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Abstract 

Neurogenesis, the generation of new neurons, is most prevalent when the brain is being formed 
during pre-natal development. However, this process continues in select areas in the brain during 
adult life as well. One such area in the brain is the dentate gyrus (DG) of the hippocampus, an 
area known to be associated with learning and memory. In this region, neurogenesis is believed 
to contribute to neuroplasticity as well as improving its functions in learning and memory. 
Interestingly, this synthesis of neurons is increased by physical activity—predominantly 
running—and by seizures originating in the limbic system. The increased excitatory neuronal 
activity that occurs during a seizure leads to an increase in an enzyme called cyclooxygenase-2 
(COX-2), the initial enzyme in the production of prostaglandins from arachidonic acid. COX-2 is 
usually expressed in certain neurons of the brain including the CA3 subregion of the 
hippocampus, and its level of expression is linked to increased excitatory neuronal activity. In 
other words, COX-2 is up-regulated by seizure activity; therefore, during seizures there is an 
increase in COX-2 activity and expression. Because new neurons exhibit increased excitatory 
responsiveness, the goal of this research is to test the possibility that exercise-induced new 
neurons of the DG will exhibit increased COX-2 levels following acute seizure activity. It is 
predicted that it will, and amplified COX-2 levels will be found in subjects that have access to 
physical exercise, particularly in the new neurons generated by running. An experimental group 
of mice were supplied with running wheels and allowed to run for roughly one month. 
Bromodeoxyuridine (BrdU) was injected one week after the start of running in order to label the 
newly generated neurons in the hippocampus. After running, animals were subjected to acute 
seizures through pentylenetetrazol (PTZ) injections, and the subsequent seizures were scored 
based on severity. Cardiac perfusions were then performed to collect brain tissue that was then 
coronally sectioned using the cryostat and mounted on microscope slides, in order to stain for 
COX-2 and BrdU. Running mice exhibited lower seizure scores than control mice implying that 
the neurogenesis induced by physical activity increased the COX-2 levels, thus raising the 
seizure threshold in exercised mice. 
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Executive Summary 
 

Seizures are caused by abnormal and excessive electrical activity in the brain. People are 

said to have epilepsy when they have had two or more seizures in their lifetimes. Thus, epilepsy 

is characterized by reoccurring seizures that happen without provocation. This disease has been 

diagnosed in roughly 1% of the population worldwide. There are a myriad of factors that can 

cause seizures with the most common including infection, trauma, high fevers in children, and 

genetic factors. In addition, brain damage from other disorders like stroke—which deprive the 

brain of oxygen—may also cause seizures. However, in about half of all cases in epilepsy, the 

cause is unknown demonstrating much research is necessary to better understand this elusive 

disease. Antiepileptic drugs are by far the most common approach to treating those with epilepsy. 

Yet there is still no drug that cures it. There are dozens of antiepileptic drugs that for the most 

part, help epileptic patients maintain and manage their seizures by suppressing them. But there 

are full of side effects including sedation and alternatives in cognition. It is up to health care 

providers to tailor the right combination of drugs to each patient because everybody reacts 

differently to them; epileptic episodes have different triggers in different people. Consequently, 

any kind of drug treatment is really just trial and error, which is inefficient and taxing on the 

patient. In addition, epilepsy about 30% of the time, does not respond to any antiepileptic drugs 

at all. In more extreme cases, surgery is recommended in which surgeons remove or sever 

connections to the brain area where the seizures are originating. This is limited by important that 

brain region is for everyday behavior. None of these treatments are ideal, which is another reason 

why epileptic research is so important today.  

Epilepsy is centered on the idea that there is a balance between excitation and inhibition 

in the brain, and if excitation is increased, a seizure may occur. There are two ways to increase 
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excitation: by increasing excitatory neurotransmitters like glutamate, and by decreasing 

inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA). In both situations, 

excitation is in excess increases the probability of a seizure. After the increased neuronal activity 

that occurs during a seizure, levels of an enzyme called cyclooxygenase-2 (COX-2) immediately 

rise in neurons of the hippocampus and cortex. COX-2 plays a key role in the metabolism of 

arachidonic acid, which is a polyunsaturated fatty acid that is stored in the membrane 

phospholipids. Arachidonic acid is freed from a phospholipid molecule by the enzyme 

phospholipase A2. When it is released, COX-2 can metabolize it—transforming arachidonic acid 

