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Abstract

This dissertation investigates collective phenomena in active systems of biological rela-

vance across length scales, ranging from intracellular actin systems to bird flocks. The

study has been conducted via theoretical modeling and computer simulations using tools

from soft condensed matter physics and non-equilibrium statistical mechanics. The work

has been organized into two parts through five chapters. In part one (chapter 2 to

3), continuum theories have been utilized to study pattern formation in bacteria sus-

pensions, actomyosin systems and bird flocks, whose dynamics is described generically

within the framework of polar active fluids. The continuum field equations have been

written down phenomenogically and derived rigorously through explicit coarse-graining

of corresponding microscopic equations of motion. We have investigated the e↵ects of

alignment interaction, active motility, non-conserved density, and rotational inertia on

pattern formation in active systems. In part two (chapter 4 to 5), computer simula-

tions have been performed to study the self-organization and mechanical properties of

dense active systems. A minimal self-propelled particle (SPP) model has been utilized

to understand the aggregation and segregation of active systems under confinement

(Chapter 4), where an active pressure has been defined for the first time to characterize

the mechanical state of the active system. The same model is utilized in Chapter 5 to

understand the self-assembly of passive particles in an active bath.
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Chapter 1

Introduction

1.1 Scope

Active systems, composed of self-driven units each capable of converting stored or am-

bient free energy into systematic motion [14], are highly non-equilibrium systems that

display a zoo of novel behaviors as compared to their equilibrium counterparts. Physical

and biological realizations span length scales orders of magnitude apart, from subcel-

lular systems to animal flocks. Although the individual units can be very di↵erent,

active systems share generic collective behaviors that often transcend the physical or

biological details, with dynamics governed by conservation laws, symmetry, activity and

nature of interactions. This potential universality provides opportunities for physicists

to be involved in the study of living systems using quantitative tools developed in the

traditional fields of condensed matter physics and non-equilibrium statistical mechanics.

The perspective that active systems can be treated as pieces of material yields the

emergence of the subfield of active matter [15]. Active systems may behave as fluids,

solids or viscoelastic material with both liquid-like and solid-like behaviors. The diversity

in the mechanical properties and relaxation time scales in active matter usually blurs the

boundary between states of matter in a traditional sense, and the treatment depends very

much on the context. For example, actomysin systems can be treated as elastic solids

and modeled as cross-linked active gels when describing cellular contraction [16], but as

liquid suspensions when modeling treadmilling that regulates cellular motility [9, 17].

Phase transitions from one material state to another also occur in active matter, such

as glass transition in confluent cell monolayers [18].

While the endeavor to approach biology from a physics perspective can be a daunting

one given the complexity of living systems with many experimentally uncontrollable de-

grees of freedom, the scope of the problem can be defined in such a way that only a

1
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minimal number of ingredients is required to capture the essential features at a collec-

tive level. The problems amenable to physical treatment are usually of a dynamical and

mechanical nature, involving the cooperative motion of interacting active units driven

by the interplay of activity, dissipation and noise. This is a paradigm familiar to con-

densed matter physicists, for example in the context of di↵usion and phase transition

in thermal systems. Similar principles can be implemented in the study of active sys-

tems, but great care should be taken given the fact that the highly non-equilibrium

active systems can no longer be characterized by a thermodynamic temperature. As a

result, activity, dissipation and noise are generally independent variables that keep the

active system out of equilibrium, or equivalently, break detailed balance and violate the

fluctuation-dissipation theorem. Thus we cannot rely on the general framework provided

by equilibrium thermodynamics developed over the course of the past two centuries. A

new framework is needed where we attempt to classify active systems on the basis of

activity, symmetry, respected conservation laws and nature of interactions.

I hereby present five non-exclusive and non-exhaustive classifications of active systems

on the basis of the following properties:

i) The nature of activity. Active processes are cyclical ones that convert chemical energy

into mechanical work generating forces on the environment. Such forces can be classified

as contractile as in epithelium cell monolayers [19] and extensile as in motor-driven

microtubule bundles [20, 21]. When the environment is inert providing just friction, we

can model the active components as self-propelled entities, where the propulsive force

is e↵ectively a monopole. Examples include bird flocks [1, 2, 22–25], migrating cell

layers [12, 26, 27], bacterial swarms [5, 6, 17] and treadmilling cytoskeletal filaments [9,

17, 28, 29]. Growth is another form of activity which not only yields active forces, but

also breaks the conservation of number density, important for bacterial colony pattern

formation and Drosophila melanogaster (fruit fly) wing development [30], for example.

ii) The presence/absence of momentum conservation. Active systems can be divided into

momentum-conserving “wet system” and momentum-dissipating “dry system”. Exam-

ples of the former are active suspensions [31], such as swimming bacteria [3, 32, 33] and

cytoskeletal extract in bulk suspensions [20, 34], where viscous flow damps the relative

motion of neighboring regions, and the description of the dynamics must include the

total conserved momentum of the suspension. “Dry systems” are those that can be

described as collections of self-propelled particles in an inert medium that only provides

friction, such as bacteria gliding on a substrate [5, 6], swimming between two closely

spaced walls, or moving through a porous medium. In all these cases, dissipation is

dominated by a drag force and one can consider only the dynamics of the active units,
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whose momentum is not conserved [15]. Examples include animal flocks [22], migrating

cell layers [12] and vibrated granular particles [35].

iii) Symmetry. We can categorize active systems into isotropic, polar and nematic kinds

based on the shape of the particles and the symmetry of the interactions. Isotropic

particles (disks in 2D or spheres in 3D) with isotropic interactions do not exhibit ori-

entational order on macroscopic scales, but still show a host of novel non-equilibrium

phenomena due to activity [10, 36, 37]. Spherical self-propelled particles with repulsive

interaction are among one of the most studied model systems owing to their simplicity in

capturing collective behaviors such as clustering in bacterial colonies [13, 38], wall accu-

mulation of swimming bacteria [39], and collective cell migration [26]. Elongated active

units can self-organize into phases of orientational order with either polar or nematic

broken symmetry. The polar order is described by a vector order parameter p, known as

the polarization, while the nematic order is described by a tensor order parameter, Q,

known as the alignment tensor. They are related to a unit vector along the longer axis

of the active unit n̂
i

by p = 1
N

P
i

n̂
i

and Q
↵�

= 1
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P
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�
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�
in 2D. Active

units themselves may be polar, i.e., have distinct head and tail, such as bacteria [3],

or apolar, such as melanocytes and vibrated granular rods [40]. Polar active particles

in the presence of polar interactions that tend to align themselves head-to-head and

tail-to-tail can organize in a polar phase, characterized by non-zero global mean motion.

Examples are animal flocks [2] and bacterial swarms [6]. Nematic phase can be obtained

in two ways, either in systems where polar self-propelled objects are parallel but with

random head-tail orientations due to apolar interaction, such as self-propelled rods [41],

or in systems where the self-propelled particles are themselves head-tail symmetric, such

as vibrated granular rods [40] and fibroblast cell monolayer [42]. A particular case is

myxobacteria Myxococcus xanthus gliding on a substrate with reversal dynamics, i.e.

they self-propel in a polar manner before reverse their polarity and move backwards

periodically, therefore display nematic order over large time scales [43, 44].

iv) The nature of the interactions. These can be direct inter-particle interactions and

medium-mediated interactions. Additionally, direct interactions may be short or long-

ranged. Medium-mediated interactions are generally long-ranged, but may be screened

by confinement or other e↵ects. Birds in a flock, are an example of a system that can

be modeled with short-range interactions, where each bird tends to align only with its

immediate neighbors, yet displays large scale flocking behavior [2]. Interactions can be-

come long-range through medium-mediated hydrodynamic e↵ects, as in the case of light-

activated colloidal particles [11] or electrically powered roller colloids in solutions [45].

v) Coupling to external fields. Active systems can be coupled to external fields through

sensory mechanisms, many of which have been termed according to the nature of the
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fields the active units respond to. Among the most well-known is chemotaxis, the move-

ment of an organism, such as bacteria, in response to chemical gradient in the environ-

ment [46]. A much more recent discovery is durotaxis, a form of cell migration guided

by rigidity gradients in the substrate or extracellular matrix [47, 48]. Beyond migratory

responses, in developmental biology, cell di↵erentiation depends heavily on the signaling

of morphogens, whose concentration a↵ects the morphogenesis in tissues by triggering

coordinated cell di↵erentiation [49, 50].

Given the framework, I now ask the question: are there generic laws governing the col-

lective dynamics of seemingly di↵erent active systems arising from the interplay among

activity, dissipation, and noise? To make progress towards answering this question in

this dissertation, I propose minimal models to study pattern formation and mechanics of

self-propelled units in a dissipative medium with distinct symmetries and interactions.

The model systems considered have specific relevance to actomyosin networks, bacterial

suspensions, epithelium cell layers and animal flocks. The study is performed in two

complementary ways: analytical and numerical exploration of continuum hydrodynamic

theories and computer simulations based on microscopic equations of motion. A bridge

connecting the two is constructed systematically as well.

1.2 Pattern formation in active systems

One of the prominent features of active systems is the emergence of non-equilibrium

dynamical patterns as a result of the self-organization among interacting active con-

stituents. Examples are abundant in living systems and range from subcellular pro-

cess, such as actomyosin waves in the cell interior, to coordinated animal behaviors

like the flocking of birds. The concept of pattern formation is certainly not exclusive

to active systems, but a general concept concerning the development of structure in

dynamical systems [51]. The science of pattern formation aims to establish general

principles governing the formation of similar patterns observed in nature as a result of

self-organization. Pattern formation may arise either from equilibrium symmetry break-

ing or from a non-equilibrium loss of stability that replaces a disordered or homogeneous

state with a structured one. An example of the former is the formation of snowflakes

upon the breaking of continuous translational symmetry going from a liquid state to a

crystalline state. An example of the latter is the Turing instability in reaction-di↵usion

systems, where a homogeneous steady state is replaced by a temporally oscillating or

spatially periodic state that results from the unstable growth of fluctuations, a mecha-

nism with potential general applicabilities to a wide range of dynamical problems from

non-equilibrium chemical reactions to morphogenesis in embryonic development [52].
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Pattern formation in biological systems is a collective phenomenon that usually serves

a functional purpose that reflects living organisms’ adaptivity to a dynamical environ-

ment. Flocks of starlings or pilchard schools are robust structures that serve a defen-

sive purpose against predators [2]. Colonies of bacteria such as, Escherichia coli and

Myxococcus xanthus, adjust their morphologies to adapt to the chemical or mechanical

environment [5, 6]. Slime molds, such as Dictyostelium discoideum, alter their life cycles

switching from vegetative state in the abundance of nutrients to social aggregates or

fruiting bodies in the deficiency of food. At a subcellular level, the emergence of actin

waves in the same organism is responsible for triggering the mobilization of vegetative

cells [28].

The detailed biological mechanisms that drive each of these phenomena are certainly

di↵erent. However, the general principles we are after require a minimal modeling that

captures the essential features based on their dynamical nature as outlined in the frame-

work introduced in the previous section. Within this scope, we model the relevant active

systems as composed of self-propelled objects with distinct interactions, symmetries and

conservation laws respecting underlying biological features, and describe the dynamics

in terms of microscopic equations of motion as well as macroscopic hydrodynamic field

theories. Concretely, flocking of birds or treadmilling of actin filaments have been in-

terpreted as a consequence of the interplay between local alignment interactions and

self-propulsion of polar active units, while the polymerization of actin filaments and

bacteria proliferation have been modeled as logistic e↵ects that break the conservation

of density, resembling a reaction e↵ect in chemical systems.

E↵orts to model pattern formation in biological systems based on these principles have

seen success in the aforementioned biological systems, but a generic framework to unify

various descriptions and to identify minimal ingredients is still lacking [9, 13, 53]. A

challenging and open question is: how does activity, generated at an individual level,

regulate the dynamical pattern formation in living systems?

Below, I survey pattern formation in three biological systems of vastly di↵erent length

scales to set up the stage.

1.2.1 Bird Flock

Groups of starlings self-organize into coherent flocking patterns involving hundreds to

thousands of individuals (Fig.1.1). Similar phenomena are shoaling of fish, swarming of

insects, and herding of land animals, collective phenomena related to feeding, defense

and migration. While the biological origin and purpose of collective animal behavior

are of primary interest to ethologists, the polarized pattern itself reminds physicists of
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Figure 1.1: Left: A. Snapshot from a flocking of 1246 starlings. B. Normalized
instantaneous velocity vectors of all the individuals in the snapshot. [1] Right: a. re-
constructed 3D trajectories of three birds belonging to a flock performing a collective
turn. b, c, trajectories of N=176 birds in a flock. Each trajectory lies approximately

on a plane. [2]

condensed matter systems such as magnets, where spins line up to generate magnetic

fields. In flocking models, magnetic spins are replaced by “flying spins”, each represented

by a velocity vector. Both physicists and computer graphic scientists [54] have come up

with models for flocking, among which the most well-known is the Vicsek model [22]. It

represents each bird as a self-propelled point particle with a constant speed that tries to

align its velocity vector with the average velocity set by its neighbors but makes errors

modeled as a white noise. The equations of motion for a single particle are given as

follows:

x

i

(t + 1) = x

i

(t) + v

i

(t)�t, ✓
i

(t + 1) =< ✓(t) >
r

+�✓
i

, (1.1)

where x

i

(t), v

i

(t) and ✓
i

(t) denote the position, velocity and orientation of the ith

particle at time t, respectively. < ✓(t) >
r

denotes the average direction of the velocities

of the particles (including particle i) that are within a circle of radius r surrounding the

given particle. �✓
i

is a random number chosen from a uniform probability distribution

within the interval [�⌘/2, ⌘/2]. The tuning parameters in this model are the number

density and the noise strength ⌘. Computer simulations reveal a phase transition upon

the increase of number density or decrease of noise from a disordered state to a flocking

state with a non-zero value of the average particle velocity. This microscopic model

has inspired the development of a continuum theory treating the flock as an active

fluid described by the dynamical fields of density and velocity, known as the Toner-

Tu model [23]. This model incorporates local alignment interactions as a non-linear

friction in the velocity dynamics resembling that of the Landau theory dealing with

continuous phase transition in condensed matter systems. It also resembles the Navier-

Stokes equations of fluid dynamics, but with extra non-linear terms due to the breaking of

Galilean invariance. In the absence of activity, in this case the self-propulsion, the model

reduces to the classical XY model in magnetism. The presence of activity has been shown
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analytically by Toner and Tu to be responsible for the stable spontaneous symmetry

broken state even in two dimensions, which is forbidden in the equilibrium XY model due

to spin wave fluctuations. This feature allows the model to describe a large class of non-

equilibrium systems, not limited to bird flocks, but including systems with similar large-

scale dynamics such as treadmilling actomyosin network [29] and motile colloids [45].

Variants of Vicsek and Toner-Tu models have been proposed to accommodate specific

features in di↵erent active systems, including hydrodynamic interaction [45] and motility

suppression due to crowding [25].

It was not until recently that field experiments have been performed on flocks of star-

lings [2]. Three dimensional particle tracking has made quantitative analysis of the

flock dynamics possible. New models have been proposed to accommodate observed

features in experiments, among which are the maximum entropy model [1] that captures

the velocity correlation in agreement with the experiments and the inertial spin model

that captures the collective turning behavior observed in natural flocks (Fig.1.1) [55].

The latter is a significant update of the Vicsek model that incorporates inertia in the

dynamics of spin angular momentum, which is neglected in the Vicsek model. This iner-

tial e↵ect leads to the propagation of turning information via spin-wave-like excitations

throughout the flock to generate collective turning behaviors in defense of predators.

The microscopic “inertial spin” model calls for a corresponding continuum theory analog

to the Toner-Tu model. I have taken up the task to construct such a continuum theory

by explicitly coarse-graining the microscopic model to yield field equations character-

izing the dynamics of spin angular momentum in addition to density and translational

velocity. The explicit coarse-graining yields a limited number of parameters in the

continuum equations and opens up doors for quantitative analytical analysis. Open

questions emerge following the development of new models: How is the stability of the

flock determined by the interplay between inertia, activity and alignment interaction?

What are the characteristics of the spin wave in the presence of an underlined broken

symmetry, activity and density/velocity fluctuations? What is the di↵erence between a

turning flock and a system of equilibrium rotors?

1.2.2 Bacterial swarm

Bacteria sense their environment through chemical or mechanical cues and form intrigu-

ing patterns (Fig.1.3). Individual bacteria di↵er in morphology, but many share similar

propulsion mechanisms in viscous fluids (Fig. 1.2). The run-and-tumble motion, where

ballistic runs are segmented by tumbles to result in a long-time di↵usive motion, is ex-

ploited by many flagellated bacteria to explore the environment. Bacteria such as E.
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Figure 1.2: Left: Sketches of microscopic swimmers, to scale. (a) E. coli . (b) C.
crescentus. (c) R. sphaeroides , with flagellar filament in the coiled state. (d) Spiro-
plasma, with a single kink separating regions of right-handed and left-handed coiling.
(e) Human spermatozoon. (f) Mouse spermatozoon. (g) Chlamydomonas . (h) A small-
ish Paramecium. [3] Right: Run-and-tumble motion of flagellated Escherichia coli . (a)
random runs segmented by tumbles in the absence of chemical attractant. (b) biased

runs up the gradient of the attractant through chemotaxis. [4].

coli can sense the gradient of chemical attractant through the transmembrane chemical

receptors and perform a biased run-and-tumble motion up such a gradient, a mechanism

known as chemotaxis (Fig. 1.2) [46].

Chemotaxis has been proposed as the mechanism responsible for pattern formation

observed in a variety of bacterial systems, including E. coli and S. typhimurium in soft

agar (Fig.1.3) [5, 6]. In the experiments, the agar is prepared with carbon source, which

serves as nutrients for the bacteria, before the inoculation of bacteria suspensions. In the

case of E. coli (top two rows in Fig. 1.3), a swarming ring propagates from the inoculated

spot radially outward upon the consumption of the nutrients and leaves dense bacteria

aggregates along its wake. Remarkably, the aggregates form stable lattice patterns whose

morphology depend on the concentration of carbon source in the agar. In the case of

S. typhimurium (bottom row in Fig. 1.3), the bacteria first spread radially and form an

unstructured lawn, with the density decreases away from the center. After 40 hours of

growth, rings with dense concentration of bacteria start to emerge from the center and

spread sequentially outward at a fixed distance from one another. At lower concentration

of carbon source, each ring becomes perforated and breaks into dense spots. At larger

concentration, the ring is intact and stable. Bacteria tracking reveals that cells are

highly motile in the unstructured lawn and in newly formed rings, but nonmotile in

older rings. On the other hand, if the bacteria is grown in a liquid medium, randomly

distributed dense aggregates emerge from a homogeneous bacteria suspension.

In both cases, pattern formation can be suppressed by the addition of the chemoattrac-

tant aspartate that saturates the bacteria transmembrane receptors, thus suppressing

chemotaxis. Both E. coli and S. typhimurium are known to secrete chemoattractant,

therefore respond to the attractant gradients generated by themselves. This is the
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Figure 1.3: Top two rows: Stationary patterns formed by E. coli growing in semi-
solid agar with di↵erent concentrations of carbon source. Bright spots indicate higher
concentration of bacteria aggregates a. Sunflower-like arrays of spots. b. Radial arrays
of spots. c. Radial arrays of spots and stripes. d. Spots with radial tails arrayed in
chevrons. [5] Bottom row: Stationary patterns formed by Salmonella typhimurium in
soft agar with di↵erent concentrations of carbon source, in this case succinate. A. perfo-
rated rings at lower concentration of succinate. B. stable rings at higher concentration

of succinate. [6]

mechanism proposed to explain the geometrical patterns observed in both cases: den-

sity fluctuations in the bacteria colony is amplified by the chemotactic response where

dense aggregates produce more attractants than depleted regions. This mechanism has

been modeled via a number of coupled reaction-di↵usion equations describing the inter-

play between cell concentration, carbon source and chemoattractants to determine the

pattern [53, 56].

The multi-component reaction-di↵usion models are capable of reproducing the observed

patterns, but contain many fitting parameters that are model-dependent. In recent

years, generic models with minimal ingredients have been proposed by Cates et al. [13].

Under this framework, a single component theory with only the dynamics of cell con-

centration is su�cient to capture the chemotactic patterns formed by S. typhimurium.

The model involves a density-dependent motility that captures the e↵ect of chemotaxis,

a logistic growth/death term that breaks the conservation of density and an e↵ective

surface tension that stabilizes the aggregates. The density-dependent motility induces

phase separation through spinodal decomposition that is arrested by the growth/death
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of the bacteria, which sets a characteristic length scale for the lattice patterns not unlike

the one formed by S. typhimurium [13].

While the model is successful in reproducing density patterns in certain bacteria system

such as S. typhimurium, it fails to account for more complex patterns such as those

observed in E. coli . A short-coming of the model is that it ignores the internal degrees

of freedom of the bacteria, such as the polarization. Many bacteria, including E. coli and

S. typhimurium, have a rod-like shape, which induces polar structures through quorum

sensing or static e↵ects in the swarm that favors the collective motion. Given the large

density of the bacteria aggregates, it is not unreasonable to assume an important role

of the polarization dynamics. Toner-Tu model is an example that couples density to

polarization, but assumes a constant motility and neglect proliferation. In bacteria

colonies, cell motility can be strongly suppressed either by steric e↵ects at high density

or by chemotactic mechanisms, and cell division/death is important within the time scale

of pattern formation. To study the interplay of all these factors, we have constructed

a minimal variant of Toner-Tu model with a density-dependent velocity and a logistic

growth/death term. The resulting equations not only reproduce the S. typhimurium

patterns, but predict non-trivial internal structures within the aggregates as a result of

the polarization dynamics. While the model is powerful in generating rich patterns, more

work is needed for a quantitative comparison with the patterns observed in situations

where the alignment interaction is significant. One of the open questions for future

exploration is: can we harness the simplicity and power of the model to account for

more complicated patterns formed, for example, by E. coli and P. Mirabilis and make

quantitatively testable results?

1.2.3 Actomyosin wave

The actomyosin network is a dynamic protein-based structure made of actin filaments,

motor proteins and branching/binding proteins that constantly undergoes assembly,

reassembly and reorganization. It is a key component of the cytoskeleton of eukaryotic

cells, where it facilitates the transport of cargo, generates forces and provides structural

support for the cell. The locomotion of many cells is driven by the polymerization of actin

filaments that generate protrusive forces on the plasma membrane to form lamellipodia

that anchor to the substrate through focal adhesions to pull the cell forward (Fig. 1.4).

This process requires the formation of branched actin filament networks near the cell

membrane as initialized by membrane-bounded proteins WASP/WAVE. Actin filaments

have a polar structure characterized by a pointed (-) and a barbed end (+). The latter

is oriented towards the cell membrane. ATP hydrolysis elongates actin filament in the

direction of the barbed end by adding actin monomers, therefore generate protrusive
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Figure 1.4: Left: Cell spreading and movement through protrusion of the lamel-
lipodium driven by the polymerization of actin filaments and subsequent contraction
by stress fibers coupled to the substrate through focal adhesions. (reproduced from
Ref. [7]) Right: A. Dynamics at the molecular level of actin polymerization in cell
motility. The treadmilling and elongation of nucleated actin network induced by actin
polymerization generate protrusive forces on the plasma membrane to form lamellipo-
dia. B. motile B16F1 mouse melanoma cell stained with fluorescently labeled phalloidin
(green) to visualize actin filaments. Filopodia (1) is utilized to probe the environment
and Lamellipodium (2) to generate locomotion. C: Fluorescently labeled stationary
human osteosarcoma (U2OS) cell with stress fibers (3) in green and focal adhesions in

red (4). [8]

force on the membrane to form lamellipodia. Branching proteins Arp2/3 complex and

binding proteins ↵-Actinin add to the integrity of filament bundles. The polymerization

also promotes treadmilling, an e↵ective propulsion of actin filaments (Fig. 1.4).

