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Abstract

This thesis analyzes three different soft matter systems—membranes, polymers, and

droplets—to answer questions about shape, mechanics, and programmability. For mem-

branes, my collaborators and I have developed a theoretical model of endocytosis in

yeast. Endocytosis is the process by which a cell membrane deforms to surround extra-

cellular material to draw it into the cell. Endocytosis in yeast involves clathrin, actin,

and Bar proteins. Our model breaks up the process into three stages: (i) initiation,

where clathrin interacts with the cell membrane via adaptor proteins, (ii) elongation,

where the membrane is then further deformed by polymerizing actin filaments, followed

by (iii) pinch-off. Our results suggest that the pinch-off mechanism may be assisted by a

pearling-like instability. In addition, we potentially rule out two of the three competing

models for the organization of the actin filament network during the elongation stage.

For polymers, the actin cytoskeleton network at the leading edge of the cell becomes

anisotropic with filament alignment favoring the direction of motion of the cell. To begin

to capture the mechanics of this anisotropic filament network, my collaborators and I

have constructed an effective medium (mean field) theory of an anisotropic, disordered

spring network. We find that increasing the anisotropy increases the filament density

required for a nonzero shear modulus (rigidity). We also conduct numerical simulations

and find good agreement with the effective medium theory. We then extend our analysis

to include the mechanics of coupled disordered spring networks to study force transmis-

sion between the actin cytoskeletal network and DNA via the lamin filament network

and potentially begin to establish a microscopic basis for the mechanical regulation of

transcription via the actin cytoskeleton. For droplets, we study numerically a collec-

tion of aqueous droplets joined by single lipid bilayers to form a cohesive, tissue-like

material. The droplets in these droplet networks can be programmed with different os-

molarity gradients. These osmolarity gradients generate internal stresses via local flows

and the network then folds into designed structures. In other words, global change is

driven by local osmolarity gradients. Using molecular dynamics simulations, we study

the formation of shapes ranging from rings to spirals to tetrahedra and determining the

optimal range of parameters for such structures. By adding an osmotic interaction with

a dynamic environment, a folding-unfolding process can also be realized. This latter

result is a step towards osmotic robotics.
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Chapter 1

Introduction

Soft matter is the study of the matter that easily deforms via thermal fluctuations or

external or internal driving. Given this rather inclusive definition, a vast range of systems

falls under the soft matter purview—polymers, colloids, membranes, granular materials,

droplets, liquid crystals—to name a few. This thesis is, in some sense, a microcosm

of soft matter in that it analyzes three of these systems—membranes, polymers, and

droplets—to answer questions about shape, mechanics, and programmability. Given its

inclusiveness, I will use the introduction to give some background on the mathematical

modeling for each system. Moreover, since much of the work here is inspired by biological

and/or experimental systems, I will also briefly discuss the relevant biology and/or

experiments.

As you continue through the introduction, here is (1) a list of questions to keep in mind,

(2) a diagram that provides a topical roadmap, if you will, for the remainder of the

thesis, and (3) a biological roadmap for the remainder of the thesis since we will refer

to certain biological components from time to time and would not want to leave behind

scientists who are not familiar with such entities. See Figures 1.1 and 1.2. As for the

questions:

• How does the mechanical interaction between a fluid membrane and ultimately a

polymer network change the shape of the membrane to ultimately allow it to pinch

off in a way similar to a drop of water dripping from a faucet? Answering this

question pertains to endocytosis, or how a cell membrane changes shape to ingest

a macromolecule.

• What role does anisotropy play in the mechanics of polymer networks modeled

as disordered spring networks? More specifically, how does anisotropy affect the

rigidity transition in such networks as polymer density is increased, for example?

1



Chapter 1. Introduction 2

Answering this question concerns the actin cytoskeleton and the stiffness of broad,

thin protrusions that emerge at the leading edge of a crawling cell.

• What does the mechanics of two coupled polymer networks look like? How much

of the mechanics depends on the nature of the coupling? In particular, how is

the rigid transition affected not only as a function of polymer density but as large

strains are applied? Answering this question pertains to the potential role the

actin cytoskeleton has in mechanically regulating transcription, the initial step in

gene expression.

• How can one program the osmolarity of an ordered network composed of water

droplets coated in surfactants to change the shape of the network? And how, by

introducing osmotic interactions with the environment, can the droplet network re-

verse its change in shape? Answering the latter question, in particular, contributes

to the beginning of osmotic robotics.

Figure 1.1: Roadmap for the thesis.

1.1 Fluid membranes

Lipids are amphiphilic molecules which consist of one part, called the head, which is

hydrophilic, and another part, called the tail, which is hydrophobic. A collection of

such molecules will self-assemble into a lipid bilayer as shown in Figure 1.3. A canonical
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Figure 1.2: Biological roadmap

example of a fluid membrane is the cell membrane with phospholipids as its major

component. To describe the energetics of a fluid membrane, a red blood cell membrane

in particular, Canham [1] conjectured that energy is governed principally by membrane

curvature such that

EFM =
1

2
κ

∫
(

1

R2
1

+
1

R2
2

)dS, (1.1)

where R1 and R2 denote the principal curvature radii of the membrane surface (see

Figure 1.4), κ denotes the bending rigidity, and dS represents an infinitesimal area.

For specificity, this membrane energy represents the neutral surface of the physical

membrane and approximately corresponds to the contact between the two leaflets of the

lipid bilayer [2].

Figure 1.3: Schematic of the lipid bilayer, with hydrophilic heads exposed and hy-
drophobic tails sequestered
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A more general form was given by Helfrich [3]. By introducing local Cartesian coor-

dinates on the membrane, imposing that the z-axis be parallel to the surface normal

vector at each point on the membrane, Helfrich defined the two principal curvatures as

follows. Expressing the normal vector n = (nx, ny, nz) as a function of coordinates x

and y, the principal curvatures at each point are given by the eigenvalues of the matrix

M whose entries are given by (
∂nx
∂x

∂nx
∂y

∂ny
∂x

∂ny
∂y

)
Due to the rotational symmetry of the membrane, only combinations of n that are

independent of orientation of the x− and y− axis can appear in the EFM . These

combinations are ∂nx
∂x +

∂ny
∂y , (∂nx∂x +

∂ny
∂y )2, and ∂nx

∂x
∂ny
∂y −

∂nx
∂y

∂ny
∂x . The energy density

(per unit area) eFM then becomes

eFM =
1

2
κ(
∂nx
∂x

+
∂ny
∂y
− C0)

2 + κG(
∂nx
∂x

∂ny
∂y
− ∂nx

∂y

∂ny
∂x

), (1.2)

where κG is the Gaussian rigidity and C0 is the spontaneous curvature to account for

potential asymmetry between the two monolayers constituting the bilayer.

Figure 1.4: Schematic for the membrane curvature, showing the principal curvature
radii R1 and R2.

Choosing the local coordinate systems such that the derivatives along its axes correspond

to the smallest and largest curvatures of the membrane surface, the mixed derivatives

vanish and the principal curvatures become Cx = ∂nx
∂x and Cy =

∂ny
∂y with

eFM = 2κ(H − C0)
2 + κGKG, (1.3)
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where H =
cx+cy

2 is the mean curvature and KG = cx ∗ cy is the Gaussian curvature.

Note then that κ has units of energy. It turns out that the second term in the energy

density is topological in nature. The Gauss-Bonnet theorem states that∫
KGdS = 4π(1− g), (1.4)

where the integer g is the genus of the surface, i.e. the number of handles, and thereby

characterizes the topology of the surface. If KG is assumed to be constant, then this

term does not change for a one-component membrane whose topology does not change,

i.e. it is a constant. One can also add surface tension and pressure to the energy above

as we will see in Chapter 2.

Endocytosis is the process by which extracellular agents are ingested by the cell as a

result of the cell membrane surrounding and engulfing them [4]. To do so, the membrane

changes shape and then pinches off to form a vesicle that encloses the now intracellular

material. Fig. 1.5 presents a schematic of endocytosis in mammalian cells. Clathrin is

one of the first proteins recruited to the endocytic site. The spontaneous curvature of

individual clathrin molecules presumably helps initiate membrane deformation as they

assemble to form a spherical cage. The pinch-off is driven by the motor protein dynamin,

which actively contracts.

In yeast, dynamin is not present in endocytosis [5–7]. So how, then, does the membrane

pinch-off? It turns out that actin filaments reshape the membrane, in addition, to

clathrin. But these two proteins do not necessarily allow for pinch-off. So what about

the mechanism for pinch-off? Is there any underlying instability, or is there a more

engineered approach with the pinch-off occurring at some fixed distance from the top of

the invagination? In chapter 2 we identify a possible mechanism that could assist in the

pinch-off via a pearling-like instability, where surface tension competes with bending

energy in cylindrical vesicles such that, for long enough cylinders, it is energetically

favorable for the cylinder to break up into spheres.

We will also address how the actin reshapes the cell membrane. The interplay of me-

chanics and shape is not immediately obvious since there are currently several competing

proposals put forth by the biologists as to how this interplay is achieved. Each of these

proposals for endocytosis in yeast assumes its own respective organization for the actin

filament network. Can any of these models be ruled out on the basis that they do

not provide the forces required to deform the cell membrane that is consistent with

observations? This question will be studied in Chapter 2.
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Figure 1.5: Schematic of endocytosis in mammalian cells. Figure taken from website:
www.abcam.com from an article by Dr. Tony Jackson.

1.2 Polymers and disordered spring networks

Polymer chains abound in nature from DNA to cytoskeletal filaments to spider silk to

latex from a rubber tree. See Figure 1.6 for a schematic image of an actin cytoskeletal

filament [8, 9]. To characterize the mechanical properties of polymers, a lengthscale

known as the persistence length lp can be introduced [10–13]. For polymers much shorter

than their persistence length, they act as rigid rods. For polymers much longer than their

persistence length, they act as flexible filaments. And for polymers around the length

of the persistence length, they are semiflexible. Energetically speaking, semiflexible

polymers bend. However, in the presence of thermal fluctuations, polymers with no

compliance in their contour length exhibit end-to-end fluctuations that act as a stretching

contribution to the free energy. Flexible polymers are purely entropic, i.e. only stretch.

Figure 1.6: Structure of an actin filament showing the barbed (or plus) and pointed
(or minus) ends [14]

Many polymers cross-link together to form disordered networks as the case with the

cytoskeleton and rubber tree latex in which there is no symmetry transformation going
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from one cross-link position in the network to another. See Figure 1.7 for a schematic.

The cytoskeleton does so to form a semiflexible polymer network, while the rubber tree

latex forms a flexible polymer network. To investigate the mechanics of such systems

near a rigidity transition, continuum elasticity breaks down requiring a more micro-

scopic description of the system. What do I mean by rigidity transition? The sol-gel

(solution-to-gelation/fluid-to-solid) transition occuring in polymer networks as polymer

concentration increases, for example. De Gennes, who some might say is the father of

soft matter, conjectured that the sol-gel transition is analogous to a percolation transi-

tion and that the shear modulus near the gelation critical point behaves like conductivity

in a network of random resistor. Feng and Sen [15], however, showed that this is not the

case when considering only stretching between cross-links—that the rigidity percolation

transition is in a different universality class than conductivity percolation.

Figure 1.7: Schematic of a disordered spring network.

To bring the reader up to speed on rigidity transitions in disordered spring networks, I

will briefly review the canonical example of a randomly diluted triangular lattice with

linear springs between the cross-links. I do so because I will explore modifications of this

system in Chapters 3 and 4 to understand how the modifications affect the transition.

The energy of the system is given by

E =
α

2

∑
〈ij〉

pij (uij .rij)
2 , (1.5)
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where rij is the unit vector along bonds, and uij = ui − uj , the strain on the bond ij.

Let’s begin with why do we expect a rigidity transition in the first place? Maxwell

answered this question back in 1864 [16]. For N cross-links in d dimensions and a

mean number of springs per node denoted by z, the forces yield zN/2 constraints.

Since each cross-link has d translational degrees of freedom, there are (N − 1)d total

degrees of freedom (subtracting out the global degrees of freedom). When the total

degrees of freedom match the force constraints, we arrive at the isostatic criterion, or

zN/2 = (N −1)d. In the limit N →∞, ziso = 2d. For z < 2d, the network is flexible, or

solution-like, since there are not enough constraints to stabilize the degrees of freedom.

For z > 2d, the network is rigid. Working in terms of the dilution probability 1 − p,
the isostatic criterion translates to pr = 2d/Z, where Z is the coordination number of

the fully occupied lattice. It turns out that numerics yield a slightly smaller value of

pr due to spatial correlations in two dimensions [17]. The above counting does not take

such correlations into account. The isostatic criterion is a necessary but not sufficient

criterion for rigidity.

One can then compute the shear and bulk modulus of the system as a function of the

dilution probability p to find that in the solution phase, both the shear and bulk modulus

are zero as expected. See Figure 1.8 [18, 19]. Both mean field and numerical simulations

reveal that the shear and bulk modulus increase linearly from zero for p > pr with a slope

that is dictated by the mean field theory. Very close to the transition, the linear scaling

breaks down indicating that the transition in two-dimensions is not completely governed

by mean field theory, though it is a reasonable first-approximation. I will review one

version of this mean field theory in Appendix A, which for historical reasons, is known

as effective medium theory (EMT). I do so because I will be building upon this EMT in

Chapter 3. As of today, there is no consensus as to how to proceed beyond mean field

theory for reasons that go beyond the boundaries of this thesis.

The disordered linear spring network can be extended to include angular springs. See

Figure 1.9 for a schematic. Angular springs can model the bending contribution for

semiflexible polymers, for example. Recent work by Das and collaborators [20] developed

an EMT with an energy

E =
α

2

∑
〈ij〉

pij (uij .rij)
2 +

κc
2

∑
〈îjk=π〉

pijpjk((uji + ujk)× rji)
2

+
κnc
2

∑
〈îjk=π/3〉

pijpjk pnc ∆θijk
2 (1.6)
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Figure 1.8: Elastic constants C11 (bulk modulus) and C44 (shear modulus) averaged
over three configurations for a 440 atom triangular network. Both constants are in
units of the spring constant and the lattice spacing. The straight lines denote the

effective-medium theory results. Figure taken from Ref. [18].

where pij is the probability that a bond is occupied,
∑
〈ij〉 represents sum over all

bonds,
∑
〈ijk〉 represents sum over pairs of bonds sharing a node, The first term in the

deformation energy corresponds to the cost of extension or compression of the bonds,

the second term to the penalty for the bending of filament segments made of pairs of

adjacent collinear bonds, and the last term to the energy cost of change in the angles

between crossing filaments that meet at 60◦ angle with pnc the probability of having an

angular spring between the two filaments.

For κnc = 0, they found that the EMT yielded a pr = 0.457, which is in rather good

agreement with the simulations. See Figure 1.10. Since the additional angular springs

give rise to more constraints, the rigidity percolation threshold is lowered. The EMT

captures the shape of the shear modulus for different ratios of stretching to bending

but does match quantitatively. In addition to laying the groundwork for an EMT for

angular springs—a quandary that began over 30 years ago—the authors explored the

role of angle-constraining crosslinkers to find that the rigidity transition is pushed down

to its lowest bound—the connectivity percolation threshold—a conjecture that had been

made over 30 years ago. Since the actin cytoskeleton is cross-linked by more than 100

different cross-linking proteins, some of which are freely-rotating and some of which are

not, these angle-constraining cross-links provide a mechanism for the actin cytoskeleton

to become rigid at the lowest possible actin concentration. Given that there is only a

finite amount of the actin in a cell, wise use of its resources is presumably a high priority.



Chapter 1. Introduction 10

Figure 1.9: Deformed configuration a compositely crosslinked semiflexible filament
network with 2.7 percent strain. The bond occupation probability is p = 0.64, and
angle-constraining crosslinker occupation probability is pnc = 0.15. The purple lines
denote semiflexible filaments, the red arcs denote angle-constraining crosslinkers, the
black circles represent nodes where all crossing filaments are free to rotate around that
node, while the grey circles denote nodes where some of the crossing filaments are free to
rotate around that node. The absence of a black or grey circle denotes a node where no
free rotations are possible. The filament bending stiffness relative to stretching stiffness
κc/α = 10−6 and the stiffness of angular crosslinkers relative to stretching stiffness

κnc/α = 10−6. [20]

The actin cytoskeleton [9–13] is also the inspiration behind Chapters 3 and 4. As for

Chapter 3, cell crawling is essential to a variety of biological processes such as the

development of an organism, wound healing, cancer metastasis and immune response.

Cell crawling is a highly dynamic phenomenon primarily driven by the actin networks

beneath the cell membrane. The constant restructuring of the actin cytoskeleton is vital

in enabling the cell to change its elastic properties rapidly, and this dynamic response

is fundamental for movement. As Fig 1.11 shows, after determining its direction of

motion, the cell extends a protrusion in this direction by actin polymerization at the

leading edge. It then adheres its leading edge to the surface on which it is moving and

de-adheres at the cell body and rear. Finally, it pulls the whole cell body forward by

contractile forces generated at the cell body and rear of the cell.

The broad, thin protrusion at the leading edge of the cell is known as a lamellipodium [23].

Growth of the free barbed ends of branches produces the force that pushes the plasma

membrane forward at the leading edge of motile cells [22, 24]. As Fig 1.12 shows, the
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Figure 1.10: The shear modulus G, normalized by its value for the corresponding
undiluted network G0, as a function of occupation probability p = pij . The data points

are numerical results and the solid lines, the effective medium theory results [20].

cytoskeleton in lamellipodia consists of rather oriented, cross-linked filaments, motivat-

ing me to extend the analytical framework of effective medium theory to disordered

linear spring networks with anisotropy in Chapter 3. I should point out that most of the

results in Chapter 3 deal with linear spring networks, i.e. no bending. This was because

I thought it was important to understand the simpler ”just stretching” case first before

proceeding to include bending.

