

For i /∈ I , change of yi affects MMD2
u,I(YI , YĪ) through the following terms,

2

(n− |I|)(n− |I| − 1)

∑
j 6=i
j /∈I

k(yi, yj)−
2

|I|(n− |I|)
∑
j∈I

k(yi, yj). (2.43)

Since the kernel we use is bounded, i.e., 0 ≤ k(x, y) ≤ K for any x, y, we have that for i ∈ I ,

ci = 4K
|I| , and for i /∈ I , ci = 4K

n−|I| , where ci serves the role as in (2.39).

Therefore, by applying McDiarmid’s inequality, we obtain

PH0(MMD2
u,I(YI , YĪ) > t) ≤ exp (−2t2|I|(n− |I|)

16nK2
). (2.44)
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Hence,

P (H1|H0) = PH0

(
max
I:I∈I(a)n

MMD2
u,I(YI , YĪ) > t

)
(a)

≤
∑

I:I∈I(a)n

PH0(MMD2
u,I(YI , YĪ) > t)

≤
∑

I:I∈I(a)n

exp (−2t2|I|(n− |I|)
16nK2

)

=
∑

I:Imin≤|I|≤Imax

exp (−2t2|I|(n− |I|)
16nK2

)

(b)
=

∑
I:Imin≤|I|≤n− 16K2(1+η)

t2
logn

exp (−2t2|I|(n− |I|)
16nK2

)

+
∑

I:n− 16K2(1+η)

t2
logn+1≤|I|≤Imax

exp (−2t2|I|(n− |I|)
16nK2

) (2.45)

where (a) is due to Boole’s inequality, η in (b) is a positive constant, and the second term in (b) is

equal to zero if n− 16K2(1+η)
t2

log n+ 1 ≥ Imax.

It can be shown that if Imin ≥ 16K2(1+η)
t2

log n, then the first term in (2.45) can be bounded as

follows,

∑
I:Imin≤|I|≤n− 16K2(1+η)

t2
logn

exp (−2t2|I|(n− |I|)
16nK2

)

(a)

≤ n2 exp (−2t2|I|(n− |I|)
16nK2

) |
|I|= 16K2(1+η)

t2
logn

= exp (−2η log n+ o(n))→ 0, as n→∞, (2.46)

where (a) is due to the fact that there are at most n2 number of candidate anomalous intervals

contributing to the sum, and |I|(n−|I|) is minimized by the value |I| = 16K2(1+η)
t2

log n within the

range of |I|.
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We next bound the second term in (2.45).

∑
n− 16K2(1+η)

t2
logn+1≤|I|≤Imax

exp

(
−2t2|I|(n− |I|)

16nK2

)
(2.47)

=
∑

n− 16K2(1+η)

t2
logn+1≤|I|≤n− 16K2(1+η)

t2
log logn

exp

(
−2t2|I|(n− |I|)

16nK2

)
(2.48)

+
∑

n− 16K2(1+η)

t2
log logn+1≤|I|≤Imax

exp

(
−2t2|I|(n− |I|)

16nK2

)

≤
(

16K2(1 + η)

t2
log n

)2

exp

(
−

2t2(n− 16K2(1+η)
t2

log log n)16K2(1+η)
t2

log log n

16nK2

)

+
∑

n− 16K2(1+η)

t2
log logn+1≤|I|≤Imax

exp

(
−2t2|I|(n− |I|)

16nK2

)
, (2.49)

where the first term in (2.49) converges to zero as n goes to infinity. The second term in (2.49) can

be bounded as

∑
n− 16K2(1+η)

t2
log logn+1≤|I|≤Imax

exp

(
−2t2|I|(n− |I|)

16nK2

)

≤
(

16K2(1 + η)

t2
log log n

)2

exp

(
−2t2Imax(n− Imax)

16nK2

)
(2.50)

which converges to zero as n→∞ if

Imax ≤ n− 16K2(1 + η)

t2
log log log n. (2.51)

In fact, the condition (2.51) can be further relaxed by decomposing the second term in (2.49)

following the steps similar to (2.48) and (2.49). Such a procedure can be repeated for arbitrary



39

finite times, say k − 2 times, and it can be shown that (2.47) converges to zero as n→∞ if

Imax ≤ n− 16K2(1 + η)

t2
log · · · log log︸ ︷︷ ︸n

arbitrary k number of log

. (2.52)

Therefore, we conclude that the type I error, i.e., P (H1|H0), converges to zero as n → ∞ if

the following conditions are satisfied:

Imin ≥
16K2(1 + η)

t2
log n

Imax ≤ n− 16K2(1 + η)

t2
log · · · log log︸ ︷︷ ︸n

arbitrary k number of log

(2.53)

for any positive integer k.

We next continue to bound the type II error max
I∈I(a)n

P (H0|H1,I) as follows.

max
I∈I(a)n

P (H0|H1,I)

= max
I∈I(a)n

PH1,I

(
max
I′∈I(a)n

MMD2
u,I′(YI′ , YĪ′) < t

)
(a)

≤ max
I∈I(a)n

PH1,I
(MMD2

u,I(YI , YĪ) < t)

= max
I∈I(a)n

PH1,I
(MMD2[p, q]−MMD2

u,I(YI , YĪ) > MMD2[p, q]− t)

(b)

≤ max
I∈I(a)n

exp

(
−(MMD2[p, q]− t)2|I|(n− |I|)

8K2n

)
(2.54)

where (a) holds by taking I ′ = I , and (b) holds by applying McDiarmid’s inequality. It can be
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easily checked that under the condition (2.53),

max
I∈I(a)n

P (H0|H1,I)

≤ exp

(
−(MMD2[p, q]− t)2|I|(n− |I|)

8K2n

)∣∣∣
|I|=n− 16K2(1+η)

t2
log · · · log log︸ ︷︷ ︸n

arbitrary k number of log

→ 0, as n→∞. (2.55)

Therefore, we conclude that the condition (2.53) guarantees thatR(n)
m → 0 as n→∞, and thus

guarantees the consistency of the test (2.6).

2.7 Proof of Theorem 2.2: Necessary Conditions

The idea is to consider the following problem which has lower risk than our original problem,

and show that there exist distributions (in fact for Gaussian p and q), under which such a risk is

bounded away from zero for all tests if the necessary conditions are not satisfied.

First consider the following problem, in which all candidate anomalous intervals have the same

length k, and hence there are in total n−k+1 candidate anomalous intervals. Furthermore, suppose

the distribution p is Gaussian with mean zero and variance one, and the distribution q is Gaussian

with mean µ > 0 and variance one. We define the minimax risk of a test for such a problem as

follows:

Rm(k) = P (H1|H0) + max
|I|=k

P (H0|H1,I), (2.56)

and we denote the minimum minimax risk as R∗m(k). We further assign uniform distribution

over all candidate anomalous intervals under the alternative hypothesis H1, i.e., each candidate
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anomalous interval has the same probability 1
n−k+1

to occur. Thus the Bayes risk is given by

Rb = P (H1|H0) +
1

n− k + 1

∑
|I|=k

P (H0|H1,I), (2.57)

and we use R∗b to denote the minimum Bayes risk over all possible tests. It is clear that

R∗m(k) ≥ R∗b .

It is justified in [4] that the optimal Bayes risk R∗b can be lower bounded as follows.

R∗b ≥ 1− 1

2

√
Eeµ2Z − 1, (2.58)

where Z = |S
⋂
S ′| with S and S ′ being independently and uniformly drawn at random from all

candidate anomalous intervals.

We next characterize the distribution of the random variable Z in order to evaluate the lower

bound. We are interested only in the case with k < n
2
. It can be shown that

P (Z = i) =
2(n− 2k + 1 + i)

(n− k + 1)2
, for 1 ≤ i ≤ k − 1

P (Z = k) =
1

n− k + 1

P (Z = 0) = 1−
k−1∑
i=1

2(n− 2k + 1 + i)

(n− k + 1)2
− 1

n− k + 1
. (2.59)
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Based on the above distribution of Z, we obtain

Eeµ2Z − 1

=
k−1∑
j=1

2(n− 2k + 1 + j)eµ
2j

(n− k + 1)2
+

eµ
2k

n− k + 1
+ 1−

2(k − 1)(n− 3
2
k + 1) + n− k + 1

(n− k + 1)2
− 1

=
2(n− 2k + 1)

(n− k + 1)2

k−1∑
j=1

eµ
2j +

2

(n− k + 1)2

k−1∑
j=1

jeµ
2j +

eµ
2k

n− k + 1

−
2(k − 1)(n− 3

2
k + 1) + n− k + 1

(n− k + 1)2

(a)

≤ 2(n− 2k + 1)

(n− k + 1)2

∫ k

1

eµ
2xdx+

2

(n− k + 1)2

∫ k

1

xeµ
2xdx+

eµ
2k

n− k + 1

−
2(k − 1)(n− 3

2
k + 1) + n− k + 1

(n− k + 1)2

=
2(n− 2k + 1)

(n− k + 1)2
(eµ

2k − eµ2) +
2

(n− k + 1)2
(

1

µ2
keµ

2k − 1

µ4
eµ

2k − 1

µ2
eµ

2

+
1

µ4
eµ

2

)

+
eµ

2k

n− k + 1
−

2(k − 1)(n− 3
2
k + 1) + n− k + 1

(n− k + 1)2
. (2.60)

It can be checked that if k ≤ 1
2µ2

log n, (2.60) converges to zero as n goes to infinity. Hence,

R∗b ≥ 1 as n goes to infinity, which further implies that R∗m(k) > 1, as n → ∞, and thus any test

is no better than random guess. Since µ can be any constant, there always exists Gaussian p and q

such that no test can be consistent as long as k ≤ c log n, where c is any constant.

Now consider the original problem with the minimax risk

Rm = P (H1|H0) + max
Imin≤|I|≤Imax

P (H0|H1,I). (2.61)

It can be shown that

R∗m ≥ R∗(k), if k = Imin

where R∗m denotes the minimum risk over all possible tests. Based on the above argument on

R∗(k), it is clear that if Imin ≤ c log n, there exists no test such that R∗m converges to zero as n

goes to infinity for arbitrary distributions p and q.
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Furthermore, consider the case with only one candidate anomalous interval I with length k.

The risk in this case is

R(k) = P (H1|H0) + P (H0|H1,I) (2.62)

where |I| = k. It is also clear that R∗m ≥ R∗(k) where k = Imax. For such a simple case, the

problem reduces to the two-sample problem, detecting whether the samples in the interval I and

the samples outside of the interval I are generated from the same distribution. In order to guarantee

R∗(k)→ 0 as n→∞, k and n−k should both scale with n to infinity. Thus, in order to guarantee

R∗m → 0, as n → ∞, n − Imax → ∞ is necessary for any test to be universally consistent. This

concludes the proof.

2.8 Proof of Sufficient Conditions for Ring Networks

Following steps similar to those in Section 2.6, we derive the following bound

P (H1|H0) ≤
∑
I∈I(a)n

exp

(
−2t2|I|(n− |I|)

16nK2

)
(a)
=

Imax∑
i=Imin

n exp

(
−2t2i(n− i)

16nK2

)
(b)

≤
Imax∑
i=Imin

n exp

(
−2t2 min{Imin(n− Imin), Imax(n− Imax)}

16nK2

)
(c)

≤ n2 exp

(
−2t2 min{Imin(n− Imin), Imax(n− Imax)}

16nK2

)
= exp

(
2 log n− 2t2 min{Imin(n− Imin), Imax(n− Imax)}

16nK2

)
(2.63)

where (a) is due to the fact in the ring network, there are n candidate anomalous intervals with size

i, (b) is due to the fact that i(n− i) is lowered bounded by min{Imin(n− Imin), Imax(n− Imax)},

and (c) is due to the fact that Imax − Imin ≤ n.
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It can be checked that P (H1|H0)→ 0 as n→∞ if

16K2(1 + η)

t2
log n ≤ Imin ≤ Imax ≤ n− 16K2(1 + η)

t2
log n. (2.64)

Furthermore, following steps similar to those in Section 2.6, we can derive an upper bound on

the type II error and show that it converges to zero as n→∞ if

Imin →∞, n− Imax →∞, (2.65)

Combining the two conditions completes the proof.

2.9 Proof of Necessary Conditions for Ring Networks

The proof follows the idea in Section 2.7 for the line network. Here, we consider a problem in

which all the candidate anomalous intervals have the same length k, i.e., there are in total n−k+1

candidate anomalous intervals. Furthermore, suppose the distribution p is Gaussian with mean

zero and variance one, and the distribution q is Gaussian with mean µ > 0 and variance one. We

define the minimax risk of a test for such a problem as follows:

Rm(k) = P (H1|H0) + max
|I|=k

P (H0|H1,I), (2.66)

and we denote the minimum minimax risk asR∗(k). We further assign uniform distribution over all

candidate anomalous intervals under the alternative hypothesis H1, i.e., each candidate anomalous

interval has the same probability 1
n−k+1

to be anomalous. Hence, the Bayes risk is given by

Rb = P (H1|H0) +
1

n

∑
|I|=k

P (H0|H1,I), (2.67)
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and we use R∗b to denote the minimum Bayes risk over all possible tests. It is clear that

R∗k ≥ R∗b .

In order to apply the same property in (2.58), we characterize the distribution of the random

variable Z as follows.

P (Z = i) =
2

n
, for i = 1, . . . , k − 1,

P (Z = k) =
1

n
,

P (Z = 0) =
n− 2k + 1

n
. (2.68)

Then we have

Eeµ2Z − 1

=
k−1∑
i=1

2

n
eµ

2i +
1

2
eµ

2k +
n− 2k + 1

n
− 1

≤ 2

nµ2
eµ

2k − 2

n
eµ

2

+
1

n
eµ

2k − 2k − 1

n

→0, if k ≤ O(log n). (2.69)

By arguments similar to those for the line network, we conclude that Imin > c log n for any

constant c and n − Imax → ∞ as n → ∞ are necessary to guarantee any test to be universally

consistent for arbitrary distributions p and q.
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CHAPTER 3

ANOMALOUS DATA STREAM DETECTION

In this chapter, we study the problem of anomalous data stream detection. In Section 3.1, we

introduce our problem model and performance metric. In Section 3.2, we present our tests and

results on the sufficient condition on the sample complexity for consistency of MMD-based tests.

In Section 3.3, we present our results on the necessary condition for any universally consistent test.

In Section 3.4, we present our numerical results.

3.1 Problem Statement

Fig. 3.1: An anomalous data stream detection problem.

In this chapter, we study an anomalous data stream detection problem (see Figure 3.1), in which

there are in total n data sequences denoted by Yk for 1 ≤ k ≤ n. Each data sequence Yk consists of
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m i.i.d. samples yk1, . . . , ykm drawn from either a typical distribution p or an anomalous distribu-

tion q, where p 6= q. In the sequel, we use the notation Yk := (yk1, . . . , ykm). We assume that the

distributions p and q are arbitrary and unknown in advance. Our goal is to build distribution-free

tests to detect data sequences generated by the anomalous distribution q.

We assume that s out of n data sequences are anomalous, i.e., are generated by the anomalous

distribution q. We study both cases with s known and unknown, respectively. We are interested

in the asymptotical regime, in which the number n of data sequences goes to infinity. We assume

that the number s of anomalous sequences satisfies s
n
→ α as n → ∞, where 0 ≤ α ≤ 1. This

includes the following three cases: (1) s is fixed, and nonzero as n → ∞; (2) s → ∞, but s
n
→ 0

as n → ∞; and (3) s
n

approaches to a positive constant, which is less than or equal to 1. Some

of our results are also applicable to the case with s = 0, i.e., the null hypothesis in which there

is no anomalous sequence. We will comment on such a case when the corresponding results are

presented.

We next define the probability of detection error as the performance measure of tests. We let

I denote the set that contains indices of all anomalous data sequences. Hence, the cardinality

|I| = s. We let În denote a sequence of index sets that contain indices of all anomalous data

sequences claimed by a corresponding sequence of tests.

Definition 3.1. A sequence of tests are said to be consistent if

lim
n→∞

Pe = lim
n→∞

P{În 6= In} = 0. (3.1)

We note that the above definition of consistency is with respect to the number n of sequences

instead of the number m of samples. However, as n becomes large (and possibly as s becomes

large), it is increasingly challenging to consistently detect all anomalous data sequences. It then

requires that the number m of samples becomes large enough in order to more accurately detect

anomalous sequences. Therefore, the limit in the above definition in fact refers to the asymptotic

regime, in which m scales fast enough as n goes to infinity in order to guarantee asymptotically
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small probability of error.

Furthermore, for a consistent test, it is also desirable that the error probability decays exponen-

tially fast with respect to the number m of samples.

Definition 3.2. A sequence of tests are said to be exponentially consistent if

lim inf
m→∞

− 1

m
logPe = lim inf

m→∞
− 1

m
logP{În 6= In} > 0. (3.2)

In this chapter, our goal is to construct distribution-free tests for detecting anomalous se-

quences, and characterize the scaling behavior of m with n (and possibly s) so that the developed

tests are consistent (and possibly exponentially consistent).

An example with sparse anomalous samples. In this chapter, we also study an interesting

example, in which the distribution q is a mixture of the distribution p with probability 1 − ε and

an anomalous distribution q̃ with probability ε, where 0 < ε ≤ 1, i.e., q = (1 − ε)p + εq̃. It can

be seen that if ε is small, the majority of samples in an anomalous sequence are drawn from the

distribution p, and only sparse samples are drawn from the anomalous distribution q̃. The value of

ε captures the sparsity level of anomalous samples. Here, ε can scale as n increases, and is hence

denoted by εn. We study how εn affects the number of samples needed for consistent detection.

3.2 Test and Performance Guarantee

In this section, we study both cases with s known and unknown, respectively. We then study the

example with sparse anomalous samples.

3.2.1 Known s

In this subsection, we consider the case with s known. We start with a simple case with s = 1, and

then study the more general case, in which s
n
→ α as n→∞, where 0 ≤ α ≤ 1.

Consider the case with s = 1. For each sequence Yk, we use Y k to denote the (n − 1)m
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dimensional sequence that stacks all other sequences together, as given by

Y k = {Y1, . . . , Yk−1, Yk+1, . . . , Yn}.

We then compute MMD2
u[Yk, Y k] for 1 ≤ k ≤ n. It is clear that if Yk is the anomalous sequence,

then Y k is fully composed of typical sequences. Hence, MMD2
u[Yk, Y k] is a good estimator of

MMD2[p, q], which is a positive constant. On the other hand, if Yk is a typical sequence, Y k

is composed of n − 2 sequences generated by p and only one sequence generated by q. As n

increases, the impact of the anomalous sequence on Y k is negligible, and MMD2
u[Yk, Y k] should

be asymptotically close to zero. Based on the above understanding, we construct the following test

when s = 1. The sequence k∗ is claimed to be anomalous if

k∗ = arg max
1≤k≤n

MMD2
u[Yk, Y k]. (3.3)

The following proposition characterizes the condition under which the above test is consistent.

Proposition 3.1. Consider the anomalous data stream detection problem with one anomalous

sequence, i.e., s = 1. Suppose the test (3.3) applies a bounded kernel with 0 ≤ k(x, y) ≤ K for

any (x, y). Then, the probability of error is upper bounded as follows,

Pe ≤ exp
(

log n− m(MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
, (3.4)

where ξ is a constant which can be picked arbitrarily close to zero. Furthermore, the test (3.3) is

exponentially consistent if

m ≥ 16K2(1 + η)

MMD4[p, q]
log n, (3.5)

where η is any positive constant.

Proof. See Section 3.5.
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Proposition 3.1 implies that for the scenario with one anomalous sequence, Ω(log n) samples

are sufficient to guarantee consistent detection.

We next consider the case with s ≥ 1. More specifically, we consider the case with s
n
→ α as

n → ∞, where 0 ≤ α < 1
2
. Although we focus on the case with α < 1

2
, the case with α > 1

2
is

similar, with the roles of p and q being exchanged. We first study the case with s known. Our test

is a natural generalization of the test (3.3) except now the test picks the sequences with the largest

s values of MMD2
u[Yk, Y k], which is given by

Î ={k : MMD2
u[Yk, Y k] is among the s largest

values of MMD2
u[Yi, Y i] for i = 1, . . . , n}. (3.6)

The following theorem characterizes the condition under which the above test is consistent.

Theorem 3.1. Consider the anomalous data stream detection problem with s anomalous se-

quences, where s
n
→ α as n → ∞ and 0 ≤ α < 1

2
. Assume the value of s is known. Further

assume that the test (3.6) applies a bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the

probability of error is upper bounded as follows,

Pe ≤ exp
(

log((n− s)s)− m((1− 2α)MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
, (3.7)

where ξ is a constant which can be picked arbitrarily close to zero. Furthermore, the test (3.6) is

exponentially consistent for any p and q if

m ≥ 16K2(1 + η)

(1− 2α)2MMD4[p, q]
log(s(n− s)), (3.8)

where η is any positive constant.