Experiments with cellular slime molds Dictyostelium Discoideum have shown that the

onset of cell motility is associated with propagating actin waves generated by actin poly-

merization [28]. In the experiments, the substrate-attached cells are rendered immobile

by the addition of latrunculin that depolymerizes F-actin. Upon the reduction of latrun-

culin concentration, the polymerization of F-actin is restored in the cortex signaled by

the formation of stationary actin spots. The spots proliferate and soon become motile

while merging into spiral waves that propagate towards the cell periphery. When the

actin wave hits the boundary, it expands the cell border and mobilizes the cell (Fig. 1.5).

This highly dynamical phenomenon has previously been modeled, again, via reaction-

di↵usion equations with activator and inhibitor playing the role of latrunculin that
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Figure 1.5: Dynamical actin structures during the recovery of actin polymerization in
the substrate-attached cortex of a Dictyostelium cell. Stationary actin spots emerge and
proliferate to become mobile before a prominent spiral wave appears after 16 minutes of
the recovery of polymerization. The counterclockwise-rotating spiral wave propagates
towards the cell periphery to expand the cell border by producing protrusions that

mobilize the cell. [9]

regulates the polymerization of actin filaments [9]. In chapter 2, I show that this emer-

gent phenomenon is also captured by the physical model introduced in the previous

section. Here, the density corresponds to the concentration of actin filaments, and

the polarization dynamics naturally captures the treadmilling. The polymerization of

actin is incorporated as a logistic term and the combined e↵ect from the regulation of

membrane-bounded protein and latrunculin is incorporated into the density-dependent

motility. Given that the polymerization timescale is comparable with the alignment

induced by excluded volume interaction, the dynamics of the polarization is strongly

coupled to that of the concentration, which leads to the formation of dynamical wave

patterns not unlike the ones observed experimentally.

Given the qualitative success of the model, we are left with the challenge to make quan-

titative predictions regarding the complex pattern formation. Our model is potentially

capable to extract characteristic scales and periodicity of the pattern that are susceptible

to experimental verification.

1.3 Mechanics of dense active systems

Newtonian mechanics and Brownian dynamics are powerful tools in microscopic model-

ing provided that stochastic e↵ects are carefully considered. In this language, Langevin
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equations serve as the foundation for dynamical simulations of stochastic systems [57].

A simple example is the overdamped motion of a thermal Brownian particle described

by the following Langevin equation:

dx

dt
= ⌘(t), (1.2)

where x is the position of the particle and ⌘(t) is the thermal noise with < ⌘(t) >= 0 and

< ⌘(t)⌘(t0) >= 2D�(t � t0). The mean-squared displacement (MSD) of the particle is

given by < �x(t)2 >= 2Dt, where D is the translational di↵usion coe�cient, related to

the frictional coe�cient ⇠ through temperature T by the fluctuation-dissipation theorem

as D = k
b

T/⇠. This is the foundation of equilibrium Brownian dynamics.

The athermal nature of active systems rule out the applicability of the fluctuation-

dissipation theorem. Alternatively, an individual-based energy source, damping, and

an athermal noise have to be incorporated independently for active systems. These

non-equilibrium features have a simple but general representation in the self-propelled

particle model (SPP), which proves to be powerful in the study of mechanical properties

of dense active systems.

1.3.1 Self-propelled particle model
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Figure 1.6: Top left: model of self-propelled particle (SPP). Top right: phase sepa-
ration of repulsive SPPs with periodic boundary condition (simulation) [10]. Bottow:
force chains of confined SPPs (simulation). (a) wall-aggregated state (b) jammed state
(c) gas state. Right: Experiments of light-activated self-propelled colloidal particles

with phoretic attraction [11].

The SPP model describes interacting particles with self-propulsion forces along directions

independently associated with each particle’s orientation. The position and orientation

of every particle is subject to athermal noise characterizing the biological or chemical

fluctuations. Dissipation with the surrounding medium is incorporated through a fric-

tional drag (Fig.1.6). When the time scales of interest are beyond that of the friction,
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we can neglect inertia to simplify the dynamics. This assumption is reasonable over a

wide range of active systems with constituents in a viscous environment whose inertial

e↵ect is negligible, such as swimming bacteria at low Reynolds number [58] and cells

crawling in extracellular matrix [12].

The simplest model of SPP consists of isotropic self-propelled disks (in 2D) or spheres

(in 3D) with short-ranged repulsive interaction [10] (Fig.1.6). Their positions and ori-

entations are subject to white Gaussian noise. The equations of motion in 2D are given

by

dr
i

dt
= v0ui

+ µ
X

j

F

ij

+ ⌘

i

(t),
d✓

i

dt
= ⌘r

i

(t), (1.3)

where r

i

is the position of particle i, v0 is the constant self-propulsion speed, u
i

is the

polarization vector for particle i with the orientation denoted by an angle ✓
i

. F

ij

is

the repulsive force between particle i and j. Finally, ⌘(t) and ⌘r
i

(t) are translational

and rotational noise with zero mean and variance < ⌘(t)↵
i

⌘(t0)�
j

>= 2D�
ij

�
↵�

�(t �
t0), < ⌘r

i

(t)⌘r
j

>= 2D
r

�
ij

�(t � t0), respectively. In equilibrium, D
r

and D are related

by D
r

= D/a2, where a is the particle size. In active systems, this is generally not

the case as the source of translational and rotational noise may not be the same. In

a non-interacting SPP system, the MSD of the self-propelled particle is given by <

[�r(t)]2 >= 4D0

h
t + 1

Dr
(e�Drt � 1)

i
, where D0 = D +

v

2
0

2Dr
is the e↵ective long-time

di↵usion coe�cient. The particle behaves ballistically for t ⌧ 1/D
r

with < [�r(t)]2 >=

v20t
2 and di↵usively for t � 1/D

r

with < [�r(t)]2 >= 4D0t. The crossover time scale

is 1/D
r

. The dynamics of a single self-propelled particle can be characterized by a

dimensionless Péclet number, defined as Pe = v0
aDr

, which measures the persistence of

the particle as compared to its size. With interaction, the dynamics of the system is

also controlled by packing fraction � = N⇡a2/V . Minimal as it is, the model displays

rich collective behaviors reminiscent of those observed in biological and robotic systems.

One of the prominent phenomena is the motility induced phase separation (MIPS),

where a homogeneous state spontaneously phase separates into a coexistence of a dense

liquid phase and a dilute gas phase above a critical packing fraction and Péclet number

(Fig.1.6) [10]. This phenomenon is reminiscent of the phase separation in a Van der

Waals system, but without any attractive interaction.

An interesting questions therefore arises: is there a connection between the repulsive SPP

system and the attractive thermal Van der Waals system? Is it possible to map an active

system to a thermal equilibrium system, if so, under what condition? If the answer is

positive, we will be making significant progress towards understanding the dynamics of

highly non-equilibrium systems.
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To address this question, I have studied the repulsive SPP system under confinement, an

ideal configuration to measure mechanical quantities such as pressure, an important step

towards writing down an equation of state, if it exists, for the active system. We were

the first to discover the existence of a non-equilibrium pressure in active systems, which

we termed the active pressure. Our discovery has sparkled immense interest into the

research of mechanical properties of SPP system in the community. Significant progress

on the interpretation of the pressure [59, 60], existence of the equation of state [60] and

mapping to thermal systems have been made [61, 62].

However, there are still many open questions for future exploration. What determines the

mechanical properties of active systems reflected in the relaxation of the pressure? Can

we go beyond pressure and compute the full stress tensor that contains all the mechanical

information of the system? If so, what can we learn from it? Can we apply the model to

quantitatively describe experimentally accessible systems such as migrating cell layers?

1.3.2 Mechanics of confluent tissue

Recent in vitro experiments have shed light on the mechanics of collective cell migra-

tion, a process relevant to many biological processes, including wound healing, cancer

metastasis and morphogenesis [12, 26, 27]. Traction Force Microscopy (TFM) is utilized

to measure the traction forces cells exert onto the substrate. In this experiment, cells

are plated onto a soft substrate in which fluorescent beads have been embedded. By

measuring the bead displacements due to the traction forces exerted by the cells on the

substrate, and assuming that the substrate is a linear elastic medium, one can calcu-

late the traction forces. An inverse problem is then solved to obtain the intercellular

stress (�) within the tissue from the traction forces (T ) (Fig. 1.7) using the mechanical

relations in 2D
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where h is the average height of the cell layer, and the compatibility condition
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where ⌫ is the poisson ratio. The experimentally observed traction forces arise predom-

inately many cell rows behind the front edge in a migrating cell layer and extend across

enormous distances in the bulk through a global tug-of-war [26], which are contrary to

the hypothesis that the driving forces are localized in the ‘leader cells’ at the front edge.



Introduction 16

Figure 1.7: Top: one dimensional representation of the relationship between traction
force T and intercellular stress �. Bottom: stress maps and migration in monolayers of
breast-cancer model systems. a-c: phase contrast images. d-f: cell-substrate tractions

T
x

. g-i: average normal stress. j-l: maximum shear stress [12].

The resulting stress maps also reveal a highly dynamical and heterogeneous mechanical

landscape, characterized by large spatial and temporal fluctuations in the normal/shear

stress (Fig. 1.7). The correlation between stress and cell velocities suggests an active me-

chanical feedback where the cells adjust their local velocities in the direction of minimal

shear [12].

Theoretical progress has been made on the modeling of collective cell migration using

SPP models [63] and continuum theories [64]. Meanwhile, models for confluent tissues

have been developed in the context of morphogenesis [30]. One of a well-accepted model

for confluent tissue is the vertex model, which represents the tissue as a collection of

vertices outlining shapes of connected polygons corresponding to adherent cells [30].
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The model captures active cellular contractility, intercellular adhesion and bulk elas-

ticity with an e↵ective mechanical energy functional depending on cell shapes. This

energy functional is minimized to find stable mechanical configurations assuming the

corresponding biological process is near equilibrium, an assumption reasonable in cer-

tain stages of morphogenesis which span time scales of days and weeks [65, 66]. This

model has seen both qualitative and quantitative successes in developmental biology

with process such as drosophila wing development [30]. Recent study with this model

has also revealed a density-independent glass transition in a confluent tissue controlled

by the competition between cellular contractility and cell-cell adhesion associated with

a change in cell shape. This may be relevent to epithelial-mesenchymal transition in

cancer invasion and cell sorting during embryonic development [18].

1.4 Outline

This dissertation investigates collective phenomena in active systems of biological rele-

vance across length scales, ranging from intracellular actin systems to bird flocks. The

study has been conducted via theoretical modeling and computer simulations using tools

from soft condensed matter physics and non-equilibrium statistical mechanics. The work

has been organized into two parts through five chapters. In part one (chapter 2 to

3), continuum theories have been utilized to study pattern formation in bacteria sus-

pensions, actomyosin systems and bird flocks, whose dynamics is described generically

within the framework of polar active fluids. The continuum field equations have been

written down phenomenogically and derived rigorously through explicit coarse-graining

of corresponding microscopic equations of motion. We have investigated the e↵ects of

alignment interaction, active motility, non-conserved density, and rotational inertia on

pattern formation in active systems. In part two (chapter 4 to 6), computer simula-

tions have been performed to study the self-organization and mechanical properties of

dense active systems. A minimal self-propelled particle (SPP) model has been utilized

to understand the aggregation and segregation of active systems under confinement

(Chapter 4), where an active pressure has been defined for the first time to characterize

the mechanical state of the active system. The same model is utilized in Chapter 5 to

understand the self-assembly of passive particles in an active bath.



Chapter 2

Pattern Formation in Active

Suspensions

2.1 Introduction

Active systems, such as bacterial suspensions and cell extracts of cytoskeletal filaments

and associated molecular motors, self-organize into a variety of intriguing patterns vis-

ible under the microscope [6, 29, 67–71]. Escherichia coli and Salmonella typhimurium

colonies growing on soft agar, for instance, form crystalline or amorphous arrangements

of high-density bacterial clumps [6, 67, 68], as well as stripes [72]; while biofilms exhibit

even more elaborate patterns [73]. In motility assays at high density actin filaments

self-organize into coherently moving structures, such as clusters, swirls and traveling

band [29, 69]. The formation of plane and spiral actin waves has been predicted in

models of actin cytoskeletal dynamics [74–76]. The organization of actin in clumps and

spiral waves has also been reported in vivo in the actomyosin cytoskeleton of immobi-

lized Dictyostelium cells [9, 77]. The qualitative similarities between the patterns seen

in these systems suggest that common principles may underlie such an organization.

A large amount of theoretical work has been devoted to understanding the role of ex-

ternal chemical cues in driving pattern formation in active systems by modeling them

via coupled nonlinear di↵usion-reaction equations [9, 67, 78]. The model described here

belongs, in contrast, to a new class of e↵ective descriptions of active systems that can

lead to pattern formation on the basis of a minimal set of physically motivated ingredi-

ents [13, 79, 80]. Specifically, cell reproduction and death in bacterial suspensions [81]

or polymerization in actin gels and solutions [9] are described by a reactive logistic term.

Also included are motility suppression due to cells crowding and cell alignment, as it

may be induced by medium-mediated hydrodynamic interaction, biochemical signaling

18
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and quorum sensing [72, 82], or polarization of the actin cytoskeleton. Previous work

summarized below has separately explored the role of some of the physical mechanisms

included here, but has not considered their combined e↵ect. By proposing an e↵ective

model with no reference to specific biochemical signaling, we o↵er a unified minimal

description of the emergence of complex structures in a variety of active systems. In

particular, we here discuss the application of our theory to pattern formation in bacterial

and actin system.

2.2 Minimal continuum model

Our model is formulated in terms of two continuum fields, the cell or actin filament

density, ⇢(r, t), and the polarization density, w(r, t). The vector field w plays the dual

role of orientational order parameter describing the local polar alignment of active units

traveling in the same direction and of current density. The continuum equations are

@
t

⇢ = �r · (vw � Dr⇢) + ↵⇢ (1� ⇢/⇢
s

) , (2.1a)

@
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w +
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8✏
w ·r(vw) = � (✏ � �⇢)w � �2

2✏
|w|2w � 1

2
r
✓

v⇢ � 3�

4✏
vw2

◆
+ D

w

r2w ,

(2.1b)

where v = v0e
��⇢ is the density-dependent self propulsion speed, with � a parameter

controlling the decay of motility with increasing density. The density equation is a

convection-di↵usion equation, augmented by the logistic term describing growth/decay

at rate ↵, with a saturation density ⇢
s

. The polarization equation has the same structure

as the well-known Toner-Tu model of flocking [23, 83], but with additional nonlinearities

arising from the density-dependent propulsion speed (for another generic equation of

polar order in active systems see also [84]). It includes a convective term on the left

hand side, and active corrections to the e↵ective pressure proportional to w2. Here,

✏ is a rotational di↵usion rate determined by the strength of rotational noise and � is

the strength of the alignment interaction. The di↵usion coe�cients D and D
w

control

gradients in the bacterial density and polarization. For simplicity we assume D
w

=

D. In the absence of the logistic reactive term, Eqs. (2.1) are a simplified version of

those derived recently by coarse graining a Vicsek model with density-dependent self

propulsion speed [85]. The nonlinear advective terms which are here neglected do not

change the physics (see Appendix 2.C). In the following we measure times in units

of ✏�1 and lengths in units of v0/✏. We also define dimensionless fields ⇢̃ = ⇢/⇢
s

and

w̃ = w/⇢
s

. The model described by Eqs. (2.1) is then characterized by four dimensionless

parameters, three of which are crucial to determine the physics: �̃ = �⇢
s

, �̃ = �⇢
s

/✏,

and ↵̃ = ↵/✏. These measure respectively the importance of density-dependent motility,
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of alignment and of the reaction term. The fourth parameter, D̃ = D✏/v20 denotes

the scaled magnitude of the di↵usion coe�cient and elastic constant in the polarization

equation.

When both motility suppression and the reaction term are neglected (�̃ = ↵̃ = 0),

the equations describe the familiar Vicsek model. This has a mean field transition

from a homogeneous isotropic (w = 0) state to a homogeneous polar (moving) state

(w = w0x̂) when alignment �⇢
s

exceeds noise ✏ (�̃ > 1). In this model, emergent

structures arise only in the polar state from the growth of fluctuations in the magni-

tude of polarization due to the �⇢
s

term. Motility suppression qualitatively alters this

well known scenario. In models with density conservation (↵̃ = 0) and no alignment

(�̃ = 0), it can yield macroscopic phase separation, with large pretransitional density

fluctuations, when �̃ > 1 [10, 36]. Breaking density conservation is essential to yield the

length selection seen in experiments, as shown in [13] for non-aligning systems, where

a finite growth/death rate arrests phase separation yielding concentric rings and high

density spots not unlike the bacterial “dots” observed in Salmonella typhimurium. The

combined e↵ect of alignment and motility suppression has only been considered in sys-

tems with density conservation (�̃ 6= 0, but ↵̃ = 0) [85]. In this case the interplay of

self-trapping and alignment destabilizes both the homogeneous disordered and ordered

states, yielding a rich collection of macroscopically separated traveling states, including

bands, clumps and lanes [85], but with no length selection. The minimal model proposed

in this paper incorporates alignment, density growth/decay and motility suppression and

demonstrates that in di↵erent parameter regions these physical mechanisms can account

qualitatively for the patterns seen in very diverse active systems. In particular, as we

discuss more below, the patterns formed for small ↵̃ are naturally associated to those

seen in bacterial fluids, where growth is much slower than motion; whereas those ob-

served for large ↵̃ and �̃ apply to polymerizing actin systems, where reaction rates vary

depending on monomeric actin concentration, and the local density of actin fibers can

promote their orientational order. In what follows, the language used to describe the

dynamics in these parameter ranges will reflect that of the biophysical system they apply

to.

2.2.1 Isotropic-Polar phase transition

The continuum equations for the density ⇢(r, t) and polarization density w(r, t) given

in Eqs. (2.1) have two homogeneous, stationary solutions:

• a homogeneous isotropic state, with ⇢ = ⇢
s

and w = 0, for �⇢ < ✏ (�̃ < 1);

• a uniform polarized state, with ⇢ = ⇢
s

and w 6= 0 for �⇢ > ✏ (�̃ > 1),
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Choosing the x axis along the direction of mean polarization, we find w = x̂w0, with

w0 =
p

2✏(�⇢
s

� ✏)/�, in the polarized state, which is also a uniformly moving state.

Next we examine the linear stability of each of these two states with respect to small

fluctuations in both fields from their uniform values. Quantities with tilde below are

dimensionless, as defined in the main text.

2.3 Chemotactic bacterial droplets

To examine the linear stability of the isotropic state for �̃ < 1, we study the dynamics

of fluctuations �⇢̃ = ⇢̃� 1 and ⇥ = r · w̃. For clarity of discussion, it is useful to restore

dimensional parameters. Working in Fourier space, we let (�⇢̃,⇥) =
P

q(⇢q,⇥q)eiq·r.

The time evolution of ⇢q and ⇥q is then governed by

@
t

⇢q = �v⇥q � Dq2⇢q � ↵⇢q , (2.2a)

@
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⇥q +
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2
(v + ⇢

s

v0)q2⇢q � Dq2⇥q , (2.2b)

where ✏
r

= ✏ � �⇢
s

is the rotational di↵usion rate renormalized by alignment and the

prime denotes a derivative with respect to density. The decay/growth of fluctuations is

governed by the eigenvalues of Eqs. (2.2). The stability is controlled by the rate s+(q),

given by

s+(q) = �↵ + ✏
r

+ 2Dq2

2
+

p
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r

)2 � 4✏D
sp

q2

2
, (2.3)

where we have introduced an e↵ective di↵usivity D
sp

(⇢) =
⇣
1 + 1

2
d

d⇢

⌘
v

2(⇢)
2✏ , with v2(⇢)/(2✏)

the di↵usivity of a single particle performing a persistent random walk with run speed

v(⇢) and di↵usion (tumble) rate ✏. In Eq. (2.3) all quantities are evaluated at ⇢
s

. For the

chosen form of v(⇢), the e↵ective di↵usivity D
sp

=
v

2
0
2✏ e

�2�̃(1� �̃) can change sign when

�̃ > 1. The rate s+ becomes positive for D
sp

< �D
�p

↵

✏

+
p

✏r
✏

�2
. Motility suppres-

sion then promotes phase separation in regions of high and low density [10], which is in

turn arrested by the density growth/decay. Active particles (here representing bacteria)

tend to grow in low density regions and die/decay in high density regions, hence must

migrate from high density to low density regions to obtain a steady state. The interplay

of these two mechanisms ultimately yields a stable pattern. The linear stability analysis

also yields the wave vector q
c

⇠ D�1/2 [↵✏
r

]1/4 of the most unstable mode: the length

scale q�1
c

decreases with increasing ↵ and ✏
r

, consistent with the behavior shown in the

density maps of Fig. 2.1. For very large �̃ the active contribution to the e↵ective di↵u-

sivity vanishes as D
sp

! 0, and the homogeneous state is again stable. The ‘knee’ in the

curves at �̃ = 1.5 corresponds to the minimum of D
sp

(Fig. 2.2). Finally, the instability

exists even for ↵ = 0, although in this case the system coarsens into macroscopic phase
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Figure 2.1: (color online) Color maps of the density obtained by numerical integration
of Eqs. (2.29) in a box with periodic boundary conditions and an initial isotropic state
(w = 0) of uniform mean density ⇢0 = ⇢

s

, with small random fluctuations. The color
bars give the values of the local density ⇢̃ = ⇢/⇢

s

. All images are for �̃ = 1.4, D̃ = 0.01,
↵̃ = 0.083 and (from A to D) �̃ = 0.50, 0.58, 0.75, 0.95. The high density static
bacterial dots in A and B have zero or very small local polar order, as in [13]. In C
and D polar order builds up in each dot, as highlighted by the blow ups of individual
dots shown in the bottom row. Here the polarization is displayed as an arrow of length
proportional to its magnitude. The color refers to the density, with the same color

scheme as indicated in the side bars (see also Supplementary Movies 1 and 2).
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Figure 2.2: (color online) The boundary of linear stability of the homogeneous state
(�̃ < 1) in the (�̃, �̃) plane for ↵̃ = 0 (dashed curve, blue online), ↵̃ = 0.083 (solid
curve, red online) and ↵̃ = 0.30 (dotted curve, black online). The homogeneous state
is unstable in the region to the right of each curve, up to the vertical axis �̃ = 1. The
calculation is described in Appendix B. The dots labeled A, B, C, D show the location
in parameter space of the images shown in Fig. 2.1 and refer to ↵ = 0.083. For a fixed
value of ↵̃, the region of �̃ where the system is unstable grows as alignment increases.
Conversely, increasing the birth/death rate for fixed �̃ stabilizes the homogeneous state.
This is highlighted in the inset that shows the linear stability boundary in the (↵̃, �̃)
plane for �̃ = 1.4. Note that in the inset the horizontal axis is

p
1� �̃, i.e., alignment

increases to the left.

separated regions, rather than forming a stable pattern (see Supplementary Movies 6

and 7). Increasing ↵ for fixed alignment strength tends to stabilize the uniform state.