As for Chapter 4, a new role for the actin cytoskeleton has recently emerged, namely

a role in the mechanical regulation of transcription by interacting with the DNA. As

Figure 1.13 shows, cytoskeletal actin filaments bind to nesprin-1 and -2 located on the

outer nuclear membrane. Nesprins interact across the perinuclear space through their

C-terminal KASH domain with SUN proteins, which reside in the inner nuclear mem-

brane. The SUN proteins can then bind to the lamin network located just inside the

inner nuclear membrane. This complex of proteins connecting the nuclear lamina and

the actin cytoskeleton is called LInkers of the Nucleoskeleton and Cytoskeleton (LINC)

complexes [26, 27]. Lamins are intermediate filaments forming a filamentous network sur-

rounding the DNA, RNA, and other proteins located at the core of the cell nucleus [28].

Therefore, through the sequence of actin filaments binding to nesprins binding to SUN

proteins binding to lamins binding to DNA, there exists a means by which forces imposed

on cytoskeletal actin are transmitted to the DNA.
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Figure 1.11: Schematic of cell crawling by extension of the lamellipodium via actin
polymerization. [21]

Figure 1.12: A, Electron micrograph of a cell showing a dense branched network
of integrated actin filaments. B, Smaller scale image of dendritic branches of actin

filaments. [22]

To begin to investigate a microscopic basis for the mechanical regulation of transcription

via the actin cytoskeleton, I will first study the mechanics of two coupled disordered

spring networks with stretching only in Chapter 4, again, to understand the simpler

”just stretching” limit first before proceeding to the more complex case.
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Figure 1.13: Structure of LINC complexes. ABD: Actin-binding domain; INM: Inner
Nuclear Membrane; ONM: Outer Nuclear Membrane. [25]

1.3 Droplet networks

In nature there are many biomaterials that are internally programmed to morph into

complex structures that actively and adaptively interact with the environment. This has

inspired the development of programmable materials that controllably fold into desig-

nated structures. At the nanometer scale, the programmable chemistry of Watson-Crick

base pairing allows DNA to self-assemble into a tetrahedron [29]. At the millimeter scale,

efficient algorithms have been constructed to generate self-folding three-dimensional

polyhedra from two-dimensional nets, driven by the minimization of the surface ten-

sion of liquid hinges that either rotate or fuse panels into place [30]. At the centimeter

scale, researchers have created a self-folding robot that goes from flat to walking in

several minutes without external intervention [31].

1.3.1 Bayley group’s experiment

A beautiful realization of these ideas comes from the Bayley group who print tens of

thousands of micron-sized aqueous droplets each joined by single lipid bilayers [32–36]
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Figure 1.14: Schematic image showing droplets of different aqueous solutions printed
into a solution of lipids in oil. The droplets acquire a lipid monolayer and form bilayers

with droplets in the developing network. [32]

to form a cohesive, tissue-like material (Fig. 1.14). The droplets in these networks can

be endowed with different osmolarities. The resultant osmotic pressure leads to local

fluid flow from low to high concentration. This swells the high concentrations droplets

and shrinks the low concentration droplets, leading to internal stresses which distort the

shape of the network in specific ways depending on the initial geometry of the network

and the concentration differences.

The initial experiments explored rectangular strips composed of droplets of just two

distinct osmolarities. The respective swelling and shrinking causes the rectangular strip

to deform into a ring (see Fig 1.15).

The initial droplet network experiments also explored the formation of a hollow sphere

from an initial two-dimensional four-petal-shaped structure (see Fig 1.16), thus demon-

strating the spontaneous assembly of three-dimensional shapes. These droplet networks

can also be functionalized electrically and magnetically, mimicking rapid, long-distance

electrical communication along a defined path in a way that is analogous to neurons.

Should such droplet networks be integrated with living organisms they could mimic

biological tissue with the droplets acting as cells.

In Chapter 5, we will use computational methods to explore the self-assembly of several

shapes including rings, spirals and tetrahedral shells. We will revisit the formation of



Chapter 1. Introduction 15

Figure 1.15: Photographs of a rectangular network folding into a circle over 3 hours.
The orange and blue droplets initially contained 250 mM KCl and 16 mM KCl, respec-

tively. Scale bar, 250 mm [32]

Figure 1.16: (A) Photographs of a flowershaped network folding spontaneously into
a hollow sphere. The orange and blue droplets initially contained 80 mM KCl and 8
mM KCl, respectively. The photographs cover a period of 8 hours. Scale bar, 200 mm.
(B) Frames from a folding simulation of a network with a similar initial geometry to
the network in (A). Blue and red represent the lowest and highest initial osmolarities,

respectively, and white indicates the average of the two. [32]

rings studied in [32] and identify a buckling transition from a round to a polyhedral ring

after ring closure. The spirals provide an interesting example of an initial quasi-one-

dimensional structure generating a three-dimensional structure. Tetrahedra, the sim-

plest and least symmetric class of the regular polyhedra, can serve as mesoscopic build-

ing blocks for molecules and bulk materials with sp3-like directional bonding [37, 38].

We will also illustrate reversibility with shape shifting from a four-petal configuration

to a hollow sphere transition and back. This opens the way to osmotically-driven small

scale robotics.



Chapter 2

Endocytosis in yeast

2.1 Motivation

Endocytosis is the process by which extracellular agents are ingested by the cell as

a result of the cell membrane surrounding and engulfing them [4]. The membrane

then pinches off to form a vesicle that encloses the now intracellular material. Fig. 2.1

presents an electron micrograph image of a deformed cell membrane near pinch-off in

S. cerevisiae [39]. Experiments have identified a handful of core proteins, though there

are upwards of 50 proteins participating in the endocytotic machinery [5–7]. Live cell

imaging of these fluorescently labeled core proteins provide us with a sequence of events

for the endocytotic machinery [40, 41]. Though the composition and time-line of the

endocytotic machinery is known, in yeast, there are competing proposals about how

these few core proteins interact with the cell membrane to deform it into a vesicle [42–

44].

According to experiments, the sequence of events in the endocytotic machinery in yeast

is as follows [45, 46]. Clathrin is recruited to the invagination site [47], along with adap-

tor proteins, such as Sla1 and Ent1/2 [7]. Sla1 and Ent1/2 proteins bind the clathrin to

the membrane, while Sla2 proteins bind actin filaments to the membrane [7]. Another

protein, WASp, is also recruited to the site. WASp is an activator for the branching

agent Arp2/3, enabling a branched actin filament network to be generated near the

invagination site [40]. The growth of this network drives membrane tube formation.

BAR proteins eventually become prominent and help facilitate pinch-off of the mem-

brane [48]. Fig. 2.2 illustrates this process using what will turn out to be Proposal 1 for

the organization of the actin. The initial invagination due to clathrin and other adaptor

proteins takes about one to two minutes. The time for the tube to form and pinch-off, in

16
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Figure 2.1: An electron micrograph image of a deformed membrane during endocy-
tosis in S. cerevisiae. The image is reprinted with permission from [39]. The scale bar

is 100 nm.

contrast, takes only about 10-15 seconds. The length-to-radius ratio of the tube before

pinch-off is typically 7-10 [39] (Fig. 2.1).

Clathrin is one of the first proteins recruited to the endocytic site. Each clathrin molecule

is a nonplanar triskelion that can pucker in the center [49]. Clathrin molecules bind

together to form a basket-like structure as a result of the intrinsic curvature of the

molecules. Clathrin molecules, however, require adaptor proteins, such as Sla1 and

Ent1/2, to bind to the membrane [7, 50]. The spontaneous curvature of individual

clathrin molecules presumably helps initiate membrane deformation as they indirectly

attach to the membrane via adaptor proteins with the initial deformation being rather

small, in contrast to mammalian cells.

How the actin filament network reshapes the membrane is even less clear since there are

currently three competing proposals put forth by the biologists as to how this is done.

The first proposal (Proposal 1) argues that the barbed/plus ends of polymerizing actin

filaments are oriented towards the flat part of the membrane with the pointed/minus

ends anchored just above the clathrin bowl [42]. A second proposal (Proposal 2) argues

that a collar-like structure of plus end filaments anchored to the rest of the cytoskeleton
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Figure 2.2: Schematic for endocytosis in yeast using Proposal 1 for the actin fila-
ment organization: (a) Clathrin (purple) attaches to the membrane (black/blue) via
proteins Sla1 and Ent1/2 (not depicted here) and the protein Sla2 (green/brown) is
recruited near the clathrin. (b) Actin (red) attaches to the membrane near the edge
of the clathrin “bowl” via Sla2 and lengthens due to polymerization to initiate tube
formation. (c) Actin continues to polymerize and lengthen the tube. (d) BAR proteins
(orange) become prominent and surround part of the tube (and the actin). The grey
arrows denote the direction of the actin force on the membrane. Note that potential ad-
ditional actin filaments rooted in the surrounding cytoskeleton and extending towards

the invagination site not been drawn.

Figure 2.3: (a) Schematic depicts Proposal 2, where the actin filaments are tethered
to the rest of the cytoskeleton, as denoted by the two black Xs, and polymerize inward
towards the invagination site. (b) Schematic represents Proposal 3, where there are
two local anchoring regions such that two actin networks form to drive tube formation.

The grey arrows, again, denote the direction of the actin force on the membrane.

and oriented towards the neck of the deformation to elongate it and drive the pinch-

off [43]. A third proposal (Proposal 3) suggests that there are two regions of attachment

of the actin filaments to the membrane such that two branched actin networks are

generated [44]. The two networks repel each other as they grow because they cannot

interpenetrate and, therefore, drive tube formation. See Fig. 2.2b for a schematic of

Proposal 1 and Fig. 2.3 for a schematic for Proposals 2 and 3.

Each of these three proposals for endocytosis in yeast assumes its own respective organi-

zation for the actin filament network. Can any of these models be ruled out on the basis

that they do not provide the forces required to deform the cell membrane that is con-

sistent with observations? And what about the mechanism for pinch-off? Is there any

underlying instability, or is there a more engineered approach with the pinch-off occuring

at some fixed distance from the top of the invagination? We approach clathrin-initiated

endoctyosis in yeast by breaking up the sequence of fluid membrane deformations into
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three stages: (i) initiation, (ii) elongation, and (iii) pinch-off. In the process we identify

a possible mechanism that could assist in the pinch-off via a pearling-like instability,

where surface tension competes with bending energy in cylindrical vesicles such that,

for long enough cylinders, it is energetically favorable for the cylinder to break up into

spheres. An instability driven mechanism is potentially powerful given the ubiquitous-

ness of endocytosis.

This proposed pearling-like instability mechanism will be contrasted with a compet-

ing pinch-off mechanism put forth in Refs. [42, 51]. In this model, the cell membrane

is modeled as a fluid membrane—a two-component fluid membrane, where one com-

ponent consists of the nonscission region and the other component consisting of the

scission region such. Physically, the two regions correspond to hydrolyzed PIP2 and

non-hydrolyzed PIP2 regions. The increasing interfacial line tension between the two

components drives the pinch-off with the pinch-off distance always occuring at some

fixed distance from the top of the invagination site by construction, if you will. We will

ultimately compare and contrast our model with this earlier model and compare our

model with another more recent model in which the cell membrane is modeled as an

elastic membrane with a non-zero shear modulus [52].

In mammalian cells, the two key players in endocytosis are clathrin and dynamin, a

motor protein that drives the pinch-off, which is very different from yeast. One difference

between yeast and mammalian cells is the presence of a cell wall in yeast cells. This

wall is needed to prevent lysis due to an internal turgor pressure, which can be as large

106 Pa. It has been speculated that the presence of the turgor pressure biases the use of

F-actin as an invagination tool [53]. We will discuss the implications of turgor pressure

for our model throughout this work.

2.2 Model and methods

The energy of a bare membrane depends on its curvature [3] and can be written as

Ebare =

∫
dS
[
2κ (H − C0)

2 + κGK + σ
]

+ p

∫
dV, (2.1)

where C0 is a spontaneous curvature, κ is the membrane bending rigidity, κG is the

saddle-splay modulus, σ represents the surface tension, and dS represents the area of

an infinitesimal element of the surface. Finally, p represents the turgor pressure present

in yeast cells with dV the infinitesimal volume element for any deformation from a flat

surface.
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Beginning with the above energy functional, which models the energy of the deformations

of a bare cellular membrane, we systematically incorporate new physics associated with

the three stages of endocytosis by allowing the parameters to be component-dependent

or by adding new terms to the energy.

2.2.1 Initiation stage

Clathrin is one of the first proteins recruited to the endocytic site. Each clathrin molecule

is a nonplanar triskelion that can pucker in the center [49]. Clathrin molecules bind

together to form a basket-like structure as a result of the intrinsic curvature of the

molecules. Clathrin molecules, however, require adaptor proteins, such as Sla1 and

Ent1/2, to bind to the membrane [7, 50]. The binding process induces curvature in

the membrane. The membrane rigidity may also be affected by protein binding. In

fact, membrane rigidities depend on several factors, such as membrane lipid and protein

composition, to account for the range of values (tens of kBT ) that is reported in the

literature [54].

We encode the effect of the clathrin binding, via Sla1 and Ent1/2, to the cell membrane

with effective parameters characterizing the model of the cell membrane. The clathrin

indirectly binding to one side of the membrane induces spontaneous curvature in the

membrane. Since the clathrin indirectly binds only to part of the membrane, we study a

two-component membrane, one component denoting the bare membrane and the other

denoting the part of the membrane to which the clathrin is indirectly attached with

non-zero spontaneous curvature. We also vary the bending rigidity of the part of the

membrane to which the clathrin is indirectly attached.

The energy functional of the membrane for this initiation stage is given by [3]

Einit =
∑
i=1,2

∫
dSi

[
2κi (Hi − C0i)

2 + κGiKi + σi

]
+ p

∫
dVi (2.2)

where i = 1 denotes the Sla1/Ent1/2-bound membrane and i = 2 denotes the bare

membrane.

2.2.2 Elongation stage

We now ask how the emergent actin network exerts additional deformations/forces on the

membrane following the initiation of endocytosis. As shown in Fig. 2.2, the protein Sla2

is recruited to the invagination site before actin assembly. Sla2 binds to the clathrin and

the membrane near the clathrin, but, according to Ref. [7], Sla2 bound to the membrane
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near the top of the clathrin basket binds actin filaments. These Sla2 binding sites

provide localized binding/anchoring of the actin filaments to the cell membrane since

these Sla2 molecules are near the top of the clathrin basket, i.e. ”butting” up against

the elastic clathrin basket. Assuming the minus end of the actin filament anchors to the

cell membrane via Sla2, the plus end then polymerizes upward and ratchets against the

cell membrane. The asymmetry between anchoring at the minus end and ratcheting at

the plus end provides a time-averaged force to invaginate the membrane further into the

cell. Actin filament nucleation via Arp2/3 increases this force.

We, therefore, model the actin filament network as an applied force on the membrane

localized at these Sla2 anchoring points. The magnitude of this force is related to the

total number of actin filaments participating in the network, and this number has been

computed based on a combination of experimental data and kinetic modelling [55, 56].

We use the final configuration of the emergent actin network to determine the force

applied to the membrane. Given the observed tubular structure of the deformation, this

actin force is assumed to be axisymmetric with constant components in the radial and

−z (downward) directions, i.e. ~Fact = Fρ~eρ+Fz~ez. The actin force is imposed by adding

a linear potential of the form Vact (ρ, ϕ, z) = − (Fρρ+ Fzz) to the energy for the part

of the membrane to which the force is locally applied. The energy functional for the

elongation stage is

Eelong = Einit +

∫
d~r [Vact (ρ, ϕ, z) g (ρ, ϕ, z)

+Vster (ρ, ϕ, z) + Vpin (ρ, ϕ, z)],

(2.3)

where g (ρ, ϕ, z) = 1 for the region over which the actin force is applied and zero other-

wise. To distinguish between Proposals 1, 2, and 3, we explore different anchoring re-

gions and different ratios of the force components. Note also that Vster (ρ, ϕ, z < 0) =∞
for ρ > Rap and zero otherwise. This models the accumulation of the yeast actin

cytoskeleton just beneath the cell membrane and near the tubular invagination as it

emerges [43, 57]. The ρ > Rap, z > 0 region acts as a “reservoir” for tube growth.

We, therefore, impose an additional quadratic potential, Vpin(ρ, z) = 1
2βz

2 for ρ > Rap,

where β is chosen so that the membrane outside this region remains flat.

Pinchoff stage: Experiments indicate that the BAR proteins dominate in this last stage,

after the tubular-like deformation forms [39, 51]. This observation is rather perplexing

since BAR proteins, which themselves are curved, can, sense and generate spontaneous

curvature in the cell membrane [58]. In other words, why does actin play the dominant

role in generating the tubular-like deformation and not the BAR proteins? We suggest

that once a tubular-like deformation occurs, the BAR proteins surround and confine the

tube-plus-actin filament network near the top of the invagination site (see Fig. 2.2(d))
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to stop actin polymerization. The BAR proteins only sense curvature here, not generate

it. Since actin polymerization is driven by a ratcheting effect in a spatially fluctuating

membrane, when these spatially fluctuations are supressed, actin polymerization stops.

When the polymerization stops, no more membrane material can become part of the

tube. In other words, the membrane tube area remains constant. With the BAR proteins

confining the top part of the actin filament network against the membrane to couple the

network to the membrane, we introduce an additional energetic term to the system.

Now that the actin network has developed, we model it as an underlying elastic network

of springs. Because the actin network is now connected to the membrane (as opposed

to ratcheting against it in the elongation stage), the filament tips of the spring network

depends on the configuration of the membrane. As with any elastic network coupled to

a fluid membrane, the BAR protein-plus-actin filament contribution to the energy of a

now cylindrical membrane is [59]

EBAR+actin =
∑
<i,j>

µ

2
[~ri − ~rj ]2, (2.4)

where µ is the spring constant and i, j denotes the meshwork coordinates of the springs

on the surface of the membrane. Since the tube has now been formed, we will study a

cylinder membrane described by Eq. (1) with this additional energy, EBAR+actin. This

energy will turn out to raise the surface tension of the membrane. This calculation will

also suggest a new pearling instability pinch-off mechanism for endocytosis in yeast.

Methods: We utilize both analytical and numerical techniques to study the above model.