into a variety of different prostaglandins. These prostaglandins are compounds that have varying 

hormone-like effects that help the body with many different functions including constriction and 

dilation of vascular smooth muscle cells, inducing labor, and regulating inflammation, calcium 

movement, and hormones. COX-2 expression may be an important mechanism to suppress 

seizure activity and bring excitatory levels back down. Hence, this increase in COX-2 after 

subsequent excessive excitatory activity in the brain may be an endogenous, antiepileptic 

mechanism. For the purposes of this project, high levels of COX-2 are viewed as good because 

they are neuroprotective and keep seizure activity in check. This project focuses on neurogenesis 

as something that can further increase COX-2 levels, helping to suppress seizure activity. 

Neurogenesis, the generation of new neurons, is most active during pre-natal development. 

However, new neurons are also formed throughout adult life, specifically in the dentate gyrus of 

the hippocampus, and this is increased by exercise. These newly generated neurons exhibit 

increased responsiveness; they are malleable and easily influenced by changes produced by 

drugs. Because new neurons exhibit increased excitatory responsiveness, I predict that these 

neurons in particular will overreact to a seizure, and produce higher levels of COX-2 than the 
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regular, more mature neurons around them. This will lead to overall amplified COX-2 levels in 

exercised mice as opposed to non-exercised mice. In addition because I conjecture that exercised 

mice will have higher COX-2 levels, I also hypothesize that these animals will have a higher 

seizure threshold than the non-exercised animals—meaning a stronger stimulus will be needed in 

order to induce a seizure in these mice.  

These studies could add to the accumulating evidence suggesting that voluntary exercise 

is neuroprotective. In addition to increasing performance in hippocampal functions, such as 

synaptic plasticity, learning, and memory, exercise may also increase the seizure threshold—

information that could have implications for future development of treatments for epileptic 

patients.  
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Chapter 1 

Introduction 

 

 

 

 

Epilepsy 

 Epilepsy is a common brain disease that is characterized by recurrent spontaneous 

seizures1. Affecting approximately 1% of the worldwide population2, epilepsy is a disease that 

has no racial, geographical, or social class boundaries and is remarkably uniformly distributed 

around the world1. Derived from Latin and Greek words for "seizure" or "to seize upon", 

epilepsy is truly an ancient disease that has been recorded in documents dating over 3000 years1. 

It was largely thought to be a supernatural disease where those affected suffered from an 

invasion of an evil spirit until Hippocrates challenged this idea in the 5th century. His concepts 

of epilepsy being a treatable brain disorder began to take root in the 17th century1. Today there 

are still cultures and civilizations that believe in the spiritual side of epilepsy including the 

Hmong and practitioners of voodoo. Though modern science has made leaps and bounds in the 

expansion of knowledge of epilepsy, there remains more to learn.  

 The two main seizure types include partial or focal seizures and primary generalized 

seizures. Where the former show seizures from a localized area within the cerebral hemisphere, 

and the latter show abnormal activity in both sides of the brain2  (Tab. 1).  
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Partial Seizures Simple 

• with motor signs 
• with somatosensory or special-sensory symptoms 
• with autonomic symptoms or signs 
• with psychic symptoms (disturbance of higher cerebral functions) 

Complex 

• without automatisms 
• with automatisms 
• with impairment of consciousness at onset without automatisms 

Generalized 

Seizures 

Absence 

• mild clonic, atonic, tonic, or autonomic activities, or automatic behavior 

Myoclonic 

Clonic 

Tonic 

Tonic-clonic 

Atonic 

 

Table 1. Outline of the International Classification of Epileptic Seizures1. 

 

Focal seizures can be further divided up into simple seizures and complex seizures. Focal 

seizures are largely distinguished by the area of the brain in which they originate. A person 

experiencing simple focal seizures will stay conscious and may experience unexplainable 

changes in mood. They are also said to hallucinate motor and sensory stimuli, such as seeing or 

smelling things that are not real3.  Though people experiencing complex seizure are conscious, 

they are in an altered form of consciousness described as a dreamlike state. During this state 

people will often display strange repetitive behaviors called automatisms—like walking around 

in circles or rapid blinking— and will usually have no recollection of doing so doing throughout 
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the episode1. Seizures such as these only last a couple of minutes and people who are affected by 

this can usually sense the onset of a seizure3. Focal seizures are often confused with other 

