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Abstract 

  Localization and tracking of cells generates raw digital information from microscopy 

images, including images of stained nuclei and highly precise determination of central 

positions of cells, which can be analyzed for investigation of cell motility. In a previous study 

by this group, an algorithm termed automated contour-based tracking for in vitro 

environments (ACTIVE) was established for tracking large cell populations for long periods 

of time. For the two-cell interaction events on which ACTIVE was initially focused, error rate 

was reduced as much as 43% compared to a traditional positional analysis algorithm by 

Kilfoil and colleagues. In the present thesis, we investigated whether the ACTIVE algorithm 

could be improved when applied to a more complicated condition: three-cell interactions. To 

determine whether modification of the ACTIVE algorithms could allow ACTIVE to 

outperform the Kilfoil benchmark method when applied not only to two-cell interaction cases 

but also to three-cell interaction cases, two approaches were developed and studied: 1) 

optimization of the existing ACTIVE cost-function weighting factors by orthogonal design 

with addition of two new factors, velocity and directionality, and detection of ranges and 

effects for all factors, and 2) modification of the circumstances under which the Kilfoil 

approach and the cost function approach were executed. We found the position factor to be 

the most important and accurate among all the factors, and optimized all factors. What is 

more, the directionality was determined to be the second most significant factor of the cost 

function for correctly tracking cells. However, modification of neither the position nor 

directionality factor could achieve higher accuracy than the Kilfoil method. Having evaluated 

the new strategy that combines both the cost function and the Kilfoil method, we found that 



	  
	  

the new strategy did not result in higher accuracy for three-cell interactions, as compared to 

the pure Kilfoil benchmark method. The accuracy of the new strategy was 6% lower on 

average than the Kilfoil method. Although the results of the present work do not yet achieve a 

method for analysis of three-cell interactions that outperforms purely positional analysis, the 

work provides a method for optimization of the cost function and new understanding of 

characteristics of three-cell interactions that lead to reduced accuracy in the cost function 

and/or positional (Kilfoil) approaches. 

 

Key words: Automated cell tracking, Orthogonal design, Weighting factor optimization, 

MATLAB 
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Introduction 

  Analysis of cell behaviors in large population is of great importance to current 

bioengineering and pharmaceutical research. In many cell therapies, the location, distribution, 

and long-term viability of cells should be evaluated in a noninvasive manner [1]. In order to 

better understanding living cell behavior in model environments, an analysis of both 

anatomic and dynamic properties are often required [2].  

  Cell tracking refers to a process in which the behaviors of single cells can be monitored by 

modern digital imaging techniques [3]. The behaviors can include cell migration, cell cycle, 

and cell signaling process [3-5]. With a better understanding of those cell behaviors, such as 

movements of cell skeleton and prediction of cell fates, production of extracellular matrix, 

and contacts between transient cells [6], significant insights into complex multi-cellular 

processes can be achieved, including processes of wound healing, regeneration and 

ontogenesis [7-9], host defense mechanisms, and tumor cell metastasis and invasion [10]. Under 

both normal and pathological conditions, cells can grow and migrate extensively [10]. A deep 

understanding of the cellular movements, interactions, and the reaction to stimuli, are 

essential to effectively manage the environments and materials in which the cells are living 

[11]. The development of specific biomaterial scaffolds also requires the spatio-temporal 

measurements of cell behaviors, which is significant in tissue engineering [7, 11]. 

Therefore, the accuracy and efficiency of the methods for cell tracking also become 

challenging and worth studying in depth. Manual tracking relying on visual detection by a 

trained operator is widely used, especially for small population of cells [12], and still can 

achieve the most reliable results [13] but is extremely time-consuming [14] for a large cell 
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population and challenging for longer durations and higher-level dimension tracking. What is 

more, manual tracking is more subject to observer variance and bias [14], which prevents 

manual tracking from improving cell detection rates and becoming a standardized tool for the 

investigation of cell behavior [3].  

To overcome the limitations of manual tracking, many automated tracking tools and 

methods have been developed [2], in which the characteristics of dynamic cells could be 

evaluated at the single-cell level [15]. Modern cell tracking methods include 

computer-controlled stage positioning and digital image acquisition systems, which enable 

sequences of cell images to be processed as time-lapse [10], in order to efficiently obtain 

quantitative and accurate measurements of cell behaviors, whose positive effect could 

enhance results of analysis [7]. For example, Padfield’s tracking algorithms examined cell 

mitosis and apoptosis from fluorescent images, as well as protein translocation, from which 

the generated measurements are especially required in cancer research, immunology and 

developmental biology [13]. In House’s work, they computed shape, orientation and 

movement characteristics to summarize and reason cell behavior not only in single-cell level, 

but also in groups [11]. The quantitative measurements included centroid displacement, path 

length, average speed, and changes and persistence in movement direction, which 

considerably described cell morphology and trajectories [11]. Rabut and Ellenberg introduced 

a 3-D fluorescent imaging method that could be used as a reliable microscopy-screening 

assay in cell cycle and migration, as well as development of loss-of-function phenotypes in 

RNAi experiments [4]. What is more, automated computational cell tracking methods 

complying with standardized characterization are commonly applied to in vitro models 
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established in various complex environments [12], such as hydrogel substrates with different 

stiffness properties [11], ordered topographies [16] and microchannels [17], which have specific 

biochemical and biophysical properties.  

In most studies, prior to imaging, cells should initially be pre-processed by a proper 

labeling method according to different cell types and methods, such as nuclear DNA dye for 

cell nuclei [13], lipophilic carbocyanime derivative dye for red blood cells [17], fluorescent 

probe tagged protein attached to cells [18], and stem cells encapsulated by 

polysaccharide-coated iron oxide nanoparticles for MRI detection [1]. Then the motion of the 

cells could be captured by microscope. Because all objects in real world (including cells in 

the present case) extends in both space and time, time-lapse images are able to provide all 

information we need to track cells and analyze cell migration [2]. To date, most tracking 

algorithms consist of two key steps: 1) a segmentation step to recognize relevant cells by grey 

level intensity, color, or texture [10], and separate them from background in every frame, 2) a 

linking step to identify and connect segmented cells from frame to frame [2], thereby 

reconstructing their temporal continuity [3].  

In the segmentation step, the ability to distinguish cells and their surroundings is crucial in 

many image-processing methods. In order to identify cells and background noise, an intensity 

threshold [2], level set [18,19], wavelet [20] and contour-based methods [21,22] are commonly used. 

Thus the cells can be identified by a particular measurement of respective method, then, all 

remaining parts that do not meet the requirement are filtered as background noise [12, 2]. Once 

the cells are detected, their information will be reserved for further cell tracking. Then, in the 

linking step, it is challenging to identify a same cell that is segmented in consecutive frames. 
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The simplest approach is identifying the nearest cell in the next frame, which refers to not 

only the spatial distance, but also to difference in intensity, volume, and other features [2] 

specified by algorithms. In more complex conditions, the similarity of a same cell in 

consecutive frames can refer to image registration [23] or smooth shape transitions (i.e. 

contours) [5, 24]. Overall, the linking methods are based on the assumption that most cell 

behaviors meet a smooth and continuous process [3].  

In previous work by this group, an algorithm termed automated contour-based tracking for 

in vitro environments (ACTIVE) was established. Two significant innovations were achieved: 

the first one was that cell interaction events could be identified by specific contour-based 

profile; the second one was based on contour-based information, the Kilfoil benchmark 

linking was modified to link cells frame by frame [12], so that cell interaction events could be 

analyzed and classified as divisions, merging or special events, and then a customized cost 

function was applied for cell tracking correction [12]. The characteristics used for cost 

determination include five factors in total: integrated intensity, normalized intensity, area, 

aspect ratio and position. By execution of the equation, the minimum cost could be 

determined and then could be used to identify each cell in consecutive frames.  

Previous work of the ACTIVE method was set up for two-cell interactions and the 

algorithm worked well in those cases, in which it could reduce error by as much as 43% in 

comparison with the Kilfoil method [12], demonstrating the algorithm was fit for simple 

two-cell conditions. However, previous work of the ACTIVE also indicated that most errors 

detected were prone to be in higher-level (three or more) cell interactions [12], since in 

multi-cell interaction events, cells were more difficult to be identified in a cluster while they 
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are interacting. Recognizing a population of cells requires more precise method to track each 

cell and longer time to process, making it challenging to achieve further improvement to 

identify and correct cell tracking. In contrast to the cost-function-based approach employed 

for two-cell interactions in ACTIVE, the Kilfoil tracking method relies only on positional 

information, which in theory might be relatively inaccurate for evaluating cell migration, 

since there are additional features that can be evaluated during cell migration, including cell 

nuclei intensity, shape, and direction of motion. Those valuable features can provide 

comprehensive analysis for cell identification during tracking. In contrast to the positional 

analysis introduced by the Kilfoil method, our goal was to investigate alternative approaches 

that might provide a more precise method to comprehensively assess cell migration based on 

the current ACTIVE method, including additional accessible cell information, not only 

intensity, area, aspect ratio, and position, but also velocity and directionality, and selected 

circumstances to determine which method was optimal. In our work, we chose three-cell 

interactions to analyze and aimed at the improvement of the cost function. Cell tracking 

accuracy was chosen as a crucial reference for evaluating the efficiency of cell tracking, and 

was determined by the percentage of how many cases in which cell identifications (IDs) had 

been correctly designated after either the Kilfoil linking method or the cost function was 

executed. The accuracy of Kilfoil linking was viewed as a benchmark method for cell 

tracking. Then the optimized ACTIVE and its cost function were applied to investigate the 

question of how accurate it would perform better than the benchmark method.  

In order to determine whether modification of the ACTIVE algorithm could allow the 

ACTIVE algorithm to perform better than traditional Kilfoil benchmark method in analysis of 
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three-cell interactions, two approaches were studied: 1) optimization of the existing ACTIVE 

cost function weighting factors by orthogonal design with addition of two new factors, 

velocity and directionality, and detection of ranges and effects for all factors, and 2) 

modification of the circumstances under which the Kilfoil and the cost function were 

executed, based on a duration in which cells were occluded so that their information was 

absent. Thus, our study is an investigation of two approaches to determine whether 

morphometric and motility characteristics (ACTIVE and its cost function), or a combination 

of morphometric and motility characteristics with the Kilfoil method could outperform purely 

positional information (the Kilfoil method).  
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Methods 

  In order to clearly explain the overall strategy and set of tasks pursued herein, a flow chart 

is presented as Scheme 1. Cell experiments, image pre-processing and the cost function 

definition were developed by previous ACTIVE work [12,25]. In this thesis work, examination 

of the Kilfoil benchmark method, the cost function update and optimization, examination of 

each factor in the cost function, and condition optimization and method validation were the 

focus and are highlighted in the chart, and the coding that formed the basis and product of the 

thesis was mainly created or modified to work for these purposes. The final version of code 

that was created for each of these corresponding parts are listed in Appendix 1 through 

Appendix 8, which are also marked in this flow chart, and the explanation of each is 

presented in the Results.  
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Scheme 1: Overall process, sections in normal text were established and completed by previous ACTIVE 

work, sections in bold text were completed by the present work 

 

1. Cell Experiments 

  Cell culture, cell staining and imaging information were acquired from previous ACTIVE 

work completed by Baker, et al [25]. The following subsections briefly summarized the 

methods used in that previous work.  

 

1.1 Cell Culture 

  In the previous ACTIVE work, C3H10T1/2 mouse fibroblasts (ATCC) were first expanded 
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in complete growth medium with seeding at 5 000, 10 000 or 20 000 cells/cm2. Then, after 

expansion, cells at passage 13-15 were used for experiments. Samples were prepared for cell 

tracking experiments by seeding cells on static wrinkled substrate. After cell attachment, cells 

were stained and prepared for live cell imaging. The resulting experimental densities 

demonstrated nuclear area densities, quantified as the percentage of total image area occupied 

by cell nuclei, of 3.12%. [25] 

 

1.2 Cell Staining and Imaging 

  In the previous ACTIVE work, cells were stained with Hoechst 33342 nuclear dye and 

image over 24 h in order to image cell nuclei for tracking analysis. Substrates with attached 

cells were placed in LabTek glass-bottom chamber slides and staining solution was added. 

Then the chamber slide was placed in a 37 ℃ incubator for 20 min to allow for the staining of 

cell nuclei. Afterwards, the chamber slides were placed in a live cell incubator, a Leica DMI 

6000B inverted microscope was used to imaging, which was conducted at 37 ℃ for 24 h 

under 5 % CO2, with images captured every 3 min by a camera. [25] 

 

2. Cell Segmentation and Particle Identification 

  The ACTIVE was developed and implemented in MATLAB. In the present work, our main 

cost function code was inherited from the previous ACTIVE work. For the ACTIVE cell 

segmentation and particle identification, cell staining images were first processed by a Kilfoil 

band-pass filter to remove background noise, as shown in Figure 1, and then an intensity map 

was created to a generate contour profile by MATLAB built-in function, based on nuclear 
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intensity fluctuation [25]. Correlated contours helped to define individual cells [25], as shown in 

Figure 2.  