2.3.1 Bacterial clusters with internal structure

In bacteria the birth/death rate ↵ is of the order of inverse hours and the run length v0/✏

is typically ⇠ 10�30µm, with ✏ ⇠ 1s�1. In this case, and provided �⇢
s

< ✏, the dynamics

of the polarization is much faster that that of the density. One can exploit this separation

of time scales by neglecting @
t

w in Eq. (3.3) and eliminating polarization in terms of

density in Eq. (2.1a). At large length scales, this yields an e↵ective di↵usion equation of

the type studied in [13], with a di↵usivity that changes sign, signaling the onset of phase

separation. In this range of parameters, incorporating polarization dynamics yields polar

structure within the high density static dots found in [13], with the dots turning into



Pattern Formation in Active Systems 24

asters and spirals, but does not change the structure of the overall pattern. The polar

structure of the dots shown in Fig. 2.1 arises when the density ⇢ > ⇢
s

inside an individual

dot is large enough that �⇢ > ✏, i.e., the system acquires polar order. To our knowledge,

such static asters and spirals have not yet been reported in bacterial suspension, but they

should be visible by electron microscopy in experiments with self-chemotactic bacterial

strains in semi-solid agar [86], as the density in the resulting clusters has been estimated

to be 100 times larger than in uniform cultures [87]. As �̃ = �⇢
s

/✏ ! 1�, the polar

structure becomes more pronounced. When all nonlinearities are taken into account (see

Appendix 2.C), close to the transition and for a large value of the reproduction rate, the

model yields ‘blinking’ dot patterns.

2.3.2 Spreading bacterial droplets

Finally, Fig. 2.3 shows the patterns obtained from the spreading of a bacterial drop

inoculated at the center of the sample.
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Figure 2.3: (color online) Snapshots of the spreading of a droplet inoculated at the
center of the simulation sample for �̃ = 0.83 (top row) and �̃ = 0.98 (bottom row),
with ↵̃ = 0.167, �̃ = 1.40 and D̃ = 0.01. The simulation times are 1, 4000, 22000 and
1, 4000, 14000 from left to right in the unit of ✏�1 respectively. The blow-ups to the
right show the internal structure of the dots, as described in the caption of Fig. 2.1.

2.4 Intracellular actin waves

In the uniform polar state (w = w0x̂), instabilities exist even for � = 0 and ↵ = 0 and

these have been studied before [88, 89]. The reactive logistic term provides a mechanism
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Figure 2.4: (color online) Patterns in the polar state obtained from a uniform initial
state with small random fluctuations around ⇢̃ = 1 and w̃ = 0 for ↵̃ = 0.08, D̃ = 0.01
and �̃ = 1.10. Rings/lanes emerge in (E) (F) (G) at �̃ = 1.11, 1.25, 2.00, respectively.
We stress that the net total polarization of the lanes shown in frame G is directed at an
angle to the long direction of the lanes, resulting in a transverse drifting motion (See

Supplementary Movie 4).

for pattern scale selection. The study of the dynamics in the polarized state for variable

values of ↵̃ may not apply to usual bacterial suspensions, where growth is slow with

respect to motion, and aligning e↵ects are insu�cient to yield an overall orientationally

ordered phase (one exception might be provided by swarms). This study is however

highly relevant to actomyosin systems, where (i) immobilized motors (in vitro, e.g., in

motility assays [29]) or treadmilling (in vivo) lead to propulsion; (ii) steric e↵ects may

cause motility suppression; (iii) polymerization (limited by actin crowding) occurs on

time scales comparable to rotational di↵usion and (iv) the density can easily become

large enough to induce local polar order [29].

For the parameters used in our model, when � = ↵ = 0 fluctuations in the magnitude

of polarization of wave vector qkx destabilize the uniform state for 1  �̃  v0
4

p
✏

D

,

while splay fluctuations with q ? x are always unstable. Both these longitudinal and

transverse instabilities have been discussed extensively. In particular, the longitudinal

instability has been argued to signal the onset of high density ordered bands normal to

the direction of mean polarization traveling in a disordered low density background [88,

89]. The suppression of motility induced by a finite � yields a host of complex structures,

including traveling dots, stripes and lanes that coarsen at long times into anisotropic
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phase separated states [85]. A finite value of ↵̃ arrests the phase separation and yields

patterns with a characteristic length scale, as shown in Fig. 2.4. In the region �̃ > 1

the patterns are always dynamical, with the spirals rings continuously breaking up and

reconnecting, as displayed in Supplementary Movies 3 and 4. Such never-settling states

are, interestingly, virtually absent (except for simple traveling waves) in previous versions

of the model, neglecting either alignment or reaction.

The dynamical patterns featuring ever-evolving spirals and lanes in Fig. 2.4 bear a strik-

ing qualitative similarity to the actin waves and dynamical spiral patterns observed in

the cytoskeleton of Dictyostelium [9, 28]. In this system polymerization/depolymeriza-

tion rates are of order 1 � 100 s�1, hence comparable to the rotational di↵usions rates

✏ ⇠ 1 � 20 s�1 for a 1 µm filament [90]. Here individual cells were first immobilized

by depolymerizing actin with latrunculin. Upon latrunculin reduction, static spots of

actin were seen to form in the cortex. At later times, the spots become dynamical and

eventually turn into spiral waves that closely resemble our ever-evolving rings, and allow

the cell to eventually resume motility. The experimental observation was modeled in [9]

by a reaction-di↵usion model where actin density and orientation growth are controlled

by a chemical inhibitor. Our model provides a simpler physical interpretation of the

self-organization where chemical signaling does not need to be explicitly incorporated in

the dynamics, but only enters through e↵ective parameters: � that captures the aggre-

gation of actin driven by membrane-bound protein complexes [28], and ↵ representing

the (crowding-limited) actin polymerization rate. The transition from actin clusters

to spirals and finally to traveling waves as observed in Supplementary Movies 1 and 4

of Ref [28] is obtained in our model by increasing �̃, as shown in Fig. 2.4, which cor-

responds to increased alignment of the actin filaments in vivo due to the increase of

density through polymerization.

2.5 Appendix 2.A: Linear stability of the isotropic state

We consider the dynamics of fluctuations �⇢̃(r, t) = ⇢̃(r, t) � 1 and �w̃(r, t) = w̃(r, t)

to linear order. We let ⇥ = r · �w̃ and denote by �w̃? the transverse part of the

polarization. The linearized equations for the fluctuations are then given by

@
t

�⇢̃ = �v⇥+ Dr2�⇢̃ � ↵�⇢̃ , (2.4a)

@
t

⇥ = �✏
r

⇥� 1

2
(v + ⇢

s

v0)r2�⇢̃ + Dr2⇥ , (2.4b)

@
t

�w̃? = �✏
r

�w̃? + Dr2�w̃? , (2.4c)
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where ✏
r

= ✏ � �⇢
s

> 0, v = v0e
��̃ and ⇢

s

v0 = ��̃v0e
��̃. The transverse part of the

polarization is decoupled to linear order and always decays. It will be ignored in the

rest of this section. Working in Fourier space, we let (�⇢̃,⇥) = ⌃
q

(⇢
q

,⇥
q

)eiq·r. The

time evolution of the Fourier amplitudes ⇢
q

and ⇥
q

is then governed by the equations

@
t

⇢
q

= �v⇥
q

� Dq2⇢
q

� ↵⇢
q

, (2.5a)

@
t

⇥
q

= �✏
r

⇥
q

+
1

2
(v + ⇢

s

v0)q2⇢
q

� Dq2⇥
q

. (2.5b)

We seek solution of the form ⇢
q

,⇥
q

⇠ es(q)t. The eigenvalues are then given by

s±(q) = �1

2

�
↵ + ✏

r

+ 2Dq2
�

±1

2

q
(↵ � ✏

r

)2 � 4✏D
sp

q2 , (2.6)

where we have introduced the e↵ective di↵usivity

D
sp

= (1 +
⇢

2

d

d⇢
)D

s

=
v20
2✏

e�2�̃(1� �̃) , (2.7)

with D
s

= v2/(2✏). The di↵usivity D
sp

is negative for �̃ > 1 and has a negative minimum

value at �̃ = 1.5. For �̃ > 1.5 it approaches zero from below. The eigenvalues s±(q)

describe the time evolution of linear combinations of fluctuations in the density and the

longitudinal part of the polarization density, which to linear order is proportional to

the magnitude of the polarization field. When ↵ = 0, the mode s+(q) is hydrodynamic

as Re[s+(q ! 0)] = 0, as required by density conservation, and describes the decay

of density fluctuations. The mode s�(q) mainly describes the dynamics of polarization

which decays at finite rate ✏
r

when q = 0 and becomes long lived at the transition where

✏
r

= 0. This is highlighted by expanding the dispersion relations for small q, with the

result

s+(q, ↵ = 0) = �q2
✓

D +D
sp

✏

✏
r

◆
+O(q4) , (2.8a)

s�(q, ↵ = 0) = �✏
r

� q2
✓

D �D
sp

✏

✏
r

◆
+O(q4) , (2.8b)

where the expansion can be carried out only away from the transition, where ✏
r

remains

finite. When ↵ is finite both modes are non-hydrodynamic. The s+ mode is unstable

when Re[s+] > 0, which gives the instability condition

D
sp

< Dc

sp

= �D

✓r
↵

✏
+

r
✏
r

✏

◆2

< 0 . (2.9)
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Figure 2.5: (color online) The dispersion relation of the mode s+(q) is plotted as a
function of the wave vector q for ↵̃ = 0.08, D̃ = 0.01 and �̃ = 1.2. The curves from A to
D correspond to �̃ = 0, 0.55, 0.9 and 0.99. The homogeneous isotropic state is unstable
for s+(q) > 0 and stable for s+(q) < 0. The instability is enhanced upon increasing
the alignment strength �̃ due to the decrease of the decay rate ✏

r

of the polarization as
the mean field transition at �̃ = 1 is approached from below. The instability exists in a
band of wave vectors q1 < q < q2. When ↵ < ✏

r

, as in typical bacterial suspensions, the
decay rate at zero wave vector is controlled by ↵ (curves A to C), while when ↵ > ✏

r

,
it is controlled by ✏

r

(curve D).

The linear stability boundary Dc

sp

defined by Eq. (2.9) is shown in Fig. 2 of the paper

for v = v0e
��̃. Clearly the specific form of the stability boundary depends on the form

chosen for v(⇢). At large � the di↵usivity D
sp

vanishes and the uniform state is stable, as

obtained in Ref. [13]. As � is increased for a fixed ↵, the region of instability widens. The

instability occurs even for ↵ = 0, where Dc

sp

= �D ✏

✏r
. In this case, however, the uniform

state is unstable on all scales, corresponding to macroscopic phase separation [10], as

shown in Fig. 2.6. The dispersion relation of the mode s+(q) is shown in Fig. 2.5 for

various values of the alignment strength. The instability occurs in a band of wave vectors

q1 < q < q2, with

q1,2 =

s
1

2D2

⇢
� [D

sp

✏ + D (↵ + ✏
r

)]⌥
q

[D
sp

✏ + D (↵ + ✏
r

)]2 � 4D2↵✏
r

�
(2.10)

When ↵ = 0, q1 = 0 and q2 =
p�(D

sp

✏ + ✏
r

D)/D. Conversely, at the mean field

transition where ✏
r

= 0, Dc

sp

= �D↵/✏ and we find q1 = 0, q2 =
p�(D

sp

✏ + ↵D)/D.

To examine the behavior as the mean-field order-disorder transition is approached form
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Figure 2.6: Density heat maps for D̃ = 0.01, �̃ = 1.2 and ↵̃ = 0. showing macroscopic
phase separation. The color scale is indicated to the right, and the values refer to
⇢̃ = ⇢/⇢

s

. From A to D, �̃ = 0.50, 0.75, 0.96 and 1.11. The time evolution shows the
coarsening of the structures into a single large cluster. Upon increasing the alignment
strength, the cluster starts to display polar order, as highlighted in the blowups in the

bottom row showing maps of the polarization field.

below, we let we let D
sp

= Dc

sp

� �, with � > 0. To leading order in � we obtain

q1,2 ' (↵✏
r

)1/4

D1/2

"
1⌥ �1/2

2

✓
✏

D
p

↵✏
r

◆1/2

+O(�)

#
(2.11)

At the onset of the instability, where � = 0, the wave vector of the unstable mode is

q
c

= q1 = q2, with

q
c

=
(↵✏

r

)1/4

D1/2
. (2.12)

The wavelength of the pattern then scales as `
c

⇠ q�1
c

= D1/2(↵✏
r

)�1/4. Finally, when

D = 0, the isotropic state is unstable for D
sp

< 0, i.e., �̃ > 1 and q >
q

↵✏r
|Dsp✏| . In other

words, a finite value of D is needed to stabilize the system at small scales.

To make contact with the model of bacterial suspensions studied in Ref. [13] that neglect

polarization, we assume ↵ << ✏, which is generally true for bacteria and let �̃ = 0. In this

case the fluctuations in polarization decay at the fast rate ✏. On times large compared

to ✏�1, we can neglect the time derivative on the left hand side of Eq. (2.5b), solve for

⇥q to low order in q, and eliminate the polarization from Eq. (2.5a) to obtain a closed

equation for the density, given by

@
t

⇢q = � (D +D
sp

) q2⇢q � ↵⇢q +
DD

sp

✏
q4⇢q . (2.13)
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In the region �̃ > 1 where D
sp

< 0, we can define an e↵ective surface tension 
eff

=

D|D
sp

|/✏ and Eq. (2.13) is then formally identical to the linearized form of the density

equation proposed in Ref. [13]. This e↵ective surface tension vanishes, however, at large

�, when D
sp

! 0. In this limit the approximation used to obtain Eq. (2.13) no longer

applies.

Finally, we summarize a few key points:

• As discussed by Cates et al [13], pattern formation in the isotropic state is the

result of the interplay of motility suppression that drives the e↵ective di↵usivity

D
sp

negative triggering macroscopic phase separation, and birth/death that arrests

phase separation.

• Deep in the isotropic state (�̃ << 1), the polarization decays on microscopic times

⇠ (✏ � �⇢
s

)�1 ⇠ ✏�1 and can be neglected. The instability is then controlled

entirely by the dynamics of density fluctuations, as in the model of Ref. [13].

• When �̃ approaches 1 from below, the decay of polarization fluctuations slows

down. In this case if ↵ >> ✏
r

there is a range of time scales where one can neglect

density fluctuations and describe the dynamics entirely in terms of ⇥ = r · w.

One obtains again bacterial dots that display, however, polar structure.

2.6 Appendix 2.B: Linear stability of the polarized state

To examine the linear stability of the polarized state, we linearize Eqs.2.1 in fluctuations

about a uniform polar state by letting

�⇢̃(r, t) = ⇢̃(r, t)� 1 , (2.14)

�w̃(r, t) = w̃(r, t)�w0/⇢
s

, (2.15)

where w0 = x̂w0 and w0 =
p
2✏(�⇢

s

� ✏)/�. Since the polarized state exists for

�⇢
s

> ✏, to simplify the notation below we introduce the dimensionless parameter

⌘ = �w0/✏ =
p
2(�⇢

s

� ✏)/✏ that is positive in the polar state and vanishes at the

mean-field transition. The linearized equations are then given by

@
t

�⇢̃ = �vr · �w̃ � ✏⌘

�
v0@

x

�⇢̃ + Dr2�⇢̃ � ↵�⇢̃ , (2.16a)

@
t

�w̃ = �✏⌘2�w̃
x

x̂+ ✏⌘�⇢̃x̂� 1

2


(v + ⇢

s

v0)r� 3

4

✏⌘2

�
v0r+

✏⌘2

4�
v0x̂@

x

�
�⇢̃

+
3

4
⌘v r�w̃

x

� 1

8
⌘v @

x

�w̃ + Dr2�w̃ . (2.16b)
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Introducing spatial Fourier transforms (�⇢̃, �w̃) = ⌃
q

(⇢
q

,w
q

)eiq·r, the equations for the

Fourier amplitudes are given by

@
t

⇢
q

= �viq ·wq � ✏⌘

�
v0iq

x

⇢
q

� Dq2�⇢̃ � ↵⇢
q

, (2.17a)

@
t

wq = �✏⌘2wx

qx̂+ ✏⌘ ⇢qx̂� 1

2


(v + ⇢

s

v0)iq� 3

4

✏⌘2

�
v0iq+

✏⌘2

4�
v0x̂iq

x

�
⇢
q

+
3

4
⌘v iqwx

q � 1

8
⌘v iq

x

wq � Dq2wq . (2.17b)

For finite ↵, the dispersion relations of all the modes are finite at q = 0. A proper

analysis of the linear stability of the fluctuations then requires examining the modes up

to order q4. This is cumbersome and not very enlightening. For this reason we simply

present here the analysis of the case � = 0 and ↵ = 0 that serves to make contact with

the existing literature.

For the following discussions, we focus on the simplified case of no proliferation and

constant active speed (↵ = 0 and � = 0). It is convenient to apportion the polarization

in components along the direction x̂ of mean order and perpendicular to it. In addition,

we only consider for simplicity wavectors q along these two special directions.

Longitudinal mode When q = qx̂, wx

q and wy

q describe splay and bend deformations

of the order parameter, respectively. The linearized equations are given by

@
t

⇢
q

= �iqvwx

q � Dq2⇢
q

, (2.18a)

@
t

wx

q = �✏⌘2wx

q + ✏⌘⇢q � 1

2
iqv⇢q+

5

8
⌘v iqwx

q � Dq2wx

q , (2.18b)

@
t

wy

q = �1

8
⌘v iqwy

q � Dq2wy

q . (2.18c)

Bend fluctuations are decoupled and always stable. The decay of coupled density and

splay fluctuations is governed by modes with dispersion relation s±(q),

s±(q) =
1

2

✓
�✏⌘2+

5

8
⌘viq � 2Dq2

◆
± 1

2

s✓
✏⌘2�5

8
⌘viq

◆2

� 4iqv

✓
✏⌘ � 1

2
iqv

◆
(2.19)

Notice that in the limit ↵ = 0, s�(0) = �✏⌘2, which is non-hydrodynamic hence ignored.

The linear stability of the longitudinal mode to splay fluctuations is then determined by

the hydrodynamic mode s+(q), and it is su�cient to expand it to second order in q,

s+(q) = � ivq

⌘
+

✓
�D +

v2

✏⌘4
+

v2

8✏⌘2

◆
q2 +O(q4) . (2.20)
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The system is unstable when Re[s+] > 0. When D ! 0, this condition is always satisfied.

A finite D sets an upper limit for the instability

1 < �⇢
s

<
v

4

r
✏

D
(2.21)

Notice that the mode s+(q) has a finite imaginary part, which suggests the emergence

traveling patterns in the unstable region. This longitudinal instability of splay and

density fluctuations is simply the banding instability studied by Bertin et al [88] and by

Mishra et al [89], although the parameters in our model have a di↵erent dependence on

v0 - in particular the alignment parameter � does not depend on v0.

Transverse mode If q = qŷ, ↵ = 0 and � = 0, then the linearized equations for the

fluctuations are given by

@
t

⇢q = �viqwy

q � Dq2⇢q , (2.22a)

@
t

wx

q = �✏⌘2wx

q + ✏⌘⇢q � Dq2wx

q , (2.22b)

@
t

wy

q = �1

2
viq⇢q +

3

4
v⌘ iqwx

q � Dq2wy

q . (2.22c)

We first consider the region ✏⌘ >> 1, deep in the ordered state. In this case we can

eliminate wx

q by neglecting the time derivative in Eq. (2.22b) to obtain

wx

q ' 1

⌘
⇢q (2.23)

Substituting in Eqs. (2.24) and (2.24b), we obtain coupled equations for density and

bend fluctuations, given by

@
t

⇢q = �viqwy

q � Dq2⇢q , (2.24a)

@
t

wy

q =
1

4
viq⇢q � Dq2wy

q (2.24b)

The dispersion relation s±(q) of the eigenvalues of these equations are given by

s±(q) = ±vq

2
� Dq2

2
(2.25)

We see that Re[s�] is always negative. The linear stability of the polarized state to

fluctuations with wave vector along y is determined by the s+ mode, which is always

unstable for 0 < q < v

2D . Therefore deep in the ordered region, the polarized state is al-

ways unstable to bend fluctuations. This arises from the pressure-like term proportional

to w2 term that yields a change in sign of the e↵ective compressibility, as discussed in

Ref. [89]. It leads to patterns as shown in Fig. 2.7.
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Figure 2.7: Patterns from transverse instability as a result of negative compressibility.
Left: � = 1.025, D = D

w

= 0.05. Right: � = 1.67, D = D
w

= 0.2.

2.7 Appendix 2.C: E↵ect of additional nonlinearities

The continuum model considered here is a simplified version of the model obtained

in Ref. [85] by coarse graining a microscopic Vicsek model with a density dependent

self-propulsion speed. In Eqs. 2.1 we have neglected a number of additional advective

nonlinearities that are obtained from the exact coarse graining. In this section we

show that these additional nonlinear terms do not change the nature of the patterns,

but simply yield small shifts in the values of parameters where each type of pattern is

obtained.

Farrell et al. [85] considered a Vicsek-type model of point particles with density-dependent

self-propulsion speed v(⇢), The microscopic dynamics is governed by coupled Langevin

equations of the form

ṙ
i

= vê
i

+ ⌘

i

(t) , (2.26a)

✓̇
i

= ��
@U

@✓
i

+ ⌘R
i

(t) (2.26b)

where v(⇢) = v0 exp(��⇢), r
i

is the position of active particle and ê
i

a unit vector along

the direction of self-propulsion. The microscopic dynamics includes white and Gaussian

thermal and rotational noise terms, with correlations

h⌘
i↵

(t)⌘
j�

(t0)i = 2D�
ij

�
↵�

�(t � t0) , (2.27)

h⌘R
i

(t)⌘R
j

(t0)i = 2✏�
ij

�(t � t0) . (2.28)

the paper for �̃ = 1.4,
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Figure 2.8: Heat maps of density in the polar region obtained by numerical integration
of Eqs. (2.29) for �̃ = 1.4, ↵̃ = 0.08, D̃ = 0.01 and (from left to right) �̃ = 1.11, 1.25

and 1.67.

Finally, U = � P
|rj�ri|R

cos(✓
j

� ✓
i

) is the polar alignment interaction. Using standard

coarse-graining, these authors derived continuum equations for density and polarization,

given by (with our parameter notation)

@
t

⇢ = �r · (vw � Dr⇢) + ↵⇢ (1� ⇢/⇢
s

) , (2.29a)

@
t
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|w|2w � �
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F[w,rw] �1
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r
✓

v⇢ � 3�

4✏
vw2

◆
+ D

w

r2w ,

(2.29b)

Compared to the simplified model described by Eqs. 2.1, Eqs. (2.29) contain a more

complicated form for the advective nonlinearities F[w,rw], given by F = 1
2w ·r(vw)+

1
4vrw2 + 3

2wr · (vw) + vw(r · w) + v(w · r)w (only the first term is included in

Eqs. (1) of the paper). These additional terms have, however, little e↵ect on the nature

of the emergent patterns, but only shift the parameters where the patterns emerge, as

illustrated by Fig. 2.8. The only exception is that the full form of F[w,rw] must be

included to obtain the blinking dots pattern in the isotropic state.
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2.8 Appendix 2.D: Amplitude equations in the isotropic

state

To estimate the amplitude of the fluctuations in density and polarization near the in-

stability boundary of the homogeneous isotropic state, we need to go beyond linear

stability analysis and solve for the fluctuations perturbatively. To proceed, we neglect

all the convective terms which do not play a significant role in the droplet formation in

the isotropic state. The simplified equations read

@
t

⇢ = �r · [v(⇢)w] + Dr2⇢ + ↵⇢

✓
1� ⇢

⇢0

◆
, (2.30a)

@
t

w = �(✏ � �⇢)w � 1

2
r [v(⇢)⇢] + D

w

r2w. (2.30b)

For this section, we use an alternative scaling similar to the one used in Ref. [13] to

introduce a new set of dimensionless variables. We scale time using 1/↵, length using

(D/↵)1/2 and hydrodynamic variables using ⇢0. This yields the following dimensionless

quantities

� = �⇢0, ṽ0 = v0/
p

D↵, ✏̃ = (✏ � �⇢0)/↵, �̃ = �⇢0/↵.

