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Effects of Substrate Stiffness on Bacterial Biofilm Formation 

Abstract  

Biofilms are communities of microbial cells attached on surfaces and embedded in a self-

produced extracellular matrix comprised of polysaccharides, DNA, and proteins. Biofilms of 

pathogenic bacteria cause serious chronic infections due to high tolerance to antibiotics and 

host immune systems compared to their planktonic compartments. Biofilm formation is known 

to be influenced by many properties of substrate materials, such as surface chemistry, 

hydrophobicity, roughness, topography, and charge. However, few studies have been 

conducted to investigate the effects of substrate stiffness. In this study, Escherichia coli RP437 

and Pseudomonas aeruginosa PAO1 were used as model strains to investigate the early stage 

biofilm formation on poly(dimethylsil-oxane) (PDMS) with varying stiffness of 0.1 MPa to 

2.6 MPa, which were prepared by controlling the degree of crosslinking.  

 

An inverse correlation between cell adhesion and substrate stiffness was observed for both E. 

coli and P. aeruginosa. Interestingly, it was found that the cells attached on relatively stiff 

substrates were significantly shorter than those on relatively soft substrates, and the distribution 

of cell length was narrower on stiff substrates. In addition to the difference in size, the cells on 

stiff substrates were also found to be less susceptible to antimicrobials, such as ofloxacin, 

ampicillin, tobramycin and lysozyme, than the cells attached on soft substrates. The cell 

tracking results revealed that the E. coli cells on stiff surfaces were more mobile than those on 

soft surfaces, suggesting that the cells attached on soft surfaces may enter biofilm stage faster. 



Consistently, the intracellular level of c-di-GMP (an important signal for biofilm formation) in 

the cells on soft surfaces was higher than that of cells on stiff surfaces.  

 

Comparison of the wild-type strains and isogenic mutants revealed that the motB mutant of E. 

coli RP437 has defects in response to the stiffness of PDMS, which was rescued by 

complementation of the motB gene. Additionally, the cell tracking results indicate that the 

mutation of motB rendered the cells much less mobile compared to wild type E. coli RP437 

strains, and the decrease in the velocity of motility is higher on stiff surfaces than on soft 

surfaces. Those results suggest that motB may play a role in mechanosensing of material 

stiffness by E. coli. Similarly, mutation of oprF in P. aeruginosa also caused major defects in 

response to PDMS stiffness and abolished the difference in adhesion, growth, morphology and 

antibiotic susceptibility of attached cells between soft and stiff PDMS surfaces. These defects 

were rescued by genetic complementation of oprF, suggesting that oprF is involved in 

mechnosensing of P. aeruginosa. 

 

In summary, the findings from this study indicate that material stiffness has potent effects on 

bacterial adhesion and the physiology of attached cells. To our best knowledge, this is the first 

study on the effects of material stiffness of silicon-based polymers on biofilm formation, and 

the first report of the effects of material stiffness on the physiology of attached cells. These 

results are helpful for designing better anti-fouling and anti-microbial materials.  
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Chapter 1 

Introduction 
 

 

Adapted (in part) with permission from Fangchao Song et al., Journal of Dental Research, 

2015, 94, 1027-1034. Copyright 2015 SAGE Publications.  

 

1.1 Antimicrobial resistant infections, biofilms and persisters 

Antimicrobial resistant infection is one of the biggest challenges to the public health. As 

reported by the Center for Disease Control and Prevention (CDC) in 2013, at least 2 million 

people suffer antimicrobial resistant infection annually in the U.S. with more than 23,000 death 

each year.1 World Health Organization (WHO) stated in 2014 that “the resistance to common 

antibiotics has reached alarming levels in many parts of the world and that in some setting, 

few, if any, of the available treatments options remains effective for common infections.”2 

There are two primary mechanisms of antimicrobial resistance: the acquired mechanism based 

on drug resistant genes that could be shared by different bacterial species and the intrinsic 

mechanism due to the formation of multicellular structure known as biofilm.  

 

Biofilms are complex structures comprised of surface attached bacterial cells embedded in an 

extracellular matrix consisting of polysaccharides, proteins, DNA, and lipids. With high-level 

tolerance to antimicrobials and disinfectants, biofilm infections associated with indwelling 
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medical devices normally are chronic with recurring symptoms. As the development of biofilm 

research, two fundamental mechanisms which cause biofilm-associated antimicrobial-resistant 

infection have been proposed.3  

 

One mechanism of biofilm-associated antibiotic tolerance arises from the failure of the 

antimicrobial agent to fully penetrate the biofilm. Biofilm matrix is a three dimensional highly 

complex hydrated extracellular polymeric substance containing both proteins, nucleic acids, 

lipids, and enzymes produced by bacteria, as well as ions and other substances from the 

environment.4 Antimicrobial agents could be either hindered or neutralized by the biofilm 

matrix components. This mechanism has been demonstrated with experimental data of the 

penetration of hydrogen peroxide into a catalase-positive biofilm.5 Consistently, a reactive 

diffusion model has been successful developed to describe the diffusion of antibiotics through 

biofilm matrix.6  

 

Another cause of antibiotic tolerance is nutrient depletion and environmental stress within the 

biofilm leading to slow growth, dormancy and highly tolerant subpopulation called persister 

cells. Persister cells are a small population of bacteria, which is highly tolerant to antibiotics 

due to phenotype variations rather than genetic mutations. The first description of persisters 

was made by Joseph Bigger in 1944 when he studied the killing of Staphylococcus spp. by 

penicillin.7 It was found that there were always a small amount of bacterial cells that cannot be 

killed by penicillin even when the majority of population was lysed. Such surviving cells are 

not mutants with ampicillin resistant genes, because when they are treated with ampicillin after 

re-grown in the absence of ampicillin, a similar number of cells survive like the first treatment. 
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Although the mechanism is not fully understood, a number of conditions have been found to 

induce persister formation such as the lack of nutrients and the abundance of toxin.8 

 

Biofilm are up to 1000 times more tolerant to antimicrobial agents than planktonic cells of the 

same makeup. Biofilm associated infections are normally chronic, recurrent, and very difficult 

to eradicate. Thus, biofilms are involved in 80% of all bacterial infections in humans which 

result in around 100,000 deaths and 28-45 billion dollars of cost each year in the U.S. alone.9,10 

Although increasing use of intravenous catheters, prosthetic heart valves, joint prostheses, 

peritoneal dialysis catheters, cardiac pacemakers, cerebrospinal fluid shunts and endotracheal 

tubes have saved millions of lives, the intrinsic risk of biofilm associated infections have been 

increasing every year, posing an urgent need for new control methods and non-fouling 

materials. Besides the vital diseases, biofilm formed on tooth surfaces, called dental plaque, is 

responsible for major dental diseases, such as periodontitis, caries, and dental implant failure. 

Biofilms also play an important role in eye infections causing vision impairment and even 

blindness. In addition to medical problems, biofilm on ship hulls and heat exchangers etc. 

causes increased energy consumption and equipment damage, which put a heavy burdon on 

our economy. 

 

Given the broad spectrum of problems caused by biofilms, it is important to understand the 

mechanism of biofilm formation. As shown in Figure 1.1, biofilm formation is a dynamic 

process including attachment, micro-colony formation, maturation, and dispersion. Since 

biofilm formation is based on bacteria-surface interaction, the properties of the substrate 

material are critical to biofilm formation, especially the initial attachment and micro-colony 
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formation. After bacterial cells are brought to the surface by fluid stream and motility, these 

cells use extracellular organelles, such as flagella, fimbriae and outer membrane proteins to 

sense and overcome the repel force between bacteria and the surface. After the attachment, pili 

or outer membrane proteins, as well as the polysaccharides produced by attached cells, will 

enhance the binding of bacteria to the surface. This process enables the transition from 

reversible attachment to irreversible attachment. Many genes are involved in the regulation of 

biofilm formation, such as flagella genes, motA, motB, fliC; fimbriae genes, fimA, pilA; Wsp 

pathway genes, fleQ, wspR, wspC, as well as coding for surface proteins, sadC, oprF, oprE. A 

number of signaling molecules have been shown to be involved in the biofilm formation, such 

as the quorum sensing signals Autoinducer I (AI) and the messenger molecule cyclic di-GMP 

(c-di-GMP). 

 

 

Figure 1.1 The dynamic process of biofilm formation. 

 

1.2 Effects of material properties on biofilm formation 

As a process of bacteria-surface interaction, biofilm formation is known to be influenced by 

many factors of the surface (Figure 1.2), such as surface chemistry,11-14 hydrophobicity,15,164 

roughness,17,18 topography,19-22 and charge.11,23 and some theories and models have been 

proposed to explain the observed phenomena. Here, we summarize the major effects of surface 

properties on biofilm formation known to date. 
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Figure 1.2 Schematic illustration of bacterial adhesion and the effects of material properties in 

complex environments. Reprinted with permission from Song et al. (2015).24 

 

1.2.1 Surface charges 

Surface charge plays an important role in determining the binding force between bacteria and 

the surface, and it has long been known to affect biofilm formation. Most bacterial cells are 

negatively charged; thus, in general, a positively charged surface is more prone to bacterial 

adhesion and a negatively charged surface is more resistant to bacterial adhesion. Meanwhile, 

surfaces presenting certain cationic groups, such as quaternary ammonium and 

polyethylenimines, have antimicrobial activities and thus can kill the attached cells 25. In 

principle, controlling bacterial adhesion with surface charge may not work in static systems 

because the dead cells present a barrier which reduces the charge and facilitates the adhesion 

of other bacterial cells. However, if there are continuous shear force readily applied to remove 

dead cells, the positive charged surface could be effective to kill and repel biofilms, such as 

those in oral and ocean environments.  
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Recently, Terada et al.26 introduced glycidyl methacrylate(GMA) as a linking agent to modify 

Polyethylene (PE) sheets with sodium sulfite (SS) and diethylamine (DEA), which create the 

negatively charged and positively charged surfaces respectively. It was found that Escherichia 

coli (E. coli) cell density on positively charged surfaces is much higher than that on negatively 

charged surfaces (10 times after 0.25 h incubation and 3 times after 8 h incubation). The 

biofilms on positively charged surfaces are also more difficult to remove by 5000 s-1 shear 

force (Reynolds number 666) compared to those on negatively charged surfaces. Both results 

indicate that the affinity of bacterial cells to positively charged surfaces is higher than that to 

negatively charged surfaces. Interestingly, it was also found that the biofilm structure on these 

surfaces are different; e.g., biofilms on positively charged surfaces are dense, homogeneous 

and uniform; while biofilms on negatively charged surfaces are sparse, heterogeneous and 

mushroom shaped. This finding is consistent with the results of Pseudomonas aeruginosa 

PAO1 reported by Rzhepishevska et al.27, which showed that the mushroom shaped biofilms 

on negatively charged Poly(3-sulphopropylmethacrylate) (SPM) surfaces have enhanced c-di-

GMP level compared to the uniform biofilms on positively charged poly(2-(methacryloyloxy)-

ethyl trimethyl ammonium chloride) (METAC) surfaces. Because the c-di-GMP level is 

positively correlated with the production of biofilm matrix exopolysaccharides, these results 

suggest that P. aerugionsa PAO1 enhanced the attachment on negatively charge surfaces. 

Furthermore, Rzhepishevska et al.27 found that the ΔwbpA mutant of P. aerugionsa PAO1, 

which has defects in lipopolysaccharide (LPS) synthesis, has reduced interaction with 

negatively charged SPM surfaces compared to the positively charged METAC surfaces. This 

suggested LPS is important for biofilm formation on negatively charged surfaces. In the other 
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hand, the charged surfaces can also kill bacteria.28 For example, Terada et al.26 showed that the 

viability of attached E. coli biofilm cells is dramatically reduced on positively charged 

surfaces, Similar results were also reported by Carmona-Ribeiro and Carrasco,29 whose study 

showed that multiple cationic polymers could be assembled on surfaces to exhibit 

antimicrobial properties, such as quaternary ammonium, polyhexamethylene biguanide, and 

polyethylenimines. However, because of the electrostatically attractive nature of positively 

charged material surfaces, the dead cells on positively charged surfaces will stay on the 

surfaces, which could be favorable for the attachment of other bacterial cells.26 Therefore, the 

antimicrobial property of positively charged surfaces is likely limited to the initial adhesion. 

 

1.2.2 Hydrophobicity 

Hydrophobicity is an important property of surface material which defines the affinity of the 

surface with water. Inspired by the lotus leaves, super hydrophobic materials can be obtained 

to repel water, proteins and bacteria, and thus are non-wetting and non-fouling. Based on this 

principle, self-cleaning surfaces have been developed.30-40 The first method to achieve 

superhydrophobic surfaces is based on hydrophobic particles or film coating. Chung et al.30 

reported that the surface coverage of 9 h P. aeruginosa PAO1 biofilm on hydrophobic silver-

perfluorodecanethiolate (AgSF) film on polystyrene coated silicon wafer was 10 time less than 

those on hydrophilic UV-treated AgSF film. Pernites et al.33 made a superhydrophobic surfaces 

by electrodepositing a polythiophene layer on a 0.5 µm PS particle coated Au surfaces. The 

surface showed good repellant to fibrinogen and E. coli for 2 h adhesion. Another method to 

obtain a superhydrophobic surfaces is by controlling the microstructure of the surface. 

Freschauf et al.35 made a microscale structured surface on PDMS, polystyrene, polycarbonate, 
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and polyethylene. The surface showed superhydrophobicity compared to their flat 

counterparts, which led to a significant reduction of E. coli DH5α attachment. Verho et al.36 

created superhydrophobic surfaces by creating microtopography on silicon surfaces to achieve 

Cassie wetting state, which has air trapped by the surface topography. The surfaces were shown 

to reduce biofouling. Loo et al.39 used ethanol or methanol treated polyvinyl chloride (PVC) 

films to obtain microstructured superhydrophobic surfaces, which reduced the colonization of 

P aeruginosa PAO1. Zhang et al.37 also reported that staphylococcus aureus attached more on 

superhydrophobic topographic TiO2 surfaces compared to hydrophobic as well as hydrophilic 

TiO2 surfaces. Super hydrophilic surfaces can also repel bacteria and resist biofouling.41,42 It 

has been demonstrated that a dense layer of water molecules is formed on such surfaces, which 

can reduce the interaction force between cell surface and material surface. This theory, known 

as water layer theory, has guided the design of non-fouling materials. Brambilla et al.38 created 

a hydrophilic surface of a resin blend 2,2-bis[4-(2-hydroxy-3-methacryloylpropoxy)]-phenyl 

propane (bisGMA), bis[2-(methacryloyloxy)ethyl]phosphate (BisMP) and 2-hydroxyethel 

methacrylate (HEMA), which showed a 8 time reduction of Streptococcus mutans biofilm 

formation after 24 h incubation compared to the hydrophobic resin. Treter et al.43 found that 

hydrophilic Pluronic F127 coated polystyrene surfaces can inhibit 24 h Staphylococcus 

epidermidis biofilm formation by up to 90%. In addition, zwitterionic polymers, which are 

neutral molecules with both positive and negative charge groups, could be coated on a material 

surface to obtain superhydrophilicity with great non-fouling property. For example, Jiang et 

al.44 used multiple zwitterionic polymers, such as polysulfobetaine and polycarboxybetaine, to 

obtain super hydrophilic surfaces. All of these surfaces exhibited ultra-low fouling by either 
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protein or bacteria. In summary, both superhydrophobic and superhydrophilic surfaces could 

inhibit biofilm formation but the effects are based on different mechanisms.  

 

1.2.3 Roughness 

The effects of surface roughness on bacterial adhesion and biofilm formation vary significantly 

with the size and shape of bacterial cells and the level of surface roughness. Thus, there is no 

“one-size-fits-all” rule between the surface roughness and bacterial attachment.11 The basic 

understanding is that increase of surface roughness promotes bacterial attachment due to the 

increase in contact area between surface and bacterial cells.45 For example, Bohinc et al.46 

reported that the biofilm formation of E. coli, P. aeruginosa, and S. aureus on glass was all 

reduced with the decrease of surface roughness from 5.8 µm to 0.7 µm. Yoda et al.47 

investigated the effect of less than 30 nm scale roughness of 5 implant biomaterials including 

oxidized zirconium-niobium alloy (Oxinium), cobalt-chromium-molybdenum alloy (Co-Cr-

Mo), titanium alloy (Ti-6Al-4 V), commercially pure titanium (Cp-Ti) and stainless steel 

(SUS316L). The results indicate that bacterial attachment is faster on rough surfaces than on 

smooth surfaces. However, because bacterial cells are normally a few µm long and relatively 

rigid, there is expected to be an optimal feature size on nm scale which can reduce bacterial 

attachment by decreasing the contact area.45 For example, Seddiki et al.48 showed that the 

nanorough titanium surface obtained by a combination of mechanical polishing and chemical 

etching can reduce E. coli attachment by 20 times. The reduction was attributed to the decrease 

in the contact area due to the presence of surface features consisting of tips that had a high 

aspect ratio of peak height to peak width. Traditionally, roughness is calculated from the 

average of the amplitudes of the peak and valley on the surfaces. However, Siegismund et al.49 
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showed that such description is not sufficient to describe the 3D feature of a surface at nm 

scale. Poncin-Epaillard et al.40 also found the importance of the distribution of peaks and 

valleys in deciding the non-fouling properties when polypropylene and polystyrene treated by 

RF or CF4 plasma were used to test the adhesion of Listeria monocytogenes, P. aeruginosa and 

Hafnia alvei. Furthermore, Webb et al.50 characterized sub-nanometrically smooth titanium 

surfaces using nine parameters which describe the height, shape, and distribution of the surface 

features in multiple ways. The results demonstrated that the roughness calculated from the 

amplitude of the peak and valley is not the only determinant of bacterial attachment. S. aureus 

was found to preferentially attach to less ordered surfaces with peak heights and valley depths 

evenly distributed. In addition to adhesion, surface roughness has been found to influence 

bacterial physiology. Singh et al.51 investigated the effects of nanostructured titanium oxide on 

P. aeruginosa attachment. Besides the increase in bacterial attachment with roughness, they 

also found that P. aeruginosa cells lose their flagella on the nanostructured titanium oxide but 

not on smooth titanium oxide.  