 

3. Interacting Cells Definition and Particle Tracking 

  As the previous work set, contour profiles were established to recognize different 

intensities. When cells came close to each other, interaction events were established, where 

each cell taking part in the event should share at least one parent contour (lower level contour) 

[25]. Interacting duration was defined as how many frames in which the parent contours exist. 

Each frame was taken by 3 minutes duration. In order to distinguish multiple contour peaks 

that represent each cell in one parent contour, an ellipse was fitted to define a single cell 

based on a particular fit height, which a contour level of 15 was selected in current work [25], 

as shown in Figure 3. According to the contour-based segmentation established by the 

ACTIVE method, the Kilfoil linking system was applied for cell tags identification (IDs) and 

linked them in consecutive frames [25]. Thus, in general, a particular cell with a unique ID 

could be tracked through frames. Then in post-processing, the customized cost function could 

be used to check the validity of cell identification and correct cell tracking. Figure 4 shows an 

example of a three-cell interaction, where the paths of three cells come close to each other 

and become a qualified interaction event, and presented correct cell identification before and 

after their interaction, according to the cost function correction [12].  
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Figure 1: The interacting frame in a three-cell interaction event, which processed with the Kilfoil bandpass 

filter to remove local noise 

 

 

Figure 2: Contour image of Figure 1, the contour profiles were established by various nuclear intensities. A 

three-cell interaction event was defined as any three cells that share at least one parent contour (lower level 

contour) 
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Figure 3: Each cell contour shown in Figure 2 was fitted by an ellipse to identify a single cell 
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Figure 4: An example of three-cell interaction event with cell moving paths shows cell identifications 

according to the cost function correction in post-processing, when T=81 min, 99 min, and 123 min, from 

top to bottom 

 

4. Determination for Accuracy of the Kilfoil Benchmark Method 

  Prior to post-processing that the cost function was applying, we first examined the Kilfoil 
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linking method to obtain the benchmark accuracy. Three-cell interaction cases were extracted 

from a low cell density (5,000 cells/cm2) data set: 7Percent_MedDensity_Sample5, where all 

required information was included from previous work: intensity, cell area, major and minor 

axis, cell centroid position, etc. The code was implemented in MATLAB, as shown in 

Appendix 1. From the script in Appendix 1, we were able to acquire a list of three-cell 

interactions three_cell_event_matrix and all required information of each cell stored 

in matrix for plotting and tracking. Then each case was manually examined to check 

whether the tagged cell IDs were correct before and after interaction: we tracked each cell in 

filtered images and identified whether each cell ID matches before and after interaction, 

respectively. The code shown in Appendix 2 plots each cell according to their cell 

identification (IDs) and clearly labels them in each particular frame, which provided a 

reliable visual tracking. Thus, the accuracy of the Kilfoil benchmark method was determined 

according to total number of correct events and incorrect events.  

For instance, Figure 5 shows an example for an event of correct cell identification that cells 

were correctly labeled based on their information, in which 99 tagged, 266 tagged and 740 

tagged cell were successfully identified after interaction. Figure 6 shows an example for an 

event of incorrect cell identification, in which 151 tagged cell and 269 tagged cell wrongly 

switched after interaction. Both of the two events were identified by the Kilfoil linking.  
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Figure 5: An example of three-cell interaction that has correct cell identification, T=18 min, 27 min, and 

36 min, that before interaction, interacting and after interaction, from top to bottom 

  



16	  
	  

 

Figure 6: An example of three-cell interaction that has incorrect cell identification, T=93 min, 108 min, 

and 123 min, that before interaction, interacting and after interaction, from top to bottom 

 

5. Cost Function Definition and Update 

  As a key innovation in the original ACTIVE method, a cost function was established in 

post-processing for cell tracking correction [12,25]. Since cells come close to each other, it is 
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challenging for previously employed linking system to distinguish them during the 

interaction, which would result in failure of cell identification (ID) [25], as showed in Figure 4. 

Based on cell ID history and specific kinds of interaction events, in previous work, a 

multi-frame positional or two-frame fingerprint analysis was employed conditionally to 

accurately identify cell IDs [25].  

The general equation of positional analysis was defined as: 

cost   =    𝑥! − 𝑥! ! + 𝑦! − 𝑦! ! 

where 𝑥!,𝑦!  and 𝑥!,𝑦!  represent the center of masses for a cell in frames 1 and 2 

respectively [25]. Thus, all possible combinations for the two IDs were tested (there were four 

combinations in two-cell interaction cases), and the minimum cost combination was selected 

as correct cell IDs in that particular case [25].  

However, in certain cases where a single cell was occluded for several consecutive frames, 

of which cell information was absent during that interval, a fingerprint analysis was an 

alternative to improve the accuracy for cell tracking, while positional analysis would lead to 

reduced accuracy [25]. The general equation for fingerprint analysis was defined as: 

FP  cost = 𝑤!! ∗
𝐼𝐼!
𝐼𝐼!

−
𝐼𝐼!
𝐼𝐼!

!

+ 𝑤!" ∗
𝑁𝐼!
𝑁𝐼!

−
𝑁𝐼!
𝑁𝐼!

!

+ 𝑤! ∗
𝐴!
𝐴!
−
𝐴!
𝐴!

!

+ 𝑤!"

∗
𝐴𝑅!
𝐴𝑅!

−
𝐴𝑅!
𝐴𝑅!

!

+ 𝑤! ∗
𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

𝑑! + 𝑑!
2

!

 

where II is the integrated intensity value for a cell, NI is the normalized intensity value for a 

cell, A is the area of a cell, AR is the aspect ratio of a cell, d is the diameter for a cell, each w 

represents a weight value for the subscripted variables previously defined and numerical 

subscripts denote frame numbers [25]. And  𝑤!!, 𝑤!", 𝑤! and 𝑤!" were set to 1 and 𝑤! 
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was set to 0 [25]. Same as positional analysis, all possible combinations for the two IDs were 

tested (there were four combinations in two-cell interaction cases), and the minimum cost 

combination was selected as correct cell IDs in that particular case [25]. With either positional 

analysis or fingerprint analysis, minimum cost was selected as correct cell IDs, and then, no 

further process needed to be done [25]. However, if the combinations were incorrect, then 

ACTIVE would be taking further steps to update cell IDs [25].  

  In the present work, our goal is to optimize the cost function. To achieve this goal, we first 

updated the setup of the cost function. While analyzing the process of a cell-cell interaction, a 

frame before interaction and a frame after interaction were the two crucial time points we 

should marked. Then, we would have three cells that captured in two frames, respectively, 

which generated 9 combinations that would need to be tested in comparison with 4 

combinations in two-cell interactions. For a straightforward expression of the combination 

setup in the cost function, specifically, we denote A, B and C as each cell, 1 and 2 as the 

frame before interaction and after interaction, respectively. For example, A1 represents cell A 

in the frame before interaction, B2 represents cell B in the frame after interaction. An 

example event is shown in Figure 7. Thus, the 9 combinations could be divided into 3 groups, 

as presented in Table 1.  
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Figure 7: An example event for cell combinations before and after interaction, T=18 min, and 36 min, from 

left to right 

 

Table 1: Combinations of Three-cell interactions 

Group 1 Group 2 Group 3 

A1-A2 A1-B2 A1-C2 B1-A2 B1-B2 B1-C2 C1-A2 C1-B2 C1-C2 

 

In Figure 7, presented is how cells were designated according to the cost function setup. In 

Table 1, group 1 denoted as the three possible combinations of the first cell, group 2 denoted 

as the three possible combinations of the second cell, group 3 denoted as the three possible 

combinations of the third cell. According to our expectations for correct cases, A1-A2, B1-B2 

and C1-C2 should be the minimum in each group, which provided an index for cell tracking 
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correction of the cost function. Also, if a particular cell tracking was correct, cell 

identifications should be consistent before and after interaction. If a particular cell tracking 

was incorrect (cell identification did not match), the cell was wrongly retagged then resulted 

in a wrong case and contributed to an error rate.  

 

6. Cost Function Optimization 

6.1 Application of Orthogonal Design 

6.1.1 Orthogonal Design 

  Due to multiple factors existing in the cost function, a widely used mathematical method 

was introduced in the present work to optimize the factors. An orthogonal design (OD, n, sm) 

with experimental runs, m factors and s levels is denoted by an n * m matrix, where columns 

and rows are identified as factors and experimental runs, respectively [26, 27]. In an orthogonal 

design, all levels are symmetrically placed in each column to keep the levels uniformly for 

each factor, which is seen as a key construction to mate the levels for different factors [27]. In 

current research in many subjects as computer science, chemistry, and biology, experiments 

should be designed comprehensively and outcomes should also be analyzed with all influent 

facets. Thus, powerful and cost-efficient methods are significantly worth selecting to 

optimize experimental conditions, which would lead to better outcomes we desire. As a 

stepwise approach, orthogonal array designs can be found in many subjects [26-29]. In most 

experiment settings with multi factors and levels effects, it is extremely time-consuming if we 

try all possible combinations [29]. While in orthogonal design, only particular selected 

combinations need to be conducted as representative instead of a full-scale test, since they are 
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uniformly distributed in the research field and can greatly reflect a situation of the whole 

examined field [29]. The term of orthogonality also means each involved variable can be 

evaluated independently of one another [28]. With implementing complex factors with 

multiple levels, orthogonal design provides a rigorous and simultaneous opportunity to test 

all involved factors [30].  

Hence, as a developed method, orthogonal design can be introduced to establish an overall 

view of optimizing factors in the cost function for better fitting in three-cell interactions, in 

which we can efficiently examine the particular ways each factor independently effects and 

results in an overall contribution to final outcomes, as well as determine ranges and values of 

the weighting factors to improve the cost function fitting in three-cell interaction events. 

Since the range and exact value of all weighting factors were not known initially, there would 

be infinite combinations for the potential to test. In order to determine the existing factors 

(integrated intensity, normality intensity, area, aspect ratio and position) with current measure 

scale, has the most impact on final cost results, we first assigned the five weighting factors 

with four levels of each, as an initial estimation. By using an orthogonal design, we can 

efficiently try most possibilities of the values with the least tests and avoid redundant tests. 

With five factors and four levels of each, a L16 (45) orthogonal array is defined in Table 2 [31], 

so that only 16 tests were sufficiently able to provide an overall perception of ranges. For 

convenient calculation, the four levels of each weighting factor were designated as 0.25, 0.5, 

0.75 and 1.  
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Table 2: L16 (45) for Values of Weighting Factors Designation 

 

TRIAL NO. 

WEIGHTING FACTORS 

𝒘𝑰𝑰 𝒘𝑵𝑰 𝒘𝑨 𝒘𝑨𝑷 𝒘𝑷 

1 0.25 0.25 0.25 0.25 0.25 

2 0.25 0.5 0.5 0.5 0.5 

3 0.25 0.75 0.75 0.75 0.75 

4 0.25 1 1 1 1 

5 0.5 0.25 0.5 0.75 1 

6 0.5 0.5 0.25 1 0.75 

7 0.5 0.75 1 0.25 0.5 

8 0.5 1 0.75 0.5 0.25 

9 0.75 0.25 0.75 1 0.5 

10 0.75 0.5 1 0.75 0.25 

11 0.75 0.75 0.25 0.5 1 

12 0.75 1 0.5 0.25 0.75 

13 1 0.25 1 0.5 0.75 

14 1 0.5 0.75 0.25 1 

15 1 0.75 0.5 1 0.25 

16 1 1 0.25 0.75 0.5 

 

6.1.2 Range Analysis 

  There are two significant parameters in the range analysis: 𝐾!" and 𝑅!. 𝐾!" is defined as 

the sum of the evaluation indexes of all levels (i, i = 1,2,3,4) in each factor (j), and 𝐾!" (mean 

value of 𝐾!") is used to determine the optimal level and optimal combination of factors:  

larger 𝐾!", better level of respective factor is [31]. 𝑅!   is defined as the range between the 

maximum and minimum value of 𝐾!", and is used for evaluating the importance of the factor: 

larger 𝑅!, greater importance of the factor is [31].  
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However, in most research, they require highest yield of an outcome, so that both 𝐾!" and 

𝑅! are crucial for factor optimization. In contrast, we purely need minimum cost in the 

present work, so that the 𝐾!" should be set as small as possible (it seems conflicting that K 

should equal to 0). As a result, 𝐾!" analysis was not as meaningful as 𝑅!, and only 𝑅! was 

qualified for factor analysis in our work so that a most influential factor could be revealed.  

 

6.1.3 Orthogonal Design Implementation 

  By applying an orthogonal design in three-cell interaction events, according to the results 

of range analysis (𝑅!), the result showed that positional information weights most among all 

five factors. Thus, we concluded that the positional part contributes most than other factors 

when they are all on a same level. In other words, by equivalently varying a value to all 

weighting factors, the greatest change in magnitude is observed in the positional part. The 

results of orthogonal test indicated a rough range of weighting factors, and relationship 

between each weighting part: when assign an equal value to each weighting factor, final cost 

is mostly contributed by the positional part; when assign different values to the weighting 

factors, a raw factor range can be achieved.  

