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ABSTRACT

In this dissertation we study gravitational-wave searches for binary neutron star

and neutron star - black hole coalescences. We determine the accuracy of post-

Newtonian approximations as gravitational-wave templates in matched-filter based

searches for NSBH mergers. We test a geometric method to generate template banks

for BNS and NSBH mergers where the components have intrinsic spin, and estimate

the sensitivity to astrophysical sources of searches that use these banks during Ad-

vanced LIGO. We explore simplifications and optimizations to the search pipeline

used during S6/VSR2,3 gravitational-wave searches. We investigate methods for re-

generating template banks as the noise behavior of a detector changes over time.

We further investigate changes to the algorithm for determining coincidence between

candidates from multiple-detectors. Finally, we develop a focused search for binary

neutron stars, and test improvements to its configuration using LIGO detector data

from the most recent science run.
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Chapter 1

Introduction

Proposed shortly after the discovery of General Relativity by Albert Einstein, gravitational-

waves are ripples that propagate through the curvature of spacetime [1]. They

travel at the speed of light and carry energy away from their source, however, since

gravitational-waves only weakly couple with matter, their direct detection in the lab-

oratory is challenging. The earliest indirect evidence for gravitational waves comes

from the discovery by Hulse and Taylor of a pulsar in a binary system. Through

the measurement of the pulsar’s radio emissions, it was determined that the binary’s

orbit was decaying, and that the rate of decay was in agreement with energy being

carried away by the emission of gravitational waves [2, 3].

As a gravitational-wave passes by, the distance measured between free falling

objects changes. The first to suggest measuring this change in distance using light

signals was Felix Pirani in 1956. By 1971 the first gravitational antenna using laser

interferometry was developed and tested by Moss, Miller, and Forward [4]. The

modern design of gravitational-wave interferometers is based on the work of Weiss and

Drever in the 1970s [5, 6]. This has formed the basis for the construction of a world-

wide network of ground-based gravitational-wave detectors. This includes the Laser

Interferometer Gravitational-wave Observatory (LIGO), which has two independent

detectors in Hanford, Washington and Livingston, Louisiana along with the Virgo

detector in Cascina, Italy.

A prime target for these detectors is the detection of compact binary coales-

cences (CBCs). Compact objects such a neutron stars and black holes can spiral

inwards to produce signals in the frequency band that ground-based interferometric
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gravitational-wave detectors are most sensitive. Searches for gravitational waves from

compact object binaries containing neutron stars and stellar-mass black holes have

been performed using the first-generation LIGO and Virgo detectors in LIGO’s six

science runs (S1–S6) and three Virgo science runs (VSR1–VSR3) [7, 8, 9, 10, 11, 12,

13, 14, 15].

Construction of the Advanced LIGO (aLIGO) detectors [16] is now complete

and the first aLIGO observing runs are scheduled for autumn 2015 [17]. The Ad-

vanced Virgo (AdV) detector [18] is scheduled to join this network in 2016. The

second-generation gravitational-wave detectors Advanced LIGO (aLIGO) and Ad-

vanced Virgo (AdV) [19, 20] are expected to reach full sensitivity by 2018-19. These

detectors will observe a volume of the universe more than a thousand times greater

than first-generation detectors and establish the new field of gravitational-wave as-

tronomy. Estimated detection rates for aLIGO and AdV suggest that binary neutron

stars (BNS) will be the most numerous source detected, with plausible rates of ∼
40/yr [21]. Gravitational-wave observations of BNS systems will allow measurement

of the properties of neutron stars and allow us to explore the processes of stellar evo-

lution. Binaries containing a NSBH have a predicted coalescence rate of 0.2–300 yr−1

within the sensitive volume of aLIGO [21], making them another important source for

these observatories. The observation of a NSBH by aLIGO would be the first conclu-

sive detection of this class of compact-object binary. Gravitational-wave observations

of NSBH binaries will allow us to explore the central engine of short, hard gamma-ray

bursts, shed light on models of stellar evolution and core collapse, and investigate the

dynamics of compact objects in the strong-field regime [22, 23, 24, 25, 26, 27, 28].

Gravitational waves from compact binary coalescence have three distinct phases:

an inspiral consisting of a wave of slowly increasing amplitude and frequency, a merger

which can be calculated using numerical simulations, and a post-merger signal as the

binary stabilizes into a final state. If the total mass of the binary is lower than

M . 12M� [29, 30] and the angular momenta of the compact objects (their spin)

is small [31, 32] (as is the case for binary neutron stars), then the inspiral phase can

be well modeled using the post-Newtonian approximations (see e.g. Ref. [33] for a

review). For higher mass and higher-spin binaries, analytic models tuned to numerical

relativity can provide accurate predictions for the gravitational waves from compact

binaries [34, 35, 36, 37, 38].
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The gravitational waves that advanced detectors will observe from inspiralling

BNS systems are well described by post-Newtonian theory [39]. As the neutron

stars orbit each other, they lose energy to gravitational waves causing them to spiral

together and eventually merge. If the angular momentum (spin) of the component

neutron stars is zero, the gravitational waveform emitted depends at leading order on

the chirp mass of the binary M = (m1m2)3/5 / (m1 +m2)1/5 [40], where m1,m2 are

the component masses of the two neutron stars, and at higher order on the symmetric

mass ratio η = m1m2/(m1 +m2)2 [41, 42, 43, 44, 45, 46].

Ground-based gravitational-wave detectors produce a calibrated strain signal s(t),

which is sensitive to gravitational waves incident on the detector’s arms [47]. In addi-

tion to possible signals, the strain data contain two classes of noise: (i) a primarily sta-

tionary, Gaussian noise component from fundamental processes such as thermal noise,

quantum noise, and seismic noise coupling into the detector; and (ii) non-Gaussian

noise transients of instrumental and environmental origin. Since the gravitational-

wave signal from compact binaries is well-modeled and the expected amplitude of

astrophysical signals is comparable to the amplitude of the noise, matched filtering is

used to search for signals in the detector data [48]. Since we do not a priori know the

parameters of the compact binaries we may detect, a bank of template waveforms is

constructed that spans the astrophysical signal space [49, 50, 51, 52, 53, 54, 55, 56, 57].

These banks are designed so that the loss in event rate caused by their discrete nature

is typically no more than 10%. The exact placement of the templates depends on

the noise power spectral density of the detector data. To mitigate the effect of the

non-Gaussian noise transients in the search, we require that any signal be seen with

consistent parameters (compact objects’ spins and masses and the signal’s time of ar-

rival) in the detector network. Additional statistical tests are applied to mitigate the

effect of non-Gaussian noise transients [58]; these are often called signal-based vetoes.

The matched-filter signal-to-noise ratio and the additional statistical tests are used

to create a numerical detection statistic for candidate signals. To assign a statistical

significance to these detection candidates, the network’s false-alarm rate is computed

as a function of the detection statistic for the noise background.

We demonstrate in Ch. 4 that neglecting spin in matched-filter searches for binary

neutron star mergers causes advanced detectors at final design sensitivity to lose more

than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that
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neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes

between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed

spin orientations. We present a new method for constructing template banks for

gravitational wave searches for systems with spin. We show that an aligned-spin

BNS search using this bank loses only 3% of the maximium signal-to-noise for only

9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and

isotropic spin orientations. Use of this template bank will prevent selection bias in

gravitational-wave searches and allow a more accurate exploration of the distribution

of spins in binary neutron stars.

We investigate in Ch. 5 the ability of currently available post-Newtonian tem-

plates to model the gravitational waves emitted during the inspiral phase of neutron

star–black hole binaries. We restrict to the case where the spin of the black hole is

aligned with the orbital angular momentum and compare post-Newtonian approxi-

mants that differ in the expansion of energy and gravitational-wave flux. We examine

restricted amplitude post-Newtonian waveforms that are accurate to third-and-a-half

post-Newtonian order in the orbital dynamics and complete to second-and-a-half

post-Newtonian order in the spin dynamics. We also consider post-Newtonian wave-

forms that include the recently derived third-and-a-half post-Newtonian order spin-

orbit correction and the third post-Newtonian order spin-orbit tail correction. We

compare these post-Newtonian approximants to the effective-one-body waveforms for

spin-aligned binaries. For all of these waveform families, we find that there is a large

disagreement between different waveform approximants starting at low to moderate

black hole spins, particularly for binaries where the spin is anti-aligned with the orbital

angular momentum. The match between the TaylorT4 and TaylorF2 approximants

is ∼ 0.8 for a binary with mBH/mNS ∼ 4 and χBH = cJBH/Gm
2
BH ∼ 0.4. We show

that the divergence between the gravitational waveforms begins in the early inspiral

at v ∼ 0.2 for χBH ∼ 0.4. Post-Newtonian spin corrections beyond those currently

known will be required for optimal detection searches and to measure the parameters

of neutron star–black hole binaries. The strong dependence of the gravitational-wave

signal on the spin dynamics will make it possible to extract significant astrophysical

information from detected systems with Advanced LIGO and Advanced Virgo.

In Ch. 6 we demonstrate that if the effect of the black hole’s angular momentum is

neglected in the waveform models used in gravitational-wave searches, the detection
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rate of (10 + 1.4)M� neutron-star–black-hole systems would be reduced by 33 −
37%. The error in this measurement is due to uncertainty in the Post-Newtonian

approximations that are used to model the gravitational-wave signal of neutron-star–

black-hole inspiralling binaries. We describe a new method for creating a bank of

filter waveforms where the black hole has non-zero angular momentum that is aligned

with the orbital angular momentum. With this bank we find that the detection rate of

(10+1.4)M� neutron-star–black-hole systems would be reduced by 26−33%. Systems

that will not be detected are ones where the precession of the orbital plane causes

the gravitational-wave signal to match poorly with non-precessing filter waveforms.

We identify the regions of parameter space where such systems occur and suggest

methods for searching for highly precessing neutron-star–black-hole binaries.

In Ch. 7 we describe improvements made to the offline analysis pipeline search-

ing for gravitational waves from stellar-mass compact binary coalescences, and assess

how these improvements affect search sensitivity. Starting with the two-stage ihope

pipeline used in S5, S6 and VSR1-3 and using two weeks of S6 data as test periods,

we first demonstrate a pipeline with a simpler workflow. This single-stage pipeline

performs matched filtering and coincidence testing only once. This simplification al-

lows us to reach much lower false-alarm rates for loud candidate events. We then

describe an optimized χ2 test which minimizes computational cost. Next, we com-

pare methods of generating template banks, demonstrating that a fixed bank may be

used for extended stretches of time. Fixing the bank reduces the cost and complex-

ity, compared to the previous method of regenerating a template bank every 2048

s of analyzed data. Creating a fixed bank shared by all detectors also allows us to

apply a more stringent coincidence test, whose performance we quantify. With these

improvements, we find a 10% increase in sensitive volume with a negligible change

in computational cost. We describe additional computational improvements to the

matched-filtering algorithm in Ch. 8.

Finally, in Ch. 9 we demonstrate an analysis pipeline that is focused on the de-

tection of binary neutron star mergers. Using the improved single stage pipeline, we

use three weeks of S6/VSR3 data to test further improvements to the pipeline. We

describe a method for calculating the significance of candidate events, and measure

probabilities under the assumption of both including and excluding foreground events
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from a background. We investigate alternate configurations of the filtering process, in-

cluding changes to the spectrum estimation and signal-consistency test. We find that

the new configuration is able to achieve a 25% increase in sensitive volume over the

single stage configuration proposed in Ch. 7. Lastly, we investigate using an aligned

spin template bank, and show that for conservative estimates of BNS populations a

non-spinning template bank has marginally superior sensitivity.
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Chapter 2

Pipelines to Search for

Gravitational-waves from Compact

Binary Coalescences

2.1 Introduction

While the basic steps of a CBC gravitational-wave search pipeline remain the same,

different choices can be made to create various configurations and topologies. The

search pipelines used in the last joint LIGO-Virgo science run (S6/VSR2,3) used

the ihope search pipeline to search for compact binaries [59]. The ihope pipeline,

as well as the pipelines used in previous LIGO-Virgo searches [60, 61], are offline

search pipelines. These pipelines analyze the data in a batch mode, processing of

the order of one week of data from the network. Offline batch processing allows

the pipeline to incorporate additional information about the quality of the detector

data or search tuning that is not available in real time [62, 63], and to produces a

systematic false-alarm rate estimation of candidates by using large samples of the

noise background before and after the time of a signal. Batch processing also allows

the pipeline to take advantage of the computationally efficient Fast Fourier Transform

(FFT) when implementing matched filtering [48], and allows computational tasks to

be parallelized over time and binary parameters for efficient implementation on large

computing clusters [64].
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2.2 Assessing Waveform and Template Bank Effectiveness

In the absence of non-Gaussian noise, we can create analytic measures of the faithful-

ness and effectiveness of the waveform models and template banks that will be used

to search for gravitational waves. In this section we describe the methods and the

terminology that we will use in the rest of this work.

The “overlap” between two gravitational waveforms h1 and h2 is defined as

O(h1, h2) = (ĥ1|ĥ2) =
(h1|h2)√

(h1|h1)(h2|h2)
, (2.1)

where (h1, h2) denotes the noise-weighted inner product

(h1|h2) = 4 Re

∫ ∞
fmin

h̃1(f)h̃∗2(f)

Sn(f)
df. (2.2)

Here, Sn(f) denotes the one sided power spectral density (PSD) of the noise in the

interferometer, and fmin is a lower frequency cutoff determined by the characteristics

of the noise [65].

Gravitational wave searches for binary mergers maximize over an overall phase

and time shift, we define the “match” between two waveforms to be the overlap

maximized over the phase and time shift

M(h1, h2) = max
φc,tc

(ĥ1|ĥ2(φc, tc)). (2.3)

One can understand this match as the fraction of the optimal signal-to-noise ratio

(SNR) that would be recovered if a template h1 was used to search for a signal h2.

We define the “fitting-factor” between a waveform hs with unknown parameters

and a bank of templates hb to be the maximum match between hs and all the wave-

forms in the template bank [65],

FF(hs) = max
h∈{hb}

M(hs, h). (2.4)

The “mismatch”

MM = 1− FF(hs) (2.5)
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describes the fraction of SNR that is lost due to the fact that the template in the

bank that best matches hs will not match it exactly due to the discreteness of the

bank and due to any disagreement between the waveform families used to model the

templates and the signals.

2.3 Coincident Matched-Filter Search for Compact Binaries

To search for coalescing compact binaries with LIGO and Virgo, the offline search

pipeline implements a coincident matched-filter search. If the detector noise was

stationary and Gaussian, matched filtering alone would be sufficient to determine

the statistical significance of a signal. For such stationary noise, demanding that the

signal is present in two or more detectors in the network (coincidence) would provide

a sufficiently low false-alarm rate to claim a detection at a matched-filter network

signal-to-noise ratio of 8; the signal strength used to estimate aLIGO’s event rate in

Ref. [21]. However, the presence of non-stationary and non-Gaussian noise transients

(glitches) in the detector noise increases the false-alarm rate at a given signal-to-noise

ratio and additional statistical tests must be used to separate signals from noise. The

output of the matched filter is combined with these additional tests to create a new

detection statistic for coincident detection candidates. To determine the significance

of these candidates, the noise background must be estimated to create a map between

the numeric value of the detection statistic and the false-alarm rate (or, equivalently,

false-alarm probability). Background noise is estimated by performing coincidence

tests on detector data which has been time-shifted such that coincident candidates

no longer represents a coincident detection. The search pipeline consists of several

stages which are applied to the data to construct coincident detection candidates and

measure their significance.

To search for gravitational waves from compact binaries, the search pipeline first

locates the data from the detectors, which is stored on disk. Analysis over a period

of data can be parallelized over time and over detector allowing the search to execute

multiple search programs simultaneously that process small blocks of data for each

detector. In the S6/VSR2,3 search, the analysis block size is set to 2048 seconds. The

data is first used to construct the template bank that will be used to matched filter

the data [49, 50, 51, 52, 53]. The bank is constructed by specifying the boundaries
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of the target astrophysical space and the desired minimal match, the fractional loss

in matched-filter signal-to-noise ratio caused by the discrete nature of the bank. The

minimal match is chosen so that the bank is dense enough that any gravitational

wave in the target space can be recovered with a loss of signal-to-noise ratio no

greater than a chosen maximum, usually set to 3% [66]. A metric is constructed on

the signal space that locally measures the fractional loss in signal-to-noise ratio for

varying mass parameters of the templates [52]. This metric (and hence the template

placement) depends on the power spectral density of the detector noise. Since inspiral

signals have more cycles at lower frequencies, a detector with better low-frequency

sensitivity relative to high frequencies will have more discriminating power and thus

require a denser bank to maintain the desired minimal match.

The pipeline then matched filters the template waveforms against the data. The

matched filter consists of a weighted inner product in the frequency domain used to

construct the (squared) signal-to-noise ratio, given by

ρ2(t) =
(s|hc)2 + (s|hs)2

(hc|hc)
, (2.6)

where hc and hs are the two orthogonal phases of the template.