Proof. We analyze the performance of the test (3.6). Without loss of generality, we assume that

the first s sequences are anomalous and are generated from distribution q. Hence, the probability
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of error can be bounded as,

Pe =P

(
∃k > s : MMD2

u[Yk, Y k] > min
1≤l≤s

MMD2
u[Yl, Y l]

)
≤

n∑
k=s+1

s∑
l=1

P

(
MMD2

u[Yk, Y k] > MMD2
u[Yl, Y l]

)
. (3.9)

Using the fact that s
n
→ α, where 0 ≤ α < 1

2
, and using (3.51) and (3.52), we can show that

E
[
MMD2

u[Yl, Y l]
]
→ (1− α)2MMD2[p, q], (3.10)

as n→∞ for 1 ≤ l ≤ s, and

E
[
MMD2

u[Yk, Y k]
]
→ α2MMD2[p, q], (3.11)

as n→∞ for s+ 1 ≤ k ≤ n. Hence, there exists a constant ξ such that

0 < ξ < (1− α)2MMD2[p, q]− α2MMD2[p, q]

and

E
[
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]

]
< α2MMD2[p, q]− (1− α)2MMD2[p, q] + ξ, (3.12)

for large enough n.
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Therefore, we obtain,

P

(
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l] > 0

)
=P

(
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]− E

[
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]

]
> −E

[
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]

])
≤P
(

MMD2
u[Yk, Y k]−MMD2

u[Yl, Y l]− E
[
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]

]
> ((1− α)2 − α2)MMD2[p, q])− ξ

)
, (3.13)

for large enough n.

Applying McDiarmid’s inequality, we obtain,

Pe ≤ exp

(
log((n− s)s)− m((1− 2α)MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
. (3.14)

Since ξ can be arbitrarily small, we conclude that if,

m ≥ 16K2(1 + η)

(1− 2α)2MMD4[p, q]
log(s(n− s)), (3.15)

where η is any positive constant, then Pe → 0, as n→∞. It is also clear that if the above condition

is satisfied, Pe converges to zero exponentially fast with respect to m.

We note that log((n− s)s) = Θ(log n), for 1 ≤ s < n. Hence, Theorem 3.1 implies that even

with s anomalous sequence, the test (3.6) requires only Ω(log n) samples in each data sequence in

order to guarantee consistency of the test. Hence, the increase of s does not affect the order level

requirement on the sample size m. We further note that Theorem 3.1 is also applicable to the case

in which α > 1
2

simply with the roles of p and q exchanged.

Remark 3.1. For the case with s
n
→ 0, as n → ∞, we can also build a test with reduced com-

putational complexity as follows. For each Yk, instead of using n− 1 sequences to build Y k as in
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the test (3.6), we take any l sequences out of the remaining n − 1 sequences to build a sequence

Ỹk, such that l
n
→ 0 and s

l
→ 0 as n → ∞. Such an l exists for any s and n satisfying s

n
→ 0

(e.g., l =
√
sn). It can be shown that using Ỹk to replace Y k in the test (3.6) still leads to con-

sistent detection under the same condition given in Theorem 3.1. Since l is much smaller than n,

computational complexity is substantially reduced.

We note that Theorem 3.1 (which includes Proposition 3.1 as a special case) characterizes

the conditions to guarantee test consistency for a pair of fixed but unknown distributions p and

q. Hence, the condition (3.8) depends on the underlying distributions p and q. In fact, such a

condition further yields the following condition that guarantees the test to be universally consistent

for arbitrary p and q.

Proposition 3.2 (Universal Consistency). Consider the anomalous data stream detection problem,

where s
n
→ α as n → ∞ and 0 ≤ α < 1

2
. Assume s is known. Further assume that the test (3.6)

applies a bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the test (3.6) is universally

consistent for any arbitrary pair of p and q, if

m = ω(log n). (3.16)

Proof. This result follows from (3.8) and the facts that log((n − s)s) = Θ(log n) and MMD[p, q]

is constant for any given p and q.

3.2.2 Unknown s

In this subsection, we consider the case, in which the value of s is unknown. And we focus on the

scenario that s
n
→ 0, as n→∞. This includes two cases: (1) s is fixed and (2) s→∞ and s

n
→ 0

as n→∞. Without knowledge of s, the test in (3.6) is not applicable anymore, because it depends

on the value of s.

In order to build a test now, we first observe that for each k, although Y k contains mixed

samples from p and q, it is dominated by samples from p due to the above assumption on s. Thus,
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for large enoughm and n, MMD2
u[Yk, Y k] should be close to zero if Yk is drawn from p, and should

be far away enough from zero (in fact, close to MMD2[p, q]) if Yk is drawn from q. Based on this

understanding, we construct the following test:

Î = {k : MMD2
u[Yk, Y k] > δn} (3.17)

where δn → 0 and s2

n2δn
→ 0 as n → ∞. The reason for the condition s2

n2δn
→ 0 is to guarantee

that δn converges to 0 more slowly than MMD2
u[Yk, Y k] with Yk drawn from p so that as n goes to

infinity, δn asymptotically falls between MMD2
u[Yk, Y k] with Yk drawn from p and MMD2

u[Yk, Y k]

with Yk drawn from q. We note that the scaling behavior of s as n increases needs to be known in

order to pick δn for the test. This is reasonable to assume because mostly in practice the scale of

anomalous data sequences can be estimated based on domain knowledge.

The following theorem characterizes the condition under which the test (3.17) is consistent.

Theorem 3.2. Consider the anomalous data stream detection problem with s anomalous se-

quences, where s
n
→ 0, as n → ∞. Assume that s is unknown in advance. Further assume

that the test (3.17) adopts a threshold δn such that δn → 0 and s2

n2δn
→ 0, as n→∞, and the test

applies a bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the probability of error is

upper bounded as follows:

Pe ≤ exp

(
log s− m(MMD2[p, q]− δn)2

16K2(1 + Θ( 1
n
))

)
+ exp

(
log(n− s)−

m(δn − E
[
MMD2

u[Yk, Y k]
]
)2

16K2(1 + Θ( 1
n
))

)
. (3.18)

Furthermore, the test (3.17) is consistent if

m ≥ 16(1 + η)K2 max
{ log(max{1, s})

(MMD2[p, q]− δn)2
,

log(n− s)
(δn − E

[
MMD2

u[Y, Y ]
]
)2

}
, (3.19)

where η is any positive constant. In the above equation, E[MMD2
u[Y, Y ]] is a constant, where Y is
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a sequence generated by p and Y is a stack of (n− 1) sequences with s sequences generated by q

and the remaining sequences generated by p.

Proof. We analyze the performance of the test (3.17). Without loss of generality, we assume that

the first s sequences are the anomalous sequences. Hence,

Pe = P

((
∃1 ≤ l ≤ s : MMD2

u[Yl, Y l] ≤ δn
)
or
(
∃s+ 1 ≤ k ≤ n : MMD2

u[Yk, Y k] > δn
))

≤
s∑
l=1

P

(
MMD2

u[Yl, Y l] ≤ δn

)
+

n∑
k=s+1

P

(
MMD2

u[Yk, Y k] > δn

)
. (3.20)

Using the fact that s
n
→ 0 as n→∞, and using (3.51) and (3.52) we obtain,

E
[
MMD2

u[Yl, Y l]
]
→ MMD2[p, q], (3.21)

E
[
MMD2

u[Yk, Y k]
]
→ 0, (3.22)

as n→∞, for 1 ≤ l ≤ s and s+ 1 ≤ k ≤ n.

Due to (3.21), for any constant ε, −E
[
MMD2

u[Yl, Y l]
]
< −MMD2[p, q] + ε for large enough n.

For 1 ≤ l ≤ s, we drive,

P

(
MMD2

u[Yl, Y l] ≤ δn

)
= P

(
MMD2

u[Yl, Y l]− E
[
MMD2

u[Yl, Y l]
]
≤ −E

[
MMD2

u[Yl, Y l]
]

+ δn

)
≤ P

(
MMD2

u[Yl, Y l]− E
[
MMD2

u[Yl, Y l] ≤ −(MMD2[p, q]− ε− δn)

)
, (3.23)
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for large enough n. Therefore, by applying McDiarmid’s inequality, we obtain,

P

(
MMD2

u[Yl, Y l] ≤ δn

)
≤ exp

(
− 2(MMD2[p, q]− ε− δn)2

16K2

m
(1 + Θ( 1

n
)) + 16K2

m
(1 + Θ( 1

n
))

)
= exp

(
− m(MMD2[p, q]− ε− δn)2

16K2(1 + Θ( 1
n
))

)
, (3.24)

for large enough n.

For s+ 1 ≤ k ≤ n,

P

(
MMD2

u[Yk, Y k] > δn

)
= P

(
MMD2

u[Yk, Y k]− E
[
MMD2

u[Yk, Y k]
]
> δn − E

[
MMD2

u[Yk, Y k]
])
. (3.25)

Using the fact that s2

n2δn
→ 0 as n→∞, we can show that

E
[
MMD2

u[Yk, Y k]
]

δn
→ 0,

as n → ∞. Hence, for large enough n, δn > E
[
MMD2

u[Yk, Y k]
]
. Therefore, using McDiarmid’s

inequality, we have

P

(
MMD2

u[Yk, Y k] > δn

)
≤ exp

(
−

2(δn − E
[
MMD2

u[Yk, Y k]
]
)2

16K2

m
(1 + Θ( 1

n
)) + 16K2

m
(1 + Θ( 1

n
))

)
= exp

(
−
m(δn − E

[
MMD2

u[Yk, Y k]
]
)2

16K2(1 + Θ( 1
n
))

)
. (3.26)
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Therefore,

Pe ≤ s exp

(
− m(MMD2[p, q]− ε− δn)2

16K2(1 + Θ( 1
n
))

)
+ (n− s) exp

(
−
m(δn − E

[
MMD2

u[Yk, Y k]
]
)2

16K2(1 + Θ( 1
n
))

)
= exp

(
log s− m(MMD2[p, q]− ε− δn)2

16K2(1 + Θ( 1
n
))

)
+ exp

(
log(n− s)−

m(δn − E
[
MMD2

u[Yk, Y k]
]
)2

16K2(1 + Θ( 1
n
))

)
, (3.27)

for large enough n. Hence, we conclude that if

m ≥ 16(1 + η)K2

(MMD2[p, q]− δn)2
log s, (3.28)

and

m ≥ 16(1 + η)K2

(δn − E
[
MMD2

u[Yk, Y k]
]
)2

log(n− s), (3.29)

where η is any positive constant, then Pe → 0, as n→∞.

When s = 0, Pe =
∑n

k=1 P (MMD2
u[Yk, Yk] > δn). Then applying (3.26), we have if

m ≥ 16(1 + η)K2

(δn − E
[
MMD2

u[Yk, Y k]
]
)2

log n, (3.30)

where η is any positive constant, then Pe → 0, as n→∞.

We note that Theorem 3.2 is also applicable to the case with s = 0, i.e., the null hypothesis

when there is no anomalous sequence. We further note that the test (3.17) is not exponentially

consistent. In fact, when there is no null hypothesis (i.e., s > 1), an exponentially consistent test

can be built as follows. For each subsect S of 1, . . . , n, we compute MMD2
u[YS , Y S ], and the test

finds the set of indices corresponding to the largest average value. However, for such a test to be

consistent, m needs to scale linearly with n, which is not desirable.
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Theorem 3.2 implies that m should be in the order ω(log n) to guarantee test consistency,

because s
n
→ 0 and δn → 0 as n → ∞. Compared to the case with s known (for which it is

sufficient for m to scale at the order Θ(log n)), the threshold on m has order level increase due to

lack of the knowledge of s. Furthermore, the above understanding on the order level condition on

m also yields the following sufficient condition for the test to be universally consistent.

Proposition 3.3 (Universal Consistency). Consider the anomalous data stream detection problem,

where s
n
→ 0, as n → ∞. We assume that s is unknown in advance. Further assume that the test

(3.17) adopts a threshold δn such that δn → 0 and s2

n2δn
→ 0, as n → ∞, and the test applies a

bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the test (3.17) is universally consistent

for any arbitrary pair of p and q, if

m = ω(log n). (3.31)

Comparison between Proposition 3.3 with Proposition 3.2 implies that the knowledge of s does

not affect the order level sample complexity to guarantee a test to be universally consistent.

3.2.3 Example with Sparse Anomalous Samples

We study the example with the anomalous distribution q = (1 − εn)p + εnq̃ as we introduce

in Section 3.1. The following result characterizes the impact of sparsity level εn on the scaling

behavior of m to guarantee consistent detection.

Corollary 3.1. Consider the model with the typical distribution p and the anomalous distribution

q = (1− εn)p+ εnq̃, where 0 < εn ≤ 1. If s is known, then the test (3.6) is consistent if

m ≥ 16K2(1 + η)

(1− 2α)2ε4nMMD4[p, q̃]
log(s(n− s)), (3.32)

where η is any positive constant.
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If s is unknown, then the test (3.17) is consistent if

m ≥ 16(1 + η)K2 max
{ log(max{1, s})

(ε2nMMD2[p, q̃]− δn)2
,

log(n− s)
(δn − E

[
MMD2

u[Y, Y ]
]
)2

}
, (3.33)

where η is any positive constant, s2ε2n
n2δn
→ 0 and δn

ε2n
→ 0 as n → ∞, Y is a sequence generated

by p, and Y is a stack of (n − 1) sequences with s sequences generated by q̃ and the remaining

sequences generated by p.

Proof. The proof follows from Theorems 3.1 and 3.2 by substituting:

MMD2[p, q]

= Ex,x′ [k(x, x′)]− 2Ex,y[k(x, y)] + Ey,y′ [k(y, y′)]

= Ex,x′ [k(x, x′)]− 2(1− εn)Ex,x′ [k(x, x′)]− 2εnEx,ỹ[k(x, ỹ)] + (1− εn)2Ex,x′ [k(x, x′)]

+ 2εn(1− εn)Ex,ỹ[k(x, ỹ)] + ε2nEỹ,ỹ′ [k(ỹ, ỹ′)]

= ε2nMMD2[p, q̃], (3.34)

where x and x′ are independent but have the same distribution p, y and y′ are independent but have

the same distribution q, and ỹ and ỹ′ are independent but have the same distribution q̃.

Corollary 3.1 implies that if εn is a constant, then the scaling behavior of m needed for con-

sistent detection does not change. However, if εn → 0 as n → ∞, i.e., anomalous sequences

contain more sparse anomalous samples, then m needs to scale faster with n in order to guarantee

consistent detection. This is reasonable because the sample size m should have a higher order to

cancel out the impact of the increasingly sparse anomalous samples in each anomalous sequence.

Corollary 3.1 explicitly captures such tradeoff between the sample size m and the sparsity level εn

of anomalous samples in addition to n and s.
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3.3 Necessary Condition and Optimality

In Section 3.2, we characterize sufficient conditions on the sample size m under which the MMD-

based test is guaranteed to be consistent for any distribution pair p and q. In this section, we

characterize conditions under which no test is universally consistent for arbitrary p and q. We first

study the case with s = 1 for which we develop our key idea of the proof. We then generalize our

study to the case with s ≥ 1.

Proposition 3.4. Consider the anomalous data stream detection problem with one anomalous

sequence. If the sample size m satisfies

m = O(log n), (3.35)

then there exists no test that is universally consistent for any arbitrary distribution pair p and q.

Proof. The idea of the proof is to show that for a certain distribution pair p and q, even the optimal

parametric test (with known p and q) is not consistent under the condition given in the theorem.

This thus implies that under the same condition, no nonparametric test is universally consistent for

arbitrary p and q.

We first introduce an interesting property of Gaussian distribution, which is useful for bounding

the probability of error for our problem.

Lemma 3.1. [74] For the standard Gaussian distribution with mean zero and variance one, there

exists positive constants c1 and c2 such that the cumulative distribution function (CDF) Φ(x) of the

standard Gaussian distribution satisfies the following inequalities:

c1

log n
< sup
−∞<x<∞

|Φn(anx+ bn)−G(x)| < c2

log n
(3.36)

for all positive integer n, where G(x) = ee
−x

(i.e., the CDF of the Gumbel distribution), anbn = 1.
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In particular, bn can be approximated as

bn =
√

2 log n−
1
2

log(4π log n)
√

2 log n
+O

(
1

log n

)
. (3.37)

Our main idea of the proof is to show that under a certain distribution pair p and q, even the

optimal parametric test is not consistent under the condition given in the theorem. This thus implies

that under the same condition, no nonparametric test is universally consistent for arbitrary p and

q. Towards this end, we consider the case, in which p and q are Gaussian with the same variance

but mean shift, i.e., p = N (0, 1) and q = N (1, 1). The optimal test with known p and q is the

following maximum likelihood (ML) test.

î = arg max
1≤i≤n

{Pi(Y nm)}, (3.38)

where Pi(Y nm) denotes the probability of Y nm if the i-th sequence is anomalous. The probability

of error under the ML test is given by:

Pe =
1

n

n∑
i=1

Pi
(
Pi(Y

nm) ≤ max
k 6=i

Pk(Y
nm)
)
, (3.39)

where Pi denotes the probability evaluated when i-th sequence is anomalous. By the symmetry of

the problem,

Pi
(
Pi(Y

nm) ≤ max
k 6=i

Pk(Y
nm)
)

= Pj
(
Pj(Y

nm) ≤ max
k 6=j

Pk(Y
nm)
)
, (3.40)

for any 1 ≤ i, j ≤ n. Hence, we have

Pe = P1

(
P1(Y nm) ≤ max

k 6=1
Pk(Y

nm)
)

= P1

( 1√
m

m∑
i=1

Y1i ≤ max
2≤k≤n

1√
m

m∑
i=1

Yki

)
. (3.41)
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For convenience, we define B1 := 1√
m

∑m
i=1 Y1i, and Bk := 1√

m

∑m
i=1 Yki, for 2 ≤ k ≤ n. Hence,

B1 ∼ N (
√
m, 1), and Bk ∼ N (0, 1), and they are independent from each other. With the above

definitions, the probability of error can be written as

Pe = P
(
B1 ≤ max

2≤k≤n
Bk

)
= 1− P

(
max

2≤k≤n
Bk < B1

)
= 1− EB

{
Φn−1(B1)

}
(3.42)

where Φ is the CDF of Bk.

By Lemma 3.1, there exists a constant c independent of n, such that for all positive integer n,

and for all real values x,

G
(x− bn

an

)
− c

log n
≤ Φn(x) ≤ G

(x− bn
an

)
+

c

log n
, (3.43)

where an, bn are optimal normalizing constants, and G(x) = e−e
−x is the CDF of the Gumbel

distribution.

Hence,

Pe = 1− EBΦn−1(B1)

≥ 1− c

log(n− 1)
− EB

{
G
(B1 − bn−1

an−1

)}
= 1− c

log(n− 1)
− ET

{
G(T )

}
, (3.44)

where T = B1−bn−1

an−1
, and T ∼ N (

√
m−bn−1

an−1
, 1
a2n−1

). The second term in (3.44) can be further
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bounded as

ET
{
G(T )

}
=

∫ 0

−∞
e−e

−t
p(t)dt+

∫ +∞

0

e−e
−t
p(t)dt

≤ e−1 + P (T ≥ 0) (3.45)

where

P (T ≥ 0) = Q

(
0−

√
m−bn−1

an−1

1
an−1

)
= Q(bn−1 −

√
m). (3.46)

In the above equations, Q(·) denotes the tail probability of the standard Gaussian distribution. If

m ≤ 2(1− η) log n, where η is any positive constant, bn−1 −
√
m → ∞, Q(bn−1 −

√
m) → 0.

Hence,

lim
n→∞

ET [G(T )] ≤ e−1. (3.47)

Thus, with c
logn
→ 0

lim
n→∞

Pe ≥ 1− e−1 ≈ 0.6321 > 0 (3.48)

as n→∞. Therefore, ifm = O(log n), where η is any positive constant, there exists no consistent

test for any arbitrary distributions p and q.

We now generalize our result to the case with s ≥ 1, and provide the following proposition.

Proposition 3.5. Consider the anomalous data stream detection problem with s anomalous se-

quences. If the sample size m satisfies

m = O

(
log n

s

s

)
, (3.49)
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then there exists no test that is universally consistent for arbitrary distribution pair p and q.

Proof. It can be shown that the probability of error of this problem is lower bounded by a special

scenario, in which anomalous sequences can only be a group of s sequences with consecutive

indices, i.e., one of the following possibilities: the (is + 1)-th to (i + 1)s-th sequences, for i =

0, . . . , bn
s
c − 1. Hence, there are bn

s
c candidates. Such a specific scenario can be viewed as

the problem of detecting one anomalous sequence with length ms out of bn
s
c sequences. The

proposition then follows from arguments similar to those used to prove Proposition 3.4.

