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ABSTRACT

Two change point detection and estimation procedures for sequences of dependent binary

random variables are proposed and their asymptotic properties are explored. The two pro-

cedures are a dependent cumulative sum statistic (DCUSUM) and a dependent likelihood

ratio test (LRT) statistic, which are generalizations of the independent CUSUM and LRT

statistics.

A one step Markov dependence is assumed between consecutive variables in the sequence,

and the performance of the DCUSUM and dependent LRT are shown to have substantially

better size and power performance than their independent counterparts. In most cases,

a comparison of the dependent procedures via simulation shows that the dependent LRT

provides a more powerful test, while the DCUSUM test has better size performance.

The asymptotic distribution of the DCUSUM test is found to be a weighted sum of

squared Brownian bridge processes and an approximation to calculate p-values is discussed.

A Worsley type upper bound for p-values is provided as an alternative. The asymptotic

distribution of the dependent LRT is unknown, but the tail probabilities are found to be

empirically bounded by a χ2
6 and a χ2

7 random variable through a simulation study. A

bootstrap algorithm to estimate p-values for the dependent LRT is discussed.

Extensions of these procedures to multiple sequences and multinomial random variables

are discussed, and a new statistic, the maximal change count statistic, is proposed. An

application of the multiple sequence procedures to clustered time series models is provided.

The asymptotic properties of the generalized procedures are reserved for future research.
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Chapter 1

Introduction

The change point problem has been studied for decades and recently has experienced an

increase in popularity. These problems arise in a variety of situations including regression,

clustering, sequences of random variables, control charts, etc.

The aim of this dissertation is to detect and estimate a change point τ in a sequence of

dependent random variables y = {x1, x2, . . . , xn} of length n. Several methods are proposed

to detect the existence of a change point 1 < τ < n for the sequence y. If such a change

occurred, the location of the change, τ , will be estimated.

Early tests to determine if two random variables are stochastically different include the

Mann-Whitney U test [25] and the Kolmogorov-Smirnov test. These can be used to test if

a change is significant by segmenting the data at the suspected change point and comparing

the two approximate distributions from each segment. This dissertation aims to extend

existing tests by relaxing some of the assumptions.

The first method to tackle the change point problem was formally stated by Page [28,29]

and much of the work post 1955 have referenced these papers. After Page, Hinkley [13]

discussed the maximum likelihood estimates (MLE) and likelihood ratio test (LRT) for a

change in parameter θ, and derived the asymptotic distribution for iid sequences with general

pdf f(x, θ) and the iid normal case.
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Chapter 1, Section 1.0

Much of the early work in change point detection assumed the random variables in the

sequence were continuous. For the purposes of this dissertation, the distributions are re-

stricted to discrete random variables. Several methods have been explored to tackle discrete

sequences including MLE and LRT methods, cumulative sum statistics (CUSUM) and max-

imally selected χ2 statistics.

The main results of this dissertation focus on sequences of Bernoulli random variables.

Pettitt [31] introduced the CUSUM method for discrete random variables taking on the

values of 0 or 1. Miller and Siegmund [26] proposed the maximally selected χ2 method to

detect a change in a sequence by selecting cut points and comparing the two sequences.

Halpern [10] compared the performance of several methods for binary random variables and

noted that there is no uniformly most powerful test.

The obvious extension from Bernoulli random variables is to explore the location of

change points in a sequence of binomial random variables. Hinkely and Hinkley [14] extend

the results from an earlier paper, Hinkley [13], to binomial sequences and show that the

likelihood ratio test corresponds to the distribution of a random walk. A power comparison

of the likelihood ratio test to the CUSUM test is performed by Worsley [41], who shows

that the LRT is slightly less powerful than CUSUM in the center of the sequence, and the

opposite is true at the tails.

The extension from binomial to multinomial random variables is quite natural and has

been studied extensively over the past two decades. Three of the most common statistics

for testing for a change in a multinomial sequence are the likelihood ratio, CUSUM and

maximal χ2 statistics. Horváth and Serbinowska [17] describe the asymptotic distribution

of the LR statistics. MacNeill [22] first studied CUSUM statistics and Robbins et al. [34]

clearly summarized the CUSUM and maximal χ2 results. Robbins et al. also provided an

approximation for tail probabilities for the asymptotic distribution of these three statistics.

All of the change point detection and estimation methods mentioned above rely on the

assumption that any two variables xi and xj where i 6= j in the sequence {xi} are inde-
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Chapter 1, Section 1.1

pendent. In many situations, the variables in the sequence may exhibit some dependence

structure. The literature on change point detection and estimation for dependent sequences

is limited. Most of the work done in this area is by Krauth [20, 21]. One contribution of

this dissertation is to extend the results for independent sequences to dependent sequences,

assuming a one step Markov dependence on the variables xi.

This dissertation is organized as follows. The remainder of this chapter is a review of

the change point detection and estimation procedures for independent sequences of discrete

random variables, followed by the assumptions and hypotheses in the one step Markov de-

pendence case. Chapter two is an extension of the CUSUM statistic, and Chapter three is

an extension of the likelihood ratio statistic. Chapter four is comprised of simulations to

compare the level and power of all methods for different parameter values. Chapter five

describes extensions to multinomial and multiple sequence methods and provides the main

motivating application of this work.

1.1 Maximum Likelihood Estimation of Change Point

Locations in Independent Sequences of Random

Variables

This section provides a review of the change point estimation procedures for independent

sequences of discrete random variables. In particular, the maximum likelihood estimation

for Bernoulli sequences is discussed under certain assumptions. Other methods include

weighted squares [4,39] and single-switch multinomial logistic models [33], but those details

are omitted.

Let yi = {xi1, xi2, . . . , xin} for i = 1, 2, . . . , s represent s sequences of random variables,

each of length n. There are two types of procedures when working with multiple sequences

of random variables. The first procedure is called a single path procedure. A single path

3



Chapter 1, Section 1.1

procedure is restricted to the information from a single sequence yi and omits the other

sequences. A multi path procedure uses information from all of the s sequences {yi}si=1.

While multi path procedures use significantly more data in parameter estimation, these

methods tend to have more restrictive assumptions. The main results of this dissertation

are focused on single path procedures for the sequence y = {x1, x2, . . . , xn}. Generalizations

to multi path procedures are briefly discussed in Chapter 5.

Before discussing the detection techniques, it is first assumed that a change point 1 <

τ < n exists in the sequence y. The procedure to estimate the location of this change using

the maximum likelihood estimate (MLE) is described below.

Under the distributional assumptions of this dissertation, each xj in the sequence y is

assumed to be a Bernoulli(p) random variable. For each possible change point 1 < t < n,

the null model is:

xj ∼ Bernoulli(p) for 1 ≤ j ≤ n,

and the alternative model is:

xj ∼ Bernoulli(p(1)) for j ≤ t and xj ∼ Bernoulli(p(2)) for j > t.

The log likelihood function for each xj is the log likelihood function of a Bernoulli random

variable, that is:

log f(xj | p) = log(pxj(1− p)1−xj) = xj log

(
p

1− p

)
+ log(1− p). (1.1)

For a fixed time t, the maximum likelihood estimates of the proportions p, p(1) and p(2)

are given by p̂, p̂(1) and p̂(2) below:

p̂ =

n∑
j=1

xj

n
, p̂(1) =

t∑
j=1

xj

t
and p̂(2) =

n∑
j=t+1

xj

n− t
. (1.2)

4



Chapter 1, Section 1.2

The corresponding log likelihood function for a change point in the sequence y at time t

is:

logL(t|y) = log

(
t∏

j=1

f(xj | p̂(1))
n∏

j=t+1

f(xj | p̂(2))

)

= t log(1− p̂(1)) + (n− t) log(1− p̂(2))

+ log

(
p̂(1)

1− p̂(1)

) t∑
j=1

xj + log

(
p̂(2)

1− p̂(2)

) n∑
j=t+1

xj. (1.3)

This function takes on a finite number of values, so maximization via differentiation is

not possible. Instead, the estimate of the change point location τ̂ for the sequence y is found

via grid search. The estimate is given below:

τ̂ = arg max
1<t<n

{
t log(1− p̂(1)) + (n− t) log(1− p̂(2))

+ log

(
p̂(1)

1− p̂(1)

) t∑
j=1

xj + log

(
p̂(2)

1− p̂(2)

) n∑
j=t+1

xj

}
.

1.2 Change Point Detection in Independent Sequences

of Random Variables

This section provides a review of change point detection procedures for independent se-

quences of discrete random variables. In particular, CUSUM statistics, maximal χ2 statistics,

and likelihood ratio tests for Bernoulli sequences are discussed under certain assumptions.

The details of the model and assumptions for this section can be found in Section 1.1.

Keep in mind that under H0, detection techniques no longer assume that a change point τ

exists.

5



Chapter 1, Section 1.2

1.2.1 CUSUM

There is a wide class of situations where cumulative sum (CUSUM) statistics are used to

detect changes in sequences. The uses include, but are not limited to, change point problems

in sequences of random variables, regression, and control charts.

The CUSUM statistic discussed below is a weighted sum of the random variables in the

sequence y for each fixed time 1 < t < n and is used to to determine if the proportion

of events before and after t are statistically different. The specific events for this CUSUM

statistic are {xj = 1}. An excellent summary of the CUSUM statistic can be found in

Robbins et al. [34] and the references therein.

The hypotheses for a test using the CUSUM statistic are:

H0 : xj are iid for all times 1 ≤ j ≤ n,

Ha : E(xj) shifts at some time τ, 1 < τ < n.

These hypotheses test for a mean shift. The random variables xj follow a Bernoulli(p)

distribution, so the alternative hypothesis is equivalent to:

Ha : There is a value τ such that p = p(1) for 1 ≤ j ≤ τ

and p = p(2) for τ + 1 ≤ j ≤ n.

Define the weighted sum St for a fixed time t as:

St =
t∑

j=1

xj −
t

n

n∑
j=1

xj =
n∑
j=1

ajxj, where aj =

 1− t
n

if 1 ≤ j ≤ t,

− t
n

if t+ 1 ≤ j ≤ n.

The corresponding CUSUM statistic for sequence y at time t is CUSUMt = St/
√
n. It is

6



Chapter 1, Section 1.2

clear that E(CUSUMt) = E(St/
√
n) = 0. The variance calculation is given below:

Var(CUSUMt) = Var(St/
√
n)

= Var

(
n∑
j=1

aj√
n
xj

)

=
1

n

n∑
j=1

a2
jVar(xj)

=
1

n

[
t

(
1− t

n

)2

+ (n− t)
(
− t
n

)2
]
p(1− p)

= p(1− p) t
n

(
1− t

n

)
= σ2

t . (1.4)

Under H0, the expected value of CUSUMt is zero and the variance is p(1−p)(t/n)(1−t/n).

The CUSUMt statistic can be viewed as the number of times {xj = 1} occurred up to time

t compared to the total number of times {xj = 1} occurred in the sequence, scaled for the

difference in lengths of segments. It is well known that this method has trouble detecting

mean shifts at the edges of the sequence because of the nonuniform variance.

Following Robbins et al. [34], define Tt = CUSUMt/σ̂t = St/σ̂t
√
n, where σ̂t is any

consistent estimator of σt. For the purposes of this dissertation, define σ̂t = p̂(1−p̂) t
n

(
1− t

n

)
,

where p̂ is the MLE defined in (1.2). Fix two values 0 < l < h < 1 and let t1 and t2 be any

two fixed times satisfying nl < t1 < t2 < nh. For discussion on the choice of l and h, see

Miller and Siegmund [26]. First, the covariance of the CUSUM statistic for two times t1 < t2

is calculated.

The coefficients for the sum in equation (1.5) are counted using the number line below.

The value of the coefficient is above the number line with the count below:

1 t1 t2 n

(
1− t1

n

) (
1− t2

n

) (
− t1

n

) (
1− t2

n

) (
− t1

n

) (
− t2

n

)
t1 t2 − t1 n− t2

7



Chapter 1, Section 1.2

For notational purposes, define bj to be the first value in the product above the number

line for each section and cj to be the second value.

Cov(CUSUMt1 ,CUSUMt2) =
1

n
Cov(St1 , St2)

=
1

n

n∑
j=1

bjcjVar(xj)

= p(1− p)
[
t1
n

(
1− t1

n

)(
1− t2

n

)
+

(
t2
n
− t1
n

)(
−t1
n

)(
1− t2

n

)
+

(
1− t2

n

)(
−t1
n

)(
−t2
n

)]
= p(1− p)t1

n

(
1− t2

n

)
. (1.5)

The MLE p̂ is a consistent estimator of p, hence the covariance of Tt1 and Tt2 is:

Cov(Tt1 , Tt2) =
Cov(CUSUMt1 ,CUSUMt2)

σ̂t1σ̂t2

=
p(1− p) t1

n

(
1− t2

n

)√[
p̂(1− p̂) t1

n

(
1− t1

n

)] [
p̂(1− p̂) t2

n

(
1− t2

n

)]
→ p(1− p)η1(1− η2)

p(1− p)
√
η1(1− η1)η2(1− η2)

=

(
η1(1− η2)

(1− η1)η2

)1/2

, (1.6)

where lim
n→∞

t1/n = η1 and lim
n→∞

t2/n = η2.

Theorem 1 of Robbins et al. [34] states that, for fixed bounds 0 < l < h < 1, under the

null hypothesis that all xt are iid for all t:

T 2
max = max

l≤t/n≤h
T 2
t
D−→ sup

l≤η≤h

B2(η)

η(1− η)
, (1.7)

where B(η) is a Brownian bridge process on the interval [0, 1].

8
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1.2.2 Maximal χ2 Statistics

The maximal χ2 statistic is another approach to change point detection in sequences of

random variables. Similar to CUSUM statistics, maximal χ2 statistics use the number of

times the event {xj = 1} occurred up to a fixed time t. The major difference is that

comparisons are made to expected frequencies that are calculated from the MLEs of p(1)

and p(2). The asymptotic distributions of these statistics coincides with that of the likelihood

ratio statistic as discussed in Section 1.2.3.

The notation for maximal χ2 statistics is slightly different than in Section 1.2.1. Let

nj,k = 1{xj,k=k} for k = 0, 1, . . . , K, where K is the number of possible outcomes for each

variable in the sequence minus one. If xj,k are Bernoulli random variables then K = 1.

Fix a time t and define Ot,k =
∑t

j=1 nj,k, O
∗
t,k =

∑n
j=t+1 nj,k and Ok = On,k =

∑n
j=1 xj,k.

With these definitions in mind, one can think of Ot,k as the number of times the sequence

y takes on the value k over the first t time points, O∗t,k the number of times the sequence y

takes on the value k over the last n− t time points, and Ok as the total amount of time spent

equal to k. Let p = (p0, p1) represent the vector of probabilities for the Bernoulli trials for

any time j. The hypotheses to test are:

H0 : pj,k = pk for all j, k,

Ha : There is a change point τ such that pj,k = pk,1, j ≤ τ

and p∗j,k = pk,2, j > τ.

Define the expected counts to be the values of the MLEs described in equation (1.2).

That is, Ê(Ot,k) = tp̂k = tOk/n and Ê(O∗t,k) = (n − t)p̂k = (n − t)Ok/n, then the test

statistic for a change point at time t is defined as in Robbins et al. [34]:

χ2
t =

K∑
k=0


(
Ot,k − Ê(Ot,k)

)2

Ê(Ot,k)
+

(
O∗t,k − Ê(O∗t,k)

)2

Ê(O∗t,k)

. (1.8)

9
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Define B(d)(η) =
∑d

m=1B
2
m(η) to be the sum of d independent Brownian bridge processes.

Similar to CUSUMt, Robbins et al. [34] shows that under H0:

χ2
max = max

l≤t/n≤h
χ2
t
D−→ sup

l≤η≤h

B(K)(η)

η(1− η)
= sup

l≤η≤h

B2(η)

η(1− η)
. (1.9)

Horvath and Serbinowska [17] consider a weighted maximal χ2 statistic related to the

Kolmogorov-Smirnov statistic to account for the slow convergence of the maximal χ2 statistic.

They show a similar asymptotic result to Robbins et al. Define:

Zn4 = max
1≤t≤n

Ot,kO
∗
t,k

Ok
2 χ2

t , where χ2
t is defined in equation (1.8) : (1.10)

then by Theorem 1.2 in [17]:

Zn4

D−→ sup
0≤t≤1

B(K)(t) = sup
0≤η≤1

B2(η). (1.11)

1.2.3 Likelihood Ratio Test

The likelihood ratio to detect a change in a multinomial sequence is defined as the ratio of

the null and alternative likelihood functions. The hypotheses are:

H0 : xj ∼ Bernoulli(p) for all 1 ≤ j ≤ n,

Ha : There is 1 < τ < n such that xj ∼ Bernoulli(p(1)) for 1 ≤ j ≤ τ

and xj ∼ Bernoulli(p(2)) for τ + 1 ≤ j ≤ n

where p(1) 6= p(2).

Let p, p(1) and p(2) represent the unknown Bernoulli parameter values for variables xj

of sequence y before t and after t respectively, for any 1 ≤ t ≤ n. Then p̂, p̂(1), and p̂(2)

can be thought of as the sample proportion of times the event xj = 1 occurred before t and

after t respectively, for any time 1 ≤ t ≤ n. The MLEs of these values are given by equation

10
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(1.2).

Under H0, there is no change in the parameter p, so the log likelihood function for the

sequence y is defined as:

log(L(t|y)H0) =
∑

1≤j≤n

xj log p̂.

The expressions for the alternative log likelihood function are given by equation (1.3).

Notationally, Horvath and Serbinowska [17] define the likelihood ratio at a fixed time t as:

Λt =
L(t|y)H0

L(t|y)Ha

and Zt,1 = max
1<t<n

(−2 log Λt). (1.12)

Because −2 log Λt is asymptotically a χ2 random variable, the likelihood ratio statistic Zt,1

has the same asymptotic behavior as the maximally selected χ2 method. This result is

summarized by Theorems 1.1 and 1.2 in Horvath and Serbinowska [17]. The weighted and

unweighted asymptotic distributions were discussed in Section 1.2.2.

1.3 Tail Probability Approximations for Change Point

Detection

The change point detection techniques of Section 1.2 require a method to calculate p-values.

When the null distribution is known, exact or approximate p-values may be calculated in

the usual way. If the null distribution is unknown or too complex to approximate, a Worsley

type upper bound may provide a rough upper bound of the p-value. Both methods are

discussed in this section.

11
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1.3.1 Tail Approximation for sup
l≤η≤h

B2(η)
η(1−η)

The general result from Robbins et al. [34] is restated below and applied to resulting asymp-

totic distributions of the CUSUM, maximal χ2, and likelihood ratio statistics for the indepen-

dent case. Recall that B(d)(η) =
∑d

m=1B
2
m(η) where Bm(η) are Brownian bridge processes

on [0, 1].

Pr

(
sup
l≤η≤h

B(d)(η)

η(1− η)
≥ x

)
=

xd/2e−x/2

2d/2Γ(d/2)
(1.13)

×
[(

1− d

x

)
log

(
(1− l)h
l(1− h)

)
+

4

x
+O

(
1

x2

)]
.

In equation (1.13), O(1/x2) denotes a remainder that tends to zero as x → ∞ at least as

fast as 1/x2 and Γ(·) denotes the standard gamma function.

It is clear from the expressions (1.7) and (1.9) that both CUSUM and maximal χ2 statis-

tics have the same asymptotic distribution. The discussion at the end of Section 1.2.3 indi-

cates that the likelihood ratio statistic has the same asymptotic distribution as the maximal

χ2 statistic. Therefore, all three of these statistics have equivalent asymptotic distributions.

For appropriately chosen values 0 < l < h < 1, the common distribution is:

sup
l≤η≤h

B(1)(η)

η(1− η)
= sup

l≤η≤h

B2(η)

η(1− η)
.

The p-value approximation for an observed test statistic value T from any one of these

three methods, assuming xj ∼ Bernoulli(p) under H0, is given by:

Pr

(
sup
l≤η≤h

B2(η)

η(1− η)
≥ T

)
≈

(
Te−T

2π

)1/2

(1.14)

×
[(

1− 1

T

)
log

(
(1− l)h
l(1− h)

)
+

4

T
+O

(
1

T 2

)]
.

This approximation will be used to evaluate the performance of these statistics as well

12
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as to make comparisons to the proposed methods when the independence assumption is

generalized.

1.3.2 Worsley Type Upper Bound

When the independence assumption is removed, the test statistic of interest is the maximum

of correlated variables Tmax = max{Tt}nt=1. A crude upper bound for the tail probability

Pr(Tmax > T ) is given by the Bonferroni inequality:

Pr(Tmax > T ) = Pr

(
n⋃
t=1

Tt > T

)
≤

n∑
t=1

Pr(Tt > T ).

An improvement on this is made by Worsley [40]. Theorem 1 of his paper accounts for

the correlation between all events {Tt1 > T} and {Tt2 > T} and is restated below in the

context of Bernoulli trials with m-dependence, which will be defined in Section 1.4.2.

Pr(Tmax > T ) ≤
n∑
t=1

Pr(Tt > T )−
∑

|t2−t1|≤m

Pr ({Tt1 > T} ∩ {Tt2 > T}) . (1.15)

When the distribution of Tt, and joint distribution of statistics Tt1 , Tt2 are known, equa-

tion (1.15) provides an alternative method to approximate an upper bound for the p-value

in a change point detection problem.

Often the exact covariance structure between all pairs of events Tt1 and Tt2 is difficult

to obtain. If an incorrect structure is specified, equation (1.15) can lead to negative upper

bounds on the p-value of Pr(Tmax > T ). A simpler and often more appropriate bound, stated

in Worsley [40] as Corollary 1, only requires the covariance between consecutive times t1 and

t2 = t1 + 1. The alternative upper bound is restated below:

Pr(Tmax > T ) ≤
n∑
t=1

Pr(Tt > T )−
n−1∑
t=1

Pr ({Tt > T} ∩ {Tt+1 > T}) . (1.16)

13
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1.4 Assumptions and Hypotheses for Dependent Se-

quences

The change point detection and estimation techniques in Sections 1.1 and 1.2 rely on the

assumption that the elements of the sequence y = {x1, . . . xn} are independent. In many

situations, this assumption is violated. There are various possible dependence structures

that may be assumed on the variables xt.

One major motivation of the results in this dissertation is to detect changes in a clustering

scheme, where xt denote cluster membership values for sequence y at time t. This model

assumes that a random variable xt is more likely to remain at the same value from time t to

time t+ 1, unless a change occurs. Details of this application are discussed in Section 5.4.

A natural representation of this is to assume a one-step Markov dependence between

consecutive variables. For a specific variable xt at time t, this type of dependence structure

gives information about the next variable in the sequence xt+1 by defining a matrix of

transition probabilities.

