
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

Spring 5-5-2016

A Graph-based Bandit Algorithm for Maximum User Coverage in A Graph-based Bandit Algorithm for Maximum User Coverage in

Online Recommendation Systems Online Recommendation Systems

Mahmuda Rahman
Syracuse University, mrahma01@syr.edu

Jae C. Oh
Syracuse University, jcoh@ecs.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Rahman, Mahmuda and Oh, Jae C., "A Graph-based Bandit Algorithm for Maximum User Coverage in
Online Recommendation Systems" (2016). Electrical Engineering and Computer Science. 249.
https://surface.syr.edu/eecs/249

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215706573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/249?utm_source=surface.syr.edu%2Feecs%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

my journal manuscript No.
(will be inserted by the editor)

A Graph-based Bandit Algorithm for Maximum

User Coverage in Online Recommendation Systems

Mahmuda Rahman · Jae C. Oh

Received: date / Accepted: date

Abstract We study a type of recommendation systems problem, in which the
system must be able to cover as many users’ tastes as possible while users’
tastes change over time. This problem can be viewed as a variation of the
maximum coverage problem, where the number of sets and elements within
any sets can change dynamically. When the number of distinctive elements is
large, an exhaustive search for even a fixed number of elements is known to be
computationally expensive. Many known algorithms tend to have exponential
growth in complexity. We propose a novel graph based UCB1 algorithm that
effectively minimizes the number of elements to consider, thereby reducing
the search space greatly. The algorithm utilizes a new rewarding scheme to
choose items that satisfy more user types as it construct a relational graph
between items to choose. Experiments show that the new algorithm performs
better than existing techniques such as Ranked Bandits [17] and Independent
Bandits [12] in terms of satisfying diverse types of users while minimizing
computational complexity.

Keywords Recommendation System, Online Learning, Diversity, Multi
Armed Bandit, Upper Confidence Bound, Directed Graph

Mahmuda Rahman
CST4-288, DMA Lab, EECS, Syracuse University
E-mail: mrahma01@syr.edu

Jae C. Oh
Director, DMA Lab, EECS, Syracuse University
E-mail: jcoh@syr.edu

2 Mahmuda Rahman, Jae C. Oh

1 Introduction

Recommendation systems in recent era not only need to address the huge
amount of users to satisfy but also their rapidly changing patterns of prefer-
ences. With such a fast and continuous shift of users’ preferences, a recommen-
dation system needs to learn quickly from the patterns of choices in previous
users to suggest items to the new user. As diverse tastes of the incoming users
induces a fast turn over time for the desirability of items, online recommenda-
tion systems get little prior knowledge about the distribution of the preference
on items among the user population. Moreover, most recommendation systems
need to pick a limited number of items to recommend to a user, yet they are
still required to satisfy the user with at least one of these recommended items.
Our graph-based online learning algorithm tries to produce a substantially
small but a diverse recommendation set from a large number of items, at the
same time satisfying many different user types. In this paper we define a user
by his or her choice of items, therefore, users having the same preference over
items are considered to be the same user type.

The graph-based algorithm can discover correlations among the items so
that related items can be represented by one among the items. In other words,
if a recommendation system (with a fixed small number of items to recom-
mend) could pick only one from a group of related items, it would be able to
satisfy all users of that user type. This method effectively reduces the number
of items to be considered thereby reducing computational complexity of the
problem. Consequently, the new algorithm can satisfy more diverse user types.
Because we need to address dynamically changing user preferences over time,
the correlation graph also changes as data stream in. Therefore, an effective
and efficient way to update the correlation graph must be designed. We present
an algorithm to address this problem as well.

Now we list some of the challenges which made our problem interesting.
Then we state our contributions to overcome those challenges. The challenges
are:

– The problem of choosing the optimal set of recommended items for a given
user population is an NP hard problem [9] even if all the user vectors are
given offline. This problem is equivalent to the maximum coverage problem
[5].

– There is a greedy optimal solution to this problem [10] that can be known
given the entire user vector offline. But to identify that optimal set, each
k-subset of all n items needs to be tried as a potential candidate, so there
are exponentially many options for the trials [17].

– When a new user data streams in, the system must make a decision on
whether to categorize the new user to an existing user type or create a
new user type, if the input data is significantly different from any exist-
ing user types. In fact, this problem is common to all machine learning
classification and clustering problem. It is also known as the open-set clas-
sification/identification problem [3, 15].