The sufficient and necessary conditions on sample complexity that we derive so far establish

the following performance optimality for the MMD-based test.

Theorem 3.3 (Optimality). Consider the nonparametric anomalous data stream detection problem

with s ≥ 1. For s being known and unknown, the MMD-based test (3.6) (under the conditions in

Propositions 3.2) and the test (3.17) (under the conditions in Proposition 3.3) are respectively

order level optimal in sample complexity required to guarantee universal consistency for arbitrary

p and q.

Proof. The proof follows by comparing Propositions 3.2 and 3.3 with Proposition 3.5 and observ-

ing the fact that m = O(log n) in Proposition 3.5 for finite s.

3.4 Numerical Results

In this section, we provide numerical results to demonstrate our theoretical assertions, and compare

our MMD-based tests with a number of other tests. We also apply our MMD based test to a real

data set.

We first demonstrate our theorem on sample complexity. We note that although the following

experiment is performed for chosen distributions p and q, our tests are nonparametric and do not

exploit the information about p and q. We choose the distribution p to be Gaussian with mean zero

and variance one, i.e., N (0, 1), and choose the anomalous distribution q to be Laplace distribution
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with mean one and variance one. We use the Gaussian kernel k(x, x′) = exp(− |x−x
′|2

2σ2 ) with

σ = 1. We set s = 1. We run the test for cases with n = 40 and 100, respectively. In Figure 3.2,

we plot how the probability of error changes with m. For illustrational convenience, we normalize

m by log n, i.e., the horizontal axis represents m
logn

. It is clear from the figure that when m
logn

is

above a certain threshold, the probability of error converges to zero, which is consistent with our

theoretical results. Furthermore, for different values of n, the two curves drop to zero almost at the

same threshold. This observation confirms Proposition 3.1, which states that the threshold on m
logn

depends only on the bound K of the kernel and MMD of the two distributions. Both quantities are

constant for the two values of n.
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Fig. 3.2: The performance of the MMD-based test.

We next compare the MMD-based test with the divergence-based generalized likelihood test

developed in [14]. Since the test in [14] is applicable only when the distributions p and q are

discrete and have finite alphabets, we set the distributions p and q to be binary with p having

probability 0.3 to take “0" (and probability 0.7 to take “1"), and q having probability 0.7 to take

“0" (and probability 0.3 to take “1"). We let s = 1 and assume that s is known. We let n = 50.

In Figure 3.3, we plot the probability of error as a function of the sample size m. It can be seen

that the MMD-based test outperforms the divergence-based generalized likelihood test when the

sample size m is small. We note that it has been shown in [14] that the generalized likelihood test

has optimal convergence rate in the limiting case when n is infinite. Our numerical comparison,
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on the other hand, demonstrates that the MMD-based test performs as well as or even better than

the generalized likelihood test for moderate n.
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Fig. 3.3: Comparison of the MMD-based test with divergence-based generalized likelihood
test.
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Fig. 3.4: Comparison of the MMD-based test with four other tests on a real data set.

We finally compare the performance of the MMD-based test with a few other competitive tests

on a real data set. We choose the collection of daily maximum temperature of Syracuse (New

York, USA) in July from 1993 to 2012 as the typical data sequences, and the collection of daily

maximum temperature of Makapulapai (Hawaii, USA) in May from 1993 to 2012 as anomalous

sequences. Here, each data sequence contains daily maximum temperatures of a certain day across
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Fig. 3.5: Comparison of the MMD-based test with two other kernel-based tests on a real data
set.

twenty years from 1993 to 2012. In our experiment, the data set contains 32 sequences in total,

including one temperature sequence of Hawaii and 31 sequences of Syracuse. The probability of

error is averaged over all cases with each using one sequence of Hawaii as the anomalous sequence.

Although it seems easy to detect the sequence of Hawaii out of the sequences of Syracuse, the

temperatures we compare for the two places are in May for Hawaii and July for Syracuse, during

which the two places have approximately the same mean in temperature. In this way, it may not

be easy to detect the anomalous sequence (in fact, some tests do not perform well as shown in

Figure 3.4).

We first compare the performance of the MMD-based test with t-test, FR-Wolf test, FR-

Smirnov test, and Hall test on the above data set. For the MMD-based test, we use the Gaussian

kernel with σ = 1. In Figure 3.4, we plot the probability of error as a function of the length of se-

quence m for all tests. It can be seen that the MMD-based test, Hall test, and FR-wolf test have the

best performances, and all of the three tests are consistent with the probability of error converging

to zero as m goes to infinity. Furthermore, comparing to Hall and FR-wolf tests, the MMD-based

test has the lowest computational complexity.

We further compare the performance of MMD-based test with the kernel-based tests KFDA and

KDR for the same data set. For all three tests, we use Gaussian kernel with σ = 1. In Figure 3.5,
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we plot the probability of error as a function of the length of sequence for all tests. It can be seen

that all tests are consistent with the probability of error converging to zero as m increases, and the

MMD-based test has the best performance among the three tests.

3.5 Proof of Proposition 3.1: Performance Guarantee

In order to analyze the probability of error for the test (3.3), without loss of generality, we as-

sume that the first sequence is the anomalous sequence generated by the anomalous distribution q.

Hence,

Pe = P (k∗ 6= 1) = P

(
∃k 6= 1 : MMD2

u[Yk, Y k] > MMD2
u[Y1, Y 1]

)
≤

n∑
k=2

P

(
MMD2

u[Yk, Y k] > MMD2
u[Y1, Y 1]

)
. (3.50)

For notational convenience, we stack Y1, . . . , Yn into a nm dimensional row vector Y = {yi, 1 ≤

i ≤ nm}, where Yk = {y(k−1)m+1, . . . , ykm}. And we define n′ = (n− 1)m. We then have,

MMD2
u[Y1, Y 1] =

1

m(m− 1)

m,m∑
i,j=1
i 6=j

k(yi, yj) +
1

n′(n′ − 1)

nm∑
i,j=m+1
i 6=j

k(yi, yj)−
2

mn′

m,nm∑
i=1

j=m+1

k(yi, yj).

(3.51)

For 2 ≤ k ≤ n, we have,

MMD2
u[Yk, Y k] =

1

m(m− 1)

km,km∑
i,j=(k−1)m+1

i 6=j

k(yi, yj) +
1

n′(n′ − 1)

( m,m∑
i,j=1
i 6=j

k(yi, yj) + 2

m,(k−1)m∑
i=1

j=m+1

k(yi, yj)

+ 2

m,nm∑
i=1

j=km+1

k(yi, yj) +

(k−1)m,(k−1)m∑
i,j=m+1
i 6=j

k(yi, yj) +

nm,nm∑
i,j=km+1

i 6=j

k(yi, yj) + 2

(k−1)m,nm∑
i=m+1
j=km+1

k(yi, yj)

)

− 2

mn′

( m,km∑
i=1

j=(k−1)m+1

k(yi, yj) +

(k−1)m,km∑
i=m+1

j=(k−1)m+1

k(yi, yj) +

km,nm∑
i=(k−1)m+1
j=km+1

k(yi, yj)

)
. (3.52)
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We define ∆k = MMD2
u[Yk, Y k]−MMD2

u[Y1, Y 1]. It can be shown that,

E[MMD2
u[Y1, Y 1]] = MMD2[p, q],

and

E[MMD2
u[Yk, Y k]] = Ex,x′k(x, x′) +

1

(n− 1)m((n− 1)m− 1)

(
m(m− 1)Ey,y′k(y, y′)

+ 2m2(n− 2)Ex,yk(x, y) + ((n− 2)m− 1)(n− 2)mEx,x′k(x, x′)

)
− 2

(n− 1)m2

(
m2Ex,yk(x, y) + (n− 2)m2Ex,x′k(x, x′)

)
→ 0, as n→∞, (3.53)

where x and x′ are independent but have the same distribution p, y and y′ are independent but have

the same distribution q. Hence, there exists a constant ξ that satisfies

E[MMD2
u[Yk, Y k]] < ξ < MMD2[p, q], (3.54)

for large enough n. Here, ξ can be arbitrarily close to zero as n→∞.

We next divide the entries in {y1, . . . , ynm} into three groups: Y1 = {y1, . . . , ym}, Yk =

{y(k−1)m+1 . . . , ykm}, and Ŷk that contains the remaining entries. We define Y−a as Y with the

a-th component ya being removed.

For 1 ≤ a ≤ m, ya affects ∆k through the following terms

1

n′(n′ − 1)

(
2

m∑
j=1
j 6=a

k(ya, yj) + 2

(k−1)m∑
j=m+1

k(ya, yj) + 2
nm∑

j=km+1

k(ya, yj)

)

− 2

mn′

km∑
j=(k−1)m+1

k(ya, yj)−
2

m(m− 1)

m∑
j=1
k 6=a

k(ya, yj) +
2

mn′

nm∑
j=m+1

k(ya, yj). (3.55)
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Hence, for 1 ≤ a ≤ m, we have

|∆k

(
Y−a, ya

)
−∆k

(
Y−a, y

′
a

)
| ≤ 4K

m

(
1 + Θ

(
1

n

))
. (3.56)

For (k − 1)m+ 1 ≤ a ≤ km, ya affects ∆k through

2

m(m− 1)

km∑
j=(k−1)m+1

j 6=a

k(ya, yj)−
2

mn′

( m∑
i=1

k(yi, ya) +

(k−1)m∑
i=m+1

k(yi, ya) +
nm∑

j=km+1

k(ya, yj)

)

− 2

n′(n′ − 1)

nm∑
j=m+1
j 6=a

k(ya, yj) +
2

mn′

m∑
i=1

k(ya, yi). (3.57)

Hence, for (k − 1)m+ 1 ≤ a ≤ km, we have

|∆k

(
Y−a, ya

)
−∆k

(
Y−a, y

′
a

)
| ≤ 4K

m

(
1 + Θ

(
1

n

))
. (3.58)

For m+ 1 ≤ a ≤ (k − 1)m and km+ 1 ≤ a ≤ nm, ya affects ∆k through

2

n′(n′ − 1)

( m∑
i=1

k(yi, ya) +

(k−1)m∑
i=m+1
i 6=a

k(yi, ya) +
nm∑

j=km+1

k(ya, yj)

)
− 2

mn′

km∑
j=(k−1)m+1

k(ya, yj)

− 2

n′(n′ − 1)

nm∑
j=m+1
j 6=a

k(ya, yj) +
2

mn′

km∑
i=(k−1)m+1

k(yi, ya). (3.59)

Hence, for m+ 1 ≤ a ≤ (k − 1)m or km+ 1 ≤ a ≤ nm, we have

|∆k

(
Y−a, ya

)
−∆k

(
Y−a, y

′
a

)
| ≤ 1

m
Θ

(
1

n

)
. (3.60)
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We further derive the following probability,

P

(
MMD2

u[Yk, Y k] > MMD2
u[Y1, Y 1]

)
= P

(
MMD2

u[Yk, Y k]−MMD2
u[Y1, Y 1] + MMD2[p, q] > MMD2[p, q]

)
(a)

≤ P

(
MMD2

u[Yk, Y k]−MMD2
u[Y1, Y 1] + MMD2[p, q]− E[MMD2

u[Yk, Y k]] > MMD2[p, q]− ξ
)
,

(3.61)

where (a) follows from (3.54).

Combining (3.56), (3.58), (3.60), and applying McDiarmid’s inequality, we have,

P

(
MMD2

u[Yk, Y k] > MMD2
u[Y1, Y 1]

)
≤ exp

(
− 2(MMD2[p, q]− ξ)2

2m16K2

m2 (1 + Θ( 1
n
)) + 1

m
Θ( 1

n
)

)
= exp

(
− m(MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
(3.62)

Hence,

Pe ≤ exp

(
log n− m(MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
. (3.63)

Since ξ can be picked arbitrarily close to zero, we conclude that if

m ≥ 16K2(1 + η)

MMD4[p, q]
log n, (3.64)

where η is any positive constant, then Pe → 0 as n→∞. It is also clear that if the above condition

is satisfied, Pe converges to zero exponentially fast with respect to m. This completes the proof.
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CHAPTER 4

DEGRADED BROADCAST CHANNEL WITH

LAYERED DECODING AND LAYERED

SECRECY

In this chapter, we study the model of the degraded broadcast channel with layered decoding and

layered secrecy. In Section 4.1, we introduce the model of the degraded broadcast channel with

layered decoding and layered secrecy constraints. In Section 4.2, we present our results on the

secrecy capacity region. In Section 4.3, we present our results on the multi-secret sharing problem.

4.1 Channel Model

Fig. 4.1: Degraded broadcast channel with layered decoding and layered secrecy.
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In this section, we introduce the model of the degraded broadcast channel with layered decod-

ing and secrecy constraints (see Fig. 4.1), in which a transmitter transmits to K receivers. The

channel transition probability function is given by PY1···YK |X , in which X ∈ X is the channel input

and Yk ∈ Yk is the channel output of receiver k for k = 1, . . . , K. It is assumed that the receivers

have degraded outputs, i.e., Y1, · · · , YK satisfy the following Markov chain condition:

X → YK → YK−1 → . . .→ Y2 → Y1. (4.1)

Hence, the quality of channels gradually degrades from receiver K to receiver 1. The transmitter

has K messages W1, · · · ,WK intended for the K receivers. The system is required to satisfy the

following layered decoding and secrecy constraints. For k = 1, . . . , K, receiver k needs to decode

the messages W1, · · · ,Wk, and to be kept ignorant of messages Wk+1, · · · ,WK (see Fig. 4.1 for

an illustration).

A (2nR1 , · · · , 2nRK , n) code for the channel consists of

• K message sets: Wk ∈ Wk = {1, · · · , 2nRk} for k = 1, · · · , K, which are independent from

each other and each message is uniformly distributed over the corresponding message set;

• An (possibly stochastic) encoder fn: W1 × · · · ×WK → X n;

• K decoders gnk : Ynk → (W1, · · · ,Wk) for k = 1, · · · , K.

Hence, a secrecy rate tuple (R1, · · · , RK) is said to be achievable, if there exists a sequence of

(2nR1 , · · · , 2nRK , n) codes such that both the average error probability

P n
e = Pr

(
∪Kk=1{(W1, · · · ,Wk) 6= gnk (Y n

k )}
)

(4.2)

and the leakage rate at each receiver k for k = 1, . . . , K

1

n
I(Wk+1, · · · ,WK ;Y n

k |W1, · · · ,Wk) (4.3)

approach zero as n goes to infinity.
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Here, condition (4.2) implies that each receiver k is able to decode messages W1, . . . ,Wk,

while (4.3) implies that receiver k is kept ignorant of messages Wk+1, . . . ,WK . The secrecy ca-

pacity region is defined as the set of all achievable rate tuples.

The degraded Gaussian MIMO broadcast channel with layered decoding and secrecy con-

straints is further studied. In this model, the received signal at receiver k for one channel use

is given by

Yk = X + Nk, for k = 1, . . . , K, (4.4)

where the channel input X, the channel output Yk and the noise Nk are r-dimensional vectors.

Furthermore, the noise variables Nk are zero-mean Gaussian random vectors with covariance ma-

trices Σk for k = 1, . . . , K that satisfy the following order:

0 ≺ ΣK � ΣK−1 � · · · � Σ1. (4.5)

The channel input X is subject to a covariance constraint

E[XX>] � S (4.6)

where S � 0. Since the secrecy capacity region does not depend on the correlation across the

channel outputs, we can adjust the correlation between the noise vectors such that the channel

inputs and channel outputs satisfy the following Markov chain:

X→ YK → YK−1 → . . .→ Y2 → Y1. (4.7)

Hence, the quality of channels gradually degrades from receiver K to receiver 1.
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4.2 Characterization of Secrecy Capacity Region

For the discrete memoryless degraded broadcast channel with layered decoding and secrecy con-

straints, we characterize the secrecy region in the following theorem.

Theorem 4.1. The secrecy capacity region of the degraded broadcast channel with layered de-

coding and secrecy constraints as described in Section 4.1 contains rate tuples (R1, · · · , RK)

satisfying

R1 ≤ I(U1;Y1),

Rk ≤ I(Uk;Yk|Uk−1)− I(Uk;Yk−1|Uk−1),

for k = 2, . . . , K − 1,

RK ≤ I(X;YK |UK−1)− I(X;YK−1|UK−1),

(4.8)

for some PU1U2...UK−1X such that the following Markov chain holds

U1 → U2 → . . .→ UK−1 → X → YK → . . .→ Y1. (4.9)

Proof. The proof of achievability and converse are provided in Section 4.4 and Section 4.6, re-

spectively.

We here briefly introduce the idea of the achievable scheme, which is based on the stochastic

encoding (i.e., random binning) and superposition coding. For each message, we design one layer

of codebook. This codebook contains codewords that are divided into a number of bins, where the

bin number contains the information of the corresponding message. The receivers that are required

to decode the message can tell which bin the codeword is in with a small probability of error, while

other receivers (i.e., those with worse channel quality) are kept ignorant of this message. These

layers of codebooks are superposed together via superposition coding. The major challenge of the

achievability proof arises in the analysis of leakage rates, which is much more involved than the

cases with two secure messages studied in [39, 41]. In our proof, we develop novel generalization
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of the analysis provided in [48] for the case with one secure message to multiple secure messages.

The details can be referred to Section 4.4.

Furthermore, we characterize the secrecy capacity region for the degraded Gaussian MIMO

channel with layered decoding and secrecy constraints in the following theorem.

Theorem 4.2. The secrecy capacity region of the degraded Gaussian MIMO broadcast channel

with layered decoding and secrecy constraints as described in Section 4.1 contains all rate tuples

(R1, . . . , RK) that satisfy the following inequalities:

R1 ≤
1

2
log
|Σ1 + S|
|Σ1 + S1|

Rk ≤
1

2
log
|Σk + Sk−1|
|Σk + Sk|

− 1

2
log
|Σk−1 + Sk−1|
|Σk−1 + Sk|

,

for 2 ≤ k ≤ K − 1,

RK ≤
1

2
log
|ΣK + SK−1|
|ΣK |

− 1

2
log
|ΣK−1 + SK−1|
|ΣK−1|

, (4.10)

for some 0 � SK−1 � SK−2 � . . . � S2 � S1 � S.

Proof of Achievability. The achievability of region (4.10) follows by choosing the auxiliary ran-

dom variables U1, . . . ,UK−1,X to be jointly Gaussian distributed and satisfy the following Markov

chain condition:

U1 → U2 → . . .→ UK−1 → X, (4.11)

where the covariance of Uk is set to be S − Sk for k = 1, . . . , K − 1, and the covariance of X is

set to be S.

Proof of Converse. See Section 4.7.

We note that due to the layered secrecy constraints, the major challenge in the converse proof

for the secrecy capacity region lies in development of upper bounds in certain recursive structures

for three or more consecutive layers of receivers. Our contribution here lies in the construction

of a series of covariance matrices representing input resources for layered messages such that the
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secrecy rates can be upper bounded as the desired recursive forms in terms of these covariance

matrices. The details can be referred to Section 4.7.

4.3 Application to Secret Sharing

In this section, we apply our result in Theorem 4.2 to study a secret sharing problem, in which a

dealer wishes to shareK secretsW1,W2, . . . ,WK withK participants via a broadcast channel (see

Fig. 4.2). The channel input sent by the dealer is denoted by X and the channel output received

at participant k is denoted by Yk for k = 1, . . . , K. It is required that participant 1 decodes W1,

and participant 1 and 2 decode W1 and W2 by sharing their outputs (Y1, Y2), but W2 should be

kept secure from participant 1. Such requirements extend to k participants for k = 1, . . . , K in the

sense that participants 1 to k can recover the first k messages W1, . . . ,Wk by sharing their outputs

(Y1, . . . , Yk), but the new message Wk should be secure from the first k − 1 participants. Hence,

as one more participant joins the group, one more secret can be recovered, and this new secret is

secure from (and hence cannot be recovered by) a smaller group. The goal is to characterize the

secret sharing capacity region, which contains all possible achievable rate tuples (R1, R2, . . . , RK)

for K secrets.

This secret sharing problem involves sharing multiple secrets in a layered fashion, and is chal-

lenging to solve using the classical approach based on number theory. Here, we solve this problem

by constructing an equivalent broadcast model described in Section 4.1.

Fig. 4.2: The model of secret sharing via a broadcast channel.

We assume that the dealer communicates to the participants via a Gaussian multiple input single
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output (MISO) broadcast channel corrupted by additive Gaussian noise variables. The dealer has

K antennas and each receiver has one antenna. The relationship of the channel input from the

dealer and the channel outputs at all participants is characterized as


Y1

...

YK

 = H


X1

...

XK

+


Z1

...

