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Abstract 
 

This dissertation consists of three essays on estimating and testing structural changes 

in high dimensional econometrics models. These essays are based on three working 

papers joint with Prof. Badi Baltagi and Prof. Chihwa Kao. The first essay considers 

estimating the date of a single common change in the regression coefficients of a 

heterogeneous large N and large T panel data model with or without strong cross-

sectional dependence. The second essay considers estimating a high dimensional factor 

model with an unknown number of latent factors and a single common change in the 

number of factors and/or factor loadings. The third essay considers estimating a high 

dimensional factor model with an unknown number of latent factors and multiple 

common changes in the number of factors and/or factor loadings, and also testing 

procedures to detect the presence and number of structural changes.  

The first essay studies the asymptotic properties of the least squares estimator of the 

common change point in large heterogeneous panel data models under various sets of 

conditions on the change magnitude and N-T ratio, allowing N and T to go to infinity 

jointly. Consistency and limiting distribution are established under general conditions. A 

general Hajek-Renyi inequality is introduced to calculate the order of the expectation of 

sup-type terms. Both weak and strong cross-sectional dependence are considered. In the 

former case the least squares estimator is consistent as the number of subjects tends to 

infinity while in the latter case a two step estimator is proposed and consistency can be 

recovered once estimated factors are used to control the cross-sectional dependence. The 

limiting distribution is derived allowing the error process to be serially dependent and 



heteroskedastic of unknown form, and inference can be made based on the simulated 

distribution.  

The second essay tackles the identification and estimation of a high dimensional factor 

model with unknown number of latent factors and a single common break in the number 

of factors and/or factor loadings. Since the factors are unobservable, the change point 

estimator is based on the second moments of the estimated pseudo factors. This essay 

shows that the estimation error of the proposed estimator is bounded in probability as N 

and T go to infinity jointly. This essay also shows that the proposed estimator has a high 

degree of robustness to misspecification of the number of pseudo factors. With the 

estimated change point plugged in, consistency of the estimated number of pre and post-

break factors and convergence rate of the estimated pre and post-break factor space are 

then established under fairly general assumptions. Finite sample performance of the 

proposed estimators is investigated using Monte Carlo experiments.  

The third essay considers high dimensional factor models with multiple common 

structural changes. Based on the second moments of the estimated pseudo factors, both 

joint and sequential estimation of the change points are considered. The estimation error 

of both estimators is bounded in probability as the cross-sectional dimension N and the 

time dimension T go to infinity jointly. The measurement error contained in the estimated 

pseudo factors has no effect on the asymptotic properties of the estimated change points 

as N and T go to infinity jointly, and no N-T ratio condition is needed. The estimated 

change points are plugged in to estimate the number of factors and the factor space in 

each regime. Although the estimated change points are inconsistent, using them 

asymptotically has no effect on subsequent estimation. This essay also proposes (i) tests 



for the null of no change versus the alternative of l changes and (ii) tests for the null of l 

changes versus the alternative of l + 1 changes. These tests allow us to make inference on 

the presence and number of structural changes. Simulation results show good 

performance of the proposed estimation and testing procedures.  

 



 

 

Essays on Structural Changes in High Dimensional Econometric 

Models 

 

 

Fa Wang 

BA, Xi’an Jiaotong University, 2010 

 

DISSERTATION 

Submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in Economics in the Graduate School of Syracuse University. 

 

May 2016 

 



 

 

Copyright 2016 Fa Wang 

All Rights Reserved 



vi 

	

Acknowledgements 

    My deepest gratitude goes to all the people who helped me complete this dissertation 

and contributed my intellectual progress at Syracuse University. 

    In particular, I would like to thank my advisors, Professors Chihwa Kao and Badi 

Baltagi for their encouragement, support and insightful guidance in each step of my 

progress. I would also like to thank Professors Emil Iantchev, Jerry Kelly, William 

Horrace, Jan Ondrich, Derek Laing, Devashish Mitra, Lourenzo Paz for helping build my 

knowledge and techniques for economic research, and thank Professors Dan Coman, Jani 

Onninen, Philip Griffin, Terry McConnell, Declan Quinn and Graham Leuschke for 

giving me formal mathematical training. I appreciate the contribution of Professors 

Promod Varshney, Yoonseok Lee, Alfonso Flores-Lagunes and William Horrace to my 

dissertation defense. I also benefit a lot from the suggestions and encouragement from 

Professors Jushan Bai, Lorenzo Trapani, Giovanni Urga, and Liang Chen.  

My special thanks go to Professor Yusen Kwoh and Ying Li. I am deeply influenced 

by their values. I also want to thank Professor Chung Chen for his help. I also benefit a 

lot from my fellow classmates. They are Ran An, Alexander Falevich, Zaozao He, 

Stanley Jordan, Bin Peng, Shaofang Qi, Judith Ricks, Zelin Tao, Ian Wright, Tingting 

Xiong, Jinqi Ye, Pengju Zhang and Hantao Zheng. Moreover, I would like to 

acknowledge assistance from Mary Santy at Center for Policy Research and Sue Lewis, 

Laura Sauta and Maureen Eastham in the Economics Department of Syracuse University. 

Last, but most important, my lifelong appreciation goes to my parents, my parents in 

law and especially my wife Nianxia Cao. It is her that gives me a happy PhD life. 



vii 

	

Table of Contents 
 

Page 
Essay I: Change Point Estimation in Large Heterogeneous Panels..................... 1 
  
Introduction................................................................................................................. 2 
Model and Notation.................................................................................................... 5 
Least Squares Estimation of the Change Point........................................................... 6 
Asymptotics with Weak Cross-sectional Dependence................................................ 10 
Estimation with Strong Cross-sectional Dependence................................................. 15 
Simulations.................................................................................................................. 21 
Conclusion.................................................................................................................. 21 
References .................................................................................................................. 22 
Figures......................................................................................................................... 25 
Appendix..................................................................................................................... 27 
  
Essay II: Identification and Estimation of a Large Factor Model with 
Structural Instability................................................................................................ 

 
57 

  
Introduction................................................................................................................. 58 
Notation and Preliminaries.......................................................................................... 62 
Equivalent Representation and Assumptions.............................................................. 63 
Estimating the Change point....................................................................................... 67 
Determining the Number of Factors........................................................................... 72 
Estimating the Factor Space........................................................................................ 75 
Further Issues.............................................................................................................. 76 
Simulations.................................................................................................................. 78 
Conclusions................................................................................................................. 82 
References................................................................................................................... 83 
Figures......................................................................................................................... 86 
Tables..........................................................................................................................    89 
Appendix..................................................................................................................... 92 
  
Essay III: Estimating and Testing High Dimensional Factor Models with 
Multiple Structural Changes.................................................................................... 

 
126 

  
Introduction ................................................................................................................ 127 
Notation and Preliminaries.......................................................................................... 130 
Estimating Models with Multiple Changes................................................................. 131 
Testing Multiple Changes........................................................................................... 139 
Reestimating the Change Points……......................................................................... 146 
Monte Carlo Simulations............................................................................................ 149 
Conclusions................................................................................................................. 152 
References................................................................................................................... 153 
Figures......................................................................................................................... 156 



viii 

	

Tables.......................................................................................................................... 158 
Appendix..................................................................................................................... 161 
 
 

List of Tables and Figures 
 

Page 
TABLES 
 
Essay II: Identification and Estimation of a Large Factor Model with Structural 
Instability 
 
Table 1: Estimated Number of Pre-break and Post-break Factors and Estimated 
Factor Space for Setup 1 with r1=3, r2=5 and r+q1=7................................................. 

 
89 

 
Table 2: Estimated Number of Pre-break and Post-break Factors and Estimated 
Factor Space for Setup 2 with r1=3, r2=5 and r+q1=5................................................. 

 
90 
 

Table 3: Estimated Number of Pre-break and Post-break Factors and Estimated 
Factor Space for Setup 3 with r1=3, r2=3 and r+q1=5................................................. 

 
91 

 
Essay III: Estimating and Testing High Dimensional Factor Models with Multiple 
Structural Changes 
 
Table 1: Estimated Number of Factors in Each Regime for r1=2, r2=2, r3=3, 	r =7....  158 
 
Table 2: Size of Tests and Probabilities of Selecting Changes................................... 
 

 159 
 

Table 3: Power of Tests and Probabilities of Selecting Changes for L=2..................  160 
 
 
FIGURES 
 
Essay I: Change Point Estimation in Large Heterogeneous Panels 
 
Figure 1: Simulated Distribution of argmaxW(m) for T=100, k0=50, N=1 and 5......   25 
 
Figure 2: Simulated Distribution of argmaxW(m) for T=100, k0=50, N=10 and 20..   26 
 
Essay II: Identification and Estimation of a Large Factor Model with Structural 
Instability 
 
Figure 1: Histogram of 		k̂  for (N,T)=(100,100), (r1,r2,r+q1)=(3,5,7)..........................   86 

 



ix 

	

Figure 2: Histogram of 		k̂  for (N,T)=(100,100), (r1,r2,r+q1)=(3,3,5), a=1..................  87 
 
Figure 3: Histogram of 		k̂  for (N,T)=(100,100), (r1,r2,r+q1)=(3,3,5), a=0.2...............  88 
 
Essay III: Estimating and Testing High Dimensional Factor Models with Multiple 
Structural Changes 
 
Figure 1: Histogram of Estimated Change Points for (N,T)=(100,100), r1=2, r2=2, 
r3=3, 	r =7.................................................................................................................... 

 
156 

 
Figure 2: Histogram of Estimated Change Points for (N,T)=(100,200), r1=2, r2=2, 
r3=3, 	r =7.................................................................................................................... 

 
157 

 



 

 

 

 

Essay I:  Change Point Estimation in Large Heterogeneous 
Panels 

 

 1



1 Introduction

Recently, the econometrics literature has witnessed a wave of development in large panel

data models (large N and large T ), mainly due to its capability of handling cross-sectional

dependence. See Pesaran (2006) and Bai (2009), who impose a multifactor error structure,

thereby controlling for cross-sectional dependence of the errors and potential correlation

between the regressors and the unobservable effects. Meanwhile, the spatial econometrics has

also been extended to panel data settings, see for example Yu, De Jong and Lee (2008) and

Lee and Yu (2010a, 2010b). Large panels also enable us to test cross-sectional dependence,

see Ng (2006), Pesaran (2004, 2012), Pesaran, Ullah and Yamagata (2008) and Baltagi,

Feng and Kao (2011, 2012), to mention a few. However, for such panels with a long time

span, there is a substantial risk that the underlying data generating process has experienced

structural breaks at some unknown time due to various factors. Examples include important

economic events such as the European debt crisis, or political events such as the end of the

cold war, or gradual but fundamental changes in economic structure due to technological

progress, or policy change such as the end of China’s one-child policy, to mention a few.

If we ignore the parameter changes, standard estimators will be inconsistent and statistical

inference will be misleading. Instead, if we explicitly take them into account, the result

will be useful for analyzing and evaluating the effect of a policy change, for uncovering the

underlying factors that lead to structural change, and for determining whether the response

of economic variables are immediate or gradual. This paper therefore studies the parameter

change problem in large panel data model with unknown change point.

Change point estimation in linear regression model with single change is analyzed in Bai

(1997). Bai and Perron (1998) extend Bai (1997) to the case with multiple changes and

also propose tests for the presence of structural change and the number of changes. See also

Qu and Perron (2007) for a system of equations, and Bai, Lumsdaine and Stock (1998) for

multivariate time series. For other studies on structural change in a finite dimensional setup,

see the comprehensive survey by Perron (2006). Bai et al. (1998) find that the number of

series is positively related to the accuracy of the change point estimator. To formally analyze

this phenomenon, Bai (2010) studies the asymptotic properties of the change point estimator

in a panel mean shift setup allowing the number of series N to go to infinity jointly with
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the sample size T . Based on Bai (2010), Baltagi, Kao and Liu (2014) and Bada, Gualtieri,

Kneip and Sickles (2015) study the change point estimation in a homogeneous panel setup,

the latter propose a novel Haar wavelet related method. Kim (2011) generalizes Bai (2010)

to the case with either mean shift or time trend break or both. Kim (2011) also shows that

both cross-sectional and serial dependence of the errors deteriorate the asymptotic behavior

of the change point estimator and when the errors have a common factor structure, it reduces

to the univariate case. To recover the consistency, Kim (2014) estimates the change point

jointly with the factors and factor loadings.

This paper considers least squares estimation of a common change point in a large het-

erogeneous panel data model, allowing the cross-sectional dependence to be either weak or

strong. The heterogeneous framework is general enough to include the most popular panel

data models as special cases, so that the results derived here could be applied to these

cases with minor adjustment. We first focus on some fundamental diffi culties in extend-

ing Bai (1997, 2010) to the panel regression setup. The key problem is for random variables

XiT = Op(1) (or op(1)) as T →∞, 1
N

∑N
i=1 XiT is not necessarily Op(1) (or op(1) correspond-

ingly) as N and T go to infinity jointly. A simple counterexample is that XiT is identically

distributed over T , independent over i, mean zero and variance i2. This problem is partially

solved in Bai (2010) and Kim (2011) by utilizing the specificity of the regressors. In the mean

shift setup, xit = 1 for all i and t and in the time trend setup, xit = t for all i. However,

in the general heterogeneous panel regression setup, it becomes especially troublesome and

unavoidable. We solve this problem by introducing a new technique, a general Hajek-Renyi

inequality proposed recently in Fazekas and Klesov (2001). An example is given to illustrate

how to calculate the order of the expectation of sup-type terms, which in fact is intrinsically

related to the uniform law of large numbers. In view of its power, we believe this new tool

will also be useful in other places in the econometrics literature.

We then establish the consistency of the estimated common change point under various

sets of conditions on the change magnitude and N -T ratio, allowing N and T to go to infinity

jointly. As in Kim (2011), we consider both weak and strong cross-sectional dependence of

the errors. In the former case, the change point is consistent as the number of series tends to

infinity while in the latter case, we propose a two step estimator and show that consistency

can be recovered once estimated factors are used to control for cross-sectional dependence.

It is also worth noting that because of the powerful tool, our assumptions on the data
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generating process is fairly general. Rather than assuming specific DGP, e.g., linear process,

we only require Doob’s maximal inequality to be applicable plus some uniformly bounded

moments conditions, see Section 4 for details.

The limiting distribution is derived under the same asymptotic framework as Bai (2010),

i.e., shrinking break in the N dimension, but allowing the errors to be cross-sectionally

weakly dependent and serially dependent and heteroskedastic of unknown form. The limiting

distribution in Bai (2010) is derived assuming the errors are cross-sectionally and serially

independent, thus our results generalize those obtained in Bai (2010). This step is nontrivial,

see the Appendix for details. Our proof is rigorous and self-contained. Also, our results do

not require the DGP to be stationary even within each regime. Based on our results, further

parametric assumption can be imposed on the DGP to consistently estimate the parameters

in the limiting distribution, and then the distribution can be simulated and inference can be

made based on this simulated distribution.

It is worth pointing out the difference and contribution of this paper compared to Baltagi,

Feng and Kao (2016), which also study the parameter change problem in large heterogeneous

panels. While Baltagi et al. (2016) focus on the asymptotic properties of the estimated

regression coeffi cients and only prove consistency of the change point estimator, this paper

studies some fundamental issues in the joint limit asymptotics of change point estimation

and the proof of the consistency in Baltagi et al. (2016) is based on solving these issues.

Furthermore, this paper derives the limiting distribution of the change point estimator, so

that inference regarding the change point can be made. Another difference is how each paper

controls for cross-sectional dependence. Baltagi et al. (2016) use cross-sectional averages of

the dependent variable and the regressors following Pesaran (2006), while this paper uses

estimated factors following Bai (2009).

The rest of the paper is organized as follows. Section 2 introduces the model setup

and notation. Section 3 considers least squares estimation of the change point and related

fundamental issues. Section 4 studies the asymptotic properties of the least squares estimator

when cross-sectional dependence is weak. Section 5 considers estimation of the change point

when cross-sectional dependence is strong. Section 6 reports simulation results, while Section

7 concludes. The proofs are given in the Appendix.
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2 Model and notation

Consider the following panel data model with a common structural break at k0:

yit =

{
x′itβi + eit, for i = 1, ..., N and t = 1, ..., k0,

x′itβi + z′itδi + eit, for i = 1, ..., N and t = k0 + 1, ..., T,
(1)

where yit is the dependent variable, xit is a p dimensional vector of regressors, βi is a p

dimensional vector of unknown coeffi cients, zit is a q dimensional vector of regressors whose

coeffi cients experienced a structural change, δi is a q dimensional vector of unknown break

magnitude, zit = R′xit and R = (0q×(p−q), Iq×q)
′ so that p > q and p = q correspond to

partial change and pure change, respectively. eit is the error term allowed to have weak

cross-sectional and serial dependence as well as heteroskedasticity. Both N and T are large.

In case cross-sectional dependence is strong, a common factor structure is imposed and the

model becomes:

yit =

{
x′itβi + F 0′

t λi + eit, for i = 1, ..., N and t = 1, ..., k0,
x′itβi + z′itδi + F 0′

t λi + eit, for i = 1, ..., N and t = k0 + 1, ..., T,
(2)

where F 0
t is an s dimensional vector of unobservable common factors, λi is an s dimensional

vector of unobservable factor loadings. In matrix form, the model can be written as

Yi = Xiβi + Z0iδi + ei, for i = 1, ..., N, (3)

in case the cross-sectional dependence is weak and

Yi = Xiβi + Z0iδi + F 0λi + ei, for i = 1, ..., N, (4)

in case the cross-sectional dependence is strong, where Z0i = (0q×k0 , zi,k0+1, ..., zi,T )′. Also, for

any possible change point k, define Z1i = (zi,1, ..., zi,k, 0q×(T−k))
′, Z2i = (0q×k, zi,k+1, ..., zi,T )′

and Z∆i = (Z2i − Z0i)sgn(k0 − k), it follows Z0i = X0iR, Z1i = X1iR, Z2i = X2iR and

Z∆i = X∆iR once X0i, X1i, X2i and X∆i are defined similarly. To study the asymptotic

behavior of the change point estimator, the whole set of possible change point, [1, T ], is

divided into several different regions. Define

K = {k : |k − k0| ≤ Tη},

Kc = {k : |k − k0| > Tη, 1 ≤ k ≤ T},

K(k0) = {k : k 6= k0, |k − k0| < Tη)},
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for some η ∈ (0,min{τ 0, 1 − τ 0}), where τ 0 = k0/T is the change fraction, and for some

C > 0,

K(C) = {k : |k − k0| > C} ∩K.

Throughout the paper, ‖A‖ = (trAA′)
1
2 denotes the Frobenius norm, ‖A‖op denotes the

operator norm, ρmin(A) and ρmax(A) denote the minimum and maximum eigenvalue of A,
p→ denotes convergence in probability, d→ denotes convergence in distribution, c represents a

typical constant, (N, T )→∞ denotes N and T going to infinity jointly.

3 Least squares estimation of the change point

For each possible change point k, the sum of squared residuals is:

SSR(k) =
∑N

i=1
SSRi(k) =

∑N

i=1
Y ′iMXi,Z2i

Yi, (5)

where MXi,Z2i
= I − PXi,Z2i

and PXi,Z2i
is the projection matrix of (Xi, Z2i). The change

point estimator is obtained by minimizing the sum of squared residuals:

k̂ = arg minSSR(k).

From the identity Y ′iMXi,Z2i
Yi = Y ′iMXiYi − δ̂

′
i(k)(Z ′2iMXiZ2i)δ̂i(k), where (β̂

′
i(k), δ̂

′
i(k))′ is

the least squares estimator of (β′i, δ
′
i)
′ by regressing Yi on Xi and Z2i, we have

SSR(k) =
∑N

i=1
Y ′iMXiYi −

∑N

i=1
δ̂
′
i(k)(Z ′2iMXiZ2i)δ̂i(k). (6)

For simplicity, MXi is replaced by Mi henceforth. Define Vi(k) = δ̂
′
i(k)(Z ′2iMiZ2i)δ̂i(k), then

SSR(k) =
∑N

i=1 Y
′
iMiYi −

∑N
i=1 Vi(k) and SSR(k) − SSR(k0) =

∑N
i=1[Vi(k0) − Vi(k)], it

follows that

k̂ = arg minSSR(k)− SSR(k0) = arg max
∑N

i=1
[Vi(k)− Vi(k0)]. (7)

We consider the asymptotic behavior of k̂ under different sets of assumptions. Define τ̂ = k̂/T

as the estimated break fraction. To show τ̂ − τ 0 = op(1) as (N, T ) → ∞, we need to
show for any ε > 0, P (k̂ ∈ Kc) < ε as (N, T ) → ∞. And to show k̂ − k0 = Op(1), we

need to show P (k̂ ∈ K(C)) < ε as (N, T ) → ∞ additionally, or P (k̂ ∈ K(k0)) < ε as

(N, T ) → ∞, if we want to show k̂ is consistent for k0. Let O represent certain possible

region of change point, e.g., Kc. By definition of k̂,
∑N

i=1[Vi(k̂)−Vi(k0)] ≥ 0, hence if k̂ ∈ O,
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then sup
k∈O

∑N
i=1[Vi(k)−Vi(k0)] ≥ 0. This implies P (k̂ ∈ O) ≤ P (sup

k∈O

∑N
i=1[Vi(k)−Vi(k0)] ≥ 0),

hence to show the former is asymptotically negligible, it suffi ces to show the latter. In the

appendix, we show that the set {ω : sup
k∈O

∑N
i=1[Vi(k)−Vi(k0)] ≥ 0} is exactly the same as the

set {ω : sup
k∈O

1
|k−k0|

∑N
i=1[Vi(k)−Vi(k0)] ≥ 0}, hence it suffi ces to show P (sup

k∈O

1
|k−k0|

∑N
i=1[Vi(k)−

Vi(k0)] ≥ 0) < ε as (N, T )→∞.

Remark 1 The above argument embodies the essence of least squares estimation and appears

explicitly, or implicitly in previous change point studies. In fact, the proof of the consistency

of β in Bai (2009) is also based on this argument. The difference is that here the supremum is

taken with respect to k while in Bai (2009) the supremum is taken with respect to F ′F/T = I.

This argument also can be further generalized and polished to handle other problems featured

by the presence of an infinite number of nuisance parameters, by replacing the sum of squared

residuals with other criterion function and taking the supremum over their corresponding

parameter subspaces. Here we formalize this argument so that it can be easily modified to fit

other problems.

Plug in

δ̂i(k) = (Z ′2iMiZ2i)
−1(Z ′2iMiYi) = (Z ′2iMiZ2i)

−1(Z ′2iMi(Xiβi + Z0iδi + ei)) (8)

= (Z ′2iMiZ2i)
−1(Z ′2iMiZ0i)δi + (Z ′2iMiZ2i)

−1(Z ′2iMiei),

we have

δ̂
′
i(k)(Z ′2iMiZ2i)δ̂i(k) = δ′i(Z

′
0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ0i)δi (9)

+2δ′i(Z
′
0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiei)

+(e′iMiZ2i)(Z
′
2iMiZ2i)

−1(Z ′2iMiei).∑N

i=1
Vi(k)− Vi(k0)

=
∑N

i=1
[δ′i(Z

′
0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ0i)δi − δ′iZ ′0iMiZ0iδi]

+
∑N

i=1
[2δ′i(Z

′
0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiei)− 2δ′iZ
′
0iMiei]

+
∑N

i=1
[(e′iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiei)− (e′iMiZ0i)(Z
′
0iMiZ0i)

−1(Z ′0iMiei)]. (10)

Define Gi(k) as the first term divided by − |k0 − k| for k 6= k0 and Hi(k) as the last two

terms within the summation, then

1

|k − k0|
∑N

i=1
[Vi(k)− Vi(k0)] = −

∑N

i=1
Gi(k) +

1

|k0 − k|
∑N

i=1
Hi(k). (11)

 7



Thus sup
k∈O

1
|k−k0|

∑N
i=1[Vi(k) − Vi(k0)] ≥ 0 implies sup

k∈O

∣∣∣ 1
|k−k0|

∑N
i=1Hi(k)

∣∣∣ ≥ inf
k∈O

∑N
i=1Gi(k),

and it suffi ces to show P (sup
k∈O

∣∣∣ 1
|k−k0|

∑N
i=1Hi(k)

∣∣∣ ≥ inf
k∈O

∑N
i=1Gi(k)) < ε as (N, T )→∞.

It is worth noting the technical diffi culty here. We need to show that the left hand side

will be dominated by the right hand side asymptotically. 1
|k−k0|

∑N
i=1Hi(k) can be written

as:

2

∑N
i=1 δ

′
i(Z
′
0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiei)

|k − k0|
− 2

∑N
i=1 δ

′
iZ
′
0iMiei

|k − k0|

+

∑N
i=1 e

′
iMiZ2i(Z

′
2iMiZ2i)

−1Z ′2iMiei
|k − k0|

−
∑N

i=1 e
′
iMiZ0i(Z

′
0iMiZ0i)

−1Z ′0iMiei
|k − k0|

, (12)

and consider the second term as a representative example. To calculate the stochastic order

of sup
k∈O

∣∣∣ 1
|k−k0|

∑N
i=1 δ

′
iZ
′
0iMiei

∣∣∣, ifN = 1, we are back to Bai (1997) and Hajek-Renyi inequality

(Hajek and Renyi (1955)) is applicable. However, if N and T go to infinity jointly, Hajek-

Renyi inequality is no longer directly applicable. Noting that sup
k∈O

∣∣∣ 1
|k−k0|

∑N
i=1 δ

′
iZ
′
0iMiei

∣∣∣ ≤∑N
i=1 sup

k∈O

∣∣∣ 1
|k−k0|δ

′
iZ
′
0iMiei

∣∣∣, we may conclude that sup
k∈O

∣∣∣ 1
|k−k0|

∑N
i=1 δ

′
iZ
′
0iMiei

∣∣∣ = Op(NBNT ), if

sup
k∈O

∣∣∣ 1
|k−k0|δ

′
iZ
′
0iMiei

∣∣∣ = Op(BNT ) for each i, where BNT represents a certain speed. However,

this is not necessarily true. We provide three representative counterexamples.

Counterexample 1: XiT is iid over i, XiT = Op(1), but E(XiT )→∞ as T →∞.
Suppose P (XiT = 0) = 1 − 1

T
and P (XiT = T 2) = 1

T
, then E(XiT ) = T , V ar(XiT ) =

T 3 − T 2, XiT
p→ 0 as T →∞ for each i and for each T , 1

N

∑N
i=1 XiT

p→ 1
N

∑N
i=1E(XiT ) = T

as N →∞. This implies that when both N and T are large, 1
N

∑N
i=1XiT will be close to a

large number with high probability. This contradicts that 1
N

∑N
i=1XiT = Op(1).

Counterexample 2: XiT is independent over i, XiT = Op(1) and E(XiT ) is bounded as

T →∞, but E(XiT ) is not uniformly bounded over i.

Suppose XiT follows χ2(i) for all T and is independent over i, then E( 1
N

∑N
i=1 XiT ) = N+1

2

and V ar( 1
N

∑N
i=1XiT ) = N+1

N
, and it follows that 1

N

∑N
i=1 XiT = Op(N).

Counterexample 3: XiT is independent over i, XiT = Op(1) and E(XiT ) is uniformly

bounded over i and T , but V ar(XiT ) is not uniformly bounded over i.

Suppose XiT follows N(0, i2) for all T and is independent over i, then E(XiT ) = 0 for all

i and T , E( 1
N

∑N
i=1XiT ) = 0 and V ar( 1

N

∑N
i=1 XiT ) = (N+1)(2N+1)

6N
≈ N

3
, and it follows that

1
N

∑N
i=1 XiT = Op(

√
N).

In Bai (2010), Kim (2011) and Kim (2014), this problem is partially solved by utilizing

the specificity of the regressors. In the mean shift setup, xit = 1 for all i and t, and in
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the time trend setup, xit = t for all i. These two cases do not belong to any of the above

counterexamples and for such special regressors, the second term of (12) (as well as the

other terms) can be further algebraically simplified, so that calculating the stochastic order

is feasible. In the current setup with general regressors, a newmethod is required. Inspired by

the above counterexamples, a feasible solution is to show E(sup
k∈O

∣∣∣ 1
|k−k0|δ

′
iZ
′
0iMiei

∣∣∣) ≤MBNT

for some M < ∞ and all i and T . Once this is done, it follows by the Markov inequality

that for a large constant C,

P (sup
k∈O

∣∣∣∣ 1

|k − k0|
∑N

i=1
δ′iZ

′
0iMiei

∣∣∣∣ > C) ≤ P (
∑N

i=1
sup
k∈O

∣∣∣∣ 1

|k − k0|
δ′iZ

′
0iMiei

∣∣∣∣ > C) ≤ NMBNT

C
,

so that sup
k∈O

∣∣∣ 1
|k−k0|

∑N
i=1 δ

′
iZ
′
0iMiei

∣∣∣ = Op(NBNT ). Thus to implement this method, the key

step is to control the expectation of sup-type terms uniformly over both i and T . For this,

we introduce a more powerful tool:

Lemma 1 General Hajek-Renyi inequality (Theorem 1.1 of Fazekas and Klesov (2001)):

Let β1, β2,..., βT be a sequence of nondecreasing positive numbers. Let α1, α2,..., αT be a

sequence of nonnegative numbers. Let r be a fixed positive number. Let {xt, t = 1, ....} be a
sequence of random variables and Sl =

∑l
t=1 xt. Assume that for each m with 1 ≤ m ≤ T ,

E( sup
1≤l≤m

|Sl|r) ≤
∑m

l=1 αl, then E( sup
1≤l≤T

∣∣∣Slβl ∣∣∣r) ≤ 4
∑T

l=1
αl
βrl
.

This lemma permits calculating the order of expectation of sup-type terms, rather than

just the stochastic order of sup-type terms. Note that no dependence structure of xt is

assumed. This lemma also permits controlling the expectation uniformly over i if we assume

the r-th moment is uniformly bounded over i. Consider the following representative example.

Example 1 Suppose for each i, {xit, t = 1, ....} is a sequence of random variables and

Sil =
∑l

t=1 xit. If Doob’s maximal inequality is applicable, then for each i and each m with

1 ≤ m ≤ T , E( sup
1≤l≤m

|Sil|r) ≤ ( r
r−1

)rE(|Sim|r). Take r = 2 and assume E(S2
im) = O(m)

uniformly over i, i.e., there exists M > 0 such that E(S2
im) ≤ mM for all i, we can take

αil = 4M so that E( sup
1≤l≤m

|Sil|2) ≤
∑m

l=1 αil for each i. If we take βl =
√
l, it follows from

this lemma that for each i,

E( sup
1≤l≤T

∣∣∣∣ 1√
l
Sil

∣∣∣∣2) ≤ 4
∑T

l=1

αil
l

= 16M
∑T

l=1

1

l
≈ 16M log T,
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and for each i and some η > 0,

E( sup
Tη+1≤l≤T

∣∣∣∣ 1√
l
Sil

∣∣∣∣2) ≤ 16M
∑T

l=Tη+1

1

l
= 16M(

∑T

l=1

1

l
−
∑Tη

l=1

1

l
)

= 16M [(
∑T

l=1

1

l
− log T )− (

∑Tη

l=1

1

l
− log Tη) + (log T − log Tη)]

→ 16M [γ − γ + (log T − log Tη)] = 16M log
1

η
,

where γ is the Euler-Mascheroni constant, thus E( sup
Tη+1≤l≤T

∣∣∣ 1√
l
Sil

∣∣∣2) is uniformly bounded

over i. If we take r = 4 and αil = (4
3
)4(l2 − (l − 1)2)M , we can also show that for each i,

E( sup
1≤l≤T

∣∣∣∣ 1√
l
Sil

∣∣∣∣4) ≤ 4
∑T

l=1

αil
l2

= 4(
4

3
)4M

∑T

l=1

2l − 1

l2
≈ 8(

4

3
)4M(log T ).

This example illustrates how we calculate the order of expectation of sup-type terms in the

Appendix and shows the power of Lemma 1.

4 Asymptotics with weak cross-sectional dependence

This section considers the asymptotic properties of the least squares estimator when cross-

sectional dependence is weak. We first present some regularity conditions.

Assumption 1 τ 0 = k0/T ∈ (0, 1).

The change point is assumed to be bounded away from 1 and T such that the size of each

subsample is a positive fraction of the total sample size. This is a conventional assumption

in the change point literature.

Assumption 2 (1) E(xitx
′
it) = ΣX

i and for all i, 0 < ρ1 < ρmin(ΣX
i ) < ρmax(ΣX

i ) < ρ2 <∞.
(2) There exists ρ0 > 0 such that for some η > 0 and all T and i, inf

k>T (τ0−η)
ρmin(

X′1iX1i

k
) >

ρ0 and inf
k<T (τ0+η)

ρmin(
X′2iX2i

T−k ) > ρ0.

(3) (Doob’s maximal inequality) Define {Ri(1, k) =
∑k

t=1(xitx
′
it − ΣX

i )}, {Ri(k, k0) =∑k0

t=k+1(xitx
′
it−ΣX

i )}, {Ri(k0 + 1, k) =
∑k

t=k0+1(xitx
′
it−ΣX

i )}, {Ri(k, T ) =
∑T

t=k+1(xitx
′
it−

ΣX
i )} and Rijm(1, k), Rijm(k, k0), Rijm(k0+1, k), Rijm(k, T ) as the j-th row and m-th column

of Ri(1, k), Ri(k, k0), Ri(k0 + 1, k), Ri(k, T ) respectively, then for 1 ≤ j ≤ p, 1 ≤ m ≤ p and

1 < r <∞,
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E( sup
1≤l≤k

|Rijm(1, l)|r) ≤ ( r
r−1

)rE(|Rijm(1, k)|r) for all 1 ≤ i ≤ N and 1 ≤ k ≤ T ,

E( sup
k≤l≤k0−1

|Rijm(l, k0)|r) ≤ ( r
r−1

)rE(|Rijm(k, k0)|r) for all 1 ≤ i ≤ N and 0 ≤ k ≤ k0−1,

E( sup
k0+1≤l≤k

|Rijm(k0 + 1, l)|r) ≤ ( r
r−1

)rE(|Rijm(k0, k)|r) for all 1 ≤ i ≤ N and k0 + 1 ≤

k ≤ T ,

E( sup
k≤l≤T−1

|Rijm(l, T )|r) ≤ ( r
r−1

)rE(|Rijm(k, T )|r) for all 1 ≤ i ≤ N and 0 ≤ k ≤ T − 1.

(4) There exists M > 0 such that for r = 2, 4, 1 ≤ j ≤ p and 1 ≤ m ≤ p,

E(|Rijm(1, k)|r) < k
r
2M for all 1 ≤ i ≤ N and 1 ≤ k ≤ T ,

E(|Rijm(k, k0)|r) < (k0 − k)
r
2M for all 1 ≤ i ≤ N and 0 ≤ k ≤ k0 − 1,

E(|Rijm(k0 + 1, k)|r) < (k − k0)
r
2M for all 1 ≤ i ≤ N and k0 + 1 ≤ k ≤ T ,

E(|Rijm(k, T )|r) < (T − k)
r
2M for all 1 ≤ i ≤ N and 0 ≤ k ≤ T − 1.

(5) Define λN =
∑N

i=1 δ
′
iδi and ξ = lim

N→∞
1
λN

∑N
i=1 δ

′
iΣ

ZZ
i δi, for each t, 1

λN

∑N
i=1 δ

′
izitz

′
itδi

p→
ξ as N →∞.

Part (1) requires ΣX
i to be positive definite and bounded uniformly over i. When ΣX

i is

the same for all i, this condition is directly satisfied. Part (2) requires X′1iX1i

k
and X′2iX2i

T−k to

be uniformly positive definite over i and over k > T (τ 0 − η) and k < T (τ 0 + η) respectively,

so that
∥∥∥(

X′1iX1i

k
)−1
∥∥∥ and ∥∥∥(

X′2iX2i

T−k )−1
∥∥∥ are uniformly bounded over i. If a strong law of large

numbers is applicable, and together with part (1), part (2) is true almost surely. Part (3)

assumes that Doob’s maximal inequality is applicable to the process Rijm(1, k), Rijm(k, k0),

Rijm(k0 + 1, k) and Rijm(k, T ) for 1 ≤ i ≤ N and 1 ≤ j,m ≤ p. Doob’s maximal inequality

has proved to be applicable to various processes, including i.i.d. sequences, martingale and

submartingale sequences. For economic data, this condition can be easily satisfied. Part (4)

further requires the r-th moment of Rijm(1, k), Rijm(k, k0), Rijm(k0 +1, k) and Rijm(k, T ) to

be O(k
r
2 ), O((k0 − k)

r
2 ), O((k − k0)

r
2 ) and O((T − k)

r
2 ) uniformly over i, respectively. This

will be satisfied if the regressors are weakly dependent over t. Parts (3) and (4) together

enable the use of Lemma 1 to calculate the order of sup-type terms. Note that here we do

not assume a specific data generating process, thus our assumptions are quite general. Part

(5) assumes a weak law of large numbers is applicable to 1
λN

∑N
i=1 δ

′
izitz

′
itδi for each t.

Assumption 3 (1) eit is independent with xjs for all i, t, j, s.

(2) (Doob’s maximal inequality) Define {Si(1, k) =
∑k

t=1 xiteit}, {Si(k, k0) =
∑k0

t=k+1 xiteit},
{Si(k0 + 1, k) =

∑k
t=k0+1 xiteit}, {Si(k, T ) =

∑T
t=k+1 xiteit} and Sij(1, k), Sij(k, k0), Sij(k0 +
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1, k), Sij(k, T ) as the j-th element of Si(1, k), Si(k, k0), Si(k0 + 1, k), Si(k, T ) respectively,

then for 1 ≤ j ≤ p and 1 < r <∞,
E( sup

1≤l≤k
|Sij(1, l)|r) ≤ ( r

r−1
)rE(|Sij(1, k)|r) for all 1 ≤ i ≤ N and 1 ≤ k ≤ T ,

E( sup
k≤l≤k0−1

|Sij(l, k0)|r) ≤ ( r
r−1

)rE(|Sij(k, k0)|r) for all 1 ≤ i ≤ N and 0 ≤ k ≤ k0 − 1,

E( sup
k0+1≤l≤k

|Sij(k0 + 1, l)|r) ≤ ( r
r−1

)rE(|Sij(k0, k)|r) for all 1 ≤ i ≤ N and k0+1 ≤ k ≤ T ,

E( sup
k≤l≤T−1

|Sij(l, T )|r) ≤ ( r
r−1

)rE(|Sij(k, T )|r) for all 1 ≤ i ≤ N and 0 ≤ k ≤ T − 1.

(3) There exists M > 0 such that for r = 2, 4 and for 1 ≤ j ≤ p,

E(|Sij(1, k)|r) < k
r
2M for all 1 ≤ i ≤ N and 1 ≤ k ≤ T ,

E(|Sij(k, k0)|r) < (k0 − k)
r
2M for all 1 ≤ i ≤ N and 0 ≤ k ≤ k0 − 1,

E(|Sij(k0 + 1, k)|r) < (k − k0)
r
2M for all 1 ≤ i ≤ N and k0 + 1 ≤ k ≤ T ,

E(|Sij(k, T )|r) < (T − k)
r
2M for all 1 ≤ i ≤ N and 0 ≤ k ≤ T − 1.

(4) Define ηNt = 1√
λN

∑N
i=1 δ

′
iziteit, there exists M > 0 such that

E( sup
k≤l≤k0−1

∣∣∣∑k0

t=l+1 ηNt

∣∣∣2) ≤ 4E(
∣∣∣∑k0

t=k+1 ηNt

∣∣∣2) ≤ (k0−k)M for all N and 0 ≤ k ≤ k0−1,

E( sup
k0+1≤l≤k

∣∣∣∑l
t=k0+1 ηNt

∣∣∣2) ≤ 4E(
∣∣∣∑k

t=k0+1 ηNt

∣∣∣2) ≤ (k − k0)M for all N and k0 + 1 ≤

k ≤ T .

(5) Define φst = lim
N→∞

E( 1
λN

∑N
i=1

∑N
j=1 δ

′
izisz

′
jtδjeisejt) as the limit of the covariance of

ηNs and ηNt. For any fixed C > 0, (ηN,k0−C , ..., ηN,k0+C)′
d→ (Z−C , ..., ZC)′ as N → ∞,

where (Z−C , ..., ZC)′ follows a multivariate normal distribution with mean zero and covariance

φst, k0 − C ≤ s, t ≤ k0 + C.

Part (1) assumes the error terms are independent of the regressors. Parts (2) and (3) are

analogous to parts (3) and (4) of Assumption 2. Part (2) requires Doob’s maximal inequality

to be applicable to the process Sij(1, k), Sij(k, k0), Sij(k0 + 1, k) and Sij(k, T ) for 1 ≤ i ≤ N

and 1 ≤ j ≤ p. Part (3) requires weak serial dependence of xiteit for each i. Part (4) is a

combination of parts (2) and (3), but imposed on the weighted cross-sectional average. Part

(5) assumes a central limit theorem is applicable to the fixed dimensional random vector

{ηNt, t = k0−C, ..., k0 +C}. Thus cross-sectional dependence of eit can be allowed but need
to be weak.

Given the above regularity conditions on the DGP, it is easy to see that asymptotic

properties of k̂ should depend on the change magnitude, λN , and the N -T ratio as (N, T )→
∞. We consider three sets of conditions.
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Assumption 4 Assume max
1≤i≤N

δ′iδi = O( 1
N

) and as (N, T )→∞,

(a) λN → λ <∞ and N√
T
→ 0.

(b) λN →∞ and N√
T
→ 0.

(c) lim inf
N→∞

λN
N
> 0.

Similar sets of conditions are also considered in Bai (2010). max
1≤i≤N

δ′iδi = O( 1
N

) is imposed

to ensure the change magnitude of each series is of similar order so that no series will be

dominant.

Theorem 1 Under Assumptions 1-3 and 4(a) or 4(b) or 4(c), τ̂ is consistent as (N, T )→
∞.

This result is mainly of theoretical importance. Recall that the least squares estimator is

searched in the whole set [1, T ], given the consistency of τ̂ , the search region can be narrowed

down to a local region of k0. Within this local region, the order of sup-type terms can be

established more accurately so that we can move one step further to improve the convergence

rate.

Theorem 2 Under Assumptions 1-3 and 4(a), k̂ − k0 = Op(1) as (N, T )→∞.

When λN → λ, the change magnitude is of the same order as that of the univariate case,

thus not surprisingly the result is also the same, see Bai (1997). Here the extra condition
N√
T
→ 01 is imposed to deal with the nuisance parameters βi, i = 1, ..., N .2 With β̂i plugged

in the least squares criterion function, for each i, the difference β̂i − βi would result in an
extra source of noise. It can be shown that each noise is O( 1√

T
), hence when N√

T
→ 0, T

is large enough to control the total noise resulting from the nuisance parameters. If we let

λN →∞ while still maintaining N√
T
→ 0, then we will have consistency of k̂.

Theorem 3 Under Assumptions 1-3 and 4(b) or 4(c), k̂ is consistent as (N, T )→∞.

While consistency under Assumption 4(b) still relies on N√
T
→ 0, consistency under

Assumption 4(c) only requires T → ∞. This is because when λN = O(N), the change

1The condition N√
T
→ 0 is stricter than that of Bai (2010),N log T

T → 0, but the spirit is the same. Bai
(2010) considers the mean shift setup, in the current setup we do not have the algebraic specificity of the
regressors.

2In terms of estimating the change point, βi, i = 1, ..., N are nuisance parameters.
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magnitude is large enough to overwhelm the nuisance parameters problem. Assumption

4(c) is satisfied when the change magnitude of each series is nonnegligible, thus this result

confirms Bai (2010) and Kim (2011) in the current regression setup that increasing the

number of series helps to identify the change point when cross-sectional dependence of the

error terms is weak.

Remark 2 It’s worth pointing out that once k̂ is consistent, the convergence rate of k̂ is not

well defined since k̂ has to be an integer. If τ̂ is defined as k̂/T , τ̂ has the same problem since

T τ̂ has to be an integer. For a sequence of random variables {Xn, n = 1, ...} and a sequence of
positive numbers {Cn, n = 1, ...}, Xn = Op(Cn) is defined in the sense that Xn/Cn is bounded

in probability. In most cases, we then derive the limiting distribution of Xn/Cn. However,

when Xn is restricted to be integers, this definition is no longer appropriate. Suppose Xn is

consistent for some integer θ, i.e., P (|Xn − θ| = 0)→ 1, then for any Cn, P (|Xn − θ| /Cn =

0) = P (|Xn − θ| = 0)→ 1. This implies that the convergence rate of Xn is arbitrary and the

limiting distribution of Xn/Cn is meaningless. Coming back to k̂, the convergence rate of k̂

will be arbitrary once k̂ is consistent, and it is meaningless to derive the limiting distribution

of k̂ − k0 by multiplying k̂ − k0 by some magnifying speed, say, N .

Except for the above theoretical concern, in practice the change magnitude may be small

and some series may not have structural change. Therefore, we will derive the limiting

distribution of k̂ under Assumption 4(a).

Theorem 4 Under Assumptions 1-3 and 4(a),

k̂ − k0
d→ arg maxW (m),

where W (m) is a partial sum process,

W (m) =


− |m|λξ + 2

√
λ
∑0

t=m+1 Zt, for m ≤ −1,
0, for m = 0,

− |m|λξ − 2
√
λ
∑m

t=1 Zt, for m ≥ 1,

(13)

and {Zt, t = −(k0 − 1), ..., 0, ..., T − k0} is a discrete time Gaussian process with mean zero
and autocovariance {φst, 1 ≤ s, t ≤ T}.

The key feature of this distribution is that it is free of the underlying DGP so that infer-

ence of the change point can be made. Different from the univariate case in which normality
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comes from applying the functional central limit theorem to the weighted serial average

vT
∑k0

t=k+1 δ
′
0ztet, where δT = δ0vT and vT → 0 as T → ∞, here the normality comes from

applying the central limit theorem to the weighted cross-sectional average 1√
λN

∑N
i=1 δ

′
iziteit,

also see Yao (1987), Bai (1997), Bai (2010) and Kim (2011). However, the essence of these

two frameworks are the same. A second feature is that this distribution is derived allowing

ziteit to be dependent over t, while in Bai (2010) ziteit is assumed to be uncorrelated over

t. Thus our result is more general and empirically relevant. This step is nontrivial, see the

Appendix for details, our proof is self-contained. Also note that the DGP is not required

to be stationary even within each regime. The autocovariance function φst could be of any

form, as long as parts (4) and (5) of Assumption 3 are satisfied.

It remains to estimate the parameters in the limiting distribution. λ and ξ can be esti-

mated by λ̂N =
∑N

i=1 δ̂
′
iδ̂i and ξ̂ = 1

T
1

λ̂N

∑T
t=1

∑N
i=1 δ̂

′
izitz

′
itδ̂i , where δ̂i and êis can be obtained

by least squares estimation of each subsample split at k̂, and it will not be diffi cult to show the

consistency of λ̂N and ξ̂. φst can be estimated by φ̂st = 1

λ̂N

∑N
i=1

∑N
j=1 δ̂

′
izisz

′
itδ̂iêisêit and if we

assume that the DGP is independent over i, φ̂st can be simplified to
1

λ̂N

∑N
i=1 δ̂

′
izisz

′
itδ̂iêisêit.

For each (s, t), it will not be diffi cult to show the consistency of φ̂st. However, the limiting

distribution relies on the consistency of the whole estimated covariance matrix {φ̂st, 1 ≤
s, t ≤ T}. If we impose a further assumption on ziteit, e.g., AR(1) or martingale difference,
then the consistency of {φ̂st, 1 ≤ s, t ≤ T} also will not be diffi cult to show. Once these
estimated parameters are available, we can simulate the distribution directly and inference

can be made based on this simulated distribution.

5 Estimation with strong cross-sectional dependence

This section considers estimating the change point when cross-sectional dependence is strong

due to common factors. When factors are observable and explicitly incorporated into the

model, we are back to the case with weak cross-sectional dependence. When factors are un-

observable, and we estimate the change point ignoring the factors, the least squares estimator

will be inconsistent even under Assumption 4(c). This is because when the cross-sectional de-

pendence is strong, increasing the number of series no longer helps in identifying the change

point. Kim (2011) discusses this phenomenon in the time trend break setup. In this case,

a feasible way to recover consistency is using estimated factors to control for cross-sectional

dependence. A similar method also can be found in Bai (2009) and Kim (2014).
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We first present some regularity conditions.

Assumption 5 (1) E ‖F 0
t ‖

4
< M < ∞, E(F 0

t ) = 0, E(F 0
t F

0′
t ) = ΣF and ΣF is positive

definite.

(2) (Doob’s maximal inequality) Define {Q(1, k) =
∑k

t=1(F 0
t F

0′
t − ΣF )}, {Q(k, k0) =∑k0

t=k+1(F 0
t F

0′
t −ΣF )}, {Q(k0 + 1, k) =

∑k
t=k0+1(F 0

t F
0′
t −ΣF )}, {Q(k, T ) =

∑T
t=k+1(F 0

t F
0′
t −

ΣF )} and Qjm(1, k), Qjm(k, k0), Qjm(k0 + 1, k), Qjm(k, T ) as the j-th row and m-th column

of Q(1, k), Q(k, k0), Q(k0 +1, k), Q(k, T ) respectively, then for 1 ≤ j,m ≤ s and 1 < r <∞,
E( sup

1≤l≤k
|Qjm(1, l)|r) ≤ ( r

r−1
)rE(|Qjm(1, k)|r) for 1 ≤ k ≤ T ,

E( sup
k≤l≤k0−1

|Qjm(l, k0)|r) ≤ ( r
r−1

)rE(|Qjm(k, k0)|r) for 0 ≤ k ≤ k0 − 1,

E( sup
k0+1≤l≤k

|Qjm(k0 + 1, l)|r) ≤ ( r
r−1

)rE(|Qjm(k0, k)|r) for k0 + 1 ≤ k ≤ T ,

E( sup
k≤l≤T−1

|Qjm(l, T )|r) ≤ ( r
r−1

)rE(|Qjm(k, T )|r) for 0 ≤ k ≤ T − 1.

(3) There exists M > 0 such that for r = 2, 4 and 1 ≤ j,m ≤ s,

E(|Qjm(1, k)|r) < k
r
2M for 1 ≤ k ≤ T ,

E(|Qjm(k, k0)|r) < (k0 − k)
r
2M for 0 ≤ k ≤ k0 − 1,

E(|Qjm(k0 + 1, k)|r) < (k − k0)
r
2M for k0 + 1 ≤ k ≤ T ,

E(|Qjm(k, T )|r) < (T − k)
r
2M for 0 ≤ k ≤ T − 1.

Part (1) mainly assumes that the factors have a uniformly bounded fourth moment. Parts

(2) and (3) are analogous to parts (3) and (4) of Assumption 2. Part (2) requires Doob’s

maximal inequality to be applicable to the process Qjm(1, k), Qjm(k, k0), Qjm(k0 + 1, k) and

Qjm(k, T ) for 1 ≤ j,m ≤ s. Part (3) requires the factors to be serially weakly dependent,

hence integrated factors are not allowed. Part (3) also implies 1
k0

∑k0

t=1 F
0
t F

0′
t

p→ ΣF and
1

T−k0

∑T
t=k0+1 F

0
t F

0′
t

p→ ΣF .

Assumption 6 (1) xit is independent of F 0
t for all i, t.

(2) Define wit = (x′it, F
0′
t )′,W1i = (wi1, ..., wik, 0, ..., 0)′ andW2i = (0, ..., 0, wi,k+1, ..., wiT )′,

there exists ρ0 > 0 such that for some η > 0 and all T and i, inf
k>T (τ0−η)

ρmin(
W ′1iW1i

k
) > ρ0 and

inf
k<T (τ0+η)

ρmin(
W ′2iW2i

T−k ) > ρ0.

Part (1) is assumed to simplify the analysis, since our emphasis is the effect of cross-

sectional dependence on the asymptotic properties of the change point estimator. If the

regressors are correlated with the factors, our estimation procedure is no longer applicable,
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but in this case the change point can be estimated jointly with the factors by minimizing the

sum of squared residuals as in Kim (2014). The results will be the same but the technical

proof will be more complex and tedious. Part (2) is analogous to part (2) of Assumption 2

and has similar interpretation.

Assumption 7 ‖λi‖ ≤ λ̄ <∞,
∥∥ 1
N

Λ′Λ− ΣΛ

∥∥→ 0 for some positive definite matrix ΣΛ.

Assumption 8 The eigenvalues of ΣFΣΛ are distinct.

Assumption 9 (1) eit is independent of F 0
s for all i, t, s.

(2) (Doob’s maximal inequality) Define {Pi(1, k) =
∑k

t=1 F
0
t eit}, {Pi(k, k0) =

∑k0

t=k+1 F
0
t eit},

{Pi(k0 +1, k) =
∑k

t=k0+1 F
0
t eit}, {Pi(k, T ) =

∑T
t=k+1 F

0
t eit} and Pij(1, k), Pij(k, k0), Pij(k0 +

1, k), Pij(k, T ) as the j-th element of Pi(1, k), Pi(k, k0), Pi(k0 + 1, k), Pi(k, T ) respectively,

then for 1 ≤ j ≤ s and 1 < r <∞,
E( sup

1≤l≤k
|Pij(1, l)|r) ≤ ( r

r−1
)rE(|Pij(1, k)|r) for all 1 ≤ i ≤ N and 1 ≤ k ≤ T ,

E( sup
k≤l≤k0−1

|Pij(l, k0)|r) ≤ ( r
r−1

)rE(|Pij(k, k0)|r) for all 1 ≤ i ≤ N and 0 ≤ k ≤ k0 − 1,

E( sup
k0+1≤l≤k

|Pij(k0 + 1, l)|r) ≤ ( r
r−1

)rE(|Pij(k0, k)|r) for all 1 ≤ i ≤ N and k0+1 ≤ k ≤ T ,

E( sup
k≤l≤T−1

|Pij(l, T )|r) ≤ ( r
r−1

)rE(|Pij(k, T )|r) for all 1 ≤ i ≤ N and 0 ≤ k ≤ T − 1.

(3) There exists M > 0 such that for r = 2, 4 and for 1 ≤ j ≤ s,

E(|Pij(1, k)|r) < k
r
2M for all 1 ≤ i ≤ N and 1 ≤ k ≤ T ,

E(|Pij(k, k0)|r) < (k0 − k)
r
2M for all 1 ≤ i ≤ N and 0 ≤ k ≤ k0 − 1,

E(|Pij(k0 + 1, k)|r) < (k − k0)
r
2M for all 1 ≤ i ≤ N and k0 + 1 ≤ k ≤ T ,

E(|Pij(k, T )|r) < (T − k)
r
2M for all 1 ≤ i ≤ N and 0 ≤ k ≤ T − 1.

Assumption 10 There exists a positive constant M <∞ such that:

1 E(eit) = 0, E |eit|8 ≤M , for all i = 1, ..., N, and t = 1, ..., T,

2 E( e
′
set
N

) = γN(s, t), |γN(s, s)| ≤M for s = 1, ..., T, and for t = 1, ..., T,
∑T

t=1 |γN(s, t)| ≤
M,

3 E(eitejt) = τ ij,t with |τ ij,t| ≤ τ ij for some τ ij and t = 1, ..., T , and for i = 1, ..., N,∑N
j=1 |τ ji| ≤M,

4 E(eitejs) = τ ij,ts for i, j = 1, ..., N, and t, s = 1, ..., T, also

1

NT

∑N

i=1

∑N

j=1

∑T

t=1

∑T

s=1
|τ ij,ts| ≤M,

5 For every (t, s = 1, ..., T ), E
∣∣∣ 1√

N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣4 ≤M ,
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6 For each u = 1, ..., T , 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |cov(eiueit, ejuejs)| ≤ M and for each

k = 1, ..., N , 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |cov(eitekt, ejseks)| ≤M .

Assumptions 7 and 8 are standard in the factor literature. Assumption 9 is analogous

to parts (1)-(3) of Assumption 3. Assumption 10 requires weak serial and cross-sectional

dependence, and heteroskedasticity is allowed. Similar conditions are also assumed in Bai

(2009), see the discussion therein for more details.

Assumption 11 There exists M <∞ such that:

1. For each t = 1, ..., T , E(
∥∥∥ 1√

NT

∑k0

s=1

∑N
i=1 F

0
s [eiseit − E(eiseit)]

∥∥∥2

) ≤M,

and E(
∥∥∥ 1√

NT

∑T
s=k0+1

∑N
i=1 F

0
s [eiseit − E(eiseit)]

∥∥∥2

) ≤M ;

2. E(
∥∥∥ 1√

NT

∑k0

t=1

∑N
i=1 F

0
t λ
′
ieit

∥∥∥2

) ≤M and E(
∥∥∥ 1√

NT

∑T
t=k0+1

∑N
i=1 F

0
t λ
′
ieit

∥∥∥2

) ≤M ;

3. For each t = 1, ..., T , E(
∥∥∥ 1√

N

∑N
i=1 λieit

∥∥∥4

) ≤M.

Assumption 12 There exists M <∞ such that:

1. For every s = 1, ..., T ,

E(sup
k<k0

1
k0−k

∑k0

t=k+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

E(sup
k≤k0

1
k

∑k
t=1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

E(sup
k>k0

1
k−k0

∑k
t=k0+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

E(sup
k≥k0

1
T−k

∑T
t=k+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

2. E(sup
k<k0

1
k0−k

∑k0

t=k+1

∥∥∥ 1√
N

∑N
i=1 λieit

∥∥∥2

) ≤M,

E(sup
k≤k0

1
k

∑k
t=1

∥∥∥ 1√
N

∑N
i=1 λieit

∥∥∥2

) ≤M,

E(sup
k>k0

1
k−k0

∑k
t=k0+1

∥∥∥ 1√
N

∑N
i=1 λieit

∥∥∥2

) ≤M,

E(sup
k≥k0

1
T−k

∑T
t=k+1

∥∥∥ 1√
N

∑N
i=1 λieit

∥∥∥2

) ≤M.

Assumption 13 There exists M <∞ such that:

1. E(sup
k<k0

∥∥∥ 1√
NT

∑k0

t=k+1

∑N
i=1 F

0
t λ
′
ieit

∥∥∥2

) ≤M,

E(sup
k≤k0

∥∥∥ 1√
NT

∑k
t=1

∑N
i=1 F

0
t λ
′
ieit

∥∥∥2

) ≤M,

E(sup
k>k0

∥∥∥ 1√
NT

∑k
t=k0+1

∑N
i=1 F

0
t λ
′
ieit

∥∥∥2

) ≤M,
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E(sup
k≥k0

∥∥∥ 1√
NT

∑T
t=k+1

∑N
i=1 F

0
t λ
′
ieit

∥∥∥2

) ≤M.

2. For each j = 1, ..., T,

E(sup
k<k0

∥∥∥ 1√
NT

∑k0

t=k+1

∑N
i=1 λ

′
ieitejt

∥∥∥2

) ≤M,

E(sup
k≤k0

∥∥∥ 1√
NT

∑k
t=1

∑N
i=1 λ

′
ieitejt

∥∥∥2

) ≤M,

E(sup
k>k0

∥∥∥ 1√
NT

∑k
t=k0+1

∑N
i=1 λ

′
ieitejt

∥∥∥2

) ≤M,

E(sup
k≥k0

∥∥∥ 1√
NT

∑T
t=k+1

∑N
i=1 λ

′
ieitejt

∥∥∥2

) ≤M.

Assumptions 11-13 are not restrictive since the summands are zero mean random vari-

ables. If Hajek-Renyi inequality were applicable, these conditions are directly satisfied. If

further parametric assumptions are made on the factors, factor loadings and errors, it will not

be diffi cult to verify these conditions. Here we simply lay them out so that these conditions

are in their original form.

Assumption 14 (1) For every i, there exists a compact set Bi such that βi ∈ Bi.

(2) For every i, X
′
iMF0Xi
T

p→ Σii for some positive definite Σii as T →∞.
(3) There exist µ > 0 such that for every i, inf

F ′F/T=I
ρmin(

X′iMFXi
T

) ≥ µ as T →∞.

(4) inf
F ′F/T=I

ρmin(D) > 0, where D = 1
N

∑N
i=1Di, Di = Bi − C ′iA

−1
i Ci, Ai =

X′iMFXi
T

,

Bi = (λiλ
′
i)⊗ IT

T
and Ci = λ′i ⊗

X′iMF

T
.

(5) For any i, j, t, eit is independent of βj and λj.

(6) There exist M <∞ such that for any i and T , 1
T

∑T
t=1

∑T
s=1 |E(x′itxiseiteis)| ≤M .

Assumption 14 is mainly borrowed from Assumptions A(iii), B and C in Song (2013)

hold3, see the explanation therein for these conditions. In the proof, we will utilize results

in Han and Inoue (2014), Baltagi, Kao and Wang (2015b) and Song (2013) as intermediate

steps. It can be verified that the assumptions in these papers are satisfied given all the above

assumptions.

To recover consistency, we will use estimated factors as extra regressors to control for

cross-sectional dependence. If the true change point k0 were known, the factors can be

estimated globally with the coeffi cients βi as in Song (2013). Song (2013) shows that βi
will be

√
T -consistent for each i and the estimated factor space will be consistent. Without

knowing k0, a feasible way is to use k̂, the estimated change point ignoring factors.

3εit in Song (2013) corresponds to eit here.
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Theorem 5 Under Assumptions 1-3, 4(c), 5 and 6, k̂ − k0 = Op(1) as (N, T )→∞.

This result confirms the results in Kim (2011) for the current regression setup, i.e., when

cross-sectional dependence is strong, more series do not increase the accuracy of the change

point estimator. Nevertheless, k̂ − k0 = Op(1) is good enough to estimate the factor space.

It can be verified that with Op(1) estimation error, results in Song (2013) remain the same.

Once the estimated factors are available and incorporated in the model as extra regressors,

consistency of the least squares estimator can be recovered. Define k̃ as the change point

estimator in the second step and τ̃ = k̃/T as the estimated change fraction, we first show τ̃

is consistent.