Title Suppressed Due to Excessive Length 3

User abandonments [6] in recommendation system is that the system gives
up in satisfying certain user types. For example, if a user type is quite unique
and the population within the type is small, it may be better to ignore the
user type to accommodate user types with a larger population. However, a
good recommendation system must minimize user abandonments. Our method
minimizes the user abandonment while maximizing the payoff of the system.
Some contributions and results are:

– developing a graph based mechanism for recommendation systems where
the system learns the dependency structure among the items though a
novel rewarding scheme.

– verifiing the efficacy of our method for choosing a very small number of
items to recommend from real data sets where there are hundreds of users,
each having thousands of choices to pick from.

On average, our proposed mechanism outperforms existing recommenda-
tion techniques in terms of covering different user types while keeping the
computational complexity low.

This paper is organized in the following way: in Section 2 we discuss the
online learning problem for recommendation system formally. In Section 3
we cite some of the related works. Section 4 discusses the bandit setting for
the problem. Section 5 describes our past approach to overcome the issues
regarding bandit algorithm for online recommendation system and Section 6
illustrates the limitations of past approach. Section 7 details our proposed
graph based model to overcome the shortcomings of the past approach. We
used the works mentioned in Section 3 as baselines to compare the performance
of our past approach and graph based method in Section 9. In Section 9, we
conclude.

2 Problem Description

Most existing literature including [12] consider a recommendation system
where n items {i1, i2, i3, ...in} are given. When a user arrives, the system needs
to show her a set of k items where k << n. If she finds any one of them rele-
vant, the system gets a payoff of 1. If none of them is relevant to her interest,
then it gets a payoff of 0. [12] defined a user relevance vector as following:

Definition 1 Each user j can be represented by a {0, 1}n vector Xj where
Xj

i = 1 indicates that user j found item i relevant where i ∈ {i1, i2, i3, ...in}.
For example, Xj = {0, 1, 0, 1, 0, 0, 0, 0, 0, 1} means user j finds 2nd, 4th and
10th items relevant out of n = 10 items that are given to the recommendation
system to recommend from.

At time t, after a recommendation set for a random user is already generated,
that specific user vector is disclosed to the system and system gets its payoff.
Then the system updates the recommendation set for the next possible user
so that it maximizes its payoff and thus minimizes the abandonment rate.

4 Mahmuda Rahman, Jae C. Oh

Fig. 1 Payoff for a recommendation set according to users click response

Because plugging-in an algorithm to test its performance to a real-time
data stream would take quite a long time, all of the online recommendation
experiments are done with a huge dataset that has been collected. We choose
the method described in [12] as follows. With given such a static dataset, to
simulate an online learning problem environment of the arrival of a random
user at time t, the algorithm chooses a vector Xt independent and identically
distributed from an unknown distribution D from all user relevance vectors.
Then the recommendation system presents a set of k items St without observ-
ing Xt. We also adopted the definition of set relevance function F used by the
paper to follow the convention:

Definition 2 F (Xt, St) is a submodular set function [21] stands for the payoff
of showing St to user with relevance vector Xt. Characterization of user click
event is done by the following conditions: if Xt

i = 1 for some i ∈ St then
F (Xt, St) = 1 else F (Xt, St) = 0

According to [12], the value of displaying a set St, is the expected value
E[F (St, X)] where the expectation is taken over realization of the relevance
vector X from the distribution D. Once realized, for a fixed set S, it is denoted
as E[F (S)] (the fraction of users satisfied by at least one item in S).

Like [12], our target is to minimize abandonment, so we need to maximize
click through rate [11], which is:

maximize E[F (S)]

subject to |S| ≤ k

Title Suppressed Due to Excessive Length 5

3 Related Work

In the existing work, two different approaches has been found to build a recom-
mendation system by using UCB1 bandits. We discuss their advantages and
disadvantages in this section. The Ranked Bandit Algorithm (RBA) [17] used
each item in the recommendation set to satisfy a different type of user and
hence came up with a consensual set based on diverse users. It used strong
similarity measures (dependency) between items and takes into account only
the first item selected by an user from the recommendation set to represent
the group of similar type of user. But as their algorithm strives to produce an
ordered set, the learning is slow. It specifically holds ith bandit responsible for
ith item in the recommendation set. But performance of ith bandit is actually
dependent on picking the appropriate item (in proper order) by on all other
bandits preceding i. As a consequence of this cascading effect, the learning for
ith item cannot really start before Ω(ni−1) time steps [12]. According to their
setting, the probability of user x ∈ X selecting the ith item from the recom-
mendation set is denoted as pi which is conditional on the fact that the user
did not select any of the items in that set presented in any earlier positions.
Formally, pi = Pr(xi = 1|xi−1 = 0) for all i ∈ k where the binary value {0, 1}
of xi denotes the probability of selecting the item i by the user x

