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Abstract 

Alkali and alkaline earth metal organometallics have been sought after for a variety of 

applications such as in electronic devices produced by novel metal organic chemical vapor 

deposition precursors, catalysts and as synthetic reagents. Despite significant advances in 

synthetic techniques, the chemistry of the highly reactive s-block metals is still relatively 

unexplored. It is difficult to predict properties, structure and binding modes of these compounds 

due to a number of factors including enhanced reactivity and tendency to aggregation due to the 

large metal diameter. On the other hand, many of the s-block metals are earth abundant and 

environmentally friendly, making them highly attractive reagents.  

 The use of bulky ligands has propelled the chemistry of the metals, as the large ligands 

have a unique capability to suppress aggregation. The use of bulky ligand capable of 

participating in secondary metal-ligand π (M-π) interactions enables further control of metal 

coordination environment and has allowed for the synthesis of a variety of novel s-block 

compounds of low nuclearity, while introducing the capacity of fine-tuning reactivity, a 

necessary requirement for the use of these compounds for the above mentioned applications. 

However, not much is know about M-ligand π interactions, as such, their impact is difficult to 

predict. Early studies suggest a direct dependency on metal size and character. 

 The first part of this work focuses on developing synthetic schemes for the formation of 

novel heavy alkali metal pyrazolates (pz). Pyrazolates of the lighter alkali metals, lithium and 

sodium, have been well explored, yet there are no literature examples involving the heavier 

congeners rubidium or cesium.  

 The second part of this work explores the synthesis and characterization of novel 

heteroleptic alkaline earth pyrazolate tetraarylborates. This new family of bisarenes of the form 



 iv 

[M(thf)2(tBu2pz)(B((3,5-Me2)C6H3)4)] (M= Sr, Ba) reveal the increased tendency of the heavy 

alkaline earth metals towards M-π interactions, whereas the lighter metals afforded monocationic 

species of the type [M(thf)2(Et2O)2(tBu2pz)][B((3,5-Me2)C6H3)4] (M = Mg, Ca) where 

predominant metal-donor interactions, rather than M-ligand π interactions are observed. 

Furthermore, the use of bulky tBu2pzH ligand reveals how ligand steric demand can be used to 

circumvent cluster or aggregate formation, which are typically observed when using less 

sterically hindered systems. 

 In summary, the results presented here provide a seminal understanding on how M-ligand 

π interactions can be used purposefully to control the structure and thus the function of the heavy 

s-block metals. This will ultimately help in the construction of highly selective catalysts.  
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Executive Summary 

 The s-block metals comprising the alkali metals lithium, sodium, potassium, rubidium, 

and cesium and the alkaline earth metals magnesium, calcium, strontium, and barium (beryllium 

is excluded due it’s toxicity and radium due to it’s radioactive nature) have found use in a wide 

variety of applications due to their earth abundant nature. Furthermore, several of the elements 

are environmentally friendly, making them especially attractive reagents. Examples include 

polymerization initiators, precursors for materials used in advanced electronic devices such as 

high-temperature superconductors and semi-conductors, and several uses in synthetic chemistry.  

Until recently, the chemistry of the s-block metals has remained relatively undiscovered 

due to numerous synthetic challenges. The metals are highly reactive and react vigorously upon 

exposure to air or moisture. The decreasing charge to size ratio descending the group decreases 

the strength of metal-ligand bonds as the increase in electropositive character of the heavier 

metals increases the polarity of the bond. 

 Advances in synthetic techniques have resulted in the synthesis and characterization of a 

range of s-block compounds for use as Grignard reagents, polymerization initiators, metal 

organic chemical vapor deposition (MOCVD) precursors and energy storage materials. These 

compounds display a number of unique and interesting structural features and properties. This 

project is directed towards gaining an improved understanding of the chemistry of the s-block 

metals and related structure-function relationships to improve the usefulness of the target 

compounds and thus offer a range of environmentally friendly, abundant reagents and catalysts. 

 A major development in recent s-block compounds has been the discovery of weak, 

secondary metal-ligand π interactions between ligands bearing an aromatic motif and the metal 

center. These interactions, in addition to ligand steric demand and solvent choice, have been used 
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to stabilize the highly reactive metal centers and suppress aggregation. Metal-ligand π 

interactions are still not fully understood, especially with the s-block metals, making them 

difficult to predict. This work focuses on gaining an increased understanding and impact of 

secondary metal-π interactions for the s-block metals. Synthesis and characterization of a family 

of compounds with the capacity to form metal-ligand π interactions, by involving pyrazolate and 

tetraarylborate ligands will help gain insight on the nature and capacity of secondary, non-

covalent interactions in the s-block compounds. The pyrazolate and tetraarylborate ligand 

systems can be utilized to vary ligand bulk as well as electronic properties to further examine 

their effects on the resulting compounds.  

 Initial work in this study focused on synthesizing a class of novel heterobimetallic 

pyrazolate compounds. These highly desirable compounds, containing two different metals, 

preferably an alkali and an alkaline earth metal, are difficult to access, but bear significant 

promise as single source precursors for bimetallic solids. The ability to deposit multiple metals 

simultaneously using a single precursor species potentially provides a technically simple process 

towards thin films than possess significant technical relevance. 

For this study, the pyrazolate ligand system was chosen due to its ability to participate in 

both metal-nitrogen bonding in addition to secondary metal-ligand π interactions. Additionally, 

being nitrogen based, the pyrazolate ligand system provides the opportunity to prepare oxygen-

free compounds that have significant importance in various electronic devices. 

 Attempts to synthesize the heterobimetallic alkali/alkaline earth metal pyrazolate 

complexes were unsuccessful. In line with prior literature evidence, many attempts only afforded 

previously characterized single metal compounds or the highly reactive heterobimetallic target 

compounds decomposed into monometallic compounds during workup. One reaction yielded a 
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novel potassium compound (1), which had not been synthesized previously, prompting 

exploration into pyrazolate compounds of the heavier alkali metals, rubidium and cesium, of 

which there are no literature examples. 

A second component of this project was to explore the influence of the pyrazolate ligand 

system on the coordination of the tetraarylborate ligand system to alkaline earth metals. 

Bis(arene) metal compounds have previously been synthesized by the Ruhlandt group, but only 

few examples are based on a combination of the tetraarylborate and pyrazolate ligand systems. 

These compounds are sought after for use in catalysis, polymerization, and as potential MOCVD 

precursors.  

Four novel heteroleptic tetraarylborate pyrazolates where synthesized, based on the 

metals magnesium (2), calcium (3), strontium (4), and barium (5). The target compounds were 

obtained by reacting equimolar amounts of alkaline earth amide (M(N(SiMe3)2)2(thf)2),  

tetraethylammonium-tetra-(3,5-dimethylaryl)borate and 3,5-di-tert-butylpyrazolate, affording 

compounds 2-5. 

This work nicely demonstrates the effect of increasing metal size on the favorability 

towards M-ligand π interactions via the tetraarylborate ligand. The magnesium and calcium 

compounds 2 and 3 do not exhibit M-ligand π interactions – the metal coordination sphere is 

completed via metal donor and a sigma metal ligand nitrogen interaction; the tetraarylborate 

anion remains separated. In contrast, the strontium (4) and barium (5) compounds exhibit 

tetraarylborate metal-ligand π interactions, with the barium species displaying a large number of 

such interactions to satisfy its coordinative sphere. Applying similar synthetic strategies towards 

the aromatic, yet less sterically hindered 3,5-diphenylpyrazole ligand resulted in the isolation of 

the dimeric magnesium pyrazolate 6. 



 viii 

The complexes synthesized and characterized in this study exhibit unique structural 

features and provide further the understanding of the structural preferences, and thus reactivity of 

s-block compounds. The coordination of the tetraarylborate ligand system through M-π bonding 

is influenced both by the metal radius and the presence of the pyrazolate ligand. Additionally, the 

results presented in this work extend the synthetic techniques available to obtain s-block 

compounds. 
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CHAPTER 1: 

Introduction 

1.1 The Alkali and Alkaline Earth Metals 

The s-block in the periodic table of elements includes the alkali and the alkaline earth 

metals, comprised of the alkali metals lithium (Li), sodium (Na), potassium (K), rubidium (Rb), 

and cesium (Cs) and the alkaline earth metals beryllium (Be), magnesium (Mg), calcium (Ca), 

strontium (Sr) and barium (Ba). These elements occur naturally in numerous salts and minerals 

in the oceans and the earth’s crust.  Some of the metals play a variety of important roles in 

biological processes and have been used widely in synthetic chemistry and technical settings.[1] 

Others such as beryllium or barium are toxic, and play a lesser technically important role. Alkali 

and alkaline earth metal compounds have been widely sought after for use as reagents; of 

specific importance are the magnesium based Grignard reagents,[2,3] a more recent applications 

includes magnesium based metal-organic frameworks for gas storage.[4] Several of the metals are 

critical components of solid state materials with applications as ferroelectrics as well as semi- 

and superconductors.[5]  

The s-block metals metals are located on the far left in the periodic table with valence 

electron configurations of ns1 for alkali metals and ns2 for alkaline earth metals. The metals are 

highly electropositive and have relatively low ionization energies, resulting in the facile loss of 

valence electrons under formation of the corresponding mono- and dications, which have a stable 

noble gas core (Table 1.1).[6] As a result, the pure metals are highly oxo and hydrophilic, posing 

numerous synthetic obstacles and thus require strict inert gas atmosphere and water-free 

conditions.[3] 
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Table 1.1 Alkali and alkaline earth metal properties  

Z/ 
Element 

Electron 
Configuration 

1st 
Ionization 
Energy[6] 

(eV)  

Electronegativity[7] 
Radius* 

[Å][8]  
(CN=6)  

Charge[6] 
Radius 

 M0 M1+ M2+   M+ M2+  

3 Li [He]2s1 [He] - 5.39 0.97 0.90 - 1.4 

11 Na [Ne]3s1 [Ne] - 5.14 1.01 1.16 - 1.9 

12 Mg [Ne]3s2 - [Ne] 7.64 1.23 - 0.86 3.1 

19 K [Ar]4s1 [Ar] - 4.34 0.91 1.52 - 1.4 

20 Ca [Ar]4s2 - [Ar] 6.11 1.04 - 1.14 2.0 

37 Rb [Kr]5s1 [Kr] - 4.18 0.89 1.66 - 1.3 

38 Sr [Kr]5s2 - [Kr] 5.69 0.99 - 1.32 1.8 

55 Cs [Xe]6s1 [Xe] - 3.89 0.86 1.81 - 1.2 

56 Ba [Xe]6s2 - [Xe] 5.21 0.97 - 1.49 1.5 

* Effective crystal radius 

The bonding characteristics of the s-block metals are highly influenced by factors such as 

metal size, strength of the metal-ligand bond and the degree of secondary, non-covalent 

interactions, making their structure and thus reactivity difficult to predict.[3] Descending the 

groups, the metal size increases and electronegativity decreases, causing the charge to size ratio 

of the metal to decrease (Table 1.1). This decrease in charge to size ratio causes the metal-carbon 

bonding to become weaker for the heavier metals. Also, upon descending a group, the difference 

in electronegativity between a given metal and ligand increases, making the bond more polar. As 

a result, the lighter metals magnesium and lithium exhibit covalent/polar bonding character, 

while the larger metals cesium and barium form bonds that are predominantly ionic. In the 

predominantly ionic bonds, electrostatic interactions govern the coordination environment, as 
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such, little control exists to design a desired coordination pattern, and deliberately construct 

structural features.  

A further challenge in predicting coordination environments lies in the multiplicity of 

ion-association modes observed for s-block metals. These are highly dependent on the metal and 

the bonding characteristics of the ligand. As shown in Figure 1.1, two ion association modes are 

observed for the alkali metals, whereas three, including contact and separated ions, in addition to 

an intermediate are seen for the alkaline earth metals. In general, a contact pair is more favored 

when metal-ligand bonds are more covalent, thus for the lighter metals; where ion separation 

becomes more favorable when the metal-ligand bond is weak, thus for the heavier metals (Figure 

1.1).[3] 

 

The s-block metals exhibit a range of coordination numbers that is dependent on the 

nature of the binding ligands in addition to the co-ligands, sometimes called donors. In general, 

the alkaline earth metals show coordination numbers ranging from 3 – 12, with greater than six 

being preferred for the larger metals.[9] The use of sterically demanding ligands in addition to 

weaker, non-covalent secondary interactions has been shown to significantly decrease the 

Figure 1.1 Ion association modes for alkali and alkaline earth metals. (From left to right: contact, 
contact/separated, dissociated; A = Li, Na, K, Rb, Cs; Ae = Mg, Ca, Sr, Ba; L = Ligand) 
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tendency towards aggregation by providing additional coordinative saturation to the metal center. 