disorders such as narcolepsy, fainting, or even mental illness3. Generalized seizures are a result 

of a seizure that has affected both of the hemispheres of the brain and is characterized by a loss 

of consciousness with or without massive muscle contractions. These seizures can be further 

broken up into absence seizures, tonic seizures, clonic seizures, myoclonic seizures, tonic-clonic 

seizures, and atonic seizures2. An absence seizure is characterized by a person remaining still and 

staring off into space. A tonic seizure is when a person will stiffen up the main muscles of the 

body and a clonic seizure occurs when that person experiences repeated jerking movements of 

their muscles. During a myoclonic seizure, a person will jerk or twitch. A tonic-clonic seizure is 

the widely popularized form of seizures in the media and demonstrate a person stiffen up their 

body as well as having repeated full body jerks while losing consciousness. Finally, an atonic 

seizure is characterized by a loss of muscle tone making a person fall down or droop their head3. 

After experiencing a seizure, people fall into a post-ictal state during which they may feel tired, 

sleepy, weak, or confused3.  

 The root of this wide variety of symptoms lies in the functioning of the brain. The 

foundation of epilepsy is grounded in the idea that there is a balance between excitation and 

inhibition in the brain, and if the excitation is increased, a seizure occurs. At the start of a seizure 

if neurons start to signal abnormally at the same time, a great deal faster than normal and as 

many as 500 times a second3, this surge of excitation may cause seizures. There are two seizure 

models based on ways to increase excitation in the brain: by enhancing excitation or by blocking 

inhibition. Chemically, if excitatory neurotransmitters such as glutamate are increased in the 

brain, a seizure will occur. Glutamate fires excitatory post synaptic potentials that depolarize 
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neurons and make it more likely for a neuron to fire an action potential. Alternatively, if 

inhibitory neurotransmitters such as GABA are decreased in the brain, a seizure may occur. 

GABA causes inhibitory post synaptic potentials and decrease excitability making it more 

difficult for a neuron to initiate an action potential. When this is blocked, as it is in some 

epileptic patients, the balance is shifted and there is too much excitation. 

 The broad spectrum of symptoms that Epilepsy elicits hints at its many different causes 

and treatments. 50% of the people who are diagnosed with epilepsy never discover the cause of 

the disease3. The main causes include infection—such as meningitis and HIV, traumatic brain 

injury, brain tumors, genetic factors, other diseases such as stroke—that deprive the brain of 

oxygen, and high fevers that can elicit febrile seizures in children3.Although this disease has no 

cure, there are many ways to control seizures—the most common approach is using antiepileptic 

drugs (AEDs) that suppress the seizures with a sedative like effect. There are more than 20 

different AEDs available today all with different advantages and a great deal of side effects3. In a 

trial and error kind of treatment, a doctor must tailor the right combination of AEDs to patients 

depending on a number of factors because everybody reacts differently to them; epileptic 

episodes have different triggers depending on the person. This may take several months to 

determine the best drug and dosage, and 30% of the time, AEDs do not work at all. Medication 

as a method of treatment is frequently inefficient and taxing on the patient3. Other techniques, 

though not as common, also exist in the management of epilepsy such as dietary approaches. The 

ketogenic diet, consisting of a high-fat and low carbohydrates, forces the body to break down 

fats instead of carbohydrates to survive and has been used mostly in children3. This diet, 

however, has only cured the disease 10% of the time and is extremely hard to maintain, with side 

effects including nutritional deficiency and impaired growth3. If noninvasive treatments fail, 
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surgery can be performed as a last effort to treat severe epilepsy. In this procedure, surgeons 

sever connections in the brain in order to stop the spread of seizure activity or remove the area of 

the brain where the seizures are originating—depending how important this area of the brain is 

for daily behavior. They usually try to avoid areas that are necessary for speech, movement, 

sensation, memory and thinking3. In the famous case of Henry Molaison, he had his 

hippocampus surgically removed in order to combat his epilepsy. Following the procedure, he 

suffered from severe anterograde amnesia. This case study showed just how important the 

hippocampus was for learning and memory and how large the risk is for procedures such as these. 

None of these treatments are ideal which is why epileptic research is important today. 