On its attempt to maximize the marginal gain of ith bandit, where each
bandit is a random binary variable, RBA forms a Markov chain where the
later bandits have to wait for an earlier one to converge. To speed up the
process, Independent Bandit Algorithm (IBA) [12] assumed independence be-
tween items and used Probability Ranking Principle (PRP) [19] as a greedy
method to select items to recommend. PRP give equal credit to all the item
a user select within the recommendation set and each bandit responsible for
selecting an item of that user’s choice gets a reward of 1. The overall payoff
for the recommendation set is 1 even more than one items are selected by that
user. But this solution is sub-optimal in minimizing abandonment because di-
verse users are likely to be a part of the minority, which might not be covered
by the top-k items PRP selects. So it often fails to capture diversity.

We used both RBA and IBA as our baselines in the experiment to compare
with our past approach which we call non graph based method and compared
our graph based approach with our past approach. Throughout this paper we
use the term ‘our past approach’ and ‘Non Graph Based method’ interchange-
ably.

Apart form these, most recent graph based recommendation system has
been proposed by [13] where they used the concept of entropy and the linked
items in the graph on their attempt to find recommendations that are both
novel and relevant. Nevertheless, they admit that their proposed system does
come with its weaknesses. The variance in the relevance of recommendations
is high due to the use of items with high entropy as novel items. Unlike a
defined trade off between exploration and exploitation of items, there exists a
degree of unexpectedness with irrelevant recommendations in their approach
that rise from the randomness and risk-taking by their entropy based method.

6 Mahmuda Rahman, Jae C. Oh

Also, it is difficult to explain specifically why the recommendations were given
aside from providing related items from the user profile. So their approach is
offline approach as they need the entire user vector to search for the items to
recommend. Also, they were not concerned with the issue of user coverage.

4 The Baseline Algorithms Used

The underlining approach we are taking is Multi-Armed Bandit Algorithms
[22]. The Multi-Armed Bandit (MAB) problem is the problem a gambler faces
given a slot machines with multiple levers (arm), deciding which arm to play,
how many times to play a specific arm and the order to play them with an
objective that the decision will maximize the sum of rewards earned through
a sequence of arms played. Playing each arm provides a random reward from
a distribution specific to that arm, which is unknown to the gambler.

For an online recommendation system, at each time t, from n available
items (arms), k items needs to be picked by the algorithm. So k instances
of multi armed bandits are instantiated, each having n arms to select from.
Once an item has been selected to place at j slots by the jth bandit, that item
will be unavailable from the rest of the bandits j, j + 1...kth bandits. Thus
a set of k non-identical elements is constructed. A random user’s choice is
compared with this recommended set and accordingly reward is fed back to
the associated bandits.

The most popular stochastic bandit algorithm, UCB1 [2] has been used as
our baseline where each slot of k-element set runs UCB1 to pick an item i

from n available options which maximizes xi +
√

2 log(f)
fi

where xi denotes the

current average reward of the item i and fi denotes the number of times item
i has been picked so far in total t rounds. Here f denotes the total count of all
items picked so far as f = Σt

i=1(fi). It is not difficult to observe that confidence
bound grows with the total number of options we have chosen but shrinks with
the number of times we have tried a particular option. This ensures each action
is tried infinitely often but still balances exploration and exploitation.

This is called Upper Confidence Bound (UCB1) [2] because this value can
be interpreted as the upper bound of a confidence interval, so that the true
average reward of each item i is below this upper confidence bound with high
probability. If we have tried an item less often, our estimated reward is less
accurate so the confidence interval is larger. It shrinks as we recommend that
item more often.

Suppose, there is only one item to select from two: i, j ∈ A and both of
them have achieved same average reward (xi and xj are the same) after some
random number of trials. Now, if arm i has been tried more often than arm

j, then fi > fj with same f as a numerator. Then
√

2 log(f)
fi

<
√

2 log(f)
fj

. So

confidence bound shrinks for i more than j. Again, this bound grows if f gets
higher.

Title Suppressed Due to Excessive Length 7

Provided that a UCB1 algorithm have tried enough of each items to be rea-
sonably confident, it rules out the chance that a selected item would be sub-
optimal or inferior in terms of achieving reward. While we would like to include
this apparently superior arm (item), we have to make sure that the other arms
(items) are sampled enough to be reasonably confident that they are indeed
inferior. UCB1 does that for us, but unfortunately UCB1 assumes all n items
are independent. However, in many applications items are not independent.
For example, if a customer likes a certain grocery item, she may also like other
related items. Our algorithm also addresses the dependencies among items.
In fact, our algorithm leverages the dependencies to maximize the coverage of
user preferences.