Further, the secondary interactions provide significant extra stabilization.[3,10,11] For example, 

metal-π interactions with the delocalized π system of aromatic type ligands can cumulatively 

saturate the coordination sphere of the metal center while reducing the need for donor or co-

ligands.[12,13] 

 The chemistry of the lighter magnesium and lithium metals has been well explored since 

the middle of the 19th century and has yielded a wide range of useful synthetic 

organomagnesium and organolithium reagents.[3] The chemistry of the heavier elements have not 

been as well explored due to (i) their enhanced reactivity as compared to the lighter metals, (ii) 

the increased reactivity reduces synthetic variables, for example, heavy organometallic 

compounds have a significant tendency towards ether cleavage, (iii) large metal diameters and 

resulting tendency toward aggregation in addition to highly polar metal bonds, rendering the 

resulting metal-ligand bond labile, with subsequent decomposition, and (iv) the large metal 

centers and the need to achieve steric saturation often result in aggregation, leading to reduced 

solubility.[3,6] Despite recent advances in handling techniques and the development of novel 

synthetic routes,[2,3,10,14] research has still been limited due to the numerous challenges.[2,3] 

1.2 Similarities Between Alkaline Earth Metals and Rare Earth Metals 

The lanthanides, also called rare earth metals, comprise of the fourteen elements (cerium 

- lutetium) following lanthanum in the periodic table.  After lanthanum ([Xe]6s25d1) the 4f 

orbitals are lower in energy and fill preferentially over the 5d orbitals. For the 14 rare earth 

metals, the atomic radius decreases across the period as a result of imperfect shielding of the f-

orbitals, known as the lanthanide contraction.[6] The increasing nuclear charge across the period 

has a increasingly attractive force, which draws the f electrons closer to the nucleus.[6]   
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The most stable cation for the rare earth metals is the trivalent cation, with a few specific 

cases where the di- and tetravalent states have been observed if the ion can achieve a valence 

electron configuration of f 0, f  7, or f 14. Examples include: cerium (Ce4+: 4f 0), terbium  

(Tb4+: 4f 7), europium (Eu2+: 4f 7), and ytterbium (Yb2+: 4f 14).[6] Additionally, the tetravalent 

praseodymium (Pr4+: 4f 1), and divalent samarium (Sm2+: 4f 6) are observed even though they do 

not achieve one of the above mentioned electronic states.[6]   

The divalent europium, samarium and ytterbium cations are similar in size and properties to 

the calcium and strontium ions (see Table 1.2).  Europium and ytterbium dissolve in liquid 

ammonia similarly to the heavy alkaline earth metals, resulting in purple-blue solutions of 

solvated cations and electrons.[15] In addition, europium and ytterbium metals have the body 

centered cubic crystal structure as displayed in the alkaline earth metals. As a result, europium 

and ytterbium compounds are generally isostructural[16] to the alkaline earth analogues and 

exhibit similar solubility (Table 1.2).[6] 
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Table 1.2 Comparison of alkaline earth metal and rare earth metal properties 

Z 
/Symbol Name Electron Configuration Radius [Å][8]  

(CN=6)* E0 (V)[6] 

   M0
 M2+ M3+ M2+ M3+ M2+/M0 

12 Mg Magnesium [Ne]3s2 [Ne]  0.86  -2.37 

20 Ca Calcium [Ar]4s2 [Ar]  1.14  -2.87 

38 Sr Strontium [Kr]5s2 [Kr]  1.32  -2.89 

56 Ba Barium [Xe]6s2 [Xe]  1.49  -2.90 

57  La Lanthanum [Xe]5d16s2  [Xe]  1.17  

58 Ce Cerium  [Xe]4f 15d16s2  [Xe]4f 1  1.15 0.437 

59 Pr Praseodymium [Xe]4f 36s2  [Xe]4f 2  1.13 0.378 

60 Nd Neodymium [Xe]4f 46s2  [Xe]4f 3  1.12 0.189 

61 Pm Promethium [Xe]4f 56s2  [Xe]4f 4  1.11 0.017 

62 Sm Samarium [Xe] 4f 66s2 [Xe] 4f 6 [Xe]4f 5 1.36 1.09 -0.914 

63 Eu Europium [Xe] 4f 76s2 [Xe] 4f 7 [Xe]4f 6 1.31 1.08 -2.067 

64 Gd Gadolinium [Xe]4f 86s2  [Xe]4f 7  1.07 0.453 

65 Tb Terbium [Xe]4f 96s2  [Xe]4f 8  1.06 0.439 

66 Dy Dysprosium [Xe]4f 106s2  [Xe]4f 9  1.05 0.025 

67 Ho Holmium [Xe]4f 116s2  [Xe]4f 10  1.04 0.471 

68 Er Erbium [Xe]4f 126s2  [Xe]4f 11  1.03 0.574 

69 Tm Thulium [Xe]4f 136s2  [Xe]4f 12  1.02 -0.058 

70 Yb Ytterbium [Xe] 4f 146s2 [Xe] 4f 14 [Xe]4f 13 1.16 1.008 -1.087 

71 Lu Lutetium [Xe]4f 145d16s2  [Xe]4f 14  1.001  

  * Effective crystal radius 
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1.3 The Pyrazolate Ligand System 

 Pyrazole is a five-membered heterocycle consisting of three carbon atoms and two 

adjacent nitrogen atoms.  Upon deprotonation, the ring becomes aromatic in nature with six 

delocalized π electrons, four from double bonds and two from the lone pair of the nitrogen in 

position 1 (Figure 1.2).[17]  

 

The first pyrazole, 1-pyrazolyl-alanine, was isolated from watermelon seeds in 

1959.[17] Pyrazole derivatives are used for a wide range of applications in medicine,[17,18] 

agriculture,[19] technology, and organic and organometallic synthetic chemistry.[14]  

The aromaticity of the ring, achieved upon deprotonation results in the high acidity of the 

hydrogen on position 1 (Figure 1.2) with pKa values typically in the range of 13-15 for 3,5 

substituted pyrazoles.[14] Upon deprotonation, the anionic pyrazolate can bind to one or more 

metals through one or both of the nitrogen atoms (Figure 1.3), lending to the exceptional gas 

phase stability of pyrazolate compounds.[14,20]  

Figure 1.2 The aromaticity of pyrazole 
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In addition, the aromatic system of the pyrazolate ligand allows it the unique capability to 

engage in metal-ligand π-interactions. These interactions exist in addition to the coordination of 

the metal to the nitrogen atoms in the ligand and provide significant extra stabilization and a 

variety of observed metal-ligand binding modes (Figure 1.3).[14,20–28] 

 

A further advantage of the pyrazolate system is that the steric demand and the solubility of 

the ligand can be customized via substitution in the 3- and 5- position of the ligand (Figure 1.2). 

Potential combinations of alkyl and aryl groups for these include –H, –CH3, –iPr, –tBu, –F, –CF3 

and –Ph. The large number of possible substitutions offer many exciting opportunities to study 

the effects of sterics and solubility and ultimately reactivity on the formation of s-block 

pyrazolate species. 

1.4 The Tetraphenylborate Ligand System 

 The tetraphenylborate ([BPh4]-) ligand system is a large, weakly coordinating, anionic 

ligand, which participates only in secondary metal-π and agostic M-H interactions in the absence 

Figure 1.3 Observed pyrazolate binding modes (M = metal) 
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of stronger coordinating atoms such as nitrogen or oxygen. The ligand system has historically 

been utilized as an “inert” counterion used to stabilize cationic species (Figure 1.4).[29–31] 

 

The aryl groups are able to stabilize the overall negative charge through the large 

delocalized 24 electron π-system, making for a robust ligand system which is stable when 

exposed to both air and water. Tetraarylborates have been shown to decompose into the 

triarylboranes and benzene in the presence of a proton source. This decomposition can be 

prevented by altering the substituents on the aryl rings to decrease the susceptibility of the ligand 

to electrophilic attack.[32] The aryl groups can be substituted with groups including: –H, –CH3, –

Ph, –tBu, –iPr, –F and –CF3
[29] to alter the steric and electronic properties of the ligand. 

Early examples of M-π interactions between the tetraphenylborate ligand and the metal 

center were observed in the transition metal complexes [Cu(BPh4)(CO)(en)] (en = 

ethylenediamine), where an η2-coordination to the metal is observed, [29] [Zr(CH2Ph)3(η6-

Ph2)BPh3], with a η6
 coordination to a d0 metal,[33] and [(Nb(RC≡CR)(η6-Ph2)BPh2]  with a η6:η6 

metal coordination.[34] The compounds were synthesized with the goal of obtaining metal 

Figure 1.4 The tetraphenylborate ligand system 
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bis(arene) and cationic complexes.[30,31,34] Further work extended to the lanthanides, where M-π 

interactions were observed in  [La(C5Me5){CH(SiMe3)2}BPh4],[35] as confirmed by solid state 

NMR spectroscopic studies. This coordination mode was further formally characterized by X-ray 

crystallography in [Sm(C5Me5)(Ph2)BPh2], where  the tetraphenylborate coordinates to the Sm3+ 

metal center in an η2:η2 fashion.[36]  These early examples sparked a significant interest in the 

exploration of lanthanide and alkaline earth M-π compounds given the similarities in reactivity 

and size between the metals. 

The first alkaline earth metal [BAr4]- compounds were synthesized in an attempt to 

synthesize alkaline earth metal pentafluorophenyl organometallic monocationic species of the 

form [(C6F5)M(thf)n][BPh4] (M = Ca, Sr, Ba) in the Ruhlandt group.[37] Unexpectedly, the 

reaction products were the dicationic [M(thf)n][BPh4]2 (M = Ca, n = 6; M= Sr, n = 7) and 

monocationic [Ba(thf)4(BPh4)][BPh4][37] with the calcium and strontium species being 

isostructural to the previously synthesized rare earth analogues [Yb(thf)6][BPh4]2 and 

[Sm(thf)7][BPh4]2 respectively.[38] 

The barium species exhibits the first ever η6:η6 coordination of two of the phenyl groups of 

the [BPh4]-
 ligand to an alkaline earth metal in a contact pair, a phenomenon only previously 

observed in transition metal compounds.[30,31,34] The calcium and strontium species are 

completely solvated by THF molecules; two [BPh4]- anions serve as counterions in a dissociated 

coordination mode (Figure 1.5).[37] 
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Further studies with alkaline earth metal tetraphenylborates were performed in an attempt to 

synthesize monocationic species which had previously been synthesized with the reactive 

organic [C(C6H3)3]- and [CH(C6H3)2]- anions. It was hoped that the more stable [BPh4]- anion 

would allow for more facile synthesis of the monocationic species.[39] Synthetic attempts were 

unsuccessful and results demonstrated the influence of strongly donating solvents such as 

acetonitrile (CH3CN), 18-crown-6, and hexamethylphosphoramide (HMPA) on the ion 

association modes of the borate.[40] The use of these strong donors led to dissociated ion triples 

with the general form [Ae(donor)n][BPh4]2 (Ae = Ca, Sr, Ba; n = number of donors) where the 

[BPh4]- ion remained dissociated from the metal center.[40]  

Studies by graduate student, Catherine Lavin, using the weaker donating solvent 

diethylether, Et2O, were performed involving alkyl-substituted tetraarylborates to study M-π 

Figure 1.5 Previously synthesized alkaline earth metal tetraphenylborates.[37] Hydrogen atoms 
and the second uncoordinated tetraphenylborate are omitted for clarity. 

A: [Ca(thf)6][BPh4]2 B: [Sr(thf)7][BPh4]2 C: [Ba(thf)4(BPh4)][BPh4] 
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coordination of the tetraarylborate as demonstrated in [Ba(thf)4BPh4][BPh4][37] in more detail. 

This work has produced compounds with a formally low coordination number where the 

coordinative saturation of the metal is achieved predominantly through M-ligand π secondary 

interactions with the tetraarylborate exhibiting a variety of non-classical M-ligand π coordinating 

modes. Examples of such interactions include the prior six η2 interactions, four η5 interactions, 

and three η6  interactions in addition to agostic M-H interactions (Figure 1.6).[41,42] 
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Figure 1.6 Alkaline earth tetraarylborates exhibiting M-ligand π tetraarylborate binding to the 
metal center.[41,42] M-H interactions are shown as dashed pink lines. M-π interactions are shown 
as dashed black lines. Hydrogen atoms not participating in agnostic interactions, disordered 
atoms and Et2O have been removed for clarity. A: [Ca(B((3,5-Me2)C6H3)4)2][41]; B: 
[Ba(thf)(B((3,5-Me2)C6H3)4)2];[41]  
C: [Ba(B(4-tBu)C6H4)4)2]•2Et2O.[42] 
  

A) η2:η2:η2:η2:η2:η2 

B) η6:η6:η6 

C)  η5:η5:η5:η5 
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This study made it apparent that there is a depth of information on the factors 

contributing to the coordinative stabilization of the heavy metals. Multiple factors, such as M-

ligand π interactions, M-H agostic interactions in addition to the traditional metal-ligand Lewis 

base interactions are key components that contribute to the steric saturation of the metal center.   