(s|h)(t) = 4

∫ fnyquist

fmin

s̃(f)h̃∗(f)

Sn(f)
e2πift df. (2.7)

Here s̃ denotes the Fourier-transformed detector data and h̃ denotes the Fourier-

transformed template waveform. As in the S6/VSR2,3 search, each 2048 second

block of data is sub-divided into fifteen 256 second segments, each overlapped by 128

seconds. The noise power spectral density Sn(f) is computed by taking the bin-by-

bin median of each of the power spectral density of each of the fifteen segments. The

fifteen segments are then each matched filtered, with the first and last 64 seconds of

each segment ignored, due to corruption of the filter by FFT wrap-around [48]

Times when the signal-to-noise ratio exceeds a pre-defined threshold are consid-

ered gravitational-wave candidates, called triggers [48]. This threshold was set to a

signal-to-noise ratio of 5.5 in S6/VSER2,3. Since the signal-to-noise ratio can ex-

ceed this threshold for many sample points around the time of a signal, clustering

is performed on these triggers in time, so that one trigger can be associated with
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a signal. Template-length based clustering of Ref. [48] was used in the S6/VSR2,3

search. For a sufficiently loud event, several nearby templates in the bank may also

produce triggers associated with the same signal and so clustering over the template

bank can also be used to limit the number of triggers produced by the search. The

S6/VSR2,3 search used a 30 ms time window to cluster over the bank.

Since non-Gaussian noise transients in the data can also produce excursions in

the signal-to-noise ratio, an additional signal-based veto is then constructed to ensure

that the matched filter signal-to-noise ratio is consistent with an inspiral signal. To

construct this test, the template is split into p bins of equal power, and a matched

filter ρl constructed for each of these bins. Triggers are then subject to the χ2 test,

given by

χ2 = p

p∑
l=1

[(
ρc
p
− ρlc

)2

+

(
ρs
p
− ρls

)2
]
, (2.8)

where ρc and ρs are the two orthogonal filter phases. Real gravitational-wave signals

would return a low number for the χ2 test, while candidates caused by noise transients

will return a high number for the χ2 test [58]. In the S6/VSR2,3 analysis, we set

p = 16. The value of the χ2 test is used to calculate a new detection statistic, called

the reweighted signal-to-noise ratio, given by

ρ̂ =

ρ for χ2 ≤ ndof

ρ[1
2
(1 + ( χ2

ndof
)3)]−

1
6 for χ2 > ndof ,

(2.9)

where ndof = 2p − 2 is the number of degrees of freedom in the χ2 test [59]. Since

candidates caused by noise transients generally return a high χ2 statistic, the new

detection statistic down weights the signal-to-noise ratio of candidates by dividing

with the χ2 statistic [15].

The quality of the data generated by the LIGO and Virgo detectors is scrutinized

to mitigate noise and to improve the reach of the detectors [62, 63]. Data quality

investigations characterize times of poor detector performance according to three

broad classifications: (i) the data quality is sufficiently poor that the data should be

discarded; (ii) an instrumental artifact with a known physical coupling to the recorded

strain is observed by monitoring environmental or auxillary control channels; (iii) a

statistical correlation is observed between a high trigger rate from the search and
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excess noise power in environmental or auxillary control channels. The first class

of data is removed before searching for signals. For the second two classes, a data

quality veto is created. Vetoes are time intervals during which the pipeline removes all

candidate events from the search. Improved methods for tuning and applying vetoes

in compact object binary searches have been investigated [67], however these methods

were not used in S6/VSR2,3. Investigation of these new approaches is outside the

scope of this work and we apply the same data-quality vetoes as they were tuned for

the S6 search.

A true gravitational-wave signal would be incident on all detectors in the network

at approximately the same time. The maximum time-of-arrival difference between

detectors is given by the light-travel time between observatories. Noise, however,

will be independent between detectors since the interferometers are far apart. For

this reason, we require the candidates to be coincident between detectors: they must

arrive within the light-travel time between detectors, approximately 11 milliseconds

for the two LIGO detectors, with a few milliseconds of padding to account for timing

errors. The pipeline also requires that the mass parameters of the signal are consistent

between all detectors, as would be expected for a true gravitational wave.

To claim a detection of gravitational waves, it is necessary to calculate the false-

alarm rate of the candidate and demonstrate that it is very unlikely to occur due to

noise in the detectors. To measure the noise background in the search, the pipeline

shifts the triggers generated by filtering each detector’s strain data by an amount

greater than the light-travel time between detectors, and applies the coincidence test

again. Coincident triggers that occur in the shifted data cannot be due to gravita-

tional waves and thus represent background noise. By repeating this test with many

different time lags, we can obtain a good estimate of the rate of background triggers

as a function of the combined reweighted signal-to-noise ratio detection statistic. For

a two-detector network, the combined statistic is given by

ρ̂c =
√
ρ̂2

L1 + ρ̂2
H1, (2.10)

where H1 is the LIGO Hanford detector and L1 is the LIGO Livingston detector.

The map between ρ̂c and false-alarm rate allows us to estimate the significance of

gravitational-wave candidates in the search. Since the rate of background triggers
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can depend strongly on the mass of the template, the search computes different maps

between ρ̂c and false-alarm rate for different regions of the mass parameter space

independently.

2.4 Measuring the performance of a Search Pipeline

As the primary metric of search sensitivity in the presence of real detector data that

contains non-Gaussian transient noise sources, we measure the sensitivity of a pipeline

by finding the sensitive volume, which is proportional to the number of detections a

pipeline will make per unit time at a given false-alarm rate. This is given by:

V (F ) =

∫
ε(F ; r,Ω,Λ)p(r,Ω,Λ)r2drdΩdΛ. (2.11)

Here, Λ are the physical parameters of a signal (in this study, {m1,m2, ~s1, ~s2}),
p(r,Ω,Λ) is the distribution of signals in the universe, and ε is the efficiency of the

pipeline at detecting signals at a distance r, sky location Ω, and false-alarm rate F .

We estimate the sensitive volume by adding to the data a large number of simu-

lated signals (injections) that are randomly drawn from a distribution q(r,Ω,Λ). We

re-analyze the data with these simulated signals added and, for each injection, deter-

mine if a coincident trigger is present within 1 second of the time of the injection. If

a trigger is present, we use the combined reweighted signal-to-noise ratio to compute

its false-alarm rate. If no trigger is present, the injection is missed, i.e., the signal can-

not be distinguished from noise at any false-alarm rate threshold. At some distance

rmax we expect that any signal with r > rmax will be missed. Likewise, within some

distance rmin we expect that nearly every signal will be found, even at an extremely

small (. 10−4/yr) false-alarm rate threshold. These bounds depend on the physical

parameters of a signal. Gravitational waves from more massive systems have larger

amplitudes, and thus can be detected at greater distances than less massive systems.

To first order, if a binary with a reference chirp mass M0 = (m1m2)3/5/(m1+m2)1/5 is

detected at a distance r0, then a binary with arbitrary chirp massM will be detected

with approximately the same reweighted signal-to-noise ratio at a distance:

r = r0(M/M0)5/6. (2.12)
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For each injection, we scale these bounds using Eq. (2.12), then draw the distance

uniformly between them. The sensitive volume is then simply an average over the

total number of injections N :

V (F ) ≈ 1

N

N∑
i=1

gi(F ) ≡ 〈g(F )〉 , (2.13)

where:

gi(F ) =
4π

3

[
r3

min,i + 3r2
i (rmax,i − rmin,i)ε̂(F ;Fi, ri,Ωi,Λi)

]
. (2.14)

Here, ε̂ = 1 if Fi ≤ F , and 0 otherwise. The error in the estimate is:

δV =

√
〈g2〉 − 〈g〉2

N
. (2.15)
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Chapter 3

Binary Neutron Star and Neutron

star – Black Hole Sources

3.1 Population of BNS Sources

Electromagnetic observations suggest that the neutron star (NS) mass distribution

in binary neutron star (BNS) peaks at 1.35M� − 1.5M� with a narrow width [68],

although NSs in globular clusters seem to have a considerably wider mass distribu-

tion [68]. There is also evidence that a neutron star in one system has a mass as high

as ∼ 3M� [69].

If the neutron stars are rotating, coupling between the neutron stars’ spin S1,2

and the orbital angular momentum L of the binary will affect the dynamics of BNS

mergers [70, 71, 72, 73]. We measure the neutron stars’ spin using the dimensionless

parameter χ1,2 = S1,2/m
2
1,2. The maximum spin value for a wide class of neutron star

equations of state is χ ≡ |χ| ∼ 0.7 [74]. However, the spins of neutron stars in BNS

systems is likely to be smaller than this limit. The spin period at the birth of a neutron

star is thought to be in the range 10–140 ms [75, 76]. During the evolution of the

binary, accretion may increase the spin of one of the stars [77], however neutron stars

are unlikely to have periods less than 1 ms [78], corresponding to a dimensionless spin

of χ ∼ 0.4. The period of the fastest known pulsar in a double neutron star system,

J0737–3039A, is 22.70 ms [79], corresponding to a spin of only χ ∼ 0.05.
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3.2 Population of NSBH Sources

Although no NSBH binaries have been directly observed, both NSs and black holes

(BHs) have been observed in other binary systems, and these observations can be used

to make inferences about the mass and spin distributions that might be expected in

NSBH binaries. Several BNS systems and neutron star-white dwarf (NSWD) systems

have been observed by detecting their electromagnetic signatures. The observational

data for BHs is more limited than for NSs.

Black holes observed in X-ray binaries can be used to estimate the BH mass

distribution, though it is difficult to disentangle the individual masses and inclination

angle with only electromagnetic observations [80]. Using a population of ∼ 20 low-

mass X-ray binary systems with estimated masses, two separate works found that

a BH mass distribution of 7.8 ± 1.2M� fits the observed data well [80, 81]. There

is evidence that there is a “mass gap” between 3M� and 5M� where BHs will not

form [80, 81], although this may be due to observational bias [82]. When high-mass

X-ray binary systems are considered the mass distribution increases to 9.2012±3M�,

although a Gaussian model is a poor fit for these systems [81]. Evidence exists for

a stellar mass black hole with mass > 20M� in the IC 10 X-1 x-ray binary [83, 84].

Observations of black hole spin have found spin values that span the minimum and

maximum possible values for Kerr black holes [85], therefore we conservatively assume

a uniform black-hole spin distribution between 0 and 1.

3.3 Modelling Gravitational Waveforms

Achieving aLIGO’s optimal sensitivity to NSBH binaries and exploring their physics

requires accurate modeling of the gravitational waves emitted over many hundreds of

orbits as the signal sweeps through the detector’s sensitive band. For BNS systems

the mass ratio between the two neutron stars is small and the angular momenta of the

neutron stars (the neutron stars’ spins) is low. In this case, the emitted waves are well

modeled by PN theory [39, 29, 55]. However, NSBH binaries can have significantly

larger mass ratios and the spin of the black hole can be much larger than that of

a neutron star. The combined effects of mass ratio and spin present challenges in

constructing accurate gravitational waveform models for NSBH systems, compared
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to BNS systems. For the studies in this paper, we choose to use a uniform range of 3

to 15 solar masses for the black holes in our NSBH signal population. This is partly

motivated by the considerations above, and partly by our concern of the validity of

inspiral-only, point particle waveform models for high-mass NSBH systems.

3.3.1 Constructing post-Newtonian Waveforms

One way we can model the gravitational waveforms of BNS and NSBH binaries is

by constructing waveforms using the PN approximations of the binary’s equation

of motion and gravitational radiation. To obtain the gravitational-wave phase from

these quantities, we assume that the binary evolves adiabatically through a series of

quasi-circular orbits. This is a reasonable approximation as gravitational radiation

is expected to circularize the orbits of isolated binaries [86]. In this limit, the equa-

tions of motion reduce to series expansions of the center-of-mass energy E(v) and

gravitational-wave flux F(v), which are expanded as a power series in the orbital

velocity v around v = 0. They are given as

E(v) = ENv
2

(
1 +

6∑
n=2

Eiv
i

)
, (3.1)

F (v) = FNv
10

(
1 +

7∑
n=2

Fiv
i

)
, (3.2)

where the coefficients {EN, Ei, FN, Fi} are defined in Appendix A.1. For terms not

involving the spin of the objects, the energy is known to order v6, while the flux

is known to v7, referred to as 3.0PN and 3.5PN, respectively. At order 3.0PN, the

flux contains terms proportional to both v6 and v6 log v; which are regarded to be

of the same order. Complete terms involving the spins of the objects first appear as

spin-orbit couplings at 1.5PN order, with spin-spin couplings entering at 2PN order,

and next-to-leading order spin-orbit couplings known at 2.5PN order.

We use the assumption that these systems are evolving independently to relate

the PN energy and gravitational-wave flux equations, i.e. the loss of energy of the

system is given by the gravitational-wave flux

dE

dt
= −F . (3.3)
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This can be re-arranged to give an expression for the time evolution of the orbital

velocity,
dv

dt
= −F(v)

E ′(v)
, (3.4)

where E ′(v) = dE/dv. The orbital evolution can be transformed to the gravitational

waveform by matching the near-zone gravitational potentials to the wave zone. The

amplitude of gravitational waves approximated in this way are given by the PN ex-

pansion of the amplitude. This gives different amplitudes for different modes of the

orbital frequency. The dominant gravitational-wave frequency f is given by twice

the orbital frequency, which is related to the orbital velocity by v = (πMf)1/3. The

orbital phase is therefore given by

dφ

dt
=
v3

M
, (3.5)

and the phase of the dominant gravitational-wave mode is twice the orbital phase.

Here, we will only expand the gravitational-wave amplitude to Newtonian order

(0PN), which, when combined with the phase, is referred to as a restricted PN wave-

form.

Solutions v(t) and φ(t) to Eqs. (3.4) and (3.5) can be used to construct the plus

and cross polarizations and the observed gravitational waveform. For restricted wave-

forms, these are:

h+(t) = −2M η

DL

v2 (1 + cos2 θ) cos 2φ(t) , (3.6)

h×(t) = −2M η

DL

v2 2 cos θ sin 2φ(t) , (3.7)

h(t) = F+ h+(t) + F× h×(t) . (3.8)

Here F+ and F× are the antenna pattern functions of the detector, DL is the luminos-

ity distance between the binary and observer, and θ is the inclination angle between

the orbital angular momentum of the binary and the direction of gravitational-wave

propagation: cos θ = L̂ · N̂ . Thus, a non-precessing, restricted PN waveform is fully

specified by v(t) and φ(t) (or equivalently t(v) and φ(v)).

We now have the ingredients necessary to produce the TaylorT2 and TaylorT4

families of approximants, which we describe in the following sections.
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3.3.2 TaylorT4

The TaylorT4 approximant, introduced in [87], is formed by numerically solving the

differential equation
dv

dt
=

[−F(v)

E ′(v)

]
k

= Ak(v). (3.9)

The notation [Q]k indicates that the quantity Q is to be truncated at vk order. Terms

containing pieces logarithmic in v are considered to contribute at the order given by

the non-logarithmic part. Thus waveforms expanded to 3.5PN order in the phase

would be truncated at k = 7. We use Ak as shorthand for the truncated quantity

that is used as the expression for dv/dt.

The resulting differential equation, given explicitly in Appendix A.2.1, is non-

linear and therefore must be solved numerically. The result is a function v(t). The

phase can then be calculated by

dφ

dt
=
v(t)3

M
. (3.10)

The phase is integrated from a fiducial starting frequency up to the minimum energy

condition (MECO), which is defined by

dE(v)

dv
= 0. (3.11)

The MECO frequency is where we consider the adiabatic approximation to have

broken down. Note that the MECO frequency is dependent on not only the masses

but also the spins of the objects; specifically, systems where the objects’ spins are

aligned with the orbital angular momentum will have a higher MECO frequency.

When the partial spin-related terms at 3.0PN and 3.5PN are included, however,

there are regions of the NSBH parameter space for which the MECO condition is

never satisfied. For these cases, we impose that the rate of increase in frequency must

not decrease (i.e. we stop if dv/dt ≤ 0), and that the characteristic velocity of the

binary is less than c (i.e. we stop if v ≥ 1). We terminate the waveforms as soon as

any of these stopping conditions are met.
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3.3.3 TaylorT2

In contrast to the TaylorT4 approximant, the TaylorT2 approximant is constructed

by expanding t in terms of v and truncating the expression to consistent PN order.

We first construct the quantity

dt

dv
=

[
E ′(v)

−F(v)

]
k

= Bk(v). (3.12)

This can be combined with the integral of Eq. (3.5) and solved in closed form as a

perturbative expansion in v,

φ(v) =

∫
v3

M
Bk(v)dv. (3.13)

The explicit result of this integral is given in Ap. A.2.2. Similar to TaylorT4, the

phase is generally calculated up to the MECO frequency. However, for some points

of parameter space, this formulation can result in a frequency that is not monotonic

below the MECO frequency. As with TaylorT4, we stop the waveform evolution with

dv/dt ≤ 0 or v ≥ 1.