5 Our Past Approach

Algorithm 1 shows our past approach we used [18]. According to this method,
we initialize k number of bandits UCB11(n), ...UCB1k(n) to construct a set
of k items where bandit i gets priority on selecting an item over bandit i+ 1.
Similar to [12], once an item gets selected by a preceding bandit, it becomes
unavailable to any later bandits (ref line 6 and 7 of the algorithm). After the
recommendation set St is created this way, it is compared with a random user
vector Xt picked in time t (in line 9-11). The novelty of our approach is in the
rewarding scheme for the bandits (shown in line 12,13). If the recommenda-
tion set contains more than one items preferred by the user, the first bandit
responsible for picking the preferred item get a relatively much higher reward
as Fit for that item than any other bandits who picked other items of that
user’s preference. We set that higher reward C to be equal to the accumulated
reward of all bandits who picked a preferred item for that user in that recom-
mendation set. In this way, we strengthen the average reward for the bandit
who picked the first item the user preferred. This creates a bias towards the
first item a user prefers and helps recommending users of same user type with
one preferred item; by finding one representative item for each user-type, we
can maximally utilize the recommendation vector size k. However, this ap-
proach only allows the first item to be chosen in the user preference as the
representative item for a user type. We discuss this shortcoming in the next
section.

6 Shortcomings of the Past Approach

One problem with our past approach is that the unequal rewarding scheme still
can exclude many user types with smaller populations (refer them as ‘minority
user-types.’) The basic idea behind our past approach [18] follows Probability
Ranking Principle (PRP) [19] which allows to rank items in decreasing order
of relevance probability without considering the correlations between them as
in [12]. But unlike [12], unequal rewarding for bandits on selecting an item

8 Mahmuda Rahman, Jae C. Oh

Algorithm 1 Non graph-based Approach
1: Input: n items
2: Output: k items
3: Initialize UCB11(n), ...UCB1k(n)
4: for all t ∈ T do
5: St

0
← ∅

6: for all i = 1 to k do
7: select(UCB1i, N \ St

i−1
)

8: end for
9: Pick a random user vector from the dataset
10: Display St to user for and receive feedback vector Xt

11: C =total number of items clicked by the user from St

12: Feedback:

13: Fit =

C, if Xt
i = 1 for the i ∈ St which is the first click

1, if Xt
i = 1 for any i ∈ St which is not the first click

0, otherwise.

14: update(UCB1i, Fit)
15: end for

makes the highly rewarded bandit choose a representative item covering all
other items that are correlated to it. Focus of this approach is to reduces
the chance of selecting more than one item preferred by the same user type,
thereby wasting the precious limit of total number of items to be recommended,
k. The idea is that we want to make it more effective in accommodating a
diverse user-types by representing those minority users who have at least one
of their preferred item overlapped with the majority users; but due to the PRP
principle, no bandit could ever select that overlapping item which could cover
both the user-types. This problem is illustrated with an example. Let there
be a total of 100 users in the system, each of them is represented by a user
vector of size 10 (expressing their items of choice out of 10 available items).
Let’s also assume that we can only recommend 2 items out of 10. I.e., k = 2
and n = 10. Say, there are 3 types of users:

– user-type1: prefer item1, item3, item5, item7 and item9 together
– user-type2: prefer item2, item4, item6, item8 and item10 together
– user-type3: prefer item4, item6, item8 and item10 together

UCB1 ensures that an item is recommended enough number of times to be
reasonably confident about their chance of getting rewarded. Now according
to our scheme:

– For selecting item1, bandit1 will be rewarded with at most a payoff of 2
(accumulated from items 1,3 or 1,5 or 1,7 or 1,9) provided that 2nd bandit
picked either items 3 or 5 or 7 or 9 and get a reward of 1.

– According to the same mechanism, bandit2 will be rewarded more than
others for picking item2.

– This may result in a recommendation set with item1 and item2. This cause
dominance of user-types 1 and 2, depriving user-type 3, if the majority of
the population are of user-types 1 and 2.

Title Suppressed Due to Excessive Length 9

Fig. 2 Limitation of Non Graph Based method where T i labels the 2 item recommendation
set at ith time step coming from 2 bandits b1 and b2 and ui denotes the user vector it is
recommended to

– On the other hand, a closer look into these 3 user-types can reveal that, if
we could reward the 2nd bandit for picking item4 instead of item2, it could
cover both the user-type2 and user-type3.