 

1.2.4 Topography 

Recent advances in material and surface engineering have brought exciting opportuniites to 

develop sufaces with well-defined topographic patterns. These materials can be used to study 

bioflm formaton and help the design of non-fouling surfaces. Using PDMS with 10 µm tall 

square shape patterns, Hou et al.22 revealed that E. coli adhesion to the top of these patterns 

was significant only if patterns are 20 × 20 µm or bigger for face-up surfaces and 40 × 40 µm 

or bigger for face-down surfaces. Also, by testing the antimicrobial property of nanopatterned 

surfaces of Clager cicada wings, Pogodin et al.52 found that the wing surface covered by an 
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array of nano scale pillars with 200 nm heighth and 60 nm diameter has good antimicrobial 

properties. They also proposed a mechanism that the cell membrane stretches in the regions 

suspended between the pillars, if the degree of stretching is sufficient, this will lead to cell 

rupture and finally cell death. In addition to pattern size, different shapes of topographic 

patterns have also been compared. Perni et al.20 found that cone shaped µm scale patterns of 

silicone could affect the adhesion of E. coli and S. epidermidis. The results showed that the 

patterns with 20 µm diameter and 1 µm height, and with 40 µm diameter and 9 µm  height 

cone have less bacteria attached in 5 h compared to the pattern with 25 µm diameter and 2 µm 

height, and 30 µm diameter and 6 µm height cone patterns. Chebolu et al.53 also reported ridge 

shaped PDMS surfaces with 60 µm width, 20 µm height and 170 µm spaces have less E. coli 

colonization in 36 h incubation compared to the smooth PDMS surfaces. Inspired by the 

nonfouling skins of echinoderms, Epstein et al.54 found that the wrinkled surface could also 

prevent biofilm formation. By using wrinkle PDMS surfaces induced by a strain after O2 

plasma treatment, the team found that wrinkled surfaces with 1 µm valley width could reduce 

P. aeruginosa biofouling by 80% after 24 hour growth. Perera-Costa et al.55 also investigated 

the effects of PDMS surfaces with topological patterns, such as protruding and receding square, 

circular with 5 or 10 µm length and 21 or 117 nm height, and parallel channels with 5 nm pitch 

and 21 or 117 nm height. Results showed that all of the features could cause 30-40% reduction 

in P. aeruginosa adhesion compared to the smooth surfaces after 30 min attachment in PBS. 

Manabe et al.56 used porous polystyrene surfaces to test P. aeruginosa bacterial attachment. It 

was found that when the arrayed pores size is from 5 to 11 µm, the surface has the optimal 

prohibition of bacterial attachment. It was speculated that contact area is highly affected by the 

size of the pore. If the pore size is smaller than 3.5 µm or bigger than 11 µm, bacterial cells 
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have more area to attach. In addition to the aforementioned structures, some well-defined 

nanostructures can also lead to superhydrophobicity and reduce biofouling.57 Xu et al.58 

showed that the submicro-size textured pillar patterns can reduce the adhesion of S. 

epidermidis on polyurethane urea (PUU) surfaces under shear stress of 2.2-13.2 dyn/cm2, 

which is attributed to the super hydrophobicity afforded by the air trapped between the pillars. 

The size of pillar played an important role in trapping air and the results showed the inhibition 

of bacterial attachment only occurr on submicro-sized patterns, but not on micro-sized patterns 

which actually promote bacterial attachment. Graham et al.59 introduced the concept of 

Engineered Roughness Index (ERI) which is based on three parameters associated with the 

geometry, spatial arrangement and size of topographical features. Attachment of E. coli TOP 

10 to PDMS, glass, and titanium was found to be negatively correlated with ERI when it is less 

than 10. Also, all the engineered topographic surfaces reduced the bacterial adhesion compared 

to the smooth surfaces, and 1 µm-spaced holes exhibited the most significant reduction of 2 h 

E. coli adhesion. Besides the attachment, some surface topology can also affect the viability of 

attached cells. Jansson et al.60 found the surfaces with ZnO nanorods can reduce the adhesion 

of P. aeruginosa, but not S. epidermidis on glass. However, ZnO showed bactericidal effects 

on both strains; e.g., 15 % of the attached S. epidermidis on ZnO nanorods was killed, which 

is 30 folds higher compared to the killing of cells attached on glass. In terms of the location of 

bacterial attachment on topographical surfaces, it has been shown that the cells prefer the valley 

than the top of PDMS surfaces.20,22 Using well defined silicon nanowire array with 10 µm pitch 

and 300 nm height on Si (111) substrate, Jeong et al.61 found that the majority of Shewandla 

oneidensis MR-1 cells attached directly to Si nanowires rather than the bottom of substrate 

after 12 h biofilm formation in minimal media; and the cells prefer to align with the Si 



13 

 

nanowires. Similar phenomenon was also found by Jahed et al.62. It was found that S. aureus 

cells could attach to the bottom of nickel nanostructures on Au surfaces and partially or fully 

in the holes in the nanostructured nickel pillar, which has comparable size with bacteria, 

showed a great success in adhesion to the pillars. In addition, Mehdi et al.63 found that the 

position of attached P. aeruginosa cells may change as the geometry changes of the nanofiber 

textured surfaces. Increase in fiber diameter promotes the adhesion along the nanofibers. If the 

diameter of fiber is shorter than the diameter of bacteria, more bacteria lie on the nanofiber 

orthogonally.  

 

2.5 Surfaces chemistry 

Surfaces chemistry affects bacterial adhesion and biofilm formation by either changing the 

surface charge, hydrophobicity, or exhibiting antimicrobial properties. For example, Al-Radha 

et al.64 found that polished partially stabilized zirconia and titanium blasted with zirconia have 

less adhesion of Streptococcus mitis and Prevotella nigrescens than titanium blased with 

zirconia, acid etched and polished titanium. Moreover, Loskill et al.65 showed that fluoride 

treated hydroxyapatite have less colonizationing oral bacteria. To better understand the effects 

of surface chemistry, Hook et al.66 screened the 72-h biofilm formation of P. aeruginosa, S. 

aureus, and E. coli on hundreds of the polymeric materials in a high throughput microarray 

format. The screening results suggest that material comprising ester and cyclic hydrocarbon 

moieties have good potential for reducing the attachment of pathogenic bacteria.  

 

2.6 Bacterial response to surface properties 
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The results discussed above and some others in the literature suggest that bacteria have 

complex systems to sense and respond to environmental challenges. For example, by studying 

E. coli cells attached on 2.7 µm height hexagon topographical surfaces, it was found that E. 

coli cells use flagella to attach to the surface and overcome unfavorable surface topography 67. 

However, the genetic basis of surface sensing is still poorly understood except for some studies 

on the general sensing of surface wetness68 and surface contact69. For instance, two systems 

have been reported for surface sensing by P. aeruginosa. In the first system, the sensing of 

surface contact by Sad C leads to increase in the production of c-di-GMP, which binds to the 

transcriptional regulator FleQ. This interaction releases the inhibition of pel by FleQ and thus 

activates polysaccharide synthesis to form biofilm matrix.70 Another system for surface 

sensing, known as the Wsp regulatory circuit, was discovered in P. aeruginosa recently. In this 

system, a membrane-bound chemoreceptor homolog WspA senses unknown surface signals 

(postulated to be related to mechanical stress) and phosphorylates WspR, causing an increase 

in c-di-GMP production and thus biofilm formation69. However, these studies are based on 

sensing of general surface contact. The mechanisms of bacterial response to specific material 

properties remain to be revealed. 

 

1.3 Effects of surface stiffness on biofilm formation 

1.3.1 Material stiffness. 

Stiffness or rigidity, is an integrated property of object which represents the deformation of the 

material to an applied force. Sometimes, the inverse of stiffness is used as compliance or 

flexibility. The stiffness is mathematically defined as  𝐹𝐹
𝛿𝛿
 , where F is the force applied on the 

material and δ is the displacement produced by the force. A more commonly used definition is 



15 

 

𝐴𝐴 𝐸𝐸
𝐿𝐿

 , where A is the surface area; L is the height; and E is the material modulus. Based on the 

definition, two factors influence the surface stiffness. One is intensive property E (material 

modulus); and another is extensive property (A and L). For flat surfaces, the surface stiffness 

is only related to the material modulus E.  

 

Young’s modulus is the most common used material modulus, which is defined as the ratio of 

stress to strain. Figure 1.3 shows a standard stress-strain curve of materials. When the strain is 

small, the correlation between stress and stain is linear following the Hooke’s law. Young’s 

modulus is defined as the proportionality in this zone by  𝑘𝑘 = 𝜎𝜎
𝜀𝜀
 , where σ is the tensile stress 

on the objective, and ε is the extensional strain of the objective. Therefore, the unit of Young’s 

modulus is N/m2, psi or Pa.  

 

 

Figure 1.3 Standard stress-strain curve of materials. 

(https://commons.wikimedia.org/wiki/File:Stress_Strain_Ductile_Material.pdf) 
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1.3.2 Effects of material stiffness on biofilm formation  

As one of the mechanical properties of materials, substrate stiffness has been found to affect 

the shape, adhesion, proliferation, and migration of eukaryotic cells. However, compared to 

these well-known effects on eukaryotic cells and effects of surface chemistry, roughness, 

hydrophobicity on biofilm formation, the role of stiffness in biofilm formation is the least 

explored and only scare reports are available in the literature (Table 1.2). Bakker et al. 71 first 

speculated that surface stiffness may affect bacterial attachment based on the observation that 

Marinobacter hydrocarbonoclasticus attached more on glass surface with 2.2 GPa of Young’s 

modulus than fluoridated polyurethane coated glass surface with 1.5 GPa of Young’s modulus, 

although these two surfaces are also different in material composition. Using polyelectrolyte 

multilayer thin films comprised of poly(allylamine) hydrochloride and poly(acrylic acid) as a 

model, Lichter et. al 72 reported that the adhesion of S. epidermidis is positively correlated with 

the stiffness of this material with Young’s modulus of 0.8 MPa to 80 MPa, independent of 

surface roughness and charge density. In addition to adhesion, E. coli and Lactococcus lactis 

73 were found to grow faster on soft (Young’s modulus 30 kPa) than hard (Young’s modulus 

150 kPa) polyelectrolyte multilayer thin films. Guegan et al.74 also reported the increase of the 

stiffness of agar hydrogels from 6.6 kPa to 110 kPa promoted the biofilm formation of 

Pseudoalteromonas sp. D41. In addition to bacterial adhesion, it is also reported that there are 

more cell clusters formed on the soft agar surfaces (6.6 kPa) than on the stiff agar surfaces (110 

kPa), and the production of outer membrane proteins (OMPs) was induced by the increase in 

surface stiffness.74 The mechanism of how surface stiffness affects biofilm formation is still 

unclear, however, understanding these effects is important for the design of non-fouling 
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surfaces, which can find applications in the dental material, contact lenses, and other implanted 

materials.  

 

Table 1.1 Literatures on effects of surface stiffness on biofilm formation. 
Authors  Material  Strains Process Modulus 
K.J.van 
Vliet et al. 

Layer by layer 
PAA/PAH 
polyelectrolytes 

S. epidermidis, E. coli 
W3100 

Attachment 0.8-100MPa 

Karine 
Glinel et 
al. 

Layer by layer 
PLL/HAVB 
polyelectrolytes 

L. lactis NZ3900, E. coli 
TOP10, E. coli 
MG1655E. 

Growth 30 and 150kPa 

J. 
Aizenberg 
et al. 

Polyepoxy and 
polyurethanes 
nano pillar 

P. aeruginosa biofilm 20M,500M,2GPa 

Henry C. 
van de Mei 
et al. 

Polyurethane 
coating w/ or  
w/o F  

H. pacifica & M. 
hydrocarbonoclasticus 

Attachment 1.5GPa, 2.2GPa 

C. Guegan 
et al. 

Agarose 
hydrogel 

Bacillus sp. 4J6 & 
Pseudoalteromonas sp. 
D41 

Attachment 7kPa, 110kPa 

K. Kolewe 
et al. 

PEGDMA and 
agar hydrogels 

E. coli and S. aureus Attachment 0.1, 2, and 6MPa 

 

1.4 Bacterial virulence and phagocytosis. 

To engineer new materials for medical application, it is important to evaluate bacterial 

persistence, production of virulence factors and the response to host immune systems. 

Virulence is the degree of a pathogenicity of pathogen, which indicates the ability to invade 

human tissues and fatality rate. Virulence is determined by virulent factors which are important 

molecules produced by pathogens during infection. For example, virulence factors may help a 

pathogen invade or inhibit the host immune system, colonize the niche of tissues, enter host 

cells, and obtain nutrients from the host cells.  Each pathogen produces a wide array of 

virulence factors, such as toxins, hemolysins, and the factors that promote colonization. The 
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production of virulence factors is regulated by complex systems in response to environmental 

conditions.  

 

Phagocytosis is a process that phagocytes, such as macrophages, internalizes particles or 

pathogens and form phagolysozyme, in which the pathogen or cell debris will be digested by 

enzymes. Phagocytosis is an important mechanism used by the host to remove pathogen and 

cell debris. When an infection occurs, the virulence factors produced by the microbes stimulate 

the production of immune factors which could attract phagocytes to the infection site to remove 

the pathogens. 

 

1.5 Materials and techniques in this study. 

1.5.1 Strains. 

Escherichia coli and Pseudomonas aeruginosa were used as the bacterial models in this study. 

Both of them are gram negative strains. As the most investigated strains in the field of 

microbiology, the physiology of Escherichia coli is well-known, so this strain could help us to 

better understand the mechanism of effect of surface. Pseudomonas aeruginosa is one of the 

most concern pathogen in hospital, which is a common cause of healthcare associated 

infections including pneumonia, bloodstream infections, urinary tract infections, and surgical 

site infections. As reported by CDC in 2013, there were estimated 51,000 persons infected by 

Pseudomonas aeruginosa in United State each year, with roughly 440 persons died per year 

due to this infection. To understand the biofilm formation of Pseudomonas aeruginosa could 

be directly benefit on the severe Pseudomonas aeruginosa infections. 
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Monocyte U-937 (ATCCR CRL-1593.2TM) was used as the macrophage model in our research. 

This is a macrophage like cell line originally from pleura effusion or lymphocyte or myeloid 

of a 37 years old male histiocytic lymphoma patient. This cell suspends in the culture and will 

attached on surfaces while differentiated. 

 

1.5.2 Poly(dimethylsilloxane) (PDMS). 

Previous research used polyelectrolyte multilayer (PEM). However, there are limitations of 

PEM about the effect of material stiffness on the biofilm formation. First, PEM is a charged 

surface. In particular, the PEM used in Lichter’s research72 is about 3 mC/m2. Because the 

electrostatic force caused by surface charge can also affect biofilm formation, this presents a 

confounding factor. Second, the PEM used in previous research is a 9 nm coating on a glass 

substrate. In this case, the substrate under PEM may also affect the surface stiffness. Although 

there is no results of how deep bacteria can sense the surface mechanical properties, 9 nm 

thickness is relatively thin compared to the size of bacteria cells (normally 2 µm long).  

 

Poly(dimethylsilloxane) (PDMS) is used as the model of material in this study. We chose 

PDMS (silicone) surfaces since it is broadly used in medical devices, such as catheters, contact 

lenses, and finger joint implants.75-77 Also, unlike polyelectrolyte surface, PDMS has negligible 

charge;78 thus, using this material allows the effects of surface stiffness to be specifically 

studied. Moreover, thickness is not a problem in this study because bulk material is used 

instead of thin film. Furthermore, using PDMS allows us to compare with our other biofilm 

studies.22,79 In addition, the surface roughness and chemistry could also be ignored. In our 

study, the surfaces were polymerized in flat petri dishes. The SEM images in Chapter 2 indicate 
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that both soft and stiff surfaces are flat in μm scale. This is consistent with previous reports 

that such PDMS surfaces only have nm or sub-nm scale roughness. Eroshenoko et al.2 reported 

that the roughness of 20:1 PDMS, 10:1 PDMS, and 5:1 PDMS are very similar, e.g., 0.8 nm, 

0.8 nm, and 1 nm, respectively. In comparison, Wala et al. reported a slightly different result 

that the roughness of 20:1 PDMS (soft) and 5:1 PDMS (stiff) are 2.6 nm and 1 nm, respectively. 

Increase in roughness of glass surfaces in this range (from 1.6 nm to 2.8 nm) was found to 

cause minor inhibition of bacterial adhesion (by up to 2 fold). Thus, if the differences in our 

study were caused by changes in surface roughness, we would expect slightly more cell 

adhesion on 5:1 PDMS than on 20:1 PDMS. Jiang et al.5 measured the composition of the soft 

and stiff PDMS surfaces including the ones with the same base : curing agent ratios used in 

this study with XPS; and showed that the composition of the main elements C, O, and Si are 

essentially the same and the change in surface chemistry is negligible. To confirm that the 

difference in adhesion on the surfaces was not caused by toxicity of any leftover base or curing 

agent, we also conducted an additional experiment to compare the 5-h planktonic growth of E. 

coli RP437 at 37°C in LB medium supplemented with different concentrations of base and 

curing agents (0, 0.1%, 1%, and 2% tested for both). The results showed that the growth yield 

was not affected by either the base or curing agent (p > 0.1 for both, one-way ANOVA), 

confirming that the observed results were not caused by killing. 
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Figure 1.4 Material PDMS used in this study. 

(http://education.mrsec.wisc.edu/background/PDMS) 

 

PDMS surfaces were prepared using SYLGARD184 Silicone Elastomer Kit (Dow Corning 

Corporation, Midland, MI). Because the normal range of stiffness of commercial contact lenses 

is between 0.3-3 MPa, we chose this range of stiffness in this study. The stiffness was adjusted 

by varying the mass ratio of base to curing agent by following a protocol described 

previously.80-82 The base:curing agent ratios (wt/wt) of 5:1, 10:1, 20:1, and 40: 1 were tested 

(Table 1.2). For each given ratio, elastomer base and curing agent were thoroughly mixed and 

degased under vacuum for 30 min. Then, the mixture was poured into a petri-dish, cured at 

60oC for 24 h, and incubated at room temperature for another 24 h to fully polymerize. The 

PDMS surface was then peeled off the petri-dish and cut into 1.0 cm by 0.6 cm pieces (1.5 mm 

thick), which were sterilized by soaking in 190 proof ethanol for 20 min and dried with sterile 

air. All of the sterilized PDMS substrates were stored at room temperature until use. The 

Young’s moduli of PDMS surfaces were measured using dynamic mechanical analysis (DMA) 
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(Q800, TA instrument, DE, USA). The results indicated that the Young’s moduli of 5:1 PDMS, 

10: 1 PDMS, 20: 1 PDMS, and 40:1 PDMS were 2.6 ± 0.2 MPa, 2.1 ± 0.1 MPa, 1.0 ± 0.1 MPa 

and 0.1 ± 0.02 MPa, respectively (Table 1.2), which are similar to the values reported by Evans 

et al.80 and Wang et al.81 

 

Table 1.2 Material modulus used in this study. 
Ratio of 

base:curing agent 
40:1 PDMS 

(soft) 
20:1 PDMS 10:1 PDMS 5:1 PDMS 

(stiff) 

Young’s modulus 0.1 ± 0.02 MPa 1.0 ± 0.1 MPa 2.1 ± 0.1 MPa 2.6 ± 0.2 MPa 

 

1.5.3 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) is an imaging technique which uses a focused beam of 

electron to scan the sample. Because the wavelength of electron is much shorter in comparison 

to photon, SEM could image as small as 1 nanometer. To image the specimens, the specimens 

should be dry and coated by a conductive metal such as Pt or Ag. Then electron beam will be 

shot on the surface by a high voltage in high vacuum environment. The secondary electrons 

emitted by atoms excited by the electron beam will be detected. Based on the number of 

secondary electrons in different angle, the surface topography will be described.   