A related approximant can be computed directly in the frequency domain by using

the stationary phase approximation [88, 39]. This approximant is called TaylorF2 and

can be expressed as an analytic expression of the form

φ(f) = A(f)eiψ(f), (3.14)

where the phase takes the form

ψ(f) =
7∑
i=0

1∑
j=0

λi,jf
(i−5)/3 logj f. (3.15)

The full expressions for the amplitude and phase are given in Ap. A.2.3. Because

the stationary phase approximation is generally valid, the TaylorT2 and TaylorF2

approximants are nearly indistinguishable [88]. An advantage of the TaylorF2 ap-

proximant comes from the fact that it can be analytically calculated in the frequency

domain. In practice, waveforms that are generated in the frequency domain without

the use of integration are less computationally costly, and so searches for gravitational
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waves from inspiraling binary systems have been performed using the TaylorF2 ap-

proximant [89, 88, 39, 7, 90, 8, 91, 10, 92, 13, 14, 15, 93, 94, 95].

3.3.4 SEOBNRv1

An additional approximant we use in this work is the spinning effective one-body

model (SEOBNRv1), presented in Ref. [96]. This approximant incorporates the re-

sults of black hole perturbation theory, the self-force formalism and PN results. The

model has been calibrated to numerical relativity simulations, including simulations

where the objects’ spins were (anti-) aligned with the orbital angular momentum and

had magnitudes of χ ± 0.4. In order to compare these waveforms more fairly with

the PN approximants that only model the inspiral, we truncate this model before the

merger section of the waveform. Although SEOBNRv1 is limited to χ ≤ 0.6, further

models have been developed since this work was completed that extend the model to

allow generic spins [37].
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Chapter 4

Effects of Spin on Binary Neutron

Star Searches

4.1 Introduction

The effect of spin-orbit and spin-spin interactions were neglected in previous BNS

searches [15], as they do not have a significant effect on the ∼ 1600 gravitational

wave cycles in the 40–2000 Hz sensitive band of first-generation detectors [97]. How-

ever, aLIGO and AdV will be sensitive to gravitational-wave frequencies between

10–2000Hz, increasing the number of cycles in band by an order of magnitude. Initial

studies have demonstrated that over this band, the small secular effects produced by

spin-orbit and spin-spin coupling will have a significant effect on the detectability of

BNS systems with non-trivial component spins [98]. However, the current geometric

method for placing BNS templates [99] does not incorporate spin. While numerical

(stochastic) methods could be used to include spin, these require substantially more

templates than a comparable geometric approach [100].

We consider two populations of neutron star binaries: the first has spins uniformly

distributed from χ = 0 to 0.4, the second, a sub-set of this, has spins between 0

and 0.05. This extended spin distribution allows for the possibility of serendipitous

discovery of BNS systems in globular clusters, where the evolutionary paths may

be different than that in field binaries [101]. Since supernova kicks may cause the

direction of the neutron star’s angular momentum to be misaligned with the orbital

angular momentum of the binary [102], or the binaries may be formed by direct
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capture, we consider a population of binaries with an isotropic spin distribution.

We evaluate a new geometric algorithm for placing templates for BNS systems

with spin, presented in [55], which has a significantly higher sensitivity than previous

searches. The algorithm constructs a metric on the parameter space using the various

coefficients of the TaylorF2 expansion of the orbital phase as coordinates. In such

a coordinate system the parameter space metric is globally flat, therefore we can

transform into a Euclidean coordinate system. Finally, our method uses a Principal

Coordinate Analysis to identify a two dimensional manifold that can be used to

cover the aligned spin BNS parameter space using existing two dimensional lattice

placement algorithms.

We perform a systematic evaluation of the ability of a search that neglects spin to

detect gravitational waves for BNS in aLIGO and AdV. We show that this search will

lose more than 3% of the matched filter signal-to-noise ratio for 59% (6%) of signals

if it is used to search for BNS systems with spins uniformly distributed between

0 ≤ χ1,2 ≤ 0.4(0.05); this is unsatisfactory over a large region of the signal parameter

space. We show that by considering BNS systems where the spin of the neutron stars

are aligned with the orbital angular momentum (i.e. the binary is not precessing), we

can create a two-dimensional template bank that is efficient at detecting spin-aligned

BNS signals. Finally we demonstrate that this bank is sufficient to detect signals from

generic spinning, precessing binaries in aLIGO and AdV. The spin-aligned bank loses

more than 3% of the signal-to-noise ratio for only 9% (0.2%) of signals, sufficient to

construct a sensitive and unbiased search for BNS systems in aLIGO and AdV.

4.2 BNS Search Sensitivity

We quantify the performance of templated matched-filter searches by the fitting fac-

tor (FF) of the search [65]. The fitting factor is the fraction of the signal-to-noise

ratio that would be recovered when matching a given signal with the best matching

waveform in the template bank. When searching for BNSs, we do not know the exact

physical parameters of the system. We assume that the masses of the neutron stars

lie between 1 and 3M� and construct a bank of waveform templates to span this

region of the mass parameter space. We measure the sensitivity of this bank using

the fitting factor.
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In searches for gravitational waves using LIGO and Virgo, the bank is constructed

such that the fitting factor for any signal in the target parameter space will never

be less than 0.97. At least one of the templates in the bank must have a maximized

overlap of 0.97 (or more) with the signal. This value is chosen to correspond to

an event rate loss of no more than 10% of possible sources within the range of the

detectors [103]. In this chapter, we use a fitting factor of 0.97 to construct search

template banks.

We now test whether a bank of templates that does not model the effect of spin

is sufficient to detect generic, spinning BNS sources in aLIGO and AdV. We create a

bank of non-spinning templates that would recover any non-spinning BNS system with

a fitting factor greater than 0.97. This bank is constructed using TaylorF2 waveforms,

which are constructed using the stationary phase approximation to the gravitational-

wave phasing accurate to 3.5 post-Newtonian (PN) order [104, 39]. To create a

bank of these waveforms we use the hexagonal-placement method defined in [54],

which was used in the majority of previous searches in LIGO and Virgo [12, 13, 14].

This template bank is placed using the metric given in [105], which is valid, by

construction, for templates at 2PN order. Our signal waveforms are constructed

using the SpinTaylorT4 waveform [106], a time-domain waveform accurate to 3.5PN

order in the orbital phase which includes the leading order spin-orbit, spin-spin, and

precessional modulation effects and implemented in the LSC Algorithm Library Suite

[107]. We first confirm that although the bank is constructed at 2PN order, it yields

fitting factors greater than 0.97 for both the TaylorF2 and SpinTaylorT4 non-spinning

waveforms at 3.5PN order. To simulate a population of spinning BNS sources, we

generate 100,000 signals with component masses uniformly distributed between 1 and

3 M� and dimensionless spin magnitudes uniformly distributed between 0 and 0.4.

The orientation of the spin, the orientation of the orbital angular momentum, and

the sky location are isotropically distributed. To model the sensitivity of a second

generation gravitational wave interferometer, we use the aLIGO zero-detuned, high-

power sensitivity curve [108]. For our simulations, we use a lower frequency cutoff of

15Hz.

We note that for non-precessing systems the fitting factor is independent of the

detector alignment and location; however this statement is not true for precessing
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systems. For such systems, however, the distribution of fitting factors over a popula-

tion of sources will be independent of the detector alignment and location. Therefore,

for this study we calculate the fitting-factor for a single detector with an arbitrary

location and position.

In Fig. 1 we show the distribution of fitting factors obtained when searching for

our population of BNS sources with the non-spinning template bank. We see that

59% of signals were recovered with a fitting factor less than 0.97. If the maximum spin

magnitude is restricted to 0.05, we find that 6% of signals are recovered with a FF less

than 0.97. If BNS systems do exist with spin magnitudes up to 0.4, a template bank

that captures the effects of spin will be required to maximize the number of BNS

detections. Detection efficiency will be greatly reduced by using a template bank

that only contains waveforms with no spin effects. Even under the assumption that

component spins in BNS systems will be no greater than 0.05, detection efficiency

will be decreased if the effect of spin on the signal waveform is ignored.

4.3 A template placement algorithm for aligned-spin BNS

templates

As we have demonstrated in the previous section, there is a substantial region of

the BNS parameter space where a significant loss in signal-to-noise ratio would be

encountered when searching for astrophysically plausible, spinning BNS systems with

non-spinning templates. It has been suggested that using BNS templates where the

spins of the system are aligned with the orbital angular momentum is sufficient for

detecting generic BNS systems with second-generation detectors [98] using TaylorF2

templates that incorporate the leading order spin-orbit and spin-spin corrections [109].

In this section we use these spin-aligned waveforms to construct a template bank

that attempts to cover the full space of astrophysically plausible BNS spin configu-

rations. This template bank should contain as few templates as possible, while still

being able to detect any BNS system that might be observed with aLIGO and AdV.

We use TaylorF2 waveforms accurate to 3.5PN order in orbital phase and including

the leading order spin-orbit and spin-spin terms given by [109, 29] Since BNS systems

coalesce at ∼ 1500 Hz, significantly higher than the most sensitive band of the detec-

tors, the waveform will be dominated by the inspiral part of the signal [29]. The effect
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Figure 1: The distribution of fitting factors obtained by searching for the precessing
BNS systems described in Sec. 4.2 with component spins up to 0.4 (blue solid line),

0.2 (green dashed line), and 0.05 (red dotted line) using the non-spinning BNS
template bank described in Sec. 4.2 and the advanced LIGO, zero-detuned,

high-power PSD with a 15Hz lower frequency cutoff.
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of component spin on BNS inspiral waveforms has been well explored in the litera-

ture [71, 70, 72, 106]). For spin-aligned (i.e. non-precessing) waveforms, the dominant

effects of component spin are spin-orbit coupling, which enters the waveform phas-

ing at 1.5PN order, and spin1-spin2 coupling, which enters the waveform phasing at

2PN order. Other spin-related corrections to the PN phasing have been computed

[110, 111], however, in this work we mainly restrict to only the two dominant terms.

Based on the results of [55], where we derive a metric for aligned-spin TaylorF2

waveforms, we can use a geometric algorithm for template bank placment. We place a

hexagonal grid of templates in the two dominant coordinates ξ1, ξ2, which are derived

in [55]. For BNS systems in aLIGO and AdV the extent of the physical parameter

space in the remaining directions is smaller than the coverage radius of a template

and can be neglected in nearly the entire parameter space. As the effective dimension

of the space is two-dimensional, a hexagonal placement algorithm, similar to that

used in previous searches of LIGO and Virgo data, can be employed to cover the

space. This allows the method to be incorporated into existing search pipelines in a

straightforward way. Where the third dimension, ξ3, cannot be neglected, we stack

the templates to ensure that the maximum mismatch due to the depth than 0.25%.

For an aligned-spin template bank where the spin of each component is restricted

to 0.4, using the advanced LIGO, zero-detuned high-power noise curve with a lower

frequency cut-off of 15Hz, we find that approximately 520,000 templates are required.

Roughly 100,000 of these templates were added by the stacking process.

We can verify that the template bank algorithm is working correctly by repeating

the simulation described in Sec. 4.2, but evaluating the fitting factor between our

bank of aligned-spin template waveforms and a set of signals that is restricted to

having spins that are (anti-)aligned with the orbital angular momentum. The results

of this simulation are shown in Fig. 2 and one can see that with our bank we do not

observe fitting factors lower than 0.97 when searching for aligned spin BNS systems.

In the previous paragraphs we have restricted attention to the aLIGO zero-

detuned, high-power predicted sensitivity with a 15Hz lower frequency cut off. How-

ever, we should verify that the conclusions we have drawn are valid for AdV, whose

PSD is different from that of aLIGO, as shown in Fig. 3. Additionally we should also

show that the choice to use a 15Hz cut off in the aLIGO PSD does not affect the



28

0.94 0.95 0.96 0.97 0.98 0.99 1.00
Fitting Factor

10−3

10−2

10−1

100

F
ra

ct
io

n
of

In
je

ct
io

n
s
<

F
F

Figure 2: The distribution of fitting factors obtained by searching for aligned spin,
binary neutron star systems, with spin magnitudes restricted to 0.4 using the

aligned-spin BNS template bank described in Sec. 4.3 and the aLIGO, zero-detuned,
high-power PSD with a 15Hz lower frequency cutoff.
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Figure 3: The amplitude spectral density for the aLIGO zero-detuned high-power
design sensitivity (blue solid curve), AdV design sensitivity (red dashed curve),
initial LIGO design sensitivity (blue bot-dash curve) and initial Virgo design

sensitivity (red dotted curve).

conclusions made in this section. Using our method we find that we require approx-

imately 120,000 templates to cover the parameter space for AdV, in comparison to

approximately 520,000 templates for aLIGO. By comparing the results when using

the aLIGO PSD with a 10Hz and 15Hz lower cut off we observe that using a 10Hz

lower frequency cut off will increase the number of necessary templates from ∼ 520000

to ∼ 860000.
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4.4 Comparison to alternative placement methods

An alternative approach to template placement for aligned spin systems is to use

templates with “unphysical” values of the symmetric mass ratio, η. That is, to use

non-spinning templates, with the desired range of chirp mass but where the range of

η values is extended to include both values of η that are much lower than the relevant

parameter space and values of η that are much higher, including templates with η

greater than the physically possible limit of 0.25.

While unphysical η templates will produce an increase in efficiency when com-

pared with non-spinning templates, the method is not as efficient as the aligned spin

geometrical placement we have described. In addition, both methods require the

same number of templates to cover the parameter space. Therefore, we would recom-

mend using aligned spin templates placed using our metric algorithm as opposed to

unphysical η templates.

Finally, we wish to compare the performance of the geometrical algorithm with the

stochastic bank proposed in [100, 112]. The stochastic placement works by randomly

placing points within the parameter space and rejecting points that are too “close” to

points already in the bank. This has the advantage that it is valid for any parameter

space metric, so we could use any of the metrics discussed above.

The disadvantage to a stochastic bank, when compared to a geometrically placed

bank, is that it will require more templates to achieve the same level of coverage

[100, 113]. For our parameter space, consisting of BNS signals with component spins

up to 0.4 and using the advanced LIGO zero-detuned high-power design curve with

a 15Hz lower frequency cut-off, we found that the stochastic placement produced a

bank containing ∼ 750000 templates, which is 44% more than with the geometrical

placement. However, stochastic placement can still be used to place templates when

no analytical metric is known, such as when the merger becomes important. In such

regions of parameter space, the stochastic placement may still be the best algorithm

to use to place a template bank.
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4.5 Performance of the aligned spin template bank

In this section we would like to investigate the improvement in the detection of generic

BNS systems that results from using a template bank that includes the dominant,

non-precessing, spin effects. To do this we use the aligned spinning bank that we

detail in Sec. 4.3 and compare this to the results of using a nonspinning bank as

shown in Sec. 4.2.

Using our aligned spin template bank, we repeat the investigation from Sec. 4.2.

We create a population of source BNS signals identical to those used in Fig. 4.2, and

compute the fitting factor between these signals and the aligned spin template bank.

The results of this are shown in FIG.4. To decrease the computational cost of this

test, we only calculated the overlaps between a signal and templates that were within

a range of ±0.1M� in chirp mass. This is reasonable because the overlap will decrease

rapidly with small changes in chirp mass, therefore we expect templates with very

different values of chirp mass to have low overlaps with each other. We verified that

this approach did not cause us to underestimate the fitting-factor of our banks.

We can now compare the results obtained in this section, using our aligned-spin

template bank, with the results obtained in section 4.2, using a non-spinning template

bank. One can clearly see an improvement in the distribution of fitting factors when

using the aligned spin template bank. The fraction of signals that fall below a fitting

factor of 0.97, when the spin magnitudes are restricted to 0.4, falls from 59% to 9%.

We also see an improvement for signals that have spin magnitudes restricted to 0.05,

where the fraction of signals falling below a fitting factor of 0.97 drops from 6% to

0.2%. We can also compare the performance of the aligned-spin bank to that of the

non-spinning bank as a function of the maximum spin magnitude, as shown in Fig. 5.

We can see that regardless of the maximum component spin, the aligned spin bank

will greatly reduce the number of signals recovered with fitting factors less than 0.97.

A small fraction of signals fall below a FF of 0.97, even when using the new

aligned-spin template bank. We expect that these poor matches with the aligned

template bank are due to precession. In general, precessional effects will not be

important in BNS systems as the orbital angular momentum is significantly larger

than the component spins. In such cases there is only a small angle between the total

and orbital angular momenta and precession has only a small effect on the waveform.
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Figure 4: The distribution of fitting factors obtained by searching for the precessing
signals described in Sec. 4.2 with component spins up to 0.4 (blue solid line), 0.2

(green dashed line), and 0.05 (red dotted line) using the aligned spin BNS template
bank described in Sec. 4.3 and the advanced LIGO, zero-detuned, high-power PSD

with a 15Hz lower frequency cutoff.
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Figure 5: The fraction of the precessing signals described in Sec. 4.2 recovered with
a fitting factor less than 0.97 as a function of the maximum component spin. Shown
for the non-spinning BNS template bank described in Sec. 4.2 (blue solid line), and

the aligned spin BNS template bank described in Sec. 4.3 (red dotted line). The
advanced LIGO, zero-detuned, high-power PSD with a 15Hz lower frequency cutoff

was used when computing the fitting factors.
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However, there is a small region of parameter space where precessional effects will

have an effect for BNS systems. Using the model of Ref. [114], applied to the small

precession angles in BNS systems, we can predict for which systems precession will

be most important. The orientation of a precessing binary must be defined using

the total angular momentum rather than the orbital angular momentum as done

with non-precessing binaries. The orientations with the worst matches should be

those where the system is edge-on (angular momentum perpendicular to the viewing

direction) and where the detector is nearly insensitive to the plus polarization and

only sees the cross polarization (a binary overhead of the detector would have its

angular momentum oriented 45◦ between the arms of the detector). We find that

this is indeed the case; in fact, all cases with fitting factors less than 0.95 are close to

this configuration. All of these cases also have biases in the recovered mass and spin

parameters due to the secular effects of precession on the phasing of the waveform.