  

Cyclooxygenase-2 

 Shortly following the increased neuronal activity after a seizure, an enzyme called 

cyclooxygenase-2 (COX-2) has been found to be induced rapidly in specific areas of the 

epileptic brain—primarily in the hippocampal formation, which is made up of the dentate gyrus 

(DG), the carbonic anhydrase III (CA3) and the carbonic anhydrase I (CA1), with mossy fibers 

connecting the DG to the CA3 and Schaffer collaterals connecting the CA3 to the CA18. So 

when excitatory levels go up, increased activity and expression of COX-2 levels shortly follow. 

COX-2 plays a key role in the metabolism of arachidonic acid, which is a polyunsaturated fatty 

acid that sits in the membrane phospholipids4. When arachidonic acid is released, COX-2 

metabolizes it, transforming it into a variety of different prostaglandins, which are compounds 

that have varying hormone-like effects and help the body with many different functions. COX-2 

is constitutively expressed in excitatory hippocampal neurons and is regulated strongly by 

synaptic activity and less, if not at all, expressed in the inhibitory neurons in the hippocampus4. 
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This increase in COX-2 levels subsequent to seizure activity is a protective, antiepileptic 

mechanism4,5,6,7. COX-2 in the post-ictal period serves to suppress the seizure activity and bring 

excitatory levels down. In other words, COX-2 is up-regulated by seizure activity (S18). So 

essentially, high levels of COX-2 are good. COX-2 is neuroprotective and keeps seizure activity 

in check. Turrin et al. (2004) and Vezzani (2005)'s work compared constitutive COX-2 mRNA 

expression in a normal mouse brain and in a mouse brain that had a seizure. Their findings 

showed that the mouse subjected to a seizure had much more COX-2 labeled neurons in its DG, 

illustrating that COX-2 expression indeed enhances in the hippocampus after convulsive seizure 

activity5,6.Not only does COX-2 mRNA expression rise following an acute seizure, but protein 

expression rises as well7.Claycomb et al. (2011) compared three images of COX-2 stained 

hippocampi from different mice: one that was given Saline, one that was given a drug induced 

seizure three hours prior to tissue collection, and one that was given a drug induced seizure 72 

hours prior. The control mouse that was not given a seizure showed fairly low COX-2 levels7. 

On the other hand, the mouse that was subjected to a seizure showed a great increase in COX-2 

in the hippocampus7. Finally, in the third mouse, COX-2 levels decreased and returned to 

baseline after 72 hours past, now comparative to a mouse that had no saline7. This indicates that 

convulsions elicited a rapid and transient increase in the COX-2 protein expression in the 

hippocampus7. In addition, the expression of COX-2 was increased more in the DG of the 

hippocampus than the CA3 subregion7. All studies indicate that COX-2 expression increases 

substantially after a seizure. 

 It is interesting to note that while it is widely agreed that COX-2 increases with the event 

of a seizure, many are not in agreement as to the reason why. While this report asserts that COX-

2 is an antiepileptic mechanism that serves to bring seizure activity down, there are others who 
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think oppositely in that the increased COX-2 levels are making seizures occur in the first place. 

Claycomb's paper goes on to reject those that think COX-2 inhibitors could treat epilepsy7. This 

article challenges claims that declare COX-2 has a worsening effect on seizures by affirming that 

suppression of COX-2 is actually deleterious to the epileptic brain7. Therefore, COX-2 inhibitors 

would be an ineffective treatment for epilepsy, further demonstrating its antiepileptic properties.  

 

Neurogenesis 

 This paper focuses on neurogenesis as something that can further increase COX-2 levels 

in the brain, helping to suppress seizure activity. Neurogenesis is the generation of new neurons 

and is most active during pre-natal development. However, it has been recently found that this 

process also continues throughout adult life—specifically in the DG of the hippocampus. Adult 

neurogenesis originates from neural progenitor cells (NPCs) in the subventricular zone (SVZ) 

and the subgranular zone (SGZ), differentiate and mature into adult-born neurons, and then 

integrate in the neural network of the hippocampus mostly as dentate granule cells (DGCs)8. The 

adult-born DGCs continue to develop at week one when they extend their dendrites in the 

granule cell layer (GCL) and the molecular layer (MOL), and extend their axons toward the 

CA39. At week three, DGCs start to receive glutamatergic input from the perforant pathway and 

both the efferent and afferent synapses begin to form9. Finally at about two months of age, the 

DGCs are almost indistinguishable from mature DGCs9. The new neurons are integrated into the 

hippocampus and provide the network with the plasticity necessary for learning and memory. 