 

6.2 Velocity and Directionality Incorporation 

  Existing factors in the cost function include integrated intensity, normalized intensity, area, 

aspect ratio and position, which were used conditionally for cell tracking correction in 

previous two-cell interactions [25]. Apart from existing factors, we intended to find other 

distinct characteristics that could describe and measure cell motility clearly. Thus, based on 
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observation of cell motional trajectories, we incorporated two new factors, velocity and 

directionality, then the cost function can be improved as: 

FP  cost = 𝑤!! ∗
𝐼𝐼!
𝐼𝐼!

−
𝐼𝐼!
𝐼𝐼!

!

+ 𝑤!" ∗
𝑁𝐼!
𝑁𝐼!

−
𝑁𝐼!
𝑁𝐼!

!

+ 𝑤! ∗
𝐴!
𝐴!
−
𝐴!
𝐴!

!

+ 

𝑤!" ∗
𝐴𝑅!
𝐴𝑅!

−
𝐴𝑅!
𝐴𝑅!

!

+ 𝑤! ∗
𝑥! − 𝑥! ! + 𝑦! − 𝑦! !

𝑑! + 𝑑!
2

!

+ 

𝑤! ∗
𝑉! − 𝑉!
𝑉

!

+ 𝑤! ∗ 𝐷! − 𝐷! ! 

where 𝑤! is the weighting factor for velocity of a cell, 𝑤! is the weighting factor for 

moving directionality of a cell. To optimize the cost function, each value assigned for 

weighting factor can be varied. In our work, velocity was defined as the difference in velocity 

between post-interaction and pre-interaction. Directionality was defined as the difference in 

direction between post-interaction and pre-interaction, and was implemented by MATLAB 

built-in arctangent function: P = atan2 (Y, X) [32]. Then the two expression parts were 

incorporated to update the cost function.  

 

7. Examination of Each Factor in the Cost Function 

  We designed different combinations of weighting factors in the cost function, in order to 

examine the independent effect that a factor would contribute to final outcome. The tests 

were conducted dependently in two parts: 1) keep other weighting factors as 1, vary position 

weighting factor from 0 to 2 with 0.25 interval (the larger position weighting factor, the 

larger cost values are, then when position weighting factor =2, final cost results are initially 

relying on positional part), as shown in Table 3; 2) determine each factor accuracy: keep just 

one weighting factor as 1 at a time, the others are 0, as shown in Table 4. All 89 cases were 
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comprehensively tested to obtain all cost results and corresponding accuracies.  

Table 3: Design for Variation of Position Weighting Factor 

TRIAL NO. 𝒘𝑰𝑰 𝒘𝑵𝑰 𝒘𝑨 𝒘𝑨𝑷 𝒘𝑷 𝒘𝑽 𝒘𝑫 

1 1 1 1 1 0 1 1 

2 1 1 1 1 0.25 1 1 

3 1 1 1 1 0.5 1 1 

4 1 1 1 1 0.75 1 1 

5 1 1 1 1 1 1 1 

6 1 1 1 1 1.25 1 1 

7 1 1 1 1 1.5 1 1 

8 1 1 1 1 1.75 1 1 

9 1 1 1 1 2 1 1 

  

Table 4: Design for Variation of Each Weighting Factor 

TRIAL NO. 𝒘𝑰𝑰 𝒘𝑵𝑰 𝒘𝑨 𝒘𝑨𝑷 𝒘𝑷 𝒘𝑽 𝒘𝑫 

1 1 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 

3 0 0 1 0 0 0 0 

4 0 0 0 1 0 0 0 

5 0 0 0 0 1 0 0 

6 0 0 0 0 0 1 0 

7 0 0 0 0 0 0 1 

 

8. Condition Optimization 

  The accuracies of each test obtained from Table 3 and Table 4 respectively are designed to 

determine how change in position weighting factor affects accuracy with all other factors 
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held constant, and how each factor independently affects accuracy. The results thus should 

reveal the factors for optimal performance of the cost function and how that performance 

compares with the Kilfoil benchmark method.  

 

9. Method Validation 

  We examined 5 new data sets to validate the method and examined corresponding 

accuracies of the three-cell interactions in the new data sets: 7Percent_MedDensity_Sample1, 

7Percent_MedDensity_Sample2 and 7Percent_MedDensity_Sample3, in which the cell 

density were as a same density of 5 000 cells/cm2, and 7Percent_MedHighDensity_Sample1, 

7Percent_MedHighDensity_Sample2, in which the cell density were 10 000 cells/cm2. In 

order to get a better calculation, the events were classified into two conditions that will be 

elaborated in the Results, and their code was shown in Appendix 3 to Appendix 6, 

respectively. By detecting the accuracies, we could analyze whether the optimized cost 

function and its executed condition could lead to increasing in accuracy.  
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Results 

1. Accuracy of the Kilfoil Benchmark Method 

  By analyzing all three-cell interaction events in the data set of 

7Percent_MedDensity_Sample5, excluding the cases where cell information were incomplete 

and tagged cells which did not interact or other abnormal conditions, there were 89 events 

which could be well analyzed for accuracy determination and cost function optimization. As 

a result, there were 75 events where all the three cells were correctly identified after cell 

interactions. In contrast, there were 14 events where cells were incorrectly identified after 

interactions, showing that the accuracy of three-cell interactions that could be achieved was 

84.27% by the Kilfoil benchmark method.  

  The error events were mainly observed to be when two cells occluded for several 

consecutive frames during interaction and the linking system could not distinguish them, thus 

causing their information, including tagged IDs, to be missing. As the interaction completed, 

their IDs reappeared but were incorrectly switched.  

By analyzing all the three-cell interaction events, we observed two characteristics: a) 

interacting duration during which the event occured, measured by how many frames that the 

three cells were sharing at least one parent contour. An example event is shown in Figure 8. b) 

a frame gap in which one or two involved cells were occluded and lost information, including 

identification for consecutive frames, since the linking system could not distinguish occluded 

cells in that particular interval. An example event is shown in Figure 9. The frame gap 

determination has been addressed in the corresponding code. For instance, 1-frame gap 

indicates all cell information that could be tracked consecutively by a single frame before and 
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a single frame after the interaction, 2-frame gap indicates that all cell information completed 

two frames before and two frames after the interaction, etc. Detailed data was obtained and 

shown in Table 5 and Table 6.  

 

Figure 8: A three-cell interaction event that has two-interacting frames, T=138 min and 141 min, from top 

to bottom 
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Figure 9: A three-cell interaction event of three-frame gaps, T=858 min, 861 min, 864 min and 867 min, 

from top to bottom. When T=861 min and 864 min, the tagged 949 cell could not be identified 

 

Table 5(A): Sum of Correct Cases for Different Interacting Frames 

TOTAL NUMBER OF INTERACTING 

FRAME 

TOTAL NUMBER OF CORRECT 

CASE 

PERCENTAGE 

1 28 37.33% 

2 19 25.33% 

3 10 13.33% 

4 4 5.33% 

5 5 6.67% 

6 3 4.00% 

7 1 1.33% 

8 3 4.00% 

9 1 1.33% 

10 1 1.33% 

SUM 75 1 

 

Table 5(B): Sum of Incorrect Cases for Different Interacting Frames 

TOTAL NUMBER OF INTERACTING 

FRAME 

TOTAL NUMBER OF 

INCORRECT CASE 

PERCENTAGE 

1 10 71.43% 

2 2 14.29% 

3 1 7.14% 

9 1 7.14% 

SUM 14 1 
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Table 6(A): Sum of Correct Cases for Different Frame Gaps 

TOTAL NUMBER OF FRAME 

GAP 

TOTAL NUMBER OF CORRECT 

CASE 

PERCENTAGE 

1 59 78.67% 

2 1 1.33% 

3 4 5.33% 

4 1 1.33% 

5 1 1.33% 

6 4 5.33% 

7 1 1.33% 

9 1 1.33% 

10 1 1.33% 

11 2 2.67% 

SUM 75 1 

 

Table 6(B): Sum of Incorrect Cases for Different Frame Gaps 

TOTAL NUMBER OF FRAME 

GAP 

TOTAL NUMBER OF INCORRECT 

CASE 

PERCENTAGE 

1 1 7.14% 

4 3 21.43% 

5 2 14.29% 

6 1 7.14% 

7 3 21.43% 

8 1 7.14% 

10 1 7.14% 

11 1 7.14% 

14 1 7.14% 

SUM 14 1 
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  Figure 8 shows a two-interacting frame event presented by filtered images. The tagged 242, 

243 and 447 cells were sharing one parent contour during these two frames in this particular 

event. Figure 9 shows a three-frame gaps event, where begins with the cells that were 

interacting when T=858 and captured consecutively, afterward tagged 949 cell lost its 

identification in consecutive two frames, then showed up when T=867. Whereby the frame 

gap was 3 as defined above.  

In regards to various interacting frames of all the events from Table 5, 1-interacting frame 

cases (38 out of 89, 42.7%) and 2-interacting frames cases (21 out of 89, 23.6%) account for 

more than half of the total cases. However, we could not arrive at a clear conclusion about an 

obvious tendency to indicate whether shorter or longer interacting frames are preferable for 

correct cell identifications in the Kilfoil benchmark method.  

  In regards to various frame gaps of the events from Table 6, 1-frame gap cases (59 out of 

89, 66.3%) shows all cell information were existing during the whole process of an event, 

also, suggests that all cell information integrated in a single frame before and a single frame 

after the interaction were more likely to have correct cell identifications. As for more than 

1-frame gap events, the pattern was not clear.  

  Thus, the analysis of duration and frame gap could provide a general condition of correct 

events and incorrect events, including potential strategy for future cost function optimization.  

 

2. Orthogonal Test Results  

  From all the Kilfoil correct cases, we chose 40 cases to determine the potential ranges and 
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relationships among the existing factors. The values were designated as Table 3 shown above, 

and then the cost function was applied to calculate orthogonal results. Due to each event 

having individual fluctuation in measurements, it was more reliable to present the order of 

𝑅!s of the factors instead of exact value. In each case, we denoted digit 1 as the most 

important factor that weighted most among all the factors, then digit 2 represented the second 

important factor, and so on, digit 5 represented the least important factor. Then we tested all 

cases and obtained mean values of the order. The results are shown in Table 7. 

Table 7: Results of Orthogonal Test 

 Integrated Intensity Normalized Intensity Area Aspect Ratio Position 

No. 3.17 4.73 3.09 2.87 1.12 

   

Thus, we can conclude from Table 7 that the positional part would weigh most among all 

the factors, which means that by assigning a same value to each weighting factor, the 

positional part contributed most to the final cost result, while integrated intensity part, cell 

area part and aspect ratio part had approximate importance, and normalized intensity part 

weighted least. In other words, by increasing the value of position weighting factor, the cost 

results would be more influenced by the positional part, until thoroughly relied on the 

positional part.  

  The results indicated a future perception of weighting factor optimization. We should 

examine a minimum value of the position weighting factor that co-effect with other factors, 

which could lead to a same accuracy compared to the marginal case where only position 

factor could have effect on cost results. Thus, any values assigned to the position weighting 

factor above this minimum value would achieve the same impact on the final cost results. As 
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a result, this particular value would be the maximum of the range of the position weighting 

factor. Thus, we should examine the effect and accuracy of each factor since they were all 

involved in the cost determination, and apart from the weighting values, it was also necessary 

to select the factors themselves.  

 

3. Examination of Factors in the Cost Function 

  We first incorporated velocity and directionality parts to update the cost function. Second, 

we examined how each factor effected and contributed to the final cost results. Thus, we 

could obtain an overall view of how each factor performs.  

 

3.1 Determination of Position Weighting Factor Range 

  As shown by the design outlined in Table 3, we tested 9 combinations for each 

three-interaction event and obtained corresponding accuracy that in how many cases, cells 

could be correctly identified among all cases. The results are shown in Table 8.  
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Table 8: Results for Variation of Position Weighting Factor 

TRIAL NO. 𝒘𝑰𝑰 𝒘𝑵𝑰 𝒘𝑨 𝒘𝑨𝑷 𝒘𝑷 𝒘𝑽 𝒘𝑫 ACCURACY 

1 1 1 1 1 0 1 1 44.94% 

2 1 1 1 1 0.25 1 1 51.69% 

3 1 1 1 1 0.5 1 1 51.69% 

4 1 1 1 1 0.75 1 1 55.06% 

5 1 1 1 1 1 1 1 56.18% 

6 1 1 1 1 1.25 1 1 58.43% 

7 1 1 1 1 1.5 1 1 58.43% 

8 1 1 1 1 1.75 1 1 59.55% 

9 1 1 1 1 2 1 1 60.67% 

 

  From Table 8, we learned that in the range from 0 to 2, the positional part had slightly 

increasing impact to the final cost results, as well as accuracy. When position weighting 

factors reached 2 with a combination where other weighting factors equaled to 1, the 

accuracy achieved as same as a cost result contributed by the pure positional part, which is 

addressed below.  

  Thus, regardless of other factors, positional analysis would be able to achieve a highest 

accuracy of 60.67% for three-cell interactions. On the other hand, the positional part had been 

further shown to be the most weighted part; hence, when co-effects with other weighting 

parts, the range could be narrowed as 0 to 2 with the simplest scale level.  