We drop the tildes in the following discussion for simplicity of notation. All quantities

are dimensionless unless otherwise noted. We introduce perturbations �u = (�⇢, �w)

around the homogeneous isotropic state. We then scale �u using � as

⌦̂ = u

p

� = (⌦
⇢

,⌦). (2.31)

The dynamic equations for the perturbation can now be written in matrix form

@
t

⌦̂ = L̂⌦̂+N(⌦̂), (2.32)

where L̂ is the linear operator

L =

 
r2 � 1 0

0 r2 � ✏

!
, (2.33)

and N(⌦̂) is the Non-linear operator

N =

0

@ �v0e
��r · ⇥e�⌦⇢⌦

⇤� 1
�⌦

2
⇢

�v0
2 e��r

h
e�⌦⇢

⇣
1 + ⌦⇢

�

⌘i
+ 1

��⌦
⇢

⌦

1

A . (2.34)
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The instability condition in terms of the new dimensionless variables can be written as

v0p
2
e��

p
�� 1 > 1 +

p
✏. (2.35)

Close to the onset of the instability, we define a small parameter that measures the

distance to the transition
v0 � v

c

v
c

= x, (2.36)

with which we rewrite the instability condition

v0p
2
e��

p
�� 1 =

�
1 +

p
✏
�
(x + 1) . (2.37)

Now the non-linear operator can be written as

N =

0

@ � (x + 1) (1 +
p

✏)
q

2
��1r · ⇥e�⌦⇢⌦

⇤� 1
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⇢

⌦

1

A . (2.38)

Next, we expand the perturbation in terms of x

⌦̂ = Û0x
1
2 + Û1x + Û2x

3
2 , (2.39)

where Û

i

= (U
i⇢

,U
i

). We expand N(⌦̂) up to o(x
3
2 ) and obtain

N

c

(⌦̂) =

0

@
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1
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3
2

i
� 1

�

⇣
B2x + B3x

3
2

⌘

� ✏̂

2r ·
h
D1x

1
2 + D2x + (D1 + D3)x

3
2

i
� 1

��
⇣
E2x + E3x

3
2

⌘

1

A , (2.40)

Where ✏̂ = 1 +
p

✏ and 0
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(2.41)

We are interested in the saturated time-independent amplitude of the perturbation,

therefore we set the time derivatives to be zero. Now we solve the dynamic equations
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perturbatively. To order o(x
1
2 )

L

c

⌦̂ = 0, (2.42)

where

L
c

=

 
r2 � 1 �✏̂r

� ✏̂

2

�
1
�r� 1

�
r2 � ✏

!
(2.43)

is the linear operator near transition, which leads to the solution

U0⇢ = A0⇢e
iqc·x + A⇤

0⇢e
�iqc·x (2.44a)

U0 = A0e
iqc·x +A

⇤
0e

�iqc·x (2.44b)

with
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2
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=
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✏ A0 = i

�
1 1
�

�
✏̂

2qc

q

2
c

+ ✏
A0⇢, (2.45)

where q

c

is the wavelength of the unstable mode right at the onset of the instability.

The same relation holds for the conjugated amplitude by symmetry. Notice that the

amplitude is not determined from this linear equation, thus we need to go to higher

orders in the perturbation to obtain a constraint that determines the solution for the

amplitude of the perturbation. In this case, we need to refer to the equations to the

order of o(x)

L

c

Û1 =
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and o(x3/2)
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(2.47)

Eqn. 2.46 has solution of the form

U1⇢ = B1⇢e
iqc·x + B⇤

1⇢e
�iqc·x + C1⇢ + D1⇢e

2iqc·x + D⇤
1⇢e

�2iqc·x (2.48a)

U1 = B1e
iqc·x +B

⇤
1e

�iqc·x +C1 +D1e
2iqc·x +D

⇤
1e

�2iqc·x, (2.48b)

while the solvability condition is obtained by imposing that the r.h.s of Eqn. 2.47 is

orthogonal to e±iqc·x, therefore the coe�cient of e±iqc·x should be zero. From symmetry,

we only need to consider the coe�cient of eiqc·x. This solvability condition yields the
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amplitude equations

A0 + |A0⇢|2A0 +
A2

2⇢A
⇤
0

2
� �C1A0⇢ +D1A

⇤
0⇢ + C1⇢A0 + D1⇢A0⇤

�
= 0 (2.49a)

C1⇢A0⇢ + D1⇢A
⇤
0⇢ = 0 (2.49b)
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� 1

◆
A0⇢ + (

3
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� 1

2
)|A0⇢|2A0⇢ +

✓
1� 2

�

◆�
C1⇢A0⇢ + D1⇢A

⇤
0⇢

�
= 0 (2.49c)

C1A0⇢ +D1A
⇤
0⇢ + C1⇢A0 + D1⇢A0⇤ = 0 (2.49d)

Notice we have ignored the spatial dependence of the amplitude for simplicity, and for a

saturated isotropic system, this assumption is reasonable. We arrive at the final result

for the saturated magnitude of the amplitude

|A0⇢|2 = 2 (�� 1)

(3� �)
(2.50a)

|A0|2 =
(�+ 1)

�
1� 1

�

�

(3� �)
p

✏
(2.50b)

Notice that the amplitude here is for the scaled fields, to get the amplitudes for the

original fields, we need to divide the square of the amplitudes by �2 following from Eqn.

2.31. Several results follow from the expression

• The squared amplitude for the density field depends only on �, and for � smaller

than 1 or greater than 3 the amplitude finally decays. The former is in agreement

with the linear stability analysis, and the latter is due to the restabilization at

large velocity suppression.

• The squared amplitude for the polarization field depend on both � and ✏, and

scales as ✏�1/2, which is physically reasonable, as the greater the noise, the smaller

the polarization.



Chapter 3

Hydrodynamics of Turning Flocks

3.1 Introduction

The Vicsek model [22, 54] and related continuous-time variations [91] have been used

to model flocking in a variety of systems, from birds [92] to cells [93] to in vitro cellular

components [29] and synthetic swimmers [45]. These are examples of active systems,

consisting of individually driven, dissipative units that exhibit coordinated motion (flock-

ing) at large scales [15, 94]. In the Vicsek model the active units are described as point

particles with overdamped dynamics carrying a velocity vector of fixed magnitude, hence

“flying spins”. Each spin tends to align with its neighbors, but makes errors, modeled as

angular noise. Vicsek pointed out that, like magnetic spins in a material, “flying spins”

exhibit a phase transition from a disordered state to a coherent moving flock as the noise

is decreased or the number density is increased [22]. The existence of the transition has

been put on firm grounds by a large number of numerical studies [95]. Concurrently to

the original work by Vicsek, Toner and Tu proposed a continuum version of the model

inspired by dynamical field theories of condensed matter systems [23, 83]. Over the past

two decades both models have been applied broadly to describe self-organization and

pattern formation in active systems.

Recent work [2] has suggested that the description of the observed collective turning of

coherent flocks requires a modification of the Vicsek model to include angular inertia in

the dynamics. This allows propagation of angular correlations through the flock on large

scales via spin-wave-like excitations [55]. Such an “inertial spin model” can account for

the correlated turns of large polarized groups [2]. In this paper we present a derivation

of the continuum equations for a collection of inertial flying spins that generalize the

Toner-Tu model to account for turning modes by incorporating the dynamics of the spin

angular momentum of the flock. These equations, given in Eqs. (3.12-3.14) below, are

39
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the first important result of our work. We note that the spin angular momentum is not

a hydrodynamic field and relaxes on a finite time scale. Hence the continuum equations

derived here reduce to the Toner-Tu model in the hydrodynamic limit. On the other

hand, in a polarized flock the time scale over which angular momentum is dissipated

due to interaction with the medium can be slower than the time over which rotational

noise disrupts the order of the flock. In this case, angular inertia is important and the

system can support spin waves that propagate turning information through the flock.

Figure 3.1: Emergent structures obtained via numerical solutions of Eqs. 3.12 -3.14.
Left column: The color indicates the spin current density, with red (blue) corresponding
to positive (negative) values and white being zero. Right column: The color indicates
number density, with orange being high. The arrows represent the local polarization,
with length proportional to the polarization strength. The banding state displayed
in the top row lies in region B in the phase diagram Fig.3.2a, while the bottom row
displays the spin-wave instability in region D, with complex spatial-temporal patterns

consisting of continuously turning and swirling flocks.

By studying the continuum equations analytically and numerically, we predict a new in-

stability of the polarized state associated with large density and spin current fluctuations

that leads to complex spatio-temporal dynamics, with continuously swirling and rotating

flocks. This long-wavelength instability is associated with the growth of anisotropic spin

waves and is referred to as spin-wave instability. It arises from the growth of bend and
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splay deformation augmented by the spin wave. In an equilibrium assembly of rotating

particles in a fluid the damping of the local spin current is controlled by a frictional force

proportional to the di↵erence between the angular spin rate and the local vorticity of the

flow [96]. In the present system the friction with the substrate breaks Galilean invariance

and allows for two distinct frictional couplings, separately proportional to the spin cur-

rent and to the local vorticity of the velocity/polarization field. The latter leads to the

bend deformation augmented by spin wave and drives the instability. Additionally, the

speed of the associated propagating spin waves is anisotropic, with faster propagation

along the direction of broken symmetry than in the direction transverse to it. This leads

to a new type of dynamical pattern consisting of spontaneously polarized, coherently

spinning bands and flocks characterized by large fluctuations in the spin current. These

structures, shown in Fig. 3.1 bottow row, are distinct from the well studied polarized

bands traveling in a low density disordered background that are found ubiquitously in

the Vicsek model (Fig. 3.1 top row).

The derivation of the continuum equations from a generalized Vicsek-type model yields

a continuum theory that contains only two dimensionless parameters, measuring the

strength of angular inertia and of alignment relative to rotational noise. This provides

a great simplification over phenomenological models [24] that contain a large number

of unknown parameters. The equations are studied analytically and numerically. The

numerical onset of emergent patterns agrees quantitatively with the results of the linear

stability analysis (Fig. 3.2a).

3.2 Active inertial spin model

Our starting point is the continuous-time model of inertial spins proposed by Cavagna

et al. [55], where N point particles in a two-dimensional box of area L2, with average

number density ⇢0 = N/L2, interact via a pairwise aligning interaction. Each particle is

described by its position r

i

and the direction of its velocity, identified by an angle ✓
i

(or

a unit vector ê
✓i = (cos ✓

i

, sin ✓
i

)) in 2D. The dynamics of the i-th spin is described by

dr
i

dt
= v0ê

✓i ,
d✓

i

dt
=

1

�
s
i

, (3.1)

ds
i

dt
= �

X

j

F (✓
j

� ✓
i

, r
ji

)� ⌘

�
s
i

+
p
2✏⇠

i

(t) , (3.2)

with r

ji

= r

j

� r

i

, v0 the self-propulsion speed, s
i

the spin angular momentum and

� the spin moment of inertia. The polar aligning coupling of strength � is given by

F (✓, r) = sin(✓)/(⇡R2) if |r|  R and zero otherwise, with R the range of interaction.

This form of the interaction used before in the literature [85] allows us to make analytical
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progress in the derivation of the continuum equations. The form of the latter is not,

however, expected to depend on the specific form of the interaction. Finally, ⌘ is a

friction and ✏ describes the strength of the angular noise, with ⇠
i

(t) a Gaussian white

noise with zero mean and unit variance.

On time scales large compared to the relaxation time ⌧
⌘

= �/⌘, one can neglect the time

derivative on the left hand side of Eq. (3.2) and eliminate the spin angular momentum, s
i

,

from the angular dynamics. This yields a continuous-time version of the Vicsek model,

with e↵ective alignment strength �/⌘ and e↵ective angular noise ✏/⌘2. We identify the

spin as an internal angular momentum that generates the self-rotation, and is distinct

from the angular momentum of the center of mass. A key di↵erence between the present

model and the Vicsek model [22] is that the alignment interaction and noise enter through

the dynamics of the spin rather than act directly on the orientation ✓.

Two additional time scales govern the dynamics of the system: the e↵ective rotational

di↵usion time, ⌧
✏

= ⌘

2

✏

, and the alignment time, ⌧
�

= ⌘

�⇢0
with ⇢0 the average number

density. Although the spin angular momentum is not conserved due to friction with

the medium and relaxes on time scales ⌧
⌘

, in a polarized flock with ⌧
⌘

� ⌧
✏

> ⌧
�

such

a dissipation is much slower than the time scale over which alignment is disrupted by

orientational noise. A generalized hydrodynamic theory incorporating spin dynamics is

therefore relevant in this regime [55].

We first examine the one-particle behavior by ignoring the alignment interaction. The

spin correlation function is < s(t)s(t0) >= �✏

⌘

e
� ⌘

� |t�t

0|, from which we can calculate the

angular mean square displacement (MSD),

< �✓(t)2 >= 2
✏

⌘2


t +

�

⌘
e
� ⌘

� t � �

⌘

�
, (3.3)

that describes a damped Brownian rotor of moment of inertia �. The angular MSD is

di↵usive at long times, with < �✓(t)2 >= 2 ✏

⌘

2 t, and describes spinning particles at short

times, with < �✓(t)2 >= ✏

�⌘

t2. The translational MSD is also di↵usive at long times,

< �r(t)2 >= 2
v

2
0

✏/⌘

2 t.

3.3 Derivation of continuum equations

Following standard methods [57, 97] (see Appendix 3.A), one obtain the noise-averaged

Fokker-Planck equation associated with the microscopic dynamics described by Eqs. (3.1)
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and (3.2), as

✓
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+
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@
✓

◆
P = @
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(⌘

s

�
+ ⌧ [P ])P

�
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P , (3.4)

where D
t

= @
t

+v0e
✓

·r is the material derivative, P (r, ✓, s, t) is the probability density

of particles at position r, with velocity in direction ✓ and spin s at time t, and ⌧ [P ] is

the aligning torque, with

⌧ [P ] = ��

Z

✓

0

Z

s

0
F (✓0 � ✓)P (r, ✓0, s0, t) . (3.5)

For simplicity we have assumed F (✓, r) = �(r) sin(✓), neglecting the di↵erence in position

of the interacting pair.

We describe the large-scale dynamics of a few coarse-grained fields that vary slowly

relative to microscopic time scales. For polarized flocks in addition to the density, ⇢(r, t),

of active units and their polarization current density, w(r, t), we include the spin angular

momentum density, S(r, t). These are obtained from the probability density P as

0
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To derive the continuum equations, we note that in the absence of interactions and

self-propulsion, the steady state solution of Eq. (3.4) has the form of a Maxwell-like dis-

tribution P0(s) = (2⇡�k
B

T
eff

)�1/2 exp[�s2/(2�k
B

T
eff

)], with an e↵ective temperature

k
B

T
eff

= ✏/⌘. In a thermal system the rotational noise ✏ and the friction ⌘ would be

related via the fluctuation-dissipation theorem, with ✏ = ⌘k
B

T . Following established

methods [98], we then expand the probability distribution function in terms of a set of

orthonormal functions �
n

(s) as

P (r, ✓, s, t) = �0(s)
1X

n=0

p
n
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n

(s) , (3.7)
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(s)} are related to Hermite polynomials H
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�
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�
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p

✏�/⌘. This yields a hierarchy of equations for p
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(r, ✓, t), given by
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where D
✓

= (s0/�)@
✓

and D̂
✓

= (s0/�)@
✓

+⌧ [p0]/s0 are di↵erential operators. The torque

⌧ only depends on the zero-th order moment, with ⌧ [p0] = ��
R
✓

0 F (✓0 � ✓)p0(r, ✓0, t).

Again, for times long compared to �/⌘, a closed equation is obtained by retaining

only the zero-th order moment. To include the e↵ect of angular inertia, we construct

closed equations for the angular probability distribution density c(r, ✓, t) = p0(r, ✓, t)

and the associated rotational current density j(r, ✓, t) = p1(r, ✓, t), by neglecting @
t

p2

in the equation for p2 and assuming p
n

= 0 for all n � 3. The equations for the

Fourier amplitudes of the first two moments, c
k
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where r = @
x

+ i@
y

, r⇤ = @
x

� i@
y

and we have introduced an e↵ective friction ⌘
k

=

⌘+k2✏�/⌘2 = ⌘
�
1 + k2⌧

⌘

/⌧
✏

�
. The only nonzero amplitude of the chosen interactions are

F±1 = ±i⇡. The low order Fourier coe�cients are simply related to the hydrodynamic

fields defined in Eq. (3.6), with c0(r, t) = ⇢(r, t), c1(r, t) = w
x

(r, t) + iw
y

(r, t) and

j0(r, t) = S(r, t).

Finally, we generalize the closure described in Refs. [88, 95] to neglect higher order

moments and express j1 and c2 in terms of c0, c1 and j0 up to the first order in �/⌘

(see Appendix 3.B), to obtain a closed set of hydrodynamic equations for ⇢, w and

S = Sẑ. To minimize the number of parameters, we nondimensionalize the equations

by scaling time with ⌧
✏

= ⌘2/✏, length with v0/⌧
✏

and density with ⇢0. The resulting

equations are controlled by only two dimensionless parameters �̃ = ⌧
⌘

/⌧
✏

and �̃ = ⌧
✏

/⌧
�

.

For simplicity, we drop the tildes and all parameters are dimensionless in the following

discussion unless otherwise noted 1.
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(r ·w)S � ⇠S + D
s

r2
S , (3.14)

1
An alternative closure proposed in [45] yields continuum equations with the same structure as those

obtained here, but with � = �/(2⌘⇢0).
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where Dw
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+ �1w ·r and Ds
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w ·r are convective derivatives. The term

r|w|2 has been neglected here because it leads to an spurious instability through the

fluctuations in the magnitude of polarization as discussed in Ref.[89]. This instability has

not been observed in the particle simulations we performed. The various dimensionless

parameters are

↵(⇢) =
1

1 + �
(1� �⇢

2
), � =

1

1 + �

�2

8
,

⌦1 =
��

2(1 + �)
,⌦2 =

�

2(1 + �)
,⌦3 =

�

16
(
1 + 4�

1 + �
),

�1 =
�

4
� �

16
(
1 + 4�

1 + �
), �2 = �


�

4
+

�

16
(
1 + 4�

1 + �
)

�
,

�
s

=
��

2(1 + �)
, ⇠ =

1

�
, D

w

=
1 + 4�

16
, D

s

=
�

2(1 + �)
.

As in the Toner-Tu model, the vector field w plays the dual role of polarization density

and flow velocity. In equilibrium systems of rotors both the equations for the spin and

the velocity field v0w would contain dissipative couplings describing friction with the

substrate proportional to the combination S/�� v0
2 r⇥w, describing the fact that the

angular velocity S/� and the vorticity v0
2 r⇥w must be equal when the whole system

is rotating as a rigid body [96, 99]. In the nonequilibrium system considered here, in

contrast, frictional terms proportional to angular velocity and vorticity will in general

appear with di↵erent coe�cients. The first term on the right hand side of Eq. (3.14) has

in fact a natural interpretation of a nonlinear, velocity-dependent vortical friction. We

show in Appendix 3.C that the present equations, with the exception of the advective

terms, can also be written in terms of an e↵ective free energy. This procedure yields,

however, artificial constraints on the various parameters.

Equations (3.12-3.14) augment the flocking model of Toner and Tu [23] by incorporating

the dynamics of the spin current. The most important coupling between polarization

w and spin current S is provided by a “self-spinning” term S ⇥ w that couples the

center-of-mass motion to the turning dynamics. In contrast to more familiar systems of

passive rotors [99, 100], in the self-propelled particle model considered here, these two

degrees of freedom are coupled because the spinning angle also controls the direction of

translational motion [55]. This self-spinning term, when combined with the elasticity

term w ⇥ r2
w, gives rise to traveling spin waves. Finally, when S is neglected, Eqs.

(3.12-3.14) reduce to the Toner-Tu equations as derived by Farrell et al. [85] (but in the

case of constant self-propulsion speed) 2. We expect these equations will provide useful

2
If we neglect @tS in Eq. (3.14) and use the resulting equations to eliminate S in favor of ⇢ and w,

the resulting continuum equations have the same structure as those obtained in [85], with O(⌧⌘/⌧✏)
corrections to various coe�cients.
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to describe a number of active systems where collective turning controls the large-scale

dynamics.

3.4 Steady states and linear stabilities

The homogeneous steady states of the continuum equations have uniform density, ⇢ = 1,

and zero mean value of the spin, S = 0. As in the Vicsek model with no angular inertia,

there are two such states: an isotropic state, with w = 0, and a polarized or flocking

state, with w = w0x̂ and w0 =
p�↵0/�, where ↵0 = ↵(⇢ = 1) and we have chosen the x̂

axis along the direction of spontaneously broken symmetry. The isotropic state is always

stable. We examine below the linear stability of the polarized state by considering the

dynamics of fluctuations. We let w = w0x̂ + �w, ⇢ = 1 + �⇢, S = ẑ�s and introduce

Fourier amplitudes (�⇢, �w, �s) =
P

q

(⇢
q

,w
q

, s
q

)eiq·r+�t to obtain a set of linearized

equations in Fourier space (see Appendix B).

3.4.1 Longitudinal modes: banding instability

We first consider the dynamics of fluctuations with spatial variations along the direction

of broken symmetry by letting q = qx̂. In this case, wy

q

and s
q

decouple from ⇢
q

and

wx

q

.

The coupled linear dynamics of fluctuations in the density and the magnitude of polar-

ization (wx

q

) is una↵ected by angular inertia and is controlled by a stable relaxational

mode and a propagating mode given by

�
b

(q) =
i↵

⇢

2�w0
q +

1

2↵0

"
�↵

⇢

2�
+

1

2
+

↵2
⇢

4�↵0

#
q2 +O(q3) , (3.15)

where ↵
⇢

= @
⇢

↵ and � = �1��2. This mode is unstable when � < 8/3. This instability is

well known in Vicsek and Toner-Tu models as banding instability and has been discussed

extensively [88, 89, 101]. It signals the onset of alternating bands of ordered and

disordered regions extending in the direction normal to that of mean order and traveling

along the direction of broken symmetry. These bands have been observed in simulations

of the Vicsek model [102], as well as in numerical solutions of the nonlinear hydrodynamic

equations for polar fluids [88, 89]. This instability arises from the density dependence

of the polarization damping ↵(⇢) and sets in right at the onset of the polarized state.

Although the details of the instability and resulting emergent patterns depend on the

polar or nematic symmetry of the ordered state, the existence of such an instability has

been shown to be a generic property of ‘dry’ active systems where the parameter that
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tunes the order-disorder transition, namely the density, is also dynamically coupled to

the order parameter [103].

The coupled dynamics of spin and bending fluctuations (wy

q

) gives rise to finite-wavelength

spin waves that mediate the propagation of turning information throughout the flock.