ZK

 (4.12)

where H is the K×K channel matrix, which is assumed to be invertible, (Y1, . . . , YK) are channel

outputs at the K participants, (X1, . . . XK) are the channel inputs from the K antennas of the

dealer, and (Z1, . . . , ZK) is a random Gaussian vector with the covariance matrix Σ with each

entry Σij = E[ZiZj] = σ2
ij . We assume that the dealer’s input is subject to a resource constraint,

E[XXT ] � S.

We note that it is reasonable to assume that H is invertible in order to guarantee that each

participant’s output contains new information compared to other participants so that new secret

can be recovered when this participant joins a group.

We reformulate the above secret sharing model into a degraded MIMO broadcast commu-

nication system by designing a virtual receiver for each sharing group of participants. More

specifically, we design a virtual receiver Vk for the group of the first k participants, i.e., Vk =

(Y1, . . . , Yk), for 1 ≤ k ≤ K. For technical convenience, we add K − k outputs Ỹk+1, . . . , ỸK to

Vk so that it contains K components, i.e., the virtual receiver Vk has K antennas. The channel
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outputs at those K antennas are given by,

Vk =



Y1

...

Yk

Ỹk+1

...

ỸK


= H


X1

...

XK

+



Z1

...

Zk

Zk+1 + tZ̃k+1

...

ZK + tZ̃K


(4.13)

where Z̃k, 2 ≤ k ≤ K, is random Gaussian noise variables with mean zero and variance σ̃2
kk > 0,

and Z̃k is independent from all other random variables. Here, t is a large enough constant (i.e.,

t→∞), so that Ỹk+1, . . . , ỸK are fully corrupted by the noise. We define a new random Gaussian

vector ZV (k) = (Z1, . . . , Zk, Zk+1 + tZ̃k+1, . . . , ZK + tZ̃K)T and rewrite (4.13) as

Vk = HX + ZV (k), for k = 1, . . . , K. (4.14)

Since the channel matrix H is invertible, we have

H−1Vk = X + H−1ZV (k). (4.15)

By treating H−1Vk as the new channel output V′k at virtual receiver Vk, and define a new random

Gaussian noise vector Z′V (k) = H−1ZV (k), we have

V′k = X + Z′V (k), (4.16)

which is equivalent to the model in (4.14).

We now state a lemma that provides the order of the covariance matrices of Z′V (k), denoted by

Σ′V (k), for 1 ≤ k ≤ K.

Lemma 4.1. Let Z′V (k), 1 ≤ k ≤ K, be random Gaussian vectors defined as above. The covari-
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ance matrices of Z′V (k) satisfy the following ordering property:

Σ′V (1) � Σ′V (2) � . . . � Σ′V (K). (4.17)

Proof. For any 1 ≤ k ≤ K − 1,

Z ′Vk = Z ′Vk+1
+ H−1(0, · · · , 0, tZ̃k+1, 0, · · · , 0)T , (4.18)

where H−1(0, · · · , 0, tZ̃k+1, 0, · · · , 0)T is a random Gaussian vector, hence the covariance matri-

ces of Z′Vk satisfy such an order in (4.17).

Therefore, by designing virtual receivers, we reformulate the problem of secret sharing via

the MISO broadcast channel into the problem of secure communication over the degraded MIMO

broadcast channel described in Section 4.1. It can also be seen that the requirements of the secret

sharing problem is equivalent to the layered decoding and secrecy requirements for the communi-

cation problem. Thus, the secret sharing capacity region equals the secrecy capacity region of the

degraded MIMO broadcast channel. Thus applying Theorem 4.2 we obtain the following secret

sharing capacity region.

Corollary 4.1. The capacity region for the secret sharing problem described above contains rate

tuples (R1, R2, . . . , RK) satisfying

R1 ≤
1

2
log
|Σ′V (1) + S|
|Σ′V (1) + S1|

Rk ≤ lim
t→∞

1

2
log
|Σ′V (k) + Sk−1|
|Σ′V (k) + Sk|

− 1

2
log
|Σ′V (k − 1) + Sk−1|
|Σ′V (k − 1) + Sk|

,

for 2 ≤ k ≤ K − 1,

RK ≤ lim
t→∞

1

2
log
|Σ′V (K) + SK−1|
|Σ′V (K)|

− 1

2
log
|Σ′V (K − 1) + SK−1|
|Σ′V (K − 1)|

, (4.19)

for some 0 � SK−1 � SK−2 � . . . � S2 � S1 � S.
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4.4 Achievability Proof of Theorem 4.1

The achievability proof is based on stochastic encoding and superposition coding. We use random

codes and fix a joint probability distribution PU1···UK−1X satisfying the Markov chain condition

given in (4.9). Let T nε (PU1...UK−1XY1...YK ) denote the strongly jointly ε-typical set based on the

fixed distribution.

Random codebook generation: In the following achievability proof, for notational convenience,

we write X as UK , i.e., PU1···UK−1X = PU1···UK .

• Generate 2nR1 independent and identically distributed (i.i.d.) un1 with distribution
∏n

i=1 p(u1,i).

Index these codewords as un1 (w1), w1 ∈ [1, 2nR1 ].

• For each unk−1(w1, w2, l2, · · · , wk−1, lk−1), k = 2, · · · , K, generate 2nR̃k i.i.d. sequences unk

with distribution
∏n

i=1 p(uk,i|uk−1,i). Partition these sequences into 2nRk bins, each with

2n(R̃k−Rk) sequences. We use wk ∈ [1 : 2nRk ] to denote the bin index, and lk ∈ [1 : 2n(R̃k−Rk)]

to denote the index within each bin. Hence each unk is indexed by (w1, w2, l2, · · · , wk, lk).

The chosen codebook is revealed to the transmitter and all receivers.

Encoding: To send a message tuple (w1, w2, . . . , wK), for each 2 ≤ k ≤ K, the encoder

randomly generate lk ∈ [1 : 2n(R̃k−Rk)] based on a uniform distribution. The transmitter then sends

unK(w1, w2, l2, · · · , wK , lK).

Decoding: For k = 1, . . . , K, receiver k claims that (ŵ1, · · · , ŵk) is sent, if there exists a

unique tuple (ŵ1, ŵ2, l̂2, · · · , ŵk, l̂k) such that (un1 (ŵ1), un2 (ŵ1, ŵ2, l̂2), . . . , unk(ŵ1, ŵ2, l̂2, · · · , ŵk,

l̂k), y
n
k ) ∈ T nε (PU1...UkYk). Otherwise, it declares an error.

Analysis of error probability: By the law of large numbers and the packing lemma [48], it can

be shown that if the following inequalities are satisfied, receiver k (for k = 1, . . . , K) can decode

messages w1, w2, . . . , wk with a vanishing error probability:

R1 ≤ I(U1;Y1),

R̃k ≤ I(Uk;Yk|Uk−1), for 2 ≤ k ≤ K. (4.20)
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Analysis of leakage rate: We first compute an average of the leakage rate over the random code-

book ensemble as follows. For convenience, we letW k = (W1, . . . ,Wk),WK
k+1 = (Wk+1, . . . ,WK),

and LK = (L1, . . . , LK). We note that lk appeared above is realization of the random variable Lk

here.

I(WK
k+1;Y n

k |C)
(a)
= I(WK , LK ;Y n

k |C)− I(W k, LK ;Y n
k |WK

k+1, C)
(b)

≤ I(WK , LK ;Y n
k |C)− I(W k, LK ;Y n

k |WK
k+1, C)

(c)

≤ I(Un
K ;Y n

k |C)− I(W k, LK ;Y n
k |WK

k+1, C)

= I(Un
K ;Y n

k |C)−H(W k, LK |WK
k+1, C)

+H(W k, LK |Y n
k ,W

K
k+1, C), (4.21)

where step (a) is due to the independence of W k and WK
k+1, (b) follows from Fano’s inequality,

step (c) follows from the Markov chain (WK , LK)→ (Un
K , C)→ Y n

k .

We bound the above three terms one by one. For the first term, we have

I(Un
K ;Y n

k |C)
(a)
= I(Un

k , U
n
K ;Y n

k |C)

= I(Un
k ;Y n

k |C) + I(Un
K ;Y n

k |Un
k , C)

≤ H(Un
k |C) + I(Un

K ;Y n
k |Un

k , C)

≤
k∑
j=1

R̃j +H(Y n
k |Un

k , C)−H(Y n
k |Un

K , U
n
k , C)

= n
k∑
j=1

R̃j +
n∑
j=1

H(Yk,j|Un
k , Y

j−1
k , C)−

n∑
j=1

H(Yk,j|Un
K , U

n
k , Y

j−1
k , C)

(b)

≤ n
k∑
j=1

R̃j +
n∑
j=1

H(Yk,j|Uk,j)−
n∑
j=1

H(Yk,j|UK,j)

= n

k∑
j=1

R̃j + nH(Yk|Uk)− nH(Yk|UK) = n

k∑
j=1

R̃j + nI(UK ;Yk|Uk), (4.22)
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where (a) follows from the Markov chain Un
k → Un

K → Y n
k , (b) follows from the fact that

H(Yk,j|Un
k , Y

j−1
k , C) ≤ H(Yk,j|Uk,j) and from the Markov chain (Un

k , U
j−1
K , Un

K,j+1, Y
j−1
k , C) →

UK,j → Yk,j .

For the second term, due to the independence of W1, · · · ,WK and L1, · · · , LK , we have

H(W k, LK |WK
k+1, C) =

k∑
j=1

nR̃j +
K∑

j=k+1

n(R̃j −Rj). (4.23)

We now bound the last term as follows.

H(W k, LK |Y n
k ,W

K
k+1, C)

= H(W k|Y n
k ,W

K
k+1, C) +H(LK |Y n

k ,W
K , C)

(a)

≤ H(LKk+1|Y n
k ,W

K , Lk, C) + 2nεn

=
K∑

j=k+1

H(Lj|Y n
k ,W

K , Lj−1, C) + 2nεn

(b)
=

K∑
j=k+1

H(Lj|Y n
k ,W

K , Lj−1, Un
j−1, C) + 2nεn

≤
K∑

j=k+1

H(Lj|Y n
k , U

n
j−1,Wj) + 2nεn

(c)

≤
K∑

j=k+1

n(R̃j −Rj − I(Uj;Yk|Uj−1)) + nε′n

(d)
=

K∑
j=k+1

n(R̃j −Rj)− I(UK ;Yk|Uk) + nε′n, (4.24)

where (a) follows from the chain rule and Fano’s inequality, (b) follows from the fact that Un
j−1 is a

function of (C,W j−1, Lj−1), and (c) follows due to Lemma 4.2 with the condition that R̃j −Rj ≥

I(Uj;Yk|Uj−1), and (d) follows from the Markov chain U1 → U2 → · · · → UK → Yk.

Lemma 4.2. If R̃j −Rj ≥ I(Uj;Yk|Uj−1) for k + 1 ≤ j ≤ K, then

1

n
H(Lj|Y n

k , U
n
j−1,Wj) ≤ R̃j −Rj − I(Uj;Yk|Uj−1) + ε′′n.
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Proof. See Section 4.5.

Combining the analysis of the three terms together, we conclude that as n → ∞ for 1 ≤ k ≤

K − 1, 1
n
I(WK

k+1;Y n
k |C)→ 0, if

R̃k −Rk ≥ I(Uk;Yk−1|Uk−1), for 2 ≤ k ≤ K. (4.25)

It is also clear that the sum of the error probability and the leakage rates averaged over the

codebook ensemble converges to zero as n → ∞. Hence, there exists one codebook such that the

error probability and the leakage rate converge to zero as n→∞.

Combining the bounds in (4.20) and (4.25), we obtain that the rate tuple (R1, · · · , RK) is

achievable if

R1 ≤ I(U1;Y1),

Rk ≤ I(Uk;Yk|Uk−1)− I(Uk;Yk−1|Uk−1), for 2 ≤ k ≤ K. (4.26)

4.5 Proof of Lemma 4.2

We first bound 1
n
H(Lj|Y n

k , U
n
j−1, wj) for any wj , and hence, 1

n
H(Lj|Y n

k , U
n
j−1,Wj) is bounded.

Fix Lj = lj and a joint typical sequence (unj−1, y
n
k ) ∈ T (n)

ε (Uj−1, Yk). We define

N(wj, lj, u
n
j−1, y

n
k ) := |{l̃j 6= lj : (Un

j (wj, l̃j), u
n
j−1, y

n
k ) ∈ T (n)

ε }|. (4.27)

In fact,N(wj, lj, u
n
j−1, y

n
k ) can be viewed as a binomial distributed random variable, with 2n(R̃j−Rj)−

1 Bernoulli distributed random variables, each taking the value 1 with probability

2−nI(Uj ;Yk|Uj−1)−nδn(ε) ≤ p ≤ 2−nI(Uj ;Yk|Uj−1)+nδn(ε) (4.28)
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It can be shown that the expectation and variance of N satisfy the following inequalities:

2n(R̃j−Rj)−nI(Uj ;Yk|Uj−1)−nδn(ε)−nεn ≤ E(N(wj, lj, u
n
j−1, y

n
k )) ≤ 2n(R̃j−Rj)−nI(Uj ;Yk|Uj−1)+nδn(ε)−nεn ,

(4.29)

V ar(N(wj, lj, u
n
j−1, y

n
k )) ≤ 2n(R̃j−Rj)−nI(Uj ;Yk|Uj−1)+nδn(ε)−nεn , (4.30)

where δn(ε), εn → 0 as n→∞.

We next define the random event,

ε(wj, lj, u
n
j−1, y

n
k ) := {N(wj, lj, u

n
j−1, y

n
k ) ≥ 2n(R̃j−Rj−I(Uj ;Yk|Uj−1)+δn(ε)−εn/2)+1}. (4.31)

Using Chebyshev’s inequality, we obtain

P
(
ε(wj, lj, u

n
j−1, y

n
k )
)

= P
(
N(wj, lj, u

n
j−1, y

n
k ) ≥ 2n(R̃j−Rj−I(Uj ;Yk|Uj−1)+δn(ε)−εn/2)+1

)
≤ P

(
N(wj, lj, u

n
j−1, y

n
k ) ≥ E(N(wj, lj, u

n
j−1, y

n
k )) + 2n(R̃j−Rj−I(Uj ;Yk|Uj−1)+δn(ε)−εn/2)

)
≤ P

(
|N(wj, lj, u

n
j−1, y

n
k )− E(N(wj, lj, u

n
j−1, y

n
k ))| ≥ 2n(R̃j−Rj−I(Uj ;Yk|Uj−1)+δn(ε)−εn/2)

)
≤

V ar(N(wj, lj, u
n
j−1, y

n
k ))

22n(R̃j−Rj−I(Uj ;Yk|Uj−1)+δn(ε)−εn/2)

≤ 1

2n(R̃j−Rj−I(Uj ;Yk|Uj−1)+δn(ε))
(4.32)

which goes to zero as n→∞ if R̃j −Rj ≥ I(Uj;Yk|Uj−1). This implies that

P

(
ε(wj, lj, u

n
j−1, y

n
k )

)
→ 0

as n→∞.
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For each message wj , we define the following random variable and event:

N(wj) :=|{l̃j : (Unj (wj , l̃j), Y
n
k , U

n
j−1) ∈ T (n)

ε , l̃j 6= Lj}|

ε(wj) :={N(wj) ≥ 2n(R̃j−Rj−I(Uj ;Yk|Uj−1)+δn(ε)−εn/2)+1}

Finally, define the indicator random variable E(wj) := 0 if (Un
j (wj, Lj), Y

n
k , U

n
j−1) ∈ T

(n)
ε and

ε(wj)
c occurs; and E(wj) := 1, otherwise. Therefore, we have

P (E(wj) = 1) ≤P
(
(Un

j (wj, Lj), U
n
j−1, Y

n
k ) /∈ T (n)

ε

)
+ P

(
ε(wj)|(Un

j−1, Y
n
k ) ∈ T (n)

ε

)
. (4.33)

It is clear that the first term in (4.33) goes to zero as n → ∞. For the second term in (4.33), we

have

P
(
ε(wj)|(Un

j−1, Y
n
k ) ∈ T (n)

ε

)
≤

∑
(unj−1,y

n
k )∈T (n)

ε

P
(
unj−1, y

n
k

)
P
(
ε(wj)|unj−1, y

n
k

)
=

∑
(unj−1,y

n
k )∈T (n)

ε

∑
lj

(
P
(
unj−1, y

n
k

)
P
(
lj|unj−1, y

n
k

)
P
(
ε(wj)|unj−1, y

n
k , lj

))

→ 0, if R̃j −Rj ≥ I(Uj;Yk|Uj−1). (4.34)

Therefore,

H(Lj|wj, Un
j−1, Y

n
k )

≤ H(Lj, E(wj)|wj, Un
j−1, Y

n
k )

≤ H(E(wj)) +H(Lj|wj, Un
j−1, Y

n
k , E(wj))

≤ 1 + P (E(wj) = 1)H(Lj|wj, Y n
k , U

n
j−1, E(wj) = 1) +H(Lj|wj, Y n

k , U
n
j−1, E(wj) = 0)

≤ 1 + P (E(wj) = 1)n(R̃j −Rj) + log 2n(R̃j−Rj−I(Uj ;Yk|Uj−1)+δ(ε)−ε/2)+1

= 1 + n(R̃j −Rj)P (E(wj) = 1) + n(R̃j −Rj − I(Uj;Yk|Uj−1) + δ(ε)− ε/2) + 1 (4.35)
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Following from (4.35), we obtain,

lim
n→∞

1

n
H(Lj|wj, Un

j−1, Y
n
k ) ≤ R̃j −Rj − I(Uj;Yk|Uj−1) + δ′(ε), (4.36)

where δ′(ε)→ 0 as n→∞. This concludes the proof.

4.6 Converse Proof of Theorem 4.1

By Fano’s inequality and the secrecy requirements, we have the following inequalities

H(Wk|Y n
k ) ≤ nεn, for 1 ≤ k ≤ K,

1

n
I(Wk+1, . . . ,WK ;Y n

k |W1, . . . ,Wk) ≤ εn, for 1 ≤ k ≤ K − 1. (4.37)

We let Y i−1
k := (Yk,1, . . . , Yk,i−1), and Y n

k,i+1 := (Yk,i+1, . . . , Yk,n). We set

Uk,i := {W1, . . . ,Wk, Y
i−1
k , Y n

k−1,i+1} for k = 1, . . . , K where Y n
0 = φ. Due to the degradedness

condition (4.1), it can be verified that (U1,i, . . . , UK−1,i, Xi) satisfy the following Markov chain

condition:

U1,i → U2,i → . . .→ UK−1,i → Xi → YK,i → . . .→ Y1,i, for 1 ≤ i ≤ n. (4.38)

We first bound the rate R1. Since there is no secrecy constraint for W1, following the standard

steps, we obtain the following bound:

nR1 = H(W1) = I(W1;Y n
1 ) +H(W1|Y n

1 ) ≤ I(W1;Y n
1 ) + nεn

=
n∑
i=1

I(W1;Y1i|Y i−1
1 ) + nεn ≤

n∑
i=1

I(W1, Y
i−1

1 ;Y1i) + nεn

=
n∑
i=1

I(U1,i;Y1,i) + nεn. (4.39)
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For the message Wk, 2 ≤ k ≤ K, we derive the bound as shown in (4.40),

nRk =H(Wk) = H(Wk|W k−1)

=I(Wk;Y
n
k |W k−1) +H(Wk|W k−1, Y n

k )

(a)

≤I(Wk;Y
n
k |W k−1) + nεn

(b)

≤I(Wk;Y
n
k |W k−1) + 2nεn − I(Wk;Y

n
k−1|W k−1)

=
n∑
i=1

I(Wk;Yk,i|W k−1, Y i−1
k ) + 2nεn −

n∑
i=1

I(Wk;Yk−1,i|W k−1, Y n
k−1,i+1)

=
n∑
i=1

[
I(Wk, Y

n
k−1,i+1;Yk,i|W k−1, Y i−1

k )− I(Wk, Y
i−1
k ;Yk−1,i|W k−1, Y n

k−1,i+1)

− I(Y n
k−1,i+1;Yk,i|W k, Y i−1

k ) + I(Y i−1
k ;Yk−1,i|W k, Y n

k−1,i+1)

]
+ 2nεn

(c)
=

n∑
i=1

[
I(Y n

k−1,i+1;Yk,i|W k−1, Y i−1
k ) + I(Wk;Yk,i|W k−1, Y i−1

k , Y n
k−1,i+1)

− I(Y i−1
k ;Yk−1,i|W k−1, Y n

k−1,i+1)− I(Wk;Yk−1,i|W k−1, Y i−1
k , Y n

k−1,i+1)

]
+ 2nεn

(d)
=

n∑
i=1

[
I(Wk;Yk,i|W k−1, Y i−1

k , Y n
k−1,i+1)− I(Wk;Yk−1,i|W k−1, Y i−1

k , Y n
k−1,i+1)

]
+ 2nεn

=
n∑
i=1

[
I(Wk, Y

i−1
k , Y n

k−1,i+1;Yk,i|W k−1)− I(Y i−1
k , Y n

k−1,i+1;Yk,i|W k−1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk−1,i|W k−1) + I(Y i−1
k , Y n

k−1,i+1;Yk−1,i|W k−1)

]
+ 2nεn

=
n∑
i=1

[
I(Wk, Y

i−1
k , Y n

k−1,i+1, Y
i−1
k−1 , Y

n
k−2,i+1;Yk,i|W k−1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1, Y
i−1
k−1 , Y

n
k−2,i+1;Yk−1,i|W k−1)− I(Y i−1

k , Y n
k−1,i+1;Yk,i|W k−1)

+ I(Y i−1
k , Y n

k−1,i+1;Yk−1,i|W k−1)

]
+ 2nεn
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=
n∑
i=1

[
I(Wk, Y

i−1
k , Y n

k−1,i+1;Yk,i|W k−1, Y i−1
k−1 , Y

n
k−2,i+1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk−1,i|W k−1, Y i−1
k−1 , Y

n
k−2,i+1) + I(Y i−1

k−1 , Y
n
k−2,i+1;Yk,i|W k−1)

− I(Y i−1
k−1 , Y

n
k−2,i+1;Yk−1,i|W k−1)− I(Y i−1

k , Y n
k−1,i+1;Yk,i|W k−1)

+ I(Y i−1
k , Y n

k−1,i+1;Yk−1,i|W k−1)

]
+ 2nεn

(e)
=

n∑
i=1

[
I(Wk, Y

i−1
k , Y n

k−1,i+1;Yk,i|W k−1, Y i−1
k−1 , Y

n
k−2,i+1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk−1,i|W k−1, Y i−1
k−1 , Y

n
k−2,i+1)

− I(Y i−1
k , Y n

k−1,i+1;Yk,i|W k−1, Y i−1
k−1 , Y

n
k−2,i+1)

+ I(Y i−1
k , Y n

k−1,i+1;Yk−1,i|W k−1, Y i−1
k−1 , Y

n
k−2,i+1)

]
+ 2nεn

(f)

≤
n∑
i=1

[
I(Wk, Y

i−1
k , Y n

k−1,i+1;Yk,i|W k−1, Y i−1
k−1 , Y

n
k−2,i+1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk−1,i|W k−1, Y i−1
k−1 , Y

n
k−2,i+1)

]
+ 2nεn

=
n∑
i=1

[
I(Uk,i;Yk,i|Uk−1,i)− I(Uk,i;Yk−1,i|Uk−1,i)

]
+ 2nεn. (4.40)

where (a) follows from Fano’s inequality, (b) follows from (4.37), i.e., the secrecy constraint, (c)

and (d) follow from the sum identity property in [16, Lemma 7], and (e) and (f) follows from the

degradedness condition (4.1).