On the numerical side, we use simulated annealing Monte Carlo (MC) simulations to

identify low-energy structures, see Appendix C. In our simulations we represent the

membrane using standard techniques for constructing discrete surface triangulations

[60]. The discrete version of the bending energy in Eq. (2) is then implemented using

expressions introduced by Brakke[61]. The mean curvature at vertex i is given as a

Hi = 1
2
Fi·Ni
Ni·Ni

with Fi being the gradient of area and Ni being gradient of volume

calculated with respect to the coordinates of vertex i. The bending energy is then given

as Ebend = (H − C0)
2Ai/3, where Ai is the total area of triangles sharing vertex i.

The spontaneous curvature C0 is chosen according to the region of the membrane to

which the vertex belongs. Surface tension is computed as an energy penalty to change

the reference area of the membrane. Reference area A0 is chosen to be that of the

initial flat configuration. The energy associated with changes of the surface area is then

Esurface = σ |A−A0|, where A is the area associated with a vertex and computed as

one third of the sum of areas of all triangles sharing that vertex.
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To ensure that we simulate a fluid membrane, each MC step involves two steps [60]: i)

displace a vertex in a direction chosen at random uniformly from a cube [−0.05l0, 0.05l0]
3,

where l0 is the average edge length of the initial triangulation, and ii) flip an edge on

a rhombus. This flip removes an edge shared by two triangles and reconnects it so that

it spans the opposite, previously unattached, vertices [62, 63]. Moves are accepted or

rejected according to the Metropolis algorithm. The sweeps are continued until the total

energy does not change with some prescribed precision. Different random number gen-

erator seeds are used to ensure the reproducibility of the lowest energy configurations.

A typical run with Nv ≈ 3.5 × 103 vertices consists of ∼ 106 MC sweeps, with a sweep

consisting of attempted moves of each vertex and attempted flips of each edge. Any

moves or edge flips leading to unphysical self-intersection of the triangulation are re-

jected. This is achieved by endowing each vertex with a hard core of diameter b = 0.9l0,

and each edge with a tethering potential [60] with maximum length lmax = 1.4l0 such

that lmax/b ≈ 1.55. These values are chosen in accordance with Refs. [64, 65] to be

tight enough to prevent edge crossings but still allow edge-flips, thus ensuring fluidity.

Finally, the actin forces are applied to the vertices.

2.3 Results

2.3.1 Initiation stage with clathrin

To analyze the equilibrium shapes of the membrane in the initiation stage, we use the

Monge representation such that each coordinate on the membrane in three-dimensional

space is parameterized by two planar coordinates x and y with ~r = (x, y, z (x, y)). We

then assume axial symmetry so that ~r = (r, θ, z(r)). In the small gradient approximation

Eq. (2) simplifies to (see Appendix D):

Einit [z (r)] ≈
∑
i=1,2

∫ Ri

Ri−1

πκir
[
(∆z)2 − 4C0i∆z

+

(
2C2

0i +
σi
κi

)
(∇z)2 +

(
4C2

0i + 2
σi
κi

)]
dr

+
∑
i=1,2

∫ Ri

Ri−1

2πκGi

(
dz

dr

d2z

dr2

)
dr

+ σ0

(
2π

∫ R1

0

(
1 +

1

2
(∇z1)2

)
rdr −A

)
+ γ2πR1,

(2.5)

where A is the area of domain 1 (the Sla1/Ent1/2 bound component which is attached

to the clathrin basket), and σ0 is a Lagrange multiplier introduced to fix the area of
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domain 1. We have also introduced a line tension γ at the interface between the two

components—the bare component and the Sla1/Ent1/2 bound component (Ent1/2 are

the yeast homologues for epsin in mammalian cells). Finally, the radial coordinate of

the interface is denoted by R1, while R2 denotes the outer edge of the membrane. We

neglect the turgor pressure for now and address it towards the end of this subsection.

We now proceed with the variation of the Lagrangian, δEinit [z (r)] = δ
∫ R1

0 L1dr +

δ
∫ R2

R1
L2dr = 0 (see Appendix D). As for boundary conditions we demand that mem-

brane be continuous at the interface between the two components so that z1(R1) =

z2(R1) = z(R1). In addition, the membrane cannot have ridges for the bending energy

to remain finite so that z1
′(R1) = z2

′(R1) = z′(R1). For R2 → +∞, we have z2(R2) = 0

so that z2
′(R2) = 0. The radial symmetry demands that z1

′(0) = 0. With these condi-

tions, δz1, δz2, δR1, δz
′(R1), and δz1(0) are free variables, so the energy is minimized by

solving the following equations:

∂L1
∂z1
− d

dr

∂L1
∂z1′

+
d2

dr2
∂L1
∂z1′′

= 0 (2.6)

∂L2
∂z2
− d

dr

∂L2
∂z2′

+
d2

dr2
∂L2
∂z2′′

= 0 (2.7)

[
L1 − z1′

(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)
− z1′′

∂L1
∂z1′′

]∣∣∣∣
r=R1

=

[
L2 − z2′

(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)
− z2′′

∂L2
∂z2′′

]∣∣∣∣
r=R1

(2.8)

[(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)
−
(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)]∣∣∣∣
r=R1

= 0 (2.9)

[
∂L1
∂z1′′

− ∂L2
∂z2′′

]∣∣∣∣
r=R1

= 0 (2.10)

(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)∣∣∣∣
r=0

= 0. (2.11)

Solving Eqs. (6) and (7) leads to

z1(r) = c1 + c2 log(r) + c3I0(rξ1) + c4K0(rξ1)

z2(r) = c5 + c6 log(r) + c7I0(rξ2) + c8K0(rξ2),
(2.12)

where ξ21 = 2C2
01 +

σ1 + σ0
κ1

, ξ22 = 2C2
02 +

σ2
κ2

, and I0 and K0 denote the zeroth order

modified Bessel functions of the first and second kind. We can then use Eqs. (8) through

(11) and the boundary conditions to determine these 8 coefficients and σ0, R1.
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Figure 2.4: (a) Cell membrane profile, or z(x, y = 0), for the parameters stated in
the text. The red (medium grey) denotes the clathrin-bound part of the membrane,
while the blue (dark grey) denotes the bare membrane. (b) Top view of the two-
component membrane model using simulated annealing Monte Carlo methods. (c)
Side view of the same configuration. Both images have been rescaled accordingly for
presentation purposes. (d) Comparison of the maximum depth (or depth) obtained from
the numerical simulation (symbols) with the analytical solution (line) for the intiation
stage. All the parameters, except for the varying C01, are the same as the κG = 0 curve

in Fig. 2.4a.

For typical parameters for the two-component membrane we use κ1 = 20 kBT [66], κ2 =

10 kBT [54], C01 = 0.1 nm−1 [67], C02 = 0, κG1 = −0.83κ1 [68], κG2 = −0.83κ2, σ1 =

0.18 kBT/nm
2 [69], σ2 = 0.18 kBT/nm

2 [69], A = π100 nm2, and γ = 3 kBT/nm [70].

Given these parameters, the equilibrium shape of the membrane is plotted in Fig. 2.4a.

We see that a dimple emerges due to clathrin binding. This dimple finalizes the initiation

stage of endocytosis in yeast and sets the radius of the imminent tubular invagination.
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Fig. 2.4a contains two additional curves to assess the effect of non-zero Gaussian rigidity

κG. Prior work has found that differences in κG across a boundary can drive tube

formation in membranes [71]. We find, given the above parameters, that it is the non-

zero spontaneous curvature that instead drives the dimple formation. More precisely,

for C01 = 0, no dimple forms and for non-zero C01 and κG, the depth of the dimple is

enhanced only by about 14 percent.

Before concluding this subsection, we must point out that our method differs from an

earlier two-component “dimple” analysis [72]. First of all, Ref. [72] does not take into

account the C2
01(∇z)2 term [73], which is needed for consistency in the small gradient

expansion. Second, we take into account non-zero κG because κ1 6= κ2. Thirdly, to solve

for some of the coefficients, the earlier work imposes mechanical equilibrium conditions,

as opposed to implementing boundary conditions in the variation of the Lagrangian

directly.

Let us now address the presence of turgor pressure. Previous models use anywhere from

103 Pa [42, 51] to 105 Pa [52] since the turgor pressure at an endocytotic site has not

been measured directly. The turgor pressure could be lowered locally by a release of

osmolytes near the endocytotic site it as proposed in Ref. [52] based on experiments

presented in Ref. [74]. For the above set of parameters, using a turgor pressure p = 104

Pa, the energy contribution from the turgor term is 20 percent of the total energy in

the absence of the turgor pressure so that the depth of the dimple will decrease slightly.

For p = 103 Pa, the turgor energy is only 2 percent of the total energy in the absence

of the turgor pressure can be neglected, while for p = 105, a different parameter range

would need to be explored, such as the nonzero value of the spontaneous curvature of

the membrane whose effect will be described below. Of course, even in the absence of

turgor pressure, a depth of 7.7 nm is small such that it may be difficult to measure

given an EM pixel size of 2.53 nm [39]. The presence of 104 Pa turgor pressure further

decreases this depth. Thus, the membrane may not be perfectly flat when the actin

filaments begin to polymerize as speculated in [39].

We also conduct numerical minimization of the intiation stage (Figs. 2.4b and c). As a

check on our simulations, we compare the maximum depth of the dimple, i.e. |zmax(r)|,
as a function of C01, for the analytical calculation with the numerical one in Fig. 2.4d.

Here, each energy relaxation is performed starting from a flat configuration. We place a

flat patch of radius R2 = 40l0 on a hard plane parallel to the xy plane. We then assign

spontaneous curvature C01 to all vertices in the central region of radius rC01 = 6l0. We

use the energy functional in Eq. (2) with an additional interfacial line tension. Fig. 2.4d

shows the output of the simulation for the same parameters used in Fig. 2.4a, except

with additional C01 values. We find very good agreement between the two. Note that
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since non-zero κG does not drive the dimple formation (for the parameters studied), we

do not include it here.

2.3.2 Elongation stage via actin polymerization

Now that the initial small deformation due to Sla1/Ent1/2 binding the membrane to

the clathrin basket is formed, the overall radius of the tubular invagination is set. The

protein Sla2 next binds to and near the clathrin dimple. Only those Sla2 molecules

bound near the top of the clathrin dimple also bind to the actin to form a ring-like

structure of binding sites [7]. Since the clathrin dimple is elastic-like, it impedes motion

of the Sla2 molecules near the top of the clathrin dimple such that these Sla2 binding sites

provide for an anchoring of the actin filaments to the membrane to which a localized force

can be exerted. As the actin filaments polymerize, the interaction of the polymerizing

actin filament tips with the membrane is much more dynamic than the anchoring points

since actin filaments polymerize via a ratcheting effect. The membrane just provides

a constraint for the growing filament tips to ratchet against along the length of the

tube. This asymmetry in the force is needed for a deformation (other than due to a

random fluctuation) to occur. So we model the effect of the anchored at one end, and

polymerizing at the other, actin filaments as a localized force on the membrane via the

potential Vactin, as indicated in Eq. (3). In addition, the steric potential Vster models

the accumulation of the yeast actin cytoskeleton just beneath the cell membrane and

near the tubular invagination as it emerges [43, 57].

How large is this force? An estimate may be obtained from quantitative confocal mi-

croscopy measurements of 16 fluorescently labelled proteins involved in endocytosis in

fission yeast [55]. The mean peak for the number of G-actin molecules (monomeric

actin) is approximately 7500. Assuming all of these molecules polymerize to form actin

filaments of about 100 nm in length [56] and each G-actin molecule is 2.7 nm in length

(5 nm in diameter) then each filament contains about 40 molecules. About 200 actin

filaments would then be formed. Each actin filament contributes approximately 1 pN of

force, since the stalling force of an individual actin filament is approximately 1 pN [75].

The total force is then approximately 200 pN , which is applied to the anchoring region

of the actin filaments. Since we do not take into account dynamics explicitly, we will

merely implement the final value of the total force rather than increasing the force as the

actin network develops. In the quasistatic limit the two approaches should be equivalent.

We now turn to the direction of the actin polymerization force and review the three

different proposals for the actin filament orientation [43, 44, 51]. As shown in Fig. 2.2,

actin filaments polymerize “upward” and branch via Arp2/3 to drive the membrane
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further into the interior of the cell. In Proposal 1, the force is predominantly downward,

as opposed to radially inward, provided the initial actin filaments are aligned less than

45 degrees to the normal of the undeformed membrane. Assuming the orienation of the

anchored actin filaments stays relatively fixed as branched actin filaments are generated,

then the magnitude of the total actin force increases, whilst remaining fixed in direction.

Here we assume axial symmetry so that there are only two non-zero components of the

total force.

How do the competing Proposals 2 and 3 compare with Proposal 1? In Proposal 2 the

actin network grows inward from the outerlying cytoskeleton towards the invagination

site. The actin network is anchored to the outerlying cytoskeleton, as opposed the cell

membrane, via Sla2. If we assume a purely radially inward force then the membrane

will not deform into a tube with the observed length-to-radius ratio of approximately

10. The branched structure of the actin network, however, can provide a downward

component to the total force to elongate the tube (Fig. 2.3a). We, therefore, distinguish

Proposal 1 as a case where the downward component of the total polymerization force

is smaller than the radially inward component, whilst in Proposal 2, it is the reverse.

Proposal 3 assumes that there are two anchoring zones for actin filaments—one towards

the bottom of the emerging tube and another one near the top of the tube. From these

two anchoring zones emerge two actin networks simultaneously growing towards each

other and, thus, repelling each other since the actin filaments cannot interpenetrate

(Fig. 2.3b). It is this repulsion that presumably elongates the tube. Coexistence of a

downward force component and an upward force component, however, demands that

the membrane simply stretches like a rubber band with no new cell membrane material

being added to the tube. Because the cell membrane is bending dominated (and not

stretching dominated), Proposal 3 would presumably lead to rupture of the tube [76].

It is not as likely that Proposal 3 contributes to membrane tube formation and we do

not study it further as an elongation mechanism.

So we focus on Proposals 1 and 2 for the elongation stage by promoting them to Mod-

els 1 and 2, respectively, and study them quantitatively. To gain some insight, we first

review a slightly simpler model, again, first in the absence of turgor pressure. Consider

a bare (one-component) membrane with downward force F applied just to the origin,

as opposed to being applied over an extended region of the membrane [77]. Assume

the membrane has bending rigidity κ and surface tension σ. For a cylindrically shaped

membrane with a length L and radius R, surface tension favors reducing the radius

of the cylinder/tube, while bending favors a larger radius. Upon minimizing the en-

ergy, one obtains an equilibrium radius of Req =
√
κ/2σ and an equilibrium force of

Feq = 2π
√

2σκ. For forces less than Feq, the membrane deformation is a wide-necked
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depression and reaches some equilibrium depth that depends on the force, while for

forces greater than Feq there is a first-order transition to a cylindrical shape of arbi-

trary length. Simulations of the membrane shape equation indicate that there is a force

barrier from the wide-necked depression to cylinder formation that is 13 percent larger

than Feq [77]. Barriers are a characteristic signature of first-order transitions. Monte

Carlo simulations of pure downward pulling on a membrane over an extended region (as

opposed to a single point) support this scenario with the force barrier increasing linearly

with the size of the region over which the force is exerted [78].

Now consider Models 1 and 2 with an additional radially inward force and a steric

interaction between the membrane and the actin. To begin, we expect the radially

inward force to increase the force barrier to arbitrarily long cylindrical formation. We

also expect the steric interaction to alter the transition since Rap cuts off the wide-neck

depression and makes it easier to cross-over to long cylinder formation. More specifically,

we expect that as Rap decreases, the change from non-cylindrical to cylindrical occurs

at a lower applied force. This effect has been observed in Monte Carlo simulations of

driving fluid vesicles through a pore [79].

To test these notions we study the extension-force curve of tube/cylinder formation for

the various models. We do so numerically because Vact (Eq. (3)) is a potential localized

to a particular region of the membrane, which would be difficult to handle analytically.

We first apply a purely downward force to a ring of vertices right above the Sla1/Ent1/2

attached part of the membrane. We dub this model, Model 0. The magnitude of the

total force is denoted by Ft and is distributed uniformly among the vertices. Since

κ1 = 10 kbT and σ = 0.18kB T/nm, Feq ≈ 49 pN(for the applied point force). To

numerically determine Feq0, the Feq equivalent for Model 0, we pull on the ring with

initially 50 pN of total force, Ft, and Rap = 15 nm. We then reinitialize Ft to take

on smaller values and look for the Ft at the boundary between tubes becoming shorter

and tubes becoming longer. We find that Feq0 ≈ 25 pN using this algorithm. To study

the force barrier, we find that deformations for Ft < 30 pN are reasonably robust to

perturbations (stepping Ft up and back down again) such that 30 pN is a lower bound

for the barrier. See Fig. 2.5b.

We now add a radially inward force component to the force applied to the ring of vertices

to address Models 1 and 2. How does this radially inward modify the shape crossover

due to the downward component of the force? For a purely radially inward force applied

to the ring of vertices, the membrane will pucker inward where the force is applied and

no cylindrical tube will form. The additional radially inward force increases the force

barrier to long tube formation. In Model 1 the actin filaments are anchored at the

bottom of the tube so that the downward component of the force is larger than the
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radially inward component. We assume that ~Ft =
√

2/3Ft~ez +
√

1/3Ft~er, which would

correspond to actin filaments anchoring at an angle of approximately 35 degrees with

respect to the normal of the flat part of the membrane. In Model 2 the radially inward

component of the actin polymerization force is larger than the downward component,

so we choose ~Ft =
√

1/3Ft~ez +
√

2/3Ft~er.

Fig. 2.5c depicts the depth-versus-total force curve for both models as well as two mem-

brane configurations for Model 1. The tubes are reasonably robust to perturbations for

all forces studied suggesting that the cross-over to long cylinders is not made. Even

though the downward component of the force is increased, it is not enough to overcome

the increasing force barrier introduced with the increasing radially inward force as well.