1.5 Novel Heteroleptic Pyrazolate Tetraarylborate Compounds 

The study of alkali metal, alkaline earth metal and lanthanide homoleptic pyrazolates has 

yielded an extensive range of interesting compounds. The absence of donating solvents in 

synthesis of s-block pyrazolates yields linear, oligomeric structures with pyrazolate ligands 

bridging the metal centers.[14,26,43,44] The addition of donor solvents such as tetrahydrofuran 

(THF), dimethoxyethane (DME), N,N,N’,N’-tetramethylethylenediamine (TMEDA), pyridine 

(py), and N,N,N′,N′,N′′-pentamethyldiethylenetriamine (PMDTA) yields compounds of lower 

nuclearity.[14,45,46] 

In 2005, a new type of heteroleptic pyrazolate was developed in an effort to investigate the 

coordination of [BPh4]- to rare earth metals and synthesize a bis(arene) complex, 

[Yb(tBu2pz)(thf)(BPh4)]•2C6D6.[47] This ytterbium compound featured a tetraphenylborate 

binding to the metal center via two η6:η6 bound coordinating phenyl rings in addition to a 3,5-di-

tert-butylpyrazolate ligand with η2 metal binding, in addition to one coordinated THF (Figure 

1.7).[47]  
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This work showed that the hapticity and binding strength of the [BAr4]- ligand and the 

number of coordinated solvent molecules is influenced  by the steric demand of the pyrazolate 

ligand, in this case, the sterically demanding 3,5-di-tert-butylpyrazolate.[47] If the secondary 

ligands are very bulky, or a ML2 coordination has been established, the [BAr4]- ion cannot 

approach the metal center to participate in metal-π interactions and, instead acts as a dissociated 

counterion.[47] The challenge is mapping the ligand size effects, and creating a coordination 

environment where the ligand is large enough to shield the metal center from solvent molecules, 

which compete with the [BAr4]- for coordination to the metal center, yet not too sterically 

hindering to prevent the [BAr4]- from approaching and participating in secondary interactions. 

1.6 Goals 

 There are two main goals of this project. The first is to synthesize and characterize novel 

s-block pyrazolates to further increase the understanding of the wide variety of pyrazolate 

binding modes. The lighter alkali metals have been studied[23,24,48,49] in addition to the alkaline 

earth metals[5,13,27,46] and lanthanides,[20,21,45,50] but little is known about the heavy alkali metals, 

Figure 1.7 [Yb(tBu2pz)(thf)(BPh4)]•2C6D6
[47] showing the η6:η6 

coordination of the [BPh4]- ligand to Yb2+. Hydrogen atoms and C6D6 
omitted for clarity. 
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which due to their large size pose specific challenges in stabilizing a coordination environment. 

There are few examples containing the larger alkali metals potassium,[24,48,51] rubidium and 

cesium. The preparation and structural study of these compounds will allow for direct 

comparison of the effect of increasing metal size parameters contributing to the coordination 

chemistry of these compounds. 

The second goal of this thesis is to synthesize a class of alkaline earth metal pyrazolate 

tetraarylborates to increase understanding of the competition between pyrazolate M-N and 

tetraarylborate M-C secondary interactions, and further explore the coordination modes of the 

tetraarylborate ligand system. This study will give insight into the effect of increasing ligand 

steric bulk and solvent choice on the formation of alkaline earth metal compounds. Both studies 

will produce a new collection of potential precursors for MOCVD and other highly technical 

applications while increasing the understanding of s-block chemistry. 
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CHAPTER 2: 

s-Block Pyrazolate Compounds 

2.1 Introduction 

2.1.1 Heterobimetallic s-Block Pyrazolate Compounds 

In recent years, simple compounds based on alkali, alkaline earth and divalent rare earth 

metals have been synthesized with multiple goals, such as obtaining highly coveted single-source 

metal-organic chemical vapor deposition (MOCVD) precursors, but also the preparation of 

reagents, catalysts and polymerization initiators.  The new MOCVD precursors have afforded a 

number of materials with high technical relevance, such as ferroelectrics, high temperature 

superconductors, and semiconductors.[1]  

Synthetic challenges encountered are based on the large metal diameters and highly polar 

metal – ligand bonds, rendering the resulting bond highly labile, with subsequent 

decomposition.[2] The large metal diameter is similarly responsible for extensive aggregation 

behavior leading to a significant reduction in volatility.[1,2] One such example is 

Ba(dpm)2 (dpm = dipivaloymethanate), which has been used towards the deposition of barium 

in a YBa2Cu3O7-x superconducting thin film, where temperatures in excess of 800 oC are required 

to volatilize the compound.[3] As mentioned earlier, an ideal MOCVD precursor is highly volatile 

to allow for low sublimation temperatures. A further requirement is that sufficient thermal 

stability is needed to transport the precursor into the gas phase without decomposition. A 

further goal would be the ability to introduce two, or even three metals in 

a stoichiometrically controlled manner, as many of the desired compounds are based on a 

combination of at least two, if not more different metals.   



CHAPTER 2: Alkali Metal Pyrazolates                              20 
 

 

 

In contrast to the relatively well-developed chemistry of the above mentioned 

homometallic compounds, much less is known about the heterobimetallic species. Among those, 

species based on magnesium and Group I, metals have been studied extensively for a wide 

variety of applications in synthetic chemistry including selective deprotonation and alkylation.[4] 

Although several of these species are known,  their reactivity is very high and differs 

significantly from that of their homometallic counterparts.[5,6] 

Even less is known about the heavier alkali, alkaline earth and rare earth metal 

analogues,[7] all desired potential MOCVD precursor materials. Challenges are similar as 

described above, in regards to weak metal-ligand bonds and a significant aggregation tendency, 

but an added challenge is the significant tendency of the heterobimetallic species to decompose 

into a mixture of homometallic species.  Previous work in the Ruhlandt group has explored the 

use of weak, non-covalent interactions to stabilize such species.[2,4–9,10] Based on this work, it is 

believed that the pyrazolate ligand is a promising candidate for the synthesis of heterobimetallic 

compounds due to its capability to engage in M-π interactions in addition to M-N bonding. A 

further advantage of the pyrazolate ligand is the potential to obtain oxygen free materials. 

The majority of previous pyrazolate organometallics involve transition metals[14–16] in 

addition to several examples involving the lanthanides[5,15–17,18,19] and the s-block metals.[6-10,20–

22] Among them, the 3,5-di-tert-butylpyrazolate ligand has been studied extensively as the -tBu 

groups increase the steric bulk of the ligand, which lends to favorable solubility of the 

compounds.[2] Additionally, the large ligand size can shield the metal center from additional 

coordination, thus allowing for the isolation of compounds with low coordination numbers and 

few solvent co-ligand. 
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2.1.2 Alkali Metal Pyrazolates  

Alkali metal pyrazolate compounds have been sought after for use in oxide-free chemical 

vapor deposition (CVD) processes,[22] synthetic pyrazolyl transfer reagents,[24] and for 

investigation into the wide variety of binding modes.[2,16,18] Chemists have been especially 

interested in the η2 binding mode of pyrazolate compounds because it is isoelectronic with 1,3-

diketonate complexes, which have historically been utilized in CVD processes.  

The first example of an η2 coordinated pyrazolate compound, a hexameric cluster 

[K(Ph2pz)(thf)]6, was synthesized by Winter et. al. in 1997.[22] Further synthetic attempts have 

produced a range of alkali metal pyrazolates including monomeric,[1,2,6,7] dimeric,[24,26] 

tetrameric,[23] a cluster,[22–24] and a 1D chain[22–24] in addition to crown ether complexes[24,25] such 

as [Na(η2-3,5-tBu2pz)( η6-18-crown-6)][24] where the metal center is entrapped inside the crown 

ether with terminal η2 bound pyrazolate ligands (Figure 2.1). All of the synthesized compounds 

are based on the lighter alkali metals Li, Na and K. Of those compounds a few donor-free 

complexes such as [Li(tBu2pz)]4,[24] [Li(tBu2pz)(tBu2pzH)]2,[24] [Na(tBu2pz)]n,[23] 

[Na(Me2pz)],[24] and [K(tBu2pz)][24] have been synthesized and exhibit a variety of interesting 

structural characteristics including secondary M-π interactions between the metal center and the 

delocalized π system of the heteroaromatic ring (Figure 2.1).  
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There are still many questions regarding pyrazolate binding modes and the effect of 

substituents on the pyrazolate ring on the final structure. Many open questions pertain to the 

heaviest alkali metals, Rb and Cs. Synthesis of Rb and Cs based compounds would provide a 

clearer understanding of pyrazolate coordination and the coordination of the heavier alkali 

metals. 

  

Figure 2.1: Previously synthesized alkali metal pyrazolates.[22] Disordered -tBu 
groups and hydrogen atoms not participating in agostic M-H interactions are omitted 
for clarity. M-π interactions are shown as dashed black lines and agostic M-H 
interactions are shown as dashed pink lines. 
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2.2 Results and Discussion 

2.2.1 Preliminary Attempts Towards Heterobimetallic s-block Species 

 Heterobimetallic lanthanide/alkali metal pyrazolates and heterobimetallic alkaline 

earth/alkali metal diphenolphenolates[4,13,27] have been synthesized by direct metallation at 

elevated temperatures in Carius Tubes.[7] This method is based on using the pure metals, 

circumventing the use of air-sensitive and highly reactive alkali and alkaline earth reagents. 

Furthermore, the solid state reactions in the Carius tubes circumvent the use of polar organic 

solvents such as tetrahydrofuran (THF) or dimethoxyethane (DME), as those are frequently 

associated with the decomposition of the heterobimetallic species into the homometallic 

compounds. This method is also favorable as it has been shown to produce high quality crystals 

suitable for X-ray diffraction. This success prompted the attempted analogous synthesis of 

alkaline earth/alkali metal heterobimetallic pyrazolate compounds (Scheme 2.1, 2.2). 

A(s) + Ae(s) + 3R2pzH → [AeA(R2pz)3] + 3/2 H2(g) 
A = Li, Na, K, Rb, Cs; Ae = Mg, Ca, Sr, Ba; R = tBu, Ph, Me, iPr 

 
Scheme 2.1 Proposed synthetic pathway towards heterobimetallic s-block pyrazolate via direct 

metallation at elevated temperatures in Carius tubes using pure metals. 
 
 

[A(R2pz)](s) + Ae(s) + 2R2pzH → [AeA(R2pz)3] + 3/2 H2(g) 
A = Li, Na, K, Rb, Cs; Ae = Mg, Ca, Sr, Ba; R = tBu, Ph, Me, iPr 

 
Scheme 2.2 Proposed synthetic pathway towards heterobimetallic s-block pyrazolate via direct 

metallation at elevated temperatures in Carius tubes using alkali metal pyrazolates. 
 

 In all cases, reactions resulted in crystals suitable for X-ray diffraction studies being 

deposited on the sides of the tube wall. Crystals were identified as either unreacted pyrazole, 

previously synthesized homometallic alkaline earth pyrazolates, flux agent, or alkali pyrazolates. 

Attempts to purify and recrystallize the tube contents yielded similar results. The reaction of 
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strontium metal, potassium metal, and 3,5-dimethylpyrazole in the presence of 1,3,5-tri-tert-

butylbenzene as a flux agent, yielded colorless crystals of compound 1, [K(Me2pz)]n, which was 

previously unknown. Table 2.1 displays the reactions that were performed and the resulting 

products as determined by X-ray diffraction analysis. 
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Table 2.1: Summary of reaction conditions and products of attempted synthesis of 
heterobimetallic s-block pyrazolate compounds. 

A Ae RR’pzH Temp 
(oC) Days Flux[a]/ 

Hg[b] Product 

Na Ca Ph2pzH 240 9 Mes*H[c] Ph2pzH 
Na Ca iPr2pzH 320 9 Mes*H iPr2pzH 
Na Ca tBu2pzH 308 7 Mes*H Mes*H 
Na Sr tBu2pzH 285 4 Mes*H [Na(tBu2pz)]n

[23] 
[Na(tBu2pz)] Sr tBu2pzH 298 10 TMB [Sr4(tBu2pz)8][10] 
[Na(tBu2pz)] Sr tBu2pzH 298 7 Hg [Sr4(tBu2pz)8][10]  

[Na(MePhpz)] Sr MePhpz
H 280 7 TMB[d] MePhpzH 

[Na(Ph2pz)] Sr Ph2pzH 260 10 Hg Ph2pzH 
Na Ba tBu2pzH 268 5 Mes*H [Ba6(tBu2pz)12][10] 

Na Ba MePhpz
H 264 5 TMB TMB 

[Na(MePhpz)] Ba MePhpz
H 246 5 TMB TMB 

[Na(tBu2pz)] Ba tBu2pzH 346 5 TMB tBu2pzH 
[Na(tBu2pz)] Ba tBu2pzH 250 6 Hg [Na(tBu2pz)][23] 
[Na(Ph2pz)] Ba Ph2pzH 235 10 Hg Ph2pzH 

K Ca Ph2pzH 272 7 Mes*H Ph2pzH 
K Sr Ph2pzH 283 6 Mes*H Mes*H 
K Sr Me2pzH 172 13 Mes*H [K(Me2pz)]n (1) 

[K(tBu2pz)] Sr tBu2pzH 350 10 Hg [Sr4(tBu2pz)8][10] 
K [Ba(iPr2pzH)2(thf)4] iPr2pzH 252 3 Mes*H [Ba(iPr2pzH)2(thf)4][11] 

K Ba Me2pzH 230 10 Mes*H Me2pzH 
[K(tBu2pz)]n Ba tBu2pzH 250 5 Hg [K(tBu2pz)] n

[24] 
[a] Flux = A low melting solid, used as a reaction media for elevated temperature reactions. 
[b] Hg = In some cases 1 drop of Hg was added to activate the metal surface and increase 
reactivity. 
[c] Mes*H = 1,3,5-tri-tert-butylbenzene 
[d] TMB = 1,2,4,5-tetramethylbenzene 
 
2.2.2 Synthesis of Alkali Metal Pyrazolates 

Synthesis of compound 1 [K(Me2pz)]n prompted investigation into heavy alkali 

pyrazolates. Previous successes in the isolation of [Na(tBu2pz)]n
[23] and other donor free s-block 
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compounds[4,10] by direct metallation at elevated temperatures (Scheme 2.3) encouraged a similar 

synthesis for the heavier alkali metals. 

nA(s) + nR2pzH → [A(R2pz)]n + n/2 H2(g) 
A = Li, Na, K, Rb, Cs; R = tBu, Ph, Me 

 
Scheme 2.3 General synthesis of alkali metal pyrazolates via direct metalation at elevated 

temperatures in Carius tubes. 
 