For k = K, based on (4.40), we obtain

nRK ≤
n∑
i=1

[
I(UK,i;YK,i|UK−1,i)− I(UK,i;YK−1,i|UK−1,i)

]
+ 2nεn

=
n∑
i=1

[
I(UK,i, Xi;YK,i|UK−1,i)− I(UK,i, Xi;YK−1,i|UK−1,i)− I(Xi;YK,i|UK,i)

+ I(Xi;YK−1,i|UK,i)
]

+ 2nεn

≤
n∑
i=1

[
I(Xi;YK,i|UK−1,i)− I(Xi;YK−1,i|UK−1,i)

]
+ 2nεn, (4.41)
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where the last step follows from (4.38) and (4.1). The proof of the converse is completed by

defining a uniformly distributed random variable Q ∈ {1, · · · , n}, and setting Uk , (Q,Uk,Q),

Yk , Yk,Q, for k ∈ [1 : K], and X , (Q,XQ).

4.7 Converse Proof of Theorem 4.2

In this proof, we first introduce some necessary definitions and useful lemmas in the previous

studies [41, 75]. We then present our main proof.

4.7.1 Preliminaries

Definition 4.1. [41] Let (U,X) be an arbitrarily correlated length-n random vector pair with

well defined densities. The conditional Fisher information matrix of X given U is defined as

J(X|U) = E[ρ(X|U)ρ(X|U)T ] (4.42)

where the expectation is taken over the joint density f(u,x), and the conditional score function

ρ(x|u) is given by

ρ(x|u) = ∇ log f(x|u)

=

[
∂ log fU(x|u)

∂x1

· · · ∂ log fU(x|u)

∂xn

]T
.

(4.43)

Lemma 4.3. [41, Theorem 11] Let (Z1,Z2,Z3,Z4) be Gaussian random vectors with covariance

matrices Σ1, Σ2, Σ3, Σ4, respectively, where

Σ4 � Σ3 � Σ2 � Σ1. (4.44)

Let (U,X) be an arbitrarily dependent random vector pair, which is independent of the Gaussian

random vectors (Z1,Z2,Z3,Z4), and the second moment of X be constrained as E[XXT ] � S.
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Then, for any feasible (U,X), for any Σ1,Σ2,Σ3,Σ4 satisfying the order in (4.44), there exists a

positive semidefinite matrix K∗ such that K∗ � S, and

h(X + Z2|U)− h(X + Z3|U) =
1

2
log
|K∗ + Σ2|
|K∗ + Σ3|

, (4.45)

and

h(X + Z1|U)− h(X + Z3|U) ≤ 1

2
log
|K∗ + Σ1|
|K∗ + Σ3|

, (4.46)

h(X + Z3|U)− h(X + Z4|U) ≥ 1

2
log
|K∗ + Σ3|
|K∗ + Σ4|

. (4.47)

Lemma 4.4. [75] Let (U,X) be an arbitrarily correlated random vector pair, and the second

moment of X is constrained as E[XXT ] � S. Let Z1, Z2 be Gaussian random vectors that

are independent from (U,X), and have mean zero and covariance matrices Σ1, Σ2, respectively,

where Σ1 � Σ2. Then h(X + Z1|U)− h(X + Z2|U) is upper and lower bounded as follows,

1

2
log

|J(X + Z1|U)−1|
|J(X + Z1|U)−1 + Σ2 −Σ1|

≤ h(X + Z1|U)− h(X + Z2|U)

≤ 1

2
log
|J(X + Z2|U)−1 + Σ1 −Σ2|

|J(X + Z2|U)−1|
. (4.48)

Proof. The proof of the unconditioned version of Lemma 4.4 is given in [75] in part B of Section

V. The proof can be generalized to the conditioned version by applying mathematical tools given

in part D of Section V of [75].

Lemma 4.5. [75, Lemma 17] Let (V,U,X) be n−dimentional random vectors with well-defined

densities. Moreover, assume that the partial derivatives of f(u|v,x) with respect to xi, i =

1, . . . , n, exist and satisfy

max
1≤i≤n

∣∣∣∣∂f(u|x,v)

∂xi

∣∣∣∣ ≤ g(u), (4.49)
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for some integrable function g(u). If (V,U,X) satisfy the Markov chain V→ U→ X, then

J(X|U) � J(X|V). (4.50)

Lemma 4.6. [75, Lemma 10] Consider the function

r(t) =
1

2
log
|A + B + t∆|
|A + t∆|

, 0 ≤ t ≤ 1. (4.51)

where A, B, ∆ are real symmetric matrices, and A � 0, B � 0, ∆ � 0. Then r(t) is continuous

and monotonically decreasing with respect to t.

Lemma 4.7. [75] Suppose (U,X) is a random vector pair with arbitrary joint distribution and

the second order moment of X satisfies E(XXT ) � S. Let Z be a random Gaussian vector that is

independent from U and X and has mean zero and covariance Σ. Then we have

0 � J(X + Z|U)−1 −Σ � S. (4.52)

Lemma 4.8. [75] Suppose (U,X) is a random vector pair with arbitrary joint distribution and

the second order moment of X satisfies E(XXT ) � S. Let Z1,Z2 be random Gaussian vectors

that are independent from U and X and have mean zero and covariance matrices Σ1 � Σ2. Then

we have

J(X + Z1|U)−1 + Σ2 −Σ1 − J(X + Z2|U)−1 � 0. (4.53)

The proof of Lemma 4.8 follows the arguments in the proof of Lemma 6 in [75] for the uncon-

ditional case, but using Corollary 4 in [75] for the conditional case.
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4.7.2 Main Proof

Following the converse proof of Theorem 4.1 in Section 4.6, we have the inequalities as follows:

R1 ≤ I(U1; Y1), (4.54)

Rk ≤ I(Uk; Yk|Uk−1)− I(Uk; Yk−1|Uk−1), for 2 ≤ k ≤ K, (4.55)

where the random variables satisfy the Markov chain condition in (4.9).

We first derive the bounds on R2 and R3 in order to show that the bounding techniques can be

extended to prove the bounds on R4, . . . , RK . We then derive the bound on R1.

To bound R2, we start with (4.54), and have

R2 ≤ I(U2; Y2|U1)− I(U2; Y1|U1)

(a)
= h(Y2|U1)− h(Y2|U2)− (h(Y1|U1)− h(Y1|U2))

= (h(Y2|U1)− h(Y1|U1))− (h(Y2|U2)− h(Y1|U2)), (4.56)

where (a) follows from the Markov chain condition in (4.9).

Following from Lemma 4.4, we obtain the following upper and lower bounds on h(Y2|U1)−

h(Y1|U1).

1

2
log

|J(X + Z2|U1)−1|
|J(X + Z2|U1)−1 + Σ1 −Σ2|

≤ h(Y2|U1)− h(Y1|U1)

≤ 1

2
log
|J(X + Z1|U1)−1 + Σ2 −Σ1|

|J(X + Z1|U1)−1|
. (4.57)
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Define

A = J(X + Z2|U1)−1,

B = Σ1 −Σ2,

∆ = J(X + Z1|U1)−1 + Σ2 −Σ1 − J(X + Z2|U1)−1,

and

r(t) =
1

2
log
|A + B + t∆|
|A + t∆|

.

Therefore, (4.57) can be rewritten into,

− r(0) ≤ h(Y2|U1)− h(Y1|U1) ≤ −r(1). (4.58)

It can be verified that A � 0, B � 0, and ∆ � 0. In particular, ∆ � 0 is due to Lemma 4.8.

Following from Lemma 4.6, r(t) is a continuous and monotonically decreasing function in t.

Hence, (4.58) implies that there must exist a constant t1 with 0 ≤ t1 ≤ 1, such that

h(Y2|U1)− h(Y1|U1) = −r(t1). (4.59)

We define

S1 : = A + t1∆−Σ2

= J(X + Z2|U1)−1 + t1(J(X + Z1|U1)−1

+ Σ2 −Σ1 − J(X + Z2|U1)−1)−Σ2. (4.60)

Therefore,

h(Y2|U1)− h(Y1|U1) = −r(t1) =
1

2
log
|S1 + Σ2|
|S1 + Σ1|

. (4.61)
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It can be seen that S1 satisfies A−Σ2 � S1 � A + ∆−Σ2. Following Lemma 4.7, we have

0 � J(X + Z2|U1)−1 −Σ2 = A−Σ2 � S1

� A + ∆−Σ2 = J(X + Z1|U1)−1 −Σ1 � S, (4.62)

which implies

0 � S1 � S. (4.63)

We next study the term h(Y2|U2)−h(Y1|U2). Due to the Markov chain condition (4.9), it is clear

that −I(U2;Y2|U1) + I(U2;Y1|U1) ≤ 0, which implies that

h(Y2|U2)− h(Y1|U2)

≤ h(Y2|U1)− h(Y1|U1)

=
1

2
log
|S1 + Σ2|
|S1 + Σ1|

. (4.64)

Applying Lemma 4.4, we obtain

1

2
log

|J(X + Z2|U2)−1|
|J(X + Z2|U2)−1 + Σ1 −Σ2|

≤ h(Y2|U2)− h(Y1|U2)

≤ 1

2
log
|J(X + Z2|U2)−1 + Σ2 −Σ1|

|J(X + Z1|U2)−1|
. (4.65)

Combining (4.64) and(4.65), we have

1

2
log

|J(X + Z2|U2)−1|
|J(X + Z2|U2)−1 + Σ1 −Σ2|

≤ h(Y2|U2)− h(Y1|U2) ≤ 1

2
log
|S1 + Σ2|
|S1 + Σ1|

. (4.66)
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We now consider the function

r(t) =
1

2
log
|A + B + t∆|
|A + t∆|

(4.67)

with A, B and ∆ being redefined as,

A = J(X + Z2|U2)−1

B = Σ1 −Σ2

∆ = S1 + Σ2 − J(X + Z2|U2)−1, (4.68)

where A � 0, B � 0, and ∆ � 0. In order to show ∆ � 0, we show that S1 � J(X+Z2|U2)−1−

Σ2. Using Lemma 4.5, we have

J(X + Z2|U2) � J(X + Z2|U1). (4.69)

Hence,

J(X + Z2|U1)−1 � J(X + Z2|U2)−1. (4.70)

Since S1 � J(X + Z2|U1)−1 −Σ2, we have

S1 � J(X + Z2|U2)−1 −Σ2. (4.71)

Thus, (4.66) can be rewritten as

− r(0) ≤ h(Y2|U2)− h(Y1|U2) ≤ −r(1). (4.72)

Since the function r(t) is monotone and continuous, there exists a constant t2 with 0 ≤ t2 ≤ 1
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such that h(Y2|U2)− h(Y1|U2) = −r(t2). Let S2 = A + t2∆−Σ2, and obtain

h(Y2|U2)− h(Y1|U2) = −r(t2) =
1

2
log
|S2 + Σ2|
|S2 + Σ1|

(4.73)

It can be seen that

J(X + Z2|U2)−1 −Σ2 = A−Σ2 � S2 � A + ∆−Σ2 = S1. (4.74)

Therefore, combining (4.61) and (4.73), we obtain

R2 ≤
1

2
log
|S1 + Σ2|
|S1 + Σ1|

− 1

2
log
|S2 + Σ2|
|S2 + Σ1|

=
1

2
log
|S1 + Σ2|
|S2 + Σ2|

− 1

2
log
|S1 + Σ1|
|S2 + Σ1|

.

(4.75)

We next derive an upper bound on R3, which is a necessary step to show that the proof tech-

niques can be iteratively extended to bound R4, . . . , RK . Following from (4.54), we have

R3 ≤ h(Y3|U2)− h(Y2|U2)− (h(Y3|U3)− h(Y2|U3)). (4.76)

Using Lemma 4.3 and (4.73), we obtain

h(Y3|U2)− h(Y2|U2) ≤ 1

2
log
|S2 + Σ3|
|S2 + Σ2|

. (4.77)

Similarly to (4.64), due to the Markov chain condition (4.9), we have

h(Y3|U3)− h(Y2|U3) ≤ h(Y3|U2)− h(Y2|U2). (4.78)
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Using Lemma 4.4 and (4.77) and (4.78), we have,

1

2
log

|J(X + Z3|U3)−1|
|J(X + Z3|U3)−1 + Σ2 −Σ3|

≤ h(Y3|U3)− h(Y2|U3) ≤ 1

2
log
|S2 + Σ3|
|S2 + Σ2|

. (4.79)

It can be shown that S2 � J(X + Z3|U3)−1 − Σ3 by using Lemma 4.5 and Lemma 4.8. Then

following the similar arguments that yield (4.73), we can show that there exists an S3, such that

0 � S3 � S2 � S1 � S and

h(Y3|U3)− h(Y2|U3) =
1

2
log
|S3 + Σ3|
|S3 + Σ2|

. (4.80)

Therefore, substituting (4.77) and (4.80) into (4.76), we obtain

R3 ≤
1

2
log
|S2 + Σ3|
|S2 + Σ2|

− 1

2
log
|S3 + Σ3|
|S3 + Σ2|

=
1

2
log
|S2 + Σ3|
|S3 + Σ3|

− 1

2
log
|S2 + Σ2|
|S3 + Σ2|

.

(4.81)

Using techniques similar to those for bounding R2 and R3, we can derive the desired bounds on

R4, . . . , RK iteratively.

Finally, we bound the rate R1. We introduce a virtual receiver Y0 = X + Z0, where Z0 is a

Gaussian vector with the covariance matrix of Σ0 = tΣ1 with t ≥ 1. Hence, Σ0 � Σ1. Following

from (4.61) and Lemma 4.3, we have,

h(Y0|U1)− h(Y1|U1) ≤ 1

2
log
|S1 + Σ0|
|S1 + Σ1|

, (4.82)

for any t ≥ 1. On the other hand, we have

1

2
log(2πe)r|Σ0| = h(Z0) ≤ h(Y0|U1) ≤ h(Y0) ≤ 1

2
log(2πe)r|S + Σ0|, (4.83)
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which implies that

1

2
log

|Σ0|
|S1 + Σ0|

≤ h(Y0|U1)− 1

2
log(2πe)r|S1 + Σ0| ≤

1

2
log
|S + Σ0|
|S1 + Σ0|

. (4.84)

As t→∞, 1
2

log |Σ0|
|S1+Σ0| → 0 and 1

2
log |S+Σ0|

|S1+Σ0| → 0. Hence, h(Y0|U1)− 1
2

log(2πe)r|S1 +Σ0| →

0 as t→∞. Since (4.82) holds for any t ≥ 1, we have h(Y1|U1) ≥ 1
2

log(2πe)r|S1 + Σ1|.

Following from (4.54),

R1 ≤ I(U1; Y1)

= h(Y1)− h(Y1|U1)

≤ 1

2
log(2πe)r|S + Σ1| −

1

2
log(2πe)r|S1 + Σ1|

=
1

2
log
|S + Σ1|
|S1 + Σ1|

,

(4.85)

which completes the proof.
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CHAPTER 5

DEGRADED BROADCAST CHANNEL WITH

SECRECY OUTSIDE A BOUNDED RANGE

In this chapter, we study the problem of degraded broadcast channel with secrecy outside a bounded

range. We focus on the four-receiver degraded broadcast channel with secrecy outside a bounded

range, in which each message should be secured from the receivers with two level worse channel

quality. In Section 5.1, we introduce our problem model. In Section 5.2, we present our main

results on the secrecy capacity region.

5.1 Channel Model

Fig. 5.1: The four-receiver degraded broadcast channel with secrecy outside a bounded range.

In this chapter, we consider a four-receiver degraded broadcast channel with secrecy outside

of a bounded range (see Figure 5.1). Here, a transmitter sends information to four receivers over
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a discrete memoryless channel with the channel transition probability given by PY1Y2Y3Y4|X , in

which X ∈ X denotes the channel input, and Yk ∈ Yk denotes the channel output at receiver k, for

k = 1, 2, 3, 4. The channel is assumed to satisfy the degraded condition, i.e., the following Markov

chain holds:

X → Y4 → Y3 → Y2 → Y1. (5.1)

Hence, the channel quality gradually degrades from receiver 4 to receiver 1.

The transmitter has four messages W1,W2,W3,W4 intended for the four receivers with the

following decoding and secrecy requirements. For k = 1, 2, 3, 4, receiver k is required to decode

the messages W1, . . . ,Wk. Furthermore, the message W3 needs to be kept secure from receiver 1,

and the message W4 needs to be kept secure from receivers 1 and 2 (see Figure 5.1).

A (2nR1 , 2nR2 , 2nR3 , 2nR4 , n) code for the channel consists of

• Four message sets: Wk ∈ Wk = {1, · · · , 2nRk} for k = 1, 2, 3, 4, which are independent from

each other and each message is uniformly distributed over the corresponding message set;

• A (possibly stochastic) encoder fn: W1 ×W2 ×W3 ×W4 → X n;

• Four decoders gnk : Ynk → (W1, · · · ,Wk) for k = 1, 2, 3, 4.

A secrecy rate tuple (R1, R2, R3, R4) is achievable if there exists a sequence of (2nR1 , 2nR2 ,

2nR3 , 2nR4 , n) code such that both the average error probability

P n
e = Pr

(
∪4
k=1{(W1, · · · ,Wk) 6= gnk (Y n

k )}
)

(5.2)

and the leakage rate at receivers 1 and 2

1

n
I(W3,W4;Y n

1 |W1) and
1

n
I(W4;Y n

2 |W1,W2) (5.3)

go to zero as n goes to infinity.

Our goal is to characterize the secrecy capacity region that contains all achievable rate tuples.
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5.2 Characterization of Secrecy Capacity Region

Our main result in this chapter is the following characterization of the secrecy capacity region for

the model of interest.