Propagating spin waves are a unique feature of the present model and their existence

has been demonstrated on the basis of general arguments [55] and phenomenological

continuum models [24]. Such spin waves arise in polarized flocks from the interplay

between the elastic restoring forces associated with bend deformations and angular in-

ertia, provided the dissipation of angular momentum is slow compared to both the time

scales controlling angular noise and alignment interaction. Our work yields an expres-

sion for the wave speed in terms of the microscopic parameters of the model. Neglecting

convection and di↵usion, the spin-wave dispersion relation is given by

�
l± = �⇠

2
± ic

s

q
p
1� [⇠/(2c

s

q)]2 . (3.16)

with wave speed c
s

= w0
p
⌦1⌦3. Longitudinal propagating spin waves only exist for

wave vector q > ⇠/2c
s

, defining the characteristic length scale over which the wave can

travel before being dissipated through frictional coupling to the substrate.

3.4.2 Transverse modes: spin-wave instability

Next we consider the dynamics of fluctuations with spatial variations transverse to the

direction of broken symmetry, corresponding to q = qŷ. In this case all four equations

are coupled. Two of the modes are stable and relaxational and will not be discussed

further. The other two modes are propagating. When calculated in a small wave vector

expansion, the dispersion relations are given by

�±
t

(q) = ic±
t

q �D
sw

q2 +O(q3) , (3.17)

with transverse wave speed c
t

= 1/
p
2 and damping controlled by an e↵ective di↵usion

constant D
sw

, given by

D
sw

=
D

w

2
+

w2
0⌦1(�2 + ⌦3)

2⇠
� ⌦1↵⇢

4�⇠
(3.18)

The damping rate D
sw

can become negative when

2�w2
0�2 < ↵

⇢

� (2D
w

�⇠)/⌦1 � 2�w2
0⌦3, (3.19)
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yielding unstable growth of long wavelength polarization and spin fluctuations in the

direction transverse to the direction of broken symmetry. In terms of our dimensionless

parameters the instability condition reads � > (1 + 4�)(1 + �)/(8�2) + 4. This trans-

verse instability is driven by the bend ��r(|w|2w) and splay �2w(r ·w) deformation

augmented by the spin wave ⌦1S ⇥w. The terms on the RHS of the instability condi-

tion 3.19 represent the stabilizing e↵ects from density-dependent alignment interaction,

rotational di↵usion and spin elasticity that favor a homogeneous polar state. This long-

wavelength instability of the ordered state is a new result of our work and will be referred

to as spin-wave instability. As shown below, it leads to a complex spatio-temporal dy-

namics with large density and spin fluctuations characterized by continuously turning

and swirling flocks and anisotropic propagating spin waves (see Fig. 3.1 bottom row).

Particle simulations based on the inertial spin model 3.1-3.2 verifies the existence of this

instability.

We note, however, that this instability disappears deep in the polar state for � > 50 and

is replaced by a homogeneous flocking state as observed from the particle simulation.

In this region, the hydrodynamic equations 3.12-3.14 no longer hold, and a new closure

[45] is used to derive an alternative set of hydrodynamic equations for this regime (See

Appendix 3.B). The new equations are free of instabilities deep in the polar state, and

successfully reproduce the homogeneous flocking state. They serve as the foundation to

study the propagation of information in well-polarized flocks, a subject left for future

study.

By carrying out the small wave vector expansion of the dispersion relation Eq (3.17)

up to fourth order in q we can identify the wave vector q
c

of the fastest growing mode

corresponding to the maximum of Re[�±
t

(q)] shown in Fig. 3.2c and d for various values

of � and �. This defines a characteristic length scale �
c

⇠ 1/q
c

that diverges close

to the transition. This length scale is inversely proportional to � and displays a non-

monotonic dependence on �, as highlighted in Fig.3.2b. The figure shows the isolines of

q
c

in the plane of � and �, with the color indicating the magnitude of q
c

, which sets the

characteristic length scale of the turning flocks.

To gain more insight on the complex spatio-temporal structures that emerge in the un-

stable regions of parameter and confirm the results of the linear stability analysis, we

have solved numerically Eqs. (3.12-3.14) on a 300 ⇥ 300 grid, with grid size 0.1 and

periodic boundary conditions. The integration is carried over 200000 time steps us-

ing predictor-corrector method, with each time step 0.002. The system was initialized

in the polarized state with small superimposed perturbations. The results are sum-

marized in the phase diagram of Fig.3.2a. The squares in Fig.3.2a correspond to the

onset of spatially varying states characterized by mean density fluctuations �⇢ > 0.01,
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Figure 3.2: a. Phase diagram in the plane of dimensionless � and �. Labels A to D
correspond to isotropic state, banding state, uniformly polarized state and spin-wave
instability, respectively. b. Contour plot for the wave number q

c

of the most unstable
mode in the transverse direction. c. Real part of the dispersion relation of the transverse
mode �±

t

at � = 1 and � = 7.0, 8.0, 9.0, 10.0. d. Real part of the dispersion relation of
the transverse mode �±

t

at � = 9 and � = 0.5, 1.0, 1.5, 2.0.

where �⇢ =
q

1
N

P
r < (⇢(r)� ⇢0)2 >/⇢0 with N the number of grid points. Similarly,

the squares correspond to the onset of spin waves as characterized by spin fluctuations

�S =
q

1
N

P
r < (S(r)� < S >)2 > > 0.01. These criteria are in quantitative agree-

ment with the boundaries of linear stability shown in Fig.3.2a. The system transits

from an isotropic state (A) with zero mean polarization to a polarized banding state (B)

above the disorder-order phase transition at � = 2. Above � = 8/3, the banding state is

replaced by a uniformly polarized state (C) until spin-wave instability (D) sets in above

the black dashed line deep in the polarized state. States B and D are shown in Fig. 3.1.

3.5 Anisotropic spin waves

To understand the nature of the spin waves that mediate the transfer of turning infor-

mation within the flock, we study the propagation of the spin waves numerically with

Eqs. (3.12-3.14) by initializing the system in the isotropic and uniformly polarized state,

respectively, with concentrated spin current at the center (Fig. 3.3). In the isotropic

state at � = 0.5 and � = 2.0, the spin current di↵uses isotropically and dissipates
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Figure 3.3: Top row: Snapshots of the transient di↵usion (left) and propagation of
spin current (right) in the isotropic state with � = 0.5 and polarized state with � = 7.0,
respectively. � = 2.0. The system is initialized with concentrated spin current at the
center and evolves for 800 time steps. Bottom row: Time-dependent distribution of spin
current in the longitudinal (black solid lines) and transverse (red dashed lines) directions
of mean polarization in correspondence to the snapshots. The spin wave propagates

anisotropically with enhanced wave speed in the direction of mean polarization.

0 2 4 6 8 100

0.5

1

1.5

2

2.5

a

c s

0 2 4 6 8 100

0.5

1

1.5

a

c s

�� ��

Figure 3.4: a. Speed of spin waves in the polarized state as a function of alignment
strength � for � = 1.0, 1.5, 2.0 (red, blue, black) in the longitudinal (circles) and trans-
verse (squares) directions of the mean polarization obtained with perturbations in all
fields. Dashed line is the transverse speed c

t

in Eqn.3.17. b. Speed of spin waves with
suppressed fluctuations in �⇢ and �w

x

. Dashed line is the wave speed c
s

in Eqn. 3.16.
The system is evolved for 5000 time steps.
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over time. In the polarized state at � = 7.0 and � = 2.0, the spin current propagates

anisotropically in the form of spin waves. The observation is supported by the plot of

the time-dependent distribution in the longitudinal (black solid lines) and transverse

(red dashed lines) directions of mean polarization in Fig. 3.3. The propagation speed is

augmented in the direction of mean polarization.

Finally, we measure the speed of spin waves along (c
x

) and perpendicular to (c
y

) mean

polarization as a function of alignment strength � for various � by tracing the dis-

placement of the maxima of the distribution, and plot the results in Fig. 3.4a. The

longitudinal speed c
x

(circles) increases with the strength of alignment interaction while

the transverse speed c
y

(squares) stays approximately constant over the range of param-

eters.

In the longitudinal direction, where �w
y

and �s decouple from �w
x

and �⇢, Eqn.3.16

captures the trend of c
x

except for a systematic enhancement by convection, suggesting

that the longitudinal spin wave is governed by a damped wave equation at finite wave-

length. In the transverse direction, all fluctuations are coupled, leading to the failure of

Eqn.3.16, and the dynamics is governed at long wavelength by a hydrodynamic mode

that arises from the coupling between spin current density and local vorticity through

density-dependent friction. This mode has an angular-dependent propagating speed of

the form

c±
s

(✓) =
↵
⇢

cos(✓)±
q

↵2
⇢

cos2(✓) + 8�2w2
0 sin

2(✓)

4�w0
, (3.20)

that reduces to c
t

= 1/
p
2 in the transverse direction at ✓ = ⇡/2 as in Eqn.3.17, and

fits the data quantitatively in Fig.3.4a. This is also the mode that drives the spin-wave

instability through the interplay between density and bending fluctuations deep in the

polarized state as illustrated by Eqn.3.17.

To support this argument, we suppress fluctuations in �w
x

and �⇢ as well as convections

in the numerical solutions. The directional anisotropy in wave speed is significantly

reduced as displayed in Fig.3.4b. In this case, both c
x

and c
y

agrees with the prediction

by Eqn.3.16 derived from the coupled equations of �w
y

and �⇢. This is the second central

result of our work, and we call for experiments and particle simulations to check this

prediction.
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3.6 Finite-size turning flocks

Next, we explore the finite size e↵ect by solving the hydrodynamic equations numerically

in the polarized state with initially concentrated spin current at the center for di↵erent

inertia, alignment strength and system sizes. We measure the average turning angle

of the polarization after 2000 time steps, and plot a phase diagram in the plane of �

and � (Fig. 3.5). The phase boundaries are drawn at where the average turning angle

is 20 degrees, above which the collective turning is considered substantial. Consistent

with the results from the previous section, the average turning angle increases with

alignment strength and inertia, and is inversely proportional to the system size due to

dissipation over large distance. This simulates the collective turning behavior initialized

by individuals in a small to mid-sized flock, in agreement with particle simulations in

Ref. [55].
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Figure 3.5: Phase diagram of collective turning in well-polarized flock of di↵erent sizes
mediated by spin wave. The spin current is initialized at the center of the system and
evolved for 2000 time steps. The lines and markers correspond to the boundaries drawn
at where the average turning angle is 20 degrees. The collective turning is substantial

above the lines and reduces as the system size increases due to dissipation.

3.7 Particle simulations

Finally, we perform a preliminary particle simulation based on the inertial spin model

to check the hydrodynamic theory. For comparison, we simulate the continuous time

Vicsek model in parallel. The results are summarized in Fig. 3.6 and 3.7.
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Figure 3.6: Order parameters as function of dimensionless alignment strength.
Top/Mid row: average polarization/variance of spin from the simulation of the in-
ertial spin model. � = 1. Bottom row: average polarization from the simulation of

continuous time Vicsek model.

Figure 3.7: Top row: snapshots from the inertial spin model. Bottom row: snapshots
from the continuous time Vicsek model.
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The simulations reproduce the disorder-order phase transition line quantitatively as pre-

dicted by the hydrodynamic theory. Notice that for the inertial spin model, there is a

regime of large spin fluctuations from the onset of order to � ⇡ 50, where spontaneously

swirling and turning flocks are observed Fig.3.7 (top middle). Beyond this regime, the

mean polarization approximates unity and the spin fluctuations are suppressed, signal-

ing the transition to a homogeneous polar state. An alternative set of hydrodynamic

equations based on a di↵erent closure is applicable for this regime as shown in section

3.9.2 of the Appendix. In contrast, the continuous time Vicsek model displays a smooth

transition from the banding state to a homogeneous polar state much earlier (� ⇡ 20)

Fig. 3.7 (bottom) without spontaneously turning flocks. The observations lend qual-

itative support to the existence of a spin-wave instability at intermediate alignment

interactions as predicted by the hydrodynamic theory.

3.8 Appendix 3.A: Fokker-Planck equation

In this section, we derive the Fokker-Planck equation for the active inertial spin model

starting from the microscopic equations of motion as in Eq.3.1-3.2. To start, we introduce

an arbitrary analytic function g(r
i

, ✓
i

, s
i

), and the probability distribution function for

particle i

p
i

(r, ✓, s) = �(r � r

i

)�(✓ � ✓
i

)�(s � s
i

), (3.21)

from which we define the global probability distribution function

P (r, ✓, s) =
X

i

p
i

(r, ✓, s), (3.22)

whose dynamics is governed by the Fokker-Planck equation to be derived. We take the

time derivative of g(r
i

, ✓
i

, s
i

) using Ito calculus and obtain

ġ(r
i

, ✓
i

, s
i

) = r
rig · ṙ

i

+ (@
✓ig)✓̇i + (@

sig)ṡi + ✏
@2g

@s2
i

(3.23)

Using Eq. 3.1-3.2, we obtain

ġ(r
i

, ✓
i

, s
i

) = r
rig · v +

s
i

�
(@

✓ig) (3.24)

+(@
sig)[�

X

j

F (✓
j

� ✓
i

, r
j

� r

i

) +
p
2✏⇠

i

(t)� ⌘

�
s
i

] + ✏
@2g

@s2
i
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Using the definition of p
i

(Eqn. 3.21)

ġ(r
i

, ✓
i

, s
i

) =

Z
drd✓ds(rg · v +

s

�
(@

✓

g) (3.25)

+(@
s

g)[�
X

j

F (✓
j

� ✓, r
j

� r) +
p
2✏⇠

i

(t)� ⌘

�
s] + ✏

@2g

@s2
)p

i

.

Integrating by parts

ġ(r
i

, ✓
i

, s
i

) =

Z
drd✓ds(�r · (p

i

v)� s

�
(@

✓

p
i

) (3.26)

�@
s

[�p
i

X

j

F (✓
j

� ✓, r
j

� r) +
p
2✏p

i

⇠
i

(t)� ⌘

�
sp

i

] + ✏
@2p

i

@s2
)g(r, ✓, s).

and using identities

ġ(r
i

, ✓
i

, s
i

) =

Z
drd✓ds[ṗ

i

g(r, ✓, s)] (3.27)

F (r
j

� r, ✓
j

� ✓) =

Z
dr0d✓0ds0[p

j

(r0, ✓0, s0)F (r0 � r, ✓0 � ✓)] (3.28)

we obtain

Z
drd✓ds(�@

s

[�p
i

Z
dr0d✓0ds0p

j

X

j

F (✓0 � ✓, r0 � r) +
p
2✏p

i

⇠
i

(t)� ⌘

�
sp
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] (3.29)

�r · (p
i

v)� s

�
(@

✓

p
i

) + ✏
@2p

i

@s2
)g(r, ✓, s) =

Z
drd✓ds[ṗ

i

g(r, ✓, s)].

Summing over all particles by using eqn. eq:p and with the fact that g(r, ✓, s) is an

arbitrary function, we obtain the Fokker-Planck equation

Ṗ (r, ✓, s, t) + v

✓

·rP = � @

@✓
(
1

�
sP ) + ⌧(✓, r, t)

@P

@s
+

@

@s
(
⌘

�
sP ) + ✏

@2P

@s2
(3.30)

� @

@s

p
2✏P ⇠(r, ✓, s, t) ,

where

< ⇠(r, ✓, s, t)⇠(r0, ✓0, s0, t0) >= �(r0 � r)�(✓0 � ✓)�(s0 � s)�(t0 � t) (3.31)

For later discussion, we drop the stochastic noise and work with noise-averaged quanti-

ties.
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3.9 Appendix 3.B: Closures for continuum equations

The Fokker-Planck equation for the one-particle probability density P (r, ✓, s, t) associ-

ated with Eqs. 3.1 and 3.2 of the main text is given by

Ṗ (r, ✓, s, t) + v

✓

·rP = � @

@✓
(
1

�
sP ) + ⌧(✓, r, t)

@P

@s
+

@

@s
(
⌘

�
sP ) + ✏

@2P

@s2
, (3.32)

where ⌧(✓, r, t) = ��
R
⇡

�⇡

d✓0F (✓0 � ✓)p0(r, ✓0, t) is the torque. We have assumed local

interaction F (✓, r) = �(r)sin(✓) and defined p0(r, ✓0, t) =
R
s

P (r, ✓0, s, t). To make the

notation more compact, we define the Fokker-Planck operator as

L
k

= L
rev

+ L
ir

, (3.33)

L
rev

= � s

�

@

@✓
+ ⌧(r, ✓, t)

@

@s
� v

✓

·r , (3.34)

L
ir

=
⌘

�

@

@s
(s + s20

@

@s
) , (3.35)

where L
rev

and L
ir

represent the reversible and irreversible part of the Fokker-Planck

operator respectively, and we have introduced the steady state value of the spin s20 =
✏�

⌘

.

In the absence of interaction and activity, the steady state distribution of the spin has

a Maxwell-like form, given by

P0(s) =
1p
2⇡s20

exp(� s2

2s20
). (3.36)

Following standard methods [98], we transform the Fokker-Planck operator by multiply-

ing it from the right and the left by �0(s) = P
1
2
0 (s) and ��1

0 (s) = P
� 1

2
0 (s), respectively,

with the result

L̄
k

= ��1
0 (s)L

k

�0(s) = L̄
rev

+ L̄
ir

, (3.37)

L̄
ir

= � ⌘

�
b+b , L̄

rev

= �bD � b+D̂ � v

✓

·r , (3.38)

where b+ and b are creation and annihilation operators, respectively.

b+�
n

(s) =
p

n + 1�
n+1(s) , (3.39)

b�
n

(s) =
p

n�
n�1(s). (3.40)
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D and D̂ are the di↵erential operators, with the latter containing the information of the

interaction,

b+ = �s0
@

@s
+

1

2

s

s0
, b = s0

@

@s
+

1

2

s

s0
, (3.41)

D =
s0
�

@

@✓
, D̂ =

s0
�

@

@✓
+

⌧(✓, r, t)

s0
. (3.42)

The normalized eigenfunctions �
n

(s) of the operator L̄
ir

= � ⌘

�

b+b are defined by the

eigenvalue equation

L̄
ir

�
n

(s) = � ⌘

�
n�

n

(s) , (3.43)

with

�
n

(s) = (b+)n�0(s)/
p

n! , (3.44)

�0(s) = exp(� s2

4s20
)/

q
s0
p
2⇡. (3.45)

Finally, �
n

(s) are related to the Hermite polynomials H
n

(x) =
�
2x � d

dx

�
n · 1 as

�
n

(s) = H
n

(
sp
2s0

) exp(� s2

4s20
)/

q
n!2ns0

p
2⇡. (3.46)

We now expand the probability distribution function in terms of �
n

(s),

P (r, ✓, s, t) = �0(s)
1X

n=0

p
n

(r, ✓, t)�
n

(s) , (3.47)

and we insert the expansion into the Fokker-Plank equation,

@
t

P (r, ✓, s, t) = L
k

P (r, ✓, s, t) , (3.48)

where the Fokker-Plank operator is obtained after an inverse transformation, as

L
k

= �0(s)(� ⌘

�
b+b � bD � b+D̂ � v ·r)��1

0 (s). (3.49)

Using the properties of the operators and the orthogonality of the Hermite polynomials,

we obtain a hierarchy of equations for the moments p
n

(r, ✓, t),

D
t

p
n

(r, ✓, t) = � ⌘

�
np

n

(r, ✓, t) (3.50)

�p
n + 1Dp

n+1(r, ✓, t)�p
nD̂p

n�1(r, ✓, t) ,
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where D
t

= @
t

+ v

✓

·r is the material derivative. Explicitly, the equations for the first

three moments are given by

D
t

p0 = �Dp1 , (3.51)

D
t

p1 = � ⌘

�
p1 �

p
2Dp2 � D̂p0 , (3.52)

D
t

p2 = �2⌘

�
p2 �

p
3Dp3 �

p
2D̂p1. (3.53)

The first two moments are related to the probability density c(r, ✓, t) of finding a particle

at r, with velocity directed along ✓ at time t and the spin current j(r, ✓, t),

c(r, ✓, t) = p0 =

Z 1

�1
P (r, ✓, s, t)ds , (3.54)

j(r, ✓, t) = s0p1 =

Z 1

�1
sP (r, ✓, s, t)ds , (3.55)

To obtain closed equations for c and j, we set D
t

p2 = 0 for times long compared to

�/2⌘, and let p
n

= 0 for n � 3. We then eliminate p2 in favor of p0 and p1 to obtain

closed equations. The equations for density and current are then given by

D
t

c(r, ✓, t) = � 1

�

@j

@✓
, (3.56)

D
t

j(r, ✓, t) = � ⌘

�
j +

✏

⌘2
@2j

@✓2
+

1

⌘

@[⌧(r, ✓, t)j]

@✓
(3.57)

� ✏

⌘

@c

@✓
� ⌧(r, ✓, t)c.

The goal is to obtain closed equations for the number density ⇢(r, t), polarization den-

sity w(r, t) and spin current S(r, t), which are the conserved, symmetry-breaking and

relevant dynamic variables in the flocking system, respectively. Generalizing the method

described in Ref.[88], we introduce the angular Fourier transform of c and j as

c
k

(r, t) =

Z
⇡

�⇡

c(r, ✓, t)eik✓d✓ , (3.58)

j
k

(r, t) =

Z
⇡

�⇡

j(r, ✓, t)eik✓d✓ , (3.59)

which are related to ⇢(r, t), w(r, t) and S(r, t) by

⇢(r, t) = c0(r, t) , S(r, t) = j0(r, t) , (3.60)

w
x

(r, t) = Re[c1(r, t)] , w
y

(r, t) = Im[c1(r, t)] , (3.61)



Hydrodynamics of Turning Flocks 59

whose dynamic equations are

@
t

c
k

(r, t) +
v0
2
r⇤c

k+1 +
v0
2
rc

k�1 =
ik

�
j
k

, (3.62)

@
t

j
k

(r, t) +
v0
2
r⇤j

k+1 +
v0
2
rj

k�1 = �⌘
k

�
j
k

+
ik✏

⌘
c
k

(3.63)

+
ik�

2⇡⌘

X

m

j
k�m

F�m

c
m

+
�

2⇡

X

m

c
k�m

F�m

c
m

,

where r = @
x

+ i@
y

, r⇤ = @
x

� i@
y

and F±1 = ±i⇡. We have introduced an e↵ective

friction ⌘
k

= ⌘ + k2✏�/⌘2.

3.9.1 Closure close to the disorder-order transition

Explicity, the equations for c0, c1 and j0 are given by

@
t

c0 +
v0
2
r⇤c1 +

v0
2
rc⇤1 = 0 , (3.64)

@
t

c1 +
v0
2
r⇤c2 +

v0
2
rc0 =

i

�
j1 , (3.65)

@
t

j0 +
v0
2
r⇤j1 +

v0
2
rj⇤1 = � ⌘

�
j0. (3.66)

To close these equations, we need to express j1 and c2 in terms of c0, c1 and j0. To do

so, we consider the equations for j1, j2 and c2,

@
t

j1 +
v0
2
r⇤j2 +

v0
2
rj0 = �⌘1

�
j1 +

i✏

⌘
c1 � �

2⌘
(j2c

⇤
1 � j0c1) +

i�

2
(c2c

⇤
1 � c0c1) , (3.67)

@
t

j2 +
v0
2
r⇤j3 +

v0
2
rj1 = �⌘2

�
j2 +

2i✏

⌘
c2 � �

⌘
(j3c

⇤
1 � j1c1) +

i�

2
(c3c

⇤
1 � c1c1) , (3.68)

@
t

c2 +
v0
2
r⇤c3 +

v0
2
rc1 =

2i

�
j2. (3.69)

For times long compared to �/⌘, we set @
t

j1 = @
t

j2 = 0. Retaining terms up to first

order in �/⌘ we obtain the expression for j1 and j2,

j1 =
�

⌘1


i✏

⌘
c1 +

�

2⌘
j0c1 +

i�

2
(c2c

⇤
1 � c0c1)� v0

2
rj0

�
+O(�2), (3.70)

j2 =
�

⌘2
(
2i✏

⌘
c2 � i�

2
c21) +O(�2). (3.71)

Inserting Eq. 3.71 into the equation for c2, we obtain,

@
t

c2 +
v0
2
r⇤c3 +

v0
2
rc1 =

�

⌘2
c21 �

4✏

⌘⌘2
c2. (3.72)
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For times long compared to ⌘⌘2
4✏ , we follow the method of Ref. [88, 95] and set @

t

c2 = 0

and c
n

= 0 for n � 3 to obtain the expression for c2,

c2 =
�⌘

4✏
c21 �

v0⌘⌘2
8✏

rc1. (3.73)

Equations 3.70-3.72 complete the closure and lead to the following closed equations.