Compound 1 was deliberately prepared by treating K pieces with Me2pzH in the presence 

of Hg in a sealed Carius tube at 240 oC for three days. In these reactions, Hg is required to 

activate the metal surface and increase the reactivity.[23] Further, 1,3,5-tri-tert-butylbenzene was 

required as a flux agent to provide a reaction media at elevated temperatures.[7] Crystals of 1 

formed on the walls of the tube without any further purification steps required. 

 Similar reactions were performed with rubidium and cesium. Table 2.2 shows the 

reaction conditions and preliminary results.  

Table 2.2: Summary of reaction conditions and products of attempted synthesis of heavy alkali 
metal pyrazolate compounds. 

A RR’pzH Temp 
(oC) Days Flux[a] Product 

Rb Me2pzH 205 1 TMB[b] TMB 
Rb Ph2pzH 205 6[c] TMB Ph2pzH 
Rb tBu2pzH 211 1 TMB tBu2pzH 
Cs Me2pzH 230 6[c] TMB TMB 
Cs Ph2pzH 199 3 TMB TMB 
Cs tBu2pzH 175 1 TMB tBu2pzH  

[a] Flux = A low melting solid, used as a reaction media for elevated temperature reactions. 
[b] TMB = 1,2,4,5-tetramethylbenzene 
[c] Reaction was heated to 100oC for five days and then at the higher temperature overnight. 
 

In all reactions, an excess of ligand was used to ensure complete reaction of the metal. 

Once all of the metal was consumed, X-ray quality crystals were handpicked from the tube and 

analyzed. Initial crystallographic analysis revealed that the crystals selected from the tube were 

either flux agent or unreacted pyrazolate ligand. There were no other crystal morphologies 
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observed, suggesting that the white powder remaining in the tube requires further purification 

and recrystallization to isolate the target compounds. 

2.2.3 Structural Aspects of Compound 1  

Compound 1 was characterized using single crystal X-ray crystallography. Table 2.1 

summarizes pertinent details in regards to crystal data, data collection and structure refinement. 

A computer generated illustration of compound 1 is shown in figure 2.2. Crystallographic data is 

currently unrefined for compound 1. Furthermore, compound 1 was analyzed with 1H, and 13C, 

nuclear magnetic resonance spectroscopy (NMR) in addition to infrared (IR) spectroscopy. 

Pertinent data is listed in the experimental section (Chapter 4). 

Table 2.3 Crystallographic data* for compound 1. 
Compound 1 
Emperical Formula C20H32K4N8  
Formula Weight 536.89 
a (Å) 12.1625(19)  
b (Å) 18.258(3)  
c (Å) 5.7683(8)  
𝛼𝛼 (∘) 90 
𝛽𝛽 (∘) 90 
𝛾𝛾 (∘) 90 
V (Å³) 1280.9(3)  
Z 2 
Crystal System Orthorhombic 
Space Group Ibam 
𝜌𝜌calc (Mg/m³) 1.3919 
𝜇𝜇 (mm-1) 0.719 
T (K) 95(2) 
2𝜃𝜃 range 4.02 – 52.76  
Independent Reflections 731 
Number of Parameters 38 
R1/wR2 (all data) 0.1462/0.5197  
R1/wR2 (>2𝜎𝜎) 0.1389/0.4955  

Mo Kα(λ=0.71073Å), Cu Kα(λ=1.54178, R1= Σ/ |Fo|- |Fc|/|Σ|Fd; wR2 = [Σw(Fo
2-F2

2)2/Σw(Fo
2)2]1/2 
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Compound 1 crystallizes in the orthorhombic space group Ibam with the asymmetric unit 

consisting of one [Me2pz]– anion and one potassium ion (Figure 2.2 A). The structure of 1 

exhibits a high degree of symmetry, as reflected in its possessing I-centered orthorhombic 

symmetry. 

2.2.3.1 Structural Characterization of 1 

Compound 1 demonstrates versatility of the binding modes exhibited by the pyrazolate 

ligand system. Initially, the compound appeared to have formed a tetrameric potassium 

compound, but when applying literature cut off values for K-N and K-π interactions[4,13] it 

became evident that compound 1 forms a polymeric chain similar to [K(tBu2pz)]n
[24] and 

[Na(tBu2pz)]n
[23] (Figure 2.2). Each [Me2pz]– anion is coordinated to four potassium ions, one 

through each N in an exobidentate fashion with the third and fourth K being coordinated by four 

secondary M-ligand π interactions and two endobidentate M-N interactions, making the overall 

coordination environment µ4 – η1: η1: η5:η5
 for each potassium ion, an unprecedented 

coordination mode in alkali pyrazolate compounds. The decreased bulk of the –Me substituents 

compared to the –tBu substituents is presumably what allows the increased hapticity of the M-

ligand π interactions around the potassium ions in 1. 
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It is interesting to note the orientation of the repeating dimeric units in 1 and the 

construction of the one dimensional polymeric chain. In order to reduce the amount of steric 

interactions between the bridging pyrazolate ligands and increase the opportunity for metal-

Figure 2.2 Structure of compound 1. A) Asymmetric unit B) Dimeric repeat unit C) Top view 
D) 1D Chain structure. 
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ligand π interactions between the aromatic pyrazolate ring and the potassium ion, each dimeric 

repeat unit is rotated 90o from the unit above and below it in an anti-prismatic fashion, forming a 

column type structure (Figure 2.3). 

 

 

Similar to the [A(tBu2pz)]n (A = Na[23], K[24]) polymers, the metal centers are located 

above and below the center of the pyrazolate ligand. Table 2.4 compares selected bond lengths 

and angles of compound 1 to previously synthesized donor free alkali pyrazolate compounds.  

Figure 2.3 Orientation of the repeating dimeric units to form the anti-prismatic type polymeric 
column of compound 1. A) The dimer repeat unit (B,C,D) Addition of further units to increase 
the chain length. 
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Table 2.4 Comparison of pyrazolate geometry (bond lengths in Å and angles in °) and related 
donor free pyrazolate compounds. M-π interactions were assigned using established cut-off 
values for compounds.[4,13] 

Compound M-N M-π M-N-N 
[Li(tBu2pz)]4

[24] 1.946(3)-2.114(3) - 102.8(1)-108.6(1) 
[Li(tBu2pz)(tBu2pzH)]2

[24] 2.009(4)-2.067(4) - 72.4(1)-114.0(2) 
[Na(tBu2pz)]n

[23] 2.358(4)-3.043(3) 2.725(4)-3.125(4) 51.5(2)-115.8(2) 
[Na(Me2pz)][24] 2.3773(16)-2.6203(17) - 62.51(9)-125.4(1) 
[K(tBu2pz)][24] 2.713(3)-2.900(3) 3.188(3)-3.452(3) 64.3(1)-88.3(2) 

1 2.79(1)-2.98(2) 3.39(3)-3.56(4) 76.5(9)-123.2(5) 
 

As expected based on metal and ligand size, novel compound 1 exhibits typical M-N 

bond distances and M-N-N angles in the range of previous alkali pyrazolate compounds[22,24] and 

extends the series of known alkali pyrazolates. Interestingly, the M-ligand π interaction distances 

in 1 are similar to those in [K(tBu2pz)][24] despite the increased amount of M-ligand π 

interactions per metal center (1: 10 [K(tBu2pz)]n: 9)[24] and decreased ligand bulk. 

2.3 Conclusions and Future Work 

 Initial attempts to synthesize bimetallic pyrazolate complexes containing alkali and 

alkaline earth metals have been unsuccessful so far. The metal based reactions appear to favor 

the formation of single metal species over the desired multi-metal compounds in spite of 

previous successes with other ligand systems. Another explanation could be that the extremely 

reactive and unstable compounds quickly decompose into the homometallic species prior to 

analysis. Moving forward, reactions using the alkaline earth metal chlorides (AeCl2; Ae = Mg, 

Ca, Sr, Ba) should be investigated as this synthetic route has been used with success to 

synthesize a variety of heterobimetallic pyrazolate compounds of rare earth and alkali metals,[7] 

though there are potential complications due to the high lattice energies of the alkaline earth 

salts.[28] 
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 With the synthesis of 1 and previous alkali and alkaline earth pyrazolates, it is 

apparent that in the absence of donating solvents, the alkali metals react with pyrazoles and form 

cluster compounds ([Li(tBu2pz)]4; [Li(tBu2pz)(tBu2pzH)]2
[24]) or large, oligomeric chains with 

high degrees of M-N and M-ligand π coordination to attain a saturated coordination sphere, a 

trend previously confirmed for the alkaline earth metals.[10,11] Generally, the smaller metals 

lithium and magnesium are not observed to participate in M-ligand π interactions, with the 

tendency to participate increasing with metal size. The presence of donating solvents such as 

tetrahydrofuran, pyridine and diethylether has been demonstrated to decrease the amount of M-

ligand π interactions as the metals will preferentially bind to the solvents.[9,23,26] 

 Further work up and purification of the remaining Rb and Cs reactions will be performed 

to produce X-ray quality crystals of the compounds for further characterization. Learning from 

principles observed and to be discussed in chapter 3, an alternate synthetic route could be 

attempted in effort to synthesize Rb and Cs pyrazolate compounds. Treatment of the alkali metal 

silyl amide with pyrazole in diethylether (Et2O) under refluxing conditions may be a promising 

synthetic pathway, despite the use of air-sensitive reagents.  

 Once fully synthesized and characterized, the Rb and Cs pyrazolates will supplement the 

lighter alkali metal pyrazolates to complete the series, making it possible to fully establish trends 

in metal coordination and pyrazolate binding modes. 
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CHAPTER 3: 

Heteroleptic Alkaline Earth Tetraarylborate Pyrazolates 

3.1 Introduction 

 As previously discussed, alkaline earth metal and lanthanide tetraarylborates exhibit a 

large variety of coordination modes including traditional dissociated pairs as observed in 

[Ca(thf)6][BPh4]2 and [Sr(thf)7][BPh4]2,[1,2]  but also non-traditional  compounds where the 

tetraphenylborate aryl groups coordinate to the metal via M-π interactions: η2:η2:η2:η 2:η 2:η2 

([Ca(B((3,5-Me2)C6H3)4)2],[3] η3:η3:η2 ([Sr(B((3,5-Me2)C6H3)4)2])[3], η6:η6 ([Ba(thf)4(BPh4)],[1] 

[Yb(tBu2pz)(thf)(BPh4)][4]), η2:η2 ([Sm(C5Me5)(Ph2)BPh2])[5] and η5:η5:η5:η5 ([Ba(B(4-

tBu)C6H4)4)2]•2Et2O).[6] The calcium and strontium dissociated ion pairs were observed when 

reactions were performed in the strongly donating solvent THF[1,2] similar to their lanthanide 

analogues.[5] However, the larger alkaline earth metal barium afforded a M-π coordination mode 

in THF, as seen in [Ba(thf)4(η6-Ph)2BPh2)].[1] M-π binding modes in the compounds above were 

observed when synthesis was performed in weaker electron donating solvents such as 

diethylether[3,6] or toluene.[4] This observation raised questions of competition between enthalpy 

of M-π interactions afforded by the tetraarylborate ligand in comparison to the metal-Lewis base 

interactions by electron donating solvents. Further considerations were the electronic and steric 

effect of substituents on the aryl rings, the extent of M-π interactions as afforded by the metal 

diameter, and with this entropic effects upon the M-π  coordination. 

