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Abstract 

Purpose:  The purpose of this study was to provide an initial comparison of exposure to 

ultrasound visual feedback of the tongue and no exposure to ultrasound in speech therapy for 

postvocalic rhotics (the /r/ family of sounds).  Effects of the two treatments on acquisition, 

retention, and generalization were explored in participants ages 7-9. 

Methods:  A single-subject randomized block design replicated across four participants was 

used.  Each week for seven weeks, one session containing high frequency ultrasound use and one 

session containing no ultrasound use were randomly ordered.  A Training Probe List and 

Generalization Probe List consisting of monosyllabic words, multisyllabic words, phrases, and 

short sentences were used to measure acquisition within each session as well as retention and 

generalization between two consecutive sessions.  Data analyses included: (a) descriptive 

statistics to complement visual inspections of single-subject graphs, (b) effect size calculation, 

and (c) statistical results from a randomization test.   

Results: One participant showed a significant advantage for ultrasound sessions over no ultrasound 

sessions in acquisition scores; however, there were no differences between treatment conditions 

for any participants in generalization or retention.    

Conclusion: For some children, acquisition may be facilitated by ultrasound visual feedback.  No 

evidence suggested that ultrasound visual feedback inhibited retention or generalization in 

speech tasks.  As a whole, treatment was effective for 2 of the 4 participants when comparing 

pre/post generalization data.  Future studies should focus on evaluating the effectiveness of 

ultrasound visual feedback therapy given a larger dose (i.e., treatment duration) and differing age 

groups. 
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Introduction 

Speech Sound Disorders  

A speech sound disorder (SSD) is a disorder in producing the sounds of a language 

(Bernthal, Bankson, & Flipsen Jr., 2009; Lewis et al., 2006; Shriberg, Tomblin, & McSweeny, 

1999).  The term SSD encompasses articulation disorders and phonological disorders, though it 

provides a classification that is free of theoretical biases (Shriberg, 2010).  SSDs are one of the 

most common communication impairments seen in children (Baker & McLeod, 2011; Bernthal 

et al., 2009; Shriberg et al., 1999) and a large number of speech pathologists in school based 

settings work with children who demonstrate difficulty in the acquisition of speech sounds 

(Ruscello, 1995a).  Specifically, rhotics (i.e., /r/, the r-family of sounds, including rhotic 

diphthongs) are among the most common sounds seen in error in preschool and school-age 

children with SSDs (Bernthal et al., 2009; Hodson & Padden, 1991; Ruscello, 1995a; Secord, 

Boyce, Donahue, Fox, & Shine, 2007)1.  Children who have a SSD are at risk for developing 

future academic and socioemotional difficulties; thus, it is important for speech pathologists to 

use therapy techniques that have been shown to be effective when treating SSDs (Aram & Hall, 

1989; Lewis, Freebairn, & Taylor, 2000; McCormack, McLeod, McAllister, & Harrison, 2009; 

Nathan, Stackhouse, Goulandris, & Snowling, 2004; Shriberg & Kwiatkowski, 1988).   

  The term Speech Delay has been used to characterize three to nine year-old children 

with significant speech sound deletions and substitutions that may normalize with treatment 

(Shriberg, 2010).  Shriberg (1997) found that by age six, 75% of children with a history of a SSD 

have normalized their speech errors; however, 25% of children with a SSD will still have speech 

errors past the age of six.  Although some variation occurs, it is generally accepted that the 

1 Instead of the IPA symbol /ɹ /, /r/ will be used throughout this paper to encompass all rhotic variants. 
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production of American English speech sounds should be mastered by children nine years of age 

(Shriberg, 1994; Smit, 1986; Smit, Hand, Freilinger, Bernthal, & Bird, 1990).  Shriberg (2010) 

has used the term Speech Errors when referencing speakers with speech sound distortion errors 

that persist; however, these sound errors are not coupled with adverse social and academic risks.  

Similarly, the term Residual Speech Sound Error (RSSE) has been used for children who exhibit 

certain speech errors beyond the typical age of acquisition when they reach the age of nine 

(Preston et al., 2014; Shriberg, Austin, Lewis, McSweeny, & Wilson, 1997).  Later developing 

sounds, such as /r, s, z, l/, are among sounds frequently in error for those with RSSEs (Preston & 

Edwards, 2007; Preston et al., 2014; Shriberg, 1994).  The present study focuses on those 

children with Speech Delays, whose distortions and speech errors may soon turn into RSSEs.     

While other errors also occur in children ages 7 to 9, /r/ errors are commonly observed 

(Bernthal et al., 2009; Ruscello, 1995a; Secord et al., 2007; Shriberg et al., 1997).  The liquid /r/ 

is one of the last phonemes to be acquired by children when compared to all other English 

phonemes (Arlt & Goodban, 1976; Smit et al., 1990; Templin, 1957).  Templin (1957) found that 

/r/ reached a 75% level of accuracy at age 4; 0 in males and females.  Sax (1972) found that 

when mastery was defined as 93% accuracy, females mastered /r/ at the end of third grade, while 

males did not reach mastery of /r/ even by the end of fifth grade.  More recently, Smit et al. 

(1990) found that /r/ reached a 90% level of accuracy at 8; 0 in males and females.  Thus, there is 

a wide range of variation in reported acquisition of /r/.  As /r/ is among the last sounds to be 

acquired in typical speech sound development, failure to achieve correct production by 

approximately age nine may result in a RSSE. 

Lingual Components Necessary for /r/ 
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The articulatory and phonetic variability of rhotics, as well as their complexity, make 

rhotics one of the most common sound classes in error (Bernthal et al., 2009; Ruscello, 1995a; 

Secord et al., 2007).  The American English rhotics may appear in several positional contexts as 

either a vowel or consonant.  Rhotic vocalic variants appear in the nucleus of a syllable (i.e., /ɝ/ 

and /ɚ/).  Rhotic consonantal variants appear in prevocalic positions (i.e., /r/) and in postvocalic 

positions which are commonly referred to as “rhotic diphthongs” (i.e., /ar/, /ɛr/, /ɪr/, /ʊr/, and /ɔr/) 

(Klein, McAllister-Byun, Davidson, & Grigos, 2013; Secord et al, 2007).  Although the 

articulatory constrictions (i.e., narrowing of the vocal tract) are similar regardless of phonetic 

context, the relative timing of the constrictions may vary depending on word position (Gick, 

Campbell, Oh, & Tamburri-Watt et al., 2006)2.  For simplicity, /r/ will be used throughout this 

paper to encompass all rhotic variants.   

No matter the positional context of /r/, the following lingual components are typically 

necessary for the proper production of /r/: a pharyngeal constriction, an oral constriction 

(achieved by tongue tip retroflex or bunching of the tongue body), tongue midline grooving, and 

(in most speakers) lateral bracing (Bacsfalvi, 2010; Bernhardt et al., 2008; Bernhardt, Gick, 

Bacsfalvi, & Alder-Bock, 2005b).  The pharyngeal constriction refers to the tongue root 

retracting into the pharynx and involves a posterior narrowing of the vocal tract.  Anterior tongue 

shapes for /r/ are generally divided into two main categories: retroflex and bunching.  For a 

retroflex /r/, the tongue tip is raised and curled back slightly toward the alveolar ridge; for a 

bunched /r/, the tip of the tongue lowers, while the dorsum rises toward the hard palate (Alder-

Bock, Bernhardt, Gick, & Bacsfalvi, 2007; Bernhardt et al., 2005b; Klein et al., 2013; 

McAllister-Byun, Hitchcock, & Swartz, 2014).  The dorsum of the tongue does not usually 

2 Constriction is used throughout this paper to specify a narrowing at any point in the vocal tract.  
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contact the hard palate; however, lateral bracing is often exhibited wherein the sides of the 

posterior tongue contact the rear upper molars (Bernhardt et al., 2005b; McAllister-Byun et al., 

2014).  As the sides of the posterior tongue elevate to contact the rear molars, a midline groove is 

often seen in the center of the tongue (Bernhardt et al., 2005b; McAllister-Byun et al., 2014; 

Preston, Brick, & Landi, 2013).  The most anterior constriction associated with a correct 

production of /r/ is a slight degree of lip rounding (Bernhardt et al., 2005b; Klein et al., 2013; 

McAllister-Byun et al., 2014).  The magnetic resonance image (MRI) picture in Figure 1 

displays the following constrictions necessary for a correct production of /r/.  

 
 
 

 

While these components are necessary for /r/ production, each component will not be 

uniformly met across speakers, and individual variation exists; for example, MRI midsagittal 

images reveal a variety of tongue shapes with differing amounts of pharyngeal constriction and 

midline grooving to produce a perceptually correct post-vocalic /r/ (Secord et al., 2007).  

Recently, research has revealed that the least accurate /r/ productions are associated with a highly 

curved, posteriorly located tongue shape which likely results in loss of pharyngeal constriction 

since the tongue root is not retracted properly into the pharynx (Boyce, Combs, & Rivera-

Campos, 2011; Klein et al., 2013).  An accurate /r/ cannot be produced with only one 

Figure 1: MRI image of a correct /r/ production 
with labial, oral, and pharyngeal constrictions 
(Image from Secord et al., 2007). 
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component; thus, a speaker must possess the motor abilities to simultaneously produce all lingual 

components necessary for /r/, adding to the complexity of this phoneme (Gick et al., 2007). 

Review of Traditional /r/ Therapy 

The variability and complexity of the lingual components of /r/ contribute to persisting /r/ 

errors in children and brand treatment of /r/ as difficult (Adler Bock et al., 2007; Bernthal et al., 

2009; Gruber, 1999; Klein et al., 2013; McAllister-Byun et al., 2014; Preston et al., in press; 

Ruscello, 1995a; Ruscello, 1995b). Traditional methods for /r/ therapy include imitation, 

contextual facilitation, phonetic placement and shaping, motokinesthetic training, and awareness 

training (Alder-Bock et al., 2007; Bernthal et al., 2009; Ruscello, 1995a; Secord et al., 2007).   

A variety of tongue shapes may lead to a perceptually correct /r/, including different 

degrees of retroflexed or bunched tongue shapes; thus, there is not a single way to verbally cue 

the correct production of /r/.  Therefore, numerous verbal cues are used in the clinical setting to 

elicit /r/; however, these cues alone may not be sufficient when specific information concerning 

the oral cavity is needed to facilitate a correct /r/ production.  Verbal cues encouraging children 

to curl the tongue tip up or bunch the tongue toward the back of the mouth are extremely abstract 

and relay minimal information about the oral configuration necessary to produce /r/.  Tactile 

feedback concerning tongue position is limited: lateral bracing is the only tactile feedback 

available, and this gives no specific information about where to place the front of the tongue in 

order to achieve the desired constrictions.  Additionally, lip rounding, and a relatively small oral 

cavity opening while producing /r/ restricts clinicians from seeing inside the mouth to properly 

cue tongue positions that will facilitate /r/.  Thus, clinicians are forced to rely on acoustic 

information and clinical experience to cue the desired tongue shape (Secord et al., 2007). 
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While a myriad of intervention techniques exist to help facilitate correct production of /r/, 

a limited number of evidence based methods are available for treating /r/ (Ruscello, 1995b).  

Shriberg (1975) outlined an eight step approach to evoking the rhotic vowel /ɝ/.  This shaping 

procedure required shaping /l/ into /ɝ/.  Of the 65 children with developmental /ɝ/ errors who 

were administered this approach, approximately 70% produced a correct /ɝ/ within six minutes 

of therapy, and 10% needed additional training sessions to produce a correct /ɝ/.  

Shriberg (1980) also developed a diagnostic teaching procedure to use with children 

exhibiting persistent rhotic errors.  Children were first classified into one of two categories based 

on the articulation of /r/ in the assessment phase.  When the clinician became familiar with the 

child’s error pattern, the treatment phase began, seeking to eliminate any incorrect articulatory 

movements.  Lastly, the bite stick was introduced to assist in facilitating a perceptually correct 

/r/.  A bite stick is a four to six inch long dowel that is approximately three eights of an inch in 

diameter.  Shriberg (1980) noted that variations of this procedure had been conducted on over a 

dozen children, and while all children dramatically modified their gestures, not all children 

produced /r/ correctly after one session.  While these traditional approaches may be successful 

for some children, they do not consistently result in correct production of pre-vocalic and vocalic 

/r/.   Additionally, both of these approaches target productions of /r/ in isolation only.   

Most /r/ articulation therapy is provided to individuals older than nine years of age (i.e., 

those with RSSEs) because /r/ is not acquired until a later age.  However, providing articulation 

therapy for /r/ to younger children with Speech Delays may help avoid the progression of /r/ 

errors into RSSEs.  While these traditional approaches to /r/ therapy are still relevant, increasing 

access to new technologies warrants consideration for enhancing the effectiveness of /r/ therapy 

as clinical observations reveal that numerous children remain in /r/ therapy for years, or are 
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dismissed from therapy on the grounds that no improvements have been made.  Therefore, when 

traditional approaches to /r/ therapy have not worked for a child, alternative approaches 

incorporating technology into therapy should be explored (Alder-Bock et al., 2007; Ruscello, 

1995a; Ruscello, 1995b). 

Review of Biofeedback in /r/ Therapy 

Biofeedback refers to the presentation of information that allows individuals to gain 

greater awareness of physiological functions (Volin, 1998).  This is usually achieved by the use 

of instrumentation that provides real-time information on the desired activity.  In regards to 

speech, biofeedback allows aspects of speech that are usually difficult to perceive (i.e., tongue 

movement) to be brought under conscious control using real-time information and 

instrumentation that provides physiological feedback (McAllister-Byun et al., 2014; Volin, 

1998).  One of the most common applications of biofeedback in speech therapy is the use of a 

mirror to provide visual feedback on the movement of the lips and jaw during speech 

articulation.  However, the lingual gestures of /r/ cannot be seen in a mirror.   

Research on alternative biofeedback methods in speech therapy has been conducted for 

approximately the past half-century (Fletcher 1982, 1983; Fletcher, Dagenais, & Critz-Crosby, 

1991; Fletcher, McCutcheon, & Wolf, 1975).  The use of technology in articulation therapy has 

fostered interest in current literature as these technologies become more refined and the prices 

decrease, making them more accessible in the clinical setting (Bernhardt et al., 2003; Gick, 

Bernhardt, & Bacsfalvi, 2004).  Although limited, research has evaluated the general 

effectiveness of spectral biofeedback, electropalatography (EPG), and two-dimensional 

ultrasound across a variety of clients (Bacsfalvi & Bernhardt, 2011; Bacsfalvi, Bernhardt, & 
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Gick, 2007; Fletcher et al., 1991; Gibbon & Hardcastle, 1989; McAllister-Byun et al., 2014; 

Preston et al., 2014; Shuster, Ruscello, & Toth, 1995). 

Spectral biofeedback.  Spectral biofeedback refers to the use of real-time spectrographs 

to provide visual feedback about the acoustic signal to help facilitate correct speech sound 

productions (Schuster et al., 1995).  The use of spectral biofeedback was shown to be effective in 

remediation of individuals who failed to respond to traditional forms of treatment for /r/ 

(Schuster, Ruscello, & Smith, 1992; Shuster et al., 1995). More recently, McAllister-Byun & 

Hitchcock (2012) sought to determine if children who failed to respond to traditional forms of 

treatment for /r/ would benefit from spectral biofeedback intervention.  Clinicians provided 

spectral biofeedback by uploading an appropriate formant height template for a given sound, 

which allowed the child to match their results with the appropriate template.  Results revealed 

that at the group level no significant changes were evidenced in the accuracy of /r/ productions 

after a period of traditional intervention, whereas statistical analysis revealed that /r/ productions 

were significantly more likely to be rated as perceptually correct after spectral biofeedback.    

Although spectral feedback is non-invasive and only requires a microphone, the display 

may not always be clearly understood by clients.  Moreover, acoustic templates of /r/ vary to 

some degree.  A child’s /r/ production is not necessarily wrong if the formant pattern does not 

identically match the clinician’s formant template.  Further, matching formant patterns does not 

provide the child with precise information on the articulatory movements needed to produce 

these formants, and traditional methods of cueing tongue placement still need to be used (Gick et 

al., 2004). 