 

1.5.4 Flow cytometry 

Flow cytometry is a technique to count the cell number based on the different properties of 

cells, such as size, shape, or fluorescence. As shown in Figure 1.5, the nozzle will create a 

single cell flow to the channel. As a laser shoot on the cell, the different scatter will tell us the 
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size and shape of the cell. If an excitation light was shot on the cell, the detector will get the 

emission light, and differentiate cells with different properties. 

 

Figure 1.5 Scheme of flow cytometer. (flowcytometry.med.ualberta.ca) 

 

1.6 Motivation and hypothesis  

As shown in Introduction, the effects of surface stiffness on biofilm formation have only been 

scarcely explored. And previous studies72,83 only investigated the effect of surface stiffness on 

bacterial attachment and growth. It is still unknown if and how surface stiffness affects the 

physiology of attached cells such as motility, cell morphology, antimicrobial susceptibility, 

and gene expression in these cells. This knowledge gap motivated us to investigate the effects 

of surface stiffness on biofilm formation.  
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We hypothesize that bacteria have complex systems to sense and respond to material stiffness 

during biofilm formation and interaction with host cells and tissues. In this thesis research, we 

conducted multidisciplinary studies to investigate the role of material stiffness in bacterial 

adhesion and the physiology of attached cells. Specifically, this dissertation explores the 

effects of material stiffness on biofilm formation of E. coli and P. aeruginosa, as well as the 

cell motility and phagocytosis of attached cells. The role of important genes in bacterial 

response to material stiffness is also explored. 

 

An overall introduction on biofilm and known effects of material properties on biofilm 

formation are given in Chapter 1. The effects of material stiffness on biofilm formation are 

investigated in Chapter 2, including the effects on bacterial adhesion, growth, transcriptional 

activity, cell morphology, antimicrobial susceptibility, and phagocytosis. Chapter 3 further 

investigates the cell motility on soft and stiff surfaces and reveal the role of key genes of E. 

coli in response to the material stiffness. Chapter 4 focus on the mechanism of P. aeruginosa 

sensing surface stiffness and reveals the possible pathway of bacterial mechnosensing. The 

major findings of this thesis research is summarized in Chapter 5 along with suggested further 

work. 
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Chapter 2 

Effects of material stiffness on bacterial adhesion, biofilm 

formation and the physiology of attached cells 
 

 

Adapted (in part) with permission from Fangchao Song et al., Langmuir, 2014, 30, 10354-

10362. Copyright 2014 American Chemical Society. 

 

2.1 Abstract 

In this study, Escherichia coli RP437, Pseudomonas aeruginosa PAO1, Pseudomonas 

aeruginosa PA14 and  were  used as model strains to investigate the early stage biofilm 

formation on poly(dimethylsiloxane) (PDMS) surfaces with varying stiffness, which were 

prepared by controlling the degree of crosslinking (base : curing agent ratios of 5:1, 10:1, 20:1, 

and 40:1 were tested). An inverse correlation between cell adhesion and substrate stiffness was 

observed for both species. Interestingly, it was found that the cells that attached on relatively 

stiff substrates (5:1 PDMS) were significantly smaller than those on relatively soft substrates 

(40:1 PDMS). In addition to the difference in size, the cells on 5:1 PDMS substrates were also 

found to be less susceptible to antibiotics, such as ofloxacin, ampicillin, and tobramycin, than 

the cells attached on 40:1 PDMS substrates. These results reveal that surface stiffness is an 

important material property that influences the attachment, growth, and stress tolerance of 

biofilm cells. 
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2.2 Introduction 

Biofilms are multicellular structures formed by microorganisms attached to surfaces. Due to 

the high level tolerance to antibiotics,1 biofilms are considered as the leading cause of 

persistent infections, which result in 98,987 deaths and 28-45 billion dollars of cost each year 

in the U.S. alone.2-4 Biofilm formation is a dynamic process including initial attachment, 

microcolony formation, maturation, and detachment. Among these steps, initial attachment 

plays an important role in biofilm formation and is known to be influenced by many factors of 

the surface such as surface chemistry,5-8 stiffness,9-11 hydrophobicity,12,13 roughness,14,15 

topography,16-19 and charge.5,20 

 

As one of the mechanical properties of materials, substrate stiffness has been found to affect 

the shape, adhesion, proliferation, and migration of eukaryotic cells.21-27 However, compared 

to these well documented effects on eukaryotic cells, few studies have been conducted to 

investigate the effects of stiffness on bacterial attachment. Lichter et al.10 reported that the 

adhesion of Staphylococcus epidermidis and Escherichia coli W3100 is positively correlated 

with the stiffness (around 1, 10, 40, and 100 MPa tested) of polyelectrolyte multilayer (PEM) 

thin films consisting of poly(allylamine) hydrochloride (PAH) and poly(acrylic acid) (PAA). 

Saha et al.9 showed that the growth of E. coli MG1655 biofilm colonies is faster on 30 kPa 

PEM than on 150 kPa PEM, which are thin films consisting of poly(L-lysine) (PLL) and a 

hyaluronan derivative modified with photoreactive vinylbenzyl groups (HAVB). These 

pioneering studies presented promising data indicating that surface stiffness may affect 

bacterial adhesion and biofilm formation, although the effects on the physiology of attached 

cells is unknown. To better understand the role of stiffness and the underlying mechanism, we 
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conducted this study to investigate the effects of surface stiffness on early stage biofilm 

formation including attachment, cell morphology, and antibiotic tolerance. We chose PDMS 

(silicone) surfaces since it is broadly used for medical devices, such as catheters, contact lenses, 

and finger joint implants.28-30 Unlike polyelectrolyte surfaces, PDMS has negligible charge;31 

thus, using this material allows the effects of surface stiffness to be more specifically studied. 

It also allows us to compare with our other biofilm studies using this material.2019,323 We 

prepared cross-linked PDMS with varying Young’s modulus (between 0.1 MPa and 2.6 MPa 

tested). The range of 0.1-2.6 MPa was selected because similar moduli are found in 

biomaterials for medical applications (e.g., contact lenses).33  

 

2.3 Materials and Methods 

2.3.1 Bacterial strains and Growth medium 

Escherichia coli RP437 345 and Pseudomonas aeruginosa PAO1 35 were used in this study. 

Both strains were routinely grown at 37oC in Lysogeny Broth (henceforth LB medium) 

containing 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl in DI water.19,36  

 

2.3.2 Preparation of PDMS surfaces 

PDMS surfaces were prepared using SYLGARD184 Silicone Elastomer Kit (Dow Corning 

Corporation, Midland, MI). The stiffness was adjusted by varying the mass ratio of base to 

curing agent by following a protocol described previously.37-39 The base : curing agent ratios 

(wt/wt) of 5:1, 10:1, 20:1, and 40: 1 were tested. For each given ratio, elastomer base and 

curing agent were thoroughly mixed and degased under vacuum for 30 min. Then, the mixture 

was poured into a petri-dish, cured at 60oC for 24 h, and incubated at room temperature for 
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another 24 h to fully polymerize. The PDMS surface was then peeled off the petri-dish and cut 

into 1.0 cm by 0.6 cm pieces (1.5 mm thick), which were sterilized by soaking in 200 proof 

ethanol for 20 min and dried with sterile air. All of the sterilized PDMS substrates were stored 

at room temperature until use. The Young’s moduli of PDMS surfaces were measured using 

dynamic mechanical analysis (DMA) (Q800, TA instrument, DE, USA) by following a 

previously described protocol.39  

 

2.3.3 Bacterial adhesion on PDMS 

Bacterial cells from overnight cultures were harvested by centrifugation at 8,000 rpm for 3 min 

at 4oC, washed with phosphate buffered saline (PBS) (pH 7.3) three times, and then used to 

inoculate LB medium to desired cell density. This cell suspension (30 mL) was transferred to 

a petri-dish containing sterilized PDMS surfaces. After incubation at 37oC for 2 h without 

shaking, the PDMS surfaces were gently washed by dipping in PBS three times (changed to 

clean PBS for each step). The viability of cells was determined using the drop plate assay as 

described previously.40 Briefly, the attached cells were harvested by gentle sonication for 1 

min and vortexing for 30 s, which was tested for effectively detaching more than 92% of the 

attached cells. Then the cell suspension was dropped on a LB plate after a series of 10× dilution 

(10 μL in each drop). The plate was included at 37°C overnight to count colony forming units 

(CFU).  

 

Meanwhile, some PDMS surfaces were examined using an Axio Imager M1 fluorescence 

microscope (Carl Zeiss Inc., Berlin, Germany) to directly visualize the cells attached on PDMS 

surfaces. The live/Dead BacLight bacterial viability kit (Invitrogen Corporation, Carlsbad, CA, 
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USA) was used to stain E. coli RP437. To achieve this, the washed surfaces were soaked in a 

12 well plate; each well contained 2 mL PBS supplemented with 1.5 µL/mL SYTO 9 and 1.5 

µL/mL propidium iodide, and the plate was kept in the dark for 20 min.  At least five images 

were randomly taken from each sample, and the surface coverage by attached cells was 

calculated using COMSTAT.41 The data of surface coverage and CFU were analyzed with t 

test, Pearson correlation analysis, and one-way ANOVA followed by Tukey test using SAS 

9.2 software (SAS Institute, Cary, NC, USA).  

 

2.3.4 Biofilm growth 

After attachment, the surfaces were washed three times with PBS to remove the planktonic 

cells. The washed surfaces with attached cells were transferred to a new petri-dish containing 

30 mL LB medium, and incubated at 37oC without shaking for 5 h. After incubation, the PDMS 

surfaces were gently washed and analyzed as described above. Surface coverage was 

determined using COMSTAT. The length of attached cells was measured directly from 

microscope images. At least 300 cells were analyzed for each condition. To understand if 

surface stiffness affects the growth of attached cells, the biofilm cells after 5 h of growth were 

stained with 500 µg/mL acridine orange (Sigma-Aldrich, St. Louis, MO, USA) in PBS for 2 

min, and imaged with fluorescence microscopy. The same cells were also imaged using DIC 

(differential interference contrast) as control. Biofilm growth was also tested in 96-well plates. 

Briefly, a 96 well plate containing either 5:1 PDMS or 40:1 PDMS substrates coated on the 

bottom of the wells were inoculated using an overnight culture of E. coli RP437 to a density 

of 105 cells/mL, and the plate was incubated at 37°C for 72 h. Samples were analyzed 
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throughout the incubation period. The attached cells were harvested by sonication for 1 min; 

and the cell number was determined by counting CFU. 

 

2.3.5 Antibiotic susceptibility of attached cells 

The washed surfaces after 5-h growth were transferred to a 12 well plate containing 2 mL PBS 

in each well supplemented with antibiotics, e.g., 5 µg/mL ofloxacin, 100 µg/mL ampicillin, or 

20 µg/mL tobramycin, and incubated at 37oC without shaking for 3.5 h. The control surfaces 

were incubated in the same condition without antibiotic. After incubation, the number of viable 

cells was determined by counting CFU as described above. 

 

2.3.6 Scanning electron microscopy (SEM) 

Surface-attached E. coli cells were also imaged with SEM (JEOL JSM-5800 LV, JEOL, 

Peabody, MA, USA). Briefly, PDMS surfaces after 5 h of biofilm growth were stored in 2.5% 

glutaraldehyde/PBS solution to fix the cells on the surfaces. Then, the surfaces were stained 

with 2% osmium tetroxide solution for 45 min, and dehydrated by soaking in ethanol/water 

solutions with increasing ethanol content (in the order of 70%, 80%, 90%, and 95% wt) for 30 

min each. Finally, the samples were dehydrated in 100% ethanol for 30 min (repeated twice). 

Tetramethylsilane (TMS) was added on PDMS surfaces for further dehydration. After TMS 

evaporated completely, the dry PDMS surfaces were coated with platinum in a sputter coater 

(DESK II, Denton vacuum, Moorestown, NJ, USA) before SEM analysis. 
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2.3.7 Phagocytosis 

Macrophage U-937 was used as the model cell line in this study, which is cultured in RPMI 

supplemented in 10% BSA at 37% with 5% CO2. U-938 was used by differentiated type and 

non-differentiated type in this study. For the assay of phagocytosis by differentiated 

macrophage, U-937 was differentiated by 230 nmol/mL PMA for 1 day in 24 well plate, and 

the bacteria cell isolated from 5 h biofilm (cultured as the procedure above), were added in to 

the U-937 culture. For the assay of phagocytosis by non-differentiated macrophage, U-937 was 

added into the 5 h biofilm (cultured as the procedure above). For both assay, the co-culture 

was incubated at 37oC with 5% CO2 for 1 h, and the CFU was tested for calculating the killing.  

 

2.4 Results 

2.4.1 Effects of surface stiffness on E. coli biofilm formation 

To understand the effects of surface stiffness on bacterial attachment and biofilm formation, 

PDMS surfaces with different stiffness were prepared by varying the base : curing agent ratio 

(5:1, 10:1, 20: 1, and 40:1). Because different values have been reported for Young’s modulus 

of PDMS prepared with the same base : curing agent ratio,38-40 we also measured our samples 

using dynamic mechanical analysis (DMA). The results indicated that the Young’s moduli of 

5:1 PDMS, 10: 1 PDMS, 20: 1 PDMS, and 40:1 PDMS were 2.6 ± 0.2 MPa, 2.1 ± 0.1 MPa, 

1.0 ± 0.1 MPa and 0.1 ± 0.02 MPa, respectively, which are similar to the values reported by 

Evans et al.38 and Wang et al.3937,3837,38 
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Figure 2.1 Effect of PDMS stiffness on E. coli RP437 biofilm formation. Biofilms were grown 

in LB medium with 4 × 105 cells/mL at inoculation. Biofilm cell densities were found to be 

significantly different between 40:1 PDMS and 5:1 PDMS surfaces up to 24 h after inoculation. 

p < 0.01 for all time points up to 24 h (t test). 

 

We first compared the biofilms of E. coli RP437 on 40:1 PDMS and 5:1 PDMS substrates over 

72 h after inoculation using the 96 well plate assay described in Method section. As shown in 

Figure 2.1, biofilm formation in the first 6 h was faster on 40:1 PDMS surfaces than that on 

5:1 PDMS surfaces. The biggest difference in the density of biofilm cells between 40:1 PDMS 

and 5:1 PDMS substrates was observed at 4 h after inoculation: e.g. 7 × 104 cells/cm2 and 3 × 

103 cells/cm2 biofilm cells were found on 40:1 PDMS and 5:1 PDMS surfaces, respectively. 

When the cell density reached around 105 cells/cm2, biofilm formation on both 40:1 PDMS 

and 5:1 PDMS surfaces slowed down. However, there were still more cells on the 40:1 PDMS 

substrates until 38 h after inoculation. At 72 h, the cell numbers were about equal on 40:1 

PDMS and 5:1 PDMS substrates. To confirm that the difference in biofilm formation on these 
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surfaces was not caused by toxicity of any leftover base or curing agent, we also grew E. coli 

RP437 in planktonic cultures for 5 h at 37°C in LB medium supplemented with different 

concentrations of base or curing agents (0, 0.1%, 1%, and 2% tested for both). The results 

showed that the growth yield was not affected by either the base or curing agent (p > 0.1 for 

both, one-way ANOVA), confirming that the observed results were not caused by killing and 

surface stiffness does affect biofilm formation on PDMS surfaces. 

 

   

Figure 2.2 Effects of PDMS stiffness on the attachment of E. coli RP437 cells. (A) Number of 

attached E. coli RP437 cells. E. coli RP437 with a density of 4 × 107 cells/mL was used to 

inoculate the biofilm cultures. Attachment of E. coli RP437 cells was found to be inversely 

correlated with substrate stiffness (r = -0.61, p < 0.05, Pearson correlation analysis). (B) 

Representative images of attached E. coli RP437 cells (Bar = 10 µm). The cells were stained 
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with the Live/dead BacLight bacterial viability kit. (C) Effects of cell density of the inoculum 

and the stiffness of PDMS on the attachment of E. coli RP437 cells.  

 

2.4.2 Effects of surface stiffness on E. coli adhesion 

To understand if the effects of stiffness observed above were on the initial attachment, biofilm 

growth, or both, further experiments were conducted to study these processes more 

specifically. First, to understand the effects on attachment, the inoculum was washed three 

times with PBS and the adhesion (for 2 h) was carried out in PBS in the absence of any carbon 

source so that no growth is supported. Attachment of E. coli RP437 cells was found to be 

inversely correlated with substrate stiffness (r = -0.61, p = 0.012; Pearson correlation analysis). 

As shown in Figures 2A&B, when the stiffness increased from 0.1 MPa (40:1 PDMS) to 2.6 

MPa (5:1 PDMS), the number of attached cells decreased from  (1.0 ± 0.4) × 106 cells/cm2  to 

(5.0 ± 2.0) × 103 cells/cm2, corresponding to a 200-fold decrease in adhesion (p = 0.016, one-

way ANOVA adjusted by Tukey test). Interestingly, the number of attached cells increased 

with cell density at inoculation. For example, the number of attached E. coli RP437 cells on 

40:1 PDMS surfaces increased drastically from 1.1 × 103 to 1.4 × 107 cells/cm2 when the cell 

density at inoculation was increased from 5.8 × 105 to 2.9 × 109 cells/mL (Figure 2.2C). When 

the cell density at inoculation was between 5.8 × 105 and 1.2 × 108 cells/mL, there were 

constantly 10 times or more cells on 40:1 PDMS than on 5:1 PDMS surfaces (p < 0.001 for all 

cell densities between 5.8 × 105 and 1.2 × 108 cells/mL, t test). However, when the culture 

concentration was higher than 109 cells/mL, the numbers of attached cells were about the same 

on 40:1 PDMS and 5:1 PDMS surfaces (Figure 2.2C). Thus, cell density in the inoculum also 

affected E. coli adhesion. 
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Figure 2.3 Effect of PDMS stiffness on the growth of attached E. coli RP437 cells. (A) Surface 

coverage of attached cells calculated using COMSTAT. The surface coverage after 5-h growth 

was found to be inversely correlated with surface stiffness (r = -0.71, p < 0.001, Pearson 

correlation analysis). (B) Number of attached cells based on CFU count. The cell number after 

5-h growth was found to be inversely correlated with surface stiffness (r = -0.66, p < 0.001, 

Pearson correlation analysis). (C) Representative Live/Dead images of attached cells (Bar = 

10 µm).  
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Table 2.1 Effects of PDMS stiffness on biofilm formation of E. coli RP437.  