 

3.2 Determination of Each Factor 

  As shown by the design outlined in Table 5, we tested 7 combinations for each three-cell 

interaction event, under the condition that only one weighting part exists at a time to 
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contribute to final cost. We obtained corresponding accuracy of each weighting part, which 

demonstrated the ability of correctly identifying cells. The results are shown in Table 9.  

Table 9: Results for Variation of Each Weighting Factor 

TRIAL NO. 𝒘𝑰𝑰 𝒘𝑵𝑰 𝒘𝑨 𝒘𝑨𝑷 𝒘𝑷 𝒘𝑽 𝒘𝑫 ACCURACY 

1 1 0 0 0 0 0 0 20.22% 

2 0 1 0 0 0 0 0 22.47% 

3 0 0 1 0 0 0 0 21.35% 

4 0 0 0 1 0 0 0 12.36% 

5 0 0 0 0 1 0 0 60.67% 

6 0 0 0 0 0 1 0 6.74% 

7 0 0 0 0 0 0 1 38.20% 

 

  From Table 9, we found that characteristic of position could achieve the highest accuracy 

in cell tracking identification, which means positional analysis could describe cell moving 

trajectories better and serve in identifying cells during three-cell interactions. The pure 

positional part achieved the same accuracy comparing to the design that when other 

weighting factors were set to 1 and position weighting factor was set to 2, as No. 9 trail 

showed in Table 8. However, the accuracy was not as high as the Kilfoil benchmark method, 

in which tracking cells by positional information.  

 

The two results described above demonstrate that the two new factors that were 

systematically studied the accuracies were not as high as we imagined before, that 

modification of the ACTIVE algorithms could allow ACTIVE to outperform the Kilfoil 

benchmark method. The reason might be that the conditions were more complicated to 
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analyze in three-cell interactions. First, the cost combinations increase exponentially for 

higher-level cell interactions. For example, the combinations would be 4 (22) in two-cell 

interactions, 9 (32) in three-cell interactions, 16 (42) in four-cell interactions, etc., which result 

in more cell pairs to compare. Second, apart from measurements for position, the measuring 

scale of other weighting features were mostly ranging from infinitesimal to 1, where even a 

small fluctuation in measurements would be difficult to distinguish the minimum cost. Third, 

as we found in Table 10, not every factor could be fitting for higher-level cell interactions, 

accuracy may decrease by improper factors if we incorporate all of them.  

 

4. Modification of ACTIVE Execution Condition 

  From Table 9, we found that directionality was able to achieve a second highest accuracy 

among all factors. We also found that for the 14 incorrect cases, pure directionality factor 

could be able to correct 11 cases, which achieved an accuracy of 78.57% for incorrect cases, 

while higher than other factors. The relationship between the number of frame gaps and 

validity of each incorrect case are shown in Table 10.  
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Table 10: Frame Gap Pattern of Incorrect Three-cell Interaction Cases 

EVENT NO. TOTAL NUMBER OF FRAME GAP WHETHER CORRECT OR NOT 

258 14 Correct 

297 11 Correct 

247 10 Correct 

129 8 Correct 

86 7 Correct 

92 7 Correct 

110 7 Correct 

75 6 Incorrect 

20 5 Incorrect 

64 5 Correct 

62 4 Incorrect 

80 4 Correct 

161 4 Correct 

151 1 Correct 

 

We already learned from Table 6 that 1-frame gap events were more likely to have correct 

tracking based on the Kilfoil benchmark method. While we learnt from Table 10 that 

incorrect events were more likely to have more than a single frame gap. Thus, we counted a 

total number of correct cases determined by directionality and compared it with correct cases 

determined by the Kilfoil benchmark method, according to different frame gaps. The results 

are shown in Table 11. 
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Table 11: Conclusion for Total Number of Correct Cases Determined by Directionality and the Kilfoil 

Benchmark Method 

TOTAL NUMBER 

OF FRAME GAP 

TOTAL NUMBER OF CORRECT CASE 

DETERMINED BY DIRECTIONALITY 

TOTAL NUMBER OF 

KILFOIL CORRECT 

CASE 

1 16 59 

2 1 1 

3 2 4 

4 2 1 

5 2 1 

6 2 4 

7 3 1 

8 1 1 

9 1 0 

10 1 1 

11 2 2 

12 0 0 

13 0 0 

14 1 0 

 

From Table 11, we see that a highest accurate strategy could be tested, when frame gap 

was no less than 3 frames, directionality could be used to determine cell identification after 

three-cell interactions, when frame gap was less than 3 frames, the Kilfoil benchmark method 

could be an alternative. By this combined method, we could achieve a new accuracy of 

88.76%, which was 4.5% higher than the Kilfoil benchmark method (84.27%).  
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5. Method Validation 

  The code for event information and cost function implementation was optimized for 

validation. Overall, the main highlighted code was shown in Appendix 5, Appendix 6, 

Appendix 7 and Appendix 8. Appendix 5 and Appendix 6 mainly included the 

implementation of cost function for different conditions, Appendix 7 and Appendix 8 were 

circumstances determination sections.  

  The code for events having only one interacting frame was shown in Appendix 3 and 

Appendix 5. In Appendix 3, the code worked for one-interacting frame events and cell 

information, whereby before and after interaction were collected and stored in xyzs_info. 

Then the variables and assigned weighting factors were called in the function shown in 

Appendix 5. By execution of the function, the outputs would be two variables stored in cost, 

as cost_vector and framegap. All nine possible combinations of three-cell interactions 

were stored in cost_vector, and it would be used in circumstances determination as well 

as framegap.  

  The code for the events having at least two interacting frames is shown in Appendix 4 and 

Appendix 6. All meanings and purposes of variables were identical with one-interacting 

frame events as addressed above. The only difference in the information collection of 

multi-interacting frame events was that we both recorded the first interacting frame and the 

last interacting frame, during which period the cell behavior could be omitted since the 

condition during interaction would be difficult and unnecessary to clarify. This setting was 

mainly used for velocity and directionality cost calculation. Identically, cost_vector and 

framegap would be the two outputs for circumstances determination.  
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  The code for circumstances determination was shown in Appendix 7 and Appendix 8. With 

the input variables of cost_vector and framegap, the code shown in Appendix 7 was able 

to implement the strategy that when frame gap was less than 3 frames, the Kilfoil benchmark 

method remained, when frame gap was no less than 3 frames, directionality would be 

selected after three-cell interactions. Then if the respective combination was a minimum in 

each cell pair, the cell identification would keep the same. If not, then the cost results would 

be used in the script shown in Appendix 8, a minimum combination would be viewed as 

correct cell identification and the other two would be switched, and relabeled in the 

corresponding figure. Thus we could identify whether each cell was correctly tracked.  

  

5.1 Test on Data Sets of Same Density 

  We first tested the strategy for three new data sets: 7Percent_MedDensity_Sample1, 

7Percent_MedDensity_Sample2 and 7Percent_MedDensity_Sample3, in which the cell 

seeding density was 5 000 cells/cm2 in static wrinkle substrates. We examined 57 three-cell 

interaction cases in total and the new strategy was able to obtain an accuracy of 85.96% (49 

out of 57). While the Kilfoil benchmark method could achieve an accuracy of 92.98% (53 out 

of 57).  

 

5.2 Test on Data Sets of A Higher Density 

  Then we tested the strategy for another two data sets: 7Percent_MedHighDensity_Sample1, 

7Percent_MedHighDensity_Sample2, in which the cell seeding density was 10 000 cells/cm2 

in static wrinkle substrates. We examined 80 three-cell interaction cases total and the new 
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strategy was able to obtain an accuracy of 86.25% accuracy (69 out of 80). While the Kilfoil 

benchmark method could achieve an accuracy of 91.25% (73 out of 80).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43	  
	  

Discussion 

  In this work, two strategies for improving accuracy during tracking of cells during 

three-cell events were studied. The results show that neither morphological nor mobility data 

could outperform a purely positional approach for cell tracking under these particular 

circumstances. The results further provide valuable insight that we still could obtain 

meaningful evaluation from the work and predict future improvements for higher level of cell 

interactions. Not only the factors in the cost function can be selected, but also the algorithm 

of ACTIVE or the expression of cost function can be optimized in future work.  

  By reviewing the whole work, we first extracted the three-cell interactions from the data 

set and analyzed its tracking accuracy by the Kilfoil benchmark method. The result showed 

84.27% accuracy that there might be a potential capacity for enhancing cell tracking 

correction by the cost function. In our further analysis of the interacting events, we counted 

the total number of interacting frame and frame gap for correct cases and incorrect cases, 

respectively. Since these two indexes elaborated a general interacting duration based on a 

contour-defined pre-process and a time gap that a cell could not be traced, respectively. In 

previous work of ACTIVE in two-cell interactions, it has been reported that more frame gaps 

would result in higher possibility, where the Kilfoil method incorrectly identifies the cells [25], 

due to positional analysis would no longer reliable. In our work, in contrast with interacting 

frame, Table 7(A) shows that completed cell information in consecutive frames were prone to 

be correctly tracked by the Kilfoil method, which was similar with the conclusion before. 

Thus, the frame gap could be mainly taken into account in our analysis, by aiming at how to 

correct cell tracking with those cases with more frame gaps.  
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Prior to improving the cost function, we modified the implementation of the code and had 

it adapted for three-cell interactions in our work. The increase of potential combinations for 

three cells became the first challenge in our method, which is shown in Table 1. In two-cell 

interactions, there were only four potential combinations needed for comparison. While in 

three-cell interactions, the potential combinations increased to nine, resulted in a more 

complicated condition that each cell needed to be compared three times. Then we modified 

the code of cost function for accurately applying for three-cell interactions. In this process, 

however, much higher accurate assessments for the characteristics of the cells were required. 

Once the cells had nearly equal measurements in a particular magnitude, it was challenging to 

tell the difference between each of them, whereby we tried to distinguish their identification 

before and after interaction. Even a tiny fluctuation could result in a wrong combination 

value, and the final cost and cell identification. Thus, based on current measured magnitudes, 

we had to accurately examine the factors that contributed to the final cost, including the 

ranges and relationships of them, as well as whether they could effect as we expected and 

search for other potential features expressed during cell migration.  

From the first approach, with the optimization of existing factors, including integrated 

intensity, normal intensity, area, aspect ratio and position, we tried to testify potential ranges 

and relationships among them by a introduced mathematical method: orthogonal design, 

based on the particular measurement scale. With a comprehensive and efficient examination 

(shown in Table 3), orthogonal testing provided a reliable result, showing that the position 

factor weighted and contributed more than other factors to the cost. Which means, we could 

vary the values of each weighting factors and balance them in a reasonable range in order to 
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acquire desirable results. In this particular range, the positional part could act as a maximum 

limit. In other words, generally, while in certain circumstance where all the five factors were 

co-effecting, once a particular value of the position weighting factor has been set, the final 

cost would not have obvious changes when other weighting factors were set on any values 

within the range. So that the final cost would rely on the position part, and then applied in the 

selection of correct cell combination. As a widely used statistical methodology, orthogonal 

design can be used in many research fields. In our work, it was also fitting for range 

determination of various factors on various levels.  

  What is more, based on carefully observation of the cell migration, we introduced two new 

factors into the cost function: velocity and directionality. Due to the particular static wrinkled 

substrate that was used for cell culture, it was indicated that cells preferred to migrate parallel 

to the wrinkle direction [12], which means that the directionality could be evaluated as a 

meaningful factor in our work. Then we assessed the relationships among all the factors and 

individual effect. With a co-effect with other factors, the position weighting factor could be 

set in a range from 0 to 2, while it equaled to 2, the accuracy could be achieved as highest as 

60.67%. On the other hand, we also examined the effect of each factor, which was necessary 

because, though they were raised and worked well in two-cell interactions, they might not fit 

for more complicated three-cell interactions, due to the selection of the correct cost 

combination being more restricted as explained above. The dependent highest accuracy was 

achieved by positional part, while others were too inaccurate to be viewed as efficient factors.  

We next considered a second approach: concluded an alternative approach: modification of 

the circumstances under which the Kilfoil and the cost function were executed according to 
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the frame gap. Since less frame gap cases prone had correct cell tracking by the Kilfoil 

benchmark method, while more frame gap cases could use directionality to correct cell 

tracking due to their slight higher accuracy shown in Table 10. Thus, a new strategy was 

established, as directionality could be applied to determine cell identification when frame gap 

was no less than 3, and the Kilfoil benchmark method could be an alternative when the frame 

gap was less than 3. In this particular strategy, we could achieve a new accuracy with the 

combined method with 88.76%, which was 4.5% higher accuracy than the Kilfoil benchmark 

method (84.27%). First, cells preferred to move along the wrinkle on the substrate so that 

directionality could be able to describe cell migration, in which cells were more likely to keep 

their moving angles during the interactions. Second, positional information could hardly 

identify cells if they occluded for several frames after interactions as previous ACTIVE work 

had testified, in addition where directionality also behaved well in this particular condition, 

so that we took an example that the new strategy was based on a frame gap.  