Theorem 5.1. Consider the four-receiver degraded broadcast channel with secrecy outside a

bounded range as described in Section 5.1. The secrecy capacity region consists of rate tuples

(R1, R2, R3, R4) satisfying

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R3 ≤ I(U3;Y3|U2) + min
(

0, I(U2;Y2|U1)− I(U3;Y1|U1)
)
,

R4 ≤ I(X;Y4|U3) + I(U3;Y3|U2)− I(X;Y2|U2),

R3 +R4 ≤ I(U3;Y3|U2) + I(X;Y4|U3) + min
(

0, I(U2;Y2|U1)− I(X;Y1|U1)
)
, (5.4)

for some PU1U2U3X such that the following Markov chain holds

U1 → U2 → U3 → X → Y4 → Y3 → Y2 → Y1. (5.5)

The major technical challenge for establishing the above secrecy capacity region lies in provid-

ing an achievable region good enough to enable the proof of converse. Here, we briefly introduce

our idea of the achievable scheme, which highlights the technical novelty of our design. We pro-

vide more detailed proofs in Section 5.3 and Section 5.4.

Our achievable scheme includes the following ingredients:

1. Superposition coding: Due to the requirement of layered decoding, the messages are en-

coded using superposition coding with each layer corresponding to one message, i.e., layer k cor-

responds to Wk for k = 1, 2, 3, 4.

2. Joint embedded coding and binning: Since the messages do not need to be kept secure from

its immediate downstream receiver, such a receiver’s message can serve as a random source for
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securing the higher layer message in addition to stochastic binning. In fact, if such random source

is sufficient for securing the message, binning is not necessary. More specifically, W3 serves as a

random source to secure W4 from receiver 2 jointly with random binning designed at layer 4 (if

necessary). Similarly, W2 at layer 2 serves as a random source to secure W3 and W4 from receiver

1 jointly with binning at layers 3 and 4 (if necessary).

3. Rate splitting and sharing: We split W3 into two parts, i.e., W31 and W32. Such splitting

exploits the opportunity (see case 1 in the proof of achievability), that W31 is sufficient to secure

both W32 and W4 from receiver 2, and thus the rate of W32 can be counted towards the rate of

either W3 or W4. In this way, the rate region may be enlarged.

We note that joint embedded coding and binning is necessary here to exploit the secrecy re-

quirements only outside the bounded range (i.e., the secrecy is not imposed for the immediate

downstream receiver). Thus, messages intended for receivers inside the bounded range can serve

as random sources for secrecy purpose. Such a scheme cannot be used for the model in Chapter

4 where the secrecy is imposed for the immediate downstream receiver. We further note that the

embedded coding here uses messages across superposition layers as random sources for secrecy,

which is different from the original embedded coding [39] where the messages serving as random

sources are at the same layers as the messages being protected.

In fact, using only the superposition and joint embedded coding and binning is shown to be

optimal (i.e., achieve the secrecy capacity region) for the three-receiver model in [60]. However,

for the four-receiver model, such an achievable scheme is not in a sufficiently good form for which

the machinery of a converse proof is difficult to develop. The major novelty of our scheme lies in

developing rating splitting and sharing, which helps to potentially enlarge the achievable region (at

least enlarge the region for a given distribution of auxiliary random variables). Consequently, the

proof of converse can be developed for such an achievable region, and thus the secrecy capacity

region is established.

More specifically, without rate splitting and sharing, superposition and joint embedded coding
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and binning yields an achievable region with rates satisfying

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2;U1),

R3 ≤ I(U3;Y3|U2) + min
(

0, I(U2;Y2|U1)− I(U3;Y1|U1)
)
,

R4 ≤ I(X;Y4|U3),

R4 ≤ I(X;Y4|U3) + I(U3;Y3|U2)− I(X;Y2|U2),

R3 +R4 ≤ I(U3;Y3|U2) + I(X;Y4|U3) + I(U2;Y2|U1)− I(X;Y1|U1) (5.6)

It is very difficult to develop the converse proof for the bound R4 ≤ I(X;Y4|U3) in the above

region. However, by using rate splitting and sharing, this bound is replaced by the boundR3+R4 ≤

I(U3;Y3|U2) + I(X;Y4|U3), and the resulting region (5.4) is larger than the above region (5.6) (for

a given distribution of auxiliary random variables). Furthermore, the converse proof for the new

bound on R3 + R4 in (5.4) can be derived, and thus establishes the region (5.4) as the secrecy

capacity region.

5.3 Achievability Proof of Theorem 5.1

Fix a distribution PU1PU2|U1PU3|U2PX|U3PY1,Y2,Y3,Y4|X . We design the achievable schemes for two

cases.

Case 1: I(U3;Y3|U2) > I(X;Y2|U2)

Random codebook generation: Randomly generate the codebook as follows:

• Generate 2nR1 independent and identically distributed (i.i.d.) un1 with distribution
∏n

i=1 p(u1,i).

Index these codewords as un1 (w1), w1 ∈ [1, 2nR1 ].

• For each un1 (w1), generate 2nR2 i.i.d. un2 with distribution
∏n

i=1 p(u2,i|u1,i). Index these code-

words as un2 (w1, w2), w2 ∈ [1, 2nR2 ].

• For each un2 (w1, w2), generate 2nR̃3 i.i.d. un3 with distribution
∏n

i=1 p(u3,i|u2,i). Partition these
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codewords into 2nR31 bins. We further partition each bin into 2nR32 sub-bins. Hence, there

are 2n(R̃3−R31−R32) un3 in each sub-bin. We use w31 ∈ [1 : 2nR31 ] to denote the bin number,

w32 ∈ [1 : 2nR32 ] to denote the sub-bin number, and l3 ∈ [1 : 2n(R̃3−R31−R32)] to denote the

index within the bin. Hence, each un3 is indexed by (w1, w2, w31, w32, l3).

• For each un3 (w1, w2, w31, w32, l3), generate 2nR̃4 i.i.d. xn with distribution
∏n

i=1 p(xi|u3,i).

Partition these codewords into 2nR4 bins. We use w4 ∈ [1 : 2nR4 ] to denote the bin num-

ber, l4 ∈ [1 : 2n(R̃4−R4)] to denote the index inside the sub-bin. Index those codewords as

xn(w1, w2, w31, w32, l3, w4, l4), w4 ∈ [1, 2nR̃4 ].

The chosen codebook is revealed to both the transmitter and receivers.

Encoding: To send a message tuple (w1, w2, w31, w32, w4), the transmitter randomly and uni-

formly generates l3 ∈ [1 : 2n(R̃3−R31−R32)] and l4 ∈ [1 : 2n(R̃4−R4)], and sends

xn(w1, w2, w31, w32, l3, w4, l4).

Decoding:

• Receiver 1 claims that ŵ1 is sent, if there exists a unique ŵ1 such that
(
un1 (ŵ1), yn1 ) ∈ T nε (PU1Y1

)
.

Otherwise, it declares an error.

• Receiver 2 claims that (ŵ1, ŵ2) is sent, if there exists a unique pair (ŵ1, ŵ2) such that
(
un1 (ŵ1),

un2 (ŵ1, ŵ2), yn2 ) ∈ T nε (PU1U2Y2

)
. Otherwise, it declares an error.

• Receiver 3 claims that (ŵ1, ŵ2, ŵ31, ŵ32) is sent, if there exists a unique tuple (ŵ1, ŵ2, ŵ31, ŵ32,

l̂3) such that
(
un1 (ŵ1), un2 (ŵ1, ŵ2), un3 (ŵ1, ŵ2, ŵ31, ŵ32, l̂3), yn3 ) ∈ T nε (PU1U2U3Y3

)
.Otherwise, it

declares an error.

• Receiver 4 claims that ŵ1, ŵ2, ŵ31, ŵ32, ŵ4 is sent, if there exists a unique tuple (ŵ1, ŵ2, ŵ31, ŵ32,

l̂3, ŵ4, l̂4) such that
(
un1 (ŵ1), un2 (ŵ1, ŵ2), un3 (ŵ1, ŵ2, ŵ31, ŵ32, l̂3), xn(ŵ1, ŵ2, ŵ31, ŵ32, l̂3, ŵ4, l̂4),

yn4 ) ∈ T nε (PU1U2U3XY4

)
. Otherwise, it declares an error.

Analysis of error probability: It can be shown by the law of large number and packing lemma

that receiver k decodes the messages (w1, . . . , wk) with asymptotically small probability of error
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for k = 1, . . . , 4 if the following inequalities are satisfied.

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R̃3 ≤ I(U3;Y3|U2),

R̃4 ≤ I(X;Y4|U3). (5.7)

Analysis of leakage rate: In this model, W31,W32,W4 are required to be kept secure from re-

ceiver 1, and W4 is required to be kept secure from receiver 2. We note that under the assumption

of case 1, i.e., I(U3;Y3|U2) > I(X;Y2|U2), part of W3 (i.e., W31) is sufficient to secure the re-

maining part of W3 (i.e., W32) and W4 from receiver 2 without the necessity of random binning in

layer 41. Thus, we strengthen the secrecy requirements as follows: W31,W32,W4 are kept secure

from receiver 1, and W32,W4 are kept secure from receiver 2. Therefore, it is sufficient to show

1

n
I(W31,W32,W4;Y n

1 |W1, C)→ 0, (5.8)

1

n
I(W32,W4;Y n

2 |W1,W2, C)→ 0, (5.9)

as n→∞.

We first bound (5.8) which is the leakage rate of W31,W32,W4 at receiver Y1 as follows:

I(W31,W32,W4;Y n
1 |W1, C)

= I(W1,W2,W31,W32, L3,W4, L4;Y n
1 |C)− I(W1,W2, L3, L4;Y n

1 |W31,W32,W4, C)

−H(W31,W32,W4|Y n
1 ,W1, C) +H(W31,W32,W4|Y n

1 , C)

1This is only true for securing W4 from receiver 2. Random binning may still be needed for securing W3 and W4

from receiver 1.
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(a)

≤ I(W1,W2,W31,W32, L3,W4, L4;Y n
1 |C)− I(W1,W2, L3, L4;Y n

1 |W31,W32,W4, C) + nεn

(b)

≤ I(Xn;Y n
1 |C)−H(W1,W2, L3, L4|W31,W32,W4, C)

+H(W1,W2, L3, L4|Y n
1 ,W31,W32,W4, C), (5.10)

where (a) is due to Fano’s inequality, (b) follows from the following Markov chain:

(W1,W2,W31,W32, L3,W4, L4)→ Xn → Y n
1 .

Next, we bound the three terms on the right hand side of (5.10) one by one. The first term is

bounded as follows,

I(Xn;Y n
1 |C)

(a)
= I(Un

1 , X
n;Y n

1 |C)

= I(Un
1 ;Y n

1 |C) + I(Xn;Y n
1 |Un

1 , C)

≤ H(Un
1 |C) + I(Xn;Y n

1 |Un
1 , C)

= nR1 +H(Y n
1 |Un

1 , C)−H(Y n
1 |Un

1 , X
n, C)

= nR1 +
n∑
i=1

H(Y1,i|Un
1 , Y

i−1
1 , C)−

n∑
i=1

H(Y1,i|Un
1 , X

n, Y i−1
1 , C)

(b)

≤ nR1 +
n∑
i=1

H(Y1,i|U1,i)−
n∑
i=1

H(Y1,i|Xi)

= nR1 + nH(Y1|U1)− nH(Y1|X)

= nR1 + nI(X;Y1|U1), (5.11)

where (a) is due to the Markov chainUn
1 → Xn → Y n

1 , (b) is due to the fact thatH(Y1,i|Un
1 , Y

i−1
1 , C)

≤ H(Y1,i|U1,i) and the Markov chain (Un
1 , X

i−1, Xn
i+1, Y

i−1
1 , C)→ Xi → Y1,i.
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We bound the second term as follows.

−H(W1,W2, L3, L4|W31,W32,W4, C) = −nR1 − nR2 − n(R̃3 −R31 −R32)− n(R̃4 −R4).

(5.12)

Next, we bound the third term as follows.

H(W1,W2, L3, L4|Y n
1 ,W31,W32,W4, C)

= H(W1|Y n
1 ,W31,W32,W4, C) +H(W2, L3, L4|Y n

1 ,W1,W31,W32,W4, C)
(a)

≤ nεn +H(W2, L3, L4|Y n
1 ,W1,W31,W32,W4, C)

(b)
= H(W2, L3, L4|Y n

1 , U
n
1 ,W31,W32,W4, C) + nεn

≤ H(W2, L3, L4|Y n
1 , U

n
1 ,W31,W32,W4) + nεn

(c)

≤ nR2 + n(R̃3 −R31 −R32) + n(R̃4 −R4)− nI(X;Y1|U1) + 2nεn, (5.13)

where (a) is by Fano’s inequality, (b) is due to the fact that Un
1 is a function of W1 and C, (c) is due

to Lemma 5.1 if the conditions in (5.14) are satisfied.

Lemma 5.1. If the following conditions are satisfied,

R2 + R̃3 −R31 −R32 ≥ I(U3;Y1|U1),

R2 ≥ I(U2;Y1|U1),

R2 + R̃3 −R31 −R32 + R̃4 −R4 ≥ I(X;Y1|U1), (5.14)

we have

1

n
H(W2, L3, L4|Y n

1 , U
n
1 ,W31,W32,W4) ≤R2 + (R̃3 −R31 −R32) + (R̃4 −R4)

− I(X;Y1|U1) + εn. (5.15)
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Proof. See Section 5.5.

Hence, combining (5.11), (5.12) and (5.13), we have as n→ 0,

1

n
I(W31,W32,W4;Y n

1 |W1, C)→ 0, (5.16)

if the conditions (5.14) are satisfied.

Secondly, we bound the (5.9) as follows:

1

n
I(W32,W4;Y n

2 |W1,W2, C)

= I(W1,W2,W31,W32,W4, L3, L4;Y n
2 |C)− I(W1,W2,W31, L3, L4;Y n

2 |W32,W4, C)

−H(W32,W4|Y n
2 ,W1,W2, C) +H(W32,W4|Y n

2 , C)

≤ I(Xn;Y n
2 |C)−H(W1,W2,W31, L3, L4|W32,W4, C)

+H(W1,W2,W31, L3, L4|Y n
2 ,W32,W4, C). (5.17)

Following similar steps for bounding (5.8), we obtain the following bounds on the three terms on

the right hand side of (5.17). The first term is bounded as follows,

I(Xn;Y n
2 |C)

≤ nR1 + nR2 + nI(X;Y2|U2). (5.18)

The second term is bounded as follows,

−H(W1,W2,W31, L3, L4|W32,W4, C)

= −nR2 − nR2 − n(R̃3 −R32)− n(R̃4 −R4). (5.19)
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And the third term is bounded as follows:

H(W1,W2,W31, L3, L4|Y n
2 ,W32,W4, C)

= H(W1,W2|Y n
2 ,W32,W4, C) +H(W31, L3, L4|Y n

2 ,W1,W2,W32,W4, C)
(a)

≤ H(W31, L3, L4|Y n
2 ,W1,W2,W32,W4, C) + nεn

(b)
= H(W31, L3, L4|Y n

2 , U
n
2 ,W1,W2,W32,W4, C) + nεn

≤ H(W31, L3, L4|Y n
2 , U

n
2 ,W32,W4) + nεn

(c)

≤ n(R̃3 −R32 + R̃4 −R4 − I(X;Y2|U2)) + 2nεn, (5.20)

where (a) is due to Fano’s inequality, (b) is due to the fact that Un
2 is a function of (W1,W2, C), (c)

is by Lemma 5.2, if the conditions in (5.21) are satisfied.

Lemma 5.2. If the following conditions are satisfied,

R̃3 −R32 ≥ I(U3;Y2|U2),

R̃3 −R32 + R̃4 −R4 ≥ I(U4;Y2|U2), (5.21)

we have

1

n
H(W1,W2,W31, L3, L4|Y n

2 ,W32,W4, C) ≤ R̃3 −R32 + R̃4 −R4 − I(X;Y2|U2) + εn. (5.22)

Proof. See Section 5.6.

Hence, combining (5.18), (5.19) and (5.20), we have that as n→∞,

1

n
I(W32,W4;Y n

2 |W1,W2, C)→ 0, (5.23)

if the conditions in (5.21) are satisfied.

By now, we have obtained constraints as in (5.7), (5.14) and (5.21), such that the decoding and
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secrecy requirements are fulfilled.

Note that the lower bound on R2 is not necessary because if a larger rate R2 = I(U2;Y2|U1)

can be achieved, any rate below can also be achieved by sending independent extra information.

Furthermore, in order to maximize our achievable region, we generate 2nI(Uk;Yk|Uk−1) of unk for

each unk−1 for k = 2, 3, 4, i.e., set R2 = I(U2;Y2|U1), R̃3 = I(U3;Y3|U2) and R̃4 = I(X;Y4|U3).

Hence, we have the following achievable region:

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R31 +R32 ≤ I(U3;Y3|U2),

R4 ≤ I(X;Y4|U3),

R31 +R32 ≤ I(U2;Y2|U1) + I(U3;Y3|U2)− I(U3;Y1|U1)

R31 +R32 +R4 ≤ I(U2;Y2|U1) + I(U3;Y3|U2) + I(X;Y4|U3)− I(X;Y1|U1),

R32 ≤ I(U3;Y3|U2)− I(U3;Y2|U2),

R32 +R4 ≤ I(U3;Y3|U2) + I(X;Y4|U3)− I(X;Y2|U2). (5.24)

Rate sharing: It can be observed thatW32 satisfies the same decoding and secrecy requirements

as W4, and hence its rate can be counted towards R4 by subtracting the same rate from R3. Thus,

we define R3 = R31, and R4 = R32 + R4. By adding these two rates to the above achievable

region, and performing the Fourier-Motzkin elimination to remove R31, R32, and R̄4, we obtain

the achievable region given in Theorem 1.

Case 2: I(U3;Y3|U2) ≤ I(X;Y2|U2)

Randomly generate the codebook as in case 1 but set R32 = 0, R31 = R3 and R4 = R4. The

encoding and decoding procedures are similar to those of case 1. Following steps similar to those

for case 1 to analyze the decoding error probability and the leakage rate, we obtain the achievable
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region characterized by the following bounds:

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R3 ≤ I(U3;Y3|U2),

R4 ≤ I(X;Y4|U3),

R3 ≤ I(U2;Y2|U1) + I(U3;Y3|U2)− I(U3;Y1|U1),

R3 +R4 ≤ I(U2;Y2|U1) + I(U3;Y3|U2) + I(X;Y4|U3)− I(X;Y1|U1),

R4 ≤ I(U3;Y3|U2) + I(X;Y4|U3)− I(U2;Y2|U2). (5.25)

It can be easily shown that under the assumption of case 2, which is I(U3;Y3|U2) ≤ I(X;Y2|U2),

the achievable region characterized by (5.25) is equivalent to the capacity region characterized in

Theorem 1.

5.4 Converse Proof of Theorem 5.1

By Fano’s inequality and the secrecy constraints, we have the following inequalities:

H(Wk|Y n
k ) ≤ nεn, for 1 ≤ k ≤ 4,

I(W3,W4;Y n
1 |W1) ≤ nεn,

I(W4;Y n
2 |W1,W2) ≤ nεn. (5.26)
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To prove the converse, a natural construction of auxiliary random variables is as follows:

U1,i = (W1, Y
i−1

1 ),

U2,i = (W1,W2, Y
i−1

2 ),

U3,i = (W1,W2,W3, Y
i−1

3 , Y n
1,i+1),

U4,i = (W1, . . . ,W4, Y
i−1

4 , Y n
2,i+1).

It can be shown that the following Markov chain is satisfied:

U1,i → U2,i → U3,i → U4,i → Xi → Y4,i → Y3,i → Y2,i → Y1,i, (5.27)

for i = 1, . . . , n.