Number of initially attached cells 

(cells/cm2) 

Number of E. coli RP437 biofilm cells after 5 h of biofilm growth (cells/cm2) 

On 40:1 PDMS surfaces On 5:1 PDMS surfaces 

9 × 102 (3.6 ± 0.4) × 102 (2.8 ± 1.2) × 101 

7 × 104 (4.9 ± 0.6) × 103 (2.7 ± 0.8) × 103 

1 × 106 (7.1 ± 1.7) × 104 (9.1 ± 1.4) × 103 

 

2.4.3 Effects of surface stiffness on the growth of attached E. coli cells 

To understand if surface stiffness affects the early stage biofilm formation, we compared the 

biofilms of E. coli RP437 on 40:1 PDMS, 20:1 PDMS, 10:1 PDMS, and 5:1 PDMS surfaces. 

The surfaces were incubated in PBS with 4 × 107 cells/mL for 2 h to allow the cells to attach, 

and then transferred to LB medium to allow the biofilms to grow for 5 h. The surfaces were 

washed three times with PBS to remove planktonic cells before transfer. As shown in Figure 

2.3A, after 5-h growth, the surface coverage appeared to decrease as the stiffness of PDMS 

increased. For example, the surface coverage on 40:1 PDMS surfaces was 9.6 ± 1.2%; while 

the surface coverage on 20:1 PDMS, 10:1 PDMS, and 5:1 PDMS surfaces was 2.2 ± 0.4%, 0.7 

± 0.08%, and 0.4 ± 0.04%, respectively. These imaging results are corroborated by the CFU 

data (Figure 2.3B), which indicate that the cell number after 5-h growth is also inversely 

correlated with surface stiffness (r = -0.66, p < 0.01; Pearson correlation analysis). The number 

of attached cells on 40:1 PDMS, 20:1 PDMS, 10:1 PDMS, and 5:1 PDMS surfaces were (6.7 

± 1.6) × 104, (2.3 ± 0.7) × 104, (7.9 ± 1.7) × 103, and (2.2 ± 0.9) × 103 CFU/cm2, respectively 

(Figure 2.3B). The results of surface coverage and CFU are consistent with the biofilm images 

shown in Figure 2.3C.  
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As described above, the number of initially attached cells varied with surface stiffness when 

the biofilm cultures were inoculated with the same density of planktonic cells. In order to study 

biofilm growth specifically, the cell density of inoculum was adjusted to obtain the same 

number of cells attached on 40:1 PDMS and 5:1 PDMS substrates. Three cell densities of initial 

attachment were tested for biofilm growth on 40:1 PDMS and 5:1 PDMS substrates, including 

9 × 102, 7 × 104, and 1 × 106 cells/cm2. As shown in Table 2.1, for all three cell densities of 

initial attachment, more biofilm growth was observed on 40:1 PDMS surfaces than on 5:1 

PDMS surfaces. For example, when there were 9 × 102 cells/cm2 on both 40:1 PDMS and 5:1 

PDMS substrates after initial attachment, there were 12.9 times more cells on the 40:1 PDMS 

substrates after 5 h of growth (p < 0.001, t test). This result indicates that surface stiffness also 

affects biofilm growth and biofilm cells grow faster on soft surfaces (40:1 PDMS compared to 

5:1 PDMS) under our experimental condition. To corroborate this result, the biofilm cells after 

5 h growth following 2 h attachment with 4 × 107 cells/mL at the inoculum were stained with 

acridine orange which gives green and red fluorescence when it binds to DNA and RNA, 

respectively. As shown in Figure 2.4A, the amount of RNA in the attached cells decreased as 

the surface stiffness increased from 0.1 MPa to 2.6 MPa, while the amount of DNA remained 

relatively constant. This finding suggests that the cells on soft surfaces (40:1 PDMS, 0.1 MPa) 

had higher transcriptional activity than those on the stiff surfaces (5:1 PDMS, 2.6 MPa). 

Similarly, Saha et al.9 also observed faster growth of E. coli MG1655 on 30 kPa surfaces of 

hydrophilic layer by layer polyelectrolyte compared to 150 kPa surfaces of the same material.  
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Figure 2.4 Effects of PDMS stiffness on the activity and size of attached E. coli RP437 cells. 

Following inoculation with 4 × 107 cells/mL, E. coli RP437 was allowed to attach for 2 h in 

PBS and then incubated in LB medium for 5 h for biofilm growth. (A) Representative images 
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of E. coli RP437 cells on PDMS surfaces. Cells were stained with acridine orange. Top: green 

fluorescence images indicating the amount of DNA in attached cells. Middle: red fluorescence 

images indicating the amount of RNA in attached cells. Bottom: DIC images (Bar = 2 µm). 

(B) Average lengths of E. coli RP437 cells attached on PDMS surfaces with different moduli. 

The cell length was found to be inversely correlated with surface stiffness (r = -0.44, p < 0.001, 

Pearson correlation analysis). (C) Distribution of the length of attached E. coli RP437 cells on 

PDMS surfaces with varying stiffness. (D) Bright field images of detached E. coli RP437 

biofilm cells (Bar = 2 µm). (E1&2) Representative SEM images of E. coli RP437 cells attached 

to 40:1 PDMS (E1) and 5:1 PDMS (E2) (Bar = 1 µm). (E3) Average length of attached cells 

calculated from SEM images. ***p < 0.001, versus 40:1 PDMS (t test).  

 

2.4.4 Effects of surface stiffness on the size of attached E. coli cells 

Interestingly, our imaging results also revealed that the size of attached E. coli cells varied with 

surface stiffness after the 5-h growth. As shown in Figures 3C&4, the length of attached E. 

coli cells in 5-h biofilms appeared to decrease as the stiffness of substrate increased from 0.1 

MPa (40:1 PDMS) to 2.6 MPa (5:1 PDMS). For example, the average length of E. coli cells 

on 40:1 PDMS and 5:1 PDMS substrates after 5-h biofilm growth (inoculated with 4 × 107 

cells/mL) was found to be 2.6 ± 0.07 µm and 1.4 ± 0.03 µm, respectively (Figure 2.4B). Thus, 

the length of E. coli biofilm cells on 40:1 PDMS substrates after 5-h growth was nearly twice 

that of cells on 5:1 PDMS substrates (p < 0.001, one-way ANOVA adjusted by Tukey test). 

No such difference was observed right after the 2-h adhesion (Figure 2.2B), with cell size 

around 1.1 µm for all surfaces (stationary phase planktonic cells used for inoculation; p = 0.28, 

one-way ANOVA; eighty cells were examined for each condition). Besides the average length 
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of attached cells, the distribution of cell length was also different between stiff and soft 

substrates tested in this study. Figure 2.4C shows the distribution calculated from the 

Live/Dead images. The results suggest that the distribution of bacterial cell length is narrower 

on stiff substrate (5:1 PDMS) than that on soft substrate (40:1 PDMS). The finding that cells 

on soft substrate are longer is consistent with the above results that the growth of biofilm cells 

is slower on 5:1 PDMS surfaces than on 40:1 PDMS surfaces. Interestingly, increase in 

stiffness of PDMS with Young’s modulus in the range of 0.04-3 MPa has also been shown to 

improve early differentiation of embryonic stem cells;24,37 thus, PDMS with optimized stiffness 

in this range may promote the growth of host cells and simultaneously inhibit microbial biofilm 

growth. 

 

It is worth noting that the fluorescence images only show the projection of bacterial cells on 

the surface. To understand if the cells on soft surfaces were indeed longer or if the ones on stiff 

surfaces were “standing”, we detached the biofilm cells to further examine with microscopy. 

To achieve this, the substrates with cells after 5-h growth were gently sonicated for 1 min and 

vortexed for 30 s. This condition was found not to change the viability of E. coli cells based 

on CFU test (data not shown). By incubating these PDMS surfaces on LB agar plates, it was 

confirmed that more than 95% biofilm cells were detached. The detached cells were collected 

using a 96 well filter plate, re-suspended in PBS, and visualized using microscopy. As shown 

in Figure 2.4D, the length of these harvested E. coli cells was found to be consistent with those 

measured directly from biofilm images; e.g., the length of E. coli cells isolated from 40:1 

PDMS substrates was also twice of that from 5:1 PDMS substrates. This result indicates that 
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the E. coli cells on 5:1 PDMS substrates were not standing but were actually shorter than those 

attached on softer substrates.  

 

To further confirm these results, the PDMS surfaces with attached E. coli cells were imaged 

using SEM to directly visualize the 3D shape of attached cells. As shown in Figure 2.4E1&2, 

the SEM images further confirmed that the E. coli cells on soft (40:1 PDMS) surfaces were 

longer than those on stiff (5:1 PDMS) surfaces, and that the cells on stiff surfaces were attached 

horizontally, rather than vertically. The lengths of E. coli cells calculated from SEM images 

(Figure 2.4E3) matched well with the lengths measured from fluorescence images (Figure 

2.4B).  

  

Figure 2.5 Length of E. coli RP437 cells on 40:1 PDMS and 5:1 PDMS surfaces. Biofilm 

cultures were inoculated with 4 × 107 cells/mL and incubated for 2 h for attachment. Then the 

PDMS surfaces were transferred to LB medium (at t = 0 h) for biofilm growth. The lengths of 

biofilm cells were found to be significantly different between 40:1 PDMS and 5:1 PDMS 
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surfaces during 24 h of growth (p < 0.001, t test, for all time points up to 24 h except for t = 0 

h). 

 

Since biofilm formation is a dynamic process and cell size is related to cell growth, we 

hypothesized that the cell size may also change over time. To test this hypothesis, we followed 

the size of attached cells for over two days. As shown in Figure 2.5, the average length of 

attached E. coli RP437 cells was found to be different between soft (40:1 PDMS) and stiff (5:1 

PDMS) substrates during the first day of biofilm formation. On 40:1 PDMS substrates, the 

average cell length increased from 1.1 µm (the size of seeding cells from stationary phase 

cultures) to the maximum (2.4 µm) in the first 6 h of biofilm growth and then decreased slightly 

(possibly due to high cell density and associated stress). In comparison, on 5:1 PDMS 

substrates, the average length gradually increased over the first day, but was constantly smaller 

than that on 40:1 PDMS substrates. At 50 h after inoculation, the cell length was about 1.9 µm 

on both surfaces (Figure 2.5), indicating that the late stage of growth was approached. The 

difference in cell length, especially the rapid increase in the first 6 h of growth on 40:1 PDMS, 

suggests that the cells prefer softer surfaces for biofilm formation under our experimental 

condition. This is consistent with acridine orange images shown in Figure 2.4A. 
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Figure 2.6 Effects of PDMS stiffness on the susceptibility of E. coli RP437 to antibiotics. (A) 

Number of cells before and after treatment with 5 µg/mL ofloxacin (Ofl). The bars represent 

the number of cells based on CFU. The red dots represent the percentage of cells that survived 

the treatment, which increased with surface stiffness (r = 0.58, p < 0.001, Pearson correlation 

analysis). (B) Susceptibility of detached biofilm cells to 0.5 and 1 µg/mL ofloxacin. Biofilm 

cells on 40:1 PDMS and 5:1 PDMS surfaces were detached by sonication before being treated 

with ofloxacin. (C) Relative number of biofilm cells that survived the treatment with 100 

µg/mL ampicillin (Amp) or 20 µg/mL tobramycin (Tob). (D) Effects of PDMS stiffness on the 

susceptibility of E. coli RP437 to 1.5 mg/mL lysozyme. *p < 0.05, versus 40:1 PDMS (t test).  
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2.4.5 Effect of surface stiffness on antibiotic susceptibility of attached E. coli cells 

The finding that the size of attached E. coli cells changed with surface stiffness is intriguing. 

Small cells of bacteria have been found under stress conditions and are more tolerant to harmful 

environmental factors. For example, persister cells (metabolically inactive bacterial cells) are 

smaller than normal cells and are highly tolerant to antibiotics.42-44 Thus, we hypothesized that 

the small cells on stiff (5:1 PDMS) surfaces may be more tolerant to antibiotics compared to 

those on soft (40:1 PDMS) surfaces. To test this hypothesis, the PDMS surfaces with attached 

E. coli cells (after 5 h of biofilm growth) were treated with or without 5 µg/mL ofloxacin for 

3.5 h; and the number of viable E. coli cells  was determined by counting CFU. As shown in 

Figure 2.6A, 3.1 ± 0.9% bacteria on 40:1 PDMS substrate survived after the ofloxacin 

treatment; and the number increased to 8.8 ± 0.9% on 5:1 PDMS substrate (p < 0.001, one-

way ANOVA adjusted by Tukey test). This result indicates that the E. coli RP437 cells on 40:1 

PDMS were more susceptible to ofloxacin than those on 5:1 PDMS substrates under our 

experimental condition. To corroborate these results and determine if the difference is indeed 

due to the change in susceptibility of cells rather than the protection of biofilm structure, the 

E. coli cells were detached from biofilms and tested for their susceptibility to ofloxacin. As 

shown in Figure 2.6B, 0.8 ± 0.1% of E. coli cells isolated from 40:1 PDMS substrates survived 

after 1-h treatment with 1 µg/mL ofloxacin; and 2.7 ± 0.6% from 5:1 PDMS substrates 

survived, corresponding to a 3-fold increase (p = 0.014, t test). Similar results were also 

observed for 0.5 µg/mL ofloxacin, with  2.7 ± 0.3% of cells isolated from 40:1 PDMS 

substrates surviving after 1-h treatment and 3.9 ± 0.4% from 5:1 PDMS substrates surviving 

(p = 0.041, t test). These numbers are smaller than those from direct treatment of biofilms 

presumably due to the loss of protection of some biofilm matrix. Nevertheless, the results with 
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detached cells provide direct evidence that the cells on 5:1 PDMS surfaces indeed have higher 

antibiotic tolerance than those on 40:1 PDMS surfaces. To understand if this is a general 

phenomenon or ofloxacin specific, the substrates with attached E. coli RP437 cells were also 

treated with 100 µg/mL ampicillin or 20 µg/mL tobramycin for 3.5 h. As shown in Figure 

2.6C, the cells on 40:1 PDMS substrate were found to be more susceptible to both antibiotics 

compared to those on 5:1 PDMS surfaces. Ofloxacin, ampicillin, and tobramycin are 

fluoroquinolone, β-lactam, and aminoglycoside antibiotics, respectively. Thus, the effect of 

substrate stiffness on susceptibility is not specific to a certain class of antibiotics. In addition, 

as shown in Figure 2.6D, the attached E. coli cells on soft surface are more susceptible to 

lysozyme than those on stiff surface as well. Because the stiffness of PDMS used in this study 

is in the range of the stiffness of commercial contact lenses, it may help us to design better 

contact lenses for preventing eye infection. This finding is interesting and deserves further 

study.  

 

http://en.wikipedia.org/wiki/Fluoroquinolone
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Figure 2.7 Effects of surface stiffness on biofilm formation, cell length, and antibiotic 

susceptibility of P. aeruginosa PAO1 cells. (A) Effects of inoculum cell density and PDMS 

stiffness on attachment. (B) Number of attached P. aeruginosa PAO1 cells on 40:1 PDMS and 

5:1 PDMS surfaces. P. aeruginosa PAO1 cells were incubated in LB medium for 5 h with 5 × 

104 cells/cm2 cells on each surface after initial attachment. (C) Length of P. aeruginosa PAO1 

cells attached on 40:1 PDMS and 5:1 PDMS surfaces. (D) Susceptibility of attached P. 

aeruginosa PAO1 cells to 20 µg/mL tobramycin. **p < 0.01, ***p < 0.001, versus 40:1 PDMS 

(t test). 
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2.4.6 Similar effects were observed for P. aeruginosa cells.  

To understand if the observed effects of stiffness are limited to E. coli, we also investigated 

the biofilm formation and antibiotic susceptibility of P. aeruginosa PAO1 cells; and similar 

results were also observed for P. aeruginosa PAO1 (Figure 2.7). The number of attached P. 

aeruginosa PAO1 cells increased with cell concentration in the inoculum (Figure 2.7A). 

Although P. aeruginosa PAO1 cells are more capable of attachment to PDMS than E. coli 

RP437, the effects of substrate stiffness were found to be similar for both strains under our 

experimental conditions. When the cell density at inoculation was lower than 109 cells/mL, 

there were always more cells on soft (40:1 PDMS) substrates than on stiff (5:1 PDMS) ones 

after 2 h attachment of either E. coli RP437 or P. aeruginosa PAO1. The reason for a threshold 

cell density at inoculation (109 cells/mL) that overcomes the effect of stiffness is unknown and 

deserves further study. In addition to attachment, the effects of surface stiffness on biofilm 

growth were also similar between E. coli RP437 and P. aeruginosa PAO1. For example, as 

shown in Figure 2.7B, the number of attached P. aeruginosa PAO1 cells was (4.4 ± 0.5) × 105 

cells/cm2 on the soft surface (40:1 PDMS) and (8.2 ± 0.5) × 104 cells/cm2 on the stiff surface 

(5:1 PDMS) (p < 0.001, t test), respectively, after 5-h growth with 5 × 104 cells/cm2 at initial 

attachment. The average lengths of attached P. aeruginosa PAO1 cells were also different, 

e.g., 2.2 ± 0.03 µm and 1.4 ± 0.06 µm on 40:1 PDMS and 5:1 PDMS surfaces, respectively 

(Figure 2.7C). Thus, the length of attached cells on 40:1 PDMS substrates was about 1.6 times 

that of cells on 5:1 PDMS substrates at 5 h after inoculation (p < 0.001, t test). Similar to the 

E. coli results, P. aeruginosa PAO1 cells on soft substrates (40:1 PDMS) were found to be 5 

times more susceptible to 20 µg/mL tobramycin than those on stiff substrates (5:1 PDMS) (p 

= 0.005, t test; Figure 2.7D). Thus, the effects of surface stiffness are not limited to E. coli. 
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2.4.7 Phagocytosis of the attached cells on soft and stiff surfaces. 