It is assumed that xt follows a Bernoulli(p) distribution. The one-step Markov dependence

assumption adds a transition matrix to the structure of each sequence. Define a state of the

transition matrix to be a possible value that the random variable xt can achieve at any time

t. Notice that the states are the same for all t. Let u and v be two states. If it is known

that the random variable xt = u and xt+1 = v, then the transition probability from state u

at time t to v at time t+ 1 is given by:

Pu,v,t,t+1 = Pr(xt+1 = v | xt = u). (1.17)

For notational purposes, a single subscript t is used to denote the transition probability

from time t to time t + 1, that is, Pu,v,t,t+1 = Pu,v,t. If the transition probabilities are the

same for all time points t, Pu,v,t is denoted as Puv.

14
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1.4.1 Hypotheses

Under the null hypothesis of no change, the variables xt of the sequence y are assumed to

follow a Bernoulli(p) distribution with one step Markov dependence defined by the transition

probabilities Puv. That is, each xt has the same parameter value p and transition probability

Puv, independent of the time t.

Under the alternative hypothesis of an abrupt change at an unknown time τ , it is assumed

that the Bernoulli parameter p and transition probabilities Puv are disrupted at the time of

the change. Specifically, the membership values {xt}τt=1 are assumed to be independent of

the values {xt}nt=τ+1. The formal hypotheses are stated below. Another possible alternative

hypothesis is discussed at the end of this section.

H0 :xt ∼ Bernoulli(p) with transition probabilities Puv for all times t,

Ha : There exists τ, 1 < τ < n, such that

xt ∼ Bernoulli(p(1)) for all 1 < t ≤ τ and xt ∼ Bernoulli(p(2)) for all τ < t ≤ n

where p(1) 6= p(2) and the events after the change are independent of the events

prior to the change.

Restricting to the Bernoulli case, there are exactly two states u = 0 or 1. The transition

matrix given below is read from the state on the left at time t to the state on top at time

t+ 1. This construction forces the values in the rows of the transition matrix to sum to one.

Define the transition matrix for sequence y from time t to t + 1 as Pt, then under H0 the

parameters of xt for any t are:

p and P =

P00 P01

P10 P11

 , (1.18)

15
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and under Ha, the parameters of xt before τ and after τ are:

p(1) and P (1) =

P00(1) P01(1)

P10(1) P11(1)

 for 1 ≤ t ≤ τ,

p(2) and P (2) =

P00(2) P01(2)

P10(2) P11(2)

 for τ < t ≤ n. (1.19)

Under H0, these assumptions lead to a solvable system of equations. These follow from

the law of total probability and other elementary probability rules.

Pr(xt = 0) = Pr(xt = 0|xt−1 = 0)Pr(xt−1 = 0)

+ Pr(xt = 0 | xt−1 = 1)Pr(xt−1 = 1),

Pr(xt = 1) = Pr(xt = 1 | xt−1 = 1)Pr(xt−1 = 1)

+ Pr(xt = 1 | xt−1 = 0)Pr(xt−1 = 0),

1 = Pr(xt = 0 | xt−1 = 0) + Pr(xt = 1 | xt−1 = 0),

1 = Pr(xt = 0 | xt−1 = 1) + Pr(xt = 1 | xt−1 = 1). (1.20)

The equations (1.20) can be written using (1.18) as:

(1− p) = P00(1− p) + P10p,

p = P11p+ P01(1− p),

1 = P00 + P01,

1 = P10 + P11.

Solving the system gives the following solution in terms of p with one free variable P11:

P10 = 1− P11,

16
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P01 = (1− P11)p/(1− p),

P00 = (1− 2p+ P11p)/(1− p). (1.21)

Notice that each of the transition probabilities must satisfy 0 < Puv < 1. This leads to a

boundary restriction on the values of P11 given in the right hand side of equation (1.22):

0 < P00 < 1⇔ 0 < (1− 2p+ P11p)/(1− p) < 1⇔ 2− 1

p
< P11 < 1. (1.22)

It may seem natural to add additional restrictions to the values of P , depending on the

data that is being modeled. One such restriction is to assume that the transition probabilities

from one cluster to the other are the same, that is, P01 = P10. Another intuitive assumption

is that the probabilities of remaining in the same cluster are equal, that is, P00 = P11.

Unfortunately, the one step Markov dependence assumption does not allow for either of

these restrictions.

Proposition 1.4.1 Suppose p ∈ (0, 1) \ {1
2
}. If P00 = P11 := P0 or P01 = P10 := P1 then

P0 = 1 and P1 = 0.

Proof Suppose P00 = P11 := P0. Substitution into (1.21) yields:

P00 = (1− 2p+ P11p)/(1− p),

P0 = (1− 2p+ P0p)/(1− p),

(1− 2p)P0 = 1− 2p,

P0 = 1.

Next, suppose P01 = P10 := P1. Substitution into (1.21) again gives P11 = 1− P1 and:

P01 = (1− P11)p/(1− p),

P1 = (1− (1− P1))p/(1− p),

17
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P1(1− 2p) = 0,

P1 = 0.

In both cases, P10 + P11 = 1 and P01 + P00 = 1. These two equations conclude the proof.

The stationary distribution π of a Markov chain is formally defined as a vector whose

entries are non-negative, sum to one, and satisfy πP = π. A Markov chain is irreducible

if it is possible to get to any state u from any state v. A Markov chain is aperiodic if the

return to all states can occur at irregular times. By Theorem 6.6.4 in Durrett [8], if a Markov

chain is irreducible and aperiodic with stationary distribution π, then limw→∞P
w = π. The

distribution is easily calculated using the reparametrization of the components of P above.

Lemma 1.4.2 As |t1 − t2| → ∞, P
|t1−t2|
t →

π
π

 where π = (1 − p, p). That is, the

stationary distribution of P is:

P∞ =

1− p p

1− p p

 .

Proof Without loss of generality, suppose P is nontrivial, that is, P has no entries of 0 or

1. Notice that P is irreducible because Puv > 0 for all combinations of states u and v. Next,

P is aperiodic because Pr(xt2 = u|xt1 = v) > 0 for all times 1 ≤ t1 < t2 ≤ n and all states u

and v.

The stationary distribution π = (π0, π1) of P is determined by the solution to the system

of equations:

π0 = π0P00 + π1P10,

π1 = π0P01 + π1P11,
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1 = π0 + π1.

Substituting equations (1.21) into the equation π1 = (1−π1)P01+π1P11 gives one solution

π1 = p. A final substitution shows π0 = 1− p.

The change point model discussed in this dissertation assumes the change point τ is

abrupt. That is, the variables {xt}τt=1 are independent of the variables {xt}nt=τ+1. An alter-

native model assumes that the change point τ maintains the one step dependence structure

of the xt variables before and after τ . The results for this model are reserved for future

research.

1.4.2 The m-dependence Property

The m-dependence property is defined in Chung [5] and is restated as follows. A sequence

of random variables {xt}nt=1 is said to be m-dependent if |t1 − t2| > m implies that xt1 is in-

dependent of xt2 . The one-step Markov dependence assumption implies that the sequence of

random variables xt is asymptotically m-dependent. Before proving this result, an interesting

lemma is proved below.

Lemma 1.4.3 Suppose that the sequence of Bernoulli(p) random variables {xt}nt=1 follows

one-step Markov dependence with transition matrix P as defined in equation (1.18). For all

ε > 0 there exists an integer m such that for all t1, t2 satisfying |t1−t2| > m, Cov(xt1 , xt2) < ε.

Proof Without loss of generality, suppose t1 < t2. The covariance of xt1 and xt2 is:

Cov(xt1 , xt2) = E(xt1xt2)− E(xt1)E(xt2)

= Pr(xt2 = 1|xt1 = 1)Pr(xt1 = 1)− p2

= P
|t1−t2|
11 p− p2

= p(P
|t1−t2|
11 − p).
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Lemma 1.4.2 implies that as |t1 − t2| → ∞, P
|t1−t2|
11 → p. Thus, as |t1 − t2| → ∞,

Cov(xt1 , xt2) → 0. Therefore, for all ε > 0 there exists an integer m such that for all t1, t2

satisfying |t1 − t2| > m, Cov(xt1 , xt2) < ε.

Lemma 1.4.4 Suppose that the sequence {xt}nt=1 of Bernoulli(p) random variables follows

one-step Markov dependence with transition matrix P as defined in (1.18), then {xt}nt=1 is

asymptotically m-dependent with m determined by P .

Proof Without loss of generality, suppose 1 ≤ t1 < t2 ≤ n and that as n → ∞, t1/n and

t2/n converge to constants in the interval (0, 1), say η1 and η2, respectively. This forces

t2− t1 →∞ as n→∞. The Bernoulli distribution of both xt1 and xt2 leads to four possible

outcomes of the joint distribution of xt1 and xt2 . Two of these cases are demonstrated below,

as the other two are similar.

Case I: xt1 = 1, xt2 = 1,

Pr(xt1 = 1, xt2 = 1) = Pr(xt2 = 1|xt1 = 1)Pr(xt1 = 1)

= P t2−t1
11 p

→ p2

= Pr(xt1 = 1)Pr(xt2 = 1).

Case II: xt1 = 0, xt2 = 1,

Pr(xt1 = 0, xt2 = 1) = Pr(xt2 = 1|xt1 = 0)Pr(xt1 = 0)

= P t2−t1
01 (1− p)

→ p(1− p)

= Pr(xt1 = 0)Pr(xt2 = 1).

The values of the approximations of Puv in both Cases I and II comes from the stationary
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distribution of P∞ from Lemma 1.4.2. The approximations are accurate when t2 − t1 > m,

where m is dependent on ε as explained in Lemma 1.4.3.

1.4.3 The m-dependent Central Limit Theorem

There are a variety of central limit theorems for m-dependent sequences. The first was

introduced by Hoeffding and Robbins [15] and was later improved by Orey [27] for triangular

arrays. The essential result used in this dissertation is given in Chung [5], Theorem 7.3.1,

and it is used to show various asymptotic results for partial sums of m-dependent random

variables. The result is restated below for use in later sections.

Theorem 1.4.5 Suppose that {xn} is a sequence of m-dependent, uniformly bounded random

variables such that:

Var(Sn)

n2/3
→ +∞

as n→∞. Then Sn−E(Sn)√
Var(Sn)

d−→ N(0, 1).

This theorem will be used several times throughout this dissertation. In Section 2.4, it

will be used to show that the dependent CUSUM statistic is asymptotically normal. The

consistency of the MLE will be shown in Section 3.2, along with the asymptotic distribution

for the likelihood ratio statistic G2
t for fixed time points t.
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Dependent CUSUM test

The first method proposed to deal with the m-dependent sequence y = {xt}nt=1 is a gener-

alization of the CUSUM statistic. The dependent CUSUM (DCUSUM) statistic is similar

in construction, but has added complexity in the variance and covariance due to the m-

dependence assumption. A subscript of D is used throughout this chapter to denote the

m-dependent calculations and differentiate the expectation, variance, and covariance from

the independent case. The details of the CUSUM statistic for a fixed time t were defined in

Section 1.2.1.

Similar to CUSUM, define the weighted sum St for a fixed time t as:

St =
t∑

j=1

xj −
t

n

n∑
j=1

xj =
n∑
j=1

ajxj, where aj =

 1− t
n

if 1 ≤ j ≤ t,

− t
n

if t+ 1 ≤ j ≤ n.
(2.1)

The dependent CUSUM statistic for a fixed time t is defined as:

DCUSUMt = St/
√
n. (2.2)

It is clear that E(DCUSUMt) = ED(St/
√
n) = 0. The variance calculation is given below:

Var(DCUSUMt) = VarD(St/
√
n)
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= VarD

(
n∑
j=1

aj√
n
xj

)

=
1

n

n∑
j=1

a2
jVar(xj) +

1

n

∑
i 6=j

aiajCovD(xi, xj)

=
1

n

[
t

(
1− t

n

)2

+ (n− t)
(
− t
n

)2
]
p(1− p) +

2

n

∑
i<j

aiajp(P
|j−i|
11 − p)

=
t

n

(
1− t

n

)
p(1− p) +

2

n

∑
i<j

aiajp(P
|j−i|
11 − p)

= p

[
t

n

(
1− t

n

)
(1− p) +

2

n

∑
i<j

aiaj(P
|j−i|
11 − p)

]

= σ2
D,t.

Under the assumption of m-dependence, assuming m is known and i < j, the variance can

be reduced to:

Var(DCUSUMt) = p

[
t

n

(
1− t

n

)
(1− p) +

2

n

∑
0<j−i≤m

aiaj(P
j−i
11 − p)

]
. (2.3)

2.1 Variance of DCUSUMt Under m-dependence

The variance of DCUSUMt obviously depends on the values of t and m. In the independent

case, the asymptotic distribution of the maximal CUSUM statistic is determined over a range

of values l ≤ t/n ≤ h where l, h ∈ (0, 1). The choice of l and h is discussed by Miller and

Siegmund [26], and aims to improve performance of the testing methods by removing time

points from the boundaries of the sequence that lead to inflated test statistics. A similar

technique is applied to determine the asymptotic distribution of the maximal DCUSUM

statistic.

Assuming that i < j, we can split the sum:

∑
0<j−i≤m

aiaj(P
j−i
11 − p) =

∑
0<j−i≤m

cij,
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from (2.3) into three parts as follows:

∑
0<j−i≤m

cij =
∑

1≤i<j≤t
0<j−i≤m

cij +
∑
i≤t<j

0<j−i≤m

cij +
∑

t+1≤i<j≤n
0<j−i≤m

cij

= A + B + C. (2.4)

This leads to four possible cases for the value of m:

Case I : m ≤ min(t, n− t),

Case II : t < m ≤ n− t,

Case III : n− t < m ≤ t,

Case IV : m > max(t, n− t).

Recall that the m in m-dependence is independent of the time points t and n. It is assumed

that as n → ∞ we have t/n → η where η ∈ (l, h). This implies that as n → ∞, t → ∞,

which forces the value of m to satisfy m ≤ min(t, n− t). Therefore, all cases reduce to Case

I. Hence, only Case I is necessary to discuss when exploring the asymptotic distribution of

the DCUSUM statistic. The representation of the sum (2.4) for this case is discussed below.

Consider the matrix of pairs of time points with rows representing the index i and columns

the index j for the coefficients cij in the sum (2.4). The vertical and horizontal lines represent

when the coefficients ai change from (1− t/n) to −t/n.
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i

/
j 1 2 ··· t t+1 ··· n−1 n

1 c11 c12 · · · c1t c1 t+1 · · · c1n−1 c1n

2 c21 c22 · · · c2t c2 t+1 · · · c2n−1 c2n

...
... · · · ...

... · · · ...

t ct1 ct2 · · · ctt ct t+1 · · · ct n−1 ctn

t+1 ct+1 1 ct+1 2 · · · ct+1 t ct+1 t+1 · · · ct+1n−1 ct+1n

...
... · · · ...

... · · · ...

n−1 cn−1 1 cn−1 2 · · · cn−1 t cn−1 t+1 · · · cn−1n−1 cn−1n

n cn1 cn2 · · · cnt cn t+1 · · · cnn−1 cnn



(2.5)

The four sections of this matrix can be identified as

 A B

0 C

. Notice that the lower

left block of the matrix is zero because of the assumption that i < j. Coefficients are

counted starting with the diagonal entries with subscripts ci i+1. For A, there are t − 1 of

these coefficients, for B there is 1, and for C there are n− t− 1. Next, the number of ci i+2

entries are counted. There are t− 2 of these in A, 2 in B, and n− t− 2 in C. This process

continues until the difference in subscripts j − i > m. The total counts of coefficients for

each of A,B, and C for a fixed value of m are given below:

A =

(
1− t

n

)2 m∑
w=1

(t− w) (P w
11 − p) ,

B =

(
− t
n

)(
1− t

n

) m∑
w=1

w (P w
11 − p) ,

C =

(
− t
n

)2 m∑
w=1

(n− t− w) (P w
11 − p) . (2.6)
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2.1.1 Asymptotic Value of Var(DCUSUMt)

The limiting value of Var(DCUSUMt) is discussed below. Recall the assumption that t/n→

η ∈ (0, 1) as n→∞.

Var(DCUSUMt) = σ2
D,t

= p

[
t

n

(
1− t

n

)
(1− p) + 2

∑
0<j−i≤m

cij
n

]

= p

[
t

n

(
1− t

n

)
(1− p) + 2

((
1− t

n

)2 m∑
w=1

t− w
n

(P w
11 − p)

+

(
− t
n

)(
1− t

n

) m∑
w=1

w

n
(P w

11 − p)

+

(
− t
n

)2 m∑
w=1

n− t− w
n

(P w
11 − p)

)]

→ p

[
η(1− η)(1− p) + 2

(
(1− η)2η

m∑
i=1

(P w
11 − p)

+ (1− η)(−η)2

m∑
w=1

(P w
11 − p)

)]

= pη(1− η)

(
(1− p) + 2

m∑
w=1

(P w
11 − p)

)
.

2.2 Covariance of DCUSUMt1 and DCUSUMt2

Define the statistic Tt = DCUSUMt/σ̂D,t, where σ̂D,t is any consistent estimator of σD,t. For

the purposes of this dissertation, define:

σ̂D,t = p̂

[
t

n

(
1− t

n

)
(1− p̂) + 2

((
1− t

n

)2 m∑
w=1

t− w
n

(P̂ w
11 − p̂)

+

(
− t
n

)(
1− t

n

) m∑
w=1

w

n
(P̂ w

11 − p̂)

+

(
− t
n

)2 m∑
w=1

n− t− w
n

(P̂ w
11 − p̂)

)]
,
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where p̂ and P̂11 are defined by (1.2) and (3.7), respectively. The estimate p̂ of p is consistent

by Theorem 1.4.5, and P̂11 is consistent by Corollary 3.2.6. The test statistic for detecting

a change point τ is:

T 2
max = max

t
T 2
t . (2.7)

The covariance between DCUSUMt1 and DCUSUMt2 for any two times t1 < t2 is necessary

to obtain the asymptotic distribution of the T 2
max statistic, as well as an approximate Worsley

type upper bound for tail probabilities. Let ai be the coefficients for DCUSUMt1 and bj be

the coefficients for DCUSUMt2 , then:

Cov(DCUSUMt1 ,DCUSUMt2) = Cov(St1/
√
n, St2/

√
n)

= Cov

([
n∑
i=1

ai√
n
Xi

][
n∑
j=1

bj√
n
Xj

])

= Cov

(
n∑
i=1

[
n∑
j=1

(
aj√
n
Xi

bj√
n
Xj

)])

=
n∑
i=1

[
n∑
j=1

aibj
n

Cov(XiXj)

]

=
n∑
i=1

aibj
n

Var(Xi) +
∑
i 6=j

aibj
n

Cov(Xi, Xj)

=
n∑
i=1

aibj
n
p(1− p) +

∑
i 6=j

aibj
n
p(P

|j−i|
11 − p).

Under the assumption of m-dependence, a similar simplification in the covariance occurs:

Cov(DCUSUMt1 ,DCUSUMt2) =
p

n

 n∑
i=1

aibi(1− p) +
∑

0<|j−i|≤m

aibj(P
|j−i|
11 − p)

 . (2.8)

Note that the m in m-dependence is independent of the time points t1, t2, and n. Recall

the assumption that as n → ∞ both t1/n → η1 and t2/n → η2 where η1, η2 ∈ (l, h). This

implies that as n→∞, all of t1 →∞, t2 →∞, and t2 − t1 →∞. Even though the limit of
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t2 − t1 grows to infinity, the cases where t2 − t1 < m are included for implementation into

the DCUSUM test algorithm described in Chapter 4. The possible values of m are limited

to the following categories:

1 : m ≤ t2 − t1 ≤ t1 ≤ n− t2,

2 : m ≤ t1 ≤ t2 − t1 ≤ n− t2,

3 : m ≤ t1 ≤ n− t2 ≤ t2 − t1,

4 : m ≤ t2 − t1 ≤ n− t2 ≤ t1,

5 : m ≤ n− t2 ≤ t2 − t1 ≤ t1,

6 : m ≤ n− t2 ≤ t1 ≤ t2 − t1,

7 : t2 − t1 ≤ m ≤ t1 ≤ n− t2,

8 : t2 − t1 ≤ m ≤ n− t2 ≤ t1.

The resulting covariance, Cov(DCUSUMt1 ,DCUSUMt2), of these eight cases reduces to two

unique possibilities:

Case I (1 - 6) : m ≤ min(t1, t2 − t1, n− t2),

Case II (7, 8) : t2 − t1 ≤ m ≤ min(t1, n− t2).

For both cases, the sum:

∑
0<|j−i|≤m

aibjp(P
|j−i|
11 − p) =

∑
0<|j−i|≤m

cij,

from equation (2.8) may be split into four parts. Define a = (1 − t1/n), a′ = t1/n, b =

(1− t2/n) and b′ = t2/n. Then:

∑
0<|j−i|≤m

cij = ab
m∑
i=1

ci,ab + a′b
m∑
i=1

ci,a′b + ab′
m∑
i=1

ci,ab′ + a′b′
m∑
i=1

ci,a′b′
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= AB + A′B + AB′ + A′B′. (2.9)

Similar to the matrix (2.5), consider the matrix of pairs of time points with rows representing

the index i of ai corresponding to t1 and columns the index j of bj corresponding to t2 for

the coefficients cij in the sum (2.9). The vertical and horizontal lines represent when the

coefficients ai or bj change from (1− t1/n) or (1− t2/n) to −t1/n or −t2/n respectively.



ai/bj 1 2 ··· t1 t1+1 ··· t2 t2+1 ··· n−1 n

1 c11 c12 · · · c1t1 c1 t1+1 · · · c1t2 c1 t2+1 · · · c1n−1 c1n

2 c21 c22 · · · c2t1 c2 t1+1 · · · c2t2 c2 t2+1 · · · c2n−1 c2n
...

... · · ·
... · · ·

...
... · · ·

...

t1 ct11 ct12 · · · ct1t1 ct1 t1+1 · · · ct1t2 ct1 t2+1 · · · ct1 n−1 ct1n

t1+1 ct1+1 1 ct1+1 2 · · · ct1+1 t1 ct1+1 t1+1 · · · ct1+1 t2 ct1+1 t2+1 · · · ct1+1n−1 ct1+1n

...
... · · ·

... · · ·
...

... · · ·
...

t2 ct21 ct22 · · · ct2t1 ct2 t1+1 · · · ct2t2 ct2 t2+1 · · · ct2 n−1 ct2n

t2+1 ct2+1 1 ct2+1 2 · · · ct2+1 t1 ct2+1 t1+1 · · · ct2+1 t2 ct2+1 t2+1 · · · ct2+1n−1 ct2+1n

...
... · · ·

... · · ·
...

... · · ·
...

n−1 cn−1 1 cn−1 2 · · · cn−1 t1 cn−1 t1+1 · · · cn−1 t2 cn−1 t2+1 · · · cn−1n−1 cn−1n

n cn1 cn2 · · · cnt1 cn t1+1 · · · cnt2 cn t2+1 · · · cnn−1 cnn



The four sections of this matrix can be identified as

 AB AB′

A′B A′B′

. The counting of

coefficients using this matrix will change depending on the case considered. Both Cases I

and II are discussed below.