Theorem 6 Under Assumptions 1-3, 4(c) and 5-14, τ̃ − τ 0 = op(1) as (N, T ) → ∞ and
√
T
N
→ 0.

Similar to Theorem 1, this result is mainly of theoretical interest and serves as a inter-

mediate step to show the consistency of k̃. The condition
√
T
N
→ 0 is required to guarantee

the effect of using estimated factors is asymptotically negligible and appears frequently in

the factor literature, see for example Bai and Ng (2006).

Theorem 7 Under Assumption 1-3, 4(c) and 5-14, k̃ is consistent as (N, T ) → ∞ and
√
T
N
→ 0.

Again,
√
T
N
→ 0 is required to eliminate the effect of using estimated factors. Note that

in Theorem 4, N√
T
→ 0 is required to eliminate the noise resulting from nuisance parameters,

βi, i = 1, ..., N . These two conditions are in conflict with each other, and consequently it

is infeasible to derive the limiting distribution of k̃.4 Intuitively speaking, for the factors,

T is the dimension and N is the sample size while for βi, N is the dimension and T is

the sample size. If we also regard the factors as nuisance parameters, the effect of these

two sets of nuisance parameters will not disappear simultaneously. This is the cost of using

heterogeneous coeffi cients in panel data.

Remark 3 In Kim (2014), the two N-T conditions can be satisfied simultaneously because

Kim (2014) uses estimated factor loadings to control the unobservables and accurate estima-

tion of loadings also requires T to be large relative to N . The reason that Kim (2014) can

4However, if we can relax the condition N√
T
→ 0 in Theorem 4, then there will be some room for both

conditions being satisfied. This is technically quite diffi cult, but not impossible.
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use estimated loadings is because in the time trend setup the regressors are common across

different i.

6 Simulations

In this section we evaluate the limiting distribution derived in Section 4 and examine the

effect of serial correlation. To simplify the analysis, we assume xit is i.i.d. N(1, 1) over both

i and t, eit = ρei,t−1 + σiηit where ηit is i.i.d. N(0, 1) over both i and t and σ2
i is i.i.d.

χ2
2/2 over i, and δi is i.i.d. U(−1, 1). For this DGP, {Zt, t = −(k0 − 1), ..., 0, ..., T − k0} is
a Gaussian process with variance φ = 1

λN

∑N
i=1 δ

′
iE(zitz

′
it)δiE(e2

it) and correlation coeffi cient

αst = ρ|s−t|
∑N
i=1 δ

′
iE(zisz

′
it)δiσ

2
i∑N

i=1 δ
′
iE(zitz′it)δiσ

2
i

= 1
2
ρ|s−t|. For given values of N , λφ, λξ and ρ, we can simulate

the distribution of arg maxW (m) and in the current case λφ =
∑N

i=1 δ
′
iE(zitz

′
it)δiE(e2

it) ≈
2NE(δ2

i )E(σ2
i ) = 2

3
N and λξ =

∑N
i=1 δ

′
iE(zitz

′
it)δi = 2NE(δ2

i ) = 2
3
N . Figures 1-2 are the

simulated distributions obtained from 2000 replications with T = 100, k0 = 50, N = 1, 5, 10

and 20 and ρ = 0, 0.4 and 0.8 respectively. When ρ = 0, the distribution is well shaped, but

when ρ > 0, the distribution is no longer bell-shaped and becomes highly nonstandard. The

probability of taking both ends and the true change point are high while the probability of

taking the other points are approximately the same. Here (λξ)2/λφ = 2NE(δ2
i ), if E(δ2

i ) is

smaller, the nonstandardness will be more severe. Also note that αst = 1
2
ρ|s−t|, even when

ρ = 0.8, αst is no more than 0.4. If
∑N
i=1 δ

′
iE(zisz

′
it)δiσ

2
i∑N

i=1 δ
′
iE(zitz′it)δiσ

2
i

is larger, the nonstandardness will also

be more severe. Furthermore, with E(δ2
i ) fixed, while large N increases the probability of

k̂ = k0, it does not make the distribution more bell-shaped.

For such nonstandard distribution, it maybe better to base inference directly on the

distribution, rather than on the constructed confidence intervals. Consider the case ofN = 20

and ρ = 0.8 for example. Although the probability of k̂ = k0 is already around 0.55, the

90% confidence interval is [2, 99]! Therefore, we suggest simulating the distribution directly

using the estimated parameters and making inference based on this simulated distribution.

For example, in the current setup the parameters λ, ξ, φ and αst can be estimated by λ̂N =∑N
i=1 δ̂

′
iδ̂i, ξ̂ = 1

T
1

λ̂N

∑T
t=1

∑N
i=1 δ̂

′
izitz

′
itδ̂i, φ̂ = 1

λ̂N

∑N
i=1 δ̂

′
i(

1
NT

∑T
t=1

∑N
i=1 zitz

′
it)δ̂i(

1
T

∑T
t=1 ê

2
it)

and α̂st = ρ̂|s−t|
∑N
i=1[δ̂

′
i(

1
NT

∑T
t=1

∑N
i=1 zit)]

2( 1
T

∑T
t=1 ê

2
it)∑N

i=1 δ̂
′
i(

1
NT

∑T
t=1

∑N
i=1 zitz

′
it)δ̂i(

1
T

∑T
t=1 ê

2
it)
, where δ̂i and êis can be obtained by least

squares estimation of each subsample split at k̂ and ρ̂ = 1
N

∑N
i=1(
∑T

t=2 êitêi,t−1/
∑T

t=2 ê
2
i,t−1).
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7 Conclusion

This paper studies the joint limit asymptotics of the least squares estimator of a common

change point in large heterogeneous panel data models. A general Hajek-Renyi inequality is

introduced to solve the fundamental issue that for random variables XiT = Op(1) (or op(1))

as T →∞, 1
N

∑N
i=1XiT is not necessarily Op(1) (or op(1) correspondingly) as N and T go to

infinity jointly. This new technique is quite powerful and we conjecture that it will also be

useful in other places. Consistency of the least squares estimator is then established under

various sets of conditions on the change magnitude and N -T ratio. Both weak and strong

cross-sectional dependence of the errors are considered and in the latter case estimated factors

are used to control the cross-sectional dependence. The limiting distribution is derived

allowing the errors to be cross-sectionally weakly dependent and serially dependent and

heteroskedastic of unknown form, and inference is feasible based on the simulated distribution

using estimated parameters.
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T = 100, k0 = 50, N = 1 and ρ = 0 T = 100, k0 = 50, N = 5 and ρ = 0

T = 100, k0 = 50, N = 1 and ρ = 0.4 T = 100, k0 = 50, N = 5 and ρ = 0.4

T = 100, k0 = 50, N = 1 and ρ = 0.8 T = 100, k0 = 50, N = 5 and ρ = 0.8

Figure 1: Simulated distribution of argmaxW (m) for T = 100, k0 = 50, N = 1 and 5
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T = 100, k0 = 50, N = 10 and ρ = 0 T = 100, k0 = 50, N = 20 and ρ = 0

T = 100, k0 = 50, N = 10 and ρ = 0.4 T = 100, k0 = 50, N = 20 and ρ = 0.4

T = 100, k0 = 50, N = 10 and ρ = 0.8 T = 100, k0 = 50, N = 20 and ρ = 0.8

Figure 2: Simulated distribution of argmaxW (m) for T = 100, k0 = 50, N = 10 and 20
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APPENDIX

Lemma 2 For each i and k < k0,

(Z ′0iMiZ0i)− (Z ′0iMiZ2i)(Z
′
2iMiZ2i)

−1(Z ′2iMiZ0i) ≥ R′[(X ′∆iX∆i)(X
′
2iX2i)

−1(X ′0iX0i)]R.

Proof. See Bai (1997) Lemma A.1.

Lemma 3 Under Assumptions 1-3, there exists M > 0 such that for all N and T , for each

i,

(1) E(
∥∥∥X′iei√

T

∥∥∥2

) ≤M ,

(2) E( sup
k<k0−C

∥∥∥ (X′∆iX∆i)

|k0−k| − ΣXX
i

∥∥∥)4 ≤ M
(C+1)2 ,

(3) E(sup
k<k0

∥∥∥(
X′2iX2i

T−k )−1 − (ΣXX
i )−1

∥∥∥)2 ≤ M
T
,

(4) E(
∥∥∥X′0iX0i

T−k0
− ΣXX

i

∥∥∥)4 ≤ M
T 2 ,

(5) E(sup
k<k0

∥∥∥Z′∆iXi|k−k0|

∥∥∥4

) ≤M ,

(6) E(
∥∥∥(

X′iXi
T

)−1
∥∥∥4

) ≤M ,

(7) E(sup
k<k0

∥∥∥∥ e′iMiZ∆i√
|k−k0|

∥∥∥∥4

) ≤M log T ,

(8) E(sup
k<k0

∥∥∥ e′iMiZ∆i

|k−k0|

∥∥∥4

) ≤M ,

(9) E(
∥∥∥ e′iMiZ0i√

T−k0

∥∥∥4

) ≤M ,

(10) E(sup
k<k0

∥∥∥Z′2iMiei√
T−k

∥∥∥4

) ≤M ,

(11) E(sup
k<k0

∥∥∥Z′∆iMiZ2i

|k−k0|

∥∥∥4

) ≤M ,

(12) E( sup
k∈K(k0),k<k0

∥∥∥(
Z′2iMiZ2i

T−k )−1 − [ΣZZ
i − T−k

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥2

) ≤ M
T
,

(13) E(
∥∥∥(

Z′0iMiZ0i

T−k0
)−1 − [ΣZZ

i − T−k0

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥2

≤ M
T
,

(14) sup
k∈K,k≤k0

∥∥∥(
Z′2iMiZ2i

T−k )−1
∥∥∥ ≤M ,

(15) sup
k∈K,k≤k0

∥∥[ΣZZ
i − T−k

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥ ≤M ,

(16) sup
k∈Kc,k<k0

∥∥∥(
Z′1iMiZ1i

k
)−1
∥∥∥ ≤M ,

(17) E( sup
k∈Kc,k<k0

∥∥∥ e′iMiZ1i√
k

∥∥∥2

) ≤M log T ,

(18) E( sup
k∈Kc,k<k0

∥∥∥Z′0iMiZ1i

k

∥∥∥) ≤M .
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Proof. (1)

E(

∥∥∥∥X ′iei√
T

∥∥∥∥2

) = E(

∥∥∥∥ 1√
T

∑T

t=1
xiteit

∥∥∥∥2

) =
∑p

j=1

1

T
E[Sij(1, T )]2 ≤ pM ,

where the last inequality follows from part (3) of Assumption 3.

(2) Take r = 4 in part (3) of Assumption 2, we have for each 1 ≤ j ≤ p, 1 ≤ m ≤ p,

1 ≤ i ≤ N and 0 ≤ k ≤ k0 − 1,

E( sup
k≤t≤k0−1

|Rijm(t, k0)|4) ≤ (
4

3
)4E(|Rijm(k, k0)|4) ≤ (

4

3
)4(k0 − k)2M.

Next, using Lemma 1 with r = 4, Sl = Rijm(k0 − C − l, k0), βk0−k = k0 − k and

αk0−k =

{
(4

3
)4(k0 − k)2M for k0 − k = C + 1

(4
3
)4[(k0 − k)2 − (k0 − k − 1)2]M for C + 2 ≤ k0 − k ≤ T (τ 0 − η)

,

we have for each 1 ≤ j ≤ p, 1 ≤ m ≤ p and 1 ≤ i ≤ N ,

E( sup
k∈K(C),k<k0

∣∣∣∣ 1

k0 − k
Rijm(k, k0)

∣∣∣∣4) ≤ 4[
(4

3
)4(C + 1)2M

(C + 1)4
+
∑Tτ0

k0−k=C+2

(4
3
)4[2(k0 − k)− 1]M

(k0 − k)4
]

≤ 4(
4

3
)4M [

1

(C + 1)2
+ 2

∑∞

k0−k=C+2

1

(k0 − k)3
]

≤
12(4

3
)4M

(C + 1)2
,

where the last inequality follows from∑∞

i=C+2

1

i3
<

∑∞

i=C+2

1

i
(

1

i− 1
− 1

i
) <

1

C + 2

∑∞

i=C+2
(

1

i− 1
− 1

i
)

=
1

(C + 2)(C + 1)
≤ 1

(C + 1)2
.

Thus,

E( sup
k∈K(C),k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
(xitx

′
it − ΣXX

i )

∥∥∥∥4

)

≤ p2
∑p

j=1

∑p

m=1
E( sup

k∈K(C),k<k0

∣∣∣∣ 1

k0 − k
Rijm(k, k0)

∣∣∣∣4)

≤
12(4

3
)4p4M

(C + 1)2
.

(3) Noting that A−1 −B−1 = B−1(B − A)A−1,

E(sup
k<k0

∥∥∥∥(
X ′2iX2i

T − k )−1 − (ΣXX
i )−1

∥∥∥∥)2

≤ E(
∥∥(ΣXX

i )−1
∥∥2

sup
k<k0

∥∥∥∥X ′2iX2i

T − k − ΣXX
i

∥∥∥∥2

sup
k<k0

∥∥∥∥(
X ′2iX2i

T − k )−1

∥∥∥∥2

).
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By parts (1) and (2) of Assumption 2, the first and third terms are bounded, hence it suffi ces

to show that E(sup
k<k0

∥∥∥X′2iX2i

T−k − ΣXX
i

∥∥∥)2 = O( 1
T

) uniformly over i. Take r = 2 in part (3) of

Assumption 2, we have for each 1 ≤ j ≤ p, 1 ≤ m ≤ p, 1 ≤ i ≤ N and 0 ≤ k ≤ T − 1,

E( sup
k≤t≤T−1

|Rijm(t, T )|2) ≤ 4E(|Rijm(k, T )|2) ≤ 4(T − k)M ,

then using Lemma 1 with r = 2, Sl = Rijm(k0 − l, T ), βT−k = T − k and

αT−k =

{
4(T − k0 + 1)M for T − k = T − k0 + 1

4M for T − k0 + 2 ≤ T − k ≤ T
,

we have for each 1 ≤ j ≤ p, 1 ≤ m ≤ p and 1 ≤ i ≤ N ,

E(sup
k<k0

∣∣∣∣ 1

T − kRijm(k, T )

∣∣∣∣2) ≤ 4[
4(T − k0 + 1)M

(T − k0 + 1)2
+
∑T

T−k=T−k0+2

4M

(T − k)2
]

≤ 16M [
1

T − k0 + 1
+
∑T

T−k=T−k0+2

1

(T − k)2
]

≤ 32M

T − k0 + 1
.

Thus,

E(sup
k<k0

∥∥∥∥ 1

T − k
∑T

t=k+1
(xitx

′
it − ΣXX

i )

∥∥∥∥2

) ≤
∑p

j=1

∑p

m=1
E(sup

k<k0

∣∣∣∣ 1

T − kRijm(k, T )

∣∣∣∣2)

≤ 32p2M

T − k0 + 1
.

(4)

E(

∥∥∥∥X ′0iX0i

T − k0

− ΣXX
i

∥∥∥∥)4 = E

∥∥∥∥ 1

T − k0

∑T

t=k0+1
(xitx

′
it − ΣXX

i )

∥∥∥∥4

=
1

(T − k0)4
E[
∑p

j=1

∑p

m=1
R2
ijm(k0, T )]2

≤ 1

(T − k0)4
E[p2

∑p

j=1

∑p

m=1
R4
ijm(k0, T )]

=
p2

(T − k0)4

∑p

j=1

∑p

m=1
E[R4

ijm(k0, T )]

≤ p4M

(T − k0)2
,

where the last inequality follows from part (4) of Assumption 2.

(5)∥∥∥∥ Z ′∆iXi

|k − k0|

∥∥∥∥2

≤
∥∥∥∥ X ′∆iXi

|k − k0|

∥∥∥∥2

=

∥∥∥∥X ′∆iX∆i

|k − k0|

∥∥∥∥2

≤ 2

∥∥∥∥X ′∆iX∆i

|k − k0|
− ΣXX

i

∥∥∥∥2

+ 2
∥∥ΣXX

i

∥∥2
,
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hence

sup
k<k0

∥∥∥∥ Z ′∆iXi

|k − k0|

∥∥∥∥4

≤ 8sup
k<k0

∥∥∥∥X ′∆iX∆i

|k − k0|
− ΣXX

i

∥∥∥∥4

+ 8
∥∥ΣXX

i

∥∥4
.

Take C = 0 in part (2), the proof is accomplished.

(6) Under part (2) of Assumption 2, the proof follows.

(7)

sup
k<k0

∥∥∥∥∥ e′iMiZ∆i√
|k − k0|

∥∥∥∥∥
4

≤ 8sup
k<k0

∥∥∥∥∥ e′iZ∆i√
|k − k0|

∥∥∥∥∥
4

+ 8sup
k<k0

∥∥∥∥∥e′iXi(X
′
iXi)

−1XiZ∆i√
|k − k0|

∥∥∥∥∥
4

.

For the first term, take r = 4 in part (2) of Assumption 3, we have for each 1 ≤ j ≤ p,

1 ≤ i ≤ N and 0 ≤ k ≤ k0 − 1,

E( sup
k≤t≤k0−1

|Sij(t, k0)|4) ≤ (
4

3
)4E(|Sij(k, k0)|4) ≤ (

4

3
)4(k0 − k)2M.

Using Lemma 1 with r = 4, Sl = Sij(k0 − l, k0), βk0−k =
√
k0 − k and αk0−k = (4

3
)4[(k0 −

k)2 − (k0 − k − 1)2]M for 1 ≤ k0 − k ≤ Tτ 0, we have for each 1 ≤ j ≤ p and 1 ≤ i ≤ N ,

E(sup
k<k0

∣∣∣∣ 1√
k0 − k

Sij(k, k0)

∣∣∣∣4) ≤ 4
∑Tτ0

k0−k=1

(4
3
)4[2(k0 − k)− 1]M

(k0 − k)2

≤ 8(
4

3
)4M

∑Tτ0

k0−k=1

1

k0 − k
≤ 8(

4

3
)4MO(log T ).

Thus,

E(sup
k<k0

∥∥∥∥∥ e′iZ∆i√
|k − k0|

∥∥∥∥∥
4

) ≤ p
∑p

j=1
E(sup

k<k0

∣∣∣∣ 1√
k0 − k

Sij(k, k0)

∣∣∣∣4) ≤ 8(
4

3
)4p2MO(log T ).

For the second term,

sup
k<k0

∥∥∥∥∥e′iXi(X
′
iXi)

−1X ′iZ∆i√
|k − k0|

∥∥∥∥∥
4

≤
∥∥∥∥e′iXi√

T

∥∥∥∥4 ∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥4

sup
k<k0

∥∥∥∥ X ′iZ∆i

|k − k0|

∥∥∥∥4

≤ M4

∥∥∥∥e′iXi√
T

∥∥∥∥4

sup
k<k0

∥∥∥∥ X ′iZ∆i

|k − k0|

∥∥∥∥4

,

where the last inequality follows from part (2) of Assumption 2. Hence,

E(sup
k<k0

∥∥∥∥∥e′iXi(X
′
iXi)

−1X ′iZ∆i√
|k − k0|

∥∥∥∥∥
4

) ≤M4[E(

∥∥∥∥e′iXi√
T

∥∥∥∥8

)E(sup
k<k0

∥∥∥∥ X ′iZ∆i

|k − k0|

∥∥∥∥8

)]
1
2 = O(1),

in which E(
∥∥∥ e′iXi√

T

∥∥∥8

) = O(1) and E(sup
k<k0

∥∥∥X′iZ∆i

|k−k0|

∥∥∥8

) = O(1) can be proved following the same

procedure as part (1) and part (5) respectively.
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(8) The proof is similar to part (7). For the first term, the difference is βk0−k = k0 − k
and thus

E(sup
k<k0

∥∥∥∥ e′iZ∆i

|k − k0|

∥∥∥∥4

) ≤ p
∑p

j=1
E(sup

k<k0

∣∣∣∣ 1

|k − k0|
Sij(k, k0)

∣∣∣∣4)

≤ p
∑p

j=1
4
∑Tτ0

k0−k=1

(4
3
)4[2(k0 − k)− 1]M

(k0 − k)4

≤ 8(
4

3
)4p2M

∑Tτ0

k0−k=1

1

(k0 − k)3
= O(1).

For the second term, the difference is

E(sup
k<k0

∥∥∥∥e′iXi(X
′
iXi)

−1X ′iZ∆i

|k − k0|

∥∥∥∥4

) ≤ 1

T 2
M4[E(

∥∥∥∥e′iXi√
T

∥∥∥∥8

)E(sup
k<k0

∥∥∥∥ X ′iZ∆i

|k − k0|

∥∥∥∥8

)]
1
2 = O(

1

T 2
).

(9)

E(

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥4

) ≤ 8E(

∥∥∥∥ e′iZ0i√
T − k0

∥∥∥∥4

) + 8E(

∥∥∥∥e′iXi(X
′
iXi)

−1XiZ0i√
T − k0

∥∥∥∥4

).

Under part (3) of Assumption 3, the first term is O(1). For the second term,

E(

∥∥∥∥e′iXi(X
′
iXi)

−1XiZ0i√
T − k0

∥∥∥∥4

) ≤ E(

∥∥∥∥e′iXi√
T

∥∥∥∥4 ∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥4 ∥∥∥∥ X ′iZ0i

T − k0

∥∥∥∥4

)

≤ M4[E(

∥∥∥∥e′iXi√
T

∥∥∥∥8

)E(

∥∥∥∥ X ′iZ0i

T − k0

∥∥∥∥8

)]
1
2 = O(1).

(10) The proof is also similar to part (7).

sup
k<k0

∥∥∥∥e′iMiZ2i√
T − k

∥∥∥∥4

≤ 8sup
k<k0

∥∥∥∥ e′iZ2i√
T − k

∥∥∥∥4

+ 8sup
k<k0

∥∥∥∥e′iXi(X
′
iXi)

−1XiZ2i√
T − k

∥∥∥∥4

.

For the first term, take r = 4 in part (2) of Assumption 3, we have for each 1 ≤ j ≤ p,

1 ≤ i ≤ N and 0 ≤ k ≤ T − 1,

E( sup
k≤t≤T−1

|Sij(t, T )|4) ≤ (
4

3
)4E(|Sij(k, T )|4) ≤ (

4

3
)4(T − k)2M.

Using Lemma 1 with r = 4, Sl = Sij(k0− l, T ), βT−k =
√
T − k and αT−k = (4

3
)4[(T − k)2−

(T − k − 1)2]M for T − k0 + 1 ≤ T − k ≤ T , we have for each 1 ≤ j ≤ p and 1 ≤ i ≤ N ,

E(sup
k<k0

∣∣∣∣ 1√
T − k

Sij(k, T )

∣∣∣∣4) ≤ 4
∑T

T−k=T−k0+1

(4
3
)4[2(T − k)− 1]M

(T − k)2

≤ 8(
4

3
)4M

∑T

T−k=T−k0+1

1

T − k
→ 8(

4

3
)4M log

1

1− τ 0

,
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since ∑T

T−k=T−k0+1

1

T − k
=

∑T

i=1

1

i
−
∑T−k0

i=1

1

i

= (
∑T

i=1

1

i
− log T )− (

∑T−k0

i=1

1

i
− log(T − k0)) + (log T − log(T − k0))

→ γ − γ + log
1

1− τ 0

= log
1

1− τ 0

,

where γ is Euler-Mascheroni constant. Thus,

E(sup
k<k0

∥∥∥∥ e′iZ2i√
T − k

∥∥∥∥4

) ≤ p
∑p

j=1
E(sup

k<k0

∣∣∣∣ 1√
T − k

Sij(k, T )

∣∣∣∣4) ≤ 8(
4

3
)4p2M log

1

1− τ 0

= O(1).

For the second term,

E(sup
k<k0

∥∥∥∥e′iXi(X
′
iXi)

−1XiZ2i√
T − k

∥∥∥∥4

) ≤ E(

∥∥∥∥e′iXi√
T

∥∥∥∥4 ∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥4

sup
k<k0

∥∥∥∥X ′iZ2i

T − k

∥∥∥∥4

)

≤ M4[E(

∥∥∥∥e′iXi√
T

∥∥∥∥8

)E(sup
k<k0

∥∥∥∥X ′iZ2i

T − k

∥∥∥∥8

)]
1
2 = O(1),

in which E(sup
k<k0

∥∥∥X′iZ2i

T−k

∥∥∥8

) = O(1) can be proved following the same procedure as part (5).

(11)

E(sup
k<k0

∥∥∥∥Z ′∆iMiZ2i

|k − k0|

∥∥∥∥4

) ≤ 8E(sup
k<k0

∥∥∥∥ Z ′∆iZ2i

|k − k0|

∥∥∥∥4

) + 8E(sup
k<k0

∥∥∥∥Z ′∆iXi(X
′
iXi)

−1X ′iZ2i

|k − k0|

∥∥∥∥4

).

The first term is O(1) based on
∥∥∥Z′∆iZ2i

|k−k0|

∥∥∥ =
∥∥∥Z′∆iZ∆i

|k−k0|

∥∥∥ ≤ ∥∥∥X′∆iX∆i

|k−k0|

∥∥∥ and part (2). For the
second term,

E(sup
k<k0

∥∥∥∥Z ′∆iXi(X
′
iXi)

−1X ′iZ2i

|k − k0|

∥∥∥∥4

) ≤ E(

∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥4

sup
k<k0

∥∥∥∥ Z ′∆iXi

|k − k0|

∥∥∥∥4

sup
k<k0

∥∥∥∥X ′iZ2i

T − k

∥∥∥∥4

)

≤ M4[E(sup
k<k0

∥∥∥∥ Z ′∆iXi

|k − k0|

∥∥∥∥8

)E(sup
k<k0

∥∥∥∥X ′iZ2i

T − k

∥∥∥∥8

)]
1
2 = O(1).

(12) Noting that A−1 −B−1 = B−1(B − A)A−1,

E( sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥)2

≤ E( sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1

∥∥∥∥2

sup
k∈K(k0),k<k0

∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥2

sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iMiZ2i

T − k − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]

∥∥∥∥2

).
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By parts (14) and (15) below, the first and the second terms are bounded. For the third

term, we have

E( sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ])

∥∥∥∥2

)

= E( sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iZ2i

T − k − ΣZZ
i )− (

Z ′2iXi(X
′
iXi)

−1X ′iZ2i

T − k − T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i )

∥∥∥∥2

)

≤ 2E( sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iZ2i

T − k − ΣZZ
i

∥∥∥∥2

)

+2E( sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iXi(X
′
iXi)

−1X ′iZ2i

T − k − T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i

∥∥∥∥2

).

The first term is O( 1
T

). For the second term,

E( sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iXi(X
′
iXi)

−1X ′iZ2i

T − k − T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i

∥∥∥∥2

)

= E( sup
k∈K(k0),k<k0

(
T − k
T

)2

∥∥∥∥Z ′2iXi

T − k (
X ′iXi

T
)−1X

′
iZ2i

T − k − ΣZX
i (ΣXX

i )−1ΣXZ
i

∥∥∥∥2

)

≤ E( sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iXi

T − k (
X ′iXi

T
)−1X

′
iZ2i

T − k − ΣZX
i (ΣXX

i )−1ΣXZ
i

∥∥∥∥2

) = O(
1

T
),

since E( sup
k∈K(k0),k<k0

∥∥∥Z′2iXiT−k − ΣZX
i

∥∥∥2

) = O( 1
T

) and E(
∥∥∥(

X′iXi
T

)−1 − (ΣXX
i )−1

∥∥∥2

) = O( 1
T

).

(13) Following the same procedure as part (12), the proof is straightforward.

(14)

Z ′2iMiZ2i = R′[X ′2iX2i −X ′2iXi(X
′
iXi)

−1X ′iX2i]R

= R′[X ′2iX2i −X ′2iX2i(X
′
iXi)

−1X ′2iX2i]R

= R′[X ′2iX2i −X ′2iX2i(X
′
iXi)

−1(X ′iXi −X ′1iX1i)]R

= R′[X ′2iX2i(X
′
iXi)

−1X ′1iX1i]R

= R′[(X ′1iX1i)
−1 + (X ′2iX2i)

−1]−1R,

where the last equality follows from

[X ′2iX2i(X
′
iXi)

−1X ′1iX1i]
−1 = (X ′1iX1i)

−1(X ′iXi)(X
′
2iX2i)

−1

= (X ′1iX1i)
−1(X ′1iX1i +X ′2iX2i)(X

′
2iX2i)

−1

= (X ′1iX1i)
−1 + (X ′2iX2i)

−1.
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It follows that

ρmin(Z ′2iMiZ2i) = ρmin(R′[(X ′1iX1i)
−1 + (X ′2iX2i)

−1]−1R)

> ρmin([(X ′1iX1i)
−1 + (X ′2iX2i)

−1]−1)

=
1

ρmax((X ′1iX1i)−1 + (X ′2iX2i)−1)
,

and thus ∥∥∥∥(
Z ′2iMiZ2i

T − k )−1

∥∥∥∥ ≤ √
q

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1

∥∥∥∥
op

=

√
q(T − k)

ρmin(Z ′2iMiZ2i)

≤ √
q(T − k)ρmax((X ′1iX1i)

−1 + (X ′2iX2i)
−1)

≤ √
q(T − k)[ρmax((X ′1iX1i)

−1) + ρmax((X ′2iX2i)
−1)]

=
√
q(
T − k
k

∥∥∥∥(
X ′1iX1i

k
)−1

∥∥∥∥+

∥∥∥∥(
X ′2iX2i

T − k )−1

∥∥∥∥).

By part (2) of Assumption 2, both sup
k∈K,k≤k0

∥∥∥(
X′1iX1i

k
)−1
∥∥∥ and sup

k∈K,k≤k0

∥∥∥(
X′2iX2i

T−k )−1
∥∥∥ are bounded,

the proof is finished.

(15) First, noting that ΣZX
i = (R′ΣXX

i ), we have

ΣZX
i (ΣXX

i )−1ΣXZ
i = (R′ΣXX

i )(ΣXX
i )−1(ΣXX

i R) = R′ΣXX
i R = ΣZZ

i .

Thus,

sup
k∈K,k≤k0

∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥
= sup

k∈K,k≤k0

∥∥∥∥(
k

T
ΣZZ
i )−1

∥∥∥∥ ≤ √
q

τ 0 − η
∥∥(ΣZZ

i )−1
∥∥
op
≤
√
q

τ 0 − η
1

ρmin(ΣZZ
i )

≤
√
q

τ 0 − η
1

ρmin(ΣXX
i )

≤
√
q

τ 0 − η
1

ρ1

,

where the second inequality follows from ρmin(ΣZZ
i ) > ρmin(ΣXX

i ).

(16) Noting that Z ′2iMiZ2i = Z ′1iMiZ1i, the proof is the same as part (14), except for∥∥∥∥(
Z ′1iMiZ1i

k
)−1

∥∥∥∥ ≤ √
qk

ρmin(Z ′1iMiZ1i)
=
√
q(

∥∥∥∥(
X ′1iX1i

k
)−1

∥∥∥∥+
k

T − k

∥∥∥∥(
X ′2iX2i

T − k )−1

∥∥∥∥).

(17) The proof is similar to part (7).

(18) The proof is similar to part (11).

Lemma 4 Under Assumptions 1-3 and assume max
1≤i≤N

δ′iδi
λN

= O( 1
N

), there exists α > 0 such

that for any ε > 0, there exist N∗ > 0 and T ∗ > 0 such that for N∗ > N and T > T ∗,

P ( inf
k<k0

∑N
i=1Gi(k) ≥ αλN) > 1− ε.
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Proof. We will prove by two steps.

Step 1: There exists α1 > 0 such that for any ε > 0, there exist C > 0 and T ∗ > 0 such

that for T > T ∗, P ( inf
k<k0−C

∑N
i=1 Gi(k) ≥ α1λN) > 1− ε.

Step 2: There exists α2 > 0 such that for any given C > 0 and ε > 0, there exist N∗ > 0

and T ∗ > 0 such that for N > N∗ and T > T ∗, P ( inf
k0−C≤k<k0

∑N
i=1Gi(k) ≥ α2λN) > 1− ε.

Based on Step 1 and Step 2 and take α = min{α1, α2}, we have for any ε > 0, there

exist N∗ > 0 and T ∗ > 0 such that for N > N∗ and T > T ∗, P ( inf
k<k0

∑N
i=1Gi(k) < αλN) ≤

P ( inf
k<k0−C

∑N
i=1 Gi(k) < αλN)+P ( inf

k0−C≤k<k0

∑N
i=1Gi(k) < αλN) ≤ 2ε, thus P ( inf

k<k0

∑N
i=1Gi(k) <

αλN) > 1− 2ε.

Proof of Step 1: Define Ai(k) =
(X′∆iX∆i)(X

′
2iX2i)

−1(X′0iX0i)

|k0−k| , then by Lemma 2 we have

inf
k<k0−C

∑N

i=1
Gi(k)

= inf
k<k0−C

∑N

i=1

δ′i[(Z
′
0iMiZ0i)− (Z ′0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ0i)]δi
|k0 − k|

≥ inf
k<k0−C

∑N

i=1

δ′iR
′[(X ′∆iX∆i)(X

′
2iX2i)

−1(X ′0iX0i)]Rδi
|k0 − k|

= inf
k<k0−C

∑N

i=1
δ′iR

′Ai(k)Rδi

≥ inf
k<k0−C

∑N

i=1
δ′iR

′(
T − k0

T − k ΣXX
i )Rδi − sup

k<k0−C

∣∣∣∣∑N

i=1
δ′iR

′(Ai(k)− T − k0

T − k ΣXX
i )Rδi

∣∣∣∣
≥

∑N

i=1
δ′iR

′ΣXX
i Rδi − sup

k<k0−C

∣∣∣∣∑N

i=1
δ′iR

′(Ai(k)− T − k0

T − k ΣXX
i )Rδi

∣∣∣∣ .
By Assumption 2, ∑N

i=1
δ′iR

′ΣXX
i Rδi ≥

∑N

i=1
ρmin(ΣXX

i )δ′iδi ≥ ρλN ,

thus it suffi ces to show for any ε > 0 and η > 0, there exists C > 0 and T ∗ > 0 such

that for T > T ∗, P ( sup
k<k0−C

∣∣∣∑N
i=1 δ

′
iR
′(Ai(k)− T−k0

T−k ΣXX
i )Rδi

∣∣∣ > ηλN) < ε. With assumption

lim
N→∞

max
1≤i≤N

Nδ′iδi
λN

<∞,

sup
k<k0−C

∣∣∣∣∑N

i=1
δ′iR

′(Ai(k)− T − k0

T − k ΣXX
i )Rδi

∣∣∣∣
≤ λN sup

k<k0−C

1

N

∑N

i=1

Nδ′iδi
λN

∥∥∥∥Ai(k)− T − k0

T − k ΣXX
i

∥∥∥∥
≤ λN( lim

N→∞
max

1≤i≤N

Nδ′iδi
λN

) sup
k<k0−C

1

N

∑N

i=1

∥∥∥∥Ai(k)− T − k0

T − k ΣXX
i

∥∥∥∥
≤ λN( lim

N→∞
max

1≤i≤N

Nδ′iδi
λN

)
1

N

∑N

i=1
sup

k<k0−C

∥∥∥∥Ai(k)− T − k0

T − k ΣXX
i

∥∥∥∥ ,
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thus by Markov inequality it suffi ces to show for any ε > 0, there exist C < ∞ and T ∗ > 0

such that for T > T ∗, E( sup
k<k0−C

∥∥Ai(k)− T−k0

T−k ΣXX
i

∥∥) < ε for all i. For each i and any given

C > 0,

sup
k<k0−C

∥∥∥∥Ai(k)− T − k0

T − k ΣXX
i

∥∥∥∥
= sup

k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
T − k0

T − k (
X ′2iX2i

T − k )−1(
X ′0iX0i

T − k0

)− T − k0

T − k ΣXX
i

∥∥∥∥
≤ sup

k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
(
X ′2iX2i

T − k )−1(
X ′0iX0i

T − k0

)− ΣXX
i

∥∥∥∥
= sup

k<k0−C

∥∥∥∥∥ (
X′∆iX∆i

|k0−k| − ΣXX
i + ΣXX

i )[(
X′2iX2i

T−k )−1 − (ΣXX
i )−1

+(ΣXX
i )−1](

X′0iX0i

T−k0
− ΣXX

i + ΣXX
i )− ΣXX

i

∥∥∥∥∥
≤ I + II + III + IV + V + V I + V II.

Consider each term one by one. By part (2) and part (3) of Lemma 3, as C → ∞ and

T →∞, for all i

E(I) = E( sup
k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
− ΣXX

i

∥∥∥∥ sup
k<k0−C

∥∥∥∥(
X ′2iX2i

T − k )−1 − (ΣXX
i )−1

∥∥∥∥∥∥ΣXX
i

∥∥)

≤ [E( sup
k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
− ΣXX

i

∥∥∥∥)2E( sup
k<k0−C

∥∥∥∥(
X ′2iX2i

T − k )−1 − (ΣXX
i )−1

∥∥∥∥)2]
1
2

∥∥ΣXX
i

∥∥
< ε.

By part (2), part (3) and part (4) of Lemma 3, as C →∞ and T →∞, for all i,

E(II)

= E( sup
k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
− ΣXX

i

∥∥∥∥ sup
k<k0−C

∥∥∥∥(
X ′2iX2i

T − k )−1 − (ΣXX
i )−1

∥∥∥∥∥∥∥∥X ′0iX0i

T − k0

− ΣXX
i

∥∥∥∥)

≤ [E( sup
k<k0−C

∥∥∥∥(
X ′2iX2i

T − k )−1 − (ΣXX
i )−1

∥∥∥∥)2]
1
2 [E(

sup
k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
− ΣXX

i

∥∥∥∥)4E(

∥∥∥∥X ′0iX0i

T − k0

− ΣXX
i

∥∥∥∥)4]
1
4

< ε.

By part (2) of Lemma 3, as C →∞, for all i,

E(III) = E( sup
k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
− ΣXX

i

∥∥∥∥)
∥∥(ΣXX

i )−1
∥∥∥∥ΣXX

i

∥∥ < ε.
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By part (2) and part (4) of Lemma 3, as C →∞ and T →∞, for all i,

E(IV ) = E( sup
k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
− ΣXX

i

∥∥∥∥∥∥(ΣXX
i )−1

∥∥∥∥∥∥X ′0iX0i

T − k0

− ΣXX
i

∥∥∥∥)

≤ [E( sup
k<k0−C

∥∥∥∥(X ′∆iX∆i)

|k0 − k|
− ΣXX

i

∥∥∥∥)2E(

∥∥∥∥X ′0iX0i

T − k0

− ΣXX
i

∥∥∥∥)2]
1
2

∥∥(ΣXX
i )−1

∥∥
< ε.

By part (3) of Lemma 3, as T →∞, for all i,

E(V ) = E( sup
k<k0−C

∥∥∥∥(
X ′2iX2i

T − k )−1 − (ΣXX
i )−1

∥∥∥∥)
∥∥ΣXX

i

∥∥2
< ε.

By part (3) and part (4) of Lemma 3, as T →∞, for all i,

E(V I) = E( sup
k<k0−C

∥∥∥∥(
X ′2iX2i

T − k )−1 − (ΣXX
i )−1

∥∥∥∥∥∥∥∥X ′0iX0i

T − k0

− ΣXX
i

∥∥∥∥∥∥ΣXX
i

∥∥)

≤ [E( sup
k<k0−C

∥∥∥∥(
X ′2iX2i

T − k )−1 − (ΣXX
i )−1

∥∥∥∥)2E(

∥∥∥∥X ′0iX0i

T − k0

− ΣXX
i

∥∥∥∥)2]
1
2

∥∥ΣXX
i

∥∥
< ε.

By part (4) of Lemma 3, as T →∞, for all i,

E(V II) = E(

∥∥∥∥X ′0iX0i

T − k0

− ΣXX
i

∥∥∥∥) < ε.

Proof of Step 2: There exists α2 > 0 such that for any given C > 0 and ε > 0, there exist

N∗ > 0 and T ∗ > 0 such that for N > N∗ and T > T ∗, P ( inf
k0−C≤k<k0

∑N
i=1Gi(k) ≥ α2λN) >

1− ε.∑N

i=1
Gi(k) =

∑N
i=1 δ

′
i[(Z

′
0iMiZ0i)− (Z ′0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ0i)]δi
|k0 − k|

=

∑N
i=1 δ

′
i(Z
′
∆iMiZ∆i)δi −

∑N
i=1 δ

′
i(Z
′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ∆i)δi
|k0 − k|

=

∑N
i=1 δ

′
iZ
′
∆iZ∆iδi

|k0 − k|
−
∑N

i=1 δ
′
iZ
′
∆iXi(X

′
iXi)

−1X
′
iZ∆iδi

|k0 − k|

−
∑N

i=1 δ
′
i(Z
′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ∆i)δi
|k0 − k|

,

thus

inf
k0−C≤k<k0

∑N

i=1
Gi(k) ≥ inf

k0−C≤k<k0

∑N
i=1 δ

′
iZ
′
∆iZ∆iδi

|k0 − k|

− sup
k0−C≤k<k0

∑N
i=1 δ

′
iZ
′
∆iXi(X

′
iXi)

−1X
′
iZ∆iδi

|k0 − k|

− sup
k0−C≤k<k0

∑N
i=1 δ

′
iZ
′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ∆i)δi
|k0 − k|

.
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Consider the first term. By part (5) of Assumption 2, we have for each t,
∑N
i=1 δ

′
izitz

′
itδi

λN

p→ ξ

asN →∞. For a given C, {
1
λN

∑N
i=1 δ

′
iZ
′
∆iZ∆iδi

|k0−k| , k0−C ≤ k < k0} is a finite dimensional random

vector, hence {
1
λN

∑N
i=1 δ

′
iZ
′
∆iZ∆iδi

|k0−k| , k0 −C ≤ k < k0}
p→ (ξ, ..., ξ)′ as N →∞. It follows by the

continuous mapping theorem that inf
k0−C≤k<k0

1
λN

∑N
i=1 δ

′
iZ
′
∆iZ∆iδi

|k0−k|
p→ ξ as N →∞. Next consider

the last two terms.

E( sup
k0−C≤k<k0

∑N
i=1 δ

′
iZ
′
∆iXi(X

′
iXi)

−1X
′
iZ∆iδi

|k0 − k|
)

≤ E(
|k0 − k|
T

sup
k0−C≤k<k0

∑N

i=1

∥∥∥∥ Z ′∆iXi

|k0 − k|

∥∥∥∥2 ∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥ ‖δi‖2)

≤ CλN
T

( lim
N→∞

max
1≤i≤N

Nδ′iδi
λN

)
1

N

∑N

i=1
E( sup

k0−C≤k<k0

∥∥∥∥ Z ′∆iXi

|k0 − k|

∥∥∥∥2 ∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥)

= O(
λN
T

),

where the last equality follows from part (2) of Assumption 2 and part (5) of Lemma 3.

Similarly,

E( sup
k0−C≤k<k0

∑N
i=1 δ

′
iZ
′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ∆i)δi
|k0 − k|

)

≤ CλN
T − k0

( lim
N→∞

max
1≤i≤N

Nδ′iδi
λN

)
1

N

∑N

i=1
E( sup

k0−C≤k<k0

∥∥∥∥Z ′∆iMiZ2i

|k0 − k|

∥∥∥∥2 ∥∥∥∥(
Z ′2iMiZ2i

T − k )−1

∥∥∥∥)

= O(
λN
T

),

where the last equality follows from parts (11) and (14) of Lemma 3. Taken together, the

proof is finished.

Lemma 5 Under Assumptions 1-3,

(1) sup
k∈K(k0),k<k0

|A| = sup
k∈K(k0),k<k0

∣∣∣2sgn(k0 − k)
∑N
i=1 δ

′
iZ
′
∆iei

|k−k0|

∣∣∣ = Op(
√
λN) as (N, T )→∞;

(2) sup
k∈K(k0),k<k0

|B| = sup
k∈K(k0),k<k0

∣∣∣−2sgn(k0 − k)
∑N
i=1 δ

′
iZ
′
∆iXi(X

′
iXi)

−1X′iei
|k−k0|

∣∣∣ = Op(
√
NλN√
T

) as

(N, T )→∞;
(3) sup

k∈K(k0),k<k0

|C| = sup
k∈K(k0),k<k0

∣∣∣−2sgn(k0 − k)
∑N
i=1 δ

′
i(Z
′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z′2iMiei)

|k−k0|

∣∣∣ = Op(
√
NλN√
T

)

as (N, T )→∞;
(4) sup

k∈K(k0),k<k0

|D| = sup
k∈K(k0),k<k0

∣∣∣∑N
i=1 e

′
iMiZ∆i(Z

′
2iMiZ2i)

−1Z′∆iMiei
|k−k0|

∣∣∣ = Op(
N log T
T

) as (N, T )→
∞;
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(5) sup
k∈K(k0),k<k0

|E| = sup
k∈K(k0),k<k0

∣∣∣2sgn(k0 − k)
∑N
i=1 e

′
iMiZ0i(Z

′
2iMiZ2i)

−1Z′∆iMiei
|k−k0|

∣∣∣ = Op(
N√
T

) as

(N, T )→∞;
(6) sup

k∈K(k0),k<k0

|F | = sup
k∈K(k0),k<k0

∣∣∣∑N
i=1 e

′
iMiZ0i[(Z

′
2iMiZ2i)

−1−(Z′0iMiZ0i)
−1]Z′0iMiei

|k−k0|

∣∣∣ = Op(
N√
T

) as

(N, T )→∞.

Proof. (1) Under part (4) of Assumption 3, there exists M > 0 such that

E( sup
k≤l<k0

∣∣∣∑k0

t=l+1
ηNt

∣∣∣2) ≤ 4E(
∣∣∣∑k0

t=k+1
ηNt

∣∣∣2) ≤ (k0 − k)M

for all N and 1 ≤ k < k0. Using Lemma 1 and take r = 2, αk0−k = M , βk0−k = k0 − k for
k0 − k = 1, ..., T η, we have

E( sup
k∈K(k0),k<k0

|A|)2 = 4λNE( sup
k∈K(k0),k<k0

∣∣∣∣ 1

|k − k0|
∑k0

t=k+1
ηNt

∣∣∣∣2)

≤ 16λNM
∑k0−1

k=T (τ0−η)

1

(k0 − k)2
≤ 32λNM .

(2)

sup
k∈K(k0),k<k0

|B|

= sup
k∈K(k0),k<k0

∣∣∣∣ 2

|k − k0|
∑N

i=1
δ′iZ

′
∆iXi(X

′
iXi)

−1X ′iei

∣∣∣∣
≤ 2

√
λN√
T

sup
k∈K(k0),k<k0

∑N

i=1

∥∥∥∥ δi√
λN

∥∥∥∥∥∥∥∥ Z ′∆iXi

|k − k0|

∥∥∥∥∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥∥∥∥∥X ′iei√
T

∥∥∥∥
≤ 2

√
N√
T

√
λN( lim

N→∞
max

1≤i≤N

∥∥∥∥∥
√
Nδi√
λN

∥∥∥∥∥)
1

N

∑N

i=1
( sup
k∈K(k0),k<k0

∥∥∥∥ Z ′∆iXi

|k − k0|

∥∥∥∥)

∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥∥∥∥∥X ′iei√
T

∥∥∥∥ .
Using parts (1), (5) and (6) of Lemma 3,

1

N

∑N

i=1
E(( sup

k∈K(k0),k<k0

∥∥∥∥ Z ′∆iXi

|k − k0|

∥∥∥∥)

∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥∥∥∥∥X ′iei√
T

∥∥∥∥)

≤ 1

N

∑N

i=1
[E( sup

k∈K(k0),k<k0

∥∥∥∥ Z ′∆iXi

|k − k0|

∥∥∥∥4

)E(

∥∥∥∥(
X ′iXi

T
)−1

∥∥∥∥4

)]
1
4 [E(

∥∥∥∥X ′iei√
T

∥∥∥∥2

)]
1
2

= O(1),

hence by Markov inequality sup
k∈K(k0),k<k0

|B| = Op(
√
N√
T

√
λN) as (N, T )→∞.
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(3)

sup
k∈K(k0),k<k0

|C|

= sup
k∈K(k0),k<k0

∣∣∣∣ 2√
T − k

∑N

i=1
δ′i(
Z ′∆iMiZ2i

|k − k0|
)(
Z ′2iMiZ2i

T − k )−1(
Z ′2iMiei√
T − k

)

∣∣∣∣
≤ 2

√
λN√
Tτ 0

∑N

i=1

∥∥∥∥ δi√
λN

∥∥∥∥ sup
k∈K(k0),k<k0

∥∥∥∥Z ′∆iMiZ2i

|k − k0|

∥∥∥∥ sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iMiei√
T − k

∥∥∥∥
sup

k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥
+

2
√
λN√
Tη

∑N

i=1

∥∥∥∥ δi√
λN

∥∥∥∥ sup
k∈K(k0),k<k0

∥∥∥∥Z ′∆iMiZ2i

|k − k0|

∥∥∥∥ sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iMiei√
T − k

∥∥∥∥∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥
≤ 2

√
NλN√
Tτ 0

( lim
N→∞

max
1≤i≤N

∥∥∥∥∥
√
Nδi√
λN

∥∥∥∥∥)[
1

N

∑N

i=1
sup

k∈K(k0),k<k0

∥∥∥∥Z ′∆iMiZ2i

|k − k0|

∥∥∥∥ sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iMiei√
T − k

∥∥∥∥
sup

k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥]

+
2
√
NλN√
Tτ 0

( lim
N→∞

max
1≤i≤N

∥∥∥∥∥
√
Nδi√
λN

∥∥∥∥∥)[
1

N

∑N

i=1
sup

k∈K(k0),k<k0

∥∥∥∥Z ′∆iMiZ2i

|k − k0|

∥∥∥∥
sup

k∈K(k0),k<k0

∥∥∥∥Z ′2iMiei√
T − k

∥∥∥∥∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥]

=
2
√
NλN√
Tτ 0

( lim
N→∞

max
1≤i≤N

∥∥∥∥∥
√
Nδi√
λN

∥∥∥∥∥)(C1 + C2)

Using parts (10), (11) and (12) of Lemma 3,

E(C1) ≤ 1

N

∑N

i=1
[E( sup

k∈K(k0),k<k0

∥∥∥∥(
Z ′∆iMiZ2i

|k − k0|

∥∥∥∥4

)E( sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iMiei√
T − k

∥∥∥∥4

)]
1
4

[E( sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥2

)]
1
2

= O(
1√
T

),

and using parts (10), (11) and (15) of Lemma 3,

E(C2) ≤ 1

N

∑N

i=1
[E( sup

k∈K(k0),k<k0

∥∥∥∥(
Z ′∆iMiZ2i

|k − k0|

∥∥∥∥2

)E( sup
k∈K(k0),k<k0

∥∥∥∥Z ′2iMiei√
T − k

∥∥∥∥2

)]
1
2

sup
k∈K(k0),k<k0

∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥
= O(1),
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thus by Markov inequality sup
k∈K(k0),k<k0

|C| = Op(
√
N√
T

√
λN) as (N, T )→∞.

(4)

sup
k∈K(k0),k<k0

|D|

= sup
k∈K(k0),k<k0

∣∣∣∣∣ N

T − k
1

N

∑N

i=1

e′iMiZ∆i√
|k − k0|

(
Z ′2iMiZ2i

T − k )−1 Z ′∆iMiei√
|k − k0|

∣∣∣∣∣
≤ N

Tτ 0

(
1

N

∑N

i=1
sup

k∈K(k0),k<k0

∥∥∥∥∥ e′iMiZ∆i√
|k − k0|

∥∥∥∥∥
2

sup
K(k0)

∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥
+

1

N

∑N

i=1
sup

k∈K(k0),k<k0

∥∥∥∥∥ e′iMiZ∆i√
|k − k0|

∥∥∥∥∥
2

sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥)

=
N

Tτ 0

(D1 +D2),

Using parts (7) and (15) of Lemma 3,

E(D1) =
1

N

∑N

i=1
E( sup

k∈K(k0),k<k0

∥∥∥∥∥ e′iMiZ∆i√
|k − k0|

∥∥∥∥∥)2 sup
k∈K(k0),k<k0∥∥∥∥[ΣZZ

i −
T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥
= O(log T ),

and using parts (7) and (12) of Lemma 3,

E(D2) ≤ 1

N

∑N

i=1
[E( sup

k∈K(k0),k<k0

∥∥∥∥∥ e′iMiZ∆i√
|k − k0|

∥∥∥∥∥
4

)

E( sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥2

)]
1
2

= O(

√
log T

T
),

thus by Markov inequality sup
k∈K(k0),k<k0

|D| = Op(
N log T
T

) as (N, T )→∞.
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(5)

sup
k∈K(k0),k<k0

|E|

≤ sup
k∈K(k0),k<k0

∣∣∣∣2N√T − k0

T − k
1

N

∑N

i=1

e′iMiZ0i√
T − k0

[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1Z

′
∆iMiei
|k − k0|

∣∣∣∣
+ sup
k∈K(k0),k<k0

∣∣∣∣∣ 2N
√
T−k0

T−k
1
N

∑N
i=1

e′iMiZ0i√
T−k0

[(
Z′2iMiZ2i

T−k )−1

−[ΣZZ
i − T−k

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1]

Z′∆iMiei
|k−k0|

∣∣∣∣∣
≤ 2√

1− τ 0

N√
T

(
1

N

∑N

i=1

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥ sup
k∈K(k0),k<k0

∥∥∥∥Z ′∆iMiei
|k − k0|

∥∥∥∥
sup

k∈K(k0),k<k0

∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥)

+
2√

1− τ 0

N√
T

(
1

N

∑N

i=1

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥ sup
k∈K(k0),k<k0

∥∥∥∥Z ′∆iMiei
|k − k0|

∥∥∥∥
sup

k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥)

=
2√

1− τ 0

N√
T

(E1 + E2).

Using parts (8), (9) and (15) of Lemma 3,

E(E1) ≤ 1

N

∑N

i=1
[E(

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥2

)E( sup
k∈K(k0),k<k0

∥∥∥∥Z ′∆iMiei
|k − k0|

∥∥∥∥2

)]
1
2

sup
k∈K(k0),k<k0

∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥
= O(1),

and using parts (8), (9) and (12) of Lemma 3,

E(E2) ≤ 1

N

∑N

i=1
[E(

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥4

)E( sup
k∈K(k0),k<k0

∥∥∥∥Z ′∆iMiei
|k − k0|

∥∥∥∥4

)]
1
4

[E( sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥2

)]
1
2

= O(
1√
T

),

thus by Markov inequality sup
k∈K(k0),k<k0

|E| = Op(
N√
T

) as (N, T )→∞.
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(6)

sup
k∈K(k0),k<k0

|F |

= sup
k∈K(k0),k<k0

∣∣∣∣ 1

|k − k0|
∑N

i=1
e′iMiZ0i[

1

T − k (
Z ′2iMiZ2i

T − k )−1 − 1

T − k0

(
Z ′0iMiZ0i

T − k0

)−1]Z ′0iMiei

∣∣∣∣
≤ sup

k∈K(k0),k<k0

∣∣∣∣∣ 1
|k−k0|

∑N
i=1 e

′
iMiZ0i[

1
T−k (

Z′2iMiZ2i

T−k )−1

− 1
T−k [ΣZZ

i − T−k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1]Z ′0iMiei

∣∣∣∣∣
+ sup
k∈K(k0),k<k0

∣∣∣∣∣ 1
|k−k0|

∑N
i=1 e

′
iMiZ0i[

1
T−k [ΣZZ

i − T−k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

− 1
T−k0

[ΣZZ
i − T−k0

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1]Z ′0iMiei

∣∣∣∣∣
+

∣∣∣∣∣ 1
|k−k0|

∑N
i=1 e

′
iMiZ0i[(

1
T−k0

(
Z′0iMiZ0i

T−k0
)−1

− 1
T−k0

[ΣZZ
i − T−k0

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1]Z ′0iMiei

∣∣∣∣∣
= sup

k∈K(k0),k<k0

|F1|+ sup
k∈K(k0),k<k0

|F2|+ |F3| .

sup
k∈K(k0),k<k0

|F1|

= sup
k∈K(k0),k<k0

∣∣∣∣∣ 1
|k−k0|

T−k0

T−k
∑N

i=1
e′iMiZ0i√
T−k0

[(
Z′2iMiZ2i

T−k )−1

−[ΣZZ
i − T−k

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1]

Z′0iMiei√
T−k0

∣∣∣∣∣
≤

∑N

i=1

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥2

sup
k∈K(k0),k<k0

∥∥∥∥(
Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥ .
Using parts (9) and (12) of Lemma 3,

E( sup
k∈K(k0),k<k0

|F1|) ≤
∑N

i=1
[E(

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥4

)E( sup
k∈K(k0),k<k0∥∥∥∥(

Z ′2iMiZ2i

T − k )−1 − [ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥2

)]
1
2

= O(
N√
T

),

hence by Markov inequality sup
k∈K(k0),k<k0

|F1| = Op(
N√
T

) as (N, T )→∞.

sup
k∈K(k0),k<k0

|F2|

≤ sup
k∈K(k0),k<k0

∣∣∣∣∣ 1
|k−k0|

∑N
i=1 e

′
iMiZ0i{ 1

T−k [ΣZZ
i − T−k

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

− 1
T−k0

[ΣZZ
i − T−k

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1}Z ′0iMiei

∣∣∣∣∣
+ sup
k∈K(k0),k<k0

∣∣∣∣∣ 1
|k−k0|

∑N
i=1 e

′
iMiZ0i{ 1

T−k0
[ΣZZ

i − T−k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

− 1
T−k0

[ΣZZ
i − T−k0

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1}Z ′0iMiei

∣∣∣∣∣
= sup

k∈K(k0),k<k0

|F21|+ sup
k∈K(k0),k<k0

|F22| .
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E( sup
k∈K(k0),k<k0

|F21|)

= E( sup
k∈K(k0),k<k0

∣∣∣∣ 1

T − k
∑N

i=1

e′iMiZ0i√
T − k0

[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1 Z

′
0iMiei√
T − k0

∣∣∣∣)
≤ N

Tτ 0

[
1

N

∑N

i=1
E( sup

k∈K(k0),k<k0

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥2

) sup
k∈K(k0),k<k0∥∥∥∥[ΣZZ

i −
T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥].

Using parts (9) and (15) of Lemma 3 and Markov inequality, sup
k∈K(k0),k<k0

|F21| = Op(
N
T

) as

(N, T )→∞.

E( sup
k∈K(k0),k<k0

|F22|)

≤
∑N

i=1
E( sup

k∈K(k0),k<k0

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥2

) sup
k∈K(k0),k<k0

1

|k − k0|

∥∥∥∥ [ΣZZ
i − T−k

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

−[ΣZZ
i − T−k0

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥ .
Using part (9) of Lemma 3, the first term is O(1). Noting that A−1−B−1 = A−1(B−A)B−1,

the second term is not larger than

sup
k∈K(k0),k<k0

∥∥∥∥[ΣZZ
i −

T − k
T

ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥∥∥∥∥ 1

T
ΣZX
i (ΣXX

i )−1ΣXZ
i

∥∥∥∥∥∥∥∥[ΣZZ
i −

T − k0

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥ .
Part (15) of Lemma 3 implies this term isO( 1

T
), thus by Markov inequality sup

k∈K(k0),k<k0

|F22| =

Op(
N
T

) as (N, T )→∞.

|F3| ≤
∑N

i=1

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥2 ∥∥∥∥(
Z ′0iMiZ0i

T − k0

)−1 − [ΣZZ
i −

T − k0

T
ΣZX
i (ΣXX

i )−1ΣXZ
i ]−1

∥∥∥∥)

Using parts (9) and (13) of Lemma 3,

E(F3) ≤
∑N

i=1
[E(

∥∥∥∥ e′iMiZ0i√
T − k0

∥∥∥∥4

)E(

∥∥∥∥(
Z ′0iMiZ0i

T − k0

)−1 − (ΣZX
i ΣXX

i ΣXZ
i )−1

∥∥∥∥2

)]
1
2

= O(
N√
T

),

thus by Markov inequality F3 = Op(
N√
T

) as (N, T )→∞. Taken together, sup
k∈K(k0),k<k0

|F | =

Op(
N√
T

) +Op(
N
T

) +Op(
N√
T

) = Op(
N√
T

) as (N, T )→∞.
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Lemma 6 Under Assumptions 5-14, given |k − k0| ≤ C, there exists M > 0 such that

(1) E(
∥∥∥ 1
T

∑T
t=1(F̃t −H ′F 0

t )(F̃t −H ′F 0
t )′
∥∥∥) ≤ 1

δ2
NT
M ,

(2) E(
∥∥∥ 1
T

∑T
t=1(F̃t −H ′F 0

t )eit

∥∥∥) ≤ ( 1√
T

+ 1
δ2
NT

)M for each i,

(3) E(
∥∥∥ 1
T

∑T
t=1H

′F 0
t (F̃t −H ′F 0

t )′
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M ,

(4) E( sup
k∈K(k0),k<k0

∥∥∥ 1
k0−k

∑k0

t=k+1(F̃t −H ′F 0
t )(F̃t −H ′F 0

t )′
∥∥∥) ≤M ,

(5) E( sup
k∈K(k0),k<k0

∥∥∥ 1
k0−k

∑k0

t=k+1(F̃t −H ′F 0
t )eit

∥∥∥) ≤M for each i,

(6) E( sup
k∈K(k0),k<k0

∥∥∥ 1
k0−k

∑k0

t=k+1 H
′F 0
t (F̃t −H ′F 0

t )′
∥∥∥) ≤M ,

(7) E( sup
k∈K(k0),k<k0

∥∥∥ 1
T

∑k0

t=k+1(F̃t −H ′F 0
t )(F̃t −H ′F 0

t )′
∥∥∥) ≤ 1

δ2
NT
M ,

(8) E( sup
k∈K(k0),k<k0

∥∥∥ 1
T

∑k0

t=k+1(F̃t −H ′F 0
t )eit

∥∥∥) ≤ ( 1√
T

+ 1
δ2
NT

)M for each i,

(9) E( sup
k∈K(k0),k<k0

∥∥∥ 1
T

∑k0

t=k+1H
′F 0
t (F̃t −H ′F 0

t )′
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M ,

(10) E( sup
k∈K(k0),k≤k0

∥∥∥ 1
T−k

∑T
t=k+1(F̃t −H ′F 0

t )(F̃t −H ′F 0
t )′
∥∥∥) ≤ 1

δ2
NT
M ,

(11) E( sup
k∈K(k0),k≤k0

∥∥∥ 1
T−k

∑T
t=k+1(F̃t −H ′F 0

t )eit

∥∥∥) ≤ ( 1√
T

+ 1
δ2
NT

)M for each i,

(12) E( sup
k∈K(k0),k≤k0

∥∥∥ 1
T−k

∑T
t=k+1 H

′F 0
t (F̃t −H ′F 0

t )′
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M .