 Deacon et. al. showed that the binding and coordination nature of the [BPh4]- to 

lanthanides can be influenced by the use of a secondary, strongly coordinating bulky ligand such 

as tBu2pzH,[4] which afforded the first η6:η6 coordinated [BPh4]- ligand to a lanthanide ion. Apart 

from barium, η6:η6 coordination of [BAr4]- (Ar = Ph, (3,5-Me2)C6H3; (4-tBu2)C6H4) to the lighter 
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metals Mg, Ca, and Sr has yet to be observed and only a few alkaline earth compounds 

possessing [BAr4]- (Ar = Ph, (3,5-Me2)C6H3; (4-tBu2)C6H4) coordination have been obtained.[3,6] 

Aside from exploring the coordination structure-function relationships in the metals of 

interest, lanthanides with η6:η6 coordination of [BPh4]- have shown promise as polymerization 

catalysts similar to ansa-metallocenes.[4] The alkaline earth metal analogues could potentially be 

used, as they are earth abundant, inexpensive and pose no environmental threat. Further 

applications of these compounds are their potential as MOCVD precursors, thus driving the 

desire for their synthesis and characterization.[3] 

Presented in this chapter are four novel alkaline earth metal compounds synthesized with 

the goal of exploring a new class of heteroleptic alkaline earth tetraarylborate pyrazolates. These 

novel compounds allow for the study of competition between the pyrazolate and tetraarylborate 

ligand system and the influence of pyrazolate on the tetraarylborate coordination mode. 

 

3.2 Results and Discussion: Heteroleptic Tetraarylborate tert-Butyl Pyrazolates  

3.2.1 Synthetic Chemistry 

 Encouraged by the straightforward synthesis and simple isolation of the alkaline earth 

tetraarylborate compounds via transamination reactions,[3] a corresponding synthetic route was 

attempted to synthesize the heteroleptic tetraarylborate tert-butylpyrazolates, as shown in scheme 

3.1. The difference in pKa between [HNEt3]+ (pKa = 9 (DMSO))[7]  and HN(SiMe3)2 (pKa = 26 

(DMSO))[8] is the driving force in the reaction.  Transamination reactions in Carius tubes 

(Scheme 3.1) involving alkaline earth metal amides, 3,5-di-tert-butylpyrazole and HNEt3B((3,5-

Me2)C6H3)4) afforded compounds 2 – 5 with different degrees of [B((3,5-Me2)C6H3)4]- 

coordination to the metal center.  
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Ae[N(SiMe3)2]2(thf)2 + HNEt3BAr4 + R2pzH  

     [Ae(R2pz)(BAr4)x(thf)m(Et2O)n][BAr4]y + 2HN(SiMe3)2 + NEt3 

2: Ae = Mg, x = 0, m = 3, n = 1, y = 1; 3: Ae = Ca, x = 0, m = 2, n = 2, y = 2; 4: Ae = Sr, x = 1, 
m = 2, n = 0, y = 0; 5: Ba, x = 1, m = 2, n = 0, y = 0 
 
Scheme 3.1 Transamination reaction performed in Carius tubes at 35oC with Et2O as the solvent.  

(R = tBu; Ar = (3,5-Me2)C6H3, (4-tBu)C6H4) 

 
Further reactions were attempted with the [B((4-tBu)C6H4)4]-

 ligand, but resulted in the 

decomposition of the tetraarylborate ligand into 4-tert-butylbenzene and triarylborane for the 

respective Mg, Ca, and Sr reactions. This is presumably due to the electrophilic attack of the 

HN(SiMe3)2 proton (pKa = 26 in DMSO[8]).[9] In contrast, for Ba, reactions repeatedly yielded 

crystals of previously observed tetraarylborate compound [Ba(B((4-tBu)C6H4)4)2]•2Et2O.[6] 

Solvothermal synthesis in Carius tubes, which has been used with much success in 

previous syntheses where solubility was an issue,[10] was used to overcome the limited solubility 

of HNEt3B(Ar)4 (Ar = (3,5-Me2)C6H3; (4-tBu)C6H4) in diethylether (Et2O). An added bonus of 

Carius tube chemistry is that sealed Carius tubes provide an environment which is reliably air 

and moisture-free than the one provided by Schlenk flasks, eliminating the chance for 

introduction of adventitious water or air after the tube has been sealed. As the reactions were 

heated, colorless crystals suitable for X-ray diffraction formed on the tube walls without the need 

for further purification. After the reaction had reached completion, a white powder was observed 

at the bottom of the tube. NMR analysis revealed this to be a mixture of starting materials and 

reaction products. The product yields increased with increasing metal size, indicating that the 

outcome of the reaction coincides with the increasing reactivity of the metals descending the 

group. 
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Interestingly, compound 2 displays three tetrahydrofuran co-ligands (THF), although the 

reaction was conducted in diethylether. The source of THF is the [Mg(N(SiMe3)2(thf)2] starting 

material. Multiple repeat attempts of the reaction and subsequent crystallographic analyses 

afforded identical product, indicating reproducibility. However, the low product yield of 6.5% 

provide a satisfactory explanation, and strong indication of the stronger Lewis base capacity of 

THF as compared to diethyl ether. 

 

3.2.2 Structural Aspects of Compounds 2 – 5  

 Compounds 2 – 5 were characterized using single crystal X-ray crystallography. Table 

3.1 summarizes pertinent details in regards to crystal data, data collection and structure 

refinement. Computer generated illustrations of compounds 2 – 5 are shown in Figures 3.1 – 3.4 

and geometrical parameters of the compounds are summarized in Tables 3.2 – 3.4. 

Crystallographic data for compounds 2 and 3 is currently unrefined as results were only received 

very recently, but the preliminary structures are included here to discuss trends in the group. 

 All four compounds crystallize in the monoclinic crystal system with compounds 2, 4, 

and 5 being classified as P21/c, meaning that they are centrosymmetric with a primitive unit cell. 

Compound 3 is classified as Cc, meaning that the unit cell is c-centered. Compounds 4 and 5 are 

nearly isostructural and will be described together. 
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Table 3.1 Crystallographic data* for compounds 2 – 5.  

Compound 2 3 4 5 
Empirical Formula C59H91BMgN2O4 C100H120BN2O5Ca C51H71BN2O2Sr C51H80BN2O2Ba 
Formula Weight 927.45 1480.86 842.52 901.32 
a (Å) 18.0692(15) 20.9102(13) 19.2912(16) 19.253(19) 
b (Å) 12.6391(11) 13.3936(13) 14.7453(13) 15.0325(14) 
c (Å) 24.5409(19) 22.5102(18) 18.3176(14) 18.3661(18) 
𝛼𝛼 (∘) 90 90 90 90 
𝛽𝛽 (∘) 90.900(2) 109.365(4) 113.851(2) 113.828 
𝛾𝛾 (∘) 90 90 90 90 
V (Å3) 5603.9(8) 5947.6(8) 4765.5(7) 4862.4(8) 
Z 4 2 4 4 
Crystal System Monoclinic Monoclinic Monoclinic Monoclinic 
Space Group P21/c Cc P21/c P21/c 
𝜌𝜌calc (Mg/m³) 1.099 0.827 1.174 1.231 
𝜇𝜇 (mm-1) 0.077 0.092 1.170 0.855 
T (K) 95(2) 95(2) 95(2) 95(2) 
2𝜃𝜃 range 1.127 - 27.321 1.838 – 30.612 1.800 – 28.726 2.225 – 30.615 
Independent Reflections 12439 17986 12316 14940 
Number of Parameters 273 273 557 514 
R1/wR2 (all data) 0.2060/0.4251 0.1757/0.3989  0.0786/0.0955 0.0498/0.1926 
R1/wR2 (>2𝜎𝜎) 0.1517/0.4002 0.1542/0.3833 0.0428/0.0842 0.0446/0.1854 
*Mo Kα(λ=0.71073Å), Cu Kα(λ=1.54178, R1= Σ/ |Fo|- |Fc|/|Σ|Fd; wR2 = [Σw(Fo

2-F2
2)2/Σw(Fo

2)2]1/2 

 

3.2.2.1 Structural Characterization of Compounds 2 – 5 

 In compound 2, the pyrazolate is coordinated to the metal center. The tetraarylborate 

remains uncoordinated and exists as a counterion to the monocationic species. The metal center 

is formally six-coordinated with one diethylether (Et2O), three tetrahydrofuran (THF) and an η2 

coordinated tBu2pz- ligand, counted as two points of attachment.  

If one considers the center of the N-N pyrazolate bond (N*) as one point of attachment, 

as justified by the narrow N-M-N bite angle (39.18(16) o), in addition to the the solvent co-

ligands, the metal center of compound 2 can better be described as five coordinate, as a distorted 
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trigonal bipyramid with the two tetrahydrofuran ligands in the axial positions (O(1)-M-O(2) = 

172.98o) tilted slightly away from the sterically demanding pyrazolate in the equatorial plane. 

The remaining THF and Et2O are also located in the equatorial plane with the solvent co-ligands 

being forced closer to each other (103.68o as compared to the ideal 120 o angle) to accommodate 

for the pyrazolate bulk. Bond lengths and the narrow pyrazolate bite angle agree nicely with 

previously synthesized magnesium pyrazolates[11,12] 

 

Table 3.2 Selected bond distances and angles for compound 2. N* refers to the center of the N-N 
bond of the η2 coordinated tBu2pz. 

Selected Bond Distances (Å) 
 

Selected Bond Angles (o) 
 Mg(1)-N(1) 2.073(5) Mg(1)-O(4) 2.054(4) 

Mg(1)-N(2) 2.064(5) B(1)-C(1) 1.641(7) 
Mg(1)-O(2) 2.115(4) B(1)-C(25) 1.649(8) 
Mg(1)-O(1) 2.126(4) B(1)-C(9) 1.655(7) 
Mg(1)-O(3) 2.067(5) B(1)-C(17) 1.628(7) 

    
Selected Bond Angles (o)    

N(1)-Mg(1)-N(2) 39.18(16) N*-Mg(1)-O(3) 126.78 
O(2)-Mg(1)-O(1) 172.98(18) N*-Mg(1)-O(4) 129.45 
O(2)-Mg(1)-O(3) 91.25(17) C(25)-B(1)-C(1) 113.1(4) 
O(1)-Mg(1)-O(3) 85.20(17) C(25)-B(1)-C(9) 109.8(4) 
O(2)-Mg(1)-O(4) 87.93(17) C(1)-B(1)-C(9) 102.1(4) 
O(1)-Ca(1)-O(4) 87.04(16) C(25)-B(1)-C(17) 105.9(4) 
O(3)-Mg(1)-O(4) 103.68(18) C(1)-B(1)-C(17) 113.6(4) 
N*-Mg(1)-O(1) 93.48 C(9)-B(1)-C(17) 112.5(4) 
N*-Mg(1)-O(2) 93.52   
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In compound 3, the calcium center is also formally six-coordinated with two diethylether 

and two tetrahydrofuran donor molecules in addition to a η2 coordinated tBu2pzH ligand. Again, 

the tetraarylborate anion remains uncoordinated and exists as a counterion to the monocationic 

species.  

Considering the center of the N-N pyrazolate bond (N*) and the narrow bite angle of 

34.9(3) o in addition to the four solvent molecules, the metal centers of compound 3 exhibits 

distorted trigonal bipyramidal geometry with the two tetrahydrofuran ligands in the axial 

positions with the trans angle (O(1)-M-O(2) = 162.6o). 

Figure 3.1 Compound 2, [Mg(thf)3(Et2O)(tBu2pz)][B((3,5-Me2)C6H3)4]. Hydrogen atoms are 
omitted for clarity. 
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Table 3.3 Selected bond distances and angles for compound 3. N* refers to the center of the N-N 
bond of the η2 coordinated tBu2pz. 

Selected Bond Distances (Å)    
Ca(1)-N(1) 2.271(8) Ca(1)-O(4) 2.371(9) 

Ca(1)-N(2) 2.342(8) C(1)-B(1) 1.647(12) 
Ca(1)-O(2) 2.362(7) B(1)-C(25) 1.640(11) 
Ca(1)-O(1) 2.369(8) B(1)-C(9) 1.658(11) 
Ca(1)-O(3) 2.371(7) B(1)-C(17) 1.666(12) 

    
Selected Bond Angles (o)    

N(1)-Ca(1)-N(2) 34.9(3) N*-Ca(1)-O(3) 127.11 

O(2)-Ca(1)-O(1) 162.6(3) N*-Ca(1)-O(4) 111.35 
O(2)-Ca(1)-O(3) 83.5(2) C(25)-B(1)-C(1) 113.3(7) 
O(1)-Ca(1)-O(3) 82.9(3) C(25)-B(1)-C(9) 112.3(6) 
O(2)-Ca(1)-O(4) 87.6(3) C(1)-B(1)-C(9) 104.2(6) 
O(1)-Ca(1)-O(4) 108.7(3) C(25)-B(1)-C(17) 103.3(6) 
O(3)-Ca(1)-O(4) 120.8(3) C(1)-B(1)-C(17) 112.0(6) 
N*-Ca(1)-O(1) 88.81 C(9)-B(1)-C(17) 111.9(7) 
N*-Ca(1)-O(2) 90.88   

 

In analogy to compound 2, 3 does not exhibit M-π interactions between the Ca2+ metal 

center and the [BAr4]- (Ar = (3,5-Me2)C6H3) ion, as observed for Yb2+ in 

[Yb(thf)(tBu2pz)(BPh4)][4] despite the similar size and reactivity of the divalent Ca2+ and Yb2+ 

cations. The rationale for the different ion association modes are provided by the significant 

steric differences between the calcium species 3, where a sterically demanding tBu2pz ligand was 

used in addition to the 3,5-Me2 substituted tetraarylborate, and the ytterbium species, were the 

simple, tetraphenylborate anion was utilized. Furthermore, the Yb2+ compound was synthesized 

in toluene, a weaker donating solvent that Et2O, where competing donor interaction both 

involved M-π interactions, either from phenyl groups from tetraphenyl borate or toluene. In 

contrast, in 3, diethyl ether is present, and the Ca2+ ion preferentially binds to Et2O, leaving the 

tetraarylborate uncoordinated. [13]  
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Demonstrating the increased tendency of the heavy alkaline earth metals towards M-Cπ 

interactions, the tetraarylborate coordinates to the metal center in both, the strontium compound 

4 (η6:η5) as well as the barium species 5 (η6:η6). In both cases, the metal center is sandwiched 

between two aryl rings. The metal centers are coordinated to two tetrahydrofuran (THF) donors, 

an η2 coordinated pyrazolate in addition to the M-π interactions with the tetraarylborate ligand. 