Phagocytosis is one of the most important innate immune responses. Here we also tested the 

phagocytosis of the attached E. coli RP437 on stiff surfaces and soft surfaces. As shown in 

Figure 2.8 (A), differentiated macrophage U-937 killed more isolated biofilm cells on stiff 

surfaces than those on soft surfaces (p<0.005, t test). For example, the differentiated U-937 

could eliminated (58 ± 1.9) % isolated biofilm cells on stiff surfaces, and (92 ± 3.1) % isolated 

biofilm cells on soft surfaces. In addition to the phagocytosis of differentiated macrophages U-

937, the non-differentiated macrophages also showed the faster internalization on biofilm cells 

on stiff surfaces than those on soft surfaces (p<0.05, t test). Figure 2.8 (B) indicated the (97 ± 

0.9) % killing on stiff surfaces and (90 ± 1.7) % killing on soft surfaces. These results suggest 

that the macrophage prefer to internalize the biofilm cells on stiff surface than those on soft 

surfaces. 

 

 

Figure 2.8 The percentage of E. coli RP437 eliminated by macrophage U-937 in one hour 

with the ratio of bacteria : macrophage around 100 : 1 in RPMI medium supplemented with 

10% BSA. (A) Phagocytosis of differentiated macrophages on isolated biofilm cells on 

different surfaces. (B) Phagocytosis of non-differentiated macrophages on biofilm cells. 
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2.5 Discussion 

Compared to other surface properties, such as surface chemistry, topography and charge, the 

effects of stiffness on bacterial adhesion are less understood. In a previous study reported by 

Lichter et al.10, it was found that attachment of Staphylococcus epidermidis increases with 

surface stiffness in the range of 1-100 MPa of Young’s modulus. Also, Saha et al.9 reported a 

slight increase in E. coli MG1655 attachment on PEM surfaces when the stiffness increased 

from 30 to 150 kPa. These results are seemingly different from the results in the present study. 

However, it is worth noting that the previous results9,10 are based on hydrophilic surfaces, while 

the PDMS surfaces used in this study are hydrophobic. The bacterial strains, charges of 

surfaces, and ranges of modulus are also different between this and previous studies. Because 

many surface properties collectively affect bacterial adhesion and biofilm formation, the 

results from different conditions may not be directly comparable. This emphasizes the 

importance to decouple these factors in order to understand each specific parameter.  

 

In this study, we varied the surface stiffness by changing the base to curing agent ratio. Jiang 

et al.46 measured the composition of soft and stiff PDMS surfaces including the ones with the 

same base : curing agent ratios used in the present study with XPS; and showed that the surface 

chemical composition is essentially the same among those surfaces (based on C, O, and Si). 

To confirm that the difference in adhesion on the surfaces was not caused by toxicity of any 

leftover base or curing agent, we conducted an additional experiment to compare the 5-h 

planktonic growth of E. coli RP437 at 37°C in LB medium supplemented with different 

concentrations of base and curing agents (0, 0.1%, 1%, and 2% tested for both). The results 

showed that the growth yield was not affected by either the base or curing agent (p > 0.1 for 
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both, one-way ANOVA), confirming that the observed results were not caused by killing. 

Another factor that deserves attention is the effect of crosslinking on surface roughness, which 

is known to affect bacterial adhesion.20 Eroshenoko et al.25 reported that the roughness of 20:1 

PDMS, 10:1 PDMS, and 5:1 PDMS are very similar, e.g., 1 nm, 0.8 nm, and 0.8 nm, 

respectively. In comparison, Wala et al.47 reported a slightly different result that the roughness 

of 20:1 PDMS (soft) and 5:1 PDMS (stiff) are 2.6 nm and 1 nm, respectively. Increase in 

roughness of glass surfaces in this range (from 1.6 nm to 2.8 nm) was found to cause minor 

inhibition of bacterial adhesion (by up to 2 fold).48 Thus, if the effects observed in our study 

were caused by changes in surface roughness, we would expect slightly more cell adhesion on 

5:1 PDMS than on 20:1 PDMS. However, the 20:1 PDMS surfaces were found to have 40 

times more attached E. coli RP437 cells compared to 5:1 PDMS (Figure 2.2A). This finding 

strongly supports that the effects observed in this study were caused by changes in surface 

stiffness, rather than roughness. Also, PDMS is essentially not charged, which can avoid the 

interaction of strong electrostatic force. Thus, effects of surface chemistry, roughness, and 

electrostatic force are negligible. This allows us to investigate the effects of stiffness more 

specifically. 

 

It has been shown that bacteria take only minutes to attach to abiotic surfaces, while the host 

immune cells take several hours to respond.49-52 Thus, the finding that surface stiffness can 

affect bacterial adhesion, growth, and antibiotic susceptibility for 24 h is intriguing. Further 

understanding of the mechanism will help design better biomaterials. For example, the levels 

of stiffness involved in this study are in the range of those used for contact lenses. Reusable 
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contact lenses are typically washed after daily use. Thus, tuning the surface stiffness may help 

reduce eye infections associated with contact lenses. 

 

It was shown that the bacterial cells on stiff surface was internalized by macrophages more 

easily than those on soft surfaces. Thus, although the bacteria attached on stiff surface is more 

tolerance to antibiotics, it can be easily internalized by macrophage. In addition, the number 

of attached bacterial cells is much lower on stiff surfaces than soft surfaces. Therefore, the stiff 

PDMS will be recommended in the medical application. 

 

However, the viability assay used did not reveal what is the key factor causing the difference 

in phagocytosis among the AR of the attached cells, the density of attached cells, the activity 

of macrophages on different surfaces, and the difference in the composition of surface proteins 

secreted by attached cells. A few of studies have revealed that how macrophages response to 

different shapes of polymers and how surface stiffness influence the activity of macrophages. 

For example, Champion et al.45-47 showed that the poly(lactide-co-glycolie) (PLGA) particles 

with low aspect ratios (AR) are more easily internalized by macrophages.  And Discher et 

al.23,48 showed that macrophages on stiff surfaces (100 kPa) are more spreading than those on 

soft surfaces (1 kPa). However, what is the roles of each factors in the phagocytosis is still not 

clear. This is part of our on-going project.  

 

In summary, using PDMS and representative Gram-negative bacteria (E. coli and P. 

aeruginosa) as a model system, we found that surface stiffness affects not only the adhesion 

of bacterial cells, but also the growth, morphology, and antibiotic susceptibility of attached 
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cells. It is interesting to observe that the cell size and surface stiffness are inversely correlated 

after 5-h growth. This finding suggests that an increase in surface stiffness in the tested range 

may present a stress to attached cells, which can lead to slow growth, enhanced antibiotic 

tolerance, and reduced biofilm surface coverage. The stress may be caused by direct interaction 

between cells and PDMS surface and cell-cell interaction, since increasing the cell density in 

inoculation was found to alleviate the effects of stiffness. The effects of surface stiffness on 

biofilm cells at the molecular and genetic levels are unknown. It will be interesting to study 

the effects on bacterial cell structure (such as cell wall stiffness and membrane composition) 

and gene expression (especially the genes and pathways involved in growth, cell division, 

motility, chemotaxis, and stress response). It will also be interesting to test if surface stiffness 

affects the strength of bacterial adhesion and tolerance of attached cells to shear force. Using 

cell tracking and flow cells may provide useful information. This is part of our ongoing work. 

 

2.6 Conclusions 

By varying the degree of crosslinking of PDMS, we investigated the effects of substrate 

stiffness on the early stage biofilm formation of E. coli and P. aeruginosa including 

attachment, growth, cell length, and the susceptibility of attached cells to antibiotics. Decrease 

in surface stiffness was found to promote both the attachment and growth of E. coli and P. 

aeruginosa cells. More interestingly, the cells on 40:1 PDMS substrates after 5 h of biofilm 

growth were found significantly longer than those on 5:1 PDMS substrates; and the distribution 

of cell size was narrower on stiff substrates. The cells on stiff substrates also exhibited 

decreased susceptibility to antibiotics compared to the cells on soft substrates. And 

phagocytosis is faster on stiff surfaces than on soft surfaces. Collectively, these results indicate 
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that the stiffness of a substrate could affect the physiology of attached bacterial cells and 

possibly the progression of biomaterial associated bacterial infections. 
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Chapter 3 

Motility reveals motB is involved in response to material 

stiffness during Escherichia coli biofilm formation 
 

 

The ACTIVE package used in this Chapter for tracking the bacterial motility was modified by 

Megan Brasch and Dr. James Henderson. 

 

3.1 Abstract 

Escherichia coli RP437 and its isogenic mutants of motility (motB), flagella (fliC) and type I 

fimbriae (fimA) were used to investigate bacterial response to material stiffness during the 

initial attachment on cross-linked poly(dimethylsiloxane) (PDMS) surfaces with different 

Young’s moduli (0.1 and 2.6 MPa), which were prepared by controlling the degree of 

crosslinking. The results of cell counting and tracking revealed that the motB mutant of E. coli 

RP437 has defects in response to the stiffness of PDMS, which was rescued by 

complementation of the motB gene. The cell tracking results indicated that the E. coli cells on 

stiff surfaces were more motile than those on soft surfaces, and mutation of motB led to larger 

differences in terms of the types and velocity of motility on stiff surfaces than wild type E. coli 

RP437 strains. 

 
3.2 Introduction 
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Over 90% of bacteria on earth live in biofilms with cells attached on surfaces and surrounded 

by extracellular polysaccharides and self-produced DNA, RNA and proteins.1 Due to the high-

level tolerance to antimicrobial and host immune factors, the biofilms colonized implanted 

medical devices and host tissues can cause persistent infections, which result in nearly 100,000 

deaths and 28-45 billion dollars of losses each year in the U.S. alone.2-5  Additionally, the 

biofilms formed on water pipe and ship hulls hydro-dynamically increase the energy cost and 

cause a heavy burden on our economy.1,6 Therefore, understanding the mechanism of biofilm 

formation and physiology of biofilm cells is critical for solving these problems. There are 

multiple steps in the transition of bacterial cells from planktonic growth to biofilm formation, 

including initial attachment, cell growth, biofilm maturation, and dispersion. Among these 

steps, initial attachment (including reversible and irreversible attachment) plays an important 

role in biofilm formation and is known to be influenced by many properties of the substratum 

surface such as surface chemistry,7-10 stiffness,11-13 hydrophobicity,14,15 roughness,16,17 

topography,18-21 and charge.7,22 In a recent study,23 we reported that decrease in stiffness of 

cross-linked poly(dimethylsiloxane) promotes the bacterial adhesion and growth, and the 

attached bacterial cells on soft surfaces are longer and more sensitive to antibiotics. 2021,243  

However, how bacteria response to surface stiffness during the initial attachment is still 

unknown. It has been reported previously that bacteria can sense surface by flagella, fimbriae 

or other surface appendages.25-31  For example, some bacteria use flagella to detect the contact 

with a surface, and start biofilm formation with polysaccharide synthesis.32 However, how 

bacteria sense and response to surface stiffness has not been studied. Here, we investigated the 

effects of surface stiffness on the initial attachment and the motility of attached E. coli RP437 

using imaging and cell tracking.  
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3.3 Materials and Methods 

3.3.1 Bacterial strains and Growth media. 

Escherichia coli RP437, 335 one of the model strains for studying motility and biofilm 

formation, and its isogenic mutants, motB, fliC, and fimA, were used to investigated the roles 

of motility, flagella, and type I fimbriae in bacterial response to surface stiffness. To follow 

cells with imaging, the plasmid pRSH103 was transduced into each strains to label the cells 

with constitutively expressed red fluorescence. The strains used in this study were summarized 

in Table 3.1. E. coli RP437 and its mutants were routinely grown at 37oC with shaking at 200 

rpm in Lysogeny Broth (henceforth LB medium) containing 10 g/L tryptone, 5 g/L yeast 

extract, and 10 g/L NaCl in DI water. 21,34 E. coli RP437/pRSH103, E. coli RP3087/pRSH103, 

E. coli RP437 ΔfimA/pRSH103, and E. coli RP437 ΔfliC/pRSH103 were routinely grown at 

37oC with shaking at 200 rpm in LB medium supplemented with 30 µg/mL tetracycline. 

 

3.3.2 Preparation of PDMS surfaces. 

PDMS surfaces were prepared using SYLGARD184 Silicone Elastomer Kit (Dow Corning 

Corporation, Midland, MI). The stiffness was adjusted by varying the mass ratio of base to 

curing agent (5:1 and 40:1 tested) following a protocol described previously.35-37 For each 

given ratio, elastomer base and curing agent were thoroughly mixed and degased under 

vacuum for 30 min. Then, the mixture was poured into a petri-dish, cured at 60oC for 24 h, and 

incubated at room temperature for another 24 h to fully polymerize. The PDMS surface was 

then peeled off the petri-dish and cut into 1.0 cm by 0.6 cm pieces (1.5 mm thick), which were 

sterilized by soaking in 200 proof ethanol for 20 min and dried with sterile air. All of the 

sterilized PDMS substrates were stored at room temperature until use. The Young’s moduli of 
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PDMS 5:1 and 40:1 are 2.6 MPa (stiff) and 0.1 MPa (soft), respectively, as we reported 

previously.23 

 

3.3.3 Bacterial adhesion on PDMS. 

Bacterial cells from overnight cultures were harvested by centrifugation at 8,000 rpm for 3 min 

at 4oC, washed with phosphate buffered saline (PBS) (pH 7.3) three times, and then used to 

inoculate PBS to desired cell density. The cell density of inoculum was controlled by 

measuring optical density at 600 nm (OD600). This cell suspension (30 mL) was transferred to 

a petri-dish containing sterilized PDMS surfaces (facing up, shown in supplementary Figure 

3.1a; or facing down, shown in supplementary Figure 3.1b). Meanwhile, the cell suspension 

was dropped on a LB plate after a series of 10× dilution (10 μL in each drop) for confirming 

the cell density of the inoculum. 38 After incubation at 37oC for 2 h without shaking, the PDMS 

surfaces were gently washed by dipping in PBS three times (changed to clean PBS for each 

step). The viability of cells was determined using the drop plate assay as described 

previously.38 Briefly, the attached cells were harvested by gentle sonication for 1 min and 

vortexing for 30 s. Then the cell suspension was dropped on a LB plate after a series of 10× 

dilution (10 μL in each drop) for measuring the density of attached cells on surfaces. The plates 

were incubated at 37°C overnight to count colony forming units (CFU). All conditions were 

tested with at least 3 replicates.  

 

3.3.4 Cell tracking and data analysis. 

Bacterial cells from overnight cultures were harvested by centrifugation at 8,000 rpm for 3 min 

at 4oC, washed with phosphate buffered saline (PBS) (pH 7.3), and then used to inoculate PBS 
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to desired cell density. This cell suspension was transferred to a petri-dish containing sterilized 

PDMS surfaces. The initial attachment of the fluorescent bacterial cells were visualized using 

an Axio Observer Z1 fluorescence microscope (Carl Zeiss Inc., Berlin, Germany). Images were 

taken every 5 s and the results were analyzed using the cell tracking package ACTIVE.39 The 

cells were identified and contoured by adjusting the parameters in ACTIVE. And then the cells 

were categorized into three types, “still” (The cells whose mass center did not move more than 

a quarter of the body length in 5 s), “rotating” (the cells whose mass center moved more than 

a quarter but less than one body length in 5 s), and “moving” (the cells whose mass center 

moved more than one body length in 5s). The average of moving speed was calculated for each 

cell. And the distribution of speeds were analyzed and fit by Boltzmann distribution. 

 

3.4 Results 

3.4.1 motB of E. coli is important to the response to PDMS stiffness during attachment. 

Our recent study has shown that bacteria prefer to attach on soft PDMS surfaces than stiff 

PDMS surfaces (0.1 -2.6 mPa Young’s Modulus) .23 However, how bacteria sense and reponse 

to surface stiffness is still unknown. To understand the mechanism of mechanosensing by 

bacteria, E. coli RP437, which is a model wild-type strain for biofilm research, and its mutants 

of motB, fimA, and fliC genes were compared (Table 1). Each inoculum was washed three 

times with PBS and the adhesion (for 2 h) was carried out in PBS in the absence of any carbon 

source so that adhesion can be studied in the absence of cell growth. The cell density of 

inoculum was controlled to be 3 × 107 cells/mL – 6 × 107 cells/mL. After 2 h attachment, there 

were (1.1 ± 0.4) × 106 cells/cm2 of E. coli RP437 on soft surfaces and (5.3 ± 2.4) × 103 cells/cm2 

of E. coli RP437 on stiff surfaces (Figure 3.1). When the stiffness increased from 0.1 MPa to 
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2.6 MPa, the number of attached E. coli RP437 cells decreased more than 2 logs, consistent 

with our earlier report.23 In comparison, the number of attached E. coli RP437 ΔfliC was (1.6 

± 0.2) × 105 cells/cm2 on soft surfaces and (2.3 ± 0.7) × 103 cells/cm2 on stiff surfaces, 

corresponding to a 2 log decrease in adhesion; and the attachment of E. coli RP437 ΔfimA 

decreased from (2.0 ± 0.3) × 105 cells/cm2 on soft surfaces to (4.4 ± 0.5) × 102 cells/cm2 on 

stiff surfaces, corresponding to more than 2 logs of decrease in adhesion. Both mutants have 

relatively lower number of attached cells than the wild-type strain on the same surfaces. These 

findings are consistent with the previous results that both flagella and type I fimbriae are 

important in the initial attachment.32,40 For example, bacteria could use flagella to touch a 

surface and type I fimbriae to inreversely attach on it. However, both fimA and fliC mutants 

still exhibited substantial comparable differences in attachment between soft and stiff surfaces. 

Thus, these two genes are not essential for sensing stiffness. Interestingly, E. coli RP437 motB 

mutant showed reduced difference in attachment between soft and stiff surfaces, while the 

wilde-type E. coli RP437 and motB mutant had similar numbers of cells attached on soft 

PDMS, the motB mutant had around 10 times more cells on the sitff surface than the wilde 

type strain. This led to 1 log decrease in the difference between soft and stiff surfces, suggesting 

that motB may play a role in mechanosensing. 
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Table 3.1. List of E. coli strains and plasmids used in this study. 