Proof. We will show that terms in parentheses have the indicated stochastic order. Given

our assumptions on the factor process and the error process and using Holder’s inequality,

E ‖fg‖ ≤ (E ‖f‖2)
1
2 (E ‖g‖2)

1
2 repeatedly, it is easy to show their expectation have the same

order.

First note that [ 1
NT

∑N
i=1(Yi −Xiβ̂i(k)− Z2iδ̂i(k))(Yi −Xiβ̂i(k)− Z2iδ̂i(k))′]F̃ = F̃ VNT ,

where VNT is a diagonal matrix consists of the r largest eigenvalues of the matrix in the

bracket. Define

ui = Xi(βi − β̂i(k)) + Z0i(δi − δ̂i(k))− (Z2i − Z0i)δ̂i(k),
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then Yi −Xiβ̂i(k)− Z2iδ̂i(k) = ui + F 0λi + ei. Expanding terms, we have

F̃ VNT −
1

NT

∑N

i=1
F 0λiλ

′
iF

0′F̃

=
1

NT

∑N

i=1
uiu
′
iF̃ +

1

NT

∑N

i=1
uiλ
′
iF

0′F̃ +
1

NT

∑N

i=1
uie
′
iF̃

+
1

NT

∑N

i=1
F 0λiu

′
iF̃ +

1

NT

∑N

i=1
eiu
′
iF̃

+
1

NT

∑N

i=1
F 0λie

′
iF̃ +

1

NT

∑N

i=1
eiλ
′
iF

0′F̃ +
1

NT

∑N

i=1
eie
′
iF̃

= I1 + ...+ I8. (14)

Define H = 1
NT

∑N
i=1 λiλ

′
iF

0′F̃ V −1
NT , then (F̃ − F 0H)VNT = I1 + ...+ I8.

Parts (1)-(3) correspond to part (ii) of Proposition A.1, part (i) of Lemma A.4 and part

(i) of Lemma A.3 respectively in Bai (2009), and can be proved in a similar manner. A key

step is to calculate
∥∥∥ 1√

T
ui

∥∥∥. In Bai (2009),∥∥∥ 1√
T
ui

∥∥∥ = Op(
∥∥∥β̂ − β∥∥∥) while in the current case∥∥∥ 1√

T
ui

∥∥∥ = Op(
∥∥∥β̂i(k)− βi

∥∥∥) + Op(
∥∥∥δ̂i(k)− δi

∥∥∥) + 1√
T

∥∥∥(Z2i − Z0i)δ̂i(k)
∥∥∥. If k = k0, Song

(2013) shows that βi − β̂i and δi − δ̂i are Op(
1√
T

). It can be verified that this result still

holds for |k − k0| ≤ C. Moreover, given our assumptions on the regressors and factors, this

Op(
1√
T

) is uniform over i. For the last term,

1√
T

∥∥∥(Z2i − Z0i)δ̂i(k)
∥∥∥ =

1√
T

∥∥∥(Z2i − Z0i)(δ̂i(k)− δi)
∥∥∥+

1√
T
‖(Z2i − Z0i)δi‖

= Op(
1√
T

) +
1√
T
Op(1) = Op(

1√
T

),

where the second equality follows fromE ‖(Z2i − Z0i)δi‖2 = |k − k0|E( 1
|k−k0|

∑k0

t=k+1 ‖zit‖
2) =

O(1) for |k − k0| ≤ C. Thus,
∥∥∥ 1√

T
ui

∥∥∥ = Op(
1√
T

).

Next consider parts (4)-(9). Each term in parts (4)-(9) can be decomposed into eight

terms according to (14). The proof of the last three terms can be found in the existing

literature. For part (4), the last three terms together is Op(
1

δ2
NT

), see part (5) of Lemma 5 of

Baltagi et al. (2015b). For part (5), the last three terms together is Op(
1

δNT
), see part (4)

of Lemma 5 of Baltagi et al. (2015b), replacing F 0
t by eit does not change the result. For

part (6), the last three terms is Op(
1

δNT
), see part (4) of Lemma 5 of Baltagi et al. (2015b).

For part (7), the last three terms together is Op(
1

δ2
NT

), see part (5) of Lemma 5 of Baltagi

et al. (2015b), which is a stronger result. For part (8), the last three terms is Op(
1

δ2
NT

),

see Lemma 3 of Han and Inoue (2014), replacing
∑πT

t=1 by
∑k0

t=k+1 and F
0
t by eit does not

change the result. For part (9), the last three terms is Op(
1

δ2
NT

), see Lemma 3 of Han and
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Inoue (2014), replacing
∑πT

t=1 by
∑k0

t=k+1 does not change the result. The assumptions in

Baltagi et al. (2015b) and Han and Inoue (2014) can be verified given Assumptions 5—14.

For the first five terms, a key result is sup
k∈K(k0),k<k0

∥∥∥ 1
k0−k

∑k0

t=k+1 u
2
it

∥∥∥ = Op(1) for parts (4)-

(6) and sup
k∈K(k0),k<k0

∥∥∥ 1
T

∑k0

t=k+1 u
2
it

∥∥∥ = Op(
1
T

) for parts (7)-(9), which follows directly from∥∥∥ 1√
T
ui

∥∥∥ = Op(
1√
T

). Based on this, it is easy to see part (4) is Op(1) + Op(
1

δ2
NT

) = Op(1),

parts (5) and (6) are both Op(1)+Op(
1

δNT
) = Op(1), part (7) is Op(

1
T

)+Op(
1

δ2
NT

) = Op(
1

δ2
NT

),

parts (8) and (9) are both Op(
1√
T

) +Op(
1

δ2
NT

).

(10)-(12) can be proved following the same procedure as (7)-(9).

Lemma 7 Under Assumptions 5-14, given |k − k0| ≤ C, there exists M > 0 such that

(1) E(
∥∥∥ 1
T

∑T
t=1 F̃teit

∥∥∥) ≤ ( 1√
T

+ 1
δ2
NT

)M for each i,

(2) E(
∥∥∥ 1
T

∑T
t=1 xit(F̃t −H ′F 0

t )
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M for each i,

(3) E(
∥∥∥ 1
T

∑T
t=1 F̃t(F̃t −H ′F 0

t )′
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M ,

(4) E( sup
k∈K(k0),k<k0

∥∥∥ 1
k0−k

∑k0

t=k+1 F̃teit

∥∥∥) ≤M for each i,

(5) E( sup
k∈K(k0),k<k0

∥∥∥ 1
k0−k

∑k0

t=k+1 xit(F̃t −H ′F 0
t )
∥∥∥) ≤M for each i,

(6) E( sup
k∈K(k0),k<k0

∥∥∥ 1
k0−k

∑k0

t=k+1 F̃t(F̃t −H ′F 0
t )′
∥∥∥) ≤M ,

(7) E( sup
k∈K(k0),k<k0

∥∥∥ 1
T

∑k0

t=k+1 F̃teit

∥∥∥) ≤ ( 1√
T

+ 1
δ2
NT

)M for each i,

(8) E( sup
k∈K(k0),k<k0

∥∥∥ 1
T

∑k0

t=k+1 xit(F̃t −H ′F 0
t )
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M for each i,

(9) E( sup
k∈K(k0),k<k0

∥∥∥ 1
T

∑k0

t=k+1 F̃t(F̃t −H ′F 0
t )′
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M ,

(10) E( sup
k∈K(k0),k≤k0

∥∥∥ 1
T−k

∑T
t=k+1 F̃teit

∥∥∥) ≤ ( 1√
T

+ 1
δ2
NT

)M for each i,

(11) E( sup
k∈K(k0),k≤k0

∥∥∥ 1
T−k

∑T
t=k+1 xit(F̃t −H ′F 0

t )
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M for each i,

(12) E( sup
k∈K(k0),k≤k0

∥∥∥ 1
T−k

∑T
t=k+1 F̃t(F̃t −H ′F 0

t )′
∥∥∥) ≤ ( 1√

T
+ 1

δ2
NT

)M .

Proof. The proof of parts (2), (5), (8) and (11) are similar to parts (2), (5), (8) and (11) of

Lemma 6. Other terms can be easily shown using Lemma 6.

A Proof of Theorem 1

Proof. To prove τ̂ − τ 0 = op(1) as (N, T ) → ∞, we need to show for any ε > 0 and

η ∈ (0,min{τ 0, 1− τ 0}), P (
∣∣∣k̂ − k0

∣∣∣ > Tη) < ε as (N, T )→∞, i.e., we need to show P (k̂ ∈
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Kc) < ε as (N, T )→∞. k̂ = arg max
∑N

i=1[Vi(k)−Vi(k0)], hence
∑N

i=1[Vi(k̂)−Vi(k0)] ≥ 0. If

k̂ ∈ Kc, then sup
k∈Kc

∑N
i=1[Vi(k)− Vi(k0)] ≥ 0. This implies P (k̂ ∈ Kc) ≤ P ( sup

k∈Kc

∑N
i=1[Vi(k)−

Vi(k0)] ≥ 0), hence it suffi ces to show for any given ε > 0 and η ∈ (0,min{τ 0, 1 − τ 0}),
P ( sup

k∈Kc

∑N
i=1[Vi(k)−Vi(k0)] ≥ 0) < ε as (N, T )→∞. If ω ∈ {ω : sup

k∈Kc

∑N
i=1[Vi(k)−Vi(k0)] ≥

0} and arg max
k∈Kc

∑N
i=1[Vi(k) − Vi(k0)] = k∗, then

∑N
i=1[Vi(k

∗) − Vi(k0)] ≥ 0. This implies∑N
i=1[Vi(k

∗)−Vi(k0)]

|k∗−k0| ≥ 0 and it follows sup
k∈Kc

∑N
i=1[Vi(k)−Vi(k0)]

|k−k0| ≥
∑N
i=1[Vi(k

∗)−Vi(k0)]

|k∗−k0| ≥ 0. This implies

ω ∈ {ω : sup
k∈Kc

∑N
i=1[Vi(k)−Vi(k0)]

|k−k0| ≥ 0}, hence {ω : sup
k∈Kc

∑N
i=1[Vi(k) − Vi(k0)] ≥ 0} ⊆ {ω :

sup
k∈Kc

∑N
i=1[Vi(k)−Vi(k0)]

|k−k0| ≥ 0}. Similarly, {ω : sup
k∈Kc

∑N
i=1[Vi(k)−Vi(k0)]

|k−k0| ≥ 0} ⊆ {ω : sup
k∈Kc

∑N
i=1[Vi(k)−

Vi(k0)] ≥ 0}. Thus, {ω : sup
k∈Kc

∑N
i=1[Vi(k)−Vi(k0)] ≥ 0} = {ω : sup

k∈Kc

∑N
i=1[Vi(k)−Vi(k0)]

|k−k0| ≥ 0} and

it suffi ces to show for any given ε > 0 and η ∈ (0,min{τ 0, 1− τ 0}), P ( sup
k∈Kc

∑N
i=1[Vi(k)−Vi(k0)]

|k−k0| ≥

0) < ε as (N, T ) → ∞. Note that
∑N
i=1[Vi(k)−Vi(k0)]

|k−k0| = −
∑N

i=1Gi(k) + 1
|k0−k|

∑N
i=1Hi(k) for

k 6= k0, thus sup
k∈Kc

∑N
i=1[Vi(k)−Vi(k0)]

|k−k0| ≥ 0 implies sup
k∈Kc

∣∣∣ 1
|k−k0|

∑N
i=1Hi(k)

∣∣∣ ≥ inf
k∈Kc

∑N
i=1Gi(k), it

suffi ces to show that for any ε > 0 and η ∈ (0,min{τ 0, 1− τ 0}), P ( sup
k∈Kc

∣∣∣ 1
|k−k0|

∑N
i=1Hi(k)

∣∣∣ ≥
inf
k∈Kc

∑N
i=1Gi(k)) < ε as (N, T )→∞. Due to symmetry, it suffi ces to study the case k < k0.

Consider the left hand side first.

1

|k − k0|
∑N

i=1
Hi(k)

= 2
1

|k − k0|
∑N

i=1
δ′i(Z

′
0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiei)− 2
1

|k − k0|
∑N

i=1
δ′iZ

′
0iMiei

+
1

|k − k0|
∑N

i=1
e′iMiZ2i(Z

′
2iMiZ2i)

−1Z ′2iMiei

− 1

|k − k0|
∑N

i=1
e′iMiZ0i(Z

′
0iMiZ0i)

−1Z ′0iMiei

For the third term, noting that Mi(Z1i + Z2i) = MiZi = 0, we have

sup
k∈Kc,k<k0

1

|k − k0|
∑N

i=1
e′iMiZ2i(Z

′
2iMiZ2i)

−1Z ′2iMiei

= sup
k∈Kc,k<k0

1

|k − k0|
∑N

i=1
e′iMiZ1i(Z

′
1iMiZ1i)

−1Z ′1iMiei

≤ 1

Tη

∑N

i=1
sup

k∈Kc,k<k0

∥∥∥∥e′iMiZ1i√
k

∥∥∥∥2

sup
k∈Kc,k<k0

∥∥∥∥(
Z ′1iMiZ1i

k
)−1

∥∥∥∥ ,
thus by parts (16) and (17) of Lemma 3 and Markov inequality, this term is Op(

N log T
T

).

Similarly, the fourth term is not larger than 1
Tη

∑N
i=1

∥∥∥ e′iMiZ0i√
T−k0

∥∥∥2 ∥∥∥(
Z′0iMiZ0i

T−k0
)−1
∥∥∥, and by parts
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(9) and (14) of Lemma 3 and Markov inequality, this term is Op(
N
T

). For the first term, the

expectation is not larger than

2
√
NλN
Tη

( lim
N→∞

max
1≤i≤N

Nδ′iδi
λN

)
1
2

1

N

∑N

i=1
E( sup

k∈Kc,k<k0

∥∥Z ′0iMiZ1i(Z
′
1iMiZ1i)

−1Z ′1iMiei
∥∥)

≤ 2
√
NλN√
Tη

( lim
N→∞

max
1≤i≤N

Nδ′iδi
λN

)
1
2

1

N

∑N

i=1
E( sup

k∈Kc,k<k0

∥∥∥∥Z ′0iMiZ1i

k

∥∥∥∥
sup

k∈Kc,k<k0

∥∥∥∥(
Z ′1iMiZ1i

k
)−1

∥∥∥∥ sup
k∈Kc,k<k0

∥∥∥∥Z ′1iMiei√
k

∥∥∥∥),

thus by parts (16), (17) and (18) of Lemma 3 andMarkov inequality, this term isOp(
√

NλN log T
T

).

For the second term, using part (9) of Lemma 3, it is easy to see it’s Op(
√

NλN
T

).

Next consider the right hand side. Using Lemma 4, there exists α > 0 such that for any

ε > 0, P ( inf
k 6=k0

∑N
i=1Gi(k) ≥ αλN) > 1−ε as (N, T )→∞. Noting that inf

k∈Kc,k<k0

∑N
i=1 Gi(k) ≥

inf
k 6=k0

∑N
i=1Gi(k), under Assumption 4(a), or 4(b), or 4(c), sup

k∈Kc,k<k0

∣∣∣ 1
|k−k0|

∑N
i=1 Hi(k)

∣∣∣ will
be dominated by inf

k∈Kc,k<k0

∑N
i=1Gi(k) as (N, T )→∞.

B Proof of Theorem 2

Proof. To prove k̂−k0 = Op(1) as (N, T )→∞ and N√
T
→ 0, we need to show for any ε > 0,

there exist C <∞, N∗ > 0, T ∗ > 0 and γ > 0, such that for N > N∗, T > T ∗ and N√
T
< γ,

P (
∣∣∣k̂ − k0

∣∣∣ > C) < ε. Since P (
∣∣∣k̂ − k0

∣∣∣ > C) < P ( sup
|k−k0|>C

∑N
i=1[Vi(k) − Vi(k0)] ≥ 0), it

suffi ces to show for any ε > 0, there exist C <∞, N∗ > 0, T ∗ > 0 and γ > 0, such that for

N > N∗, T > T ∗ and N√
T
< γ, P ( sup

|k−k0|>C

∑N
i=1[Vi(k)−Vi(k0)] ≥ 0) < ε. Since τ̂ is consistent,

P (k̂ ∈ Kc) → 0 as (N, T ) → ∞. Noting that K(C) = {k : |k − k0| > C} ∩K, it suffi ces to
show for any ε > 0, there exist C < ∞, N∗ > 0, T ∗ > 0 and γ > 0, such that for N > N∗,

T > T ∗ and N√
T
< γ, P ( sup

k∈K(C)

∑N
i=1[Vi(k) − Vi(k0)] ≥ 0) < ε. Since sup

k∈K(C)

∑N
i=1[Vi(k) −

Vi(k0)] ≥ 0 implies sup
k∈K(C)

∣∣∣ 1
|k−k0|

∑N
i=1Hi(k)

∣∣∣ ≥ inf
k∈K(C)

∑N
i=1Gi(k), it suffi ces to show that

for any ε > 0, there exist C < ∞, N∗ > 0, T ∗ > 0 and γ > 0, such that for N > N∗,

T > T ∗ and N√
T
< γ, P ( sup

k∈K(C)

∣∣∣ 1
|k−k0|

∑N
i=1 Hi(k)

∣∣∣ ≥ inf
k∈K(C)

∑N
i=1Gi(k)) < ε. Again by

symmetry, it suffi ces to study the case k < k0, i.e. P ( sup
k∈K(C),k<k0

∣∣∣ 1
|k−k0|

∑N
i=1 Hi(k)

∣∣∣ ≥
inf

k∈K(C),k<k0

∑N
i=1Gi(k)) < ε. By Lemma 4, there exists α > 0 such that for any ε > 0, there
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exist N∗ > 0, T ∗ > 0 such that for N > N∗, T > T ∗, P ( inf
k 6=k0

∑N
i=1Gi(k) ≥ αλN) > 1 − ε.

Noting that inf
k∈K(C),k<k0

∑N
i=1Gi(k) ≥ inf

k 6=k0

∑N
i=1Gi(k), it suffi ces to show for any ε > 0, there

exist C < ∞, N∗ > 0, T ∗ > 0 and γ > 0, such that for N > N∗, T > T ∗ and N√
T
< γ,

P ( sup
k∈K(C),k<k0

∣∣∣ 1
|k−k0|

∑N
i=1Hi(k)

∣∣∣ ≥ αλN) < ε. The first two terms of 1
|k−k0|

∑N
i=1Hi(k) is

2
1

|k − k0|
∑N

i=1
δ′i(Z

′
0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiei)− 2
1

|k − k0|
∑N

i=1
δ′iZ

′
0iMiei

= [2
1

|k − k0|
∑N

i=1
δ′iZ

′
∆iMiei

−2
1

|k − k0|
∑N

i=1
δ′i(Z

′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiei)]sgn(k0 − k)

= 2sgn(k0 − k)
1

|k − k0|
∑N

i=1
δ′iZ

′
∆iei − 2sgn(k0 − k)

1

|k − k0|
∑N

i=1
δ′iZ

′
∆iXi(X

′
iXi)

−1X ′iei

−2sgn(k0 − k)
1

|k − k0|
∑N

i=1
δ′i(Z

′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiei)

= A+B + C.

The last two terms of 1
|k−k0|

∑N
i=1Hi(k) is

1

|k − k0|
∑N

i=1
e′iMiZ2i(Z

′
2iMiZ2i)

−1Z ′2iMiei −
1

|k − k0|
∑N

i=1
e′iMiZ0i(Z

′
0iMiZ0i)

−1Z ′0iMiei

=
1

|k − k0|
∑N

i=1
e′iMiZ∆i(Z

′
2iMiZ2i)

−1Z ′∆iMiei

+2sgn(k0 − k)
1

|k − k0|
∑N

i=1
e′iMiZ0i(Z

′
2iMiZ2i)

−1Z ′∆iMiei

+
1

|k − k0|
∑N

i=1
e′iMiZ0i[(Z

′
2iMiZ2i)

−1 − (Z ′0iMiZ0i)
−1]Z ′0iMiei

= D + E + F .

Thus by Lemma 5,

sup
k∈K(C),k<k0

∣∣∣∣ 1

|k − k0|
∑N

i=1
Hi(k)

∣∣∣∣
≤ sup

k∈K(C),k<k0

|A|+ sup
k∈K(C),k<k0

|B|+ sup
k∈K(C),k<k0

|C|

+ sup
k∈K(C),k<k0

|D|+ sup
k∈K(C),k<k0

|E|+ sup
k∈K(C),k<k0

|F |

≤ sup
k∈K(C),k<k0

|A|+ sup
k∈K(k0),k<k0

|B|+ sup
k∈K(k0),k<k0

|C|

+ sup
k∈K(k0),k<k0

|D|+ sup
k∈K(k0),k<k0

|E|+ sup
k∈K(k0),k<k0

|F |

= sup
k∈K(C),k<k0

|A|+Op(

√
N√
T

√
λN) +Op(

N log T

T
) +Op(

N√
T

).
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Under Assumption 4(a), the last three terms are all op(1). For the first term, similar to the

proof of part (1) of Lemma 5, for all N we have,

E( sup
k∈K(C),k<k0

|A|)2 ≤ 4λNE( sup
k∈K(C),k<k0

∣∣∣∣ 1

|k − k0|
∑k0

t=k+1
ηNt

∣∣∣∣2)

≤ 16λNM
∑k0−C−1

k=T (τ0−η)

1

(k0 − k)2
≤ 16λNM

C
< ε,

if C is large enough. The proof is finished.

C Proof of Theorem 3

Proof. The proof is similar to the proof of Theorem 2. Based on Theorem 1, τ̂ is consistent

under Assumption 4(b) or 4(c), i.e., for any ε > 0 and η > 0, P (k̂ ∈ Kc) < ε as (N, T )→∞,
hence it suffi ces to show for any ε > 0 and η > 0, P (k̂ ∈ K(k0)) < ε as (N, T ) → ∞ under

Assumption 4(b) or 4(c). By Lemma 4, there exists α > 0 such that for any ε > 0, there

exist N∗ > 0, T ∗ > 0 such that for N∗ > N , T > T ∗, P ( inf
k∈K(k0)

∑N
i=1Gi(k) ≥ αλN) > 1− ε.

By Lemma 5,

sup
k∈K(k0)

∣∣∣∣ 1

|k − k0|
∑N

i=1
Hi(k)

∣∣∣∣ ≤ sup
k∈K(k0)

|A|+ sup
k∈K(k0)

|B|+ sup
k∈K(k0)

|C|

+ sup
k∈K(k0)

|D|+ sup
k∈K(k0)

|E|+ sup
k∈K(k0)

|F |

= Op(
√
λN) +Op(

√
N√
T

√
λN) +Op(

N log T

T
) +Op(

N√
T

).

Under Assumption 4(b) or 4(c), all these four terms will be dominated by αλN , the proof is

thus finished.

D Proof of Theorem 4

Proof. Define VNT (k) =
∑N

i=1[Vi(k) − Vi(k0)], UNT (k) = −
∑N

i=1 δ
′
iZ
′
∆iZ∆iδi + 2sgn(k0 −

k)
∑N

i=1 δ
′
iZ
′
∆iei, both VNT (k) and UNT (k) are countable dimensional random vector. For

any fixed constant C <∞, define V C
NT (k) = VNT (k) for |k0 − k| < C, UC

NT (k) = UNT (k) for

|k0 − k| < C, WC (m) = W (m) for |m| < C. V C
NT (k), UC

NT (k) and WC (m) are all finite

dimensional random vector.

Step 1: Under Assumption 4(a), V C
NT (k)

p→ UC
NT (k) for any fixed C <∞.

Again due to symmetry, it suffi ces to show the case k < k0.
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For k 6= k0, VNT (k) = − |k0 − k|
∑N

i=1Gi(k) +
∑N

i=1Hi(k), where

− |k0 − k|
∑N

i=1
Gi(k)

= −
∑N

i=1
δ′i[(Z

′
0iMiZ0i)− (Z ′0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ0i)]δi

= −
∑N

i=1
δ′i(Z

′
∆iMiZ∆i)δi +

∑N

i=1
δ′i(Z

′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ∆i)δi

= −
∑N

i=1
δ′iZ

′
∆iZ∆iδi +

∑N

i=1
δ′iZ

′
∆iXi(X

′
iXi)

−1X
′

iZ∆iδi

+
∑N

i=1
δ′i(Z

′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ∆i)δi,

∑N

i=1
Hi(k) = |k0 − k| (A+B + C +D + E + F )

= 2sgn(k0 − k)
∑N

i=1
δ′iZ

′
∆iei + |k0 − k| (B + C +D + E + F ).

Hence for k 6= k0,

VNT (k)− UNT (k) =
∑N

i=1
δ′iZ

′
∆iXi(X

′
iXi)

−1X
′

iZ∆iδi

+
∑N

i=1
δ′i(Z

′
∆iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′2iMiZ∆i)δi

+ |k0 − k| (B + C +D + E + F ),

and for k = k0, VNT (k)− UNT (k) = 0. As proved in Step 2 of Lemma 4, the first two terms

are both Op(
1
T

) uniformly over k0 − C ≤ k < k0 as (N, T ) → ∞. For the last five terms,
using Lemma 5,

sup
k0−C≤k<k0

||k0 − k| (B + C +D + E + F )|

≤ C( sup
k∈K(k0),k<k0

|B|+ sup
k∈K(k0),k<k0

|C|+ sup
k∈K(k0),k<k0

|D|+ sup
k∈K(k0),k<k0

|E|+ sup
k∈K(k0),k<k0

|F |)

= op(1),

as (N, T )→∞ and N√
T
→ 0. Taken together, we have sup

k0−C≤k<k0

|VNT (k)− UNT (k)| p→ 0 as

(N, T )→∞ and N√
T
→ 0.

Step 2: For any fixedC <∞, as finite dimensional random vectors, UC
NT (k)

d→ WC (k − k0)

as N →∞.
Note that

UNT (k) =

{
−
∑k0

t=k+1

∑N
i=1 δ

′
izitz

′
itδi + 2

∑k0

t=k+1

∑N
i=1 δ

′
iziteit, for k − k0 ≤ −1,

−
∑k

t=k0+1

∑N
i=1 δ

′
izitz

′
itδi − 2

∑k
t=k0+1

∑N
i=1 δ

′
iziteit, for k − k0 ≥ 1.
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Under part (5) of Assumption 3, part (5) of Assumption 2 and Assumption 4(a), for each

t
∑N

i=1 δ
′
izitz

′
itδi

p→ λξ and as a random vector, (
∑N
i=1 δ

′
izi,k0

ei,k0√
λN

, ...,
∑N
i=1 δ

′
izi,k0−Cei,k0−C√

λN
)′

d→
(Z0, ..., Z−C)′. Since

(
∑k0

t=k0

∑N

i=1
δ′iziteit, ...,

∑k0

t=k0−C

∑N

i=1
δ′iziteit)

′

= Q(
∑N

i=1
δ′izi,k0ei,k0 , ...,

∑N

i=1
δ′izi,k0−Cei,k0−C)′,

where Q is a (C + 1) × (C + 1) lower triangular matrix with all nonzero element equal to

one, we have

(
∑k0

t=k0

∑N

i=1
δ′iziteit, ...,

∑k0

t=k0−C

∑N

i=1
δ′iziteit)

′ d→ Q(Z0, ..., Z−C)′

= (
∑0

t=0
Zt, ...,

∑0

t=−C
Zt)
′.

Similarly,

(
∑k0

t=k0

∑N

i=1
δ′izitz

′
itδi, ...,

∑k0

t=k0−C

∑N

i=1
δ′izitz

′
itδi)

′ p→ (λξ, ..., (C + 1)λξ)′.

For the second half of UNT (k), we have similar result. Taken together, we have UC
NT (k)

d→
WC (k − k0) as N →∞.
Step 3: V C

NT (k)
d→ WC (k − k0) as (N, T )→∞ and N√

T
→ 0 for any fixed C <∞.

Based on Step 1 and Step 2 and using Slutsky’s Lemma for random vectors, V C
NT (k)

d→
WC (k − k0).

Step 4: arg maxV C
NT (k)− k0

d→ arg maxWC (m) uniformly as (N, T )→∞ and N√
T
→ 0

for any fixed C <∞.
Step 4.1: If W (m) does not have a unique maximizer, then these exist m 6= m′ such that

W (m) = W (m′). Consider the case m′ > m ≥ 1, P (W (m) = W (m′)) = P ((m′ − m)ξ +

2
√
λ
∑m′

t=m Zt = 0) = 0. Other cases can be proved similarly. Since the number of integer

pairs (m,m′) is countable and sum of countable zero is still zero, the probability thatW (m)

does not have a unique maximizer is zero. Therefore, with probability one arg maxW (m) is

unique.

Step 4.2: Based on Step 3 and using continuous mapping theorem, arg maxV C
NT (k)

d→
arg maxWC (m). Note that for a finite dimensional vector X, Y = arg maxX is a con-

tinuous function. By definition of convergence of distribution, for any ε > 0 and any

1 ≤ j ≤ C, there exist N∗j > 0, T ∗j > 0 and γj > 0 such that if N > N∗j , T > T ∗j

and N√
T
< γj, then

∣∣P (arg maxV C
NT (k)− k0 = j)− P (arg maxWC (m) = j)

∣∣ < ε. Take
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N∗ = max{N∗j , 1 ≤ j ≤ C}, T ∗ = max{T ∗j , 1 ≤ j ≤ C} and γ = min{ γj, 1 ≤ j ≤ C}.
Since C < ∞, we have N∗ < ∞, T ∗ < ∞ and γ > 0. For N > N∗, T > T ∗ and N√

T
< γ,∣∣P (arg maxV C

NT (k)− k0 = j)− P (arg maxWC (m) = j)
∣∣ < ε for all 1 ≤ j ≤ C.

Step 5: k̂ − k0
d→ arg maxW (m).

Step 5.1:

k̂ − k0 = Op(1) as (N, T ) → ∞ and N√
T
→ 0, hence for any ε

3
> 0, there exist C1 < ∞,

N1 > 0, T1 > 0 and γ1 > 0, such that for N > N1, T > T1 and N√
T
< γ1, P (

∣∣∣k̂ − k0

∣∣∣ > C1) <

ε
3
.

Step 5.2: m̂ = arg maxW (m) = Op(1).

By the strong law of large numbers,W (m)
a.s.→ −∞ as |m| → ∞. Thus P ( lim

C→∞
sup
|m|>C

W (m) =

−∞) = 1 and this implies lim
C→∞

P ( sup
|m|>C

W (m) ≥ 0) = P ( lim
C→∞

sup
|m|>C

W (m) ≥ 0) = 0. There-

fore, for any ε
3
> 0, there exists C2 <∞ such that P ( sup

|m|>C2

W (m) ≥ 0) < ε
3
. SinceW (0) = 0,

supW (m) ≥ 0, and P (|m̂| > C2) ≤ P ( sup
|m|>C2

W (m) ≥ 0) < ε
3
.

Step 5.3:

Take C = max{C1, C2} in Step 4, then for any ε
3
> 0, there exist N2 > 0, T2 > 0 and

γ2 > 0, such that for N > N2, T > T2 and N√
T
< γ2,∣∣P (arg maxV C

NT (k)− k0 = j)− P (arg maxWC (m) = j)
∣∣ < ε

3

for all 1 ≤ j ≤ C.

Step 5.4:

Take N∗ = max{N1, N2}, T ∗ = max{T1, T2} and γ = min{ γ1, γ2}. For any N > N∗,

T > T ∗ and N√
T
< γ, if |j| > C,∣∣∣P (k̂ − k0 = j)− P (m̂ = j)

∣∣∣ < P (k̂ − k0 = j) + P (m̂ = j)

< P (
∣∣∣k̂ − k0

∣∣∣ > C) + P (|m̂| > C)

< P (
∣∣∣k̂ − k0

∣∣∣ > C1) + P (|m̂| > C2)

<
ε

3
+
ε

3
< ε;

if |j| ≤ C, k̂ − k0 = j implies arg maxV C
NT (k)− k0 = j, hence

P (k̂ − k0 = j) ≤ P (arg maxV C
NT (k)− k0 = j),

and arg maxV C
NT (k)− k0 = j implies k̂ − k0 = j or

∣∣∣k̂ − k0

∣∣∣ > C, hence

P (arg maxV C
NT (k)− k0 = j) < P (k̂ − k0 = j) + P (

∣∣∣k̂ − k0

∣∣∣ > C).
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Therefore,∣∣∣P (k̂ − k0 = j)− P (arg maxV C
NT (k)− k0 = j)

∣∣∣ < P (
∣∣∣k̂ − k0

∣∣∣ > C) <
ε

3
,

and similarly ∣∣P (m̂ = j)− P (arg maxWC (m) = j)
∣∣ < P (|m̂| > C) <

ε

3
.

It follows that∣∣∣P (k̂ − k0 = j)− P (m̂ = j)
∣∣∣ <

∣∣∣P (k̂ − k0 = j)− P (arg maxV C
NT (k)− k0 = j)

∣∣∣
+
∣∣P (arg maxV C

NT (k)− k0 = j)− P (arg maxWC (m) = j)
∣∣

+
∣∣P (m̂ = j)− P (arg maxWC (m) = j)

∣∣
<

ε

3
+
ε

3
+
ε

3
< ε.

We have proved that for any ε > 0, there exist N∗ > 0, T ∗ > 0 and γ > 0, such that for

N > N∗, T > T ∗ and N√
T
< γ,

∣∣∣P (k̂ − k0 = j)− P (m̂ = j)
∣∣∣ < ε for all j. By definition,

k̂ − k0
d→ arg maxW (m).

E Proof of Theorem 5

Proof. The proof of Theorem 1 does not rely on weak cross-sectional dependence, hence

τ̂ − τ 0 is still consistent when cross-sectional dependence is strong. The rest of the proof

follows the same procedure as Theorem 2. The difference is when cross-sectional dependence

is strong, sup
k∈K(k0),k<k0

|A| is Op(
√
NλN), which is of the same order as inf

k∈K(k0)

∑N
i=1 Gi(k) given

λN = O(N). And similar to the proof of Theorem 2,

E( sup
k∈K(C),k<k0

|A|) ≤
∑N

i=1
E( sup

k∈K(C),k<k0

∣∣∣∣ 1

|k − k0|
∑k0

t=k+1
δ′iziteit

∣∣∣∣)
≤ 16

√
NλNM

∑k0−C−1

k=T (τ0−η)

1

(k0 − k)2
≤ 16

√
NλNM

C
< αλN ,

if C is large enough.

F Proof of Theorem 6 and Theorem 7

Proof. To prove Theorem 6, what we need to show is for any ε > 0 and η > 0, there exist

N∗ > 0 and T ∗ > 0 such that for N > N∗ and T > T ∗, P (
∣∣∣k̃ − k0

∣∣∣ > Tη) < ε. First note
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that

P (
∣∣∣k̃ − k0

∣∣∣ > Tη) = P (
∣∣∣k̃ − k0

∣∣∣ > Tη,
∣∣∣k̂ − k0

∣∣∣ > C)+
∑C

j=−C
P (
∣∣∣k̃ − k0

∣∣∣ > Tη,
∣∣∣k̂ − k0

∣∣∣ = j).

Since
∣∣∣k̂ − k0

∣∣∣ = Op(1), there exists C > 0 such that P (
∣∣∣k̂ − k0

∣∣∣ > C) < ε
2
for large N

and large T , it follows that the first term is less than ε
2
for large N and large T . Since

P (
∣∣∣k̃ − k0

∣∣∣ > Tη,
∣∣∣k̂ − k0

∣∣∣ = j) is no larger than P (
∣∣∣k̃ − k0

∣∣∣ > Tη, given |k − k0| = j), it

suffi ces to show for each j = −C, ..., C, P (
∣∣∣k̃ − k0

∣∣∣ > Tη, given |k − k0| = j) < ε
2(2C+1)

for

large N and large T . By Symmetry, it suffi ces to show for each j = −C, ..., C, P (k̃ ∈ Kc

and k̃ < k0,given |k − k0| = j) < ε
2(2C+1)

for large N and large T .

Similarly, to prove Theorem 7, it suffi ces to show that for each j = −C, ..., C, P (k̃ 6=
k0,given |k − k0| = j) < ε

2(2C+1)
for large N and large T . Theorem 6 shows that

∣∣∣k̃ − k0

∣∣∣ =

op(T ), hence it suffi ces to show that for each j = −C, ..., C, P (k̃ ∈ K(k0),given|k − k0| =

j) < ε
2(2C+1)

for large N and large T . By symmetry, it suffi ces to show that for each

j = −C, ..., C, P (k̃ ∈ K(k0) and k̃ < k0,given |k − k0| = j) < ε
2(2C+1)

for large N and large

T .

The rest of the proof follows the same procedure as Theorem 1 and Theorem 3 respec-

tively, but in the current case we have extra regressors F̃ and extra error (F 0H − F̃ )H−1Λ.

The proof of Theorem 1 relies on Lemma 3 and Lemma 4, which further relies on Lemma

3. The proof of Theorem 3 relies on Lemma 4 and Lemma 5, which further rely on Lemma

3. Thus, to prove Theorem 6 and Theorem 7, it suffi ces to reestablish Lemma 3 with the

presence of the extra regressors F̃ and extra error (F̃ − F 0H)H−1Λ. Based on Lemma 6,

Lemma 7 and our assumptions on the factor process and error process, this can be easily

done following the same procedure as proving Lemma 3. Also note that with
√
T
N
→ 0, the

effect of using estimated factors disappears asymptotically.
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Essay II:  Identification and Estimation of a Large Factor 
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1 INTRODUCTION

Large factor models where a large number of time series are simultaneously driven by a small

number of unobserved factors, provide a powerful framework to analyze high dimensional

data. In the past fifteen years, large factor models have been successfully used in business

cycle analysis, consumer behavior analysis, asset pricing and economic monitoring and fore-

casting, see for example Bernanke, Boivin and Eliasz (2005), Lewbel (1991), Ross (1976) and

Stock and Watson (2002b), to mention a few. Estimation theory of large factor models also

experienced some breakthroughs, see Bai and Ng (2002) and Bai (2003), to mention a few.

While most applications implicitly assume that the number of factors and factor loadings are

stable, there is broad evidence of structural instability in macroeconomic and financial time

series. Stock and Watson (2002a, 2009) argue that given the number of factors, standard

principal component estimation of factors is still consistent if the magnitude of the factor

loading break is small enough. Bates, Plagborg-Møller, Stock and Watson (2013) further

argue that a suffi cient condition for consistent estimation of the factor space is that the

magnitude of the factor loading break should converge to zero asymptotically. The con-

dition becomes increasingly stringent if one is to ensure the same convergence rate of the

estimated factor space derived in Bai and Ng (2002). This plays a crucial role in subsequent

forecasting and factor augmented regression models, and in ensuring consistent estimation

of the number of factors. However, in many empirical applications, the magnitude of factor

loading break could be large and the number of factors may also change over time. Examples

include important economic events such as the European debt crisis, or political events such

as the end of the cold war, or policy change such as the end of China’s one-child policy, to

mention a few.

In the presence of a large factor loading break, estimation ignoring this instability leads

to serious consequences. First, the estimated number of factors, using any existing method,

e.g., Bai and Ng (2002), Onatski (2009, 2010) and Ahn and Horenstein (2013), is no longer

consistent and tends to overestimate. This is because a factor model with unstable factor

loadings can be represented by an equivalent model with extra pseudo factors but stable

factor loadings. Moreover, the inconsistency of the estimated number of factors will be

transmitted to the estimated factors. In such cases, it is hard to interpret the estimated
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factors, and forecasting performance may also deteriorate since adding extra factors in the

forecasting equation does not always control the true factor space1. Consequently, a series

of tests are proposed to test large factor loading break, including Breitung and Eickmeier

(2011), Chen, Dolado and Gonzalo (2014), Han and Inoue (2015) and Corradi and Swanson

(2014). Once a large factor loading break has been detected, one still has to estimate the

change point, determine the number of pre and post-break factors and estimate the factor

space.

In fact, identification and estimation of a factor model in the presence of structural

instability have inherent diffi culties. First, without knowing the change point, it is infeasible

to consistently estimate the factors and factor loadings even if the number of pre-break and

post-break factors were known. Second, existing change point estimation methods require

knowledge of the number of regressors and observability of the regressors, see for example Bai

(1994, 1997, 2010). Hence, to estimate the change point along this path, even if the number

of pre-break and post-break factors were known, we still need at least a consistent estimator

of the factors, which is infeasible without knowing the change point. For example, consider

the case where the number of factors is known, constant over time and after a certain time

period, the factor loadings are all doubled. This model can be equivalently represented as

the model where factor loadings are constant over time, while factors are all doubled after

that time period. In this case, estimating the change point directly following Bai (1994,

1997) is not promising. Cheng, Liao and Schorfheide (2015) propose a shrinkage procedure

that consistently estimates the number of pre and post-break factors and consistently detects

factor loading breaks when the number of factors is constant, without requiring knowledge

of the change point. This result is a significant breakthrough. However, it only leads to a

consistent estimate of the change fraction and does not lead to consistent estimates of the

factors or factor loadings. In addition, Chen (2015) also proposes a consistent estimate of

the change fraction.

In contrast with Cheng, Liao and Schorfheide (2015), we first propose a least squares

estimator of the change point without requiring knowledge of the number of factors and

observability of the factors. Based on the estimated change point, we then split the sample

into two subsamples and use each subsample to estimate the number of pre and post-break

1Consider the case where all factor loadings are doubled after the change point. Also, the number of
factors is imposed a priori as in many empirical studies. In this case, the true factor space would not be
controlled for.
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factors as well as the factor space. The key observation behind our change point estimator is

that the change point of the factor loadings in the original model is the same as the change

point of the second moment matrix of the factors in the equivalent model. Estimating

the former can therefore be converted to estimating the latter, thereby circumventing the

estimation of the original model. This observation was first utilized by Chen et al. (2014) and

Han and Inoue (2015) to test the presence of a factor loading break. Here we further exploit

this observation to estimate the change point. More specifically, we start by estimating the

number of pseudo factors and the pseudo factors themselves ignoring structural change. This

leads us to identify the equivalent model. Based on the estimated pseudo factors, we then

estimate the pre and post-break second moment matrix of the pseudo factors for all possible

sample splits. The change point is estimated by minimizing the sum of squared residuals of

this second moment matrix estimation among all possible sample splits.

Under fairly general assumptions, we show that the distance between the estimated and

the true change point is Op(1). Although our change point estimation itself is a two step

procedure, a significant advantage is it has some degree of robustness to misspecification of

the number of pseudo factors. The underlying mechanism is that if the number of pseudo

factors were underestimated, the change point estimator would be based on a subset of

its second moment matrix, hence there is still information to identify the change point.

While if the number of pseudo factors were overestimated, no information would be lost

although extra noise would be brought in by the extra estimated factors. The latter is

similar to Moon andWeidner (2015) who show that for panel data with interactive effects, the

limiting distribution of the least squares estimator of the regression coeffi cients is independent

of the number of factors as long as it is not underestimated. Estimating the number of

pseudo factors therefore can be seen as a procedure selecting the model with the strongest

identification strength of the unknown change point. From this perspective, our method

shares some similarity with selecting the most relevant instrumental variables (IVs) among

a large number of IVs.

Based on the estimated change point, consistency of the estimated pre and post-break

number of factors and consistency of the estimated pre and post-break factor space are

established. Also, the convergence rate of the estimated factor space is the same as the

one in Bai and Ng (2002) for the stable model, which is crucial for eliminating the effect of

using estimated factors in factor augmented regressions. Note that these results are based
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on an inconsistent change point estimator (the first step estimator). This is different from

the traditional plug-in procedure, in which even consistency of the first step estimation does

not guarantee that its effect on the second step estimation will vanish asymptotically. In

general, the effect of the first step error on the second step estimator depends upon the

magnitude of the first step error and how the second step estimator is affected by the first

step error. In the traditional plug-in procedure, usually the first step error needs to vanish

suffi ciently fast to eliminate its effect. In the current context, while the first step error does

not vanish asymptotically, the second step becomes increasingly less sensitive to the first step

error as the time dimension T goes to infinity. That is to say, the robustness of the second

step estimators to the first step error relies on large T . Similar robustness has also been

established in Bai (1997). In fact, in Bai (1997) it is a direct corollary that the asymptotic

property of the estimated regression coeffi cients is not affected by the inconsistency of the

estimated change point. However, in the current factor setup, it is nontrivial to establish

this robustness because estimating the number of factors and factor space is totally different

from estimating the regression coeffi cients.

Our assumptions are quite general. We allow for cases with a change in the number of

factors, which can be disappearing or emerging factors. We also allow for cases with only

partial change in the factor loadings and cases in which a change in the factor loadings do not

lead to extra pseudo factors. Our Assumptions 1-7 are either from or slight modification of

Assumptions A-G in Bai (2003). These allow for cross-sectional and temporal dependence as

well as heteroskedasticity of the idiosyncratic errors. The main extra assumption we impose

is that the Hajek-Renyi inequality is applicable to the second moment process of the factors.

As discussed in the next section, this assumption is more general than explicitly assuming a

specific factor process and can be easily satisfied. It is also worth noting that for a regularly

behaved error term, our results do not rely on the relative speed of the number of subjects

(N) and the time series length (T ).

The rest of the paper is organized as follows. Section 2 introduces the model setup, no-

tation and preliminaries. Section 3 discusses the equivalent representation and assumptions.

Section 4 considers estimation of the change point. Section 5 considers estimation of the

number of pre and post-break factors. Section 6 considers estimation of the factor space.

Section 7 discusses further issues relating to the limiting distribution of the change point

estimator. Section 8 reports the simulation results, while Section 9 concludes. All the proofs
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are given in the Appendix.

2 NOTATION AND PRELIMINARIES

Consider the following large factor model with structural change in the factor loadings:

xit =

{
f ′0,tλ0,i + f ′1,tλ1,i + ei,t, if 1 ≤ t ≤ [τ 0T ]

f ′0,tλ0,i + f ′1,tλ2,i + ei,t, if [τ 0T ] + 1 ≤ t ≤ T
for i = 1, ..., N and t = 1, ..., T , (1)

where ft = (f ′0,t, f
′
1,t)
′. f1,t and f0,t are q and r − q dimensional vectors of factors with and

without structural change in their factor loadings, respectively. λ0,i is the factor loadings of

subject i corresponding to f0,t. λ1,i and λ2,i are factor loadings of subject i corresponding

to f1,t before and after the structural change, respectively. It is easy to see that r − q = 0

and r − q > 0 correspond to the pure change case and the partial change case respectively.

ei,t is the error term allowed to have temporal and cross-sectional dependence as well as

heteroskedasticity. τ 0 ∈ (0, 1) is the change fraction and k0 = [τ 0T ] is the change point.

In matrix form, the model can be represented as:

X =

[
F 0

1 Λ′0 + F 1
1 Λ′1

F 0
2 Λ′0 + F 1

2 Λ′2

]
+ E, (2)

where F 0
1 = [f0,1, ..., f0,[τ0T ]]

′, F 0
2 = [f0,[τ0T ]+1, ..., f0,T ]′, F 1

1 = [f1,1, ..., f1,[τ0T ]]
′ and F 1

2 =

[f1,[τ0T ]+1, ..., f1,T ]′ are of dimensions [τ 0T ] × (r − q), [(1 − τ 0)T ] × (r − q), [τ 0T ] × q and

[(1−τ 0)T ]×q, respectively. Λ0 = [λ0,1, ..., λ0,N ]′, Λ1 = [λ1,1, ..., λ1,N ]′ and Λ2 = [λ2,1, ..., λ2,N ]′

are of dimensions N × (r− q), N × q and N × q, respectively, E = [e1, ..., eT ]′ is of dimension

T × N . The matrices F 0
1 , F

0
2 , F

1
1 , F

1
2 , Λ0, Λ1, Λ2 and E are all unknown. In addition,

Λ01 = [Λ0,Λ1] = (λ01,1, ..., λ01,N)′ and Λ02 = [Λ0,Λ2] = (λ02,1, ..., λ02,N)′ are of dimension

N × r. Note that in general not only the factor loadings but also the number of factors may
have structural change. In our representation, structural change in the number of factors is

incorporated as a special case of structural change in factor loadings by allowing either Λ01

or Λ02 to be degenerate. In case the number of pre-break and post-break factors are r1 and

r2 respectively, with r = max{r1, r2}, ft and λi are always r dimensional vectors and both
Λ01 and Λ02 are of dimensions N × r. If r1 < r2, some columns in Λ01 are zeros and the

number of such columns is r2 − r1. In this case, Λ01 is degenerate and Λ02 is of full rank.

Similarly, if r1 > r2, some columns in Λ02 are zeros and Λ01 is of full rank. If r1 = r2, both
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Λ01 and Λ02 are of full rank r. In addition, we want to point out that although cases with

either disappearing factors or emerging factors are allowed for, cases with both disappearing

factors and emerging factors are not necessarily identifiable within this mathematical setup.

A model with s1 disappearing factors and s2 emerging factors can be equivalently represented

as a model with s1 − s2 disappearing factors.

Throughout the paper, ‖A‖ = (trAA′)
1
2 denotes the Frobenius norm,

p→ denotes conver-

gence in probability, d→ denotes convergence in distribution, vec(A) denotes the vectorization

of matrix A, r(A) denotes the rank of matrix A, δNT = min{
√
N,
√
T}, (N, T )→∞ denotes

N and T going to infinity jointly.

3 EQUIVALENT REPRESENTATION AND ASSUMPTIONS

Since at least one of Λ01 and Λ02 is of full rank, for the moment, suppose that Λ01 is of full

rank. Due to symmetry, all results can be established similarly in case Λ02 is of full rank.

When Λ01 is of full rank, the rank of the N × (r + q) matrix
[

Λ0 Λ1 Λ2

]
is between r

and r + q. Suppose
[

Λ0 Λ1 Λ2

]
is of rank r + q1, where 0 ≤ q1 ≤ q, then Λ2 can be

decomposed into Λ2 =
[

Λ21 Λ22

]
, where Λ21 is of dimension N × q1 and contains the

columns in Λ2 that are linearly independent of Λ01. Λ22 is of dimension N × q2 and contains

the columns in Λ2 that are linear combinations of columns in
[

Λ0 Λ1 Λ21

]
such that

Λ22 =
[

Λ0 Λ1 Λ21

]
Z for some (r + q1)× q2 matrix Z. Therefore,

[
Λ0 Λ1 Λ21

]
is of

full rank (r + q1) and [
Λ0 Λ1

]
=

[
Λ0 Λ1 Λ21

]
A,[

Λ0 Λ2

]
=

[
Λ0 Λ1 Λ21

]
B,

where A =

[
Ir

0q1×r

]
and B =

 Ir−q 0(r−q)×q1

0q×(r−q) 0q×q1

0q1×(r−q) Iq1

Z

. It follows that model (2) has
the following equivalent representation with stable factor loadings:
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X =

 [ F 0
1 F 1

1

] [
Λ0 Λ1

]′[
F 0

2 F 1
2

] [
Λ0 Λ2

]′
+ E

=

 [ F 0
1 F 1

1

]
(
[

Λ0 Λ1 Λ21

]
A)′[

F 0
2 F 1

2

]
(
[

Λ0 Λ1 Λ21

]
B)′

+ E

=

 [ F 0
1 F 1

1

]
A′[

F 0
2 F 1

2

]
B′

[ Λ0 Λ1 Λ21

]′
+ E. (3)

Next, define G = (g1, ..., gT )′ =

 [ F 0
1 F 1

1

]
A′[

F 0
2 F 1

2

]
B′

 and Γ =
[

Λ0 Λ1 Λ21

]
, then

X = GΓ′ + E, (4)

gt =

{
Aft, if 1 ≤ t ≤ [τ 0T ]

Bft, if [τ 0T ] + 1 ≤ t ≤ T
, (5)

and we call r+ q1 the number of pseudo factors. Equivalent representation of model (2) was

first formulated by Han and Inoue (2015). Here our representation is unified, generalizes and

complements their result. Our representation is fairly general. The big break case discussed

in Chen et al. (2014) corresponds to the case q1 = q, while the type 1, type 2 and type

3 breaks discussed in Han and Inoue (2015) correspond to the cases q1 = q, q1 = 0 and

0 < q1 < q respectively. The type 1 and type 2 changes discussed in Cheng et al. (2015) are

also special cases of this representation. To ensure this equivalent representation is unique

up to a rotation, it remains to show G is asymptotically full rank, i.e., 1
T

∑T
t=1 gtg

′
t

p→ ΣG for

some positive definite ΣG. Define ΣF = E(ftf
′
t), ΣG,1 = E(gtg

′
t) for t ≤ k0 and ΣG,2 = E(gtg

′
t)

for t > k0, then

ΣG,1 = AΣFA
′, ΣG,2 = BΣFB

′, (6)

ΣG = τ 0AΣFA
′ + (1− τ 0)BΣFB

′. (7)

Proposition 1 If τ 0 ∈ (0, 1) and ΣF is positive definite, ΣG is positive definite.

For the case where Λ02 is of full rank, Λ1 can be decomposed as
[

Λ11 Λ12

]
, where[

Λ0 Λ2 Λ11

]
is of full rank and Λ12 =

[
Λ0 Λ2 Λ11

]
Z for some Z. Define Θ =
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[
Λ0 Λ2 Λ11

]
.

Our assumptions are as follows:

Assumption 1 (1) E ‖ft‖4 < M <∞, E(ftf
′
t) = ΣF , ΣF is positive definite, 1

k0

∑k0
t=1 ftf

′
t

p→
ΣF , 1

T−k0

∑T
t=k0+1 ftf

′
t

p→ ΣF , (2) there exists d > 0 such that ‖AΣFA
′ −BΣFB

′‖ > d for

all N .

Assumption 2 ‖λl,i‖ ≤ λ̄ <∞ for l = 0, 1, 2,
∥∥ 1
N

Γ′Γ− ΣΓ

∥∥→ 0 for some positive definite

matrix ΣΓ or
∥∥ 1
N

Θ′Θ− ΣΘ

∥∥→ 0 for some positive definite matrix ΣΘ.

Assumption 3 There exists a positive constant M <∞ such that:

1 E(eit) = 0, E |eit|8 ≤M , for all i = 1, ..., N, and t = 1, ..., T,

2 E(eitejs) = τ ij,ts for i, j = 1, ..., N, and t, s = 1, ..., T, also

1

NT

∑N

i=1

∑N

j=1

∑T

t=1

∑T

s=1
|τ ij,ts| ≤M,

3 For every (t, s = 1, ..., T ), E
∣∣∣ 1√

N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣4 ≤M .

Assumption 4 There exists a positive constant M <∞ such that:

E(
1

N

∑N

i=1

∥∥∥∥ 1√
k0

∑k0

t=1
fteit

∥∥∥∥2

) ≤ M,

E(
1

N

∑N

i=1

∥∥∥∥ 1√
T − k0

∑T

t=k0+1
fteit

∥∥∥∥2

) ≤ M.

Assumption 5 There exists an M <∞ such that:

1 E( e
′
set
N

) = γN(s, t) and
∑T

s=1 |γN(s, t)| ≤M for every t ≤ T ,

2 E(eitejt) = τ ij,t with |τ ij,t| ≤ τ ij for some τ ij and for all t = 1, ..., T , and
∑N

j=1 |τ ji| ≤M

for every i ≤ N .

Assumption 6 The largest eigenvalue of 1
NT
EE ′ is Op(

1
δ2NT

).

Assumption 7 The eigenvalues of ΣGΣΓ or ΣGΣΘ are distinct.

Assumption 8 Define εt = vec(ftf
′
t − ΣF ).The data generating process of factors is such

that the Hajek-Renyi inequality2 applies to the process {εt, t = 1, ..., k0}, {εt, t = k0, ..., 1},
{εt, t = k0 + 1, ..., T} and {εt, t = T, ..., k0 + 1}.

2See Appendix for an introduction of the Hajek-Renyi inequality.
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Assumption 9 log T
N
→ 0.

Assumption 10 There exists M <∞ such that:

1 For every s = 1, ..., T , E(sup
k<k0

1
k0−k

∑k0
t=k+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

E(sup
k≤k0

1
k

∑k
t=1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

E(sup
k>k0

1
k−k0

∑k
t=k0+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

E(sup
k≥k0

1
T−k

∑T
t=k+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

2 E(sup
k<k0

1
k0−k

∑k0
t=k+1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M,

E(sup
k≤k0

1
k

∑k
t=1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M,

E(sup
k>k0

1
k−k0

∑k
t=k0+1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M,

E(sup
k≥k0

1
T−k

∑T
t=k+1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M.

Assumptions 1-7 are either from or slight modification of Assumptions A-G in Bai (2003).

Assumption 1(1) corresponds to Assumption A in Bai (2003) and should be satisfied within

each regime. ft can be dynamic and contain their lags. Assumption 1(2) enables the iden-

tification of the change point and is general enough to cover all patterns of factor loading

break likely in practice. It does not matter whether B depends on N or not, as long as

the distance between the pre and post-break second moment matrix of gt is bounded away

from zero as N → ∞. If r(
[

Λ0 Λ1 Λ2

]
) > r(

[
Λ0 Λ1

]
), then AΣFA

′ 6= BΣFB
′. If

r(
[

Λ0 Λ1 Λ2

]
) = r(

[
Λ0 Λ1

]
), then AΣFA

′ = ΣF and BΣFB
′ 6= ΣF except for some

very unlikely case, for example, some post-break factor loadings are −1 times their pre-

break factor loadings. Note that here to simplify analysis, the second moment matrix of

the factors is assumed to be stationary over time, since in general how to disentangle struc-

tural change in ΣF from structural change in factor loadings is still unclear. Assumption 2

corresponds to Assumption B in Bai (2003) and implies that
∥∥ 1
N

Λ′01Λ01 − ΣΛ01

∥∥ → 0 and∥∥ 1
N

Λ′02Λ02 − ΣΛ02

∥∥ → 0. Note that one of Λ01 and Λ02 is allowed to be degenerate. This

allows for cases with disappearing or emerging factors. In addition, Λ0 could contain a small

change. Let ∆λ0,i be the change of λ0,i. As discussed in Bates et al. (2013), if ∆λ0,i = 1√
NT
κi

and ‖κi‖ ≤ κ̄ < ∞ for all i, consistency of the estimated number of factors and the factors

themselves will not be affected. For simplicity, we assume that Λ0 is stable. Assumptions
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3 and 5 correspond to Assumptions C and E in Bai (2003), which allow for the temporal

and cross-sectional dependence as well as heteroskedasticity. Assumption 4 corresponds to

Assumption D in Bai (2003) and should be satisfied within each regime. This is implied

by Assumptions 1 and 3 if the factors and the errors are independent. Assumption 6 is the

key condition for identifying the number of factors and is implicitly assumed in Bai and Ng

(2002) and required in almost all existing methods of determining the number of factors

or the number of dynamic factors. For example, Onatski (2010) and Ahn and Horenstein

(2013) assume E = AεB, where ε is an i.i.d. T × N matrix and A and B characterize the

temporal and cross-sectional dependence and heteroskedasticity. This is a suffi cient but not

necessary condition for Assumption 6. In this paper, Assumption 6 can be relaxed to "The

largest eigenvalue of 1
NT
EE ′ is op(1)", yet still allows consistent estimation of the number of

factors. Assumption 7 corresponds to Assumption G in Bai (2003).

Assumption 8 strengthens Assumption 1(1) and imposes further requirement on the factor

process. Instead of assuming a specific data generating process, here we only require that

the Hajek-Renyi inequality is applicable to the second moment process of the factors, which

incorporates i.i.d., martingale difference, martingale, mixingale and so on as special cases and

renders Assumption 8 in its most general form. Assumption 10 imposes further constraints

on the idiosyncratic error. Assumption 3(3) and Assumption F3 in Bai (2003) imply that the

summands in Assumption 10 are uniformly Op(1). Assumption 10 strengthens this condition

such that the supremum of the average process of these summands is Op(1). Also note that

stationarity is not assumed in Assumption 10. In rare cases, Assumption 10 is not satisfied,

but we can still proceed with Assumption 9. Compared to
√
T
N
→ 0, which is assumed in

Chen et al. (2014), Han and Inoue (2015), Assumption 9 is significantly weaker and much

easier to be satisfied since even when T is much larger than N , log T
N
could still be very close

to zero.

4 ESTIMATING THE CHANGE POINT

4.1 THE ESTIMATION PROCEDURE

In this subsection, we discuss how to estimate the change point with an unknown number of

latent factors. First, we estimate the number of factors ignoring structural change. Define

r̃ as the estimated number of factors using the information criteria in Bai and Ng (2002),
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we will have lim
(N,T )→∞

P (r̃ = r + q1) = 1, since model (2) can be equivalently represented

as model (3). Note that q1 could be zero, since structural change does not necessarily lead

to overestimating the number of factors. Using r̃, we then estimate the factors using the

principal component method. This identifies the factors gt. As noted in (6), the second

moment matrix3 of gt has a break at the point k0. Hence, estimating change point of factor

loadings can be converted to estimating change point of the second moment matrix of gt.