For large enough radially inward forces, the tube depth begins to decrease resulting in a

nonmonotonic depth-versus-total force curve. As the contribution of the radially inward

force increases, it is energetically more favorable for the membrane to deform inward as

opposed to elongate. Fig. 2.5d depicts two equilibrium configurations for Model 1. For

the values of Rap studied, 12− 18 nm, the tube depth increases only by several percent

with increasing Rap. In other words, the applied force clearly plays the dominant role.

Now on to Model 2. All tubes are reasonably robust to force perturbations, just as in

Model 1, and the depth-versus-total force curve is also not monotonic. The largest depth

of the membrane deformation for Model 2 is about 65 nm. While there is indeed some

room to play with the ratio of the magnitude of the two components, we contend that

Model 1 may better account for the range of observed tube depths [39]. Hindsight tells

us that Model 1 would be more reasonable in obtaining longer tubes, but such depths

could have been much longer than the observed ones. The nonmonotinicity suggests an

optimal force of around 100 pN , should long tubes be the optimizing principle. And

while Model 2 may not necessarily act as the initial driving force to elongate the tube,

we address an important role for Model 2, and one aspect of Proposal 3, during the final

stage of endocytosis.

To investigate the role of turgor pressure in Models 1 and 2, we find that as the tur-

gor pressure increases to 103 Pa, our previous results are robust. However, for turgor

pressures above this value, the depths of tubes (for a given total force) decrases. See

Fig. 2.5c. So the presence of large turgor pressure biases Model 1 even more so. However,

for p = 104 Pa, since the largest depth is approximately 55 nm, to account for larger

observed depths, one can invoke the presence of myosin I to allow for extra downward

force to increase the depth of the tube [80, 81]. Myosin I bind the membrane to the actin

filaments. It has been estimated that there are approximately 300 myosin I molecules

at each endoyctotic site, each exerting 2 pN of force [82] (assuming myosin I carry the

same force generation potential as myosin II) to arrive at a maximal downward force of



Chapter 2. Endocytosis in yeast 31

Figure 2.5: (a) Simulation results for Model 1 with total applied force Ft = 10 pN .
The total force is applied to only the yellow (light grey) part of the membrane (at the
vertices). Red (medium grey) denotes the Sla1/Ent1/2 bound part of the membrane and
blue (dark grey) denotes the bare membrane. (b) Same as (a) except with Ft = 50 pN ;
(c) Comparison of the depth as a function of Ft for three different models with zero
and nonzero turgor pressure, p. Again, the error bar is of order the symbol size. The

arrow pointing downward denotes the value of Feq for reference .

600 pN. Such an additional downward force component would allow for long tubes even

in the presence of larger (104 − 105 Pa) turgor pressures.

2.3.3 Pinch-off stage via the pearling instability

Experiments indicate that the BAR proteins enter in this last stage, after the actin

filament network has formed [39, 51]. Yet many qualitative depictions of the process

show the BAR proteins in between the membrane and the actin filament network [51].

BAR proteins have been shown to generate spontaneous curvature in membranes [58].

Since the BAR proteins enter after the tube has formed [39, 51], there is no need to

generate spontaneous curvature, only sense it. We suggest a potentially new role for

BAR proteins here beyond just sensing curvature. Once the tubular-like deformation

via the actin filament network occurs, the BAR proteins surround and confine the tube-

plus-actin filament network toward the top of part of the tube where bare membrane is

exposed to the BAR proteins (Fig. 2.2d). By surrounding the actin filament network

and suppressing the fluctuations of the bare membrane, actin polymerization stops since

polymerization is driven by a ratcheting effect in spatially fluctuating fluid membrane

(and by the entropically elastic actin network [83]). When actin polymerization stops,

no more material can become part of the tube, and the membrane tube area remains

constant.
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Because BAR proteins confine part of the actin filament network it is now restricted

to lie on the membrane. This effect will generate a new contribution to the membrane

energy as indicated in Eq. (4), where the coordinates of the network are the coordinates

of the membrane. The actin filament network is modeled as an elastic network with

spring constant µ [59]. Since actin filaments are semiflexible polymers with a persis-

tence length of about 20 µm, the elasticity comes from elasticity of the Arp2/3, the

branching agent responsible for nucleating new filaments. The entropic angular spring

constant for Arp2/3 is approximately 10−19 J/rad2 [84], so for branches several actin

monomers long, the entropic linear spring constant, µ ≈ 10−2 N/m, or 2.5 kBT/nm
2.

This additional elasticity contributes to the membrane surface tension with the effective

membrane surface tension becoming σeff = σ + µ/2, at length scales larger than the

meshsize of the actin network.

How does this increase in surface tension affect the membrane+actin+BAR-protein sys-

tem? We investigate configurations of a cylindrically shaped membrane with bending

rigidity κ and increasing surface tension to answer this question. Could such an in-

crease lead to destabilization of the cylindrically-shaped membrane? As the surface ten-

sion increases, a sinusoidal perturbation may perhaps lead to the cylindrical membrane

breaking up into spherical droplets as surface tension favors spheres. This mechanism

is otherwise known as the pearling instability [85, 86].

Is this instability relevant to the system at hand? Analytical analysis of this instability

is included in the Appendix E to address this question. This analysis suggests that

the pearling instability may be relevant to the system at hand given the physiological

parameters. For the relevant range of wavevectors (less than 0.1 nm−1), the cylinder

is only stable when σR2
o/κ < 2.39, where Ro = 8.71 nm, the original radius of the

unperturbed cylinder and κ = 10 kBT . The length-to-radius ratio of the initial cylinder

is 10. This inequality, however, depends on the strength of the perturbation.

To analytically investigate the pearling instability, the volume is assumed to be constant

such that the turgor pressure is not important (see Appendix E). This constraint is

imposed so that the membrane does not shrink to a point once the surface tension term

dominates. While, indeed, the invagination is an open system so that the volume of

the tube may change slightly, as long as the volume remains finite a pearling instability

can set in for some range of parameters. Pearling instabilities have been experimentally

observed in open tubes in vivo and in vitro [87, 88].

We implement numerical simulations to numerically test for this instability. We start an

initial configuration of a triangulated capsule (as opposed to cylinder) with the above

parameters and then vary σ. As indicated in Fig. 2.6, the pearling instability mechanism

sets in once σR2
0/κ is large enough. In this case, the surface tension must increase by an
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order of magnitude for the instability to set in. This increase by an order of magnitude

is precisely the contribution of the Eact+BAR term in the energy increasing the surface

tension from σ ' 0.1 kBT/nm
2 to σ ' 1 kBT/nm

2!

Figure 2.6: The pearling instability for a cylindrical membrane with increasing surface
tension going from left to right, or σR2

o/κ = 0.267, 2.67, and 4.15 respectively. The top
and red part of the tube are fixed.

Once the membrane breaks up into spheres, the spheres remain connected, as observed

in experiments [85, 89]. This observation differs from the Rayleigh-Plateau instability,

where the spheres do not remain connected. So how does the vesicle nearer to the

interior of the cell break off from the upper part of the tubular membrane? The most

natural answer would be via actin polymerization. Proposals 2 and 3 both provide

mechanisms for some downward-directed actin polymerization on the vesicle to drive

it further into the cell. In Proposal 2 actin filaments polymerizing inward from the

surrounding actin cytoskeleton towards the invagination sites can facilitate break-off of

the vesicle by making a comet tail behind it. Such an actin comet tail has indeed been

observed in experiments [43]. In Model 3 anchoring regions of actin filaments to the

membrane near the top of the invagination region, while elongation is occuring, could

initiate downward actin polymerization. These filaments can then also drive the break

off of the vesicle nearer to the interior of the cell from the “top” sphere. Both routes

may be important for the final break-off of the vesicle.
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2.4 Discussion and conclusion

We have developed and analyzed a quantitative three-stage model for endocytosis in

yeast that is consistent with the experimental data [46]. We first built a model for the

initial small membrane deformation due to clathrin indirectly binding to the membrane

via Sla1/Ent1/2. We demonstrated that the Sla1/Ent1/2-bound domain initiates invagi-

nation of the membrane by forming a small depression, or dimple, to set the radius of the

subsequent tubular invagination. This subsequent tubular invagination is driven by actin

polymerization forces, which we model as an external force applied to the membrane.

We found that of the three competing proposals in the literature for the orientation of

the actin filaments in driving tube formation, one proposal (Proposal 1) [51] is most

likely to account for the observed tubular lengthscales of the cell membrane in endo-

cytosis in yeast [39]. For turgor pressures smaller than 103 Pa, our results predict the

applied force that optimizes the length of the tube, where the largest length-to-radius

ratio is approximately 10. For turgor pressures larger than 103 Pa, myosin I, an actin

motor that binds directly to the cell membrane so that it can enhance actin-dependent

forces on the membrane, can potentially account for the large length-to-radius ratio [80].

The combination of this large ratio and the effective surface tension increases due to the

presence of BAR proteins confining the actin filament network against the tubular cell

membrane (Fig. 2.2d) naturally motivates that the pearling instability may assist in

the scission mechanism. We showed that the pearling instability may promote spherical

vesicle formation by both analytical calculations and simulations given the physiological

parameters involved in endocytosis in yeast.

Let us contrast our model with an earlier model for endocytosis in yeast [42, 51]. In

the latter, the coordinated effect of protein-induced lipid phase segregation along the

tubule plays a key role in vesicle scission. The phase separation between hydrolyzed and

non-hydrolyzed PIP2, a membrane-bound protein to which actin attaches, calls for a

two-component fluid membrane and induces an interfacial line tension between the two

components to drive pinch-off. The effect of actin in this model is to decrease the effective

surface tension of the membrane, which makes it easier for the interfacial line tension to

scission the membrane and is rather different than the effect of actin in our model. We,

however, model the actin as an applied force and are able to generate tube formations

as a result. The competing quantitative model is not able to generate tubes explicitly

given the manner in which actin polymerization is incorporated into the model. We

also demonstrate that the pearling instability could potentially facilitate pinch-off. The

frequency of endocytosis in budding yeast, invaginating its total cell membrane surface

in about 100 minutes [39], suggests that an instability, as opposed to coordinated effort

involving lipid phase separation, would be useful. The observation that scission occurs at
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a range of invagination depths also favors an instability as opposed to a more regulated

mechanism. Comparison with another recent model is rather difficult since this new

model assumes that the cell membrane is an elastic membrane with a nonzero shear

modulus rather than assuming the cell membrane is a fluid one [52]. The formation

of tubes in elastic membranes is very different from the formation of tubes in fluid

membranes, where there is no shear modulus.

While we have presented a quantitative model for endocytosis in yeast, how much of

this story applies to endocytosis in mammalian cells? More spherical-like membrane

deformations are generated in mammalian cells due to clathrin cage formation and the

motor protein, dynamin, driving pinch-off? Many of the same proteins involved in yeast

clathrin-mediated endocytosis (CME) are conserved in mammalian CME [6]. It could be

that the presence of the turgor pressure in yeast makes clathrin cage assembly difficult,

but clathrin basket assembly less difficult given the much smaller change in volume for

the basket. Then it is up to the actin, etc. to finish the job. As some of our results

depend on the strength of the turgor pressure, it would be good to measure it directly at

an endocytotic site. There is also another route to endocytosis in mammalian cells via

the CLIC/GEEC pathway, which does not require clathrin or dynamin, and forms more

tubular deformations as observed in yeast [90]. The requirement for actin in mammalian

CME has been less clear. Several new studies in mammalian cells provide support for

an actin requirement in the invagination and late stages of CME [6]. On the other hand,

a recent in vitro experiment with clathrin and dynamin suggest that these two proteins

are sufficient to drive endocytosis in mammalian cells [91]. In light of this experiment,

it would be interesting to revisit the modeling of endocytosis in mammalian cells [92].

It may also be useful to investigate how the modeling presented here can be extended to

enveloped virus entry [93], extocytosis, and budding to form a more unified theoretical

framework for cell membrane deformations used to transport material in and out of the

cell.
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Mechanics of anisotropic spring

networks

3.1 Motivation

The onset of rigidity in disordered spring networks has been studied as a model for elas-

ticity in disordered materials. Such a model undergoes a phase transition from not-rigid

to rigid at some critical fraction of springs (bonds) [15, 94–96]. Numerical simulations

on a bond-diluted triangular lattice suggest that the transition is a continuous one with

the percolating rigid cluster having a fractal dimension at the transition [17, 95]. To

date, one of the few theoretical tools to analyze rigidity percolation is effective medium

theory (EMT). In 1985, an effective medium theory was developed by Feng, Thorpe,

and Garboczi analytically capturing the relationship between disorder and mechanical

response in these systems in good agreement with numerical simulations [18, 19, 97].

We now extend this theoretical framework – the EMT and the numerical simulations –

to a disordered spring network with anisotropy. Anisotropic networks abound in nature

and man-made materials, and are an important class of soft matter. Consider, for exam-

ple, an orientationally ordered, but spatially disordered, network made of liquid crystal

elastomers. The interplay between the gel-sol transition and the isotropic-nematic tran-

sition in both synthetic and biological systems has been studied [98, 99]. Consider also

a layered, but disordered, system of granular particles [100]. What are the macroscopic

elastic properties of such a system? Some properties have been analyzed in the ordered

case [101, 102], but the disordered case is more complex and has received less attention.

Finally, the cytoskeleton, the filamentous scaffolding that provides most animal cells

their shape and rigidity, can consist of rather oriented, cross-linked filaments such as in

lamellipodia, the broad, thin protrusion at the leading edge of a crawling cell [103, 104].

36
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While we focus on extending the analytical framework of effective medium theory to dis-

ordered linear spring networks with anisotropy, the rigidity transition in “super-elastic”

anisotropic central-force networks has been studied in prior work by Roux and Hansen

and Wang and Harris [105–107]. In these “super-elastic” networks, all bonds in a pre-

ferred direction are occupied with springs, and bonds in other directions have infinite

rigidity with a probability p and a finite rigidity with a probability 1 − p. In addi-

tion to determining the rigidity percolation threshold, the notion of splay rigidity, in

which only rotational degrees of freedom are frozen out, and a mapping to a random

resistor network for the bulk modulus is discussed [106]. Some of their results can be

extended to the usual bond-diluted system that we study here. However, there remain

open questions about the interplay between anisotropy and rigidity in these systems. In

particular, one can ask how does the difference in the directional occupation probability

of springs influence the mechanical response of the network, and how does this couple

to the direction of the applied deformation?

To answer these questions, we investigate a triangular lattice based anisotropic bond-

diluted network and study how the anisotropy in the occupation of the springs influences

the ability of the network to bear stresses using an effective medium theory and numerical

simulations.

3.2 Model

We begin with a fully ordered, but anisotropic network of springs arranged in a two-

dimensional triangular lattice. The bonds are given an extensional spring constant α for

springs in the x direction, and γ for springs making 60◦ and 120◦ angle to the x direction,

i.e. having a y component. We then introduce disorder into the system by removing

bonds along the x direction with probability 1−px, where 0 < px < 1, and bonds with a

y component with probability 1−py, where 0 < py < 1. There are no spatial correlations

between these cutting points in either case. This generates a disordered network with

a broad distribution of spring lengths in either direction. When two springs intersect,

there exists a cross-link preventing the two springs from sliding with respect to one

another, but they can rotate freely without any energy cost.

We study the mechanical response of this disordered network under an externally applied

strain in the linear response regime. For simplicity we set the rest length of the springs to

unity. Let rij be the unit vector along the spring ij and uij = ui−uj be the deformation

of this spring. For small deformations, the deformation energy can be written as follows:
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Figure 3.1: Schematic figure showing the randomly diluted anisotropic spring network
with corresponding occupation probabilities px and py.

E =
α

2

∑
〈ij〉

px,ij (uα,ij .rα,ij)
2 +

γ

2

∑
〈ij〉

py,ij (uγ,ij .rγ,ij)
2 , (3.1)

where px,ij (py,ij) is the probability that the ij bond in the x (y) direction is occupied

as shown in Fig.3.1 and a is the lattice spacing and is set to 1. The deformation energy

corresponds to the cost of extension or compression of the springs. Although the model

allows for anisotropy in disorder as well as in constitutive elasticity of the springs, we have

set the bare elastic constant of both types of springs to have the same value (α = γ = 1

in arbitrary units). We investigate the shear and bulk moduli of this disordered network

as a function of the direction dependent occupation probability of springs in response

to suitable strains imposed on the boundaries.

3.3 Methods and Analysis

3.3.1 Constraint counting argument and the rigidity threshold

We start with a constraint counting argument due to Maxwell [16, 18, 108], a very

powerful and simple way to estimate at what occupation probability the phase transition

takes place. Consider a d dimensional system with N particles or points, and hence Nd
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degrees of freedom. The number of zero-frequency modes (φNd), where 0 < φ ≤ 1, is

equal to the number of degrees of freedom (Nd) minus the number of constraints, which

in this case is (12zxNpx+ 1
2zyNpy), where zx is the number of nearest-neighbor points in

the x direction and zy is the number of nearest-neighbor points in the y direction. Here,

zx = 2 and zy = 4. Hence, the fraction of zero-frequency modes is

φ = 1− (
1

2
px + py).

So the transition takes place when φ goes to zero or

px
2

+ py = 1.

In Fig. 3.2, we show the rigidity phase diagram of the disordered network, as a function

of the occupation probability px and py of springs in the x and 60◦ and 120◦ to the

x direction, respectively. We also show the network structure for three representative

points in the rigid phase of the phase diagram: px = 1, py = 1, px = 0.75, py = 0.90,

and px = 0, py = 1. In what follows we investigate how the mechanical response of the

system changes as the network is progressively diluted, finally reaching the transition

threshold. To accomplish this objective, we have used an effective medium theory and

an energy minimization approach, which we describe below.

3.3.2 Effective Medium Theory

We study the mechanical response of this disordered network for small deformations

using an effective medium theory [15, 18, 19, 97, 109]. The aim of the theory is to

construct an effective medium or ordered network that has the same mechanical response

as the depleted network under consideration. The effective filament stretching elastic

constants are determined by requiring that strain fluctuations produced in the original,

ordered network by randomly cutting filaments have zero average.