According to UCB1 policy, the average reward for a bandit picking item2 will
be decreased if more of the incoming users are of user type-3 and eventually
average reward of a bandit selecting item4 will beat that of selecting item2.
But that will not happen until user-type3 data outnumbers user-type2, which
may take a long trials. Recall this is an online learning problem. The limitation
of choosing only the first item to be the representative for a user-type reduces
the effectiveness of the algorithm, in particular in online situation. We need
to be able to change the representative items dynamically as needed. Figure 2
illustrates this situation.

7 Our New Method: Graph Based UCB1 Bandits

As we encounter the above mentioned issue with our past approach [18], we
realized that when we increase the reward of a bandit for picking the first
item preferred by a user-type, we also need to make sure there is a discount
on that reward if that item is not sufficient to address the satisfaction of other
user-types. This inter-user-type discount factor is not easy to compute because
this requires remembering history. In our present work, we introduced the Rel-
evance relationship between items, which remembers history of relationships
among items in a computationally efficient way:

Definition 3 Relevance between items in the recommendation set is denoted
by Rel(i, j). Rel(i, j) = 1 if items i and item j are found in the same user
vector. Otherwise Rel(i, j) = 0

10 Mahmuda Rahman, Jae C. Oh

This Relevance is denoted as edges between items in our graph based method
and it impacts our rewarding scheme for bandits responsible for picking the
corresponding items in the following way:

Definition 4 Reward for a bandit to select an item i where i gets the first
click from a user:
Rwd(i) = 1 + 1

1+|N |Σj∈{N\i}Rel(i, j) where N is the set of all items in the

recommendation set

This term has been used as node weights in our proposed graph based algo-
rithm where each node represents an item. This scheme is used to reduce the
importance of an item if it appears together with other items from the same
user-type historically and hence implicitly facilitate the selection of an item
preferred by minority user-types. The reward function of a bandit who picks
an item selected by the a user is a logarithmic function of the weight of the
node representing that item in the graph.

Algorithm 2 Initial Graph

1: Create graph G0(V, E) consists of isolated nodes where vn ∈ V for each item n ∈ N and
initialize E = {}

2: for all n = 1 to N do
3: Let wn ∈ W = 0 for vn ∈ V where W is the weight vector for nodes
4: end for
5: Call BRecommend kItems(G0, B) where B is the set of k number of bandits

7.1 Construction of Relevance Item Graph

To keep track of relations among the items seen and recommended so far in
the online environment, we need to build and update a relevance item graph
each time the system sees a user and a recommendation is made. We construct
the relevance item graph in the following way:

– At the beginning, there are n number of isolated nodes representing the
total number of items to choose from.

– Each node has a weight associated with it which denotes the relevance of
the item in the graph. Initially all node has identical weight of 0

– Each time a random user is shown a set of k items by the recommendation
system. This is a simulation of an online environment.

– If the user selects (i.e., likes) more than one of these recommended items
then we draw a directed edge from the node, which stands for the first
choice of items to the other items (nodes) chosen by the same user. For
example, if a user selects item1, item3, and item5. There will be directed
edges from item1 to item3 and from item1 to item5.

Algorithm 2 shows the initialization of the graph and Algorithm 3 shows how
the graph is evolving dynamically.

Title Suppressed Due to Excessive Length 11

Algorithm 3 BRecommend kItems

1: Input: The graph at the end of (t − 1)th round: Gt−1,
the set of k bandits each having N arms: B = UCB11(N), ...UCB1k(N)

2: Output: Recommendation set of k items for user arrived at time t: Rt
k

3: Rt
0
← {}

4: for all i = 1 to k do
5: select(UCB1i(N), N \Rt

i−1
)

6: end for
7: call Update Graph(Gt−1, Rt, B)

7.2 Assignment of Node Weight

As we construct the graph dynamically as each user data is encountered in an
online fashion, weights of the nodes get adjusted in the following manner: if
the user chooses one or more items from the recommendation set: the node
representing the first choice of the user gets an increment of weight by 1 + 1

C

where C is the number of total items in the recommendation set picked by
that user according to Definition 4.

This technique assigns less weight to each node as more items are selected
by the user at a time. Idea behind this is, if more items in our recommendation
system is chosen together with an item a user first picks, then that item is not
a good representation of the specific user-type as opposed to an item which is
uniquely selected by the user. Other items selected by the same user instance
(but are not her first pick), will have an increment by 1 in their respective
weights.

This weighting scheme also ensures that, if only one item from the recom-
mendation set is selected by that user, it gets the maximum weight of 1+ 1

1 = 2
as that single item is potentially single-handily covering that user-type. If the
user selects none of the items recommended, then each node in the recommen-
dation set will have an increment of 0 in its weight.