Electropalatography (EPG).  EPG requires the client to wear a custom-fit pseudopalate 

that contains electrodes which record the timing and location of tongue-palate contact.  This 
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allows for a tongue-palate contact pattern to be displayed, providing visual biofeedback 

(Bacsfalvi et al., 2007).  Prior research has examined the usefulness of EPG as visual 

biofeedback in speech therapy.  Fletcher (1982) found that deaf speakers were able to use 

biofeedback and EPG training to perceive and produce key elements of speech.  Additional 

studies using EPG displayed mixed results; however, Fletcher et al. (1991) demonstrated that six 

subjects with profound hearing impairments had improved linguapalatal contact patterns for 

consonantal sound targets.  They also reported overall improved intelligibility from listeners 

using EPG in therapy.  Gibbon and Hardcastle (1987) used EPG to provide detailed information 

in a therapy program to correct a lateralized /s/.  They reported that normal contact patterns for 

/s/ were achieved and maintained in a six-month follow up.  Gibbon, Stewart, Hardcastle, and 

Crampin (1999) determined that a therapy program using EPG for visual feedback was 

successful, as a child with a developmental speech disorder who previously had abnormal tongue 

palate contact showed typical EPG patterns for alveolar stops in speech post-therapy.  Schmidt 

(2007) found an EPG system to be successful in treatment in several case studies.  Thirteen 

clients with articulation disorders resulting from a range of causes, and who had received years 

of previous speech treatment, consistently produced acoustically acceptable placements for their 

target sounds (including /r/) using the EPG system. 

Previous research has demonstrated the effective use of EPG as visual biofeedback in 

speech therapy (Bacsfalvi & Bernhardt, 2011; Bacsfalvi et al., 2007; Dent, Gibbon, & 

Hardcastle, 1995; Fletcher et al., 1991; Gibbon & Hardcastle, 1989; Schmidt, 2007; Schmidt & 

Beamer, 1998).  EPG is useful because it provides a clear, two-dimensional contact pattern 

between the tongue and the palate, which is especially useful for alveolar and palatal sounds; 

however, studies have not shown that EPG works better than ultrasound for one class of sounds 
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over another in speech habilitation for deaf clients (Bernhardt, Gick, Bacsfalvi, & Ashdown, 

2003).  While the use of EPG allows the client to see if lateral bracing is occurring for the 

production of /r/, it lacks direct visual feedback pertaining to tongue placement for the anterior 

constriction and the pharyngeal constriction.  Additionally, the pseudopalate must be custom 

made to fit the client and requires time and additional monetary investment from the client.  The 

client must also agree to use the pseudopalate and be cooperative in the invasive process of 

wearing the pseudopalate (Bernhardt et al., 2005b; Zharkova, 2013). 

Ultrasound.  The use of ultrasound in speech therapy has been shown to be safe and to 

have no detrimental side effects (Gick et al., 2004; Preston et al., 2014).  When using an 

ultrasound, gel is applied to the tip of the ultrasound probe to enhance image quality.  The probe 

is placed beneath the speaker’s chin and allows for the image to be displayed on a screen as 

ultrasonic waves are reflected back towards the probe when they encounter air from the oral 

cavity just above the tongue (Bernhardt et al., 2005b).   

Ultrasound is particularly useful in treatment of /r/ because several possible tongue 

configurations may produce /r/.  Ultrasound displays of tongue shapes and movements help the 

clinician select appropriate cues to facilitate a correct production of /r/.  The most anterior 

constriction of /r/ is labial (i.e., lip rounding).  The labial constriction is not visible with 

ultrasound.  The medial oral constriction produced by the tongue tip or blade and the posterior 

constriction produced as the tongue root retracts toward the pharyngeal wall are both visible with 

ultrasound.  The depth of the midline groove in the tongue is also visible with ultrasound using a 

coronal view (Bernhardt et al., 2005b; Bernhardt, Bacsfalvi, Gick, Radanov, & Williams, 2005a).  

The constrictions visible on an ultrasound display are shown in Figure 2 and Figure 3. 
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Ultrasound is a less invasive technique than EPG.  While tongue-palate contact 

information is not available with the use of ultrasound, approximate measures of where the 

palate would be in relation to the tongue can be determined if a clinician desires (Bernhardt et 

al., 2005b).  Ultrasound is especially ideal for younger children as nothing needs to be placed 

inside the mouth.  Furthermore, ultrasound provides a 2-dimensional image of the tongue that 

can be viewed in either a sagittal or coronal view.  Ultrasound allows children to visualize the 

exact movement of the tongue in real time.  Additionally, the direct tongue images may be 

presented in real time or frozen at certain points in time (Bernhardt et al., 2005b).  This enables 

the clinician to provide specific feedback on tongue placement and movement.  Figures 4 and 5 

provide examples of how specific tongue placement cues are available with the use of 

ultrasound.  

Figure 2: Sagittal ultrasound display 
where (i) shows the tongue tip/blade 
creating the oral constriction and (ii) 
shows the projected tongue shape 
creating the pharyngeal constriction 

Figure 3: Coronal ultrasound display 
where (i) shows the midline tongue 
groove and (ii) shows the raised sides 
of the tongue 
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Specific feedback on tongue placement and movement aids a child in understanding the 

unique tongue shape needed to produce /r/; this information is not available while using EPG or 

spectral biofeedback.  Additionally, the ultrasound is small and portable, allowing clinicians to 

easily administer therapy in situations most convenient for a client (i.e., clinic or home settings) 

(Bacsfalvi & Bernhardt, 2011; Bernhardt et al., 2005b; Lee, Wrench, & Sancibrian, 2015).  The 

primary advantages of ultrasound include dynamic and static visual feedback imaging abilities, 

Figure 4: A tongue position that will not elicit a correct /r/ production because the tongue 
tip/blade is very low and the posterior dorsum of the tongue is very high; thus, the following 
placement cue would be used:  “lower the back of the tongue and raise the front of the tongue” 
(Image from Haskins Laboratories, 2014). 

Figure 5: A tongue position that will not elicit a correct /r/ production because the tongue 
root is not retracted far enough into the pharynx; thus, the following placement cue would be 
used: “pull the back of the tongue into the throat” (Image from Haskins Laboratories, 2014) 
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information concerning the medial and posterior constrictions necessary for /r/, its non-invasive 

nature, and portability.  

Efficacy of Ultrasound in Speech Therapy 

Two-dimensional ultrasound as visual feedback has helped facilitate articulatory gains in 

speech therapy for a variety of clients (Bacsfalvi et al., 2007; Bacsfalvi & Bernhardt, 2011; 

Bernhardt, 2003; Cleland, Scobbie, & Wrench, 2015; Lee et al., 2015).  Bernhardt et al. (2008) 

demonstrated that ultrasound has positive benefits with less than three hours of actual practice in 

establishing sounds in speech therapy habilitation when clients possess motivation and have less 

pervasive residual speech impairments.  Preston et al. (2014) found eight participants with 

RSSEs increased accuracy for at least one treated sound during a treatment program including 

ultrasound biofeedback.  McAllister-Byun et al. (2014) demonstrated that ultrasound 

biofeedback intervention can be highly effective for children with persistent rhotic errors.  

Additionally, they reported that therapy is more effective when opportunities to explore different 

tongue shapes are included; this helps elicit a tongue shape facilitative to a perceptually correct 

rhotic, when compared to only cueing a bunched tongue shape.  Further, Cleland et al. (2015) 

found that seven children with persistent speech sound disorders who were previously 

unresponsive to traditional therapy approaches made significant progress evidenced by 

perceptual measures and tongue shape analysis after intervention that included the use of 

ultrasound.  Preston et al. (2013) found that ultrasound as biofeedback resulted in improved 

accuracy of treated sound sequences (e.g., /ar, kr/) in children with persisting Childhood Apraxia 

of Speech.  Preliminary results further evidenced that visual feedback using ultrasound could be 

used to assist in increased performance of /r/ in adults with acquired Apraxia of Speech due to a 

cerebral vascular accident (Preston & Leaman 2013).  The above studies support the use of 
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ultrasound in speech therapy; however, no studies have directly compared ultrasound therapy to 

no ultrasound therapy in order to observe the specific benefits ultrasound may provide within 

speech therapy.      

Ultrasound has been shown to be an effective tool in establishing a correct production of 

phonemes and a useful aid to provide biofeedback of the tongue in speech therapy; yet, an 

optimal therapy plan for incorporating ultrasound into traditional speech therapy has not been 

defined (Lee et al., 2015).  It is reasonable to believe that children with speech sound errors have 

unsuccessfully established a proper motor plan involving the appropriate shaping of articulators, 

or they have trouble with accurate timing of the movements they have learned (Preston et al., 

2014).  Additionally, as Shriberg (1980) noted, children may have learned incorrect articulatory 

patterns that must be rectified through speech therapy.  Therefore, approaching therapy from a 

motor learning framework may facilitate learning of the movements required for rhotics (Preston 

et al., 2014).  

Review of Motor Learning 

Motor learning principles have recently been applied to treatment for children’s speech 

sound errors (Hitchcock & McAllister-Byun, 2015; Preston et al., 2014).  While it is unknown if 

speech motor control is equally responsive to the same principles of learning as nonspeech motor 

control, a reasonable and advocated hypothesis is as follows: principles of motor learning govern 

the motor skills necessary for speech production that are similar to those of nonspeech motor 

control (Duffy, 2005; Maas et al., 2008).  Thus, the following factors that have been shown to 

facilitate motor skill acquisition and learning in general are considered when developing 

effective interventions for SSDs: structure of practice, stimulus selection, and nature of feedback.   
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In order to understand the principles of motor learning, the distinction between motor 

performance during acquisition of a skill and motor performance during retention and 

generalization must be made.  Motor performance may be observed as a temporary change in 

executing a movement during acquisition.  However, accurate movement in untrained contexts 

(generalization) must be observed over time (retention) to achieve permanent change in 

movement resulting in learning (Schmidt & Lee, 1999).  The goal of speech therapy is to 

enhance communication in a person’s everyday life (Bernhardt et al., 2005a); accordingly, the 

long-term goal is for clients to learn by demonstrating successful retention and generalization of 

target sounds in untrained stimuli and untrained contexts.   

Therefore, it is crucial to the field of speech-language pathology that our treatment 

properly distinguishes acquisition, retention, and generalization so the long term goal of learning 

is achieved in treatment.  Acquisition reflects motor performance, while retention and 

generalization are critical elements that reflect motor learning.  Acquisition refers to successful 

attempts during practice, which aids in the capability of rehearsed movements.  Although some 

degree of skill acquisition is necessary before learning can occur, acquisition does not imply 

learning.  In speech therapy, acquisition occurs as trained speech sounds are repeatedly practiced 

and shaped into new movements.  As acquisition of rehearsed movements increases, 

performance within a session also increases as target sounds are correctly produced in repeated 

trials.  Several individual factors may affect practice performance within a session, including: 

warm up, fatigue, and attention.  Therefore, it is critical to understand that performance during 

acquisition is not an indicator of retention and generalization: it does not imply that learning is 

taking place.  Thus, motor performance is reflected through acquisition of rehearsed movements; 
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however, motor learning must be observed through retention and/or generalization (Maas et al., 

2008; Schmidt & Lee, 1999).   

Retention refers to performance levels after practice is completed.  In speech therapy, 

retention can be observed by determining the number of trained items containing a target sound 

practiced during a session that the client correctly produces when asked to produce the target 

sound at a later time.  The improved capability of rehearsed movements should not only be 

observed during acquisition, but should be retained over time.  Generalization refers to how 

practice on one movement affects similar, but untrained, movements.  In speech therapy, 

generalization may be observed by determining the number of untrained items containing the 

target sound that are correctly produced after a duration of time.  The improved capability of 

rehearsed movements should not only be retained over time, but should also be generalized (i.e., 

transfer) to similar, but untrained movements to demonstrate that learning has occurred.  

Therefore, acquisition must precede learning; however, speech therapy seeks to ultimately 

maximize learning (retention and generalization), not acquisition during therapy sessions (Maas 

et al., 2008; Schmidt & Lee, 1999).  To date, no study has examined the effects of acquisition 

and learning in therapy that includes the frequent use of ultrasound compared to no ultrasound.  

Feedback.  In order to learn a new motor plan for a target sound (e.g., /r/), acquisition of 

the basic movement pattern must first take place.  Feedback is a vital component of establishing 

a new motor plan and two types of feedback are typically distinguished: knowledge of 

performance (KP) and knowledge of results (KR).  KP feedback refers to feedback related to 

how the movement was produced, while KR feedback refers to feedback related to the results 

produced in terms of the goal (e.g., correct or incorrect).  While the effects of KR feedback and 

KP feedback have not been thoroughly studied in speech motor learning, KP feedback and KR 
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feedback appear to be equally effective in most speech tasks; however, when a task is novel (e.g., 

teaching a new speech sound) KP feedback may be more helpful when provided after a practice 

attempt (Maas et al., 2008; Schmidt & Lee, 1999). 

Traditional approaches to /r/ therapy supply KP feedback with verbal instruction (e.g. 

“elevate your tongue a little more”); however, ultrasound offers an alternative way to offer KP 

feedback during speech therapy.  Thus, in addition to verbal KP feedback offered by the 

clinician, ultrasound as biofeedback allows clients to receive KP feedback visually.  Since KP 

feedback is especially useful when trying to master an unfamiliar task, providing two differing 

levels of support for KP feedback should help facilitate motor performance (Maas et al., 2008 & 

Preston et al., 2014).   

It is important to acknowledge the effects increased KP may have on acquisition and 

generalization.  KP feedback has been found to facilitate the rate of acquisition and overall 

performance level when a non-speech task is not well known (Newell, Carlton, & Antoniou, 

1990).  However, Hodges and Franks (2001) demonstrated that an increase in KP feedback 

during non-speech tasks may impede motor learning.  The effects of increased KP feedback 

using ultrasound as visual feedback on acquisition and generalization in speech tasks that are not 

well known has not yet been established in previous research.  The present study seeks to 

determine how the increase of KP feedback by use of high frequency ultrasound within a session 

will affect acquisition within a session, and retention and generalization between two 

consecutive sessions compared to the use of no ultrasound.  

Other important considerations regarding feedback in motor learning include frequency of 

feedback whereby reduced frequency of feedback has benefits for motor learning while frequent 

feedback appears to augment novel learning.  Thus, the initial phase of therapy should begin with 
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frequent KP feedback and KR feedback to help aid in novel learning of the target sound.  KP 

feedback and KR feedback should be reduced once the target sound has been established.  

Whether KP feedback and KR feedback are provided immediately or delayed is also an 

important consideration.  The limited evidence available for speech motor learning presents 

preliminary evidence that delayed feedback may enhance speech motor learning (Austermann 

Hula, Robin, Maas, Ballard, & Schmidt, 2008; Maas et al., 2008). 

Practice.  The complexity of stimuli practiced in speech therapy is important to consider.  

The challenge point framework (Hitchcook & McAllister Byun, 2014) considers the amount of 

information available and interpretable by the child when factors such as functional task 

difficulty, nominal task difficulty, and the child’s skill level are influential in maximizing 

learning for a child.  Thus, learning is optimized when a child is challenged; however, a shortage 

or excess of challenging material will have the reverse affect (Guadagnoli & Lee, 2004).  

Therefore, selected stimuli should increase in complexity to a level consistent with a child’s 

motor performance to increase the task difficulty.  Instructional steps for production training 

allow for this increase in stimuli difficulty to occur (Bernthal et al., 2009).  For example, training 

typically begins at the syllable level and progresses to words, starting with monosyllabic words 

and moving to multisyllabic words, phrases, then full sentences.  Lastly, the target sound is 

practiced at the conversational level using everyday speech (Van Riper & Erickson, 1996).  

Once stimuli are selected for use in speech therapy, the use of blocked versus random 

practice must be determined.  Blocked practice refers to a practice schedule wherein the client 

practices a group of the same target movements where the target is predictable before moving on 

to the next target movement (e.g., AAA, BBB, CCC).  Random practice refers to a practice 

schedule wherein different movements are successively practiced, and the target for the 
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upcoming trial is not predictable to the client (e.g., ABC, CBA, and BCA).  There is preliminary 

support suggesting that random practice enhances motor learning for intact and impaired speech 

motor systems (Maas et al., 2008; Skelton & Hagopian, 2014).  Concerning nonspeech functions, 

learning may be optimized by first practicing in blocked order and then transitioning to random 

order (Lai & Shea 1998; Lai, Shea, Wulf, & Wright, 2000).  Therefore, clients may benefit from 

first using a blocked practice schedule and then transitioning to a random practice schedule once 

the target sound has reached a high level of performance. 