Based on the new strategy, we completed the final code of cost function implementation, 

as shown in Appendix 5 and Appendix 6. The code was divided into two versions that fit for 

two interacting conditions respectively. There were two innovations of the code, update for 

three-cell interactions, and velocity and directionality incorporation. Then with the calculated 

cost results, the code in Appendix 7 and Appendix 8 could be able to finalize the strategy 

according to frame gap.  

However, though we had prepared sufficient factors work for the cost function by 

examining the range of weighting factors and individual impact of each factor, the new 

strategy was not found to reproducibly increase cell tracking accuracy when applied to 
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multiple data sets. Thus, the original and improved cost function could not further improve 

correct cell tracking for three-cell interactions, and still needs further investigation and 

modification.  

  In future improvement of ACTIVE algorithm, first, the modification of cost function 

should be aimed. We illustrated the principle of combinations for different cell pairs, the 

condition was simplest in two-cell interactions, for each case had only four combinations to 

compare. However, in higher level cell interactions, the combinations increase exponentially, 

for example, there were 9 combinations for three-cell interactions, there should be 16 for 

four-cell interactions, 25 for five-cell interactions, etc., which resulted in a more and more 

complex condition where the comparisons are confused to identify. Without an extreme 

precise measurement of the factors, it is difficult to correctly identify respective cells during 

the tracking process. What is more, the algorithm of the cost function can be modified to 

decrease comparisons for higher level of cell interactions, for instance, each cell can be 

compared only once in the cost calculation. Since more cell pair combinations will result in 

duplicated comparisons and reducing accuracy. Hence, in future work, based on the 

established innovative cell interaction events in ACTIVE, i.e. cell division and merging, the 

cost function can be potentially altered to another form, expression, or algorithm.  

Second, factors selection is still worth studying. Since in three-cell interactions, the results 

suggested that the five original factors had various low accuracies in identifying cells after 

interactions, due to the complex cost combinations. So that it is significant to select proper 

factors that could be able to accurately identify the identical cells after interactions. What is 

more, specific features of different substrates, which also are worth further investigation in a 
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way, can influence cell behavior. Such as directionality in our work, it could predict cell 

migrate direction to some extent. In brief, the characteristics for analyzing cell behaviors over 

long time not only require the properties of cells themselves, but also the properties of 

specific substrates that how the cells prefer to migrate on those substrates.  

  In conclusion, though positional analysis appears to be a more accurate method than 

morphological and mobility analysis for cell tracking under the current circumstances, as we 

did not achieve higher accuracy by the cost function inherited from previous ACTIVE work 

for three-cell interactions, further improvement is worth studying. Not only is it possible to 

select more accurate factors to assess cell migration, but also to optimize the algorithm of 

ACTIVE and its cost function for higher level of cell-cell interactions.  
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Appendices 

  We attached all necessary code in this Appendices part. In order to have a brief overlook, a 

modified flow chart was presented below in Scheme 2, which derived from the one presented 

in Methods. In Scheme 2, we highlighted the crucial code in corresponding step. 

 

Scheme 2: Main sections completed by the present work, attaches with bold text that indicates 

corresponding Appendix 

 

1. Script: Three-cell Interaction Cases and Frame Information Extraction 
cell_id_matrix=mult_array(:,2:4); 
n=1; 
% select and sort three cell event 
for i=1:length(cell_id_matrix); 
    if length(cell_id_matrix{i})==3; 
        three_cell_event_matrix{n,1}=cell_id_matrix{i,1}'; 
        three_cell_event_matrix{n,2}=cell_id_matrix{i,2}; 
        three_cell_event_matrix{n,3}=cell_id_matrix{i,3}; 
        n=n+1; 
    end 
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end 
% sort cell id to a single column 
p=1; 
for m=2:n-1; 
    

cell_id_array(p:p+5,1)=[three_cell_event_matrix{m-1},three_cell_event_matri

x{m}]'; 
    p=p+3; 
end 
% check whether a cell ID is unique 
m=1; 
n=1; 
for i=1:length(cell_id_array); 
    if cell_id_array(n)==cell_id_array(n+1); 
        check(m)=cell_id_array(n+1); 
        n=n+1; 
        m=m+1; 
    end 
end 
% sort cell information(output:matrix) 
sum=0; 
for j=1:length(cell_id_array); 
    bool_id=xyzs_id(:,13)==cell_id_array(j); 
    cell_info=xyzs_id(bool_id); 
    matrix(sum+1:sum+length(cell_info),1:13)=xyzs_id(bool_id,1:13); 
    sum=sum+length(cell_info); 
end 
% get all frame information 
image_info = imfinfo('7Percent_MedDensity_Sample1.tif'); 

	  

2. Script: Plot Cells in Each Frame 
j=47; % event no. 
m=3*(j-1)+1; % cell id order 
  
% particular frame 
I = imread('7Percent_MedDensity_Sample3.tif', 477, 'Info', image_info); 
figure; 
imagesc(I) 
colormap('gray') 
axis([800 1000 400 600]) 
hold on 
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% plot each cell 
A=find(matrix(:,13)==cell_id_array(m)); 
B=find(matrix(:,12)==three_cell_event_matrix{j,2}); 
C=intersect(A,B,'rows'); 
plot(matrix(C(3),1)',matrix(C(3),2)','rx') 
     
m=m+1; 
A=find(matrix(:,13)==cell_id_array(m)); 
B=find(matrix(:,12)==three_cell_event_matrix{j,2}); 
C=intersect(A,B,'rows'); 
plot(matrix(C(1),1)',matrix(C(1),2)','yx') 
     
m=m+1; 
A=find(matrix(:,13)==cell_id_array(m)); 
B=find(matrix(:,12)==three_cell_event_matrix{j,2}); 
C=intersect(A,B,'rows'); 
plot(matrix(C(1),1)',matrix(C(1),2)','gx') 
  
saveas(gcf,'477.tiff') 

	  

3. Script: Collection of Each Cell Information for 1 Interacting Frame 
% 1 interacting frame 
% obtain cell id information 
event_no=11; 
id=3*(event_no-1)+1; % first cell id no. 
  

% first cell 

A=find(matrix(:,13)==cell_id_array(id)); 
B=find(matrix(:,12)==three_cell_event_matrix{event_no,2}); 
C=intersect(A,B,'rows'); 
xyzs_id1_f1=matrix(C(1)-1,:); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id1_fi=matrix(C(1),:); % interact frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id1_f2=matrix(C(1)+6,:);  
  

% second cell 

id=id+1; 
A=find(matrix(:,13)==cell_id_array(id)); 
B=find(matrix(:,12)==three_cell_event_matrix{event_no,2}); 
C=intersect(A,B,'rows'); 
xyzs_id2_f1=matrix(C(1)-6,:); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id2_fi=matrix(C(1),:); % interact frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id2_f2=matrix(C(1)+6,:); 
 

% third cell 

id=id+1; 
A=find(matrix(:,13)==cell_id_array(id)); 
B=find(matrix(:,12)==three_cell_event_matrix{event_no,2}); 
C=intersect(A,B,'rows'); 
xyzs_id3_f1=matrix(C(1)-6,:); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id3_fi=matrix(C(1),:); % interact frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id3_f2=matrix(C(1)+6,:); 
  
xyzs_info(1,:)=xyzs_id1_f1; 
xyzs_info(2,:)=xyzs_id1_fi; 
xyzs_info(3,:)=xyzs_id1_f2; 
xyzs_info(4,:)=xyzs_id2_f1; 
xyzs_info(5,:)=xyzs_id2_fi; 
xyzs_info(6,:)=xyzs_id2_f2; 
xyzs_info(7,:)=xyzs_id3_f1; 
xyzs_info(8,:)=xyzs_id3_fi; 
xyzs_info(9,:)=xyzs_id3_f2; 
  

% call the cost function to calculate cost 
cost_1(w_int_intensity, w_norm_intensity, w_area, w_aspect, w_position, 

w_velocity, w_direction, xyzs_info, frame_avg, xyzs_id_columns); 
% call the category function to implement the strategy 
category(cost_vector, framegap); 

	  

4. Script: Collection of Each Cell Information for More Than 1 Interacting 

Frames 
% more than 1 interacting frame 
% obtain cell id information 
event_no=44; 
id=3*(event_no-1)+1; % first cell id no. 
  
% first cell 
A=find(matrix(:,13)==cell_id_array(id)); 
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B=find(matrix(:,12)==three_cell_event_matrix{event_no,2}); 
C=intersect(A,B,'rows'); 
xyzs_id1_f1=matrix(C(2)-7,:); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id1_fi1=matrix(C(2),:); % 1st interact frame 
xyzs_id1_fi2=matrix(C(2)+9,:); % 2nd interact frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id1_f2=matrix(C(2)+16,:);   
  
% second cell 
id=id+1; 
A=find(matrix(:,13)==cell_id_array(id)); 
B=find(matrix(:,12)==three_cell_event_matrix{event_no,2}); 
C=intersect(A,B,'rows'); 
xyzs_id2_f1=matrix(C(1)-6,:); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id2_fi1=matrix(C(1),:); % 1st interact frame 
xyzs_id2_fi2=matrix(C(1)+9,:); % 2nd interact frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id2_f2=matrix(C(1)+16,:); 
  
% third cell 
id=id+1; 
A=find(matrix(:,13)==cell_id_array(id)); 
B=find(matrix(:,12)==three_cell_event_matrix{event_no,2}); 
C=intersect(A,B,'rows'); 
xyzs_id3_f1=matrix(C(1)-7,:); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id3_fi1=matrix(C(1),:); % 1st interact frame 
xyzs_id3_fi2=matrix(C(1)+6,:); % 2nd interact frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xyzs_id3_f2=matrix(C(1)+7,:); 
  
xyzs_info(1,:)=xyzs_id1_f1; 
xyzs_info(2,:)=xyzs_id1_fi1; 
xyzs_info(3,:)=xyzs_id1_fi2; 
xyzs_info(4,:)=xyzs_id1_f2; 
  
xyzs_info(5,:)=xyzs_id2_f1; 
xyzs_info(6,:)=xyzs_id2_fi1; 
xyzs_info(7,:)=xyzs_id2_fi2; 
xyzs_info(8,:)=xyzs_id2_f2; 
  
xyzs_info(9,:)=xyzs_id3_f1; 
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xyzs_info(10,:)=xyzs_id3_fi1; 
xyzs_info(11,:)=xyzs_id3_fi2; 
xyzs_info(12,:)=xyzs_id3_f2; 
  

% call the cost function to calculate cost 
cost_2(w_int_intensity, w_norm_intensity, w_area, w_aspect, w_position, 

w_velocity, w_direction, xyzs_info, frame_avg, xyzs_id_columns); 
% call the category function to implement the strategy 

category(cost_vector, framegap); 
 

5. Cost Function for 1 Interacting Frame [12] 
function[cost_vector,framegap]=cost_1(w_int_intensity, w_norm_intensity, 

w_area, w_aspect, w_position, w_velocity, w_direction, xyzs_info, frame_avg, 

xyzs_id_columns) 
% 1 interacting frame 
  
cost_vector=zeros(8,9); 
xyzs_id1_f1=xyzs_info(1,:); 
xyzs_id1_fi=xyzs_info(2,:); 
xyzs_id1_f2=xyzs_info(3,:); 
xyzs_id2_f1=xyzs_info(4,:); 
xyzs_id2_fi=xyzs_info(5,:); 
xyzs_id2_f2=xyzs_info(6,:); 
xyzs_id3_f1=xyzs_info(7,:); 
xyzs_id3_fi=xyzs_info(8,:); 
xyzs_id3_f2=xyzs_info(9,:); 
  
framegap=xyzs_id1_fi(xyzs_id_columns-1)-xyzs_id1_f1(xyzs_id_columns-1); 
  
id1_frame1=xyzs_id1_f1(xyzs_id_columns-1); 
% id2_frame1=xyzs_id2_f1(xyzs_id_columns-1); 
% id3_frame1=xyzs_id3_f1(xyzs_id_columns-1); 
id1_frame2=xyzs_id1_f2(xyzs_id_columns-1); 
% id2_frame2=xyzs_id2_f2(xyzs_id_columns-1); 
% id3_frame2=xyzs_id3_f2(xyzs_id_columns-1); 
     
% Extract frame averages from frame_avg 
avg_norm_intensity1 = frame_avg(7,id1_frame1); %average intensity/area 
avg_norm_intensity2 = frame_avg(7,id1_frame2); 
avg_area1 = frame_avg(5,id1_frame1); %average area 
avg_area2 = frame_avg(5,id1_frame2); 
avg_int_intensity1 = frame_avg(6,id1_frame1); %average integrated intensity 
avg_int_intensity2 = frame_avg(6,id1_frame2); 
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avg_diameter1 = (2*frame_avg(1,id1_frame1) + 2*frame_avg(2,id1_frame1))/2; % 

average of major and minor diameter  
avg_diameter2 = (2*frame_avg(1,id1_frame2) + 2*frame_avg(2,id1_frame2))/2; 
  