4.6 Conclusions

In this work we have investigated the effects of neglecting spin when searching for

binary neutron star systems in aLIGO and AdV. We have found that, if component

spins in binary neutron star systems are as large as 0.4, then neutron star spin can-

not be neglected, and there is a non-trivial loss in signal-to-noise ratio even if the

maximum spin is restricted to be less than 0.05. We have shown that the geometric

algorithm for placing and aligned spin template bank works for aligned spin systems

and have demonstrated that it does significantly better for generic, precessing BNS

systems than the traditional non-spinning bank. However, for the BNS aligned spin

χi < 0.4 parameter space the aligned spin bank requires approximately five times as

many templates as the non-spinning bank. This increased number of templates will

increase the computational cost of the search and increase the number of background

events, so needs to be balanced against the potential gain in being able to cover a

larger region of parameter space. A further advantage of this method is the ease with

which it can be incorporated into existing or future search pipelines, which include

the use of signal-based vetoes [58] and coincidence algorithms [115]. In future work

we will investigate how this template bank performs in data from the aLIGO and
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AdV detectors which includes non-Gaussian and non-stationary noise features. Fi-

nally we note that the method proposed in this work should be applicable wherever

the TaylorF2 waveforms closely represent actual gravitational waveforms. In a future

work we will investigate how well this method performs in the binary black hole and

neutron-star, black-hole regions of the parameter space. Wherever the TaylorF2 ap-

proximation begins to break down, a stochastic bank placement may still be the most

viable option.
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Chapter 5

Accuracy of Post-Newtonian

Waveforms for Neutron Star –

Black Hole Searches

5.1 Introduction

In this chapter we investigate if the currently available post-Newtonian models are

sufficient for use in searches for gravitational-waves from the coalescence of a neutron

star and a black hole. Given the uncertainties in the masses and spins of NSBH

binaries, we consider a fairly broad mass and spin distribution when investigating

the accuracy of NSBH waveforms. In this chapter, we consider NSBH binaries with

the NS mass between 1 and 3M�, the BH mass between 3 and 15M�, the NS spin

between 0 and 0.05 and the BH spin between 0 and 1. Between these limits, the

distributions of mass and spin are all assumed to be uniform.

As described in Ch. 3, there are several different ways in which to solve the energy

balance equation to obtain the gravitational-wave phase measurable by aLIGO; these

different methods are known as PN approximants. While the convergence of the full

PN series is not guaranteed, for BNS systems in Advanced LIGO, the available PN

approximants produce waveforms that are indistinguishable for a given binary and

are reliable for use in detection searches and parameter measurement [116, 29, 55].

However, for NSBH binaries the total mass, and hence the PN expansion parameter v,

is larger. The mass ratio and spin corrections are also more significant. We investigate
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the accuracy of waveforms generated by different PN approximants for observing

NSBH binaries with aLIGO. To do this, one could compare subsequent terms in the

PN expansion and determine the effect of neglecting them. However, in the case of

systems whose component objects are spinning, only terms up to 2.5PN order are

completely known [70, 72, 111]. This represents the leading order (1.5PN) and next-

to-leading order (2.5PN) spin-orbit, along with the leading order (2.0PN) spin-spin

contributions to the phasing [70, 72, 111]. We choose to compare approximants that

are constructed with terms up to the same PN order, but that use inversely related

differential equations to solve for the orbital dynamics, in addition to comparing to

approximants that include higher order spin-related corrections at partially derived

orders [117, 118]. These methods both have the effect of testing how well the PN

series has converged. We also present a comparison between waveforms from these

PN approximants where we fix the mass and spin parameters of the objects in order

to understand when in the inspiral the waveforms diverge.

We consider two families of PN approximants for binaries where the spin of the

black hole is aligned with the orbital angular momentum: TaylorT2 [89, 88, 39]

and TaylorT4 [87]. In these models, we include all the completely known orbital

evolution terms (up to 3.5PN order) [119, 41, 42, 89, 120, 46] and all the completely

known spin-related terms (up to 2.5PN order) [121, 73, 70, 110, 122]. Restricting

to systems where the spin angular momenta are aligned (or anti-aligned) with the

orbital angular momentum means that the plane of the binary does not precess,

simplifying our comparisons. However, this study captures the dominant effect of

spin on the waveforms [114]. In Ch. 6, we investigate the effect of precession on

detection searches [123]. We also consider the effective-one-body model as described

in Ref. [96]. We restrict to comparing the inspiral portion of approximants. Even

at the upper range of masses we consider, (3 + 15)M�, it has been shown in the

case of numerically modelled binary black hole waveforms that inspiral-only template

banks recover > 95% of the signal power [30, 124]. We separately consider models

that include spin-related terms up to 3.5PN order [117, 118]. Spin-orbit tail (3.0PN)

and next-to-next-to-leading order spin-orbit (3.5PN) contributions to the phasing

are known. However, these orders are incomplete as there are also unknown spin

corrections at 3.0PN and 3.5PN, including spin-spin and (spin-induced) octupole-

monopole couplings.
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In Fig. 6 we show the distance an optimally oriented system would be observed at

SNR 8 (the horizon distance), for a 1.4M�−10M� NSBH system, as a function of the

spin of the black hole, for both the aLIGO zero-detuned, high-power sensitivity curve

and a plausible range of early aLIGO sensitivities [17]. Systems where the spin of the

black hole is large in magnitude and aligned with the orbital angular momentum can

be seen from a greater distance than systems where the spin is small or anti-aligned.

Achieving this sensitivity requires NSBH waveforms that do not incur a significant

loss in SNR when used as search templates [97]. Furthermore, extracting the physics

from observed signals requires faithful templates for parameter measurement.

We find that no presently available waveform model is sufficiently accurate for use

in aLIGO NSBH searches or parameter measurement. Our key results, Figs. 7-11,

show the match between the various waveform families considered here. There is a

significant disagreement between the PN approximants we have examined, even at

at low (χ ∼ 0.4) spins and small (mBH/mNS ∼ 4) mass ratios for TaylorF2 and

TaylorT4. The match decreases as these increase with matches as low as ∼ 0.1

observed. This motivates the need to compute higher order PN spin corrections.

Our present knowledge of NSBH waveforms will limit the ability of gravitational-

wave observatories to accurately determine source parameters from the detected sig-

nals and may hinder their detection. Further analytical and numerical modeling of

NSBH systems will be needed before aLIGO comes online in 2015 and reaches full

sensitivity in ∼ 2019 [17].

The remainder of this chapter is organized as follows. In Sec. 3.3.1, we describe

the construction of the PN approximants used and Sec. 2.2 describes our method

of comparing them. In Sec. 5.2 we show the results of comparing different PN ap-

proximants, and show that there is a large discrepancy between the waveforms for

NSBH binaries at relatively low black hole spins. In Sec. 5.3 we construct a new

frequency domain approximant that is designed to agree with TaylorT4. This is fol-

lowed by a comparison of the time domain approximants to their frequency domain

counterparts in Sec. 5.4, where we demonstrate that they largely agree. Finally, in

Sec. 5.5 and Sec. 5.6 we investigate where in the inspiral the disagreement between the

waveform families becomes important. We demonstrate that the divergence occurs

at surprisingly low velocities for even modest black hole spins. Finally in Sec. 5.7 we

investigate whether maximizing over the mass and spin parameters of the waveform
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Figure 6: The horizon distance as a function of the spin of the black hole for a
1.4M� − 10M� NSBH system, for both the aLIGO zero-detuned, high-power aLIGO
sensitivity curve (blue) and plausible early aLIGO detector sensitivities (red), with

a 15 Hz lower frequency cutoff. Results are obtained using the TaylorT4
approximant including only the complete spin terms up to 2.5PN. Note that aLIGO

will be sensitive to NSBH systems out to ∼ 900 Mpc, and there will be increased
sensitivity for systems with aligned black hole spins with large magnitudes.

can improve present models, and investigate the accuracy of the waveforms for early

aLIGO observations when the detectors will have reduced low-frequency sensitivity

when compared to the ultimate sensitivity.

5.2 Post-Newtonian approximant faithfulness comparison

Searches for gravitational waves from compact binary coalescences utilize matched-

filtering [125, 48], in which the signal model is correlated with the detector output to

construct a signal-to-noise ratio. If the signal model does not accurately capture the

true gravitational waveform, then the signal-to-noise ratio, and hence the distance to
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Figure 7: The match between the TaylorF2 and TaylorT4 approximants as a
function of the spin of the black hole and the mass ratio of the system. Only the
completely known spin-related corrections up to 2.5PN are included. Matches are
calculated using the the aLIGO zero-detuned, high-power sensitivity curve and a

15Hz lower frequency cutoff. A significant reduction in match is seen for even
moderate spins χ ∼ 0.3 and low mass ratios mbh/mns ∼ 4. The approximants also

begin to disagree for non-spinning systems as the mass ratio increases.
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Figure 8: The match between the TaylorF2 and TaylorT4 approximants as a
function of black hole spin and mass ratio. Both models include the

next-to-next-to-leading spin-orbit (3.5PN) and spin-orbit tail terms (3.0PN). In
comparison to Fig. 7, the additional terms have improved the agreement for

moderately spinning aligned spin systems, however, the match is still ∼ 0.8 for
χ ∼ 0.5 at all mass ratios.
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which the detector can see signals at a given false alarm rate, will decrease. Matched-

filtering therefore relies on the accuracy of the models. We quantify the agreement

between waveform families by computing the match, or faithfulness of the waveforms.

The faithfulness of representing a waveform from a given PN family with that

of another is described by the match between the two waveforms when the same

physical parameters are used as input to the models. As both models describe the

same physical source, the match should be unity. Any deviation is due to the variation

between models and the match gives the fractional loss in signal-to-noise ratio that

will result.

In this section we compare the faithfulness between waveforms from different PN

approximants where we choose the physical parameters to be consistent with NSBH

sources. We also consider how the waveforms from the PN approximants compare to

the waveforms from the SEOBNRv1 effective-one-body model [96]. Lastly, we con-

sider the effect of including the spin-related terms at only partially derived orders.

We model the sensitivity of second generation gravitational-wave detectors with the

aLIGO zero-detuned, high-power sensitivity curve [108]. For this study we use a

lower frequency cutoff of 15Hz since it is not expected that detectors will have sig-

nificant sensitivity below this frequency. We consider the effect of increasing this

low-frequency cutoff to simulate early aLIGO sensitivities in Sec. 5.7.

In Fig. 7, we examine the faithfulness of NSBH waveforms by computing the match

between the TaylorF2 and TaylorT4 PN approximants. The TaylorT4 approximant

was used to simulate NSBH binaries in LIGO’s previous gravitational-wave searches,

and the TaylorF2 family is used as the templates for detection [15]. In order to focus

on the mismatches primarily due to phase differences between the models, the fre-

quency cutoff of the TaylorF2 waveform is made to agree with the ending frequency

of the TaylorT4 waveform. We see that the agreement between the two models is

primarily influenced by the magnitude of the black hole’s spin, and secondarily by

the mass ratio. There is a noticeable drop in match at higher mass ratios, even when

the spin of the black hole is zero. As expected, the best agreement is seen when the

black hole’s spin is small and the black hole and neutron star have comparable masses.

However, this plot shows that there is a substantial disagreement between these ap-

proximants for even moderately low black hole spins (χ ∼ 0.3), which increases as

the spin of the black hole increases. We note that the effect on the match due to the
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spin of the neutron star is negligible in all areas. In Fig. 8 we compare the TaylorF2

and TaylorT4 models, with the inclusion of the spin-orbit tail (3.0PN) and next-to-

next-to-leading spin-orbit (3.5PN) corrections recently computed in Refs. [126, 127].

In comparison to Fig. 7, the agreement is improved for aligned spins with moderate

magnitudes. However, these approximants maintain a poor level of overall agreement,

with matches of only ∼ 0.8 at χ ∼ 0.5 for all mass ratios, and even lower matches

for anti-aligned systems. Figs. 9 and 10 compare the TaylorT2 and TaylorT4 ap-

proximants with and without these additional spin terms. We see that TaylorT4 is

especially sensitive to the additional corrections. In both cases, however, we note

that the additional terms have caused a significant change in the waveforms, as indi-

cated by the low matches, demonstrating that the expansion has not yet sufficiently

converged to produce reliable waveforms for parameter estimation.

In Fig. 11 we compare the SEOBNRv1 model to the PN models TaylorF2 and

TaylorT4. Since the SEOBNRv1 model is not valid for large values of χ [96] we

restrict χ < 0.6 and only report matches below this limit. We see that, similar

to the comparison between TaylorF2 and TaylorT4, these models also have large

mismatches when the spin of the black hole is nonzero. The large discrepancy between

the waveform families indicates that higher order PN correction terms are required.

This may also pose significant problems for parameter estimation of NSBH sources.

5.3 The TaylorR2F4 approximant

In the previous section, we found a surprisingly large disagreement between the Tay-

lorF2 and TaylorT4 PN approximants when compared with waveform parameters

appropriate for NSBH systems. We would like to distinguish how much of this is due

to differences between time domain and frequency domain approximants, and how

much of this is due to differences between the formulation of the two PN families.

This can easily be performed for the TaylorF2 and TaylorT2 approximants, however

we need to construct an equivalent frequency domain version of TaylorT4 to complete

the comparison.
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Figure 9: The match between TaylorF2 with 2.5PN spin corrections and TaylorF2
including the next-to-next-to-leading spin-orbit (3.5PN) and spin-orbit tail terms

(3.0PN), as a function of the spin of the black hole and the mass ratio of the
system. Matches are calculated using the the aLIGO zero-detuned, high-power

sensitivity curve and a 15Hz lower frequency cutoff. Although there is agreement
where the spins are low χ < 0.2, the match quickly drops as the spin of the black

hole increases, so that the match is already ∼ 0.7 for χ ∼ 0.5.
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Figure 10: The match between TaylorT4 with 2.5PN spin corrections and TaylorT4
including the next-to-next-to-leading spin-orbit (3.5PN) and spin-orbit tail terms

(3.0PN), as a function of the spin of the black hole and the mass ratio of the
system. Matches are calculated using the the aLIGO zero-detuned, high-power

sensitivity curve and a 15Hz lower frequency cutoff. In comparison to Fig. 9, the
approximant is more noticeably changed by the additional terms. For a mass ratio

of 8, the match has already fallen to ∼ 0.7 for χ ∼ 0.15.
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Figure 11: The match between the TaylorF2 (left) or TaylorT4 (right) and
SEOBNRv1 approximants. Spin corrections for the PN approximants are included

up to 2.5PN. Matches are calculated using the the aLIGO zero-detuned, high-power
sensitivity curve with a 15 Hz lower frequency cutoff. As in Fig. 7, there is a

significant reduction in match where spin of the black hole is only moderate. Note,
however, that the PN approximants have marginally better agreement with

SEOBNRv1 than with each other.
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By analogy with TaylorF1 and TaylorF2 [128, 29], TaylorF4 is obtained by nu-

merically integrating the reciprocal of Eq. (3.9) in the frequency domain,

dt/dv = 1/Ak(v). (5.1)

However, this does not elucidate the differences between the TaylorT4 and TaylorF2

approximants. Instead, we construct an analytical approximation to the TaylorF4

approximant, which we call TaylorR2F4, by expanding Eq. (5.1) in powers of v. In

order to make this series finite, we truncate these additional terms at an order in v

higher than the order where the PN expansion of the energy and flux were truncated,

dt

dv
=

[
1

Ak(v)

]
l

= Bk(v) +Rkl(v) = Ckl(v). (5.2)

Here Bk(v) is the same as in the TaylorT2 approximant and Rkl(v) are the terms

from order vk+1 up to order vl. It is important to note that this produces a power

series that is identical to the TaylorF2 approximant up to the point where Eq. (3.12)

was truncated. Thus, terms of higher order in v account for the differences between

the TaylorT2 and TaylorT4 approximants.

In Sec. 5.4 we show that TaylorR2F4 agrees well with the TaylorT4 approximant

when expanded to v9 or v12, which we shall see in the next section. As noted above,

the second expansion in the TaylorR2F4 approximant is a different expansion than

the PN expansion of the energy and flux. The Fourier phase for the TaylorR2F4

approximant can be obtained from Eq. (3.13) where Bk(v) is replaced by Ckl(v).