2.2.1 Coefficients for Case I: m ≤ min(t1, t2 − t1, n− t2)

Under the assumptions of Case I, the upper right block of the matrix AB′ is zero because of

the assumption that m < t2 − t1 and the fact that all entries in that block are separated by

at least t2 − t1 time points.
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Coefficients in the other three blocks are counted above and below the diagonal starting

with with subscripts ci i+1, then ci−1 i. For AB, there are t1 of these coefficients above the

diagonal and t1 − 1 below the diagonal for a total of 2t1 − 1 coefficients. For A′B there are

t2 − t1 − 1 of these coefficients above the diagonal and t2 − t1 + 1 below the diagonal for

a total of 2(t2 − t1) coefficients. For A′B′ there are n − t2 of these coefficients above the

diagonal and n− t2 − 1 below the diagonal for a total of 2(n− t2)− 1 coefficients.

Next, the number of ci i+2 and ci−2 i coefficients are counted. In AB, there are t1 of these

coefficients above the diagonal and t1−2 below the diagonal for a total of 2t1−2 coefficients.

In A′B, there are t2 − t1 − 2 of these coefficients above the diagonal and t2 − t1 + 2 below

the diagonal for a total of t2 − t1 coefficients. In A′B′, there are n− t2 of these coefficients

above the diagonal and n− t2− 2 below the diagonal for a total of 2(n− t2)− 2 coefficients.

This process continues until the difference in subscripts j − i > m. The total counts of

coefficients for each of AB,A′B, and A′B′ from (2.9) for a fixed value of m are given below:

AB =

(
1− t1

n

)(
1− t2

n

) m∑
w=1

(2t1 − w) (P w
11 − p) ,

A′B =

(
−t1
n

)(
1− t2

n

) m∑
w=1

[2(t2 − t1)] (P w
11 − p) ,

AB′ = 0,

A′B′ =

(
−t1
n

)(
−t2
n

) m∑
w=1

[2(n− t2)− w] (P w
11 − p) . (2.10)

2.2.2 Coefficients for Case II: t2 − t1 ≤ m ≤ min(t1, n− t2)

Under the assumptions of Case II, all four blocks of the coefficient matrix must be counted.

Notice that the number of coefficients in AB,A′B, and A′B′ are similar to those from Case

I, with an extra term. This extra term is due to the fact that when the value of m is larger

than t2− t1, more terms have a nonzero covariance. The details of the counting are omitted,

but the strategy is the same as in Case I. The counts for Case II from the sum (2.9) are

30



Chapter 2, Section 2.2

given below:

AB =

(
1− t1

n

)(
1− t2

n

)[t2−t1∑
w=1

(2t1 − w) (P w
11 − p)

+
m∑

w=t2−t1+1

(t2 + t1 − 2w) (P w
11 − p)

]
,

A′B =

(
−t1
n

)(
1− t2

n

)[t2−t1∑
w=1

[2(t2 − t1)] (P w
11 − p)

+
m∑

w=t2−t1+1

(t2 − t1 + w) (P w
11 − p)

]
,

AB′ =

(
1− t1

n

)(
−t2
n

) m∑
w=t2−t1+1

[w − (t2 − t1)] (P w
11 − p) ,

A′B′ =

(
−t1
n

)(
−t2
n

)[t2−t1∑
w=1

[2(n− t2)− w] (P w
11 − p)

+
m∑

w=t2−t1+1

[2(n− w)− (t2 + t1)] (P w
11 − p)

]
. (2.11)

2.2.3 Asymptotic value of Cov(DCUSUMt1,DCUSUMt2)

The limiting value of Cov(DCUSUMt1 ,DCUSUMt2) for Case I is discussed below. This is

sufficient because of the fact that t2 − t1 →∞. Because m is fixed, as n→∞, m < t2 − t1.

Therefore, Case II is not possible as n → ∞. Recall the assumption that t1/n → η1 and

t2/n→ η2 where 0 < η1 < η2 < 1.

Case I : m ≤ min(t1, t2 − t1, n− t2).

Cov(DCUSUMt1 ,DCUSUMt2) = p

 n∑
i=1

aibi
n

(1− p) +
∑

0≤|j−i|≤m

aibj
n

(P
|j−i|
11 − p)


→ p

[
(1− p)η1(1− η2) + 2η1(1− η2)

m∑
w=1

(P w
11 − p)

]

= η1(1− η2)p

[
1− p+ 2

m∑
w=1

(P w
11 − p)

]
.
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Combining the results in this section with those in Section 2.1 leads to the following asymp-

totic covariance of Tt1 and Tt2 :

Cov(Tt1 , Tt2) =
Cov(DCUSUMt1 ,DCUSUMt2)

σ̂D,t1 σ̂D,t2

→
η1(1− η2)p [1− p+ 2

∑m
w=1(Pw

11 − p)]√
pη1(1− η1)

(
(1− p) + 2

m∑
w=1

(P i
11 − p)

)√
pη2(1− η2)

(
(1− p) + 2

m∑
w=1

(Pw
11 − p)

)

=

(
η1(1− η2)

(1− η1)η2

)1/2

. (2.12)

2.3 Asymptotic Distribution of the Maximum DCUSUM

Statistic

Recall from Section 1.2.1 that the independent statistic T 2
max is asymptotically the sum of

squared Brownian Bridge processes. The asymptotic distribution for the T 2
max statistic for

the DCUSUM case is summarized in the theorem below. The calculations of the limiting

values of the mean, variance, and covariance of Tt are provided in the previous subsections.

Theorem 2.3.1 Suppose {xt}nt=1 is an m-dependent sequence of Bernoulli(p) random vari-

ables with one step Markov dependence defined by the transition matrix P , and the value of

m is known. The test statistic:

T 2
max = max

l≤t/n≤h
T 2
t

D−→ sup
l≤η≤h

B2(η)

η(1− η)
,

where B(η) is a Brownian bridge process on the interval [0, 1].

Proof Define St as in equation (2.1), then the random variables ajxj that make up St are

uniformly bounded by 1. From equation (2.3), the a consistent estimate of the variance of

St is given as:

V̂arD(St) = p̂

[
t

(
1− t

n

)
(1− p̂) + 2

∑
0<j−i<m

aiaj(P̂
|j−i|
11 − p̂)

]
.
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As n tends to infinity:

V̂arD(St)/n
2/3 = p̂

[
t

n2/3

(
1− t

n

)
(1− p̂) +

2

n2/3

∑
0<j−i<m

aiaj(P̂
|j−i|
11 − p̂)

]

= n1/3p̂

[
t

n

(
1− t

n

)
(1− p̂) +

2

n

∑
0<j−i<m

aiaj(P̂
|j−i|
11 − p̂)

]

→∞.

By Theorem 1.4.5 and the consistency of σ̂D,t:

Tt =
DCUSUMt

σ̂D,t
=

St√
V̂arD(St)

=
St − ED(St)√

V̂arD(St)

D−→ N(0, 1).

For the independent Tt statistic, an application of the traditional CLT gives the convergence

Tt
D−→ N(0, 1).

Both of the test statistics Tt resulting from the independent and dependent assumptions

have asymptotically normal distributions. The normal distribution is completely determined

by the mean, variance, and covariance. If the means, variances, and covariances in both cases

are asymptotically equivalent, then the asymptotic results for the statistic T 2
max in either case

will be equivalent.

A comparison of the asymptotic results of Section 1.2.1 and Chapter 2 is given below.

The subscript D denotes the calculations for the DCUSUM statistic.

E(Tt) = 0 = ED(Tt),

Var(Tt) = 1 = VarD(Tt),

Cov(Tt1 , Tt2) ≈
(
η1(1− η2)

(1− η1)η2

)1/2

≈ CovD(Tt1 , Tt2).

Notice that the means, variances, and asymptotic covariances (2.12) and (1.6) are iden-

tical. Therefore, the independent and dependent T 2
t statistics will have the exact same
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asymptotic behavior. Hence, the asymptotic distribution of the statistic T 2
max is the same

for both the independent CUSUM and m-dependent DCUSUM test.

Approximate p-values for the DCUSUM test can be found by applying Theorem 2.3.1 to

T 2
max and using (1.14), which is restated below for convenience:

Pr

(
sup
l≤η≤h

B2(η)

η(1− η)
≥ T

)
≈

(
Te−T

2π

)1/2

×
[(

1− 1

T

)
log

(
(1− l)h
l(1− h)

)
+

4

T
+O

(
1

T 2

)]
.

The asymptotic results rely on the fact that the value m is known. In practice, this value

is unknown and must be estimated from the data. This procedure is discussed in Section

4.1.

2.4 Upper Bound for DCUSUM Tail Probabilities

An alternative approach to the p-value approximation of the DCUSUM statistic using (1.14)

is to use a Worsley type upper bound for the p-value as mentioned in Section 1.3.2. In

particular, the upper bound (1.16) is applied to the statistic T 2
max and is calculated as follows:

Pr(T 2
max > T ) ≤

nh∑
t=nl

Pr(T 2
t > T )−

nh−1∑
t=nl

Pr
(
{T 2

t > T} ∩ {T 2
t+1 > T}

)
=

nh∑
t=nl

Pr(T 2
t > T )−

[
nh−1∑
t=nl

Pr
(
{Tt >

√
T} ∩ {Tt+1 >

√
T}
)

+ Pr
(
{Tt >

√
T} ∩ {Tt+1 < −

√
T}
)

+ Pr
(
{Tt < −

√
T} ∩ {Tt+1 >

√
T}
)

+ Pr
(
{Tt < −

√
T} ∩ {Tt+1 < −

√
T}
)]

. (2.13)

In order to calculate the probabilities in equation (2.13), the distribution of T 2
t and
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the joint distribution of Tt and Tt+1 must be calculated. The following lemmas give the

asymptotic distribution of T 2
t as χ2

1 and asymptotic joint distribution of Tt and Tt+1 as

bivariate normal.

Lemma 2.4.1 Suppose the sequence {xt}nt=1 is m-dependent, and the value of m is known.

The statistic:

T 2
t =

(
DCUSUMt

σ̂D,t

)2

,

has asymptotic distribution χ2
1.

Proof From the proof of Theorem 2.3.1:

Tt
D−→ N(0, 1).

Therefore:

T 2
t =

(
DCUSUMt

σ̂D,t

)2
D−→ χ2

1.

In order to show the asymptotic joint distribution of Tt1 and Tt2 is bivariate normal, it

must be shown that any linear combination St1,t2 = cSt1 + dSt2 , for any c, d ∈ R is normally

distributed. Define the partial sum:

St1,t2 =
n∑
j=1

γjxj, where γj =


c
(
1− t1

n

)
+ d

(
1− t2

n

)
if 1 ≤ j ≤ t1,

c
(
− t1

n

)
+ d

(
1− t2

n

)
if t1 + 1 ≤ j ≤ t2,

c
(
− t1

n

)
+ d

(
− t2

n

)
if t2 + 1 ≤ j ≤ n.

(2.14)

The variance of St1,t2 is given as:

Var(St1,t2) =
n∑
i=1

γ2
i Var(xj) + 2

∑
0<j−i<m

γiγjCov(xi, xj)

=
n∑
i=1

γ2
i p(1− p) + 2

∑
0<j−i<m

γiγj

(
P
|j−i|
11 − p

)
. (2.15)

35



Chapter 2, Section 2.4

Table 2.1: Coefficient Locations and Counts

Location Count

{1 ≤ i < j ≤ t1} γ2
1

m∑
w=1

(t1 − w) (P w
11 − p)

{i ≤ t1 < j ≤ t2} γ1γ2

m∑
w=1

w (P w
11 − p)

{t1 + 1 ≤ i < j ≤ t2} γ2
2

m∑
w=1

(t2 − t1 − w) (P w
11 − p)

{t1 + 1 ≤ i ≤ t2 < j ≤ n} γ2γ3

m∑
w=1

w (P w
11 − p)

{t2 + 1 ≤ i < j ≤ n} γ2
3

m∑
w=1

(n− t2 − w) (P w
11 − p)

The coefficients of the second term can be counted using a similar counting technique for

the coefficients (2.6), except with five categories. The coefficient counts for each category

are given in Table 2.1. For notational purposes, define:

γ1 = c

(
1− t1

n

)
+ d

(
1− t2

n

)
,

γ2 = c

(
1− t1

n

)
+ d

(
−t2
n

)
,

γ3 = c

(
−t1
n

)
+ d

(
−t2
n

)
.

The asymptotic variance of St1,t2/
√
n is calculated below, separated into three steps. The

first term in the variance (2.15) is calculated first, then the second term is calculated, and

finally, the two are combined and the limit is taken.

1

n

n∑
i=1

γ2
i Var(xj) =

1

n

n∑
i=1

γ2
i p(1− p)

=
p(1− p)

n

{
t1

[
c

(
1− t1

n

)
+ d

(
1− t2

n

)]2

+ (t2 − t1)

[
c

(
−t1
n

)
+ d

(
1− t2

n

)]2

+ (n− t2)

[
c

(
−t1
n

)
+ d

(
−t2
n

)]2
}
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=
p(1− p)

n

{
c2t1

(
1− t1

n

)
+ 2cdt1

(
1− t2

n

)
+ d2t2

(
1− t2

n

)}
→ p(1− p)

{
c2η1(1− η1) + 2cdη1(1− η2) + d2η2(1− η2)

}
. (2.16)

2

n

∑
0<j−i<m

γiγjCov(xi, xj) =
2

n
p
∑

0<j−i<m

γiγj

(
P
|j−i|
11 − p

)
=

2

n
p

{
γ2

1

m∑
w=1

(t1 − w) (P w
11 − p) + γ1γ2

m∑
w=1

w (P w
11 − p)

+ γ2
2

m∑
w=1

(t2 − t1 − w) (P w
11 − p) + γ2γ3

m∑
w=1

w (P w
11 − p)

+ γ2
3

m∑
w=1

(n− t2 − w) (P w
11 − p)

}

→ 2p
{

[c(1− η1) + d(1− η2)]2 η1

+ [c(1− η1) + d(−η2)]2 (η2 − η1)

+ [c(−η1) + d(−η2)]2 (1− η2)
} m∑
w=1

(P w
11 − p)

= 2p
{
c2η1(1− η1) + 2cdη1(1− η2)

+ d2η2(1− η2)
} m∑
w=1

(P w
11 − p) . (2.17)

Notice that both terms (2.16) and (2.17) in the sum of the asymptotic variance of St1,t2

have a common constant. Combining these yields the total asymptotic variance:

Var

(
St1,t2√
n

)
=

1

n

n∑
i=1

γ2
i Var(xj) +

2

n

∑
0<j−i<m

γiγjCov(xi, xj)

→ p
{
c2η1(1− η1) + 2cdη1(1− η2) + d2η2(1− η2)

}
×

(
1− p+ 2

m∑
w=1

(P w
11 − p)

)
. (2.18)

It is clear that the asymptotic variance of St1,t2/
√
n is finite. The proof of the following

lemma uses this fact to show that the asymptotic joint distribution of St1 and St2 is bivariate
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normal, by relying on Result 4.2 from Johnson and Wichern [18], which is restated below

for convenience.

Theorem 2.4.2 Let X denote a p-dimensional vector of random variables and a a vector

of constants. If a′X is distributed as N (a′µ,a′Σa), then X must be Np (µ,Σ).

Lemma 2.4.3 Suppose the sequence {xt}nt=1 is m-dependent and the value of m is known.

The asymptotic joint distribution of Tt1 and Tt2 is bivariate normal.

Proof First, the asymptotic joint normality of St1 and St2 must be shown. By Theorem 2.4.2,

it suffices to show that for any constants c, d ∈ R, the linear combination St1,t2 = cSt1 + dSt2

is normally distributed. Define St1,t2 as in equation (2.14), then the random variables γjxj

that make up St1,t2 are uniformly bounded by |c+ d|.

The above calculations show that the limiting variance of St1,t2/
√
n is finite and equal to

the final expression in equation (2.18). Therefore, Var(St1,t2)/n
2/3 →∞. By Theorem 1.4.5:

cSt1 + dSt2√
Var(cSt1 + dSt2)

=
St1,t2√

Var(St1,t2)

D−→ N(0, 1). (2.19)

To conclude the proof, the linear combination cTt1 + dTt1 must be shown to be normally

distributed:

cTt1 + dTt2 = c
DCUSUMt1

σ̂D,t1
+ d

DCUSUMt2

σ̂D,t2

= c
St1√

V̂ar(St1)

+ d
St2√

V̂ar(St2)

= c′St1 + d′St2 .

By equation (2.19), cTt1 + dTt2 converges in distribution to a normal density. Therefore,

Tt1 and Tt2 are bivariate normal.

The mean vector for the joint distribution of Tt1 and Tt1+1 is clearly (0, 0) because both

Tt1 and Tt1+1 have zero expectation. The diagonal entries in the covariance matrix are 1, and
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the approximate covariance σt1,t1+1 can be calculated using equation (2.11) by substituting

any consistent estimator σ̂t1,t1+1. To summarize:

 Tt1

Tt1+1

→ N(µ,Σ), where µ = (0, 0) and Σ ≈

 1 σ̂t1,t1+1

σ̂t1,t1+1 1

 .

Combining the summary above with Lemmas 2.4.1 and 2.4.3, the Worsley upper bound

(2.13) can be estimated.
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Dependent Likelihood Ratio Test

A different approach to handle the m-dependent sequence y = {xt}nt=1 is a generalization of

the likelihood ratio test discussed in Section 1.2.3. Instead of maximizing the full likelihood

function, a modified likelihood function proposed by Billingsley [2] and implemented in the

change point detection setting by Krauth [20, 21] is used. The asymptotic distribution of

the test statistic G2
t for fixed time t is found and an approximate asymptotic distribution

for G2
max, the maximum of G2

t over the range of permissible values of t, is proposed. Due to

the lack of a known asymptotic distribution for the dependent likelihood ratio test (DLRT)

statistic, a bootstrap procedure is proposed to approximate p-values.

3.1 Modified Likelihood Function and MLEs

The one step Markov dependence assumption emphasizes transitions between consecutive

random variables in the sequence. To record these values, notation from Krauth [20] is

introduced. Define y(t) = {xj}tj=1 to be the sequence y truncated at index t. Let ntuv denote

the number of times the truncated sequence y(t) has transitioned from state u to state v,
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that is:

nt11 =
t∑

j=2

xj−1xj, nt00 =
t∑

j=2

(1− xj−1)(1− xj),

nt10 =
t∑

j=2

xj−1(1− xj), nt01 =
t∑

j=2

(1− xj−1)xj. (3.1)

The likelihood ratio statistic requires both the likelihood functions under the null and

alternative hypotheses. These functions are stated below and are described in more detail

in Devore [7] and Krauth [20], respectively. The alternative likelihood function given below

is for a fixed time t:

LH0 =px1(1− p)1−x1L∗H0
where L∗H0

= P n00
00 P n01

01 P n10
10 P n11

11 ,

LHa =px1(1− p)1−x1P
nt
00

00 (1)P
nt
01

01 (1)P
nt
10

10 (1)P
nt
11

11 (1)

× P11(t)xtxt+1P10(t)xt(1−xt+1)P01(t)(1−xt)xt+1P00(t)(1−xt)(1−xt+1)

× P11(2)n
n
11−nt

11−xtxt+1P10(2)n
n
10−nt

10−xt(1−xt+1)

× P01(2)n
n
01−nt

01−(1−xt)xt+1P00(2)n
n
00−nt

00−(1−xt)(1−xt+1).

The initial term x1 and the term xt lead to complications in maximizing the full likelihood

functions. While direct maximization is not mathematically impossible, the complexity of the

solution is unreasonable for practical use. Instead, a modified likelihood function proposed

by Billingsley [2] and implemented in the change point detection setting by Krauth [20, 21]

is used. The initial term x1 and the term xt are ignored in the modified likelihood functions

given below, denoted with ∗. These can be maximized in the usual way by taking derivatives.

L∗H0
=P

nn
00

00 P
nn
01

01 P
nn
10

10 P
nn
11

11 ,

L∗Ha
=P

nt
00

00 (1)P
nt
01

01 (1)P
nt
10

10 (1)P
nt
11

11 (1)

× P11(2)n
n
11−nt

11−xtxt+1P10(2)n
n
10−nt

10−xt(1−xt+1)
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× P01(2)n
n
01−nt

01−(1−xt)xt+1P00(2)n
n
00−nt

00−(1−xt)(1−xt+1). (3.2)

In the system of equations (1.21) resulting from the one step Markov dependence assump-

tion, it is assumed that the value of p is given. Alternatively, the system (1.21) can be viewed

as a system of equations with two free variables, p and P11. If instead, it is assumed that

p is unknown, the free variables can be thought of as P00 and P11. The modified maximum

likelihood estimates are derived for P00 and P11 from equations (3.2) for a fixed time t:

P̂11 =
nn11

nn11 + nn10

, P̂00 =
nn00

nn00 + nn01

,

P̂11(1) =
nt11

nt11 + nt10

, P̂00(1) =
nt00

nt00 + nt01

,

P̂11(2) =
nn11 − nt11 − xtxt+1

nn11 − nt11 − xtxt+1 + nn10 − nt10 − xt(1− xt+1)
,

P̂00(2) =
nn00 − nt00 − (1− xt)(1− xt+1)

nn00 − nt00 − (1− xt)(1− xt+1) + nn01 − nt01 − (1− xt)xt+1

. (3.3)

With these estimates in hand, the MLEs for p, p1, and p2 are found by substitution of

equation (3.7) into the system (1.21):

p̂ =
1− P̂00

2− P̂00 − P̂11

,

p̂(1) =
1− P̂00(1)

2− P̂00(1)− P̂11(1)
,

p̂(2) =
1− P̂00(2)

2− P̂00(2)− P̂11(2)
. (3.4)

The value of τ is unknown and must be estimated. There are n− 2 possible time points

for the location of τ , which leads to n−2 possible values for the maximum likelihood estimate

under the alternative hypothesis. The maximum alternative likelihood is recorded for each

possible value of t = 2, . . . , n − 1. The global maximum value is taken to be max
2≤t≤n−1

L∗Ha
.
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This yields the modified likelihood ratio statistic:

λ∗ =
L∗H0

max
2≤t≤n−1

L∗Ha

.

From equation (3.2), it is clear that L∗H0
is comprised of exactly one more term than

L∗Ha
. All of the parameters fall in the interval (0, 1) forcing the strict inequality L∗H0

< L∗Ha
,

even in the case when H0 is true. This issue is addressed by removing the transition from

t to t + 1 from the null likelihood function, for each value of t. The updated modified null

likelihood function and likelihood ratio are:

L∗∗H0
= P

nn
11−xtxt+1

11 P
nn
10−xt(1−xt+1)

10 P
nn
01−(1−xt)xt+1

01 P
nn
00−(1−xt)(1−xt+1)

00 and λ∗∗ = max
2≤t≤n−1

L∗∗H0

L∗Ha

.