Although gt is not directly observable, the principal component estimator g̃t is asymptotically

close to J ′gt for some rotation matrix J . And J
p→ J0 = Σ

1
2
ΓΦV −

1
2 as (N, T ) → ∞, where

V and Φ are the eigenvalue matrix and eigenvector matrix of Σ
1
2
ΓΣGΣ

1
2
Γ respectively. Hence

change point estimation using g̃t will be asymptotically equivalent to using J0gt. It is easy

to see that the second moment matrix of J0gt shares the same change point as that of gt.

Therefore, we proceed to estimate the pre-break and post-break second moment matrix of

gt using the estimated factors g̃t.

More specifically, following Bai (1994, 1997, 2010), for any k > 0 we split the sample into

two subsamples and estimate the pre-break and post-break second moment matrix of gt as

Σ̃1 =
1

k

∑k

t=1
g̃tg̃
′
t,

Σ̃2 =
1

T − k
∑T

t=k+1
g̃tg̃
′
t, (8)

and define the sum of squared residuals as

S̃(k) =
∑k

t=1
[vec(g̃tg̃

′
t− Σ̃1)]′[vec(g̃tg̃

′
t− Σ̃1)] +

∑T

t=k+1
[vec(g̃tg̃

′
t− Σ̃2)]′[vec(g̃tg̃

′
t− Σ̃2)]. (9)

The least squares estimator of the change point4 is

k̃ = arg min S̃(k). (10)

Here we use S̃(k) to emphasize that the sum of squared residuals is based on the estimated

factors.

Remark 1 The change point estimator also can be based on ĝt instead of g̃t, where (ĝ1, ..., ĝT )′ =

3The first moment of gt may also help identify the change point, but it requires the true factors ft to
have nonzero mean.

4Alternatively, one referee points out that one may consider quasi-maximum likelihood estimation of the

change point: k̃ML = arg max[−k log
∣∣∣Σ̃1∣∣∣− (T − k) log

∣∣∣Σ̃2∣∣∣].
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Ĝ = G̃VNT = (g̃1, ..., g̃T )′VNT and VNT is diagonal and contains the first r+ q1 largest eigen-

values of 1
NT
XX ′ in decreasing order.

4.2 ASYMPTOTIC PROPERTIES OF THE CHANGE POINT ESTIMA-
TOR

In what follows, we shall establish the rate of convergence of the proposed estimator, which

allows us to identify the number of pre-break and post-break factors as well as the factor

space. Since lim
(N,T )→∞

P (r̃ = r + q1) = 1, estimation of the change point based on r̃ and the

true number of pseudo factors r + q1 is asymptotically equivalent. The proof is similar to

footnote 5 in Bai (2003). Therefore, we can treat the number of pseudo factors r + q1 as

known in studying the asymptotic properties of our change point estimator.

Define τ̃ = k̃/T as the estimated change fraction, we first show that τ̃ is consistent.

Proposition 2 Under Assumptions 1-8 and 9 or 10, τ̃ − τ 0 = op(1).

This proposition is important for theoretical purposes. In fact, it serves as a first step in

proving Theorem 1. Proposition 2 implies that for any ε > 0 and η > 0, P (τ̃ ∈ D) > 1 − ε
for suffi ciently large N and T , where D = {k : |k − k0| /T ≤ η}. Using similar strategy as
proving Proposition 2, we can further show that for any ε > 0 and η > 0, there exist an

M > 0 such that P (k̃ ∈ DM) < ε for suffi ciently large N and T , where DM = {k : k ∈
D, |k − k0| > M}. Taken together, we have:

Theorem 1 Under Assumptions 1-8 and 9 or 10, k̃ − k0 = Op(1).

This theorem implies that the difference between the estimated change point and the true

change point is stochastically bounded. This is quite strong since the possible change point

is narrowed to a bounded interval no matter how large T is. Although k̃ is still inconsistent,

an important observation is that k̃−k0 = Op(1) is already suffi cient for consistent estimation

of the number of pre-break and post-break factors and consistent estimation of the pre-break

and post-break factor space, which will be discussed further in the next three sections.

Theorem 1 differs from existing results in the change point estimation literature. First,

in the current setup N goes to infinity jointly with T , thus we should be able to achieve

consistency of k̃ as shown in Bai (2010) for the panel mean shift case, because large N will

help identify the change point when the change point is common across individuals. Our
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result is different from Bai (2010) and instead similar to the univariate case, e.g., Bai (1994,

1997), because k̃ is based on g̃tg̃′t which is a fixed dimensional multivariate time series with

mean shift. Second, our result is also different from Bai (1994, 1997) because in the current

setup we are using estimated data g̃tg̃′t rather than the raw data J0gtg
′
tJ
′
0 to estimate the

change point, i.e., the data g̃tg̃′t contains measurement error g̃tg̃
′
t− J0gtg

′
tJ
′
0. Eliminating the

effect of this measurement error on estimation of change point relies on large N .

Remark 2 Proposition 2 and Theorem 1 hold with either Assumption 9 or 10, but we do

not need both. Usually Assumption 10 is satisfied. In this case, there is no restriction on

the relative speed of N and T going to infinity. Even when Assumption 10 is violated, our

results only require log T
N
→ 0, which can be easily satisfied.

Remark 3 Note that Theorem 1 requires the covariance matrix of the factors to be station-

ary, and thus is not robust to heteroskedasticity of the factors. This problem is common in

the literature, for example, it also appears in Chen et al. (2014), Han and Inoue (2015) and

Cheng et al. (2015). It is important to note that Chen (2015)’s change point estimator is

robust to heteroskedasticity of the factors.

4.3 THE EFFECT OF USING ESTIMATED NUMBER OF PSEUDO FAC-

TORS ON ESTIMATION OF THE CHANGE POINT

Since our method for estimating the change point is a two step procedure, a natural question

is how will the model selection error in the first step affect the performance of the second

step estimation. Although consistent model selection guarantees that asymptotically we

can behave as if the true model is known a priori, the finite sample distribution of the

post model selection estimator could be dramatically different from its asymptotic limit

even when the sample size is very large. This is because the probability of misspecifying

the model in the first step may be nonignorable even when the sample size is very large if

consistency of the first step model selection is not uniform with respect to the parameter

space. The distribution of the post model selection estimator is a weighted average of its

distribution given the true model is selected and given some misspecified model is selected,

where the weight is given by the probability of selecting that model. When the probability

of misspecifying the model is indeed nonignorable and the distributions with the true model

selected and with the misspecified model selected are very different, we can imagine that the

composite distribution could be far away from its asymptotic limit.
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In the current context, the Leeb and Potscher (2005)’s criticism still applies. But, we

argue that our change point estimator still has some degree of robustness to the first step

estimation error, especially if we only care about the stochastic order of the change point

estimation error. This is because if the number of pseudo factors were underestimated, k̃

would be based on a subset of the second moment matrix of J0gt. Hence there is still informa-

tion to identify the change point. While if the number of pseudo factors were overestimated,

no information would be lost but extra noise would be brought in by the extra estimated

factors. Therefore, estimating the number of pseudo factors can be seen as a procedure

selecting the model with the strongest identification strength of the unknown change point.

From this perspective, our method shares some similarity with selecting the most relevant

instrumental variables (IVs) among a large number of IVs.

In case r̃ is fixed at some positive integer m < r + q1, we have the following result:

Corollary 1 For any positive integer m < r + q1 and change point estimation based on

r̃ = m, with J0 replaced by Jm0 which is of dimension (r + q1)×m and contains the first m

columns of J0, and ‖Jm′0 ΣG,1J
m
0 − Jm′0 ΣG,2J

m
0 ‖ > d for some d > 0 and all N , Proposition 2

and Theorem 1 still hold.

In case r̃ is fixed at some positive integer m > r+ q1, we can not prove the robustness of

Proposition 2 and Theorem 1. Nonetheless, if the change point estimator were based on ĝt

instead of g̃t, we can prove:

Corollary 2 For any positive integer m > r + q1 and change point estimator k̂ based on ĝt

and r̃ = m, if
√
T
N
→ 0, Proposition 2 and Theorem 1 still hold.

Note that Corollary 1 also applies to k̂. Corollary 2 shows that k̂ is robust to overesti-

mation of the number of pseudo factors. This result is similar to Moon and Weidner (2015)

who show that for panel data with interactive effects, the limiting distribution of the LS

estimator is independent of the number of factors used in the estimation, as long as this

number is not underestimated.

Remark 4 If the condition "‖Jm′0 ΣG,1J
m
0 − Jm′0 ΣG,2J

m
0 ‖ > d for some d > 0 and all N" is

not satisfied for all m, estimation errors of the number of the pseudo factors may affect the

uniform validity of the estimation procedure. In such case, simply fixing r̃ at the maximum

number of pseudo factors may be preferred, especially when this maximum number is small

or some prior information is available.
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Remark 5 As can be seen in the equivalent representation, the pseudo factors induced by

structural change are relatively weaker than factors with stable loadings in the original model

because a portion of their elements are zeros and the magnitude of those nonzero elements is

small if the magnitude of structural change is small. Since underestimation is more harmful5

compared to overestimation, we recommend choosing a less conservative criterion in estimat-

ing the number of pseudo factors. We will discuss this further in the simulation section.

Up to now, we have only touched upon the stochastic order of k̃ − k0. We will postpone

the discussion of the imiting distribution and instead put more emphasis on the estimation of

the pre and post-break number of factors and factor space. We will show that k̃−k0 = Op(1)

is a suffi cient condition for the results in subsequent estimation. Thus for the purpose of

subsequent estimation, the limiting distribution is not needed.

5 DETERMINING THE NUMBER OF FACTORS

In this section, we study how to consistently estimate the number of factors in the presence

of structural instability in the factor loadings or the number of factors themselves. We first

relax the suffi cient condition proposed by Bates et al. (2013) for the consistent estimation

of the number of factors in the presence of structural change using the Bai and Ng (2002)

information criteria. The condition they propose is 1
N
‖∆‖2 = O( 1

δ2NT
), where ∆ is the

matrix of factor loading breaks. In the current setup, ∆ = Λ2 − Λ1. We show, in the

following proposition, that their condition can be relaxed to 1
N
‖∆‖2 = O( 1

δcNT
) for some

c > 0.

Proposition 3 In the presence of a single common break in factor loadings, the estimator

of the number of factors using the Bai and Ng (2002) information criteria is still consistent

if 1
N
‖∆‖2 = O( 1

δcNT
) for some c > 0, g(N, T ) → 0 and δcNTg(N, T ) → ∞, where g(N, T ) is

the penalty function.

The formal proof is in the Appendix. This proposition complements Theorem 2 below.

Note that c can be arbitrarily close to zero, hence our condition is much weaker than that of

Bates et al. (2013). The intuition behind our result is that change in factor loadings can be

5As discussed above, underestimation will result in loss of useful moment conditions while overestimation
will bring in irrelevant moment conditions. In the current setup, loosing useful moment conditions is more
harmful.
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treated as an extra error term and as long as c > 0, the first r largest eigenvalues of XX ′ are

still separated from the rest. By adjusting the speed at which the penalty function goes to

zero accordingly, the number of factors can still be consistently determined. Some caveats

are the following: When c is less than two, the magnitude of this extra error term becomes

large. To outweigh the error term, the speed at which the penalty function g(N, T ) goes to

zero has to be slower than the speed at which 1
N
‖∆‖2 goes to zero, so that g(N,T )

1
N
‖∆‖2 → ∞.

This may be problematic in real applications, since when c is close to zero, not all factors are

necessarily strong enough to outweigh the extra noise brought by the factor loadings breaks.

And even if factors are strong enough, we still need to pin down c, which is diffi cult. In

addition, the above result is not applicable for the case where 1
N
‖∆‖2 = O(1), nor the case

where the number of factors also change. In view of these caveats, Proposition 3 is more of

theoretical importance and demonstrates how far we can go following Bates et al. (2013).

To estimate the number of pre and post-break factors in the presence of large break,

we propose the following procedure: split the sample into two subsamples based on the

estimated change point k̃, and then use each subsample to estimate the number of pre and

post-break factors. Let r̃1 and r̃2 be the estimated number of pre-break and post-break

factors using the method in Bai and Ng (2002). We have the following result:

Theorem 2 Under Assumptions 1-8 and 9 or 10, lim
(N,T )→∞

P (r̃1 = r1) = 1 and lim
(N,T )→∞

P (r̃2 =

r2) = 1, where r1 and r2 are numbers of pre-break and post-break factors, respectively.

Theorem 2 together with Theorem 1 identifies model (2) and provides the basis for

subsequent estimation and inference. Note that k̃−k0 = Op(1) is suffi cient for the consistency

of r̃1 and r̃2, i.e., consistency of the second step estimators r̃1 and r̃2 does not require

consistency of the first step estimator k̃.6 This is because k̃ − k0 = Op(1) is the exact

condition that guarantees the extra noise brought by a change in factor loadings does not

affect the speed of eigenvalue separation. In general, the effect of the error in the first step,

which could be either estimation or model selection, on the second step estimator depends

on the magnitude of the first step error and how the second step estimator is affected by

the first step error. In the traditional plug-in procedure, usually the first step error need to

vanish suffi ciently fast to eliminate its effect. In the current context, although the first step

error does not vanish asymptotically, the second step becomes increasingly less sensitive to

6When estimating the pre and post-break number of factors and factor space, we consider k̃ as the first
step estimator.
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the first step error as T →∞. This can be seen more easily by considering the case in which
T is very large while

∣∣∣k̃ − k0

∣∣∣ is bounded. Since the pre and post-break number of factors and
factor space are estimated using each subsample whose size is O(T ), misspecifying the change

point by a bounded value would affect their behavior very little. In other words, while large

T does not help identify the change point, it increases the magnitude of misspecification of

change point that can be tolerated.

To better demonstrate the difference between our result and traditional plug-in procedure,

we sketch the key steps in proving the consistency of r̃1. The estimator of the number of

pre-break factors r̃1 is based on the pre-break subsample t = 1, ..., k̃. What we need to show

is: for any ε > 0, P (r̃1 6= r1) < ε for large (N, T ). Based on
∣∣∣k̃ − k0

∣∣∣ = Op(1), we have for

any ε > 0, there exists M > 0 such that P (
∣∣∣k̃ − k0

∣∣∣ > M) < ε for all (N, T ). Based on this

M , P (r̃1 6= r1) can be decomposed as

P (r̃1 6= r1,
∣∣∣k̃ − k0

∣∣∣ > M) +P (r̃1 6= r1, k0−M ≤ k̃ ≤ k0) +P (r̃1 6= r1, k0 + 1 ≤ k̃ ≤ k0 +M).

The first term is less than P (
∣∣∣k̃ − k0

∣∣∣ > M), hence less than ε for all (N, T ). The second

term can be further decomposed as

∑k0

k=k0−M
P (r̃1(k) 6= r1, k̃ = k),

where P (r̃1(k) 6= r1, k̃ = k) denotes the joint probability of k̃ = k and r̃1(k) 6= r1 and r̃1(k)

denotes the estimated number of pre-break factors using subsample t = 1, ..., k. Obviously,

P (r̃1(k) 6= r1, k̃ = k) ≤ P (r̃1(k) 6= r1), hence the second term is less than
∑k0

k=k0−M P (r̃1(k) 6=
r1). Furthermore, the factor loadings in the pre-break subsample are stable when k < k0

and for k ∈ [k0 − M,k0], k → ∞ at the same speed as k0, hence we have for each k ∈
[k0 −M,k0], P (r̃1(k) 6= r1) ≤ ε

M+1
for large (N, T ). The second term is therefore less than∑k0

k=k0−M
ε

M+1
= ε for large (N, T ). The argument for the second term also applies to the

third term, except for some modifications. First, the third term can be decomposed similarly

as ∑k0+M

k=k0+1
P (r̃1(k) 6= r1, k̃ = k) ≤

∑k0+M

k=k0+1
P (r̃1(k) 6= r1),

hence it remains to show for each k ∈ [k0 + 1, k0 +M ], P (r̃1(k) 6= r1) ≤ ε
M
for large (N, T ).

Unlike the second term, when k ∈ [k0 + 1, k0 + M ] the factor loadings of the pre-break

subsample t = 1, ..., k has a break at t = k0, hence results already established for the stable
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model are not directly applicable. Nevertheless, the number of observations with factor

loading break, k − k0, is bounded by M . Hence in estimating the number of factors, these

observations will be dominated by the observations t = 1, ...k0, as k0 = [τ 0T ]→∞.

6 ESTIMATING THE FACTOR SPACE

In this section, we discuss the estimation of the pre-break and post-break factor space.

As in last section, we split the sample into two subsamples based on the change point es-

timator k̃, and then use each subsample to estimate the pre-break and post-break factor

space. For each possible sample split k, define X(k) = (x1, ..., xk)
′, F1(k) = (f1, ..., fk)

′

and F2(k) = (fk+1, ..., fT )′. Let u be any prespecified number of pre-break factors, which

does not necessarily equal r1. The principal component estimator of the pre-break factors

and factor loadings are obtained by solving V (u) = min 1
Nk

∑k
t=1

∑N
i=1(xit − f ′tλi)2. Since

the true factors can be identified only up to a rotation, the normalization condition has

to be imposed to uniquely determine the solution, and based on different normalization

conditions there are two solutions. For the first one, the estimated factors, F̃ u
1 (k), equal

√
T times the eigenvectors corresponding to the first u largest eigenvalues of 1

Nk
X(k)X ′(k)

and Λ̃u
1(k) = 1

k
X ′(k)F̃ u

1 (k) are the corresponding estimated factor loadings. For the second

one, the estimated factor loadings, Λ̄u
1(k), equal

√
N times the eigenvectors corresponding

to the first u largest eigenvalues of 1
Nk
X ′(k)X(k) and F̄ u

1 (k) = 1
N
X(k)Λ̄u

1(k) are the corre-

sponding estimated factors. Following Bai and Ng (2002), we define the rescaled estimator

F̂ u
1 (k) = F̄ u

1 (k)[ 1
k
F̄ u′

1 (k)F̄ u
1 (k)]

1
2 . The estimator of the post-break factors F̂ v

2 (k) can be ob-

tained similarly based on the post-break subsample, where v is the prespecified number of

post-break factors. Next, define Hu
1 (k) =

Λ′01Λ01
N

F ′1(k)F̃u1 (k)

k
and Hv

2 (k) =
Λ′02Λ02
N

F ′2(k)F̃ v2 (k)

T−k . Let

f̂ut (k̃) and f̂ vt (k̃) be the estimated factors based on change point estimator k̃ for t≤ k̃ and

t> k̃ respectively, we have the following theorem:

Theorem 3 Under Assumptions 1-8 and 9 or 10,

1

k̃

∑k̃

t=1

∥∥∥f̂ut (k̃)−Hu′
1 (k̃)ft

∥∥∥2

= Op(
1

δ2
NT

),

1

T − k̃

∑T

t=k̃+1

∥∥∥f̂ vt (k̃)−Hv′
2 (k̃)ft

∥∥∥2

= Op(
1

δ2
NT

).

Theorem 3 implies that our estimator of the factor space is mean squared consistent

within each regime and the convergence rate is the same as that obtained by Bai and Ng
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(2002) for the stable model. Consistent estimation of the factor space has proved to be

crucial in many cases, including forecasting and factor augmented regressions. Note that

the convergence rate Op(
1

δ2NT
) plays a crucial role in eliminating the effect of using estimated

factors, for which consistency is not enough. Bates et al. (2013) show that if we ignore

the structural change, consistency of the estimated factor space requires 1
N
‖∆‖2 = o(1). In

contrast, to guarantee the convergence rate Op(
1

δ2NT
) of the estimated factor space, it requires

1
N
‖∆‖2 = O( 1

δNT
). While reasonable for a small break, these two conditions especially the

latter are not suitable for a large break. As discussed in Banerjee, Marcellino and Masten

(2008), this is the most likely reason behind the worsening factor-based forecasts. In contrast,

our result allows for a large break, and hence improves and complements Bates et al. (2013).

Remark 6 Note that k̃−k0 = Op(1) is both a necessary and suffi cient condition for Theorem

3. If
∣∣∣k̃ − k0

∣∣∣ is of order larger than Op(1), the convergence speed in Theorem 3 will be

affected.

Remark 7 Theorem 3 is based on arbitrarily u and v rather than r̃1 and r̃2, the estimated

number of pre-break and post-break factors. On the other hand, r̃1 and r̃2 are based directly

on eigenvalue separation, without using consistency of the estimated pre-break and post-break

factor space. Hence, Theorem 3 and Theorem 2 are independent of each other. Alternatively,

we can choose u = r̃1 and v = r̃2. Since r̃1 and r̃2 are consistent, this is asymptotically

equivalent to the case in which r1 and r2 are known. The same argument was used by

Bai (2003) for deriving the limiting distribution of the estimated factors. When r1 and r2

are known and under Assumptions 1-8 and 9 or 10, we have 1
k̃

∑k̃
t=1

∥∥∥f̂t(k̃)−H ′1(k̃)ft

∥∥∥2

=

Op(
1

δ2NT
) and 1

T−k̃

∑T
t=k̃+1

∥∥∥f̂t(k̃)−H ′2(k̃)ft

∥∥∥2

= Op(
1

δ2NT
).

7 FURTHER ISSUES

To make inference about the change point, we seek to derive its limiting distribution. Define

yt = vec(J ′0gtg
′
tJ0 − Σ1) for t ≤ k0,

yt = vec(J ′0gtg
′
tJ0 − Σ2) for t > k0, (11)

where Σ1 = J ′0ΣG,1J0 and Σ2 = J ′0ΣG,2J0 are the pre-break and post-break means of J ′0gtg
′
tJ0.

The limiting distribution of k̃ is as follows:
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Theorem 4 Under Assumptions 1-8 and 9 or 10, k̃ − k0
d→ arg minW (l), where

W (l) = −l ‖Σ2 − Σ1‖2 − 2
∑k0−1

t=k0+l
[vec(Σ2 − Σ1)]′yt for l = −1,−2, ...,

W (l) = 0 for l = 0,

W (l) = l ‖Σ2 − Σ1‖2 − 2
∑k0+l

t=k0+1
[vec(Σ2 − Σ1)]′yt for l = 1, 2, .... (12)

If yt is independent over t, then W (l) is a two-sided random walk. Note that yt is not

assumed to be stationary. By definition, if ft is stationary, then gt and hence yt is stationary

within each regime. In this case
∑k0−1

t=k0+l and
∑k0+l

t=k0+1 can be replaced by
∑−1

t=l and
∑l

t=1.

The main problem is that this limiting distribution is not free of the underlying DGP, hence

constructing a confidence interval is not feasible. In previous change point estimation studies,

the shrinking break assumption is required to make the limiting distribution independent

of the underlying DGP. However, in the current setup, the break magnitude ‖Σ2 − Σ1‖ is
fixed and it is unreasonable to assume ‖Σ2 − Σ1‖ → 0 as T →∞. In fact, feasible inference
procedure without the shrinking break assumption is an open question. We conjecture that

bootstrap is one possible solution and leave this for future research.

Remark 8 Bai (2010) also considers a fixed magnitude for the break. The difference between

our result and Bai (2010) is that our random walk is not necessarily Gaussian. This is

because the dimension of yt, (r+ q1)2, is fixed and yjt and ykt are not independent for j 6= k.

In contrast, in Bai (2010), the dimension of et, N , goes to infinity and ejt and ekt are

independent for j 6= k so that the CLT applies to the weighted sum of eit.

Remark 9 In some special cases, the limiting distribution of k̃ − k0 is one-sided, concen-

trating on l ≥ 0. For example, if Λ0, Λ1 and Λ2 − Λ1 are orthogonal to each other and the

factors are also orthogonal with each other, then [vec(Σ2 − Σ1)]′yt = 0 for all t < k0. It

follows that W (l) > W (0) for all l < 0, hence arg minW (l) ≥ 0.

Remark 10 As in Proposition 2 and Theorem 1, Theorem 4 holds with either Assumption

9 or 10.

Remark 11 As in Remark 1, when change point estimation is based on r̃ = m < r + q1,

Theorem 4 holds with J0 replaced by Jm0 .
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8 SIMULATIONS

In this section, we perform simulations to confirm our theoretical results and examine various

elements that may affect the finite sample performance of our estimators.

8.1 DESIGN

Our design roughly follows that of Bates et al. (2013), with the focus switching from small

change to large change and from forecasting to estimating the whole model, i.e., estimating

the change point, the number of pre-break and post-break factors and the pre-break and

post-break factor spaces.

The data is generated as follows:

xit =

{
f ′0,tλ0,i + f ′1,tλ1,i +

√
θ1ei,t, if 1 ≤ t ≤ [τ 0T ]

f ′0,tλ0,i + f ′1,tλ2,i +
√
θ2ei,t, if [τ 0T ] + 1 ≤ t ≤ T

for i = 1, ..., N and t = 1, ..., T.

As discussed in Section 2, in case the number of pre-break and post-break factors is r1 and

r2 respectively, with r = max{r1, r2}, ft and λi are always r dimensional vectors. If r1 < r2,

the last r2− r1 elements of λ1,i are zeros while if r1 > r2, the last r1− r2 elements of λ2,i are

zeros. θ1 and θ2 control the magnitude of noise and here we take θ1 = r1, θ2 = r2.

The factors are generated as follows:

ft,p = ρft−1,p + ut,p for t = 2, ..., T and p = 1, ..., r,

where ut,p is i.i.d. N(0, 1) for t = 2, ..., T and p = 1, ..., r. For t = 1, f1,p is i.i.d. N(0, 1
1−ρ2 )

for p = 1, ..., r so that factors have stationary distributions. The scalar ρ captures the serial

correlation of factors.

The idiosyncratic errors are generated as follows:

ei,t = αei,t−1 + vi,t for i = 1, ..., N and t = 2, ..., T .

The processes {ut,p} and {vi,t} are mutually independent with vt = (v1,t, ..., vN,t)
′ being

i.i.d. N(0,Ω) for t = 2, ..., T . For t = 1, e·,1 = (e1,1, ..., eN,1)′ is N(0, 1
1−α2Ω) so that the

idiosyncratic errors have stationary distributions. The scalar α captures the serial correlation

of the idiosyncratic errors. As in Bates et al. (2013), Ωij = β|i−j| captures the cross-sectional

dependence of the idiosyncratic errors.
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We consider three different ways of generating factor loadings corresponding to three

different representative setups. The first setup allows both change in the number of factors

and partial change in the factor loadings, with (r1, r2) = (3, 5) and one factor having stable

loadings. In this case, λ0,i is independent N(0, xi(R
2
i )) across i. Both λ1,i and λ2,i are four

dimensional vectors. The first two elements of λ1,i are independent N(0, xi(R
2
i )I2) across i

and the last two elements of λ1,i are zeros. Also, λ2,i is independent N(0, xi(R
2
i )I4) across i.

Hence the number of pseudo factors in the equivalent representation is r1 + r 2− 1 = 7. The

scalar xi(R2
i ) is determined so that the regression R

2 of series i is equal to R2
i .
7 The second

setup allows only change in the number of factors, with (r1, r2) = (3, 5) and three factors

having stable loadings. In this case, λ0,i is independent N(0, xi(R
2
i )I3) across i. Both λ1,i and

λ2,i are two dimensional vectors, λ1,i are zeros while λ2,i is independent N(0, xi(R
2
i )I2) across

i. Hence the number of pseudo factors is 5. The third setup allows only partial change in the

factor loadings, with (r1, r2) = (3, 3) and one factor having stable loadings. In this case, λ0,i

is independent N(0, xi(R
2
i )) across i. Both λ1,i and λ2,i are two dimensional vectors, λ1,i is

independent N(0, xi(R
2
i )I2) across i while λ2,i = (1−a)λ1,i+

√
2a− a2di, where a ∈ [0, 1] and

di is independent N(0, xi(R
2
i )I2) across i. Hence the number of pseudo factors is 5 except for

a = 0. The scalar a captures the magnitude of factor loading changes, with the the ratio of

mean squared changes in the factor loadings to the pre-break factor loadings being equal to
4a
3
. We consider a = 0.2, 0.6 and 1, which correspond to small, medium and large changes,

respectively. Finally, all factor loadings are independent of the factors and the idiosyncratic

errors.

For each setup, we consider the benchmark DGP with (ρ, α, β) = (0, 0, 0) and homoge-

neous R2 and the more empirically relevant DGP with (ρ, α, β) = (0.5, 0.2, 0.2) and hetero-

geneous R2. For homogeneous R2, R2
i = 0.5 for all i, which is also considered in Bai and

Ng (2002), Ahn and Horenstein (2013) (to name a few) as a benchmark case in evaluating

estimators of the number of factors. For heterogeneous R2, R2
i is drawn from U(0.2, 0.8) in-

dependently. For each DGP, we consider four configurations of data with T = 100, 200, 400

and N = 100, 200. To see how the position of the structural change affects the performance

of our estimators, we consider τ 0 = 0.25 and 0.5.

7xi(R
2
i ) = 1−ρ2

1−α2
R2
i

1−R2
i
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8.2 ESTIMATORS AND RESULTS

The number of pseudo factors in the equivalent model is estimated using ICp1 in Bai and

Ng (2002) for Setups 1 and 2. For Setup 3, it is estimated using ICp1 in case a = 1 and

ICp3 in case a = 0.2 and 0.6. The maximum number of factors is rmax = 12. Estimating

the number of pseudo factors is the first step of our estimation procedure, and the perfor-

mance of r̃ will affect the performance of k̃, which in turn affect the performance of r̃1, r̃ 2

and the estimated pre-break and post-break factor spaces. Therefore, it is worth discussing

the choice of criterion in estimating the number of pseudo factors. As can be seen in the

equivalent representation, the pseudo factors induced by structural change are not as strong

as factors with stable loadings in the original model8 because a portion of their elements are

zeros and the magnitude of those nonzero elements is small if the magnitude of structural

change is small. Consequently, estimators of the number of factors which perform well in

the normal case tend to underestimate the number of pseudo factors, while estimators which

tend to overestimate in the normal case, perform well in estimating the number of pseudo

factors. Moreover, the magnitudes of pseudo factors induced by structural change are not

only absolutely smaller, but also relatively smaller, especially when the change point is not

close to the middle of the sample. This decreases the applicability of the ER and GR estima-

tors in Ahn and Horenstein (2013), whose performance rely on the factors being of similar

magnitude. In our current setup, we found that among ICp1, ICp2 in Bai and Ng (2002)

and ER, GR in Ahn and Horenstein (2013), on the whole ICp1 performs best. Compared to

ICp3, ICp1 is more robust to serial correlation and heteroskedasticity of the errors, but ICp3

has an advantage in case the change point is far from middle or the magnitude of change

is medium or small9. Since ICp1 and ICp3 are relatively less conservative, these findings

are consistent with the above observations. In addition, we also found that underestimation

of the number of pseudo factors deteriorates the performance of k̃ significantly more than

overestimation. This is because k̃ is based on the second moment matrix of the estimated

pseudo factors, hence underestimation will result in loss of information while overestimation

will bring in extra noise. As long as the overestimation is not severe, these extra noise have

very limited effect on the performance of k̃. In view of these results, we recommend choosing

8All factors in the equivalent model are called pseudo factors, but not all pseudo factors are induced by
structural change. Factors with stable loadings in the original model are still present in the equivalent model.

9Our comparison here is limited by the experiments performed. A more comprehensive comparison in
case the change point is far from middle or the magnitude of structural change is medium or small is left for
a future study.
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a less conservative criterion in estimating the number of pseudo factors.

The change point is estimated as in equation (10). We restrict k̃ to be in [r1, T − r2] to

avoid the singular matrix in subsequent estimation of the number of pre-break and post-break

factors. This will not significantly affect the distribution of k̃ since the probability that k̃ falls

out of [r1, T −r2] is extremely small. To save space, we only display the distributions of k̃ for

(N, T ) = (100, 100). Of course, the performance of k̃ improves as (N, T ) increases. Figure 1

is the histogram of k̃ of Setup 1 for (N, T ) = (100, 100). Figures 2 and 3 are histograms of k̃

of Setup 3 for (N, T ) = (100, 100) with a = 1 and 0.2, respectively. Each figure contains four

subfigures corresponding to τ 0 = 0.25 and 0.5 for (ρ, α, β) = (0, 0, 0) with homogeneous R2

and (ρ, α, β) = (0.5, 0.2, 0.2) with heterogeneous R2. Under each subfigure, we also report

the average and standard deviation of r̃ used in obtaining k̃. The number of replications is

1,000.

It is easy to see that in each subfigure the mass is concentrated in a small neighborhood

of k0. In most cases, the frequency that k̃ falls into (k0 − 5, k0 + 5) is around 90%. This

confirms our theoretical result, k̃ − k0 = Op(1). In Setup 3, even when a decreases from 1

to 0.2, the performance deteriorates very little. Comparing the left column with the right

column of each figure, we can see that the performance of k̃ deteriorates as τ 0 moves from

0.5 to 0.25. This is because when τ 0 is close to the boundary, some pseudo factors in the

equivalent model are weak and hence the PC estimator of these factors is noisy. In Setup 3,

based on Theorem 4 and the fact that all factors and loadings are generated independently,

it is not diffi cult to see that these weak factors are in W (l) for l = −1,−2, ..., hence k̃−k0 is

likely to be negative. This explains the asymmetry of Figures 2 and 3. Comparing the first

row with the second row of each figure, we can see that the performance of k̃ deteriorates

for (ρ, α, β) = (0.5, 0.2, 0.2) with heterogeneous R2. This is consistent with Theorem 4, since

yt is serial correlated when factors are serial correlated and serial correlation increases the

variance of
∑k0−1

t=k0+l[vec(Σ2 − Σ1)]′yt and
∑k0+l

t=k0+1[vec(Σ2 − Σ1)]′yt for each l.

Based on k̃, we then split the sample and estimate the number of pre-break and post-

break factors using ICp2 in Bai and Ng (2002) and GR in Ahn and Horenstein (2013),

with maxima rmax1 = 10 and rmax2 = 10. The performance of ER is similar and will

not be reported. Based on k̃, r̃1 and r̃ 2, we then estimate the pre-break and post-break

factors using the principal component method. To evaluate the performance, we calculate

the R2 of the multivariate regression of F̂ r̃1
1 (k̃) on F1(k̃) and F̂ r̃2

2 (k̃) on F2(k̃), R2
F̂ ,F

=
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∥∥∥PF1(k̃)F̂ r̃11 (k̃)
∥∥∥2+

∥∥∥PF2(k̃)F̂ r̃22 (k̃)
∥∥∥2

‖F̂ r̃11 (k̃)‖2+‖F̂ r̃22 (k̃)‖2
. Theorem 3 states that R2

F̂ ,F
should be close to one if N and T

are large.

Tables 1-3 report the percentage of underestimation and overestimation of r̃1, r̃ 2 and

averages of R2
F̂ ,F

over 1,000 replications. x/y denotes that the frequency of underestimation

and overestimation is x% and y% respectively. On the whole, the performance of ICp2 and

GR are similar. If we choose the better one in each case, the performance of r̃1 and r̃ 2 behave

quite well and in most cases close to the their correspondents based on the true change point

k0. For Setups 1 and 3, (N, T ) = (100, 200) is large enough to guarantee good performance

in all cases. For the case τ 0 = 0.5, (N, T ) = (100, 100) is large enough. Note that for Setup

3, even with a small magnitude of change a = 0.2, r̃1 and r̃ 2 still perform well. For Setup

2, (N, T ) = (100, 200) is large enough in all cases, except for the case with ρ = 0.5. The

performance of R2
F̃ ,F

is good for all cases.

Comparing the results of τ 0 = 0.5 with τ 0 = 0.25 and ρ = 0 with ρ = 0.5 in each table,

we can see that the deterioration pattern is in accord with that of k̃. This is not surprising

since in the current setup, the estimation error in k̃ is the main cause of misestimating r̃1

and r̃ 2. For r̃1, underestimation of k0 decreases the size of the pre-break subsample while

overestimation increases the tendency of overestimating r1. Comparing Tables 2 and 3, we

can see that underestimation is less harmful. Finally, it is worth noting that there is still

room for improvement of finite sample performance of r̃1, r̃ 2, either through improving the

performance of k̃ or through choosing an estimator more robust to misspecification of change

point among all estimators of the number of factors in the literature.

9 CONCLUSIONS

This paper studied the identification and estimation of a large dimensional factor model with

a single large structural change. Both factor loadings and number of factors are allowed to

be unstable. We proposed a least squares estimator of the change point and showed that

the distance between this estimator and the true change point is Op(1). The main appeal

of this estimator is that it does not require prior information of the number of factors and

observability of the factors and it allows for a change in the number of factors. Based on this

change point estimator, we are able to dissect the model into two separate stable models and

establish consistency of the estimated pre and post-break number of factors and convergence

rate of the estimated pre and post-break factor space. These results provide the foundation
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for subsequent analysis and applications.

A natural step is to derive the limiting distribution of the estimated factors, factor load-

ings and common components as in Bai (2003). It will also be rewarding to further improve

the finite sample performance of our change point estimator. In addition, following the

methods in Bai and Perron (1998), it will be straightforward to extend our results to the

case with multiple changes. Many other issues are also on the agenda. For example, what

are the asymptotic properties of the estimated change point, estimated number of factors

and estimated factors when the factor process is I(1)?
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APPENDIX

A HAJEK-RENYI INEQUALITY

Hajek-Renyi inequality is a powerful and almost indispensible tool for calculating the stochas-

tic order of sup-type terms. For a sequence of independent random variables {xt, t = 1, ...}
with zero mean and finite variance, Hajek and Renyi (1955) proved that for any integers m

and T ,

P ( sup
m≤k≤T

ck

∣∣∣∑k

t=1
xt

∣∣∣ > M) ≤ 1

M2
(c2
m

∑m

t=1
σ2
t +

∑T

t=m+1
c2
tσ

2
t ), (A-1)

where {ck, k = 1, ...} is a sequence of nonincreasing positive numbers and Ex2
t = σ2

t . The

Hajek-Renyi inequality was extended to various settings, including martingale difference,

martingale, mixingale, linear process and vector-valued martingale, see Bai (1996). From

expression (A-1), it is easy to see that if σ2
t is constant over time,

P ( sup
m≤k≤T

∣∣∣∣1k∑k

t=1
xt

∣∣∣∣ > M) ≤ 2σ2

M2

1

m
,

hence when m = 1, sup
1≤k≤T

∣∣∣ 1
k

∑k
t=1 xt

∣∣∣ = Op(1) as T →∞ and when m = [Tτ ] for τ ∈ (0, 1),

sup
m≤k≤T

∣∣∣ 1
k

∑k
t=1 xt

∣∣∣ = Op(
1√
T

) as T →∞; and

P ( sup
m≤k≤T

∣∣∣∣ 1√
k

∑k

t=1
xt

∣∣∣∣ > M) ≤ σ2

M2
(1 +

∑T

k=m+1

1

k
),

hence when m = 1, sup
1≤k≤T

∣∣∣ 1√
k

∑k
t=1 xt

∣∣∣ = Op(
√

log T ) as T → ∞ since
∑T

k=1
1
k
− log T

converges to the Euler constant and when m = [Tτ ] for τ ∈ (0, 1), sup
m≤k≤T

∣∣∣ 1√
k

∑k
t=1 xt

∣∣∣ =

Op(1) as T → ∞ since
∑T

k=m+1
1
k

=
∑T

k=1
1
k
−
∑Tτ

k=1
1
k
→ log T − log Tτ = log 1

τ
. The last

result also can be obtained from the functional central limit theorem.

B SOME NOTATION AND CALCULATION

By symmetry, it suffi ces to study the case k ≤ k0. To study the asymptotic properties of the

change point estimator, we will first decompose the estimation error of pseudo factors and

the least squares criterion function S̃(k).

Define VNT as the diagonal matrix of the first r + q1 largest eigenvalues of 1
NT
XX ′

in decreasing order and G̃ as
√
T times the corresponding eigenvector matrix, V as the
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Figure 1: Histogram of k̃ for (N, T ) = (100, 100), (r1, r2, r + q1) = (3, 5, 7)

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.25, ave(r̃) = 5.68, sd(r̃) = 0.60

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.5, ave(r̃) = 6.85, sd(r̃) = 0.38

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.25, ave(r̃) = 5.75, sd(r̃) = 0.58

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.5, ave(r̃) = 6.74, sd(r̃) = 0.48

Notes: ρ, α and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term cross-sectional
correlation respectively. ave(r̃) and sd(r̃) denote average and standard deviation of estimated number of
pseudo factors that are used to estimate the change point respectively.
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Figure 2: Histogram of k̃ for (N, T ) = (100, 100), (r1, r2, r + q1) = (3, 3, 5), a = 1

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.25, ave(r̃) = 4.51, sd(r̃) = 0.56

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.5, ave(r̃) = 5.00, sd(r̃) = 0

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.25, ave(r̃) = 4.86, sd(r̃) = 0.35

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.5, ave(r̃) = 5.00, sd(r̃) = 0

Notes: ρ, α and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term cross-sectional
correlation respectively. ave(r̃) and sd(r̃) denote average and standard deviation of estimated number of
pseudo factors that are used to estimate the change point respectively.
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Figure 3: Histogram of k̃ for (N, T ) = (100, 100), (r1, r2, r + q1) = (3, 3, 5), a = 0.2

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.25, ave(r̃) = 4.27, sd(r̃) = 0.60

τ 0 = 0.5, (ρ, α, β) = (0, 0, 0), homogeneous
R2, ave(r̃) = 4.85, sd(r̃) = 0.36

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.25, ave(r̃) = 5.60, sd(r̃) = 1.17

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.5, ave(r̃) = 5.94, sd(r̃) = 1.08

Notes: ρ, α and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term cross-sectional
correlation respectively. ave(r̃) and sd(r̃) denote average and standard deviation of estimated number of
pseudo factors that are used to estimate the change point respectively.
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Table 1: Estimated number of pre-break and post-break factors and estimated factor space
for setup 1 with r1 = 3, r2 = 5, r + q1 = 7

N T τ 0 = 0.25 τ 0 = 0.5
ICp2 GR ICp2 GR

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

ρ = 0, α = 0, β = 0, homogeneous R2

100 100 4/8 2/2 11/7 5/1 0.94 0/0 13/0 0/1 2/0 0.96
100 200 0/0 0/0 0/0 0/0 0.95 0/0 0/0 0/0 0/0 0.96
200 200 0/0 0/0 0/0 0/0 0.98 0/0 0/0 0/0 0/0 0.98
200 400 0/0 0/0 0/0 0/0 0.98 0/0 0/0 0/0 0/0 0.98

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2

100 100 3/13 2/3 23/4 5/2 0.95 0/4 8/1 1/2 10/0 0.97
100 200 0/2 0/0 2/0 0/1 0.96 0/0 0/0 0/0 0/0 0.97
200 200 0/1 0/3 2/0 0/1 0.98 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 0/0 0/0 0.98 0/0 0/0 0/0 0/0 0.99

Notes: Number of factors in each regime is estimated using ICp2 in Bai and Ng (2002) and GR in Ahn and

Horenstein (2013). x/y denotes the frequency of underestimation and overestimation is x% and y%. ρ, α
and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term cross-sectional correlation
respectively.
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Table 2: Estimated number of pre-break and post-break factors and estimated factor space
for setup 2 with r1 = 3, r2 = 5, r + q1 = 5

N T τ 0 = 0.25 τ 0 = 0.5
ICp2 GR ICp2 GR

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

ρ = 0, α = 0, β = 0, homogeneous R2

100 100 3/41 15/6 9/39 29/0 0.91 0/10 18/2 0/9 12/0 0.96
100 200 0/6 2/1 0/6 5/0 0.95 0/2 1/0 0/1 1/0 0.96
200 200 0/6 2/0 0/5 4/0 0.97 0/1 0/0 0/1 0/0 0.98
200 400 0/1 1/0 0/1 1/0 0.98 0/0 0/0 0/0 0/0 0.98

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2

100 100 1/68 20/14 10/59 46/0 0.89 0/26 13/6 1/20 30/0 0.96
100 200 0/27 5/4 2/22 13/0 0.94 0/6 1/2 0/5 4/0 0.97
200 200 0/31 4/5 1/24 14/0 0.95 0/7 1/1 0/6 5/0 0.98
200 400 0/7 1/1 0/5 4/0 0.98 0/2 0/0 0/1 1/0 0.99

ρ = 0, α = 0.2, β = 0.2, heterogeneous R2

100 100 1/43 11/7 9/38 28/0 0.91 0/11 9/2 0/9 12/0 0.96
100 200 0/6 1/1 0/6 4/0 0.96 0/2 0/0 0/1 1/0 0.97
200 200 0/9 1/0 0/5 4/0 0.98 0/1 0/0 0/0 0/0 0.98
200 400 0/1 0/0 0/1 1/0 0.98 0/0 0/0 0/0 0/0 0.98

Notes: Number of factors in each regime is estimated using ICp2 in Bai and Ng (2002) and GR in Ahn and

Horenstein (2013). x/y denotes the frequency of underestimation and overestimation is x% and y%. ρ, α
and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term cross-sectional correlation
respectively.
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Table 3: Estimated number of pre-break and post-break factors and estimated factor space
for setup 3 with r1 = 3, r2 = 3, r + q1 = 5

N T τ 0 = 0.25 τ 0 = 0.5
ICp2 GR ICp2 GR

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

ρ = 0, α = 0, β = 0, homogeneous R2, a = 1
100 100 5/4 0/1 14/0 0/1 0.97 0/0 0/0 0/0 0/0 0.97
100 200 0/0 0/0 1/0 0/0 0.97 0/0 0/0 0/0 0/0 0.97
200 200 0/0 0/0 0/0 0/0 0.98 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 0/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2, a = 1
100 100 3/9 0/8 27/0 0/4 0.97 1/4 0/4 2/1 1/2 0.97
100 200 0/2 0/4 4/0 0/2 0.98 0/1 0/0 0/0 0/0 0.98
200 200 0/1 0/3 2/0 0/2 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/1 1/0 0/1 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0, α = 0, β = 0, homogeneous R2, a = 0.6
100 100 4/3 0/1 12/0 0/0 0.97 0/0 0/0 0/0 0/0 0.97
100 200 0/0 0/0 1/0 0/0 0.97 0/0 0/0 0/0 0/0 0.97
200 200 0/0 0/0 0/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 0/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2, a = 0.6
100 100 3/9 0/6 26/0 0/3 0.98 1/2 0/3 2/2 2/2 0.98
100 200 0/2 0/3 3/0 0/1 0.98 0/1 0/1 0/0 0/0 0.98
200 200 0/1 0/3 2/0 0/1 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/1 1/0 0/1 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0, α = 0, β = 0, homogeneous R2, a = 0.2
100 100 5/8 0/1 18/0 2/0 0.97 0/0 0/0 0/0 1/0 0.97
100 200 2/5 3/7 10/0 16/0 0.97 0/1 1/0 2/0 1/0 0.97
200 200 0/0 0/0 1/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 0/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2, a = 0.2
100 100 5/13 0/0 33/0 0/0 0.98 1/2 1/2 3/0 2/0 0.98
100 200 1/3 0/0 7/0 4/0 0.98 0/0 0/0 0/0 1/0 0.98
200 200 0/2 0/0 3/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 1/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99

Notes: Number of factors in each regime is estimated using ICp2 in Bai and Ng (2002) and GR in Ahn

and Horenstein (2013). x/y denotes the frequency of underestimation and overestimation is x% and y%.
ρ, α, β and a denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term cross-sectional

correlation and break magnitude respectively.
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diagonal matrix of eigenvalues of Σ
1
2
ΓΣGΣ

1
2
Γ and Φ as the corresponding eigenvector matrix,

J = Γ′Γ
N

G′G̃
T
V −1
NT , J0 = Σ

1
2
ΓΦV −

1
2 . By definition, 1

NT
XX ′G̃V −1

NT = G̃. Plug in X = GΓ′ + E,

we have G̃−GJ = 1
NT

(GΓ′E ′G̃+ EΓG′G̃+ EE ′G̃)V −1
NT and

g̃t − J ′gt = V −1
NT (

1

T

∑T

s=1
g̃sγN(s, t) +

1

T

∑T

s=1
g̃sζst +

1

T

∑T

s=1
g̃sηst +

1

T

∑T

s=1
g̃sξst),

where ζst = e′set
N
− γN(s, t), ηst = g′sΓ

′et
N
and ξst =

g′tΓ
′es
N
.

Next, define

zt = vec(g̃tg̃
′
t − J ′0gtg′tJ0)

= vec[(g̃t − J ′gt)(g̃t − J ′gt)′] + vec[(g̃t − J ′gt)g′tJ ]

+vec[J ′gt(g̃t − J ′gt)′] + vec[(J ′ − J ′0)gtg
′
t(J
′ − J ′0)′]

+vec[(J ′ − J ′0)gtg
′
tJ0] + vec[J ′0gtg

′
t(J
′ − J ′0)′]. (A-2)

It follows that

vec(g̃tg̃
′
t) = vec(Σ1) + yt + zt for t ≤ k0,

vec(g̃tg̃
′
t) = vec(Σ2) + yt + zt for t > k0, (A-3)

where Σ1, Σ2 and yt are defined in Section 7.

For k ≤ k0,

vec(Σ̃1) = vec(Σ1) +
1

k

∑k

t=1
yt +

1

k

∑k

t=1
zt, (A-4)

vec(Σ̃2) = vec(Σ1) +
T − k0

T − k [vec(Σ2)− vec(Σ1)]

+
1

T − k
∑T

t=k+1
yt +

1

T − k
∑T

t=k+1
zt

=
k0 − k
T − k [vec(Σ1)− vec(Σ2)] + vec(Σ2)

+
1

T − k
∑T

t=k+1
yt +

1

T − k
∑T

t=k+1
zt. (A-5)

Define

ak =
T − k0

T − k [vec(Σ2)− vec(Σ1)], bk =
k0 − k
T − k [vec(Σ1)− vec(Σ2)], (A-6)
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ȳ1k =
1

k

∑k

t=1
yt, ȳ2k =

1

T − k
∑T

t=k+1
yt, (A-7)

z̄1k =
1

k

∑k

t=1
zt, z̄2k =

1

T − k
∑T

t=k+1
zt. (A-8)

It follows that

vec(Σ̃1) = vec(Σ1) + ȳ1k + z̄1k,

vec(Σ̃2) = vec(Σ1) + ak + ȳ2k + z̄2k = vec(Σ2) + bk + ȳ2k + z̄2k, (A-9)

and for k < k0,

S̃(k)

=
∑k

t=1
(yt + zt − ȳ1k − z̄1k)

′(yt + zt − ȳ1k − z̄1k)

+
∑k0

t=k+1
(yt + zt − ȳ2k − z̄2k − ak)′(yt + zt − ȳ2k − z̄2k − ak)

+
∑T

t=k0+1
(yt + zt − ȳ2k − z̄2k − bk)′(yt + zt − ȳ2k −−bk)

= (k0 − k)a′kak + (T − k0)b′kbk +
∑T

t=1
(yt + zt)

′(yt + zt)

−k(ȳ1k + z̄1k)
′(ȳ1k + z̄1k)− (T − k)(ȳ2k + z̄2k)

′(ȳ2k + z̄2k)

−2a′k
∑k0

t=k+1
(yt + zt − ȳ2k − z̄2k)

−2b′k
∑T

t=k0+1
(yt + zt − ȳ2k − z̄2k), (A-10)
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S̃(k)− S̃(k0)

= (k0 − k)a′kak

+(T − k0)b′kbk

−{1

k
[
∑k

t=1
(yt + zt)]

′[
∑k

t=1
(yt + zt)]−

1

k0

[
∑k0

t=1
(yt + zt)]

′[
∑k0

t=1
(yt + zt)]}

−{ 1

T − k [
∑T

t=k+1
(yt + zt)]

′[
∑T

t=k+1
(yt + zt)]

− 1

T − k0

[
∑T

t=k0+1
(yt + zt)]

′[
∑T

t=k0+1
(yt + zt)]}

−2a′k
∑k0

t=k+1
(yt + zt)

−2b′k
∑T

t=k0+1
(yt + zt)

+2[(k0 − k)ak + (T − k0)bk]
′(ȳ2k + z̄2k)

= A∗ +B∗ + C∗ +D∗ + E∗ + F ∗ +G∗. (A-11)

C PROOF OF PROPOSITION 1

Proof. In Assumption 1, ΣF is assumed to be positive definite, hence AΣFA
′ and BΣFB

′

are both positive semidefinite. For any r+q1 dimensional vector v, if v′ΣGv = τ 0v
′AΣFA

′v+

(1− τ 0)v′BΣFB
′v = 0, it follows that v′AΣFA

′v = 0 and v′BΣFB
′v = 0. Again because ΣF

is positive definite, this implies A′v = 0 and B′v = 0. Plug in A, it follows that the first r

elements of v are zero. Plug in B, it follows that the last q1 elements of v are zero. These

together imply that v = 0 and consequently ΣG is positive definite.

D PROOF OF PROPOSITION 2

Proof. To show τ̃ − τ 0 = op(1), we need to show for any ε > 0 and any η > 0, P (|τ̃ − τ 0| >
η) < ε as (N, T )→∞. For the given η, define D = {k : (τ 0− η)T ≤ k ≤ (τ 0 + η)T} and Dc

as the complement of D, we need to show P (k̃ ∈ Dc) < ε.

k̃ = arg min S̃(k), hence S̃(k̃) − S̃(k0) ≤ 0. If k̃ ∈ Dc, then min
k∈Dc

S̃(k) − S̃(k0) ≤ 0. This

implies P (k̃ ∈ Dc) ≤ P (min
k∈Dc

S̃(k)− S̃(k0) ≤ 0), hence it suffi ces to show for any given ε > 0

and η > 0, P (min
k∈Dc

S̃(k)− S̃(k0) ≤ 0) < ε as (N, T )→∞.

Suppose ω ∈ {ω : min
k∈Dc

S̃(k)− S̃(k0) ≤ 0}. For any k∗ ∈ Dc, if arg min
k∈Dc

S̃(k)− S̃(k0) = k∗,

then S̃(k∗)−S̃(k0) ≤ 0, and hence S̃(k∗)−S̃(k0)
|k∗−k0| ≤ 0. Since k∗ ∈ Dc, min

k∈Dc

S̃(k)−S̃(k0)
|k−k0| ≤

S̃(k∗)−S̃(k0)
|k∗−k0| .
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Combined together, we have min
k∈Dc

S̃(k)−S̃(k0)
|k−k0| ≤ 0. In other words, we proved that for any k∗ ∈

Dc, min
k∈Dc

S̃(k)− S̃(k0) ≤ 0 together with arg min
k∈Dc

S̃(k)− S̃(k0) = k∗ implies min
k∈Dc

S̃(k)−S̃(k0)
|k−k0| ≤ 0.

Thus min
k∈Dc

S̃(k) − S̃(k0) ≤ 0 implies min
k∈Dc

S̃(k)−S̃(k0)
|k−k0| ≤ 0. Similarly, min

k∈Dc

S̃(k)−S̃(k0)
|k−k0| ≤ 0 implies

min
k∈Dc

S̃(k)− S̃(k0) ≤ 0. Therefore, {ω : min
k∈Dc

S̃(k)− S̃(k0) ≤ 0} = {ω : min
k∈Dc

S̃(k)−S̃(k0)
|k−k0| ≤ 0}.

By symmetry, it suffi ces to study the case k < k0.

P ( min
k∈Dc,k<k0

S̃(k)− S̃(k0) ≤ 0) = P ( min
k∈Dc,k<k0

S̃(k)− S̃(k0)

|k − k0|
≤ 0)

≤ P ( min
k∈Dc,k<k0

A∗ +B∗

|k − k0|
≤ sup

k∈Dc,k<k0

|C∗|
|k0 − k|

+ sup
k∈Dc,k<k0

|D∗|
|k0 − k|

+ sup
k∈Dc,k<k0

|E∗|
|k0 − k|

+ sup
k∈Dc,k<k0

|F ∗|
|k0 − k|

+ sup
k∈Dc,k<k0

|G∗|
|k0 − k|

).

We will show the right hand side are dominated by the left hand side.

First consider term A∗ +B∗,

min
k∈Dc,k<k0

A∗ +B∗

|k − k0|
≥ min

k∈Dc,k<k0

A∗

|k0 − k|
= min

k∈Dc,k<k0
a′kak

= min
k∈Dc,k<k0

(
T − k0

T − k )2[vec(Σ2 − Σ1)]′[vec(Σ2 − Σ1)]

≥ (1− τ 0)2 ‖Σ2 − Σ1‖2 = (1− τ 0)2 ‖J0‖4 ‖ΣG,2 − ΣG,1‖2 .

Next consider term C∗,

C∗ = −{1

k
[
∑k

t=1
(yt + zt)]

′[
∑k

t=1
(yt + zt)]−

1

k0

[
∑k0

t=1
(yt + zt)]

′[
∑k0

t=1
(yt + zt)]}

= −k0 − k
k0

1

k
[
∑k

t=1
(yt + zt)]

′[
∑k

t=1
(yt + zt)]

+2
1

k0

[
∑k

t=1
(yt + zt)]

′[
∑k0

t=k+1
(yt + zt)]

+
k0 − k
k0

1

k0 − k
[
∑k0

t=k+1
(yt + zt)]

′[
∑k0

t=k+1
(yt + zt)].
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Hence, ∣∣∣∣ C∗

k0 − k

∣∣∣∣ ≤ ∣∣∣∣ 1

k0

1

k
[
∑k

t=1
(yt + zt)]

′[
∑k

t=1
(yt + zt)]

∣∣∣∣
+

∣∣∣∣2 1

k0

1

k0 − k
[
∑k

t=1
(yt + zt)]

′[
∑k0

t=k+1
(yt + zt)]

∣∣∣∣
+

∣∣∣∣ 1

k0

1

k0 − k
[
∑k0

t=k+1
(yt + zt)]

′[
∑k0

t=k+1
(yt + zt)]

∣∣∣∣
= C∗1 + C∗2 + C∗3 .

For C∗1 ,

sup
k∈Dc,k<k0

C∗1 = sup
k∈Dc,k<k0

1

k0

1

k

∥∥∥∑k

t=1
(yt + zt)

∥∥∥2

≤ sup
k∈Dc,k<k0

1

k0

1

k
(
∥∥∥∑k

t=1
yt

∥∥∥2

+
∥∥∥∑k

t=1
zt

∥∥∥2

+ 2
∥∥∥∑k

t=1
yt

∥∥∥∥∥∥∑k

t=1
zt

∥∥∥)

≤ 2 sup
k∈Dc,k<k0

1

k0

1

k

∥∥∥∑k

t=1
yt

∥∥∥2

+ 2 sup
k∈Dc,k<k0

1

k0

1

k

∥∥∥∑k

t=1
zt

∥∥∥2

.

By part (1) of Lemma 3, sup
k∈Dc,k<k0

∥∥∥ 1√
k

∑k
t=1 yt

∥∥∥ = Op(
√

log T ), hence the first term is

Op(
log T
T

). By part (1) of Lemma 7, the second term is op(1), hence sup
k∈Dc,k<k0

C∗1 = op(1).

For C∗2 ,

sup
k∈Dc,k<k0

C∗2 ≤ 2 sup
k∈Dc,k<k0

1

k0

1

k0 − k

∥∥∥∑k

t=1
(yt + zt)

∥∥∥∥∥∥∑k0

t=k+1
(yt + zt)

∥∥∥
≤ 2 sup

k∈Dc,k<k0

(

∥∥∥∥ 1

k0

∑k

t=1
yt

∥∥∥∥+

∥∥∥∥ 1

k0

∑k

t=1
zt

∥∥∥∥)(

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
yt

∥∥∥∥
+

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥)

≤ 2( sup
k∈Dc,k<k0

∥∥∥∥ 1

k0

∑k

t=1
yt

∥∥∥∥+ sup
k∈Dc,k<k0

∥∥∥∥ 1

k0

∑k

t=1
zt

∥∥∥∥)

( sup
k∈Dc,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
yt

∥∥∥∥+ sup
k∈Dc,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥).

By part (1) of Lemma 3, the first term and the third term are Op(
1√
T

), and by parts (3) and

(5) of Lemma 7, the second term and the fourth term are op(1), hence sup
k∈Dc,k<k0

C∗2 = op(1).
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For C∗3 ,

sup
k∈Dc,k<k0

C∗3 = sup
k∈Dc,k<k0

1

k0

1

k0 − k

∥∥∥∑k0

t=k+1
(yt + zt)

∥∥∥2

≤ sup
k∈Dc,k<k0

1

k0

1

k0 − k
(
∥∥∥∑k0

t=k+1
yt

∥∥∥+
∥∥∥∑k0

t=k+1
zt

∥∥∥)2

≤ 2
1

k0

sup
k∈Dc,k<k0

1

k0 − k

∥∥∥∑k0

t=k+1
yt

∥∥∥2

+ 2
1

k0

sup
k∈Dc,k<k0

1

k0 − k

∥∥∥∑k0

t=k+1
zt

∥∥∥2

.

By part (1) of Lemma 3, sup
k∈Dc,k<k0

∥∥∥ 1√
k0−k

∑k0
t=k+1 yt

∥∥∥ = Op(1), hence the first term is Op(
1
T

).

By part (7) of Lemma 7, sup
k∈Dc,k<k0

1
k0

1
|k0−k|

∥∥∥∑k0
t=k+1 zt

∥∥∥2

= op(1), hence sup
k∈Dc,k<k0

C∗3 = op(1).

Therefore, sup
k∈Dc,k<k0

∣∣∣ C∗

k0−k

∣∣∣ ≤ sup
k∈Dc,k<k0

C∗1 + sup
k∈Dc,k<k0

C∗2 + sup
k∈Dc,k<k0

C∗3 = op(1).