When considering the center of the N-N bond in the tBu2pz (N*) as one point of attachment, in 

addition to the centroids of the two aryl rings (Ar*) and the two tetrahydrofuran co-ligands, 

compounds 4 and 5 exhibit a distorted trigonal bipyramidal geometry with the two 

Figure 3.2 Compound 3 [Ca(thf)2(Et2O)2(tBu2pz)][B((3,5-Me2)C6H3)4)]. Hydrogen atoms and 
disordered atoms omitted for clarity. 
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tetrahydrofuran co-ligands in the axial positions and the two aryl rings and tBu2pz ligand in the 

equatorial plane. Not surprisingly, THF donors are tilted away from the sterically hindering aryl 

rings (O-M-Ar* = 4: 92.92 – 95.28o, 5: 92.78 – 93.99o), towards the tBu2pz ligand (O-M-N* = 4: 

79.74o/86.73o; 5: 79.78o/89.92o), thus reducing the trans angle (O(2)-M-O(1) = 4: 166.33o; 5 = 

169.64(7)o). The equatorial angles are extended (Ar*-M-N* = 4: 124.32o/128.6o; 5: 

126.99o/130.34o) to accommodate for the combined steric bulk of the tetraarylborate and the 

pyrazolate.  

 

Figure 3.3 Compound 4, [Sr(thf)2(tBu2pz)(B((3,5-Me2)C6H3)4)]. M-Cπ interactions are shown as 
dashed lines. Hydrogen atoms and disordered positions are removed for clarity. 
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Increase of the metal radius from Sr2+ to Ba2+ (Sr2+=1.32 Å, Ba2+=1.49 Å)[14] results in an 

increase in the average M-Cπ  distance from 3.144 Å to 3.255 Å, although general structural 

parameters remain identical. The M-Cπ  distance increases for the carbon atoms closest to the 

methyl substituents in the meta-positions of the aryl rings and as a result, the para-carbon of one 

aryl ring in compound 4 lies just outside of the established cut-off value for M-Cπ interactions in 

strontium compounds of 3.30 Å[15,16] (Sr(1) – C(13) 3.324 Å) and is non-coordinating. The 

average Sr-Cπ distance is similar than that previously observed in the η3:η3:η2 coordinated 

[Sr(B((3,5-Me2)C6H3)4)2] (3.136 Å)[3] despite to the presence of the sterically hindering tBu2pzH 

ligand. The pyrazolate influences the nature of the secondary interactions, allowing only two aryl 

rings to coordinate with a total of 11 M-Cπ interactions as opposed to three coordinated rings 

with eight M-Cπ interactions. 

 The Ba-Cπ distances in 5 (3.139 – 3.357 Å) and coordination environment (η6:η6) are 

similar to [Ba(thf)4(BPh4)][BPh4] (M-Cπ = 3.188 – 3.373 Å; η6:η6)[1] and [Ba(thf)(B((3.5-

Me2)C6H3)4)2] (M-Cπ = 3.083 – 3.403 Å; η6:η6:η6),[3] suggesting that the added bulk of the 

tBu2pzH ligand does not have an appreciable effect on the coordinating M-Cπ distance of the 

tetraarylborate in the two barium compounds, with the exception of preventing the coordination 

of second tetraarylborate in [Ba(thf)(B((3.5-Me2)C6H3)4)2].[3] 
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Table 3.4 Selected bond distances, angles and M-π distances for compounds 4 and 5. Ar* refers 
to the centroid of an individual coordinated aryl ring (Ar = (3,5-Me2)C6H3); N* refers to the 
center of the N-N bond of the η2 coordinated tBu2pz. 

Bond Distances (Å) 4 5 Bond Angles (o) 4 5 
M(1)-N(2) 2.48(17) 2.630(2) N(2)-M(1)-N(1) 32.31(5) 30.11 
M(1)-N(1) 2.52(29) 2.676(2) O(2)-M(1)-O(1) 166.33(5) 169.64(7) 

M(1)-O(2) 2.63(49) 2.773(2) Ar*-M(1)-N* 128.6,124.32 126.99, 
130.34 

M(1)-O(1) 2.66(07) 2.801(9) O(1)-M(1)-Ar* 93.33,93.97 92.78,93.10 
B(1)-C(17) 1.63(23) 1.645(4) O(2)-M(1)-Ar* 92.92,95.28 93.08,93.99 
B(1)-C(25) 1.63(83) 1.645(3) Ar*-M(1)-Ar* 106.91 102.24 
B(1)-C(1) 1.65(23) 1.658(3) N*-M(1)-O(1) 86.73 79.78 
B(1)-C(9) 1.66(03) 1.646(3) N*-M(1)-O(2) 79.74 89.92 
N(1)-N(2) 1.393 1.379(3) C(51)-O(2)-C(48) 107.77 108.3(2) 

Ar*-M(1) 2.810/ 
2.869 

2.915/ 
2.959 C(47)-O(1)-C(44) 107.37 107.7(3) 

   C(1)-B(1)-C(9) 101.96(16) 102.67(18) 

   C(25)-B(1)-C(1) 113.00(16) 111.6(2) 

   C(17)-B(1)-C(9) 113.60(16) 110.99(19) 

   C(25)-B(1)-C(9) 111.27(17) 113.12(18) 

   C(17)-B(1)-C(25) 105.72(16) 105.29(18) 

   C(17)-B(1)-C(1) 111.51(17) 113.45(18) 

      
M-π Distances (Å) 4 5 M-π Distances (Å) 4 5 

M(1)-C(1) 2.99(92) 3.187(2) M(1)-C(9) 3.04(52) 3.139 
M(1)-C(2) 3.07(47) 3.214(3) M(1)-C(10) 3.11(52) 3.172(3) 
M(1)-C(3) 3.23(72) 3.326 M(1)-C(11) 3.28(2) 3.305(3) 
M(1)-C(5) 3.26(6) 3.357 M(1)-C(13) 3.324a 3.331 
M(1)-C(6) 3.20(32) 3.341 M(1)-C(14) 3.26(8) 3.291(2) 
M(1)-C(8) 3.04(32) 3.229(2) M(1)-C(16) 3.10(62) 3.172(2) 

a. This value falls outside of the literature cut off value[15,16] and is not considered as a M-Cπ interaction. 
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The M-O distances in 4 and 5 (4: 2.63/2.66 Å; 5: 2.773/2.801 Å) are slightly longer than 

in previous pyrazolates, [Sr2(tBu2pz)4(thf)2] (2.550/2.567 Å)[17] and [Ba2(tBu2pz)4(thf)4] 

(2.771/2.781 Å)[17], and the tetraarylborates [Sr(thf)7][BPh4]2 (2.520 – 2.573 Å)[1] and 

[Ba(thf)4(BPh4)][BPh4] (2.687 – 2.720 Å). [1] This is considered as the effect of the combined 

steric bulk of the π-bonded aryl rings and the η2-bonded pyrazolate.  The fairly symmetrical M-N 

bonding (4: ∆Sr–N = 0.031 Å; 5: ∆Ba–N = 0.046 Å) and narrow pyrazolate bite angle (N-M-N = 4: 

32.31o, 5: 30.11o), agree with previously synthesized oligomeric and heteroleptic alkaline earth 

Figure 3.4 Compound 5 [Ba(thf)2(tBu2pz)(B((3,5-Me2)C6H3)4)]. Hydrogen atoms 
and disordered atoms have been omitted for clarity. M-Cπ interactions are shown as 
dashed lines. 
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and lanthanide η2 pyrazolates.[4,13,14–16]  

 All four compounds exhibit slightly distorted tetrahedral geometry around the central 

boron of the tetraarylborate (C-B-C = 2:102.1(4) – 113.6(4)o; 3: 103.3(6) – 113.6(7)o; 4: 

101.96(16) – 113.60(16)o; 5: 102.67(18) – 113.45(18)o), with the smallest angles in 4 and 5 

observed between the π-bonded aryl rings (C(1)-B(1)-C(17) = 4: 101.96(36)o; 5: 102.67(18)o), 

likely a consequence of maximizing the number of possible M-π interactions. The aryl rings are 

fairly symmetrically bound (4: ∆Sr–Ar* = 0.059 Å; 5: ∆Ba–Ar* = 0.044 Å) with one ring 

coordinating slightly closer than the other. Compounds 2 and 3 also show distortion of the 

tetrahedral angle (C-B-C) = 2:102.1(4) – 113.6(4)o; 3: 103.3(6) – 113.3(7)o) even though the 

tetraarylborate is uncoordinated. 

 In all cases, the coordination of the tetraarylborate appears to be influenced by the 

presence of the tBu2pzH ligand. In compounds 2 and 3, the tetraarylborate does not coordinate. 

In compounds 4 and 5, the distance of M-π interactions is only changed relative to the metal size,  

while the nature of the coordination is altered compared to previous compounds.[1,3,6] The M-N 

bond strength and thus preferred coordination of the pyrazolate ligand provides the coordinative 

preference, the aryl coordination takes place via the metal center sandwiched between two of the 

aryl rings in an ansa-metallocene fashion, as observed for similar rare earth compounds.[4]  

 
3.2.3 Spectroscopic Studies 
 
 Compounds 2 – 5, were analyzed with 1H, 13C, and 11B nuclear magnetic resonance 

spectroscopy (NMR) in addition to infrared (IR) spectroscopy. Pertinent data is listed in the 

experimental section (Chapter 4).  

IR analysis of all four compounds produced the expected results showing bands 

corresponding to the aromatic C-H stretch (3000-3100 cm-1) and C=C stretch (1400-1600cm-1) 
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typical of bound (4, 5) and free (2, 3, 4, 5) B-Ph moieties[4] in addition to bands typically seen in 

alkaline earth pyrazolate compounds.[21,22] 

For compounds 2 and 3, 13C-NMR and integration of 1H-NMR and spectra confirmed the 

stoichiometry of diethylether (Et2O) and tetrahydrofuran (THF) as indicated by crystallographic 

analysis; while compounds 4 and 5, showed corresponding coordinated THF resonances with 

weak Et2O resonances present due to the crystals not having been fully dried prior to analysis. 

1H-NMR analysis of compounds 4 and 5 in C6D6 revealed singular –Ph environments, making it 

difficult to differentiate between free and bound BAr4
- (Ar = (3,5-Me2)C6H3) as observed 

previously.[1] Similar to tetraarylborate coordination to other d0 metals, (see [Zr(CH2Ph)3(η6-

Ph)BPh3];[23] [Yb(thf)(tBu2pz)( η6-Ph2)BPh2];[4] [Ae(thf)n(BPh4)x][1,3,6]) the o-H(Ph) resonance in 

compound 4 (δ(C6D6) = 7.93 ppm) is shifted to a higher frequency compared to [Sr(thf)7][BPh4] 

(δ(C6D6/[D8]THF) = 7.23 ppm) where the tetraarylborate is uncoordinated. Curiously, the same 

trend is observed in 3 (δ(C6D6) = 7.85ppm) compared to [Ca(thf)6][BPh4] (δ(C6D6/[D8]THF) = 

7.27 ppm) even though the tetraarylborate is uncoordinated. These findings may suggest that aryl 

coordination via tetraarylborates is not maintained in solution, as the NMR solvent, C6D6 

provides a similar coordination environment with the deuterated benzene molecules present in 

large quantities, and thus providing an advantageous equilibrium situation. 