% Extracts the intensity 
int_intensity1=xyzs_id1_f1(7); 
int_intensity2=xyzs_id2_f1(7); 
int_intensity3=xyzs_id3_f1(7); 
int_intensity4=xyzs_id1_f2(7); 
int_intensity5=xyzs_id2_f2(7); 
int_intensity6=xyzs_id3_f2(7); 
  
% Extracts the areas 
area1=xyzs_id1_f1(6); 
area2=xyzs_id2_f1(6); 
area3=xyzs_id3_f1(6); 
area4=xyzs_id1_f2(6); 
area5=xyzs_id2_f2(6); 
area6=xyzs_id3_f2(6); 
  
% Calculate the average intensity 
norm_intensity1=int_intensity1/area1; 
norm_intensity2=int_intensity2/area2; 
norm_intensity3=int_intensity3/area3; 
norm_intensity4=int_intensity4/area4; 
norm_intensity5=int_intensity5/area5; 
norm_intensity6=int_intensity6/area6; 
  
% Calculate the aspect ratio 
aspect1=xyzs_id1_f1(3)/xyzs_id1_f1(4); 
aspect2=xyzs_id2_f1(3)/xyzs_id2_f1(4); 
aspect3=xyzs_id3_f1(3)/xyzs_id3_f1(4); 
aspect4=xyzs_id1_f2(3)/xyzs_id1_f2(4); 
aspect5=xyzs_id2_f2(3)/xyzs_id2_f2(4); 
aspect6=xyzs_id3_f2(3)/xyzs_id3_f2(4); 
  
% Calculate the distance between centroids 
centroid_distance_1=((xyzs_id1_f1(1)-xyzs_id1_f2(1))^2+(xyzs_id1_f1(2)-xyzs

_id1_f2(2))^2)^(1/2);  
centroid_distance_2=((xyzs_id1_f1(1)-xyzs_id2_f2(1))^2+(xyzs_id1_f1(2)-xyzs

_id2_f2(2))^2)^(1/2);  
centroid_distance_3=((xyzs_id1_f1(1)-xyzs_id3_f2(1))^2+(xyzs_id1_f1(2)-xyzs

_id3_f2(2))^2)^(1/2);  
centroid_distance_4=((xyzs_id2_f1(1)-xyzs_id1_f2(1))^2+(xyzs_id2_f1(2)-xyzs
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_id1_f2(2))^2)^(1/2);  
centroid_distance_5=((xyzs_id2_f1(1)-xyzs_id2_f2(1))^2+(xyzs_id2_f1(2)-xyzs

_id2_f2(2))^2)^(1/2);  
centroid_distance_6=((xyzs_id2_f1(1)-xyzs_id3_f2(1))^2+(xyzs_id2_f1(2)-xyzs

_id3_f2(2))^2)^(1/2);  
centroid_distance_7=((xyzs_id3_f1(1)-xyzs_id1_f2(1))^2+(xyzs_id3_f1(2)-xyzs

_id1_f2(2))^2)^(1/2);  
centroid_distance_8=((xyzs_id3_f1(1)-xyzs_id2_f2(1))^2+(xyzs_id3_f1(2)-xyzs

_id2_f2(2))^2)^(1/2);  
centroid_distance_9=((xyzs_id3_f1(1)-xyzs_id3_f2(1))^2+(xyzs_id3_f1(2)-xyzs

_id3_f2(2))^2)^(1/2);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% VELOCITY BEFORE INTERACTION %%%%%%%%%%%%%%%%%%%%%%%%%% 
displacement_A1=((xyzs_id1_f1(1)-xyzs_id1_fi(1))^2+(xyzs_id1_f1(2)-xyzs_id1

_fi(2))^2)^(1/2);  
displacement_B1=((xyzs_id2_f1(1)-xyzs_id2_fi(1))^2+(xyzs_id2_f1(2)-xyzs_id2

_fi(2))^2)^(1/2);  
displacement_C1=((xyzs_id3_f1(1)-xyzs_id3_fi(1))^2+(xyzs_id3_f1(2)-xyzs_id3

_fi(2))^2)^(1/2);  
velocity_A1=displacement_A1/framegap;  
velocity_B1=displacement_B1/framegap; 
velocity_C1=displacement_C1/framegap; 
avg_velocity=(velocity_A1+velocity_B1+velocity_C1)/3; 
%%%%%%%%%%%%%%%%% VELOCITY AFTER INTERACTION %%%%%%%%%%%%%%%%%%%%%%%%%% 
displacement_A2=((xyzs_id1_f2(1)-xyzs_id1_fi(1))^2+(xyzs_id1_f2(2)-xyzs_id1

_fi(2))^2)^(1/2);  
displacement_B2=((xyzs_id2_f2(1)-xyzs_id2_fi(1))^2+(xyzs_id2_f2(2)-xyzs_id2

_fi(2))^2)^(1/2);  
displacement_C2=((xyzs_id3_f2(1)-xyzs_id3_fi(1))^2+(xyzs_id3_f2(2)-xyzs_id3

_fi(2))^2)^(1/2); 
velocity_A2=displacement_A2/framegap;  
velocity_B2=displacement_B2/framegap; 
velocity_C2=displacement_C2/framegap; 
%%%%%%%%%%%%%%%%% DIRECTION BEFORE INTERACTION %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% fi-f1 
rad_A1=atan2(xyzs_id1_fi(2)-xyzs_id1_f1(2),xyzs_id1_fi(1)-xyzs_id1_f1(1))+p

i; % atan2(Y,X) value in (-pi,pi), assign to (0,2pi) 
rad_B1=atan2(xyzs_id2_fi(2)-xyzs_id2_f1(2),xyzs_id2_fi(1)-xyzs_id2_f1(1))+p

i; 
rad_C1=atan2(xyzs_id3_fi(2)-xyzs_id3_f1(2),xyzs_id3_fi(1)-xyzs_id3_f1(1))+p

i; 
%%%%%%%%%%%%%%%%% DIRECTION AFTER INTERACTION %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% f2-f1 
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rad_A2=atan2(xyzs_id1_f2(2)-xyzs_id1_f1(2),xyzs_id1_f2(1)-xyzs_id1_f1(1))+p

i;  
rad_B2=atan2(xyzs_id2_f2(2)-xyzs_id2_f1(2),xyzs_id2_f2(1)-xyzs_id2_f1(1))+p

i; 
rad_C2=atan2(xyzs_id3_f2(2)-xyzs_id3_f1(2),xyzs_id3_f2(1)-xyzs_id3_f1(1))+p

i; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Calculate the total cost based on weights and differences 
% 1 
cost_vector(1,1) = 

w_int_intensity*(int_intensity1/avg_int_intensity1-int_intensity4/avg_int_i

ntensity2)^2; 
cost_vector(2,1) = 

w_norm_intensity*(norm_intensity1/avg_norm_intensity1-norm_intensity4/avg_n

orm_intensity2)^2;  
cost_vector(3,1) = w_area*(area1/avg_area1 - area4/avg_area2)^2; 
cost_vector(4,1) = w_aspect*(aspect1 - aspect4)^2; 
cost_vector(5,1) = w_position*(centroid_distance_1/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,1) = w_velocity*((velocity_A1-velocity_A2)/avg_velocity)^2; 
if abs(rad_A1-rad_A2) > pi 
    cost_vector(7,1) = w_direction*(abs(rad_A1-rad_A2)-pi)^2; 
else 
    cost_vector(7,1) = w_direction*(rad_A1-rad_A2)^2; 
end 
cost_vector(8,1) = 

cost_vector(1,1)+cost_vector(2,1)+cost_vector(3,1)+cost_vector(4,1)+cost_ve

ctor(5,1)+cost_vector(6,1)+cost_vector(7,1); 
% 2 
cost_vector(1,2) = 

w_int_intensity*(int_intensity1/avg_int_intensity1-int_intensity5/avg_int_i

ntensity2)^2; 
cost_vector(2,2) = 

w_norm_intensity*(norm_intensity1/avg_norm_intensity1-norm_intensity5/avg_n

orm_intensity2)^2;  
cost_vector(3,2) = w_area*(area1/avg_area1 - area5/avg_area2)^2; 
cost_vector(4,2) = w_aspect*(aspect1 - aspect5)^2; 
cost_vector(5,2) = w_position*(centroid_distance_2/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,2) = w_velocity*((velocity_A1-velocity_B2)/avg_velocity)^2; 
if abs(rad_A1-rad_B2) > pi 
    cost_vector(7,2) = w_direction*(abs(rad_A1-rad_B2)-pi)^2; 
else 
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    cost_vector(7,2) = w_direction*(rad_A1-rad_B2)^2; 
end 
cost_vector(8,2) = 

cost_vector(1,2)+cost_vector(2,2)+cost_vector(3,2)+cost_vector(4,2)+cost_ve

ctor(5,2)+cost_vector(6,2)+cost_vector(7,2); 
% 3 
cost_vector(1,3) = 

w_int_intensity*(int_intensity1/avg_int_intensity1-int_intensity6/avg_int_i

ntensity2)^2; 
cost_vector(2,3) = 

w_norm_intensity*(norm_intensity1/avg_norm_intensity1-norm_intensity6/avg_n

orm_intensity2)^2;  
cost_vector(3,3) = w_area*(area1/avg_area1 - area6/avg_area2)^2; 
cost_vector(4,3) = w_aspect*(aspect1 - aspect6)^2; 
cost_vector(5,3) = w_position*(centroid_distance_3/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,3) = w_velocity*((velocity_A1-velocity_C2)/avg_velocity)^2; 
if abs(rad_A1-rad_C2) > pi 
    cost_vector(7,3) = w_direction*(abs(rad_A1-rad_C2)-pi)^2; 
else 
    cost_vector(7,3) = w_direction*(rad_A1-rad_C2)^2; 
end 
cost_vector(8,3) = 

cost_vector(1,3)+cost_vector(2,3)+cost_vector(3,3)+cost_vector(4,3)+cost_ve

ctor(5,3)+cost_vector(6,3)+cost_vector(7,3); 
% 4 
cost_vector(1,4) = 

w_int_intensity*(int_intensity2/avg_int_intensity1-int_intensity4/avg_int_i

ntensity2)^2; 
cost_vector(2,4) = 

w_norm_intensity*(norm_intensity2/avg_norm_intensity1-norm_intensity4/avg_n

orm_intensity2)^2;  
cost_vector(3,4) = w_area*(area2/avg_area1 - area4/avg_area2)^2; 
cost_vector(4,4) = w_aspect*(aspect2 - aspect4)^2; 
cost_vector(5,4) = w_position*(centroid_distance_4/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,4) = w_velocity*((velocity_B1-velocity_A2)/avg_velocity)^2; 
if abs(rad_B1-rad_A2) > pi 
    cost_vector(7,4) = w_direction*(abs(rad_B1-rad_A2)-pi)^2; 
else 
    cost_vector(7,4) = w_direction*(rad_B1-rad_A2)^2; 
end 
cost_vector(8,4) = 

cost_vector(1,4)+cost_vector(2,4)+cost_vector(3,4)+cost_vector(4,4)+cost_ve
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ctor(5,4)+cost_vector(6,4)+cost_vector(7,4); 
% 5 
cost_vector(1,5) = 

w_int_intensity*(int_intensity2/avg_int_intensity1-int_intensity5/avg_int_i

ntensity2)^2; 
cost_vector(2,5) = 

w_norm_intensity*(norm_intensity2/avg_norm_intensity1-norm_intensity5/avg_n

orm_intensity2)^2;  
cost_vector(3,5) = w_area*(area2/avg_area1 - area5/avg_area2)^2; 
cost_vector(4,5) = w_aspect*(aspect2 - aspect5)^2; 
cost_vector(5,5) = w_position*(centroid_distance_5/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,5) = w_velocity*((velocity_B1-velocity_B2)/avg_velocity)^2; 
if abs(rad_B1-rad_B2) > pi 
    cost_vector(7,5) = w_direction*(abs(rad_B1-rad_B2)-pi)^2; 
else 
    cost_vector(7,5) = w_direction*(rad_B1-rad_B2)^2; 
end 
cost_vector(8,5) = 

cost_vector(1,5)+cost_vector(2,5)+cost_vector(3,5)+cost_vector(4,5)+cost_ve

ctor(5,5)+cost_vector(6,5)+cost_vector(7,5); 
% 6 
cost_vector(1,6) = 

w_int_intensity*(int_intensity2/avg_int_intensity1-int_intensity6/avg_int_i

ntensity2)^2; 
cost_vector(2,6) = 

w_norm_intensity*(norm_intensity2/avg_norm_intensity1-norm_intensity6/avg_n

orm_intensity2)^2;  
cost_vector(3,6) = w_area*(area2/avg_area1 - area6/avg_area2)^2; 
cost_vector(4,6) = w_aspect*(aspect2 - aspect6)^2; 
cost_vector(5,6) = w_position*(centroid_distance_6/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,6) = w_velocity*((velocity_B1-velocity_C2)/avg_velocity)^2; 
if abs(rad_B1-rad_C2) > pi 
    cost_vector(7,6) = w_direction*(abs(rad_B1-rad_C2)-pi)^2; 
else 
    cost_vector(7,6) = w_direction*(rad_B1-rad_C2)^2; 
end 
cost_vector(8,6) = 