We first illustrate how the effective medium elastic constant can be calculated for the

simple case where we apply a uniform strain on an isotropic central force network, so

that all bonds are equally stretched by an amount δ`m with effective medium spring

constant αm. Let us now replace a spring between two points, say, i and j by different

one with spring constant α. It would lead to additional extension or compression of this

spring, which we calculate as follows [18, 19].

The virtual force necessary to return i and j to their original positions before the re-

placement of the spring is f = δ`m(αm − α). If this force is now applied between i and

j in the unstrained and ordered network, it will lead to a deformation δu of this spring
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Figure 3.2: Plot of the phase diagram according to mean field constraint counting
argument, with the inset showing the shear modulus G as a function of px and py
obtained from the EMT in units of γ (set to unity) and the horizontal lattice spacing

(set to unity). Different lattice realizations are also shown.

given by f/δu = αm/a
∗. The effective spring constant αeff = αm/a

∗ takes into account,

through the dynamical matrix, the elasticity of the entire network including the direct

connections between these points. If the force f is applied now on an unstrained network

where the spring between i and j has been replaced by a spring with stretching constant

α, f/δu = αeff = αm/a
∗ − αm + α. Therefore change or fluctuation δu of the bond

between i and j is given by

δu = δ`m
αm − α

αm/a∗ − αm + α
. (3.2)

It follows from the superposition principle that this fluctuation δu is the same as the extra

extension or compression in the strained network due to the replacement of the bond

ij. Considering random bond dilution in the network and defining an effective medium

such that the fluctuations δu should vanish when averaged over the entire network,

〈δu〉 = 0. (3.3)
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For a distribution of bonds P (α′) = pδ(α′−α)+(1−p)δ(α′), with p being the probability

that a bond is present, the effective medium spring constant αm is given by:

αm
α

=
p− a∗

1− a∗
, (3.4)

with a∗ = 2
Nz

∑
q Tr

[
D(q)D−1(q)

]
= 2/3 for a central force network [18].

Now let us consider an anisotropic network where the spring constant and probability of

occupation for springs in the x direction (α, px) and springs making 60◦ and 120◦ angles

with the x direction (γ, py) are different as described in Eq. 3.1. We decompose the

triangular lattice system into two interconnected subsystems as shown in the schematic

(Fig.3.1) and calculate the stretching forces and strain fluctuations uα and uγ for these

two subsystems separately. For small deformations, the restoring forces on the springs

are given by:

F α,ij = αm
∑

uα,ij · rα,jk rα,jk

F γ,ij = γm
∑

uγ,ij · rγ,jk rγ,jk (3.5)

The x and y components of the deformation can be written as uα,γ(q) = −D−1(q)F α,γ(q),

where D(q) is the dynamical matrix [18] of the fully ordered lattice. Following the pro-

cedure for the isotropic network discussed above, we can calculate strain fluctuations in

the depleted network, and effective medium elastic constants αm and γm by demanding

that the strain fluctuations vanish when averaged over the entire network. Since we con-

sider uncorrelated distributions of the elastic constants α and γ, the effective medium

elastic moduli αm and γm are given by

αm
α

=
px − a∗

1− a∗
γm
γ

=
py − b∗

1− b∗
, (3.6)

above the rigidity percolation threshold, and αm = γm = 0 below, with px and py at

the threshold obeying the constraint condition py + px/2 = 1 as discussed earlier. The

geometric constants a∗ and b∗ represent the whole network contribution to the effective

spring constants αm/a
∗ and γm/b

∗ of the bonds. When the network is strained springs

in the y direction will contribute to the elasticity in the x direction and vice versa due

to the coupling between the two-sublattices accounted for by a∗ and b∗. They are given
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by:

a∗ =
2αm
Nzα

∑
q

Tr
[
(1− e−iaq.rα,ij )rα,ijrα,ijD−1(q)

]
b∗ =

2γm
Nzγ

∑
q

Tr
[
(1− e−iaq.rγ,ij )rγ,ijrγ,ijD−1(q)

]
. (3.7)

The sum is over the first Brillouin zone and zα,γ are coordination numbers, and rα

are unit vectors along bonds with spring constants α, i.e. bond that were originally

along the x direction, while rα,γ are unit vectors along bonds with spring constants α, γ

in the original undeformed lattice. The above definition of a∗ and b∗, together with

fact that in the fully ordered triangular lattice network, 1/3 of all the bonds have a

spring constant α and 2/3 of the bonds by spring constants γ lead to the constraint

condition: 1
3a
∗ + 2

3b
∗ = 2

3 . At the rigidity percolation threshold, a∗ = px and b∗ = py,

and thus px
2 + py = 1, in agreement with the Maxwell constraint counting. We obtain

the effective medium spring constants αm and γm by solving equations (3.6) and (3.7)

simultaneously. These elastic constants describe an ordered network that has the same

mechanical response as the original depleted network, and can be used to calculate the

shear and bulk moduli of the latter as discussed in Section IV.

3.3.3 Numerical Simulations

Simulations are conducted on the triangular lattice with system size Nx = Ny = 128

(shown unless otherwise specified). The network is initialized by adding bonds in the x

direction with probability px, and the bonds with a y component with probability py.

Since the model system is anisotropic, there exist more than one shear modulus. We

calculate the following shear response: a shear deformation is applied to two fixed bound-

aries along the x direction with strain magnitude ε = 1%, while the other two boundaries

are periodic. Our simulations suggest that the mechanical response of the network may

be reasonably approximated by linear response at such strains. Then the network is

relaxed by minimizing the total energy of this system using the conjugate gradient

method [110] allowing the deformation to be fully propagated. Eventually a minimum

energy state is be found within the tolerance 10−8 with energy Emin. Then the shear

modulus is calculated by G = 2Emin
AunitNxNyε2

,where Aunit =
√
3
2 , denoting the area of one

unit cell with unit bond length. Sample averaging is performed over 10 runs typically.

For the measurement of bulk modulus, a small (ε = 2%) uniform strain is applied to all

four fixed boundaries. Once the system energy is minimized, we calculate the energy

Ebox from part of the network within a box in the center of the system with box size
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N ′x = N ′y = 108. The bulk modulus is then calculated by K = 2Ebox
aunitN ′xN

′
yε

2 , where

Aunit =
√
3
2 .

3.4 Results

We now discuss our main results on the mechanical response of the anisotropic disor-

dered network under the shear and hydrostatic strains. To compare the results of the

simulation on the shear modulus G and bulk modulus K of the network with the effec-

tive medium theory, we first calculate the corresponding effective medium predictions

in terms of the previously calculated spring constants αm and γm. To do so, consider a

fully ordered triangular network with central force interactions only. For small, uniform

deformations, the strain energy density of a unit hexagonal cell is given by

F =
1

4
√

3
Σ6
b=1α

(b)n
(b)
i n

(b)
j n

(b)
k n(b)m uijukm, (3.8)

where the superscript b = 1, 2, 3, 4, 5, 6 represents the six nearest neighbor bonds in the

unit cell and α(b) is the corresponding spring constant.

For the system under study, the unit vectors n(b) and respective angles θ(b) for the springs

with spring constant α are given by

θ(1) = 0, n
(1)
1 = 1, n

(1)
2 = 0 (3.9)

θ(2) = π, n
(2)
1 = −1, n

(2)
2 = 0

Similarly, for springs with γm,

θ(3) =
π

3
, n

(3)
1 =

1

2
, n

(3)
2 =

√
3

2
(3.10)

θ(4) =
2π

3
, n

(4)
1 =

−1

2
, n

(4)
1 =

√
3

2

θ(5) =
π

3
, n

(5)
1 =

1

2
, n

(5)
2 =

−
√

3

2

θ(6) =
2π

3
, n

(6)
1 =

−1

2
, n

(6)
2 =

−
√

3

2
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With these inputs, the deformation energy density F of the effective medium anisotropic

network is given by [102, 111]:

F =
1

8
√

3
[(8αm + γm)uxx

2 + 9γmuyy
2

+ 6γmuxxuyy + 3γm(uxy + uyx)2]

(3.11)

The stress components can then be calculated using σij = ∂F
∂uij

, and can be used to

calculate the direction dependent shear and bulk moduli as shown below [112].

In the simulation we calculate the shear modulus corresponding to the boundary applied

shear strain uxy, and the 2D bulk modulus corresponding to a hydrostatic compression.

The shear modulus for a shear strain applied via the boundaries along the x direction

at Ly = 0 and Ly =
√
3
2 (Ny − 1) (in units of the lattice spacing) is given by

G =
σxy
uxy

=

√
3

4
γm. (3.12)

Under the hydrostatic compression of the system, the network undergoes a uniform

compression by an amount δ in both x and y directions. Clearly uxx = uyy = δ and

uxy = 0. The area bulk modulus is given by

K =
σK

∆A/A
, (3.13)

where the hydrostatic stress σK is given by σK =
σxx+σyy

2 = (αm+2γm)δ√
3

, and the change

in area of the system relative to its original area is given by ∆A/A = uxx + uyy = 2δ.

The area bulk modulus is then K = αm+2γm√
12

. Note that, we recover the expected results

G =
√
3
4 γm and K =

√
3
2 γm for the isotropic case.

Figure 3.3 shows the shear modulus obtained from the numerical simulation (open sym-

bols) against the effective medium theory (solid lines). We keep px fixed at different

values, and study how G changes as a function of py. We find that the agreement on

the value of the shear moduli between the theory and simulation to be rather good

for larger values of px and py. In addition, our effective medium calculations suggest

that for the network to have finite rigidity, px
2 + py ≥ 1, i.e. it is a necessary but not

sufficient condition. Random dilution of the triangular lattice leads redundant bonds

and floppy inclusions being introduced [17, 108]. Such beyond mean field effects are not

taken into account in the Maxwell constraint counting. In other words, the lattice is

not cleverly constructed so that, at the transition for example, the network is minimally

rigid. One ultimately needs to go beyond mean field (or EMT) and take into account

the spatial makeup of the network to determine the precise value of the threshold. Also,

the subtraction of the global degrees of freedom are not included in the above condition.



Chapter 3. Anisotropic springs networks 45

Figure 3.3: The shear modulus G as a function of py for different px as shown in
the legend. The open symbols show data from the simulations and the filled symbols
(joined by solid lines in the inset) represent the result from the effective medium theory.
The inset shows the same data on a log-linear scale. The system size in the simulation

is Nx = Ny = 128.

We observe that the numerically calculated value of the threshold py is less than the

analytical estimate. In addition to redundant bonds, floppy inclusions, and subtracting

the global degrees of freedom, another reason for the discrepancy is that in the simulation

there are two boundaries fixed where the shear deformation is applied. For the vertices

on these fixed boundaries, they lose some neighbors compared to those with periodic

boundary conditions, but they will add to the number of constraints since they are fixed.

This would suggest a smaller threshold of py for a given px in the simulations as seen.

To begin to quantify such boundary effects we study the dependence of the rigidity

percolation threshold on system size as shown in Fig. 3.4. We find that while the

numerically calculated value of the threshold is always less than the analytical estimate,

it moves closer to the analytical value with increasing system size. Our results suggest

that the system-size dependence in the y direction is stronger than in the x direction.

This may be because the x-direction has periodic boundary conditions, while in the y

direction the boundary conditions are fixed. For a given size, systems with periodic

boundaries tend to be less sensitive to finite system size effects as compared to those

with fixed boundaries. We must also point out that the finite system size effects are

even more pronounced the larger the difference between px and py.
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Figure 3.4: Shear modulus G (for shear applied via the x boundaries) as a function
of py at fixed px = 0.5 and for different system sizes (as shown in legend).

Figure 3.5: The area bulk modulus K as a function of py for different px as shown
in the legend in units of the bare spring constant γ (set to unity). The open symbols
show data from the simulations and the filled symbols (joined by solid lines in the
inset) represent the results from the effective medium theory. The system size in the
simulation is set to Nx = Ny = 128 and the modulus is calculated from part of the

network within a box in the center of the system with box size N ′x = N ′y = 108.
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Figure 3.6: Area bulk modulus K as a function of py at fixed px = 0.5 and for different
system sizes (as shown in legend).

Finally, we also study the bulk modulus K in response to a hydrostatic compression by

up to 2%. Our results are shown in Fig. 3.5. As with the shear modulus, we find the

best match between the simulations and the analytical estimates on the modulus for

larger values of px and py. We also find that the numerically calculated value of the

threshold is less than that the analytical estimate, and moves closer to the analytical

value with increasing system size. The system size analysis for the bulk moduli as shown

in Fig. 3.6, once again, shows specifically the rigidity percolation threshold moving closer

to the theoretical prediction with increasing system size and that changes in the system

size in the y direction lead to larger shift in the moduli as compared to changes in the

system size in the x direction.

Before concluding, let us discuss two limits that closely relate to prior work. The first

is px = 1. Wang and Harris study an anisotropic spring network on a triangular lattice

where px = 1 and 0 < py < 1 [106]. They propose the existence of a splay rigid phase in

which the rotational degrees of freedom potentially freeze out at a smaller occupation

probability than the translational degrees of freedom. For the isotropic case, rotational

and translational degrees of freedom become constrained across the system at the same

occupation probability. When px = 1, a splay rigid phase exists for py > 0. It seems,

however, that the onset of splay rigidity coincides with rigidity, which also coincides with

the connectivity bond percolation threshold on the square lattice, which is pc = 1/2.

Our effective medium theory predicts a rigidity percolation threshold py,rp = 1/2 with

our lattice simulations yielding py,rp ≈ 0.4 (for our largest system size). See Fig. 7.

When px = 1, Wang and Harris, following Roux and Hansen, consider the dual anisotropic

problem of a spring with infinite spring constant with probability py and finite spring
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Figure 3.7: The shear modulus G and bulk modulus K as a function of py at fixed
px = 1.

constant for probability 1 − py, otherwise known as the “super-elastic” case [105, 106].

Wang and Harris demonstrate that the behavior of the bulk modulus K should be

identical to the conductance exponent in random resistor networks in the super-elastic

network case [106]. Random resistor networks are scalar analogues to the vectorial

force/rigidity percolation [113]. It is not obvious whether their results can be extended

to the bond-diluted case studied here. And, in fact, our analytical results suggest that at

py,rp = 1/2, K is has a finite value proportional to the spring constant α of the springs

in the x direction, i.e K jumps discontinuously from zero for py < 1/2 (See Fig. 7).

The simulations show a K increasing from ∼ 0 in not as dramatic way due to the finite

size of the system. More detailed finite system size studies are needed to determine the

existence of a jump in the lattice simulations. The shear modulus G, on the other hand,

increases continuously from zero as a function of py.

As for the second limit, the system is isostatic when py = 1 and px = 0 and periodic

boundary conditions are implemented. For fixed boundary conditions, the system is

hyperstatic (over-constrained) and for free boundary conditions, the system is hypostatic

(under-constrained). In the periodic case, we expect a rigidity transition as soon as

px > 0 as dictated by Maxwell constraint counting. This expectation is also related

to work by Mao and collaborators beginning with a fully occupied square lattice of

springs and adding next-nearest-neighbor springs with probability pNNN [114, 115]. In

this model, the system is rigid for pNNN > 0, i.e. the transition occurs at pNNN = 0.

The result goes beyond the mean-field Maxwell constraint counting, which, again, is a
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Figure 3.8: The shear modulus G and bulk modulus K as a function of px at fixed
py = 1. The inset shows the effective medium elastic constant αm as a function of px

at fixed py = 1.

necessary, but not sufficient condition for rigidity [115]. In addition, G becomes non-

zero continuously with G ∼ p2NNN [114]. In our model, px is the corresponding pNNN ,

however, it is a nearest neighbor bond. Interestingly, we obtain a discontinuous onset in

G at px = 0, where the rigidity transition occurs. See Fig. 8. This is because our shear

is applied 45 degrees to the py bonds with fixed boundary conditions in the y-direction,

while in the earlier work shear is applied perpendicularly to the vertical square lattice

bonds. Given the relation between the effective spring constants and K, K > 0 as well

at the transition. As px increases above zero, G remains constant while K increases to

its respective limiting value. We find that αm(px)− αm(px = 0) increases linearly with

px to compare with the quadratic behavior found in the square lattice with additional

next-nearest neighbor bonds. See Fig. 8.

We now end this results section with a phase diagram that incorporates bending in the

manner described by Equation 1.6, the co-linear bending along filaments. See Figure 3.9.

With the introduction of more constraints via bending, as expected, the region of rigidity

is enlarged upon the addition of bending. We are currently working to understand this

phase diagram from an analytical perspective.
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Figure 3.9: Phase diagram with semiflexibility included. The black line denotes the
nonrigid-rigid boundary in the absence of bending.

3.5 Discussion

We have now extended effective medium theory (EMT) to anisotropic disordered spring

networks. We have done so by considering a particular type of anisotropy in the occupa-

tion probability such that the triangular lattice can be considered as two interconnected

sub-lattices leading to two coupled equations for the effective medium elastic constants,

αm and γm. The elastic response of the system, such as the bulk and shear moduli,

depend on these effective medium constants. For example, the shear modulus Gxy was

found to
√

3γm/4 with both the effective medium theory and simulations. Given the

anisotropy of the network, there also exists a second shear modulus for shear applied

at 60 degrees to the x − y shear, given by
√

3(αm + γm)/8, and can be obtained from

the theory. This work focused on shear strains applied in the x − y direction for the

calculation of the shear modulus, and uniform expansion in all directions for the bulk

modulus.

The rigidity percolation thresholds from our EMT agree with Maxwell constraint count-

ing with the threshold depending on both px and py. And unlike the isotropic case
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where G and K increase linearly with p above the transition, the G and K versus py

curves (at fixed px) exhibit a slight departure from linearity. While this beyond-linear

aspect is not as dramatic as in the EMT with spring networks with additional angular

springs [20, 116–119], anisotropy is yet another way to generate nonlinearity in the G vs

p characteristics in a disordered solid, even at small strains. Although the stress-strain

relationship continues to be linear at small strains studied in this work, we speculate that

anisotropy would have a non-trivial contribution to the nonlinear scaling of the shear

modulus, and the differential shear modulus as a function of strain at large strains, and

will be studied in future work.