Because all of these processes of neurogenesis are occurring in the hippocampus, it is not 

surprising that neurogenesis is regulated by factors associated with the hippocampus such as 

learning and memory and physical exercise8.  
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 Interestingly, exercise is able to increase the generation of new neurons in the adult 

hippocampus, promoting learning and memory8,9,10. Exposure to physical exercise is known to 

regulate the cellular properties of the hippocampus due to the increased neurogenesis,9 meaning 

physical exercise, such as running, increases neurogenesis. Pragg et al. (1999)'s experiment 

depicts just how much running increases the neurogenesis in the dentate gyrus of the 

hippocampus as compared to other controls10. This infers that cell proliferation does in fact 

increase in mice given unrestricted access to voluntary running. Exercised-induced neurogenesis 

may go on to further improve learning as well11. So not only can exercise modulate and increase 

the process of neurogenesis in the hippocampus, which continues in the adult brain, exercise is 

able to boost that area of the brain and improve learning and memory. In Praag (1999)'s work, he 

tested a control group and a runner group of mice that was subjected to voluntary running. Both 

groups were put through the Morris water maze task in which they must swim throughout a maze 

and onto a platform. Animals learn to find the platform after several trials. The runners 

performed much better than the controls and were able to get to the platform with decreased path 

length and latency—so overall faster12. Ergo, running enhances acquisition of the water maze 

memory task due to a higher quantity of new neurons. In addition, factors that reduce 

neurogenesis—such as corticosterone treatment, stress, and aging—are associated with 

diminished performance on spatial learning tasks12. These newly generated cells may mediate 

increased synaptic plasticity and improve learning12.  

 

Hypothesis 

 Because exercise, such as running, induces neurogenesis in the hippocampus, and COX-2 

levels are up-regulated by seizure activity to serve as an antiepileptic mechanism, and finally 
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because new neurons are malleable, aid in plasticity, and exhibit increased excitatory 

responsiveness—I predict that these new neurons in particular will overreact to an acute seizure 

and produce higher levels of COX-2 compared to the older neurons around them. This will lead 

to overall amplified COX-2 levels in exercised mice as opposed to non-exercised mice. 

Moreover, because exercised mice will have higher COX-2 expression in their hippocampi, I 

also hypothesize that runners will have a higher seizure threshold than the non-exercised 

animals—meaning that a stronger stimulus will be needed in order to induce a seizure in the 

running mice. This would imply that voluntary exercise could increase the seizure threshold via 

increasing COX-2. If this hypothesis is supported in my results, this information could be used to 

develop new therapies for epileptic patients in the future. 
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Chapter 2 

Methods 

 

 

 

 

Model Organism 

 The model organism used in these studies was Mus musculus, or the mouse. Rats and 

mice combined constitute roughly 90% of the total animals used for all research purposes and the 

reasons why are evident13. There are many advantages for using mice for research. First, there 

are a myriad of different strains of mice due to mutations, knockouts, and transgenic mice. In 

addition, they are easy to care for and handle and relatively inexpensive to maintain in the lab. 

Mice have a very high reproductive performance with large litter sizes and short gestation 

periods. Thus, many generations can be produced in a short amount of time (about 1 million 

descendants after 425 days)13. Finally, the most important advantage in to using mice as model 

organism in research is that 95% of their genome is similar to humans13. Therefore, their 

anatomy, physiology, and genetics are comparable to that of humans.  

 Male, six week old CD-1 mice were purchased from Harlan Laboratories and housed in 

pairs. Upon arrival to Syracuse, they were allowed a one week adjustment period in the vivarium 

facility before being placed in specialized housing. Mice were allowed both food and water ad 

libitum throughout the study, meaning that they were supplied with a constant source of food and 

water, eating and drinking upon will. All animal protocols were approved by the Syracuse 

University Institutional Animal Care and Use Committee (IACUC). 
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Specialized Housing  

 Six Lafayette Instrument Mouse Activity Wheel Chambers (Model 80820F) equipped 

with a removable Activity Wheel Counter were used (S2). Every Wednesday, the cages were 

switched out for a set of six new cages in order to clean the dirty used ones. The number of 

wheel revolutions was recorded and reset daily for approximately 28 days. The average 

kilometers ran per day in running cages was calculated based on one revolution equating .4 

meters. In each cage, the mice ran about 30,000 wheel revolutions, which is roughly 12 

kilometers a day. Four cages with wheels were used as experimental running cages and two 

cages were used as control cages. In the first few experiments, the control cages contained a 

locked wheel within the cage, but for subsequent experiments I removed the wheel entirely from 

the control cages; this will be addressed in the Discussion.  