The resulting MLEs for P00, P11, and p are given below, with τ̂ defined in the following

paragraph:

P̂00 =
nn00 − (1− xτ̂ )(1− xτ̂+1)

nn00 − (1− xτ̂ )(1− xτ̂+1) + nn01 − (1− xτ̂ )xτ̂+1

,

P̂11 =
nn11 − xτ̂xτ̂+1

nn11 − xτ̂xτ̂+1 + nn10 − xτ̂ (1− xτ̂+1)
,

p̂ =
1− P̂00

2− P̂00 − P̂11

. (3.5)

The likelihood functions take on values that are extremely close to zero, making compu-

tations very difficult for a computer. Instead, the G2
t statistic is used, where:

G2
t = 2(logL∗Ha

− logL∗∗H0
). (3.6)

Large values of G2
t will be evidence that a change point exists at the value τ̂ = arg max

t
G2
t .

By construction, the permissible range of values of t where G2
t is well defined depends on

the sequence y. While restricting to the range of values nl ≤ t ≤ nh similar to DCUSUM

is one solution, in this dissertation, the values of t are found on a case by case basis. The

43



Chapter 3, Section 3.2

asymptotic distribution of G2
t for fixed t and approximate asymptotic distribution of G2

max

are discussed in the next section.

3.2 Asymptotic Distribution of G2
t

The goal of this section is to determine the asymptotic distribution of the test statistic G2
t

for a fixed time 1 < t < n. The definition of the test statistic is given by equation (3.6).

For fixed t, the contribution of the transition from xt to xt+1 to the MLEs of P00, P11, P00(2),

and P11(2) is only a single time point and will be lost in the limit. Therefore, those terms

in equations (3.7) and (3.5) are ignored in the large sample MLEs, which are given below:

P̂11 =
nn11

nn11 + nn10

, P̂00 =
nn00

nn00 + nn01

,

P̂11(1) =
nt11

nt11 + nt10

, P̂00(1) =
nt00

nt00 + nt01

,

P̂11(2) =
nn11 − nt11

nn11 − nt11 + nn10 − nt10

, P̂00(2) =
nn00 − nt00

nn00 − nt00 + nn01 − nt01

. (3.7)

It is well known that under certain conditions, likelihood ratio statistics follow a χ2

asymptotic distribution. The main result from Wilks [38] gives criteria for this to occur. For

the purposes of this dissertation those criteria are that the large sample joint distribution of

the MLEs P̂uv(1) and P̂uv(2) belongs to an exponential family.

Before proving several lemmas that lead to the main result, some notation is introduced.

Let t∗ = n − t and nt
∗
uv = nnuv − ntuv. For fixed t, the statistics P̂uv(1) and P̂uv(2) from

equations (3.7) can be written as:

P̂uv(1) =
ntuv/(t− 1)

(ntuv + ntuv′)/(t− 1)
=

n̄tuv
(1/(t− 1))

∑t
j=2 1{xj=u}

,

P̂uv(2) =
nt
∗
uv/(t

∗ − 1)

(nt∗uv + nt
∗
uv′)/(t

∗ − 1)
=

n̄t
∗
uv

(1/(t∗ − 1))
∑n

j=t+2 1{xj=u}
. (3.8)
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The claim is that the random vector:

P̂ =
(
P̂11(1) P̂00(1) P̂11(2) P̂00(2)

)′
,

has an asymptotic multivariate normal distribution with mean vector:

µ = (P11(1) P00(1) P11(2) P00(2))′ ,

and finite covariance matrix Σ.

First, it is shown that the denominators in equations (3.8) converge almost surely to

constants. The law of large numbers for Markov chains given in Durrett [8], Theorem 6.6.1,

states:

Theorem 3.2.1 Suppose u is recurrent and define EuRu to be the expected amount of time

until xt returns to state u. For any state u, as n→∞:

n∑
j=1

1{xj=u}

n
→ 1

EuRu

1{Tu<∞} Px − a.s.

The value of the limit is given in Durrett [8], Theorem 6.5.5, which states:

Theorem 3.2.2 If a Markov chain is irreducible and has stationary distribution π, then

π(u) = 1/EuRu.

Combining this theorem with the stationary distribution given in Lemma 1.4.2 yields the

following convergence result:

Lemma 3.2.3 The values (1/(t− 1))
∑t

j=2 1{xj=u} and (1/(t∗− 1))
∑n

j=t+2 1{xj=u} converge

almost surely to constants which depend on the value of u.

Proof An application of Theorem 3.2.1 followed by an application of Theorem 3.2.2 to the
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denominators of equations (3.8) will prove the result.

1

t− 1

t∑
j=2

1{xj=u} →
1

Eu(1)Ru(1)
1{Ru(1)<∞} = p(1) or (1− p(1)),

1

t∗ − 1

n∑
j=t+2

1{xj=u} →
1

Eu(2)Ru(2)
1{Ru(2)<∞} = p(2) or (1− p(2)).

The right hand sides of both equations are constants dependent on the value of u = 0 or 1.

The next step in proving the main result of this section is to show that the asymptotic

distributions of the numerators in equations (3.8) are normal. For the remainder of this

section, only the pre change case where u = v = 1 (that is, nt11) is considered, as the other

three cases are similar.

Define zi = xi−1xi. Under the alternative hypothesis, zi is a Bernoulli random variable

with success probability:

Pr (zi = 1) =

 p(1)P11(1) if 2 ≤ i ≤ t,

p(2)P11(2) if t+ 2 ≤ i ≤ n,

and covariance:

Cov(zi, zj) =


p(1)P 2

11(1)
(
P j−i−1

11 (1)− p(1)
)

if 1 ≤ i < j ≤ t,

0 if 1 ≤ i ≤ t < j ≤ n,

p(2)P 2
11(2)

(
P j−i−1

11 (2)− p(2)
)

if t2 ≤ i < j ≤ n.

For consecutive terms, the covariance reduces to Cov(zi, zi+1) = p(1)(1 − p(1))P 2
11(1),

p(2)(1− p(2))P 2
11(2), or 0.

Similar to Lemma 1.4.3 as n→∞, j− i→∞ for all but finitely many terms. Therefore,

for large n, P j−i−1
11 (1) ≈ p(1) and P j−i−1

11 (2) ≈ p(2). Using a similar argument as Lemma

1.4.4, the sequence of correlated Bernoulli trials {zi}ti=2 that make up nt11 may be considered
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to be approximately m-dependent.

In order to apply Theorem 1.4.5 to obtain the distribution of nt11, the variance of nt11,

say Vnt
11

, must be calculated:

Vnt
11

= Var
(
nt11

)
= Var

(
t∑
i=2

zi

)
=

t∑
i=2

Var(zi) + 2
∑

2≤i<j≤t

Cov(zi, zj)

= (t− 1)p(1)P11(1) (1− p(1)P11(1))

+ 2
t∑

0<j−i≤m

p(1)P 2
11(1)

(
P j−i−1

11 (1)− p(1)
)
. (3.9)

It is clear from equation (3.9) that the variance of n̄t11 is defined as:

Vn̄t
11

= Vnt
11
/(t− 1)2. (3.10)

Lemma 3.2.4 Suppose the sequence {zi}ti=2 is m-dependent and the value of m is known.

The statistic n̄t11 is asymptotically normal with mean p(1)P11(1) and finite variance.

Proof The random variables that make up nt11 are uniformly bounded by 1. From equation

(3.9), it is clear that Vnt
11

is of order t. Therefore, Vnt
11
/(t− 1)2/3 →∞. By Theorem 1.4.5:

n̄t11 − p(1)P11(1)√
Vn̄t

11

=
nt11 − (t− 1)p(1)P11(1)√

Vnt
11

d−→ N(0, 1).

Combining Lemmas 3.2.3 and 3.2.4 yields the first main result of this section.

Theorem 3.2.5 Suppose the sequence {zi}ti=2 is m-dependent and the value of m is known.

Define ntuv as in equation (3.1), P̂11(1) as in equation (3.7), and Vnt
11

as in equation (3.9).

The statistic P̂11(1) is asymptotically normal with mean P11(1) and finite variance.

Proof Define V11 = lim
n→∞

Vnt
11
/(t − 1) = p(1)P11(1) (1− p(1)P11(1)) + C11 where C11 is the
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limit of the second term in equation (3.9). By Slutsky’s Theorem:

√
t− 1

(
P̂11(1)− P11(1)

)
=
√
t− 1

(
n̄t11

(nt11 + nt10)/(t− 1)
− P11(1)

)
=
√
t− 1

(
n̄t11

(nt11 + nt10)/(t− 1)
− p(1)P11(1)

(nt11 + nt10)/(t− 1)

+
p(1)P11(1)

(nt11 + nt10)/(t− 1)
− P11(1)

)

=
√
t− 1

(
n̄t11 − p(1)P11(1)

)( 1

t− 1

t∑
i=2

1{xi=1}

)−1

+
√
t− 1

(
p(1)

(nt11 + nt10)/(t− 1)
− 1

)
P11(1)

→ 1

p(1)
N (0, V11) = N

(
0,

V11

p2(1)

)
.

Notice that the variation of P̂11(1) tends to 0 as t tends to infinity. This implies that the

estimate P̂11(1) of P11(1) is consistent.

Corollary 3.2.6 The MLE P̂11(1) is a consistent estimator of P11(1).

A similar argument shows that the centered and scaled version of the estimator P̂00(1) is

asymptotically normal and that P̂00(1) is a consistent estimator of P00(1). The asymptotic

distributions of P̂11(2) and P̂00(2) may be found by substituting (2) for (1) in the arguments

above.

The next step is to determine the joint distribution of P̂11(1) and P̂00(1).

Theorem 3.2.7 P̂11(1) and P̂00(1) are asymptotically bivariate normal.

Proof The goal is to show that any linear combination aP̂11(1) + bP̂00(1) is asymptotically
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normal for any constants a and b. This can be re written as:

aP̂11(1) + bP̂00(1) =
ant11

nt11 + nt10

+
bnt00

nt00 + nt01

=
a
∑t

j=2 xj−1xj∑t
l=2 xl−1

+
b
∑t

j=2(1− xj−1)(1− xj)∑t
l=2(1− xl−1)

=

(
1∑t

l=2 xl−1

)(
1∑t

l=2(1− xl−1)

)
×

[
a

(
t∑

j=2

xj−1xj

)(
t∑
l=2

(1− xl−1)

)

+ b

(
t∑

j=2

(1− xj−1)(1− xj)

)(
t∑
l=2

xl−1

)]

=

(
1∑t

l=2 xl−1

)(
1∑t

l=2(1− xl−1)

)
(t− 1)

[
a

t∑
j=2

xj−1xj

+

(
b

t∑
j=2

(1− xj−1)(1− xj)− a
t∑

j=2

xj−1xj

)(∑t
l=2 xl−1

t− 1

)]

:=

(
1∑t

l=2 xl−1

)(
1∑t

l=2(1− xl−1)

)
(t− 1)

t∑
j=2

cj,

where:

a′ = a

(
1−

∑t
l=2 xl−1

t− 1

)
, b′ = b

(∑t
l=2 xl−1

t− 1

)
, and cj =


a′ if xj−1 = xj = 1,

b′ if xj−1 = xj = 0,

0 else.

The sequence {cj}tj=2 is approximately m-dependent. Two of the cases are shown below,

as the others are similar.

Fix m as determined by the transition matrix P (1) and, without loss of generality,

suppose i+m < j. Then:

Pr(cj = a′ ∩ ci = a′) = Pr(xj = 1|xj−1 = 1)Pr(xj−1 = 1|xi = 1)

× Pr(xi = 1|xi−1 = 1)Pr(xi−1 = 1)
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= P11(1)P j−i−1
11 (1)P11(1)p(1)

≈ [P11(1)p(1)][P11(1)p(1)]

= Pr(cj = a′)Pr(ci = a′).

Pr(cj = a′ ∩ ci = b′) = Pr(xj = 1|xj−1 = 1)Pr(xj−1 = 1|xi = 0)

× Pr(xi = 0|xi−1 = 0)Pr(xi−1 = 0)

= P11(1)P j−i−1
01 (1)P00(1)(1− p(1))

≈ [P11(1)p(1)][P00(1)(1− p(1))]

= Pr(cj = a′)Pr(ci = b′).

Note that the random variables cj are uniformly bounded by max{|a|, |b|}. The variance of∑
cj is:

Var

(
t∑

j=2

cj

)
=

t∑
j=2

Var(cj) + 2
∑
i<j

Cov(ci, cj)

= (t− 1)
(
(a′)2P11(1)p(1) + (b′)2P00(1)(1− p(1))

−[a′P11(1)p(1) + b′P00(1)(1− p(1))]2
)

+ 2
∑

0<i−j≤m

[
(a′)2P 2

11(1)p(1)P j−i−1
11 (1) + (b′)2P 2

00(1)(1− p(1))P j−i−1
00 (1)

+ a′b′P00(1)P11(1)
(
P j−i−1

01 (1)(1− p(1)) + P j−i−1
10 (1)p(1)

)
− (a′P11(1)p(1) + b′P00(1)(1− p(1)))2

]
.

It is clear that Var (
∑
cj) is of order t, so Var (

∑
cj) /(t− 1)2/3 →∞. As t tends to infinity,

a′ → a(1− p(1)) and b′ → bp(1). Applying Theorem 1.4.5 gives the convergence of
∑
cj:

∑t
j=2 cj

t−1
− p(1)(1− p(1)) (aP11(1) + bP00(1)))

Var
(∑t

j=2 cj

)/
(t− 1)

=

∑t
j=2 cj − (t− 1)p(1)(1− p(1)) (aP11(1) + bP00(1)))

Var
(∑t

j=2 cj

) → N(0, 1).
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Therefore,
(∑t

j=2 cj

)/√
t− 1 is approximately normal with mean p(1)(1− p(1))(aP11(1) +

bP00(1)) and finite variance, say σ2
c . Combining this result with Slutsky’s Theorem and

Lemma 3.2.3 gives the asymptotic normality of P̂11(1) and P̂00(1).

Define µab = (aP11(1) + bP00(1)). Then:

√
t− 1

(
aP̂11(1) + bP̂00(1)− µab

)
=
√
t− 1

aP̂11(1) + bP̂00(1)

− (t− 1)2p(1)(1− p(1))µab(∑t
j=2 xj−1

)(∑t
j=2(1− xj−1)

)
+

(t− 1)2p(1)(1− p(1))µab(∑t
j=2 xj−1

)(∑t
j=2(1− xj−1)

) − µab


=
√
t− 1

(∑t
j=2 cj

t− 1
− p(1)(1− p(1))µab

)

×

 (t− 1)2(∑t
j=2 xj−1

)(∑t
j=2(1− xj−1)

)


+
√
t− 1

 (t− 1)2p(1)(1− p(1))(∑t
j=2 xj−1

)(∑t
j=2(1− xj−1)

) − 1

µab

d−→ 1

p(1)(1− p(1))
N
(
0, σ2

c

)
= N

(
0,

σ2
c

p2(1)(1− p(1))2

)
.

The choice of a and b was arbitrary, implying that any linear combination of P11(1)

and P00(1) is asymptotically normal. By Theorem 2.4.2, P11(1) and P00(1) have a bivariate

normal joint asymptotic distribution.

The asymptotic bivariate normality of P̂11(2) and P̂00(2) can be shown by interchanging

(1) for (2) and t for t∗.

To conclude this section, recall that the alternative model assumes that there is an

abrupt change at the fixed time point t. Therefore, the random variables xj, 1 ≤ j ≤ t, are
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independent of those values xj, t < j ≤ n. Theorem 3.2.7 implies that P̂11(1) and P̂00(1)

are asymptotically bivariate normal with mean vector µ(1) = (P11(1) P00(1)) and finite

covariance matrix, say Σ(1), and that the statistics P̂11(2) and P̂00(2) are asymptotically

bivariate normal with mean vector µ(2) = (P11(2) P00(2)) and finite covariance matrix,

say Σ(2). These two bivariate normal random vectors are independent by the assumptions

of the model, so by Result 4.5 (c) in Johnson and Wichern [18], the joint random vector

P̂ =
(
P̂11(1) P̂00(1) P̂11(2) P̂00(2)

)′
is asymptotically multivariate normal.

The asymptotic distribution of G2
t is stated in the following theorem.

Theorem 3.2.8 For a fixed time point t, where 1 < t < n, the distribution of G2
t is asymp-

totically χ2
2.

Proof The joint distribution of the MLEs of G2
t is asymptotically multivariate normal, which

belongs to an exponential family. By the Theorem in Wilks [38], the asymptotic distribution

of G2
t , except for terms of order 1/

√
n, is χ2

h−m. For each fixed time t, h = 4, as there are

four parameters in the alternative model, and m = 2, as there are two parameters in the

null model. Therefore, G2
t

d−→ χ2
2.

While the distribution of G2
t is known for fixed t, the covariance structure of G2

t1
and

G2
t2

for t1 6= t2 is very complex. Because of this, it is an open problem to determine the

asymptotic distribution of G2
max = max

t
G2
t .

Hinkley [12] and Feder [9] discuss the distribution of this type of statistic in the change

point problem for regression models. Specifically, the hypotheses test for a single change

point in the simple linear regression fit of a single sequence of independent observations.

The empirical conclusion is that G2
max ≈ χ2

3. Similar empirical results are shown for the

dependent Bernoulli sequence change point problem in Section 4.3.2, but with larger degrees

of freedom.

The distribution of the test statistic G2
max depends on the value of the parameter P11.

This can be seen by the simulations in Section 4.3.1, and in particular, the percentile values
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in Tables 4.8, 4.9, 4.10, and 4.11. Berger and Boos [1] proposed a method to approximate p-

values in similar situations by maximizing the p-value over a confidence set for the parameter

P11. This method can be applied by maximizing over the set of permissible values of P11 as

given in equation (1.22).

3.3 Bootstrap p-value Approximation

The lack of a known asymptotic distribution for the maximum likelihood ratio statistic

causes complications in formal hypothesis testing using the G2
max statistic. A bootstrap

approximation is introduced to approximate the distribution of G2
max under the hypothesis

of no change and estimate p-values for change point detection. The algorithm is described

first, followed by an example and proofs.

3.3.1 The Bootstrap Algorithm

The one step Markov dependence assumption on the sequence of Bernoulli trials y = {xt}nt=1

violates the basic bootstrap requirement that the variables in the sequence are exchangeable.

Instead, the assumption creates runs of 0 and 1 to occur in the sequence. It is possible that

the runs may be treated as exchangeable components of an m-dependent binary sequence.

Suppose that m is known. The algorithm begins by recording the lengths and values of

each run. Define R0 := {r | r = length of a run of 0 in the original sequence} and R1 :=

{r | r = length of a run of 1 in the original sequence}. After the elements of R0 and R1

are recorded, it is necessary to extract runs that are independent of one another for use in

bootstrap re sampling. For notational purposes, let ri,j be the elements of the set Rj for

j = 0, 1.

Define Rm
0 ⊂ R0 and Rm

1 ⊂ R1 such that the elements in each of Rm
0 and Rm

1 are inde-

pendent. The algorithm to construct Rm
0 is described below. To construct Rm

1 , interchange

the roles of 0 and 1.
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Begin by randomly selecting an element r0,0 from R0. This will function as the starting

point for the construction of the set of independent elements Rm
0 . If there are any elements

of R0 that occur after r0,0, select the first run with starting index greater than m plus the

ending index of r0,0 and call this element r1,0. Repeat this process, starting with r1,0 and

continue until there are no more runs to select.

Next, work backward to determine if there are any elements of R0 that occur before r0,0.

If any exist, select the first run with ending index less than the beginning index of r0,0 minus

m, and call this element r−1,0. Repeat this process, starting with r−1,0 and continue until

there are no more runs to select.

The elements of Rm
0 and Rm

1 are the elements that will be used to construct the bootstrap

sample. Notice that the elements of Rm
j need not be unique.

Once the sets Rm
0 and Rm

1 have been selected, the bootstrap sequence is constructed in

the following way. If the sequence begins with a run of 0, randomly select an element of

Rm
0 to start the sequence. To complete the sequence, randomly select elements alternating

between sets Rm
1 and Rm

0 until the re sampled sequence has length at least n, and truncate the

sequence if it has length greater than n. If the sequence begins with a run of 1, interchange

the roles of 0 and 1 in the process. Repeat this process B times using the same starting

point r0,0 and r1,1 each time.

There are three limitations to this bootstrap method. In practice, m is unknown and

must be estimated from the data. The estimation process is described in Section 4.1. The

sample size necessary to apply the convergence results discussed in Section 3.3.3 is quite

large. For small samples, other methods may be more appropriate. The run time of the

bootstrap algorithm to generate a p-value is long, making it unreasonable to use for samples

larger than n = 500.
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Table 3.1: Values of Rm
0 and Rm

1 for various choices of r0,0 and r0,1

r0,0 Rm
0 r0,1 Rm

1

4 {4, 3, 3} 3 {3, 4}
2 {2, 3} 2 {2, 3}
3 {3, 3, 4} 4 {4, 3}
3 {3, 3, 4} 3 {3, 2}

3.3.2 Minimal Bootstrap Example

An example of this algorithm is described below. Suppose that m = 4 and consider the

observed sequence:

y = 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1.

The sets R0 and R1 are:

R0 = {4, 2, 3, 3}, R1 = {3, 2, 4, 3}.

The sets Rm
0 and Rm

1 for possible choices of r0,0 and r0,1 are given in Table 3.1.

After the starting point is selected, fill the sequence of length n = 24 by randomly

selecting alternate elements from Rm
0 and Rm

1 and truncate when the re sampled sequence

has length n ≥ 24. Repeat B times.

3.3.3 Bootstrap Justification

Justification of the bootstrap method described in Section 3.3.1 will take several steps. First,

the elements of Rm
0 and Rm

1 are shown to be iid with asymptotic geometric distribution and

parameters P01 and P10 respectively. Next, a theorem from Mammen [24] is applied to

show that the difference of the bootstrap estimate and the MLE of the mean of a geometric

sequence converge in probability to 0. Maximum likelihood estimation of the parameters P01
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and P10 is justified because the MLE of the mean of a geometric distribution is consistent.

Last, the modified likelihood functions of the bootstrap and original sample are shown to be

asymptotically equivalent.

Lemma 3.3.1 Let y = {xt}nt=1 be a sequence of Bernoulli random variables with one step

Markov dependence defined by the transition matrix P and define rn,0 to be the last run of

0 in the sequence. If rn,0 is not the last run of y, the elements of Rm
0 are independent and

identically distributed, otherwise the elements of Rm
0 \ rn,0 are independent and identically

distributed. Furthermore, the distribution of the elements of Rm
0 converges to a geometric

distribution with parameter P01.