Fig. 3 shows how this weighting scheme alleviate the issue related to our
past approach and better handles the overlapping items chosen by different
user types.

7.3 Discounting Factor on Correlation

As we select random sample of users over a period of time for real simulation,
we scale down the importance of older correlations as opposed to the newer
ones after every τ time steps. We keep τ to be a fixed period of time which
we call an “epoch.” Within an epoch all items in the recommendation set that
appears together and has a match with the sampled user instances, is given
same discount. Node weights increase between epochs as we tend to give more
importance to relations between items coming from the recent samples. As we
are sampling a sufficient amount of user instances in uniform random manner,
it ensures our algorithm to retain the popular items in the recommendation

12 Mahmuda Rahman, Jae C. Oh

Fig. 3 Emergence of item 4 with increasing weight as a potential replacement of item
2 in the graph based method to accommodate user type 3 as in the illustrative example
mentioned in Figure 2

set while facilitating diverse user instances according to our novel rewarding
mechanism. This procedure is illustrated in Algorithm 4.

Algorithm 4 Update Graph

1: Input: Graph at the end of (t − 1)th round: Gt−1,
Recommendation set: Rt

Set of all bandits: B
2: Output: Updated graph after t round: Gt(V, E)
3: Pick a random user vector ut

4: Generate feedback vector Xt from the indices of ut which contains 1
5: Create a set of directed edge Et such that for each e(i, j) ∈ Et:

vi represents the item clicked which has the lowest index in Rt and vj rep-
resents any other items clicked in Rt (according to the feedback vector Xt

6: E = E ∪Et

7: C =total number of items in Rt which matches with those of Xt

8: if (t%τ == 0) then C = C × f(t) where f(t) is the discount factor on C at time
step t

9: Update W by following:
10: for all n ∈ N do

11: wn =

wn + [1 + 1

C
], if vn is the only item clicked

or has one or more outgoing edge(s) in Et

wn + 1, if vn has an incoming edge in Et

wn, otherwise.
12: end for
13: call Adjust Reward(B, k,Rt, Xt)

Title Suppressed Due to Excessive Length 13

7.4 Rewarding the Corresponding Bandit

We update the rewards of the corresponding bandits who picked the items in
the recommendation set after each iteration, so that bandits gets incentives
to pick the appropriate items to cover different user-types. The bandits who
are responsible for picking the corresponding items in the recommendation
system gets rewarded proportional to the weight of the node representing that
item in the graph. This way, over the iterations, edges connect the nodes and
their associated weights are accumulated. Bigger the log difference among the
weights of different items, better the bandit selects the more rewarding item
among them. Algorithm 5 is developed on this idea.

Algorithm 5 Adjust Reward
1: Input: B set of all UCB1 bandits,

k items recommended,
Rt the recommendation set,
Xt the user vector

2: Output: Reward updated for all Bandits
3: for all j = 1 to k do
4: Feedback the jth Bandits with the following reward:

5: Fjt =

{

log(wj), if Xt
j = 1 for the j ∈ Rt

0, otherwise.

6: update(UCB1j , Fjt)
7: end for

8 Empirical Evaluation

In this section we show the performance boost of the graph-based method over
the existing ones.

8.1 Performance of Initial Approach

We used Movielens1000 [14] data set for our experiments. The data set consists
of 943 users rating on 1682 movies (where users rated at least 20 of them). The
real valued ratings has been converted to binary (relevant or not) by using a
threshold of exceeding θ which is set to 2 for our experiment as rating ranges
between 1 to 5. Our recommendation set selects k = 10 movies each time for a
random user out of available n = 1682 movies. This makes our method run to
solve for more than a thousand armed bandit problem - which, to the best of
our knowledge has never been tried before. We compared our past approach
with RBA and IBA and average simulation result is presented in Fig 4. The
points along the lines in the graph show the results reached at 10K, 50K, 100K,
200K, 500K, 510K and 550K time steps.