When selected stimuli are presented in speech therapy, KP feedback and KR feedback are 

provided to supply the child with knowledge about his/her attempt of the target sound.  

Ultrasound as visual feedback provides a higher level of KP feedback than is available with 

traditional verbal or tactile cues as the child is provided with a visual of the moving articulators.  

Therefore, it is necessary to examine how ultrasound as visual feedback providing KR feedback 

and KP feedback will influence a child’s motor performance and motor learning, and to evaluate 

how this compares to treatment that does not have an ultrasound as visual feedback component.  

Level of evidence.  A multi-phase progression framework may be used to examine 

treatment research on ultrasound as visual feedback (Fey, Finestack, & Schwartz, 2009; Robey, 

2004).  Phase I research seeks to establish the practicality of the initial concept and typically 

includes low levels of experimental controls such as case studies (Robey, 2004).  Phase I 

research has suggested that ultrasound as visual feedback may have beneficial effects for 

individuals with residual and developmental speech sound errors (Alder-Bock et al., 2007; 

Modha, Bernhardt, Church, & Bacsfalvi, 2007).   

Phase II research targets outlining treatment procedures and demonstrating outcomes 

when testing the protocol (Robey 2004).  Phase II research involves studies pursuing more 
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experimental control (McAllister-Byun et al., 2014; Preston et al., 2014) and demonstrated that 

ultrasound as visual feedback improves articulatory accuracy in children with Childhood Apraxia 

of Speech and in children with RSSEs (Preston et al., 2013; Preston, Maas, Whittle, Leece, & 

McCabe, 2015).  While phase II research is underway in examining ultrasound as visual 

feedback, it is limited.  Thus, there is a need for more phase II research to explore the optimal 

treatment methods and demonstration of effects when using ultrasound as visual feedback in 

therapy.  

Present Study 

The present study was guided by the principles of motor learning.  This study examined 

the differences between how two treatments influence acquisition, retention, and generalization 

in children with Speech Delay characterized by rhotic errors.  Though learning (i.e., retention 

and generalization) is the primary goal of speech therapy, acquisition is a necessary prerequisite 

to learning.  Thus, the present study examined how ultrasound as visual feedback treatment 

compared to no ultrasound treatment in facilitating performance within a session to trained 

targets, retention between consecutive sessions to trained targets, and generalization between 

sessions to untrained targets.  Prior to the present study, no studies had directly compared a 

treatment program with ultrasound as visual feedback to a treatment program with no ultrasound 

that is similar in target selection, treatment duration, practice schedule, and feedback frequency.  

This study sought to answer three questions concerning the use of ultrasound as visual feedback 

in treatment: 1) Does frequent exposure to ultrasound feedback of the tongue facilitate 

acquisition of rhotic diphthongs better than no ultrasound feedback; 2) Does frequent exposure to 

ultrasound facilitate retention of rhotic diphthongs better than no ultrasound feedback; and 3) 

Does frequent exposure to ultrasound facilitate generalization of rhotic diphthongs to other 
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rhotics (e.g., /r/, stressed schwar, etc.) and differing positions (e.g., initial /r/, /r/ in clusters, etc.) 

better than no ultrasound feedback. 

Principles of motor learning were used to further examine the above questions.  

According to Newell et al. (1990), KP feedback may facilitate the rate of acquisition and overall 

performance level in non-speech tasks that are not well established.  Thus, concerning speech 

tasks, ultrasound feedback may enhance acquisition of a sound by providing a visual display of 

the tongue that can be evaluated (i.e., comparing actual tongue shapes to targets drawn over the 

ultrasound display); this type of KP feedback cannot be provided during traditional therapy.  

Therefore, ultrasound use was expected to facilitate acquisition of rhotic diphthongs compared to 

no ultrasound within treatment sessions.  The use of ultrasound would enhance the KP feedback 

participants receive because they would be provided with direct visual KP feedback in addition 

to verbal KP feedback.  

In contrast, Hodges and Franks (2001) demonstrated that motor learning may be impeded 

when KP feedback is increased during non-speech tasks.  Concerning speech tasks, Preston et al. 

(2015) found that children with persisting speech sound errors associated with CAS increased the 

accuracy of rhotic productions within treatment sessions that included ultrasound visual feedback 

of the tongue; however, they did not demonstrate generalization to untreated words. Thus, 

concerning unfamiliar speech tasks, frequent exposure to ultrasound as visual feedback may 

impede retention and generalization of rhotic diphthongs as participants may become dependent 

on the ultrasound in speech therapy (cf. Preston et al., 2015).  Consequently, individuals may be 

unable to generalize trained sounds to untrained contexts without the use of the ultrasound.  The 

use of high frequency ultrasound may only affect the words trained per session where success 

may be seen within the session, but not between sessions (i.e., retention) and not to other similar 
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contexts (i.e., generalization).  As a result, the increase of KP feedback that ultrasound provides 

may impede retention and generalization.      

In sum, the use of ultrasound as KP feedback is expected to facilitate motor performance 

within a session; however, the use of ultrasound as KP feedback may hinder motor learning.  The 

present study seeks to determine how the increase of KP feedback by use of high frequency 

ultrasound within a session will affect acquisition within a session, and retention and 

generalization between two consecutive sessions compared to the use of no ultrasound.  

To answer the above questions, a single-subject randomized blocked phase scheme was 

employed in the present study to address three hypotheses, as derived from motor learning 

theory:   

1. Frequent exposure to ultrasound as visual feedback of the tongue will better facilitate 

acquisition of rhotic diphthongs compared to no ultrasound within treatment sessions.   

2. Frequent exposure to ultrasound as visual feedback of the tongue may impede 

retention of rhotic diphthongs compared to no ultrasound between treatment sessions.   

3. Frequent exposure to ultrasound as visual feedback of the tongue may impede 

generalization of rhotic diphthongs compared to no ultrasound between treatment 

sessions.   

Based on the levels of evidence described by Baker and McLeod (2011) and adopted by 

ASHA (www.asha.org/members/ebp/assessing.htm), the present study qualifies as level IIb 

evidence: single case experimental design with replication.  The present study was considered 

Phase II research, as a single-subject design was used to assess the therapeutic effects of 

ultrasound as visual feedback and to estimate the effect size of the treatment when compared to 

the use of no ultrasound in therapy.  Existing studies had only demonstrated that ultrasound 

 

http://www.asha.org/members/ebp/assessing.htm


   23 
 

treatment is more effective than no treatment; the present study allowed for the first comparisons 

to be drawn between treatment using ultrasound as visual feedback and treatment with no 

ultrasound.  This essential step added a valuable component to existing literature, which had not 

included studies directly comparing the effectiveness of ultrasound as visual feedback during 

treatment to other treatments.  This provided an important step of advancing ultrasound treatment 

research as the present study built upon existing research to establish new findings in the efficacy 

of ultrasound to support future, large scale studies (Baker & McLeod, 2011). Results of the 

present study have informed the development of future Phase III research seeking to establish the 

efficacy of the protocol through randomized controlled trials (Robey, 2004).  Additionally, it 

may provide guidance for clinicians who are considering treatment options for children with 

SSDs, including those with Speech Delays.   

Methods 

Study Design 

A single-subject randomized block design replicated across four subjects was used for the 

present study providing multiple opportunities for the intervention to demonstrate an effect.  A 

randomized block design is similar to an alternating treatment design except that each week the 

treatment order is randomly determined instead of remaining the same.  Rvachew (1988) and 

McReynolds and Thompson (1986) outlined the advantages of a single-subject design: greater 

control over subject variability, economy, and the ability to observe unique clients.   

Kratochwill and Levin (2014) further explained that the addition of randomization to 

replication across sessions within a single-subject design improves the credibility of the 

experiment and reduces threats to internal validity.  In addition to graphical-visual analysis from 
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single-subject designs, adding randomization allows for a variety of data-analysis strategies to be 

computed including effect size and statistical significance (Rvachew, 1988). 

In order to strengthen the causal and statistical conclusions of the present study, a within-

series randomized phase single-subject design was used.  Specifically, a blocked phase 

randomization scheme was used to test the present study’s hypotheses.  Each successive week 

was considered a block.  Each week involved two different treatment sessions: one ultrasound 

(US) and one no ultrasound (NoUS).  US represents a session of treatment with ultrasound as 

visual feedback and NoUS represents a session of treatment with no ultrasound.  The order of 

one US session and one NoUS session was randomly assigned to each week.  This type of 

assignment method guaranteed that conditions of the same type could not appear in more than 

two consecutive time periods ensuring that a large dose of one treatment did not successively 

occur (Kratochwill & Levin, 2014).  An additional tier of randomization was added to the 

present study during baseline, as a randomized number of baseline sessions from 3-5 was 

assigned to each replication across participants.  Kratochwill and Levin (2014) explained that, 

generally, including more replications in the study design concerning number of cases or number 

of time periods will yield more statistical power during the statistical analysis.  Therefore, the 

presented study completed 14 sessions (7 randomized blocks) replicated across 4 subjects. 

Source of Data 

Two probe lists were administered to the client during US treatment and NoUS treatment: 

a Training Probe List comprised of 20 words was administered to observe acquisition and 

retention; a Generalization Probe List comprised of 25 words was administered to observe 

generalization.  The Generalization Probe List and Training Probe List were combined into one 

randomized master list containing 45 words total.  The master list was administered at the 
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beginning of each session with a different start point and order each time to ensure probes were 

presented in random order.  At the end of the session, only the Training Probe List was 

administered in random order.  Both probe lists were administered using imitation (e.g., clinician 

states, “say chair”) because the present study included children ages 7-9 who may not have 

mastered reading.   

Acquisition.  Acquisition was quantified by administration of the Training Probe List 

during both the beginning of the session and the end of the session.  The percent increase in 

accuracy from the beginning to the end of each session served as the dependent variable to 

address Hypothesis 1, and the data provided insight into whether US treatment versus NoUS 

treatment was more effective at facilitating acquisition on trained items within a session.   

Two rhotic contexts (/Vr/ combinations) were trained for each participant.  Each rhotic 

context included 10 initial training words: five to be trained during US sessions and five to be 

trained during NoUS sessions.  Therefore, only 10 words were trained during each session. All 

training items were designated as an US or NoUS training item before therapy began and any 

given word was trained under only one of the conditions. The use of differing words for NoUS 

and US sessions allowed for additional conclusions to be drawn that compared the success of 

acquisition training words between the two therapy types without contamination/carry-over 

between the two treatment conditions (please see Appendix A for the Training Probe List 

Sample).   

Twenty Training Probe Items were administered at the beginning of each session.  The 

same Training Probe Items administered at the beginning of the session and determined for 

training were always the same Training Probe Items administered at the end of the session.  The 

number of Training Probe Items incorrectly produced at the beginning of the session provided 
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the number of probes available for improvement out of 10 (i.e., 10 Training Probe Items for that 

session).  Then, a percentage was calculated by subtracting the number of correctly produced 

Training Probe Items out of 10 at the beginning of the session from the number of correctly 

produced Training Probe Items out of 10 at the end of the session.  This method determined the 

percentage increase of correctly produced Training Probe Items from the beginning of the 

session to the end of the same session.   

All Training Probe Items within a session were taken from the Training Probe List.  Each 

Training Probe Item began at the monosyllabic level (please see Appendix B for Training Probe 

Chains); if a participant correctly produced the monosyllabic Training Probe Item at the 

beginning of the session, a varied longer phrase (i.e., a phrase or short sentence containing six to 

seven syllables) including a multisyllabic word form of the original monosyllabic word replaced 

the original monosyllabic word in the Training Probe List.  This helped to ensure that the highest 

level of each chain was reached.  Additionally, in order to avoid continuous training of a varied 

longer phrase that had been correctly produced during administration of the Training Probe List 

at the beginning of the training session, a word bank for additional chains containing each target 

sound was kept (see Appendix C for sample Target Sound Word Bank).  Thus, when a 

participant correctly produced a varied longer phrase at the beginning of the session, a new, 

varied longer phrase containing a different multisyllabic target word was administered.   

A protocol was developed for adapting Training Probe Items during each session in order 

to ensure a target sound within a chain had been retained or generalized before replacing the 

word (please see Appendix D for more detail on the procedures used for adapting the Training 

Probe List).  The procedures for adapting the Training Probe List were designed to ensure 

participants began each session with a chance of acquiring as close to 10 words during each 
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session as possible.  That is, if a participant began the session with 3/10 correct on the Training 

Probe List, only 7 could be acquired during the session.  After sampling up to three alternative 

chains per word during each session to identify words in error, ten items were always trained in 

the session (which could include items that were correct at the beginning of the session).  Thus, 

if a participant began a session with some Training Probe Items correctly produced, the number 

of correctly produced Training Probe Items was subtracted from 10 and the remaining items left 

to be trained for that session were considered equal to 100%.  For example, if a participant began 

a session with 3/10 correct Training Probe Items, 7 items could be acquired and therefore 7 was 

used as the denominator to calculate acquisition; the numerator was calculated by subtracting the 

number of correctly produced Training Probe Items at the beginning of the session from the 

number of correctly produced Training Probe Items at the end of the session.   All 10 Training 

Probe Items were always trained to keep the number of training items consistent among all 

sessions.3   

Retention.   Administration of the same 20 Training Probe Items at the beginning of the 

next consecutive session allowed for retention to be quantified; accuracy on these probes served 

as the dependent variable addressing Hypothesis 2.  All 20 Training Probe Items were always 

administered at the beginning of each session; however, retention was only quantified for the 10 

Training Probe Items from the previous session.  Retention refers to performance levels after 

practice is completed; thus, the assumption of this study was that retention was attributed to the 

prior treatment session.  Therefore, the percentage of the 10 Training Probe Items trained in the 

previous session that were correctly produced by participants at the beginning of the next session 

3 It was possible to get a negative acquisition rate: if a participant began the sessions with 2/10 Training Probe Items correct and 
then ended the session with 1/10 Training Probe Items correct.  Then, the acquisition rate would be -1/8 (-12.5%). 
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were calculated to reflect retention4.       

The Training Probe Items always allowed for a 100% chance of retention as the same 10 

Training Probe Items that were practiced during the previous session were administered at the 

beginning of the next consecutive session.  Therefore, at the beginning of each session retention 

began at 0% and if 2 Training Probe Items were produced correctly then 20% acquisition was 

observed.  The quantification of retention provided insight into whether ultrasound treatment 

versus no ultrasound treatment was more effective at facilitating retention of the Training Probe 

Items between two consecutive sessions. 

Generalization.  Administration of the 25 Generalization Probe Items at the beginning of 

each session allowed for generalization to be quantified; accuracy on these probes served as the 

dependent variable addressing Hypothesis 3.  The Generalization Probe List included 25 

monosyllabic words, multisyllabic words, phrases, and short sentences each containing one 

scored rhotic.  The Generalization Probe Items included trained sound contexts as well as 

untrained sound contexts, but they did not contain any Training Probe List words, phrases, or 

short sentences.  The following includes all sounds probed in the Generalization Probe List: /ɚ/, 

/ar/, /ɛr/, /ɝ/, /ɪr/, /ɔr/, /r/, /gr/, /dr/, /fr/, /pr/, /str/, /θr/, and /spr/ (see Appendix E for the complete 

Generalization Probe List).  

 Generalization was observed by comparing the percentage of correctly produced 

Generalization Probe Items between two successive sessions. The difference observed between 

two consecutive sessions accounted for the amount of generalization that occurred from the 

beginning of one session to the beginning of the next session.  For example, if a participant 

4 While retention could have been measured immediately after practice was completed, for the purpose of this study, retention 
was observed by determining the number of trained items containing a target sound practiced during a session that the participant 
correctly produced at the beginning of the next consecutive session.  This demonstrated the effects of practice remained with the 
participant for a short duration once practice was completed. 
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produced 16% of Generalization Probe Items correctly in session 3 and 28% of Generalization 

Probe Items correctly in session 4, this would indicate that a 12% generalization increase was 

attributed to the treatment that occurred in session 3 as the assumption was that generalization 

was attributed to the prior treatment session. This generalization data provided insight into 

whether ultrasound treatment versus no ultrasound treatment is more effective at facilitating 

generalization on untrained items between sessions.  