Proof Let Rm
0 be defined as in Section 3.3.1 and r·,0 ∈ Rm

0 be any element of Rm
0 . By

definition, r·,0 takes a value in the set {1, 2, . . . , n} and must begin with a 0 entry. Suppose

r·,0 begins at time t = t0. Let 1 ≤ z·,0 ≤ n − t0, then Pr(r·,0 = z·,0) is determined by the

transition probability P01 as shown below:

Pr(r·,0 = z·,0 | xt0 = 0) = Pr(xz·,0+t0 = 1 | xz·,0+t0−1 = 0)

z·,0+t0−1∏
t=t0

Pr(xt+1 = 0 | xt = 0)

= Pr(xz·,0 = 1 | xz·,0−1 = 0)Pr(xt+1 = 0 | xt = 0)z·,0−1

= P01P
z·,0−1
00

= (1− P01)z·,0−1P01. (3.11)

As a result of the memoryless property of one step Markov dependence, the final expression

is independent of the initial time t0. When z·,0 = n− t0 + 1, there is no P01 term in (3.11).

Therefore, the pmf of r·,0 may be written as:

fr·,0(z·,0) =


(1− P01)z·,0−1P01 if z·,0 = 1, 2, . . . , n− t0,

(1− P01)n−1 if z·,0 = n− t0 + 1,

0 else.
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By construction, the elements of Rm
0 are independent.

If y ends with a run of 1, then the case where z·,0 = n − t0 + 1 does not occur. In this

case, it is clear that the elements of Rm
0 are iid. If y ends with a run of 0, the distribution of

rn,0 does not have the extra P01 term. This leads to a distribution that is not the same as

all other elements of Rm
0 . To guarantee that all elements are identically distributed, the last

element of R0 must be excluded from the initial choice of r0,0 and from the final set Rm
0 .

To show convergence to a geometric distribution, the cdf of r·,0 for fixed n and t0 is:

Fn,r·,0(z·,0) =



bz·,0c∑
i=1

(1− P01)i−1P01 if 1 ≤ z·,0 ≤ n− t0,

1 if z·,0 > n− t0,

0 else.

Hence:

lim
n→∞

Fn,r·,0(z·,0) =


bz·,0c∑
i=1

(1− P01)i−1P01 if z·,0 ≥ 1,

0 else.

The limit is the cdf of a geometric random variable with parameter P01.

Lemma 3.3.2 Let y = {xt}nt=1 be a sequence of Bernoulli random variables with one step

Markov dependence defined by the transition matrix P and define rn,1 to be the last run of

1 in the sequence. If rn,1 is not the last run of y, the elements of Rm
1 are independent and

identically distributed, otherwise the elements of Rm
1 \ rn,1 are independent and identically

distributed. Furthermore, the distribution of the elements of Rm
1 converges to a geometric

distribution with parameter P10.

Proof Follow the proof of Lemma 3.3.1 and substitute 1 for 0.

One of the main results of this section is to show that the difference of the bootstrap

estimate of P01 and the MLE of the mean of a geometric sequence converge in probability to
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0, and that the MLE of the mean of a geometric sequence is a consistent estimator of P01 (or

P10). The argument is based on an argument described by Horowitz [16], utilizing a theorem

from Mammen [24], and justifies the convergence to zero of the difference of the bootstrap

estimate of P01 and the MLE of the mean of a geometric distribution in probability.

In order to define consistency in the bootstrap sense as defined by Horowitz [16], some

notation is required. Let F0 be the cdf of the random sample {xi|i = 1, . . . , n}, Tn =

Tn(x1, . . . , xn) be a statistic, Gn(ν, F0) = Pr(Tn ≤ ν) be the exact, finite-sample cdf of

Tn, G∞(·, F0) be the asymptotic distribution of Tn, and Fn be the empirical distribution

function of the data. Suppose that Fn is a consistent estimator of F0 and let Pn denote the

joint distribution of the sample {xi|i = 1, . . . , n}, then, under other conditions described by

Horowitz [16], the bootstrap estimator Gn(·, Fn) is consistent if for each ε > 0:

lim
n→∞

Pn

[
sup
ν
|Gn(ν, Fn)−G∞(ν, F0)| > ε

]
= 0.

For convenience, the theorem from Mammen [24] is restated below.

Theorem 3.3.3 Let {xi | i = 1, . . . , n} be a random sample from a population. For a se-

quence of functions gn and sequences of numbers ζn and σn, define ḡn = n−1
∑n

i=1 gn(xi) and

Tn = (ḡn− ζn)/σn. For the bootstrap sample {x∗i | i = 1, . . . , n}, define ḡ∗n = n−1
∑n

i=1 gn(x∗i )

and T ∗n = (ḡ∗n− ḡn)/σn. Let Gn(ν) = Pr(Tn ≤ ν) and G∗n(ν) = Pr∗(T ∗n ≤ ν) where Pr∗ is the

probability distribution induced by bootstrap sampling. Then G∗n(·) consistently estimates Gn

if and only if Tn
d−→ N(0, 1).

The first lemma below shows that the difference of the bootstrap estimator and the MLE of

the mean of a geometric sequence converges in probability to 0. This lemma is specific to

the set Rm
0 , but can easily be modified for Rm

1 .

Lemma 3.3.4 Let Rm
0 be an iid random sample of runs of zero from the original sequence of

dependent Bernoulli trials y. Define k0 to be the total number of runs of 0 necessary to achieve
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a bootstrap sequence of length n. The bootstrap estimate of the sample mean r̄∗0 =
∑
r∗i,0/k0

of the bootstrap sample {r∗i,0} obtained by re sampling Rm
0 satisfies Pr (|r̄∗0 − r̄0| > ε)→ 0 for

all ε > 0.

Proof Define gn(r·,0) = r·,0. From Lemma 3.3.1, r·,0 is asymptotically geometric with param-

eter P01. This implies that E(gn(r·,0)) = 1/P01 <∞ and Var(gn(r·,0)) = (1− P01)/P 2
01 <∞.

Set ζn = E(ḡn) and σ2
n = Var(ḡn), then by the CLT:

Tn =
ḡn − ζn
σn

=
r̄0 − 1/P01√

(1− P01)/nP 2
01

=

√
n
(
r̄0 − µr·,0

)
σr·,0

d−→ N(0, 1).

By Theorem 3.3.3, G∗n(·) consistently estimatesGn. Hence, for any ε > 0, Pr (|r̄∗0 − r̄0| > ε)→

0

The parameters P01 and P10 must be estimated to find values for the G2
max statistic.

The MLEs of these parameters are algebraically equivalent to the inverse of the bootstrap

estimates r̄0 and r̄1. Define k0 and k1 to be the total number of runs of 0 and 1 necessary to

achieve a bootstrap sequence of length n, then:

P̂01 =
nn01

nn01 + nn00

=
k0

k0 +
∑k0

i=1(ri,0 − 1)
=

k0∑k0
i=1 ri,0

=
1

r̄0

,

P̂10 =
nn10

nn10 + nn11

=
k1

k1 +
∑k1

i=1(ri,1 − 1)
=

k1∑k1
i=1 ri,1

=
1

r̄1

.

The next lemma shows that the MLE of the mean of a geometric sequence is a consistent

estimator. This lemma is specific to the set Rm
0 , but can easily be modified for Rm

1 .

Lemma 3.3.5 The MLE P̂01 = 1/r̄0 of the mean of an iid geometric random sample {ri,0 |

i = 1, . . . , k0} with parameter P01 is a consistent estimator of P01.

Proof By the central limit theorem:

√
n(r̄0 − µ) =

√
n(r̄0 − 1/P01)

d−→ N(0, (1− P01)P−2
01 ) = N(0, σ2

r·,0).
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Define g(x) = 1/x. Applying the delta method gives:

√
n(1/r̄0 − P01) =

√
n(g(r̄)− g(1/P01))

d−→ N(0, σ2
r·,0(g

′(1/P01))2) = N(0, (1− P01)P 2
01).

Therefore, Pr(|P̂01 − P01| > ε) = Pr(|1/r̄ − P01| > ε)→ 0 as n→∞.

By Lemma 3.3.4, Pr (|r̄∗0 − r̄0| > 0) → 0, and by Lemma 3.3.5, 1/r̄0 is a consistent es-

timator of P01. Combining these facts gives the first main result of this section, which is

summarized below.

Theorem 3.3.6 The inverse of the bootstrap estimate r̄∗0 is a consistent estimator of P01.

Proof By Lemmas 3.3.4 and 3.3.5 we have:

Pr(|P ∗01 − P01| > ε) = Pr(|P ∗01 − P̂01 + P̂01 − P01| > ε)

≤ Pr(|P ∗01 − P̂01| > ε) + Pr(|P̂01 − P01| > ε)

= Pr(|1/r̄∗0 − 1/r̄0| > ε) + Pr(|P̂01 − P01| > ε)

= Pr

(
|r̄0 − r̄∗0|
r̄0r̄∗0

> ε

)
+ Pr(|P̂01 − P01| > ε)

→ 0.

The final justification of the bootstrap algorithm is to show that the resulting modified

null likelihood function of the bootstrap algorithm is asymptotically equivalent to the modi-

fied null likelihood function of the original sequence. This will guarantee that the bootstrap

values of G2
max provide a good approximation of the true null distribution.

Theorem 3.3.7 Using the bootstrap algorithm described in Section 3.3.1, under the hy-

pothesis of no change, the modified likelihood function of the bootstrapped sequence y∗ is

asymptotically equivalent to the modified likelihood function of the original sequence y.
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Proof Suppose the number of runs in the original sequence is nr and, without loss of gener-

ality, suppose y begins with an element of Rm
0 , say r0,0. The algorithm terminates when the

length of the bootstrapped sequence of elements of Rm = Rm
0 ∪ Rm

1 is longer than the orig-

inal sequence y. Let nr∗ denote the number of elements from Rm used in the bootstrapped

sequence. Define fr∗ to be the distribution of the runs in Rm. The joint distribution of

elements of Rm is:

f~r∗(~z) =


∏nr∗/2

i=1 fr∗i,0(zi,0)fr∗i,1(zi,1) if nr∗ is even,

fr∗nr∗ ,0
(znr∗ ,0)

∏(nr∗−1)/2
i=1 fr∗i,0(zi,0)fr∗i,1(zi,1) if nr∗ is odd.

Let fp(z0) denote the distribution of the initial value x1 and define fr to be the distribution

of the runs of the original sequence y. The joint distribution of the runs of the original

sequence y may be written as:

f~r(~z) =

 fp(z0)
∏nr/2

i=1 fri,0(zi,0)fri,1(zi,1) if nr is even,

fp(z0)fnr,0(znr,0)
∏(nr−1)/2

i=1 fri,0(zi,0)fri,1(zi,1) if nr is odd.

Recall that the modified likelihood function L∗ ignores the membership probability of the

first term. Therefore, the fp(z0) term in fy(~z) is ignored in the modified likelihood function.

By Lemmas 3.3.1 and 3.3.2 the asymptotic distributions of fri,· and fr∗i ,· are both geometric.

From Theorems 3.2.5 and 3.3.6, the statistics P̂uv and P̂ ∗uv are both consistent for Puv.

Therefore, the asymptotic distribution of fr∗i ,· is fri,·.

All that is left to show is that in the limit, the modified likelihood of f~r∗(~y) is asymptot-

ically equivalent to the modified likelihood of fr(y0, ~y). The random selection of elements of

Rm to construct the bootstrap sequence cause nr and nr∗ to have the same order. Specifi-

cally, lim
n→∞

nr

nr∗
= 1. Let f̃r(~z) denote the joint pdf of the runs of y without the distribution

61



Chapter 3, Section 3.3

of the initial value x1. Consider the ratio of the joint pdfs:

lim
n→∞

(
f~r∗(~z)

f̃~r(~z)

)
=

(∏∞
i=1 fr∗i,0(zi,0)fr∗i,1(zi,1)∏∞
i=1 fri,0(zi,0)fri,1(zi,1)

)
= 1.

Therefore, the modified likelihood of the bootstrapped sequence is asymptotically equivalent

to the modified likelihood of the original sequence under the null hypothesis.
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Simulations and Comparisons

Both the DCUSUM statistic and dependent LRT statistic provide detection and estimation

methods for change points in dependent sequences of random variables. Asymptotically,

both are valid choices, but the theoretical results do not indicate which method is preferred

and under what circumstances. A variety of simulations are carried out to compare the

DCUSUM test from Chapter 2 to the dependent LRT from Chapter 3. The performance

of these tests is also compared to their independent counterparts discussed in Chapter 1 to

illustrate the improvement of the generalized model for one step Markov dependence.

This chapter is organized as follows. In Section 4.2, the asymptotic results of the

DCUSUM Tt statistic are reinforced and the performance is compared to the independent

CUSUM test. Section 4.3 illustrates the asymptotic results of the dependent LRT G2
t statis-

tic for fixed t and the performance of the statistic is compared to the independent LRT. In

Section 4.4, the two proposed methods, DCUSUM and dependent LRT, are compared for

size and power.

Four models were used for size comparisons and can be found in Table 4.1. The choice

of parameters was used to simulate large, moderate, and small values of m, as well as one

independent case. Since the population parameters for each model are known, the population

values of m in Table 4.1 could be computed, using a tolerance of tol = 0.01. Specifically, m
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was calculated as the value such that:∣∣∣∣∣∣∣Pm −

π
π


∣∣∣∣∣∣∣ < tol = 0.01,

where | · | denotes component-wise absolute differences. The values of l = 1/20 and h =

1 − 1/20 were chosen to use the largest justifiable amount of the sequence. More details

about the choices of l and h can be found in Miller and Siegmund [26].

Five models were used for power comparisons and can be found in Table 4.2. These

models were selected to demonstrate large, moderate, and small changes in the parameters

p(1), p(2), P11(1) and P11(2).

Before the results are presented, it is important to note that two issues arose in some of

the small sample simulations. First, it was possible that the value of m̂ was larger than the

permissible lower bound for t1 = nl and/or the lower bound for n− t2 = nh. In order for the

variance to be computed correctly, m̂ was redefined in all simulations to be the minimum

of the set {m̂, nl, n(1 − h)}. When m̂ was redefined, an overestimation of the variance of

the statistics occurred. Second, the large values of P11 may have caused some sequences

to contain all zeros, all ones, or too few changes to compute the values of the statistics.

This caused situations where the MLEs were not able to be estimated, due to zeros in the

denominator.

For all results, 2000 iterations were run, and the cases where the statistics could not

be computed were removed. The 2000 iterations should provide reasonable accuracy to two

decimal places and are only used to compare the methods, gain insight on method preference,

and provide an alternative verification of theoretical results.
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Table 4.1: Parameters for Null Simulations

p P11 m Description
0.4 0.9 22 Large (L)
0.7 0.9 10 Moderate (M)
0.7 0.75 2 Small (S)
0.7 0.7 0 Independent (I)

Table 4.2: Parameters for Power Comparisons

p(1) P11(1) p(2) P11(2) τ Description
0.8 0.9 0.2 0.9 (2/5)n Large Change in p (Lp)
0.8 0.9 0.4 0.9 (2/5)n Moderate Change in p (Mp)
0.8 0.9 0.6 0.9 (2/5)n Small Change in p (Sp)
0.8 0.9 0.4 0.5 (2/5)n Moderate Change in p and P11 (Mp,P11)
0.8 0.9 0.6 0.7 (2/5)n Small Change in p and P11 (Sp,P11)

4.1 Estimating m with Unknown Parameters

In practice, the population parameters p and P11 are unknown and must be estimated.

Subsequently, the value of m must also be estimated from the data. This estimation is

discussed below.

Under the null model of no change, the values of p and P11 are estimated using the

modified MLEs p̂ and P̂11 defined in equation (3.5). The value of m for a tolerance of 0.01

is then estimated using the modified MLEs as follows:

m̂ = min

t :

∣∣∣∣∣∣∣P̂ t −

π̂
π̂


∣∣∣∣∣∣∣ < tol = 0.01

 ,

where P̂ t is the transition matrix comprised of the modified MLEs with a change point at

t, and π̂ = (1− p̂ p̂) is the modified MLE of the stationary distribution.

In the presence of small samples and large values of m̂, the assumption that m̂ <

min{t1, n − t2} for nl ≤ t1 < t2 ≤ nh may be violated. If this occurs, the value of m̂
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is taken to be m̂′ = min{t1, n− t2} to ensure that the variance calculations of the test statis-

tics are still valid. When P̂11 > p̂, this causes an overestimation of the variance of the test

statistic.

4.2 DCUSUM Simulations

The generalization of the CUSUM statistic to include the one step Markov dependence

assumption resulted in the DCUSUM statistic defined by equation (2.2). The test statistic

T 2
max defined by equation (2.7) was used to determine the existence and location of a change

point τ . The asymptotic distribution of Tt and the size of the DCUSUM test are discussed

below.

4.2.1 Sampling Distribution of Tt for Fixed t

In the proof of Lemma 2.4.1, the asymptotic distribution of Tt for fixed t was found to be

N(0, 1). The sampling distributions of T80 and T100 for n = 200 are shown in Figures 4.1,

4.2, and 4.3 with 2000 simulated values for each. These plots both reinforce the standard

normal distribution of the Tt statistic for fixed t when the DCUSUM statistic was used, as

well as illustrate the inflated variance of the Tt statistic resulting from the CUSUM statistic

when m̂ was large.

Table 4.3 contains the means and standard deviations of the sampling distributions for

both DCUSUM and CUSUM statistics. Under the assumption that P11 > p, the variance of

the CUSUM statistic is less than the variance of the DCUSUM statistic. In the presence of

m-dependence, this caused an underestimation of the variance of the CUSUM statistic when

the dependence is ignored. An underestimation of the variance of the CUSUM statistic lead

to an overestimation of the variance of the Tt statistic. Table 4.3 reinforces this claim as the

standard deviations of the Tt statistics when using CUSUM are larger than 1, even in the

case when m̂ is small (S). When the variables in the sequence are independent, the mean
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Figure 4.1: Sampling Distribution of T80 and T100, Simulation (L)

and standard deviation of the Tt statistics resulting from DCUSUM and CUSUM are equal.
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Figure 4.2: Sampling Distribution of T80 and T100, Simulation (M)

Table 4.3: Sample Mean and Standard Deviation of Tt for n = 200

DCUSUM CUSUM
t Model mean st. dev mean st. dev

80

L -0.014 1.036 -0.053 3.255
M -0.033 1.018 -0.067 2.208
S 0.012 1.002 0.015 1.187
I -0.028 0.993 -0.026 0.994

100

L 0.011 1.037 0.026 3.257
M -0.036 1.020 -0.073 2.210
S 0.031 1.017 0.034 1.206
I -0.035 0.994 -0.033 0.996
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Figure 4.3: Sampling Distribution of T80 and T100, Simulation (S)
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4.2.2 Size Comparison DCUSUM

The next simulation compares the sizes of the DCUSUM and CUSUM tests under H0 using

the approximation of the tail probabilities given in equation (1.14). The size was determined

by generating 2000 sequences and counting the number of p-values or upper bounds that

were less than or equal to 0.05.

The simulated size comparison may be found in Table 4.4. As expected, the sizes of the

DCUSUM and CUSUM tests are similar in the independent case. As m̂ grows, the size of

the CUSUM test grows to an unreasonable level. This is due to the underestimation of the

variance of the CUSUM statistic in the presence of m-dependence.

For small samples (n ≤ 150) with small to moderate m̂ values, the Worsley upper bound

method provides sizes close to 0.05, while the Brownian approximation method is more

conservative with almost all sizes less than 0.05. As the sample size grows (n ≥ 500),

the size of the Worsley upper bound method changes roles with the size of the Brownian

approximation method. When the value of m̂ is large, both tests display comparable sizes.

As expected, the large sample performance of the Brownian approximation method is

acceptable, with the exception of the large difference case (L). As n grows, both the Wors-

ley upper bound method and Brownian approximation method provide conservative tests.

While the size of the Brownian approximation method does not approach 0.05, it provides

a conservative test that is more liberal than the Worsley upper bound method.

From these results, particularly models (M) and (S), the Brownian approximation method

is recommended for larger samples (n ≥ 500), while the Worsley upper bound method is

recommended for smaller samples (n < 500). When m̂ is large, the two tests have similar

size. In this case, the Brownian approximation method is recommended due to faster run

time than the Worsley upper bound method. In any case, the sizes of both DCUSUM tests

substantially outperform the size of the CUSUM test in the presence of m-dependence.

70



Chapter 4, Section 4.2

Table 4.4: Size Comparison of DCUSUM (Depdent) and CUSUM (Independent) Procedures

n Brownian DCUSUM Worsley DCUSUM Brownian CUSUM

50

L 0.04 0.11 0.83
M 0.05 0.08 0.60
S 0.02 0.03 0.08
I 0.02 0.03 0.03

75

L 0.03 0.06 0.90
M 0.03 0.05 0.65
S 0.02 0.03 0.09
I 0.02 0.02 0.02

100

L 0.02 0.05 0.93
M 0.03 0.05 0.70
S 0.03 0.03 0.10
I 0.03 0.03 0.03

150

L 0.01 0.03 0.97
M 0.03 0.04 0.75
S 0.03 0.03 0.12
I 0.02 0.02 0.03

200

L 0.01 0.02 0.98
M 0.03 0.04 0.79
S 0.04 0.03 0.12
I 0.02 0.02 0.03

250

L 0.01 0.03 0.99
M 0.03 0.04 0.82
S 0.04 0.03 0.13
I 0.03 0.02 0.04

300

L 0.01 0.03 0.98
M 0.03 0.04 0.84
S 0.03 0.02 0.12
I 0.03 0.02 0.04

500

L 0.01 0.02 0.99
M 0.03 0.03 0.86
S 0.03 0.02 0.13
I 0.04 0.02 0.04

1000

L 0.03 0.03 0.99
M 0.04 0.03 0.88
S 0.03 0.01 0.14
I 0.05 0.02 0.05
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4.2.3 Power Comparison DCUSUM

The goal of this section is to determine which of the two methods, Brownian approximation to

the p-value or the Worsley upper bound, has higher power and under what conditions. Five

models were simulated under the alternative hypothesis of one change, and are described in

Table 4.2. Three change point locations of τ = n
5
, 2n

5
, and n

2
were used. The construction of

the T 2
max statistic is symmetric, so there was no need to use change points after the midpoint

of the data set.

The approximate power calculations (APCs) were found by simulating 2000 sequences in

each setting and finding the proportion of approximate p-values or upper bounds that were

less than or equal to 0.05. The APCs are a measure of the empirical power of each method,

and may be found in Tables 4.5, 4.6, 4.7.

For small samples (n ≤ 100), the results are inconsistent and difficult to interpret. This

is due to the fact that the value of m̂ may be larger than some permissible values of t1 or

n− t2, or that the sequences may contain too few runs for the T 2
max statistic to be computed.

Because of this, only the results with n ≥ 150 are discussed.