This is given up to order vN as

ψR2F4(f) = ψF2(f) +
N∑
i=6

N∑
j=0

λi,jf
(i−5)/3 logj f, (5.3)

where the form of these expressions up to N = 12 can be found in Appendix A.2.4.

Because this approximant can be analytically expressed in the frequency domain, it

can be generated relatively cheaply compared to TaylorT4. This means that it has the

potential to be used where computational efficiency and a higher degree of agreement

with TaylorT4 is desired. We note that the frequency-domain approximants are

much faster than their time-domain counterparts, which must integrate differential
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Figure 12: The match between TaylorF2 and TaylorT2. Both include spin
corrections up to 2.5PN order. Matches are calculated using the the aLIGO

zero-detuned, high-power sensitivity curve and a 15Hz lower frequency cutoff. We
see that the F2 and T2 approximants largely agree. The discrepancy between the

two approixmants can be reduced by expanding the frequency sweep of the
TaylorF2 approximant’s amplitude to higher PN orders. However, there is different

Gibbs phenomena between the two approximants that will cause a discrepancy.

equations and perform a Fourier transform. Therefore, they are especially useful in

computational problems which are waveform-generation limited, such as parameter

estimation of signals [129].

5.4 Comparison of Frequency to Time Domain Approximants

In this section, we investigate to what extent the discrepancy between the waveform

families that was demonstrated in Sec. 5.2 is due to the difference between expressing

approximants in the frequency and time domain alone. We compare the new Tay-

lorR2F4 approximant from Sec. 5.3, and TaylorF2, to their time domain equivalents.
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Figure 13: The match between TaylorT4 and TaylorR2F4. Both models include
spin corrections up to 2.5 PN. TaylorR2F4 is re-expanded up to order v9 (top) and

v12 (bottom). Matches are calculated using the the aLIGO zero-detuned,
high-power sensitivity curve and a 15Hz lower frequency cutoff. R2F4 and T4 have

high agreement over a broad range of parameters, with some visible exceptions.
Expanding up to order v12 has generally increased agreement with TaylorT4.
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We find that TaylorF2 waveforms are a good representation of TaylorT2 wave-

forms, even when we consider waveforms from NSBH systems where the component

objects are spinning. This can be seen in Fig. 12, which shows the match between the

TaylorF2 and TaylorT2 models. In that figure, the ending frequency of both models

is made to be the same, which is accomplished by terminating the TaylorF2 wave-

forms at the frequency where the generation of the equivalent TaylorT2 waveforms

terminated. We find that the TaylorF2 and TaylorT2 waveforms agree to better than

& 95.7% for the entire region investigated. For systems where the black hole spin was

positively aligned with the orbital angular momentum, the match is & 97.9%. The

discrepancy between these two models is in part due to expanding to only Newtonian

order the frequency sweep associated with the stationary phase approximation of the

TaylorF2 approximant. In addition, part of the discrepancy results from Gibbs phe-

nomena differences between the approximants. It is important to note that neither

of these waveforms have termination conditions that are determined by the physi-

cal behavior of the inspiralling binary. The termination frequency only indicates the

point at which the approximant is certainly no longer valid. The increased match

for aligned spin waveforms is due to the higher frequency cutoff, which pushes the

termination frequency out of the most sensitive part of the zero-detuned, high-power

aLIGO sensitivity curve.

Fig. 13 shows a comparison between the TaylorR2F4 and TaylorT4 models. In that

figure, the second expansion associated with the TaylorR2F4 model is extended to

order v9 (left) and v12 (right), and the ending frequency of both is that corresponding

to the MECO. We show that the TaylorR2F4 model is adequate for a large range of

parameters as a computationally inexpensive substitute for TaylorT4.

Since the mismatch between the TaylorF2 and TaylorT4 models is not due to

differences between the time domain and frequency domain approximants, this indi-

cates that the effective higher order PN terms used in the construction of TaylorR2F4,

which are also intrinsically present in TaylorT4, are still significant. To obtain better

agreement between the different PN approximants we consider, it is necessary to ex-

tend the PN expansions of the energy and flux equations to include unknown higher

order terms, particularly ones that involve the spin of the objects.
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Figure 14: The accumulation of phase differences between TaylorT2 and TaylorT4,
for systems with component masses (m1,m2) of (1.4M�, 6M�) (left),

(1.4M�, 10M�) (center), and (1.4M�, 14M�) (right). The approximants include
spin terms up to 2.5PN. The calculation starts from the velocity corresponding to a

gravitational-wave frequency of 15Hz, continues to the velocity on the horizontal
axis, and reports the difference in accumulated gravitational-wave phase between
the waveforms. The feature in the bottom right corner of each plot arises because

the TaylorT2 approximant is no longer monotonic. Note that large phase differences
accumulate at very low velocities v ∼ 0.2 for even small black hole spins.

5.5 Accumulation of Phase Discrepancy

In the previous sections, we demonstrated that the two PN approximants, TaylorF2

and TaylorT4, and the SEOBNRv1 model are not faithful to each other. We also

showed that this is not due to the differences between frequency and time domain

waveforms. From the construction of the TaylorR2F4 approximant, we also demon-

strated that the two PN families can be written in a way that is consistent up to the

chosen PN order, but where TaylorR2F4 contains higher order in v corrections that ac-

count for the differences between the models. Since these are higher order corrections,

they should start to become important to the orbital phasing only at high velocities,

and thus high gravitational-wave frequencies. In this section we investigate where, for

systems with parameters corresponding to NSBH binaries, the approximants diverge.

We do this by examining the accumulation of phase as a function of orbital veloc-

ity and reporting the difference in the number of gravitational-wave cycles between

different approximants.

In Fig. 14, we examine the difference in the accumulated phase between Tay-

lorT2 and TaylorT4 for three example systems with component masses (m1,m2) of
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Figure 15: The accumulation of phase difference between TaylorT2 and
SEOBNRv1, for systems with component masses (m1,m2) of (6M�, 1.4M�) (left),
(10M�, 1.4M�) (center), and (14M�, 1.4M�) (right). TaylorT2 includes spin terms

up to 2.5PN. The calculation starts from the velocity corresponding to a
gravitational-wave frequency of 15Hz, continues to the velocity on the horizontal
axis, and reports the difference in accumulated gravitational-wave phase between
the waveforms. The feature in the bottom right corner of each plot arises because

the TaylorT2 approximant is no longer monotonic. As in Fig. 14, a large phase
difference is accumulated at low velocities and small black hole spins.

(6M�, 1.4M�), (10M�, 1.4M�), and (14M�, 1.4M�). We see that the phase difference

between the two models quickly grows to tens of radians, even when the black hole

spin magnitude is small. This is also true when comparing TaylorT2 and SEOBNRv1,

as can be seen in Fig. 15. In the latter case, there is also a noticeable deviation away

from the line of zero spin where for unknown reasons the two models diverge and

subsequently converge.

5.6 Accumulation of mismatch

As gravitational-wave detectors are not directly sensitive to phase differences alone, it

is useful to compute how the match, which incorporates the sensitivity of a gravitational-

wave detector, changes as a function of the upper frequency cutoff used for the cal-

culation. In this section we demonstrate at which frequencies and corresponding

velocities the match between waveform families drops. To do so, we define an inner

product between waveforms that is a function of the upper frequency cutoff. This

inner product is then used in the match calculation of Eq. (2.3).

In Fig. 16, we examine the match between TaylorF2 and TaylorT4, integrated from
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Figure 16: The match between TaylorF2 and TaylorT4 integrated from 15 Hz up to
the designated frequency for systems with component masses (m1,m2) of

(1.4M�, 6M�) (top), (1.4M�, 10M�) (center), and (1.4M�, 14M�) (bottom). Both
approximants include spin corrections up to 2.5PN. Matches are calculated using

the the aLIGO zero-detuned, high-power sensitivity curve. A contour at a match of
0.97 is indicated by the dotted line. The match follows the general features seen in
the phase difference comparison of Fig. 14 and drops significantly, even at relatively

low velocities. For the (1.4M�, 6M�) system with a black hole spin χ = 0.5, the
match has already dropped to ∼ 0.5 at a velocity of only ∼ 0.25.
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Figure 17: The match between the TaylorF2 and SEOBNRv1 models integrated
from 15 Hz up to the designated frequency for systems with component masses
(m1,m2) of (6M�, 1.4M�) (left), (10M�, 1.4M�) (center), and (14M�, 1.4M�)

(right). TaylorF2 includes spin corrections up to 2.5PN. Matches are calculated
using the the aLIGO zero-detuned, high-power sensitivity curve. A contour at a

match of 0.97 is indicated by the dotted line. We note that, although the match is
marginally improved compared to Fig. 16, there are still large disagreements at

velocities as low as 0.25.
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a lower frequency cutoff of 15 Hz up to the upper frequency cutoff indicated on the

horizontal axis. This is compared for the same three example systems as in Sec. 5.5.

The match is shown across the range of allowable values of the black hole spin and

the neutron star spin is set to zero. We see that the match drops precipitously even

at low velocities and relatively modest spin magnitudes. For example, for a system

with m1 = 6M�, m2 = 1.4M�, and a dimensionless spin of 0.5 for the black hole,

the match drops below 0.7 at a velocity of only 0.23. The loss in match is more

pronounced with increasing mass ratio.

In Fig. 17, we examine the match between TaylorF2 and SEOBNRv1, integrated

from a lower frequency cutoff of 15Hz up to the upper frequency cutoff indicated on

the horizontal axis. Again, the match drops for large spin magnitudes at relatively

low velocities, although, just as the TaylorF2 approximant has shown better matches

with the SEOBNRv1 approximant than with the TaylorT4 approximant, this occurs

at somewhat higher velocities. This shows clearly that significant portions of the loss

in match seen in Sec. 5.2 occurs at unexpectedly low velocities.

5.7 Detection searches and Early aLIGO

In the previous sections, we have demonstrated a substantial loss in match between

different PN and EOB models of NSBH binaries. These discrepancies will cause

substantial biases in attempts to measure the parameters of detected systems with

aLIGO. However, when detecting systems the fitting factor, rather than the match, is

the quantity that is used to assess the effectualness of a search [97]. The fitting factor

maximizes the match between a signal and a bank of templates designed to capture

e.g. 97% of the optimal signal-to-noise ratio. The template bank is constructed to

be valid for the same range of masses and spins used throughout this chapter and

detailed in Sec 5.1. Discrepancies in match due to differing approximants may be

compensated for by allowing a waveform to match to a template with shifted param-

eters. Figs. 18 and 19 show the fitting factor of a TaylorF2 aligned spin template

bank when used to detect TaylorT4 waveforms. Fig. 18 shows the distribution of fit-

tings factors for approximants that include up to the 2.5PN spin corrections. Fig. 19

demonstrates the effect of adding the higher order 3.0PN spin-orbit tail and 3.5PN
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Figure 18: The fitting factor between the TaylorF2 and TaylorT4 approximants as a
function of the spin of the black hole and the mass ratio of the system, when
maximizing the match over a bank of TaylorF2 waveforms. All approximants

include spin corrections up to 2.5PN. Matches are calculated using the the aLIGO
zero-detuned, high-power sensitivity curve and a 15Hz lower frequency cutoff. In

comparison to the match of these approximants shown in Fig. 7, we see that while
allowing for the maximization over a bank of templates has improved the overall

agreement, it is unable to entirely make up for the poor match.

spin-orbit corrections. Construction of these aligned spin banks use the method intro-

duced in Ref. [55] and is described in more detail in Ref. [123]. There is substantial

improvement in the fitting factors of aligned spin systems when adding the higher

order spin corrections, but no improvement for anti-aligned spin systems. Although

the loss in fitting factor is not as significant as the loss in match shown in Figs. 7

and 8, aLIGO NSBH searches will isncur a substantial loss in signal-to-noise ratio for

anti-aligned spins, if the accuracy of NSBH waveforms is not improved.

In the previous sections we have modeled the sensitivity of aLIGO with the zero-

detuned, high-power sensitivity curve [108]. Early commissioning scenarios for aLIGO

indicate that observations will begin with less sensitivity in the 10–40 Hz region [17].
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Figure 19: The fitting factor between the TaylorF2 and TaylorT4 approximants as a
function of the spin of the black hole and the mass ratio of the system, when
maximizing the match over a bank of TaylorF2 waveforms. All approximants

include the 3.5PN spin-orbit and 3.0PN spin-orbit tail corrections. Matches are
calculated using the the aLIGO zero-detuned, high-power sensitivity curve and a

15Hz lower frequency cutoff. In comparison to the fitting factors shown in Fig. 18,
we see that adding the higher order spin corrections has resulted in substantially

improved fitting factors for systems where the spin is aligned with the orbital
angular momentum. There is no improvement for anti-aligned systems.
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Figure 20: The match between TaylorF2 and TaylorT4 as a function of the spin of
the black hole and the mass ratio of the system. The approximants include spin

corrections up to 2.5PN. Matches are calculated using a 30Hz lower frequency cutoff
to approximate the sensitivity of an early aLIGO detector. In comparison to Fig. 7,
which uses a 15Hz lower frequency cutoff, there is only a negligible improvement in

match. Matches remain low at moderate black hole spins χ ∼ 0.3.
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Figure 21: The match TaylorF2 and TaylorT4 approximants, with the 3.5PN
spin-orbit and 3.0PN spin-orbit tail corrections included, as a function of the spin of
the black hole and the mass ratio of the system. The approximants include only the
nown spin terms up to 2.5PN. Matches are calculated using a 30Hz lower frequency
cutoff to approximate the sensitivity of the early aLIGO detector. In comparison to

Fig. 8, which uses a 15Hz lower frequency cutoff, there is only a negligible
improvement in match.
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We investigate if the substantial disagreement found between TaylorF2 and TaylorT4

is still present for early detector sensitives by a instead using a lower frequency cutoff

of 30 Hz.

In Fig. 20 and 21, we show the faithfulness between the TaylorF2 and TaylorT4

approximants that include only the complete 2.5 PN and partial 3.5PN spin-related

corrections, respectively. We see that there is no significant improvement in the

faithfulness of the approximants, and so additional spin corrections are desirable

even for early detector scenarios.

5.8 Conclusions

We have found that there is significant disagreement between NSBH waveforms mod-

elled with the TaylorT2, TaylorT4, and SEOBNRv1 approximants. This will pose

problems for the construction of optimal NSBH detection searches, potentially reduc-

ing the event rate, and may cause significant biases in the parameter measurement of

detected signals.

The discrepancies are not accounted for by the differences between frequency and

time domain waveforms and start at fairly low (v ∼ 0.2) orbital velocities. Since the

discrepancies in the approximants result from how the PN expansions of the energy

and flux are combined and truncated, we conclude that the calculation of higher order

PN terms is required to increase the faithfulness of these approximants, and more

importantly, to improve the ability to detect NSBH coalescences. The discrepancies

between approximants are significantly smaller when the spin of the black hole is close

to zero, which further motivates the calculation of the PN terms associated with the

spin of the objects beyond those known completely up to 2.5PN order and partially

up to 3.5PN. Therefore, additional work is needed to verify the validity of waveform

models used for NSBH searches. We also note that we have only compared different

waveform families under the assumption that the spins of the component objects

are (anti-)aligned with the orbital angular momentum of the system. It is expected

that generic NSBH systems will not be limited to aligned spins, but may instead be

more isotropically oriented. This could lead to an additional source of discrepancy

between our models and the true signal, which would result in an additional loss in

the detection rate of sources.
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Chapter 6

Effects of Spin on Neutron Star –

Black Hole Searches

6.1 Introduction

In this chapter we investigate the effect of ignoring spin on optimal (matched-filter)

searches for NSBH binaries with aLIGO. The gravitational waves radiated by NSBH

binaries are expected to be significantly affected by the black hole’s angular momen-

tum (spin), which is expected to be comparable to the orbital angular momentum of

the binary [103, 71, 70, 72]. Spin-orbit coupling changes the gravitational waveform

of the binary’s inspiral and merger and can cause the orbital plane of the binary to

precess [71]. Coupling between the black hole spin and the neutron star spin [72],

the quadrupole-monopole interaction due to the spheroidal deformation of spinning

black holes and neutron stars [130] and the “self-spin” interaction [110] will also ef-

fect the gravitational waveform emitted during a NSBH binary inspiral. The resulting

changes in the waveform observed by aLIGO carry a great deal of information about

the dynamics of the binary. However, optimal searches of aLIGO data must incorpo-

rate this dynamics into their waveform models to avoid a reduction in sensitivity and

hence the rate of detected events.

Compact binary mergers in quasi-circular orbit are described by 15 parameters;

the masses, spin magnitude, spin orientations, source orientation, sky location, dis-

tance and time and phase of coalescence [40, 131]. Matched-filter searches must be

capable of detecting binary mergers regardless of the parameters of the system. For
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non-precessing systems and restricting to the dominant gravitational wave mode, the

extrinsic parameters - source orientation, sky location, distance and coalescence phase

- only effect the overall phase and amplitude of the observed gravitational wave sys-

tem. Therefore, it is possible to analytically maximize over these extrinsic parameters

[48].