Drawing further comparison with the isotropic triangular lattice, we find in two limit-

ing cases, discontinuous onsets of the bulk and/or shear modulus. Such discontinuous

onsets do not occur in the isotropic case. When px = 1, the bulk modulus jumps dis-

continuously from zero to a finite value as a function of py, while the shear modulus

increases continuously from zero. When py = 1, both the bulk and shear modulus jump

discontinuously from zero to a finite value at px = 0. The latter result differs from recent

work adding additional next-nearest-neighbor springs to a square lattice of springs. In

this recent work, the shear modulus is equal to effective spring constant due to these

additional springs and scales quadratically with the occupation probability of the next-

nearest-neighbor bonds, i.e. it increases beyond zero continuously. In the anisotropic

case, the “additional” px bonds are nearest-neighbors bonds and the effective medium

elastic constant scales linearly with px (see inset of Fig. 3.8) after some initial non-zero

value at px = 0 due to the x-component of the py bonds contributing to elasticity (in

the x-direction).

We compare our EMT with lattice simulations and find rather good agreement, par-

ticularly for larger values of px and py. As with lattice simulations in the isotropic

case, the rigidity percolation threshold is lower than the EMT value. For reference,

in the isotropic case, the EMT threshold value is prp = 2/3, while simulations yield

prp = 0.6602±0.0003 [17] the prps to the infinite system limit in the isotropic case is dif-

ficult. For the anisotropic case, the task is further complicated by anisotropic finite-size

scaling with different relevant length scales in the two directions such that one needs to

rescale the x and y directions by different amounts. Anisotropic finite-size scaling in,

say, directed percolation, has been done and is based on a field theory able to estimate

the two different length scales [120]. The absence of a field theory for rigidity percolation

leaves one little to hang his/her hat on and so we leave this for future work.

While our lattice simulations are not as in good agreement with the EMT as in the

isotropic case, this discrepancy is due, in part, to finite-size effects, which tend to be more

complex in anisotropic systems than isotropic systems given the presence of different
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lengthscales. On the other hand, one could argue that the rather good agreement is

unexpected since the effective dimensionality of the system may differ from the isotropic

case where mean field and two-dimensional predictions behave similarly.

To our knowledge, our EMT calculation is the first for anisotropic spring networks and

lays the foundation for the next stage where we will consider the presence of bending

elasticity and non-linear response to more accurately mechanically model cytoskeletal

filaments in lamellipodia where the actin filaments have a preferred orientation [103, 104].

We would then be able to better quantify the collective elastic response of a system that

is important for cell motility on two-dimensional substrates. This will also allow for

better comparison with recent work on the mechanics of anisotropic semiflexible polymer

networks [121–123]. We have begun to do so as indicated in Figure 3.9. It would also

be interesting to investigate the effects of splay rigidity [106, 107] in anisotropic network

models with bending, which may turn out to be more generic than originally thought and

may be relevant for packing derived anisotropic networks based on granular materials and

emerging liquid crystalline order in elastomeric gels. Such effects can be quantified with

development of anisotropic effective medium theories going beyond the one constructed

here.
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Coupled spring networks

4.1 Introduction

The previous chapter explored the role of anisotropy in disordered spring networks.

Motivated yet again by a biological example, we explore the mechanics of coupled dis-

ordered spring networks. Since the number of ways two disordered spring networks can

be coupled together is vast, let us first focus on the biological example. The example

will help guide the nature of the coupling.

It has already been established that the actin cytoskeleton provides the cell with struc-

tural integrity and allows it to change shape. A potential new role for the actin cy-

toskeleton, however, has recently emerged, namely a role in the mechanical regulation

of transcription [124–126]. Yes, transcription. Transcription initiates gene expression

with a segment of DNA being copied by mRNA. The mention of DNA, which sits inside

the nucleus, then begs the question: How does the actin cytoskeleton outside the cell

nucleus interact with the DNA inside the cell nucleus if the actin cytoskeleton is to play

a potential role in the regulation of transcription?

Cytoskeletal actin filaments bind to nesprin-1 and -2 located on the outer nuclear mem-

brane. See Figure 4.1. Nesprins interact across the perinuclear space through their

C-terminal KASH domain with SUN proteins, which reside in the inner nuclear mem-

brane. The SUN proteins can then bind to the lamin network located just inside the

inner nuclear membrane. This complex of proteins connecting the nuclear lamina and

the actin cytoskeleton is called LInkers of the Nucleoskeleton and Cytoskeleton (LINC)

complexes [26, 27]. Lamins are intermediate filaments forming a filamentous network sur-

rounding the DNA, RNA, and other proteins located at the core of the cell nucleus [28].

It has recently been discovered that mammalian genomes contain about 1,000-1,400 lam-

ina associated domains (LADs) that specifically associate with the nuclear lamina [127].

53
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While the LADs are typically gene poor, they impose major constraints on the spatial

organization of the DNA so that disrupting the lamin-LAD binding could lead to changes

in the packing of the DNA. Therefore, through the sequence of actin filaments binding

to nesprins binding to SUN proteins binding to lamins binding to DNA, there exists a

means by which forces imposed on cytoskeletal actin are transmitted to the DNA. It has

indeed been observed that disruption of the LINC complex impairs the propagation of

intracellular forces [128].

Figure 4.1: Schematic of the actin-LINC complex-lamin-chromatin (DNA+proteins)
coupling. Figure from Ref. [129]

Just because there are forces transmitted from the actin cytoskeleton to the DNA does

not necessarily imply that the actin cytoskeleton can regulate transcription. While there

is no direct evidence for this, there is certainly indirect evidence [124]. For example,

mutations or deletion of the nuclear envelope proteins that connect the nucleus and

cytoskeletonparticularly lamins A/C, emerin, and nesprinscause impaired activation of

mechanosensitive genes in response to mechanical stress [128]. In addition, disruption of

the nucleo-cytoskeletal coupling abrogates mechanically induced conformational changes

in nuclear proteins [130].

Since both the actin cytoskeleton and the lamin nucleoskeleton are filamentous, semi-

flexible polymer networks, they can be modeled as disordered springs networks with
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Figure 4.2: Schematic for potential mechanisms for the mechanical regulation of
transcription. In (A) the cell is exposed to uniaxial stretch. In (B) various effects of

that stretch are proposed. Figure from Ref. [129].

bending and stretching. The LINC complex, comprised of the nesprin and SUN pro-

teins, provide the coupling between the two networks. At this juncture, not much is

know about the mechanics of lamin networks or the LINC complex. While such details

may be important, as a physicists, we begin to explore mechanical interplay between

a model actin cytoskeleton and a model lamin nucleoskeleton to ultimately determine
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different classes of couplings, if you will. We will ultimately incorporate model DNA,

which directly binds to lamins and investigate how deformations in the actin network

induce deformations in the lamin network and, subsequently, the conformation of the

DNA. This latter step, however, is outside the boundaries of this thesis.

To begin to look for a microscopic basis for the mechanical regulation of transcription

via the actin cytoskeleton, we first study the mechanics of two coupled disordered spring

networks with stretching only. We would like to understand this limit first before in-

cluding bending and the DNA. In particular, we will measure the shear modulus of the

coupled disordered spring network as a function of properties of the coupling between

them for small strains.

To ultimately understand potential conformational changes in the DNA, we will not only

study the limit of small strains (as was done in the previous chapter), we will also study

the limit of large strains. In this limit, the network can be underconstrained in terms of

Maxwell constraint counting, and yet undergo a strain-induced rigidity transition [108,

131]. This is because large strains may not couple to the zero-frequency modes in the

system, i.e. the node displacements are orthogonal to the strain. Since zero-frequency

modes fluidize the system, if they are frozen out, then the system appears rigid.

4.2 Model and Methods

Consider a three-dimensional HCP lattice where each bond on the lattice represents a

spring. The HCP lattice is broken up into three regions, regions 1, 2, and 3. Regions

1 and 3 represent the actin and lamin networks respectively, while Region 2 represents

the proteins connecting the two networks. Note that the model does not include the

inner and outer nuclear fluid membranes for simplicity. The disorder is implemented by

randomly diluted bond ij of the HCP lattice with dilution probability 1−p1,ij , 1−p2,ij ,
and 1− p3,ij in each region respectively. For the coupling region, Region 2, the dilution

of bonds is broken down into two types—those that are in the x − y plane, denoted as

p2xy,ij and those bonds that are extended in the z-direction, denoted as p2z,ij . This is

because the LINC complexes do not appear to form a cross-linked network of extended

proteins [129]. In other words, LINC complex springs connect to the actin network at one

end and the lamin network at the other and do not interconnect among themselves. Each

region has its own spring constant, k1, k2, and k3. See Figure 4.3 Putting these pieces

together, the total energy of the coupled network with N = N1+N2+N3 vertices/nodes
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is

ECN =
k1
2

∑
〈ij〉 ∈1

p1,ij(|ui − uj | − 1)2 +
k3
2

∑
〈ij〉 ∈3

p3,ij(|ui − uj | − 1)2

+
k2
2

∑
〈ij〉 ∈2,xy

p2xy,ij(|ui − uj | − 1)2 +
k2
2

∑
〈ij〉 ∈2,z

p2z,ij(|ui − uj | − 1)2, (4.1)

where ui is the position of the vertex i and the lattice spacing is set to 1.

To obtain information about the mechanics of the coupled network, a shear strain γ is

applied followed by minimization of the total energy using the same conjugate gradient

method described in the previous chapter. In the limit of small strains, the shear mod-

ulus, G = 2E/V γ2, gives a measure of the mechanical robustness of the system. For

all strains, one can compute the stiffness K of the coupled network where K = d2ECN
dγ2

.

Strains from about 1 percent to 40 percent are studied.

Figure 4.3: Schematic of coupled network.

4.3 Results

4.3.1 Decoupled limit

For context, first set p2xy,ij = p2z,ij = 0 so that the Regions 1 and 3 are decoupled. Fo-

cusing only on Region 1 and the limit of small strains, we study the rigidity transition as

a function of p1,ij . In this limit, Maxwell constraint counting tells us that the transition

should occur when the number of degrees of freedom equals the number of constraints,
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or

< z1 >= 6, (4.2)

which translates to p1,ij = 0.5 for the HCP lattice since for the fully-occupied lattice

z1 = 12. Of course, this condition is necessary but not sufficient so the transition could

occur at a different average coordination number as addressed earlier. In Figure 4.4, we

plot the shear modulus G as a function on p1,ij . We find a transition probability pr that

is slightly lower than the Maxwell constraint counting argument, which is consistent

with two-dimensional findings of a slightly smaller pr than what is found by Maxwell

constraint counting [18]. Specifically, we find pr ≈ 0.46. Above the rigidity transition

we observe linear behavior in the G(p1,ij) curve due to the linearity of the springs at

small strains. This result is also consistent with Figure 1.8 in two dimensions.

Figure 4.4: The shear modulus G as a function of p1,ij = p1 = p2 = p3 for small
strain (ε = 5%) and k1 = 1.0. The inset shows the same data on a log-linear scale. The
system size in the simulation is Lx = Ly = Lz = 16. Note that G is measured in units

of the spring constant and the lattice spacing.

At larger strains, a rigidity transition can be induced even for p1,ij < pr. We observe this

strain-dependent transition in Figure 4.5 where we observe a strain-dependent transition

in the energy as a function of strain in the sense that the energy changes on a logarithmic
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scale from essentially zero to nonzero. Note that we did not compute the stiffness K

but will do so in the near future. For p1,ij = 0.4, the strain-induced rigidity transition

occurs at around 15 percent strain, while for p1,ij = 0.3, it occurs around 25 percent

strain. The more dilute the system, the larger the strain required to freeze out the

zero-frequency modes and rigidify the system.

Figure 4.5: Energy as a function of percent strain for different values of p1,ij = p1 =
p2 = p3. Note that energy is measured in units of the spring constant and the lattice

spacing.

4.3.2 One coupled limit

We now study the limit p1,ij = p3,ij , p2xy,ij = 0, and k1 = k2 = k3 = 1. Also, N1 = N3

and N2 = Lx×Ly, where Lx is the system length in the x direction and Ly is the system

length in the y direction, i.e. Region 2 is one layer “thick”. In this limit for small

strains, when p2z,ij = 0, Regions 1 and 3, again, become decoupled and we expect zero

shear modulus in the limit of small strains and zero stiffness for all strains studied and

even if Regions 1 and 3 are rigid independently. This is because the system has been

split into two separate systems. Now the following questions emerge: How large does

p2z,ij have to be for the stiffness to be non-zero even when Regions 1 and 3 are rigid

independently? As in the case for the strain-induced rigidity transition, does it depend

on the amount of strain? Moreover, if Regions 1 and 3 are just below rigidity, could a

few extra connections via Region 2 cause the system to go from nonrigid to rigid?
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We, again, begin with the small strain limit. In Figure 4.6 we present results for G(p1,ij)

for different p2zs. We observe that for p2z = 0, G is essentially zero for all p1,ij studied,

as expected. We also observe, interestingly, that the location of the transition shifts

to below pr =≈ 0.46 for p2z = 0.8 and p2z = 1.0. This could mean that the extra

connections in the coupling region may induce rigidity globally even though the effective

occupation probability is higher only in one region of the network. Careful finite-size

scaling analysis is needed to further test this idea.

Figure 4.6: G as a function of p1,3 for different p2zs. The strain is 4 percent and
Lx = Ly = Lz = 16.

In the limit of large strain, we study the strain-inducing rigidity transition and present

our results in Figure 4.7. We observe that for pi,ij < pr, large external strain can

induce rigidity. We also observe that increasing p2z shifts the location of the transition

downward.

4.4 Discussion

We observe a rigidity transition on the randomly diluted HCP lattice as a function of

the dilution with a threshold is close to the Maxwell constraint counting criterion. We

also observe a strain-induced rigidity transition in the randomly diluted HCP lattice.

What is the nature of the transition remains to be explored.
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Figure 4.7: Energy as a function of strain for different p2zs and several p1,3s.

For the coupled network in the limit of small strains, we find a rigidity transition whose

location can be downshifted with an increase in p2z, the occupation probability of springs

in the coupling region. The strain-induced rigidity transition is also observed in the

coupled network case.

In light of our initial motivation, one advantage of coupling two spatially distinct spring

networks is that each can have its own rigidity and, yet, if there is no coupling between

them, there is no force transmission from one network to the other, i.e. one network

is insulated from the other. However, with just a few LINC complex springs, if your

will, there is rigidity across the coupled system and one networks transmits force to

another. So the coupled network can be sensitive to a small increase in coupling springs.

The concentration of coupling springs can also affect the location of the transition. The

biological system may exploit this knob to moderate force transmission between the two

networks.

After further mechanical understanding of this coupled spring network system we will

incorporate model DNA into the system and investigate how deformations in the spring

network propagate down from Region 1 to Region 3 via Region 2 and potentially deform

the DNA.
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Shape-shifting droplet networks

5.1 Motivation

In nature there are many biomaterials that are internally programmed to morph into

complex structures that actively and adaptively interact with the environment. Polypep-

tide chains fold into proteins and tubular lipid membranes self-assemble in branching

networks to form the endoplasmic reticulum. Organisms as a whole develop shape by

reorganizing the spatial distribution of their constituent cells in morphogenesis.

These biological examples have inspired the development of programmable materials

that controllably fold into designated structures. At the nanometer scale, the pro-

grammable chemistry of Watson-Crick base pairing allows DNA to self-assemble into a

tetrahedron [29]. At the millimeter scale, efficient algorithms have been constructed to

generate self-folding three-dimensional polyhedra from two-dimensional nets, driven by

the minimization of the surface tension of liquid hinges that either rotate or fuse panels

into place [30]. At the centimeter scale, researchers have created a self-folding robot

that goes from flat to walking in several minutes without external intervention [31].

A beautiful realization of these ideas comes from the Bayley group who print tens of

thousands of micron-sized aqueous droplets each joined by single lipid bilayers [32–36]

to form a cohesive, tissue-like material (Fig. 1.14). The droplets in these networks can

be endowed with different osmolarities. The resultant osmotic pressure leads to local

fluid flow from low to high concentration. This swells the high concentrations droplets

and shrinks the low concentration droplets, leading to internal stresses which distort the

shape of the network in specific ways depending on the initial geometry of the network

and the concentration differences.

62
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Here we use computational methods to explore the self-assembly of several shapes in-

cluding rings, spirals and tetrahedral shells. We revisit the formation of rings studied

in [32] and identify a buckling transition from a round to a polyhedral ring after ring

closure. The spirals provide an interesting example of an initial quasi-one-dimensional

structure generating a three-dimensional structure. Tetrahedra, the simplest and least

symmetric class of the regular polyhedra, can serve as mesoscopic building blocks for

molecules and bulk materials with sp3-like directional bonding [37, 38].

Systems undergoing shape shifting as a result of interaction with their environment have

been of recent interest. A strip of paper will, for instance, spontaneously curl up in your

hand due to the interaction between the paper and the moist evaporative boundary layer

of the hand [132]. Bacillus spores respond to relative changes in environmental humidity

with low humidity causing the spores to shrink and high humidity causing the spores

to expand [133]. When these spores self-assemble into a dense monolayer sitting on a

substrate, one can cycle the relative humidity of the environment to form an actuator.

Osmotic actuation is used in plants, perhaps because it can generate a variety of plant

movements, depending on the environmental conditions [134], without consuming much

power.

Here we shall explore this plant analogue in the micron-sized droplet network and show

how shape shifting can be made reversible by exploiting the dynamically evolving cou-

pling to the environment, which here is simply the surrounding solvent. We illustrate

reversibility with shape shifting from a four-petal configuration to a hollow sphere tran-

sition and back. This opens the way to osmotically-driven small scale robotics.