Similarly,∣∣∣∣ D∗

k0 − k

∣∣∣∣ ≤ ∣∣∣∣ 1

T − k0

1

T − k [
∑T

t=k0+1
(yt + zt)]

′[
∑T

t=k0+1
(yt + zt)]

∣∣∣∣
+

∣∣∣∣2 1

T − k
1

k0 − k
[
∑T

t=k0+1
(yt + zt)]

′[
∑k0

t=k+1
(yt + zt)]

∣∣∣∣
+

∣∣∣∣ 1

T − k
1

k0 − k
[
∑k0

t=k+1
(yt + zt)]

′[
∑k0

t=k+1
(yt + zt)]

∣∣∣∣
= D∗1 +D∗2 +D∗3.

sup
k∈Dc,k<k0

D∗1

≤ 2 sup
k∈Dc,k<k0

1

T − k0

1

T − k

∥∥∥∑T

t=k0+1
yt

∥∥∥2

+ 2 sup
k∈Dc,k<k0

1

T − k0

1

T − k

∥∥∥∑T

t=k0+1
zt

∥∥∥2

= Op(
1

T
) + op(1) = op(1),

where the equality follows from part (1) of Lemma 3 and part (9) of Lemma 7.

sup
k∈Dc,k<k0

D∗2 ≤ 2( sup
k∈Dc,k<k0

∥∥∥∥ 1

T − k
∑T

t=k0+1
yt

∥∥∥∥+ sup
k∈Dc,k<k0

∥∥∥∥ 1

T − k
∑T

t=k0+1
zt

∥∥∥∥)

( sup
k∈Dc,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
yt

∥∥∥∥+ sup
k∈Dc,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥)

= (Op(
1√
T

) + op(1))(Op(
1√
T

) + op(1)) = op(1),

 98



where the equality follows from part (1) of Lemma 3 and parts (9) and (5) of Lemma 7.

sup
k∈Dc,k<k0

D∗3

≤ 2 sup
k∈Dc,k<k0

1

T − k
1

k0 − k

∥∥∥∑k0

t=k+1
yt

∥∥∥2

+ 2 sup
k∈Dc,k<k0

1

T − k
1

k0 − k

∥∥∥∑k0

t=k+1
zt

∥∥∥2

= Op(
1

T
) + op(1) = op(1),

where the equality follows from part (1) of Lemma 3 and part (7) of Lemma 7.

Therefore, sup
k∈Dc,k<k0

∣∣∣ D∗

k0−k

∣∣∣ ≤ sup
k∈Dc,k<k0

D∗1 + sup
k∈Dc,k<k0

D∗2 + sup
k∈Dc,k<k0

D∗3 = op(1).

Next consider term E∗.

sup
k∈Dc,k<k0

∣∣∣∣ E∗

k0 − k

∣∣∣∣ = 2 sup
k∈Dc,k<k0

1

k0 − k

∣∣∣a′k∑k0

t=k+1
(yt + zt)

∣∣∣
≤ 2 ‖Σ2 − Σ1‖ sup

k∈Dc,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
yt

∥∥∥∥
+2 ‖Σ2 − Σ1‖ sup

k∈Dc,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥ .
By part (1) of Lemma 3, the first term is Op(

1√
T

). By part (5) of Lemma 7, the second term

is op(1). Therefore, sup
k∈Dc,k<k0

∣∣∣ E∗

k0−k

∣∣∣ = op(1).

For term F ∗,

sup
k∈Dc,k<k0

∣∣∣∣ F ∗

k0 − k

∣∣∣∣
≤ 2 sup

k∈Dc,k<k0

‖bk‖
∥∥∥∑T

t=k0+1(yt + zt)
∥∥∥

|k0 − k|

≤ 2 ‖Σ1 − Σ2‖
∥∥∥∥ 1

T − k0

∑T

t=k0+1
yt

∥∥∥∥+ 2 ‖Σ1 − Σ2‖
∥∥∥∥ 1

T − k0

∑T

t=k0+1
zt

∥∥∥∥ .
By part (1) of Lemma 3, the first term isOp(

1√
T

). By part (9) of Lemma 7,
∥∥∥ 1
T−k0

∑T
t=k0+1 zt

∥∥∥ ≤
sup
k≤k0

∥∥∥ 1
T−k

∑T
t=k+1 zt

∥∥∥ = op(1). Therefore, sup
k∈Dc,k<k0

∣∣∣ F ∗

k0−k

∣∣∣ = op(1).
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For term G∗, note that (k0 − k)ak = (T − k0)bk,

sup
k∈Dc,k<k0

∣∣∣∣ G∗

k0 − k

∣∣∣∣ = 4 sup
k∈Dc,k<k0

|a′k(ȳ2k + z̄2k)|

≤ 4 sup
k∈Dc,k<k0

T − k0

T − k ‖Σ2 − Σ1‖
∥∥∥∥ 1

T − k
∑T

t=k+1
(yt + zt)

∥∥∥∥
≤ 4 ‖Σ2 − Σ1‖ sup

k∈Dc,k<k0

∥∥∥∥ 1

T − k
∑T

t=k+1
yt

∥∥∥∥
+4 ‖Σ2 − Σ1‖ sup

k∈Dc,k<k0

∥∥∥∥ 1

T − k
∑T

t=k+1
zt

∥∥∥∥ .
The first term is bounded by

sup
k<k0

∥∥∥∥ 1

T − k
∑T

t=k+1
yt

∥∥∥∥ ≤ 1

1− τ 0

(sup
k<k0

1

T

∥∥∥∑k0

t=k+1
yt

∥∥∥+ sup
k>k0

1

T

∥∥∥∑k

t=k0+1
yt

∥∥∥),

and by part (1) of Lemma 3 this term is Op(
1√
T

). By part (9) of Lemma 7, the second term

is op(1). Therefore, sup
k∈Dc,k<k0

∣∣∣ G∗

k0−k

∣∣∣ = op(1).

E PROOF OF THEOREM 1

Proof. To show k̃ − k0 = Op(1), we need to show for any ε > 0 there exist M > 0

such that P (
∣∣∣k̃ − k0

∣∣∣ > M) < ε as (N, T ) → ∞. By Proposition 2, for any ε > 0 and

min{τ 0, 1 − τ 0} > η > 0, P (k̃ ∈ Dc) < ε as (N, T ) → ∞. For the given η and M ,

define DM = {k : (τ 0 − η)T ≤ k ≤ (τ 0 + η)T, |k − k0| > M}, then P (
∣∣∣k̃ − k0

∣∣∣ > M) =

P (k̃ ∈ Dc) + P (k̃ ∈ DM). Hence it suffi ces to show that for any ε > 0 and η > 0,

there exist M > 0 such that P (k̃ ∈ DM) < ε as (N, T ) → ∞. Again by symmetry,

it suffi ces to study the case k < k0. Similar to the proof of Proposition 2, it suffi ces to

show for any given ε > 0 and η > 0, there exist M > 0 such that P ( min
k∈DM ,k<k0

A∗+B∗

|k0−k| ≤

sup
k∈DM ,k<k0

∣∣∣ C∗

k0−k

∣∣∣ + sup
k∈DM ,k<k0

∣∣∣ D∗

k0−k

∣∣∣ + sup
k∈DM ,k<k0

∣∣∣ E∗

k0−k

∣∣∣ + sup
k∈DM ,k<k0

∣∣∣ F ∗

k0−k

∣∣∣ + sup
k∈DM ,k<k0

∣∣∣ G∗

k0−k

∣∣∣)
< ε as (N, T )→∞.
First consider term A∗ +B∗,

min
k∈DM ,k<k0

A∗ +B∗

|k0 − k|
= min

k∈DM ,k<k0
a′kak = min

k∈DM ,k<k0
(
T − k0

T − k )2[vec(Σ2 − Σ1)]′[vec(Σ2 − Σ1)]

≥ (1− τ 0)2 ‖Σ2 − Σ1‖2 = (1− τ 0)2 ‖J0‖4 ‖ΣG,2 − ΣG,1‖2 .
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Next consider term C∗. Similar to the proof of Proposition 2,

sup
k∈DM ,k<k0

∣∣∣∣ C∗

k0 − k

∣∣∣∣ ≤ sup
k∈D,k<k0

∣∣∣∣ C∗

k0 − k

∣∣∣∣ ≤ sup
k∈D,k<k0

C∗1 + sup
k∈D,k<k0

C∗2 + sup
k∈D,k<k0

C∗3 .

For C∗1 ,

sup
k∈D,k<k0

C∗1 ≤ 2 sup
k∈D,k<k0

1

k0

1

k

∥∥∥∑k

t=1
yt

∥∥∥2

+ 2 sup
k∈D,k<k0

1

k0

1

k

∥∥∥∑k

t=1
zt

∥∥∥2

.

By part (1) of Lemma 3, sup
k∈D,k<k0

∥∥∥ 1√
k

∑k
t=1 yt

∥∥∥ = Op(1), hence the first term is Op(
1
T

). By

part (2) of Lemma 7, the second term is op(1), hence sup
k∈D,k<k0

C∗1 = op(1).

For C∗2 ,

sup
k∈D,k<k0

C∗2 ≤ 2( sup
k∈D,k<k0

∥∥∥∥ 1

k0

∑k

t=1
yt

∥∥∥∥+ sup
k∈D,k<k0

∥∥∥∥ 1

k0

∑k

t=1
zt

∥∥∥∥)

( sup
k∈D,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
yt

∥∥∥∥+ sup
k∈D,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥).

By part (1) of Lemma 3, the first term is Op(
1√
T

), the third term is Op(1) and by parts (4) and

(6) of Lemma 7, the second term and the fourth term are op(1). Hence sup
k∈D,k<k0

C∗2 = op(1).

For C∗3 ,

sup
k∈D,k<k0

C∗3 ≤ 2
1

k0

sup
k∈D,k<k0

1

k0 − k

∥∥∥∑k0

t=k+1
yt

∥∥∥2

+ 2
1

k0

sup
k∈D,k<k0

1

k0 − k

∥∥∥∑k0

t=k+1
zt

∥∥∥2

.

By part (1) of Lemma 3, sup
k∈D,k<k0

∥∥∥ 1√
k0−k

∑k0
t=k+1 yt

∥∥∥ = Op(
√

log T ), hence the first term is

Op(
log T
T

). By part (8) of Lemma 7, sup
k∈D,k<k0

1
k0

1
|k0−k|

∥∥∥∑k0
t=k+1 zt

∥∥∥2

= op(1). Hence sup
k∈D,k<k0

C∗3 =

op(1). Therefore, sup
k∈DM ,k<k0

∣∣∣ C∗

k0−k

∣∣∣ = op(1).

Similarly,

sup
k∈DM ,k<k0

∣∣∣∣ D∗

k0 − k

∣∣∣∣ ≤ sup
k∈D,k<k0

∣∣∣∣ D∗

k0 − k

∣∣∣∣ ≤ sup
k∈D,k<k0

D∗1 + sup
k∈D,k<k0

D∗2 + sup
k∈D,k<k0

D∗3.
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sup
k∈D,k<k0

D∗1

≤ 2 sup
k∈D,k<k0

1

T − k0

1

T − k

∥∥∥∑T

t=k0+1
yt

∥∥∥2

+ 2 sup
k∈D,k<k0

1

T − k0

1

T − k

∥∥∥∑T

t=k0+1
zt

∥∥∥2

= Op(
1

T
) + op(1) = op(1),

where the equality follows from part (1) of Lemma 3 and part (9) of Lemma 7.

sup
k∈D,k<k0

D∗2 ≤ 2( sup
k∈D,k<k0

∥∥∥∥ 1

T − k
∑T

t=k0+1
yt

∥∥∥∥+ sup
k∈D,k<k0

∥∥∥∥ 1

T − k
∑T

t=k0+1
zt

∥∥∥∥)

( sup
k∈D,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
yt

∥∥∥∥+ sup
k∈D,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥)

= (Op(
1√
T

) + op(1))(Op(1) + op(1)) = op(1),

where the equality follows from part (1) of Lemma 3 and parts (9) and (6) of Lemma 7.

sup
k∈D,k<k0

D∗3

≤ 2 sup
k∈D,k<k0

1

T − k
1

k0 − k

∥∥∥∑k0

t=k+1
yt

∥∥∥2

+ 2 sup
k∈D,k<k0

1

T − k
1

k0 − k

∥∥∥∑k0

t=k+1
zt

∥∥∥2

= Op(
log T

T
) + op(1) = op(1),

where the equality follows from part (1) of Lemma 3 and part (8) of Lemma 7.

Therefore, sup
k∈DM ,k<k0

∣∣∣ D∗

k0−k

∣∣∣ = op(1).

Next consider term E∗.

sup
k∈DM ,k<k0

∣∣∣∣ E∗

k0 − k

∣∣∣∣ ≤ 2 ‖Σ2 − Σ1‖ sup
k∈DM ,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
yt

∥∥∥∥
+2 ‖Σ2 − Σ1‖ sup

k∈DM ,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥ .
For any given δ > 0, P (2 ‖Σ2 − Σ1‖ sup

k∈DM ,k<k0

∥∥∥ 1
k0−k

∑k0
t=k+1 yt

∥∥∥ ≥ δ(1 − τ 0)2 ‖Σ2 − Σ1‖2)

= P ( sup
k∈DM ,k<k0

∥∥∥ 1
k0−k

∑k0
t=k+1 yt

∥∥∥ ≥ δ (1−τ0)2

2
‖Σ2 − Σ1‖) ≤ C

Mδ2
→ 0 as M → ∞, hence the

first term is dominated by min
k∈DM ,k<k0

A∗+B∗

|k0−k| . By part (6) of Lemma 7, the second term is

op(1). Therefore, sup
k∈DM ,k<k0

∣∣∣ E∗

k0−k

∣∣∣ is dominated by min
k∈DM ,k<k0

A∗+B∗

|k0−k| as M →∞.
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For term F ∗,

sup
k∈DM ,k<k0

∣∣∣∣ F ∗

k0 − k

∣∣∣∣
≤ sup

k∈D,k<k0

∣∣∣∣ F ∗

k0 − k

∣∣∣∣ ≤ 2 sup
k∈D,k<k0

‖bk‖
∥∥∥∑T

t=k0+1(yt + zt)
∥∥∥

|k0 − k|

≤ 2 ‖Σ1 − Σ2‖
∥∥∥∥ 1

T − k0

∑T

t=k0+1
yt

∥∥∥∥+ 2 ‖Σ1 − Σ2‖
∥∥∥∥ 1

T − k0

∑T

t=k0+1
zt

∥∥∥∥ .
By part (1) of Lemma 3, the first term is Op(

1√
T

). By part (9) of Lemma 7, the second term

is op(1). Therefore, sup
k∈DM ,k<k0

∣∣∣ F ∗

k0−k

∣∣∣ = op(1).

For term G∗,

sup
k∈DM ,k<k0

∣∣∣∣ G∗

k0 − k

∣∣∣∣ ≤ sup
k∈D,k<k0

∣∣∣∣ G∗

k0 − k

∣∣∣∣ ≤ 4 ‖Σ2 − Σ1‖ sup
k∈D,k<k0

∥∥∥∥ 1

T − k
∑T

t=k+1
yt

∥∥∥∥
+4 ‖Σ2 − Σ1‖ sup

k∈D,k<k0

∥∥∥∥ 1

T − k
∑T

t=k+1
zt

∥∥∥∥ .
The first term is bounded by

sup
k<k0

∥∥∥∥ 1

T − k
∑T

t=k+1
yt

∥∥∥∥ ≤ 1

1− τ 0

(sup
k<k0

1

T

∥∥∥∑k0

t=k+1
yt

∥∥∥+ sup
k>k0

1

T

∥∥∥∑k

t=k0+1
yt

∥∥∥),

and by part (1) of Lemma 3 this term is Op(
1√
T

). By part (9) of Lemma 7, the second term

is op(1). Therefore, sup
k∈DM ,k<k0

∣∣∣ G∗

k0−k

∣∣∣ = op(1).

F PROOF OF COROLLARY 1

Proof. The proof is the same as the proof of Proposition 2 and Theorem 1, except for

some slight modification. When m < r + q1, VNT , G̃ and J are replaced by V m
NT , G̃

m

and Jm respectively, where VNT is the diagonal matrix of the first m largest eigenvalues of
1
NT
XX ′ in decreasing order and G̃m is

√
T times the corresponding eigenvector matrix and

Jm = Γ′Γ
N

G′G̃m

T
(V m

NT )−1. V m
NT

p→ V m, where V m ism×m diagonal matrix, containing the first

m diagonal elements of V . G′G̃m

T
contains the first m columns of G

′G̃
T
, hence G′G̃

T

p→ Σ
− 1
2

Γ ΦV
1
2

impliesG
′G̃m

T

p→ D where D contains the first m columns of Σ
− 1
2

Γ ΦV
1
2 . Hence D(V m)−1

contains the first m columns of Σ
− 1
2

Γ ΦV −
1
2 and it follows that Jm

p→ Jm0 where Jm0 contains

the first m columns of J0.
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G PROOF OF COROLLARY 2

Proof. For any integer m > r + q1, let G̃m be the T ×m matrix that contains
√
T times

the eigenvectors corresponding to the first m eigenvalues of 1
NT
XX ′ and V m

NT be the m×m
diagonal matrix that contains the firstm eigenvalues. Then let (ĝm1 , ..., ĝ

m
T )′ = Ĝm = G̃mV m

NT .

When m = r + q1, we simply suppress the superscript m. For any k > 0, define Σ̂m
1 =

1
k

∑k
t=1 ĝ

m
t ĝ

m′
t and Σ̂m

2 = 1
T−k

∑T
t=k+1 ĝ

m
t ĝ

m′
t . The sum of squared residuals is

Ŝm(k) =
∑k

t=1
[vec(ĝmt ĝ

m′
t − Σ̂m

1 )]′[vec(ĝmt ĝ
m′
t − Σ̂m

1 )]

+
∑T

t=k+1
[vec(ĝmt ĝ

m′
t − Σ̂m

2 )]′[vec(ĝmt ĝ
m′
t − Σ̂m

2 )], (A-12)

and the least squares estimator of the change point is k̂ = arg min Ŝm(k) = arg min(Ŝm(k)−
Ŝm(k0)).

Consider the difference Ŝm(k)− Ŝ(k). After some calculation, we have

Ŝm(k)− Ŝ(k) = (2
∑r+q1

i=1

∑m

j=r+q1+1
+
∑m

i,j=r+q1+1
)

[
∑T

t=1
(ĝmit ĝ

m
jt )

2 − 1

k
(
∑k

t=1
ĝmit ĝ

m
jt )

2 − 1

T − k (
∑T

t=k+1
ĝmit ĝ

m
jt )

2].

It follows that

(Ŝm(k)− Ŝm(k0)− (Ŝ(k)− Ŝ(k0)

= (2
∑r+q1

i=1

∑m

j=r+q1+1
+
∑m

i,j=r+q1+1
)[

1

k0

(
∑k0

t=1
ĝmit ĝ

m
jt )

2 +

1

T − k0

(
∑T

t=k0+1
ĝmit ĝ

m
jt )

2 − 1

k
(
∑k

t=1
ĝmit ĝ

m
jt )

2 − 1

T − k (
∑T

t=k+1
ĝmit ĝ

m
jt )

2]

= (2
∑r+q1

i=1

∑m

j=r+q1+1
+
∑m

i,j=r+q1+1
)(Lij1 + Lij2 − Lij3 − Lij4).

Following the same procedure as proving Theorem 1, it is not diffi cult to show arg min(Ŝ(k)−
Ŝ(k0)) − k0 = Op(1). Thus based on the proof of Proposition 2 and Theorem 1, it suffi ces

to show sup
k 6=k0

∣∣∣ (Ŝm(k)−Ŝm(k0)−(Ŝ(k)−Ŝ(k0)
k−k0

∣∣∣ = op(1). Consider sup
k 6=k0

∣∣∣ Lijk−k0

∣∣∣ for i ≤ r + q1 and

j > r+ q1 + 1 as a representative. By definition, 1
T

∑T
t=1 ĝ

m
lt

2 = V 2
NT,l, where VNT,l is the l-th

diagonal element of VNT . Thus 1
T

∑T
t=1 ĝ

m
it

2 = Op(1) and 1
T

∑T
t=1 ĝ

m
jt

2 = Op(
1

δ4NT
). It follows

that sup
k 6=k0

∣∣∣ Lij1k−k0

∣∣∣ ≤ 1
Tτ0

∑T
t=1 ĝ

m
it

2
∑T

t=1 ĝ
m
jt

2 = Op(
T
δ4NT

). Similarly, sup
k 6=k0

∣∣∣ Lij2k−k0

∣∣∣, sup
k 6=k0

∣∣∣ Lij3k−k0

∣∣∣ and

 104



sup
k 6=k0

∣∣∣ Lij4k−k0

∣∣∣ are all Op(
T
δ4NT

). With
√
T
N
→ 0, the proof is finished.

H PROOF OF THEOREM 2

Proof. Consider the consistency of r̃1. Due to symmetry, the consistency of r̃2 can be

established similarly. What we need to show is: for any ε > 0, P (r̃1 6= r1) < ε for large

(N, T ). Based on
∣∣∣k̃ − k0

∣∣∣ = Op(1), we have for any ε > 0, there exist M > 0 such that

P (
∣∣∣k̃ − k0

∣∣∣ > M) < ε for all (N, T ). Based on this M , P (r̃1 6= r1) can be decomposed as

P (r̃1 6= r1,
∣∣∣k̃ − k0

∣∣∣ > M) +P (r̃1 6= r1, k0−M ≤ k̃ ≤ k0) +P (r̃1 6= r1, k0 + 1 ≤ k̃ ≤ k0 +M).

The first term is less than P (
∣∣∣k̃ − k0

∣∣∣ > M), hence less than ε for all (N, T ). The second

term can be further decomposed as

∑k0

k=k0−M
P (r̃1(k) 6= r1, k̃ = k),

where P (r̃1(k) 6= r1, k̃ = k) denotes the joint probability of k̃ = k and r̃1(k) 6= r1 and r̃1(k)

denotes the estimated number of pre-break factors using subsample t = 1, ..., k. Obviously,

P (r̃1(k) 6= r1, k̃ = k) ≤ P (r̃1(k) 6= r1), hence the second term is less than
∑k0

k=k0−M P (r̃1(k) 6=
r1). Furthermore, since for each k ∈ [k0 −M,k0], the factor loadings in the pre-break sub-

sample are stable, P (r̃1(k) 6= r1) ≤ ε
M+1

for large (N, T ). Therefore, the second term is less

than
∑k0

k=k0−M
ε

M+1
= ε for large (N, T ).

The argument for the second term also applies to the third term, except for some modi-

fications. First, the third can be decomposed similarly as

∑k0+M

k=k0+1
P (r̃1(k) 6= r1, k̃ = k) ≤

∑k0+M

k=k0+1
P (r̃1(k) 6= r1),

hence it remains to show for each k ∈ [k0 + 1, k0 +M ], P (r̃1(k) 6= r1) ≤ ε
M
for large (N, T ).

Unlike the second term, when k ∈ [k0 + 1, k0 + M ] the factor loadings of the pre-break

subsample t = 1, ..., k has a break at t = k0, hence results already established in previous

literature for stable model is not directly applicable. To overcome this diffi culty, we treat

change in factor loadings as an extra error term such that xit = f ′tλ02,i + eit = f ′tλ01,i + eit +

wit = ait + wit, where ait = f ′tλ01,i + eit, wit = 0 for 1 ≤ t ≤ k0 and wit = f ′tλ02,i − f ′tλ01,i

for t ≥ k0 + 1. In other words, when k ≥ k0 + 1 the pre-break subsample t = 1, ..., k
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can be regarded as having stable factor loadings and an extra error term in observations

t = k0 + 1, ...k. In matrix form, we have X(k) = A(k) +W (k), where X(k), A(k) and W (k)

are all k ×N matrix. Define ωkj , α
k
j and β

k
j as the j-th largest eigenvalue of

1
Nk
X(k)X ′(k),

1
Nk
A(k)A′(k) and 1

Nk
W (k)W ′(k) respectively. By Weyl’s inequality for singular values, the

perturbation effect of the extra error matrix W (k) on the eigenvalues of A(k) is√
αkj −

√
βk1 ≤

√
ωkj ≤

√
αkj +

√
βk1, (A-13)

hence (
√
ωkj −

√
αkj )

2 ≤ βk1. Since the number of nonzero elements in the k×N matrixW (k)

is only (k − k0)×N and k − k0 ≤M , simple calculation shows that

βk1 ≤ tr(
1

Nk
W (k)W ′(k)) =

1

Nk

∑N

i=1

∑k

t=k0+1
w2
it

≤ 2
1

Nk0

∑N

i=1

∑k

t=k0+1
‖ft‖2 (‖λ01,i‖2 + ‖λ02,i‖2)

≤ 8
1

k0

∑k0+M

t=k0+1
‖ft‖2 λ̄

2
= Op(

1

T
). (A-14)

In addition, according to Bai and Ng (2002), αkj = νj + op(1) for j ≤ r1, where νj is the

j-th largest eigenvalue of ΣFΣΛ01 , and αkj = Op(
1

δ2NT
) for j > r1. It follows that ωkj =

αkj + 2
√
αkjOp(

1√
T

) +Op(
1
T

) = νj + op(1) for j ≤ r1, and ωkj = Op(
1

δ2NT
) +Op(

1
δNT

)Op(
1√
T

) +

Op(
1
T

) = Op(
1

δ2NT
) for j > r1. This implies that the estimator of number of factors using Bai

and Ng (2002) based on the sample X(k) is still consistent for k ∈ [k0 + 1, k0 + M ], hence

P (r̃1(k) 6= r1) ≤ ε
M
for large (N, T ).

I PROOF OF PROPOSITION 3

Proof. The proof is similar to Theorem 2.

βT1 ≤ tr(
1

NT
W (T )W ′(T )) =

1

NT

∑N

i=1

∑T

t=k0+1
w2
it

≤ 1

NT

∑N

i=1

∑T

t=k0+1
‖ft‖2 ‖λ02,i − λ01,i‖2

= (
1

T

∑T

t=k0+1
‖ft‖2)(

1

N

∑N

i=1
‖λ02,i − λ01,i‖2) = Op(

1

δcNT
). (A-15)

By Weyl’s inequality for singular values,
√
αTj −

√
βT1 ≤

√
ωTj ≤

√
αTj +

√
βT1 , hence
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(
√
ωTj −

√
αTj )2 ≤ βT1 = Op(

1

δ
c
2
NT

). It follows that ωTj = αTj + 2
√
αTj Op(

1

δ
c
2
NT

) + Op(
1

δcNT
) =

νj + op(1) for j ≤ r1, and ωTj = Op(
1

δ2NT
) +Op(

1
δNT

)Op(
1

δ
c
2
NT

) +Op(
1

δcNT
) = Op(

1
δcNT

) for j > r1

when c < 2.

J PROOF OF THEOREM 3

Proof. Again by symmetry, we only need to show the first half.

To show 1
k̃

∑k̃
t=1

∥∥∥f̂ut (k̃)−Hu′
1 (k̃)ft

∥∥∥2

= Op(
1

δ2NT
), we need to show for any ε > 0, there

exist C > 0 such that P (δ2
NT

1
k̃

∑k̃
t=1

∥∥∥f̂ut (k̃)−Hu′
1 (k̃)ft

∥∥∥2

> C) < ε for all (N, T ). First,

based on
∣∣∣k̃ − k0

∣∣∣ = Op(1) we can choose M > 0 such that P (
∣∣∣k̃ − k0

∣∣∣ > M) < ε
2
for the

given ε. Next,

P (δ2
NT

1
k̃

∑k̃
t=1

∥∥∥f̂ut (k̃)−Hu′
1 (k̃)ft

∥∥∥2

> C)

= P (δ2
NT

1
k̃

∑k̃
t=1

∥∥∥f̂ut (k̃)−Hu′
1 (k̃)ft

∥∥∥2

> C,
∣∣∣k̃ − k0

∣∣∣ > M)

+
∑k0+M

k=k0−M P (δ2
NT

1
k̃

∑k̃
t=1

∥∥∥f̂ut (k̃)−Hu′
1 (k̃)ft

∥∥∥2

> C, k̃ = k).

≤ P (
∣∣∣k̃ − k0

∣∣∣ > M) +
∑k0+M

k=k0−M P (δ2
NT

1
k

∑k
t=1

∥∥∥f̂ut (k)−Hu′
1 (k)ft

∥∥∥2

> C)

≤ ε
2

+
∑k0+M

k=k0−M P (δ2
NT

1
k

∑k
t=1

∥∥∥f̂ut (k)−Hu′
1 (k)ft

∥∥∥2

> C).

If we can show 1
k

∑k
t=1

∥∥∥f̂ut (k)−Hu′
1 (k)ft

∥∥∥2

= Op(
1

δ2NT
) for each k ∈ [k0 −M,k0 + M ],

then for the given ε and for each k ∈ [k0 − M,k0 + M ], we can take C(k) > 0 such

that P (δ2
NT

1
k

∑k
t=1

∥∥∥f̂ut (k)−Hu′
1 (k)ft

∥∥∥2

> C(k)) < ε
2(2M+1)

for all (N, T ). Take C =

max
k∈[k0−M,k0+M ]

C(k), then P (δ2
NT

1
k

∑k
t=1

∥∥∥f̂ut (k)−Hu′
1 (k)ft

∥∥∥2

> C) ≤ ε
2
+
∑k0+M

k=k0−M
ε

2(2M+1)
= ε

for all (N, T ), hence it remains to show for each k ∈ [k0−M,k0+M ], 1
k

∑k
t=1

∥∥∥f̂ut (k)−Hu′
1 (k)ft

∥∥∥2

is Op(
1

δ2NT
).

First consider the case k0 −M ≤ k ≤ k0. In this case, factor loadings are stable and

k0 − M ≤ k guarantees k → ∞ as k0 → ∞, hence Theorem 1 of Bai and Ng (2002) is

applicable.

Next consider the case k0 + 1 ≤ k ≤ k0 + M . Following the same notation as proof of

Theorem 2 and define E(k) = (e1, ..., ek)
′, we have X(k) = A(k)+W (k) = F1(k)Λ′01 +E(k)+
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W (k), thus

X(k)X ′(k)

= F1(k)Λ′01Λ01F
′
1(k) + F1(k)Λ′01[E(k) +W (k)]′

+[E(k) +W (k)]Λ01F
′
1(k) + [E(k) +W (k)][E(k) +W (k)]′. (A-16)

It follows that

f̂ut (k)−Hu′
1 (k)ft =

1

Nk
[F̃ u′

1 (k)F1(k)Λ′01et + F̃ u′
1 (k)E(k)Λ01ft + F̃ u′

1 (k)E(k)et

+F̃ u′
1 (k)F1(k)Λ′01wt + F̃ u′

1 (k)W (k)Λ01ft + F̃ u′
1 (k)W (k)wt

+F̃ u′
1 (k)E(k)wt + F̃ u′

1 (k)W (k)et]

= Q1,t(k) +Q2,t(k) +Q3,t(k) +Q4,t(k) +Q5,t(k) +Q6,t(k)

+Q7,t(k) +Q8,t(k), (A-17)

and 1
k

∑k
t=1

∥∥∥f̂ut (k)−Hu′
1 (k)ft

∥∥∥2

≤ 8
∑8

m=1
1
k

∑k
t=1 ‖Qm,t(k)‖2. Following the same pro-

cedure as proof of Theorem 1 in Bai and Ng (2002), it can be shown for m = 1, 2, 3,
1
k

∑k
t=1 ‖Qm,t(k)‖2 = Op(

1
δ2NT

). Next, noting that wit = 0 for 1 ≤ t ≤ k0,

1

k

∑k

t=1
‖Q4,t(k)‖2 =

1

k

∑k

t=1

∥∥∥∥ 1

Nk
F̃ u′

1 (k)F1(k)Λ′01wt

∥∥∥∥2

≤ 1

k

∑k

t=1
(
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)(
1

k

∑k

s=1
‖fs‖2)

∥∥∥∥ 1

N
Λ′01wt

∥∥∥∥2

≤ (
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)(
1

k

∑k

s=1
‖fs‖2)(

1

N

∑N

i=1
‖λ01,i‖2)

(
1

k

∑k

t=1

1

N

∑N

i=1
‖wit‖2)

≤ (
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)(
1

k

∑k

s=1
‖fs‖2)(

1

N

∑N

i=1
‖λ01,i‖2)

(
1

N

∑N

i=1
‖λ01,i − λ02,i‖2)(

1

k

∑k

t=k0+1
‖ft‖2)

= Op(1)Op(1)O(1)O(1)Op(
1

T
) = Op(

1

T
),
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1

k

∑k

t=1
‖Q5,t(k)‖2 =

1

k

∑k

t=1

∥∥∥∥ 1

Nk
F̃ u′

1 (k)W (k)Λ01ft

∥∥∥∥2

≤ 1

k

∑k

t=1
(
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)(
1

N2

1

k

∑k

s=1
‖w′sΛ01ft‖2

)

≤ (
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)(
1

N

∑N

i=1
‖λ01,i‖2)(

1

k

∑k

t=1
‖ft‖2)

(
1

N

∑N

i=1
‖λ01,i − λ02,i‖2)(

1

k

∑k

s=k0+1
‖fs‖2)

= Op(1)O(1)Op(1)O(1)Op(
1

T
) = Op(

1

T
),

1

k

∑k

t=1
‖Q6,t(k)‖2 =

1

k

∑k

t=1

∥∥∥∥ 1

Nk
F̃ u′

1 (k)W (k)wt

∥∥∥∥2

≤ (
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)
1

N2
(
1

k

∑k

s=1
‖ws‖2)(

1

k

∑k

t=1
‖wt‖2)

≤ (
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)(
1

N

∑N

i=1
‖λ01,i − λ02,i‖2)2

(
1

k

∑k

s=k0+1
‖fs‖2)(

1

k

∑k

t=k0+1
‖ft‖2)

= Op(1)O(1)Op(
1

T
)Op(

1

T
) = Op(

1

T 2
),

1

k

∑k

t=1
‖Q7,t(k)‖2 =

1

k

∑k

t=1

∥∥∥∥ 1

Nk
F̃ u′

1 (k)E(k)wt

∥∥∥∥2

≤ (
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)(
1

k

1

N

∑k

s=1

∑N

i=1
e2
is)

(
1

k

∑k

t=k0+1
‖ft‖2)(

1

N

∑N

i=1
‖λ01,i − λ02,i‖2)

= Op(1)Op(1)Op(
1

T
)O(1) = Op(

1

T
),

1

k

∑k

t=1
‖Q8,t(k)‖2 =

1

k

∑k

t=1

∥∥∥∥ 1

Nk
F̃ u′

1 (k)W (k)et

∥∥∥∥2

≤ 1

k

∑k

t=1
(
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)
1

N2
(
1

k

∑k

s=1
‖w′set‖

2
)

≤ (
1

k

∑k

s=1

∥∥∥f̃us (k)
∥∥∥2

)(
1

k

∑k

t=k0+1
‖fs‖2)

(
1

N

∑N

i=1
‖λ01,i − λ02,i‖2)(

1

k

1

N

∑k

t=1

∑N

i=1
e2
it)

= Op(1)Op(
1

T
)O(1)Op(1) = Op(

1

T
),
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hence 1
k

∑k
t=1 ‖Qm,t(k)‖2 = Op(

1
δ2NT

) for m = 4, 5, 6, 7, 8.

K PROOF OF THEOREM 4

Proof. Define V (k) = S̃(k)− S̃(k0), U(k) = A∗ + E∗ = (k0 − k)a′kak − 2a′k
∑k0

t=k+1(yt + zt)

for k < k0. For any fixed constant M < ∞, define V M(k) = V (k) for |k0 − k| < M ,

UM(k) = U(k) for |k0 − k| < M , WM (l) = W (l) for |l| < M . V M(k), UM(k) and WM (l)

are all finite dimensional random vector.

Step 1: V M(k)
p→ UM(k) as (N, T )→∞ for any fixed M <∞.

By symmetry we only need to study the case k < k0.

It suffi ces to show sup
|k0−k|<M,k<k0

|V (k)− U(k)| = op(1).

sup
|k0−k|<M,k<k0

|V (k)− U(k)| ≤ sup
|k0−k|<M,k<k0

|B∗|+ sup
|k0−k|<M,k<k0

|C∗|+

sup
|k0−k|<M,k<k0

|D∗|+ sup
|k0−k|<M,k<k0

|F ∗|+ sup
|k0−k|<M,k<k0

|G∗| .

sup
|k0−k|<M,k<k0

|B∗| = sup
|k0−k|<M,k<k0

(T − k0)(
k0 − k
T − k )2 ‖Σ2 − Σ1‖2 = O(

1

T
) = o(1).

sup
|k0−k|<M,k<k0

|C∗| ≤M sup
k∈D,k<k0

∣∣∣∣ C∗

k0 − k

∣∣∣∣ = op(1).

Similarly, sup
|k0−k|<M,k<k0

|D∗|, sup
|k0−k|<M,k<k0

|F ∗| and sup
|k0−k|<M,k<k0

|G∗| are all op(1).

Step 2: UM(k)
d→ WM (k − k0) as (N, T )→∞ for any fixed M <∞.

UM(k) = (k0 − k)a′kak − 2a′k
∑k0

t=k+1(yt + zt), for |k0 − k| < M and k < k0.

For |k0 − k| < M ,

(k0 − k)a′kak = (k0 − k) ‖Σ2 − Σ1‖2 + (k0 − k)[(
T − k0

T − k )2 − 1] ‖Σ2 − Σ1‖2

= (k0 − k) ‖Σ2 − Σ1‖2 +O(
1

T
).

By part (6) of Lemma 7,

sup
|k0−k|<M,k<k0

∣∣∣−2a′k
∑k0

t=k+1
zt

∣∣∣ ≤ 2M ‖Σ2 − Σ1‖ sup
|k0−k|<M,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥
≤ 2M ‖Σ2 − Σ1‖ sup

k∈D,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
zt

∥∥∥∥ = op(1).
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Next,

−2a′k
∑k0

t=k+1
yt = −2[vec(Σ2 − Σ1)]′

∑k0

t=k+1
yt − 2(

T − k0

T − k − 1)[vec(Σ2 − Σ1)]′
∑k0

t=k+1
yt,

and

sup
|k0−k|<M,k<k0

∣∣∣∣−2(
T − k0

T − k − 1)[vec(Σ2 − Σ1)]′
∑k0

t=k+1
yt

∣∣∣∣
≤ 2M

T − k0

‖Σ2 − Σ1‖ sup
|k0−k|<M,k<k0

∥∥∥∑k0

t=k+1
yt

∥∥∥ = Op(
1

T
)

Taking together, UM(k)
d→ (k0−k) ‖Σ2 − Σ1‖2−2

∑k0
t=k+1[vec(Σ2−Σ1)]′yt for |k0 − k| <

M and k < k0. Similarly, for |k0 − k| < M and k > k0, UM(k)
d→ (k − k0) ‖Σ2 − Σ1‖2 −

2
∑k

t=k0+1[vec(Σ2 − Σ1)]′yt.

Step 3: V M(k)
d→ WM (k − k0) as (N, T )→∞ for any fixed M <∞.

Based on step 1 and step 2 and using Slutsky’s Lemma, V M(k)
d→ WM (k − k0).

Step 4: arg minV M(k)− k0
d→ arg minWM (l) as (N, T )→∞ for any fixed M <∞.

If W (l) does not have unique maximizer, then these exist l 6= l′ such that W (l) = W (l′).

It’s easy to see P (W (l) = W (l′)) = 0. The number of integer pairs (l, l′) is countable and sum

of countable zero is zero, hence the probability that W (l) does not have unique maximizer

is zero.

Next, for a finite dimensional vector x, f(x) = arg minx is a continuous function, hence

by continuous mapping theorem we have arg minV M(k)− k0
d→ arg minWM (l).

By definition of convergence in distribution, for any ε > 0 and any |j| ≤ M , there exist

N∗j > 0 and T ∗j > 0 such that for N > N∗j and T > T ∗j ,∣∣P (arg minV M(k)− k0 = j)− P (arg minWM (l) = j)
∣∣ < ε.

Take N∗ = max{N∗j , |j| ≤ M} and T ∗ = max{T ∗j , |j| ≤ M}. For N > N∗ and T > T ∗,∣∣P (arg minV M(k)− k0 = j)− P (arg minWM (l) = j)
∣∣ < ε for all |j| ≤M .

Step 5: k̃ − k0
d→ arg minW (l) as (N, T )→∞.

Step 5.1: By Theorem 1, k̃− k0 = Op(1) as (N, T )→∞, hence for any ε > 0, there exist

M1 <∞, N1 > 0 and T1 > 0, such that for N > N1 and T > T1, P (
∣∣∣k̃ − k0

∣∣∣ > M1) < ε
3
.

Step 5.2: l̃ = arg minW (l) = Op(1) as (N, T )→∞.
First note that P ( min

|l|>M
W (l) ≤ 0) ≤ P ( min

l<−M
W1 (l) ≤ 0) + P (min

l>M
W2 (l) ≤ 0)
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= P ( sup
l<−M

{−l ‖Σ2 − Σ1‖2 − 2
∑k0

t=k0+l[vec(Σ2 − Σ1)]′yt} ≤ 0)

+P (sup
l>M
{l ‖Σ2 − Σ1‖2 − 2

∑k0+l
t=k0+1[vec(Σ2 − Σ1)]′yt} ≤ 0)

≤ P ( sup
l<−M

2[vec(Σ2 − Σ1)]′ 1
l

∑k0
t=k0+l yt ≥ ‖Σ2 − Σ1‖2)

+P (sup
l>M

2[vec(Σ2 − Σ1)]′ 1
l

∑k0+l
t=k0+1 yt ≥ ‖Σ2 − Σ1‖2)

≤ P ( sup
l<−M

∥∥∥ 1
−l
∑k0

t=k0+l yt

∥∥∥ ≥ ‖Σ2−Σ1‖
2

)+P (sup
l>M

∥∥∥1
l

∑k0+l
t=k0+1 yt

∥∥∥ ≥ ‖Σ2−Σ1‖
2

) = C
M
by Hajek-

Renyi inequality. Hence for any ε > 0, there existsM2 <∞ such that P ( sup
|l|>M2

W (l) ≤ 0) < ε
3
.

Since W (0) = 0, minW (l) ≤ 0, therefore P (
∣∣∣l̃∣∣∣ > M2) ≤ P ( min

|l|>M2

W (l) ≤ 0) < ε
3
.

Step 5.3:

Take M = max{M1,M2}. Based on step 4, for any ε > 0 there exist N2 > 0 and T2 > 0,

such that for N > N2 and T > T2, for all |j| ≤M ,

∣∣P (arg minV M(k)− k0 = j)− P (arg minWM (l) = j)
∣∣ < ε

3
.

Step 5.4:

Take N∗ = max{N1, N2} and T ∗ = max{T1, T2}. For any N > N∗ and T > T ∗,

if |j| > M ,∣∣∣P (k̃ − k0 = j)− P (l̃ = j)
∣∣∣ < P (k̃ − k0 = j) + P (l̃ = j) < P (

∣∣∣k̃ − k0

∣∣∣ > M) + P (
∣∣∣l̃∣∣∣ >

M) < ε
3

+ ε
3
< ε;

if |j| ≤M ,

k̃−k0 = j implies arg minV M(k)−k0 = j, hence P (k̃−k0 = j) ≤ P (arg minV M(k)−k0 =

j),

arg minV M(k)− k0 = j implies k̃ − k0 = j or
∣∣∣k̃ − k0

∣∣∣ > M ,

hence P (arg minV M(k)− k0 = j) < P (k̃ − k0 = j) + P (
∣∣∣k̃ − k0

∣∣∣ > M),

therefore
∣∣∣P (k̃ − k0 = j)− P (arg minV M(k)− k0 = j)

∣∣∣ < P (
∣∣∣k̃ − k0

∣∣∣ > M) < ε
3
.

Similarly
∣∣∣P (l̃ = j)− P (arg minWM (l) = j)

∣∣∣ < P (
∣∣∣l̃∣∣∣ > M) < ε

3
,

therefore
∣∣∣P (k̃ − k0 = j)− P (l̃ = j)

∣∣∣ < ∣∣∣P (k̃ − k0 = j)− P (arg minV M(k)− k0 = j)
∣∣∣

+
∣∣P (arg minV M(k)− k0 = j)− P (arg minWM (l) = j)

∣∣
+
∣∣∣P (l̂ = j)− P (arg minWM (l) = j)

∣∣∣
< ε

3
+ ε

3
+ ε

3
< ε.

Therefore, we proved that for any ε > 0, there exist N∗ > 0 and T ∗ > 0, such that for

N > N∗ and T > T ∗,
∣∣∣P (k̃ − k0 = j)− P (l̃ = j)

∣∣∣ < ε for all j. By definition, k̃ − k0
d→
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arg minW (l).

L PROOF OF LEMMAS

Lemma 1 Under Assumptions 1-5, 1
T

∑T
t=1 ‖g̃t − J ′gt‖

2 = Op(
1

δ2NT
).

Proof. This Lemma is Theorem 1 of Bai and Ng (2002) for the equivalent model, therefore

it suffi ces to verify Assumptions A-D of Bai and Ng (2002).

Assumption A: By Assumption 1,

E ‖gt‖4 ≤ max{‖A‖4 , ‖B‖4}E ‖ft‖4 < M <∞,
1

T

∑T

t=1
gtg
′
t = τ 0

1

k0

∑k0

t=1
Aftf

′
tA
′ + (1− τ 0)

1

T − k0

∑T

t=k0+1
Bftf

′
tB
′

p→ τ 0AΣFA
′ + (1− τ 0)BΣFB

′,

which equals ΣG and is positive definite.

Assumption B: By Assumption 2,

‖γi‖ ≤
∥∥(λ′0,i, λ

′
1,i, λ

′
2,i)
′∥∥ = (‖λ0,i‖2 + ‖λ1,i‖2 + ‖λ2,i‖2)

1
2 ≤
√

3λ̄ <∞

and
∥∥ 1
N

Γ′Γ− ΣΓ

∥∥→ 0 for some positive definite matrix ΣΓ.

Assumption C: Assumption 3 together with Assumption 5 implies Assumption C.

Assumption D:

E(
1

N

∑N

i=1

∥∥∥∥ 1√
T

∑T

t=1
gteit

∥∥∥∥2

) ≤ 2 ‖A‖2 E(
1

N

∑N

i=1

∥∥∥∥ 1√
T

∑k0

t=1
fteit

∥∥∥∥2

)

+2 ‖B‖2 E(
1

N

∑N

i=1

∥∥∥∥ 1√
T

∑T

t=k0+1
fteit

∥∥∥∥2

)

≤ 2τ 0M + 2(1− τ 0)M = 2M.

Lemma 2 Under Assumptions 1-5 and 7, ‖J − J0‖ = op(1).

Proof. This Lemma follows from Proposition 1 of Bai (2003). Assumptions A-D is verified

in Lemma 1, Assumption G is identical to Assumption 7.

Lemma 3 Under Assumptions 1-8,
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(1) Hajek-Renyi inequality applies to the process {yt, t = 1, ..., k0}, {yt, t = k0, ..., 1},
{yt, t = k0 + 1, ..., T} and {yt, t = T, ..., k0 + 1},
(2) sup

k≤k0

1
k

∑k
t=1 ‖gt‖

2 = Op(1), sup
k≥k0

1
T−k

∑T
t=k+1 ‖gt‖

2 = Op(1), sup
k<k0

1
k0−k

∑k0
t=k+1 ‖gt‖

2 =

Op(1) and sup
k>k0

1
k−k0

∑k
t=k0+1 ‖gt‖

2 = Op(1).

Proof. (1) P ( sup
m≤k≤k0

ck

∥∥∥∑k
t=1 yt

∥∥∥ > M) = P ( sup
m≤k≤k0

ck

∥∥∥J ′0A[
∑k

t=1(ftf
′
t − ΣF )]A′J0

∥∥∥ >

M) ≤ P (‖J ′0A‖
2 sup
m≤k≤k0

ck

∥∥∥∑k
t=1 εt

∥∥∥ > M) ≤ C
M2 (mc2

m +
∑k0

k=m+1 c
2
k), where the last in-

equality follows from Hajek-Renyi inequality for process {εt, t = 1, ..., k0}. Other processes
can be proved similarly.

(2) sup
k≤k0

1
k

∑k
t=1 ‖gt‖

2 ≤ ‖A‖2 E ‖ft‖2 + ‖A‖2 sup
k≤k0

1
k

∑k
t=1(‖ft‖2−E ‖ft‖2), where E ‖ft‖2 =

trΣF . Define Dk = 1
k

∑k
t=1(ftf

′
t − ΣF ), then∣∣∣∣1k∑k

t=1
(‖ft‖2 − E ‖ft‖2)

∣∣∣∣ = |trDk| ≤
√
r + q1(trD2

k)
1
2 =
√
r + q1 ‖Dk‖ ,

it follows∣∣∣∣sup
k≤k0

1

k

∑k

t=1
(‖ft‖2 − E ‖ft‖2)

∣∣∣∣ ≤ sup
k≤k0

∣∣∣∣1k∑k

t=1
(‖ft‖2 − E ‖ft‖2)

∣∣∣∣ ≤ √r + q1 sup
k≤k0

∥∥∥∥1

k

∑k

t=1
εt

∥∥∥∥ ,
which isOp(1) by Hajek-Renyi inequality. Thus sup

k≤k0

1
k

∑k
t=1 ‖gt‖

2 ≤ ‖A‖2 E ‖ft‖2+‖A‖2Op(1) =

Op(1). Other terms can be proved similarly.

Lemma 4 General Hajek-Renyi inequality (Theorem 1.1 of Fazekas and Klesov (2001)):

Let β1, β2,..., βn be a sequence of nondecreasing positive numbers. Let α1, α2,..., αn be

a sequence of nonnegative numbers. Let r be a fixed positive number. For the partial sum

process Sl =
∑l

k=1 Xk, assume for each m with 1 ≤ m ≤ n, E( sup
1≤l≤m

|Sl|r) ≤
∑m

l=1 αl, then

E( sup
1≤l≤n

∣∣∣Slβl ∣∣∣r) ≤ 4
∑n

l=1
αl
βrl
.

Note that no dependence structure on {Xk, k = 1, .....} is assumed.

Lemma 5 Under Assumptions 1-8 and 10,

(1) sup
k∈D,k≤k0

∥∥∥ 1
k

∑k
t=1(g̃t − J ′gt)g′tJ

∥∥∥ = Op(
1

δNT
),

(2) sup
k∈Dc,k≤k0

∥∥∥ 1
k

∑k
t=1(g̃t − J ′gt)g′tJ

∥∥∥ = Op(
1

δNT
),
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(3) sup
k∈Dc,k <k0

∥∥∥ 1
k0−k

∑k0
t=k+1(g̃t − J ′gt)g′tJ

∥∥∥ = Op(
1

δNT
),

(4) sup
k∈D,k<k0

∥∥∥ 1
k0−k

∑k0
t=k+1(g̃t − J ′gt)g′tJ

∥∥∥ = Op(
1

δNT
),

(5) sup
k∈D,k<k0

∥∥∥ 1
k0−k

∑k0
t=k+1(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥ = Op(
1

δ2NT
),

(6) sup
k∈Dc,k≤k0

∥∥∥ 1
k

∑k
t=1(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥ = Op(
1

δ2NT
),

(7)sup
k≤k0

∥∥∥ 1
T−k

∑T
t=k+1(g̃t − J ′gt)g′tJ

∥∥∥ = Op(
1

δNT
).

Proof. We will prove parts (2), (5) and (7). Proof of parts (1), (3) and (4) is similar to part

(2), proof of part (6) is similar to part (5). First consider part (2).

sup
k∈Dc,k≤k0

∥∥∥∥1

k

∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥∥
= sup

k∈Dc,k≤k0

∥∥∥∥∥ 1
k

∑k
t=1 V

−1
NT

1
T

(
∑T

s=1 g̃sγN(s, t) +
∑T

s=1 g̃sζst

+
∑T

s=1 g̃sηst +
∑T

s=1 g̃sξst)g
′
tJ

∥∥∥∥∥
≤ ( sup

k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
(g̃s − J ′gs)g′tγN(s, t)

∥∥∥∥
+ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
J ′gsg

′
tγN(s, t)

∥∥∥∥
+ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
(g̃s − J ′gs)g′tζst

∥∥∥∥
+ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
J ′gsg

′
tζst

∥∥∥∥
+ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
(g̃s − J ′gs)g′tηst

∥∥∥∥
+ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
J ′gsg

′
tηst

∥∥∥∥
+ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
(g̃s − J ′gs)g′tξst

∥∥∥∥
+ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
J ′gsg

′
tξst

∥∥∥∥)
∥∥V −1

NT

∥∥ ‖J‖
= (I + II + III + IV + V + V I + V II + V III)

∥∥V −1
NT

∥∥ ‖J‖ .
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Consider the eight terms one by one.

I

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 sup
k∈Dc,k≤k0

(
1

T

∑T

s=1

∥∥∥∥1

k

∑k

t=1
g′tγN(s, t)

∥∥∥∥2

)
1
2

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 sup
k∈Dc,k≤k0

[(
1

k

∑k

t=1
‖gt‖2)(

1

T

1

k

∑T

s=1

∑k

t=1
|γN(s, t)|2)]

1
2

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 ( sup
k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)

1
2 ( sup
k∈Dc,k≤k0

1

T

1

k

∑T

s=1

∑k

t=1
|γN(s, t)|2)

1
2

= Op(
1

δNT
)Op(1)Op(

1√
T

),

where last equality follows from Lemma 1, Lemma 3 and sup
k∈Dc,k≤k0

1
T

1
k

∑T
s=1

∑k
t=1 |γN(s, t)|2 ≤

1
T

sup
k∈Dc,k≤k0

1
k

∑k
t=1(
∑T

s=1M |γN(s, t)|) ≤ 1
T
M2 by part (1) of Assumption 5.

II

≤ ‖J‖ sup
k∈Dc,k≤k0

1

T

∑T

s=1
‖gs‖

∥∥∥∥1

k

∑k

t=1
g′tγN(s, t)

∥∥∥∥
≤ ‖J‖ (

1

T

∑T

s=1
‖gs‖2)

1
2 sup
k∈Dc,k≤k0

(
1

T

∑T

s=1

∥∥∥∥1

k

∑k

t=1
g′tγN(s, t)

∥∥∥∥2

)
1
2

≤ ‖J‖ (
1

T

∑T

s=1
‖gs‖2)

1
2 ( sup
k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)

1
2 ( sup
k∈Dc,k≤k0

1

T

1

k

∑T

s=1

∑k

t=1
|γN(s, t)|2)

1
2

= Op(1)Op(1)Op(1)Op(
1√
T

),

where the last equality follows from sup
k∈Dc,k≤k0

1
T

1
k

∑T
s=1

∑k
t=1 |γN(s, t)|2 = Op(

1
T

), Lemma 2,

Assumption 1 and Lemma 3.

III

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 sup
k∈Dc,k≤k0

(
1

T

∑T

s=1

∥∥∥∥1

k

∑k

t=1
g′t

1

N

∑N

i=1
[eiseit − E(eiseit)]

∥∥∥∥2

)
1
2

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 ( sup
k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)

1
2

1√
N

(
1

T

∑T

s=1
sup

k∈Dc,k≤k0

1

k

∑k

t=1

∥∥∥∥ 1√
N

∑N

i=1
[eiseit − E(eiseit)]

∥∥∥∥2

)
1
2

= Op(
1

δNT
)Op(1)

1√
N
Op(1).
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IV

≤ ‖J‖ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
gsg
′
t

1

N

∑N

i=1
[eiseit − E(eiseit)]

∥∥∥∥
≤ ‖J‖ ( sup

k∈Dc,k≤k0

1

k

∑k

t=1

∥∥∥∥ 1

NT

∑T

s=1

∑N

i=1
gs[eiseit − E(eiseit)]

∥∥∥∥2

)
1
2 ( sup
k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)

1
2

≤ ‖J‖ 1√
N

(
1

T

∑T

s=1
‖gs‖2)

1
2 ( sup
k∈Dc,k≤k0

1

k

∑k

t=1

1

T

∑T

s=1

∣∣∣∣ 1√
N

∑N

i=1
[eiseit − E(eiseit)]

∣∣∣∣2)
1
2

( sup
k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)

1
2

= Op(1)
1√
N
Op(1)Op(1)Op(1) = Op(

1√
N

),

where the last equalities follow from part (1) of Assumption 10.

V

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 sup
k∈Dc,k≤k0

(
1

T

∑T

s=1

∥∥∥∥1

k

∑k

t=1
(

1

N

∑N

i=1
g′sγieit)g

′
t

∥∥∥∥2

)
1
2

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 (

1

T

∑T

s=1
‖gs‖2)

1
2

1√
N

( sup
k∈Dc,k≤k0

∥∥∥∥1

k

1√
N

∑k

t=1

∑N

i=1
γieitg

′
t

∥∥∥∥2

)
1
2

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 (

1

T

∑T

s=1
‖gs‖2)

1
2

1√
N

( sup
k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)

1
2

( sup
k∈Dc,k≤k0

1

k

∑k

t=1

∥∥∥∥ 1√
N

∑N

i=1
γieit

∥∥∥∥2

)
1
2

= Op(
1

δNT
)Op(1)

1√
N
Op(1)Op(1)

V I

≤ ‖J‖ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
gs(

1

N

∑N

i=1
g′sγieit)g

′
t

∥∥∥∥
≤ ‖J‖

∥∥∥∥ 1

T

∑T

s=1
gsg
′
s

∥∥∥∥ 1√
N

sup
k∈Dc,k≤k0

∥∥∥∥1

k

1√
N

∑k

t=1

∑N

i=1
γieitg

′
t

∥∥∥∥
≤ ‖J‖

∥∥∥∥ 1

T

∑T

s=1
gsg
′
s

∥∥∥∥ 1√
N

( sup
k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)

1
2 ( sup
k∈Dc,k≤k0

1

k

∑k

t=1

∥∥∥∥ 1√
N

∑N

i=1
γieit

∥∥∥∥2

)
1
2

= Op(1)Op(1)
1√
N
Op(1)Op(1),
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where the last equalities follow from part (2) of Assumption 10.

V II

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 sup
k∈Dc,k≤k0

(
1

T

∑T

s=1

∥∥∥∥1

k

∑k

t=1
g′t(

1

N

∑N

i=1
g′tγieis)

∥∥∥∥2

)
1
2

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 sup
k∈Dc,k≤k0

(
1

T

∑T

s=1
(
1

k

∑k

t=1
‖gt‖2

∥∥∥∥ 1

N

∑N

i=1
γieis

∥∥∥∥)2)
1
2

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1
2 ( sup
k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)

1√
N

(
1

T

∑T

s=1

∥∥∥∥ 1√
N

∑N

i=1
γieis

∥∥∥∥2

)
1
2

= Op(
1

δNT
)Op(1)

1√
N
Op(1).

V III

≤ ‖J‖ sup
k∈Dc,k≤k0

∥∥∥∥ 1

T

1

k

∑k

t=1

∑T

s=1
gsg
′
t(

1

N

∑N

i=1
g′tγieis)

∥∥∥∥
≤ ‖J‖ sup

k∈Dc,k≤k0

1

T

1

k

∑k

t=1

∑T

s=1
‖gs‖ ‖gt‖2

∥∥∥∥ 1

N

∑N

i=1
γieis

∥∥∥∥
≤ ‖J‖ ( sup

k∈Dc,k≤k0

1

k

∑k

t=1
‖gt‖2)(

1

T

∑T

s=1
‖gs‖2)

1
2

1√
N

(
1

T

∑T

s=1

∥∥∥∥ 1√
N

∑N

i=1
γieis

∥∥∥∥2

)
1
2

= Op(1)Op(1)Op(1)
1√
N
Op(1),

where the equalities follow from E( 1
T

∑T
s=1

∥∥∥ 1√
N

∑N
i=1 γieis

∥∥∥2

) ≤M , which follows from part

(ii) of Lemma 1 in Bai and Ng (2002).
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Next consider part (5).

sup
k∈D,k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥∥
≤ sup

k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥∥ 1
T

(
∑T

s=1 g̃sγN(s, t) +
∑T

s=1 g̃sζst

+
∑T

s=1 g̃sηst +
∑T

s=1 g̃sξst)

∥∥∥∥∥
2 ∥∥V −1

NT

∥∥2

≤ 4 sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1
(

∥∥∥∥ 1

T

∑T

s=1
g̃sγN(s, t)

∥∥∥∥2

+

∥∥∥∥ 1

T

∑T

s=1
g̃sζst

∥∥∥∥2

+

∥∥∥∥ 1

T

∑T

s=1
g̃sηst

∥∥∥∥2

+

∥∥∥∥ 1

T

∑T

s=1
g̃sξst

∥∥∥∥2

)
∥∥V −1

NT

∥∥2

≤ 8( sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1

T

∑T

s=1
(g̃s − J ′gs)γN(s, t)

∥∥∥∥2

+ sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1

T

∑T

s=1
J ′gsγN(s, t)

∥∥∥∥2

+ sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1

T

∑T

s=1
(g̃s − J ′gs)ζst

∥∥∥∥2

+ sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1

T

∑T

s=1
J ′gsζst

∥∥∥∥2

+ sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1

T

∑T

s=1
(g̃s − J ′gs)ηst

∥∥∥∥2

+ sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1

T

∑T

s=1
J ′gsηst

∥∥∥∥2

+ sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1

T

∑T

s=1
(g̃s − J ′gs)ξst

∥∥∥∥2

+ sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1

T

∑T

s=1
J ′gsξst

∥∥∥∥2

)
∥∥V −1

NT

∥∥2

= 8(IX +X +XI +XII +XIII +XIV +XV +XV I)
∥∥V −1

NT

∥∥2
.

Consider each term one by one.

IX ≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

) sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

1

T

∑T

s=1
|γN(s, t)|2

= Op(
1

δ2
NT

)Op(
1

T
).
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X ≤ ‖J‖2 (
1

T

∑T

s=1
‖gs‖2) sup

k∈D,k<k0

1

k0 − k
∑k0

t=k+1

1

T

∑T

s=1
|γN(s, t)|2

= Op(1)Op(1)Op(
1

T
),

where the equalities are explained in proof of term I.

XI

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)
1

N
(

1

T

∑T

s=1
sup

k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∣∣∣∣ 1√
N

∑N

i=1
[eiseit − E(eiseit)]

∣∣∣∣2)

= Op(
1

δ2
NT

)
1

N
Op(1).

XII

≤ ‖J‖2 (
1

T

∑T

s=1
‖gs‖2)

1

N
(

1

T

∑T

s=1
sup

k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∣∣∣∣ 1√
N

∑N

i=1
[eiseit − E(eiseit)]

∣∣∣∣2)

= Op(1)Op(1)
1

N
Op(1),

where the equalities follow from part (1) of Assumption 10.