It is well known that the CUSUM test has higher power for change point locations near the

middle of the sequence and lower power for locations at the tails. This fact appears to be true

for DCUSUM methods as well, and is reinforced by the APC values. For n ≥ 150, the APC

for each change point location (APCτ ) and each method satisfies APCn
5
≤ APC 2n

5
≤ APCn

2
.

The APC values tell a similar story as the size simulations. Regardless of the alternative

model, when the sample size is reasonably small (n ≤ 200), the Worsley upper bound method

provides a more powerful test than the Brownian approximation method. For moderate

sample sizes (250 ≤ n ≤ 500) the Worsley upper bound method is more powerful when

only the parameter p changes, while the Brownian approximation method is more powerful

when both parameters p and P11 change. When large samples are available (n ≥ 1000), the

Brownian approximation method is equivalent to or more powerful than the Worsley upper

bound method for all simulated models.
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The recommended models are the same as in Section 4.2.2. For smaller samples (n ≤ 200),

the Worsley upper bound method should be used over the Brownian approximation method.

When moderate samples are available (250 ≤ n ≤ 500), either method may be used, unless

there is some prior knowledge about the possible alternative model. For large samples

(n ≥ 1000), the Brownian approximation method is preferred due to higher power and

shorter run time.
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Table 4.5: APC of DCUSUM Tests, τ = (1/5)n

n Model Brownian DCUSUM Worsley DCUSUM

50

Lp 0.23 0.33
Mp 0.07 0.11
Sp 0.02 0.04
Mp,P11 0.07 0.13
Sp,P11 0.01 0.02

75

Lp 0.23 0.35
Mp 0.05 0.10
Sp 0.02 0.04
Mp,P11 0.20 0.28
Sp,P11 0.03 0.04

100

Lp 0.25 0.36
Mp 0.03 0.08
Sp 0.02 0.04
Mp,P11 0.38 0.43
Sp,P11 0.05 0.06

150

Lp 0.27 0.40
Mp 0.05 0.10
Sp 0.02 0.03
Mp,P11 0.62 0.63
Sp,P11 0.10 0.11

200

Lp 0.33 0.45
Mp 0.06 0.11
Sp 0.02 0.04
Mp,P11 0.77 0.76
Sp,P11 0.18 0.17

250

Lp 0.38 0.49
Mp 0.08 0.13
Sp 0.03 0.04
Mp,P11 0.86 0.85
Sp,P11 0.26 0.24

300

Lp 0.46 0.57
Mp 0.12 0.18
Sp 0.04 0.05
Mp,P11 0.93 0.92
Sp,P11 0.32 0.28

500

Lp 0.77 0.82
Mp 0.27 0.31
Sp 0.07 0.08
Mp,P11 0.99 0.99
Sp,P11 0.56 0.48

1000

Lp 1.00 1.00
Mp 0.80 0.80
Sp 0.22 0.18
Mp,P11 1.00 1.00
Sp,P11 0.89 0.83
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Table 4.6: APC of DCUSUM Tests, τ = (2/5)n

n Model Brownian DCUSUM Worsley DCUSUM

50

Lp 0.03 0.21
Mp 0.03 0.08
Sp 0.03 0.06
Mp,P11 0.10 0.19
Sp,P11 0.02 0.06

75

Lp 0.06 0.28
Mp 0.02 0.10
Sp 0.02 0.05
Mp,P11 0.31 0.40
Sp,P11 0.06 0.10

100

Lp 0.13 0.36
Mp 0.04 0.14
Sp 0.04 0.07
Mp,P11 0.47 0.54
Sp,P11 0.11 0.14

150

Lp 0.32 0.52
Mp 0.11 0.20
Sp 0.05 0.08
Mp,P11 0.75 0.77
Sp,P11 0.19 0.21

200

Lp 0.51 0.65
Mp 0.21 0.30
Sp 0.09 0.11
Mp,P11 0.88 0.88
Sp,P11 0.30 0.30

250

Lp 0.64 0.74
Mp 0.29 0.38
Sp 0.10 0.12
Mp,P11 0.95 0.95
Sp,P11 0.37 0.36

300

Lp 0.77 0.83
Mp 0.40 0.48
Sp 0.14 0.17
Mp,P11 0.98 0.98
Sp,P11 0.46 0.43

500

Lp 0.98 0.98
Mp 0.76 0.78
Sp 0.28 0.28
Mp,P11 1.00 1.00
Sp,P11 0.73 0.68

1000

Lp 1.00 1.00
Mp 0.99 0.99
Sp 0.61 0.56
Mp,P11 1.00 1.00
Sp,P11 0.97 0.94
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Table 4.7: APC of DCUSUM Tests, τ = (1/2)n

n Model Brownian DCUSUM Worsley DCUSUM

50

Lp 0.02 0.08
Mp 0.02 0.07
Sp 0.027 0.05
Mp,P11 0.03 0.08
Sp,P11 0.08 0.18

75

Lp 0.04 0.21
Mp 0.03 0.11
Sp 0.03 0.08
Mp,P11 0.07 0.12
Sp,P11 0.28 0.38

100

Lp 0.13 0.38
Mp 0.07 0.19
Sp 0.05 0.09
Mp,P11 0.13 0.16
Sp,P11 0.48 0.55

150

Lp 0.41 0.58
Mp 0.19 0.29
Sp 0.09 0.13
Mp,P11 0.22 0.23
Sp,P11 0.75 0.78

200

Lp 0.62 0.74
Mp 0.31 0.41
Sp 0.12 0.16
Mp,P11 0.29 0.29
Sp,P11 0.88 0.88

250

Lp 0.77 0.83
Mp 0.43 0.50
Sp 0.17 0.20
Mp,P11 0.39 0.38
Sp,P11 0.96 0.96

300

Lp 0.85 0.89
Mp 0.54 0.60
Sp 0.21 0.23
Mp,P11 0.48 0.45
Sp,P11 0.98 0.98

500

Lp 0.99 0.99
Mp 0.84 0.84
Sp 0.38 0.38
Mp,P11 0.73 0.68
Sp,P11 1.00 1.00

1000

Lp 1.00 1.00
Mp 0.99 0.99
Sp 0.71 0.66
Mp,P11 0.98 0.96
Sp,P11 1.00 1.00
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4.3 Dependent LRT Simulations

The generalization of the LRT defined in Section 1.2.3 for an m-dependent sequence is the

dependent LRT, as discussed in Chapter 3. Large values of the log likelihood ratio statistic

G2
max defined by equation (3.6) provide evidence of the existence of a change point τ .

4.3.1 Sampling Distribution of G2
t for Fixed t

In Section 3.2 the asymptotic distribution of G2
t was shown to be χ2

2 for any fixed value of t.

This result is reinforced by simulations from this section.

The sampling distributions of each model in Table 4.1 for fixed times t = 80 and 100 for

n = 200 are shown in Figures 4.4, 4.5, 4.6, and 4.7 with 2000 simulated values for each. The

red curve superimposed on Figures 4.4, 4.5, and 4.6 is the density of a χ2
2 random variable

while the curve on Figure 4.7 is the χ2
1 density. In the three cases where m-dependence is

present (L, M, S), the distribution of G2
t under the dependent assumption appear to follow a

χ2
2 distribution, while the distribution of G2

t under the independent assumption have much

heavier tails.

As m̂ grows, the asymptotic distribution of the independent G2
t statistic deviates further

from the χ2
2 distribution. This can be seen clearly by the sample percentiles in Tables 4.8,

4.9, and 4.10. This indicates that an overestimation of the variance of the independent

G2
t statistic occurs when the variables in the sequence display m-dependence, while the

dependent G2
t statistic is not severely affected by the increase in the value of m̂.

In simulation (I), the true distribution is χ2
1. Due to the unnecessary estimation of the

nuisance parameter P11, the dependent LRT still behaves like a χ2
2 random variable. Clearly,

from Table 4.11, the independent LRT is much closer to the true asymptotic distribution

than the dependent LRT when m-dependence is not present.
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Figure 4.4: Sampling Distribution of G2
80 and G2

100, Simulation (L)

Table 4.8: Sample Percentiles of G2
t for n = 200 (L)

t Percentile Actual χ2
2 Dependent LRT Independent LRT

80
P90 4.6052 5.0723 33.5870
P95 5.9915 6.1928 43.2269
P99 9.2103 8.9067 66.3639

100
P90 4.6052 4.9627 30.8672
P95 5.9915 6.4071 43.7261
P99 9.2103 9.8651 69.3053
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Figure 4.5: Sampling Distribution of G2
80 and G2

100, Simulation (M)

Table 4.9: Sample Percentiles of G2
t for n = 200 (M)

t Percentile Actual χ2
2 Dependent LRT Independent LRT

80
P90 4.6052 4.7322 12.4881
P95 5.9915 6.2883 18.8869
P99 9.2103 9.9770 30.1982

100
P90 4.6052 5.0069 12.3393
P95 5.9915 6.4603 18.1146
P99 9.2103 9.8181 30.1177
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Figure 4.6: Sampling Distribution of G2
80 and G2

100, Simulation (S)

Table 4.10: Sample Percentiles of G2
t for n = 200 (S)

t Percentile Actual χ2
2 Dependent LRT Independent LRT

80
P90 4.6052 4.8394 4.0587
P95 5.9915 6.5930 5.8008
P99 9.2103 9.4637 11.0458

100
P90 4.6052 4.9335 4.0095
P95 5.9915 6.3966 5.8418
P99 9.2103 9.9148 9.7403
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Figure 4.7: Sampling Distribution of G2
80 and G2

100, Simulation (I)

Table 4.11: Sample Percentiles of G2
t for n = 200 (I)

t Percentile Actual χ2
1

a Dependent LRT Independent LRT

80
P90 2.7055 4.7583 2.9204
P95 3.8415 5.9989 4.2642
P99 6.6349 9.8130 7.9456

100
P90 2.7055 4.8756 2.8659
P95 3.8415 6.1566 4.0134
P99 6.6349 8.6099 6.8867

aUnder the independent assumption, G2
t ∼ χ2

1
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Table 4.12: Sample Percentiles of G2
max

n Percentile χ2
6 χ2

7 (L) (M) (S)

500
P90 10.6446 12.0170 11.4262 10.8239 10.9749
P95 12.5916 14.0671 13.2418 12.3801 12.5361
P99 16.8119 18.4753 16.5208 15.8935 15.5650

1000
P90 10.6446 12.0170 11.4574 11.5709 11.5989
P95 12.5916 14.0671 13.0314 13.6001 13.1544
P99 16.8119 18.4753 16.8596 17.4270 16.8833

2000
P90 10.6446 12.0170 11.9689 11.9156 11.6701
P95 12.5916 14.0671 13.9258 13.5675 13.6609
P99 16.8119 18.4753 17.7128 17.2436 18.0996

4.3.2 Approximate Asymptotic Distribution of G2
max

In Section 3.2, the asymptotic distribution of the dependent likelihood ratio statistic G2
t for

fixed t was shown to follow a χ2
2 distribution. The added complexity of the m-dependence

assumption for the sequence y caused difficulty in obtaining the asymptotic distribution

of the G2
max statistic. Instead, simulated tail distributions are used to approximate the

asymptotic distribution. The results here are similar to the results found in Hinkley [12] and

Feder [9], except that the asymptotic tail distribution for m-dependent sequences was found

to be bounded (approximately) below by a χ2
6 and above by a χ2

7 random variable.

The models (L), (M), and (S) were simulated with n = 500, 1000, and 2000, and the

90th, 95th, and 99th percentiles of G2
max for 2000 repetitions are displayed in Table 4.12.

While it seems that the percentiles of G2
max are effected by the choice of parameters p and

P11, the percentiles do not fall outside of the bounds of the χ2
6 and χ2

7 percentiles for any of

the values of n.

Histograms of the distributions are shown in Figure 4.8. The red curve is the density of a

χ2
6 random variable, and the blue curve is the density of a χ2

7 random variable. The density

of simulated values near the middle of the data is larger than the χ2
7 distribution, but the

tail values fall between the two bounds.
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Figure 4.8: Sampling Distribution of G2
max
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4.3.3 Size Comparison and Bootstrap Effectiveness for LRT

The next simulation compares the sizes of the independent and dependent LRT under H0

using the approximation of the tail probabilities given in equation (1.14) and the bootstrap

method described in Section 3.3.1. The parameter values for each simulated model are

defined in Table 4.1. A description of how the size was computed can be found in the first

paragraph of Section 4.2.2.

As mentioned in Chapter 3, the bootstrap method requires a reasonably large sample

size to provide approximate p-values. For each simulation in Table 4.13, the sizes do indeed

approach 0.05, but at very different rates. The sample size necessary for Case (S) with small

m̂ to display sizes close to 0.05 is much smaller than the sample sizes necessary for Cases (M)

and (L) with larger m̂. Overall, the dependent LRT provides a liberal test, with a majority

of sizes larger than 0.05.

The size of the bootstrap method in all three m-dependent cases outperforms the naive

approach of the independent statistic when m-dependence is present. This is shown in Table

4.13.

Asymptotically, the bootstrap algorithm for the dependent LRT was justified in Section

3.3.3. Figures 4.9 and 4.10 provide a different form of justification of the bootstrap algorithm

through simulation.

When the null hypothesis is true, the p-values generated via a valid procedure should

follow a uniform distribution on the interval (0, 1). The small value of m̂ using model (S)

displayed in Figure 4.9 shows that the bootstrap p-values approach a uniform distribution for

samples as small as n = 250. The larger value of m̂ in Figure 4.10 also shows the convergence

to a uniform distribution, but illustrates that a larger sample size is necessary. Both Figures

4.9 and 4.10 show that the p-values generated from the independent LRT are inappropriate

regardless of the size of m̂.

For small samples (n ≤ 75) and the large value of m̂ in model (L), the size results are

inconsistent. With large samples (n ≥ 100), the sizes improve as expected. The larger the
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Table 4.13: Size Comparison of Bootstrap and Independent LRT

n Bootstrap LRT Independent LRT

50
L 0.12 0.74
M 0.23 0.50
S 0.13 0.07
I 0.05 0.02

75
L 0.22 0.86
M 0.23 0.58
S 0.11 0.08
I 0.05 0.03

100
L 0.25 0.92
M 0.19 0.68
S 0.08 0.10
I 0.05 0.03

150
L 0.24 0.97
M 0.13 0.77
S 0.07 0.12
I 0.04 0.04

200
L 0.17 0.99
M 0.11 0.80
S 0.06 0.14
I 0.05 0.04

250
L 0.14 0.99
M 0.09 0.84
S 0.07 0.13
I 0.05 0.05
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value of m̂ the larger the sample size necessary to achieve a size of 0.05. For all cases where

dependence is present and the sample size is reasonable (n ≥ 100), the huge sizes of the

independent statistic reinforce the fact that this statistic is not appropriate.

4.4 DCUSUM and Dependent LRT Comparison

This section contains simulations to determine the conditions when the DCUSUM p-value

approximation, DCUSUM Worsley upper bound, or dependent LRT are preferable. The size

and power of the DCUSUM methods and dependent LRT procedures are compared using

the models is Tables 4.1 and 4.2.

4.4.1 Size Comparison

The sizes of the DCUSUM Brownian approximation to the p-value, DCUSUM Worsley upper

bound, and dependent LRT bootstrap p-values are given in Tables 4.4 and 4.13. For the

models (S), (M), and (L), where m-dependence is present, the size of the dependent LRT is

much larger than both the DCUSUM Brownian approximation and the DCUSUM Worsley

upper bound. As the sample size grows, the discrepancy in size decreases.

If size is a priority, the recommended method is dependent on sample size. For small

to moderate samples (n ≤ 200), one of the DCUSUM procedures is recommended. If the

sample size is large, (n ≥ 250), then the methods provide similar sizes. In this case, the

DCUSUM procedures are conservative, while the dependent LRT procedure is liberal.

4.4.2 Power Comparison

The powers of the DCUSUM Brownian approximation method, DCUSUM Worsley upper

bound method, and dependent LRT are compared in this section. This is done in two ways.

One comparison uses the approximate power calculations (APCs) of the two models (Mp) and

(Sp,P11) to compare the power of each method in practice. The other comparison calculates
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Figure 4.9: Histograms of p-values for G2 Bootstrap and Independent p-values for Simulation
(S) with Varying Sample Sizes
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Figure 4.10: Histograms of p-values for G2 Bootstrap and Independent p-values for Simula-
tion (M) with Varying Sample Sizes
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Table 4.14: APC of DCUSUM and Dependent LRT

n Brownian DCUSUM Worsley DCUSUM Bootstrap LRT

τ = (1/5)n

75
Mp 0.05 0.11 0.29
Sp,P11 0.03 0.04 0.14

150
Mp 0.05 0.10 0.29
Sp,P11 0.10 0.11 0.18

300
Mp 0.12 0.18 0.44
Sp,P11 0.32 0.28 0.45

τ = (2/5)n

75
Mp 0.02 0.10 0.36
Sp,P11 0.06 0.10 0.26

150
Mp 0.11 0.20 0.40
Sp,P11 0.19 0.21 0.37

300
Mp 0.40 0.48 0.66
Sp,P11 0.46 0.43 0.69

τ = (1/2)n

75
Mp 0.03 0.11 0.40
Sp,P11 0.07 0.12 0.30

150
Mp 0.19 0.29 0.43
Sp,P11 0.22 0.23 0.41

300
Mp 0.54 0.60 0.66
Sp,P11 0.48 0.45 0.71

the theoretical power by comparing the test statistics T 2
max and G2

max under a specified null

model to the statistics generated under various alternative models.

The APC comparison can be found in Table 4.14. The models (Mp) and (Sp,P11) are

used to simulate various differences of the parameters p(1) and p(2) as well as P11(1) and

P11(2). Descriptions of these model parameters can be found in Table 4.2. The bootstrap

LRT outperforms both of the DCUSUM procedures in each model for all of the change point

locations. The DCUSUM procedures show a much larger increase in power as the change

point location moves towards the center of the sequence. All methods show an improvement

in power when the change point is closer to the center of the sequence.

In order to compare the theoretical power of the T 2
max and G2

max statistics, a null model

must be assumed. This is due to the facts that when H0 is false, there is no true null

distribution and the null distribution depends on the parameters p and P11. Because of this,
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a rather arbitrary choice of p and P11 is used to calculate the critical value of a level α = 0.05

test to compare the power of the two statistics. The choice of parameters under the null

model are defined to be p = 0.8 and P11 = 0.9 to mimic a strong one step dependence with

a moderate size of m.

The powers of the DCUSUM statistic T 2
max and dependent LRT statistic G2

max for all

models in Table 4.2 are calculated as follows. First, the 95th percentiles of T 2
max and G2

max

under the null model (with parameters defined in the previous paragraph) are calculated from

2000 simulated values. Another 2000 test statistics are generated for each of the sample sizes

using the alternative parameters for each of the five models. The power is then defined as

the proportion of the test statistic values under the alternative model that are greater than

or equal to the 95th percentile under the null model.

The percentiles under the null hypothesis can be found in Table 4.15. The powers for

each model and sample size are contained in Tables 4.16, 4.17, and 4.18.

The dependent LRT is a more powerful test for a majority of the models. Excluding

the models where τ = (1/5)n and n ≤ 100, the dependent LRT has higher power than

DCUSUM procedures. Even for moderate sample sizes (150 ≤ n ≤ 300), the dependent

LRT greatly outperforms the DCUSUM method. This is not consistent with the results

under the assumption of independence stated in the literature. For example, see Robbins

et al. [34], where it is noted that the independent CUSUM test has higher power than the

independent LRT near the center of the data. One possible reason for this difference is that

both of the statistics T 2
max and G2

max are dependent on the parameter P11, even for moderate

sample sizes. For large samples (n ≥ 500) and large differences in parameter values (models

(Lp) and (Mp,P11)), the power of the two methods is comparable.

As expected, the power of the DCUSUM method suffers when the change point is closer

to the edge of the data set (τ = (1/5)n). Excluding the case of (Lp) for n ≤ 100, the power

increases substantially for each change point location shift closer to the midpoint of the data

set. The power of the dependent LRT is also lower at the edge of the data set (τ = (1/5)n),
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Table 4.15: 95th Percentiles of T 2
max and G2

max under H0 : p = 0.8, P11 = 0.9

n T 2
max G2

max

50 10.9108 7.6000
75 9.7816 8.9286
100 10.0200 9.9688
150 9.7662 10.4294
200 9.7808 11.0691
250 9.7256 11.3444
300 9.2549 11.6931
500 9.4757 12.7741
1000 9.4524 12.5742

but the powers when τ = (2/5)n and τ = (1/2)n are similar. Both methods show improved

power as the change point location gets closer to the midpoint of the data set.

From a practical power perspective, the dependent LRT is recommended for small to

moderate sample sizes, or if the change point location is assumed to be far from the midpoint

of the data. Due to the long run time of the bootstrap procedure, DCUSUM procedures are

recommended for large samples, unless a small change in p is to be detected. This is not an

issue because the powers of the two methods are comparable when n ≈ 1000 and the change

in p is moderate.