@c0
@t

+
v0
2
rc⇤1 +

v0
2
rc1 = 0 , (3.74)

@c1
@t

+
v0
2
rc0 +

v0�⌘

8✏
r⇤c21 =

✓
�

2⌘1
c0 � ✏

⌘⌘1
� �2⌘

8✏⌘1
|c1|2

◆
c1 +

i�

2⌘⌘1
j0c1

� iv0
2⌘1

rj0 +
�v0⌘⌘2
16✏⌘1

c⇤1rc1 +
v20⌘⌘2
16✏

r2c1 , (3.75)

@j0
@t

+
i��v20⌘⌘2
32✏⌘1

(r [(r⇤c⇤1)c1])�r⇤ [(rc1)c
⇤
1]) = �v0��

4⌘1
[ir(c0c

⇤
1)� ir⇤(c0c1)] (3.76)

�v0✏�

2⌘⌘1
(�irc⇤1 + ir⇤c1)� v0�

2⌘�

16✏⌘1

⇥�ir(|c1|2c⇤1) + ir⇤(|c1|2c1)
⇤

�v0��

4⌘⌘1
[r(c⇤1j0) +r⇤(c1j0)] +

�v20
2⌘1

r2j0 � ⌘

�
j0. (3.77)

Using relations given in Eqn.3.60, and the following identities

r⇤c21 =
⇥
2(w ·r)w + 2w(r ·w)�r|w|2⇤ , (3.78)

ic1j0 = S ⇥w , (3.79)

irj0 = �r⇥ S (3.80)

ir(c0c
⇤
1)� ir⇤(c0c1) = �2r⇥ (⇢w) , (3.81)

�irc⇤1 + ir⇤c1 = 2r⇥w , (3.82)

�ir(|c1|2c⇤1) + ir⇤(|c1|2c1) = 2r⇥ (|w|2w) , (3.83)

r(c⇤1j0) +r⇤(c1j0) = 2Sr ·w + 2(w ·r)S , (3.84)

c⇤1rc1 = (w ·r)w �w(r ·w) +
1

2
r|w|2 , (3.85)

i (r [(r⇤c⇤1)c1])�r⇤ [(rc1)c
⇤
1]) = �2w ⇥r2

w, (3.86)

we arrive at the hydrodynamic equations

@⇢

@t
= �v0r ·w , (3.87)

Dw

t

w = � ⇥↵(⇢) + �|w|2⇤w � v0
2
r⇢ + �2w(r ·w) +

�3

2
r|w|2

+⌦1S ⇥w + ⌦2r⇥ S + D
w

r2
w , (3.88)

Ds

t

S = �v0�r⇥ ⇥�↵(⇢) + �|w|2�w⇤+ ⌦3w ⇥r2
w

��
s

(r ·w)S � ⇠S + D
s

r2
S , (3.89)
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where Dw

t

= @
t

+�1w·r and Ds

t

= @
t

+�
s

w·r are convective derivatives. All coe�cients

are related to the microscopic parameters as

↵(⇢) =
1

⌘1
(
✏

⌘
� �⇢

2
), � =

1

⌘1

⌘�2

8✏
,

⌦1 =
�

2⌘⌘1
, ⌦2 =

v0
2⌘1

, ⌦3 =
��v20⌘⌘2
16✏⌘1

,

�1 =
v0�⌘

4✏
� �v0⌘⌘2

16✏⌘1
, �3 = ��2 =

v0�⌘

4✏
+

�v0⌘⌘2
16✏⌘1

,

�
s

=
v0��

2⌘⌘1
, ⇠ =

⌘

�
, D

w

=
v20⌘⌘2
16✏

, D
s

=
�v20
2⌘1

, ⌘
k

= ⌘ +
k2✏�

⌘2
.

3.9.2 Closure away from the disorder-order transition

The closure in the previous section is justified close to the disorder-order transition,

which predicts the banding instability from the growth of longitudinal fluctuations and

the spin wave instability from transverse fluctuations. However, it fails to account for

the stable homogeneous polar state deep in the polarized region, which is relevant for

cohesive flocks that do not display large density fluctuations. Particle simulations show

that homogeneous polar flock emerges for �̃ = �⇢0⌘/✏ > 50. Thus for this regime, we

use an alternative closure in reference to [45].

Instead of Eqn. 3.72, we close c2 assuming c2 = c21|c1|2/c30. This is the case when the

angular probability distribution �(r, ✓, t) is peaked and the high-order cumulants of the

generating function can be neglected, satisfied by the homogeneous polar state. Together

with Eqn 3.70, this yields the following hydrodynamic equations.

@⇢

@t
= �v0r ·w , (3.90)

@
t

w +
v0
⇢3

|w|2(w ·r)w = �

↵(⇢) + �

|w|4
⇢3

�
w � v0

2
r⇢ +

3v0
2⇢4

|w|2(2ww � |w|2I) ·r⇢

�v0
⇢3

|w|2w(r ·w) +
v0
⇢3

(|w|2I �ww) ·r|w|2 + ⌦1S ⇥w + ⌦2r⇥ S , (3.91)

@
t

S + �
s

(w ·r)S = �v0�r⇥
✓

↵(⇢) + �
|w|4
⇢3

◆
w

�
� �

s

(r ·w)S � ⇠S + D
s

r2
S ,

(3.92)

with coe�cients

↵(⇢) =
1

⌘1
(
✏

⌘
� �⇢

2
), � =

�

2⌘1
,

⌦1 =
�

2⌘⌘1
, ⌦2 =

v0
2⌘1

,

�
s

=
v0��

2⌘⌘1
, ⇠ =

⌘

�
, D

s

=
�v20
2⌘1

, ⌘
k

= ⌘ +
k2✏�

⌘2
.
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These set of equations predict a stable homogeneous polar state away from the disorder-

order transition as expected, and retains the banding instability close to the transition.

Surprisingly, The transition line is unaltered. A set of more compact equations can

be written down for the density-independent polarization P = w/⇢ and spin current

g = S/⇢.

@⇢

@t
= �v0P ·r⇢ � v0⇢(r · P ) , (3.93)

@
t

P + v0|P |2(P ·r)P = � ⇥↵(⇢) + �⇢|P |4⇤P +
v0
2⇢

(|P |4 � 1)r⇢ +
v0
⇢
(1� |P |2)P (P ·r)⇢

+v0(1� |P |2)P (r · P ) + v0(|P |2I � PP ) ·r|P |2 + ⌦1⇢g ⇥ P + ⌦2r⇥ g +
⌦2

⇢
r⇢ ⇥ g ,

(3.94)

@
t

g + �
s

⇢(P ·r)g = �v0�r⇥ ⇥�↵(⇢) + �⇢|P |4�P ⇤� (�
s

⇢ � v0)(r · P )g � ⇠g + D
s

r2
g

+(
v0
⇢

� v0��

⌘⌘1
)gP ·r⇢ � v0�

⇢
r⇢ ⇥ ⇥�↵(⇢) + �⇢|P |4�P ⇤+ �v20

2⌘1⇢
gr2⇢, (3.95)

These complicated-looking equations can be simplified deep in the polar state given that

the homogeneous polar state is stable with a magnitude of the polarization |P | ! 1.

Moreover, if we restrict ourselves to the linear response of the system, i.e. its behavior

under small fluctuations, we neglect terms that have no contribution once linearized, we

obtain the minimal equations deep in the polar state.

@⇢

@t
= �v0P ·r⇢ � v0⇢(r · P ) , (3.96)

@
t

P + v0|P |2(P ·r)P = � ⇥↵(⇢) + �⇢|P |4⇤P + v0(|P |2I � PP ) ·r|P |2

+⌦1⇢g ⇥ P + ⌦2r⇥ g , (3.97)

@
t

g + �
s

⇢(P ·r)g = �v0�r⇥ ⇥�↵(⇢) + �⇢|P |4�P ⇤� ⇠g + D
s

r2
g, (3.98)

These set of equations could serve as the basis for the analysis of information propagation

through well-polarized cohesive flocks.

3.10 Appendix 3.C: Free-energy-based hydrodynamic equa-

tions

As an alternative approach, we write down the free energy of the system based on

symmetry,

F =

Z
dr[

↵

2
w2 +

�

4
w4 +

K
w

2
(rw)2 + c1w ·r⇢ + c2S · (r⇥w) +

�

2
|w|2r ·w (3.99)

+
S2

2�
+

K
s

2
(rS)2].
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The dynamic equations can thus be written as

@
t

w + �
w

w ·rw = ��1
�F

�w
� �2w ⇥ �F

�S
(3.100)

@
t

S + �
s

w ·rS = ��3
�F

�S
� �4w ⇥ �F

�w
� �5r⇥ �F

�w
(3.101)

With conservation of density, the resulting equations are as follows, where F [w,rw] =

��1�[w(r ·w)� 1
2r|w|2].

@⇢

@t
= �r · (v0w) + Dr2⇢ (3.102)

@w

@t
+ �

w

w ·rw = ��1[(↵ + �|w|2)w + c1r⇢ � c2(r⇥ S)] +
�2

�
S ⇥w (3.103)

+F [w,rw] + �1Kw

r2
w

@S

@t
+ �

s

w ·rS = ��5r⇥ [(↵ + �|w|2)w] + �4Kw

w ⇥r2
w � c2�4(r ·w)S (3.104)

+�3Ks

r2
S � �3

�
S

3.11 Appendix 3.D: Linearized equations

3.11.1 Linear stability close to the disorder-order transition

We start with the dimensionless hydrodynamic equations 3.12-3.14, and add the �3 term

for completeness. To perform linear mode analysis, we restrict ourselves to the 2D planar

case. The isotropic state is always stable therefore trivial, and we focus on the uniformly

polarized state for � > 2 with the direction of spontaneous broken symmetry along x̂.

Perturbing around the polarized state ⇢ = 1 + �⇢, w = w0x̂ + �w and S = �Sẑ, we

arrive at the linearized equations

@�⇢

@t
= �r · �w, (3.105)

@�w

@t
+ �1w0@x�w = (µ1�⇢ + µ2�wx

)w0x̂ � r�⇢ + �2w0x̂r · �w (3.106)

+�3w0r�w
x

+ ⌦1�Sẑ ⇥ w0x̂ + ⌦2r⇥ �Sẑ + D
w

r2�w,

@�Sẑ

@t
+ �

s

w0@x(�Sz

ẑ) = r⇥ [(µ1�⇢ + µ2�wx

)w0x̂] + ⌦3w0x̂ ⇥r2�w (3.107)

�⇠�Sẑ + D
s

r2(�Sẑ),

where µ1 =
�

2(1+�) , µ2 = � w0�
2

4(1+�) ,  = 1
2 and w0 =

h
(�2 � 1) 8

�

2

i1/2
.
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3.11.2 Longitudinal mode

Considering mode along the direction of broken symmetry, we obtain

��⇢ = �iq�w
x

, (3.108)

��w
x

= µ1w0�⇢ + µ2w0�wx

� iq�⇢ + iq�w0�wx

� D
w

q2�w
x

, (3.109)

��w
y

= �iq�1w0�wy

+ ⌦1w0�S � iq⌦2�S � D
w

q2�w
y

, (3.110)

��S = �q2⌦3w0�wy

� ⇠�S � iqw0�s

�S � D
s

q2�S, (3.111)

where � = �3 + �2 � �1. Notice that �⇢ and �w
x

decouple from �w
y

and �S, leading to

the dispersion relation

�(q) =
iµ1

µ2
q +

1

µ2w0


�w0µ1

µ2
+  � µ2

1

µ2
2

�
q2 +O(q3). (3.112)

Fluctuations in density and magnitude of polarization lead to the “banding instability”

close to the isotropic-polar phase transition as generally observed in polar active fluid,

the condition of which is given by

�w0µ1

µ2
+  <

µ2
1

µ2
2

. (3.113)

Neglecting �3 and in terms of the microscopic parameters, it reads

� <
8

3
. (3.114)

Dynamics of �w
y

and �S gives rise to the spin wave, carrying the information of turning.

Neglecting convections and di↵usion, the dispersion relation for the spin wave is

�± = �⇠

2
± c

s

q

s
[⇠/(2c

s

)]2

q2
� 1, (3.115)

where

c
s

= w0

p
⌦1⌦3 =


(
�

2
� 1)

�(1 + 4�)

4(1 + �)2

� 1
2

(3.116)

is the wave speed.
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3.11.3 Transverse mode

Transverse mode is governed by the full coupled equations:
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CCCCCA
,

which leads to the dispersion relation once treated perturbatively in the long wavelength

limit:

�±(q) = ±
✓
�w0�3µ1

µ2
� 

◆ 1
2

q +
1

2⇠µ2
2

�
⇠w0�2�3µ2 � ⇠�3µ1 � ⇠D

w

µ2
2

�
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+
1
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2

�
w0µ1µ2⌦1 � w2

0�2µ
2
2⌦1 � w2

0µ
2
2⌦1⌦3

�
q2 +O(q3), (3.117)

from which a transverse instability is obtained when

�w0�3µ1

µ2
�  > 0. (3.118)

This condition is always satisfied with the microscopic parameters, therefore predicts

an instability all over the parameter space. This model-dependent instability has also

been reported in previous literatures [89, 103], and is attributed to an e↵ective negative

compressibility. However, this instability has never been seen in our particle simulations,

therefore is a spurious one due to the truncation of the closure. Thus we suppress this

instability by setting �3 = 0. This leads to an imaginary part of the eigenvalue to the

order q, therefore predicts a propagating hydrodynamic mode. The stability of this

mode is determined by the sign of the real part of the eigenvalue to the order q2, which

leads to the condition in the absence of �3:

w0⌦1µ1

µ2
� �2w

2
0⌦1 > D

w

⇠ + ⌦1⌦3w
2
0, (3.119)

or in terms of microscopic parameters

� >
(1 + 4�)(1 + �)

8�2
+ 4. (3.120)

The phase diagram is plotted in Fig. 3.2 in the main text, with quantitative agreement

between the numerical and analytical phase boundaries. This transverse instability

renders the system spatially inhomogeneous with large density and spin fluctuations

characterized by continuously turning and swirling flocks with propagating spin waves.

Therefore, we term it the spin-wave instability. The spatial-temporal patterns have
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been observed from both the numerical simulations of the hydrodynamic equations and

particle simulations. To understand the origin of the instability, we write down the

minimal equations that yield this instability. For clarity, we write down the dimensional

form.

@
t

w = ��|w|2w + �2w(r ·w) + ⌦1S ⇥w , (3.121)

@
t

S = �v0�r⇥ ��|w|2w�� ⇠S , (3.122)

where �2 = �v0�⌘/(4✏) � �v0⌘⌘2/(16✏⌘1) < 0, � = ⌘�2/(8✏⌘1), ⌦1 = �/(2⌘⌘1) and

⇠ = ⌘/�. The linearized equations are

@
t

�w
x

= µ2w0�wx

+ �2w0@y�wy

, (3.123)

@
t

�w
y

= ⌦1w0�sz, (3.124)

@
t

�s
z

= �µ
s

w0@y�wx

� ⇠�s
z

, (3.125)

where µ2 = �2�w0 < 0 and µ
s

= v0�µ2 < 0. They lead to the dispersion relation

�(q) = �w2
0�2µs

⌦1

⇠µ2
q2 +O(q3), (3.126)

which yields the instability condition

w2
0�2µs

⌦1

⇠µ2
< 0. (3.127)

This condition can be interpreted as the growth of bend and splay deformation aug-

mented by the spin dynamics through self-rotation. If we include the alignment in-

teraction through density, rotational di↵usion and spin elasticity, all of which serve as

stabilization factors, we recover the full condition 3.119. The competition among these

e↵ects yields the spin-wave instability.

3.11.4 Linear stability away from the disorder-order transition

Deep in the polar state, particularly for � > 50, we observe homogeneous polar state,

which is free of instabilities. In this regime, we refer to the hydrodynamic equations de-

rived using the alternative closure as given by 3.90-3.92. The linearized equations have

exactly the same structure as eqns. 3.105, but with a di↵erent relation between coe�-

cients and microscopic parameters. The new set of coe�cients yield banding instability

if applied close to the transition, but lead to a stable homogeneous polar state deep in

the polarized region in agreement with particle simulations. This can be attributed to
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the suppression of spin-wave instability through strong alignment interaction, rotational

di↵usion and spin elasticity as shown by the same instability condition 3.119.

3.11.5 Angular-dependent spin wave

We can extract the propagating speed of the spin wave from the linearized equations.

Along the direction of broken symmetry, the spin and director fluctuations decouple

from the density and polarization magnitude fluctuations, leading to a damped wave

equation with propagating speed c
s

=
p
⌦1⌦3w0.

Along other directions making an angle ✓ with respect to the mean polarization, all the

fluctuations are coupled, and the propagating mode is the hydrodynamic mode that also

controls the stability of the system. This mode has a general dispersion relation as a

function of ✓.

c±
s

(✓) =
µ1

2µ2
cos✓ ±

s
µ2
1cos

2✓

4µ2
2

+
1

2
sin2✓, (3.128)

In the longitudinal direction, c
s

(0) = µ1
µ2
, corresponding to the propagating speed of

the density band. In the transverse direction, c
s

(⇡/2) = 1p
2
, corresponding to the

propagating speed of the spin wave.

The fact that the spin wave is governed by two di↵erent modes with di↵erent propagating

speed along the longitudinal and transverse directions renders the spin wave anisotropic,

verified by the numerical solution of the hydrodynamic equations as in Fig. 3.4.

3.12 Appendix 3.E: Alternative alignment interaction

The polar alignment interaction can take up multiple forms. Thought it does not change

the structure of the derived continuum equations in general, di↵erent form of polar

interactions yields di↵erent coe�cients which shifts the phase diagram. Here we discuss

an alternative alignment interaction of the form

⌧ = �(r0 � r)sin[(✓0 � ✓)/2] (3.129)

defined in the region [�⇡, ⇡]. This interaction, upon Fourier transform, yields non-

vanishing coe�cients for all even moments

⌧±m

= �8m(�1)m

1� 4m2
, (3.130)
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which couples the density field to higher order moments in the Fourier transformed

Fokker-Planck equation. This coupling yields more physical saturated polarization mag-

nitude deep in the polarized state by introducing a new set of dimensionless coe�cients

in the continuum equations Eqns. 3.12-3.14.

↵(⇢) =
1

1 + �
(1� 4�⇢

3⇡
), � =

28�

15⇡(1 + �)

2�/(3⇡)

1 + 4�/(15⇡)
,

⌦1 =
4��

3⇡(1 + �)
, ⌦2 =

�

2(1 + �)
, ⌦3 =

1

1 + �


7(1 + 4�)

8 + 30⇡/�
� ��

3⇡

�
,

�1 =
2�/(3⇡)

1 + 4�/(15⇡)
� 1

1 + �


7(1 + 4�)

8 + 30⇡/�
� ��

3⇡

�
, �

s

=
4��

3⇡(1 + �)
,

�3 = ��2 =
2�/(3⇡)

1 + 4�/(15⇡)
+

1

1 + �


7(1 + 4�)

8 + 30⇡/�
� ��

3⇡

�
,

⇠ =
1

�
, D

w

=
1 + 4�

16[1 + 4�/(15⇡)]
, D

s
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.

The structure of the equations remain unchanged. Deep in the polarized state, the

saturated magnitude of polarization w0 =
p�↵0/� approaches a constant and propor-

tional to the mean density ⇢0. Both the banding instability and spin wave instability are

present in this case, with a slightly shifted parameter space as compared to the original

alignment interaction.

Finally, we plot the phase diagram for this particular interaction based on the linear

stability analysis below.
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Figure 3.8: Phase diagram in the plane of dimensionless � and � for alignment interac-
tion ⌧ = �(r0�r)sin[(✓0�✓)/2]. Left: with �3. Right: without �3. Blue region:banding
instability; orange region: transverse instability due to negative compressibility; green

region: spin-wave instability.



Chapter 4

Mechanics of confined active

particles

4.1 Introduction

Minimal models of self-propelled particles (SPP) have provided much insight into the

emergent behavior of non-equilibrium, active systems where energy is injected at the

scale of the individual constituents. This novel class of materials spans many length

scales, ranging from bird flocks to bacterial swarms, cell layers and synthetic microswim-

mers [15]. Novel behaviors have been predicted theoretically and observed in simulations

and experiments, including flocking [22], large density fluctuations [40, 104], and spon-

taneous phase separation [10, 36, 80]. Walls and confined geometries are ubiquitous in

realizations of active systems. For example, sperm and bacteria often live near surfaces or

in narrow channels, and these interfaces strongly a↵ect their dynamics [32, 39, 105, 106].

Vibrated granular rods spontaneously accumulate at the walls even in the absence of

hydrodynamic interactions [35, 107]. Finally, mixtures of two types of active particles

have been studied as minimal models of cell sorting in co-cultures and have been shown

to segregate in bulk in the presence of adhesive interactions [108–110].

In this paper we study a minimal model of athermal self-propelled disks with soft re-

pulsive interactions confined to a box in two dimensions. The soft repulsive potential

is chosen to provide finite energy barriers to particle crossing, as a way to mimic living

cells that are capable of escaping to the third dimension and cross over each other. Each

disk performs a persistent random walk consisting of ballistic runs at speed v0, random-

ized by rotational di↵usion at rate D
r

. We find that confined self-propelled particles

aggregate at the walls provided their rotational di↵usion is su�ciently slow (Fig. 4.1(a)).

At low density, aggregation occurs when a particle travels ballistically across the con-

69
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Figure 4.1: Force chains at time T = 2000 for v0 = 0.02 displaying (a) aggregation at
D

r

= 5⇥ 10�5 and � = 0.672, (b) jammed state at D
r

= 5⇥ 10�5 and � = 0.896, and
(c) homogeneous gas state at D

r

= 0.005 and � = 0.672. (†Supplementary Movies 1-3)

tainer. At high packing fraction �, however, a critical active speed v
c

(�) is required

for wall aggregation even in the limit D
r

! 0. The onset of a nonzero value of v
c

in

our active material correlates with the packing fraction at which non-active hard disks

become “jammed” [111], i.e. exhibit a non-zero yield stress. The pressure of the active

fluid, like the density, is spatially inhomogeneous as the particles seem to organize to

optimally transmit stresses to the walls, as shown in Fig. 4.1(a). As the jamming point

is approached, the system becomes more uniform (Fig. 4.1(b)) and the pressure begins

to decrease with increasing density. This decrease occurs well below the jamming point

and is associated with the onset of slow relaxation times due to strong caging e↵ects

that occur over a broad range of densities due to their activity. This non-monotonic

dependence of pressure on density is unique to active systems. It is consistent with the

non-monotonic dependence of pressure on temperature in a thermal active gas [112] and

on system size in a dilute active gas [113]. Finally, this aggregation can be harnessed in

a mixture of self-propelled particles of di↵erent sizes that segregates in the absence of

any alignment or attraction (Fig. 4.3). The sense of the segregation (i.e., whether the

large or the small disks accumulate on the outside) is determined by a mean field cal-

culation for the energy barrier generated by the repulsive interaction. This segregation

is reminiscent of cell sorting in embryonic development and is very di↵erent from the

mechanisms that have been previously studied [114–118], which require di↵erential cell

adhesion or repulsion and postulate that cell sorting relaxes the tissue towards a free

energy minimum, as in thermal systems.