Data Analysis  

In the present study, the treatment was the independent variable which had two levels: 

treatment with ultrasound and treatment without ultrasound.  There were three dependent 

variables: probe scores reflecting acquisition, retention, and generalization.  Data analysis 

methods included (a) visual inspection of single-subject graphs, (b) effect size calculation (raw 

and standardized difference between the two treatment conditions by computing Cohen’s d), and 

(c) statistical results from a randomization test (Kratochwill & Levin, 2014).   

Descriptive statistics (i.e., means and standard deviations associated with each treatment 

condition) were used in the present study to complement visual inspections of single-subject 

graphs.  Additionally, an effect size was computed because it represented a standard measure by 

which all outcomes could be assessed and described the difference in standard deviations 

between the means of US treatment and NoUS treatment.  The effect size was determined in the 

present study by computing Cohen’s d.   

While the descriptive term of an effect size relies on research context and differs 

depending on the source, Cohen (1988) described a common conventional frame of reference 

when interpreting the magnitude of d used in the behavioral sciences where an effect of .2 

corresponds to small, .5 to medium, and .8 to large (Zakzanis, 2001).  More recently, Gierut, 
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Morrisette, & Dickinson (2015) evaluated the effect size for single-subject design in treatment of 

children with functional phonological disorders by computing the Standard Mean Difference (All 

with Correction for Continuity) to measure the amount of generalization gain that accumulated 

longitudinally from treatment for each child.  The results established benchmarks for 

interpretation of effect sizes (Standard Mean Difference) in that population as follows: 1.4 

corresponds to small, 3.6 corresponds to medium, and 10.1 corresponds to large (Gierut et al., 

2015).   

Since the interpretations of effect size are subjective and field specific, neither the 

Zakzanis (2001) or the Gierut et al. (2015) studies examine effect size in a manner that is 

consistent with the present study.  Designated benchmarks are often based on certain applications 

and the established referents may have little to no efficacy in other contexts; thus, effect sizes 

should be determined based on specific behaviors of interest and populations (Beeson &Robey, 

2006; Gierut et al., 2015).  The present study examines an effect size that takes place between 

consecutive sessions and reflects accuracy on a single phoneme.  Since the efficacy of 

benchmarks used for interpretation for this context has not been established in current research, 

the present study will utilize interpretations of comparisons within this study only as a guide for 

assigning qualitative labels to the derived effect sizes.     

The null hypothesis states that the two treatment conditions are equal.  For single-subject 

experiments, the null hypothesis is that at each treatment time, the measurement provided by a 

subject would be the same, even if the alternative treatment were given.  Therefore, the p-value 

may be computed in an attempt to reject the null hypothesis (Edgington, 1987).  The test statistic 

was the mean difference between US sessions and NoUS sessions which was computed for each 

block (each week of therapy). A randomization test using all possible permutations of data was 
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used to obtain p-values (significance values) conducted using the Single Case Randomization 

Test in the statistical software R (R Core Team, 2015).  The p-value corresponding to the 

observed mean difference is obtained by ranking the obtained value in the distribution of all 

assignment possibilities (Bulte & Onghena, 2008).  By taking all possible permutations of each 

data set and ordering each possible outcome, the results from the randomization test evaluated 

whether the observed advantage for one treatment over the other is likely due to the manipulation 

of the independent variables, not random chance.  Two directional p-values per condition were 

computed: one p-value testing the assumption that the advantage was for the US session and the 

other p-value testing the assumption that the advantage was for the NoUS session.  Each p-value 

was then compared with a critical value for significance testing where this study had a critical 

value of alpha=.05.5 Given the exploratory nature of this single case study, multiple corrections 

for the alpha level were not used.  

Participants 

Four participants with a Speech Delay (Shriberg, 1994, 1997) were selected for the 

present study.  Participants were between the ages of 7;0 to 9;7 at the time initial baseline data 

was collected.  Participants were recruited through Institutional Review Board (IRB) approved 

flyers.  It took approximately one hour to gather and administer the inclusionary information and 

assessments necessary to determine if a participant was initially eligible for the present study 

during the first baseline visit.  The remaining testing administered to provide additional 

information on each participant at baseline took approximately an additional two and a half hours 

5 Randomized single-subject designs satisfy the requirement of random assignment; however, they do not satisfy the requirement 
of random sampling.  Therefore, only tests valid in the absence of random sampling can be used when examining data.  
Randomization tests may be applied to data collected from single-subject experiments as long as randomization has occurred in the 
experiment.  In randomized single-subject designs, the randomization is random assignment of treatment times (Edgington, 1987).  
Thus, the randomization tests were performed to obtain a test statistic which could be used to derive a significance level. 
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spread over 2-4 more visits depending on the random number of baseline sessions assigned to the 

participant.  

All participants were native English speakers from mono-lingual English-speaking homes 

who agreed to be audio recorded as this is essential in tracking changes in speech over time.  

Parents of participants reported no present concerns of hearing loss and participants passed a 

hearing screening at 20 dB at 1, 2, and 4 kHz bilaterally using standard audiometric screening.  

Visual acuity was tested with the Snellen Eye Chart where participants’ visual acuity in one eye 

was at least 20/40.  In order to avoid unclear interpretations of the relations between treatment 

outcomes and cognitive abilities, participants’ visual spatial perception and reasoning abilities 

were evaluated.  Participants had to score no lower than -1 SD below the mean on the Matrix 

Reasoning Index score of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 

1999), indicating nonverbal cognition broadly within normal limits.  Additional tasks used to 

evaluate participants are described below.  Descriptive data for each participant can be found 

below in Table 1. 
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Table 1: Descriptive Data for Participants 
           

       Participants 
     ------------------------------------------------------------------------ 
                  1003              1004         1008          1010 
Age (years)           9;0  8;4        9;7      7;0 
Intervention History 18 months-3 

years; 2nd 
grade-
present 

3 years-
present 

7 years-
present 

3 years- 
present 

 

Articulation     
GFTA-2 Standard Score/Percentile*         70/3 60/<1 73/1 73/7 
Sentence Imitation Task percent /r/ correct*          6 0 15 0 
Oral Language     
PPVT-4 Standard Score/Percentile* 103/58 96/39 111/77 106/66 
CELF-4 Formulated Sentences Scaled 
Score/Percentile* 

  11/63 9/37 7/16 7/16 

CELF-4 Recalling Sentences Scaled 
Score/Percentile* 

12/75 12/75 8/25 9/37 

Phonological Processing     
CTOPP-2 Elision Scaled Score/Percentile 9/37 10/50 5/5 9/37 
CTOPP-2 Blending Scaled Score/Percentile 10/50 7/16 2/<1 11/63 
Nonword Repetition Percent Phonemes Correct      83 75 82 79 
SAILS Number Correct (of 100) 86 84 70 72 
SAILS /r/ correct (of 20) 17 19 14 14 
Motor Speech     
Multisyllabic Word Repetition PCC 83 75 71 69 
Multisyllabic Word Repetition Percent 
Correct Lexical Stress 

70 60 40 70 
 

Emphatic Stress Score (Max=24) 24 10 15 20 
Inconsistency Task Number of Different Tokens    1.5 1.25 1.875 1.875 
Maximum Performance Task Apraxia Score           0 0 0 2 
Maximum Performance Task Dysarthria Score      0 0 0 0 
Syllable Repetition Task PCC 88 90 84 86 
Nonverbal     
WASI-2 Matrix Reasoning T-score* 55 48 41 47 
Stimulability     
Miccio /r/ Stimulability (Max=33) 13 0 18 0 

*indicates inclusionary assessments 
Note: Standard scores are normed with a mean of 100 and standard deviation (SD) of 15. Scaled 
scores are normed with a mean of 10 and SD of 3. T-scores have a mean of 50 and SD of 10. See 
Participants section for descriptions of tasks. 
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Articulation. The Goldman-Fristoe Test of Articulation-2 (GFTA-2; Goldman & Fristoe, 

2000) assesses all consonants of English and provides a standard measure of speech production 

errors based on the frequency of articulation errors.  The sounds-in words section was 

administered to elicit the productions of specific speech sounds.  In order to characterize 

participants as having a Speech Delay for the present study, participants needed a standard score 

of below 80 with a percentile rank below 8% on the GFTA-2.  A Sentence Imitation Task 

(Preston et al., 2014) which included 15 sentences containing many later developing sounds 

(e.g., /r, s/) was administered.  Participants had to score below 20% accuracy on the rhotic 

portion of this task to be included in the present study. 

The Training Probe Items and Generalization Probe Items were also administered (by 

imitation) to collect baseline data during pre-treatment sessions and to confirm participants had 

errors on rhotic diphthongs before beginning speech therapy.  Participants had to exhibit errors 

on rhotic diphthongs in at least two of the following contexts:  /ɔr/, /ɪr/, /ɛr/, and /ar/.  In order to 

characterize rhotic diphthongs as being in error and to qualify for the study, participants had to 

score below 30% accuracy in at least two of these rhotic diphthong contexts when the Training 

Probe Items and Generalization Probe Items were summed at the completion of baseline.   

If possible, word lists designed to assess accuracy of other specific phonemes were also 

administered for two other sounds the participant had in error.  If participants had sound(s) in 

error, the administration of the Untreated Sound Probe List(s) allowed for the untreated sounds 

to serve as a control when examining the effects of treatment.  The Untreated Sound Probe 

List(s) were administered using imitation (please see Appendix F for an example of an Untreated 

Sound Probe List).  However, if a participant did not have two other sounds in error, they were 

not disqualified from the study.   
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Oral language.  In order to avoid unclear interpretations of the relations between 

treatment outcomes and language abilities, participants’ language skills were assessed.  To 

determine participants’ language abilities were within normal limits for their age range, the 

following scores had to be achieved on the following tests: a standard score of 80 or greater on 

the Peabody Picture Vocabulary Test-4 (PPVT-4; Dunn & Dunn, 2007) and a standard score 

greater than 7 on the Recalling Sentences and Formulated Sentences subtests on the Clinical 

Evaluation of Language Fundamentals-5 (CELF-5; Wig, Semel, & Secord, 2013). 

Phonological processing.  To characterize the participants’ phonological processing 

skills prior to the onset of therapy, the Elision and Blending Words subtests of The 

Comprehensive Test of Phonological Processing (CTOPP-2; Wagner, Torgesen, Rashotte, 2013) 

were administered.  The Speech Assessment and Interactive Learning System (SAILS) 

(Rvachew, 1994) was also administered to assess participants’ ability to evaluate productions of 

phonemes as either correct or incorrect. Participants listened to the production of a single word 

and were then asked whether the production was a “good” or “not good” way to produce the 

target word where “not good” rhotics included derhoticized and glided distortions.  A total of 

100 trials from the highest level of difficulty available in the software program were presented 

where 20 words were presented for each of the following phonemes: /r, s, θ, f, ʃ/. 

To evaluate phonological working memory through assessing sequencing and production 

of pseudowords, a Nonword Repetition Task (Dollaghan & Campbell, 1998) was administered.  

During this task, participants were asked to repeat 16 previously recorded nonwords containing 

one, two, three, and four syllables.  A Percent Consonants Correct (PCC) out of 96 total 

phonemes was computed from the phonetically transcribed responses of each participant.  

Participants were not excluded from the study based on phonological processing abilities. 
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Motor speech assessment.  A number of motor speech assessments were administered to 

determine participants had a true SD and to exclude participants who were suspected of having 

Childhood Apraxia of Speech (CAS).  The Maximum Performance Tasks (cf. Thoonen et al. 

1996, 1997, 1999; Rvachew, Hodge & Ohberg, 2005) was administered in order to distinguish 

children who have Childhood Apraxia of Speech (CAS) or who are Dysarthric.  During this task 

the length of the following sustained vowel and phonemes were assessed: /a/, fricatives including 

/f, s, z/, rapid productions for single syllables /pʌ/, /tʌ/, and /kʌ/, and rapid productions of the 

syllable sequences /pʌtʌkʌ/ and /mama/.  Praat (Boersma & Weeninck, 2013) was used to obtain 

the duration of each sound or syllable.  As described by Rvachew, Ohberg and Savage (2006), a 

score of 0 on the dysarthria scale represents “not dysarthric” and a score of 0 on the apraxia scale 

represents “not apraxic.”   

Other assessments administered to evaluate participants’ motor speech abilities included: 

Challenging Word Task (e.g., 8 repetitions of 8 words) to assess token-to-token consistency; 

Multisyllabic Word Repetition Task (Preston & Edwards, 2007) to assess lexical stress, 

sequencing, and transitioning of words; and Emphatic Stress Task (cf. Shriberg et al., 2010) to 

elicit phrase-level stress.  Participants’ performance on all the above motor speech assessments 

was used to rule out motor speech impairment.      

Exclusion criteria.  Individuals with the following diagnosed disabilities were excluded 

from this study: developmental disabilities such as Autism or Cerebral Palsy; known or likely 

brain injury such as head trauma or meningitis; underlying structural or functional abnormalities 

such as cleft palate; known genetic syndromes such as Down syndrome; and severe psychiatric 

disorders such as Obsessive-Compulsive disorder or Tourette’s syndrome.  Individuals who were 

diagnosed or suspected of having CAS or being dysarthric during qualifying assessments were 
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also excluded from the present study.  These exclusion criteria were provided in order to avoid 

unclear interpretations of the relations between treatment outcomes and potential cognitive or 

motor abilities.  No participants that were assessed during baseline were excluded from the 

present study. 

Treatment  

 All four participants were treated by the same graduate student enrolled in the Speech-

Language Pathology Master’s Program at Syracuse University who was familiar with ultrasound 

treatment procedures. Baseline or follow-up sessions that included only testing were conducted 

by this student or by an ASHA certified speech-language pathologist who was also familiar with 

the procedures.  

Baseline collection.  Participants were randomly assigned a baseline number of 3-5.  

Three baseline sessions, lasting approximately one hour, were conducted at the Gebbie Clinic 

during initial qualification testing for participants.  The first baseline session included the 

following:  consent/assent forms completed by parents and participants; Background Information 

form completed by parents; hearing and vision screening completed by participants. The WASI-2 

Matrix Reasoning Index, PPVT-4, GFTA-2 and CELF-5 Recalling Sentences and Formulated 

Sentences subtests were administered to participants.  The Baseline Training Probe List (please 

see Appendix G for Baseline Training Probe List), Generalization Probe List, and Untreated 

Sound Probe List(s) were administered to participants for collection of the first baseline data 

point.   

 Provided that participants met all eligibility criteria to be included in the study during the 

first baseline session, participants were scheduled to attend a second baseline session.  During 

the second baseline session the following assessments were completed: The CTOPP-2 (Wagner 
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et al., 2013); Maximum Performance Tasks (cf. Thoonen et al. 1996, 1997, 1999; Rvachew et al., 

2005); and a 50 utterance conversational speech sample to observe accuracy of speech sounds in 

conversational speech.  The Baseline Training Probe List and Generalization Probe List were 

administered to participants for collection of the second baseline data point.   

During the third baseline session, the following tasks were administered: Challenging 

Word Task; Multisyllabic Word Repetition Task (Preston & Edwards, 2007); Nonword Repetition 

Task (Dollaghan & Campbell, 1998); and Emphatic Stress Task (cf. Shriberg et al., 2010).  

Participants were also introduced to the ultrasound image display, and an informal analysis of 

tongue shape was completed by the clinician.  An /r/ stimulability probe (adapted from Miccio, 

2002) was administered to determine participants’ rhotic stimulability.  According to Miccio 

(2002), a child is considered stimulable for a sound if they can correctly imitate the sound target 

in 30% of contexts.  Participants were asked to imitate target syllables containing rhotics three 

times each with the ultrasound beneath the chin.  This further allowed the clinician to determine 

what type of tongue placement cues were necessary during future therapy sessions.  The Baseline 

Training Probe List and Generalization Probe List were administered to participants for 

collection of the third baseline data point.   