5.2 Model

We model the droplet network using molecular dynamics in three-dimensional Euclidean

space. Each droplet i is treated as a fluid sphere of mass mi, radius Ri and osmolarity

(defined as the number of osmoles (Osm) of solute per litre (L) of solution) Ci. As

described in Ref. [32], each droplet interacts with neighboring droplets via an elastic

interaction and an osmotic interaction. The elastic interaction potential of a pair of

droplets i and j via the bilayer attaching the two droplets is written as

Eij =


1

2
k [rij − l (Ri +Rj)]

2 for rij ≤ Ri +Rj

0 for rij > Ri +Rj

(5.1)

where k is the spring constant, rij is the distance between a pair of droplets i and j,

and l = 0.8 represents the change of the equilibrium length due to the deformation of
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two droplets when they are fused [32]. A damping force for each droplet proportional to

its velocity is included as demanded by Stokesian flow. The exchange of water between

droplets of different osmolarities is described by Fick’s first law as

Jij = AijD (Cj − Ci) , (5.2)

where Jij is the volume of water transferred per unit time from a droplet i with osmo-

larity Ci to a connected droplet j with osmolarity Cj , Aij is the common interfacial area

of two connected droplets i and j and D is an effective permeability coefficient taken to

be constant. The flow of water between two connected droplets changes the size of each

droplet. To simulate the dynamics of the droplet network, the net force on each droplet

~Fi is described by

~Fi = −
∑
<ij>

dEij
drij

r̂ij − γ~vi = m
d2~ri
dt2

, (5.3)

where ~vi is the velocity of droplet i and γ is the damping coefficient. Following Ref. [32],

we assume m, k, and D are the same for all droplets. Because the time scale for

mechanical relaxation is much faster than the time for water transfer (seconds compared

to tens of minutes), any global shape change is in mechanical quasi-equilibrium. Thus

the simplifying assumption of identical and constant m, k, and D for all droplets should

not affect our results in any significant way. We chose, in simulation units, D = 0.002,

k = 103, and m = 0.2. The value of the damping coefficient, γ = 1.1, was chosen so that

there are no oscillations between the droplets when they bind as observed experimentally.

The osmolarities (Ci) were chosen to give gradients similar to those for the flower-closing

experiment. Length, time, and mass scales in simulation units can be converted to

microns, seconds, and grams by matching to experiment.

Implementing different initial osmolarity gradients and droplet configurations yields fold-

ing into a variety of important structures such as rings, spirals, and tetrahedra. To

search for such structures, the droplets are initially positioned in hexagonal closed-

packed arrangements and equilibrated first without water exchange, after which osmosis

is switched on. Any two droplets in contact are then connected via the elastic inter-

action. Once the elastic interaction is established, water is exchanged via Fick’s first

law and the radius of each droplet is updated accordingly. The position of the center

of each droplet is then updated using a fourth-order Runge-Kutta scheme to obtain the

position of the centers at the subsequent time step with ∆t = 0.01 in simulation units.

We have checked that our simulation results are robust to making the time step as small

as ∆t = 0.001 and as large as ∆t = 0.02. As for the computational cost involved, a

4372 particle simulation for tetrahedron formation over 250,0000 simulation time steps

took approximately 3 hours and 19 minutes on a computer with 2 quad core 2.66GHz

processors.
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Figure 5.1: (Color online) (a)-(e) Buckling of a ring with N = 38 total droplets. The
initial osmolarities of the two rows are C1 = 0.1 (blue) and C2 = 1.0 (red), respectively.
Snapshots were generated using the Visual Molecular Dynamics (VMD) package [136]

and rendered using the Tachyon ray tracer [137].

To model the droplet network osmotically interacting with the solvent in a controlled

way, we place the folded droplet network in a medium with osmolarity Cm exceeding

any individual osmolarity of the droplets. The surrounding medium can only interact

with part of the droplet network, as described above. We did not simulate the medium

explicitly and neglected any mechanical response of the medium.

5.3 Methods and results

We have explored the following structures:

5.3.1 Rings

The buckling of a circular elastic ring subject to an external radial pressure has been

extensively studied in applied mechanics [135]. To study ring formation and subsequent

buckling in the context of droplet networks we evolve from an initial configuration con-

sisting of two rows with different osmolarities. FIG. 5.1 shows ring closure for N = 38

total droplets. The initial osmolarity of the top row is C1 = 0.1 (blue) and that of the

bottom row is C2 = 1.0 (red). After each row closes to form a ring there is still an

osmolarity difference between the outer and inner rings, as can be seen from Fig.5.1(c).

This residual osmolarity mismatch is followed by a ring buckling transition, as shown in

Fig.5.1(e).

The final shape depends on the osmolarity difference and the number of droplets. In

Fig. 5.2, we sketch the phase diagram for ring closure and buckling as a function of the
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Figure 5.2: (Color online) Plot of the ring buckling phase diagram as a function of
top row osmolarity C1 and total number of droplets N . The bottom row osmolarity is
fixed at C2 = 1.0. The symbols, obtained from simulation, should be compared with

lines showing analytical results.

top row osmolarity C1 and the total number of droplets N . The bottom row osmolarity

is fixed at C2 = 1.0. There are three phases. For a given value of N , rings do not form

at all until the osmolarity difference ∆C = C2 −C1 exceeds a threshold. The threshold

value is computed analytically as follows. For a range of ∆C one then finds smooth

rings. For yet larger ∆C the closed ring buckles. An upper bound for the buckling

transition can also be obtained analytically as follows. The larger N , the easier it is to

form a ring and so the smaller is the threshold osmolarity difference for ring closure and

subsequent buckling.

The initial configuration has two lines of N total droplets. The initial radius of each

droplet is Ri and the final equilibrated radii of droplets are R1f on the top row and R2f

on the bottom row. The initial osmolarity of the top row is C1i and the bottom row

C2i, and the final equilibrated osmolarity is Cf . The amount of solute in each droplet

is conserved. This implies

C1i
4

3
πRi

3 = Cf
4

3
πR1f

3,

C2i
4

3
πRi

3 = Cf
4

3
πR2f

3.

(5.4)
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The total amount of solution is also conserved:

2

(
4

3
πRi

3

)
=

4

3
πR1f

3 +
4

3
πR2f

3. (5.5)

This yields

R1f =

(
2C1i

C1i + C2i

) 1
,
3

Ri

R2f =

(
2C2i

C1i + C2i

) 1
3

Ri.

(5.6)

Figure 5.3: Schematic figure for the onset of ring formation.

To determine the condition for the onset of ring formation note that each row of droplets

must have the same center of curvature, labeled as point O in Fig. 5.3. The distance

between two neighboring droplets in the top(inner) row is 2lR1f , the distance between

two neighboring droplets, one from the top row and the other one from the bottom row,

is l (R1f +R2f ), and the distance between two neighboring droplets from the bottom
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row is 2lR2f , where l = 0.8 as shown in Fig. 5.3. In 4OAB, we have

|OA| = (lR1f ) / sin

(
π

(N/2)

)
|OB| = (lR2f ) / sin

(
π

(N/2)

)
|AB| = l (R1f +R2f )

|AB|2 = |OA|2 + |OB|2 − 2|OA||OB| cos

(
π

(N/2)

)
(5.7)

This yields for onset condition of ring formation

(R1f +R2f )2 =
R2

1f +R2
2f − 2R1fR2f cos

(
π

(N/2)

)
sin2

(
π

(N/2)

) (5.8)

By combining equations 5.6 and 5.8 we can numerically solve for C1 if given the value

of N .

Figure 5.4: Schematic figure for the onset of ring buckling.

To determine the parameters for the onset of ring buckling where the inner droplets

become separated, note that the distance between two neighboring droplets from the

top(inner) row is 2R1f , the distance between two neighboring droplets one from the top

row and the other one from the bottom row is l12 (R1f +R2f ), and the distance between
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two neighboring droplets from the bottom row is l22 (2R2f ), as shown in Fig. 5.4. For

a droplet from the inner row, the force exerted by each of the two neighboring droplets

from the same row is |~F11| = (1.0− l) (2R1f ), and the force exerted by each of the two

neighboring droplets from the outer row is |~F21| = (l12 − l) (R1f +R2f ), where l = 0.8.

Those four forces balance each other, yielding

2|~F11| sin
(

π

(N/2)

)
= 2|~F21|

√
[l12 (R1f +R2f )]2 − (l22R2f )2

l12 (R1f +R2f )
(5.9)

so that

2 (1.0− l) (2R1f ) sin

(
π

(N/2)

)
= 2 (l12 − l) (R1f +R2f )

√
[l12 (R1f +R2f )]2 − (l22R2f )2

l12 (R1f +R2f )
(5.10)

For a droplet from the outer row, the force exerted by each of the two neighboring

droplets from the same row is |~F22| = (l − l22) (2R2f ) and the force exerted by each of

the two neighboring droplets from the inner row is |~F12| = (l12 − l) (R1f +R2f ), where

l = 0.8. Those four forces balance each other, yielding

2|~F22| sin
(

π

(N/2)

)
= 2|~F12|

√
[l12 (R1f +R2f )]2 − (R1f )2

l12 (R1f +R2f )
(5.11)

so that

2 (l − l22) (2R2f ) sin

(
π

(N/2)

)
= 2 (l12 − l) (R1f +R2f )

√
[l12 (R1f +R2f )]2 − (R1f )2

l12 (R1f +R2f )
(5.12)

We also have

|OA| = (R1f ) / sin

(
π

(N/2)

)
|OB| = (l22R2f ) / sin

(
π

(N/2)

)
|AB| = l12 (R1f +R2f )

|AB|2 = |OA|2 + |OB|2 − 2|OA||OB| cos

(
π

(N/2)

)
(5.13)

The condition for the onset of ring buckling is thus

l212 (R1f +R2f )2 =
R2

1f + l222R
2
2f − 2l22R1fR2f cos

(
π

(N/2)

)
sin2

(
π

(N/2)

) . (5.14)

By combining equations 5.6, 5.10, 5.12 and 5.14, we can numerically solve for l12, l22

and C1 if given the value of N .
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5.3.2 Spirals

Figure 5.5: (Color online) Typical initial (left) and final (right) configurations for the
formation of spirals.

We choose as initial state a 200× 5× 5 rectangular slab (see Fig. 5.5). Each droplet can

be indexed by integer orthogonal coordinates l,m, n, with 0 ≤ m < 200, 0 ≤ n < 5 and

0 ≤ l < 5. The initial osmolarity of each droplet is set to be

Cmnl = (1.0−Kn n)

(
1.0 +Kl l

(m− 100)

100

)
, (5.15)

where Kn and Kl are free parameters. We explore how spiral formation process depends

on Kl and Kn for fixed slab size.

Fig. 5.6(a) shows how the radius of curvature of the spiral depends on Kl and Kn. Kn

determines how efficiently the slab folds up in the m − n plane. As Kn increases the

rod folds up more effectively and the radius of curvature decreases. A positive value of

Kl will make each part of the slab fold up differently in the l direction. If Kl = 0, for

example, the two ends of the slab will fold and then meet each other, leading to a ring.

Note that the radius of the spiral also decreases with increasing Kl, making folding more

efficient.

Fig. 5.6(b) plots the pitch of the spiral as a function of Kl and Kn. The pitch depends

mainly on Kn, with more efficient folding occurring at large Kn. There is a slight

dependence on Kl.

5.3.3 Tetrahedra

A tetrahedron may be formed by choosing as initial droplet network a central triangle

connected to three other triangles by hinges on each of its sides. We use four layers of

droplets, all of osmolarity C1, to create sufficiently rigid faces. For each hinge, the top

two layers of droplets have osmolarity C1, while the bottom two layers droplets have
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Figure 5.6: (Color online) (a) The radius of the spiral as a function of Kn for different
Kls. (b) The pitch of the spiral as a function of Kn for different Kls.

osmolarity C2 > C1. The flow of water to the outer layers causes the hinges to bend

upward, closing all faces into a tetrahedral shell (see Fig. 5.7).

The osmolarity difference must be tuned to achieve tetrahedral folding. If C1 = 1.0

and C2 < 4.0, the osmolarity difference is too small to drive tetrahedral closure. The

critical osmolarity difference may be lowered or raised by using wider or thinner hinges

respectively.

5.3.4 Reversible Folding

By adding an osmotic interaction with the environment we can realize a reversible

folding-unfolding process, as shown in Fig. 5.8. To generate reversible folding we place

part of the folded droplet network into a medium with higher osmolarity Cm (Cm > C1,2)

so that water will flow from the droplets on the bottom layer of the “flower” to the

medium. More precisely, the bottom layer droplets located below a horizontal x − y
plane at z = h are exposed to the higher osmolarity medium. As the flower folds, an
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Figure 5.7: (Color online) (a)-(d) Forming a tetrahedral shell (C1 = 1.0 and C2 = 5.0).
The color represents osmolarity with blue/red representing low/high osmolarity with

white intermediate.

Figure 5.8: (Color online) (a)-(c) Three snapshots from the reversible folding process.

increasing number of bottom layer droplets naturally become exposed to the medium.

They therefore lose water, to the surrounding medium, and start to unfold again. The

overall volume of the unfolded flower also drops, preventing a complete reversal. As the

bottom droplets continue losing water to the medium, the top droplets are also losing

water to the bottom droplets. The detailed evolution depends on the the osmolarity dif-

ference and the total contact area through which the water is passing. Lower h, which

means the smaller the contact area between the bottom droplets and the medium, and

the smaller Cm, which means a smaller osmolarity difference, will lead to a slower rate of

water transfer between the bottom droplets and the medium. For top layer osmolarity

Ctop = 0.1 and bottom layer osmolarity Cbottom = 1.0, one finds that the top layer loses

more water to the bottom layer than the bottom layer itself loses to the surrounding

medium. This eventually reverses the unfolding and the structure starts to fold once

again. As discussed in Appendix ??, our simulation uses the same algorithm as before,
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other than a modification of Fick’s first law (Eq. (2)) resulting from the separation of

time scales between mechanical relaxation and water transfer.

To characterize the reversibility of the system, we define reversibility as

ρ = (Dmax before +Dmax after − 2Dmin) /Knorm, (5.16)

where Dmin is the minimum depth of unfolding, Dmax before is the maximum depth of

the flower before the “flower” unfolds, Dmax after is the maximum depth of the flower

after it reaches a minimum and refolds, and Knorm is a normalization constant. For

ρ = 1, the system is fully reversible in the sense that the flower opens out fully before

folding back up again, while for ρ = 0 there is no reversal.

Fig. 5.9 shows the dependence of ρ on the horizontal plane’s z = h coordinate and the

media’s osmolarity Cm. As the horizontal plane rises, the reversibility increases since

there are more bottom droplets in contact with the medium. The reversibility also

increases with a rise in the media’s osmolarity Cm.

Figure 5.9: (Color online) Reversibility dependence on the z coordinate of the hori-
zontal plane and the osmolarity of the surrounding medium.
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5.4 Discussion

We have explored the formation of rings, spirals, and tetrahedra in droplet networks

in which the individual droplets are programmed with different osmolarities. These

osmolarity gradients create local flows of water that lead to global shape change. For

ring formation, we find a subsequent buckling transition for large enough osmolarity

difference. For spiral formation, we determine how the size of the gradients in each of

the three dimensions affects both the radius and pitch of the spiral. Finally, for the

formation of tetrahedra, there must be a large enough osmolarity difference between

the triangles and the hinges for the edges of the triangles to meet and form a closed

tetrahedron.

In the flower-closing system we have also shown how to reverse the large-scale shape

change so that the four-petaled flower folds, unfolds, and folds back again. This folding-

unfolding-refolding processes capitalizes on the interaction between part of the droplet

network and the surrounding medium (environment) and relies on the medium having

an osmolarity larger than the osmolarities in the droplet network. This mechanism is a

first step towards osmotic robotics. The reversibility of our model is limited, however,

because (1) the flower-shaped droplet network folds, unfolds, and folds again only once

and (2) the volume of the final state of the folded “flower” (a hollow shell) is smaller

than if it had just simply folded.

To address the limited reversibility of our model, a recent study [138] extends osmosis to

active solutes containing, for example, self-propelled colloids [139–142] or hot nanoparti-

cles [143, 144]. The study finds that active solute activity increases the osmotic pressure

and can also expel solvent from the solution. By using active solutes, the solvent can

be controlled to flow from the higher osmolarity to lower, which is reversed from the

usual passive solute situation. The use of reverse osmosis via active solutes could make

the folding-unfolding process completely reversible. Further study, however, is needed

to assess the feasibility of active solutes to achieve such a goal.



Appendix A

Effective medium theory

How does one compute the macroscopic elastic properties of a disordered network? In-

stead of considering the disordered system explicitly, one can study the effective medium

mechanical response for such disordered networks following the mean field theory devel-

oped in [18] for central force networks and [117] for filament bending networks.

For instance, one can map a 2D disorderd spring network to an effective network where

all of the springs are present and all have the same effective spring constant αm. The goal

of this theory is to make this constructed effective medium, or ordered network, have the

same mechanical response to a given deformation field as the depleted network under

consideration. The effective elastic constants are determined by requiring that strain

fluctuations produced in the original, ordered network by randomly cutting filaments

vanish when averaged over the entire network.

Figure A.1: Showing the notation for constructing the effective medium theory. [18]
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The elastic energy of the strained network, arising from stretching of the constituent

filaments, can be written in terms of the displacement vector ui at each lattice site i.

To quadratic order in u, the stretching energy Es is

Es =
1

2
αm

∑
<ij>

(uij .r̂ij)
2 (A.1)

where r̂ij is a unit vector directed from the ith to the jth equilibrium lattice site, and

uij is the difference in the strain field between those lattice sites.

Then it is time to determine the spring constant αm of this spatially uniform effective

system. First we can apply a uniform dilation to the uniform system with spring constant

αm so that all bonds are stretched by δl. Then we will replace a single bond connecting

points i and j by another spring with spring constant α′, the virtual force needed to fix

the positions of i and j is f = δl (αm − α′).

If f were applied to the same bond in the unstrained network when all the springs are

αm, there will be an effective spring constant αm/α
∗ takes account of all the connections

between i and j including the direct one in this uniform system, where 0 < a∗ < 1 and

will be calculated later. If we remove the αm spring between i and j, the effective spring

between i and j is α′m = αm/α
∗−αm. If then α′ is added in parallel to α′m and the force

f applied, then the resulting change in relative displacement between i and j would be

f/ (α′m + α′) = f/ (αm/a
∗ − αm + α′) = δl (αm − α′) / (αm/a

∗ − αm + α′).