 

Bromodeoxyuridine 

 Bromodeoxyruidine (BrdU) is a reagent that labels neurons in the S phase of cell division. 

It was used to permanently label all of the newly generated neurons due to the neurogenesis 

caused by running. An amount of 0.4 milliliters (mL) of BrdU was administered through an 

intraperitoneal (IP) injection to each mouse, one week after the mice started running.  

 

Pentylenetetrazol 

 Pentylenetetrazol (PTZ) was the drug used to induce acute seizures. It is a GABAA 

inhibitor and works by blocking inhibitory pathways, thus causing excessive excitation and a 

subsequent seizure to occur. After completion of the exercise period for 28 days, IP injections of 
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PTZ were administered to each of the animals. PTZ was fresh before injections. It was kept in 

the -20˚C freezer, thawed, and then diluted with saline. The concentration of PTZ was altered 

throughout the course of the study. Initially 50 mg/kg of PTZ was administered, but then later on 

this dose was lowered to 42 mg/kg—as will be addressed in the Discussion. After induction, 

seizure activity was scored using a number system as follows.. A score of 0 is normal behavior. 

The mice can been seen scurrying around their cage and often grooming themselves. They are 

seldom ever still for a very long. A score of 1 is hypomobility in that the mice will be seen to sit 

in a corner of the cage and not move. They will seemingly stare off into space for long periods at 

a time in a zombie-like state and stop their normal behaviors of exploring the cage and grooming 

themselves. A score of 2 is characterized by myoclonic jerks. These mice will have 2 or more 

jerks that simply look like large twitches. These twitches usually occur periodically with no 

seizure behavior in between. Scores of 3s and 4s are classified as convulsive seizures, in which 

the animal will have a generalized convulsion of their whole body. A 3 is a convulsion in which 

the animal still has its righting reflex and remains on all 4s throughout the convulsion, whereas a 

4 is the most severe seizure on this scale in which the animal will exhibit a convulsion that has 

made it fall over (Tab 2). 
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Table 2. Seizure Scoring System. 

 

Cardiac Perfusion  

 Three hours after the PTZ injections, tissue was harvested using a cardiac perfusion 

surgery. Animals were first anesthetized with a ketamine and xylazine IP injection. After the 

heart was exposed, a small cut in made in the right atrium. Then 20 mL of phosphate buffered 

saline (PBS) is injected into the left ventricle of the heart so that all of the blood naturally flows 

throughout the body of the mouse and out of the cut made in the atrium, leaving the brain free of 

blood (S3). A one liter stock of PBS is made using 750 mL of dionized water, 2 g of KCl, 80 g of 

NaCl, and 2.4 g of KH2PO4. After the PBS, another 15 mL of 4% Paraformaldehyde (PFA) is 

injected in order to fix the brain so that it remains true to shape throughout the subsequent 

processes. PFA is also made in the lab and can be used up to one week if stored in the 4˚C 

freezer. The PFA is dissolved in 100 mL of dionized water. 8 g are added to the heated water and 

a stirring rod is used to mix the suspension. This mixture is then heated until it is hot to the touch, 

but not boiling (60˚C). NaOH is then added drop by drop until the PFA is in solution and then 

the solution is then cooled and filtered. Next, 20 mL of 10X PBS is added. The pH probe is then 

Stage 4 Generalized convulsion with 
loss of righting  

Convulsive seizures 

Stage 3 Generalized convulsion with 
righting reflex 

Stage 2 Myoclonus Non-convulsive seizures 

Stage 1 Hypomobility 

Stage 0 Normal Behavior 
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used to adjust the PFA solution to a 7.3 pH level. HCl and NaOH are added in minute increments 

to make this possible. Finally more dionized water is added in order to get the total amount of 4% 

PFA solution to be 200 mL. After the brain is perfused, the entire brain is carefully removed and 

submerged in PFA overnight. The next day, the brains are rinsed with PBS and then submerged 

again in 15% sucrose overnight. The following day, the brains are rinsed with PBS again and 

very lightly blotted using filter paper. Brains are placed in molds that are then filled with optimal 

cutting temperature compound (OCT). This compound surrounds the brain, suspending it and 

freezing it into a white block that will be used to slice into sections. The block is snap frozen 

using dry ice and 100% ethanol and stored in the -80˚C freezer.  