Consistent with alkaline earth metal pyrazolates,[17] H-tBu and H-pz resonances shift to 

higher frequencies with increasing metal size, and confirming the anionic state of the ligand, 

display the absence of the N-H signal.11B-NMR analysis in C6D6 revealed a singular boron 

signal (δ(C6D6) = 2: -6.31; 3: -5.55; 4: -5.28; 5: -5.18 ppm) which shifted significantly compared 

to the reactant HNEt3B((3,5-Me2)C6H3)4 (δ(CD3CN) = -6.88 ppm), even for compounds 2 and 3 

where the borate was uncoordinated.  
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3.3 Results and Discussion: Towards Heteroleptic Tetraarylborate Phenylpyrazolates 

3.3.1 Synthetic Chemistry 

 In other ligand systems, such as 2,6-diphenylphenole, [24–26] increasing the extent of 

aromaticity in the ligand allowed for the synthesis of a a variety of novel compounds with a wide 

variety of M-ligand π coordination patterns. Following this trend, transamination reactions in 

Carius tubes as described above were attempted using the 3,5-diphenylpyrazole ligand with the 

expectation that the added aromaticity of the pyrazolate phenyl groups would further increase 

opportunity for M-ligand π interactions. Similar to the reactions involving tBu2pzH, colorless 

crystals formed on the tube walls for all reactions. In the case of calcium, strontium, and barium, 

the product on the tube walls was microcrystalline and unsuitable for X-ray diffraction, requiring 

further purification and recrystallization. In the case of magnesium, the large crystals were 

identified as compound 6, a novel homoleptic pyrazolate dimer. A proposed reaction scheme is 

displayed in scheme 3.2. 

 

2Mg[N(SiMe3)2]2(thf)2 + 6Ph2pzH  [Mg(Ph2pz)2(Ph2pzH)]2 + 4HN(SiMe3)2 +H2 
 

Scheme 3.2 Proposed reaction for the formation of compound 6. 

 

3.3.2 Structural Aspects of Compound 6 

Compound 6 was characterized using single crystal X-ray crystallography. Table 3.5 

summarizes pertinent details in regards to crystal data, data collection and structure refinement. 

A computer generated illustration of compound 6 shown in Figure 3.5 and geometrical 

parameters of the compound are summarized in Table 3.6.  Compound 6  was also analyzed with 



CHAPTER 3: Heteroleptic Alkaline Earth Tetraarylborate Pyrazolates 50 
 

 

 

1H, 13C and 11B nuclear magnetic resonance spectroscopy (NMR) in addition to infrared (IR) 

spectroscopy. Pertinent data is listed in the experimental section (Chapter 4). 

 Compound 6 crystallizes in the triclinic space group P-1. The asymmetric unit consists of 

one magnesium with two surrounding pyrazolate anions and one neutral pyrazole donor. There is 

an inversion center present in the molecule, which generates the second half of the dimer, as such 

the unit cell contains one full dimer compound. 

 

Table 3.5 Crystallographic data* for compound 6. 
Compound 6 
Emperical Formula C90H68Mg2N12 
Formula Weight 1366.18 
a (Å) 10.8434(5) 
b (Å) 11.6233(5) 
c (Å) 15.5051(7) 
𝛼𝛼 (∘) 97.594(2) 
𝛽𝛽 (∘) 96.595(2) 
𝛾𝛾 (∘) 111.414(2) 
V (Å³) 1774.95(14) 
Z 1 
Crystal System Triclinic 
Space Group P-1 
𝜌𝜌calc (Mg/m³) 1.278 
𝜇𝜇 (mm-1) 0.757 
T (K) 95(2) 
2𝜃𝜃 range 4.777-70.002 
Independent Reflections 6379 
Number of Parameters 473 
R1/wR2 (all data) 0.0398/0.0931 
R1/wR2 (>2𝜎𝜎) 0.0344/0.0892 

*Mo Kα(λ=0.71073Å), Cu Kα(λ=1.54178, R1= Σ/ |Fo|- |Fc|/|Σ|Fd; wR2 = [Σw(Fo
2-F2

2)2/Σw(Fo
2)2]1/2 

 

3.3.2.1 Structural Characterization of Compound 6 

 In compound 6, each magnesium is formally five coordinated with a η1 pyrazole and η2 
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pyrazolate coordinated to each metal center in addition to two endobidentate, bridging µ-η1:η1 

pyrazolates (Figure 3.5). Considering the center of the η2 bonding pyrazolate as a monodentate 

ligand N* (as justified through the narrow N-Mg-N bite angle), each metal center displays a 

highly distorted tetrahedral structure.  The η2 pyrazolate is tilted towards the η1 pyrazole (N*-

Mg(1)-N(61) = 98.00o) and away from the bridging pyrazolates (N*-Mg(1)-N =107.60o - 

122.45o). The large phenyl groups are orientated to decrease the amount of steric interaction, 

with the angle between planes defined by the pyrazolate and phenyl rings ranging from 19.00 o to 

61.29o. 

 

 

Figure 3.5 Structure of compound 6 [Mg(Ph2pz)(Ph2pzH)]2. Hydrogen atoms, except the one on 
the pyrazole ligand are omitted for clarity. 
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The slightly decreased bulk of the phenyl substituents on the pyrazolate, as compared to 

the –tBu substituents allows for two pyrazolates and one pyrazole to bind to each metal center as 

opposed to two pyrazolates as observed previously in the dimeric [Mg(tBu2pz)2]2.[12] Within the 

η1 bound pyrazole, the nonbonding Mg-N distance is 0.527 Å longer than the longest bonding 

M-N distance in 6. This value is outside of the van der Waals ranges of both magnesium and 

nitrogen, confirming that the binding mode of the pyrazole is η1. Similar combinations of 

pyrazolate and pyrazole coordination have been previously observed in alkaline earth 3,5-

dimethylpyrazolates[27] and the lithium dimer [Li(tBu2pzH)(tBu2pz)]2.[28] 

Table 3.6 Selected bond distances (Å) and angles (o) of compound 6. N* denotes the center of 
the N(31)-N(41) bond in the η2-coordinated pyrazolate. 
Selected Bond Distances (Å)   Selected Bond Distances (Å)   

Mg(1)-N(31)  2.0494(12) N(31)-N(41)  1.3778(16) 
Mg(1)-N(11)  2.0760(11) N(51)-N(61)  1.3590(15) 

Mg(1)-N(21)#1[a]  2.0905(11) N(11)-N(21)  1.3855(14) 
Mg(1)-N(61)  2.1369(11) N*-Mg(1) 2.162 
Mg(1)-N(41)  2.4698(12)   
Mg(1)-N(51) 2.937(1)[b] 

  
Selected Bond Angles (o)    

N(31)-Mg(1)-N(11) 112.49(5) N*-Mg(1)-N(11) 107.60 
N(31)-Mg(1)-N(21)#1 104.87(5) N(21)#1-Mg(1)-N(61) 106.27(4) 
N(11)-Mg(1)-N(21)#1 110.04(4) N(31)-Mg(1)-N(41) 33.91(4) 
N(31)-Mg(1)-N(61) 110.93(5) N(11)-Mg(1)-N(41) 102.24(4) 
N(11)-Mg(1)-N(61) 111.82(4) N(21)#1-Mg(1)-N(41) 136.59(4) 

N*-Mg(1)-N(21) 122.45 N(61)-Mg(1)-N(41) 86.97(4) 
N*-Mg(1)-N(61) 98.00 pz-Ph[c] 19.00-61.29 

[a] Symmetry transformations used to generate equivalent atoms #1:-x+1,-y+1,-z+1  
[b] Considered as nonbonding 
[c] pz-Ph denotes angles between planes defined by the pyrazolate and Ph rings. 
 

 

Table 3.7 compares structural features of compound 6 to related alkaline earth 

pyrazolates. To date, there are only a handful of magnesium compounds involving the Ph2pzH 

ligand. In fact, a literature search for magnesium compounds involving the Ph2pzH ligand only 
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afforded [Mg2(Ph2pz)Br2(thf)3]·2THF.[11] Alkaline earth tert-butylpyrazolate oligomers have 

been synthesized, with the magnesium,[12] calcium,[21] strontium[21] and barium[21] species as 

dimer (Mg), trimer (Ca), tetramer (Sr), and a hexamer (Ba) -- compound 6 agrees nicely with this 

trend.  

Table 3.7 Comparison of pyrazolate geometry (bond lengths in Å and angles in °) in compound 
6 and related alkaline earth pyrazolates. 

Compound M-N ∆M-N (η2) N-M-N (η2) 
6 2.049(1) – 2.470(1) 0.421 33.91(5) 

[Mg2(Ph2pz)Br2(thf)3]·2THF[11] 2.098(2) – 2.108(2) - - 
[Mg(tBu2pz)2]2

[12] 1.987(4) – 2.690(4) 0.06 40.47(11) 
[Ca3(tBu2pz)6][21] 2.303(3) – 2.583(3) 0.003 – 0.015 31.3(1) – 35.0(1) 
[Sr4(tBu2pz)8][21] 2.485(5) – 2.779(6) 0.003 – 0.101 28.4(3) – 32.7(2) 

[Ba6(tBu2pz)12][21] 2.610(7)-2.96(1) 0.003 – 0.069 27.3(4) – 30.8(3) 
 

 As expected, the smaller size of magnesium lends to shorter M-N bond lengths compared 

to the heavier congeners. The M-N bond lengths agree well with the other magnesium 

pyrazolates and the bite angle (N-M-N) is larger than [Mg(tBu2pz)2]2,[12] but is comparable to the 

calcium trimer,[21] with the bite angle decreasing in size with increasing metal size. 

 The M-N bonding for the η2 pyrazolate is asymmetric (∆M-N = 0.421 Å). This “slipped” 

binding, most likely a result of steric interactions between the phenyl rings.  

 

3.4 Conclusions and Future Work 

In summary, compounds 2 – 5 highlight a novel class of tetraphenylborate:pyrazolate 

coordinating alkaline earth metal compounds. Compounds 2 and 3 do not exhibit M-π 

interactions between the metal center and the [BAr4]- (Ar = (3,5-Me2)C6H3) ion, in contrast to 

compounds 4 and 5. The larger metal diameters of Sr and Ba in the latter cases allow the 

tetraarylborate to approach the metal center for secondary interactions and coordinate 

preferentially over solvation. Additionally, in the case of 4 and 5, the addition of the bulky tert-
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butyl pyrazolate limits the coordination of the tetraarylborate, allowing it to coordinate in a bis-

arene fashion as observed in previous rare earth metal compounds.[4] This suggests that this may 

be an effective method to control the coordination of the tetraarylborate ligand. Synthesis of 

compounds with differing substitution patterns on both the pyrazolate and tetraarylborate could 

provide further insights on how to tune the tetraarylborate coordination. 

 The isolation of 6 is exciting as it agrees with previous results in the formation of alkaline 

earth metal and rare earth metal pyrazolates via transamination reactions.[27] This may provide a 

promising synthetic pathway for heavy alkali metal pyrazolate compounds, yet the requirement 

of synthesizing the air-sensitive alkali metal amide is unfavorable, which is why other synthetic 

schemes such as direct metallation have been explored previously.[21,24,29] 
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 CHAPTER 4: 

Experimental 

4.1 General Information 

 All compounds described within are extremely air and water sensitive and were 

manipulated under an inert gas atmosphere or purified argon utilizing standard Schlenk line and 

glove box techniques.[1] All solvents were obtained commercially and tetrahydrofuran (THF), 

diethyl ether, and toluene were purified with a Vac-Atmosphere® solvent system and degassed 

using three freeze-pump-thaw cycles prior to use. 1,1,1,3,3,3-hexamethyldisilazane (H-HMDS) 

was obtained commercially and refluxed over CaH2 overnight prior to vacuum distillation.  The 

alkali and alkaline earth metals were obtained commercially at high purity +99.9% (Magnesium 

and calcium turnings or distilled ingots; potassium, strontium, and barium pieces under oil; 

rubidium and cesium in sealed ampules). Alkaline earth metal amides, [Ae(N(SiMe3)2)(thf)2] (Ae 

= Mg, Ca, Sr, Ba), were synthesized by literature procedures.[2] Pyrazoles were synthesized by a 

modified literature procedure by refluxing the corresponding diketone (Strem) with hydrazine 

monohydrate (Strem) in ethanol for 24 hours, recrystallized from acetone/hexane, and dried 

under vacuum for ≥24 hours.[3,4] Tetraarylborates were synthesized according to literature 

procedures[5] and dried at 80oC under vacuum for three and a half days. 

 IR data (4000-650 cm-1) were measured using Nujol or mineral oil mulls between KBr 

plates using a Perkin Elmer 1600 or Perkin Elmer Paragon FTIR spectrometer. NMR spectra 1H-, 

13C-, and 11B-NMR spectra were recorded using a Bruker DPX-400 spectrometer.  1H- and 13C- 

spectra were referenced using residual solvent peaks[6] and 11B- was referenced to BF3•Et2O (0.0 

ppm). NMR solvents were obtained commercially in bottles under inert gas ([D6]benzene) or 

sealed ampules ([D8]THF, [D8]toluene). Melting points were obtained in sealed glass ampules 
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(under inert gas). X-ray quality crystals were removed from the Carius tube in the glove box and 

immediately covered with viscous hydrocarbon oil.  X-ray data was collected below 100 K on a 

Bruker Kappa APEX series II Duo with a four-circled goniometer with an apex II CCD detector. 