When precessing systems are considered as template waveforms, the matched-filter

search becomes more complex. In this case the extrinsic parameters no longer enter

as overall phase and amplitude shifts in the waveform [71]. Previous work has been

conducted to explore the affect of precession on gravitational-wave searches and to

develop methods to detect precessing systems [97, 87, 132, 133, 134, 135, 136, 137, 11,

138, 139, 140, 141, 114, 142]. However, these searches, when applied to Initial LIGO

and Virgo data, have not shown an increase in efficiency with respect to non-precessing

searches [138]. This is because the filtering codes allow for increased, and unphysical,

freedom when maximizing over extrinsic parameters and because no suitable method

to distinguish gravitational wave signals from non-Gaussian instrumental noise has

been developed for these searches. Therefore, searches for NSBH binaries in data

from LIGO and Virgo’s most recent science runs ignored spin affects and used quasi-

circular templates to search for NSBH binaries [12, 13, 14, 15].

The majority of previous work considered the Initial LIGO detectors. aLIGO will

have a substantially different noise curve than Initial LIGO [17]. Conclusions drawn

using the Initial LIGO sensitivity curve may not hold when considering aLIGO. A

previous study considering aLIGO sensitivity curves has suggested that it may be pos-

sible to detect generic, precessing NSBH binaries using aligned-spin waveforms [141].

However, other studies have suggested that precession may significantly change the

gravitational waveform seen by aLIGO, requiring templates that explicitly capture

this effect [114].

We demonstrate that the quasi-circular templates used in Initial LIGO will reduce

the detection rate by 33− 37% for NSBH systems with masses uniformly distributed

between (10 ± 0.5, 1.4 ± 0.05)M�, an isotropic black hole spin distribution and spin

magnitude uniformly distributed between 0 and 1. Over a wider range of uniformly

distributed masses, (3−15, 1−3)M�, we find that the detection rate would be reduced

by 31− 36%. In both cases this loss in detection rate is compared against a template

bank where every signal is matched exactly by the bank of filters. The loss in event
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rate is greatest for NSBH binaries with large black-hole spins and large mass ratios.

The range quoted in both measurements is due to uncertainty in the waveform models

used to simulate NSBH gravitational-wave signals. These values also strongly depend

on the signal distributions that we selected. If nature does not provide a uniform

distribution of masses and an isotropic distribution of masses then these averaged

values will change. To account for this, we explore the ability to recover NSBH

signals as a function of their spins and masses in section 6.7.

We expand upon the method we introduced in [55] and construct a bank of tem-

plates for aligned-spin NSBH binaries. We demonstrate that this template bank is

effectual for recovering the population of aligned-spin NSBH systems that it is de-

signed to detect. We assess the ability of an aligned-spin template bank to detect

a population of generic NSBH binaries where the black hole spin is not constrained

to be parallel to the orbital angular momentum. We find using the aligned-spin

bank will reduce the detection rate by 17 − 23% compared to using a bank where

every signal matches exactly with one of the filter waveforms when searching for

NSBH waveforms with masses (3 − 15, 1 − 3)M�. When restricting the mass range

to (10 ± 0.5, 1.4 ± 0.05)M� we find that the detection rate is reduced by 26 − 33%.

We find that there are regions of the NSBH signal parameter space where precession

effects cause a significant reduction in signal-to-noise ratio. These regions are those

where the black hole’s angular momentum is large in comparison to the orbital angu-

lar momentum. We suggest possible methods for constructing searches that recover

these systems. By considering several NSBH waveform models, we demonstrate that

our results are robust against possible errors in the post-Newtonian phasing for NSBH

binaries.

There has been a great deal of recent work focused on numerically modelling the

merger of a black hole and a neutron star [143, 144, 145, 146, 147]. However, there is

not currently any widely available waveform model that includes both the full evolu-

tion of a NSBH coalescence and includes precessional effects over the full parameter

space that we consider. Therefore, in this work we have restricted ourselves to con-

sidering post-Newtonian, inspiral-only signal waveforms and consider only the case

of two point particles. If a full inspiral-merger-ringdown, precessing NSBH waveform

model becomes available, it would be informative to compare results with that model

against those presented here. However, in this work the black hole mass is restricted
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to be less than 15M�. It has been demonstrated that inspiral-only template banks re-

cover > 95% of the signal power of numerically modelled (3+15)M� binary black hole

waveforms [30, 124]. It has also been demonstrated that non-spinning NSBH mergers

with total mass ∼ 10M� are indistinguishable from binary black holes (BBH) mergers

with the same masses [147]. With these observations we expect that our results are

qualitatively valid in the parameter space we study.

The layout of this work is as follows. In Sec. 6.2 we describe the set of NSBH

systems that we use to assess the performance of our template banks. In Sec. 6.3

we discuss the waveform models that we use in our simulations. In Sec. 6.4 we

discuss the methods we use to test the template banks. In Sec. 6.5 we describe the

method to create banks of aligned-spin filter waveforms. In Sec. 6.6 we validate our

template banks against the aligned-spin signal models they are constructed to detect.

In Sec. 6.7 we assess the performance of non-spinning template banks to search for

generic NSBH signals and assess the performance of aligned-spin template banks to

detect the same signals.

6.2 A population of NSBH binaries

In this section, we describe our large simulated set of NSBH binaries. This is used to

assess the loss in detection rate when using non-spinning and aligned-spin template

banks to search for generic NSBH binaries. To construct this set we incorporate cur-

rent astrophysical knowledge to choose the distribution of masses and spins. However,

this astrophysical knowledge is limited due to the fact that no NSBH binaries have

been directly observed. Nevertheless, both NSs and BHs have been observed in other

binary systems, and these observations can be used to make inferences about the

mass and spin distributions that might be expected in NSBH binaries. We begin by

giving the distributions that we use in this work, before describing the astrophysical

knowledge that motivated these choices.

We simulate 100,000 NSBH binaries with parameters drawn from the following

distribution. We choose to use a uniform range of 3 to 15 solar masses for the black

holes in our NSBH signal population. This is partly motivated by the considerations

of the observed populations, and partly by our concern of the validity of inspiral-

only, point particle waveform models for high-mass NSBH systems. Observations of
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black hole spin have found spin values that span the minimum and maximum possible

values for Kerr black holes [85], therefore we use a uniform black-hole spin distribution

between 0 and 1. While a conservative choice, we choose to use a uniform mass

distribution between 1 and 3 solar masses for the NSs in our NSBH signal population.

The black hole dimensionless spin magnitude is chosen uniformly between 0 and 1

and the neutron star dimensionless spin magnitude is chosen uniformly between 0

and 0.05. The initial spin orientation for both bodies, the source orientation and the

sky location are all chosen from an isotropic distribution.

6.3 Waveform models

Matched-filter searches require an accurate model of compact binary mergers. In

this work we wish to investigate the effects of spin, especially spin-induced preces-

sion, while understanding and mitigating any bias in our results due to the choice

of waveform approximant. We therefore run all our simulations using two waveform

approximants; TaylorT2 [128] and TaylorT4 [87].

PN waveforms, such as TaylorT2 and TaylorT4 are constructed by solving the

PN equations of motion to obtain the binary orbits. For terms involving the orbital

contribution, the center-of-mass energy and gravitational wave flux are known to

3.5PN order.[119, 41, 42, 89, 120, 46]. For terms involving the spin of the objects, the

expansions of the energy and flux are complete to 2.5 PN order.[70, 72, 111]. In recent

work, terms relating to the coupling between the component spins and the orbit have

also been computed to 3.5 PN order [127, 117]. We choose not to use these terms

in this work because terms relating to the spin(1)-spin(2), quadrupole-monopole and

self-spin contributions are not yet known at 3 PN order, so we restrict the spin-related

terms to 2.5 PN where these terms are fully known. We do not expect these terms

to change the main conclusions of the work as these additional phase evolution terms

will have little effect on the precessional evolution of a system.

6.4 Method for assessing the performance of NSBH searches

In this section we describe the methods we use to assess the efficiency of template

banks and the terminology that we will use in the rest of this work. In previous
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searches of LIGO and Virgo data using non-spinning template banks, the banks of

signals were constructed so that the fitting factor would be greater than 0.97 for any

non-spinning signal within the parameter space [59]. This was chosen as a balance

between detection efficiency and computational cost. We also construct our aligned-

spinning banks with this criterion.

When a set of fitting factors have been calculated one can quote an “average fitting

factor” by taking the mean over all the values

FFav = 〈FF〉 , (6.1)

where 〈X〉 denotes the mean average of X. However, this measure can often be mis-

leading. The aLIGO detectors have a direction-dependent and orientation-dependent

sensitivity. Systems that are poorly aligned with respect to the detector may not

have sufficient SNR to be detected, regardless of the fitting factor. To account for

this we make use of the “effective fitting factor”, first defined in [87] as

FFeff =

(〈
FF3σ3

i

〉
〈σ3

i 〉

)1/3

. (6.2)

Here σi =
√

(hi|hi), which describes the optimal SNR of hi. The cube of the effective

fitting factor gives, above an arbitrary SNR threshold, the ratio between the fraction

of NSBH signals that would be recovered with the discrete template bank that was

used and a theoretical continuous template bank that would recover 100% of signal

power for any NSBH waveform. We therefore define the “signal recovery fraction” as

FF3
eff.

6.5 Algorithm for constructing template banks of aligned-

spin NSBH waveforms

In [55] we proposed a method for generating a geometrically-placed bank of aligned-

spin systems that can be used to search for BNS systems in the advanced detector

era. In this section we adapt the methods presented in that work to the case of NSBH

systems and describe how to generate template banks that can recover aligned-spin

NSBH waveforms. These banks are applicable for waveforms modeled using either
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the TaylorT2 approximant or the TaylorT4 approximant.

Our geometrical placement method is not specific to the BNS area of the parameter

space. However, some modifications to the method were necessary when placing

a template bank of NSBH waveforms. Our BNS aligned-spin template bank, as

described in [55], was given in terms of the positions of the points in the 8-dimensional

Euclidean parameter space, ξi. These points do not correspond directly to physical

masses and spins. For this study we want to use time domain template families and

therefore we must translate the bank into physical parameters. However, if a set of

ξi values is given it will, in general, not be possible to find a set of masses and spins

that give the exact ξi values. As templates are normally placed in a 2-dimensional

lattice, we need only to find a physical point that has the corresponding values of ξ1

and ξ2 and any value of the other ξi values that correspond to a waveform within

the physically allowed manifold. For some cases where a 2-dimensional lattice is

not sufficient to cover the space we will also specify values of ξ3 and ξ4. We use a

brute force method to find a physical solution that is sufficiently close to the desired

point using a numerical solution, which has the downside of being computationally

inefficient.

The TaylorF2 metric can be used to place a bank of waveforms modeled with

the TaylorT2 approximant. However, we also require that our template placement

algorithm place a bank of waveforms that can detect aligned-spin signals modelled

using TaylorT4 with no more loss in SNR than that specified by the minimal match

of the bank. This will allow us to investigate the efficiency of aligned-spin banks to

search for precessing NSBH signals using two waveform models. Using two models

will help to mitigate any bias in our results that arises due to the choice of waveform

approximant. We investigate the distribution of fitting factors when using a template

bank constructed using the TaylorF2 metric to search for aligned-spin TaylorT4 NSBH

signals in Sec. 6.6 and find that this would result in a reduction of sensitivity. We

therefore make use of a metric that models the TaylorT4 waveform well. To do

this we use the TaylorR2F4 waveform model. We have found that restricting the

TaylorR2F4 model to terms no larger than 4.5PN and placing a bank of templates

using the ensuing metric is sufficient to cover the TaylorT4 parameter space. For ease

of comparison Table 1 gives the sizes and properties of all the banks that are used in

this work.
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Template bank Approximant Waveform cutoff frequency Number of templates in bank

Geometric non-spinning bank TaylorF2 1000Hz 117,632
Geometric non-spinning bank TaylorR2F4 (up to 4.5PN) 1000Hz 99,309
Geometric aligned-spin bank TaylorF2 1000Hz 817,460
Geometric aligned-spin bank TaylorF2 400Hz 432,537
Geometric aligned-spin bank TaylorF2 240Hz 282,090
Stochastic aligned-spin bank TaylorF2 Dynamic 971,105
Geometric aligned-spin bank TaylorR2F4 (up to 4.5PN) 1000Hz 1,100,277
Geometric aligned-spin bank TaylorR2F4 (up to 4.5PN) 400Hz 504,132
Geometric aligned-spin bank TaylorR2F4 (up to 4.5PN) 240Hz 260,325
Stochastic aligned-spin bank TaylorR2F4 (up to 4.5PN) Dynamic 1,327,175

Table 1: The sizes of the various template banks that are used in this work. All of
these banks are valid for aligned-spin NSBHs with BH mass ∈ [3, 15)M�; NS mass
∈ [1, 3)M�; BH dimensionless spin ∈ [−1, 1]; NS dimensionless spin ∈ [−0.05, 0.05].
For all banks the aLIGO zero-detuned, high-power noise curve is used with a lower

frequency cutoff of 15Hz.

6.6 Results I: Validating the new template bank placement

for aligned-spin systems

In this section we demonstrate that our aligned-spin template banks achieve the

level of coverage they are constructed for when used to search for aligned-spin sig-

nals. We also compare our banks to banks generated using a stochastic placement

algorithm [100, 112, 113, 141] and show that our method acheives the same level of

coverage with fewer templates.

To verify the performance of our aligned-spin template banks we compute the

fitting factors between the banks and a set of 100,000 aligned-spin NSBH waveforms.

These waveforms are drawn from the distribution that we describe in Sec. 6.2, except

that the spins are all aligned (or anti-aligned) with the orbital angular momentum.

In Fig. 22 we show the results of this test using the template bank constructed

with the TaylorF2 metric. We show results when both template waveforms and

signals are modelled using the TaylorF2 approximant, when both are modeled using

the TaylorT2 approximant and when we model the template waveforms with TaylorF2

and the signals with TaylorT2. In both cases where the same waveform model was

used almost all of the fitting factors were greater than 0.97. The bank generation was

successful.

The lowest matches in the TaylorF2 vs TaylorF2 results were in cases where a

system with low mass ratio was recovered with a template with a high mass ratio,

or vice-versa. These are systems where the degeneracy between the spins and the
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Figure 22: Fitting factor between a set of aligned-spin NSBH signals and our
geometrically placed aligned-spin template bank placed using the TaylorF2 metric.

Shown when both templates and signals are generated using the TaylorF2
approximant (gray solid line) and when both are modelled with TaylorT2 (gray
dashed line). Also shown when the signals are modelled with TaylorT2 and the
templates modelled with TaylorF2 waveforms terminated at ISCO (black dotted

line) and TaylorF2 waveforms terminated at MECO (black dot-dashed line).
Results obtained using the zero-detuned, high-power advanced LIGO sensitivity

curve with a 15Hz lower frequency cut off.
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Figure 23: Fitting factor between a set of aligned-spin NSBH signals and our
geometrically placed aligned-spin template bank placed using the TaylorR2F4

metric. Shown are comparisons between TaylorT4 waveforms, TaylorR2F4
waveforms including terms to 4.5PN order and TaylorR2F4 waveforms including

terms to 6PN order. Results obtained using the zero-detuned, high-power advanced
LIGO sensitivity curve with a 15Hz lower frequency cut off.
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mass ratio [148] causes the phase evolution of the two systems to be very similar

and therefore the match predicted by the metric is higher than 0.97. However, the

system with the larger black hole mass will terminate at a significantly lower frequency

than the system with the smaller black hole mass and some power is lost due to the

difference in termination frequencies, which is not predicted by the metric.

The difference in termination conditions is also the reason why we see compara-

tively poorer performance when using TaylorF2 waveforms, terminated at the inner-

most stable circular orbit (ISCO) frequency, to search for TaylorT2 signals. The

TaylorT2 signals terminate when the evolution becomes unphysical, either at the

MECO or where the frequency spuriously begins to drop. In some cases, especially

when the spins are large, these can correspond to rather different termination frequen-

cies. To demonstrate this we also show the performance of searching for TaylorT2

signals with TaylorF2 waveforms, but where we terminate the TaylorF2 waveforms

using the same cut-off frequency that TaylorT2 waveforms would have at the given

masses and spins. This gives a much more comparable performance to the TaylorF2

vs TaylorF2 and TaylorT2 vs TaylorT2 cases.

In Fig. 23 we repeat this test using the template bank constructed with the Tay-

lorR2F4 metric, with terms restricted to 4.5PN order. We show results when the

template waveforms and signals are modeled with varying approximants. We use

TaylorR2F4 with terms up to 4.5PN order, TaylorR2F4 with terms up to 6PN order

and TaylorT4. We can see from this figure that using TaylorR2F4 template waveforms

with terms only to 4.5PN order would not be satisfactory when conducting searches

for signals modelled with the TaylorT4 approximant. However, we note that when

this bank is used with either TaylorT4 templates or TaylorR2F4 templates including

terms up to 6PN order the coverage is much better. When TaylorT4 is used to model

both the signals and the template waveforms we find that > 99% of the fitting factors

are greater than 0.97. In this plot the TaylorR2F4 waveforms are terminated at the

same frequency (the MECO frequency) as the TaylorT4 waveforms.