XIII

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

) sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

1

T

∑T

s=1

∣∣∣∣ 1

N

∑N

i=1
g′sγieit

∣∣∣∣2
≤ (

1

T

∑T

s=1
‖g̃s − J ′gs‖2

)(
1

T

∑T

s=1
‖gs‖2)

1

N
sup

k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1√
N

∑N

i=1
γieit

∥∥∥∥2

= Op(
1

δ2
NT

)Op(1)
1

N
Op(1).

XIV ≤ ‖J‖2

∥∥∥∥ 1

T

∑T

s=1
gsg
′
s

∥∥∥∥2
1

N
sup

k∈D,k<k0

1

k0 − k
∑k0

t=k+1

∥∥∥∥ 1√
N

∑N

i=1
γieit

∥∥∥∥2

= Op(1)Op(1)
1

N
Op(1),
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where the equalities follow from part (2) of Assumption 10.

XV

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

) sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1

1

T

∑T

s=1

∥∥∥∥ 1

N

∑N

i=1
g′tγieis

∥∥∥∥2

≤ (
1

T

∑T

s=1
‖g̃s − J ′gs‖2

)( sup
k∈D,k<k0

1

k0 − k
∑k0

t=k+1
‖gt‖2)

1

N
(

1

T

∑T

s=1

∥∥∥∥ 1√
N

∑N

i=1
γieis

∥∥∥∥2

)

= Op(
1

δ2
NT

)Op(1)
1

N
Op(1).

XV I

≤ ‖J‖2 (
1

T

∑T

s=1
‖gs‖2)( sup

k∈D,k<k0

1

k0 − k
∑k0

t=k+1
‖gt‖2)

1

N
(

1

T

∑T

s=1

∥∥∥∥ 1√
N

∑N

i=1
γieis

∥∥∥∥2

)

= Op(1)Op(1)Op(1)
1

N
Op(1),

where the equalities follow from E( 1
T

∑T
s=1

∥∥∥ 1√
N

∑N
i=1 γieis

∥∥∥2

) ≤M , which follows from part

(ii) of Lemma 1 in Bai and Ng (2002).

Finally consider part (7).

sup
k≤k0

∥∥∥∥ 1

T − k
∑T

t=k+1
(g̃t − J ′gt)g′tJ

∥∥∥∥ ≤ sup
k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
(g̃t − J ′gt)g′tJ

∥∥∥∥
+

∥∥∥∥ 1

T − k0

∑T

t=k0+1
(g̃t − J ′gt)g′tJ

∥∥∥∥ .
Based on parts (3) and (4), the first term is Op(

1
δNT

). Following the same procedure as part

(2), it can be shown the second term is also Op(
1

δNT
).

Lemma 6 Under Assumptions 1-9, terms (1)-(7) in Lemma 5 are op(1).

Proof. The results can be proved following the same procedure as proving Lemma 5, the

differences are stated below. Assumption 10 is used in the proof of III, IV , XI, XII, V ,

V I, XIII, XIV to calculate the stochastic order of

sup
k∈Dc,k≤k0

1
k

∑k
t=1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2,
sup

k∈D,k≤k0

1
k

∑k
t=1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2,
sup

k∈Dc,k≤k0

1
k

∑k
t=1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

,
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sup
k∈D,k≤k0

1
k

∑k
t=1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

.

Without Assumption 10, all are no longer necessarily Op(1). Nevertheless, we can use

Lemma 4 to show that all are Op(log T ) without making any dependence assumption on the

error process.

Denote Xt =
∣∣∣ 1√

N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2, then
1

k

∑k

t=1

∣∣∣∣ 1√
N

∑N

i=1
[eiseit − E(eiseit)]

∣∣∣∣2 =
1

k

∑k

t=1
Xt.

Taking r = 1, βk = k and αl = M , then for each m with 1 ≤ m ≤ T ,

E( sup
1≤k≤m

|Sk|) = E(Sm) ≤ mM ≤
∑m

k=1
αk, (A-18)

hence by Lemma 4,

E( sup
1≤k≤k0

∣∣∣∣Skk
∣∣∣∣) ≤ 4

∑k0

k=1

M

k
≤ 4M log T + 4Mγ, (A-19)

where γ is the Euler-Mascheroni constant. It follows that

sup
k∈Dc,k≤k0

1
k

∑k
t=1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2,
sup

k∈D,k≤k0

1
k

∑k
t=1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2 are both Op(log T ). All other terms can be

proved to be Op(log T ) similarly. Now III = Op(
√

log T√
NδNT

), IV = Op(
√

log T
N

), V = Op(
√

log T√
NδNT

),

V I = Op(
√

log T
N

), XI = Op(
log T
Nδ2NT

), XII = Op(
log T
N

), XIII = Op(
log T
Nδ2NT

) and XIV =

Op(
log T
N

). With Assumption 9, all terms are op(1).

Lemma 7 Under Assumptions 1-8 and 9 or 10,

(1) sup
k∈Dc,k≤k0

1
k0

1
k

∥∥∥∑k
t=1 zt

∥∥∥2

= op(1), (2) sup
k∈D,k≤k0

1
k0

1
k

∥∥∥∑k
t=1 zt

∥∥∥2

= op(1),

(3) sup
k∈Dc,k≤k0

1
k0

∥∥∥∑k
t=1 zt

∥∥∥ = op(1), (4) sup
k∈D,k≤k0

1
k0

∥∥∥∑k
t=1 zt

∥∥∥ = op(1),

(5) sup
k∈Dc,k<k0

1
k0−k

∥∥∥∑k0
t=k+1 zt

∥∥∥ = op(1), (6) sup
k∈D,k<k0

1
k0−k

∥∥∥∑k0
t=k+1 zt

∥∥∥ = op(1),

(7) sup
k∈Dc,k<k0

1
k0

1
k0−k

∥∥∥∑k0
t=k+1 zt

∥∥∥2

= op(1), (8) sup
k∈D,k<k0

1
k0

1
k0−k

∥∥∥∑k0
t=k+1 zt

∥∥∥2

= op(1),

(9)sup
k≤k0

∥∥∥ 1
T−k

∑T
t=k+1 zt

∥∥∥ = op(1).

Proof. We will prove the results under Assumptions 1-8 and 10 first. Under Assumptions

1-9, the proof follows the same procedure, except for using Lemma 6 instead of Lemma 5.
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Recall that zt = vec[(g̃t−J ′gt)(g̃t−J ′gt)′]+vec[(g̃t−J ′gt)g′tJ ]+vec[J ′gt(g̃t−J ′gt)′]+vec[(J ′−
J ′0)gtg

′
t(J − J0)] + vec[(J ′ − J ′0)gtg

′
tJ0] + vec[J ′0gtg

′
t(J − J0)].

For parts (1) and (2),∥∥∥∑k

t=1
zt

∥∥∥2

≤ (
∥∥∥∑k

t=1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥+ 2
∥∥∥∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥
+
∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
t(J − J0)

∥∥∥+ 2
∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
tJ0

∥∥∥)2

≤ 4
∥∥∥∑k

t=1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥2

+ 16
∥∥∥∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥2

+4
∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
t(J − J0)

∥∥∥2

+ 16
∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
tJ0

∥∥∥2

. (A-20)

Consider the four terms one by one.

Using Lemma 1,

sup
k∈D,k≤k0

1

k0

1

k

∥∥∥∑k

t=1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥2

≤ 1

τ 0(τ 0 − η)
(

1

T

∑T

t=1
‖g̃t − J ′gt‖2

)2 = Op(
1

δ4
NT

).

Using part (6) of Lemma 5,

sup
k∈Dc,k≤k0

1

k0

1

k

∥∥∥∑k

t=1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥2

≤ sup
k∈Dc,k≤k0

∥∥∥∥1

k

∑k

t=1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥∥2

= Op(
1

δ4
NT

).

Using part (1) of Lemma 5,

sup
k∈D,k≤k0

1

k0

1

k

∥∥∥∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥2

≤ sup
k∈D,k≤k0

∥∥∥∥1

k

∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥∥2

= Op(
1

δ2
NT

).

Using part (2) of Lemma 5,

sup
k∈Dc,k≤k0

1

k0

1

k

∥∥∥∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥2

≤ sup
k∈Dc,k≤k0

∥∥∥∥1

k

∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥∥2

= Op(
1

δ2
NT

).
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Using Lemma 2 and Assumption 3,

sup
k≤k0

1

k0

1

k

∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
t(J − J0)

∥∥∥2

≤ ‖J − J0‖4 sup
k≤k0

∥∥∥∥1

k

∑k

t=1
gtg
′
t

∥∥∥∥2

= op(1),

sup
k≤k0

1

k0

1

k

∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
tJ0

∥∥∥2

≤ ‖J − J0‖2 ‖J0‖2 sup
k≤k0

∥∥∥∥1

k

∑k

t=1
gtg
′
t

∥∥∥∥2

= op(1).

It follows sup
k∈D,k≤k0

1
k0

1
k

∥∥∥∑k
t=1 zt

∥∥∥2

and sup
k∈Dc,k≤k0

1
k0

1
k

∥∥∥∑k
t=1 zt

∥∥∥2

are both op(1).

For parts (3) and (4),

1

k0

∥∥∥∑k

t=1
zt

∥∥∥
≤ 1

k0

∥∥∥∑k

t=1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥+ 2
1

k0

∥∥∥∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥
+

1

k0

∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
t(J − J0)

∥∥∥+ 2
1

k0

∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
tJ0

∥∥∥ . (A-21)

Using Lemma 1,

sup
k∈D,k≤k0

1

k0

∥∥∥∑k

t=1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥ ≤ 1

τ 0

1

T

∑T

t=1
‖g̃t − J ′gt‖2

= Op(
1

δ2
NT

),

sup
k∈Dc,k≤k0

1

k0

∥∥∥∑k

t=1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥ ≤ 1

τ 0

1

T

∑T

t=1
‖g̃t − J ′gt‖2

= Op(
1

δ2
NT

).

Using part (1) of Lemma 5,

sup
k∈D,k≤k0

1

k0

∥∥∥∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥ ≤ sup
k∈D,k≤k0

∥∥∥∥1

k

∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥∥ = Op(
1

δNT
).

Using part (2) of Lemma 5,

sup
k∈Dc,k≤k0

1

k0

∥∥∥∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥ ≤ sup
k∈Dc,k≤k0

∥∥∥∥1

k

∑k

t=1
(g̃t − J ′gt)g′tJ

∥∥∥∥ = Op(
1

δNT
).

Using Lemma 2 and Assumption 3,

sup
k∈D,k≤k0

1

k0

∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
t(J − J0)

∥∥∥ ≤ ‖J − J0‖2 sup
k∈D,k≤k0

∥∥∥∥1

k

∑k

t=1
gtg
′
t

∥∥∥∥ = op(1),

sup
k∈Dc,k≤k0

1

k0

∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
t(J − J0)

∥∥∥ ≤ ‖J − J0‖2 sup
k∈Dc,k≤k0

∥∥∥∥1

k

∑k

t=1
gtg
′
t

∥∥∥∥ = op(1),
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sup
k∈D,k≤k0

1

k0

∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
tJ0

∥∥∥ ≤ ‖J − J0‖ ‖J0‖ sup
k∈D,k≤k0

∥∥∥∥1

k

∑k

t=1
gtg
′
t

∥∥∥∥ = op(1),

sup
k∈Dc,k≤k0

1

k0

∥∥∥∑k

t=1
(J ′ − J ′0)gtg

′
tJ0

∥∥∥ ≤ ‖J − J0‖ ‖J0‖ sup
k∈Dc,k≤k0

∥∥∥∥1

k

∑k

t=1
gtg
′
t

∥∥∥∥ = op(1).

It follows that sup
k∈D,k≤k0

1
k0

∥∥∥∑k
t=1 zt

∥∥∥ and sup
k∈Dc,k≤k0

1
k0

∥∥∥∑k
t=1 zt

∥∥∥ are both op(1). parts (5), (6),

(7), (8) and (9) can be proved following the same procedure. More specifically, part (5) uses

Lemma 1, Lemma 2, part (3) of Lemma 5 and Lemma 3; part (6) uses parts (5) and (4) of

Lemma 5, Lemma 2 and Lemma 3; parts (7) and (8) follow from (5) and (6) respectively;

part (9) uses Lemma 1, Lemma 2, part (7) of Lemma 5 and sup
k≤k0

∥∥∥ 1
T−k

∑T
t=k+1 gtg

′
t

∥∥∥ = Op(1),

which is proved below.

sup
k≤k0

∥∥∥∥ 1

T − k
∑T

t=k+1
gtg
′
t

∥∥∥∥ ≤ sup
k<k0

∥∥∥∥ 1

T − k
∑T

t=k+1
gtg
′
t

∥∥∥∥+

∥∥∥∥ 1

T − k0

∑T

t=k0+1
gtg
′
t

∥∥∥∥
≤ sup

k<k0

∥∥∥∥ 1

k0 − k
∑k0

t=k+1
gtg
′
t

∥∥∥∥+ 2

∥∥∥∥ 1

T − k0

∑T

t=k0+1
gtg
′
t

∥∥∥∥
= Op(1).
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Essay III:  Estimating and Testing High Dimensional Factor 

Models with Multiple Structural Changes  
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1 INTRODUCTION

High dimensional factor models have played a crucial role in business cycle analysis, con-

sumer behavior analysis, asset pricing and macroeconomic forecasting, see for example, Ross

(1976), Lewbel (1991), Bernanke, Boivin and Eliasz (2005) and Stock and Watson (2002a,

2002b), to mention a few. This has been enhanced by the increasing availability of big

data sets. However, as the time span of the data becomes longer, there is a substantial risk

that the underlying data generating process may experience structural changes. Inference

ignoring these changes would be misleading. This paper considers multiple changes in the

factor loadings of a high dimensional factor model, occurring at dates that are unknown but

common to all subjects. We propose a joint estimator of all the change points as well as

a sequential estimator of the change points that estimates these change points one by one.

Based on the estimated change points, we are able to consistently determine the number of

factors and estimate the factor space in each regime. We also propose tests for (i) the null

of no change versus the alternative of some fixed number of changes and (ii) tests for the

null of l changes versus the alternative of l+ 1 changes. The latter allows us to consistently

determine the number of changes. These tests are easy to implement and critical values

tabulated in Bai and Perron (1998, 2003) can be used directly to make inference on the pres-

ence as well as the number of structural changes. In addition, we also discuss reestimating

the change points by direct least squares based on the estimated number of factors in each

regime. The reestimated change points tend to be more accurate1 and could improve the

finite sample performance of subsequent estimation and testing procedures.

Bates, Plagborg-Møller, Stock and Watson (2013) argue that as long as the magnitude

of the loading breaks converges to zero suffi ciently fast, existing estimators ignoring loading

breaks are still consistent. However, the conditions required are relatively stringent and the

resulting asymptotic properties may not provide a good approximation. Recently, several

tests on the stability of the factor loadings in high dimensional factor models have been

proposed including Breitung and Eickmeier (2011), Chen, Dolado and Gonzalo (2014), Han

and Inoue (2014) and Cheng, Liao and Schorfheide (2014). Recent contributions on estimat-

ing high dimensional factor models with loading instability include Baltagi, Kao and Wang

1The reestimated change points are applicable only when the number of factors is the same for all regimes.
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(2015b), Cheng, Liao and Schorfheide (2014), Massacci (2015) and Shi (2015). However, all

of these papers consider the case with a single change.

This paper tackles multiple changes in high dimensional factor models2. We start by

estimating the number of factors and factor space ignoring structural changes. Since the

factor model with changes in the loadings can be equivalently written as another factor model

with stable loadings but pseudo factors, this would allow us to identify the equivalent model

with stable loadings and give us the estimated pseudo factors. A key observation is that the

mean of the second moment matrix of the pseudo factors have changes at exactly the same

dates as the loadings. Estimating and testing multiple changes in the latter can be converted

to estimating and testing multiple changes in the former. This conversion is crucial because

the true factors are unobservable and not estimable without knowing the change points. It is

also worth pointing out that after this conversion we are using the estimated pseudo factors,

not the pseudo factors themselves. That is to say, the data contains measurement error.

We will show that this measurement error has a different effect on testing and estimating

structural changes. Once the estimated change points are available, they are plugged in to

split the sample and estimate the number of factors and factor space in each regime. The

former further enables reestimating the change points by direct least squares while the latter

allows us to construct the test for l versus l + 1 changes.

In the regression setup, influential work on multiple changes include Bai and Perron

(1998) and Qu and Perron (2007). This paper differs from these seminal papers in several

respects. First, the current paper deals with a high dimensional setup with unobservable

regressors, while their papers deal with a fixed dimensional setup with observable regressors.

Thus their results are not directly applicable here. Second, in the current setup estimating the

number of pseudo factors at the outset plays the role of selecting relevant moment conditions

among a large number of candidates while in their setup the moment conditions are known

a priori. From this perspective, estimating the number of factors is intrinsically connected

to the many instrumental variables literature. Third, after conversion, the data is fixed

dimensional with observable regressors3 and thus conceptually fits into their setup. However,

it still relies on high dimension to eliminate the effect of measurement error. Moreover, we

2In testing the joint hypothesis of structural stability of both factor loadings and the factor augmented
forecasting equation, Corradi and Swanson (2014) also consider the alternative of multiple changes.

3The regressors are ones, since the second moment matrix of the pseudo factors is a multivariate time
series with mean shifts.
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show that to eliminate the effect of measurement error on testing structural changes, we

require
√
T
N
→ 0 as the dimension N and the sample size T go to infinity jointly, while for

estimating change points we only require N and T go to infinity jointly. The latter result is

rare in the sense that in the high dimensional econometrics literature very few papers require

no N -T (T -N) ratio condition. The latter result is also different from the literature in which

the estimated factors are used. For example, Bai and Ng (2006) require
√
T
N
→ 0 where

estimated factors are used to augment forecasting and vector autoregression. Various N -T

ratio conditions are also needed in Bai (2009) where estimated factors are used to control

the interactive effects in panel data. The explanation is mainly related to the local nature

of the identification of change points, which is also the reason that the estimated change

points are inconsistent as T → ∞. For a detailed explanation, see Section 3.1.3. Fourth,
the second step in this paper is to estimate the number of factors and factor space in each

regime while their second step is to estimate the regression coeffi cients in each regime. In

their setup, it is a direct corollary that the second step is not affected by the inconsistency

of the estimated change points, while in the current setup it is not so obvious and requires

new analysis. This is because estimating the number of factors and factor space is totally

different from estimating the regression coeffi cients. Fifth, in their setup, due to the fixed

dimensionality, the convergence rate of the estimated change points is at best Op(1), while

in the current setup due to the high dimensionality, the reestimated change points could be

consistent.

Throughout the paper, ‖A‖ = (trAA′)
1
2 denotes the Frobenius norm,

p→, d→ and ⇒
denotes convergence in probability, convergence in distribution and weak convergence of

stochastic process respectively, vech(A) denotes the half vectorization of matrix A, E(·)
denotes the expectation, δNT = min{

√
N,
√
T} and (N, T )→∞ denotes N and T going to

infinity jointly.

The rest of the paper is organized as follows: Section 2 introduces the model setup,

notation and preliminaries. Section 3 considers both joint estimation and sequential estima-

tion of the change points and also the subsequent estimation of the number of factors and

factor space in each regime. Section 4 proposes test statistics for multiple changes, derives

their asymptotic distributions and discusses how to determine the number of changes. Sec-

tion 5 discusses reestimating the change points by direct least squares. Section 6 presents

simulation results. Section 7 concludes. All the proofs are relegated to the appendix.
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2 NOTATION AND PRELIMINARIES

2.1 The Model

Consider the following high dimensional factor model with L changes in the factor loadings:

xit = f ′0,tλ0,i + f ′−0,tλκ,i + eit, (1)

with kκ−1,0 + 1 ≤ t ≤ kκ,0, for κ = 1, ..., L + 1, i = 1, ..., N and t = 1, ..., T, where f0,t and

f−0,t are r− q and q dimensional vectors of factors without and with changes in the loadings
respectively. Let ft = (f ′0,t, f

′
−0,t)

′. λ0,i and λκ,i are factor loadings of subject i corresponding

to f0,t and f ′−0,t in the κ-th regime, respectively. Let λ0κ,i = (λ′0,i, λ
′
κ,i)
′. eit is the error term

allowed to have temporal and cross-sectional dependence as well as heteroskedasticity. kκ,0

and τκ,0 = kκ,0
T
, κ = 1, ..., L are the change points and change fractions respectively, and

note that k0,0 = 0 and kL+1,0 = T . The goal is to estimate the change points, determine the

number of factors and estimate the factors and loadings in each regime.

In matrix form, the model can be expressed as follows:

Xκ∗ = F0κ∗Λ
′
0 + F−0κ∗Λ

′
κ + Eκ∗, for κ = 1, ..., L+ 1. (2)

Xκ∗ = (xkκ−1,0+1, ..., xkκ,0)′ and Eκ∗ = (ekκ−1,0+1, ..., ekκ,0)′ are both of dimension (kκ,0 −
kκ−1,0) × N . F0κ∗ = (f0,kκ−1,0+1, ..., f0,kκ,0)′ and F−0κ∗ = (f−0,kκ−1,0+1, ..., f−0,kκ,0)′ are of di-

mensions (kκ,0 − kκ−1,0) × (r − q) and (kκ,0 − kκ−1,0) × q respectively. Here we use ”κ ∗ ”

to denote that the sample split is based on the true change points. Λ0 = (λ0,1, ..., λ0,N)′

and Λκ = (λκ,1, ..., λκ,N)′ are of dimensions N × (r − q) and N × q respectively. Also, let
Fκ∗ = (F0κ∗, F−0κ∗) = (fkκ−1,0+1, ..., fkκ,0)′ and Λ0κ = (Λ0,Λκ) = (λ0κ,1, ..., λ0κ,N)′.

Note that in model (1), changes in the number of factors is allowed for, and incorporated

as a special case of changes in the loadings by allowing Λκ to contain some zero columns for

some κ. Let qκ be the number of nonzero columns in Λκ, then q = max{qκ, κ = 1, ..., L+ 1}
and the number of factors in the κ-th regime is rκ = r− q+ qκ. To simplify the analysis, we

shall only consider the case where the matrix that contains all the different nonzero columns

of Λ0 and Λκ, κ = 1, ..., L+ 1 is full rank.
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2.2 Equivalent Representation

Let Λ−0 contain all the different nonzero columns in Λκ for κ = 1, ..., L+1 and Γ = (Λ0,Λ−0).

It follows that Λ0κ = ΓRκ, where Rκ is a selection matrix. Let Gκ∗ = Fκ∗R
′
κ, it follows that

gt = Rκft if kκ−1,0 + 1 ≤ t ≤ kκ,0 and

Xκ∗ = Fκ∗Λ
′
0κ + Eκ∗ = Fκ∗R

′
κΓ
′ + Eκ∗ = Gκ∗Γ

′ + Eκ∗. (3)

Equation (3) is a factor model with stable loadings but pseudo factors gt, whose number r̄

is equal to the column rank of Γ.

We next argue that as long as 1
kκ,0−kκ−1,0

∑kκ,0
t=kκ−1,0+1 ftf

′
t − ΣF

p→ 0 for each κ and∥∥ 1
N

Γ′Γ− ΣΓ

∥∥ → 0 for some positive definite ΣF and ΣΓ
4, then 1

T

∑T
t=1 gtg

′
t − ΣG

p→ 0 for

some positive definite ΣG. This ensures the uniqueness (up to a rotation) of the equivalent

representation. First, it is not diffi cult to see that ΣG =
∑L+1

κ=1 (τκ,0 − τκ−1,0)ΣG,κ, where

ΣG,κ = RκΣFR
′
κ is positive semidefinite for all κ. Thus for any r̄ dimensional vector v,

v′ΣGv = 0 implies v′ΣG,κv = 0 for all κ, which further implies v′Rκ = 0 for all κ. Since Rκ

is a selection matrix and each element of v is selected by at least one Rκ, each element of v

must be zero, and therefore ΣG is positive definite.

3 ESTIMATING MODELS WITH MULTIPLE CHANGES

In this section, we propose a two step procedure to estimate model (1) when the number

of breaks is known. How to determine the number of breaks will be discussed later. The

first step is estimating the change points. We propose a joint estimator for all change points

as well as a sequential estimator which estimates the change points one by one. For both

estimators, we show that the distance between the estimated and the true change points is

Op(1). The second step is plugging in the estimated change points and estimating the number

of factors and the factor space in each regime. We show that although the estimated change

points are inconsistent, using the estimated change points does not affect the consistency of

the estimated number of factors, nor the convergence rate of the estimated factor space.

4In case ΣΓ is degenerate, the factors and loadings can be further transformed to regain positive definite-
ness. Here we do not consider this case.

 131



3.1 Joint Estimation of the Change Points

We first introduce the estimation procedure, and then impose assumptions to study the

asymptotic properties of the proposed estimators.

3.1.1 Estimation Procedure

The estimation procedure is as follows:

1. Estimate the number of factors ignoring structural changes. Let r̃ be the estimated

number of factors.

2. Estimate the first r̃ factors using the principal component method. Let g̃t, t = 1, ..., T

be the estimated factors5.

3. For any partition (k1, ..., kL)6, split the sample into L + 1 subsamples, estimate the

second moment matrix of gt in each subsample as Σ̃κ = 1
kκ−kκ−1

∑kκ
t=kκ−1+1 g̃tg̃

′
t and

calculate the sum of squared residuals,

S̃(k1, ..., kL) =
∑L+1

κ=1

∑kκ

t=kκ−1+1
[vech(g̃tg̃

′
t − Σ̃κ)]

′[vech(g̃tg̃
′
t − Σ̃κ)]. (4)

Then estimate the change points by minimizing the sum of squared residuals,

(k̃1, ..., k̃L) = arg min S̃(k1, ..., kL). (5)

The underlying mechanism of the above procedure is as follows:

1. Since model (2) has equivalent representation (3), r̃ is consistent for r̄, g̃t is asymp-

totically close to J ′gt for some rotation matrix J , and J ′gt is asymptotically close to

J ′0gt, where J
p→ J0 = Σ

1
2
ΓΦV −

1
2 , with V being the diagonal matrix of eigenvalues of

Σ
1
2
ΓΣGΣ

1
2
Γ and Φ the corresponding eigenvector matrix.

2. The second moment matrix of gt has breaks at the same points as the factor loadings.

3. The second moment matrix of J ′0gt has breaks at the same points as gt.

5The change points estimator also can be based on ĝt, where (ĝ1, ..., ĝT )′ = Ĝ = G̃VNT = (g̃1, ..., g̃T )′VNT
and VNT is a diagonal matrix that contains the first r̄ largest eigenvalues of 1

NTXX
′.

6 k0 = 0 and kL+1 = T .
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More precisely, let E(ftf
′
t) = ΣF for all t. Σκ = J ′0ΣG,κJ0 is the mean of J ′0gtg

′
tJ0

and yt = vech(J ′0gtg
′
tJ0 − Σκ) for t = kκ−1,0 + 1, ..., kκ,0 with κ = 1, ..., L + 1, and zt =

vech(g̃tg̃
′
t − J ′0gtg

′
tJ0) for t = 1, ..., T. It follows that vech(g̃tg̃

′
t) = vech(Σκ) + yt + zt for

t = kκ−1,0 + 1, ..., kκ,0 and κ = 1, ..., L + 1. Since Rκ−1 and Rκ are two different selection

matrices, Σκ−1 = J ′0Rκ−1ΣFR
′
κ−1J0 6= J ′0RκΣFR

′
κJ0 = Σκ. Thus vech(g̃tg̃

′
t) is a multivariate

process with L mean shifts and measurement error zt. We will show that to asymptotically

eliminate the effect of zt, this requires (N, T )→∞ and no N-T ratio condition is needed.

Also note that through estimating the number of pseudo factors, we are essentially se-

lecting relevant moment conditions from a large number of candidates. The model with

r̃ = r̄ has the strongest identification strength for the unknown change points. If r̃ > r̄,

no information would be lost, but extra noise would be brought in by the extra estimated

factors and consequently the identification strength of the change points would be weaker.

This is quite similar to Moon and Weidner (2014), who show that for panel data the limiting

distribution of the least squares estimator is not affected by overestimation of the number

of factors used to control the interactive effects. If r̃ < r̄, change point estimation would be

based on a subset of vech(g̃tg̃
′
t). Thus identification of the change points would be weaker

or even totally lost. To improve the finite sample performance, we may simply fix r̃ at the

maximum of pseudo factors if this maximum is small or some prior information is available.

Also, we recommend choosing a less conservative criterion in estimating r̄.

3.1.2 Assumptions

The assumptions are as follows:

Assumption 1 E ‖ft‖4 < M < ∞, E(ftf
′
t) = ΣF for all t. ΣF is positive definite and

1
kκ,0−kκ−1,0

∑kκ,0
t=kκ−1,0+1 ftf

′
t − ΣF = op(1) for κ = 1, ..., L+ 1.

Assumption 2 ‖λ0κ,i‖ ≤ λ̄ < ∞ for κ = 1, ..., L + 1, and
∥∥ 1
N

Γ′Γ− ΣΓ

∥∥ → 0 for some

positive definite matrix ΣΓ.

Assumption 3 There exists a positive constant M <∞ such that:

1. E(eit) = 0 and E |eit|8 ≤M for all i and t,

2. E(eitejs) = τ ij,ts for all i, j and t, s, and 1
NT

∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τ ij,ts| ≤M,
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3. E
∣∣∣ 1√

N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣4 ≤M for all s, t.

Assumption 4 There exists an M <∞ such that:

1. E( e
′
set
N

) = γN(s, t) and
∑T

s=1 |γN(s, t)| ≤M for all t,

2. E(eitejt) = τ ij,t with |τ ij,t| ≤ τ ij for some τ ij and for all t, and
∑N

j=1 |τ ji| ≤M for all

i.

Assumption 5 The largest eigenvalue of 1
NT
EE ′ is Op(

1
δ2
NT

).

Assumption 6 The eigenvalues of ΣGΣΓ are distinct.

Assumption 7 Define εt = vech(ftf
′
t − ΣF ),

1. The data generating process of the factors is such that the Hajek-Renyi inequality7

applies to the process {εt, t = kκ−1,0 + 1, ..., kκ,0} and {εt, t = kκ,0, ..., kκ−1,0 + 1} for
κ = 1, ..., L+ 1,

2. There exist δ > 0 and M < ∞ such that for κ = 1, ..., L + 1 and for all kκ−1,0 < k <

l ≤ kκ,0, E(
∥∥∥ 1√

l−k
∑l

t=k+1 εt

∥∥∥4+δ

) < M .

Assumption 8 There exists M <∞ such that:

1. E( sup
0≤k<l≤T

1
l−k
∑l

t=k+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M for all s,

2. E( sup
0≤k<l≤T

1
l−k
∑l

t=k+1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M .

Assumption 1 corresponds to Assumption A in Bai (2003). It requires the law of large

number to be applicable to factors within each regime, thus ft can be dynamic and contain

lags. Note that the second moment matrix of the factors is assumed to be stationary over

time. Assumption 2 corresponds to Assumption B in Bai (2003). Note that within the

statistical setup, only changes in loadings are identifiable, changes in factor identities are

not identifiable. And no matter whether the loadings change or not, the factor identities

could either change or not. The identities of factors should be determined by other sources

7Hajek-Renyi inequality is crucial for pinning down the order of the estimation error in the estimated
change points, see the Appendix for more details.
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of information. Assumptions 3 and 4 correspond to Assumptions C and E in Bai (2003).

Both temporal and cross-sectional dependence as well as heteroskedasticity are allowed for.

Assumption 5 is the key condition for determining the number of factors and is required in

almost all existing methods. For example, Onatski (2010) and Ahn and Horenstein (2013)

assume E = AεB, where ε is an i.i.d. T ×N matrix and A and B characterize the temporal

and cross-sectional dependence and heteroskedasticity. This is a suffi cient but not necessary

condition for Assumption 5. Also note that once Assumption 5 is imposed, Assumption

D in Bai (2003) is not needed. In other words, for the purpose of determining the num-

ber of factors, factors could be correlated with the errors. Assumption 6 corresponds to

Assumption G in Bai (2003) and ensures uniqueness of the principal component estimator.

Assumption 7 imposes a further requirement on the factor process. Instead of assuming a

specific data generating process, we require the Hajek-Renyi inequality to be applicable to

the second moment process of the factors, so that Assumption 7 is in its most general form.

Assumption 8 imposes further constraints on the errors. Assumption 3(3) and Assumption

F3 in Bai (2003) imply that the summands are uniformly Op(1). Assumption 8 strengthens

this condition such that the supremum of the average of these summands is Op(1).

3.1.3 Asymptotic Properties of the Joint Estimator

First note that due to the consistency of r̃ for r̄, treating r̄ as known will not affect the

asymptotic properties of the change point estimator. In what follows we shall show that

the distance between the estimated and the true change points is Op(1). This allows us to

identify the number of factors and estimate the factor space in each regime. Define τ̃ ι = k̃ι/T

as the estimated change fraction, we first show that τ̃ ι is consistent.

Proposition 1 Under Assumptions 1-8, τ̃ ι − τ ι0 = op(1) for ι = 1, ..., L as (N, T )→∞.

This proposition is important for theoretical purposes. The key observation for its

proof and even the whole change point estimation literature is that for any possible re-

gion of the change points O, P ((k̃1, ..., k̃L) ∈ O) is controlled by P ( min
(k1,...,kL)∈O

S̃(k1, ..., kL)−

S̃(k10, ..., kL0) ≤ 0). Based on Proposition 1 and utilizing this observation, we can prove:

Theorem 1 Under Assumptions 1-8, k̃ι − kι0 = Op(1) for ι = 1, ..., L as (N, T )→∞.

This theorem implies that no matter how large T is, the possible change points are nar-

rowed to a bounded interval of the true change points. Note that the measurement error
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zt has no effect (asymptotically) on the estimated change points as long as (N, T ) → ∞.
No N-T ratio condition is needed. This is different from factor-augmented forecasting and

factor-augmented vector autoregression (FAVAR), in which
√
T
N
→ 0 is required to asymptot-

ically eliminate the effect of using estimated factors. The reason is that identification of the

change points relies on observations within a local region of the true change points and conse-

quently the measurement error will not accumulate as T →∞. In contrast, factor-augmented
forecasting and FAVAR relies on all observations and consequently the measurement error

will accumulate as T → ∞. Since for each t the measurement error zt converges to zero as
N →∞, for change points estimation N →∞ is enough to eliminate the effect of measure-

ment error, while for factor-augmented forecasting and FAVAR, N need to be large relative

to T .

Remark 1 The limiting distribution of k̃ι − kι0 has the same form as the single change

case. This is because k̃ι also minimizes the sum of squared residuals for the subsample

t = k̃ι−1 + 1, ..., k̃ι+1. Since k̃ι−1 − kι−1,0 and k̃ι+1 − kι+1,0 are both Op(1), k̃ι has the same

limiting distribution as the minimizer of the subsample t = kι−1,0 + 1, ..., kι+1,0. For more

details about the form as well as a proof of the limiting distribution, see Baltagi, Kao and

Wang (2015b).

3.2 Sequential Estimation of the Change Points

This section proposes sequential estimation of the change points one by one, each time treat-

ing the model as if there is only one change point. The first two steps are the same as the joint

estimation while the third step is slightly adjusted: For any partition k1, split the sample into

two subsamples, estimate the second moment matrix of gt in each subsample and calculate

the sum of squared residuals, S̃(k1) =
∑2

κ=1

∑kκ
t=kκ−1+1[vech(g̃tg̃

′
t − Σ̃κ)]

′[vech(g̃tg̃
′
t − Σ̃κ)],

then k̂1 = arg min S̃(k1). Compared to joint estimation, the main advantage of sequential

estimation is that it does not require knowing the number of changes. Instead, together with

sequential testing, it allows us to determine the number of changes.

In what follows, we shall show that the distance between the sequentially estimated and

the true change points is also Op(1). First, define S0(τ) as the reduction in the sum of

squared residuals when yt = 0 and zt = 0 is plugged in to split the sample. If yt and zt are

indeed zero for all t, the estimated change fraction should be equal to τ among τ 1,0, ..., τL,0
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that leads to the largest reduction in the sum of squared residuals. To simplify the analysis,

we require S0(τ ι,0) to be different for different ι, and without loss of generality, we assume:

Assumption 9 S0(τ 1,0) < ... < S0(τL,0).

In general, yt and zt are not zero for all t, but asymptotically this does not affect the

result.

Proposition 2 Under Assumptions 1-9, τ̂ 1 − τ 1,0 = op(1) as (N, T )→∞.

Similar to the joint estimation, the proof is that for any possible region of the change

points O, P (k̂1 ∈ O) is controlled by P (min
k1∈O

S̃(k1)− S̃(k10) ≤ 0). Utilizing this strategy, this

result can be refined to:

Theorem 2 Under Assumptions 1-9, k̂1 − k1,0 = Op(1) as (N, T )→∞.

Again, no N-T ratio condition is needed to eliminate the effect of the measurement error

zt. Once k̂1 is available, we can plug it in and estimate k2,0. Since k̂1 − k1,0 = Op(1), this

is asymptotically equivalent to plugging in k1,0, in which case the problem is reduced to

estimating the first change point with observations t = 1, ..., k1,0 removed8. Thus k̂2 − k2,0

will also be Op(1). Using this argument sequentially, we have

Theorem 3 Under Assumptions 1-9, k̂ι − kι,0 = Op(1) for ι = 1, ..., L as (N, T )→∞.

3.3 Estimating the Number of Factors and the Factor Space

Once the change points estimators are available, we can plug them in and estimate the

number of factors and factor space in each regime. Let r̃κ be the estimated number of

factors in the κ-th regime.

Theorem 4 Under Assumptions 1-2 and 5, with k̃κ−kκ,0 = Op(1) and k̃κ−1−kκ−1,0 = Op(1),

we have lim
(N,T )→∞

P (r̃κ = rκ) = 1.

8In the general case, k̂1 could converge to the change point in the middle of the sampe. Then the problem
is reduced to estimating the first change point for subsamples t = 1, ..., k10 and t = k10 + 1, ..., T and taking
k̂2 as the one leading to the largest reduction in sum of squared residuals.
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The proof is similar to the single change case, see Baltagi, Kao and Wang (2015b). Note

that what we proved is that the speed of eigenvalue separation is not affected by using the

estimated change points. Thus, most eigenvalue based estimators are applicable here. For

example, Bai and Ng (2002), Ahn and Horenstein (2013), to name a few.

Next, let uκ be some positive integer, F̃ uκ
κ be

√
T times the eigenvectors corresponding

to the first uκ eigenvalues of XκX
′
κ, H

uκ
κ = 1

N
Λ′0κΛ0κ

1
k̃κ−k̃κ−1

FκF̃
uκ
κ and F̂ uκ

κ = F̃ uκ
κ V uκ

NT,κ,

where Xκ = (xk̃κ−1+1, ..., xk̃κ)′, Fκ = (fk̃κ−1+1, ..., fk̃κ)′and V uκ
NT,κ is the diagonal matrix that

contains the first uκ eigenvalues of XκX
′
κ.

Theorem 5 Under Assumptions 1-4, with k̃κ − kκ,0 = Op(1) and k̃κ−1 − kκ−1,0 = Op(1), we

have9
1

k̃κ − k̃κ−1

∑k̃κ

t=k̃κ−1+1

∥∥∥f̂uκt −Huκ′
κ ft

∥∥∥2

= Op(
1

δ2
NT

). (6)

The proof is similar to the single change case, see Baltagi, Kao and Wang (2015b).

The convergence rate Op(
1

δ2
NT

) is crucial to eliminate the effect of using estimated factors

in factor-augmented forecasting and FAVAR. In the next section we will use the estimated

factors to construct a test for l versus l+1 changes, which determines the number of changes

sequentially. We shall show that the rate Op(
1

δ2
NT

) is again crucial to eliminating the effect

of using estimated factors on the limiting distribution of the test statistic.

Note that Theorem 5 and Theorem 4 are based on an inconsistent estimator of the change

points (the distance between the estimated and the true change points is Op(1)), i.e., in the

current context, inconsistency of the first step estimator has asymptotically no effect on

the second step estimator. This is quite different from the traditional plug-in procedure, in

which the first step estimation need to be consistent with suffi ciently fast speed to eliminate

its effect on the second step estimation. The reason for this difference is that in the current

context as T → ∞, the second step estimation becomes less and less sensitive to the first
step estimation error10. Moreover, we also want to point out that the consistency of the

estimated change fraction is not enough for Theorem 4 and Theorem 5. The rate Op(1) is

crucial.
9Note that for equation (6) to hold, it does not require Λ0κ to be full column rank.
10Although large T does not help identify the change point, it helps absorb the estimation error of the

change points.
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4 TESTING MULTIPLE CHANGES

In this section we propose two tests for multiple changes. The first one tests no change versus

some fixed number of changes. We show that to eliminate the effect of measurement error

zt, this requires
√
T
N
→ 0 and dT

δNT
→ 0, where dT is the bandwidth used in estimating the

covariance matrix of the second moments of the estimated factors. The second one tests l

versus l+1 changes. We show that for this test, we require
√
T
N
→ 0 and dT

T
1
4
→ 0 to eliminate

the effect of zt, and using estimated change points does not affect the limiting distribution

under the null. We also discuss how to determine the number of changes using this test and

the sequential estimation of the change points.

4.1 Testing No Change versus Some Fixed Number of Changes

In this subsection, we discuss how to test L = 0 versus L = l, where l is some positive

integer. This generalizes existing tests in the literature which only consider L = 0 versus

L = 1, for example, Chen, Dolado and Gonzalo (2014), Han and Inoue (2014) and Cheng,

Liao and Schorfheide (2014). In case l = 1, it can be shown that our test is asymptotically

equivalent to the supLM test in Han and Inoue (2014). In what follows, we will discuss

the construction of the test statistic first, and then modify the assumptions to study its

asymptotic properties.

4.1.1 Construction of the Test for L = 0 versus L = l

First, estimate the number of factors. r̃ is consistent for r and r̄ under the null and the

alternative respectively. Thus we can behave as if r and r̄ were known in studying the

asymptotic properties. Note that for testing purposes, estimating the number of factors

also plays the role of selecting the relevant moment conditions from a large number of

candidates. Next, estimate the factors by the principal component method. Under the

null, let f̃t be the estimated factors, UNT be the diagonal matrix that contains the r largest

eigenvalues of XX ′, H = 1
N

Λ′Λ 1
T
F ′F̃U−1

NT be the rotation matrix, H0 be the probability limit

of H and z∗t = vech(f̃tf̃
′
t − H ′0ftf ′tH0). Under the alternative, we follow the same notation

as the last section. It follows that under the null vech(f̃tf̃
′
t) is a multivariate time series

(vech(H ′0ftf
′
tH0)) with stable mean (vech(Ir))11 and measurement error z∗t , while under the

11It is not diffi cult to see that E(H ′0ftf
′
tH0) = H ′0ΣFH0 = Ir.
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alternative vech(g̃tg̃
′
t) is a multivariate time series with l mean shifts and measurement error

zt. Thus we can base the test on the difference between the restricted and unrestricted sum

of squared normalized error.

Let Ω = lim
T→∞

V ar(vech( 1√
T

∑T
t=1(H ′0ftf

′
tH0 − Ir))) be the long run covariance matrix of

vech(H ′0ftf
′
tH0−Ir) and Ω̃(F̃ ) = Υ̃0(F̃ )+

∑T−1
j=1 k( j

dT
)[Υ̃j(F̃ )+Υ̃j(F̃ )′] be the HAC estimator

of Ω using the estimated factors F̃ , where Υ̃j(F̃ ) = 1
T

∑T
t=j+1 vech(f̃tf̃

′
t − Ir̃)vech(f̃t−j f̃

′
t−j −

Ir̃)
′, k(·) is some kernel function and dT is the bandwidth. For simplicity, we will suppress

Ω̃(F̃ ) as Ω̃. It follows that the restricted sum of squared normalized error is

SSNE0 =
∑T

t=1
vech(f̃tf̃

′
t −

1

T

∑T

t=1
f̃tf̃
′
t)
′Ω̃−1vech(f̃tf̃

′
t −

1

T

∑T

t=1
f̃tf̃
′
t), (7)

and for any partition (k1, ..., kl), the unrestricted sum of squared normalized error is

SSNE(k1, ..., kl) =
∑l+1

ι=1

∑kι

t=kι−1+1
vech(f̃tf̃

′
t −

1

kι − kι−1

∑kι

t=kι−1+1

f̃tf̃
′
t)
′Ω̃−1vech(f̃tf̃

′
t −

1

kι − kι−1

∑kι

t=kι−1+1
f̃tf̃
′
t). (8)

Let FNT (τ 1, ..., τ l;
r̃(r̃+1)

2
) = 2

lr̃(r̃+1)
[SSNE0−SSNE(k1, ..., kl)] and Λε = {(τ 1, ..., τ l) : |τ ι+1 − τ ι| ≥

ε, τ 1 ≥ ε, τ l ≤ 1−ε} for some prespecified ε > 0, the test statistic is sup
(τ1,...,τ l)∈Λε

FNT (τ 1, ..., τ l;
r̃(r̃+1)

2
).

4.1.2 Asymptotic Properties of the Test for L = 0 versus L = l

We first consider the limiting distribution of the proposed test under the null. Since under

the null the factor loadings are stable, we use λi and Λ to denote the factor loading and

the factor loading matrix respectively. The assumptions in the last section are modified as

follows:

Assumption 10 E ‖ft‖4 < M < ∞, E(ftf
′
t) = ΣF for all t, ΣF is positive definite and

1
T

∑T
t=1 ftf

′
t − ΣF = op(1).

Assumption 11 ‖λi‖ ≤ λ̄ < ∞ and
∥∥ 1
N

Λ′Λ− ΣΛ

∥∥ = O( 1√
N

) for some positive definite

matrix ΣΛ.

Assumption 12 The eigenvalues of ΣFΣΛ are distinct.

Assumption 13 There exists M <∞ such that:
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1. E(
∥∥∥ 1√

NT

∑T
s=1

∑N
i=1 fs[eiseit − E(eiseit)]

∥∥∥2

) ≤M for all t,

2. E(
∥∥∥ 1√

NT

∑T
t=1

∑N
i=1 ftλ

′
ieit

∥∥∥2

) ≤M ,

3. E(
∥∥∥ 1√

N

∑N
i=1 λieit

∥∥∥2

) ≤M for all t.

Assumption 14 For any ε > 0,

1. sup
Tε≤k≤T (1−ε)

∥∥∥ 1√
NT

∑k
t=1

∑N
i=1 ftλ

′
ieit

∥∥∥ = Op(1),

2. sup
Tε≤k≤T (1−ε)

∥∥∥ 1√
NT

∑T
t=k+1

∑N
i=1 ftλ

′
ieit

∥∥∥ = Op(1).

Assumption 15 Ω is positive definite and 1√
T

∑Tτ
t=1 vech[Ω−

1
2 (H ′0ftf

′
tH0−Ir)]⇒ W r(r+1)

2

(τ),

where W r(r+1)
2

(·) is an r(r+1)
2

dimensional vector of independent Wiener processes on [0, 1].

Assumption 16 Ω̃(FH0) is consistent for Ω.

Assumption 10 only requires the law of large number to be applicable to the factors for

the whole sample, and thus it weakens Assumption 1. Assumption 11 specifies the conver-

gence rate of 1
N

Λ′Λ, and thus strengthens Assumption 2. Assumptions 3-5 are maintained.

Assumption 12 ensures the uniqueness of the principal component estimator under the null.

Assumption 13 corresponds to and slightly weakens Assumption F in Bai (2003). Assump-

tion 14 requires the term in ‖·‖ to be uniformly Op(1). This is not restrictive since all

summands have zero means. Assumptions 15 requires the functional central limit theorem

to be applicable to vech(H ′0ftf
′
tH0 − Ir). Assumptions 16 requires the HAC estimator of Ω

to be consistent if factors were observable.

Now we are ready to present the limiting distribution:

Theorem 6 Under Assumptions 3-5, 10-16 and L = 0, with
√
T
N
→ 0 and dT

δNT
→ 0 as

(N, T )→∞,

sup
(τ1,...,τ l)∈Λε

FNT (τ 1, ..., τ l;
r̃(r̃ + 1)

2
)

d→ sup
(τ1,...,τ l)∈Λε

F (τ 1, ..., τ l;
r(r + 1)

2
),

where F (τ 1, ..., τ l;
r(r+1)

2
) = 2

lr(r+1)

∑l
ι=1

∥∥∥∥τ ιW r(r+1)
2

(τ ι+1)−τ ι+1W r(r+1)
2

(τ ι)

∥∥∥∥2

τ ιτ ι+1(τ ι+1−τ ι) .
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Critical values are tabulated in Bai and Perron (1998, 2003). Here the degree of freedom

is related to the number of factors. In practical applications the degree of freedom would

be r̃(r̃+1)
2
, thus underestimation of the number of factors will not affect the size of the test12.

Note that
√
T
N
→ 0 and dT

δNT
→ 0 are needed to eliminate the effect of the measurement

error z∗t . This is different from the results in the last section but similar to the results in the

factor-augmented forecasting and FAVAR. Intuitively, testing for structural changes relies on

all the observations and consequently measurement error will accumulate in the test statistic

as T →∞ and dT →∞.
We next consider the consistency of the proposed test. Under the alternative, the process

vech(g̃tg̃
′
t) has l mean shifts and measurement error zt. Thus vech(g̃tg̃

′
t) is not properly

demeaned in calculating the restricted SSNE. On the other hand, the test statistic can

be written as 2
lr̃(r̃+1)

[SSNE0 − min
(τ1,...,τ l)∈Λε

SSNE(k1, ..., kl)] and by taking the minimum for

(τ 1, ..., τ l) ∈ Λε, it ensures vech(g̃tg̃
′
t) is properly demeaned. Thus under the alternative, the

test statistic will diverge as (N, T )→∞.

Theorem 7 Under Assumptions 1-8 and L = l, with dT
T
→ 0 as (N, T )→∞,

sup
(τ1,...,τ l)∈Λε

FNT (τ 1, ..., τ l;
r̃(r̃ + 1)

2
)

p→∞.

The test discussed above is designed for a given number of changes under the alternative.

When the number of changes is misspecified, the test may not be powerful. For example, test

for 0 versus 2 changes should be more powerful than the test for 0 versus 1 change when the

true DGP contains two changes. Following Bai and Perron (1998), we consider the UDmax

and WDmax tests when the number of changes under the alternative is unknown. Given

the maximum possible number of changes M and significance level α, the UDmax is simply

the maximum of the tests for 0 versus l changes with l ≤ M while WDmax is the weighted

maximum of the tests for 0 versus l changes with weights c( r̃(r̃+1)
2

, α, 1)/c( r̃(r̃+1)
2

, α, l). With

Theorem 6, the limiting distributions of both tests have the same form as in Bai and Perron

(1998). Comprehensive critical values are tabulated in Bai and Perron (2003).

12Of course, it will decrease the power.
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4.2 Testing l versus l + 1 Changes

In this subsection, we discuss how to test L = l versus L = l+ 1 for any prespecified positive

integer l. The idea is to estimate l change points first and once they are plugged in, testing

L = l versus L = l+1 is equivalent to testing no change versus a single change in each regime

jointly. The main concern is the effect of using estimated change points and estimated factors

on the limiting distribution and consistency of the test statistic. In what follows, we discuss

the construction of the test statistic and its asymptotic properties. Also, how to use it to

determine the number of changes.

4.2.1 Construction of the Test for L = l versus L = l + 1

First, we estimate l change points, either jointly or sequentially. Let k̃1, ..., k̃l be the estimated

change points. Then plug k̃1, ..., k̃l in and estimate the number of factors and factor space in

each regime. Let r̃ι be the estimated number of factors in the ι-th regime. Under the null,

let F̃ι = (f̃ι,k̃ι−1+1, ..., f̃ι,k̃ι)
′ be the estimated factors, Hι be the rotation matrix, Hι0 be the

limit of Hι, UιNT be the eigenvalue matrix, Uι be the limit of UιNT , Fι = (fι,k̃ι−1+1, ..., fι,k̃ι)
′

and Fι0 = (fι,kι−1,0+1, ..., fι,kι0)′. Note that fι,t is rι dimensional and contains the factors that

appear in the ι-th regime. Under the alternative, there are l+ 1 changes and the l estimated

change points will be close to (Op(1)) the l points that allow the greatest reduction in the

sum of squared normalized errors. Without loss of generality, suppose k̃ι−1 − kι−1,0 = Op(1)

and k̃ι − kι+1,0 = Op(1) for some ι. In this case, the ι-th regime contains an extra change

point13 kι,0 but can be equivalently represented as having no changes but with pseudo factors

gιt, where gιt = Aι1ft for t ∈ [k̃ι−1 + 1, ..., kι0] and gιt = Aι2ft for t ∈ [kι0 + 1, ..., k̃ι]. For

this regime, we denote the estimated factors as g̃ιt and define G̃ι, Gι, Gι0, Jι, Jι0, VιNT and

Vι correspondingly as F̃ι, Fι, Fι0, Hι, Hι0, UιNT and Uι. For the other regimes, we maintain

the same notation. It follows that under the null vech(f̃ιtf̃
′
ιt) is a multivariate time series

with stable mean and measurement error z∗ιt for all ι while under the alternative vech(g̃ιtg̃
′
ιt)

is a multivariate time series with a mean shift and measurement error zιt for some ι. Again,

the test is based on the difference between the restricted and unrestricted sum of squared

normalized error.
13When k̃ι−1 < kι−1,0 or k̃ι > kι+1,0, the ι-th regime also contains the change point kι−1,0 or kι+1,0, but

with k̃ι−1 − kι−1,0 = Op(1) and k̃ι − kι+1,0 = Op(1) these two are asymptotically ignorable.
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Let Ωι = lim
T→∞

V ar(vech( 1√
kι,0−kι−1,0

∑kι,0
t=kι−1,0+1(H ′ι0fιtf

′
ιtHι0 − Irι))) be the long run co-

variance matrix of vech(H ′ι0fιtf
′
ιtHι0 − Irι) and Ω̃ι be the HAC estimator of Ωι using F̃ι and

with kernel function k(·) and bandwidth dT . The test statistic is

FNT (l + 1 |l ) = SSNE(k̃1, ..., k̃l)− min
1≤ι≤l+1

inf
k∈Λι,η

SSNE(k̃1, ..., k̃ι−1, k, k̃ι, ..., k̃l), (9)

where SSNE(k̃1, ..., k̃l) is the restricted sum of squared normalized error and equals

∑l+1

ι=1
SSNEι(k̃ι−1, k̃ι) =

∑l+1

ι=1

∑k̃ι

t=k̃ι−1+1
vech(f̃ιtf̃

′
ιt −

1

k̃ι − k̃ι−1

∑k̃ι

t=k̃ι−1+1

f̃ιtf̃
′
ιt)
′Ω̃−1

ι vech(f̃ιtf̃
′
ιt −

1

k̃ι − k̃ι−1

∑k̃ι

t=k̃ι−1+1
f̃ιtf̃

′
ιt), (10)

SSNE(k̃1, ..., k̃ι−1, k, k̃ι, ..., k̃l) is the unrestricted sum of squared normalized error and equals∑ι−1

κ=1
SSNEκ(k̃κ−1, k̃κ) + SSNEι(k̃ι−1, k, k̃ι) +

∑l+1

κ=ι+1
SSNEκ(k̃κ−1, k̃κ), (11)

and Λι,η = {k : k̃ι−1 + (k̃ι − k̃ι−1)η ≤ k ≤ k̃ι − (k̃ι − k̃ι−1)η}.

4.2.2 Asymptotic Properties of the Test for L = l versus L = l + 1

We first consider the limiting distribution. If the true change points were plugged in, The-

orem 6 implies that for each regime the effect of using estimated factors can be eliminated

if
√
T
N
→ 0 and dT

δNT
→ 0. When the estimated change points are plugged in, we will show

based on Theorem 4 and Theorem 5 that the result still holds if
√
T
N
→ 0 and dT

T
1
4
→ 0.

Since under the null, there are l+1 stable regimes, we modify the assumptions in Theorem

6 so that they are satisfied in each regime. More specifically, Assumption 10 is replaced by

Assumption 1 while Assumptions 11-16 are modified as follows:

Assumption 17 ‖λ0κ,i‖ ≤ λ̄ <∞ for κ = 1, ..., l+1, and
∥∥ 1
N

Γ′Γ− ΣΓ

∥∥ = O( 1√
N

) for some

positive definite matrix ΣΓ.

Assumption 18 Let ΣF,ι be the probability limit of 1
kι,0−kι−1,0

∑kι,0
t=kι−1,0+1 fιtf

′
ιt, Λι contain

the nonzero columns of Λ0 and Λι and ΣΛι be the limit of 1
N

ΛιΛι′. The eigenvalues of ΣF,ιΣΛ,ι

are distinct for all ι.

Assumption 19 There exists M <∞ such that:
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1. E(
∥∥∥ 1√

NT

∑kι,0
s=kι−1,0+1

∑N
i=1 fs[eiseit − E(eiseit)]

∥∥∥2

) ≤M for all t and all ι,

2. E(
∥∥∥ 1√

NT

∑kι,0
t=kι−1,0+1

∑N
i=1 ftλ

′
0ι,ieit

∥∥∥2

) ≤M for all ι,

3. E(
∥∥∥ 1√

N

∑N
i=1 λ0ι,ieit

∥∥∥2

) ≤M for all kι−1,0 < t ≤ kι,0 and all ι.

Assumption 20 For any ε > 0 and all ι,

1. sup
(kι,0−kι−1,0)ε≤k−kι−1,0≤(kι,0−kι−1,0)(1−ε)

∥∥∥ 1√
NT

∑k
t=kι−1,0+1

∑N
i=1 ftλ

′
0ι,ieit

∥∥∥ = Op(1),

2. sup
(kι,0−kι−1,0)ε≤k−kι−1,0≤(kι,0−kι−1,0)(1−ε)

∥∥∥ 1√
NT

∑kι,0
t=k+1

∑N
i=1 ftλ

′
0ι,ieit

∥∥∥ = Op(1).

Assumption 21 Ωι is positive definite and

1√
kι,0 − kι−1,0

∑kι−1,0+(kι,0−kι−1,0)τ

t=kι−1,0+1
vech[Ω

− 1
2

ι (H ′ι0fιtf
′
ιtHι0 − Irι)]⇒ W rι(rι+1)

2

(τ).

Assumption 22 Let Ω̃(FιHι0) be the HAC estimator of Ωι using FιHι0, Ω̃(FιHι0) is con-

sistent for Ωι.

Now we are ready to present the result:

Theorem 8 Under Assumptions 1, 3-5, 17-22 and L = l, with k̃ι − kι,0 = Op(1) for all ι,
√
T
N
→ 0 and dT

T
1
4
→ 0, we have FNT (l + 1 |l ) d→ sup

1≤ι≤l+1
Fι, where

Fι = sup
η≤τ≤(1−η)

1

τ(1− τ)

∥∥∥W rι(rι+1)
2

(τ)− τW rι(rι+1)
2

(1)
∥∥∥2

and Fι is independent with each other for different ι.

Critical values can be obtained via simulations and here they are related to the number

of factors in each regime. In case the number of factors is stable, we have:

Corollary 1 If rι = r for all ι, lim
(N,T )→∞

P (FNT (l + 1 |l ) ≤ x) = G r(r+1)
2

,η
(x)l+1, where

G r(r+1)
2

,η
(x) is the c.d.f. of sup

η≤τ≤(1−η)

1
τ(1−τ)

∥∥∥W r(r+1)
2

(τ)− τW r(r+1)
2

(1)
∥∥∥2

.
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Critical values for this case are tabulated in Bai and Perron (1998, 2003). We next show

that FNT (l + 1 |l ) is also consistent. Let ΣG,ι be the probability limit of 1
kι,0−kι−1,0

gιtg
′
ιt, Γι

contain the nonzero columns of Λ0, Λι and Λι+1, and ΣΓι be the limit of 1
N

ΓιΓι′. Assumption

18 is replaced by:

Assumption 23 The eigenvalues of ΣG,ιΣΓι are distinct.

Since FNT (l+1 |l ) = sup
1≤κ≤l+1

sup
k∈Λκ,η

[SSNEκ(k̃κ−1, k̃κ)−SSNEκ(k̃κ−1, k, k̃κ)] ≥ SSNEι(k̃ι−1, k̃ι)−

SSNEι(k̃ι−1, kι0, k̃ι) and under the alternative SSNEι(k̃ι−1, k̃ι) is not properly demeaned,

FNT (l + 1 |l ) will diverge as (N, T )→∞.

Theorem 9 Under Assumptions 1-5, 19-20, 23 and L = l + 1, with
∣∣∣k̃ι − kι+1,0

∣∣∣ = Op(1)

and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1) for some ι and dT
T
→ 0, we have FNT (l + 1 |l ) p→∞.

4.2.3 Determining the Number of Changes

The sequential test FNT (l + 1 |l ) allows us to determine the number of changes. First,

estimate l change points, either jointly or sequentially, where l could be suggested by some

prior information or just zero. Next, perform the test FNT (l + 1 |l ). If rejected14, estimate
l+1 change points, either jointly or sequentially, and then perform the test FNT (l+2 |l + 1).

Repeat this procedure until the null can not be rejected. Let L̂ be the estimated number of

changes, it is not diffi cult to see that lim
(N,T )→∞

P (L̂ < L) = 0 and lim
(N,T )→∞

P (L̂ = L + 1) = α.

let α→ 0 as (N, T )→∞, then L̂ will be consistent.