Monochromatic Mo radiation (0.71073 Å) and Cu radiation (1.54 Å) were used for data 

collection. Further data collection, structure solving and refinement details have been reported 

previously.[7,8] 

4.1.1 Carius Tube Pressure 

 WARNING: Carius tube contents are under high pressure and measures must be 

taken to prevent tube bursting and potential injury. Tubes must be transported in metal 

sleeves and reactions must be heated behind a blast shield. 

Alkaline Earth Tetraarylborate Pyrazolates: Working pressure inside sealed Carius 

tubes should never exceed 10 bar to avoid the risk of the tube bursting.  Using the ideal gas law 

(PV=nRT),[9] it was determined that 3.75 mL of Et2O at 60 oC would produce pressures in excess 

of 10 bar and 0.38 mL of Et2O would need to vaporize to create 10 bar of pressure. This 

calculation assumes that all of the Et2O evaporates and that the vapor acts ideally. Reactions 

were carefully monitored and the volume of liquid did not change appreciably during the course 

of the reaction.  

Alkali Pyrazolates: Hydrogen gas is released as a product of reaction between the alkali 

metal and the pyrazolate. The tubes must always be heated in metal sleeves to prevent injury. 

Small reaction scales were used to ensure that the pressure was kept below safe operating levels.  

4.2 General Procedure for Alkali Pyrazolates 

 In the glove box, a Carius tube was charged with cut pieces of alkali metal, R2pzH (R = 

tBu, Me, Ph), and one drop of mercury. The tubes were sealed under vacuum (≤30 mtorr) and 
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heated between 180-300oC in a tube furnace until the reaction appeared to be complete. X-ray 

quality crystals were handpicked from the tube walls.  

4.2.1 Specific Synthesis  

[K(Me2pz)]n (1): 

 Fortuitous synthesis: Sr pieces (0.26g / 2.97 mmol), K pieces (0.04g / 1.02 mmol), 

1,3,5-tri-tert-butylbenzene (1.01g / 4.09 mmol), and Me2pzH (0.47g / 2.97 mmol) were heated to 

175oC for 13 days. Colorless blocks formed at the top of the tube and were identified as 1. 

 Deliberate Synthesis: K pieces (0.225 g / 5.75 mmol), Me2pzH (0.351 g / 3.645 mmol), 

and 1 drop of Hg were heated to 275 oC for 3 days. The white powder left in the tube was 

identified as 1. Yield: 0.36 g (73.6 %). IR (nujol):  = 3096.70 (w), 2721.22 (w), 1053.57 (m), 

1458.49 (s), 1376.32 (s), 1306.59 (m), 1027.50 (m), 1007.42 (m), 936.03 (w), 758.89 (m), 

728.50 (m) cm-1. 1H-NMR (400 MHz, [D8]THF): δ(ppm) = 5.474 (s, 1H, H-4 (pz), 2.158 (s, 6H, 

H-Me (pz)). 13C-NMR (400 MHz, [D8]THF): δ(ppm) = 147.27 (s, Me-C(Me2pz)), 101.56 (s, C-4 

(pz)), 14.34 (s, H3C (Me2pz)). 

4.3 General Procedure for Alkaline Earth Tetraarylborate Pyrazolates 

  In the glove box, equimolar amounts of [Ae(N(SiMe3)2(thf)2] (Ae = Ca, Sr, Ba), 

HNEt3B((3,5-Me2)C6H3)4  and R2pzH (R = tBu, Ph) were placed in a Carius tube with 3.75 mL 

of Et2O. The tube was sealed under vacuum (≤30 mtorr) and heated in an oil bath to 35oC. 

Colorless crystals formed after two hours and the tubes were left to heat for three days to ensure 

complete reaction. 
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4.3.1 Specific Synthesis 

 [Mg(thf)3(Et2O)(tBu2pz)][(B((3,5-Me2)C6H3)4)] (2): 

[Mg(N(SiMe3)2(thf)2] (0.024g / 0.05 mmol), HNEt3B((3,5-Me2)C6H3)4 (0.027g / 0.05 mmol), 

and tBu2pzH (0.009g / 0.05 mmol). Colorless blocks formed on the tube walls during heating. 

Yield: 0.005g (6.5%). 1H-NMR (400 MHz, [D6]benzene): δ(ppm) =7.521 (s, 5H, unresolved), 

7.354 (s, 8H, o-H (C6H3)), 7.027 (s, 4H, p-H (C6H3)), 6.958 (s, 8H, unresolved), 3.528 (br m, 

14H, CH2 (thf)), 3.263 (q, 4H, CH2O (et2o)), 2.176 (s, 24H, H (3,5-Me2)), 1.359 (br s, overlap 

with an impurity in C6D6 made for unreliable integration, H-tBu (pz)), 1.117 (t, 8H, CH3(et2o)), 

0.918 (t, overlap with an impurity in C6D6 made for unreliable integration, CH2 (thf)). H-4(pz) 

unresolved. 13C-NMR (400 MHz, [D6]benzene): δ(ppm) = 137.10 (C-4 (pz)), 68.16 (CH2O (thf)), 

26.15 (CH2 (thf)), 21.73 (C (3,5-Me2)), Several C6H3, pyrazolate and diethylether signals could 

not be resolved from background noise. 11B-NMR (400 MHz, [D6]benzene): δ(ppm) = -5.55. 

 

[Ca(thf)2(Et2O)2(tBu2pz)][(B((3,5-Me2)C6H3)4)] (3): 

[Ca(N(SiMe3)2(thf)2] (0.025g / 0.05 mmol), HNEt3B((3,5-Me2)C6H3)4 (0.027g / 0.05 mmol), and 

tBu2pzH (0.009g / 0.05 mmol). Colorless blocks formed on the tube walls during heating. Yield: 

0.005g (10.6%). M.p. 74-96 oC (decomposed, tan), >140 oC (dark red). IR (nujol):  = 3158.92 

(w), 2720.53 (m), 1574.29 (s), 1504.32 (m), 1376.42 (s), 1317.68 (w), 1251.64 (w), 1225.16 (w), 

1149.65 (s), 1093.43 (m), 1051.03 (s), 1028.98 (m), 938.07 (w), 905.13 (m), 840.26 (s), 793.37 

(s), 736.75 (s), 721.61 (m) cm-1. 1H-NMR (400 MHz, [D6]benzene): δ(ppm) = 7.849 (s, 8H, o-H 

(C6H3)), 6.701 (s, 4H, p-H (C6H3)), 6.031 (s, 1H, H-4 (pz)), 3.261 (q, 8H, CH2 (et2o)), 3.185 (m, 

8H, CH2O (thf)), 2.130 (s, 24H, H (3,5-Me2)), 1.247 (s, 18H, H-tBu (pz)), 1.171 (m, 8H, CH2 

(thf)), 1.112 (t, 12H, CH3 (et2o)). 13C-NMR (400 MHz, [D6]benzene): δ(ppm) = 138.37 (C-4 
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(pz)), 133.72 (o-C (C6H3)), 126.97 (p-C (C6H3)), 68.80(CH2O (thf)), 66.25 (CH2O (et2o)), 32.25 

(C(CH3)3 (tBu2pz)), 31.80 (C(CH3)3 (tBu2pz)), 25.74 (CH2 (thf)), 22.29 (C (3,5-Me2)), 15.91 

(CH3 (et2o)). 11B-NMR (400 MHz, [D6]benzene): δ(ppm) = -5.55.  

 

[Sr(thf)2(tBu2pz)(B((3,5-Me2)C6H3)4)] (4): 

[Sr(N(SiMe3)2(thf)2] (0.027g / 0.05 mmol), HNEt3B((3,5-Me2)C6H3)4 (0.027g / 0.05 mmol), and 

tBu2pzH (0.009g / 0.05 mmol). Colorless blocks formed on the tube walls during heating. Yield: 

0.005g (16%). M.p. 121-129 oC (decomposed, yellow), >150 oC (dark brown). IR (nujol):  = 

3106.93 (w), 2722.42 (w), 1736.75 (w), 1582.25 (m), 1566.67 (w), 1402.70 (w), 1354.74 (s), 

1294.89 (m), 1245.62 (m), 1152.64 (s), 1029.61 (s), 993.20 (m) 873.49 (m), 849.18 (s), 

784.60(s), 745.12 (s), 727.18 (s), 660.40 (w) cm-1. 1H-NMR (400MHz, [D6]benzene): δ(ppm) = 

7.934 (s, 8H, o-H (C6H3)), 6.783 (s, 4H, p-H (C6H3), 6.055 (s, 1H, H-4 (pz)), 3.284 - 3.232 (br q, 

residual Et2O), 3.111 (m, 8H, CH2O (thf)), 2.177 (s, 24H (3,5-Me2)), 1.295 (s, 18H H-tBu (pz)), 

1.163 – 1.092 (br, m, CH2 (thf), residual Et2O). Overlap of residual Et2O and THF signals 𝛿𝛿 = 

1.16 – 1.09 made for unreliable integration. 13C-NMR (400MHz, [D6]benzene): δ(ppm) =138.15 

(C-4 (pz)), 133.85 (o-C (C6H3)), 126.26 (p-C (C6H3)), 68.40 (CH2O (thf)), 32.10 (C(CH3)3 

(tBu2pz)), 31.67 (C(CH3)3 (tBu2pz)), 25.93 (CH2 (thf)), 22.27 (C (3,5-Me2)). Et2O resonances are 

due to residual solvent that had not evaporated before the sample was taken. 11B-NMR 

(400MHz, [D6]benzene): δ(ppm) = -5.28.  
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[Ba(thf)2(tBu2pz)(B((3,5-Me2)C6H3)4)] (5): 

[Ba(N(SiMe3)2(thf)2] (0.03g / 0.05 mmol), HNEt3B((3,5-Me2)C6H3)4 (0.027g / 0.05 mmol), and 

tBu2pzH (0.009g / 0.05 mmol). Colorless blocks formed on the tube walls during heating. Yield: 

0.01g (22%). M.p. >137 oC (decomposed, opaque yellow).  

IR (nujol):  = 3103.95 (w), 2723.11 (w), 1581.44 (w), 1376.82 (s), 1245.86 (m), 1222.99 (w), 

1151.49 (m), 1033.58 (m), 993.36 (w), 877.49 (m), 782.16 (m), 742.98 (s), 742.97 (s) cm-1. 1H-

NMR (400MHz, [D6]benzene): δ(ppm) = 7.932 (s, 8H, o-H (C6H3)), 6.746 (s, 4H, p-H (C6H3)), 

6.116 (s, 1H, H-4 (pz)), 3.240 (q, 2H, residual Et2O), 3.005 (br m 8H, CH2O (thf)), 2.181 (s, 24H 

(3,5-Me2)), 2.054 (br t, 3H, residual Et2O), 1.320 (s, 18H, H-tBu (pz)), 1.089 (m, 8H, CH2 (thf)). 

Et2O resonances at 𝛿𝛿 = 3.240, 2.054 are due to residual solvent that had not evaporated before 

the sample was taken. 13C-NMR (400MHz, [D6]benzene): δ(ppm) = 138.15 (C-4 (pz)), 134.61 

(o-C (C6H3)), 126.32 (p-C (C6H3)), 68.42 (CH2O (thf)), 66.24 (residual Et2O), 32.30 (C(CH3)3 

(tBu2pz)), 31.95 (C(CH3)3 (tBu2pz)), 25.73 (CH2 (thf)), 22.22 (C (3,5-Me2)), 15.89 (Residual 

Et2O). Et2O resonances at 𝛿𝛿 = 66.25, 15.88 are due to residual solvent that had not evaporated 

before the sample was taken. 11B-NMR (400MHz, [D6]benzene): δ(ppm) =-5.18. 

 

[Mg(Ph2pz)(Ph2pzH)]2 (6) 

[Mg(N(SiMe3)2(thf)2] (0.03g / 0.05 mmol), HNEt3B((3,5-Me2)C6H3)4 (0.027g / 0.05 mmol), and 

Ph2pzH (0.011g / 0.05 mmol). Colorless blocks formed on tube wall during heating. Yield: 0.005 

g (7.32%). IR (nujol):  = 1459.65 (s), 1375.51 (s), 1272.11(w), 1092.89 (w), 1070.07 (w), 

983.32 (w), 912.27 (w), 757.91 (m), 689.83 (m) cm-1. 1H-NMR (400MHz, [D6]benzene): δ(ppm) 

= 7.612 (d, 24 H, o-H (C6H5(Ph2pz)), 7.103 (t, 24H, m-H (C6H5(Ph2pz)), 6.985 (t, 12H, p-H 

(Ph)), 6.459 (s, 6H, H-4(pz)). 13C-NMR (400MHz, [D6]benzene): δ(ppm) = 158.03 (s, ... ), 
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152.91 (br s, C(pz)-Ph), 133.90 (s, ipso-C(Ph)), 133.32 (s, ipso-C(Ph2pzH)), 129.37 (d, o-C(Ph)), 

127.37 (s, p-C(Ph)), 126.74 (s, m-C(Ph)), 103.92 (s, C4(pzH)), 102.28 (s, C4(pz)). 11B-NMR: No 

peaks.  
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