E. coli strains 
or plasmids Genotype Characteristics 

Source/ 

Reference 

RP437 Wild type Strain [thr-1(Am) 
leuB6 his-4 metF159(Am) 
eda-50 rpsL1356 thi-1ara-
14mtl-1 xyl-5 tonA31 tsx-78 
lacY1 F-] 

Wild type strain for 
biofilm study 

33 

RP3087 RP437 Δ(motB)580 Motility mutant (point 
mutation in motB) 

43 

ΔfliC  Flagella mutant (deletion 
mutation of fliC) 

This study 

ΔfimA  Type I fimbriae mutant 
(deletion mutation of 
fimA) 

This study 

pRSH103 Plasmid, Tetr, constitutive rfp Red fluorescence 21 

pRHG03 Plasmid, motB 
complementation  

motB complementation This study 

 

 

To comfirm if this change was indeed caused by motB mutation, E. coli RP3087/pRGH03 

(motB complementation strain) was also studied under the same condition (Table 1). As shown 

in Figure 3.1, the defects of motB mutant was fully recovered by motB complementation, and 

the numbers of attached cells on both soft and stiff surfaces were similar to the wild-type strains 

(p>0.05, t test). These results confirmed that the decrease in the number of attached cells 

between soft and stiff PDMS surfaces was indeed caused by motB mutation.  
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Figure 3.1. The number of attached E. coli RP437 wild type, Δ(motB)580, ΔfimA, ΔfliC, and 

motB complement strains on facing up stiff (2.6 MPa) and soft (0.1 MPa) PDMS after 2 hours 

attachment in PBS with initial inoculum density between 3 × 107 – 6 × 107 cells/mL. 

 

It is worth noting that the mutation of motB did not fully abolish the ability of E. coli to respond 

to PDMS stiffness. To further understand the role of motB in mechanosensing, the number of 

attached wild-type cells and motB mutant cells on soft and stiff surface with different inoculum 

cell densities were compared. As shown in Figure 3.2, when the inoculum cell density was 

varied from 2 × 104 cells/mL to 2 × 108 cells/mL, the number of motB mutant cells on soft 

surfaces was similar to that of the wild-type cells. Howver, the number of attached motB mutant 

cells on stiff surfaces was significantly higher than the number of attached E. coli RP437 wild-

type cells on stiff surfaces for all the tested conditions (p<0.05, one-way ANOVA), which led 

to a dramatically decreased difference in the number of attached cells between soft and on stiff 
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surfaces in the range of inoculum cell density tested. Moreover, the number of attached motB 

complemented cells was siminlar to that of the wild-type strain on both soft and stiff surfaces. 

Thus, the defects of motB mutant were fully recovered by genetic complementation of the motB 

gene. These results support that motB may be involved in the response of E. coli to surface 

stiffness during biofilm formation.  

 

 

Figure 3.2 Effects of cell density of inoculum on the attachment of E. coli RP437 wild type, 

motB and motB complementation. 

 

3.4.2 Adhesion to inverted surfaces 

It was interesting to observe that the mutation of motB caused defects in the response of E. coli 

to PDMS stiffness. The experiments above were based on attachment to face-up surfaces. To 

specifically study attachment in the absence of gravity driven settlement, we repeated the 
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adhesion experiments using face-down surfaces with the inocululm density between 2 × 107 

cells/mL and 4 × 107 cells/mL. 

 

As shown in Figure 3.3, the numbers of attached cells of all tested strains are at least one log 

lower than those on face-up surfaces, suggesting that gravity does facilitate cell settlement and 

adhesion. Nevertheless, E. coli still showed preference in adhesion on soft PDMS surfaces than 

stiff PDMS surfaces. For example, the number of attached E. coli RP437 cells on soft PDMS 

surfaces was (5.2 ± 1.8) × 103 cells/cm2, which is 1.5 log higher than that on stiff surface [(2.2 

± 0.6) × 102 cells/cm2]. As expected, the E. coli RP437 motB mutant also caused the defects in 

the response of E. coli to PDMS stiffness, since the difference in the numbers of attached cells 

was reduced to 0.8 log for the motB mutant. This defects was fully recovered in the 

complemented strain, as observed for adhesion on face-up surfaces.  

 

To understand if the defects in response to surface stiffness of  E. coli RP437 motB mutant was 

caused by single physical factors or also involve cellular functions, E. coli RP437 was treated 

with 20 µg/mL chloramphenicol, a bacteriostatic antibiotics that inhibits protein synthesis, 

before adhesion. As shown in Figure 3.3, the chloramphenicol treatment abolished the 

difference in adhesion between soft and stiff surfaces. This finding indicats that cellular 

funtions may be involved in the response to material stiffness during E. coli attachment to 

PDMS.  
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Figure 3.3 The number of attached E. coli RP437 wild type, Δ(motB)580, motB 

complementation, ΔfimA, ΔfliC, and wild type treated by 20 µg/mL chloramphenicol on 

facing-down stiff (2.6 MPa) and soft (0.1 MPa) PDMS after 2 hours attachment in PBS with 

initial inoculum density between 2 × 107 – 4 × 107 cells/mL.  

 

3.4.3 Tracking bacterial motility by automated contour-based tracking package for in 

vitro environment (ACTIVE). 

Bacterial adhesion on a surface is a complex dynamic process involving initial physical 

interaction, reversible attachment, cell movement, and irreversible attachment. To further 

understand how material stiffness affects this process and role of motB gene, E. coli RP437 

and its mutants were labeled with constitutive red fluorescence protein expressed from the 

plasmid pRSH103. The overnight cultures of each strain were washed with PBS and then 

diluted to around 3 × 107 cells/mL in PBS to study the attachment on soft and stiff PDMS 
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surfaces. The attachment on PDMS in PBS was recorded at room temperature by imaging 

every 5 s for 18 min using fluorescence microscopy.  

 

Figure 3.4. Parameters for tracking bacterial motility on surfaces using ACTIVE. 

 

The data were analyzed using a MATLAB based automated contour-based tracking package 

for in vitro environment (ACTIVE).39 This package has been shown to have a great 

performance in tracking the motility of mouse fibroblasts in a complex in vitro model.39 This 
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is the first time to using this package for microbial research. Because the size of bacterial cells 

(around 2 µm) is much smaller than the size of fibroblasts (12 µm), the ACTIVE package was 

validated first using E. coli RP437/pGLO expressing strong green fluorescence upon induction 

with arabinose. The initial attachment was recorded for 10 min and representative images of 

the cells attached on a glass surface are shown in Figure 3.5A. By adjusting the parameter of 

the ACTIVE package (Figure 3.4), all bacterial cells were successfully identified (Figure 3.5B), 

and the cell contours were automatically detected with good accuracy (Figure 3.5C). ACTIVE 

was also validated for tracking bacterial cells over time as shown in Figure 3.5D.  

 

 

Figure 3.5. Scheme depicting example (A) Image of E. coli RP437/pGLO. (B) E. coli RP437 

was identified by ACTIVE. (C) Contour profiles are established based on the fluorescence 

density fluctuations. (D) Plot of cell tracks with different color.   
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3.4.4 Effects of surface stiffness on cell motility on soft and stiff PDMS surfaces. 

After validation, ACTIVE was used to compare E. coli RP437 and its mutants for adhesion on 

PDMS surfaces with different levels of stiffness. Rapidly moving planktonic cells were 

excluded from analysis by focusing on the cells that did not move with more than one body 

length in 5 s initially. The detected cells were categorized into three groups (Fig. 3.5), “still 

cells” that did not move, “rotating cells” that moved in a circular motion (either full, partial or 

back and forth) with the mass center moved less than one body length, and “moving cells” that 

had the mass center moved for more than one body length.. The cell types were automatically 

categorized by ACTIVE frame by frame (5 s per frame), and the results from a representative 

movie are shown in Figure 3.6A. The average numbers of “still cells”, “rotating cells” and 

“moving cells” are summarized in Figure 3.6B. In addition, by averaging the results in three 

movies (with at least 320 frames in each), the average fractions of “still cells”, “rotating cells” 

and “moving cells” with standard deviations are shown in Figure 3.6C.  
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Figure 3.6. Three types of movement of bacterial cells on surfaces categorized by ACTIVE. 

“Still” represents the cells with a displacement of mass center less than a quarter of cell length 

in 5 s. “Rotating” represents the cells moved in a circular motion but with a displacement of 

mass less than the cell length in 5 s. “Moving” represents the cells with a displacement of mass 

center of the cell more than a quarter the cell length in 5 s. 

 

Consistent with the CFU and imaging data,23 E. coli RP437 was found to prefer soft surfaces 

for attachment on PDMS. As shown in Figure 3.7B, most of the E. coli RP437 wild-type cells 

were “still” on soft surfaces, while the fractions of “rotating cells” and “moving cells” 

dramatically increased on stiff surfaces. For example, on soft PDMS surfaces, 62% of the 

attached E. coli RP437 cells were not actively moving (“still”), and the rotating and moving 

cells represented only 27% and 11% of the population, respectively. On stiff surfaces, however, 

the fraction of still cells of E. coli RP437 was only 40% of the whole population, while the 
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fraction of rotating cells increased to 39%, and that of moving cells increased to 21%. These 

results are in agreement with our previous observation that E. coli prefers soft PDMS surfaces 

for adhesion.  
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Figure 3.8. Percentage of “still”, “rotating” and “moving” cells in the attached E. coli RP437 

wild type and motB strains. (A) The percentage of “still”, “rotating” and “moving” cells in 

each frame. (B) Average percentage of “still”, “rotating” and “moving” cells in the 

representative movie. (C) Average percentage of “still”, “rotating” and “moving” cells. The 
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results were calculated by averaging the date from at least 320 frames in 3 movies. Error bars 

represent standard deviations.  

 

By comparing the numbers of “still”, “rotating” and “moving” cells on soft PDMS with those 

on stiff PDMS, it was found that E. coli RP437 motB mutant also prefers soft surface; e.g., 

83% of the attached cells were still cells on soft surfaces. This is much higher than the still 

cells on stiff surfaces (70%). And more cells on stiff surfaces were rotating (23%) than on soft 

surfaces (11%). These results indicate surfaces stiffness could still influence the adhesion of 

E. coli RP437 motB mutant, which consistent with the results in Figure 3.1.  

 

In addition to cell location, the speed of movement was also analyzed for each cell using 

ACTIVE. The representative results are shown in Figure 3.8A, in which each dot represents 

the velocity of a cell at one time point, and black lines show the average velocities of all cells 

at a given time point. The average velocity calculated from all cells over all time points is 

shown on the top of each plot. By analyzing at least 200 cells in 3 movies, the average velocities 

of E. coli RP437 and its motB mutant on soft and stiff PDMS surfaces are summarized in 

Figure 3.8B. Based on the average velocity of each cells, the distribution of the velocities was 

also calculated and is shown in Figure 3.7C in which the fitting curves based on Boltzmann 

distribution represent the trends of each distribution. 

 

The differences were also observed for the velocity of E. coli RP437 and its motB mutant. As 

shown in Figure 3.8A, the average velocities on stiff surfaces for E. coli RP437 (6.2 µm/min) 

and its motB mutant (3.2 µm/min) were higher than those on soft surfaces, e.g., 3.4 µm/min 
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(E. coli RP437) and 2.0 µm/min (motB mutant), respectively. Moreover, the distributions of 

the velocity on stiff surfaces dropped much faster for both E. coli RP437 and its motB mutant 

than those on soft surfaces, suggesting that there are more cells having low velocity on soft 

surfaces for both strains than on soft surfaces. Collectively, these results indicated that the E. 

coli RP437 cells were more motile on stiff surface than soft surface.  

 

3.4.5 The role of motB gene on bacterial motility on soft and stiff PDMS surfaces. 

It has been shown that material stiffness affects the adhesion and motility of E. coli RP437, 

and mutation of E. coli RP437 motB gene reduced  the difference in adhesion between on soft 

and stiff PDMS surfaces. To further investigate the role of motB gene in the bacterial motility 

on both surfaces, the fraction of the “still”, “rotating”, and “moving” cells between E. coli 

RP437 and its motB mutant on soft and stiff PDMS surfaces were compared. As shown in 

Figure 3.8B, the percentage of “still” cells was much higher for E. coli RP437 motB mutant 

than E. coli RP437 wild-type strains on either stiff or soft surfaces. In particular, the percentage 

of E. coli RP437 motB mutant on stiff surfaces (70%) is 75% higher than the percentage of its 

wild-type strain (40%). Accordingly, the percentages of “rotating” and “moving” cells were 

lower for E. coli RP437 motB mutant than E. coli RP437 wild-type strains on stiff and soft 

surfaces (Figure 3.8B). For example, the percentage of “rotating” E. coli RP437 motB mutant 

on soft surfaces was 11%, which is much lower than those of E. coli RP437 wild-type strain 

(27%). Especially, the percentages of “moving” E. coli RP437 motB mutants on soft and stiff 

surfaces were only 6% and 7%, respectively. These are much lower than the percentage of 

“moving” E. coli RP437 wild type on soft surfaces (11%) and stiff surfaces (21%). The results 
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suggest that E. coli RP437 motB mutants prefer “still” to “rotating” and “moving”, compared 

to the its wild-type strains.  

 

 

 

Figure 3.9. Movement speed of the wild-type E. coli RP437 and its motB mutation soft and 

stiff PDMS surfaces. (A) The speed of every moving cell in each frame. Each dot represent a 

cell, and black line shows the average velocity of all cells at each time point. Y axis shows the 

one fifth of the velocity of attached cells. (B) Overall average speed of cell movement. The 
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results were averaged from at least 200 cells in 3 movies (17 min long for each). Error bars 

show the standard errors. (C) Distributions of movement speeds of E. coli RP437 and its motB 

mutation on soft and stiff PDMS. Each movie includes at least 200 cells. There movies were 

analyzed.  

 

As shown in Figure 3.9A, the average velocity of E. coli RP437 motB mutant cells on was also 

lower than the wild-type RP437 on both soft (2.0 vs. 3.4 µm/min) and stiff surfaces (3.2 vs. 

6.2 µm/min) In addition, the decrease of movement speed of motB mutant cells on stiff surfaces 

is around 50% compared to the wild-type cells, which is much bigger than this on soft surface 

(around 30 %). The distribution of cell movement speeds is shown in Figure 3.7C. The 

percentage of motile cells decreased as the velocity increased for all conditions, and the 

distribution of the velocity on soft surfaces were narrower than that on stiff surfaces for both 

strains. To describe the distribution of the velocity, the dispersity of the velocity is defined 

using the formula below, 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐷𝐷) = �𝑃𝑃𝑣𝑣2 

P is the percentage of the cells with the velocity v. The dispersity indicates how wide the 

distribution. The dispersity was found to be E. coli RP437 motB mutant on soft surfaces (0.54) 

< E. coli RP437 wild-type strain on soft surfaces (0.76) < E. coli RP437 motB mutant on stiff 

surfaces (1.12) < E. coli RP437 wild-type strain on stiff surfaces (2.51). This result suggests 

that the E. coli RP437 wild-type strains on stiff surface is the most motile and E. coli RP437 

motB mutant on soft surfaces is the least motile. These results are consistent with the findings 

described in Fig. 3.1 and suggest that the motility is important to adhesion on PDMS. 
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3.5 Discussion 

In this study, we compared E. coli RP437, and motB, fliC, fimA mutants for adhesion on PDMS 

surfaces with varying stiffness. Specifically 40:1 (soft) and 5:1 (sitff) PDMS surfaces were 

used. The results show that motB mutation negatively impacted the capability of E. coli cells 

to differentiate soft and stiff surfaces, which was recovered by complementing the motB gene. 

The defect of the adhsion primaryly occur on stiff surfaces, on which there are 10 times more 

attached E. coli RP437 motB mutant cells than E. coli RP437 wild-type strains. Cell tracking 

during the initial attachment showed that more of the motB mutant cells are still than its wild-

tpye strains. And E. coli RP437 motB mutant rotate and moving much less than the type to its 

wild-type strains. Compared the average velocity of E. coli RP437 wild type and its motB 

mutant on soft and stiff surfaces, the difference for E. coli RP437 motB mutant on both surfaces 

is much smaller than this for E. coli RP437 wild-type strains. This is consistent with the finding 

that the difference in the number of attached E. coli RP437 motB mutant on both surfaces is 

smaller than that of the wild-type strain. Also, the distribution of the velocity indicates that the 

E. coli RP437 motB mutant is much less motile than E. coli RP437 wild-type strains.  

 

Based on the results in chapter 2 study, we speculate that Material stiffness may affect bacterial 

biofilm formation by influencing adhesion and cell motility. During initial attachment, E. coli 

may using extracellular appendages (e.g. flagella) to sense the stiffness. If the stiffness is 

appropriate, the cells will attach (less motile) and start biofilm growth sooner. In comparison, 

if the stiffness is not desired, the cells may move more before settling, as observed on stiff 

surfaces. It is also possible that some cells may leave the surface and return to planktonic stage 
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if the surface is not in favor for attachment. Further study of 3D cell tracking will be helpful to 

answer this questions.  

 

It is not surprising to find that the motB gene is important to the observed difference in bioflm 

formaiton between soft and stiff PDMS surfaces. MotB is an important component of bacterial 

flagella. Mutation of motB could render the cells to be non-motile and thus less capable of 

surface attachment. However, the motB mutant still exhibited difference in adhesion (although 

markedly reduced) between soft and stiff surfaces. This suggests that other factors are also 

involved in mechanosensing. To identify these factors, it will be important to study more 

mutants and create double mutants of important genes. This is part of our ongoing work.  

 

3.6 Conclusion 

The motB mutant of E. coli RP437 exhibited defects in response to the stiffness of PDMS, 

which was fully recovered by the motB complementation, in a wide range of inoculum cell 

density. The cell tracking results during initial attachment suggest that the E. coli cells on stiff 

surfaces were more motile than those on soft surfaces. The mutation of motB could led to lower 

mobility on both surfaces. However, the decrease in the mobility of the motB mutant compared 

to the wild-type strain was more dramatic on stiff surfaces is larger than that on soft surfaces. 