 

Cryosectioning & Immunohistochemistry Staining 

 The tissue frozen in OCT can now be sectioned and plated on slides using a machine 

called the Cryostat. The cryostat is temperature controlled so that the brain remains frozen in the 

OCT and can be cut into very thin coronal sections so that it can be mounted on a microscope 

slide. Every third section of the entire hippocampus is mounted in 14 micrometer thick sections. 

The slides are then stored in the -20˚C freezer. Next, immunohistochemistry was used to stain 

the slides for COX-2 and BrdU and the slides were examined using a high powered microscope.  
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Chapter 3 

Results 

 

 

 

 

Study 1 

 Experimental running mice showed less severe seizures (i.e., lower seizure score) than 

the control mice in locked wheels. The seizure scores of the first couple trials of running and 

control mice after given 50 mg/kg PTZ injections (Figure 1). Each black dot and square 

represents one mouse. The experimental running mice showed less severe seizures than the 

control mice in locked wheels due to the proliferation of neurons in the DG. Running mice had a 

higher seizure threshold than control mice (Figure 2). Only 50% of the running mice exhibited 

severe convulsive seizures, whereas 100% of the non-running mice had convulsive seizures. 

However, the control was changed to no wheel in the cage due to the fact that the wheel itself 

causes enrichment in the control mice.  
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Figure 1. Effect of Running on Acute Seizures with 50 mg/kg PTZ Dose and Locked Wheel as 

Control.  

 

 

 

 

 

 

 

 

Figure 2. Effect of Running on Acute Seizures with 50 mg/kg PTZ Dose and Locked Wheel 

(Percent Convulsing).  
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Study 2 

 Nearly all the mice in both the control and experimental groups had a severe convulsive 

seizure, with the exception of one from each group—suggesting that the PTZ dose may be too 

high (Fig 3). Both groups displayed abnormally high incidence of convulsive seizures.  90.9% of 

running mice and 87.5% of non-running mice exhibited convulsive seizures (Fig 4). These 

percentages are very high indicating that the dosage of PTZ may be too strong. 
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Figure 3. Effect of Running on Acute Seizures with 50 mg/kg PTZ Dose and No Wheel.  

 
 
 

  

  

  

 

 

 

Figure 4. Effect of Running on Acute Seizures with 50 mg/kg PTZ Dose and No Wheel (Percent 

Convulsing).  
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Study 3 

 Running mice displayed lower seizure scores than non-running mice (Fig 5). The mode 

seizure score of control mice was 4 (horizontal bars), whereas the mode seizure score of running 

mice was 2. Mice that had access to running wheels exhibited more neurogenesis in the DG of 

their hippocampi, further implying that runners also had higher COX-2 levels and raised their 

seizure threshold. Only55% of the running mice exhibited a convulsing seizure whereas 82% of 

animals in the control group did (Fig 6). 
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Figure 5. Effect of Running on Acute Seizures with 42 mg/kg PTZ Dose and No Wheel.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Effect of Running on Acute Seizures with 42 mg/kg PTZ Dose and No Wheel (Percent 

Convulsing).  
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   Cage ID  
 Date Day A B C D E F 

W
ee

k 
1 

3/19 W 0 0 0 0 0 0 
3/20 R 28649 29722 28185 30717 0 0 
3/21 F 30233 28226 27469 32359 0 0 
3/22 S 28357 31527 31858 39853 0 0 
3/23 Su 29963 30172 33255 44732 0 0 
3/24 M 31848 29640 34169 49240 0 0 
3/25 T 30887 32348 34544 46395 0 0 
avg  29989.5 30272.5 31580 40549.3333 0 0 

 

Table 3. Running Wheel Data for One Week in Four Running Cages (A-D) and Two Control 

Cages (E-F). Mice ran roughly 12 kilometers a day.  
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Chapter 4 

Discussion 

 

 

 

 

Problem Solving  

 The scores look exactly how I hypothesized they would in my first few trials with 50 

mg/kg of PTZ and the locked wheel as a control (S1)—with the running mice having lower 

scores of ones and twos and the control mice having more severe seizures of threes and fours. 