4.2 Self-propelled particle model

We consider a system of N monodisperse disks of radius R in a square box of length

L. The overdamped dynamics is governed by Langevin equations for the position r
i

of

the center of the i-th disk and a unit vector u
i

= (cos ✓
i

, sin ✓
i

) along the axis of self
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propulsion,

@
t

r

i

= v0ui

+ µ
X

j

F

ij

, @
t

✓
i

= ⌘
i

(t) , (4.1)

where v0 is the active (self-propulsion) speed and µ the mobility. The particles inter-

act via short-range repulsive forces F

ij

proportional to the overlap between two disks,

F

ij

= k(2R � r
ij

)r̂
ij

, with r
ij

= r
i

� r
j

= r̂
ij

r
ij

, and k a force constant. The angular

noise ⌘ is white, with < ⌘
i

(t)⌘
j

(t0) >= 2D
r

�
ij

�(t � t0) and D
r

the rotational di↵usion

rate. Large immobile particles are glued to the walls of the box to implement the con-

finement and to suppress crystallization. At low density, each disk performs a persistent

random walk and is di↵usive at long times (t � D�1
r

), with an e↵ective di↵usion con-

stant D
a

= v20/2Dr

[10]. We treat D
r

as an independent parameter because in many

realizations, including bacterial suspensions [46] and active colloids [11], the rotational

noise is athermal. In these systems, D
a

is also typically two orders of magnitude larger

than the thermal di↵usivity, and so we neglect thermal noise in Eq. (4.1).

Lengths and times are in units of the particle radius R and the elastic time (µk)�1.

Unless otherwise noted, the size of the box is L = 83. Particle positions are initialized

with a uniform random distribution inside the box, and orientations are random over

the interval [0, 2⇡]. Equations (4.1) are integrated numerically using an Runge-Kutta

algorithm for t = 9000 time steps. This time interval is su�cient to ensure that the

density profile of the system has reached steady state. We explore the behavior of the

system by varying the active velocity v0, the rotational di↵usion rate D
r

, and the packing

fraction � = N⇡R2/L2 1.

4.3 Self-organization

4.3.1 Wall aggregation

To quantify wall aggregation and the resulting density inhomogeneities we divide the

system in n� nested square strips of thickness � (Fig. 4.2(a)) and calculate the gini

coe�cient [119], given by g = 1
2N2|⇢̄|

P
i

P
j

|⇢
i

� ⇢
j

|, with ⇢̄ the mean density, ⇢
i

the

number density of particles in the i-th strip, and � = 2R. The gini coe�cient provides

direct information of the spatial organization of density inhomogeneities. It approaches

0 when the density is homogeneous Fig.4.1(b)(c) and 1 when all particles are at the wall

Fig.4.1(a). The boundary separating homogenous states from aggregated states where

the particles accumulate at the walls is obtained by a linear fit to isosurfaces of the gini

coe�cient, and corresponds to g = 0.5, above which we say the system is wall-aggregated

1
The values of packing fraction quoted below and in all figures have been adjusted to take into account

the area occupied by the particles glued to the walls.
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Figure 4.2: (a) Diagram of nested square strips. (b) Gini coe�cient vs. v0 at various
packing fractions. The rotational noise is D

r

= 5⇥ 10�5 and the total simulation time
is T = 9000. (c) Phase boundaries separating aggregated and homogeneous states in
the plane of v0/L vs D

r

. The open symbols are for � = 0.40 and L = 83, 110, 130
(circles, squares, diamonds). The straight line is a fit to that data with v0 = ALD

r

,
where A = 0.5402. Filled diamonds are for � = 1.00 and L = 83. The total simulation

time is T = 2000. (d) Critical speed at D
r

! 0 vs. packing fraction.

as shown in Fig 4.2 (c) for di↵erent values of �. At low �, aggregation occurs when D
r

is small and particles travel ballistically across the container. The phase boundary is

well-described by v0/L / D
r

, which is the solid line through the open circles in Fig. 4.2

(c). The gini coe�cient increases continuously with v0/D
r

, consistent with the result

in [39]. At high �, a finite value v
c

(�) is required for wall aggregation even in the limit

D
r

! 0, as shown by the solid line through the closed diamonds in Fig. 4.2 (c). The

dependence on � is seen in Fig. 4.2 (b), where the gini coe�cient immediately rises from

its minimal value for � < 0.83, and only rises at a finite v
c

for � > 0.88. The critical v
c

as a function of � is shown in Fig. 4.2(d). The onset of a finite threshold for aggregation

at � ' 0.88 coincides with the jamming point for monodisperse passive hard disks at

zero temperature [111]. The result is also consistent with active jamming in a disordered

landscape [120].
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4.3.2 Active mixtures and segregation

The mechanisms responsible for athermal phase separation [10] and wall aggregation

of purely repulsive self-propelled particles have remarkable consequences in mixtures.

We simulate a binary mixture of small (S) and large (L) self propelled particles with

diameter ratio 1.4 to prevent crystallization. Although di↵erent in size, they interact via

the same harmonic soft repulsive potential, with equal force constants k
SL

= k
SS

= k
LL

,

and with dynamics described by Eqs. (4.1). The self-propulsion speeds are v
S

and v
L

respectively, and to reduce the number of parameters we have assumed equal mobilities

for both types of particles. To quantify the spatial distribution of the two particle types,
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Figure 4.3: (a) Phase diagram showing the segregated and homogeneous states as
functions of the active velocities v

S

and v
L

(small particles are green and large ones are
red) for D

r

= 5⇥10�5 and a total packing fraction � = 0.9, with each species occupying
half of the packing fraction. (b) Analytical calculation identifying when particles with
a given active velocity and radius ratio are able to overcome mean-field elastic energy
barriers (solid line). Onset of particle segregation in simulations (data points). The
remarkable agreement with no fit parameters demonstrates that segregation is driven by
asymmetric elastic energy barriers. A-C are snapshots of segregated and homogeneous

states. The labels A, B, C correspond to the states marked in the phase diagram.

we define a segregation coe�cient S:

S =

P
i

|⇢L
i

� ⇢S
i

|
P
i

max[⇢L
i

, ⇢S
i

]
(4.2)

where the shell width � is the large particle diameter and ⇢S,L
i

is the density of small-

/large particles in the i-th shell. With this definition, S ! 0 for a uniform distribution

of L and S disks, and S ! 1 for complete segregation.
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When these purely repulsive disks are exactly the same except for their size (v
S

= v
L

),

the system spontaneously segregates so that the small particles aggregate near the walls

and the large particles are closer to the center of the box. We choose a critical value of

S = 0.5 to di↵erentiate segregated state from mixed state.

To better understand this surprising result, we study a phase diagram of the segregation

as a function of the two self-propulsion speeds v
S

and v
L

, shown in Fig. 4.3. We find three

distinct states: (A) a segregated state where all the large (red) disks have accumulated

at the wall, with the small (green) ones closer to the center, (B) a mixed state where

the particles have accumulated at the wall, but they are homogeneously distributed,

hence S ⇠ 0 and (C) a segregated state where the small disks are near the walls and

the large ones are near the center. The lower left hand corner of Fig 4.3 demonstrates

that if both the small and large particle velocities are too small, the system remains

mixed. This suggests that particles must overcome a finite energy barrier in order to

segregate. To quantify and test this assumption, we let v
Sc

(v
Lc

) denote the critical

velocity of the small (large) particles in the limit v
L

! 0 (v
S

! 0). To estimate v
Sc

,

we derive an analytic expression for the velocity required for an active small particle to

cross through two immobile large particles in contact with zero overlap, assuming that

the small particle is moving directly perpendicular to the pair, as illustrated in Fig. 4.3.

To evaluate the barrier that particles must overcome for segregation, we consider the

geometry shown in Fig. 4.4 displaying a small active particle of radius R
S

that has to

make its way through two immobile large particles of radius R
L

. For the small particle

to travel through the barrier imposed by the two large ones, the active force v0/µ has to

overcome the maximum of the repulsive force F
rep

. This defines a critical active velocity

v
Sc

for the small particle. To calculate this barrier we assume that the small active

particle initially just touches its neighbors, then travels upward a distance of d. At this

point, the net repulsive force is

F
rep

= 2Fsin✓ , (4.3)

where F = k[(R
L

+ R
S

) �
q

(l � d)2 + R2
L

] is the repulsive force between two particles

and sin✓ = l0/s. Geometrical considerations lead to l0 = l � d, s =
q
(l � d)2 + R2

L

and

l =
p

r2 + 2R
S

R
L

, allowing us to express F
rep

solely in terms of d.

The critical active velocity v
Sc

is defined as the maximum value of µF
rep

(d). This gives

v
Sc

= 2µk[(R
L

+ R
S

)R2
L

]1/3[1� (1 +
R

S

R
L

)�2/3]1/2

⇥[(1 +
R

s

R
L

)2/3 � 1] .

(4.4)
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Figure 4.4: Minimal model used to evaluate the barriers of segregation: a small active
particle pushing its way through two adjacent, immobile large particles. R

S

and R
L

are
the particles’ radii. The small particle initially just touches its neighbors, then travels
a distance d vertically with active velocity F

a

= v0/µ. F is the repulsive force between
two particles. Other geometrical quantities are as labelled.

This is the critical velocity of an active particle with radius R
S

pushing through two

immobile particles of radius R
L

. The critical velocity for the reversed configuration,

corresponding to a particle of radius R
L

pushing through two particles of radius R
S

,

can be obtained by interchanging R
S

and R
L

. Segregation occurs when either species

has an active velocity above the critical value. Note that particles with di↵erent radii

have di↵erent critical velocities. If, for instance, R
S

< R
L

, then v
Sc

< v
Lc

, and small

particles will aggregate to the outside, next to the wall, when both species have the same

active velocity.

Finally, the ratio of active velocities of the two species can be written as a function of

their radii ratio as

v
Lc

v
Sc

= x� 2
3
[1� (1 + x)�2/3]

1
2 [(1 + x)2/3 � 1]

[1� (1 + 1
x

)�2/3]
1
2 [(1 + 1

x

)2/3 � 1]
, (4.5)

where x = R
L

/R
S

.

This is a mean-field theory for energy barriers in a system exactly at the jamming

transition. While the data in Fig. 4.3(a) are for a bidisperse mixture with diameter

ratio 1.4, we calculate the velocity ratio as a function of the diameter ratio x = R
L

/R
S

,

obtaining

v
Lc

v
Sc

= x� 2
3
[1� (1 + x)�2/3]

1
2 [(1 + x)2/3 � 1]

[1� (1 + 1
x

)�2/3]
1
2 [(1 + 1

x

)2/3 � 1]
(4.6)

This function vL
vS
(x) is plotted in Fig 4.3(b) as a solid line. We then extract numerical

values of v
Lc

/v
Sc

from the segregation boundary in simulations with di↵erent values
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of R
L

/R
S

. These numerical results are the data points in Fig 4.3 (b). The remark-

able overlap between the theory and simulation suggests that our mean field theory is

valid and that asymmetric energy barriers for particles moving across one another are

responsible for segregation.

We emphasize that the phenomenon of active segregation is intrinsically di↵erent from

the “Brazil Nut E↵ect”[121], where a bidisperse granular mixture segregates under ex-

ternal shaking. Our soft active particles are individually driven rather than agitated

through boundary forces. As a result, size segregation in our active system is driven

by the asymmetry of the energy barriers imposed by soft repulsive interaction between

particles as supported by the outstanding agreement between analytical and numerical

results shown in Fig 4.3(b), rather than by the “void-filling” [121] or “granular convec-

tion” [122] mechanisms proposed to explain the “Brazil Nut E↵ect”.

4.4 Pressure

To quantify force distribution in our active fluid, we have evaluated the pressure both in

the homogeneous and wall-aggregated states. We define the pressure using the Irving-

Kirkwood (IK) expression for the stress tensor given below [123], augmented by a con-

tribution from self-propulsion. We have checked that this yields the same result as

measuring the force per unit length on the walls of the container at all packing frac-

tions. This demonstrates that the generalized IK formula proposed below is the correct

expression for evaluating the mechanical pressure of an active system. The stress tensor

�
↵�

(with ↵, � = x, y) is naturally separated in a contribution from interactions and an

active contribution, as �
↵�

= �int

↵�

+ �a

↵�

, with

�int

↵�

=
1

L2

DX

i 6=j

F↵

ij

r�
ij

E
, �a

↵�

=
1

L2

DX

i

F↵

i,a

r�
i

E
, (4.7)

where F
i,a

= (v0/µ)u
i

is the active force on each disk. The pressure is the trace of the

stress tensor, P = �
↵↵

/2 = P
int

+P
a

, shown in Fig. 4.5(a) as a function of � for a small

rotational di↵usion rate D
r

= 5 ⇥ 10�5. For small D
r

, where the system aggregates

at the walls and exhibits strong density and pressure inhomogeneities (Fig. 4.1(a)),

the pressure is a strongly non-monotonic function of density and starts decreasing at

� ' 0.672, well below jamming. At this packing fraction the density gradients start to

smoothen, and the pressure becomes more homogeneous, as shown in Fig. 4.6(a), which

displays the interaction force between particles as a function of distance to the wall.

Fig. 4.6(b) shows the gini coe�cients of density and pressure, demonstrating that the

pressure inhomogeneity is a direct consequence of density inhomogeneity. Meanwhile,
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particles are caged by their neighbors. This leads to “self-trapping”, resulting in a

suppression of their e↵ective self-propulsion speed, as discussed in recent work on active

phase separation [10, 17, 36, 80, 124, 125]. In this region, although the system is fairly

homogeneous, the transmission of force is impeded by crowding, resulting in an increased

e↵ective rotational di↵usion rate and a sharp decrease in pressure. This description is

supported by the correlation between the compressibility and homogeneity of the system,

Fig 4.6(b). The decrease in the forces that particles are able to transmit to the walls is

most dramatic in the active pressure, that seems to essentially vanish near � = 0.907,

the packing fraction corresponding to perfect crystalline order in a triangular lattice.

Fig. 4.5(b) shows that the pressure non-monotonicity diminishes with increasing D
r

,

and the active system exhibits thermal-like behavior when v0/L ⌧ D
r

, as suggested

by the curve of filled circles. The analogy with a thermal system and the notion of

e↵ective temperature can, however, be made precise only in the low density limit. At

finite density, repulsive interactions a↵ect the active system quite di↵erently from its

thermal counterpart even in the limit of large D
r

, and the pressure of the thermal

system increases much faster than the active one, as shown in Appendix 4.A. In all

cases, the pressure increases steeply above � ' 0.88 due to enforced overlap.
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Figure 4.5: (a) Total pressure calculated from the IK formula (triangles) and as
the force on the walls (circles) as a function of packing fraction at v0 = 0.02 and
D

r

= 5 ⇥ 10�5. The two calculations yield the same result. Also shown are the
interaction (black diamond) and active (blue squares) contributions to the pressure.
The dashed magenta line is the calculated ideal gas pressure with no fitting parameters.
The black dot-dashed line is the calculated interaction pressure with c = 1.2. The blue
dotted line is the calculated active pressure with a density-dependent active velocity
v(�) and e↵ective rotational di↵usion rate Deff

r

(�). (b) Total pressure for various
rotational noise D

r

.
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Figure 4.6: (a) Interaction force as a function of distance to the wall for various
packing fractions �. (b) Gini coe�cient of density (circles), gini coe�cient of force
(squares) and compressibility (filled diamonds) vs. packing fractions at v0 = 0.02,

D
r

= 5⇥ 10�5.

4.4.1 Active pressure

The active pressure can be calculated analytically at low density from the Langevin

equations (4.1) neglecting interactions. The result corresponds to the pressure of an

active ideal gas, also discussed in [126, 127]. Using hu
i↵

(t)u
j�

(t0)i = e�Dr|t�t

0|�
ij

�
↵�

, we

find P0(t) =
⇢v

2
0

2µDr

�
1� e�Drt

�
for the ideal active gas pressure. In a container of side L,

active particles eventually get stuck at the wall. For small, but finite D
r

, we then define

the ideal gas active pressure as P0 = P0(t = L/v0), where L/v0 is the time required by

an active particle to travel ballistically through the container. The resulting expression

P0 =
⇢v20
2µD

r

⇣
1� e�DrL/v0

⌘
(4.8)

interpolates between the thermal limit P0 ⇡ ⇢v20/(sµD
r

) for D
r

� v0/L and the value

P0 ⇡ ⇢v0L/(2µ) for D
r

⌧ v0/L corresponding to N disks each exerting a uniform

force v0/µ on the walls. The ideal pressure of an active gas is shown in Fig. 4.5(a)

as a dashed line and fits the data at low density. At moderate density the pressure

remains a monotonically increasing function of density, but is suppressed relative to the

ideal gas expression. This deviation can be understood as arising from “self-trapping”,

which yields a density-dependent e↵ective active velocity [10] v(�) = v0(1���). At high

density, however, the active pressure shows a nonmonotonic behavior and decreases with

increasing density. This nonmonotonicity is indicative of strong caging and cannot be

described solely in terms of a suppression of active speed. A mean-field formula that fits

the pressure over the entire range of density can be obtained by assuming that caged

active particles repeatedly change direction of motion due to interaction, resulting in

an enhanced e↵ective rotational di↵usion rate, Deff

r

(�) = ⇥(� � �
c

) exp[↵(� � �
c

)],

which characterizes the rate of change in the direction of the actual velocity v

i

= @
t

r

i

,
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with ⇥(� � �
c

) the Heaviside step function, and �
c

the critical packing fraction above

which this caging e↵ect kicks in. We emphasize that this occurs well below jamming

and �
c

generally depends on the active speed v0. A fit to this mean-field theory that

incorporates density-dependent velocity and rotational di↵usion rate is shown in Fig.

4.5(a) as a dotted line.
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Figure 4.7: Markers: Active pressure as a function of packing fraction for various
active speeds v0 and D

r

= 5 ⇥ 10�5. Dashed line: Fitting using expression of ideal
active gas pressure with density-dependent velocity and density-dependent e↵ective

rotational di↵usion rate.

The suppression of self-propulsion due to caging can be incorporated in a mean-field

fashion by replacing the active speed v0 in the ideal gas pressure by a density-dependent

speed v(�), as suggested by recent work on phase separation of active particles [10]. We

also speculate that crowding e↵ectively increases the rate of rotational di↵usion as parti-

cles rattle around the confining cage and incorporate this e↵ect into a density-dependent

e↵ective rotational di↵usion rate Deff

r

(�), which is enhanced at packing fraction above

�
c

, where the active pressure starts to decrease sharply. A fit to the active pressure

for various active speeds v0 using the ideal gas formula P0 =
⇢v

2
0

2µDr

�
1� e�DrL/v0

�
with

v(�) = v0(1 � ��) replacing v0 and Deff

r

(�) = ⇥(� � �
c

) exp[↵(� � �
c

)] replacing D
r

,

where ⇥(���
c

) is the Heaviside step function, is shown in Fig. 4.7 as dashed lines. The

fitting parameters are � = 0.8 and ↵ = 13. The critical packing fraction �
c

increases with

active speed v0, where �
c

= 0.616, 0.672, 0.728 corresponds to v0 = 0.01, 0.02, 0.03

respectively. This suggests that activity counteracts the e↵ect of crowding, which is

consistent with the “unjamming” of the system as activity increases (Fig. 4.2(b)).
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4.4.2 Interaction pressure

On the other hand, a simple expression for the interaction pressure can be obtained

by modeling the system as concentric layers of particles aggregated at the walls and

assuming that the particle overlap, hence the force that each layer exerts on the walls,

increases linearly as the wall is approached. For simplicity, we consider a completely

aggregated state, where the active force is balanced by the interaction force. We work

in a coordinate system with axes along the principal direction of the stress tensor, and

therefore drop the label of component for force and particle position. The trace of the

stress is then given by

�
↵↵

=
1

L2

X

i 6=j

F
ij

r
ij

, (4.9)

where the summation is over all interacting pairs. As illustrated in Fig 4.8, the interac-

tion forces are transmitted through chains of particles, resulting in a larger interaction

force/stress closer to the wall. Given that our repulsive force is a linear function of

overlap, we assume that the stress increases linearly as the wall is approached. This as-

sumption is supported by Fig 4(a) in the paper. To proceed, we divide the system into

φi+1

φN

φi

A1� A2� An�

…�
…�

…�AN�ϕ1�ϕ2�ϕn� ϕN�

(a)� (b)�

Figure 4.8: (a) Snapshot of an aggregated state with force chains (blue). The nested
particle layers are also displayed. The overlap between particles increases as they
approach the wall, indicating an inhomogeneous distribution of pressure, which is max-
imum at the wall, as shown by the force chains. (b) The aggregated state is modeled as
a collection of N nested layers of particles, with a linear increase of overlap (or pressure)
as the wall is approached. Each layer has area A

n

and is occupied by active particles
of packing fraction �

n

.

N nested particle layers, as shown in Fig 4.8. Each layer has the width of a particle di-

ameter 2R, area A
n

and occupies a fraction �
n

= A
n

/L2 of the entire system’s area. We

assume that �
n

is also the packing fraction of particles in the n-th layer. Approximating
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the area of a layer as the sum of the area of four equal strips, we can write

A
n

= 8LR � 32R2(n � 1) . (4.10)

We assume that the total packing fraction � of the system is equal to the sum of �
n

,

� =
NX

n=1

�
n

=
1

L2

�
8LRN + 16NR2 � 16R2N2

�
. (4.11)

Solving Eq. (4.11) for N in terms of �, we obtain

N ' L

8R
� +O(R/L) . (4.12)

Now we proceed to calculate the stress. When the system is completely aggregated,

the interaction forces are balanced by the active forces F
a

= v0/µ. Assuming that the

force increases linearly as we approach the wall, and imposing force balance between the

interaction force Fn

ij

on particle i in the n-th layer due to particle j in the n � 1 layer

and the active forces, we can write

Fn

ij

= (n � 1)F
a

= (n � 1)
v0
µ

. (4.13)

The stress in the nth layer is then given by

�n

↵↵

=
1

A
n

X

i 6=j

Fn

ij

rn
ij

. (4.14)

Inserting Eq. (4.13), we obtain

�n

↵↵

=
1

A
n

CNn/2X

1

(n � 1)
v0
µ
[2R � (n � 1)

v0
kµ

] , (4.15)

where C is a fitting parameter corresponding to the average contact number of a particle

and N
n

is the number of particles in the nth layer. Expanding Eq. (4.15) and keeping

only terms to lowest order in v0, we obtain

�n

↵↵

= c�
n

(n � 1)v0 , (4.16)
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where c = C

⇡Rµ

is a rescaled fitting parameter. Using �
n

= An
L

2 and summing over the

layers, we obtain an expression for the total stress as

�
↵↵

=
NX

n=1

�n

↵↵

'
Z

N

1
�n

↵↵

(n)dn

=

Z
N

1


8Rcv0

L
(n � 1)� 32R2cv0

L2
(n � 1)2

�
dn

(4.17)

where the sum over layers has been replaced by an integration. Carrying out the inte-

gration we find

�
↵↵

=
4Rcv0

L
(N � 1)2 � 32R2cv0

3L2
(N � 1)3

' 4Rcv0
L

N2 � 32R2cv0
3L2

N3 = c

✓
Lv0
16R

�2 � Lv0
48R

�3

◆ (4.18)

The pressure of the system is defined as

P =
�
↵↵

2
(4.19)

To fit the data for k = 1, µ = 1, R = 1 and L = 80 yields c = 1.2, corresponding to an

average contact number of 6. This estimate, gives P
int

= c
�
Lv0
16R�2 � Lv0

48R�3
�
, with c a

fitting parameter. A fit to this expression with c = 1.2 is shown in Fig. 4.5.