This is consistent with the CFU results and indicate other factors may also be involved in 

mechanosensing of material stiffness by E. coli. 
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Chapter 4 

oprF is involved in sensing of material stiffness by 

Pseudomonas aeruginosa  

 

 
4.1 Abstract 

In this study, P. aeruginosa PAO1 and several isogenic mutants were compared for their 

adhesion on soft (40:1 PDMS) and stiff (5:1 PDMS) surfaces. Mutation of the oprF caused 

major defects in sensing surface PDMS stiffness by P. aeruginosa; e.g., it abolished the 

differences in adhesion and growth, morphology and antibiotic susceptibility of attached cells 

between soft and stiff PDMS surfaces. These defects were rescued by genetic complementation 

of oprF. Another gene fleQ was also shown to partially abolish the ability of sensing surface 

stiffness. Because both oprF and fleQ could cause the increase of c-di-GMP in cells, high level 

of c-di-GMP is considered to harm the response to surface stiffness. Consistently, P. 

aeruginosa PAO1 cells attached on soft PDMS surfaces were found to have higher level of 

intracellular c-di-GMP than those on stiff PDMS surfaces. To our best knowledge, this is the 

first report of P. aeruginosa genes involved in response to material stiffness during biofilm 

formation.   
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4.2 Introduction 

Biofilms are communities of bacteria attached on surfaces and embedded in a self-produced 

matrix comprised of polysaccharides, DNA, and proteins. Biofilms of pathogenic bacteria 

cause serious chronic infections due to highly tolerance to antibiotics and host immune systems 

compared to their planktonic compartments.1-4 As an opportunistic pathogen, Pseudomonas 

aeruginosa is a primary causative agent of  chronic lung infections in cystic fibrosis patients 

and is blamed for many other infections such as those associated with chronic wounds and 

indwelling medical devices.5 Many surface properties influence biofilm formation, such as 

surface chemistry,7-10 stiffness,11-21 hydrophobicity,22,234 roughness,24,256 topography,26-2920 and 

charge.7,301 In our previous research, we reported that soft surfaces of cross-linked 

poly(dimethylsiloxane) (PDMS) could promote the bacterial adhesion and growth, and the 

attached bacterial cells on soft surfaces are longer and less tolerant to antibiotics.21  

 

A few pioneering studies have explored how bacteria sense the contact with a surface and 

transit from planktonic growth to biofilm formation.30-32 In particular, a number of genes, 

including pilA, wspA, wspR, wspF, fleQ, are used by P. aeruginosa for surface sensing. It is 

believed that motile bacteria can touch a surface with flagella to overcome the repellent force 

between cell body and surfaces, and then use fimbriae to further secure the binding.33-35 In this 

process, both flagella and pili are involved in surface sensing,31,33,36 and the chemotaxis 

pathway and Cpx pathway were hypothesized to be the signal transduction pathway.37,38 In 

addition, another surface sensing pathway named Wsp has been identified for the surface 

sensing by P. aeruginosa.39 In this system, an inner membrane protein WspA was shown to be 
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a sensor, and the signal is transduced through WspB, WspC, WspE and WspR to cyclic-di-

GMP which is an important initiator of  bacterial motility and biofilm formation.40,41  

 

Although the general sensing of surface contact has been studied, little is known about how 

bacteria sense the stiffness of a surface. In this study, we investigated the roles of several P. 

aeruginosa genes in response of this bacterium to PDMS stiffness during biofilm formation.   

 

4.3 Materials and Methods. 

4.3.1 Bacterial strains and Growth medium 

The wild-type P. aeruginosa PAO1 42 and its isogenic mutants used in this study were listed 

in Table 4.1. All strains were routinely grown at 37oC in Lysogeny Broth (henceforth LB 

medium) containing 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl in deionized (DI) 

water.29,43  

 

4.3.2 Preparation of PDMS surfaces 

PDMS surfaces were prepared using SYLGARD184 Silicone Elastomer Kit (Dow Corning 

Corporation, Midland, MI, USA). The stiffness was adjusted by varying the mass ratio of base 

to curing agent following a protocol described previously.44-46 The base : curing agent ratios 

(wt/wt) of 5:1 and 40: 1 were tested. For each given ratio, elastomer base and curing agent 

were thoroughly mixed and degased under vacuum for 30 min. Then, the mixture was poured 

into a petri-dish, cured at 60oC for 24 h, and incubated at room temperature for another 24 h to 

fully polymerize. The PDMS surface was then peeled off the petri-dish and cut into 1.0 cm by 

0.6 cm pieces (1.5 mm thick), which were sterilized by soaking in 200 proof ethanol for 20 
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min and dried with sterile air. All of the sterilized PDMS substrates were stored at room 

temperature until use. The Young’s moduli of PDMS surfaces were measured using dynamic 

mechanical analysis (DMA) (Q800, TA instrument, DE, USA) as described in our previous 

study.39  

 

4.3.3 P. aeruginosa adhesion on PDMS 

P. aeruginosa cells from overnight cultures were harvested by centrifugation at 8,000 rpm for 

3 min at 4oC, washed with phosphate buffered saline (PBS) (pH 7.3) three times, and diluted 

by PBS to desired cell density. This cell suspension (30 mL) was transferred to a petri-dish 

containing sterilized face-down PDMS surfaces. After incubation at 37oC for 2 h without 

shaking, the PDMS surfaces were gently washed by dipping in PBS three times (changed to 

clean PBS for each step). The viability of cells was determined using the drop plate assay as 

described previously.47 Briefly, the attached cells were harvested by gentle sonication for 1 

min and vortexing for 30 s, which was validated to effectively detach more than 92% of the 

attached cells. Then the cell suspension was dropped on a LB plate after a series of 10× dilution 

(10 μL in each drop). The plate was included at 37°C overnight to count colony forming units 

(CFU).  

 

Meanwhile, some PDMS surfaces were examined using an Axio Imager M1 fluorescence 

microscope (Carl Zeiss Inc., Berlin, Germany) to directly visualize the cells attached on PDMS 

surfaces. Aridine orange (500 µg/mL) was used to stain attached P. aeruginosa cells. At least 

five images were randomly taken from each sample, and the surface coverage by attached cells 

was calculated using COMSTAT.48 The data of surface coverage and CFU were analyzed with 
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t test, Pearson correlation analysis, and one-way ANOVA followed by Tukey test as 

appropriate using SAS 9.2 software (SAS Institute, Cary, NC, USA).  

 

4.3.4 Biofilm growth 

After attachment, the surfaces were washed three times with PBS to remove the planktonic 

cells. The washed surfaces with attached cells were transferred to a new petri-dish containing 

30 mL LB medium, and incubated at 37oC without shaking for 5 h. After incubation, the PDMS 

surfaces were gently washed and analyzed as described above. Surface coverage was 

determined using COMSTAT. The length of attached cells was measured directly from 

microscope images. At least 300 cells were analyzed for each condition. To understand if 

surface stiffness affects the growth of attached cells, the biofilm cells after 5 h of growth were 

stained with 500 µg/mL acridine orange (Sigma-Aldrich, St. Louis, MO, USA) in PBS for 2 

min, and imaged with fluorescence microscopy. The same cells were also imaged using DIC 

(differential interference contrast) as control.  

 

4.3.5 Antibiotic susceptibility of attached cells 

The washed surfaces after 5-h growth were transferred to a 12 well plate containing 2 mL PBS 

in each well supplemented with 20 µg/mL tobramycin, and incubated at 37oC without shaking 

for 3.5 h. The control surfaces were incubated in the same condition without antibiotic. After 

incubation, the number of viable cells was determined by counting CFU as described above. 
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4.3.6 Genetic complementation of the oprF mutant. 

The oprF mutant of P. aeruginosa PAO1 was complemented with plasmid pMH391, which 

was obtained from Prof. Soren Molin at Technical University of Denmark. The oprF gene and 

its native promoters were amplified from the wild-type of P. aeruginosa PAO1 with primers 

5’ CGCGGATCCTTGGGTAAATATTGTCTCTCT 3’ (forward primer with BamHI site) and 

5’ CTAGTCTAGAAGGCTCAGCCGATTACTTGGC 3’ (reverse primer with XbaI site). The 

1204 bp PCR product was inserted into the pMH391 vector between the BamHI and XbaI 

restriction sites to create pMH391-oprF. The new plasmid pMH391-oprF was transformed 

into the oprF mutant of P. aeruginosa PAO1 by electroporation and selection with 50 µg/mL 

gentamicin. 

 

4.3.7 Measurement of green fluorescence in the c-di-GMP reporter strain using 

fluorescence microscopy and flow cytometer. 

P. aeruginosa PAO1/pCdrA::gfps cultured overnight in LB supplemented with 60 µg/mL 

gentamicin were harvested by centrifugation at 6,000 g for 3 min at 4°C, washed with 

phosphate buffered saline (PBS) (pH 7.3) and then used to inoculate PBS to desired cell 

density. This cell suspension (30 mL) was transferred to a petri-dish containing sterilized face-

up PDMS surfaces. After incubation at 37oC for 2 h without shaking, the PDMS surfaces were 

gently washed by dipping in PBS. Then the surfaces were imaged with fluorescence 

microscopy. Also, some samples were sconicated and vortexed to detach the cells as described 

above, and analyzed using a flow cytometer with the gfp detector (BD Accuri C6, BD, USA). 

The data of cell density were corroborated by counting CFU as described above.  
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4.4 Results 

4.4.1 Effects of oprF mutation on mechnosensing by P. aeruginosa 

Material stiffness has been shown to affect the adhesion of E. coli and P. aeruginosa, and the 

growth, morphology and antibiotic susceptibility of attached cells in our previous research.21 

However, how do bacterial cells sense and response to surface stiffness is still unknown, 

although several genes have been shown to be involved in general sensing of surface contact 

and the initiation of initial adhesion, such as those related flagella, fimbriae, and the Wsp 

pathway.31,33,39 To understand how bacteria sense surface stiffness, the adhesion assay was 

used for screening several isogenic mutants showing in Figure 4.1a. The results are shown in 

Figure 4.1a. After 2 h adhesion, there were (2.1 ± 0.7) × 105 cells/cm2 PAO1 cells attached on 

soft surfaces and (1.8 ± 0.1) × 104 cells/cm2 attached on stiff surfaces. When the stiffness 

increased from 0.1 MPa to 2.6 MPa, the number of attached PAO1 cells decreased by 16 % (~ 

1 log). In comparison, there were similar numbers of  oprF mutant cells on these surfaces, e.g., 

(8.9 ± 0.03) × 105 cells/cm2 on soft surface and (7.8 ± 0.7) × 105 cells/cm2 on stiff surfaces, 

suggesting that oprF is possibly involved in the sensing the stiffness of substratum material. 

Except for oprF, mutation of other genes did not cause a significant defect sensing material 

stiffness. All mutants exhibited ~ 1 log difference in the number of attached cells between stiff 

and soft surfaces, as observed for the wild type PAO1. Thus, these mutants were excluded and 

we focused on oprF for further study. 
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Table 4.1. List of P. aeruginosa strains and plasmids used in this study. 

P. aeruginosa strains or 
plasmids 

Relevant genotype and/or 
characteristics Source 

   

P. aeruginosa strains   

PAO1 wild type  66 

PAO1 oprF oprF transposon mutant  66 

PAO1 motB motB transposon mutant 66 

PAO1 fliC fliC transposon mutant 66 

PAO1 pilA pilA transposon mutant 66 

PAO1 pelB pelB transposon mutant 66 

PAO1 pslD pslD transposon mutant 66 

PAO1 algC algC transposon mutant 66 

PAO1 oprE oprE transposon mutant 66 

PAO1 sadB sadB transposon mutant 66 

PAO1 sadC sadC transposon mutant 66 

PAO1 wspE wspE transposon mutant 66 

PAO1 wspR wspR transposon mutant 66 

PAO1 bifA bifA transposon mutant 66 

PAO1 rpoS rpoS transposon mutant 66 

PAO1 rpoN rpoN transposon mutant 66 

PAO1 rhlA rhlA transposon mutant 66 

PAO1 σ70 σ70 transposon mutant 66 

PAO1 sigX sigX transposon mutant 66 

PAO1 fdxA fdxA transposon mutant 66 

PAO1 lecB lecB transposon mutant 66 

PAO1 mreC mreC transposon mutant 66 
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PAO1 exoT exoT transposon mutant 66 

PAO1 fleQ fleQ transposon mutant 66 

PAO1/pMH391  This study 

PAO1 oprF/pMH391  This study 

PAO1 oprF/pMH391-oprF oprF complement strain This study 

PAO1/pCdrA::gfps c-di-GMP reporter 67 

PAO1/pCdrA::gfp(ASV)s c-di-GMP reporter 67 

   

Plasmids   

pMH391 Plasmid, Ampr, Gmr 68 

pMH391-oprF oprF complement plasmid, Gmr  This study 

pCdrA::gfps pUCP22Not-PcdrA-RBS-CDS-
RNaseIII-gfp(Mut3)-T0-T1, Ampr, Gmr 

67 

pCdrA::gfp(ASV)s pUCP22Not-PcdrA-RBS-CDS-
RNaseIII-gfp(ASV)-T0-T1, Ampr, Gmr 

67 

 

Because surface stiffness also affects the growth, morphology and antibiotic susceptibility of 

attached P. aeruginosa PAO1 cells,21, we speculated that the mutation of oprF gene can also 

cause the difference in growth, cell size and antibiotic susceptibility of P. aeruginosa cells 

between soft and stiff surfaces. To test this, the stiff and soft PDMS surfaces were incubated 

in PBS with 2 × 107 cells/mL for 2 h to allow the cells to attach, and then transferred to LB 

medium to allow the cells to grow for 5 h. The surfaces were washed three times with PBS to 

remove planktonic cells before transfer. As shown in Figure 4.2, after 5 h growth, the surface 

coverage of PAO1 oprF mutant were similar between soft surfaces and stiff surfaces (p>0.05, 

t test.).  
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Figure 4.1 Adhesion of the wild-type PAO1 and its isogenic mutants on soft (40:1) and stiff 

(5:1) PDMS surfaces. (A) The mutants related to sensing surface contact. (B) The mutants of 

genes that have interaction with oprF. 

 

Mutation of oprF also abolished the difference in cell length between on soft and stiff PDMS 

surfaces exhibited by the wild-type strain. As we reported previously, the average length of 

attached wild-type PAO1 cells on soft PDMS surfaces was 1.6 times that of cells on stiff PDMS 

surfaces. The average length of oprF mutant cells was 1.76 ± 0.42 µm and 1.70 ± 0.31 µm on 

soft and stiff surface, respectively (p >0.5, t test; Figure 4.3).  

 

Consistent with the changes in cell adhesion, growth, and cell size, oprF mutation also 

abolished the difference in antibiotic susceptibility of attached cells. We found previously that 

the wild type PAO1 cells on soft PDMS after 5 h growth (the cells were allowed to attach for 
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2 h in PBS first before switching to LB medium for biofilm growth for 5 h) are 5 times more 

susceptible to 20 µg/mL tobramycin in 3.5 h treatment than those on stiff substrates. However, 

the oprF mutant exhibited similar susceptibility to 20 µg/mL tobramycin (p>0.05, t test) 

(Figure 4.4).  

 

 

Figure 4.2 Effects of PDMS stiffness on the growth of P. aeruginosa PAO1 oprF mutant cells. 

(A) Surface coverage of attached cells calculated using COMSTAT. (B) Representative images 

of attached cells strained with acridine orange. (Bar = 20 µm) 

 

Collectively, these results indicated that oprF mutant lost the capability to respond to surface 

stiffness during adhesion and thus the differences in growth, morphology and antibiotic 
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susceptibility of attached cells between stiff and soft surfaces, suggesting oprF may be 

involved in mechanosensing. 

 

 

Figure 4.3 Effects of PDMS stiffness on the size of oprF mutant cells. (A) Average length of 

attached cells on soft (40:1 PDMS) and stiff (5:1 PDMS) surfaces. (B) Representative images 

of attached cells strained with acridine orange. (Bar = 10 µm). 
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Figure 4.4 Effects of PDMS stiffness on the susceptibility of oprF mutant cells to 20 µg/mL 

tobramycin. The figure showed the relative number of 5-h biofilm cells that survived the 

treatment of 20 µg/mL tobramycin. 

 

4.4.2 The defects in oprF mutant were rescued by genetic complementation. 

To verify if the changed observed in oprF mutant were not caused by any polar effect, 

pMH391-oprF (Supplementary Figure 4.5) was constructed to complement the oprF mutation. 

The complemented strain was studied following the same protocols used for the wild-type 

PAO1 and its oprF mutant. To specifically study the effects of oprF, the original vector 

pMH391 (without oprF) was also electroporated into the wild-type PAO1 and its oprF mutant. 

Insertion of this plasmid caused decrease in attachment for all samples compared to plasmid-

free cells, presumably due to the metabolic burden caused by this high copy number plasmid. 

Nevertheless, complementation fully recovered the phenotypic changes observed for the oprF 

mutation (Fig. 4.6). For example, the difference in the number of attached cells between  soft 

and stiff PDMS surfaces 1, 0 and 0.8 logs for the wild-type PAO1 (carrying original pMH391 



110 

 

without oprF), oprF mutant (carrying original pMH391 without oprF), and the complemented 

strain, respectively (Figure 4.6).  

 

  

Figure 4.5 Construction and of the complementation of the oprF mutant. 
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Figure 4.6 Effects of PDMS stiffness on the attachment of the wild type, oprF mutant and the 

complemented strain sensing. The number of attached cells on soft (40:1) and stiff (5:1) PDMS 

surfaces after 2-h adhesion. 

 

Complementation of the oprF gene also led to similar results of biofilm cell growth and cell 

morphology observed for the wild-type PAO121. As shown in Figure 4.6B, there were more 

attached cells on soft PDMS surfaces than stiff PDMS surfaces, and the cell length was larger 

on soft PDMS surfaces. The average length of attached cells was around 2 µm and 1.3 µm on 

soft and stiff surfaces, respectively. These results are suggest the defects in mechanosensing 

by the oprF mutant were fully recovered by the complementation of oprF mutant.  

 



112 

 

  

Figure 4.7 Effects of PDMS stiffness on the size of the complementation of oprF mutant cells. 

(A) Average length of attached cells on soft (40:1 PDMS) and stiff (5:1 PDMS) surfaces. (B) 

Representative acridine orange staining images of attached cells. (Bar = 10 µm) 

 

4.4.3 The role of other oprF related genes in the mechanosensing 

oprF encodes the major outer membrane surface porin protein OprF of P. aeruginosa for 

exchange of various solutes50 OprF also functions for adhesion to animal cells,51 and is 

responsible for the secretion of several toxins such as ExoT and ExoS52 required for virulence.53 

Moreover, oprF is related to cell envelop stress, for example, it has three promoters which are 

PalgU, Pσ70, and PsigX.54 In addition, it was reported that the absence of oprF could abolish 
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swarming and biofilm formation of P. aeruginosa, and caused the increase in the expression 

of c-di-GMP.55,56 

 

To understand how oprF is involved in mechanosensing, we further tested 2 h adhesion of 

PAO1 mutants of the genes related to oprF including. As shown in Figure 4.1B. The sigX 

mutant showed a slight decrease in the difference of the number of attached cells between soft 

and on stiff PDMS surfaces. For example, there was (1.9 ± 0.7) × 105 cells/ cm2 on stiff PDMS 

surfaces after 2 h adhesion, and (4.7 ± 2.9) × 105 cells/ cm2 on soft PDMS surfaces. The 

difference is around half log which is smaller than the 1 log difference of the wild-type PAO1. 