Depending on the number of baseline sessions randomly assigned to participants, the 

fourth baseline data collection point was gathered during the administration of the Baseline 

Training Probe List and Generalization Probe List during the beginning of the first treatment 

session before treatment began.  If participants were assigned five baseline sessions, the fifth 

baseline was collected by having participants return for a separate baseline session where the 

ultrasound was introduced instead of introducing the ultrasound during the third baseline session.  

After the ultrasound was introduced, the Baseline Training Probe List and Generalization Probe 
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List were administered to participants for collection of the fourth baseline data point whereas the 

fifth baseline data point was still collected before the first therapy session.  It should be noted 

that while generally most tests were administered during the correct baseline session, if a 

participant had difficulty attending to a task toward the end of a baseline session an assessment 

requiring less effort was given which may have been from a different baseline testing session or 

the task may have been saved for the next baseline session if possible. 

Target Selection 

The Baseline Training Probe List was administered during baseline data collection which 

contained five words for each of the following /Vr/ (vowel plus /r/) contexts occurring in any 

word position: /ɪr/, /ɔr/, /ar/, and /ɛr/.  The two rhotic contexts to be trained during therapy were 

selected based on the participant’s performance on the Baseline Training Probe List and the 

Generalization Probe List administered during baseline data collection.  Two rhotic contexts 

were selected from the Baseline Training Probe Items and Generalization Probe Items a 

participant produced with 30% accuracy or lower when accuracy on all baseline probes was 

summed.  It should be noted the final baseline data reported for acquisition and retention is 

reported as a percent correct (the average taken from four listeners) of the two rhotic contexts 

(out of 10) selected for training from the Baseline Training Probe List for each participant in 

order to demonstrate the level of accuracy for the two rhotic diphthongs chosen for training.        

The Training Probe List administered at the beginning and end of sessions for each 

participant was then created by taking the 10 Baseline Training Probe Items for the two rhotic 

contexts selected for training in addition to 10 other words containing the target sounds.  These 

20 words were then divided into 10 Training Probe Items for US sessions and 10 Training Probe 
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Items for NoUS sessions.  Given the changing nature of the Training Probe Items, participants 

were not always administered the same Training Probe List.   

Treatment Sessions 1-14    

Treatment structure. Participants attended two sessions a week for a total of 14 sessions 

over a seven week period (actual time frame was 7-8 weeks).  Four participants were included in 

the present study.  All sessions were conducted at Dr. Preston’s Speech Production Lab.  A 

Seemore PI 7.5 MHz probe or Echo Blaster 128 was used during all baseline, treatment, and 

follow-up sessions.   

 A blocked phase randomization scheme was used for this study.  Each week involved two 

different treatment sessions: one US and one NoUS.  The order of one US treatment session and 

one NoUS treatment session was randomly assigned to each week (see Appendix H for each 

participant’s randomization schedule).  US treatment and NoUS treatment were identical in 

every aspect, except for the use of ultrasound.  Table 2 outlines US treatment and NoUS 

treatment. 
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Table 2: US and NoUS Treatment Schedule 

US Treatment Session NoUS Treatment Session 

4-6 minutes Generalization and Training 

Probe Master List 

4-6 minutes Generalization and Training 

Probe Master List 

2-3 minutes Untreated Sound Probe List(s) 

(completed every 2 sessions) 

2-3 minutes Untreated Sound Probe List(s) 

(completed every 2 sessions) 

Block A: 13 minutes therapy with ultrasound Block A: 13 minutes therapy with no 

ultrasound 

2 minute break 2 minute break 

Block B: 13 minutes therapy with no 

ultrasound 

Block B: 13 minutes therapy with no 

ultrasound 

2 minute break 2 minute break 

Block C Part I: 7 minutes therapy with 

ultrasound 

Block C Part I: 7 minutes therapy with  

no ultrasound 

Block C Part II: 6 minutes therapy with 

ultrasound 

Block C Part II: 6 minutes therapy with  

no ultrasound 

2-3 minutes Training Probe List 2-3 minutes Training Probe List 

 

Treatment sessions were similar to those outlined by Preston et al. (2014, 2015).  US 

treatment and NoUS treatment always began with administration of the randomized master list 

containing 45 Generalization Probe Items and Training Probe Items.  Each session contained 

three 13 minute blocks of therapy (A, B, C).  A timer was used to ensure allotted time for each 

block was met.  However, participants finished the block of six trials they were in when the timer 
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went off.  Two target sounds (e.g., /ɪr, ar/) were practiced throughout the 14 sessions.  Ten words 

were trained per session where each target sound was in five words. A different set of 10 words 

were trained during US sessions and NoUS sessions.   

Following principles of The Challenge Point Framework (Guadagnoli & Lee, 2004; 

Hitchcock & McAllister-Byun, 2015) and guided by instructional steps for production training 

(Van Riper & Erickson, 1996), each target sound was trained using the following principles of 

chaining to increase complexity.  Chaining requires building from simple to complex stimuli; the 

sounds must be produced correctly 5/6 times in isolation to move to syllables; 5/6 times in 

syllables to move to monosyllabic words; 5/6 times in monosyllabic words to move to 

multisyllabic words; 5/6 times to move to the short phrase level; and 5/6 times at the short phrase 

level to move to the varied longer phrase level.  Within each chain, multisyllabic words were 

defined as any word containing two or more syllables; short phrases were defined as phrases of 

4-5 syllables that contained the target multisyllabic word; and varied longer phrases were defined 

as 6-7 syllable phrases that contained the target multisyllabic word.  The majority of the first 10 

chains used for Training Probe Items did not contain additional rhotics: if an additional rhotic did 

occur in any phrase, only the target rhotic was scored.  Once participants reached a high level of 

success in therapy, additional rhotics may have appeared more frequently in some chains.  

During each block of therapy, participants practiced target sounds increasing in complexity when 

correct production criteria were met.   

Guided by principles of motor learning, both US treatment and NoUS treatment used 

blocked practice intervals of six when establishing the target sound and training the target sound 

in syllables, monosyllabic words, multisyllabic words, and short phrases.  When participants 

displayed high performance of the target sound and reached the varied long phrase level, 
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variability was added by varying the context of the target sound.  For example, if the target 

sound was /ɔr/ and the trained word was four, once the varied long phrase level was reached the 

following phrases or short sentences were included in training: on channel twenty-four; she is 

twenty-four today; I bought twenty-four of those; did she get twenty-four; is he only twenty-four; 

I am in seat twenty-four.  This allowed for practice variability without changing the target word 

within a chain. 

Elicitation. Regardless of if the session was US or NoUS, each session began in the 

elicitation phase during block A.  Before the structured practice could begin the participant had 

to produce each of the two target sounds six times that were judged to be accurate by the 

clinician.  During elicitation, to achieve six correct productions of each rhotic diphthong (e.g., 

/ar/ and /ɔr/), any amount and type of cueing or feedback was allowed (whereas during structured 

practice, the amount, type of feedback, and practice was predetermined).  Therefore, a client may 

attempt 30 /ar/ sounds in a row with feedback on every trial in order to elicit the target sound six 

times.  If a participant did not produce six accurately judged target sounds of each context by the 

clinician during block A, then the elicitation phase continued during the next blocks until this 

criteria was met.  A participant was not allowed to leave the elicitation phase unless six 

accurately judged target sounds of both contexts were produced: eliciting six accurately judged 

target sounds of only one context was not enough to leave the elicitation phase.  Therefore, it 

sometimes occurred that a participant had more than six accurately judged target sounds of only 

one context as the clinician continued to switch between training both contexts so the participant 

did not get discouraged by continuous unsuccessful productions on one of the contexts.  It was 

possible for a participant to remain in the elicitation phase for the entire duration of a therapy 

session.  However, irrespective of if the participant remained in the elicitation phase, the 
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specifications regarding each block of an US or NoUS session were upheld (e.g., time duration, 

use of US/NoUS, and game allotment).  

Condition differences. During blocks A and C of US treatment, 13 minutes with the 

ultrasound was provided where a tongue image display allowed the clinician to provide more 

explicit verbal KP feedback for participants and allowed participants to view visual feedback of 

tongue movements.  The clinician instructed participants to use the visual display screen to move 

the front or back of the tongue in the appropriate directions to achieve correct production of the 

target sound.  For example, the participant held the ultrasound probe below the chin and the 

clinician used the ultrasound image to cue the participant to change tongue positions (e.g., “bring 

your tongue into your throat”).  Participants were given the option of either holding the 

ultrasound probe below the chin or using a stand for the ultrasound probe where they could rest 

the chin on the ultrasound probe.  

 During block B of US treatment sessions where no ultrasound was provided, drill-like 

activities were used where verbal tongue placement cues (e.g., “touch the sides of your tongue to 

the inside of your top teeth”) were provided.  Blocks A, B, and C of NoUS treatment were all 

structured as block B of US treatment.  During block B in US treatment and NoUS treatment, a 

game requiring a turn of less than a few seconds (e.g., turn playing Angry Birds) was provided 

when necessary after two chains had been completed.  In both US treatment and NoUS treatment 

sessions, two minute breaks were always provided after block A and after block B to provide 

motivation and allow participants a short time to relax.  During these breaks, participants had a 

choice of playing a game on the computer or playing a short active game (e.g., ring toss).   

During block C, random practice was provided during the last six minutes (see Table 1).  

Thus, block C in all US sessions and NoUS sessions was split into two parts where part I 
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included typical chaining procedures and part II included random practice.  However, if the 

participant did not move past the elicitation phase, elicitation continued during block C part II.  If 

the participant did not move beyond the syllable level, random practice was provided at the 

syllable level only.  If participants who had progressed past the syllable level in chains, random 

practice was provided by taking the highest point reached in that chain during training (i.e., 

monosyllabic, multisyllabic, short phrase, or varied long phrase) and randomly presenting all 

targets.  A timer was set for seven minutes that included typical chaining procedures, the treating 

clinician then reset the timer for six minutes to include random practice.  

If participants became restless during any block containing NoUS they were allowed to 

practice while standing up or playing movement games (e.g., take a step after five trials to reach 

the other side of the room, hop as far as you can after ten trials, etc.); however, no games 

requiring a stimulus were allowed during this time (e.g., computer games, ring toss, etc.).  If 

participants became restless during an US block they were allowed to stand up and practice with 

the ultrasound; however, they were not allowed to move around the room given the limitations of 

the ultrasound.  Restlessness was managed by the clinician during US and NoUS blocks by 

providing time reinforcement (e.g., only four minutes until break time) or games to inspire 

motivation (e.g., let’s see if we can get 15 new sounds in the next minute, let’s try for 20 more 

trials, etc.).  When participants had to use the restroom while in the middle of a block, the timer 

was stopped and then started from the remaining time to ensure no practice time was lost while 

using the restroom.         

Feedback schedules.  The frequency of verbal KP feedback and verbal KR feedback was 

guided by the principles of motor learning.  Immediate high frequency verbal KP and KR 

feedback was used when establishing the novel target sound at the syllable level.  Due to the 
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nature of feedback in speech therapy, it is difficult to provide KP feedback without providing KR 

feedback first; thus, verbal KP feedback was always provided with verbal KR feedback.  

However, verbal KR feedback was provided alone when higher levels were reached within a 

chain.  The frequency of verbal KP feedback decreased as participants progressed to higher 

levels within a chain.  Once participants reached the varied longer phrase level, no verbal KP 

feedback was provided; only verbal KR feedback was given.  The total number of trials receiving 

verbal KP feedback and verbal KR feedback decreased as participants progressed to higher 

levels within a chain on a target word to promote self-monitoring.  Feedback during random 

practice in block C part II was consistent with feedback provided at the short phrase level (33% 

KR and 17% KR and KP).   

The treating clinician encouraged self-monitoring at all levels within a chain by randomly 

asking participants what they thought of a production (e.g., “new way” vs. “old way”).  

Regardless of the participants’ answer, the treating clinician always provided the necessary KP 

and/or KR for a trial.  The percent of verbal KP feedback and verbal KR feedback provided for 

each level of training is shown in Table 3 (see Appendix I for Data Collection Form). 

Table 3: US and NoUS Treatment Feedback Schedule 

Feedback Syllable Mono-

syllabic 

Word 

Multi-

syllabic 

Word 

Short 

Phrase 

Level 

Varied 

Longer 

Phrase Level 

Random 

Practice  

KR only 0% (0/6) 17% (1/6) 33% (2/6) 33% (2/6) 33% (2/6) 33% (2/6) 

KR/KP 83% (5/6) 67% (4/6) 33% (2/6) 17% (1/6) 0% (0/6) 17% (1/6) 

Total 

Feedback 

83% (5/6) 83% (5/6) 67%  (4/6) 50% (3/6) 33% (2/6) 50% (3/6) 
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 Verbal KP feedback and verbal KR feedback were systematically provided for blocks A, 

B, C part 1, and C part II of all treatment sessions.  Verbal KP feedback and verbal KR feedback 

were randomly assigned to each trial (e.g., KR and KP provided for first trial vs. only KR 

provided for first trial) within each block of six trials.  Therefore, variation of feedback occurred 

while still ensuring that the frequency of verbal KR feedback and verbal KP feedback was met 

during each training block of six trials. 

US treatment and NoUS treatment were identical in target selection methods, treatment 

duration, practice schedule, and feedback frequency.  The only difference was the use of the 

ultrasound in US treatment which increased the specificity of KP feedback provided by allowing 

the clinician to provide specific tongue placement cues when using verbal KP feedback and 

allowing participants access to KP feedback that included visual feedback.      

Post-treatment Follow-up Sessions 

Participants were asked to return for two follow-up sessions.  One session took place 

approximately one week after treatment ended to collect post-treatment data.  The final Training 

Probe Items a participant was trained on were administered to evaluate retention from the 

previous session.  The Generalization Probe List was also administered to observe generalization 

from the last session.  The Untreated Sound Probe List(s) were administered to observe if 

progress was made on the untreated phonemes since the previous session.   

Participants were asked to return approximately one month after treatment ended to 

collect additional post-treatment data.  The Generalization Probe List and the final Training 

Probe List were administered to evaluate if long-term retention and generalization occurred 

within the past month (acquisition could not be observed during either follow-up session because 
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treatment did not occur during these sessions).  The Untreated Sound Probe List(s) were 

administered to observe any progress made on the untreated phonemes since the beginning of the 

study.   

Treatment Reliability and Fidelity 

 A master list containing Generalization and Training Probe Items was always 

administered in random order at the beginning of each session.  At the end of every session 

(except during the two follow-up sessions), only the Training Probe Items were administered.  It 

occurred two times that a word from the Generalization and/or Training Probe List was not 

elicited and to account for this the denominator in the percentage calculation was adjusted.  For 

example, if 1 of the 25 Generalization Probe Items was not elicited then the total number of 

Generalization Probe Items produced correctly for that day were taken out of 24 instead of 25.   

The Untreated Sound Probe List(s) were always administered during every other session starting 

with session 1 (and during both follow-up sessions).  It occurred one time where one Untreated 

Sound Probe List was not administered and this error was noted in the participant’s graph.    

All scored Training Probe Items and Generalization Probe Items were scored point-by-

point by four listeners (the treating clinician and three additional listeners who were unaware of 

treatment conditions) via audio recordings and averaged.  All additional listeners were either 

ASHA certified speech-language pathologists or graduate students who were familiar with 

scoring rhotics.  All listeners were provided with written guidelines on whether to score a rhotic 

as correct or incorrect.  Listeners were instructed to still score rhotic diphthongs as correct if the 

following occurred: there was a pause during the transition between the vowel and the rhotic, but 

both the vowel and rhotic were still judged to be perceptually accurate, the voice quality of the 

rhotic diphthong was hoarse, but the target diphthong was judged to be perceptually accurate, 
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and any additional error (e.g., omissions, substitutions, etc.) occurred in a syllable that did not 

contain the rhotic diphthong.  Rhotic diphthongs were scored as incorrect if the following 

occurred: regardless of if the rhotic was perceptually judged as correct, the vowel of the rhotic 

diphthong was perceptually judged as incorrect, any error occurred in a syllable that contained 

the rhotic diphthong (e.g., addition, substitution, etc.), and too much pharyngeal constriction 

distorted the quality of the rhotic diphthong.  In general, listeners were instructed to score 

“marginally correct” productions as incorrect.  