cost_vector(1,6)+cost_vector(2,6)+cost_vector(3,6)+cost_vector(4,6)+cost_ve

ctor(5,6)+cost_vector(6,6)+cost_vector(7,6); 
% 7 
cost_vector(1,7) = 

w_int_intensity*(int_intensity3/avg_int_intensity1-int_intensity4/avg_int_i
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ntensity2)^2; 
cost_vector(2,7) = 

w_norm_intensity*(norm_intensity3/avg_norm_intensity1-norm_intensity4/avg_n

orm_intensity2)^2;  
cost_vector(3,7) = w_area*(area3/avg_area1 - area4/avg_area2)^2; 
cost_vector(4,7) = w_aspect*(aspect3 - aspect4)^2; 
cost_vector(5,7) = w_position*(centroid_distance_7/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,7) = w_velocity*((velocity_C1-velocity_A2)/avg_velocity)^2; 
if abs(rad_C1-rad_A2) > pi 
    cost_vector(7,7) = w_direction*(abs(rad_C1-rad_A2)-pi)^2; 
else 
    cost_vector(7,7) = w_direction*(rad_C1-rad_A2)^2; 
end 
cost_vector(8,7) = 

cost_vector(1,7)+cost_vector(2,7)+cost_vector(3,7)+cost_vector(4,7)+cost_ve

ctor(5,7)+cost_vector(6,7)+cost_vector(7,7); 
% 8 
cost_vector(1,8) = 

w_int_intensity*(int_intensity3/avg_int_intensity1-int_intensity5/avg_int_i

ntensity2)^2; 
cost_vector(2,8) = 

w_norm_intensity*(norm_intensity3/avg_norm_intensity1-norm_intensity5/avg_n

orm_intensity2)^2;  
cost_vector(3,8) = w_area*(area3/avg_area1 - area5/avg_area2)^2; 
cost_vector(4,8) = w_aspect*(aspect3 - aspect5)^2; 
cost_vector(5,8) = w_position*(centroid_distance_8/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,8) = w_velocity*((velocity_C1-velocity_B2)/avg_velocity)^2; 
if abs(rad_C1-rad_B2) > pi 
    cost_vector(7,8) = w_direction*(abs(rad_C1-rad_B2)-pi)^2; 
else 
    cost_vector(7,8) = w_direction*(rad_C1-rad_B2)^2; 
end 
cost_vector(8,8) = 

cost_vector(1,8)+cost_vector(2,8)+cost_vector(3,8)+cost_vector(4,8)+cost_ve

ctor(5,8)+cost_vector(6,8)+cost_vector(7,8); 
% 9 
cost_vector(1,9) = 

w_int_intensity*(int_intensity3/avg_int_intensity1-int_intensity6/avg_int_i

ntensity2)^2; 
cost_vector(2,9) = 

w_norm_intensity*(norm_intensity3/avg_norm_intensity1-norm_intensity6/avg_n

orm_intensity2)^2;  
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cost_vector(3,9) = w_area*(area3/avg_area1 - area6/avg_area2)^2; 
cost_vector(4,9) = w_aspect*(aspect3 - aspect6)^2; 
cost_vector(5,9) = w_position*(centroid_distance_9/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,9) = w_velocity*((velocity_C1-velocity_C2)/avg_velocity)^2; 
if abs(rad_C1-rad_C2) > pi 
    cost_vector(7,9) = w_direction*(abs(rad_C1-rad_C2)-pi)^2; 
else 
    cost_vector(7,9) = w_direction*(rad_C1-rad_C2)^2; 
end 
cost_vector(8,9) = 

cost_vector(1,9)+cost_vector(2,9)+cost_vector(3,9)+cost_vector(4,9)+cost_ve

ctor(5,9)+cost_vector(6,9)+cost_vector(7,9); 
  
save cost cost_vector framegap 

 

category(cost_vector, framegap); 
 
end 

	  

6. Cost Function for More Than 1 Interacting Frame [12] 
function[cost_vector, framegap]=cost_2(w_int_intensity, w_norm_intensity, 

w_area, w_aspect, w_position, w_velocity, w_direction, xyzs_info, frame_avg, 

xyzs_id_columns) 
% more than 1 interacting frame 
  
cost_vector=zeros(8,9); 
xyzs_id1_f1=xyzs_info(1,:); 
xyzs_id1_fi1=xyzs_info(2,:); 
xyzs_id1_fi2=xyzs_info(3,:); 
xyzs_id1_f2=xyzs_info(4,:); 
xyzs_id2_f1=xyzs_info(5,:); 
xyzs_id2_fi1=xyzs_info(6,:); 
xyzs_id2_fi2=xyzs_info(7,:); 
xyzs_id2_f2=xyzs_info(8,:); 
xyzs_id3_f1=xyzs_info(9,:); 
xyzs_id3_fi1=xyzs_info(10,:); 
xyzs_id3_fi2=xyzs_info(11,:); 
xyzs_id3_f2=xyzs_info(12,:); 
  
framegap=xyzs_id1_fi1(xyzs_id_columns-1)-xyzs_id1_f1(xyzs_id_columns-1); 
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id1_frame1=xyzs_info(1,xyzs_id_columns-1); 
% id2_frame1=xyzs_id2_f1(xyzs_id_columns-1); 
% id3_frame1=xyzs_id3_f1(xyzs_id_columns-1); 
id1_frame2=xyzs_info(9,xyzs_id_columns-1); 
% id2_frame2=xyzs_id2_f2(xyzs_id_columns-1); 
% id3_frame2=xyzs_id3_f2(xyzs_id_columns-1); 
     
% Extract frame averages from frame_avg 
avg_norm_intensity1 = frame_avg(7,id1_frame1); %average intensity/area 
avg_norm_intensity2 = frame_avg(7,id1_frame2); 
avg_area1 = frame_avg(5,id1_frame1); %average area 
avg_area2 = frame_avg(5,id1_frame2); 
avg_int_intensity1 = frame_avg(6,id1_frame1); %average integrated intensity 
avg_int_intensity2 = frame_avg(6,id1_frame2); 
avg_diameter1 = (2*frame_avg(1,id1_frame1) + 2*frame_avg(2,id1_frame1))/2; % 

average of major and minor diameter  
avg_diameter2 = (2*frame_avg(1,id1_frame2) + 2*frame_avg(2,id1_frame2))/2; 
  
% Extracts the intensity 
int_intensity1=xyzs_id1_f1(7); 
int_intensity2=xyzs_id2_f1(7); 
int_intensity3=xyzs_id3_f1(7); 
int_intensity4=xyzs_id1_f2(7); 
int_intensity5=xyzs_id2_f2(7); 
int_intensity6=xyzs_id3_f2(7); 
  
% Extracts the areas 
area1=xyzs_id1_f1(6); 
area2=xyzs_id2_f1(6); 
area3=xyzs_id3_f1(6); 
area4=xyzs_id1_f2(6); 
area5=xyzs_id2_f2(6); 
area6=xyzs_id3_f2(6); 
  
% Calculate the average intensity 
norm_intensity1=int_intensity1/area1; 
norm_intensity2=int_intensity2/area2; 
norm_intensity3=int_intensity3/area3; 
norm_intensity4=int_intensity4/area4; 
norm_intensity5=int_intensity5/area5; 
norm_intensity6=int_intensity6/area6; 
  
% Calculate the aspect ratio 
aspect1=xyzs_id1_f1(3)/xyzs_id1_f1(4); 
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aspect2=xyzs_id2_f1(3)/xyzs_id2_f1(4); 
aspect3=xyzs_id3_f1(3)/xyzs_id3_f1(4); 
aspect4=xyzs_id1_f2(3)/xyzs_id1_f2(4); 
aspect5=xyzs_id2_f2(3)/xyzs_id2_f2(4); 
aspect6=xyzs_id3_f2(3)/xyzs_id3_f2(4); 
  
% Calculate the distance between centroids 
centroid_distance_1=((xyzs_id1_f1(1)-xyzs_id1_f2(1))^2+(xyzs_id1_f1(2)-xyzs

_id1_f2(2))^2)^(1/2);  
centroid_distance_2=((xyzs_id1_f1(1)-xyzs_id2_f2(1))^2+(xyzs_id1_f1(2)-xyzs

_id2_f2(2))^2)^(1/2);  
centroid_distance_3=((xyzs_id1_f1(1)-xyzs_id3_f2(1))^2+(xyzs_id1_f1(2)-xyzs

_id3_f2(2))^2)^(1/2);  
centroid_distance_4=((xyzs_id2_f1(1)-xyzs_id1_f2(1))^2+(xyzs_id2_f1(2)-xyzs

_id1_f2(2))^2)^(1/2);  
centroid_distance_5=((xyzs_id2_f1(1)-xyzs_id2_f2(1))^2+(xyzs_id2_f1(2)-xyzs

_id2_f2(2))^2)^(1/2);  
centroid_distance_6=((xyzs_id2_f1(1)-xyzs_id3_f2(1))^2+(xyzs_id2_f1(2)-xyzs

_id3_f2(2))^2)^(1/2);  
centroid_distance_7=((xyzs_id3_f1(1)-xyzs_id1_f2(1))^2+(xyzs_id3_f1(2)-xyzs

_id1_f2(2))^2)^(1/2);  
centroid_distance_8=((xyzs_id3_f1(1)-xyzs_id2_f2(1))^2+(xyzs_id3_f1(2)-xyzs

_id2_f2(2))^2)^(1/2);  
centroid_distance_9=((xyzs_id3_f1(1)-xyzs_id3_f2(1))^2+(xyzs_id3_f1(2)-xyzs

_id3_f2(2))^2)^(1/2);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% VELOCITY BEFORE INTERACTION %%%%%%%%%%%%%%%%%%%%%%%%%% 
displacement_A1=((xyzs_id1_f1(1)-xyzs_id1_fi1(1))^2+(xyzs_id1_f1(2)-xyzs_id

1_fi1(2))^2)^(1/2);  
displacement_B1=((xyzs_id2_f1(1)-xyzs_id2_fi1(1))^2+(xyzs_id2_f1(2)-xyzs_id

2_fi1(2))^2)^(1/2);  
displacement_C1=((xyzs_id3_f1(1)-xyzs_id3_fi1(1))^2+(xyzs_id3_f1(2)-xyzs_id

3_fi1(2))^2)^(1/2);  
velocity_A1=displacement_A1/framegap;  
velocity_B1=displacement_B1/framegap; 
velocity_C1=displacement_C1/framegap; 
avg_velocity=(velocity_A1+velocity_B1+velocity_C1)/3; 
%%%%%%%%%%%%%%%%% VELOCITY AFTER INTERACTION %%%%%%%%%%%%%%%%%%%%%%%%%% 
displacement_A2=((xyzs_id1_f2(1)-xyzs_id1_fi2(1))^2+(xyzs_id1_f2(2)-xyzs_id

1_fi2(2))^2)^(1/2);  
displacement_B2=((xyzs_id2_f2(1)-xyzs_id2_fi2(1))^2+(xyzs_id2_f2(2)-xyzs_id

2_fi2(2))^2)^(1/2);  
displacement_C2=((xyzs_id3_f2(1)-xyzs_id3_fi2(1))^2+(xyzs_id3_f2(2)-xyzs_id
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3_fi2(2))^2)^(1/2); 
velocity_A2=displacement_A2/framegap;  
velocity_B2=displacement_B2/framegap; 
velocity_C2=displacement_C2/framegap; 
%%%%%%%%%%%%%%%%% DIRECTION BEFORE INTERACTION %%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% fi1-f1 
rad_A1=atan2(xyzs_id1_fi1(2)-xyzs_id1_f1(2),xyzs_id1_fi1(1)-xyzs_id1_f1(1))

+pi; % atan2(Y,X) value in (-pi,pi), assign to (0,2pi) 
rad_B1=atan2(xyzs_id2_fi1(2)-xyzs_id2_f1(2),xyzs_id2_fi1(1)-xyzs_id2_f1(1))

+pi; 
rad_C1=atan2(xyzs_id3_fi1(2)-xyzs_id3_f1(2),xyzs_id3_fi1(1)-xyzs_id3_f1(1))