The TaylorR2F4 metric, with terms up to 4.5PN, is sufficient to place a bank

of templates to cover waveforms modeled by the TaylorT4 approximant. However,

when performing the matched-filtering the templates must be modeled with either

TaylorT4 or TaylorR2F4 with terms up to 6PN order.

In Fig. 24 we also show the performance of a bank placed using the TaylorF2
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Figure 24: Fitting factor between a set of aligned-spin NSBH signals modeled with
the TaylorT4 approximant and our template bank of aligned-spin signals placed

using the TaylorF2 parameter space metric. Shown are the fitting factors when the
templates used are modelled using the TaylorF2 approximant (gray solid line),

TaylorT2 (grey dashed line) and TaylorT4 (black dotted line). Results obtained
using the zero-detuned, high-power advanced LIGO sensitivity curve with a 15Hz

lower frequency cut off.
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Figure 25: Fitting factor between a set of aligned-spin NSBH signals and a
template bank of aligned-spin waveforms for varying values of the upper frequency
cutoff used in the construction metric. Shown for template banks placed using the
TaylorF2 metric and with both templates and signals modelled using the TaylorF2
approximant (left). Also shown for template banks placed using the TaylorR2F4

metric and with both templates and signals modelled using the TaylorR2F4
approximant (right). The performance of using a stochastically placed template

bank with varying upper frequency cutoff is also plotted. Results obtained using the
zero-detuned, high-power advanced LIGO sensitivity curve with a 15Hz lower

frequency cut off.

metric to search for TaylorT4 aligned-spin signals. We assess the performance when

the templates are modeled using TaylorF2, TaylorT2 and TaylorT4 approximants.

Even when TaylorT4 is used to model both template waveforms and signals, 10% of

signals are recovered with fitting factors smaller than 0.95. The TaylorF2 metric does

not achieve the desired coverage for TaylorT4 waveforms.

6.6.1 Varying the upper frequency cutoff and comparison with stochastic

placement algorithms

Filtering ∼106 templates against data from advanced gravitational-wave detectors

will require a large amount of computing power. It would therefore be desirable if we

could reduce the overcoverage that is incurred in the high mass region of the parameter

space when using an upper frequency cutoff of 1000 Hz. An alternative “stochastic”

placement scheme, based on randomly picking points in the space and only retaining

points which are not close to points already in the bank [100, 112, 113], is capable of

using an upper frequency cutoff that varies with mass [141]. However, this method is
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known to pack templates more densely than a geometrical lattice [100]. We found that

using a stochastic method to cover this NSBH space with the same covering criterion

required 971,105 (1,327,175) templates when using the TaylorF2 (TaylorR2F4) metric

to place the bank. In both cases this is ∼ 20% larger than our geometric algorithm

using a constant upper frequency cutoff of 1000 Hz. It is also possible to generate the

geometric bank with a lower upper frequency cutoff. This will require less templates,

but will not reach the desired coverage in the lower mass regions of the parameter

space. In Fig. 25 we compare the efficiency of geometric banks placed using a 240Hz,

1000Hz and 400Hz upper frequency cutoff. These correspond to roughly the lowest

possible ISCO frequency, the highest and an “average” system. The sizes of these

banks are shown in Table 1. As expected we notice a number of systems recovered

with fitting factors less than 0.97 when the upper frequency cutoff is reduced. We

also compare with the performance of a stochastic placement algorithm, which uses

a varying upper frequency cutoff. The performance of the stochastic bank is very

comparable to the 1000Hz bank when using the TaylorF2 metric. When using the

TaylorR2F4 metric the stochastic bank, which was placed using 109 seed points, seems

to be struggling to achieve the necessary coverage in certain regions of the space. As

the stochastic placement algorithm only uses a finite number of sample points, it is

known that it can leave holes in the parameter space, resulting in undercoverage [100].

We plan to adapt the geometric placement algorithm to allow the upper frequency

cutoff to vary over the space, however we leave this investigation for future work. We

note that the minimal match and lower frequency cutoff of the bank can also be

modified to reduce the number of templates and balance the computational cost [56].

6.7 Results II: Template bank performance when searching

for generic NSBH signals

In this section we evaluate the efficiency of searching for generic NSBH systems using

template banks of non-spinning waveforms. Template banks of non-spinning wave-

forms were used to search for NSBH signals in data from LIGO and Virgo’s most

recent science runs [12, 13, 14, 15]. We demonstrate that ignoring the effects of spin

when conducting searches for NSBH systems in the advanced detector era will signif-

icantly decrease the rate of NSBH observations and impose a selection bias against
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systems with large spins and large mBH/mNS. We then evaluate the efficiency of

searching for generic NSBH systems using our new template bank of aligned-spin

waveforms. We calculate the improvement gained by using our new bank when com-

pared to a non-spinning bank.

6.7.1 Performance of non-spinning template banks when searching for

generic NSBH signals

We compute fitting factors between a set of 100,000 generic, precessing NSBH signals

and a bank of non-spinning template waveforms. The precessing signals are drawn

from the distribution that we describe in Sec. 6.2. To mitigate any bias that arises due

to the choice of waveform approximant we run the simulation twice. First we use the

TaylorT2 approximant for both signal and template waveforms and a template bank

designed to obtain a fitting factor of at least 0.97 for any TaylorT2 non-spinning signal.

The simulation was then repeated using the TaylorT4 approximant for both signal

and template waveforms and a bank designed with the same fitting factor criterion

for TaylorT4 signals. These banks were constructed using the methods described to

create aligned-spin banks in Sec. 6.5 but with the spins set to 0.

The results of this simulation can be seen in Fig. 26. From this we can calculate

the mean and median values of the fitting factor over the signal distribution that we

used. The mean fitting factor of the signals is 0.82 (0.84) for the TaylorT2 (TaylorT4)

approximant, while the median fitting factor was 0.86 (0.88). In both cases the

distributions have long tails, with some systems recovered with less than 30% of their

optimal SNR. We also show results where we have modeled the templates using the

TaylorT2 approximant and the signals using the TaylorT4 approximant. In this case

the mean fitting factor is 0.84 and the median is 0.87. We notice that fewer signals are

recovered with high fitting factors (> 0.95) than in the other two cases, but we notice

that at lower values of fitting factor the performance is very similar to the TaylorT4

vs TaylorT4 case. The slight improvement of the TaylorT2 vs TaylorT4 case at lower

fitting factors can be attributed to the fact that the TaylorT2 bank is ∼ 20% larger

than the TaylorT4 bank and therefore has more freedom to match TaylorT4-modeled

spinning signals.

In Fig. 27, we show the mean fitting factor as a function of the intrinsic parameters

of the system when both templates and signals were modeled with the TaylorT4
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Figure 26: Fitting factor between a set of generic, precessing, NSBH signals and a
template bank of aligned-spin waveforms. Shown when both templates and signals
are generated using the TaylorT2 approximant (black solid line) and the TaylorT4

approximant (black dashed line). Also shown when the templates are modeled using
TaylorT2 and the signals are modelled using TaylorT4 (black dotted line). For

comparison the same results using a template bank of non-spinning waveforms are
also plotted in grey. Plotted over the full range of fitting factors (left) and zoomed
in to show only fitting factors greater than 0.9 (right). The distribution that the

NSBH signals are drawn from is described in Sec. 6.2. The template bank
construction is described in Sec. 6.5. Results obtained using the zero-detuned,

high-power advanced LIGO sensitivity curve with a 15Hz lower frequency cut off.
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Figure 27: Average fitting factor between a set of generic, precessing, NSBH signals
and a template bank of non-spinning waveforms as a function of the component

masses (left) and as a function of the mass ratio and the black hole dimensionless
spin magnitude (right). Both the signals and the template waveforms are modelled
using the TaylorT4 approximant. The distribution that the NSBH signals are drawn
from is described in Sec. 6.2. Results obtained using the zero-detuned, high-power

advanced LIGO sensitivity curve with a 15Hz lower frequency cut off.
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Figure 28: Average fitting factor between a set of generic, precessing, NSBH signals
and a template bank of non-spinning waveforms as a function of the mass ratio and
the black hole dimensionless spin magnitude (right). Shown when both the template

waveforms and signals are modeled with TaylorT2 (left) and when the template
waveforms are modeled with TaylorT2 and the signals are modelled with TaylorT4

(right). The results in these plots are almost identical to each other and to the right
panel of Fig. 27. The distribution that the NSBH signals are drawn from is

described in Sec. 6.2. Results obtained using the zero-detuned, high-power advanced
LIGO sensitivity curve with a 15Hz lower frequency cut off.

approximant. For comparison, in Fig. 28 we show the mean fitting factor as a function

of the spin magnitude and mass ratio for the TaylorT2 vs TaylorT2 results and the

TaylorT2 vs TaylorT4 results. In both cases the results are similar to the TaylorT4

vs TaylorT4 case, which indicates that the results are not suffering from a significant

bias due to the choice of waveform approximant. However, we note that when using

TaylorT2 as the signal model, the performance of the non-spinning banks is worse for

high spin, unequal mass systems than when using TaylorT4 as the signal model.

In Fig. 29 we show the signal recovery fraction as a function of the BH spin

magnitude and the mass ratio. The signal recovery fraction is defined in Sec.6.4.

It is clear that using a non-spinning bank to search for NSBH systems will result

in a considerable reduction in the NSBH detection rate. In addition, the ability to

detect systems with high spin, especially systems that also have unequal masses, is

especially poor. We note that these efficiencies would be improved by using non-

spinning templates outside of the chosen mass ranges, for example BNS or binary

black-hole template waveforms, or even templates with unphysical mass parameters

[55, 148].
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Figure 29: The signal recovery fraction obtained for a set of generic, precessing,
NSBH signals and a template bank of non-spinning waveforms as a function of the
mass ratio and the black hole dimensionless spin. Shown when both the template
waveforms and the signals are modeled with TaylorT2 (left) and when both the

template waveforms and the signals are modeled with TaylorT4 (right). The
distribution of the signal recovery fraction over the mass space is very similar to the

distribution of average fitting factors shown in Figs. 27 and 28. The distribution
that the NSBH signals are drawn from is described in Sec. 6.2. Results obtained
using the zero-detuned, high-power advanced LIGO sensitivity curve with a 15Hz

lower frequency cut off.
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6.7.2 Performance of aligned-spin template banks when searching for

generic NSBH signals

With the template banks of aligned-spin systems described in Sec. 6.5, we are able to

recover aligned-spin systems modelled with either the TaylorT2 or TaylorT4 approx-

imant with fitting factors greater than 0.97 in > 99% of cases, as shown in Sec. 6.6.

If we use these banks to search for precessing systems modelled with the same ap-

proximants, any loss in signal power, beyond that lost due to the spacing of the

aligned-spin bank, is entirely due to precession. We now assess the performance of

these aligned-spin banks when searching for generic, precessing NSBH signals and

identify regions of the parameter space where precessional effects cause a significant

loss in detection rate.

Our signal population is a set of 100,000 precessing NSBH signals. This distribu-

tion was described in Sec. 6.2. For comparison this is the same set of signals as we

used in Sec. 6.7.1. As before, we will assess fitting factors using both the TaylorT2

and TaylorT4 models to mitigate any bias arising from choice of waveform model.

When TaylorT2 is used as the signal model, we will use the bank of aligned-spin

systems that was placed using the TaylorF2 metric and a 1000Hz upper frequency

cutoff and model the templates using the TaylorT2 approximant. When TaylorT4 is

used as the signal model, we will use the bank of aligned-spin systems placed using

the TaylorR2F4 metric and model the templates with TaylorT4. The placement of

these banks was described in section 6.5.

The results of these simulations can be seen in Fig. 26, where we also compare

with the results obtained in Sec. 6.7.1 when using non-spinning template banks. We

can clearly see from Fig. 26 that the distribution of fitting factors for the case when

both signals and templates were modeled with TaylorT2 agrees well with the case

when both were modeled with TaylorT4. This indicates that we have disentangled

precessional effects from waveform-dependent effects and our results are free of any

bias due to the choice of waveform model. The mismatches seen here, beyond that

caused by the discreteness of the bank, are due only to the effects of precession. In

both cases we observe a median fitting factor of ∼ 0.95 and a mean fitting factor of

∼ 0.91. This is a clear improvement over the non-spinning results where the mean

fitting factor was 0.82 (0.84) for TaylorT2 (TaylorT4) and the median fitting factor
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Figure 30: Average fitting factor between a set of generic, precessing, NSBH signals
and a template bank of aligned-spin waveforms as a function of the component

masses (top left) and as a function of the mass ratio and the black hole
dimensionless spin magnitude (top right). Also plotted is the minimum fitting factor

(bottom left) and the signal recovery fraction (bottom right) as a function of the
mass ratio and the black hole dimensionless spin magnitude. Both signals and

template waveforms are modeled using the TaylorT4 approximant. The distribution
that the NSBH signals are drawn from is described in Sec. 6.2. The template bank

construction is described in Sec. 6.5. Results obtained using the zero-detuned,
high-power advanced LIGO sensitivity curve with a 15Hz lower frequency cut off.
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Figure 31: The distribution of precessing NSBH signals that are recovered with
fitting factors < 0.7 when searching with an aligned-spin template bank. We use Ĵ
to denote the initial total angular momentum of the system, n̂ denotes the line of
sight towards the observer and L̂ denotes the orbital angular momentum when the

gravitational wave frequency is 60 Hz (at which point approximately half of the
signal power has accumulated). Both signals and template waveforms are modelled
using the TaylorT4 approximant. The distribution that the NSBH signals are drawn

from is described in Sec. 6.2. The template bank construction is described in
Sec. 6.5. Results obtained using the zero-detuned, high-power advanced LIGO

sensitivity curve with a 15Hz lower frequency cut off.
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Figure 32: Average fitting factor between a set of generic, precessing, NSBH signals
and a template bank of aligned-spin waveforms as a function of the mass ratio and

the neutron star dimensionless spin magnitude (top right). Both signals and
template waveforms are modeled using the TaylorT4 approximant. The distribution
that the NSBH signals are drawn from is described in Sec. 6.2. The template bank

construction is described in Sec. 6.5. Results obtained using the zero-detuned,
high-power advanced LIGO sensitivity curve with a 15Hz lower frequency cut off.
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Figure 33: Average fitting factor between a set of generic, precessing, NSBH signals
and a template bank of aligned-spin waveforms as a function of the mass ratio and

the black hole dimensionless spin magnitude. Shown when both the template
waveforms and signals are modeled with TaylorT2 (left) and when the template

waveforms are modelled with TaylorT2 and the signals are modeled with TaylorT4
(right). The results in these plots are almost identical to each other and to the top
right panel of Fig. 30. The distribution that the NSBH signals are drawn from is

described in Sec. 6.2. The template bank construction is described in Sec. 6.5.
Results obtained using the zero-detuned, high-power advanced LIGO sensitivity

curve with a 15Hz lower frequency cut off.
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Figure 34: The fractional increase in the number of recovered signals when

searching for generic, precessing, NSBH signals using a template bank of
aligned-spin waveforms and a template bank of non-spinning waveforms. Both

signals and template waveforms are modeled using the TaylorT4 approximant. The
distribution that the NSBH signals are drawn from is described in Sec. 6.2. The
template bank construction is described in Sec. 6.5. Results obtained using the
zero-detuned, high-power advanced LIGO sensitivity curve with a 15Hz lower

frequency cut off.
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was 0.86 (0.88).

In Fig. 26 we also show results where the template waveforms are modeled with

TaylorT2 and the signals are modeled with TaylorT4. In this case the performance

is worse, with a median fitting factor of ∼ 0.92 and a mean fitting factor of ∼ 0.88.

In Fig. 30 we show the mean fitting factor as a function of the intrinsic parameters

for our results with the TaylorT4 waveform. We also show the minimum fitting factor

and the signal recovery fraction as a function of the BH spin magnitude and mass ratio

for the same results. The Figure serves to highlight that there are certain systems

in certain regions of the parameter space where precessional effects cause the NSBH

signals to have large mismatches with a bank of aligned-spin templates. This is most

prominent when mBH/mNS and the BH spin magnitude are both large, ie. where the

black hole’s angular momentum is particularly large relative to the orbital angular

momentum. We explore this further in Fig. 31 where, following the work of [114], we

show the distribution of precessing systems recovered with fitting-factors smaller than

0.7. This is plotted as a function of the angles between the total angular momentum,

the orbital angular momentum and the line of sight to an observer. As predicted in

[114], there is clearly a correlation between these angles and the systems recovered

with the lowest fitting factors. To demonstrate that these results are not specific to

the TaylorT4 waveform, in Fig. 33 we show the mean fitting factor as a function of

the BH spin magnitude and mass ratio for our TaylorT2 vs TaylorT2 and TaylorT2

vs TaylorT4 results. The TaylorT2 results are very similar to the TaylorT4 results

in Fig. 30. This again demonstrates that the choice of waveform is not affecting our

statements regarding the effect precession will have on searches for NSBH signals using

aligned-spin template banks. When searching for TaylorT4 signals with TaylorT2

templates we see lower fitting factors. The disagreement between these two waveform

models is a significant factor that will affect searches for NSBH systems with second

generation observatories. Computing higher order terms in the Post-Newtonian (PN)

expansion of the center-of-mass energy and gravitational wave flux will help to reduce

this disagreement and produce waveforms that better match real gravitational-wave

signals. In Fig. 32 we plot the average fitting factor as a function of the mass ratio and

the neutron star dimensionless spin. There is not any noticeable correlation between

the average fitting factor and the neutron star’s spin.