A percentage of all correctly scored items was computed for each listener.  The 

percentages of correctly scored items were then compared between listeners to determine the 

degree of agreement.  The average of all four listeners’ data for each probe was then used as the 

final data presented for the acquisition, retention, and generalization results.   

To ensure all listeners’ scores were in general agreement, an absolute value between all 

four listeners’ scores was computed for acquisition, retention, and generalization for each 

participant (including baseline and follow-up items).  All values from each participant were then 

averaged together to quantify the average value of the difference in scoring between each 

listener.  Baseline and follow-up data scores were included in this calculation.  The average 

pairwise absolute difference between all four pairs of listeners was 7.11%.   

A timer was used to ensure that the duration of each block was approximately 13 

minutes.  Participants were allowed to finish the current block of six training items when the 

timer went off; thus, adherence to this time commitment was always controlled.  Regardless if a 

client arrived late to a scheduled session, treatment was always provided for one hour sessions. 

Additionally, treatment fidelity checks were performed by one graduate students in the 

Speech Pathology Program who had experience with scoring rhotics.  This student reviewed two 
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randomly selected sessions per participant (one in each treatment condition) via audio or video 

recordings to document adherence to the protocol with respect to percentage of verbal KR 

feedback and verbal KP feedback administered as well as agreement in rhotic scoring (KR 

feedback) during training in the chosen session.  Fidelity checks were only selected from 

treatment sessions where the participant made it out of the elicitation phase since adherence to 

verbal KR feedback and KP feedback could not be scored since the feedback protocol was not 

followed during the elicitation phase.  If a participant did not make it past the elicitation phase 

for each treatment condition then the fidelity check was completed for only one treatment 

condition. 

  A percentage of adherence to verbal KR feedback and KP feedback was calculated per 

trial of all eight sessions randomly chosen for fidelity checks across participants to ensure the 

treating clinician was adhering to the specified feedback protocol.  The quantified verbal 

feedback as outlined by the feedback protocol was accurately supplied 96.27% of the time.  

Treatment fidelity checks also included a percentage of agreement in rhotic scoring calculated 

for every trial where explicit KR feedback was provided by the treating clinician.  This ensured 

the treating clinician was in fact providing accurate reinforcement and diminishing true erred 

productions within a treatment session.  Agreement on the appropriateness of KR feedback 

between the treating clinician and graduate student was 91.12%.   

Moreover, for each session selected for the fidelity check the number of trials elicited 

from a participant during elicitation and training within a session was quantified and averaged 

across the eight sessions in order to demonstrate the numerous rhotic trials elicited from a 

participant during each session.  The average number of rhotic trials elicited from a participant 

during each session was 215.  
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Results 

The final data presented for the acquisition, retention, and generalization results were an 

average of the treating clinician and three additional listeners’ data for each probe item given the 

specified time point.  Results focused on the following data analyses: (a) descriptive statistics 

(i.e., means and standard deviations associated with each treatment condition) to complement 

visual inspections of single-subject graphs, (b) effect size calculation (raw and standardized 

difference between the two treatment conditions by computing Cohen’s d), and (c) statistical 

results from a randomization test (Kratochwill & Levin, 2014).  For the present study, a 

randomization test using all possible permutations of data was used to calculate p-values 

(significance values) conducted in R (R Core Team, 2015) where two directional p-values per 

condition were computed and then compared with a critical value of .05 for significance testing.  

Results are discussed using individual and summary analyses. 

Acquisition 

The administration of the Training Probe List during the beginning of the session and the 

end of the session allowed for acquisition to be quantified by computing the percent increase in 

accuracy from the beginning to the end of each session (i.e., acquisition rate).  Figure 6 shows 

participants’ percent increase of acquisition items (out of 100%) for all individual sessions.   

  Visual inspection of Figure 6 revealed most participants did not show a strong 

advantage for US sessions over NoUS sessions during acquisition.  However, participant 1003’s 

graph showed a generally consistent advantage for US sessions over NoUS sessions.  Participant 

1008’s graph showed no consistent advantage for either US sessions or NoUS sessions; however, 

four of the seven blocks demonstrated a higher rate of acquisition with an US session.  
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Participant 1004 and 1010’s graphs reveal both participants’ acquisition rates primarily remained 

at 0%, demonstrating no advantage for either US sessions or NoUS sessions.  

Figure 6: Acquisition   ___________________________________________________________            

 

 
*B = Baseline; S = Session 
**The baseline for Acquisition used in the above graphs is reported as a percent correct (the 
average taken from four listeners) of the two rhotic contexts chosen for training.  Follow-up data 
was not able to be measured given the procedures required for measuring acquisition rate. 
 

Descriptive statistics, effect sizes, and p-values were calculated to quantify and support 

the judgments made upon visual inspection.  These results are shown below in Table 4. As 

randomization tests were computed for each individual, separate p-values were derived.  

Participant 1003 showed a significant advantage of US sessions over NoUS sessions in 

acquisition scores; however, the remaining three subjects did not show a significant advantage 

for either treatment. 
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Table 4: Acquisition  
       Participants 

        --    ------------------------------------------------ 
Condition Calculation 1003 1004 1008 1010 
US 𝑥𝑥 (SD) 42.6 (18.2) 0 (0) 36.8 (21.2) 0 (0) 

NU 𝑥𝑥 (SD) 29.4 (15.6) 2.86 (7.56) 34.2 (19.8) 0 (0) 

Difference 𝑥𝑥𝑈𝑈𝑈𝑈 − �̅�𝑥𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 13.2 -2.86 2.67 0 

Effect Size 
(Cohen’s d) 𝑑𝑑 =

𝑥𝑥𝑈𝑈𝑈𝑈 − �̅�𝑥𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈
𝑆𝑆𝑆𝑆𝑝𝑝𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝

 
.783 -.756 .130 N/A 

P-value 
(NoUS−US) 

Randomization statistic .969 .5 .492 1.0 

P-value 
(US−NoUS) 

Randomization statistic .039* 1.0 .516 1.0 

�̅�𝑥 = mean percent; SD = standard deviation; * denotes statistical significance 

Retention 

Retention was quantified by examining the percent of Training Probe Items produced 

correctly at the beginning of the next consecutive session.  Individual participant data concerning 

retention are presented in Figure 7.  Figure 7 shows participants’ percent of retention (out of 

100%) achieved for all individual sessions. 
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Figure 7: Retention______________________________________________________________ 

 

 
*B = Baseline; S = Session; 1W = 1 week follow-up session; 1M = 1 month follow-up session 
**The baseline for retention used in the above graphs is reported as a percent correct (the 
average taken from four listeners) of the two rhotic contexts chosen for training. 
***Follow-up data is reported as a percent correct of all trained items that comprised the last 
treatment session’s Training Probe List (20) that were retained one month after treatment ended. 
****The Training Probe List was administered at the beginning of the next consecutive session: 
thus, session 2 reflects the influence of an ultrasound/no ultrasound session that occurred in 
session 1. 
 

Visual inspection of Figure 7 revealed there was a negligible difference between US 

sessions and NoUS sessions.  Visual inspection of participant 1003’s graph suggested an 

advantage for US sessions over NoUS sessions in four of the seven blocks when quantifying 

retention between two consecutive sessions.  Further, visual inspection of participant 1008’s 

graph revealed a trend for US sessions over NoUS sessions in four of the seven blocks.  Graphs 

from participants 1004 and 1010 showed both participants’ retention primarily remained at 0%: 

there was not an advantage for either US sessions or NoUS sessions.     

 



   55 
 

Descriptive statistics, effect sizes, and p-values were calculated to quantify and support 

the judgments made upon visual inspection.  These results are shown below in Table 5.  Though 

visual inspection revealed a slight advantage for US sessions over NoUS sessions for participants 

1003 and 1008, none of the participants showed a statistically significant advantage for one 

treatment over the other in retention scores.  

Table 5: Retention  
       Participants 

                              ----------------------------------------------------- 
Condition Calculation 1003 1004 1008 1010 
US 𝑥𝑥 (SD) 53.2 (20.3) 0.71 (1.89) 22.1 (9.29) 0 (0) 

NU 𝑥𝑥 (SD) 42.1 (25.6) 0 (0) 26.8 (21.4) 0 (0) 

Difference 𝑥𝑥𝑈𝑈𝑈𝑈 − �̅�𝑥𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 11.1 0.71 -4.64 0 

Effect Size 
𝑑𝑑 =

𝑥𝑥𝑈𝑈𝑈𝑈 − �̅�𝑥𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈
𝑆𝑆𝑆𝑆𝑝𝑝𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝

 
.482 .756 -.303 N/A 

P-value 
(NoUS-US) 

Randomization statistic .875 1.0 .297 1.0 

P-value 
(US-NoUS) 

Randomization statistic .172 .5 .711 1.0 

�̅�𝑥 = mean percent; SD = standard deviation; * denotes statistical significance 

Generalization 

Generalization was quantified by examining the percent of Generalization Probe Items 

produced correctly at the beginning of each session.   Individual participant data concerning 

generalization are presented in Figure 8.  Figure 8 displays the percent correct of Generalization 

Probe Items (out of 100%) participants achieved for all individual sessions. 
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Figure 8: Generalization__________________________________________________________ 

 

 
*B = Baseline; S = Session; 1W = 1 week follow-up session; 1M = 1 month follow-up session 
**The baseline and follow-up data for generalization used in the above graphs is reported as a 
percent correct (the average taken from four listeners) of the Generalization Probe List.   
***The Generalization Probe List was administered at the beginning of the next consecutive 
session: thus, session 2 reflects the influence of an ultrasound/no ultrasound session that occurred 
in session 1. 
 

Visual inspection of Figure 8 revealed no significant overall trend for an advantage for 

NoUS sessions or US sessions.  Individually, participant 1003’s graph revealed that 

generalization from both NoUS sessions and US sessions appeared to remain within close 

proximity of each other; however, a very minimal advantage for NoUS sessions over US 

sessions can be seen in four of the seven blocks.  Participant 1008’s graph further demonstrated a 

minimal advantage for NoUS sessions over US sessions in four of the seven blocks.  Participants 

1004 and 1010 made only negligible gains in generalization.   

Descriptive statistics, effect sizes, and p-values were calculated to quantify and support 

the judgments made upon visual inspection.  These results are shown below in Table 6. There 
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was no statistically significant advantage of one treatment over the other in participants’ 

generalization scores. 

Table 6: Generalization   
       Participants 

                              ----------------------------------------------------- 
Condition Calculation 1003 1004 1008 1010 
US 𝑥𝑥 (SD) 48.6 (18.3) 1.43 (1.90) 40.7 (10.6) 2.86 (1.46) 

NU 𝑥𝑥 (SD) 49.7 (13.7) 1.29 (0.76) 39.6 (6.46) 2.57 (2.44) 

Mean 
Difference 

𝑥𝑥𝑈𝑈𝑈𝑈 − �̅�𝑥𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 -1.14 0.14 1.08 0.29 

Effect Size 
𝑑𝑑 =

𝑥𝑥𝑈𝑈𝑈𝑈 − �̅�𝑥𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈
𝑆𝑆𝑆𝑆𝑝𝑝𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝

 
-.071 .107 .127 0.15 

P-value 
(NoUS-US) 

Randomization statistic .383 .570 .594 .688 

P-value(US-
NoUS) 

Randomization statistic .648 .5 .422 .344 

�̅�𝑥 = mean percent; SD = standard deviation; * denotes statistical significance 

Untreated Sound Probe List 

Two participants had one non-rhotic sound in error: this allowed for an Untreated Sound 

Probe List to be administered.  The Untreated Sound Probe Items served as a means to provide 

additional experimental control for the study.  The Untreated Sound Probe List was administered 

during all baseline and follow-up sessions and during every other treatment session beginning 

with treatment session 1.  Participants 1004 and 1010 both had final /s/ distortions; thus, the 

Untreated Sound Probe List administered to both participants was final /s/.  Individual participant 

data concerning final /s/ are presented in Figure 9.  Figure 9 displays the percent correct of 

Untreated Sound Probe Items (out of 100%) participants achieved for individual sessions. 
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Figure 9: Final /s/ as Untreated Sound Probe List_______________________________________ 

 
*B = Baseline; S = Session; 1W = 1 week follow-up session; 1M = 1 month follow-up session 
**The baseline and follow-up data for the Untreated Sound Probe List used in the above graphs 
is reported as a percent correct (the average taken from four listeners) of the same probe list 
administered throughout treatment. 
***Due to an administration error, there is no data point on 1004’s graph for the 1 week follow-
up session. 
 
 Visual inspection of Figure 9 revealed the accuracy achieved on the Untreated Sound 

Probe List for participants 1004 and 1010 remained consistent during treatment.  Thus, variables 

that may have affected a participant’s performance such as maturation effects were minimal 

when examining participants’ accuracy achieved on the Untreated Sound Probe List.   

Discussion 

This study compared effects of US treatment and NoUS treatment for 7-9 year olds with 

rhotic distortions.  Hypotheses derived from motor learning theory predicted the use of 

ultrasound as KP feedback would facilitate acquisition within a session; however, the use of 

ultrasound as KP feedback would hinder motor learning between consecutive sessions.  A 

relatively novel single-subject design, randomized block design (Kratochwill and Levin, 2014) 

was used to evaluate participants’ acquisition of rhotics within speech therapy while evaluating 

generalization and retention between consecutive sessions.  The addition of randomization to the 

study allowed for a variety of data-analysis strategies to be implemented including effect size 

and statistical significance (Rvachew, 1988).   
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Acquisition 

The acquisition rate served as the dependent variable to address Hypothesis 1: frequent 

exposure to ultrasound as visual feedback of the tongue will better facilitate acquisition of rhotic 

diphthongs compared to no ultrasound within treatment sessions. Participant 1003 showed a 

statistically significant advantage for US treatment over NoUS treatment relating to acquisition 

within a session.  Although participant 1008 displayed a small advantage for US treatment over 

NoUS treatment relating to acquisition within a session, the advantage was not statistically 

significant.  When comparing effect sizes across participants, participant 1003 demonstrated a 

larger effect size for US sessions over NoUS sessions with d=.78, while participant 1008’s effect 

size for US sessions over NoUS sessions was relatively smaller at d=.13.  It should be noted that 

participant 1004’s effect size was inflated due to a small standard deviation as a minimal 

acquisition increase was observed in only 1 of 14 sessions; therefore, participant 1004’s effect 

size cannot reliably be qualified.  Neither participant 1004 nor 1010 made notable progress in 

acquisition throughout the 14 treatment sessions.   

Consequently, Hypothesis 1 was true for only one of the four participants.  Therefore, 

these findings provided some support for the observation derived from motor learning theory:  

KP feedback facilitates acquisition.  In non-speech tasks that are not well established KP 

feedback may facilitate the rate of acquisition and overall performance levels (Newell et al. 

1990); additionally, the present study suggested KP feedback may be useful for some individuals 

in facilitating acquisition of speech tasks.   

Retention 

Retention served as the dependent variable to address Hypothesis 2: frequent exposure to 

ultrasound as visual feedback of the tongue may impede retention of rhotic diphthongs compared 
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to no ultrasound treatment.  No participants showed a statistically significant result to support 

Hypothesis 2, and visual inspection of the data also supported the conclusion that there were no 

differences in retention between the two treatments.  While the results were not statistically 

significant, participants 1003 and 1008 visually demonstrated a slight advantage for higher 

retention rates in more US sessions than NoUS sessions.  Neither participant 1004 or 1010 made 

notable progress relating to retention throughout the 14 treatment sessions.  When the effect sizes 

were examined, participant 1003 showed a medium effect size difference of d=.48 for US 

sessions over NoUS sessions.  Participant 1008 showed a small effect size difference of d=-.30 

for NoUS sessions over US sessions.  Again, participant 1004’s retention rates were negligible 

making a comparison between conditions difficult.  