+pi; 
%%%%%%%%%%%%%%%%% DIRECTION AFTER INTERACTION %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% f2-f1 
rad_A2=atan2(xyzs_id1_f2(2)-xyzs_id1_f1(2),xyzs_id1_f2(1)-xyzs_id1_f1(1))+p

i;  
rad_B2=atan2(xyzs_id2_f2(2)-xyzs_id2_f1(2),xyzs_id2_f2(1)-xyzs_id2_f1(1))+p

i; 
rad_C2=atan2(xyzs_id3_f2(2)-xyzs_id3_f1(2),xyzs_id3_f2(1)-xyzs_id3_f1(1))+p

i; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Calculate the total cost based on weights and differences 
% 1 
cost_vector(1,1) = 

w_int_intensity*(int_intensity1/avg_int_intensity1-int_intensity4/avg_int_i

ntensity2)^2; 
cost_vector(2,1) = 

w_norm_intensity*(norm_intensity1/avg_norm_intensity1-norm_intensity4/avg_n

orm_intensity2)^2;  
cost_vector(3,1) = w_area*(area1/avg_area1 - area4/avg_area2)^2; 
cost_vector(4,1) = w_aspect*(aspect1 - aspect4)^2; 
cost_vector(5,1) = w_position*(centroid_distance_1/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,1) = w_velocity*((velocity_A1-velocity_A2)/avg_velocity)^2; 
if abs(rad_A1-rad_A2) > pi 
    cost_vector(7,1) = w_direction*(abs(rad_A1-rad_A2)-pi)^2; 
else 
    cost_vector(7,1) = w_direction*(rad_A1-rad_A2)^2; 
end 
cost_vector(8,1) = 

cost_vector(1,1)+cost_vector(2,1)+cost_vector(3,1)+cost_vector(4,1)+cost_ve

ctor(5,1)+cost_vector(6,1)+cost_vector(7,1); 
% 2 
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cost_vector(1,2) = 

w_int_intensity*(int_intensity1/avg_int_intensity1-int_intensity5/avg_int_i

ntensity2)^2; 
cost_vector(2,2) = 

w_norm_intensity*(norm_intensity1/avg_norm_intensity1-norm_intensity5/avg_n

orm_intensity2)^2;  
cost_vector(3,2) = w_area*(area1/avg_area1 - area5/avg_area2)^2; 
cost_vector(4,2) = w_aspect*(aspect1 - aspect5)^2; 
cost_vector(5,2) = w_position*(centroid_distance_2/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,2) = w_velocity*((velocity_A1-velocity_B2)/avg_velocity)^2; 
if abs(rad_A1-rad_B2) > pi 
    cost_vector(7,2) = w_direction*(abs(rad_A1-rad_B2)-pi)^2; 
else 
    cost_vector(7,2) = w_direction*(rad_A1-rad_B2)^2; 
end 
cost_vector(8,2) = 

cost_vector(1,2)+cost_vector(2,2)+cost_vector(3,2)+cost_vector(4,2)+cost_ve

ctor(5,2)+cost_vector(6,2)+cost_vector(7,2); 
% 3 
cost_vector(1,3) = 

w_int_intensity*(int_intensity1/avg_int_intensity1-int_intensity6/avg_int_i

ntensity2)^2; 
cost_vector(2,3) = 

w_norm_intensity*(norm_intensity1/avg_norm_intensity1-norm_intensity6/avg_n

orm_intensity2)^2;  
cost_vector(3,3) = w_area*(area1/avg_area1 - area6/avg_area2)^2; 
cost_vector(4,3) = w_aspect*(aspect1 - aspect6)^2; 
cost_vector(5,3) = w_position*(centroid_distance_3/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,3) = w_velocity*((velocity_A1-velocity_C2)/avg_velocity)^2; 
if abs(rad_A1-rad_C2) > pi 
    cost_vector(7,3) = w_direction*(abs(rad_A1-rad_C2)-pi)^2; 
else 
    cost_vector(7,3) = w_direction*(rad_A1-rad_C2)^2; 
end 
cost_vector(8,3) = 

cost_vector(1,3)+cost_vector(2,3)+cost_vector(3,3)+cost_vector(4,3)+cost_ve

ctor(5,3)+cost_vector(6,3)+cost_vector(7,3); 
% 4 
cost_vector(1,4) = 

w_int_intensity*(int_intensity2/avg_int_intensity1-int_intensity4/avg_int_i

ntensity2)^2; 
cost_vector(2,4) = 
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w_norm_intensity*(norm_intensity2/avg_norm_intensity1-norm_intensity4/avg_n

orm_intensity2)^2;  
cost_vector(3,4) = w_area*(area2/avg_area1 - area4/avg_area2)^2; 
cost_vector(4,4) = w_aspect*(aspect2 - aspect4)^2; 
cost_vector(5,4) = w_position*(centroid_distance_4/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,4) = w_velocity*((velocity_B1-velocity_A2)/avg_velocity)^2; 
if abs(rad_B1-rad_A2) > pi 
    cost_vector(7,4) = w_direction*(abs(rad_B1-rad_A2)-pi)^2; 
else 
    cost_vector(7,4) = w_direction*(rad_B1-rad_A2)^2; 
end 
cost_vector(8,4) = 

cost_vector(1,4)+cost_vector(2,4)+cost_vector(3,4)+cost_vector(4,4)+cost_ve

ctor(5,4)+cost_vector(6,4)+cost_vector(7,4); 
% 5 
cost_vector(1,5) = 

w_int_intensity*(int_intensity2/avg_int_intensity1-int_intensity5/avg_int_i

ntensity2)^2; 
cost_vector(2,5) = 

w_norm_intensity*(norm_intensity2/avg_norm_intensity1-norm_intensity5/avg_n

orm_intensity2)^2;  
cost_vector(3,5) = w_area*(area2/avg_area1 - area5/avg_area2)^2; 
cost_vector(4,5) = w_aspect*(aspect2 - aspect5)^2; 
cost_vector(5,5) = w_position*(centroid_distance_5/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,5) = w_velocity*((velocity_B1-velocity_B2)/avg_velocity)^2; 
if abs(rad_B1-rad_B2) > pi 
    cost_vector(7,5) = w_direction*(abs(rad_B1-rad_B2)-pi)^2; 
else 
    cost_vector(7,5) = w_direction*(rad_B1-rad_B2)^2; 
end 
cost_vector(8,5) = 

cost_vector(1,5)+cost_vector(2,5)+cost_vector(3,5)+cost_vector(4,5)+cost_ve

ctor(5,5)+cost_vector(6,5)+cost_vector(7,5); 
% 6 
cost_vector(1,6) = 

w_int_intensity*(int_intensity2/avg_int_intensity1-int_intensity6/avg_int_i

ntensity2)^2; 
cost_vector(2,6) = 

w_norm_intensity*(norm_intensity2/avg_norm_intensity1-norm_intensity6/avg_n

orm_intensity2)^2;  
cost_vector(3,6) = w_area*(area2/avg_area1 - area6/avg_area2)^2; 
cost_vector(4,6) = w_aspect*(aspect2 - aspect6)^2; 
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cost_vector(5,6) = w_position*(centroid_distance_6/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,6) = w_velocity*((velocity_B1-velocity_C2)/avg_velocity)^2; 
if abs(rad_B1-rad_C2) > pi 
    cost_vector(7,6) = w_direction*(abs(rad_B1-rad_C2)-pi)^2; 
else 
    cost_vector(7,6) = w_direction*(rad_B1-rad_C2)^2; 
end 
cost_vector(8,6) = 

cost_vector(1,6)+cost_vector(2,6)+cost_vector(3,6)+cost_vector(4,6)+cost_ve

ctor(5,6)+cost_vector(6,6)+cost_vector(7,6); 
% 7 
cost_vector(1,7) = 

w_int_intensity*(int_intensity3/avg_int_intensity1-int_intensity4/avg_int_i

ntensity2)^2; 
cost_vector(2,7) = 

w_norm_intensity*(norm_intensity3/avg_norm_intensity1-norm_intensity4/avg_n

orm_intensity2)^2;  
cost_vector(3,7) = w_area*(area3/avg_area1 - area4/avg_area2)^2; 
cost_vector(4,7) = w_aspect*(aspect3 - aspect4)^2; 
cost_vector(5,7) = w_position*(centroid_distance_7/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,7) = w_velocity*((velocity_C1-velocity_A2)/avg_velocity)^2; 
if abs(rad_C1-rad_A2) > pi 
    cost_vector(7,7) = w_direction*(abs(rad_C1-rad_A2)-pi)^2; 
else 
    cost_vector(7,7) = w_direction*(rad_C1-rad_A2)^2; 
end 
cost_vector(8,7) = 

cost_vector(1,7)+cost_vector(2,7)+cost_vector(3,7)+cost_vector(4,7)+cost_ve

ctor(5,7)+cost_vector(6,7)+cost_vector(7,7); 
% 8 
cost_vector(1,8) = 

w_int_intensity*(int_intensity3/avg_int_intensity1-int_intensity5/avg_int_i

ntensity2)^2; 
cost_vector(2,8) = 

w_norm_intensity*(norm_intensity3/avg_norm_intensity1-norm_intensity5/avg_n

orm_intensity2)^2;  
cost_vector(3,8) = w_area*(area3/avg_area1 - area5/avg_area2)^2; 
cost_vector(4,8) = w_aspect*(aspect3 - aspect5)^2; 
cost_vector(5,8) = w_position*(centroid_distance_8/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,8) = w_velocity*((velocity_C1-velocity_B2)/avg_velocity)^2; 
if abs(rad_C1-rad_B2) > pi 
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    cost_vector(7,8) = w_direction*(abs(rad_C1-rad_B2)-pi)^2; 
else 
    cost_vector(7,8) = w_direction*(rad_C1-rad_B2)^2; 
end 
cost_vector(8,8) = 

cost_vector(1,8)+cost_vector(2,8)+cost_vector(3,8)+cost_vector(4,8)+cost_ve

ctor(5,8)+cost_vector(6,8)+cost_vector(7,8); 
% 9 
cost_vector(1,9) = 

w_int_intensity*(int_intensity3/avg_int_intensity1-int_intensity6/avg_int_i

ntensity2)^2; 
cost_vector(2,9) = 

w_norm_intensity*(norm_intensity3/avg_norm_intensity1-norm_intensity6/avg_n

orm_intensity2)^2;  
cost_vector(3,9) = w_area*(area3/avg_area1 - area6/avg_area2)^2; 
cost_vector(4,9) = w_aspect*(aspect3 - aspect6)^2; 
cost_vector(5,9) = w_position*(centroid_distance_9/(avg_diameter1/2 + 

avg_diameter2/2))^2; 
cost_vector(6,9) = w_velocity*((velocity_C1-velocity_C2)/avg_velocity)^2; 
if abs(rad_C1-rad_C2) > pi 
    cost_vector(7,9) = w_direction*(abs(rad_C1-rad_C2)-pi)^2; 
else 
    cost_vector(7,9) = w_direction*(rad_C1-rad_C2)^2; 
end 
cost_vector(8,9) = 

cost_vector(1,9)+cost_vector(2,9)+cost_vector(3,9)+cost_vector(4,9)+cost_ve

ctor(5,9)+cost_vector(6,9)+cost_vector(7,9); 
  
save cost cost_vector framegap 

 

category(cost_vector, framegap); 
 
end 
 

7. Category Function: Determine Which Method Shall Be Used 
function[]=category(cost_vector, framegap) 
  
A_A=min(min(cost_vector(7,1), cost_vector(7,2)), cost_vector(7,3)); % minimum 

AA 
B_B=min(min(cost_vector(7,4), cost_vector(7,5)), cost_vector(7,6)); % minimum 

BB 
C_C=min(min(cost_vector(7,7), cost_vector(7,8)), cost_vector(7,9)); % minimum 

CC 
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if framegap <= 3 
    disp('Keep Kilfoil Method'); 
    
else framegap > 3 
    disp('Use Directionality to Determine Cost Results'); 
    if 

(A_A==cost_vector(7,1))&&(B_B==cost_vector(7,5))&&(C_C==cost_vector(7,9)) 
    disp('Cell ID correct'); 
    else disp('Cell ID incorrect, need to be switched'); 
    end 
end 
end 

 

8. Script: Use Directionality to Correct Cell Tracking 
% directionality to tag cells 
AA=min(min(cost_vector(7,1), cost_vector(7,2)), cost_vector(7,3)); % minimum 

AA 
BB=min(min(cost_vector(7,4), cost_vector(7,5)), cost_vector(7,6)); % minimum 

BB 
CC=min(min(cost_vector(7,7), cost_vector(7,8)), cost_vector(7,9)); % minimum 

CC 
  
XX=min(min(AA,BB),CC); % min value among AA,BB,CC, then select the other two 

to switch 
  
I = imread('7Percent_MedDensity_Sample1.tif', 91, 'Info', image_info); 
figure; 
imagesc(I) 
colormap('gray') 
axis([350 550 0 200]) 
hold on 
  
if XX==AA; 
    plot(xyzs_id1_f2(1,1)',xyzs_id1_f2(1,2)','rx')%% remain same 
    plot(xyzs_id2_f2(1,1)',xyzs_id2_f2(1,2)','gx') 
    plot(xyzs_id3_f2(1,1)',xyzs_id3_f2(1,2)','yx') 
    hold on 
end 
  
if XX==BB; 
    plot(xyzs_id1_f2(1,1)',xyzs_id1_f2(1,2)','gx')  
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    plot(xyzs_id2_f2(1,1)',xyzs_id2_f2(1,2)','yx')%% remain same 
    plot(xyzs_id3_f2(1,1)',xyzs_id3_f2(1,2)','rx') 
    hold on 
end 
  
if XX==CC; 
    plot(xyzs_id1_f2(1,1)',xyzs_id1_f2(1,2)','yx') 
    plot(xyzs_id2_f2(1,1)',xyzs_id2_f2(1,2)','rx') 
    plot(xyzs_id3_f2(1,1)',xyzs_id3_f2(1,2)','gx')%% remain same 
    hold on 
end 
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