5 REESTIMATING THE CHANGE POINTS

Once the estimated number of factors in each regime are available, we can reestimate the

change points by minimizing the sum of least squares residuals. More specifically, for any

possible change points (k1, ..., kL), we split the sample into L+ 1 regimes and minimize the

sum of squared residuals in each regime. That is to say, choose f r̃κt and λr̃κκi to minimize∑kκ
t=kκ−1+1

∑N
i=1(xit − f r̃κ′t λr̃κκi )

2. Note that here we use superscript r̃κ to emphasize that the

14It can be shown that the test is also consistent when L > l + 1.
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dimension of the factors and loadings are determined by r̃κ. Denote the estimated factors

and loadings in the κ-th regime as f̂ r̃κt and λ̂
r̃κ

κi , the total sum of squared residuals is

S(k1, ..., kL) =
∑L+1

κ=1

∑kκ

t=kκ−1+1

∑N

i=1
(xit − f̂ r̃κ′t λ̂

r̃κ

κi )
2 (12)

and the reestimated change points are

(k̂1, ..., k̂L) = arg minS(k1, ..., kL). (13)

According to Theorem 4, r̃κ is consistent for rκ, thus asymptotically we can treat rκ as

known. In case rκ, κ = 1, ..., L+ 1 are all the same, we can prove that

(k̂1, ..., k̂L)
p→ (k1,0, ..., kL,0) as (N, T )→∞. (14)

When reestimated change points are available, we can recalculate the number of factors and

factor space in each regime and also the test of l versus l + 1 changes. Given consistency of

(k̂1, ..., k̂L), the theoretical properties of these recalculated estimators and tests remain the

same. Their finite sample performance should be better.

Assuming the number of factors in each regime is known and the same, Massacci (2015)

uses least squares to estimate the threshold in a high dimensional factor model with a single

threshold and proves the estimated threshold is consistent with convergence rate Op(1/NT ).

Since structural change is a special case of the threshold model, in the single change case

consistency of the estimated change point follows directly from Massacci (2015). Here with

multiple changes, our proof is conceptually similar to Massacci (2015) but more diffi cult.

This is because in the single change case the lower boundary of the first regime and the

upper boundary of the second regime are known while in multiple changes case, for those

regimes in the middle of the sample both boundaries are unknown. Detailed proof of (14) is

available upon request from the authors.

Note that consistency of r̃κ for rκ is the key for establishing (14). Consider the case

with one factor and one structural change at k0. If we choose r̃1 = r̃2 = 1, the estimated

change point k̂ in (13) would be consistent. However, if we choose r̃1 = r̃2 = 2, k̂ provides no

information for k0. To see this, suppose k < k0 and (k0−k)/T > η > 0. The first subsample

does not contain structural change. The second subsample does contain an unaccounted

structural change but r̃2 = 2 still allows the estimated factors to fully capture the true factor
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space because one factor with one structural change can be represented as two factors with

no structural change. Thus with r̃1 = r̃2 = 2, the total sum of squared residuals S(k) would

still be close to S(k0) even if k is far away from k0.

In general, for the single change case, it is not diffi cult to establish that the condition to

ensure consistency of k̂ is

r1 ≤ r̃1 < r̄,

r2 ≤ r̃2 < r̄. (15)

More specifically, r1 ≤ r̃1 and r̃2 < r̄15 ensures P (k̂ < k0) → 0 as (N, T ) → ∞ while r̃1 < r̄

and r2 ≤ r̃2 ensures P (k̂ > k0) → 0 as (N, T ) → ∞. Thus to ensure consistency of k̂, r̃1

and r̃2 do not have to be the same and are not necessarily unique. Massacci (2015) proposes

choosing r̃1 = r̃2 = rmax in estimating the threshold, but according to (15) this does not

necessarily work if rmax ≥ r̄ or rmax < r1 or rmax < r2. Chen (2015) proposes choosing

r̃1 = r̃2 = r̃ − 1 in estimating a single change point. Since r̃ is consistent for r̄, this is

equivalent to choosing r̄− 1. For the single change case with r1 = r2, Chen (2015)’s method

should work because in this case r̄ must be larger than r1 and r2
16 and thus r̄ − 1 satisfies

condition (15). Strict proof of Chen (2015)’s method is currently unavailable. The main

issue of Chen (2015)’s method is that it does not necessarily work in the multiple changes

case. Consider the case with one factor and two changes at k1,0 and k2,0. In this case r̄ = 3

and thus choosing r̃ − 1 is equivalent to choosing r̃1 = r̃2 = r̃3 = 2 in calculating S(k1, k2)

in equation (12). Suppose k2 is fixed at its true value k2,0 and let us compare S(k1, k2,0) to

S(k1,0, k2,0) with k1 < k1,0 and (k1,0 − k1)/T > η > 0. First, the sums of squared residuals

from the third regime are the same. Thus it reduced to the case with single change point

k1,0 with sample t = 1, ..., k2,0. As discussed above, the first subsample (t = 1, ..., k1) does

not contain structural change. The second subsample (t = k1 + 1, ..., k2,0) does contain an

unaccounted structural change but r̃2 = 2 still allows the estimated factors to fully capture

the true factor space in the second regime. Thus S(k1, k2,0) will not be significantly larger

than S(k1,0, k2,0) even if k1 is far away from k1,0. For our method, since r̃κ is consistent for

rκ, consistency of the estimated change points is guaranteed in both the single change and

multiple changes case. Also, in the single change case, our method is more effi cient than

15Recall that r̄ is the number of pseudo factors for the equivalent model with no structural change
16Recall that in this paper we only consider the case where the matrix that contains all different nonzero

vectors of factor loadings is full rank.
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Chen (2015) because if r̄ − 1 > r1 and r2, the number of factors is overestimated in each

regime and it introduces extra error in (12).

Finally, we want to point out that consistency of the reestimated change points is not

guaranteed if rκ are allowed to be different for different κ. That is to say, Massacci (2015)’s

method does not necessarily work if rκ are allowed to be different. Consider the important

case where after a single change point one new factor emerges while the loadings of the

existing factors does not change. In this case, condition (15) is still required to ensure

consistency of k̂. But condition (15) can never be satisfied because r1 < r2 = r̄. The

reestimated change point k̂ is at best one-sided consistent (P (k̂ > k0)→ 0 as (N, T )→∞).
Therefore, in cases where rκ are different, the first step change points estimator (k̃1, ..., k̃L)

are more robust.

6 MONTE CARLO SIMULATIONS

This section presents simulation results to evaluate the finite sample properties of our pro-

posed estimation and testing procedures. The number of simulations is 1000.

6.1 Data Generating Process

The factors are generated by

ft,p = ρft−1,p + ut,p for t = 2, ..., T and p = 1, ..., 3,

where ut = (ut,1, ut,2, ut,3)′ is i.i.d. N(0, I3) for t = 2, ..., T and f1 = (f1,1, f1,2, f1,3)′ is i.i.d.

N(0, 1
1−ρ2 I3) so that the factors are stationary. The idiosyncratic errors are generated by:

ei,t = αei,t−1 + vi,t for i = 1, ..., N and t = 2, ..., T ,

where vt = (v1,t, ..., vN,t)
′ is i.i.d. N(0,Ω) for t = 2, ..., T and e1 = (e1,1, ..., eN,1)′ is

N(0, 1
1−α2 Ω) so that the idiosyncratic errors are stationary. Ω is generated as Ωij = β|i−j|

so that β captures the degree of cross-sectional dependence of the idiosyncratic errors. In

addition, ut and vt are mutually independent for all t.

For factor loadings, we consider two different setups. Setup 1 contains no structural

change and λi is i.i.d. N(0, 1
3
I3) across i. Setup 1 will be used to evaluate the size of the

tests for multiple changes. Setup 2 contains two structural changes and hence three regimes.
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In the first and the second regime, the last element of λ1,i and λ2,i are zeros for all i while the

first two elements of λ1,i and λ2,i are both i.i.d. N(0, 1
2
I2) across i. In the third regime, λ3,i is

i.i.d. N(0, 1
3
I3) across i. Also, λ1,i, λ2,i and λ3,i are independent. Thus in Setup 2 the number

of factors in the three regimes are 2, 2, 3 respectively and the number of pseudo factors is

7. Setup 2 will be used to evaluate the performance of the estimated change points and the

estimated number of factors in each regime. Setup 3 also contains two structural changes

while λ1,i, λ2,i and λ3,i are all i.i.d. N(0, 1
3
I3) across i and independent of each other. Setup

3 will be used to evaluate the power of the tests for multiple changes and the probabilities

of selecting the correct number of changes. Once factors, loadings and errors are available,

the data is generated as:

Setup 1: xit = f ′tλi + eit,

Setup 2 and 3: xit = f ′tλκ,i + eit, if [Tτκ−1,0] + 1 ≤ t ≤ [Tτκ,0] for κ = 1, 2, 3,

where (τ 1,0, τ 2,0) = (0.3, 0.7) are the change fractions. Finally, all factor loadings are inde-

pendent of the factors and the idiosyncratic errors.

6.2 Estimating the Change Points

We first estimate the number of pseudo factors using ICp1 in Bai and Ng (2002) with the

maximum number of factors rmax = 12. When using other criterion, e.g., ICp2, ICp3 in Bai

and Ng (2002) and ER, GR in Ahn and Horenstein (2013), the results are similar, and hence

omitted. Once estimated pseudo factors are available, the change points are estimated as in

equation (5) with minimum sample size of each regime T × 0.1.

Figures 1 and 2 are the histograms of the jointly estimated change points for (N, T ) =

(100, 100) and (N, T ) = (100, 200) respectively. Each figure includes four subfigures cor-

responding to (ρ, α, β) = (0, 0, 0), (0.7, 0, 0), (0, 0.3, 0) and (0, 0, 0.3) respectively. In all

subfigures, more than 95 percent of the mass is concentrated within a (-8,8) neighborhood of

the true change points. This confirms our theoretical result that k̃κ − kκ,0 = Op(1). Figures

1 and 2 also show that the performance of the estimated change points deteriorates when ρ

increases from 0 to 0.7 while serial correlation and cross-sectional dependence of the errors

seems to have no effect. This is also in line with the theoretical predictions because the er-

rors only affect estimation of the pseudo factors and does not affect the estimation of change

points directly.
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6.3 Estimating the Number of Factors in Each Regime

The number of factors in each regime is estimated using ICp2 in Bai and Ng (2002) and ER

and GR in Ahn and Horenstein (2013), with maximum number of factors 8. We consider

various (N, T ) combinations and representative (ρ, α, β) combinations. These should be able

to cover most empirically relevant cases. The results are shown in Table 1. x/y denotes the

frequency of underestimation and overestimation is x% and y% respectively. In all cases,

the probability of underestimation plus overestimation, x + y is significantly smaller than

the probability that the estimated change points differ from the true change points. This

implies Op(1) deviation from the true change points does not significantly affect r̃1, r̃ 2 and

r̃ 3. Also, when the size of each subsample is large enough, x and y are both zeros, thus the

performance of r̃1, r̃ 2 and r̃ 3 is as good as the case where change points are known. This

further confirms our theoretical result that r̃1, r̃ 2 and r̃ 3 are robust to Op(1) estimation

error of the change points.

6.4 Testing Multiple Changes

Now we present the results for the various tests of multiple changes. Table 2 reports size of

the test for 0 versus l changes with l = 1, 2, 3, size of the UDmax and WDmax tests and the

probabilities of selecting changes when the data is generated under Setup 1. We consider two

methods of estimating the number of changes. L̂1 and L̂2. L̂1 is obtained by the sequential

procedure as discussed in Section 4.2.3 while L̂2 is obtained by using WDmax to test the

presence of at least one change first and then performing the sequential procedure starting

from 1 versus 2 changes. Table 3 reports the power of the test for 0 versus l changes with

l = 1, 2, 3, the power of the UDmax and WDmax tests, the power of the test for 1 versus 2

changes, the size of the test for 2 versus 3 changes and the probabilities of selecting changes

when the data is generated under Setup 3. For both tables, we consider (N, T ) = (100, 100)

and (100, 200) with ε = 0.05, 0.10, 0.15, 0.20 and 0.25, and (ρ, α, β) = (0, 0, 0), (0.7, 0, 0) and

(0.7, 0.3, 0.3). We delete the case T = 100 and ε = 0.05 to ensure the sample size of each

regime is at least 10.

Note that in calculating the HAC estimator of the covariance matrix of the second mo-

ments of the estimated factors, Bartlett’s kernel is used with bandwidth T 1/3 for testing 0

versus l changes and 2 × T 1/5 for testing l versus l + 1 changes. In estimating the number

 151



of factors at the very beginning, ICp3 17 is used except for the case (N, T ) = (100, 100) and

(ρ, α, β) = (0.7, 0.3, 0.3). In that case, ICp3 overestimates too much, thus we switch to ICp1.

The critical values are obtained from Bai and Perron (2003) with nominal size of 5%.

First consider the size properties. Table 2 shows that overall, all tests are slightly un-

dersized. The undersizing phenomenon is quite obvious when T = 100 and ρ = 0. This is

in line with previous findings, see Diebold and Chen (1996). When T increases to 200, the

empirical size gets closer to the nominal size 5%. It is also easy to see that when ρ = 0.7 and

ε = 0.05, the tests are significantly oversized. Thus we recommend choosing ε at least 0.10

when the factors have serial correlation. Serial and cross-sectional dependence of the errors

do not affect the performance too much. Once T is large enough to guarantee the accuracy

of the estimated factors, serial and cross-sectional dependence of the errors do not seem to

affect the size of the various tests.

Now consider the power properties. Powers of the tests for 0 versus l changes are good

in all cases. WDmax has good power except when T = 100 and ε = 0.25, and is more

powerful than UDmax. When T = 200, test for 1 versus 2 changes has good power, thus

the probabilities of selecting the correct number of changes is always close to 1. However,

the power decreases a lot when T = 100, and thus L̂1 and L̂2 tend to underestimate the

number of changes. This is because when T = 100, the sample size of each regime is too

small to be robust to the estimation error of the change points. We also conduct simulations

gradually increasing T and find that when T increases to 140, the performance is as good

as T = 200. Of course, the power also depends upon the location of the change points. We

suggest that, for each regime, the sample size should be at least 40. Finally, when T = 100

serial and cross-sectional dependence of the errors decrease the power. This is again caused

by small T . In summary, results in both tables are consistent with our theoretical derivation

and show the usefulness of the proposed testing procedure.

7 CONCLUSIONS

This paper studies a high dimensional factor model with multiple changes. The main issues

tackled are the estimation of change points, the estimation of the number of factors and

the factor space in each regime, tests for the presence of multiple changes and tests for

17As discussed in Section 3.1.1, less conservative criterion is recommended in estimating the number of
factors in the first step.
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determining the number of changes. Our strategy is based on the second moments of the

estimated pseudo factors and we show that estimation errors contained in the estimated

factors have different effects on estimating and testing structural change. The proposed

procedure is easy to implement, computationally effi cient and able to take into account the

effect of serial correlation. Simulation studies confirm the theoretical results and demonstrate

its good performance. A natural next step is to use bootstrap to fix the undersizing issue

when T is less than 100, as discussed in Diebold and Chen (1996). It will be also interesting

to apply our theoretical results to study the financial market comovement during crises, as

discussed in Bekaert, Ehrmann, Fratzscher and Mehl (2014) and Belvisi, Pianeti and Urga

(2015).
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(ρ, α, β) = (0, 0, 0), (τ 1, τ 2) = (0.3, 0.7) (ρ, α, β) = (0.7, 0, 0), (τ 1, τ 2) = (0.3, 0.7)

(ρ, α, β) = (0, 0.3, 0), (τ 1, τ 2) = (0.3, 0.7) (ρ, α, β) = (0, 0, 0.3), (τ 1, τ 2) = (0.3, 0.7)

Figure 1: Histogram of estimated change points for (N, T ) = (100, 100), r1 = 2, r2 = 2, r3 =
3, r̄ = 7
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(ρ, α, β) = (0, 0, 0), (τ 1, τ 2) = (0.3, 0.7) (ρ, α, β) = (0.7, 0, 0), (τ 1, τ 2) = (0.3, 0.7)

(ρ, α, β) = (0, 0.3, 0), (τ 1, τ 2) = (0.3, 0.7) (ρ, α, β) = (0, 0, 0.3), (τ 1, τ 2) = (0.3, 0.7)

Figure 2: Histogram of estimated change points for (N, T ) = (100, 200), r1 = 2, r2 = 2, r3 =
3, r̄ = 7
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Table 1: Estimated number of factors in each regime for r1 = 2, r2 = 2, r3 = 3, r̄ = 7

N T ICp2 GR ER
r̃1 r̃ 2 r̃ 3 r̃1 r̃ 2 r̃ 3 r̃1 r̃ 2 r̃ 3

ρ = 0, α = 0, β = 0
100 100 0/0 0/1 1/0 1/0 1/0 5/0 1/0 0/0 3/0
100 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 300 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

ρ = 0.7, α = 0, β = 0
100 100 4/4 0/10 1/2 1/2 3/5 12/0 1/0 1/6 6/0
100 200 0/0 0/2 0/0 0/1 0/0 0/0 0/0 0/1 0/0
200 200 0/0 0/3 0/0 0/0 0/1 0/0 0/0 0/1 0/0
200 300 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0

ρ = 0, α = 0.3, β = 0
100 100 0/0 0/1 2/0 3/0 1/0 11/0 1/0 1/0 7/0
100 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 300 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

ρ = 0, α = 0, β = 0.3
100 100 0/0 0/0 1/0 1/0 1/0 6/0 1/0 0/0 4/0
100 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 200 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
200 300 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
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Table 2: Size of tests and probabilities of selecting changes

ε l|0 Dmax L̂1 L̂2

1 2 3 U W 0 1 2 0 1 2
N = 100, T = 100, ρ = 0, α = 0, β = 0

0.10 0.4 0.2 0.1 0.4 0.2 99.6 0.4 0 99.8 0.2 0
0.15 0.1 0 0 0.1 0.1 99.9 0.1 0 99.9 0.1 0
0.20 0 0 0 0 0 100 0 0 100 0 0
0.25 0.1 0 0 0 0 99.9 0.1 0 100 0 0

N = 100, T = 200, ρ = 0, α = 0, β = 0
0.05 1.8 1.8 1.7 1.6 1.4 98.2 1.8 0 98.6 1.4 0
0.10 0.2 0.2 0.5 0.3 0.1 99.8 0.2 0 99.9 0.1 0
0.15 0.6 0.5 0.2 0.7 0.2 99.4 0.6 0 99.8 0.2 0
0.20 0.4 0.3 0.1 0.4 0 99.6 0.4 0 100 0 0
0.25 0.9 0.4 0 0.7 0.2 99.1 0.9 0 99.8 0.2 0

N = 100, T = 100, ρ = 0.7, α = 0, β = 0
0.10 2.3 2.6 3.0 2.5 2.2 97.7 2.3 0 97.8 2.2 0
0.15 0.9 1.8 1.0 1.1 1.2 99.1 0.9 0 98.8 1.2 0
0.20 0.9 1.3 0.5 0.9 0.6 99.1 0.9 0 99.4 0.6 0
0.25 0.8 1.3 0 0.7 0.1 99.2 0.8 0 99.9 0.1 0

N = 100, T = 200, ρ = 0.7, α = 0, β = 0
0.05 12.7 25.9 23.4 15.9 17.5 87.3 11.8 0.8 82.5 16.1 0.13
0.10 5.3 8.4 8.8 6.4 7.5 94.7 5.1 0.2 92.5 7.2 0.3
0.15 4.5 5.9 4.2 5.1 5.2 95.5 4.5 0 94.8 5.0 0.2
0.20 3.4 4.2 4.0 3.3 3.4 96.6 3.4 0 96.6 3.4 0
0.25 3.6 3.5 0.3 2.8 2.1 96.4 3.6 0 97.9 2.1 0

N = 100, T = 100, ρ = 0.7, α = 0.3, β = 0.3
0.10 2.0 2.5 3.1 2.5 2.4 98.0 2.0 0 97.6 2.4 0
0.15 0.8 2.0 1.0 1.0 1.1 99.2 0.8 0 98.9 1.1 0
0.20 1.0 1.4 1.6 1.0 0.7 99.0 1.0 0 99.3 0.7 0
0.25 0.8 1.3 0.1 0.6 0.1 99.2 0.8 0 99.9 0.1 0

N = 100, T = 200, ρ = 0.7, α = 0.3, β = 0.3
0.05 12.5 26.8 23.8 16.3 17.8 87.5 11.7 0.7 82.2 16.5 1.2
0.10 5.4 8.0 8.2 6.2 7.3 94.6 5.2 0.2 92.7 7.0 0.3
0.15 4.6 5.6 4.2 5.3 5.3 95.4 4.6 0 94.7 5.2 0.1
0.20 3.7 4.0 1.9 3.6 3.2 96.3 3.7 0 96.8 3.2 0
0.25 3.6 3.5 0.3 2.9 2.1 96.4 3.6 0 97.9 2.0 0.1
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Table 3: Power of tests and probabilities of selecting changes for L = 2

ε l|0 Dmax l + 1|l L̂1 L̂2

1 2 3 U W 2|1 3|2 0 1 2 0 1 2
N = 100, T = 100, ρ = 0, α = 0, β = 0

0.10 100 100 100 98.4 100 23.4 0 0 76.6 23.4 0 76.6 23.4
0.15 100 100 100 23.1 100 12.4 0 0 87.6 12.4 0 87.6 12.4
0.20 100 100 100 4.9 99.9 9.6 0 0 90.4 9.6 0.1 90.3 9.6
0.25 100 100 100 3.6 3.7 11.1 0 0 88.9 11.1 96.3 3.3 0.4

N = 100, T = 200, ρ = 0, α = 0, β = 0
0.05 100 100 100 100 100 100 0.5 0 0 99.5 0 0 99.5
0.10 100 100 100 100 100 100 0 0 0 100 0 0 100
0.15 100 100 100 100 100 100 0 0 0 100 0 0 100
0.20 100 100 100 100 100 100 0 0 0 100 0 0 100
0.25 100 100 100 100 100 100 0 0 0 100 0 0 100

N = 100, T = 100, ρ = 0.7, α = 0, β = 0
0.10 100 100 100 98.9 100 41.9 0.1 0 58.1 41.8 0 58.1 41.8
0.15 100 100 100 28.7 100 23.3 0 0 76.7 23.3 0 76.7 23.3
0.20 100 100 100 5.9 100 15.8 0 0 84.2 15.8 0 84.2 15.8
0.25 100 100 100 4.3 4.3 15.5 0 0 84.5 15.5 95.7 3.6 0.7

N = 100, T = 200, ρ = 0.7, α = 0, β = 0
0.05 100 100 100 100 100 100 3.9 0 0 96.1 0 0 96.1
0.10 100 100 100 100 100 100 0.4 0 0 99.6 0 0 99.6
0.15 100 100 100 100 100 100 0.1 0 0 99.9 0 0 99.9
0.20 100 100 100 100 100 100 0 0 0 100 0 0 100
0.25 100 100 100 100 100 100 0 0 0 100 0 0 100

N = 100, T = 100, ρ = 0.7, α = 0.3, β = 0.3
0.10 97.3 98.5 99.9 78.5 97.7 37.0 0.3 2.7 60.6 36.5 2.3 60.9 36.6
0.15 97.5 98.9 100 16.9 96.9 19.6 0 2.5 78.0 19.5 3.1 77.4 19.5
0.20 97.5 99.9 100 1.3 95.1 15.3 0 2.5 82.2 15.3 4.9 80.1 15.0
0.25 97.5 99.9 99.2 0.1 1.4 15.7 0 2.5 81.9 15.6 98.6 1.2 0.2

N = 100, T = 200, ρ = 0.7, α = 0.3, β = 0.3
0.05 100 100 100 100 100 100 4.2 0 0 95.8 0 0 95.8
0.10 100 100 100 100 100 100 0.4 0 0 99.6 0 0 99.6
0.15 100 100 100 100 100 100 0.1 0 0 99.9 0 0 99.9
0.20 100 100 100 100 100 100 0 0 0 100 0 0 100
0.25 100 100 100 100 100 100 0 0 0 100 0 0 100
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APPENDIX

A HAJEK-RENYI INEQUALITY

For a sequence of independent random variables {xt, t = 1, ...} with Ext = 0 and Ex2
t = σ2

t ,

Hajek and Renyi proved that for any integers m and T ,

P ( sup
m≤k≤T

ck

∣∣∣∑k

t=1
xt

∣∣∣ > M) ≤ 1

M2
(c2
m

∑m

t=1
σ2
t +

∑T

t=m+1
c2
tσ

2
t ), (16)

where {ck, k = 1, ...} is a sequence of nonincreasing positive numbers. It is easy to see that
if σ2

t ≤ σ2 for all t and ck = 1
k
, P ( sup

m≤k≤T

∣∣∣ 1
k

∑k
t=1 xt

∣∣∣ > M) ≤ 2σ2

M2
1
m
, thus sup

1≤k≤T

∣∣∣ 1
k

∑k
t=1 xt

∣∣∣ =

Op(1) and sup
Tτ≤k≤T

∣∣∣ 1
k

∑k
t=1 xt

∣∣∣ = Op(
1√
T

). If ck = 1√
k
, P ( sup

m≤k≤T

∣∣∣ 1√
k

∑k
t=1 xt

∣∣∣ > M) ≤ σ2

M2 (1 +∑T
k=m+1

1
k
), thus sup

1≤k≤T

∣∣∣ 1√
k

∑k
t=1 xt

∣∣∣ = Op(
√

log T ) since
∑T

k=1
1
k
− log T converges to the

Euler constant and sup
Tτ≤k≤T

∣∣∣ 1√
k

∑k
t=1 xt

∣∣∣ = Op(1) since
∑T

k=m+1
1
k

=
∑T

k=1
1
k
−
∑Tτ

k=1
1
k
→

log T − log Tτ = log 1
τ
.

Hajek-Renyi inequality is a more powerful tool than the functional CLT for calculating

the stochastic order of sup-type terms. It has been extended to various settings, including

martingale difference, martingale, vector-valued martingale, mixingale and linear process,

see Bai (1996).

B PROOF OF PROPOSITION 1

Proof. For any ε > 0 and η1 > 0, ..., ηL > 0, define D = {(k1, ..., kL) : (τ ι0 − ηι)T ≤ kι ≤
(τ ι0 + ηι)T for ι = 1, ..., L}, we need to show P ((k̃1, ..., k̃L) ∈ Dc) < ε as (N, T ) → ∞.
Since Dc = ∪Lι=1{(k1, ..., kL) :for κ = 1, ..., L, either kκ < (τ ι0 − ηι)T or kκ > (τ ι0 +

ηι)T} = ∪Lι=1D
c
(ι), it suffi ces to show P ((k̃1, ..., k̃L) ∈ Dc

(ι)) < ε as (N, T ) → ∞ for all

ι. Since (k̃1, ..., k̃L) = arg min S̃(k1, ..., kL), S̃(k̃1, ..., k̃L) ≤ S̃(k1,0, ..., kL,0) ≤
∑T

t=1(yt +

zt)
′(yt + zt). If (k̃1, ..., k̃L) ∈ Dc

(ι), then min
(k1,...,kL)∈Dc

(ι)

S̃(k1, ..., kL) = S̃(k̃1, ..., k̃L). Thus

(k̃1, ..., k̃L) ∈ Dc
(ι) implies min

(k1,...,kL)∈Dc
(ι)

S̃(k1, ..., kL) ≤
∑T

t=1(yt + zt)
′(yt + zt) and it suffi ces

to show P ( min
(k1,...,kL)∈Dc

(ι)

S̃(k1, ..., kL)−
∑T

t=1(yt + zt)
′(yt + zt) ≤ 0) < ε as (N, T )→∞.

For any given partition (k1, ..., kL), let Σ̃ι = 1
kι−kι−1

∑kι
t=kι−1+1 g̃tg̃

′
t and at = vech(Σκ− Σ̃ι)

 161



for t ∈ [kι−1+1, kι]∩[kκ−1,0+1, ..., kκ,0], ι, κ = 1, ..., L+1. It follows vech(g̃tg̃
′
t−Σ̃ι) = at+yt+zt

and

S̃(k1, ..., kL) =
∑L+1

ι=1

∑kι

t=kι−1+1
[vech(g̃tg̃

′
t − Σ̃ι)]

′[vech(g̃tg̃
′
t − Σ̃ι)]

=
∑T

t=1
(yt + zt)

′(yt + zt) +
∑T

t=1
a′tat + 2

∑T

t=1
a′t(yt + zt). (17)

Thus it suffi ces to show P ( min
(k1,...,kL)∈Dc

(ι)

[
∑T

t=1 a
′
tat + 2

∑T
t=1 a

′
t(yt + zt)] ≤ 0) < ε as (N, T )→

∞. Since min
(k1,...,kL)∈Dc

(ι)

[
∑T

t=1 a
′
tat + 2

∑T
t=1 a

′
t(yt + zt)] ≤ 0 implies min

(k1,...,kL)∈Dc
(ι)

∑T
t=1 a

′
tat ≤

2 sup
(k1,...,kL)∈Dc

(ι)

∣∣∣∑T
t=1 a

′
t(yt + zt)

∣∣∣, it suffi ces to show that the left hand side dominates the

right hand side asymptotically.

Consider the left hand side first. For any (k1, ..., kL) ∈ Dc
(ι), there exists κ

∗ such that

kκ∗−1 < (τ ι0−ηι)T and kκ∗ > (τ ι0 +ηι)T , thus for t ∈ [(τ ι0−ηι)T, τ ι0T ], at = vech(Σ̃κ∗−Σι)

and for t ∈ [τ ι0T + 1, (τ ι0 + ηι)T ], at = vech(Σ̃κ∗ − Σι+1). So for any (k1, ..., kL) ∈ Dc
(ι),∑T

t=1
a′tat

≥
∑τ ι0T

t=(τ ι0−ηι)T
a′tat +

∑(τ ι0+ηι)T

t=τ ι0T+1
a′tat

≥ ηιT [vech(Σ̃κ∗ − Σι)
′vech(Σ̃κ∗ − Σι) + vech(Σ̃κ∗ − Σι+1)′vech(Σ̃κ∗ − Σι+1)]

≥ ηιT
vech(Σι − Σι+1)′vech(Σι − Σι+1)

2
, (18)

where the last inequality is due to (x− a)2 + (x− b)2 = 2(x− a+b
2

)2 + (a−b)2

2
for any x. Thus

min
(k1,...,kL)∈Dc

(ι)

∑T
t=1 a

′
tat ≥ ηιT

vech(Σι−Σι+1)′vech(Σι−Σι+1)
2

. Next, the right hand side is no larger

than ∣∣∣∣∑L+1

κ=1

∑kκ,0

t=kκ−1,0+1
vech(Σκ)

′(yt + zt)

∣∣∣∣ (19)

+ sup
(k1,...,kL)∈Dc

(ι)

∣∣∣∣∑L+1

ι=1

∑kι

t=kι−1+1
vech(Σ̃ι)

′(yt + zt)

∣∣∣∣ . (20)
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For the first term,∣∣∣∣∑L+1

κ=1

∑kκ,0

t=kκ−1,0+1
vech(Σκ)

′yt

∣∣∣∣
≤

∑L+1

κ=1

∣∣∣∣∑kκ,0

t=kκ−1,0+1
vech(Σκ)

′yt

∣∣∣∣ ≤∑L+1

κ=1
‖Σκ‖

∥∥∥∥∑kκ,0

t=kκ−1,0+1
yt

∥∥∥∥
≤

∑L+1

κ=1
‖Σκ‖ ‖J0‖2 ‖Rκ‖2

∥∥∥∥∑kκ,0

t=kκ−1,0+1
(ftf

′
t − ΣF )

∥∥∥∥ = op(T ), (21)

where the last equality follows from Assumption 1; and∣∣∣∣∑L+1

κ=1

∑kκ,0

t=kκ−1,0+1
vech(Σκ)

′zt

∣∣∣∣ ≤∑L+1

κ=1
‖Σκ‖

∥∥∥∥∑kκ,0

t=kκ−1,0+1
zt

∥∥∥∥ = op(T ), (22)

where the last equality follows from Lemma 5. For the second term, define bt = vech(Σκ)

for t ∈ [kκ−1,0 + 1, ..., kκ,0], κ = 1, ..., L + 1, then vech(g̃tg̃
′
t) = bt + yt + zt for all t and

vech(Σ̃ι) = 1
kι−kι−1

∑kι
t=kι−1+1 vech(g̃tg̃

′
t) = 1

kι−kι−1

∑kι
t=kι−1+1(bt + yt + zt). It follows that the

second term is no larger than

sup
(k1,...,kL)∈Dc

(ι)

∣∣∣∣∑L+1

ι=1

1

kι − kι−1

(
∑kι

t=kι−1+1
bt)
′(
∑kι

t=kι−1+1
(yt + zt))

∣∣∣∣
+ sup

(k1,...,kL)∈Dc
(ι)

∣∣∣∣∑L+1

ι=1

1

kι − kι−1

(
∑kι

t=kι−1+1
(yt + zt))

′(
∑kι

t=kι−1+1
(yt + zt))

∣∣∣∣
≤ (L+ 1)( sup

1≤kι−1<kι≤T

∥∥∥∥∥
∑kι

t=kι−1+1(yt + zt)√
kι − kι−1

∥∥∥∥∥
2

+

sup
1≤kι−1<kι≤T

∥∥∥∥∥
∑kι

t=kι−1+1 bt√
kι − kι−1

∥∥∥∥∥ sup
1≤kι−1<kι≤T

∥∥∥∥∥
∑kι

t=kι−1+1(yt + zt)√
kι − kι−1

∥∥∥∥∥)

= (L+ 1)(B2 + AB). (23)

For termA, we haveA ≤ sup
1≤kι−1<kι≤T

∑kι
t=kι−1+1‖bt‖√
kι−kι−1

≤ sup
1≤kι−1<kι≤T

√∑kι
t=kι−1+1 ‖bt‖

2 ≤
√∑T

t=1 ‖bt‖
2 =

O(
√
T ). For termB, we haveB2 ≤ 2 sup

1≤kι−1<kι≤T

∥∥∥∥∑kι
t=kι−1+1 yt√
kι−kι−1

∥∥∥∥2

+2 sup
1≤kι−1<kι≤T

∥∥∥∥∑kι
t=kι−1+1 zt√
kι−kι−1

∥∥∥∥2

=

2B2
1 + 2B2

2 . B1 = op(
√
T ), since

B1 ≤
∑L+1

κ=1
sup

kκ−1,0<k<l≤kκ,0

∥∥∥∥ 1√
l − k

∑l

t=k+1
yt

∥∥∥∥
≤

∑L+1

κ=1
‖J0‖2 ‖Rκ‖2 sup

kκ−1,0<k<l≤kκ,0

∥∥∥∥ 1√
l − k

∑l

t=k+1
εt

∥∥∥∥ , (24)
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and by Assumption 7,

E( sup
kκ−1,0<k<l≤kκ,0

∥∥∥∥ 1√
l − k

∑l

t=k+1
εt

∥∥∥∥4+δ

)

≤
∑kκ,0−1

k=kκ−1,0

∑kκ,0

l=k+1
E(

∥∥∥∥ 1√
l − k

∑l

t=k+1
εt

∥∥∥∥4+δ

) ≤ T 2M. (25)

Using Lemma 5, B2 = op(
√
T ). Taking together, the right hand side is op(T ) and thus

dominated by the left hand side.

C PROOF OF THEOREM 1

Proof. FromProposition 1, we know that for any ε > 0 and η1 > 0, ..., ηL > 0, P ((k̃1, ..., k̃L) ∈
Dc) < ε as (N, T ) → ∞. Thus to show k̃ι − kι0 = Op(1) for any given 1 ≤ ι ≤ L,

we need to show for any ε > 0 and η1 > 0, ..., ηL > 0, there exist C > 0 such that

P ((k̃1, ..., k̃L) ∈ D,
∣∣∣k̃ι − kι0∣∣∣ > C) < ε as (N, T ) → ∞. By symmetry, it suffi ces to show

P ((k̃1, ..., k̃L) ∈ D, k̃ι < kι0 − C) < ε as (N, T ) → ∞. Define D(C)(ι) = D ∩ {kι <
kι0 − C}. Since (k̃1, ..., k̃L) = arg min S̃(k1, ..., kL), S̃(k̃1, ..., k̃L) ≤ S̃(k̃1, ..., kι0, ..., k̃L). Thus

if (k̃1, ..., k̃L) ∈ D(C)(ι),

min
(k1,...,kL)∈D(C)(ι)

[S̃(k1, ..., kL)− S̃(k1, ..., kι0, ..., kL)]

≤ S̃(k̃1, ..., k̃L)− S̃(k̃1, ..., kι0, ..., k̃L) ≤ 0.

Therefore it suffi ces to show P ( min
(k1,...,kL)∈D(C)(ι)

[S̃(k1, ..., kL)− S̃(k1, ..., kι0, ..., kL)] ≤ 0) < ε as

(N, T )→∞.
We then show that the event min

(k1,...,kL)∈D(C)(ι)

[S̃(k1, ..., kL)− S̃(k1, ..., kι0, ..., kL)] ≤ 0 is just

the event min
(k1,...,kL)∈D(C)(ι)

S̃(k1,...,kL)−S̃(k1,...,kι0,...,kL)
|kι−kι0| ≤ 0. Conditioning on the former, for any

(k∗1, ..., k
∗
L) ∈ D(C)(ι), arg min

(k1,...,kL)∈D(C)(ι)

[S̃(k1, ..., kL)− S̃(k1, ..., kι0, ..., kL)] = (k∗1, ..., k
∗
L) implies

S̃(k∗1, ..., k
∗
L)− S̃(k∗1, ..., kι0, ..., k

∗
L) ≤ 0, and this further implies S̃(k∗1 ,...,k

∗
L)−S̃(k∗1 ,...,kι0,...,k

∗
L)

|k∗ι−kι0|
≤ 0.

Thus min
(k1,...,kL)∈D(C)(ι)

S̃(k1,...,kL)−S̃(k1,...,kι0,...,kL)
|kι−kι0| , which is not larger than S̃(k∗1 ,...,k

∗
L)−S̃(k∗1 ,...,kι0,...,k

∗
L)

|k∗ι−kι0|
,

has to be nonpositive. Note that the above argument holds for any (k∗1, ..., k
∗
L) ∈ D(C)(ι),

thus the former implies the latter. Similarly, the latter also implies the former. Therefore,
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it suffi ces to show P ( min
(k1,...,kL)∈D(C)(ι)

S̃(k1,...,kL)−S̃(k1,...,kι0,...,kL)
|kι−kι0| ≤ 0) < ε as (N, T )→∞.

Next, decompose S̃(k1, ..., kL)− S̃(k1, ..., kι0, ..., kL) as

[S̃(k1, ..., kL)− S̃(k1, ..., kι, kι0, ..., kL)] (26)

−[S̃(k1, ..., kι0, ..., kL)− S̃(k1, ..., kι, kι0, ..., kL)]. (27)

Term (26) equals

∑kι+1

t=kι+1
[vech(g̃tg̃

′
t − Σ̃ι+1)]′[vech(g̃tg̃

′
t − Σ̃ι+1)]

−
∑kι0

t=kι+1
[vech(g̃tg̃

′
t − Σ̃∆

ι )]′[vech(g̃tg̃
′
t − Σ̃∆

ι )]

−
∑kι+1

t=kι0+1
[vech(g̃tg̃

′
t − Σ̃∗ι+1)]′[vech(g̃tg̃

′
t − Σ̃∗ι+1)]

= K1 −K2 −K3, (28)

and term (27) equals

∑kι0

t=kι−1+1
[vech(g̃tg̃

′
t − Σ̃∗ι )]

′[vech(g̃tg̃
′
t − Σ̃∗ι )]

−
∑kι

t=kι−1+1
[vech(g̃tg̃

′
t − Σ̃ι)]

′[vech(g̃tg̃
′
t − Σ̃ι)]

−
∑kι0

t=kι+1
[vech(g̃tg̃

′
t − Σ̃∆

ι )]′[vech(g̃tg̃
′
t − Σ̃∆

ι )]

= L1 − L2 − L3, (29)

where Σ̃∆
ι =

∑kι0
t=kι+1 g̃tg̃

′
t

kι0−kι , Σ̃∗ι =

∑kι0
t=kι−1+1 g̃tg̃

′
t

kι0−kι−1
and Σ̃∗ι+1 =

∑kι+1
t=kι0+1 g̃tg̃

′
t

kι+1−kι0 . Note that L3 = K2,

thus (K1−K2−K3)− (L1−L2−L3) = (K1−K3)− (L1−L2). Replacing Σ̃∗ι+1 by Σ̃ι+1, K3

is magnified, thus K1 −K3 ≥
∑kι0

t=kι+1[vech(g̃tg̃
′
t − Σ̃ι+1)]′[vech(g̃tg̃

′
t − Σ̃ι+1)]; and replacing

Σ̃∗ι by Σ̃ι, L1 is magnified, thus L1 − L2 ≤
∑kι0

t=kι+1[vech(g̃tg̃
′
t − Σ̃ι)]

′[vech(g̃tg̃
′
t − Σ̃ι)]. Taken
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together,

(K1 −K3)− (L1 − L2)

≥
∑kι0

t=kι+1
[vech(g̃tg̃

′
t − Σ̃ι+1)]′[vech(g̃tg̃

′
t − Σ̃ι+1)]

−
∑kι0

t=kι+1
[vech(g̃tg̃

′
t − Σ̃ι)]

′[vech(g̃tg̃
′
t − Σ̃ι)]

=
∑kι0

t=kι+1
vech(Σι − Σ̃ι+1)′vech(Σι − Σ̃ι+1)

−
∑kι0

t=kι+1
vech(Σι − Σ̃ι)

′vech(Σι − Σ̃ι)

+2
∑kι0

t=kι+1
vech(Σι − Σ̃ι+1)′(yt + zt)

−2
∑kι0

t=kι+1
vech(Σι − Σ̃ι)

′(yt + zt)

= K∆1 − L∆1 +K∆2 − L∆2, (30)

thus it suffi ces to show P ( min
(k1,...,kL)∈D(C)(ι)

K∆1−L∆1+K∆2−L∆2

|kι−kι0| ≤ 0) < ε as (N, T )→∞.

We consider the case kι−1 < kι−1,0 and kι+1 > kι+1,0. In case kι−1 ≥ kι−1,0 or kι+1 ≤
kι+1,0, the proof is easier and therefore omitted. Plug in Σ̃ι+1 = 1

kι+1−kι

∑kι+1

t=kι+1(yt + zt) +

vech( 1
kι+1−kι [(kι0−kι)Σι+(kι+1,0−kι0)Σι+1+(kι+1−kι+1,0)Σι+2]) and Σ̃ι = 1

kι−kι−1

∑kι
t=kι−1

(yt+

zt)+vech( 1
kι−kι−1

[(kι−1,0−kι−1)Σι−1+(kι−kι−1,0)Σι]), and denote φkι−1,kι = vech( 1
kι−kι−1

(kι−1,0−
kι−1)(Σι−1−Σι)) and φkι,kι+1

= vech( 1
kι+1−kι [(kι+1,0− kι0)(Σι+1−Σι) + (kι+1− kι+1,0)(Σι+2−

Σι)]), we have

1

kι0 − kι
K∆1 = [φkι,kι+1

+

∑kι+1

t=kι+1(yt + zt)

kι+1 − kι
]′[φkι,kι+1

+

∑kι+1

t=kι+1(yt + zt)

kι+1 − kι
], (31)

1

kι0 − kι
L∆1 = [φkι−1,kι +

∑kι
t=kι−1

(yt + zt)

kι − kι−1

]′[φkι−1,kι +

∑kι
t=kι−1

(yt + zt)

kι − kι−1

], (32)

1

kι0 − kι
K∆2 = −2[φkι,kι+1

+

∑kι+1

t=kι+1(yt + zt)

kι+1 − kι
]′
∑kι0

t=kι+1(yt + zt)

kι0 − kι
, (33)

1

kι0 − kι
L∆2 = 2[φkι−1,kι +

∑kι
t=kι−1

(yt + zt)

kι − kι−1

]′
∑kι0

t=kι+1(yt + zt)

kι0 − kι
. (34)
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For (k1, ..., kL) ∈ D(C)(ι) and ηι and ηι+1 small enough,∥∥φkι,kι+1

∥∥
≥ kι+1,0 − kι0

kι+1 − kι
‖vech(Σι+1 − Σι)‖ −

kι+1 − kι+1,0

kι+1 − kι
‖vech(Σι+2 − Σι)‖

≥ 1

1 +
ηι+1+ηι
τ ι+1,0−τ ι0

‖vech(Σι+1 − Σι)‖ −
ηι+1

ηι+1 + τ ι+1,0 − τ ι0
‖vech(Σι+2 − Σι)‖

≥ 1

2
‖vech(Σι+1 − Σι)‖ , (35)

and for ηι−1 and ηι small enough,

∥∥φkι−1,kι

∥∥ =
kι−1,0 − kι−1

kι − kι−1

‖vech(Σι−1 − Σι)‖ ≤
ηι−1

τ ι0 − τ ι−1,0 − ηι
‖vech(Σι−1 − Σι)‖ (36)

is arbitrarily small.

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

kι+1 − kι

∑kι+1

t=kι+1
(yt + zt)

∥∥∥∥
≤ 1

τ ι+1,0 − τ ι0
( sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

T

∑kι0

t=kι+1
(yt + zt)

∥∥∥∥
+

∥∥∥∥ 1

T

∑kι+1,0

t=kι0+1
(yt + zt)

∥∥∥∥+ sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

T

∑kι+1

t=kι+1,0+1
(yt + zt)

∥∥∥∥)

= op(1), (37)

where we have used

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

T

∑kι0

t=kι+1
yt

∥∥∥∥ = op(1),

∥∥∥∥ 1

T

∑kι+1,0

t=kι0+1
yt

∥∥∥∥ = op(1),

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

T

∑kι+1

t=kι+1,0+1
yt

∥∥∥∥ = op(1), (38)

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

T

∑kι0

t=kι+1
zt

∥∥∥∥ = op(1),

∥∥∥∥ 1

T

∑kι+1,0

t=kι0+1
zt

∥∥∥∥ = op(1),

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

T

∑kι+1

t=kι+1,0+1
zt

∥∥∥∥ = op(1). (39)

The first three terms follow from Hajek-Renyi inequality, which is proved in Lemma 1 to

be applicable to yt within each regime while the last three terms follow from Lemma 5.

 167



Similarly,

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

kι − kι−1

∑kι

t=kι−1

(yt + zt)

∥∥∥∥ = op(1), (40)

using Lemma 5 and

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

T

∑kι−1,0

t=kι−1+1
yt

∥∥∥∥ = op(1), (41)

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

T

∑kι

t=kι−1,0+1
yt

∥∥∥∥ = op(1). (42)

Finally,

sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

kι0 − kι

∑kι0

t=kι+1
(yt + zt)

∥∥∥∥
≤ sup

(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

kι0 − kι

∑kι0

t=kι+1
yt

∥∥∥∥+ sup
(k1,...,kL)∈D(C)(ι)

∥∥∥∥ 1

kι0 − kι

∑kι0

t=kι+1
zt

∥∥∥∥
= Op(

1√
C

) + op(1), (43)

the first term follows from Hajek-Renyi inequality while the second terms follows from

Lemma 5. Taken together and choosing suffi ciently large C, the result follows.

D PROOF OF PROPOSITION 2

Proof. To simplify calculation, consider the case with two breaks. For any ε > 0 and

η > 0, define Wη = {k1 : (τ 1,0 − η)T ≤ k1 ≤ (τ 1,0 + η)T}, we need to show P ((k̂1 ∈
W c
η ) < ε as (N, T ) → ∞. Since k̂1 = arg min S̃(k1), S̃(k̂1) ≤ S̃(k1,0). If k̂1 ∈ W c

η , then

min
k1∈W c

η

S̃(k1) = S̃(k̂1). Thus k̂1 ∈ W c
η implies min

k1∈W c
η

S̃(k1) ≤ S̃(k1,0) and it suffi ces to show

P ( min
k1∈W c

η

S̃(k1)− S̃(k1,0) ≤ 0) < ε as (N, T )→∞.

For k1 < k1,0, after some calculation, we have:

S̃(k1)− S̃(k1,0) = Π1(k1)− Π(k1,0) + Ψ1(k1)−Ψ(k1,0), (44)

where

Π1(k1)− Π(k1,0)

=
k1,0 − k1

(T − k1)(T − k1,0)
‖vech[(T − k1,0)(Σ1 − Σ2) + (T − k2,0)(Σ2 − Σ3)]‖2 , (45)
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Ψ1(k1)

= 2ϕ1′
k1

∑k1,0

ι=k1+1
(yt + zt) + 2ϕ2′

k1

∑k2,0

ι=k1,0+1
(yt + zt) + 2ϕ3′

k1

∑T

ι=k2,0+1
(yt + zt)

−2[(k1,0 − k1)ϕ1
k1

+ (k2,0 − k1,0)ϕ2
k1

+ (T − k2,0)ϕ3
k1

]′
1

T − k1

∑T

ι=k1+1
(yt + zt)

−
∥∥∥∥ 1√

k1

∑k1

ι=1
(yt + zt)

∥∥∥∥2

−
∥∥∥∥ 1√

T − k1

∑T

ι=k1+1
(yt + zt)

∥∥∥∥2

, (46)

Ψ(k1,0) = 2ϕ2′
k1,0

∑k2,0

ι=k1,0+1
(yt + zt) + 2ϕ3′

k1,0

∑T

ι=k2,0+1
(yt + zt)

−2[(k2,0 − k1,0)ϕ2
k1,0

+ (T − k2,0)ϕ3
k1,0

]′
1

T − k1,0

∑T

ι=k1,0+1
(yt + zt)

−
∥∥∥∥∥ 1√

k1,0

∑k1,0

ι=1
(yt + zt)

∥∥∥∥∥
2

−
∥∥∥∥∥ 1√

T − k1,0

∑T

ι=k1,0+1
(yt + zt)

∥∥∥∥∥
2

, (47)

ϕ1
k1

=
1

T − k1

vech[(k2,0 − k1,0)(Σ1 − Σ2) + (T − k2,0)(Σ1 − Σ3)], (48)

ϕ2
k1

=
1

T − k1

vech[(k1,0 − k1)(Σ2 − Σ1) + (T − k2,0)(Σ2 − Σ3)], (49)

ϕ3
k1

=
1

T − k1

vech[(k1,0 − k1)(Σ3 − Σ1) + (k2,0 − k1,0)(Σ3 − Σ2)]. (50)

Since 1−τ2,0

1−τ1,0
‖vech(Σ2 − Σ3)‖2 ≤ τ1,0

τ2,0
‖vech(Σ1 − Σ2)‖2, (1−τ 2,0)2 ‖vech(Σ2 − Σ3)‖2 is smaller

than (1−τ 1,0)2 ‖vech(Σ1 − Σ2)‖2, and thus for k1 ∈ W c
η and k1 < k1,0, Π1(k1)−Π(k1,0) ≥ cT

for some c. On the other hand, sup
k1∈W c

η ,k1<k1,0

Ψ1(k1) = op(T ) and Ψ(k1,0) = op(T ) due to the

following:

1.
∥∥ϕ1

k1

∥∥, ∥∥ϕ2
k1

∥∥ and ∥∥ϕ3
k1

∥∥ are uniformly bounded for k1 ∈ W c
η and k1 < k1,0.

2. Using Hajek-Renyi inequality, sup
k1∈W c

η ,k1<k1,0

∥∥∥∑k1,0

ι=k1+1 yt

∥∥∥, sup
k1∈W c

η ,k1<k1,0

∥∥∥∑T
ι=k1+1 yt

∥∥∥,∥∥∥∑k2,0

ι=k1,0+1 yt

∥∥∥ and ∥∥∥∑T
ι=k2,0+1 yt

∥∥∥ are all Op(
√
T ), sup

k1∈W c
η ,k1<k1,0

∥∥∥ 1√
k1

∑k1

ι=1 yt

∥∥∥ is
Op(
√

log T ) and sup
k1∈W c

η ,k1<k1,0

∥∥∥ 1√
T−k1

∑T
ι=k1+1 yt

∥∥∥ is Op(1).

3. Using Lemma 5, sup
1≤k<l≤T

∥∥∥∑l
ι=k+1 zt

∥∥∥ and sup
1≤k<l≤T

∥∥∥ 1√
l−k
∑l

ι=k+1 zt

∥∥∥2

are both op(T ).
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For k1,0 + 1 < k1 ≤ k2,0, after some calculation, we have:

S̃(k1)− S̃(k1,0) = Π2(k1)− Π(k1,0) + Ψ2(k1)−Ψ(k1,0), (51)

where

Π2(k1)− Π(k1,0)

= (k1 − k1,0)[
k1,0

k1

‖vech(Σ2 − Σ1)‖2 − (T − k2,0)2

(T − k1)(T − k1,0)
‖vech(Σ3 − Σ2)‖2]

≥ (k1 − k1,0)[
k1,0

k2,0

‖vech(Σ2 − Σ1)‖2 − T − k2,0

T − k1,0

‖vech(Σ3 − Σ2)‖2], (52)

Ψ2(k1) = 2ϕ4′
k1

∑k1,0

ι=1
(yt + zt) + 2ϕ5′

k1

∑k1

ι=k1,0+1
(yt + zt) + 2ϕ6′

k1

∑k2,0

ι=k1+1
(yt + zt)

+2ϕ7′
k1

∑T

ι=k2,0+1
(yt + zt)− 2[k1,0ϕ

4
k1

+ (k1 − k1,0)ϕ5
k1

]′
1

k1

∑k1

ι=1
(yt + zt)

−2[(k2,0 − k1)ϕ6
k1

+ (T − k2,0)ϕ7
k1

]′
1

T − k1

∑T

ι=k1+1
(yt + zt)

−
∥∥∥∥ 1√

k1

∑k1

ι=1
(yt + zt)

∥∥∥∥2

−
∥∥∥∥ 1√

T − k1

∑T

ι=k1+1
(yt + zt)

∥∥∥∥2

, (53)

ϕ4
k1

=
k1 − k1,0

k1

vech(Σ1 − Σ2), ϕ5
k1

=
k1,0

k1

vech(Σ2 − Σ1), (54)

ϕ6
k1

=
T − k2,0

T − k1

vech(Σ2 − Σ3), ϕ7
k1

=
k2,0 − k1

T − k1

vech(Σ3 − Σ2). (55)

The term in the bracket is positive, thus for k1 ∈ W c
η and k1,0 + 1 < k1 ≤ k2,0, Π2(k1) −

Π2(k1,0) ≥ Tc for some c. Using the same argument as in the previous case, it is easy to

show sup
k1∈W c

η ,k1,0+1<k1≤k2,0

Ψ2(k1) = op(T ).

For k2,0 < k1 ≤ T , after some calculation, we have:

S̃(k1)− S̃(k1,0) = Π3(k1)− Π3(k1,0) + Ψ3(k1)−Ψ3(k1,0). (56)

By symmetry, Π3(k1) − Π3(k2,0) has a similar expression as Π1(k1) − Π1(k1,0) and is posi-

tive. Thus Π3(k1) − Π3(k1,0) ≥ Π3(k2,0) − Π3(k1,0) = (k2,0 − k1,0)[k1,0

k2,0
‖vech(Σ2 − Σ1)‖2 −
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T−k2,0

T−k1,0
‖vech(Σ3 − Σ2)‖2].

Ψ3(k1) = 2ϕ8′
k1

∑k1,0

ι=1
(yt + zt) + 2ϕ9′

k1

∑k2,0

ι=k1,0+1
(yt + zt) + 2ϕ10′

k1

∑k1

ι=k2,0+1
(yt + zt)

−2[k1,0ϕ
8
k1

+ (k2,0 − k1,0)ϕ9
k1

+ (k1 − k2,0)ϕ10
k1

]′
1

k1

∑k1

ι=1
(yt + zt)

−
∥∥∥∥ 1√

k1

∑k1

ι=1
(yt + zt)

∥∥∥∥2

−
∥∥∥∥ 1√

T − k1

∑T

ι=k1+1
(yt + zt)

∥∥∥∥2

, (57)

and similarly sup
k1∈W c

η ,k1>k2,0

Ψ3(k1) = op(T ).

E PROOF OF THEOREM 2

Proof. Using similar argument as proving Theorem 1, it suffi ces to show for any ε > 0 and

η > 0, there exist C > 0 such that P ( min
k1∈Wη ,|k1−k1,0|>C

S̃(k1)−S̃(k1,0)

|k1−k1,0| ≤ 0) < ε as (N, T )→∞.
First consider the case k1 < k1,0. Note that

S̃(k1) =
∑k1

t=1
[vech(g̃tg̃

′
t − Σ̃k1)]′[vech(g̃tg̃

′
t − Σ̃k1)]

+
∑T

t=k1+1
[vech(g̃tg̃

′
t − Σ̃∗k1

)]′[vech(g̃tg̃
′
t − Σ̃∗k1

)], (58)

where Σ̃k1 = 1
k1

∑k1

t=1 g̃tg̃
′
t and Σ̃∗k1

= 1
T−k1

∑T
t=k1+1 g̃tg̃

′
t. Replacing Σ̃k1,0 by Σ̃k1 and Σ̃∗k1,0

by

Σ̃∗k1
in the expression of S̃(k1,0), S̃(k1,0) is magnified. Thus

S̃(k1)− S̃(k1,0)

|k1 − k1,0|
≥ 1

|k1 − k1,0|
{
∑k1,0

t=k1+1
[vech(g̃tg̃

′
t − Σ̃∗k1

)]′[vech(g̃tg̃
′
t − Σ̃∗k1

)]

−
∑k1,0

t=k1+1
[vech(g̃tg̃

′
t − Σ̃k1)]′[vech(g̃tg̃

′
t − Σ̃k1)]}. (59)

The right hand side equals

vech(Σ1 − Σ̃∗k1
)′vech(Σ1 − Σ̃∗k1

)− vech(Σ1 − Σ̃k1)′vech(Σ1 − Σ̃k1)

+2vech(Σ1 − Σ̃∗k1
)′
∑k1,0

t=k1+1(yt + zt)

k1,0 − k1

− 2vech(Σ1 − Σ̃k1)′
∑k1,0

t=k1+1(yt + zt)

k1,0 − k1

= Ξ1 − Ξ2 + Ξ3 − Ξ4. (60)
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Plug in Σ̃k1 and Σ̃∗k1
, we have

Ξ1 =

∥∥∥∥vech[
k2,0 − k1,0

T − k1

(Σ1 − Σ2) +
T − k2,0

T − k1

(Σ1 − Σ3)]

∥∥∥∥2

+

∥∥∥∥∥
∑T

t=k1+1(yt + zt)

T − k1

∥∥∥∥∥
2

−2vech[
k2,0 − k1,0

T − k1

(Σ1 − Σ2) +
T − k2,0

T − k1

(Σ1 − Σ3)]′
∑T

t=k1+1(yt + zt)

T − k1

= Ξ11 + Ξ12 − Ξ13, (61)

Ξ2 =

∥∥∥∥ 1

k1

∑k1

t=1
(yt + zt)

∥∥∥∥2

, (62)

Ξ3 = 2vech[
k2,0 − k1,0

T − k1

(Σ1 − Σ2) +
T − k2,0

T − k1

(Σ1 − Σ3)]′
1

k1,0 − k1

∑k1,0

t=k1+1
(yt + zt)

−2[
1

T − k1

∑T

t=k1+1
(yt + zt)]

′ 1

k1,0 − k1

∑k1,0

t=k1+1
(yt + zt), (63)

Ξ4 = −2[
1

k1

∑k1

t=1
(yt + zt)]

′ 1

k1,0 − k1

∑k1,0

t=k1+1
(yt + zt). (64)

If vech[k2,0−k1,0

T−k1,0
(Σ1 − Σ2) + T−k2,0

T−k1,0
(Σ1 − Σ3)] = 0, then Σ1 − Σ2 = T−k2,0

T−k1,0
(Σ2 − Σ3), then

τ1,0

τ2,0
‖vech(Σ1 − Σ2)‖2 = τ1,0(1−τ2,0)2

τ2,0(1−τ1,0)2 ‖vech(Σ2 − Σ3)‖2 < (1−τ2,0

1−τ1,0
) ‖vech(Σ2 − Σ3)‖2, this con-

tradicts with Assumption 9. Thus Ξ11 > c for some c. Using Hajek-Renyi inequality for yt

in each regime and Lemma 5 for zt,

sup
k1∈Wη ,k1<k1,0−C

∥∥∥∥ 1

T − k1

∑T

t=k1+1
(yt + zt)

∥∥∥∥ ,
sup

k1∈Wη ,k1<k1,0−C

∥∥∥∥ 1

k1

∑k1

t=1
(yt + zt)

∥∥∥∥ ,
sup

k1∈Wη ,k1<k1,0−C

∥∥∥∥ 1

k1,0 − k1

∑k1,0

t=k1+1
zt

∥∥∥∥ ,
are all op(1) while sup

k1∈Wη ,k1<k1,0−C

∥∥∥ 1
k1,0−k1

∑k1,0

t=k1+1 yt

∥∥∥ is Op(
1√
C

). Thus for suffi ciently large

C, all the other terms are dominated by Ξ11.