It was notable that participant 1003, who showed a strong advantage for US treatment 

during acquisition, also showed the strongest (but not statistically significant) advantage for US 

treatment in retention.  Concerning non-speech tasks, an increase in KP feedback may impede 

motor learning (Hodges & Franks, 2001); however, participant 1003 demonstrated that an 

increase in KP feedback facilitated motor learning by moderately increasing retention between 

consecutive sessions.  Thus, concerning participant 1003, increased KP feedback did not impede 

motor learning.  Similar findings were observed in participant 1008 who did not demonstrate a 

decline in motor learning due to increased KP feedback.  Further, this may suggest that an 

increased rate of acquisition due to US treatment may also facilitate (and/or may not hinder) 

retention.  Additional studies with larger sample sizes are needed to further examine this claim. 

Generalization 

Accuracy on the Generalization Probe List served as the dependent variable addressing 

Hypothesis 3: frequent exposure to ultrasound as visual feedback of the tongue may impede 
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generalization of rhotic diphthongs compared to no ultrasound between treatment sessions.  

There were no statistically significant results to support Hypothesis 3 and visual inspection of the 

graphs revealed similar generalization rates associated with the two treatments.  However, 

pertaining to speech tasks, this observation contradicted the suggestion that an increase in KP 

feedback may impede motor learning as similarly found in non-speech tasks (Hodges and 

Franks, 2001).  The means of Generalization Probe Items produced correctly during US sessions 

and NoUS sessions showed very little variability for all participants.  Further, the standard 

deviations observed for US sessions compared to NoUS sessions were similar in value for all 

participants, demonstrating neither US sessions nor NoUS sessions contributed to more 

variability in generalization.   

Visual analysis did not reveal that an increase in KP feedback using US treatment 

impeded motor learning when compared to NoUS treatment.  The observed effect sizes for each 

participant further support this claim as all effect sizes were qualified as small: three participants 

showed a small effect for US sessions over NoUS sessions and one participant showed a small 

effect for NoUS sessions over US sessions. 

Pre/Post Data  

The effectiveness of treatment that includes an ultrasound as visual feedback component 

can be examined as a whole by using pretreatment and posttreatment data.  Figure 10 displays 

the average of all pre-treatment data collected at baseline for the Generalization Probe Items and 

the data collected at the 1 month follow-up. 
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Figure 10: Generalization Data Comparison        ______________________________________ 

 

Figure 10 demonstrated the increase in motor learning measured by the overall increase 

in the percent of Generalization Probe Items from baseline to the one-month follow-up for all 

participants.  Thus, the treatment as a whole, which contained sessions with and without 

ultrasound visual feedback, was successful for participants 1003 and 1008 as they both made 

noticeable gains in correct productions of untrained rhotic sounds over 14 sessions that remained 

one-month after therapy ceased.  Participants 1004 and 1010 did not establish the target sounds 

in isolation until the second half of therapy; thus, acquisition performance at the word level was 

not achieved.  Subsequently, motor learning could not take place as acquisition must precede 

learning in order to maximize learning (retention and generalization) during speech therapy 

(Maas et al., 2008; Schmidt & Lee, 1999).   

Additional Considerations  

The use of a single-subject randomized block design replicated across four subjects 

provided multiple opportunities for the intervention to demonstrate an effect.  However, 

treatment dose (i.e. fourteen sessions) may not have been enough for all participants to 

demonstrate an effect for the treatment.  Both participants 1004 and 1010 demonstrated 
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establishment of the trained sound in isolation within the last five treatment sessions.  Thus, had 

the treatment dose been longer than 14 sessions, these participants may have revealed additional 

information concerning the rate of acquisition within US sessions and NoUS sessions.  Further 

research evaluating the effectiveness of ultrasound visual feedback therapy given a larger dose is 

needed.    

Both participants 1003 and 1008, who demonstrated a response to the treatment as a 

whole, were older than participants 1004 and 1010, who did not demonstrate a response to 

treatment.  Thus, the following may be hypothesized from the above small-scale results: 

treatment containing an ultrasound as visual feedback component for rhotics is more effective for 

those age 9;0 and above.  One speculated reason for this is that the older participants were better 

able to interpret the visual feedback the ultrasound provided and incorporate the feedback into 

their own rhotic production.  Another reason may be that since rhotics are one of the last 

phonemes to be acquired in children when compared to all other English phonemes that therapy 

targeting rhotics will be more effective once participants have reached age 9;0 where it is 

generally accepted that the production of American English speech sounds should be mastered 

(Arlt & Goodban, 1976; Shriberg 1994; Smit et al., 1990; Templin, 1957).   Further, if the sound 

should be mastered at age 9;0, but has yet to be acquired, perhaps the stimulability for rhotics 

may have at least improved with a more mature articulatory system in place at age 9;0 compared 

to 7;0. 

Interestingly, both participants 1003 and 1008 were stimulable (i.e., minimal 

establishment) for rhotics in some contexts (e.g., initial syllable position) scoring above 30% on 

the Miccio stimulability probe.  Thus, both participants who were stimulable for rhotic targets 

demonstrated enhanced acquisition rates with the use of the ultrasound.  In contrast, prior to 
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therapy, participants 1004 and 1010 demonstrated they were not stimulable (i.e., no 

establishment) for rhotics in any context, scoring 0% on the Miccio stimulability probe.  

Consequently, the acquisition rates for participants 1004 and 1010’s sessions were consistently 

below 10%.  Thus, stimulability may be an important factor when examining the success of 

acquisition within US and NoUS rhotic speech therapy where those who are stimulable for a 

target sound will experience a higher success rate during acquisition. 

It is important to note that all participants did establish the target sounds in isolation 

during therapy.  Even participants 1004 and 1010, who were not stimulable for any rhotic before 

therapy, were stimulable for certain rhotic contexts after the conclusion of therapy.  Comparisons 

of participants’ scores on the pre-therapy Miccio stimulability probe and scores on the 1 week 

follow-up Miccio stimulability probe revealed that all participants’ scores increased by at least 

6%.  Thus, therapy as a whole that contains an ultrasound as visual feedback component was 

successful in establishing stimulability for participants.  Ultrasound has been found to be 

particularly useful at the beginning of therapy to help establish the sound in error by allowing 

participants to view their tongue configuration during a correct rhotic production (Lee et al., 

2015).  Further research evaluating the effectiveness of when an ultrasound visual feedback 

component is introduced in therapy is needed. 

Additionally, both participants 1004 and 1010 had other consistent, noticeable sounds in 

error, while 1003 and 1008 did not.  Thus, perhaps it is noteworthy that participants who only 

had one sound in error experienced a higher success rate during treatment containing an 

ultrasound as visual feedback component.  This could again be related to age or severity, as an 

older participant had more time to stabilize other sounds in error.  Further research evaluating the 

effectiveness of ultrasound visual feedback therapy on differing age groups is needed.    
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Caveats and Limitations 

 The focus of this study was on quantifying acquisition, generalization, and retention for 

sessions that involved ultrasound compared to performance from sessions using no ultrasound 

for children ages 7-9 years.  Therefore, a randomized within block single-subject design was 

used to avoid cumulative effects on one treatment type occurring three or more times together, 

and to control for rising trends in the data.  However, this design was not able to control further 

for cumulative effects that may occur from effective treatment as a whole pertaining to US and 

NoUS treatment sessions.  Thus, the assumption was that generalization was attributed to the 

prior treatment session, though it is possible that the combined effects of all prior treatment could 

influence generalization.  This design did not allow for unbiased control of a cumulative effect.  

Still, effect size calculations from the Generalization Probe List and Training Probe List revealed 

how US treatment or NoUS treatment affected the acquisition rate within a session, as well as 

generalization and retention in the subsequent session. Group designs such as a randomized 

control trail would be required to overcome this limitation of multiple treatments being 

administered to an individual. 

It is noteworthy that this study was primarily concerned with quantifying performance, 

retention, and generalization: performance was examined within treatment sessions comparing 

ultrasound visual feedback sessions versus those with no ultrasound; retention and generalization 

were examined between two consecutive treatment sessions wherein the use of ultrasound visual 

feedback versus no ultrasound in the previous session was compared.  Therefore, while visual 

inspection of the collected data allowed for general conclusions to be drawn about the 

effectiveness of overall treatment containing US sessions and NoUS sessions, no conclusions 

could be drawn concerning the effectiveness of only US treatment or only NoUS treatment over 
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the length of the study.  Pre-to-post-treatment comparisons only allowed for evaluation of the 

treatment program as a whole.   

Conclusion 

This study allowed for the first comparisons to be drawn between treatment using 

ultrasound as visual feedback and treatment with no ultrasound: informing the field of speech-

language pathology of important considerations concerning how exposure to ultrasound as visual 

feedback of the tongue facilitated acquisition of rhotic diphthongs compared to no ultrasound 

during treatment sessions and how frequent exposure to ultrasound as visual feedback of the 

tongue may impede retention and generalization of rhotic diphthongs.  By addressing the three 

hypotheses derived from motor learning theory, this study built upon existing research to 

establish new findings in the efficacy of ultrasound that will support and guide future research.  

In particular, for some children, acquisition may be facilitated by ultrasound visual feedback, and 

there was no evidence that ultrasound visual feedback inhibited retention or generalization.  
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Appendix A 
Training Probe List Sample 

 
US words 
/ar/ arm 
/ar/ car 
/ar/ far 
/ar/ star 
/ar/ par 
/ɪr/ deer 
/ɪr/ near 
/ɪr/ fear 
/ɪr/ tear 
/ɪr/ gear 
 
NoUS words 
/ar/ mar 
/ar/ tar  
/ar/ jar 
/ar/ spar  
/ar/ ark 
/ɪr/ clear 
/ɪr/ cheer 
/ɪr/mere 
/ɪr/ hear 
/ɪr/ peer 
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Appendix B 
Training Probe Chains 

/ar/ Ultrasound 
 

1. /ar/   car  cartoons          old Sunday cartoons She saw new Monday cartoons. 
Watching funny cartoons. 
Beth hates watching cartoons. 
I laughed at the cartoons. 
The cartoons put us asleep. 
Cartoons begin at six. 

 
2. /ar/ par  partake  she will partake She will partake in that. 

He will partake in this. 
She will partake, if you do. 
When you partake, she will. 
If you partake, I will. 
I will partake to win. 
 

3. /ar/ far  farmer  old farmer Joe  The farmer has many pigs. 
Farmer Jim has donkeys. 
The farmer will plow tonight. 
Farmer Bob has two cats. 
I know a nice farmer. 
Who is that young farmer? 

 
4. /ar/ arm  armload she has an armload She held onto an armload. 

      They had an armload of things. 
His armload was too heavy. 
He has an armload of food. 
His armload of books fell. 
The pen was in his armload. 

 
 
 

5. /ar/ star  starter  small starter plate     He ate the starter plate. 
She wanted one starter plate. 
The starter plate had salad. 
No starter plate was given. 
Ben asked for a starter plate. 
The starter plate looked nice. 

 
/ar/ No Ultrasound 
 

1.   /ar/ jar  ajar  closet was ajar  The window was ajar. 
Did you leave the case ajar? 
Close the book that is ajar. 
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Who left the box ajar? 
The oven was left ajar. 
Do not leave the chest ajar. 
 

2. /ar/ ark  arcsine  find the arcsine What arcsine did you get? 
The arcsine is negative. 
I did not know the arcsine. 
That arcsine was complex. 
What is the arcsine function? 
Did you get the arcsine? 
  
 

3. /ar/ tar  guitar  yellow guitar  He is playing the guitar. 
The guitar is white and blue. 
Can you play the guitar? 
I bought a new guitar. 
The shop has one guitar. 
I asked to play the guitar. 
 

4. /ar/ spar  Sparta  king of Sparta  Sparta used to be a place. 
I have not seen Sparta. 
The queen lived in Sparta. 
The movie shows Sparta. 
They made pots in Sparta. 
Sparta had a temple. 
 

5. /ar/ mar  market  hectic market  The market had candy. 
The market was on Monday. 

         Can we go to the market? 
         Buy milk at the market. 
         When does the market open? 
         The market sells donuts.  

 
/ɪr/ Ultrasound 
 

1. /ɪr/ deer  deerfly  big black deerfly I saw a huge deerfly. 
The boy found a deerfly. 
The deerfly sat on a leaf. 
Did you see the deerfly? 
I do not like that deerfly. 
How big is that deerfly? 
 

2. /ɪr/ gear  headgear ugly headgear  I do not have headgear. 
His headgear was yellow. 
She got headgear last night. 
Ben has old blue headgear. 
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He will not use his headgear. 
He lost his new headgear. 
  

3. /ɪr/ tear  tearful  tearful weeping She was sad and tearful. 
Why is she so tearful? 
He was mad and tearful. 
I was tearful today. 
I hate being tearful. 
No one was tearful at lunch. 
 

4. /ɪr/ near  engineer gifted engineer My mom is an engineer. 
The engineer made a plan. 
He paid the engineer. 
The engineer is late. 
The engineer built the pond. 
I saw the engineer. 
 

5. /ɪr/ fear  hemisphere south hemisphere hot, humid, south hemisphere 
Which hemisphere is that? 
Cold, snowy hemisphere 
Let’s go to that hemisphere. 
Stay in the south hemisphere. 
That hemisphere is windy. 

/ɪr/ No Ultrasound 
 

1. /ɪr/ Mere  meercat one black meercat I own a white meercat. 
Have you seen a meercat? 
lovely, fun, playful meercat 

          Does the meercat live outside? 
The zoo has a meercat. 
I named my meercat Tim.  
 

2. /ɪr/ Clear  clearly  clearly happy   He was clearly sad to lose. 
Can you see clearly outside? 
The window is clearly clean. 
You can clearly tell time. 
Did she clearly see him? 
She was clearly upset.  
 

3. /ɪr/ Hear  hereby  I hereby state  I hereby state the law. 
You will hereby follow me. 
Changes are hereby allowed. 
I hereby quit the team. 
Sue hereby denies the claim. 
I hereby join the club. 
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4. /ɪr/ Cheer  cheerlead loudly cheerlead       Ten boys will cheerlead today. 
I did not cheerlead tonight. 

The coach watched them cheerlead. 
    They had to cheerlead last night. 
     You have to shout to cheerlead. 

I have fun when I cheerlead. 
 

5. /ɪr/ Peer  appear  quickly appear          She watched the ghost appear. 
Swiftly and quickly appear. 
I did not see him appear. 
Did she appear to be home? 
What did he appear to do? 

It did not appear so. 
 
/ɛr/ Ultrasound 
 

1. /ɛr/ bear  barefoot walking barefoot     I like being barefoot. 
 I always walk barefoot. 

      Don’t walk barefoot in the sand. 
       Walk barefoot in the house. 

Only kids play barefoot. 
Jake was barefoot at school. 
 

2. /ɛr/ pear  compare compare cool toys The siblings compare outfits. 
        Let’s compare the lunch boxes. 
        I want to compare notebooks. 
         Do not compare assignments. 
     His mom will compare the shoes. 
     Compare the penny and dime. 
 

3. /ɛr/ care  careful  be careful outside My mom said be careful. 
You must be careful in class. 
Be careful when jogging. 
Take notice and be careful. 
Be careful when swinging. 
Slow down and be careful. 
 

4. /ɛr/ wear  swimwear new pink swimwear     He loved his old swimwear. 
     She bought new swimwear today. 
        He lost his swimwear last night. 

What size is that swimwear? 
            Put on the black swimwear. 
       You need swimwear in the pool. 
 

5. /ɛr/ chair  highchair old white highchair Mom found an old highchair. 
I do not use a highchair. 
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         Jen sat in the highchair. 
         Do you have a highchair? 
         The highchair is for babies. 
               The new highchair was yellow. 
 
/ɛr/ No Ultrasound 
 

1. /ɛr/ share  timeshare Disney timeshare  Do you have a timeshare?  
      They had to use the timeshare. 
     The timeshare was neat and cool. 

Use the timeshare this month. 
    Make sure to book the timeshare. 
      When did you use the timeshare? 

 
2. /ɛr/ fair  unfair  the unfair test  The test was so unfair. 

She took the unfair quiz. 
      The baseball game was unfair. 

Do not be unfair to them. 
His mom was being unfair. 
Tom acted unfair to Ben. 
 

3. /ɛr/ stair  staircase the long staircase The staircase was too steep. 
Do not fall on the staircase. 
Only walk up the staircase. 
It was a wooden staircase. 
Do not spill on the staircase. 
No one used the staircase. 
 