From the superposition principle, the extra displacement δu of the bond ij due to

the change in that filament’s spring constant in the dilated network is the same as its

extension in response to the force f applied to it. Therefore, this additional displacement,

or fluctuation, is

δu =
(αm − α′) δl

(αm/a∗ − αm + α′)
(A.2)

The effective-medium result is obtained by choosing αm so that the average value < δu >

of δu is zero to give

<
(αm − α′)

(αm/a∗ − αm + α′)
>= 0 (A.3)

.

For a distribution of spring constant α′: P (α′) = pδ(α′ − α) + (1 − p)δ(α′ − 0), where

1 − p is the probability of a cut bond and δ(...) is the Dirac delta function, we find a

spatially homogeneous effective medium having spring constant αm given by

αm
α

=


p−a∗
1−a∗ if p > a∗,

0 if p ≤ a∗.
(A.4)
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The value of a∗ can be written in terms of the dynamical matrix D(q) as

a∗ =
1

3

∑
q

Tr
[
D(q) ·D−1(q)

]
=

2

3
(A.5)

where the sum is over the first Brillouin zone. Here the dynamical matrix is given by

D(q) =αm
∑
<ij>

[
1− e−iq.r̂ij

]
r̂ij r̂ij

=αm

−(2 cos (qx) + cos
( qx

2

)
cos
(√

3
2 qy

)
− 3
) √

3 sin
( qx

2

)
sin
(√

3
2 qy

)
√

3 sin
( qx

2

)
sin
(√

3
2 qy

)
−3
(

cos
( qx

2

)
cos
(√

3
2 qy

)
− 1
)

(A.6)
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Conjugate gradient method

The conjugate gradient(CG) method is one of the most popular and well known iter-

ative techniques for solving sparse symmetric positive definite(SPD) systems of linear

equations [145]. It was originally developed as a direct method, but became popular for

its properties as an iterative method.

A symmetric matrix A is SPD(symmetric positive definite) if xTAx > 0 ∀x ∈ Ω, or

equivalently if all the eigenvalues of A are positive.

B.1 The quadratic Form

A quadratic form is simply a scalar, quadratic function of a vector with the form

f(s) =
1

2
xTAx− bTx+ c (B.1)

where A is a matrix, x and b are vectors, and c is a scalar constant. The minimizer x∗

of the function f is given as the point where the gradient of the function is equal to zero.

Direct calculation gives

∇f(x∗) = Ax∗ − b = 0 (B.2)

or

Ax∗ = b (B.3)
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B.2 Line search methods

The line search methods are a large family of iterative optimization methods where the

iteration is given by

xk+1 = xk + αkpk (B.4)

The idea is to choose an initial position x0, and for each step walk along a direction

(a line) so that f(xk+1) < f(xk). The different methods have different strategies for

choosing the search direction pk, and the step length αk.

B.2.1 Steepest descent method

The steepest descent method is perhaps the most intuitive and basic line search method.

The gradient of a function is a vector giving the direction along which the function

increases the most. The method of steepest descent is based on the strategy that in any

given point x, the search direction given by the negative gradient of the function f(x),

the locally optimal search direction, is the direction of steepest descent. The gradient

of f(x) is Ax− b, called the residual r of the system.

After determining the direction, we still need to know how far to walk along it. THe

natural choice is to walk until the function no longer descend, and an expression for the

optimal step length αk is

αk =
∇f(xk)

T∇f(xk)

∇f(xk)TA∇f(xk)
=

rTk rk

rTk Ark
(B.5)

by inserting the expression for the next step xk+1 = xk − α∇f(xk) into the quadratic

function and minimizing with respect to α. We repeat this for every step, taking the

gradient of f in the next point xk+1 and by finding a new step length. So this leads to

search directions to be orthogonal to each other, as shown in Fig B.1.

This method’s zigzag behaviour is not the optimal and fastest path towards the mini-

mum, since each successive step is not different enough from the others.

B.2.2 Conjugate gradient method

We need a method that can use the information from the previous steps in order to

avoid running back and forth across the valley of the contour plots. The solution is to

make the search directions A-orthogonal instead of orthogonal. Two vectors pi and pj
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are A-orthogonal, or conjugate, if

pTi Apj = 0,∀i 6= j (B.6)

A set of n such vectors are linearly independent and hence span the whole space Rn.

We can minimize the quadratic function f in n steps by successively minimizing it along

each of the directions.

Since the set of conjugate vectors acts as a basis for Rn, we can express the difference

between the exact solution x∗ and our first guess x0 as a linear combination of the

conjugate vectors:

x∗ − x0 =

n−1∑
k=0

σkpk (B.7)

Because of the conjugacy property, the coefficients σk are found out to be the same as

the step lengths αk that minimize the quadratic function f along xk + αkpk, so

x∗ = x0 +

n−1∑
k=0

αkpk (B.8)

In practice we need a way to create a set of A-orthogonal search directions. It turns out

there is a conjugate direction method with property that each new conjugate vector pk

can be computed by using only the previous vector pk−1. This method works its magic

by choosing each new direction pk as a linear combination of the negative residual −rk
and the previous search vector pk1 . As we know for the quadratic function the negative

residual is equal to the negative gradient direction, we get a name for this method:

conjugate gradient method.

The direction for the next step is

pk = −rk + βkpk−1 (B.9)

where βk is found by imposing the condition that pTk−1Apk and has expression

βk =
rTk Apk−1

pTk−1Apk−1
=

rTk rk

rTk−1rk−1
(B.10)

A comparison of the conjugate gradient method and the steepest descent method is

shown in Fig B.1.
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Figure B.1: The contour plot of a function, with the steps of the steepest descent
method in green and of the conjugate gradient method in red. [145]



Appendix C

Metropolis Monte Carlo method

The Metropolis Monte Carlo method [146] is a computational approach for generating

a set of N configurations of the system ξ1, ξ2, ξ3, ..., ξN such that

lim
N→∞

Nξ

N
= P (ξ) (C.1)

where P (ξ) is the Boltzmann distribution P (ξ) = Z−1exp
[
−E(ξ)
kBT

]
, kB is the Boltzmann

constant, T is the effective temperature, Z is the partition function and Nξ is the number

of configurations ξ.

The Metropolis Monte Carlo algorithm can be described as follows:

Step 1: Pick a configuration ξn of the system.

Step 2: Pick a trial configurationξt (usually a configuration similar to ξn) and compute

the probability ratio R = P (ξt)
P (ξn)

. Pick a random number p with value between 0 and 1.

Make ξn+1 = ξt if p ≤ R. Otherwise, make ξn+1 = ξn.

Step 3: Go to (2) replacing ξn by ξn+1.

Step 3 is repeated N times, where N is a sufficiently large number. Note that, according

to step 2, the probability of accepting a trial configuration ξt by making ξn+1 = ξt from

a configuration ξn is

Pξn,ξt =

{
P (ξt)
P (ξn)

when P (ξt) < P (ξn)

1 otherwise
(C.2)
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Details of variational calculation

for initiation stage in the Monge

representation

To examine the equilibrium shape of the cell membrane with clathrin indirectly attached

in a localized region (the invagination site), we consider the following energy [3]:

Einit =
∑
i=1,2

∫
dSi

[
2κi (Hi − C0i)

2 + κGiKi + σi

]
(D.1)

where i = 1 denotes the Sla1/Ent1/2-bound membrane (to which the clathrin then

attaches) and i = 2 denotes the bare membrane. In addition, κ1 denotes the bending

rigidity of component 1, while κ2 denotes the bending rigidity of component 2. The

respective spontaneous curvatures are denoted by C01 and C02 respectively. κG1 denotes

the saddle-splay modulus of component 1, while κG2 denotes the saddle-splay modulus

of component 2. Finally, σ denotes the surface tension.

We represent the membrane shape using the so-called Monge representation such that

each point on the membrane in three-dimensional space is given as

~r = (x, y, z (x, y)) . (D.2)

It is straightforward to show that the differential area element is

dS =

√
1 + (∇z)2dxdy, (D.3)
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and the mean curvature is

H =
1

2
∇

 ∇z√
1 + (∇z)2

 . (D.4)

In the small gradient approximation, or |∇z| � 1,

dS ≈
(

1 +
1

2
(∇z)2

)
dxdy, (D.5)

and

H ≈ 1

2
∆z, (D.6)

where ∆z = ∂2z
∂x2

+ ∂2z
∂y2

is the Laplacian. Assuming the system is axisymmetric z =

z
(√

x2 + y2
)
≡ z (r), we write the Laplacian in the cylindrical coordinates as

∆z =
1

r

dz

dr
+
d2z

dr2
, (D.7)

where r is the distance from the origin, which we set to coincide with the center of a

circular membrane.

Additionally, the Gaussian curvature is given by

K =
1

r

dz

dr

d2z

dr2
. (D.8)

The energy can now be written in the approximate form

Einit [z (r)] ≈
∑
i=1,2

∫ Ri

Ri−1

2πr

[
2κi

(
1

2
∆z − C0i

)2

+ κGi

(
1

r

dz

dr

d2z

dr2

)
+ σi

](
1 +

1

2
(∇z)2

)
dr

≈
∑
i=1,2

∫ Ri

Ri−1

πκir

[
(∆z)2 − 4C0i∆z +

(
2C2

0i +
σi
κi

)
(∇z)2 +

(
4C2

0i + 2
σi
κi

)]
dr

+
∑
i=1,2

∫ Ri

Ri−1

2πκGi

(
dz

dr

d2z

dr2

)
dr

(D.9)

where R0 = 0. Next, we fix the area of component 1 (the Sla1/Ent1/2 attached domain)

to be area A by introducing a Lagrange multiplier and also consider line tension at the
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interface between the two components/domains, then

Einit [z (r)] =
∑
i=1,2

∫ Ri

Ri−1

πκir

[
(∆z)2 − 4C0i∆z +

(
2C2

0i +
σi
κi

)
(∇z)2 +

(
4C2

0i + 2
σi
κi

)]
dr

+
∑
i=1,2

∫ Ri

Ri−1

2πκGi

(
dz

dr

d2z

dr2

)
dr + σ0

(
2π

∫ R1

0

(
1 +

1

2
(∇z1)2

)
rdr −A

)
+ γ2πR1

(D.10)

We define z′ ≡ dz
dr , z

′′ ≡ d2z
dr2
, ξ21 = 2C2

01 +
σ1 + σ0
κ1

, ξ22 = 2C2
02 +

σ2
κ2

such that the La-

grangian for each component becomes

L1 = πκ1r

[(
1

r
z1
′ + z1

′′
)2

− 4C01

(
1

r
z1
′ + z1

′′
)

+ ξ21(z1
′)2 + 2ξ21

]
+ 2πκG1z1

′z1
′′ + 2πγrδ(r −R1)

L2 = πκ2r

[(
1

r
z2
′ + z2

′′
)2

− 4C02

(
1

r
z2
′ + z2

′′
)

+ ξ22(z2
′)2 + 2ξ22

]
+ 2πκG2z2

′z2
′′

(D.11)

We now proceed with the variation of the Lagrangian, or δEinit [z (r)] = δ
∫ R1

0 L1dr +

δ
∫ R2

R1
L2dr. Specifically, we have

δ

∫ R1

0
L1dr =

[
L1 − z1′

(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)
− z1′′

∂L1
∂z1′′

]∣∣∣∣
r=R1

δR1

+

∫ R1

0

(
∂L1
∂z1
− d

dr

∂L1
∂z1′

+
d2

dr2
∂L1
∂z1′′

)
δz1dr +

(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)∣∣∣∣
r=R1

δz1(R1)

−
(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)∣∣∣∣
r=0

δz1(0) +
∂L1
∂z1′′

∣∣∣∣
r=R1

δz1
′(R1),

(D.12)

and

δ

∫ R2

R1

L2dr =

[
L2 − z2′

(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)
− z2′′

∂L2
∂z2′′

]∣∣∣∣
r=R2

δR2

−
[
L2 − z2′

(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)
− z2′′

∂L2
∂z2′′

]∣∣∣∣
r=R1

δR1

+

∫ R2

R1

(
∂L2
∂z2
− d

dr

∂L2
∂z2′

+
d2

dr2
∂L2
∂z2′′

)
δz2dr +

(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)∣∣∣∣
r=R2

δz2(R2)

−
(
∂L2
∂z2′

− d

dr

∂L2
∂z1′′

)∣∣∣∣
r=R1

δz2(R1) +
∂L2
∂z2′′

∣∣∣∣
r=R2

δz2
′(R2)−

∂L2
∂z2′′

∣∣∣∣
r=R1

δz1
′(R1).

(D.13)
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So,

δEinit [z (r)] =

∫ R1

0

(
∂L1
∂z1
− d

dr

∂L1
∂z1′

+
d2

dr2
∂L1
∂z1′′

)
δz1dr +

∫ R2

R1

(
∂L2
∂z2
− d

dr

∂L2
∂z2′

+
d2

dr2
∂L2
∂z2′′

)
δz2dr

+

[
L1 − z1′

(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)
− z1′′

∂L1
∂z1′′

]∣∣∣∣
r=R1

δR1

−
[
L2 − z2′

(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)
− z2′′

∂L2
∂z2′′

]∣∣∣∣
r=R1

δR1

+

[
L2 − z2′

(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)
− z2′′

∂L2
∂z2′′

]∣∣∣∣
r=R2

δR2

+

[(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)
−
(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)]∣∣∣∣
r=R1

δz(R1)

+

[
∂L1
∂z1′′

− ∂L2
∂z2′′

]∣∣∣∣
r=R1

δz′(R1)−
(
∂L1
∂z1′

− d

dr

∂L1
∂z1′′

)∣∣∣∣
r=0

δz1(0)

+
∂L2
∂z2′′

∣∣∣∣
r=R2

δz2
′(R2) +

(
∂L2
∂z2′

− d

dr

∂L2
∂z2′′

)∣∣∣∣
r=R2

δz2(R2),

(D.14)

where we assume z1(R1) = z2(R1) = z(R1) and z1
′(R1) = z2

′(R1) = z′(R1).



Appendix E

Pearling instability analysis

Figure E.1: Left: Schematic denoting notation used. Right: Difference in energy
between the perturbed and unperturbed cylinder as a function of wavenumber q for

σR2
o/κ = 2.67, L/R = 10, and a = 0.16 nm.

To understand how the pearling instability comes about as surface tension increases, we

model the tubular invagination as a cylinder with a surface of revolution along the z

axis given in a parametric form

~r = (f (z) cosϕ, f (z) sinϕ, z) , (E.1)

where f (z) has the form

f (z) = R
(

1 +
a

R
ζ (z)

)
, (E.2)

where a
R � 1 and |ζ (z)| ∼ 1 with the assumption ζ (0) = ζ (L) = 0. See Fig. E.1a. The

simplest possible form for ζ is

ζ (z) = sin (qz) . (E.3)
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Moreover, to quantify the energy, the mean curvature of the surface of revolution [147]

is

H (z) =
f(z)f ′′(z)− f ′(z)2 − 1

2f(z) (f ′(z)2 + 1)3/2

=
−1− a2q2 cos(qz)2 − aq2 sin(qz)(R+ a sin(qz))

2 (1 + a2q2 cos(qz)2)3/2 (R+ a sin(qz))

(E.4)

In this parameterization, the energy of the cylindrical membrane is given as

E =

∫
dS
(
2κH2 + σ

)
=

∫
dϕdzf (z)

(
1 + f ′ (z)2

)1/2 (
2κH2 + σ

)
.

(E.5)

This expands to

E =

∫
dϕdzR

(
1 +

a

R
ζ (z)

)(
1 + a2ζ ′ (z)2

)1/2 (
2κH2 + σ

)
=

∫ L

0
2π
√

1 + a2q2 cos(qz)2(R+ a sin(qz))
(
σ

+
κ
(
1 + a2q2 cos(qz)2 + aq2 sin(qz)(R+ a sin(qz))

)2
2 (1 + a2q2 cos(qz)2)3 (R+ a sin(qz))2

)
dz. (E.6)

We will now impose a volume constraint as with all minimal surface problems, otherwise,

once the surface tension term dominates, no surface will be the lowest energy solution.

This volume constaint is given by

V =

∫ L

0
π (R+ a sin (qz))2 dz = πR2

oL, (E.7)

where Ro is the original cylinder’s radius. Using this constraint, we can solve for R

and then compare the energies of the original unperturbed cylinder with the perturbed

cylinder, where the former energy, E0, is given by

E0 = E(a = 0) =

∫ L

0
2πRo

(
κ

2R2
o

+ σ

)
dz

= 2πRoL

(
κ

2R2
o

+ σ

)
.

(E.8)

Using Mathematica [148], we find that when κ = 10 kBT , σ = 0.32 kBT/nm
2, Ro =

8.71 nm, L = 87.1 nm—all relevant parameters for the problem at hand—and a =

0.16 nm, the energy difference ∆E = Epert − E0 becomes negative near q ≈ 0.06 nm−1

(See Fig. E.1b). For a cylinder of order 100 nm, this instability can lead to pinch-off. We

must point out that for σR2
o/κ > 1.6, there is an instability at much smaller q, or much
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longer cylinders [149], such that this instability would not be relevant for endocytosis in

yeast. For the relevant range of wavevectors, for σR2
o/κ < 2.39, the smooth cylinder is

stable. Therefore, the ratio σR2
o/κ needs to be large enough for the pearling instability

to set in for endocytosis in yeast since surface tension favors spheres as opposed to

cylinders. In other words, once the surface tension becomes large enough, the pearling

instability sets in.
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[73] WT Góźdź and G Gompper. Shape transformations of two-component membranes

under weak tension. EPL (Europhysics Letters), 55(4):587, 2001.



Bibliography 96

[74] Markus J Tamás, Kattie Luyten, F Chris W Sutherland, Agustin Hernandez,

Jacobus Albertyn, Hadi Valadi, Hong Li, Bernard A Prior, Stephanus G Kilian,
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