However, the control used for these trials may have not been the best one. It has been shown that 

even a locked wheel being in the cage could exhibit enrichment in the control mice14,15. When 

mice were provided with housing enriched with a locked wheel in Bednarczyk et al. (2011)'s 

paper, these mice exhibited increases in proliferation in the DG that were equivalent to those 

mice housed with an unlocked running wheel15. The locked wheel seems to represent a source of 

cognitive stimulation because the mice are able to climb on the wheel, even though they are 

unable to run on it. Stimulating these mice with an enriched environment helps reduce stress and 

anxiety and has been documented to increase neurogenesis15. Items such as these in the cage are 

indeed increasing the enrichment in the DG of these mice. Tashiro et al. (2007)'s paper 

demonstrates that the DG of mice that had nothing in its cage has lower levels of new neurons 

compared to the DG of a mouse that had an enriched cage15. It is apparent that there are much 

more BrdU-stained neurons in mice with enriched cages, entailing that the enhanced 

environment did in fact cause an increase in neurogenesis15. Due to these numerous studies, it 
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was decided that in future trials and experiments, the wheel would be taken out completely in the 

control, non-running cages.  

 In the next few trials, the wheel was removed from control cages and a PTZ dose of 50 

mg/kg was used (S3-S4). Because a high number of mice exhibited convulsive seizures in the 

control group, it was decided that the concentration of the PTZ seizure convulsant used in this 

study was too high. In order to choose the right dose, a PTZ dose response curve was made (S4). 

Various doses were tested and the subsequent seizure score was documented. It can be seen that 

the 50 mg/kg concentration of PTZ that had been initially used caused all of the animals to get a 

score of 4, showing again that this concentration was indeed too high. Normally, it is ideal and 

best to see a range in scores when treating control animals with PTZ—as it is shown in the 42 

mg/kg concentration of this graph—so that the results of any experimental groups can be seen to 

go higher or lower than the control groups. This is also important to prevent using too strong a 

stimulus that might overwhelm effects of running on seizure threshold. Based on this response 

curve, the remainder of the trials used a 42 mg/kg concentration of PTZ. 

 

Conclusions 

 Physical exercise increased the seizure threshold in running mice as opposed to control 

mice. The last few trials were done using 42 mg/kg PTZ dose and no wheel for the non-running 

control groups (S5-S6). The final results support my hypothesis. Animals that had access to 

running wheels exhibited lower seizure scores, with the mode of their seizure severity scores 

being lower than animals in the control group. This may be due to increased proliferation of DG 

neurons in running animals, and thus increased COX-2 expression. However, this remains to be 

examined. 
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Implications & Future Directions 

 Subjects allowed voluntary exercise were less susceptible to seizures, showing that 

running raised the seizure threshold and made it more difficult for exercised mice to experience 

severe seizures. I hypothesized that this is due to an increase in COX-2 levels specifically in the 

newly generated neurons that arose from the physical exercise. The brain slides that are stained 

with COX-2 must also be stained for BrdU. If it is found that the BrdU labeled neurons—the 

newly generated, exercised-induced neurons—co-localize with COX-2 labeled neurons, this will 

demonstrate that it is in fact these new neurons that produced higher levels of COX-2 in 

exercised mice, thus suggesting that this may play a role in the effects of exercise-induced 

neurogenesis on seizure activity. These studies have implications for future epileptic patients, in 

that treatment involving exercise—or more specifically running—may be used to perhaps 

decrease the frequency and severity of seizures in people with epilepsy. The noninvasive, cost-

free, and simple treatment of exercise is beneficial in almost every aspect of life. These studies 

add to the evidence that voluntary exercise is neuroprotective and could not only increase 

performance in hippocampal functions, such as synaptic plasticity, learning, and memory, but 

also increase the seizure threshold. 
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Appendix 
 

 

 

 

 

 

 

 

 

 

Supplementary 1. Increased COX-2 Expression in the Dentate Gyrus Three Hours after an acute 

Seizure. The figure shows two DGs, one from a mouse that had a convulsive seizure (lower 

panel) and the other that did not (upper panel). The green represents the COX-2 labeled neurons. 

(Taken with the permission of Yifan Gong) 

 

 

 

 

 

 

 

Supplementary 2. Activity Wheel Cage and Manual Counter 
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Supplementary 3. Diagram of Cardiac Perfusion. 

 

 

  

 
Supplementary 4. PTZ Dosing Response Curve. (Taken with the permission of Miriam 

Gladstone). 
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