91



Chapter 4, Section 4.4

Table 4.16: Empirical Power Comparison of DCUSUM and Dependent LRT, τ = (1/5)n

n DCUSUM Dependent LRT

50

Lp 0.23 0.11
Mp 0.06 0.10
Sp 0.01 0.08
Mp,P11 0.04 0.26
Sp,P11 0.00 0.11

75

Lp 0.26 0.20
Mp 0.05 0.17
Sp 0.02 0.09
Mp,P11 0.22 0.40
Sp,P11 0.03 0.15

100

Lp 0.24 0.29
Mp 0.03 0.19
Sp 0.01 0.10
Mp,P11 0.37 0.52
Sp,P11 0.05 0.15

150

Lp 0.28 0.54
Mp 0.05 0.31
Sp 0.02 0.14
Mp,P11 0.63 0.79
Sp,P11 0.11 0.29

200

Lp 0.34 0.68
Mp 0.07 0.38
Sp 0.02 0.15
Mp,P11 0.78 0.90
Sp,P11 0.18 0.37

250

Lp 0.40 0.79
Mp 0.08 0.48
Sp 0.03 0.18
Mp,P11 0.87 0.96
Sp,P11 0.28 0.47

300

Lp 0.51 0.88
Mp 0.16 0.57
Sp 0.06 0.23
Mp,P11 0.94 0.98
Sp,P11 0.37 0.57

500

Lp 0.79 0.99
Mp 0.30 0.84
Sp 0.09 0.33
Mp,P11 0.99 1.00
Sp,P11 0.60 0.81

1000

Lp 1.00 1.00
Mp 0.84 1.00
Sp 0.26 0.76
Mp,P11 1.00 1.00
Sp,P11 0.90 0.99
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Table 4.17: Empirical Power Comparison of DCUSUM and Dependent LRT, τ = (2/5)n

n DCUSUM Dependent LRT

50

Lp 0.01 0.19
Mp 0.02 0.16
Sp 0.03 0.09
Mp,P11 0.04 0.50
Sp,P11 0.01 0.21

75

Lp 0.07 0.39
Mp 0.03 0.27
Sp 0.02 0.12
Mp,P11 0.32 0.71
Sp,P11 0.07 0.27

100

Lp 0.12 0.55
Mp 0.04 0.36
Sp 0.03 0.14
Mp,P11 0.47 0.81
Sp,P11 0.10 0.37

150

Lp 0.34 0.82
Mp 0.12 0.55
Sp 0.05 0.22
Mp,P11 0.76 0.94
Sp,P11 0.20 0.54

200

Lp 0.52 0.92
Mp 0.22 0.66
Sp 0.09 0.29
Mp,P11 0.89 0.98
Sp,P11 0.31 0.63

250

Lp 0.66 0.98
Mp 0.31 0.79
Sp 0.10 0.36
Mp,P11 0.96 1.00
Sp,P11 0.39 0.73

300

Lp 0.80 0.99
Mp 0.46 0.87
Sp 0.17 0.38
Mp,P11 0.99 1.00
Sp,P11 0.52 0.80

500

Lp 0.98 1.00
Mp 0.78 0.98
Sp 0.31 0.60
Mp,P11 1.00 1.00
Sp,P11 0.76 0.96

1000

Lp 1.00 1.00
Mp 0.99 1.00
Sp 0.65 0.95
Mp,P11 1.00 1.00
Sp,P11 0.97 1.00
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Table 4.18: Empirical Power Comparison of DCUSUM and Dependent LRT, τ = (1/2)n

n DCUSUM Dependent LRT

50

Lp 0.01 0.21
Mp 0.01 0.16
Sp 0.02 0.12
Mp,P11 0.04 0.56
Sp,P11 0.02 0.23

75

Lp 0.05 0.42
Mp 0.03 0.29
Sp 0.03 0.14
Mp,P11 0.29 0.74
Sp,P11 0.08 0.34

100

Lp 0.13 0.62
Mp 0.06 0.39
Sp 0.05 0.15
Mp,P11 0.47 0.83
Sp,P11 0.11 0.38

150

Lp 0.42 0.86
Mp 0.18 0.60
Sp 0.09 0.25
Mp,P11 0.74 0.95
Sp,P11 0.22 0.55

200

Lp 0.64 0.95
Mp 0.32 0.73
Sp 0.13 0.30
Mp,P11 0.89 0.99
Sp,P11 0.31 0.66

250

Lp 0.78 0.98
Mp 0.44 0.84
Sp 0.18 0.36
Mp,P11 0.96 1.00
Sp,P11 0.41 0.76

300

Lp 0.88 1.00
Mp 0.60 0.89
Sp 0.24 0.44
Mp,P11 0.99 1.00
Sp,P11 0.53 0.84

500

Lp 0.99 1.00
Mp 0.86 0.99
Sp 0.40 0.64
Mp,P11 1.00 1.00
Sp,P11 0.77 0.96

1000

Lp 1.00 1.00
Mp 0.99 1.00
Sp 0.74 0.96
Mp,P11 1.00 1.00
Sp,P11 0.97 1.00
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Chapter 5

Proposed Multipath and Multinomial

Methods with Motivating Application

The main results of Chapters 2 and 3 provide single path methods to detect a change point in

an m-dependent sequence of Bernoulli random variables. A multipath approach may provide

a better test when several sequences {yi}si=1 are available. Recall that a multipath procedure

will use the information from all of the i = 1, 2, . . . , s sequences yi. The aim of this chapter

is to explore multipath methods, including a proposed maximal change count statistic, and

generalize the tests for Bernoulli sequences to the multinomial case. An application of these

methods that motivated the one step Markov dependence assumption is provided at the

conclusion of this chapter.

5.1 Maximal Change Count Statistic ∆max

Define the column vector containing the values of each of the s sequences {yi}si=1 at time t

to be Xt. When each sequence is made up of Bernoulli random variables, each entry xit of

Xt is a binary entry. The parameters corresponding to xit are pi = pit = Pr(xit = 1) and are

the same for all values of t. An example of such a vector at time t with s = 4 four sequences
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{yi}4
i=1 is:

Xt =



x1t

x2t

x3t

x4t


=



0

1

1

0


.

For each time t, all pairwise differences of vectors {Xj}tj=1 up to time t will be computed and

the norms of the resulting difference vectors will be calculated. The difference vectors are

defined as Drq,t = Xr−Xq for 1 ≤ q < r ≤ t for each 1 ≤ t ≤ n, with entries di,rq = xir−xiq.

The sets of pairwise differences {Drq,t}1≤q<r≤t for each value of t will be used to construct

the test statistic.

When no change is present in the sequences, the difference vectors will consist of mostly

zero entries. A comparison of all difference vectors Drq,t for 1 ≤ q < r ≤ t gives information

about the movement of the sequences to and from states. If the vector Drq,t has a large

number of nonzero entries, this gives evidence of an abrupt change in parameters, and hence,

evidence of a change point τ . This statistic is not only capable of estimating and detecting

a change point location, but it also provides insight on which sequences are contributing to

the change in parameter values.

The detection criteria requires that a norm be used to measure the maximum value of

Drq,t for each time t. The norm used for the proposed method is the Frobenius norm:

||Drq,t||F1 =
s∑
i=1

|di,rq|, (5.1)

where | · | denotes Euclidean distance. The norms of each pair of r and q is calculated and,

for each t, the result is a random field of (t− 1)t/2 elements.

Define ∆t = max
1≤q<r≤t

||Drq,t||F1 , then the test statistic for change point detection is the

maximal change count statistic ∆max = max
1<t<n

∆t. The aim of the maximal change count

statistic is to provide a multipath method that is able to both detect a change point and
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give information on the sequences that contribute to the change.

5.1.1 Small Sample Distribution of ||Drq||F1

Suppose that each sequence yi ∼ Bernoulli(pi). Define Y = (y1, y2, . . . , ys)
′, p = (p1, p2, . . . , ps)

′,

and P as in (1.18). The hypotheses used to detect a common change point τ in the structure

of Y , which are a generalization of those in Section 1.4.1 are:

H0 :xit ∼ Bernoulli(pi) with transition probabilities Puv,i for all times t,

Ha : There exists τ, 1 < τ < n, such that

xit ∼ Bernoulli(pi(1)) for all 1 < t ≤ τ and xit ∼ Bernoulli(pi(2)) for all τ < t ≤ n

where p(1) 6= p(2) and the events after the change are independent of the events

prior to the change.

The simplest case of these hypotheses occurs when the entries in the probability vector p

and the values of Pu,v,i,t are the same for all i time series. Specifically, Pu,v,i,t = Puv for all 1 ≤

i ≤ s and 1 ≤ t ≤ n. Under H0, these assumptions lead to the same system of equations

(1.20) with solution (1.21).

In order to perform hypothesis testing and inference about a potential change point τ̂ ,

the distirbution of ||Drq||F1 must be explored. Before determining the distribution, a lemma

describing the distribution of the entries |di,rq| of ||Drq||F1 is required.

Lemma 5.1.1 Let xir and xiq be the ith components of the corresponding random vectors

Xr and Xq. Define the transition matrix Pt from time t to time t+ 1 as in equation (1.18).

If xit ∼ Bernoulli(p) and Pt = P for all times t = 1, 2, . . . , n and sequences i = 1, 2, . . . , s,

then the random variables |di,rq| = |xir − xiq| have pmf equal to:

f|di,rq |(z) =

 P
|r−q|
00 (1− p) + P

|r−q|
11 p if z = 0,

P
|r−q|
01 (1− p) + P

|r−q|
10 p if z = 1.
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Proof By definition, the random variables |di,rq| must take on the values 0 or 1. The

probabilities are calculated directly:

Pr(|di,rq| = 0) = Pr(xiq = 0 ∩ xir = 0) + Pr(xiq = 1 ∩ xir = 1)

= Pr(xir = 0 | xiq = 0)Pr(xiq = 0)

+ Pr(xir = 1 | xiq = 1)Pr(xiq = 1)

= P
|r−q|
00 (1− p) + P

|r−q|
11 p, (5.2)

Pr(|di,rq| = 1) = Pr(xiq = 0 ∩ xir = 1) + Pr(xiq = 0 ∩ xir = 1)

= Pr(xir = 1 | xiq = 0)Pr(xiq = 0)

+ Pr(xi,r = 0 | xiq = 1)Pr(xir = 1)

= P
|r−q|
01 (1− p) + P

|r−q|
10 p. (5.3)

Equations (5.2) and (5.3) follow from basic properties of the transition matrix P . The pmf

of |di,rq| is given as:

f|di,rq |(z) =

 P
|r−q|
00 (1− p) + P

|r−q|
11 p, if z = 0,

P
|r−q|
01 (1− p) + P

|r−q|
10 p if z = 1.

With this lemma in hand, the general distribution of ||Drq||F1 can be stated for any values

of 1 ≤ q < r ≤ n.

Theorem 5.1.2 Assume that xit ∼ Bernoulli(p) and Pt = P for all times t = 1, 2, . . . , n

and sequences i = 1, 2, . . . , s, and that the rows of Xt are independent for all t. Under the

hypothesis of no change, the components of Xt are independent and identically distributed
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Bernoulli(p) random variables with pmf:

fmit
(x) =

 p if x = 1,

1− p if x = 0,

and ||Drq||F1 ∼ Binom(s,P
|r−q|
01 (1− p) + P

|r−q|
10 p).

Proof First, the distribution of |di,rq| must be found. By definition, |di,rq| = |xir − xiq|

where xir and xiq are dependent Bernoulli(p) random variables with dependence given by

the values of P |r−q|. From Lemma 5.1.1, the pmf of |di,rq| is:

f|di,rq |(z) =

 P
|r−q|
00 (1− p) + P

|r−q|
11 p, if z = 0,

P
|r−q|
01 (1− p) + P

|r−q|
10 p if z = 1.

With these probabilities in hand, the mgf of |di,rq| can be computed. Let p̃ = P
|r−q|
01 (1 −

p) + P
|r−q|
10 p, then:

M|di,rq |(t
∗) = Eet

∗|di,rq | = (1− p̃) + p̃et
∗
.

Let A ∼ Bernoulli(p̃), then M|di,rq |(t
∗) = MA(t∗) for all t∗. By Theorem 2.3.11b in Casella

and Berger [3], |di,rq| ∼ Bernoulli(p̃). Therefore:

f|di,rq |(z) =

 1− p̃ if z = 0,

p̃ if z = 1.

The sequences yi, and hence, the rows of Xt are independent for all values of t. Therefore,

the rows of Drq are also independent. By the assumption that pi = p for all i and the values

of P do not depend on the time t, the random variables |di,rq| are independent for all i. The

sum of nd iid |di,rq| random variables has mgf :

M∑
|di,rq |(t

∗) = [M|di,rq |(t
∗)]nd = [(1− p̃) + p̃et

∗
]nd .
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Let B ∼ Binomial(nd, p̃), then M|di,rq |(t
∗) = MB(t∗) for all t∗. Again, by Theorem 2.3.11b in

Casella and Berger [3], |di,rq| ∼ Binomial(nd, p̃). Therefore, ||Drq||F1 ∼ Binom(nd, p̃).

To finish the proof, the value of nd must be determined. Each random vector Xt is

composed of s random variables. Therefore, Drq is the sum of s iid random variables.

Hence, nd = s.

The result in Theorem 5.1.2 is a restricted case that may not be applicable in most

settings. The most general case is to consider sequences with unique success probabilities pi

as well as unique transition matrices Pi. In this case, the resulting distribution of ||Drq||F1 is

a Poisson-Binomial distribution, which is believed to be studied first by S. Poisson in 1837.

A summary of results for the Poisson-Binomial distribution is given by Wang [37]. This

distribution is a generalization of the binomial distribution where the independent Bernoulli

trials are able to have different success probabilities.

Let Bi ∼ Bernoulli(pi), then the random variable B =
∑
Bi is a Poisson-Binomial

distribution with mean µ =
∑
pi and variance σ2 =

∑
(1 − pi)pi. The following theorem

describes the distribution of ||Drq||F1 under the most general assumptions.

Theorem 5.1.3 Assume that xit ∼ Bernoulli(pi) with transition matrix Pi for all times

t = 1, 2, . . . , n, and that the rows of Xt are independent for all t. Under the hypothesis of no

change, the entries of Xt are independent and identically distributed Bernoulli(pi) random

variables for all time points 1 ≤ t ≤ n. That is, for all i and t:

fxit(z) =

 pi if z = 1,

1− pi if z = 0.

Then ||Drq||F1 follows a Poisson-Binomial distribution with parameters:

p̃i,rq = P
|r−q|
01,i (1− pi) + P

|r−q|
10,i pi for 1 ≤ i ≤ s.
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Proof Following similar arguments in the proof of Theorem 5.1.2, it can be shown that:

f|di,rq |(x) =

 1− p̃i,rq if x = 0,

p̃i,rq if x = 1,

and hence, |di,rq| ∼ Bernoulli(p̃i,rq). Since ||Drq||F1 =
∑
|di,rq|, it follows by definition that

||Drq||F1 has a Poisson-Binomial distribution with parameters p̃i,rq for 1 ≤ i ≤ s.

5.1.2 Covariance structure of ||Drq||F1

It is clear from the construction of the matrices Drq that for two sets of indices {r, q} and

{r′, q′} the F1 norms of Drq and Dr′q′ have a nontrivial covariance structure. The goal of

this section is to explore that structure to aid in determining the asymptotic distribution of

∆t. For the remainder of this section, it is assumed that Pi,t = P and pi = p for all i and

t. That is, the success probabilities and transition probabilities are equal for all times and

sequences.

The indices of Drq must follow a specific ordering. For a given time t, the set {q, q′, r, r′}

must satisfy 1 ≤ q < r ≤ t and 1 ≤ q′ < r′ ≤ t. With these restrictions, there are exactly

seven cases for ordering of the indices. The partial covariance for all seven cases in terms

of the entries of P may be found in Table 5.1. To obtain the full covariance, subtract the

value of E(||drq||)E(||dr′q′ ||) from each as defined in equation (5.5).

For illustration purposes, the calculations for Case I are provided below. The other cases

are similar.

E(||drq|| ||dr′q′ ||) = Pr(||drq|| = 1 ∩ ||dr′q′ || = 1)

= Pr(xr = 0 | xq′ = 1)Pr(xq′ = 1 | xq = 1)Pr(xq = 1)

+ Pr(xr = 1 | ∩xq′ = 0)Pr(xq′ = 0 | xq = 0)Pr(xq = 0)

= P
|r′−q|
10 P

|q′−q|
11 p+ P

|r−q′|
01 P

|q′−q|
00 (1− p). (5.4)
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Table 5.1: Partial Covariance for all 7 Cases in the Bernoulli Setting

Case Order of Indices E(||Drq||F1||Dr′q′||F1)

I 1 ≤ q < q′ < r = r′ ≤ n P
|r−q′|
10 P

|q′−q|
11 p+ P

|r−q′|
01 P

|q′−q|
00 (1− p)

II 1 ≤ q = q′ < r < r′ ≤ n P
|r′−r|
00 P

|r−q|
10 p+ P

|r′−r|
11 P

|r−q|
01 (1− p)

III 1 ≤ q < r < q′ < r′ ≤ n P
|r′−q′|
10 P

|q′−r|
01 P

|r−q|
10 p+ P

|r′−q′|
01 P

|q′−r|
00 P

|r−q|
10 p

+P
|r′−q′|
01 P

|q′−r|
11 P

|r−q|
01 (1− p) + P

|r′−q′|
01 P

|q′−r|
10 P

|r−q|
01 (1− p)

IV 1 ≤ q < r = q′ < r′ ≤ n P
|r′−r|
01 P

|r−q|
10 p+ P

|r′−r|
10 P

|r−q|
01 (1− p)

V 1 ≤ q < q′ < r < r′ ≤ n P
|r′−r|
00 P

|r−q′|
10 P

|q′−q|
11 p+ P

|r′−r|
01 P

|r−q′|
00 P

|q′−q|
10 p

+P
|r′−r|
10 P

|r−q′|
11 P

|q′−q|
01 (1− p) + P

|r′−r|
11 P

|r−q′|
01 P

|q′−q|
00 (1− p)

VI 1 ≤ q < q′ < r′ < r ≤ n P
|r−r′|
00 P

|r′−q′|
10 P

|q′−q|
11 p+ P

|r−r′|
10 P

|r′−q′|
01 P

|q′−q|
10 p

+P
|r−r′|
01 P

|r′−q′|
10 P

|q′−q|
01 (1− p) + P

|r−r′|
11 P

|r′−q′|
01 P

|q′−q|
00 (1− p)

VII 1 ≤ q′ < q < r < r′ ≤ n P
|r′−r|
00 P

|r−q|
10 P

|q−q′|
11 p+ P

|r′−r|
10 P

|r−q|
01 P

|q−q′|
10 p

+P
|r′−r|
01 P

|r−q|
10 P

|q−q′|
01 (1− p) + P

|r′−r|
11 P

|r−q|
01 P

|q−q′|
00 (1− p)

The expected value of any single random variable ||drq|| is:

E(||drq||) = Pr(||drq|| = 1)

= Pr(xr = 0 ∩ xq = 1) + Pr(xr = 1 ∩ xq = 0)

= Pr(xr = 0 | xq = 1)Pr(xq = 1) + Pr(xr = 1 | xq = 0)Pr(xq = 0)

= P
|r−q|
10 p+ P

|r−q|
01 (1− p). (5.5)

Combining equations (5.4) and (5.5) yields the covariance of any two variables ||drq|| and

||dr′q′ || in Case I:

Cov(||drq|| ||drq′ ||) = E(||drq|| ||drq′||)− E(||drq||)E(||drq′||)

= P
|r−q′|
10 P

|q′−q|
11 p+ P

|r−q′|
01 P

|q′−q|
00 (1− p)

−
(
P
|r−q|
10 p+ P

|r−q|
01 (1− p)

)(
P
|r−q′|
10 p+ P

|r−q′|
01 (1− p)

)
. (5.6)

Combining (5.6) and the fact that rows of Xt are independent gives the covariance of two
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difference matrices in Case I:

Cov(||Drq|| ||Drq′ ||) = Cov

(
s∑
i=1

||di,rq||
s∑
j=1

||dj,rq′||

)

=
s∑
i=1

s∑
j=1

Cov (||di,rq||, ||dj,rq′||)

=
s∑
i=1

Cov (||di,rq||, ||di,rq′ ||)

= sCov (||drq||, ||drq′ ||)

= s
[
P
|r−q′|
10 P

|q′−q|
11 p+ P

|r−q′|
01 P

|q′−q|
00 (1− p)

−
(
P
|r−q|
10 p+ P

|r−q|
01 (1− p)

)(
P
|r−q′|
10 p+ P

|r−q′|
01 (1− p)

) ]
.

5.1.3 Change point Detection with ||Drq||F1

Under the assumptions of Theorem 5.1.2, ||Drq||F1 follows a binomial distribution with pa-

rameters s and p̃. The parameter p̃ = P
|r−q|
01 (1− p) +P

|r−q|
10 p depends on the values of r and

q. To complicate matters further, the covariance of ||Drq||F1 and ||Dr′q′ ||F1 is dependent on

the arrangement of the indices r, q, r′, and q′. All of these facts cause difficulty in obtaining

the asymptotic distribution of ∆t = max
1<q<r≤t

||Drq||F1 .

A two dimensional random field on the positive integers Z2
>0 is a collection of random

variables with similar properties indexed by elements of Z2
>0. The dual indexing of Drq

allows these variables to be thought of as a random field of correlated binomial random

variables. When large samples are available, each Drq may be approximated by normal

random variables, creating a correlated normal random field.

There are methods in the literature that provide asymptotic distributions for the max-

imum or minimum of random fields under certain conditions. One such approach is to

consider an application of the Extremal Types Theorem described by Pereira [30], which

provides asymptotic results for the distribution of the maximum of correlated normal vari-

ables in a random field. After careful exploration of the limiting covariance structure, this
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route is not possible.

In order for the maximum of a correlated random field in two dimensions to have an

asymptotic distribution via the Extremal Types Theorem, disjoint sub rectangles of the field

must satisfy a limiting independence argument. The limiting property of the covariance is

defined as D(un,i) in Periera [30] and is restated below. If F ⊂ Z2
>0 is a family of sets of

indices, then there exist sequences of integer valued constants {kni
}ni≥1, {lni

}ni≥1, i = 1, 2,

such that as n = (n1, n2)→∞, we have:

(kn1 , kn2)→∞,

(
kn1ln1

n1

,
kn2ln2

n2

)
→∞, and

(
kn1∆

(1)
n,ln1

, kn1kn2∆
(2)
n,ln2

)
→ 0. (5.7)

The values above may be interpreted in the following way. The level of separation between

two sub rectangles of Z2
>0 is denoted as lni

, the values kni
are limiting constants, and the

values of ∆
(i)
n,lni

are the components of the mixing coefficient, which is a measure of the

dependence of elements in disjoint rectangles. If this requirement is met, then two disjoint

sub rectangles may be thought of as nearly independent, and the Extremal Types Theorem

may be applied to obtain an asymptotic distribution of ∆max. Unfortunately, the covariance

structure of ||Drq||F1 and ||Dr′q′||F1 does not satisfy the third condition of (5.7). This is

summarized below.

Remark The third assumption of the Extremal Types Theorem is violated by at least one

case of the covariance structure of ||Drq||F1 and ||Dr′q′ ||F1 .

Proof Consider two disjoint rectangles in Case II, described in Table 5.1 and without loss

of generality, suppose p ∈ (0, 1) \ {1
2
}. Fix the value q and r, and let r′ →∞. Substituting

the values given in Lemma 1.4.2 for lim
t→∞

P t
uv when appropriate, the limit of the covariance

is given as:

lim
r′→∞

Cov(||Drq||F1 , ||Dr′q||F1) = p2P
|r−q|
10 + (1− p)2P

|r−q|
01

−
[
P
|r−q|
10 p+ P

|r−q|
01 (1− p)

]
[2p(1− p)]
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= (2p− 1)
[
p2P

|r−q|
10 − (1− p)2P

|r−q|
01

]
. (5.8)

When |r − q| is large, (5.8) is approximately equal to −p(1 − p)(2p − 1) 6= 0. Therefore,

disjoint rectangles need not be independent, no matter how far apart they are.

5.1.4 Restrictions and complications of ||Drq||F1

A known asymptotic distribution for ∆t would provide a method to calculate p-values and

aid in the use of the maximal change count statistic for change point detection. Consider

the assumptions in Theorem 5.1.2. As n tends to infinity, the m-dependence assumption for

each sequence yi forces the parameters Puv to approach p or 1 − p. Therefore, ||Drq||F1 is

asymptotically Binom(s, 2p(1− p)).

The asymptotic distribution of the statistic ||Drq||F1 causes several problems in change

point detection and inference. The success probability of the Binomial distribution depends

on the parameter p, regardless of the sample size. Thus, neither the small sample nor

asymptotic distribution of the statistic ||Drq||F1 is not pivotal, and must be modified in some

way to be asymptotically independent of p.