We show the first three bounds on R1, R2, R3 from the decoding capability. The rate R1 is

bounded as follows:

nR1 = H(W1)

= I(W1;Y n
1 ) +H(W1|Y n

1 )

≤ I(W1;Y n
1 ) + nεn

=
n∑
i=1

I(W1;Y1i|Y i−1
1 ) + nεn

≤
n∑
i=1

I(W1, Y
i−1

1 ;Y1i) + nεn

=
n∑
i=1

I(U1,i;Y1,i) + nεn. (5.28)
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The rate R2 is bounded as follows:

nR2 = H(W2) = H(W2|W1) = I(W2;Y n
2 |W1) +H(W2|Y n

2 ,W1)

≤ I(W2;Y n
2 |W1) + nεn

=
n∑
i=1

I(W2;Y2,i|W1, Y
i−1

2 ) + nεn

=
n∑
i=1

I(W2;Y2,i|W1, Y
i−1

1 , Y i−1
2 ) + nεn

≤
n∑
i=1

I(W2, Y
i−1

2 ;Y2,i|W1, Y
i−1

1 ) + nεn

=
n∑
i=1

I(U2,i;Y2,i|U1,i) + nεn. (5.29)

The rate R3 is bounded as follows:

nR3 = H(W3) = H(W3|W1,W2)

= I(W3;Y n
3 |W1,W2) +H(W3|Y n

3 ,W1,W2)

≤ I(W3;Y n
3 |W1,W2) + nεn

=
n∑
i=1

I(W3;Y3,i|W1,W2, Y
i−1

3 ) + nεn

=
n∑
i=1

I(W3;Y3,i|W1,W2, Y
i−1

2 , Y i−1
3 ) + nεn

≤
n∑
i=1

I(W3, Y
i−1

3 , Y n
1,i+1;Y3,i|W1,W2, Y

i−1
2 ) + nεn

=
n∑
i=1

I(U3,i;Y3,i|U2,i) + nεn. (5.30)

Next, we show the bounds from the secrecy constraints. Since W3 is secured from receiver 1, we
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have the following bound:

nR3 = H(W3)−H(W2) +H(W2)

≤ H(W3|W1,W2) + nεn −H(W3|Y n
3 ,W1,W2)−H(W2) +H(W2) + nεn − I(W3;Y n

1 |W1)

= I(W3;Y n
3 |W1,W2)−H(W2)−H(W3|W1) +H(W2) +H(W3|Y n

1 ,W1)

= I(W3;Y n
3 |W1,W2)−H(W2,W3|W1) +H(W2) +H(W2,W3|Y n

1 ,W1)

−H(W2|Y n
1 ,W1,W3) + 2nεn

(a)

≤ I(W3;Y n
3 |W1,W2)− I(W2,W3;Y n

1 |W1) +H(W2) + 2nεn, (5.31)

where (a) is due to the fact that the entropy H(W2|Y n
1 ,W1,W3) is nonnegative. Here we note that

discarding such an entropy term does not result in a looser bound. This is because if

H(W2|Y n
1 ,W1,W3) is not a vanishing term (which implies that Y1 cannot decode W2 given W1

and W3), then W2 provides enough randomness for protecting W3, and hence R3 ≤ I(U3;Y3|U2)

(which is bounded by the decoding capability of receiver Y3) should already provide a tighter

bound on R3.

We further bound the three terms in (5.31) one by one. The first term in (5.31) is bounded as

follows:

I(W3;Y n
3 |W1,W2) =

n∑
i=1

I(W3;Y3,i|W1,W2, Y
i−1

3 )

=
n∑
i=1

I(W3, Y
n

1,i+1;Y3,i|W1,W2, Y
i−1

3 )− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 )

=
n∑
i=1

I(W3, Y
n

1,i+1;Y3,i|W1,W2, Y
i−1

3 )− I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

≤
n∑
i=1

I(W3, Y
i−1

3 , Y n
1,i+1;Y3,i|W1,W2, Y

i−1
2 )− I(Y i−1

3 ;Y1,i|W1,W2,W3, Y
n

1,i+1). (5.32)
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The second term in (5.31) is bounded as follows:

− I(W2,W3;Y n
1 |W1)

=
n∑
i=1

−I(W2,W3;Y1,i|W1, Y
n

1,i+1)

=
n∑
i=1

−I(W2,W3, Y
i−1

3 ;Y1,i|W1, Y
n

1,i+1) + I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

=
n∑
i=1

−I(Y i−1
3 ;Y1,i|W1, Y

n
1,i+1)− I(W2,W3;Y1,i|W1, Y

n
1,i+1, Y

i−1
3 )

+ I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

=
n∑
i=1

−I(Y i−1
3 ;Y1,i|W1, Y

n
1,i+1)− I(W2,W3, Y

i−1
3 , Y n

1,i+1;Y1,i|W1, Y
i−1

1 )

+ I(Y i−1
3 , Y n

1,i+1;Y1,i|W1, Y
i−1

1 ) + I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

(a)
=

n∑
i=1

−I(W2,W3, Y
i−1

3 , Y n
1,i+1;Y1,i|W1, Y

i−1
1 ) + I(Y i−1

3 ;Y1,i|W1,W2,W3, Y
n

1,i+1), (5.33)

where (a) is due to the following fact:

n∑
i=1

[−I(Y i−1
3 ;Y1,i|W1, Y

n
1,i+1) + I(Y i−1

3 , Y n
1,i+1;Y1,i|W1, Y

i−1
1 )]

=
n∑
i=1

[−I(Y i−1
1 ;Y1,i|W1, Y

n
1,i+1)− I(Y i−1

3 ;Y1,i|W1, Y
i−1

1 , Y n
1,i+1)

+ I(Y n
1,i+1;Y1,i|W1, Y

i−1
1 ) + I(Y i−1

3 ;Y1,i|W1, Y
i−1

1 , Y n
1,i+1)]

= 0 .

Combining (5.32), (5.33) and (5.29), we have

nR3 ≤
n∑
i=1

I(U3,i;Y3,i|U2,i)− I(U3,i;Y1,i|U1,i) + I(U2,i;Y2,i|U1,i) + 3nεn. (5.34)
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Similarly, we derive another bound on R4 as follows:

nR4 = H(W4) +H(W3)−H(W3)

(a)

≤ I(W4;Y n
4 |W1,W2,W3) + I(W3;Y n

3 |W1,W2)−H(W3)− I(W4;Y n
2 |W1,W2) + nεn

= I(W4;Y n
4 |W1,W2,W3) + I(W3;Y n

3 |W1,W2)− I(W3,W4;Y n
2 |W1,W2)

−H(W3;Y n
2 |W1,W2,W4) + nεn

(b)

≤ I(W4;Y n
4 |W1,W2,W3) + I(W3;Y n

3 |W1,W2)− I(W3,W4;Y n
2 |W1,W2) + nεn, (5.35)

where (a) is due to Fano’s inequality and the secrecy constraint, (b) is due to the non-negativity of

entropy.

Next,we bound the three terms on the right hand side of (5.35) one by one. We bound the first

term as follows,

I(W4;Y n
4 |W1,W2,W3) =

n∑
i=1

I(W4;Y4,i|W1,W2,W3, Y
i−1

4 )

=
n∑
i=1

I(W4, Y
n

2,i+1;Y4,i|W1,W2,W3, Y
i−1

4 )− I(Y n
2,i+1;Y4,i|W1,W2,W3,W4, Y

i−1
4 )

=
n∑
i=1

I(Y n
1,i+1;Y4,i|W1,W2,W3, Y

i−1
4 ) + I(W4, Y

n
2,i+1;Y4,i|W1,W2,W3, Y

i−1
4 , Y n

1,i+1)

− I(Y n
2,i+1;Y4,i|W1,W2,W3,W4, Y

i−1
4 )

=
n∑
i=1

I(W4, Y
i−1

4 , Y n
2,i+1;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)

− I(Y i−1
4 ;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)

+ I(Y n
1,i+1;Y4,i|W1,W2,W3, Y

i−1
4 )− I(Y n

2,i+1;Y4,i|W1,W2,W3,W4, Y
i−1

4 ). (5.36)
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We bound the second term as follows,

I(W3;Y n
3 |W1,W2)

=
n∑
i=1

I(W3;Y3,i|W1,W2, Y
i−1

3 )

=
n∑
i=1

I(W3, Y
n

1,i+1;Y3,i|W1,W2, Y
i−1

3 )− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 )

=
n∑
i=1

I(W3, Y
n

1,i+1, Y
i−1

3 ;Y3,i|W1,W2, Y
i−1

2 )− I(Y i−1
3 ;Y3,i|W1,W2, Y

i−1
2 )

− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 ). (5.37)

The third term is bounded as follows,

− I(W3,W4;Y n
2 |W1,W2)

=
n∑
i=1

−I(W3,W4;Y2,i|W1,W2, Y
n

2,i+1)

=
n∑
i=1

−I(W3,W4, Y
i−1

4 ;Y2,i|W1,W2, Y
n

2,i+1) + I(Y i−1
4 ;Y2,i|W1,W2,W3,W4, Y

n
2,i+1)

=
n∑
i=1

−I(Y i−1
4 ;Y2,i|W1,W2, Y

n
2,i+1)− I(W3,W4;Y2,i|W1,W2, Y

i1
4 , Y n

2,i+1)

+ I(Y i−1
4 ;Y2,i|W1,W2,W3,W4, Y

n
2,i+1)

=
n∑
i=1

−I(Y i−1
4 ;Y2,i|W1,W2, Y

n
2,i+1)− I(W3,W4, Y

i−1
4 , Y n

2,i+1;Y2,i|W1,W2, Y
i−1

2 )

+ I(Y i−1
4 , Y n

2,i+1;Y2,i|W1,W2, Y
i−1

2 ) + I(Y i−1
4 ;Y2,i|W1,W2,W3,W4, Y

n
2,i+1). (5.38)

Combining (5.36), (5.37) and (5.38), and apply Csiszár’s sum identity, we have R4 is bounded
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as follows,

nR4 ≤
n∑
i=1

I(W4, Y
i−1

4 , Y n
2,i+1;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)

+ I(W3, Y
n

1,i+1, Y
i−1

3 ;Y3,i|W1,W2, Y
i−1

2 )

− I(W3,W4, Y
i−1

4 , Y n
2,i+1;Y2,i|W1,W2, Y

i−1
2 ) + nεn

=
n∑
i=1

I(U4,i;Y4,i|U3,i) + I(U3,i;Y3,i|U2,i)− I(U4,i;Y2,i|U2,i) + nεn

≤
n∑
i=1

I(Xi;Y4,i|U3,i) + I(U3,i;Y3,i|U2,i)− I(Xi;Y2,i|U2,i) + nεn. (5.39)

We next show the sum rate bound of R3 +R4 as follows,

n(R3 +R4)

= H(W3,W4)

= H(W3) +H(W4) +H(W2)−H(W2)

(a)

≤ I(W2;Y n
2 |W1) + I(W3;Y n

3 |W1,W2) + I(W4;Y n
4 |W1,W2,W3)− I(W2,W3,W4;Y n

1 |W1)

−H(W2|Y n
1 ,W1,W3,W4) + nεn

(b)

≤ I(W2;Y n
2 |W1) + I(W3;Y n

3 |W1,W2) + I(W4;Y n
4 |W1,W2,W3)

− I(W2,W3,W4;Y n
1 |W1) + nεn, (5.40)

where (a) is due to Fano’s inequality and the secrecy constraint, (b) is due to the non-negativity

of entropy. We first bound the first term following similar term for showing the bound R2 ≤∑n
i=1 I(U2,i;Y2,i|U1,i), we have

I(W2;Y n
2 |W1) ≤

n∑
i=1

I(U2,i;Y2,i|U1,i). (5.41)
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Secondly, we bound I(W3;Y n
3 |W1,W2) + I(W4;Y n

4 |W1,W2,W3) as follows,

I(W3;Y n
3 |W1,W2) + I(W4;Y n

4 |W1,W2,W3)

=
n∑
i=1

I(W3;Y3,i|W1,W2, Y
i−1

3 ) + I(W3;Y4,i|W1,W2,W3, Y
i−1

4 )

=
n∑
i=1

I(W3, Y
n

1,i+1;Y3,i|W1,W2, Y
i−1

3 )− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 )

+ I(W4, Y
n

2,i+1;Y4,i|W1,W2,W3, Y
i−1

4 )− I(Y n
2,i+1;Y4,i|W1,W2,W3,W4, Y

i−1
4 )

=
n∑
i=1

I(W3, Y
n

1,i+1, Y
i−1

3 ;Y3,i|W1,W2, Y
i−1

2 )− I(Y i−1
3 ;Y3,i|W1,W2, Y

i−1
2 )

− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 ) + I(W4, Y

n
2,i+1;Y4,i|W1,W2,W3, Y

i−1
4 , Y n

1,i+1)

+ I(Y n
1,i+1;Y4,i|W1,W2,W3, Y

i−1
4 )− I(Y n

2,i+1;Y4,i|W1,W2,W3,W4, Y
i−1

4 )

=
n∑
i=1

I(W3, Y
n

1,i+1, Y
i−1

3 ;Y3,i|W1,W2, Y
i−1

2 )

+ I(W4, Y
n

2,i+1, Y
i−1

4 ;Y4,i|W1,W2,W3, Y
i−1

3 , Y n
1,i+1)

− I(Y i−1
4 ;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 )

+ I(Y n
1,i+1;Y4,i|W1,W2,W3, Y

i−1
4 )− I(Y n

2,i+1;Y4,i|W1,W2,W3,W4, Y
i−1

4 )

− I(Y i−1
3 ;Y3,i|W1,W2, Y

i−1
2 ). (5.42)

Thirdly, we bound −I(W2,W3,W4;Y n
1 |W1) as follows,

− I(W2,W3,W4;Y n
1 |W1)

=
n∑
i=1

−I(W2,W3,W4;Y1,i|W1, Y
n

1,i+1)

=
n∑
i=1

−I(W2,W3,W4, Y
i−1

4 ;Y1,i|W1, Y
n

1,i+1) + I(Y i−1
4 ;Y1,i|W1,W2,W3,W4, Y

n
1,i+1)

=
n∑
i=1

−I(Y i−1
4 ;Y1,i|W1, Y

n
1,i+1)− I(W2,W3,W4;Y1,i|W1, Y

n
1,i+1, Y

i−1
4 )

+ I(Y i−1
4 ;Y1,i|W1,W2,W3,W4, Y

n
1,i+1)
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=
n∑
i=1

−I(W2,W3,W4, Y
i−1

4 , Y n
1,i+1;Y1,i|W1, Y

i−1
1 )

+ I(Y i−1
4 , Y n

1,i+1;Y1,i|W1, Y
i−1

1 )− I(Y i−1
4 ;Y1,i|W1, Y

n
1,i+1)

+ I(Y i−1
4 ;Y1,i|W1,W2,W3,W4, Y

n
1,i+1)

=
n∑
i=1

−I(W2,W3,W4, Y
i−1

4 , Y n
2,i+1;Y1,i|W1, Y

i−1
1 )

+ I(Y n
2,i+1;Y1,i|W1,W2,W3,W4, Y

i−1
4 , Y n

1,i+1) + I(Y i−1
4 , Y n

1,i+1;Y1,i|W1, Y
i−1

1 )

− I(Y i−1
4 ;Y1,i|W1, Y

n
1,i+1) + I(Y i−1

4 ;Y1,i|W1,W2,W3,W4, Y
n

1,i+1)

(a)
=

n∑
i=1

−I(W2,W3,W4, Y
i−1

4 , Y n
2,i+1;Y1,i|W1, Y

i−1
1 )

+ I(Y n
2,i+1;Y1,i|W1,W2,W3,W4, Y

i−1
4 , Y n

1,i+1)

+ I(Y i−1
4 ;Y1,i|W1,W2,W3,W4, Y

n
1,i+1), (5.43)

where (a) is due to the following fact

I(Y i−1
4 , Y n

1,i+1;Y1,i|W1, Y
i−1

1 )− I(Y i−1
4 ;Y1,i|W1, Y

n
1,i+1)

= I(Y n
1,i+1;Y1,i|W1, Y

i−1
1 ) + I(Y i−1

4 ;Y1,i|W1, Y
i−1

1 , Y n
1,i+1)

− I(Y i−1
1 ;Y1,i|W1, Y

n
1,i+1)− I(Y i−1

4 ;Y1,i|W1, Y
n

1,i+1, Y
i−1

1 )

= 0, (5.44)

by Csiszár’s sum identity.
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Hence, combining (5.41), (5.42) and (5.43), we have,

n(R3 +R4)

≤
n∑
i=1

I(U2,i;Y2,i|U1,i) + I(U3,i;Y3,i|U2,i) + I(U4,i;Y4,i|U3,i)− I(U4,i;Y1,i|U1,i)

− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 ) + I(Y n

1,i+1;Y4,i|W1,W2,W3, Y
i−1

4 )

− I(Y n
2,i+1;Y4,i|W1,W2,W3,W4, Y

i−1
4 ) + I(Y n

2,i+1;Y1,i|W1,W2,W3,W4, Y
i−1

4 , Y n
1,i+1)

+ I(Y i−1
4 ;Y1,i|W1,W2,W3,W4, Y

n
1,i+1)− I(Y i−1

4 ;Y4,i|W1,W2,W3, Y
i−1

3 , Y n
1,i+1)

(a)

≤
n∑
i=1

I(U2,i;Y2,i|U1,i) + I(U3,i;Y3,i|U2,i) + I(U4,i;Y4,i|U3,i)− I(U4,i;Y1,i|U1,i)

≤
n∑
i=1

I(U2,i;Y2,i|U1,i) + I(U3,i;Y3,i|U2,i) + I(Xi;Y4,i|U3,i)− I(Xi;Y1,i|U1,i), (5.45)

where (a) is due to the following two facts. The first fact is as follows:

− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 ) + I(Y n

1,i+1;Y4,i|W1,W2,W3, Y
i−1

4 )

− I(Y i−1
4 ;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)

(b)
= −I(Y i−1

3 ;Y1,i|W1,W2,W3, Y
n

1,i+1) + I(Y i−1
4 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

− I(Y i−1
4 ;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)

= −I(Y i−1
4 ;Y1,i|W1,W2,W3, Y

n
1,i+1, Y

i−1
3 )− I(Y i−1

4 ;Y4,i|W1,W2,W3, Y
i−1

3 , Y n
1,i+1)

= −I(Y i−1
4 ;Y4,i|W1,W2,W3, Y

n
1,i+1, Y

i−1
3 , Y1,i)

≤ 0, (5.46)

where step (b) is due to Csiszár’s sum identity.
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The second fact is as follows,

− I(Y n
2,i+1;Y4,i|W1,W2,W3,W4, Y

i−1
4 ) + I(Y n

2,i+1;Y1,i|W1,W2,W3,W4, Y
i−1

4 , Y n
1,i+1)

+ I(Y i−1
4 ;Y1,i|W1,W2,W3,W4, Y

n
1,i+1)

(c)
= −I(Y n

1,i+1;Y4,i|W1,W2,W3,W4, Y
i−1

4 )− I(Y n
2,i+1;Y4,i|W1,W2,W3,W4, Y

i−1
4 , Y n

1,i+1)

+ I(Y n
2,i+1;Y1,i|W1,W2,W3,W4, Y

i−1
4 , Y n

1,i+1) + I(Y n
1,i+1;Y4,i|W1,W2,W3,W4, Y

i−1
4 )

= −I(Y n
2,i+1;Y4,i|W1,W2,W3,W4, Y

i−1
4 , Y n

1,i+1, Y1,i)

≤ 0, (5.47)

where step (c) is by chain rule and Csiszár’s sum identity.

Furthermore, we derive the second bound for R3 +R4 as follows.

n(R3 +R4) = H(W3,W4) ≤ I(W3;Y n
3 |W1,W2) + I(W4;Y n

4 |W1,W2,W3) + 2nεn

=
n∑
i=1

I(W3;Y3,i|W1,W2, Y
i−1

3 ) + I(W4;Y4,i|W1,W2,W3, Y
i−1

4 ) + 2nεn

=
n∑
i=1

I(W3, Y
i−1

3 , Y n
1,i+1;Y3,i|W1,W2, Y

i−1
2 )

− I(Y i−1
3 ;Y3,i|W1,W2, Y

i−1
2 )− I(Y n

1,i+1;Y3,i|W1,W2,W3, Y
i−1

3 )

+ I(W4, Y
i−1

4 , Y n
2,i+1;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1) + I(Y n
1,i+1;Y4,i|W1,W2,W3, Y

i−1
4 )

− I(Y i−1
4 ;Y4,i|W1,W2,W3, Y

n
1,i+1, Y

i−1
3 )− I(Y n

2,i+1;Y4,i|W1,W2,W3, Y
i−1

4 ) + 2nεn

(a)

≤
n∑
i=1

I(W3, Y
i−1

3 , Y n
1,i+1;Y3,i|W1,W2, Y

i−1
2 )

+ I(W4, Y
i−1

4 , Y i−1
2 ;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)

=
n∑
i=1

I(U3,i;Y3,i|U2,i) + I(U4,i;Y4,i|U3,i)

≤
n∑
i=1

I(U3,i;Y3,i|U2,i) + I(Xi;Y4,i|U3,i), (5.48)
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where (a) can be shown as follows. First of all, we have,

I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 ) = I(Y i−1

3 ;Y1,i|W1,W2,W3, Y
n

1,i+1),

by Csiszár’s sum identity. Further, by (5.49) and (5.50), and the nonnegativity of mutual informa-

tion, we can show how step (a) is derived as follow,

I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1) + I(Y n

1,i+1;Y4,i|W1,W2,W3, Y
i−1

4 )

= I(Y i−1
4 ;Y1,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1) (5.49)

and

I(Y i−1
4 ;Y1,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)− I(Y i−1
4 ;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1)

= −I(Y i−1
4 ;Y4,i|W1,W2,W3, Y

i−1
3 , Y n

1,i+1, Y1,i)

≤ 0. (5.50)

Finally, we define a random variable Q ∈ {1, . . . , n} which is uniformly distributed, and set

Uk
∆
= (Q,Uk,Q), Yk

∆
= (Q, Yk,Q), for k = 1, 2, 3, and X ∆

= (Q,XQ). Then we have the desired

bounds by the standard single letter characterization, which concludes the proof.