It is probably because PsigX is the most critical promoter out of all the three promoters of oprF 

gene.54 Since xxx controls the expression of oprF, we speculate that the absence of sigX could 

cause decrease the expression level of oprF, which then affect mechanosensing. Except for the 

sigX mutant, all the other mutants tested including rpoN, lecB, fdxA, rhlA, bifA, rpoS, σ70, exoT, 

did not show a significant effect. 

 

Mammalian cells sense material stiffness using integrin and then transfer the signal to the 

nuclear envelop using myosin, actin and nesprin.57-59 Actin is the key connection in the 

mechanotransduction of surface stiffness sensing by eukaryotic cells.59 Several homologs of 

eukaryotic microfilaments (actin) have been identified in prokaryotic cells such as mreB, mreC 

et al..60 MreB and MreC are located on the opposite sides of the inner membrane of bacteria. 

We speculate that MreB&C may directly connect with the outer membrane protein OprF and 

transduce the mechanical signal into the cell. To verify if bacteria use a similar 

mechanotransduction pathway as eukaryotic cells, the 2 h adhesion of the mreC mutant was 
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exanimated using the same adhesion assay. The results show that mutation of mreC does not 

have the same effects as observed for the oprF mutant.  For example, there was (8.1 ± 2.1) × 

104 cells/ cm2 on soft PDMS surfaces after 2 h adhesion, and (1.8 ± 0.4) × 103 cells/ cm2 on 

stiff PDMS surfaces. The number of attached cells on soft surfaces is much more than those 

on stiff surfaces, like the wild-type strain, suggesting that the homolog of microfilaments may 

not be involved in the bacterial sensing of surface stiffness. 

 

4.4.4 The level of cyclic-di-GMP may influence the surface stiffness sensing 

Cyclic-di-GMP has been reported to be a key factor in the transition between the motile 

planktonic state and the biofilm state.61,62 It was reported that the absence of oprF can  increase 

the level of c-di-GMP.56 Since oprF is important to mechnosensing, we were curious if it works 

by changing the level of c-di-GMP.  To test this, we compared the adhesion on soft and stiff 

PDMS of a fleQ mutant. FleQ is a precursor of flagella synthesis and can bind to c-di-GMP 

and form FleQ-c-di-GMP. This interaction decreases the intracellular level of c-di-GMP.63-65 

Thus, the PAO1 fleQ mutant could cause the increase of the level of c-di-GMP. As shown in 

Figure 4.8, the number of attached fleQ mutant cells on soft PDMS surfaces was much close 

to the number of attached cells on stiff PDMS surfaces (p=0.04, t test). For example, the 

number of attached cells on soft and stiff PDMS surfaces was (6.1 ± 5.2) × 103 cells/ cm2 and 

(1.4 ± 2.3) × 103 cells/ cm2, respectively. This finding plus the results of oprF mutant, suggest 

that c-di-GMP may be involved in bacterial mechnosensing. 
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Figure 4.8 Effects of PDMS stiffness on the adhesion of the wild-type strain and its fleQ 

mutant. The number of attached cells on soft (40:1) and stiff (5:1) PDMS surfaces after 2-h 

adhesion are shown. (Red dots showed the data for each experiment.) 

 

To further understand if the level of c-di-GMP of the attached cells changes with substratum 

stiffness, a PAO1 c-di-GMP reporter strain PAO1/pCdrA::gfps  was used in this research. This 

strain has a gfp gene under the control of promoter of cdrA; thus, it allows real time monitoring 

of c-di-GMP synthesis. After 2 h attachment (the adhesion assay as described above.), the 

PAO1/pCdrA::gfps cells attached on soft and stiff PDMS surfaces were collected by sonication 

and analyzed by a flow cytometer. The average intensity of the green fluorescence in 

PAO1/pCdrA::gfps cells on soft surfaces was found higher than that on stiff surfaces. The 

distribution of the green fluorescence in PAO1/pCdrA::gfps cells on soft surfaces was also 

wider than that on stiff surfaces (Figure 4.9A). These results were corroborated by microscopic 

images, which showed that PAO1/pCdrA::gfp(ASV)s on soft and stiff PDMS surfaces have 

stronger green fluorescence than those on stiff surfaces (Figure 4.9B). Because the intensity of 

the green fluorescence in these strains is directly related to the intracellular level of c-di-GMP, 



116 

 

the c-di-GMP level appeared higher in P. aeruginosa PAO1 on soft surfaces than those on stiff 

surfaces. This is consistent with increased biofilm formation on soft surfaces. 

 

  

Figure 4.9 The level of c-di-GMP of the attached PAO1/pCdrA::gfps cells on soft (40:1) and 

stiff (5:1) PDMS surfaces after 2-h adhesion. (A) The distribution of the fluorescence signals 

measured by flow cytometer. (B) Representative images of PAO1/pCdrA::gfp(ASV)s cells 

attached on soft (40:1) and stiff (5:1) PDMS surfaces after 2-h adhesion (Bar = 10 µm). 

 

4.5 Discussion 

Some pioneering work has revealed how bacteria sense the contact with a surface. However, 

how the mechanical properties of the surface affect surface sensing is largely unknown.  Here 

we demonstrated that mutation of the oprF gene in P. aeruginosa PAO1 abolished its response 

to surface stiffness during adhesion and biofilm formation. How OprF functions in such 

mechanosensing is still unknown. As an important membrane protein, OprF may have direct 

contact with the surfaces and transfer the signal to other components to trigger the genes related 
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to motility, adhesion, and biofilm formation. The increase in the level of c-di-GMP supports 

this hypothesis that increase in c-di-GMP level is known to reduce bacterial motility, and 

promote biofilm formation.62 The increase in the level of c-di-GMP on soft surfaces observed 

here is consistent with our earlier report that PAO1 forms more biofilms on soft PDMS than 

stiff PDMS.21  

 

Some important questions remain to be answered. For example, is OprF the true sensor or just 

involved in the signal transduction? How is the signal transferred to change the level of c-di-

GMP? How is the stiffness sensing related to that of general contact with a surface? These 

questions require additional studies and is part of our ongoing work. Because the c-di-GMP 

level and oprF are correlated with the expression of cdrA and the surface stress genes, the role 

of cdrA and surface stress genes in mechanosensing is also interesting to investigate. 

 

4.6 Conclusions 

In this study, we demonstrated that mutation of oprF in P. aeruginosa PAO1 abolished its 

response to material stiffness during adhesion and biofilm formation on PDMS surfaces, which 

was rescued by complementing the oprF gene. Using a fluorescent reporter of the cdrA gene, 

we obtained evidence that of the level of c-di-GMP is higher in cells attached on soft PDMS 

than those on stiff PDMS. Consistently, mutation of fleQ, which causes overproduction of c-

di-GMP, abolished the difference in biofilm formation between soft and stiff surfaces exhibited 

by the wild-type PAO1. These results provided information evidence that bacteria can actively 

sensing the mechanical properties of a surface and adjust cell physiology to switch between 

planktonic growth and biofilm formation.  
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Chapter 5 

Conclusions and Recommendations for Future Work 
 

 

5.1 Conclusions 

In this project, we first demonstrated that material stiffness affects bacterial biofilm formation, 

including adhesion, growth, antimicrobial susceptibility, and motility of biofilm cells. These 

data indicate that bacteria have capability to sense and respond to material stiffness and adjust 

physiology accordingly. Consistently, motB of E. coli and oprF in P. aeruginosa were found 

important to the observed phenomenon. Based on the finding, a descriptive model of 

mechanosensing of material stiffness is proposed. 

 

In Chapter 2, we investigated the effects of substrate stiffness on the early stage biofilm 

formation of E. coli and P. aeruginosa including attachment, growth, cell length, and the 

susceptibility of attached cells to antibiotics with varying stiffness of poly(dimethylsiloxane)  

(PDMS) from 0.1 MPa to 2.6 MPa, which were prepared by controlling the degree of 

crosslinking. The decrease in surface stiffness was found to promote both the attachment and 

growth of E. coli and P. aeruginosa cells. More interestingly, the cells on 40:1 PDMS 

substrates after 5 h of biofilm growth are found significantly longer than those on 5:1 PDMS 

substrates; and the distribution of cell size was narrower on stiff substrates. The cells on stiff 

substrates also exhibited decreased susceptibility to antibiotics and lysozyme compared to the 
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cells on soft substrates. In addition, the attached bacterial cells on stiff surfaces was appeared 

to be internalized faster by human macrophages than those on soft surfaces. It has been reported 

that polymer particles with low aspect ratio are internalized by macrophages faster than those 

with high aspect ratio. To my best knowledge, this is the first report of the effects material on 

phagocytosis of biofilm cells. Collectively, these results suggest that stiffer PDMS are more 

resistant to biofilm infection than soft PDMS. In particular, because the stiffness of PDMS 

used in this study is in the range of the stiffness of contact lenses (most of them are silicon 

based polymers), tuning the surface stiffness may help reduce eye infections associated with 

contact lenses. 

 

In Chapter 3, a custom tracking algorithm, automated contour-based tracking package for in 

vitro environment (ACTIVE), was used to follow the bacterial motility during attachment. 

ACTIVE has been shown to actively track the motility of mouse fibroblasts in complex in vitro 

model.1 Here, we validated it for tracking bacterial cells over time. Cell motility was described 

using a set of physics based metrics that revealed the differences in cell movement and velocity 

between soft (0.1 MPa) and stiff (2.6 MPa) PDMS surfaces. The cell tracking results indicated 

that the E. coli cells on stiff surfaces were more mobile than those on soft surfaces.  

 

To understand the mechanism of mechanosensing by bacteria, E. coli RP437 and its isogenic 

mutants of motility (motB), flagella (fliC) and type I fimbriae (fimA) were used to compare the 

attachment on PDMS surfaces with different Young’s moduli (0.1 and 2.6 MPa) in Chapter 3. 

The CFU results revealed that the motB mutant of E. coli RP437 had defects in response to the 

stiffness of PDMS with the inoculum cell density varying from 2 × 104 cells/mL to 2 × 108 
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cells/mL, which was rescued by complementation of the motB gene. The cell tracking results 

indicated mutation of motB gene led to larger decrease in velocity of cell movement on stiff 

surfaces than soft surfaces. The tracking results are consistent with the CFU results, suggesting 

that motB is involved in mechanosensing during E. coli attachment on PDMS. However, motB 

mutation only partially reduces the difference in adhesion between soft and stiff PDMS, but 

did not totally abolish it. This suggests other geens are also involved in mechnosensing. 

 

In Chapter 4, P. aeruginosa PAO1 and several of its isogenic mutants related to surface 

appendages (fliC, filA), cell capsule (pelB, pslD, algC), surface proteins (oprF, oprE, sadB, 

sadC), Wsp pathway (wspE, wspR) were compared for their adhesion on soft and stiff surfaces. 

Mutation of the oprF caused major defects in sensing PDMS stiffness by P. aeruginosa; e.g., 

it abolished the differences in adhesion and growth, morphology and antibiotic susceptibility 

of attached cells between soft and stiff PDMS surfaces. These defects were rescued by genetic 

complementation of oprF. Collectively, these results suggest that oprF is involved in the 

mechanosensing of P. aeruginosa.  

 

To further understand how oprF influences the sensing of substrate stiffness, several isogenic 

mutants of P. aeruginosa PAO1 related to oprF genes were tested for 2 h adhesion. However, 

none of them showed the defects in adhesion between soft and stiff PDMS surfaces, indicating 

that these genes are not involved in the bacterial mechanosensing. Because c-di-GMP was 

reported to be increased by the absence of oprF gene, the intracellular c-di-GMP levels in the 

attached cells on both soft and stiff surfaces were determined using reporter strain constructed 

with the cdrA promoter fused to a gfp gene.2-4 The results showed that P. aeruginosa PAO1 
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cells attached on soft PDMS surfaces have higher levels of intracellular c-di-GMP than those 

on stiff PDMS surfaces, indicating the signal of substrate stiffness may be transmitted through 

c-di-GMP. To confirm that the mechanosensing could be influenced by disturbing the level of 

c-di-GMP, P. aeruginosa PAO1 fleQ mutant (a strain with high level of c-di-GMP) was tested 

for 2 h adhesion.2-4 The results showed that P. aeruginosa PAO1 fleQ mutant abolished 

mechanosensing of PDMS stiffness. This is consistent with the increase in c-di-GMP on soft 

surfaces.   

 

The findings from this study are summarized in Fig 5.1. We speculate that bacteria use some 

unknown sensor to detect the stiffness of the substrate, and this signal is transmitted through 

c-di-GMP. On soft surfaces, the intracellular level of c-di-GMP is increased, which renders the 

attached cells to biofilm formation. These cells become less mobile and grow faster on the 

surfaces. Such active cellular metabolism could make the cells on soft surface more susceptible 

to antibiotics. On stiff surfaces, however, the level of c-di-GMP decreases, which reduces 

biofilm formation and the growth. The cells on stiff surfaces remain rather motile and detach 

more frequently. The attached cells with low level of c-di-GMP also grow more slowly and 

thus are more dormant, leading to lower susceptibility to antibiotics. The motB gene in E. coli 

and the oprF gene in P. aeruginosa were found important to the observed results. How these 

genes are involved in mechnosensing remains to be understood. 
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Figure 5.1 The summary of the works in this thesis and the suggested works in future. 

 

5.2 Recommendations for future work 

Although biofilm formation has been known to be influenced by many factors of the surface 

such as surface chemistry,5-8 hydrophobicity,9,10 roughness,11,12 topography,13-16 and charge,5,17 

there have been few studies on the effects of substrate stiffness.18,19 Although we found the 

potent effects of material stiffness on bacterial adhesion and the growth and the antibiotic 

susceptibility of attached cells, there are still lots of many unanswered questions on the 

mechanism. The following sections summarized some of the future work. 

 

5.2.1 Bacterial pathways responsible for mechanosensing. 

Although motB in E. coli and oprF in P. aeruginosa were found to be involved in 

mechanosensing, how they are involved is still unknown. By screening the genes and the 

metabolites related to motB and oprF, c-di-GMP is found important in the pathway of 
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mechanosensing. However, the actual sensor and how the signal is transducted are not clear. 

Additional experiments of DNA microarray or RNAseq can be carried to identify the related 

pathway by comparing the gene expression profiles and the effects of material stiffness.  

 

5.2.2 Bacterial motility on soft and stiff surfaces 

In Chapter 3, the motility and velocity of cell movement were found different between soft and 

stiff PDMS. It has been shown that bacterial slingshot more on soft electrolytes surfaces,20 and 

the rotating frequency on glass could be different due to the difference of proton motive force 

and viscous load.21 Thus, it will be interesting to investigate if the substrate stiffness influences 

the bacterial slingshot behavior and rotating frequency. To study this, a high speed camera 

with at least a frame rate of 10 fps and an advanced processing algorithm are required.  

 

5.2.3 Phagocytosis of the attached bacterial cells on soft and stiff surfaces 

Phagocytosis is one of the most important innate immune responses. Champion et al.22-24 

showed that the poly(lactide-co-glycolie) (PLGA) particles with low aspect ratios (AR) are 

more easily internalized by macrophages. As shown in our results in Chapter 2, surface 

stiffness of PDMS affected the size and AR of attached bacterial cells; e.g. the size of attached 

cells on stiff surfaces are shorter, and have lower AR than those on soft surfaces. Interestingly, 

Discher et al.25,26 showed that macrophages on stiff surfaces (100 kPa) are more spreading than 

those on soft surfaces (1 kPa), which suggests that the macrophage on stiff surfaces may be 

more active than those on soft surfaces. In Chapter 2, we showed that the bacterial cells on stiff 

surface was internalized by macrophages more easily than those on soft surfaces. However, 

the viability assay used in Chapter 2 did not reveal if the effects are due to the AR of the 
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attached cells, the density of attached cells, the activity of macrophages on different surfaces, 

or any difference in the composition of surface proteins secreted by attached cells. To answer 

this question, more investigation on the phagocytosis on soft and stiff surfaces is needed. The 

results will not only answer if the effects of aspect ratio on phagocytosis could be extended to 

live bacteria from polymer particles, but also contribute to the fundamental knowledge on how 

surface properties influence phagocytosis.  

 

5.2.4 Application to contact lenses 

There are approximately 85 million people worldwide wearing contact lenses.27 And the 

contact lenses wear increases the risk of eye infection because of the contact lenses related 

keratitis. It was reported27 that 6% of the population are affected by Keratitis, and P. 

aeruginosa is one of the most common pathogens related to the infection.28,29 Because the 

range of stiffness of contact lenses is the same as the range of PDMS surface stiffness used in 

this study (Table 5.1), the results from this study may help design better contact lenses. In 

Chapter 2, the smaller bacterial cells attached on stiff surface have been found to be less 

susceptible to lysozyme, which is the major antimicrobial in human tears, compared to the cells 

on soft surfaces. However, the real eye environment is more complex, which contains not only 

lysozyme but also antimicrobial peptides and proteins. In addition, the silicon-based contact 

lenses also comprised of other additives as shown in Table 5.1. To understand the effects of 

these additives is also important for understanding biofilm formation on contact lenses. 
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Table 5.1. The properties of commercial contact lenses.30 

 

 

5.2.5 To understand how the cell density influence the effects of substrate stiffness 

In Chapter 1, it was found that when the inoculum cell density is higher than 109 cells/mL, 

there is no difference in adhesion between soft and stiff PDMS surfaces. Also, in 24 h biofilm, 

the difference was abolished. Both results indicate that high cell density or secreted metabolites 

could possibly influence the effects of surface stiffness. It will be interesting to investigate if 

the quorum sensing, physical contact, or certain metabolites also contribute to the influence of 

material stiffness on biofilm formation. 

 

5.2.6 To understand the interaction between surface properties 

Materials have many properties such as stiffness, topography, charges, chemistry etc. All the 

properties should be considered in material design. Although the effects of each surface 
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property on biofilm formation have been reported, how these factors interact has only been 

scarcely studied. It will be interesting to study it and how factors interact with each other, 

which can help reveal antagonist and synergistic effects. 
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