14 Mahmuda Rahman, Jae C. Oh

Fig. 4 Performance comparison of recommending 10 movies out of 1682 from MovieLens
dataset of all unfiltered 943 users using RBA, IBA and our past (Non Graph Based) approach

Fig. 5 Average Performance comparison of first 1000 iteration of our Non Graph Based
and Graph Based Approach on unfiltered users w/o discount on weight

8.2 Performance of Graph Based Approach

In this section we describe 3 different experiments we conducted with the new
graph based bandit algorithm. First, we ran our Graph Based Bandit algorithm
on our data set without any discount on weight and found it outperforms our
past approach after a considerable amount of user vector is presented to the
system. Fig 5 and 6 shows the beginning and end trends of our simulation.
By analyzing the user vectors, we found that the data set has a few user
instances who selected unusually many more movies than others. Fig 7 ex-
hibits the user click behavior from the MovieLens1000 data set. To normalize

Title Suppressed Due to Excessive Length 15

Fig. 6 Average performance comparison of 50000 iteration of our Initial and Graph Based
Approach on unfiltered users w/o discount factor

Fig. 7 Click Behavior of User Instances in Movielens Dataset

this skewness, we filtered out the user vectors to take account of those user
instances who has selected at least as many movies between 13 to 150. Num-
ber of these users makes 80% of the total user instances which results in 741
user instances selecting from 1456 movies. Without the loss of generality, this
filtered dataset still captures a diverse user types, yet rules out users with too
many movies associated. So in this experiment, we used our non discounted
weighting mechanism on our filtered data set. As expected, this shows even
faster user coverage. The result of this experiment is shown in Fig 8. Finally,
we introduce 2 types of discount function at the end of each epoch where epoch
length is fixed as 10K time steps.

16 Mahmuda Rahman, Jae C. Oh

Fig. 8 Average performance comparison of up to 50000 iteration of our Initial and Graph
Based Approach on filtered users w/o discount factor

– Linear Discount: In this scheme we scale the weight after each epoch by
following function:

f(t) = f(t− 1) + ǫ

where t denotes the time step. In our experiment, f(0) is set to 0.2 and ǫ
is set to 0.2. We run our algorithm upto 50K iteration with 50K

10K = 5 epochs.

– Logarithmic Discount: According to this technique, we impose a logarith-
mic smoothing of

1

(1− log(t+ τ)/T))))

where τ is the epoch length and T is the total time steps of the simulation.

We compare the impact of the linear discount with the logarithmic one for the
filtered data set in Fig 9. It can be observed that in long run both the linear
and logarithmic discounting scheme attains almost same performance as non
discounted method because we are randomly sampling from a static pool of
data. As more emphasis is given towards recent samples of user instances this
discount can capture the taste of the diverse users appeared in later time.

9 Conclusion

Unlike personalized recommendation systems [20] which often use collabora-
tive filtering [7, 8], content based filtering [16] or a hybrid of these two [4],
we came up with a recommendation system that satisfies a diverse number of
user types. An existing paper argued that dependency among items can be
ruled out by ignoring the correlation gap [1, 12] . But we show that, the corre-
lation between items is an important criteria to identify diversity in terms of

Title Suppressed Due to Excessive Length 17

Fig. 9 Average performance comparison of up to 50000 iteration of Linear and logarithmic
discount on our Graph Based Approach on filtered users

user types. We proposed a effective graph based bandit rewarding mechanism,
which aimed to incorporate this diversity and our empirical evaluation showed
that it outperformed existing techniques for real data sets in terms of covering
a large number of user types introducing no additional complexity. In future,
we want to extend this solution to a distributed recommendation system to
facilitate a scalable and decentralized decision making for Big Data.

References

1. Agrawal S (2011) Optimization under uncertainty: Bounding the corre-
lation gap. PhD thesis, URL http://research.microsoft.com/apps/

pubs/default.aspx?id=200425

2. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the mul-
tiarmed bandit problem. Mach Learn 47(2-3):235–256, DOI 10.1023/A:
1013689704352, URL http://dx.doi.org/10.1023/A:1013689704352

3. Ausiello G, Boria N, Giannakos A, Lucarelli G, Paschos VT (2010) Online
maximum k-coverage

4. Burke R (2007) The adaptive web. Springer-Verlag, Berlin, Heidelberg,
chap Hybrid Web Recommender Systems, pp 377–408, URL http://dl.

acm.org/citation.cfm?id=1768197.1768211

5. Cohen R, Katzir L (2008) The generalized maximum coverage problem.
Inf Process Lett 108(1):15–22, DOI 10.1016/j.ipl.2008.03.017, URL http:

//dx.doi.org/10.1016/j.ipl.2008.03.017

6. Diriye A, White R, Buscher G, Dumais S (2012) Leaving so soon?: Un-
derstanding and predicting web search abandonment rationales. In: Pro-
ceedings of the 21st ACM International Conference on Information and
Knowledge Management, ACM, New York, NY, USA, CIKM ’12, pp

18 Mahmuda Rahman, Jae C. Oh

1025–1034, DOI 10.1145/2396761.2398399, URL http://doi.acm.org/

10.1145/2396761.2398399

7. Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative filtering recom-
mender systems. Found Trends Hum-Comput Interact 4(2):81–173, DOI
10.1561/1100000009, URL http://dx.doi.org/10.1561/1100000009