4.4.3 Finite size e↵ect
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Figure 4.9: Time evolution of pressure in confined SPP system at various persistence
length. Left: dilute limit at � = 0.01. Right: dense limit at � = 0.80

In the dilute limit, the ideal active gas pressure reads P0(t) =
⇢v

2
0

2µDr

�
1� e�Drt

�
. How-

ever, for a finite system, this expression fails to fit the data at long times (Fig.4.9) due to

the fact that there is an upper bound for the time set by T = L/v0, the time required by

an active particle to travel ballistically through the container. This leads to an saturated
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Figure 4.10: IK pressure in confined system at dilute limit � = 0.01 as a function of
system size at various persistence length. Dashed line is the fitting using Eqn.4.20

value of the active pressure

P0(t ! 1) = P0(t = L/v0) =
⇢v20
2µD

r

⇣
1� e�L/lp

⌘
, (4.20)

where l
p

= v0
Dr

is the persistence length. This expression matches with the simulation

data quite well in Fig. 4.10.

Finally, in the dense limit, the time evolution of total pressure is non-monotonic with a

long relaxation tail at large persistence length (Fig. 4.9).

4.5 Appendix 4.A: E↵ective temperature

In the limit v0/L ⌧ D
r

the pressure of an ideal active gas given in Eq. (4.8) takes the

form of the pressure of an ideal thermal gas, with an e↵ective temperature k
B

Te↵ =

v20/(2µD
r

), corresponding to a thermal di↵usivity D
t

= µk
B

T
eff

=
v

2
0

2Dr
. This suggests

that in this limit it may be possible to map the active system onto a thermal one with an

e↵ective temperature. Figure 4.11 compares the pressure of an active gas for v0 = 0.02

and D
r

= 0.005 to that of a thermal gas with the corresponding value D
t

= 0.04. Also

shown is the analytical expression of Eq. (4.8). Although the three curves overlap at

very low density, the pressure of the thermal gas rises much more rapidly than that of

the active gas with increasing packing fraction, indicating that repulsive interactions are

more e↵ective in building up pressure in the thermal system. Surprisingly, the pressure

in the active system falls slightly below the active ideal gas limit at intermediate packing

fractions.
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Figure 4.11: Pressure as a function of packing fraction for an active system with
v0 = 0.02, D

r

= 0.005 and L = 80 (blue circles) and of a thermal system with D
t

= 0.04
(red triangles). The black dashed line is the calculated expression for pressure for the

ideal active gas pressure given in Eq. (4.8).

4.6 Appendix 4.B: Numerical simulations

We outline the procedures to perform molecular dynamic simulations for the SPP model

based on the equations of motion 4.1.

• Initialize the positions and orientations of the particles using a random number

generator to generate a homogeneous and disordered configuration.

• Construct a neighbor list by sorting particles based on their positions into cells

with the length of the cell edge no less than the range of the interactions.

• Update the positions and orientations of the particles by integrating the equations

of motion 4.1. The interactions are only calculated between particles in the same

cell (red in Fig.4.12), or in the neighboring cells (green in Fig. 4.12). The white

noise in the orientation is realized by adding a random number drawn from a

Gaussian distribution with variance
p
2D

r

dt to the angular displacement, where

dt is the time step increment of the simulation.

• Construct a new neighbor list based on the updated particle positions, and repeat

step 3.
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Figure 4.12: Diagram for the neighbor list in the MD simulations for SPP model. The
particles are sorted based on their positions into cells with the cell length no less than the
range of the interactions. The interactions are calculated only between particles in the
same cell, or in neighboring cells (arrows). In the case of periodic boundary condition,
the simulation box is wrapped by the images of the system, with interactions between

particles and corresponding images in the neighboring cells.



Chapter 5

Active Self-assembly

5.1 Introduction

Self-assembly describes the process in which independent constituents of a dynamical

system self-organize into ordered structures as a result of the local interactions among the

components themselves. Examples include the formation of lipid bilayers in cytoplasm

membranes, the aggregation of surfactant molecules into micelles, and the gelation of

DNA-coated colloids [128]. The energy source and interactions can be of various natures.

It is known that depletion interactions can drive aggregation of thermal particles due to

pure entropic e↵ect [129, 130]. In the presence of short-range attraction, one can tune the

morphology of the final phase by tuning the strength and direction of the interactions,

leading to kinetic arrest from di↵erent pathways, which makes programmed self-assembly

possible [131].

In recent years, the studies of active systems far away from equilibrium with self-driven

units have yielded striking dynamical properties distinct from their thermal counter-

parts. Motility induced phase separation (MIPS) and kinetically arrested gelation have

been observed in self-propelled particle systems with and without attractive interactions

[132]. Spontaneous segregation has been seen in a mixture of active and passive parti-

cles with isotropic [133] or elongated shapes [110]. Crystallization of hard-sphere glasses

by doping with active particles has been reported [134]. Recently, an active counter-

part of depletion interaction has also been investigated [135]. These concepts have been

partially tested in experimental set-ups such as the mixture of swimming bacteria in

colloidal suspensions [136].

While a majority of the focus in the aforementioned literature has been on the phase

behaviors of active systems, the literature of self-assembly in active systems are still quite

86
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limited, especially the studies of active-passive mixtures. Given the understanding of the

dynamical and mechanical properties of a single component self-propelled particle (SPP)

model, we are well-equipped to study the self-assembly of an active-passive mixture. An

interesting question I am attempting to address in this chapter is:how does an active

bath composed of self-propelled particles drive the assembly of attractive and repulsive

passive particles as compared to a thermal bath?

The minimal active bath is composed of self-propelled particles with isotropic repulsive

interactions among themselves and with the immersed passive particles. Each self-

propelled particle is characterized by a dimensionless Péclet number defined as the

persistence length divided by the particle size. This number, together with the ratio

of packing fractions between the active and passive components, controls the dynamics

of the self-assembly of the immersed passive particles. The interactions among pas-

sive particles are also important, and we discuss two kinds of interactions: short-range

attraction and repulsion.

5.2 Model

Let’s consider an active-passive mixture in 2D with passive particles immersed in a self-

propelled particle bath. The dynamics of the passive component, which we label as red,

is controlled by the following overdamped equations of motion:

@
t

r

r

i

= µ
X

j

F

ij

, (5.1)

where F
ij

is the interaction forces and µ is the mobility. Notice that the passive particles

have no independent dynamics, and are completely stationary in the absence of collisions.

The dynamics of the self-propelled particles, which we label as green, is described by:

@
t

r

g

i

= v0n
g

i

+ µ
X

j

F

ij

, @
t

✓g
i

= ⌘r
i

(t) , (5.2)

where v0 is the constant self-propulsion speed along the direction of the polarization

vector ng

i

. The polarization vector is subject to rotational noise characterized by ⌘r
i

(t)

with< ⌘r
i

(t)⌘r
j

(t0) >= 2D
r

�
ij

�(t � t0). D
r

is the rotational frequency.

The self-propelled particles interact with themselves and the passive particles through

a repulsive force proportional to the overlap upon collisions.

F

ij

= k(R
i

+ R
j

� r
ij

)r̂
ij

, (5.3)
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with r

ij

= r

i

�r

j

= r̂
ij

r
ij

, and k a repulsive force constant. R is the particle radius. The

interactions among passive particles can be attractive or repulsive, leading to di↵erent

behaviors in self-assembly. We discuss each case separately.

5.3 Self-assembly with repulsive interaction

First we consider the simplest case with repulsive interactions among all particles. The

form of the interaction is given in Eqn. 5.3. In this case, the parameters controlling

the self-assembly is the Péclet number Pe = v0
DrRg

of the active particles, where R
g

is the radius of the active particle, the packing fractions of the passive �
r

and active

�
g

components, and the repulsive force constant k. We set the mobility µ = 1 unless

otherwise noted.

We run simulations with Eqn. 5.1-5.2 tuning the parameters introduced above. Partic-

ularly, we study the e↵ect of Péclet number of the active bath on the self-assembly of

passive particles. We plot two phase diagrams in the plane �
r

� �
g

for small and large

Péclet numbers, corresponding to the brownian and ballistic limits, respectively. No-

Figure 5.1: Active self-assembly in
active-passive mixtures with Pe = 2.

k = 10.

Figure 5.2: Active self-assembly in
active-passive mixtures with Pe = 100.

k = 10.

.

tice that the crystallization of passive particles happens at small Péclet number above a

threshold packing fraction of �
r

⇡ 0.5 with a packing fraction of the active bath as small

as �
g

⇡ 0.1. In contrast, assembly of passive particles is not observed in the ballistic

limit, but the motility induced phase separation (MIPS) occurs above a critical packing

fraction of �
g

+ �
r

⇡ 0.5. This finding reveals a non-trivial dependence of self-assembly

on the properties of the active bath. At small Péclet number, the self-propelled particles

behave like a thermal bath by performing brownian motions, therefore the crystalliza-

tion in this limit is attributed to the depletion interaction induced by the unbalanced
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Figure 5.3: Average cluster size as a function of time. �
r

= 0.3 and �
g

= 0.1. k = 100
and v0 = 10. R

g

= R
r

= 1.0. The cluster rate and average cluster size grows as D
r

is
decreased, in correspondence with Fig.5.1-5.2

pressures from excluded volume interaction. At large Péclet number, the active bath is

highly persistent, and the argument of a depletion interaction generally fails due to the

non-Markovian nature of the system. We expect an optimal value of the Péclet number,

at which the self-assembly of the passive particles is most e�cient due to an enhanced

motility of passive particles and a preserved brownian nature of the system.

5.3.1 Mapping to a thermal bath at small Péclet number

To understand the depletion interaction that drives the crystallization of the passive

particles in an active bath, we first rewrite Eqn. 5.2 solely in terms of translational

dynamics by integrating the angular dynamics as

@
t

r

g

i

= µ
X

j

F

ij

+ ⇠

i

(t) , (5.4)

where ⇠

i

(t) is generally a non-Markovian noise with zero mean and variance

< ⇠
i↵

(t)⇠
j�

(t0) >=
v20
2

e�Dr|t�t

0|�
↵�

�
ij

. (5.5)

For |t � t0| >> 1/D
r

, it can be approximated as a white noise, with < ⇠
i↵

(t)⇠
j�

(t0) >=

2D
t

�(t � t0)�
↵�

�
ij

, where D
t

= v20/(2Dr

). At small Péclet number, this approximation

holds for the time scales of the self-assembly. Therefore, the active bath is mapped to

a thermal bath in this limit with an e↵ective temperature k
B

T
eff

= v20/(2Dr

µ). In the

following sections, we use this thermal equivalent to discuss the depletion interaction

that drives the crystallization of passive particles in an active bath in the small Péclet

number limit. For simplicity in the notation, we use T for the e↵ective temperature.
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5.3.2 The Asakura-Oosawa depletion interaction

Rd�

r�

P0�

�0�

P0�
Rd
eff

δ
θ0

rRr
eff

Figure 5.4: Diagram of depletion in-
teraction.

λrg

δ

Figure 5.5: Diagram of thermal agi-
tation due to collisions.

We start o↵ by calculating the depletion forces between two hard disks in a bath of ther-

mal hard depletants, first studied by Asakura-Oosawa (AO model)[129]. The attractive

depletion interaction arises from an imbalanced osmotic pressure due to the excluded

volume unaccessible to the depletants (Fig.5.4 top). In our case, the depletion force is

simply an integration of the x component of the gas pressure P0 over the angle extended

by the excluded volume.

F (r) = �2

Z
✓b

0
P0R

d

cos✓sin✓d✓, (5.6)

where P0 = n
b

k
B

T with the number density n
b

= Ng

V

= �g

⇡R

2
g
.

An explicit integration yields

F (r) = �P0R
d

[1� (
r

2R
d

)2], (5.7)

where R
d

= R
r

+ R
g

, from which we can calculate the depletion potential energy

U(r) =

Z 2Rd

r

F (r)dr = �P0R
d

(
4R

d

3
� r +

r3

12R2
d

). (5.8)

The depletion interaction is short-range, non-vanishing for 2R
r

< r < 2R
d

. The height

of the potential energy, corresponding to the depth of the attractive potential well, is

�U =

Z 2Rr

2Rd

F (r)dr = 2R2
g

P0


1� 1

3(1 + R
r

/R
g

)

�
. (5.9)

Notice that it’s linearly proportional to the temperature k
B

T .
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5.3.3 Soft depletion interaction
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Figure 5.6: Left: depth of the attractive well of the soft depletion interaction
(Eqn.5.3.3) as a function of thermal di↵usivity D

t

of the depletants for various sti↵-
ness of the depleted particles. At very large sti↵ness, the potential reduces to the AO
potential. Right: coe�cient of self-assembly (eqn.5.13) as a function of thermal dif-
fusivity of the depletants. Self-assembly is suppressed for �U/E

c

� 1 < 0. �
g

= 0.1,
R

r

= R
g

= 1.0.

The AO model, based on impenetrable hard particles, does not account for the e↵ect of

soft interaction potentials, which bear experimental relevance in suspensions of micelles,

star polymers, dendrimers or microgel particles [137–139]. The harmonic potential used

in our simulations is also soft, with its strength tunable by the rigidity k. Here, I propose

a minimal modification of AO model to account for the soft depletion interaction.

First, we need to quantify the “softness” of the depleted passive particles. The depleted

particle has an e↵ective soft shell with thickness � penetrable by the depletants upon

collisions (Fig.5.4 bottom). The shell thickness � is set by the competition between

the thermal energy of depletant particles and the sti↵ness of the depleted particles. In

our model, the sti↵ness is characterized by a single parameter k, as a spring constant.

Therefore � is determined by balancing the thermal energy and the interaction potential

energy
1

2
k�2 =

1

2
k
b

T, (5.10)

which leads to � =
q

kbT

k

. The higher the temperature is, the softer the particles are.

Then we treat the depleted particles as hard particles with an e↵ective radius Reff

r

=

R
r

� � (Fig.5.4 bottom). Therefore the depletion force (eqn.5.7) and depletion potential

(eqn.5.9) is modified by replacing R
d

= R
r

+R
g

with Reff

d

= Reff

r

+R
g

. The range of the

soft depletion interaction is now 2R
r

< r < 2Reff

d

, with the width �r = 2Reff

d

� 2R
r

=

2(R
g

� �). The depletion interaction vanishes when � > R
g

.
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To obtain the height of the depletion potential for soft particles, we use the modified

version of depletion force (eqn.5.7), and integrate it from 2Reff

d

to 2R
r

:

�U =

Z 2Rr

2Reff
d

F (r)effdr = 2P0R
2
g

(1� R
g

3Reff

d

)

�2P0Rg

2R
r

+ R
g

Reff

d

� + P0
6R

r

+ 12R
g

3Reff

d

�2 � P0
4

3Reff

d

�3, (5.11)

where Reff

d

= R
r

+R
g

�� and � =
q

kbT

k

=
p

D
t

/(µk). The dependence of the potential

height on temperature of the depletants and sti↵ness of the depleted particles are plotted

in Fig.5.6. Notice that for soft depleted particles, �U is non-monotonic that grows with

small D
t

but decreases as D
t

is further increased due to an enhanced �. It vanishes for

� > R
g

. At large sti↵ness k, the potential reduces to the AO potential that increases

linearly with D
t

.

5.3.4 Soft-depletion-driven crystallization

The crystallization of passive particles in a brownian active bath is driven by the soft

depletion interaction. At the same time, crystals are observed to melt at high e↵ective

temperature due to the thermal agitation of the passive particles (depleted particles)

from collisions with the active ones (depletants). The competition of the two e↵ects

yields the criteria for the self-assembly.

We proceed to calculate the thermal energy injected into the depleted particles through

collisions with depletants (Fig.5.5). The injected thermal energy E
c

is proportional to

the di↵usivity of the depleted particles Dr

t

. We plot Dr

t

as a function of the di↵usivity of
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Figure 5.7: (color online) Di↵usivity of depleted particles Dr

t

due to collisions with
depletants as a function of Dg

t

. Left: �
r

= 0.1, Right: �
g

= 0.1.

the depletant Dg

t

for di↵erent packing fractions �
g

and �
r

before the system crystallizes

in Fig.5.7. We see that for all cases, Dr

t

is linearly proportional to Dg

t

, but much smaller
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in magnitude, suggesting that the depleted particles are e↵ectively “colder” that the

depletants, revealing the non-equilirbium nature of the system.

We also notice that Dr

t

is proportional to �
g

but relatively insensitive to �
r

. The above

information suggests that Dr

t

is determined by �
g

and Dg

t

. Therefore, we reasonably

assume that the thermal energy of the depleted particles are proportional to P0, the

pressure of depletants

E
c

= c(R
r

, R
g

)P0, (5.12)

where c(R
r

, R
g

) is the proportionality constant, which could depend on particle sizes.

The criterion for self-assembly or crystallization of the depleted particles is therefore

✏ =
�U

E
c

� 1 > 0, (5.13)

where ✏ is defined as the coe�cient for self-assembly, which we plot in Fig.5.6 as a

function of thermal di↵usivity D
t

of the depletants for various sti↵ness k. c(R
r

, R
g

) is

assumed to be unity here. Notice that the coe�cient generally decreases with the in-

crease of D
t

. It is due to the fact that the increase of temperature renders the depleted

particles softer, therefore reduces the depletion interaction, while E
c

grows with tem-

perature linearly, resulting in a fluidized system. A larger sti↵ness reduces this e↵ect.

This argument is supported by particle simulations shown in Fig.5.8-5.9.

Figure 5.8: Simulations for R
r

= 1.4, R
g

= 1.0, and D
t

= 0.5 and 3.0. Rigidity
k = 10 for relatively soft particles. The increase of temperature impedes self-assembly

by reducing the strength of depletion interaction.

5.4 Self-assembly with attractive interaction

We have seen in Fig. 5.2 that self-assembly does not occur in a repulsive active-passive

mixture at large Péclet number of the active component. However, the motility of

the passive particles is greatly enhanced in this limit due to more frequent collisions
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Figure 5.9: Simulations for R
r

= 1.4, R
g

= 1.0, and D
t

= 0.5 and 3.0. Rigidity
k = 100 for hard particles. The increase of temperature promotes self-assembly by

increasing the dynamics of the depleted particles.

with the active components. In the presence of a non-reversible attractive interaction

among passive particles, the enhancement of their motility would ultimately promote

self-assembly. Therefore, in the following sections, we assume a short-range attractive

interaction among non-contacting passive particles on top of the contacting repulsive

interactions. The attractive part is given by

F

ij

= k
a

(R
i

+ R
j

� r
ij

)(R
i

+ R
j

+ R
a

� r
ij

)r̂
ij

, (5.14)

if R
i

+R
j

< r
ij

< R
i

+R
j

+R
a

, and zero if r
ij

> R
i

+R
j

+R
a

, where R
a

is the adhesion

range and k
a

an attractive force constant. The repulsive part is given by

F

ij

= k(R
i

+ R
j

� r
ij

)r̂
ij

, (5.15)

provided r
ij

< R
i

+ R
j

, same to the repulsive interaction with active particles.

We run particle simulations for the active-passive mixtures using Eqn.5.1-5.2. The ad-

hesion range is chosen to be the radius of the active particle R
a

= R
g

= 1.0, and the

adhesion strength is set to be high at k
ad

= 4000 to ensure a non-reversible attraction.

The active velocity is v0 = 1.0 and the repulsion constant is k = 100. We tune packing

fractions of both components and the rotational noise to explore the e↵ects of active

bath on the self-assembly of attractive passive particles. The results are summarized in

Fig.5.10.

Notice that in contrast to the compact crystals formed in repulsive mixtures, fractal

gel-like structures emerge from the self-assembly of passive attractive particles. The

cluster rate and average cluster size grow with the decrease of rotational noise, which is

the opposite to the repulsive case. This is attributed to the enhancement of motility of
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passive particles from collisions with active components and the irreversible attractive

interaction that hold the structure together against further collisions. Interestingly, the

growth rate of the cluster is linear during the initial stages, and is non-monotonic with

respect to the packing fraction of the active particles. There is an optimal packing

fraction of the active bath that yield the most e�cient assembly from a competition

between the enhancement of collision rate and crowding e↵ect.
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$XJXVW����� 6DQWD�%DUEDUD�$GYDQFHG�6FKRRO�RI�4XDQWLWDWLYH�%LRORJ\� 7KH�&RXUVH�RI�&HOOXODU�(YRĥ
OXWLRQ� 6DQWD�%DUEDUD� &$

-XOĥ$XJ����� %RXOGHU�VFKRRO�IRU�FRQGHQVHG�PDWWHU�DQG�PDWHULDOV�SK\VLFV� SRO\PHUV�LQ�VRIW�DQG�ELRĥ
ORJLFDO�PDWWHU� %RXOGHU� &2

'HF����� ��WK�1HZ�<RUN�&RPSOH[�0DWWHU�:RUNVKRS� ,WKDFD� 1<

:LY]PJL�[V�[OL�WYVMLZZPVU

$XJXVW����� &RĥFKDLU�RI�³6FLHQFH�6HVVLRQ��� 6TXLVK\�0DWHULDOV�DQG�%LRORJ\´�DW�*RUGRQ�5HVHDUFK
6HPLQDU�RQ�6RIW�&RQGHQVHG�0DWWHU�3K\VLFV� 1HZ�/RQGRQ� 1+

����ĥ���� 5HIHUHH�RI�(XURSK\VLFV�/HWWHUV�DQG�-RXUQDO�RI�6WDWLVWLFDO�3K\VLFV
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���� ;��<DQJ�DQG�0��&��0DUFKHWWL� ³+\GURG\QDPLF�RI�WXUQLQJ�ÀRFNV´� DU;LY����������
���� ;LQJER�<DQJ� 0��/LVD�0DQQLQJ� 0��&ULVWLQD�0DUFKHWWL� ³$JJUHJDWLRQ�DQG�VHJUHJDWLRQ

RI�FRQ¿QHG�DFWLYH�SDUWLFOHV´� 6RIW�0DWWHU� ��� ����ĥ����Ī����ī
���� ;��<DQJ� '��0DUHQGX]]R� DQG�0��&��0DUFKHWWL� ³6SLUDO�DQG�QHYHUĥVHWWOLQJ�SDWWHUQV�LQ

DFWLYH�V\VWHPV´� 3K\VLFDO�5HYLHZ�(����� ������Ī����ī

*VTW\[H[PVUHS�ZRPSSZ

3URJUDPPLQJ�ODQJXDJHV� &��&��� &XGD� 3\WKRQ� -DYDVFULSW
&RPSXWDWLRQDO�VRIWZDUHV� 0DWKHPDWLFD� 0DWODE
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