Another issue is that under the alternative hypothesis, if p(1) ≈ 1− p(2), the asymptotic

distributions before and after the change will have parameters 2p(1)(1 − p(1)) and 2(1 −

p(2))p(2), which are approximately equal. In this case, no change will be detected by the

statistic ∆t, even though a change in parameters has occurred.

An example of this situation is the large difference model (L) in Chapter 4, where p(1) =

0.8 and p(2) = 0.2. Both the DCUSUM procedure and dependent LRT are able to detect

this change with reasonable power.

Future work includes identification of a function g (·) that will provide a pivotal quantity

independent of p as well as exploration of the detection and estimation capabilities of the

statistic ∆t.
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5.2 Multipath Dependent LRT

A natural generalization of the single path dependent LRT in Chapter 3 is the multipath

dependent LRT. Suppose there are multiple sequences of Bernoulli random variables {yi}si=1

with parameters pi, Pi and τi. The multipath dependent LRT will use the information from

all s sequences to detect a change point in the sequences.

Consider the same hypotheses given in Section 5.1.1, except that under the alternative,

the change points τi are allowed to vary for each sequence yi. Define τ = (τ1, . . . , τs)
′ then:

H0 :xit ∼ Bernoulli(pi) with transition probabilities Puv,i for all times t,

Ha : There exists τ = (τ1, . . . , τs)
′, 1 < τi < n, such that

xit ∼ Bernoulli(pi(1)) for all 1 < t ≤ τi and xit ∼ Bernoulli(pi(2)) for all τi < t ≤ n

where p(1) 6= p(2) and the events after the change are independent of the events

prior to the change.

The resulting likelihood functions for time t = (t1, . . . , ts)
′ are:

L∗∗H0
=

s∏
i=1

P
nn
11,i−xtixti+1

11,i P
nn
10,i−xti (1−xti+1)

10,i P
nn
01,i−(1−xti )xti+1

01,i P
nn
00,i−(1−xti )(1−xti+1)

00,i ,

L∗Ha
=

s∏
i=1

P
n
ti
00,i

00,i (1)P
n
ti
01,i

01,i (1)P
n
ti
10,i

10,i (1)P
n
ti
11,i

11,i (1)

× P11,i(2)n
n
11,i−n

ti
11,i−xtixti+1P10,i(2)n

n
10,i−n

ti
10,i−xti (1−xti+1)

× P01,i(2)n
n
01,i−n

ti
01,i−(1−xti )xti+1P00,i(2)n

n
00,i−n

ti
00,i−(1−xti )(1−xti+1), (5.9)

with MLEs for P00,i and P11,i:

P̂00,i =
nn00,i − (1− xti)(1− xti+1)

nn00,i − (1− xti)(1− xti+1) + nn01,i − (1− xti)xti+1

,

P̂11,i =
nn11,i − xtixti+1

nn11,i − xtixti+1 + nn10,i − xti(1− xti+1)
, (5.10)
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and MLEs for P00,i(1), P11,i(1), P00,i(2), and P11,i(2):

P̂11,i =
nn11,i

nn11,i + nn10,i

, P̂00,i =
nn00,i

nn00,i + nn01,i

,

P̂11,i(1) =
nti11,i

nti11,i + nti10,i

, P̂00,i(1) =
nti00,i

nti00,i + nti01,i

,

P̂11,i(2) =
nn11,i − n

ti
11,i − xtixti+1

nn11,i − n
ti
11,i − xtixti+1 + nn10,i − n

ti
10,i − xti(1− xti+1)

,

P̂00,i(2) =
nn00,i − n

ti
00,i − (1− xti)(1− xti+1)

nn00,i − n
ti
00,i − (1− xti)(1− xti+1) + nn01,i − n

ti
01,i − (1− xti)xti+1

. (5.11)

Substituting these into the equations for p0,p1, and p2 gives the following MLEs:

p̂0,i =
1− P̂00,i

2− P̂00,i − P̂11,i

,

p̂1,i =
1− P̂00,i(1)

2− P̂00,i(1)− P̂11,i(1)
,

p̂2,i =
1− P̂00,i(2)

2− P̂00,i(2)− P̂11,i(2)
. (5.12)

This method uses substantially more data than the single path method, as the sample size

for the multipath method is s times that of the single path method.

Large values of the statistic G2
max defined in equation (3.6) will indicate that a change

is present in at least one of the sequences. Unfortunately, the multipath dependent LRT is

only able to detect that a change has occurred in at least one of the sequences. This method

cannot estimate the location(s) of the change point(s) nor identify which sequence(s) has

actually changed.

Another limitation of this method is the lack of a known asymptotic distribution for the

test statistic G2
max. A bootstrap procedure similar to the one described in Section 3.3.1 can

provide approximate p-values. The run time of the single sequence bootstrap algorithm for

modest sample sizes (n ≥ 250) is quite long. The additional information used in a multiple

sequence bootstrap procedure with no restrictions on the locations of the change points may
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cause an unreasonable run time to generate a p-value.

Future work on the multipath dependent LRT includes finding an efficient bootstrap

procedure or appropriate assumptions on the locations of the change points τ to reduce the

run time of the algorithm. The ideal result would be to identify the asymptotic distribution

of the multipath G2
max statistic.

5.3 Extensions to Sequences of Multinomial Trials

The tests described in this dissertation to detect and estimate change points in dependent

sequences of Bernoulli random variables lay the framework for generalization to multinomial

sequences with K + 1 categories. Suppose that the sequence y ∼ Multinomial(1,p) with

transition matrix P . Here:

p =



p0

p1

...

pK


and P =



P00 P01 · · · P0K

P10 P11 · · · P1K

...
...

. . .
...

PK0 PK1 · · · PKK


.

The hypotheses of interest are:

H0 :xt ∼ Multinomial(1,p) with transition probabilities Puv for all times t,

Ha : There exists τ, 1 < τ < n, such that xt ∼ Multinomial(1,p(1)) for all 1 < t ≤ τ

and xt ∼ Multinomial(1,p(2)) for all τ < t ≤ n where p(1) 6= p(2) and the events

after the change are independent of the events prior to the change.

Although the theoretical results for multinomial sequences are out of the scope of this

dissertation, future work includes exploration of the asymptotic distributions of DCUSUM

and Dependent LRT in the multinomial case. For convenience, these are briefly discussed in
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Subsections 5.3.1 and 5.3.2.

5.3.1 Multinomial DCUSUM Test

The DCUSUM statistic is easily generalized to the multinomial case. Let y ∼ Multinomial(1,p)

with transition matrix P and define xt to be the observed value of y at time t. That is,

xt = (x0,t, x1,t, . . . , xK,t)
′. The weighted sum for category k at time t is:

Sk,t =
t∑

j=1

xk,j −
t

n

n∑
j=1

xk,j =
n∑
j=1

ak,jxk,j, where ak,j =

 1− t
n

if 1 ≤ j ≤ t,

− t
n

if t+ 1 ≤ j ≤ n.

The DCUSUM statistic for category k at time t is defined as:

DCUSUMk,t = Sk,t/
√
n. (5.13)

Notice that for each category, the DCUSUMk,t statistic is identical to the statistic given

in equation (2.2) for the Bernoulli case. Because of this, it is believed that the multinomial

DCUSUM statistic will converge to the same asymptotic distribution as in the independent

multinomial case as stated by Robbins et al. [34]. This result is restated below, but the proof

is reserved for future work.

Conjecture Suppose y = {xt}nt=1 where xt ∼ Multinomial(1,p) is an m-dependent se-

quence of multinomial random variables with K+ 1 categories and transition matrix defined

by P . Define σ2
k = Var(xk,t) for each k = 0, 1, . . . , K, then:

max
l≤t/n≤h

{
K∑
k=0

σ−2
k DCUSUM2

k,t

/(
t

n

(
1− t

n

))}
D−→ sup

l≤η≤h

B(K+1)(t)

η(1− η)
,

where B(K+1)(t) is the sum of K + 1 independent Brownian bridge processes.

This conjecture is the generalization of Theorem 2.3.1 and if proved true, p-value ap-

proximations for the test statistic may be found using equation (1.13) with d = K + 1.
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5.3.2 Multinomial Dependent LRT

Similar to the DCUSUM statistc, the log likelihood statistic G2
max is generalizable to multi-

nomial sequences. Let y ∼ Multinomial(1,p) with transition matrix P and define xt to be

the observed value of y at time t. Define ntuv as a generalization of the counts defined in

equation (3.1), nt
∗
uv = nnuv − ntuv, and x∗u,v,t,t+1 =

 1 if xt = u and xt+1 = v,

0 otherwise.

The modified likelihood function for a fixed time t under the null hypothesis is:

L∗∗H0
=

K∏
u=0

(K−1∏
v=0

P
nn
uv−x∗u,v,t,t+1

uv

)(
1−

K−1∑
v=0

Puv

)nn
uK−x

∗
u,K,t,t+1

 ,

while the modified likelihood function for a fixed time t under the alternative hypothesis is:

L∗Ha
=

K∏
u=0

(K−1∏
v=0

P (1)n
t
uv
uv

)(
1−

K−1∑
v=0

P (1)uv

)nt
uK


×

K∏
u=0

(K−1∏
v=0

P (2)
nt∗
uv−x∗u,v,t,t+1
uv

)(
1−

K−1∑
v=0

P (2)uv

)nt∗
uK−x

∗
u,K,t,t+1

 .

Optimizing the likelihood functions for each of the parameters yields a system of equations

to calculate the MLEs for each of the k categories:

P̂uk =

1−
K−1∑
v=0
v 6=k

P̂uv

( nnuv − x∗u,v,t,t+1

nnuv − x∗u,v,t,t+1 + nnuK − x∗u,K,t,t+1

)
for 1 ≤ k < K,

P̂uK = 1−
K−1∑
v=0

P̂uv,

P̂ (1)uk =

1−
K−1∑
v=0
v 6=k

P̂ (1)uv

( ntuv
ntuv + ntuK

)
for 1 ≤ k < K,

P̂ (1)uK = 1−
K−1∑
v=0

P̂ (1)uv,
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P̂ (2)uk =

1−
K−1∑
v=0
v 6=k

P̂ (2)uv

( nt
∗
uv − x∗u,v,t,t+1

nt∗uv − x∗u,v,t,t+1 + nt
∗
uK − x∗u,K,t,t+1

)
for 1 ≤ k < K,

P̂ (2)uK = 1−
K−1∑
v=0

P̂ (2)uv. (5.14)

Closed form solutions of the MLEs may be found by solving the system (5.14). Once

the MLEs are obtained, the G2
t statistic may be computed for each of the permissible times

nh ≤ t ≤ nl and the presence of large values of G2
max = max

nh≤t≤nl
G2
t is evidence that a change

has occurred in the sequence. The estimated location of the change point is τ̂ = arg max
nh≤t≤nl

G2
t .

Future work includes obtaining closed form solutions to the system (5.14), exploration

of the asymptotic distribution of G2
t , implementation of a bootstrap procedure for p-values,

and obtaining the asymptotic distribution of G2
max.

5.4 Application to Clustered Time Series Models

The initial motivation of the results in this dissertation was to provide a method of statistical

inference to detect and estimate a change over time in the structure of a clustering scheme for

clustered time series models. This section provides a review of time series fitting techniques

as well as methods to cluster the fitted models. The theoretical results in Chapters 2 and 3

can then be applied to the clustering output to detect and estimate changes in the structure

over time as described in Section 5.4.4.

5.4.1 Time Series Model Fitting

Define y to be a time series of length n, then y can be fit in a variety of ways depending

on the assumptions of the model. The two procedures discussed below are the joinpoint

regression model proposed by Kim et al. [19] and the multiple regression model.

If the only explanatory variable is a single time variable, the joinpoint regression model is

preferred due to its change point detection and estimation capability. The model is defined in
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Kim et al. [19] and is restated below. Consider the observations, (t1, y1), (t2, y2), . . . , (tn, yn),

where t1 < t2 < · · · < tn, then:

µy = β0 + β1t+ δ1(t− τ1)+ + · · ·+ δc(t− τc)+, (5.15)

where τ1, . . . τc are the unknown locations of c joinpoints, and the function (x)+ is defined

as:

(x)+ =

 x if x > 0,

0 otherwise.

A permutation test or BIC value is used to determine the number of joinpoints by sequentially

testing the hypotheses:

H0 : there are c0 joinpoints,

versus

Ha : there are c1 joinpoints.

If the null hypothesis is rejected, then c0 is increased by 1, otherwise c1 is decreased by 1.

This process is repeated until c0 = c1 := c. Initial values are generally chosen as c0 = 0 and

c1 = 5. Once the number of joinpoints c is decided, the regression model (5.15) may be fit.

When the data consists of multiple predictors dependent on a time variable, the joinpoint

model is not appropriate. Instead, a multiple regression is used to fit the model:

µy = X ′β, (5.16)

where X is the design matrix and β is a vector of coefficients.

112



Chapter 5, Section 5.4

5.4.2 Clustering Methods

In order to apply a clustering scheme, it is necessary to have a reasonable number of time

series. Let {yi}si=1 be a set of s time series. The clustering methods discussed below will use

the fitted models from Section 5.4.1 to group the time series into K + 1 clusters.

k-means Clustering

The k-means procedure is a non-parametric method used to group s independentN -dimensional

observations into k groups. For consistency, define k = K + 1. Note here that s >> K + 1.

The process begins by arbitrarily assigning K + 1 of the s points or vectors as cluster

centers. Each additional observation is then assigned to the group whose mean is the smallest

Euclidean distance away. The center of that cluster is updated to reflect the mean of all

observations in that group. This continues until all points have been assigned to some cluster.

The distance from each observation to each cluster center is then compared and objects are

rearranged corresponding to that minimum distance. If there are ties in distance, the object

is arbitrarily assigned to the cluster with smaller index. The process repeats until there is

no change in cluster membership, or a certain number of iterations is reached.

Note that the number of clusters K + 1 is assumed to be known. In practice, that is

almost never the case. The Bayesian Information Criterion (BIC) will be used to determine

the number of clusters, and is discussed in Section 5.4.3.

The term k-means generally refers to the work by MacQueen [23], even though his algo-

rithm is not used in practice. The algorithm given by Hartigan and Wong [11] is more efficient

than MacQueen’s algorithm and has been implemented in several statistical packages. For

the purposes of this paper, k-means will refer to Hartigan and Wong’s algorithm.

This algorithm may be applied to both of the fitted time series models (5.15) and (5.16)

in two ways. The first method is to use the vectors of coefficients βi as cluster centers.

This method will tend to group those observations with similar slopes together. The other

method is to use the vectors of fitted values ŷi as cluster centers. This will group the time
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series that have similar predicted values together.

Clustering of regression models (CORM)

The CORM method was developed in 2006 by Qin and Self [32]. This model based method

was developed to cluster massive sequences of gene data over time, and is capable of dealing

with multiple samples each at multiple time points.

Define ui = (ui,0, ui,1, . . . , ui,K) to be the cluster membership vector corresponding to

time series yi where exactly one ui,k = 1 when yi is an element of cluster k and the rest

of the u’s are 0. As described in Dempster et al. [6], the cluster membership probabilities

πi corresponding to the membership values ui,k are treated as missing data and the EM

algorithm is used to estimate the values. For the purposes of this dissertation, data is

restricted to single samples at multiple time points, which is described by Qin and Self [32]

as longitudinal data with no replication (LNR).

The clustering algorithm assumes the following linear mixed effects model for LNR data.

Let yi be a vector of observed values, Xi the corresponding design matrix, εi the associated

error term, ui the cluster membership vector, and βk the regression coefficients for cluster

k. Assuming that there are K + 1 clusters created by the objects that share the same values

of the regression coefficients, the CORM model is:

yi | (ui = k,Xi) = X ′iβk + εi,

εi | (ui = k) ∼ MVN(0,Vi(ξk)),

Vi(ξk) = ZiDkZ
′
i + σ2

kI,

ui ∼ Multinomial(πi).

The variance Vi(ξk) can be thought of as the sum of the random effects and the measurement

error. Notice that the model is capable of dealing with a different error term for each

individual time series.
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The initial estimates for βk and πi are found through random cluster assignments or a

k-means procedure, similar to the method described in Section 5.4.2. The initial estimates

should be found more than once to protect against focusing on a local maximum instead

of a global maximum. After the initial estimates are made, the EM algorithm runs to fit

more precise values of πi. The algorithm terminates once the increase of the log likelihood

function from one iteration to the next is less than 0.01. The output considered are the mem-

bership probabilities organized in a membership matrix. The rows are viewed as individual

multinomial random variables corresponding to each time series object.

In practice, the CORM method has two major limitations. First, the code available in

the statistical package R assumes that the design matrices are the same for all s time series.

This restricts the possibilities of models to fit substantially. The second limitation is the

lack of a procedure to determine the number of clusters. This issue is addressed by using a

BIC method discussed in Section 5.4.3.

When fitting the multiple regression time series model (5.16), the common design matrix

does not effect the fitting process. On the other hand, when fitting the joinpoint time series

model (5.15), some of the time series yi may have a different number of joinpoints or different

joinpoint locations. This may lead to different design matrices for each of the s time series.

To work around this issue, a piecewise linear spline is used as the common design matrix.

An example of the model with five basis functions is:

µy = β0 + β1t+ δ1

(
t− n

6

)+

+ δ2

(
t− 2n

6

)+

+ · · ·+ δ5

(
t− 5n

6

)+

. (5.17)

This model will be able to roughly estimate the unique joinpoint locations and slopes while

providing a common design matrix X for all of the s time series.
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5.4.3 Choosing a proper number of clusters using Bayesian infor-

mation criterion (BIC)

The k-means and CORM clustering algorithms assume that the number of clusters for a

given data set is known. In practice, that is very uncommon. There are several methods to

determine an optimal number of clusters and here, the focus is on the Bayesian information

criterion (BIC).

The BIC was first proposed by Schwarz [36] and has been widely accepted as one of the

most useful tools to determine the optimal number of parameters in an arbitrary model.

The criterion was developed from a Bayesian framework and made use of the posterior

probabilities of a set of potential models.

The following review of the derivation of BIC and more detail about its uses is available

in Knoishi and Kitagawa [35]. Suppose C1, C2, . . . , CW are the potential clustering schemes.

Each model Ck can be characterized by the distribution fk(y | θk) where θk is a vector of

potential cluster centers. Let π(θk) represent the prior distribution of the parameter vector

θk, then the marginal probability of ys = {y1, . . . , ys} is given as:

pk(ys) =

∫
fk(y | θi)π(θk)dθk. (5.18)

The basic definition of Bayes theorem states:

P (Ck | ys) =
pk(ys)P (Ck)∑W
j=1 pj(ys)P (Cj)

. (5.19)

where P (Cj) denotes the prior probability that clustering scheme Cj is selected. The goal

is to maximize (5.19), and if prior probabilities are assumed equal, this is equivalent to

maximizing (5.18). Because pk(ys) can be thought of as a likelihood, it is intuitive from a

116



Chapter 5, Section 5.4

statistical viewpoint to consider the following transformation:

−2 log pk(ys) = −2 log

{∫
fk(y | θk)π(θk)dθk

}
≈ −2 log fk(ys | θ̂k) + ck log s. (5.20)

Here, θ̂k is the maximum likelihood estimator of θk and ck is the number of parameters in

the vector θk.

The value of equation (5.20) is the BIC value for the kth clustering scheme. That is:

BICk = −2 log fk(ys | θ̂k) + ck log s.

It is made up of two components, the logarithm of the maximum likelihood and a penalty

function to limit the size of the model chosen. From this definition, the optimal number of

clusters K̂ is defined as:

K̂ = arg min
1≤k≤W

BICk. (5.21)

5.4.4 Detection and Estimation of a Change Point in Clustered

Time Series Models

Consider s time series models {yi}si=1 of length n and define cK̂ to be the maximum number

of parameters in the design matrix, where K̂ is determined by the minimum BIC value

discussed in Section 5.4.3. Define t0 > cK̂ and for each time t = t0, t0 + 1, . . . , n, consider the

time series {yi,t}si=1 truncated at time t. (The choice of t0 is made to prevent from overfitting

the time series models.) The truncated time series are fit using either a joinpoint or multiple

regression model and then clustered using k -means clustering or CORM.

If k -means clustering is used, the cluster membership values are already defined as integer

values, while if CORM is used, the cluster membership probabilities πi are converted into
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integer values by assigning membership to the cluster with largest probability πi,k. In either

case, the resulting cluster membership values at each time t can be viewed as the elements

of a Bernoulli or multinomial sequence of random variables. The change point detection and

estimation techniques proposed in this dissertation may then be applied to the sequences of

random variables to determine if and when a change occurred in the clustering scheme.

Under the null hypothesis of no change in the cluster structure, it is more likely that

each time series yi will stay in the same cluster from time t to time t+ 1. This was the main

motivation for assuming a one step Markov dependence in the sequences of random variables

for the change point detection and estimation procedures discussed in Chapters 2 and 3.

In order for this method to be useful in practice, the multinomial and multipath tech-

niques in Sections 5.2 and 5.3 must be explored further. Future work includes coding a

program to link the clustering output of the truncated time series for each time t to the

existing detection and estimation programs, as well as exploration of the robustness of using

estimated cluster membership values instead of the population parameter values in change

point detection and estimation.

5.5 Other Applications

There are several possible real world applications for both single and multi path techniques

discussed throughout this dissertation. The possibilities are vast; however, only a few are

mentioned here to motivate the use of these dependent methods.

The single path applications detect and estimate a change in only one time series y.

Consider the random variables xt to indicate whether or not a product produced by a machine

is defective at equally spaced time intervals. For quality control purposes, the detection of a

change point may indicate that the machine needs repair. Another application is to consider

the variables xt to be indicators of annual party majority in American congress (where, say

1 represents democrats, while 0 represents republicans). A statistically significant change
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would indicate a political shift, and in the case of other countries with more than two leading

parties, the multinomial procedures may be implemented.

Multi path applications are capable of utilizing multiple time series {yi}si=1 simultane-

ously. One use would be to cluster the daily, monthly, or annual closing prices of the S&P

500 surrounding the recession of the late 2000s to better understand which companies were

effected and detect similarities and differences in industry movement. In general, the multi

path procedures may be used to better understand financial markets from real estate to

automobile sales, and any other financial data of interest.

5.6 Concluding Remarks

Motivated by the desire to explore clusters of time series models, the single path DCUSUM

and dependent LRT procedures provide change point detection and estimation techniques

for sequences of dependent Bernoulli random variables. The known asymptotic distribution

of the DCUSUM statistic and p-value approximation methods provide a mechanism for

generating p-values, while a bootstrap procedure is necessary for hypothesis testing using

the dependent LRT method. The extensions to multipath and/or multinomial DCUSUM

and dependent LRT procedures, as well as the maximal change count statistic ∆t discussed

in this chapter, provide a basis for future research on the topic of change point detection

and estimation in dependent sequences of random variables.
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