8. Goldberg K, Roeder T, Gupta D, Perkins C (2001) Eigentaste: A constant
time collaborative filtering algorithm. Inf Retr 4(2):133–151, DOI 10.1023/
A:1011419012209, URL http://dx.doi.org/10.1023/A:1011419012209

9. Hochbaum DS (1997) Approximation algorithms for np-hard problems.
PWS Publishing Co., Boston, MA, USA, chap Approximating Covering
and Packing Problems: Set Cover, Vertex Cover, Independent Set, and
Related Problems, pp 94–143, URL http://dl.acm.org/citation.cfm?

id=241938.241941

10. Hochbaum DS, Pathria A (1998) Analysis of the greedy approach in prob-
lems of maximum k-coverage. Naval Research Logistics (NRL) 45(6):615–
627, DOI 10.1002/(SICI)1520-6750(199809)45:6〈615::AID-NAV5〉3.0.CO;
2-5, URL http://dx.doi.org/10.1002/(SICI)1520-6750(199809)45:

6<615::AID-NAV5>3.0.CO;2-5

11. Joachims T (2002) Optimizing search engines using clickthrough data.
In: Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, New York, NY, USA,
KDD ’02, pp 133–142, DOI 10.1145/775047.775067, URL http://doi.

acm.org/10.1145/775047.775067

12. Kohli P, Salek M, Stoddard G (2013) A fast bandit algorithm for recom-
mendation to users with heterogenous tastes. In: desJardins M, Littman
ML (eds) AAAI, AAAI Press, URL http://dblp.uni-trier.de/db/

conf/aaai/aaai2013.html#KohliSS13

13. Lee K, Lee K (2015) Escaping your comfort zone: A graph-based recom-
mender system for finding novel recommendations among relevant items.
Expert Syst Appl 42(10):4851–4858, DOI 10.1016/j.eswa.2014.07.024,
URL http://dx.doi.org/10.1016/j.eswa.2014.07.024

14. MOVIELENS-DATA (as of 2003) MovieLens dataset,
http://www.grouplens.org/data/, URL http://www.grouplens.org/

data/

15. Park W, Oh JC, Blowers MK, Wolf MB (2006) An open-set speaker iden-
tification system using genetic learning classifier system. In: Cattolico M
(ed) GECCO, ACM, pp 1597–1598, URL http://dblp.uni-trier.de/

db/conf/gecco/gecco2006.html#ParkOBW06

16. Pazzani MJ, Billsus D (2007) Content-based recommendation systems.
In: THE ADAPTIVE WEB: METHODS AND STRATEGIES OF WEB
PERSONALIZATION. VOLUME 4321 OF LECTURE NOTES IN COM-
PUTER SCIENCE, Springer-Verlag, pp 325–341

17. Radlinski F, Kleinberg R, Joachims T (2008) Learning diverse rankings
with multi-armed bandits. In: Proceedings of the 25th International Con-
ference on Machine Learning, ACM, New York, NY, USA, ICML ’08, pp
784–791, DOI 10.1145/1390156.1390255, URL http://doi.acm.org/10.

Title Suppressed Due to Excessive Length 19

1145/1390156.1390255

18. Rahman M, Oh JC (2015) Fast online learning to recommend a diverse set
from big data. In: The 28th International Conference on Industrial, Engi-
neering and Other Application of Applied Intelligent Systems, Springer,
Switzerland, IEA/AIE’15, pp 361–370

19. Robertson SE (1997) Readings in information retrieval. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, chap The Probability Ranking
Principle in IR, pp 281–286, URL http://dl.acm.org/citation.cfm?

id=275537.275701

20. Shani G, Gunawardana A (2011) Evaluating recommendation
systems. Recommender Systems Handbook pp 257–297, URL
http://scholar.google.de/scholar.bib?q=info:AW2lmZl44hMJ:

scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=

citation&cd=0

21. Sviridenko M (2004) A note on maximizing a submodular set function
subject to a knapsack constraint. Operations Research Letters 32(1):41 –
43, DOI http://dx.doi.org/10.1016/S0167-6377(03)00062-2,URL http://

www.sciencedirect.com/science/article/pii/S0167637703000622

22. Vermorel J, Mohri M (2005) Multi-armed bandit algorithms and empirical
evaluation. In: In European Conference on Machine Learning, Springer, pp
437–448

	A Graph-based Bandit Algorithm for Maximum User Coverage in Online Recommendation Systems
	Recommended Citation

	GraphBandit.dvi