4. ɛr/ mare  nightmare  daily nightmare The nightmare was too odd. 
He had a nightmare today. 
I did not have a nightmare. 
His nightmare was happy. 
The nightmare woke him up. 
The nightmare was funny. 
 

5. /ɛr/ dare  daredevil foolish daredevil The daredevil was silly. 
I know a daredevil. 
The daredevil has a dog. 
The daredevil took the stage. 
The daredevil has a cape. 
Did you see the daredevil? 

/ɔr/ Ultrasound 
 

1. /ɔr/ core  encore   standing encore The encore was too loud. 
They will give one encore. 
Did they play an encore? 
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How was the encore tonight? 
John asked for an encore. 
The band gave an encore. 

 
2. /ɔr/ shore  shoreline sandy shoreline Swim close to the shoreline. 

Do not leave the shoreline. 
The shoreline is sandy. 
I will tan by the shoreline. 
I will walk to the shoreline. 

         The shoreline is nice and cool. 
 

3. /ɔr/ door  doormat welcome doormat They got a new doormat. 
The doormat was navy blue. 
The doormat said hello. 
We bought a pink doormat. 
Shoes go on the doormat. 
The old doormat was muddy. 
 

4. /ɔr/ sore  soreness painful soreness She has a bad soreness. 
The soreness did not leave. 
She felt the soreness daily. 
Annoying, stabbing, soreness 
His soreness was aching. 

           Walking caused him soreness. 
  

5. /ɔr/ four  twenty-four twenty-four minutes On channel twenty-four 
She is twenty-four today. 

      I bought twenty-four of those. 
Did she get twenty-four? 
Is he only twenty-four? 
I am in seat twenty-four? 
 

/ɔr/ No Ultrasound 
 

1. /ɔr/ More   mortified   highly mortified  Pat and Bob feel mortified. 
I was not mortified. 
The kids felt mortified. 
Does he look mortified? 
Why was she mortified? 
I hate feeling mortified. 
 

2. /ɔr/ war  warship blue steel warship I saw the huge warship. 
        The movie had a warship. 
        The warship had a cool name. 
        The game used a warship. 
        The warship was too big. 
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        Have you seen a warship? 
  

3. /ɔr/ bore  boredom long-lasting boredom Boredom got the best of him. 
Boredom makes me feel sad. 
She was sitting in boredom. 
No end in sight boredom 
He sat filled with boredom. 
Keep busy to stop boredom.  
 

4. /ɔr/ store  bookstore giant bookstore        When does the bookstore open? 
I love the new bookstore. 
The bookstore sells coffee. 
I study in the bookstore. 
I went to the bookstore. 
Lovely, quiet bookstore 

 
5. /ɔr/  floor  seafloor sandy seafloor  Plants sit on the seafloor. 

I have not seen the seafloor. 
        The seafloor only looks black. 
       You can’t swim by the seafloor. 

The deep seafloor is clean. 
Fish live in the seafloor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



   87 
 

Appendix C 
Target Sound Word Bank 

/ar/ Ultrasound Word Bank 
     

1. /ar/ part  partly  partly finished  He partly finished cleaning. 
The partly shaded pool. 
That is only partly fixed. 
She was partly finished. 
The leaf turned partly yellow. 
The steak was partly cooked. 
  

2. /ar/ bar  spacebar  key the spacebar Tap the spacebar to type. 
       Both thumbs go on the spacebar. 

Do you see the spacebar? 
The spacebar can help you. 
The spacebar is all black. 

      The spacebar keeps getting stuck. 
 

3. /ar/ harm  harmless harmless puppy The fly outside was harmless. 
He was big, but harmless. 

         She watched the harmless film. 
She will pet the harmless cat. 

          The harmless fish looked mad. 
The tall boy was harmless. 

 
/ar/ No Ultrasound Word Bank  
 

1. /ar/ heart   heartbeat steady heartbeat He has a stable heartbeat. 
He felt his quick heartbeat. 
A heartbeat does not stop. 
She had a slow heartbeat. 
The man took his heartbeat. 

       His heartbeat was loud and fast. 
 

2. /ar/  lark  skylark  singing skylark The sweet song of a skylark. 
        The skylark was yellow. 
        Do you see the skylark? 
        The skylark is in the bush. 
        The skylark built a nest? 
        The skylark flew away. 
  

3. /ar/ sharp  sharpness  sharpness of glass The sharpness of his song. 
         His mental sharpness was odd. 
   The sharpness of his mind showed. 

Test his mental sharpness. 
      The photo’s sharpness was key. 
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Intellectual sharpness 
 

/ɪr/ Ultrasound Word Bank 
 

1. /ɪr/ leer  chandelier fancy chandelier The house has a chandelier. 
The chandelier was heavy. 
I got a new chandelier. 
The chandelier has diamonds. 
Did you buy a chandelier? 
He put up the chandelier.  
 

2. /ɪr/ spear  spearfish ugly spearfish  Spearfish are in the lake.  
        Have you eaten spearfish? 

I do not like spearfish. 
They caught a huge spearfish. 
Spearfish is for lunch today. 
I saw fifty spearfish. 
 

3. /ɪr/ beard  beardless beardless old man The beardless man ate alone. 
He liked being beardless. 
He was always beardless. 
Being beardless is awesome. 
Shaving made him beardless. 
The beardless man said hello. 

 
/ɪr/ No Ultrasound Word Bank 
 

1. /ɪr/ weird  weirdness  absolute weirdness The weirdness was silencing. 
       His weirdness made it awkward.  
        The book was full of weirdness. 
          Total lack of weirdness 
        Complete absence of weirdness. 
         His weirdness was engaging.  
 

2. /ɪr/ smear  smearcase stinky smearcase   Would you like some smearcase? 
       The smearcase is too soft. 
       I bought some new smearcase. 
        Have you eaten the smearcase? 
        The smearcase was homemade. 
       Put the smearcase on toast. 

 
3. /ɪr/ year  midyear midyear budget  Midyear evaluation 
         When will it be the midyear? 
          Midyear analysis 
         The midyear is coming soon. 
         Finalize the midyear task. 
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         Hand in the midyear study. 
/ɛr/ Ultrasound Word Bank 
 

1. /ɛr/ there  thereby thereby announce I thereby state my claim. 
I thereby absolve the dues. 
It is thereby concluded. 
I thereby give consent. 
Thereby hangs my fall coat. 
He thereby deceived me. 
 

2. /ɛr/ clair  éclair  vanilla éclair  He ate an éclair today. 
The éclair was tasty. 
I ate the éclair second. 
The éclair looked delicious. 
Have you had an éclair? 
Eat the éclair with coffee. 
 

3. /ɛr/ glare  aglare  somewhat aglare The sky was aglare tonight. 
The window looked aglare. 

      The noise made him stand aglare.  
        His eyes were aglare with love. 
      His speech was aglare with hope. 
       The jewel was aglare with light. 

 
/ɛr/ No Ultrasound Word Bank 
 

1. /ɛr/ tear  teardown teardown inspection She wanted the teardown. 
          They bought the old teardown. 
         The teardown was full of mold. 

The teardown was easy. 
        The teardown site was close by. 
         The teardown had to happen. 
 

2. /ɛr/ flare  flare-up sudden flare-up His asthma would flare-up. 
        The headaches may flare-up. 
        I had a flare-up today. 
        That may cause a flare-up. 
        I had an acute flare-up. 
        The flare-up has not stopped. 
  

3. /ɛr/ scare  scarehead back page scarehead  The scarehead was too small. 
           The scarehead caught my eye. 

Put the scarehead up top. 
          Type the scarehead in big font. 
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Did you see the scarehead? 
How big is that scarehead? 

  

/ɔr/ Ultrasound Word Bank 
 

1. /ɔr/ pore  polypore polypore fungus Stinky polypore fungus 
Polypore is a fungus. 
The polypore was huge. 
A polypore collection. 
The polypore smelled bad. 
The polypore looked odd. 
 

2. /ɔr/ corn  popcorn salty popcorn  I love the smell of popcorn. 
        Popcorn is the best snack. 
              Please pass the bowl of popcorn. 
        I like movie popcorn. 
        Do you want some popcorn? 
        The popcorn tastes fabulous. 
  

3. /ɔr/ sort  resort  resort the deck  You must resort the tokens. 
        Resort the deck and don’t cheat. 
 Did you resort the books? 
 I will do the resort. 
         The resort will take place soon. 

Resort the deck and begin. 
      

/ɔr/ No Ultrasound Word Bank 
 

1. /ɔr/ lore  galore  movies galore  You can buy gadgets galore. 
        They have tablets galore. 
        Did you see the shoes galore? 
        They had sales galore today. 
        We went swimming galore. 
        We found tickets galore. 
  

2. /ɔr/ thorn  hawthorn hawthorn bushes I saw the big hawthorn bush. 
The hawthorn was in bloom. 
I planted one hawthorn. 
The hawthorn cut me today. 
The hawthorn looked lovely. 
She bought me a hawthorn. 
 

3. /ɔr/ Port  import   Spanish import He liked Polish import food. 
The import candy went bad. 

 



   91 
 

Please import the old files. 
We will import the coffee. 
You must pay the import tax. 
I will import the photos. 
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Appendix D 
Procedures for Adapting the Training Probe List 

 
Each participant began the first therapy session with all monosyllabic Training Probe 

Items.  When a monosyllabic Training Probe Item was produced correctly at the beginning of a 

session, a longer phrase containing 6-7 syllables (i.e., the highest level of a chain) was 

introduced as the Training Probe Item.  When that phrase was produced correctly, a new 6-7 

syllable phrase containing a different multisyllabic word that included the target sound was 

introduced.  Up to three new phrases were introduced per Training Probe Item in order to find a 

phrase where the participant produced the target sound incorrectly.  Figure 11 below displays the 

process used when selecting the appropriate Training Probe Item to be trained within a session 

given a participant’s production. 

Figure 11: Training Probe Item Selection Process 
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A Training Probe Item was only changed if it was produced correctly before a session 

where it was going to be trained; if the Training Probe Item was correctly produced before a 

session where it was not going to be trained, it was not changed.  This structure helped to ensure 

a true measure of performance during acquisition occurred in each session as participants were 

not practicing sound targets in words or phrases that had already been correctly produced.  

However, if a participant produced chair (i.e., a trained word) correctly at the end of session 9, 

but incorrectly at the beginning of session 10, chair would still be trained during session 10 

because although acquisition was reached in session 9, retention was not observed.  Since 

acquisition and retention both precede generalization, retention must be achieved before moving 

onto a new target because learning is the ultimate goal of speech therapy.  However, if a 

participant incorrectly produced chair (i.e., a trained word) at the end of session 9, but correctly 

produced chair at the beginning of session 10, chair would be replaced and not trained during 

session 10 since generalization of the trained word must have occurred between the sessions.  

When possible, Training Probe Items produced correctly at the beginning of a session would not 

be trained to help ensure each participant began every session at 0% accuracy on Training Probe 

Items.   

However, a finite number of chains were available for each sound context.  If a 

participant worked through all word bank Training Probe Items for a sound target, a phrase or 

short sentence training target they correctly produced at the beginning of a session was 

administered again as a Training Probe Item.  Although a Training Probe Item had previously 

been correctly produced, it may have been used again as a training target if the participant 

produced it incorrectly at the beginning of a session.  Up to three new phrases were introduced 
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per Training Probe Item in order to find a phrase where the participant produced the target sound 

incorrectly and sometimes the three phrases included previously trained Training Probe Items.   
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Appendix E 
Generalization Probe List 

/ɚ/ doctor 
/ɚ/ beautiful flower 
/ar/ barn 
/ar/ big yard 
/ɛr/ arrow 
/ɛr/ white hair 
/ɝ/ birthday 
/ɝ/ purple coat 
/ɪr/ pioneer 
/ɪr/ steering wheel 
/ɔr/ score 
/ɔr/ making s’mores 
/r/ rice  
/r/ red shoes 
/gr/ sweet grapes 
/dr/ drinking milk 
/fr/ frying pan 
/pr/ pretty sky 
/str/ straw 
/spr/ yellow sprinkles 
/θr/ three 
/r/ Tina loves rain. 
/ɝ/ I got a fern. 
/ɚ/ Superman is awesome. 
/r/ The room is painted pink. 
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Appendix F 
Untreated Sound Probe List for /s/ Final 

1. Geese 
2. Kiss 
3. Face 
4. Chess 
5. Gas 
6. Bus 
7. Purse 
8. Nurse 
9. Boss 
10. Moose 
11. Voice 
12. Dice 
13. Rice 
14. House 
15. Police 
16. Necklace 
17. Walrus 
18. Shoelace 
19. Princess 
20. Hourglass 
21. Universe 
22. Lacrosse 
23. Octopus 
24. Caboose 
25. Tree house 
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Appendix G 
Baseline Training Probe List 

/ar/ car 
/ar/ ark 
/ar/ arm 
/ar/ tar 
/ar/ park 
/ɪr/ deer 
/ɪr/ gear 
/ɪr/ tear 
/ɪr/ near 
/ɪr/ fear 
/ɛr/ bear 
/ɛr/ pear 
/ɛr/ care 
/ɛr/ wear 
/ɛr/ chair 
/ɔr/ corn 
/ɔr/ shore 
/ɔr/ door 
/ɔr/ sore 
/ɔr/ four 
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Appendix H 
Randomization Schedule for Participants 

 

Participant 
Random 
Baseline # 

Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

Block 
7 

1003 4 
US  
NoUS 

US  
NoUS 

 NoUS  
US 

NoUS  
US 

US  
NoUS 

NoUS  
US 

US  
NoUS 

1004 3 
US  
NoUS 

US  
NoUS 

NoUS  
US 

US  
NoUS 

US  
NoUS 

US  
NoUS 

NoUS  
US 

1005 5 
NoUS  
US 

US  
NoUS 

NoUS  
US 

US  
NoUS 

NoUS  
US 

US  
NoUS 

NoUS  
US 

1008 3 
NoUS  
US 

US  
NoUS 

NoUS  
US 

US  
NoUS 

US  
NoUS 

NoUS  
US 

NoUS  
US 
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Appendix I 
Data Collection Form (cf. Preston et al., 2014) 

 
ELICITATION 
for  

S
1 ___________________________   

Block: 
_________   

ELICITATION 
for  

S
2 ___________________________        

Syl. 
Feed 
back 

S 
c 
o 
r 
e 

Mo
nos
yl. 
Wd 

Feed 
back 

S
c
o
r
e 

Mu
ltis
yl. 
Wd 

Feed 
back 

S
c
o
r
e 

Sho
rt 
Phr 

Feed 
back 

S
c
o
r
e 

Var 
Lon
g 
Phr 

Feed
back 

S
c
o
r
e 

S1 KR,KP   
Mo
no1 KR,KP   

Mul
ti1     

Phr
1     1     

S1 KR,KP   
Mo
no1 KR,KP   

Mul
ti1 KR,KP   

Phr
1 KR   2 KR   

S1     
Mo
no1 KR,KP   

Mul
ti1 KR,KP   

Phr
1 KR,KP   3 KR   

S1 KR,KP   
Mo
no1 KR,KP   

Mul
ti1 KR   

Phr
1     4     

S1 KR,KP   
Mo
no1     

Mul
ti1     

Phr
1 KR   5    

S1 KR,KP   
Mo
no1 KR   

Mul
ti1 KR   

Phr
1     6     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



   100 
 

BIOGRAPHICAL DATA 
 
NAME OF AUTHOR:  Greta Marie Sjolie 
PLACE OF BIRTH:  Yankton, South Dakota 
DATE OF BIRTH:  March 16, 1989 
UNDERGRADUATE SCHOOL ATTENDED:   

Simpson College, Indianola, Iowa 
 
DEGREE AWARDED: 
 Bachelor of Arts in English and Political Science, 2011, Simpson College 
 
PROFESSIONAL EXPERIENCE: 
 Research Assistant, Speech Production Laboratory, Syracuse University 
 

 


	Effects of Ultrasound as Visual Feedback of the Tongue on Generalization, Retention, and Acquisition in Speech Therapy for Rhotics
	Recommended Citation

	tmp.1455821646.pdf.3MQts