5.5 Proof of Lemma 5.1

We bound H(W2, L3, L4|Y n
1 , U

n
1 , w31, w32, w4) for each (w31, w32, w4). Hence,

H(W2, L3, L4|Y n
1 , U

n
1 ,W31,W32,W4) is bounded.

Firstly, we fix (W2, L3, L4) = (w2, l3, l4) and a joint typical sequence (un1 , y
n
1 ) ∈ T (n)

ε (U1, Y1).

We define the following random variable:

N(w2, l3, l4, u
n
1 , y

n
1 ) := |{(w̃2, l̃3, l̃4) 6= (w2, l3, l4) : (xn(w̃2, w31, w32, l̃3, w4, l̃4), un1 , y

n
1 )

∈ T (n)
ε (Xn, Un

1 , Y
n

1 )}| (5.51)
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We can show that the expectation of N satisfy the following inequalities:

2n(R2+R̃3−R31−R32+R̃4−R4−I(X;Y1|U1))−nδn(ε)−nεn + 2n(R̃3−R31−R32+R̃4−R4−I(X;Y1|U2))−nδn(ε)−nεn

+ 2n(R̃4−R4−I(X;Y1|U3))−nδn(ε)−nεn ≤ N(w2, l3, l4, u
n
1 , y

n
1 )

≤ 2n(R2+R̃3−R31−R32+R̃4−R4−I(X;Y1|U1))+nδn(ε)−nεn + 2n(R̃3−R31−R32+R̃4−R4−I(X;Y1|U2))+nδn(ε)−nεn

+ 2n(R̃4−R4−I(X;Y1|U3))+nδn(ε)−nεn , (5.52)

which can be further written as

2n(R2+R̃3−R31−R32+R̃4−R4−I(X;Y1|U1))−nδn(ε)−nεn(1 + 2−n(R2−I(U2;Y1|U1))

+ 2−n(R2+R̃3−R31−R32−I(U3;Y1|U1))) ≤ N(w2, l3, l4, u
n
1 , y

n
1 )

≤ 2n(R2+R̃3−R31−R32+R̃4−R4−I(X;Y1|U1))+nδn(ε)−nεn(1 + 2−n(R2−I(U2;Y1|U1))

+ 2−n(R2+R̃3−R31−R32−I(U3;Y1|U1))). (5.53)

Furthermore, if the following inequalities are satisfied,

R2 ≥ I(U2;Y1|U1),

R2 + R̃3 −R3 ≥ I(U3;Y1|U1), (5.54)

we can define (1 + 2−n(R2−I(U2;Y1|U1)) + 2−n(R2+R̃3−R31−R32−I(U3;Y1|U1))) = 2nε
′
n , such that ε′n → 0

as n→∞.

Then the expectation of N(w2, l3, l4, u
n
1 , y

n
1 ) can be bounded as follows,

2n(R2+R̃3−R31−R32+R̃4−R4−I(X;Y1|U1))−nδn(ε)−nεn+nε′n ≤ N(w2, l3, l4, u
n
1 , y

n
1 )

≤ 2n(R2+R̃3−R31−R32+R̃4−R4−I(X;Y1|U1))+nδn(ε)−nεn+nε′n . (5.55)
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Due to the fact that N is binomial distributed, V ar(N) ≤ E(N). Thus, we have,

V ar(N(w2, l3, l4, u
n
1 , y

n
1 )) ≤ 2n(R2+R̃3−R31−R32+R̃4−R4−I(X;Y1|U1))+nδn(ε)−nεn+nε′n . (5.56)

Next, we define the random event as follows:

ε(w2, l3, l4, u
n
1 , y

n
1 ) :={N(w2, l3, l4, u

n
1 , y

n
1 ) ≥

2n(R2+R̃3−R31−R32+R̃4−R4−I(X;Y1|U1))+nδn(ε)−nεn/2+nε′n+1}. (5.57)

The probability of such a random event is bounded as follows:

P (ε(w2, l3, l4, u
n
1 , y

n
1 ))

= P (N(w2, l3, l4, u
n
1 , y

n
1 ) ≥ 2n(R2+R̃3−R31−R32+R̃4−R4)−nI(X;Y1|U1)+nδn(ε)−nεn/2+nε′n+1)

≤ P (N(w2, l3, l4, u
n
1 , y

n
1 ) ≥ E(N(w2, l3, l4, u

n
1 , y

n
1 ))

+ 2n(R2+R̃3−R31−R32+R̃4−R4)−nI(X;Y1|U1)+nδn(ε)−nεn/2+nε′n)

≤ P (|N(w2, l3, l4, u
n
1 , y

n
1 )− E(N(w2, l3, l4, u

n
1 , y

n
1 ))|

≥ 2n(R2+R̃3−R31−R32+R̃4−R4)−nI(X;Y1|U1)+nδn(ε)−nεn/2+nε′n)

≤ V ar(N(w2, l3, l4, u
n
1 , y

n
1 ))

22n(R2+R̃3−R31−R32+R̃4−R4)−2nI(X;Y1|U1)+2nδn(ε)−nεn+2nε′n

≤ 1

2n(R2+R̃3−R31−R32+R̃4−R4)−nI(X;Y1|U1)+nδn(ε)+nε′n
, (5.58)

which goes to zero as n→∞, if R2 + R̃3 −R31 −R32 + R̃4 −R4 ≥ I(X;Y1|U1). Therefore, we

have P (ε(w2, l3, l4, u
n
1 , y

n
1 ))→ 0, as n→∞.

For each (w31, w32, w4), we define the following random variable and event:

N(w31, w32, w4) :=|{(w̃2, l̃3, l̃4) : (Xn(W31,W32,W4, w̃2, l̃3, l̃4), Y n
1 , U

n
1 ) ∈ T (n)

ε ,

(w̃2, l̃3, l̃4) 6= (W2, L3, L4)}|

ε(w31, w32, w4) :={N(w31, w32, w4) ≥ 2n(R̃3−R31−R32+R̃4−R4)−nI(X;Y1|U1)+nδn(ε)−nεn/2+nε′n+1}.
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Furthermore, we define the indicator random variable E(w31, w32, w4) := 0 if

(Xn(w3, w4,W2, L3, L4), Y n
1 , U

n
1 ) ∈ T (n)

ε and ε(w31, w32, w4)c occurs; and E(w31, w32, w4) := 1,

otherwise. By such a definition, we have the following probability,

P (E(w31, w32, w4) := 1) ≤ P ((Xn(w31, w32, w4,W2, L3, L4), Y n
1 , U

n
1 ) /∈ T (n)

ε )

+ P (ε(w31, w32, w4)). (5.59)

The first term on the right hand side of the above inequality goes to zero as n → ∞. We now

bound the second term as follows,

P (ε(w31, w32, w4)) ≤
∑

(un1 ,y
n
1 )∈T (n)

ε

P (un1 , y
n
1 )P (ε(w31, w32, w4)|un1 , yn1 ) + P ((Un

1 , Y
n

1 ) /∈ T (n)
ε )

=
∑

(un1 ,y
n
1 )∈T (n)

ε

∑
w2,l3,l4

P (un1 , y
n
1 )P (w2, l3, l4|un1 , yn1 )P (ε(w31, w32, w4)|un1 , yn1 , w2, l3, l4)

+ P ((Un
1 , Y

n
1 ) /∈ T (n)

ε )

→ 0, if R2 + R̃3 −R31 −R32 + R̃4 −R4 > I(X;Y1|U1). (5.60)

Therefore,

H(W2, L3, L4|Y n
1 , U

n
1 , w31, w32, w4)

≤ H(W2, L3, L4, E(w31, w32, w4)|Y n
1 , U

n
1 , w31, w32, w4)

≤ H(E(w31, w32, w4)) +H(W2, L3, L4|E(w31, w32, w4), Y n
1 , U

n
1 , w31, w32, w4)

≤ 1 + P (E(w31, w32, w4) = 1)H(W2, L3, L4|E(w31, w32, w4) = 1, Y n
1 , U

n
1 , w31, w32, w4)

+H(W2, L3, L4|E(w31, w32, w4) = 0, Y n
1 , U

n
1 , w31, w32, w4)

≤ 1 + P (E(w31, w32, w4) = 1)n(R2 + R̃3 −R31 −R32 + R̃4 −R4)

+ n(R2 + R̃3 −R32 + R̃4 −R4)− nI(X;Y1|U1) + nδn(ε)− nεn/2 + nε′n + 1. (5.61)
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Hence, we have

lim
n→∞

1

n
H(W2, L3, L4|Y n

1 , U
n
1 , w31, w32, w4) ≤ R2 + R̃3 −R31 −R32 + R̃4 −R4

− I(X;Y1|U1) + δn(ε) + ε′n. (5.62)

5.6 Proof of Lemma 5.2

We now bound H(W31, L3, L4|Y n
2 , U

n
2 , w32, w4) for any pair of (w32, w4), and hence, H(W31, L3,

L4|Y n
2 , U

n
2 ,W32,W4) can be bounded.

We fix (W31, L3, L4) = (w31, l3, l4) and a joint typical sequence (un2 , y
n
2 ) ∈ T (n)

ε (U2, Y2). We

define a random variable as follows:

N(w31, l3, l4, u
n
2 , y

n
2 ) := |{(w̃31, l̃3, l̃4) 6= (w31, l3, l4) : (xn(w̃31, w32, l̃3, w4, l̃4), un2 , y

n
2 )

∈ T (n)
ε (Xn, Un

2 , Y
n

2 )}|. (5.63)

We can show that the expectation of N satisfy the following inequalities:

2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)−nδn(ε)−nεn + 2n(R̃4−R4)−nI(X;Y2|U2)−nδn(ε)−nεn

≤ E(N(w31, l3, l4, u
n
2 , y

n
2 ))

≤ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn + 2n(R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn , (5.64)

where δn(ε), εn → 0 as n→∞. And this can be further written as

2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)−nδn(ε)−nεn(1 + 2−n(R̃3−R32−I(U3;Y2|U2)))

≤ E(N(w31, l3, l4, u
n
2 , y

n
2 ))

≤ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn(1 + 2−n(R̃3−R32−I(U3;Y2|U2))). (5.65)

Furthermore, if R̃3−R32 ≥ I(U3;Y2|U2), we can define ε′n such that, 2nε
′
n = 1+2−n(R̃3−R32−I(U3;Y2|U2)),
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where, ε′n → 0 as n→∞.

Then, we can write (5.65) as follows,

2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)−nδn(ε)−nεn+nε′n ≤ E(N(w31, l3, l4, u
n
2 , y

n
2 ))

≤ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn+nε′n . (5.66)

Due to the fact that V ar(N) ≤ E(N), we have the following inequality,

V ar(N(w31, l3, l4, u
n
2 , y

n
2 )) ≤ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn+nε′n . (5.67)

We define the random event:

ε(w31, l3, l4, u
n
2 , y

n
2 ) := {N(w31, l3, l4, u

n
2 , y

n
2 ) ≥ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn/2+nε′n+1}.

By Chebyshev’s inequality, we obtain that

P (ε(w31, l3, l4, u
n
2 , y

n
2 ))

= P (N(w31, l3, l4, u
n
2 , y

n
2 ) ≥ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn/2+nε′n+1)

≤ P (N(w31, l3, l4, u
n
2 , y

n
2 ) ≥ E(N(w31, l3, l4, u

n
2 , y

n
2 ))

+ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn/2+nε′n)

≤ P

(
|N(w31, l3, l4, u

n
2 , y

n
2 )− E(N(w31, l3, l4, u

n
2 , y

n
2 ))|

≥ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn/2+nε′n)

)

≤ V ar(N(w31, l3, l4, u
n
2 , y

n
2 ))

22n(R̃3−R32+R̃4−R4)−2nI(X;Y2|U2)+2nδn(ε)−nεn+2nε′n

≤ 1

2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)+nε′n
, (5.68)
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which goes to zero as n→∞ if R̃3−R32 + R̃4−R4 > I(X;Y2|U2). This implies that as n→∞,

P (ε(w31, l3, l4, u
n
2 , y

n
2 ))→ 0.

For each pair of (w32, w4), we define the following random variable and event:

N(w32, w4) :=|{(w̃31, l̃3, l̃4) : (Xn(W32,W4, w̃31, l̃3, l̃4), Y n
2 , U

n
2 ) ∈ T (n)

ε , (w̃31, l̃3, l̃4)

6= (W31, L3, L4)}|,

ε(w32, w4) :={N(w32, w4) ≥ 2n(R̃3−R32+R̃4−R4)−nI(X;Y2|U2)+nδn(ε)−nεn/2+nε′n+1}. (5.69)

And we further define the indicator random variable E(w32, w4) := 0 if (Xn(w32, w4,W31, L3,

L4), Y n
2 , U

n
2 ) ∈ T (n)

ε and ε(w32, w4)c occurs; andE(w32, w4) := 1, otherwise. By such a definition,

we have the following probability,

P (E(w32, w4) := 1) ≤ P ((Xn(w32, w4,W31, L3, L4), Y n
2 , U

n
2 ) /∈ T (n)

ε ) + P (ε(w32, w4)). (5.70)

The first term on the right hand side of the above inequality goes to zero as n → ∞. We now

bound the second term as follows,

P (ε(w32, w4)) ≤
∑

(un2 ,y
n
2 )∈T (n)

ε

P (un2 , y
n
2 )P (ε(w32, w4)|un2 , yn2 ) + P ((Un

2 , Y
n

2 ) /∈ T (n)
ε )

=
∑

(un2 ,y
n
2 )∈T (n)

ε

∑
w31,l3,l4

P (un2 , y
n
2 )P (w31, l3, l4|un2 , yn2 )P (ε(w32, w4)|un2 , yn2 , w31, l3, l4)

+ P ((Un
2 , Y

n
2 ) /∈ T (n)

ε )

→ 0, if R̃3 −R32 + R̃4 −R4 > I(X;Y2|U2). (5.71)
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Therefore,

H(W31, L3, L4|Y n
2 , U

n
2 , w32, w4)

≤ H(W31, L3, L4, E(w32, w4)|Y n
2 , U

n
2 , w32, w4)

≤ H(E(w32, w4)) +H(W31, L3, L4|E(w32, w4), Y n
2 , U

n
2 , w32, w4)

≤ 1 + P (E(w32, w4) = 1)H(W31, L3, L4|E(w32, w4) = 1, Y n
2 , U

n
2 , w32, w4)

+H(W31, L3, L4|E(w32, w4) = 0, Y n
2 , U

n
2 , w32, w4)

≤ 1 + P (E(w32, w4) = 1)n(R̃3 −R32 + R̃4 −R4) + n(R̃3 −R32 + R̃4 −R4)

− nI(X;Y2|U2) + nδn(ε)− nεn/2 + nε′n + 1. (5.72)

Hence, we have

lim
n→∞

1

n
H(W31, L3, L4|Y n

2 , U
n
2 , w32, w4) ≤ R̃3 −R32 + R̃4 −R4 − I(X;Y2|U2) + δn(ε) + ε′n.

(5.73)
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this section, we first summarize the results presented in this thesis, and then describe a few

future directions.

6.1 Summary of the Work

In this thesis, we investigated two security issues in information systems: detection of anomalous

data patterns that reflect malicious intrusions into data storage systems and protection of data from

malicious attacks during data transmissions. We have applied information theoretic and statistical

tools to develop solutions to these problems with guaranteed security performance.

More specifically, we have studied two classes of anomaly detection problems: anomalous ge-

ometric structure detection and anomalous data stream detection. For the problem of anomalous

geometric structure detection over large networks, We have developed nonparametric tests using

the MMD to measure the distance between the mean embeddings of distributions into an RKHS.

We have analyzed the performance guarantee of our tests, and characterized the sufficient con-

ditions on the minimum and maximum sizes of candidate anomalous structures to guarantee the

consistency of our tests. We have further derived the necessary conditions and showed that our

tests are order level optimal and nearly order level optimal respectively in terms of the minimum
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and maximum sizes of candidate structures. For the problem of anomalous data stream detection,

we have built MMD-based distribution-free tests to detect anomalous data streams. We have char-

acterized the scaling behavior of the sample size m as the total number n of data streams goes to

infinity in order to guarantee consistency of our tests. We have further characterized the conditions

under which no test is universally consistent for arbitrary p and q, and thus established that our

proposed tests are order level optimal.

For the secure communication problem, we have studied two degraded broadcast channel mod-

els. For the first model of the degraded broadcast channel with layered decoding and layered se-

crecy, we have studied the K-receiver degraded DMC and Gaussian MIMO cases. We have fully

characterized the secrecy capacity regions of these two channels. We have further proposed an

application of such an information theoretic model to the problem of multi-secret sharing, which

is difficult to solve using number theoretic tools. We have characterized the secret sharing capac-

ity region by reformulating the secret sharing problem into the problem of the degraded Gaussian

MIMO broadcast channel. For the second model of the degraded broadcast channel with secrecy

outside a bounded range, we have studied a four-receiver DMC case. We have characterized the

secrecy capacity region of this model. We have designed an achievable scheme based on superpo-

sition, joint embedded coding and binning, and rate splitting and sharing. Among the techniques,

rate splitting and sharing is critical for deriving a larger achievable region, for which the converse

can be established.

We note that during the preparation of this thesis, we have characterized the secrecy capacity

region for the K-user scenario with secrecy outside a bounded range. The idea of the achievable

scheme is to designate one superposition layer to each message with random binning employed

for each layer for protecting all upper-layer messages from lower-layer receivers. Such a scheme

allows adjacent layers to share rates so that part of the rate of each message can potentially be

shared with its immediate upper-layer message to enlarge the rate region. More importantly, we

have developed an induction approach to perform Fourier-Motzkin elimination over 2K variables

among Θ(K2) bounds to obtain a close-form achievable rate region.
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Furthermore, during the preparation of this thesis, we have studied the problem of estimating

KL divergence between large alphabet distributions, in which the alphabet size k of the distribu-

tions can scale to infinity. Such a problem is interesting because the KL divergence is an important

metric in information theory that measures the distance between two distributions. Such a metric

can be further applied to solve the nonparametric anomaly detection problem. The estimation is

based on m and n samples from two distributions respectively. We have shown that there does

not exist any consistent estimator to guarantee asymptotically small worst case quadratic risk over

the set of all pairs of distributions. We further consider a more practical set that contains pairs of

distributions with bounded ratio. We have proposed an augmented plug-in estimator and charac-

terized the sufficient and necessary conditions for this test to be consistent, which match in terms

of the order of sample complexity. Furthermore, we have shown the necessary conditions for any

estimator to be consistent.

6.2 Future Work

The exploration of the problems presented in this thesis further opens a number of research direc-

tions in the future.

We have studied the problem of detecting anomalous geometric structure over line, ring, and

lattice networks. For future work, we are interested in detecting an event with a certain graph-

based connectivity structure. For example, events of interests can be paths, subgraphs, cliques,

or trees in networks. Such events can arise naturally in practice. For example, a trail event can

model the object detection/tracking problem studied in signal processing, and a subgraph event

can model an infected group of nodes in epidemic detection studied in social science settings.

Previous studies of this problem mainly focused on parametric models, while our exploration will

investigate nonparametric problems and design distribution-free tests.

We will also investigate scenarios where data samples arrive in an online fashion. We will

design tests for detecting the change of a structure or a data stream from being typical to anomalous
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as early as possible. We will then further characterize the performance of the designed tests in

terms of the tradeoff between the detection accuracy, the expected sample size and delay, and the

computational complexity of the algorithms.

We have shown the sufficient and necessary sample complexity for the augmented plug-in es-

timator for consistent estimation of KL divergence. We have further characterized the necessary

conditions on the sample complexity for any consistent estimator. By comparing these two con-

ditions, the augmented plug-in estimator is not optimal in terms of sample complexity and has a

log k gap compared to the necessary sample complexity for any consistent estimator. In the future,

we will further design consistent estimators that match the developed necessary conditions on the

sample complexity.

We have characterized the secrecy capacity region for the discrete memoryless broadcast chan-

nel with secrecy outside a bounded range. Extension of such a model can be applied to study more

practical fading wiretap channels with continuous channel states, in which messages decoded at a

certain receiver are required to be kept secure from receivers that are outside a bounded range (i.e.,

with a certain level of worse channel quality). It is also of interest to study the models with arbi-

trary number of receivers in this class in the context of compound scenarios, in which each receiver

and/or eavesdropper can represent a group of nodes. Such type of scenarios are more flexible to

model practical networks with clusters of receivers.
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