Next consider the case k1 > k1,0. Using the same argument as the case k1 < k1,0,

S̃(k1)− S̃(k1,0)

|k1 − k1,0|
≥ 1

|k1 − k1,0|
{
∑k1

t=k1,0+1
[vech(g̃tg̃

′
t − Σ̃k1)]′[vech(g̃tg̃

′
t − Σ̃k1)]

−
∑k1

t=k1,0+1
[vech(g̃tg̃

′
t − Σ̃∗k1

)]′[vech(g̃tg̃
′
t − Σ̃∗k1

)]}, (65)
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and the right hand side equals

vech(Σ2 − Σ̃k1)′vech(Σ2 − Σ̃k1)− vech(Σ2 − Σ̃∗k1
)′vech(Σ2 − Σ̃∗k1

)

+2vech(Σ2 − Σ̃k1)′
∑k1

t=k1,0+1(yt + zt)

k1 − k1,0

− 2vech(Σ2 − Σ̃∗k1
)′
∑k1

t=k1,0+1(yt + zt)

k1 − k1,0

= Ξ̇1 − Ξ̇2 + Ξ̇3 − Ξ̇4. (66)

Plug in Σ̃k1 and Σ̃∗k1
, we have

Ξ̇1 =

∥∥∥∥k1,0

k1

vech(Σ2 − Σ1)

∥∥∥∥2

+

∥∥∥∥ 1

k1

∑k1

t=1
(yt + zt)

∥∥∥∥2

−2vech[
k1,0

k1

(Σ2 − Σ1)]′
1

k1

∑k1

t=1
(yt + zt)

= Ξ̇11 + Ξ̇12 − Ξ̇13, (67)

Ξ̇2 =

∥∥∥∥T − k2,0

T − k1

vech(Σ2 − Σ3)

∥∥∥∥2

+

∥∥∥∥ 1

T − k1

∑T

t=k1+1
(yt + zt)

∥∥∥∥2

−2vech[
T − k2,0

T − k1

(Σ2 − Σ3)]′
1

T − k1

∑T

t=k1+1
(yt + zt)

= Ξ̇21 + Ξ̇22 − Ξ̇23, (68)

Ξ̇3 = 2vech[
k1,0

k1

(Σ2 − Σ1)]′
1

k1 − k1,0

∑k1

t=k1,0+1
(yt + zt)

−2[
1

k1

∑k1

t=1
(yt + zt)]

′ 1

k1 − k1,0

∑k1

t=k1,0+1
(yt + zt), (69)

Ξ̇4 = 2vech[
T − k2,0

T − k1

(Σ2 − Σ3)]′
1

k1 − k1,0

∑k1

t=k1,0+1
(yt + zt)

−2[
1

T − k1

∑T

t=k1+1
(yt + zt)]

′ 1

k1 − k1,0

∑k1

t=k1,0+1
(yt + zt). (70)

For k1 ∈ Wη, Ξ̇11 − Ξ̇21 ≥
∥∥∥ τ1,0

τ1,0+η
vech(Σ2 − Σ1)

∥∥∥2

−
∥∥∥ 1−τ2,0

1−τ1,0−ηvech(Σ2 − Σ3)
∥∥∥2

. Thus by

Assumption 9, Ξ̇11 − Ξ̇21 ≥ c for some c > 0 if η is suffi ciently small. Again, using Hajek-

Renyi inequality for yt in each regime and Lemma 5 for zt, all the other terms are dominated

by Ξ̇11 − Ξ̇21 for suffi ciently large C.
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F PROOF OF THEOREM 6

Proof. It is not diffi cult to see that

SSNE0 =
∑T

t=1
vech(f̃tf̃

′
t − Ir)′Ω̃−1vech(f̃tf̃

′
t − Ir)

−Tvech(
1

T

∑T

t=1
f̃tf̃
′
t − Ir)′Ω̃−1vech(

1

T

∑T

t=1
f̃tf̃
′
t − Ir), (71)

and for any partition (k1, ..., kl),

SSNE(k1, ..., kl) =
∑T

t=1
vech(f̃tf̃

′
t − Ir)′Ω̃−1vech(f̃tf̃

′
t − Ir)−

∑l+1

ι=1
(kι − kι−1)

vech(

∑kι
t=kι−1+1 f̃tf̃

′
t

kι − kι−1

− Ir)′Ω̃−1vech(

∑kι
t=kι−1+1 f̃tf̃

′
t

kι − kι−1

− Ir). (72)

Let F ∗NT = SSNE0 − SSNE(k1, ..., kl), it follows that

F ∗NT =
∑l+1

ι=1
vech(

∑kι
t=kι−1+1(f̃tf̃

′
t − Ir)√

kι − kι−1

)′Ω̃−1vech(

∑kι
t=kι−1+1(f̃tf̃

′
t − Ir)√

kι − kι−1

)

−vech(

∑T
t=1(f̃tf̃

′
t − Ir)√
T

)′Ω̃−1vech(

∑T
t=1(f̃tf̃

′
t − Ir)√
T

)

=
∑l+1

ι=1
D(kι−1 + 1, kι)−D(1, T )

=
∑l+1

ι=2
{D(kι−1 + 1, kι)− [D(1, kι)−D(1, kι−1)]}

=
∑l

ι=1
F ∗NT (ι+ 1). (73)

After some algebra, we have

F ∗NT (ι+ 1) =
T 3

kιkι+1(kι+1 − kι)
vech[

kι+1

T

∑kι
t=1(f̃tf̃

′
t − Ir)√
T

− kι
T

∑kι+1

t=1 (f̃tf̃
′
t − Ir)√

T
]′

Ω̃−1vech[
kι+1

T

∑kι
t=1(f̃tf̃

′
t − Ir)√
T

− kι
T

∑kι+1

t=1 (f̃tf̃
′
t − Ir)√

T
]

=
T 3

kιkι+1(kι+1 − kι)
B(τ ι, τ ι+1; F̃ )′Ω̃−1B(τ ι, τ ι+1; F̃ ). (74)
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Next, using four facts listed below, we have

sup
(τ1,...,τ l)∈Λε

∑l

ι=1

T 3

kιkι+1(kι+1 − kι)
B(τ ι, τ ι+1; F̃ )′(Ω̃−1 − Ω−1)B(τ ι, τ ι+1; F̃ )

≤ 1

ε3

∥∥∥Ω̃−1 − Ω−1
∥∥∥ sup

(τ1,...,τ l)∈Λε

∑l

ι=1

∥∥∥B(τ ι, τ ι+1; F̃ )
∥∥∥2

= op(1)Op(1) = op(1), (75)

sup
(τ1,...,τ l)∈Λε

∑l

ι=1

T 3

kιkι+1(kι+1 − kι)
B(τ ι, τ ι+1; F̃ )′Ω−1[B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH0)]

≤ l ‖Ω−1‖
ε3

sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )
∥∥∥ sup

(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH0)
∥∥∥

= Op(1)op(1) = op(1). (76)

It follows that F ∗NT =
∑l

ι=1
T 3

kιkι+1(kι+1−kι)B(τ ι, τ ι+1;FH0)′Ω−1B(τ ι, τ ι+1;FH0)+op(1), where

op(1) is uniform and by Assumption 15 the first term converges weakly to

∑l

ι=1

1

τ ιτ ι+1(τ ι+1 − τ ι)

∥∥∥τ ιW r(r+1)
2

(τ ι+1)− τ ι+1W r(r+1)
2

(τ ι)
∥∥∥2

.

1.
∥∥∥Ω̃−1 − Ω−1

∥∥∥ = op(1) if dT
δNT
→ 0.

2. sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH0)
∥∥∥ = op(1) if

√
T
N
→ 0.

3. sup
(τ1,...,τ l)∈Λε

‖B(τ ι, τ ι+1;FH0)‖ = Op(1).

4. sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )
∥∥∥ = Op(1).

Fact (1) follows from Lemma 8.

Proof of (2): Note that

B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH0)

= B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH) +B(τ ι, τ ι+1;FH)−B(τ ι, τ ι+1;FH0)

= vech[
kι+1

T

1√
T

∑kι

t=1
(f̃tf̃

′
t −H

′
ftf
′
tH)− kι

T

1√
T

∑kι+1

t=1
(f̃tf̃

′
t −H ′ftf ′tH)]

+vech[
kι+1

T

1√
T

∑kι

t=1
(H

′
(ftf

′
t − ΣF )H −H ′0(ftf

′
t − ΣF )H0)

−kι
T

1√
T

∑kι+1

t=1
(H

′
(ftf

′
t − ΣF )H −H ′0(ftf

′
t − ΣF )H0)]. (77)
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It is not diffi cult to see

sup
(τ1,...,τ l)∈Λε

∥∥∥B(τ ι, τ ι+1; F̃ )−B(τ ι, τ ι+1;FH)
∥∥∥

≤ 2 sup
Tε≤k≤T (1−ε)

∥∥∥∥ 1√
T

∑k

t=1
(f̃tf̃

′
t −H ′ftf ′tH)

∥∥∥∥ = Op(

√
T

δ2
NT

) (78)

by Lemma 7, and

sup
(τ1,...,τ l)∈Λε

‖B(τ ι, τ ι+1;FH)−B(τ ι, τ ι+1;FH0)‖

≤ 2 sup
Tε≤k≤T (1−ε)

∥∥∥∥ 1√
T

∑k

t=1
(H

′
(ftf

′
t − ΣF )H −H ′0(ftf

′
t − ΣF )H0)

∥∥∥∥ = op(1) (79)

by part (2) of Lemma 6 and Assumption 15.

Proof of (3): Note that

B(τ ι, τ ι+1;FH0) = vech[
kι+1

T

1√
T

∑kι

t=1
(H ′0ftf

′
tH0 − Ir)−

kι
T

1√
T

∑kι+1

t=1
(H ′0ftf

′
tH0 − Ir)],

it is not diffi cult to see

sup
(τ1,...,τ l)∈Λε

‖B(τ ι, τ ι+1;FH0)‖ ≤ 2 sup
Tε≤k≤T (1−ε)

∥∥∥∥ 1√
T

∑k

t=1
(H ′0ftf

′
tH0 − Ir)

∥∥∥∥ ,
which is Op(1) by Assumption 15.

Proof of (4): It follows directly from (2) and (3).

G PROOF OF THEOREM 7

Proof. Under the alternative, the estimated number of factors converges to the num-

ber of pseudo factors and the estimated factors are pseudo factors, gt. First note that

sup
(τ1,...,τ l)∈Λε

[SSNE0 − SSNE(k1, ..., kl)] ≥ SSNE0 − SSNE(k1,0, ..., kl0), thus it suffi ces to
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show the latter goes to infinity in probability.

SSNE(k1,0, ..., kl0) =
∑T

t=1
vech(g̃tg̃

′
t)
′Ω̃−1vech(g̃tg̃

′
t)−

∑l+1

ι=1
(kι0 −

kι−1,0)vech(

∑kι0
t=kι−1,0+1 g̃tg̃

′
t

kι0 − kι−1,0

)′Ω̃−1vech(

∑kι0
t=kι−1,0+1 g̃tg̃

′
t

kι0 − kι−1,0

), (80)

SSNE0 =
∑T

t=1
vech(g̃tg̃

′
t)
′Ω̃−1vech(g̃tg̃

′
t)

−Tvech(

∑T
t=1 g̃tg̃

′
t

T
)′Ω̃−1vech(

∑T
t=1 g̃tg̃

′
t

T
). (81)

Thus similar to (74), SSNE0 − SSNE(k1,0, ..., kl0) can be written as

∑l

ι=1

T 3

kι0kι+1,0(kι+1,0 − kι0)
vech(

kι+1,0

T

1√
T

∑kι0

t=1
g̃tg̃
′
t −

kι0
T

1√
T

∑kι+1,0

t=1

g̃tg̃
′
t)
′Ω̃−1vech(

kι+1,0

T

1√
T

∑kι0

t=1
g̃tg̃
′
t −

kι0
T

1√
T

∑kι+1,0

t=1
g̃tg̃
′
t)
′ ≥ 1

ρmax(Ω̃)∑l

ι=1

T 3

kι0kι+1,0(kι+1,0 − kι0)

∥∥∥∥∥vech(
kι+1,0

T

∑kι0
t=1 g̃tg̃

′
t√

T
− kι0

T

∑kι+1,0

t=1 g̃tg̃
′
t√

T
)

∥∥∥∥∥
2

, (82)

where ρmax(Ω̃) is the maximal eigenvalue of Ω̃. Note that kι+1,0

T

∑kι0
t=1 g̃tg̃

′
t√

T
− kι0

T

∑kι+1,0
t=1 g̃tg̃′t√

T
=

(kι+1,0−kι0)kι0

T
3
2

(
∑kι0
t=1 g̃tg̃

′
t

kι0
−
∑kι+1,0
t=kι0+1 g̃tg̃

′
t

kι+1,0−kι0 ), thus SSNE0 − SSNE(k1,0, ..., kl0) is not smaller than

∑l

ι=1

(kι+1,0 − kι0)kι0

kι+1,0ρmax(Ω̃)

∥∥∥∥∥vech(

∑kι0
t=1 g̃tg̃

′
t

kι0
−
∑kι+1,0

t=kι0+1 g̃tg̃
′
t

kι+1,0 − kι0
)

∥∥∥∥∥
2

. (83)

Recall that vech(g̃tg̃
′
t) = bt + yt + zt, by Assumption 1, for each ι,

1

kι+1,0 − kι0

∑kι+1,0

t=kι0+1
yt = vech(J ′0Rι

1

kι+1,0 − kι0

∑kι+1,0

t=kι0+1
(ftf

′
t − ΣF )R′ιJ0) = op(1),

and by Lemma 5, 1
kι+1,0−kι0

∑kι+1,0

t=kι0+1 zt = op(1) for each ι. Thus

1

kι0

∑kι0

t=1
g̃tg̃
′
t −

1

kι+1,0 − kι0

∑kι+1,0

t=kι0+1
g̃tg̃
′
t =

1

kι0

∑kι0

t=1
bt −

1

kι+1,0 − kι0

∑kι+1,0

t=kι0+1
bt + op(1).

Recall that bt = vech(J ′0RιΣFRιJ0) for kι−1,0 < t ≤ kι,0 and bt is different in different regime,

thus
∑kι0
t=1 bt
kι0

−
∑kι+1,0
t=kι0+1 bt

kι+1,0−kι0 6= 0 for some ι. It follows that there exists some c > 0 such that

SSNE0 − SSNE(k1,0, ..., kl0) ≥ Tc
ρmax(Ω̃)

with probability approaching one. Next, it is not
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diffi cult to see that under the alternative ρmax(Ω̃) = Op(dT ), since HAC method is used to

estimate Ω̃ while under the alternative g̃tg̃′t is not properly centered. Noting that
dT
T
→ 0,

the result is proved.

H PROOF OF THEOREM 8

Proof. It is easy to see that FNT (l+1 |l ) = sup
1≤ι≤l+1

sup
k∈Λι,η

[SSNEι(k̃ι−1, k̃ι)−SSNEι(k̃ι−1, k, k̃ι)],

where SSNEι(k̃ι−1, k̃ι) is the sum of squared normalized error of the ι-th regime. Thus test-

ing l versus l + 1 changes is essentially testing jointly 0 versus 1 change in each regime. In

what follows, we reestablish Theorem 6 with l = 1 but k̃ι − kι0 = Op(1). Similar to (73), we

have

SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι)

= vech(

∑k
t=k̃ι−1+1(f̃ιtf̃

′
ιt − Irι)√

k − k̃ι−1

)′Ω̃−1
ι vech(

∑k
t=k̃ι−1+1(f̃ιtf̃

′
ιt − Irι)√

k − k̃ι−1

)

+vech(

∑k̃ι
t=k+1(f̃ιtf̃

′
ιt − Irι)√

k̃ι − k
)′Ω̃−1

ι vech(

∑k̃ι
t=k+1(f̃ιtf̃

′
ιt − Irι)√

k̃ι − k
)

−vech(

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)√

k̃ι − k̃ι−1

)′Ω̃−1
ι vech(

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)√

k̃ι − k̃ι−1

), (84)

and similar to (74),

SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι)

=
1

k−k̃ι−1

k̃ι−k̃ι−1

k̃ι−k
k̃ι−k̃ι−1

vech(

∑k
t=k̃ι−1+1(f̃ιtf̃

′
ιt − Irι)√

k̃ι − k̃ι−1

− k − k̃ι−1

k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)√

k̃ι − k̃ι−1

)′

Ω̃−1
ι vech(

∑k
t=k̃ι−1+1(f̃ιtf̃

′
ιt − Irι)√

k̃ι − k̃ι−1

− k − k̃ι−1

k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt − Irι)√

k̃ι − k̃ι−1

)

=
1

k−k̃ι−1

k̃ι−k̃ι−1

k̃ι−k
k̃ι−k̃ι−1

C(k̃ι−1, k, k̃ι; F̃ι)
′Ω̃−1

ι C(k̃ι−1, k, k̃ι; F̃ι). (85)

Since k̃ι − kι0 = Op(1), asymptotically it suffi ces to consider the case that
∣∣∣k̃ι − kι0∣∣∣ ≤ C for

some integer C and all ι. And in such case Λι,η ⊂ (kι−1,0, kι0] for large T . Next, based on
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these two properties and using four facts listed below,

sup
k∈Λι,η

∥∥∥∥∥( 1
k−k̃ι−1

k̃ι−k̃ι−1

k̃ι−k
k̃ι−k̃ι−1

− 1
k−kι−1,0
kι0−kι−1,0

kι0−k
kι0−kι−1,0

)C(k̃ι−1, k, k̃ι; F̃ι)
′Ω̃−1

ι C(k̃ι−1, k, k̃ι; F̃ι)

∥∥∥∥∥ ,
sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)
′(Ω̃−1

ι − Ω−1
ι )C(k̃ι−1, k, k̃ι; F̃ι)

∥∥∥ ,
sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)
′Ω−1

ι (C(k̃ι−1, k, k̃ι; F̃ι)− C(kι−1,0, k, kι0;Fι0Hι0))
∥∥∥ ,

sup
k∈Λι,η

∥∥∥C(kι−1,0, k, kι0;Fι0Hι0)′Ω−1
ι (C(k̃ι−1, k, k̃ι; F̃ι)− C(kι−1,0, k, kι0;Fι0Hι0))

∥∥∥ are all op(1).

Thus

sup
k∈Λι,η

[SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι)]

= sup
k∈Λι,η

1
k−kι−1,0

kι0−kι−1,0

kι0−k
kι0−kι−1,0

C(kι−1,0, k, kι0;Fι0Hι0)′Ω−1
ι C(kι−1,0, k, kι0;Fι0Hι0) + op(1)

= sup
k∈Λι,η

FNT,ι(k) + op(1). (86)

By Assumption 21, with k = [Tτ ], FNT,ι(k) ⇒ 1
τ(1−τ)

∥∥∥W rι(rι+1)
2

(τ)− τW rι(rι+1)
2

(1)
∥∥∥2

for

τ ∈ (0, 1). Furthermore, since Wiener process has independent increments, the limit process

of FNT,ι(k) is independent with each other for different ι. Finally, define Λ0
ι,η = {k : kι−1,0 +

(kι0− kι−1,0)η ≤ k ≤ kι0− (kι0− kι−1,0)η}. For any η1 < η < η2, Λ0
ι,η2
⊂ Λι,η ⊂ Λ0

ι,η1
for large

T , thus sup
k∈Λ0

ι,η2

FNT,ι(k) ≤ sup
k∈Λι,η

FNT,ι(k) ≤ sup
k∈Λ0

ι,η1

FNT,ι(k). Since η1 and η2 can be arbitrarily

close to η, sup
k∈Λι,η

FNT,ι(k) has the same distribution as sup
k∈Λ0

ι,η

FNT,ι(k). Taking together, we

have the desired results.

1.
∥∥∥Ω̃−1

ι − Ω−1
ι

∥∥∥ = op(1) if dT

T
1
4
→ 0 and dT√

N
→ 0.

2. sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)− C(kι−1,0, k, kι0;Fι0Hι0)
∥∥∥ = op(1) if

√
T
N
→ 0.

3. sup
k∈Λι,η

‖C(kι−1,0, k, kι0;Fι0Hι0)‖ = Op(1).

4. sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)
∥∥∥ = Op(1).

Fact (1) follows from Lemma 11.
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Proof of (2): Note that

C(k̃ι−1, k, k̃ι; F̃ι)− C(k̃ι−1, k, k̃ι;FιHι0)

= [C(k̃ι−1, k, k̃ι; F̃ι)− C(k̃ι−1, k, k̃ι;FιHι)]

+[C(k̃ι−1, k, k̃ι;FιHι)− C(k̃ι−1, k, k̃ι;FιHι0)]

= vech(

∑k
t=k̃ι−1+1(f̃ιtf̃

′
ιt −H ′ιftf ′tHι)√

k̃ι − k̃ι−1

− k − k̃ι−1

k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃
′
ιt −H ′ιftf ′tHι)√

k̃ι − k̃ι−1

)

+vech(

∑k
t=k̃ι−1+1(H ′ι(ftf

′
t − ΣF )Hι −H ′ι0(ftf

′
t − ΣF )Hι0)√

k̃ι − k̃ι−1

− k − k̃ι−1

k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

(H ′ι(ftf
′
t − ΣF )Hι −H ′ι0(ftf

′
t − ΣF )Hι0)√

k̃ι − k̃ι−1

). (87)

Thus it’s not diffi cult to see sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι; F̃ι)− C(k̃ι−1, k, k̃ι;FιHι)
∥∥∥ is not larger than

sup
k∈Λι,η

∥∥∥∥∑k
t=k̃ι−1+1

(f̃ιtf̃ ′ιt−H′ιftf ′tHι)√
k̃ι−k̃ι−1

∥∥∥∥+

∥∥∥∥∥
∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃ ′ιt−H′ιftf ′tHι)√
k̃ι−k̃ι−1

∥∥∥∥∥, which is Op(
√
T

δ2
NT

) by Lemma 10.

And sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι;FιHι)− C(k̃ι−1, k, k̃ι;FιHι0)
∥∥∥ is not larger than

sup
k∈Λι,η

∥∥∥∥∥∥
∑k

t=k̃ι−1+1(H ′ι(ftf
′
t − ΣF )Hι −H ′ι0(ftf

′
t − ΣF )Hι0)√

k − k̃ι−1

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑k̃ι

t=k̃ι−1+1
(H ′ι(ftf

′
t − ΣF )Hι −H ′ι0(ftf

′
t − ΣF )Hι0)√

k̃ι − k̃ι−1

∥∥∥∥∥∥ ,
which is op(1) by part (2) of Lemma 9 and Assumption 21. Finally, with

∣∣∣k̃ι − kι0∣∣∣ ≤ C for

all ι, sup
k∈Λι,η

∥∥∥C(k̃ι−1, k, k̃ι;FιHι0)− C(kι−1,0, k, kι0;Fι0Hι0)
∥∥∥ = op(1) is obvious.

Proof of (3): Note that

C(kι−1,0, k, kι0;Fι0Hι0)

= vech(

∑k
t=kι−1,0+1(H ′ι0ftf

′
tHι0 − Irι)√

kι0 − kι−1,0

− k − kι−1,0

kι0 − kι−1,0

∑kι0
t=kι−1,0+1(H ′ι0ftf

′
tHι0 − Irι)√

kι0 − kι−1,0

),
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for some η1 < η,

sup
k∈Λι,η

‖C(kι−1,0, k, kι0;Fι0Hι0)‖ ≤ sup
k∈Λ0

ι,η1

∥∥∥∥∥
∑k

t=kι−1,0+1(H ′ι0ftf
′
tHι0 − Irι)√

kι0 − kι−1,0

∥∥∥∥∥
+

∥∥∥∥∥
∑kι0

t=kι−1,0+1(H ′ι0ftf
′
tHι0 − Irι)√

kι0 − kι−1,0

∥∥∥∥∥ ,
which is Op(1) by Assumption 21.

Proof of (4): It follows directly from (2) and (3).

I PROOF OF THEOREM 9

Proof. The calculation of SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι) under the null is still valid

under the alternative. Thus following (85) we have

FNT (l + 1 |l )

≥ sup
k∈Λι,η

[SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, k, k̃ι)]

≥ SSNEι(k̃ι−1, k̃ι)− SSNEι(k̃ι−1, kι0, k̃ι)

≥ 1
kι0−k̃ι−1

k̃ι−k̃ι−1

k̃ι−kι0
k̃ι−k̃ι−1

1

ρmax(Ω̃ι)

∥∥∥∥∥∥vech(

∑kι0
t=k̃ι−1+1

g̃ιtg̃
′
ιt√

k̃ι − k̃ι−1

− kι0 − k̃ι−1

k̃ι − k̃ι−1

∑k̃ι
t=k̃ι−1+1

g̃ιtg̃
′
ιt√

k̃ι − k̃ι−1

)

∥∥∥∥∥∥
2

=
(kι0 − k̃ι−1)(k̃ι − kι0)

(k̃ι − k̃ι−1)ρmax(Ω̃ι)

∥∥∥∥∥vech(

∑kι0
t=k̃ι−1+1

g̃ιtg̃
′
ιt

kι0 − k̃ι−1

−
∑k̃ι

t=kι0+1 g̃ιtg̃
′
ιt

k̃ι − kι0
)

∥∥∥∥∥
2

. (88)

Define zιt = vech(g̃ιtg̃
′
ιt − J ′ι0gιtg′ιtJι0). By Lemma 13 and Assumption 1,

vech(

∑kι0
t=k̃ι−1+1

g̃ιtg̃
′
ιt

kι0 − k̃ι−1

)

=

∑kι0
t=k̃ι−1+1

zιt

kι0 − k̃ι−1

+ vech[J ′ι0Aι1

∑kι0
t=k̃ι−1+1

(ftf
′
t − ΣF )

kι0 − k̃ι−1

A′ι1Jι0] + vech(J ′ι0Aι1ΣFA
′
ι1Jι0)

= vech(J ′ι0Aι1ΣFA
′
ι1Jι0) + op(1), (89)

and similarly vech(
∑k̃ι
t=kι0+1 g̃ιtg̃

′
ιt

k̃ι−kι0
) = vech(J ′ι0Aι2ΣFA

′
ι2Jι0)+op(1). SinceAι1ΣFA

′
ι1 6= Aι2ΣFA

′
ι2

and ρmax(Ω̃ι) = Op(dT ), there exists some c > 0 such that FNT (l+1 |l ) ≥ Tc
dT
with probability

approaching one.
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J PROOF OF LEMMAS

Lemma 1 Under Assumption 7(1), Hajek-Renyi inequality applies to the process {yt, t =

kκ−1,0 + 1, ..., kκ,0} and {yt, t = kκ,0, ..., kκ−1,0 + 1}, κ = 1, ..., L+ 1.

Proof. Note that yt = vech(J ′0Rκ(ftf
′
t − ΣF )R′κJ0) for kκ−1,0 < k ≤ kκ,0.

Thus P ( sup
kκ−1,0+m≤k≤kκ,0

ck

∥∥∥∑k
t=kκ−1,0+1 yt

∥∥∥ > M) is controlled by

P (‖J ′0Rκ‖2
sup

kκ−1,0+m≤k≤kκ,0
ck

∥∥∥∥∑k

t=kκ−1,0+1
εt

∥∥∥∥ > M),

which is not larger than C
M2 (mc2

kκ−1,0+m +
∑kκ,0

k=kκ−1,0+m+1 c
2
k) by Hajek-Renyi inequality for

process {εt, t = kκ−1,0 + 1, ..., kκ,0}. Other processes can be proved similarly.

Lemma 2 In case factor loadings have structural changes, under Assumptions 1-6, ‖J − J0‖ =

op(1) and ‖VNT − V ‖ = op(1).

Proof. The proof follows similar procedure as Proposition 1 in Bai (2003), with J, J0 and

gt corresponding to H,H0 and ft respectively. To avoid repetition, we will only sketch the

main steps. In Bai (2003), proof of Proposition 1 relies on dNT = op(1) and V ∗NT
p→ V (Bai’s

notation). The former relies on Lemma A.1 and A.3(i)18 while the latter relies on Lemma

A.3(ii). Lemma A.1 relies on Theorem 1 of Bai and Ng (2002) and Lemma A.3(i). Lemma

A.3(ii) relies on Lemma A.3(i) and Lemma 1(ii) of Bai and Ng (2002). Thus it suffi ces to

prove Lemma 1(ii) and Theorem 1 of Bai and Ng (2002) and Lemma A.3(i) of Bai (2003).

In current context, the first can be proved using Assumption 2 and Assumption 4 (2), the

second can be proved using Assumptions 1-4, and the third can be proved using Assumption

5 and Weyl inequality. Finally, Assumption 6 ensures uniqueness of J0.

Lemma 3 Under Assumptions 1 and 7,

1. sup
0≤k<l≤T

1√
T (l−k)

∑l
t=k+1 ‖gt‖

2 = Op(1),

2. sup
kι−1,0<l≤kι0

1
l−kι−1,0

∑l
t=kι−1,0+1 ‖gt‖

2 = Op(1),

18In Bai (2003), Bai states that it relies on Lemma A.2, but in fact Lemma A.1 and A.3(i) is enough. This
is because dNT = (Λ0′Λ0

N )
1
2
F 0′

T (F̃ − F 0H)VNT .
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3. sup
kι−1,0≤k<kι0

1
kι0−k

∑kι0
t=k+1 ‖gt‖

2 = Op(1).

Proof. We first prove part (2). Recall that gt = Rιft for kι−1,0 < t ≤ kι0, thus

sup
kι−1,0<l≤kι0

∑l
t=kι−1,0+1 ‖gt‖

2

l − kι−1,0

≤ ‖Rι‖2 E ‖ft‖2 + ‖Rι‖2 sup
kι−1,0<l≤kι0

∑l
t=kι−1,0+1(‖ft‖2 − E ‖ft‖2)

l − kι−1,0

,

where E ‖ft‖2 = trΣF . It suffi ces to show the second term isOp(1). LetDl =

∑l
t=kι−1,0+1(ftf ′t−ΣF )

l−kι−1,0
,

it follows that

∣∣∣∣∑l
t=kι−1,0+1(‖ft‖2−E‖ft‖2)

l−kι−1,0

∣∣∣∣ = |trDl| ≤
√
rι(trD

2
l )

1
2 =
√
rι ‖Dl‖, thus

sup
kι−1,0<l≤kι0

∣∣∣∣∣
∑l

t=kι−1,0+1(‖ft‖2 − E ‖ft‖2)

l − kι−1,0

∣∣∣∣∣ ≤ √rι sup
kι−1,0<l≤kι0

∥∥∥∥∥
∑l

t=kι−1,0+1 εt

l − kι−1,0

∥∥∥∥∥ ,
which is Op(1) by Hajek-Renyi inequality. Proof of part (3) is similar and omitted.

Now we prove part (1). The whole sample t = 1, ..., T is divided into several nonoverlap-

ping segments by the true change points. First consider the case that k and l lie in two differ-

ent segments. Without loss of generality, suppose k lies in the ι-th segment and l lies in the

κ-th segment, then sup
kι−1,0<k≤kι0;kκ−1,0<l≤kκ0

∑l
t=k+1‖gt‖

2

√
T (l−k)

is no larger than sup
kι−1,0<k<kι0

∑kι0
t=k+1‖gt‖

2

kι0−k +

∑kκ−1,0
t=kι0+1‖gt‖

2

kκ−1,0−kι0 + sup
kκ−1,0<l≤kκ0

∑l
t=kκ−1,0+1‖gt‖

2

l−kι−1,0
(If κ − 1 = ι, the second term is zero). By parts

(2) and (3), the first term and the third term are Op(1). The second term is no larger

than
∑κ−1

υ=ι+1 ‖Rυ‖2 ( 1
kυ,0−kυ−1,0

∑kυ,0
t=kυ−1,0+1 ‖ft‖

2), which is Op(1). Next consider the case

that k and l lie in the same segment. Without loss of generality, suppose they lie in

the ι-th segment, then sup
kκ−1,0<k<l≤kι0

1√
T (l−k)

∑l
t=k+1 ‖gt‖

2 is no larger than ‖Rι‖2 E ‖ft‖2 +

‖Rι‖2 sup
kκ−1,0<k<l≤kι0

∣∣∣∣ 1√
T (l−k)

∑l
t=k+1(‖ft‖2 − E ‖ft‖2)

∣∣∣∣. Similar to part (2), the second term
is no larger than ‖Rι‖2√rι sup

kκ−1,0<k<l≤kι0

∥∥∥∥∑l
t=k+1 εt√
T (l−k)

∥∥∥∥, which is op(1) since by Assumption 7,

E( sup
kκ−1,0<k<l≤kι0

∥∥∥∥∥ 1√
T (l − k)

∑l

t=k+1
εt

∥∥∥∥∥
4+δ

)

=
1

T 2+ δ
2

∑kκ,0−1

k=kκ−1,0

∑kκ,0

l=k+1
E(

∥∥∥∥ 1√
l − k

∑l

t=k+1
εt

∥∥∥∥4+δ

) ≤ M

T
δ
2

. (90)

Up to now, we have proved the desired result for each possible case. Since the number of

cases is finite, the supremum among all 0 ≤ k < l ≤ T will also be Op(1).
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Lemma 4 Under Assumptions 1-8,

1. sup
0≤k<l≤T

∥∥∥∥ 1√
T (l−k)

∑l
t=k+1(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥∥ = Op(
1

δ2
NT

),

2. sup
0≤k<l≤T

∥∥∥∥ 1√
T (l−k)

∑l
t=k+1(g̃t − J ′gt)g′tJ

∥∥∥∥ = Op(
1

δNT
),

3. sup
kι−1,0<l≤kι0

∥∥∥ 1
l−kι−1,0

∑l
t=kι−1,0+1(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥ = Op(
1

δ2
NT

) for each ι,

4. sup
kι−1,0<l≤kι0

∥∥∥ 1
l−kι−1,0

∑l
t=kι−1,0+1(g̃t − J ′gt)g′tJ

∥∥∥ = Op(
1

δNT
) for each ι,

5. sup
kι−1,0≤k<kι0

∥∥∥ 1
kι0−k

∑kι0
t=k+1(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥ = Op(
1

δ2
NT

) for each ι,

6. sup
kι−1,0≤k<kι0

∥∥∥ 1
kι0−k

∑kι0
t=k+1(g̃t − J ′gt)g′tJ

∥∥∥ = Op(
1

δNT
) for each ι.

Proof. Following Bai (2003), we have

g̃t−J ′gt = V −1
NT (

1

T

∑T

s=1
g̃sγN(s, t)+

1

T

∑T

s=1
g̃sζst+

1

T

∑T

s=1
g̃sηst+

1

T

∑T

s=1
g̃sξst), (91)

where ζst = e′set
N
− γN(s, t), ηst = g′sΓ

′et
N
and ξst =

g′tΓ
′es
N
. VNT is the diagonal matrix of the

first r̄ largest eigenvalues of 1
NT
XX ′ in decreasing order, G̃ is

√
T times the correspond-

ing eigenvector matrix, V is the diagonal matrix of eigenvalues of Σ
1
2
ΓΣGΣ

1
2
Γ and Φ is the

corresponding eigenvector matrix, J = Γ′Γ
N

G′G̃
T
V −1
NT . First consider part (1).

sup
0≤k<l≤T

∥∥∥∥∥ 1√
T (l − k)

∑l

t=k+1
(g̃t − J ′gt)(g̃t − J ′gt)′

∥∥∥∥∥
≤ 4 sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1
(

∥∥∥∥ 1

T

∑T

s=1
g̃sγN(s, t)

∥∥∥∥2

+

∥∥∥∥ 1

T

∑T

s=1
g̃sζst

∥∥∥∥2

+

∥∥∥∥ 1

T

∑T

s=1
g̃sηst

∥∥∥∥2

+

∥∥∥∥ 1

T

∑T

s=1
g̃sξst

∥∥∥∥2

)
∥∥V −1

NT

∥∥2

= 4
∥∥V −1

NT

∥∥2
(I + II + III + IV ). (92)

By part (1) of Lemma 2,
∥∥V −1

NT

∥∥ → ‖V −1‖, thus it suffi ces to consider I, II, III and IV .
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By Assumption 4,

I ≤ 1

T

∑T

s=1
‖g̃s‖2 sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1

1

T

∑T

s=1
γN(s, t)2

≤ r̄
1

T
sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1
(
∑T

s=1
M |γN(s, t)|) = O(

1

T
). (93)

By part (1) of Assumption 8,

II ≤ 1

T

∑T

s=1
‖g̃s‖2 1

N
(

1

T

∑T

s=1
sup

0≤k<l≤T

1√
T (l − k)∑l

t=k+1

∣∣∣∣∣
∑N

i=1[eiseit − E(eiseit)]√
N

∣∣∣∣∣
2

)

= r̄
1

N
Op(1). (94)

By part (2) of Assumption 8,

III ≤ 1

T

∑T

s=1
‖g̃s‖2 sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1

1

T

∑T

s=1

∣∣∣∣ 1

N

∑N

i=1
g′sγieit

∣∣∣∣2
≤ r̄(

1

T

∑T

s=1
‖gs‖2)

1

N
sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1

∥∥∥∥ 1√
N

∑N

i=1
γieit

∥∥∥∥2

= r̄Op(1)
1

N
Op(1). (95)

By part (1) of Lemma 3 and part (ii) of Lemma 1 in Bai and Ng (2002),

IV ≤ 1

T

∑T

s=1
‖g̃s‖2 sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1

‖gt‖2 1

N

1

T

∑T

s=1

∥∥∥∥ 1√
N

∑N

i=1
γieis

∥∥∥∥2

= r̄Op(1)
1

N
Op(1). (96)
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Next consider part (2).

sup
0≤k<l≤T

∥∥∥∥∥ 1√
T (l − k)

∑l

t=k+1
(g̃t − J ′gt)g′tJ

∥∥∥∥∥
≤

∥∥V −1
NT

∥∥ ‖J‖ sup
0≤k<l≤T

∥∥∥∥∥ 1

T

1√
T (l − k)

∑l

t=k+1

∑T

s=1
g̃sg
′
tγN(s, t)

∥∥∥∥∥
+
∥∥V −1

NT

∥∥ ‖J‖ sup
0≤k<l≤T

∥∥∥∥∥ 1

T

1√
T (l − k)

∑l

t=k+1

∑T

s=1
g̃sg
′
tζst

∥∥∥∥∥
+
∥∥V −1

NT

∥∥ ‖J‖ sup
0≤k<l≤T

∥∥∥∥∥ 1

T

1√
T (l − k)

∑l

t=k+1

∑T

s=1
g̃sg
′
tηst

∥∥∥∥∥
+
∥∥V −1

NT

∥∥ ‖J‖ sup
0≤k<l≤T

∥∥∥∥∥ 1

T

1√
T (l − k)

∑l

t=k+1

∑T

s=1
g̃sg
′
tξst

∥∥∥∥∥
=

∥∥V −1
NT

∥∥ ‖J‖ (V + V I + V II + V III). (97)

By Lemma 2,
∥∥V −1

NT

∥∥→ ‖V −1‖ and ‖J‖ → ‖J0‖, thus it suffi ces to consider V , V I, V II and
V III. By part (1) of Lemma 3 and Assumption 4,

V ≤ (
1

T

∑T

s=1
‖g̃s‖2)

1
2 sup

0≤k<l≤T
(

1

T

∑T

s=1

∥∥∥∥∥ 1√
T (l − k)

∑l

t=k+1
g′tγN(s, t)

∥∥∥∥∥
2

)
1
2

≤ r̄( sup
0≤k<l≤T

∑l
t=k+1 ‖gt‖

2√
T (l − k)

)
1
2 (

1

T
sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1

∑T

s=1
|γN(s, t)|2)

1
2

= Op(1)Op(
1√
T

). (98)

By part (1) of Lemma 3 and part (1) of Assumption 8,

V I ≤ (
1

T

∑T

s=1
‖g̃s‖2)

1
2 sup

0≤k<l≤T
(

1

T

∑T

s=1

∥∥∥∥∥
∑l

t=k+1 g
′
t√

T (l − k)

∑N
i=1[eiseit − E(eiseit)]

N

∥∥∥∥∥
2

)
1
2

≤ r̄
1√
N

( sup
0≤k<l≤T

1√
T (l − k)

∑l

t=k+1
‖gt‖2)

1
2 (

1

T

∑T

s=1

sup
0≤k<l≤T

1√
T (l − k)

∑l

t=k+1

∥∥∥∥ 1√
N

∑N

i=1
[eiseit − E(eiseit)]

∥∥∥∥2

)
1
2

=
1√
N
Op(1)Op(1). (99)
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By part (1) of Lemma 3 and part (2) of Assumption 8,

V II ≤ (
1

T

∑T

s=1
‖g̃s‖2)

1
2 sup

0≤k<l≤T
(

1

T

∑T

s=1

∥∥∥∥∥
∑l

t=k+1( 1
N

∑N
i=1 g

′
sγieit)g

′
t√

T (l − k)

∥∥∥∥∥
2

)
1
2

≤ r̄(
1

T

∑T

s=1
‖gs‖2)

1
2

1√
N

( sup
0≤k<l≤T

∥∥∥∥∥
∑l

t=k+1

∑N
i=1 γieitg

′
t√

NT (l − k)

∥∥∥∥∥
2

)
1
2

≤ r̄(
1

T

∑T

s=1
‖gs‖2)

1
2

1√
N

( sup
0≤k<l≤T

1√
T (l − k)

∑l

t=k+1

‖gt‖2)
1
2 ( sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1

∥∥∥∥ 1√
N

∑N

i=1
γieit

∥∥∥∥2

)
1
2

= Op(1)
1√
N
Op(1)Op(1) (100)

By part (1) of Lemma 3 and part (ii) of Lemma 1 in Bai and Ng (2002),

V III ≤ (
1

T

∑T

s=1
‖g̃s‖2)

1
2 sup

0≤k<l≤T
(

1

T

∑T

s=1

∥∥∥∥∥
∑l

t=k+1 g
′
t(

1
N

∑N
i=1 g

′
tγieis)√

T (l − k)

∥∥∥∥∥
2

)
1
2

≤ r̄( sup
0≤k<l≤T

1√
T (l − k)

∑l

t=k+1
‖gt‖2)

1√
N

(
1

T

∑T

s=1

∥∥∥∥ 1√
N

∑N

i=1
γieis

∥∥∥∥2

)
1
2

= Op(1)
1√
N
Op(1). (101)

For the other parts, proof of parts (3) and (5) are similar to proof of part (1), proof of parts

(4) and (6) are similar to proof of part (2).

Lemma 5 Under Assumptions 1-8,

1. sup
0≤k<l≤T

∥∥∥∥ 1√
T (l−k)

∑l
t=k+1 zt

∥∥∥∥ = op(1),

2. sup
kι−1,0<l≤kι0

∥∥∥ 1
l−kι−1,0

∑l
t=kι−1,0+1 zt

∥∥∥ = op(1) for each ι,

3. sup
kι−1,0≤k<kι0

∥∥∥ 1
kι0−k

∑kι0
t=k+1 zt

∥∥∥ = op(1) for each ι.

Proof. Recall that zt = vech[(g̃t − J ′gt)(g̃t − J ′gt)′] + vech[(g̃t − J ′gt)g′tJ ] + vech[J ′gt(g̃t −
J ′gt)

′]+vech[(J ′−J ′0)gtg
′
t(J−J0)]+vech[(J ′−J ′0)gtg

′
tJ0]+vech[J ′0gtg

′
t(J−J0)]. From Lemma
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2 and part (1) of Lemma 3, we have

sup
0≤k<l≤T

∥∥∥∥∥ 1√
T (l − k)

∑l

t=k+1
(J ′ − J ′0)gtg

′
t(J − J0)

∥∥∥∥∥
≤ ‖J − J0‖2 sup

0≤k<l≤T

1√
T (l − k)

∑l

t=k+1
‖gt‖2 = op(1)Op(1) = op(1), (102)

and similarly sup
0≤k<l≤T

∥∥∥∥ 1√
T (l−k)

∑l
t=k+1(J ′ − J ′0)gtg

′
tJ0

∥∥∥∥ = op(1). These together with parts

(1) and (2) of Lemma 4 proves part (1). Part (2) can be proved similarly using Lemma 2,

part (2) of Lemma 3 and parts (3) and (4) of Lemma 4. Part (3) can be proved similarly

using Lemma 2, part (3) of Lemma 3 and parts (5) and (6) of Lemma 4.

Lemma 6 In case factor loadings are stable, under Assumptions 3-5 and 10-12, ‖H −H0‖ =

op(1) and ‖UNT − U‖ = op(1).

Proof. The proof is similar to Lemma 2.

Lemma 7 In case factor loadings are stable, under Assumptions 3-5 and 10-14,

sup
Tε≤k≤T (1−ε)

∥∥∥∥ 1

T

∑k

t=1
(f̃tf̃

′
t −H ′ftf ′tH)

∥∥∥∥ = Op(
1

δ2
NT

).

Proof. It suffi ces to show

sup
Tε≤k≤T (1−ε)

∥∥∥∥ 1

T

∑k

t=1
(f̃t −H ′ft)(f̃t −H ′ft)′

∥∥∥∥ = Op(
1

δ2
NT

),

sup
Tε≤k≤T (1−ε)

∥∥∥∥ 1

T

∑k

t=1
(f̃t −H ′ft)f ′tH

∥∥∥∥ = Op(
1

δ2
NT

).

The former is not larger than 1
T

∑T
t=1

∥∥∥f̃t −H ′ft∥∥∥2

, which is Op(
1

δ2
NT

) by Lemma A.1 in Bai

(2003). The latter is a refinement of part (2) of Lemma 4. For its proof, see Lemma 3 of Han

and Inoue (2014), the required conditions (Assumptions 1-8(a) in Han and Inoue (2014))

can be verified.

Lemma 8 In case factor loadings are stable, under Assumptions 3-5, 10-13 and 16, if dT
δNT
→

0 as (N, T )→∞,
∥∥∥Ω̃−1 − Ω−1

∥∥∥ = op(1).

Proof. First note that
∥∥∥Ω̃−1 − Ω−1

∥∥∥ ≤ ∥∥∥Ω̃−1
∥∥∥∥∥∥Ω̃− Ω

∥∥∥ ‖Ω−1‖, ‖Ω−1‖ is constant,
∥∥∥Ω̃−1

∥∥∥ ≤√
r(r+1)

2
1

ρmin(Ω̃)
and

∣∣∣ρmin(Ω̃)− ρmin(Ω)
∣∣∣ ≤ ∥∥∥Ω̃− Ω

∥∥∥. Thus it remains to show ∥∥∥Ω̃− Ω
∥∥∥ =
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op(1). By Assumption 16,
∥∥∥Ω̃(FH0)− Ω

∥∥∥ = op(1). By second half of Theorem 2 in Han and

Inoue (2014),
∥∥∥Ω̃− Ω̃(FH0)

∥∥∥ = op(1) if dT
δNT
→ 0. The required conditions in Han and Inoue

(2014) can be verified.

Lemma 9 In case factor loadings have structural changes, under Assumptions 1-5 and

18, with
∣∣∣k̃ι − kι0∣∣∣ = Op(1) and

∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1), we have ‖Hι −Hι0‖ = op(1) and

‖UιNT − Uι‖ = op(1).

Proof. First, Assumption 18 ensures uniqueness of Hι0. The proof of ‖Hι −Hι0‖ = op(1)

follows the same procedure as Proposition 1 in Bai (2003) which, as explained in Lemma 2,

relies on Lemma 1(ii), Theorem 1 of Bai and Ng (2002) and Lemma A.3(i) of Bai (2003).

Thus it suffi ces to reestablish these three with
∣∣∣k̃ι − kι0∣∣∣ = Op(1) and

∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1).

The first can be proved without adjustment. The second is proved in Theorem 5. The third

(‖UιNT − Uι‖ = op(1)) is proved in Theorem 4.

Lemma 10 Under Assumptions 1-5, 19, 20 and 18, with
∣∣∣k̃ι − kι0∣∣∣ = Op(1) and

∣∣∣k̃ι−1 − kι−1,0

∣∣∣ =

Op(1), sup
k∈Λι,η

∥∥∥∥∑k
t=k̃ι−1+1

(f̃ιtf̃ ′ιt−H′ιftf ′tHι)

k̃ι−k̃ι−1

∥∥∥∥ and
∥∥∥∥∥
∑k̃ι
t=k̃ι−1+1

(f̃ιtf̃ ′ιt−H′ιftf ′tHι)

k̃ι−k̃ι−1

∥∥∥∥∥ are both Op(
1

δ2
NT

).

Proof. We will only show the first half, proof of the second half is the same. It suffi ces to

prove

sup
k∈Λι,η

∥∥∥∥ 1

k̃ι − k̃ι−1

∑k

t=k̃ι−1+1
(f̃ιt −H ′ιft)(f̃ιt −H ′ιft)′

∥∥∥∥ = Op(
1

δ2
NT

),

sup
k∈Λι,η

∥∥∥∥ 1

k̃ι − k̃ι−1

∑k

t=k̃ι−1+1
(f̃ιt −H ′ιft)f ′tHι

∥∥∥∥ = Op(
1

δ2
NT

)

with
∣∣∣k̃ι − kι0∣∣∣ = Op(1) and

∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1). The former is less than
∑k̃ι
t=k̃ι−1+1

‖f̃ιt−H′ιft‖2

k̃ι−k̃ι−1
,

which is Op(
1

δ2
NT

) by Theorem 5 and ‖UιNT − Uι‖ = op(1) in Lemma 9. To prove the latter, it

suffi ces to show sup
k∈Λι,η

∥∥∥∥∑k
t=kι−1+1(f̃ιt−H′ιft)f ′tHι

kι−kι−1

∥∥∥∥ = Op(
1

δ2
NT

) for each kι−1 ∈ [kι−1,0−C, kι−1,0+C]

and kι ∈ [kι,0 − C, kι,0 + C], where C is some positive integer (see Baltagi et al. (2015b) for

more details). For the case kι−1 ∈ [kι−1,0, kι−1,0 + C] and kι ∈ [kι,0 − C, kι,0], Lemma 3 of

Han and Inoue (2014) is applicable with T replaced by kι− kι−1. We next prove for the case

kι−1 ∈ [kι−1,0−C, kι−1,0− 1] and kι ∈ [kι,0 + 1, kι,0 +C]. Proof of the other two cases are the

same.
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Note that in this case xit = f ′tλ0,ι−1,i + eit for t ∈ [kι−1 + 1, kι−1,0], xit = f ′tλ0,ι,i + eit for

t ∈ [kι−1,0 +1, kι,0] and xit = f ′tλ0,ι+1,i+eit for t ∈ [kι,0 +1, kι]. Define wit = f ′t(λ0,ι−1,i−λ0,ι,i)

for t ∈ [kι−1 + 1, kι−1,0], wit = 0 for t ∈ [kι−1,0 + 1, kι,0] and wit = f ′t(λ0,ι+1,i − λ0,ι,i)

for t ∈ [kι,0 + 1, kι], it follows that xit = f ′tλ0,ι,i + eit+ wit for t ∈ [kι−1 + 1, kι]. Define

Xι = (xkι−1+1, ..., xkι)
′, wt = (w1t, ..., wNt)

′, Wι = (wkι−1+1, ..., wkι)
′, Eι = (ekι−1+1, ..., ekι)

′

and recall Fι = (fkι−1+1, ..., fkι)
′, it follows that Xι = FιΛ

′
0ι + Eι + Wι. Using the same

decomposition as equation A.1 in Bai (2003), we have

f̃ιt −H ′ιft = U−1
ιNT

1

N(kι − kι−1)
[F̃ ′ιFιΛ

′
0ιet + F̃ ′ιEιΛ0ιft + F̃ ′ιEιet

+F̃ ′ιFιΛ
′
0ιwt + F̃ ′ιWιΛ0ιft + F̃ ′ιWιwt + F̃ ′ιEιwt + F̃ ′ιWιet]

= U−1
ιNT (Qι

1,t +Qι
2,t +Qι

3,t +Qι
4,t +Qι

5,t +Qι
6,t +Qι

7,t +Qι
8,t). (103)

By Lemma 9,
∥∥U−1

ιNT

∥∥ and ‖Hι‖ are both Op(1), thus it suffi ces to show for m = 1, ..., 8,

sup
k∈Λι,η

∥∥∥ 1
kι−kι−1

∑k
t=kι−1+1Q

ι
m,tf

′
t

∥∥∥ = Op(
1

δ2
NT

).

For m = 1, 2, 3, the proof is the same as Lemma 3 of Han and Inoue (2014) except

that in current case we use 1
kι−kι−1

∑kι
t=kι−1+1

∥∥∥f̃ιt −H ′ιft∥∥∥2

= Op(
1

δ2
NT

) and ‖Hι‖ = Op(1) for

kι−1 ∈ [kι−1,0−C, kι−1,0−1] and kι ∈ [kι,0 +1, kι,0 +C]. These two are proved as intermediate

result in Theorem 5 and Lemma 9, respectively. For m = 4, sup
k∈Λι,η

∥∥∥∥∑k
t=kι−1+1Q

ι
4,tf
′
t

kι−kι−1

∥∥∥∥ is not
larger than

∥∥∥ F̃ ′ιFιΛ
′
0ι

N(kι−kι−1)

∥∥∥ (

∑kι
t=kι−1+1‖wtf

′
t‖

kι−kι−1
) and

∥∥∥∥∥ F̃ ′ιFιΛ
′
0ι

N(kι − kι−1)

∥∥∥∥∥ ≤ (

∑kι
s=kι−1+1

∥∥∥f̃ιs∥∥∥2

kι − kι−1

)
1
2 (

∑kι
s=kι−1+1 ‖fs‖

2

kι − kι−1

)
1
2

1√
N

(

∑N
i=1 ‖λ0,ι,i‖2

N
)

1
2

= Op(
1√
N

), (104)∑kι
t=kι−1+1 ‖wtf ′t‖
kι − kι−1

≤
∑kι−1,0

t=kι−1+1 ‖ftf ′t‖
kι − kι−1

(
∑N

i=1
‖λ0,ι−1,i − λ0,ι,i‖2)

1
2

+

∑kι
t=kι0+1 ‖ftf ′t‖
kι − kι−1

(
∑N

i=1
‖λ0,ι+1,i − λ0,ι,i‖2)

1
2

= Op(

√
N

T
). (105)
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For m = 5, sup
k∈Λι,η

∥∥∥∥∑k
t=kι−1+1Q

ι
5,tf
′
t

kι−kι−1

∥∥∥∥ is not larger than ∥∥∥ F̃ ′ιWιΛ0ι

N(kι−kι−1)

∥∥∥ (

∑kι
t=kι−1+1‖ftf

′
t‖

kι−kι−1
) and

1

kι − kι−1

∑kι

t=kι−1+1
‖ftf ′t‖ = Op(1), (106)

∥∥∥∥∥ F̃ ′ιWιΛ0ι

N(kι − kι−1)

∥∥∥∥∥
≤

∥∥∥∥ 1

kι − kι−1

F̃ ′ιWι

∥∥∥∥ 1√
N

(

∑N
i=1 ‖λ0,ι,i‖2

N
)

1
2

≤ [

∑kι−1,0

s=kι−1+1

∥∥∥f̃ιsf ′s∥∥∥
kι − kι−1

(
∑N

i=1
‖λ0,ι−1,i − λ0,ι,i‖2)

1
2

+

∑kι
s=kι−1+1

∥∥∥f̃ιsf ′s∥∥∥
kι − kι−1

(
∑N

i=1
‖λ0,ι+1,i − λ0,ι,i‖2)

1
2 ]

1√
N

(

∑N
i=1 ‖λ0,ι,i‖2

N
)

1
2

= Op(
1

T
). (107)

The last equality is due to
∥∥∥f̃ιs −H ′ιfs∥∥∥ = op(1) for kι−1 + 1 ≤ s ≤ kι, which can be

proved once Lemma A.2 in Bai (2003) is reestablished with kι−1 ∈ [kι−1,0 − C, kι−1,0 − 1]

and kι ∈ [kι,0 + 1, kι,0 + C]. This is not diffi cult since in Bai (2003) Lemma A.2 is based

on Lemma A.1 and Proposition 1, and as explained in the cases m = 1, 2, 3, we have

reestablished these two with kι−1 ∈ [kι−1,0 − C, kι−1,0 − 1] and kι ∈ [kι,0 + 1, kι,0 + C].

For m = 6, sup
k∈Λι,η

∥∥∥ 1
kι−kι−1

∑k
t=kι−1+1Q

ι
6,tf

′
t

∥∥∥ is not larger than 1
N

∥∥∥ F̃ ′ιWι

kι−kι−1

∥∥∥ (

∑kι
t=kι−1+1‖wtf

′
t‖

kι−kι−1
).

The second and the third terms are both Op(
√
N
T

), as proved in m = 5 and m = 4 respec-

tively. Form = 7, sup
k∈Λι,η

∥∥∥∥∑k
t=kι−1+1 Q

ι
7,tf
′
t

kι−kι−1

∥∥∥∥ is not larger than ∥∥∥ 1
N(kι−kι−1)

F̃ ′ιEι

∥∥∥ (

∑kι
t=kι−1+1‖wtf

′
t‖

kι−kι−1
).

The second term is Op(
√
N
T

), as proved in m = 4. The first term is not larger than

1√
N

(

∑kι
s=kι−1+1‖f̃ιs‖2

kι−kι−1
)

1
2 (

∑N
i=1

∑kι
s=kι−1+1 e

2
is

N(kι−kι−1)
)

1
2 , which isOp(

1√
N

). Form = 8, sup
k∈Λι,η

∥∥∥∥∑k
t=kι−1+1 Q

ι
8,tf
′
t

kι−kι−1

∥∥∥∥
is not larger than 1

N

∥∥∥ 1
kι−kι−1

F̃ ′ιWι

∥∥∥ (

∑kι
t=kι−1+1‖etf

′
t‖

kι−kι−1
). The second term is Op(

√
N
T

), as proved

in m = 5. The third term is not larger than (

∑kι
t=kι−1+1‖ft‖

2

kι−kι−1
)

1
2 (

∑kι
t=kι−1+1

∑N
i=1 e

2
it

kι−kι−1
)

1
2 , which is

Op(
√
N). Thus sup

k∈Λι,η

∥∥∥ 1
kι−kι−1

∑k
t=kι−1+1Q

ι
m,tf

′
t

∥∥∥ = Op(
1
T

) for m = 4, ..., 8.

Lemma 11 Under Assumptions 1, 3-5, 19, 20, 17, 18 and 22, with
∣∣∣k̃ι − kι0∣∣∣ = Op(1) and
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∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1),
∥∥∥Ω̃−1

ι − Ω−1
ι

∥∥∥ = op(1) if dT

T
1
4
→ 0 and dT√

N
→ 0 as (N, T )→∞.

Proof. Similar to Lemma 8, it suffi ces to show
∥∥∥Ω̃ι − Ω̃(FιHι0)

∥∥∥ = op(1), given
∣∣∣k̃ι − kι0∣∣∣ =

Op(1),
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1), dT

T
1
4
→ 0 and dT√

N
→ 0. This can be proved following the same

procedure as Theorem 2 in Han and Inoue (2014). Here we present the adjustment. First,

the notation should be replaced correspondingly, for example, in Han and Inoue (2014) the

sample is t = 1, ..., T while here the sample is t = kι−1 + 1, ..., kι. Next, in Han and Inoue

(2014) proof of Theorem 2 relies on their Lemma 7 and Lemma 8, which further relies on their

Lemma 5 and Lemma 6 respectively. Once their Lemma 5 and Lemma 6 are reestablished

given
∣∣∣k̃ι − kι0∣∣∣ = Op(1) and

∣∣∣k̃ι−1 − kι−1,0

∣∣∣ = Op(1), the proof of Lemma 7, Lemma 8 and

Theorem 2 need no adjustment.

We first reestablish parts (i) and (iii) of their Lemma 5. With dT

T
1
4
→ 0 and dT√

N
→ 0,

they are enough. From equation (103), we have

∑kι
t=kι−1+1

∥∥∥f̃ιt −H ′ιft∥∥∥4

kι − kι−1

≤ 83
∥∥U−1

ιNT

∥∥4
(
∑8

m=1

∑kι
t=kι−1+1

∥∥Qι
m,t

∥∥4

kι − kι−1

). (108)

Lemma 5 in Han and Inoue (2014) shows that
∑3

m=1
1

kι−kι−1

∑kι
t=kι−1+1

∥∥Qι
m,t

∥∥4
= Op(

1
T

) +

Op(
1
N2 ), the proof need no adjustment. Form = 4, ..., 8, it can be shown that

∑kι
t=kι−1+1‖Qι4,t‖4

kι−kι−1
=

Op(
1
T

),
∑kι
t=kι−1+1‖Qι5,t‖4

kι−kι−1
= Op(

1
T

),
∑kι
t=kι−1+1‖Qι6,t‖4

kι−kι−1
= Op(

1
T 3 ),

∑kι
t=kι−1+1‖Qι7,t‖4

kι−kι−1
= Op(

1
T

) and∑kι
t=kι−1+1‖Qι8,t‖4

kι−kι−1
= Op(

1
T 2 ). The proof of Lemma 6 need no adjustment, but note that it uti-

lized 1
T
F ′(F̂−FH)VNT = Op(

1
δ2
NT

). Its counterpart in current case is

∥∥∥∥∥
∑k̃ι
t=k̃ι−1+1

(f̃ιt−H′ιft)f ′t
k̃ι−k̃ι−1

∥∥∥∥∥ =

Op(
1

δ2
NT

), which is implicitly proved in Lemma 10.

Lemma 12 Under Assumptions 1-5 and 23, with
∣∣∣k̃ι − kι+1,0

∣∣∣ = Op(1) and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ =

Op(1), we have ‖Jι − Jι0‖ = op(1) and ‖VιNT − Vι‖ = op(1).

Proof. The proof is similar to Lemma 9.

Lemma 13 Under Assumptions 1-5, 19, 20 and 23, with
∣∣∣k̃ι − kι+1,0

∣∣∣ = Op(1) and
∣∣∣k̃ι−1 − kι−1,0

∣∣∣ =

Op(1), 1
k̃ι−k̃ι−1

∑kι0
t=k̃ι−1+1

zιt = op(1) and 1
k̃ι−kι0

∑k̃ι
t=kι0+1 zιt = op(1).

Proof. We will show the second half, the first half can be proved similarly. It suffi ces

to show

∥∥∥∥∑k̃ι
t=kι0+1 vech(g̃ιtg̃′ιt−J ′ιgιtg′ιtJι)

k̃ι−kι0

∥∥∥∥ and ∥∥∥∥∑k̃ι
t=kι0+1 vech(J ′ιgιtg

′
ιtJι−J ′ι0gιtg′ιtJι0)

k̃ι−kι0

∥∥∥∥ are both op(1).
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The first term can be proved similarly as Lemma 10. The second term is not larger than∥∥∥∥∑k̃ι
t=kι0+1 gιtg

′
ιt

k̃ι−kι0

∥∥∥∥ ‖Jι − Jι0‖2 + 2

∥∥∥∥∑k̃ι
t=kι0+1 gιtg

′
ιt

k̃ι−kι0

∥∥∥∥ ‖Jι − Jι0‖ ‖Jι0‖, which is op(1) by Lemma 12.
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