We can also compare these results to the results we obtained using a non-spinning
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Template Signal

Signal recovery
fraction for non-
spinning bank

Signal recovery frac-
tion for aligned-spin
bank

Fractional improve-
ment in signal recov-
ery

Average (10, 1.4)M� Average (10, 1.4)M� Average (10, 1.4)M�
TaylorT2 TaylorT2 64% 63% 83% 74% 30% 17%
TaylorT4 TaylorT4 69% 67% 82% 73% 19% 9%
TaylorT2 TaylorT4 67% 64% 77% 67% 16% 5%

Table 2: The performance of our aligned-spin template banks when used to search
for a set of generic, precessing, NSBH signals using varying approximants for the
template and signal waveforms. We show both the mean signal recovery fraction
over the full NSBH signal population we consider and the signal recovery fraction

for a NSBH system with masses (10± 0.5, 1.4± 0.05)M�. The distribution that the
NSBH signals are drawn from is described in Sec. 6.2. The template bank

construction is described in Sec. 6.5. Results obtained using the zero-detuned,
high-power advanced LIGO sensitivity curve with a 15Hz lower frequency cut off

and a 1000Hz upper frequency cut off.

template bank in Sec. 6.7.1. In Fig. 34 we show the fractional increase in the number of

recovered signals between using non-spinning and aligned-spin template banks for the

TaylorT4 approximant. The fractional increase in the number of recovered signals is

calculated by taking the ratio of the signal recovery fraction when using a non-spinning

bank and the signal recovery fraction when using an aligned-spin bank. This figure

helps to emphasize that a much greater fraction of systems with large spin would

be recovered when using an aligned-spin template bank. In Table 2 we summarize

the average signal recovery fractions for the aligned-spin banks and compare these

numbers to the results obtained with non-spinning template banks. We remind the

reader that we are comparing signal recovery at a fixed signal-to-noise ratio. Signal

recovery at a fixed false-alarm probability will depend on other factors, including the

size of the parameter space covered by the template bank and the non-Gaussianity

of the data. We discuss this further in the conclusion.

Finally, we compare our results with previous works. In [141] the authors pre-

sented an efficiency study when using a template bank of stochastically generated

aligned-spin signals. We verified that when using the stochastic algorithm we used

in this work, and using the same set of parameters as the study described in [141],

we generated a bank with the same number of templates. We have therefore demon-

strated that our template bank algorithm requires less templates to acheive the same

level of coverage as the algorithm used in [141]. In that work the effective fitting
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factor for a NSBH system with masses given by 10M� , 1.4M� was estimated to be

0.95, which corresponds to a signal recovery fraction of 86%. In contrast, our results

show a lower signal recovery fraction for the same masses of 73− 74% when the same

waveform model is used to model both the template and signal. It isn’t clear why this

discrepancy occurs, however it may be partially explained by the fact that the authors

of [141] used a lower frequency cutoff in their matched-filters of 20Hz, whereas we used

15Hz, which is more appropriate for the predicted aLIGO zero-detuned–high-power

noise curve.

In [114] the authors used a simplified model of precessing systems to predict the

distribution of fitting factors for NSBH systems. These results, shown in Figure

11 of that work, agree qualitatively with the results obtained here. We also obtain

quantitative agreement by comparing our simulations of generic precessing systems

with TaylorT4 as the signal and template model with the values predicted by Eq.

46b of [114]. We find that 90% of the fitting factors are within 0.03 of the predicted

values. They also predicted the distribution of the signals that would be recovered

with the lowest fitting factors as a function of the orientation of the black hole spin

and the orientation of the orbital plane with respect to the line of sight. We produce

a similar distribution in Fig. 31. A further exploration of the agreement of the fitting

factors with this prediction will be carried out in a future work making use of these

simulations.

6.8 Conclusions

In this work we have explored the effect that the angular momentum of the black

hole will have on searches for neutron-star black-hole binaries with aLIGO. The black

hole’s angular momentum will affect the phase evolution of the emitted gravitational-

wave signal, and, if the angular momentum is misaligned with the orbital plane, will

cause the system to precess. We have found that if these effects are neglected in the

filter waveforms used to search for NSBH binaries it will result in a loss in detection

rate of 31−36% when searching for NSBH systems with masses uniformly distributed

in the range (3 − 15, 1 − 3)M�. When restricting the masses to (9.5 − 10.5, 1.35 −
1.45)M� we find that the loss in detection rate is 33 − 37%. The error in these

measurements is due to uncertainty in the PN waveform models used to simulate
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NSBH gravitational-wave signals.

We have shown that an aligned spin template bank offers a 16%− 30% improve-

ment in the detection rate of neutron-star black-hole mergers when compared to a

non-spinning template bank when searching for NSBH systems with masses in the

range (3 − 15, 1 − 3)M�. However, when searching for NSBH systems with masses

restricted to the range (9.5−10.5, 1.35−1.45)M� we find the improvement is reduced

to 5− 17%. Some systems are not recovered well with this new bank of filters. These

systems are ones where the black-hole spin is misaligned with the orbit and the wave-

form is significantly modified due to precession of the orbital plane. This happens

most often when mBH/mNS and the spin magnitude are both large. In [114] the

authors predict where in the parameter space to expect NSBH systems that will not

be recovered well by non-precessing template banks. These predictions were given in

terms of the angles between the orbital plane, the black hole’s angular momentum

and the line-of-sight to an observer. These predictions agree with the results that

we obtain in this work. In [141] the authors claim that an aligned-spin template

bank will be effectual for detecting precessing NSBH systems. In this work, we find

that with an aligned-spin template bank 17 − 23% of NSBH systems will be missed

compared to an ideal search with exactly matching filter waveforms. In reality this

ideal search could never be performed as it would require an infinite number of filter

waveforms. Template banks are usually constructed to allow for no more than a 3%

loss in SNR, therefore we expect to lose up to 10% of systems even if the template

bank fully covers the signal parameter space. We therefore conclude that searches

using precessing waveforms as templates could potentially increase the detection rate

of NSBH signals, but not by more than ∼ 20%. Performing such a search would,

however, remove an observational bias against systems where precessional effects are

most prevalent in the gravitational-wave signal.

These figures are also affected by the parameter distribution chosen for the NSBH

systems. Here we chose a distribution that is uniform in mass, uniform in spin

magnitudes, isotropic in spin orientations and isotropic in orientation parameters

and sky location. We have however, explored how the ability to detect precessig

NSBH signals varies as a function of the masses and spins as seen in Figs. 30 and 31.

When searching for NSBH systems in aLIGO one has to consider the non-Gaussianity

of the background noise, which we have not done in this work. A non-Gaussian noise
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artifact can produce SNRs that are considerably larger than those expected from

Gaussian noise fluctuations. To deal with this, numerous consistency tests are used

in the analyses to separate gravitational wave signals from instrumental noise arti-

facts [59]. It is possible that the detection rate could be further reduced from the

values we quote in this work if some signals fail these consistency tests and are mis-

classified as non-Gaussian noise transients. However, these signal consistency tests

should only act to remove, or reduce the significance of, events that already have low

fitting factors and therefore do not match well with the search templates. Another

important consideration is that of the number of templates used in the bank. To

achieve higher fitting factors will require more template waveforms, covering a larger

signal space, which will allow more freedom in matching the background noise and

will mean that the SNR of the loudest background triggers will increase. Therefore

signals will need slightly higher SNRs to achieve the same false alarm probability.

However, a factor of 10 increase in the number of independent templates will only

increase the expected SNR of the loudest background event by less than 5%, if Gaus-

sian noise is assumed. Therefore, while we are careful to note these considerations,

we do not believe they will have a large impact on the numbers we quote above and

leave a detailed investigation of such effects to future work.

In this work we have restricted ourselves to considering post-Newtonian, inspiral-

only signal waveforms and consider only the case of two point particles. This was

done as there is not currently any widely available waveform model that includes both

the full evolution of a NSBH coalescence and includes precessional effects over the

full parameter space that we consider. When such a model is available it may be that

tidal forces and the merger component of the waveform may affect our conclusions.

We believe that such effects will be limited as the black hole mass is < 15M� in our

simulations, however it would be informative to repeat our simulations when a full

NSBH waveform model is available.
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Chapter 7

Improvements to the CBC Search

Pipeline

7.1 Introduction

In this chapter we focus on the offline search pipeline that will be used to search for

compact binary coalescence signals in aLIGO and AdV. We describe several proposed

modifications to the ihope search pipeline to create a simpler, more sensitive search

pipeline and to reduce the computational cost of the search. These improvements

include: (i) changing the pipeline workflow from the two-stage analysis described in

Ref. [59], where two coincidence tests are applied to reduce the computational cost of

signal-based vetoes, to a single-stage pipeline with one coincidence test; (ii) a more

efficient algorithm for computing the signal-based veto used in previous LIGO-Virgo

searches; (iii) improved methods for using time-shifted detector data to estimate the

significance of candidates; (iv) use of third-and-half order post-Newtonian waveforms

to place the bank of templates used for matched filtering [149]; (v) simplifying tem-

plate placement by using a power spectral density estimate over longer periods of

time, and by using a shared template bank in all detectors [57]; (vi) improvements

to the methods use to determine if candidate events are coincident in the detector

network.

In this analysis, we have configured the pipeline to search for non-spinning com-

pact object binaries with a total mass between 2 and 25 M� using 3.5 post-Newtonian
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order TaylorF2 waveforms in the matched filter. The TaylorF2 waveform is con-

structed using the stationary phase approximation and includes only the inspiral

portion of the waveform [88]. We use data from LIGO’s sixth science run to test the

search pipelines. These data are dominated by seismic noise frequencies below 40 Hz.

We therefore set the starting frequency for these template waveforms at 40 Hz, with

the templates terminating at the frequency of the innermost stable circular orbit for

a test particle in the spacetime (ISCO). These parameters are chosen to be the same

as for the S6/VSR2,3 search described in Ref. [15]. However, since that analysis it

has been shown that searches for signals with total mass above ∼ 12 M� should use

templates that capture the full inspiral-merger-ringdown signal to obtain the maxi-

mum signal-to-noise ratio [30]. Furthermore, since the simulated signals that are used

to test search sensitivity are generated in the time domain, they are generated using

a different post-Newtonian approximant than the frequency-domain filter templates.

The maximal mass of the injected systems is therefore restricted by the uncertainties

of the post-Newtonian waveforms. For total masses below∼ 14 M�, it has been shown

that the discrepancy between post-Newtonian models is negligible [29]. Consequently,

we set the upper limit of the injections to ∼ 14 M�. We discard templates corre-

sponding to chirp masses higher than 6.1 M� in post-processing. This is equivalent to

ignoring the results of the highest mass bin in the S6/VSR2,3 search, allowing us to

make a direct comparison to the S6/VSR2,3 results in a region where post-Newtonian

waveforms are known to be valid for aLIGO and AdV. We determine the effect of the

proposed changes to the search pipeline by comparing the sensitivity of the search

in two weeks of LIGO data from the sixth LIGO science run to its performance on

two weeks of stationary, Gaussian noise. To determine the performance of the search,

simulated signals are added to the detector data and we record the search’s ability

to identify and measure the significance of these simulated gravitational waves and

to measure the sensitivity of the search pipeline as a function of false-alarm rate.

Searches for higher mass systems and searches using template waveforms that in-

corporate spin have been also been performed [11, 150, 151, 152, 153], but they are

outside the scope of this work.

We show that the new pipeline is substantially simpler than that of Ref. [59] and

that it can calculate false-alarm rates to ∼ 1/10, 000 years on one week of LIGO

data. The performance of the search pipeline in LIGO S6 data is very close to that of
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stationary, Gaussian noise. The computational cost of the improved pipeline is also

comparable to the pipeline used in previous science runs. We show that together, our

proposed improvements yield approximately a 10% improvement in search sensitive

volume at a false-alarm rate of 1/1000 years. Given these advantages, we propose that

this pipeline be used as the basis for offline searches for compact binary coalescence

in future LIGO and Virgo observing runs. We note some additional improvements

that can be made to the pipeline before aLIGO and AdV’s first observing runs.

The rest of this chapter is organized as follows: in Sec. 7.2, we describe the methods

used to search for coincident detector searches for compact binary coalescence. In

Sec. 7.3 we review the ihope pipeline used in S6/VSR2,3, describe the improvements

that we propose, and our methods for testing these improvements. For aLIGO and

AdV the pipeline workflow generator, template placement, and filtering engine have

been substantially re-written as part of the PyCBC package [153]. Our changes

beyond the ihope pipeline are implemented in PyCBC for use in upcoming LIGO

and Virgo observing runs. Sec. 7.4 describes how each of our proposed changes affects

the sensitivity of the search pipeline. Finally, Sec. 7.5 shows the overall improvement

from each of these changes and we suggest directions for further possible improvements

to the search pipeline.

7.2 Coincident Matched-Filter Search for Compact Binaries

We start with configuration of the search pipeline used in S6/VSR2,3. While the basic

steps remain the same, different choices can be made to create various configurations

and topologies for the search pipeline. In this chapter, we propose and test several

changes to the search pipeline used in the S6/VSR2,3 search for low-mass compact

binaries. For each proposed improvement, we use the methods described in Sec. 7.3

to assess the impact on the search sensitivity. The results of these tests are presented

in Sec. 7.4. Fig. 35 summarizes these modifications, and contrasts the workflow of

the ihope pipeline used in S6/VSR2,3 with our proposed new pipeline. Each color

in the figure represents a modification to the pipeline, as described below.

We first change the workflow of the pipeline from a two-stage pipeline to a single-

stage pipeline, shown by the yellow section of Fig. 35 and described in Sec. 7.4.1. In

the ihope pipeline, a coincidence stage was applied after computing the matched filter
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Figure 35: These flowcharts describe the topologies for the pipeline used in the S6
search (left) and the final configuration described here (right). Each color represents
a distinct modification made to the pipeline described in the different sections in the
chapter. The yellow is described in Sec. 7.4.1, the blue in Sec. 7.4.3 and the red in

Sec. 7.4.4.
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signal-to-noise ratio, but before computing the χ2 statistic. The two-stage pipeline

was created in order to avoid performing the computationally expensive χ2 test on

gravitational-wave candidates that were caused by noise and would be removed by the

computationally cheaper time coincidence test. However, this lead to difficulty when

estimating the significance of loud gravitational-wave candidates: only candidates

surviving the second round of coincidence testing had the χ2 test performed and

thus the reweighted signal-to-noise ratio detection statistic calculated. The single-

stage pipeline computes χ2 before coincidence, so that the reweighted signal-to-noise

ratio is available for all single-detector triggers, allowing the pipeline to estimate the

false-alarm rate of loud candidates.

We then propose two changes to the placement of the template bank, shown by the

blue section of Fig. 35. We change the bank construction from using a metric accurate

to 1.5 post-Newtonian order [52] and the placement technique of Ref. [53] to using a

metric accurate to 3.5 post-Newtonian order [149] (the same order as the template

waveforms) and the placement methods described in Ref. [55]. We also investigate

several different methods of generating the average power spectral density of the

detectors used to construct the placement metric, including fixing the power spectral

density for bank construction for a week of data, and averaging the noise spectrum

between the two LIGO detectors, so that a shared bank is used in all detectors.

Considering the noise properties of S6 data, we chose the lower-frequency cutoff for

bank generation and filtering to be 40 Hz, and the boundaries of the template bank

are specified by 1M� ≤ m1,m2 and m1 +m2 ≤ 25M�.

It is possible to construct several different types of tests for signal coincidence:

early LIGO analyses used a simple, independent check on the consistency of the time

of arrival and mass. Ref. [154] introduced a new method, applied to later analyses,

including searches using S5, S6, and Virgo data, that uses the template bank metric

to construct an ellipse of a given size around a trigger. Overlap of these ellipses is

then used to determine if triggers are coincident.

Finally, in Sec. 7.4.4, we investigate a new type of coincidence test, shown by the

red boxes in Fig. 35 and compare it to the ellipsoidal coincidence method, as used in

the S6/VSR2,3 search. This test uses the method of Ref. [154] to determine if the

triggers are consistent in time, but requires that the mass parameters of the signal

are exactly the same in the detectors. This test naturally requires using a shared
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template bank between detectors, which we construct using the best proposed power

spectral density averaging method.

We test these improvements using two metrics for the performance of the search

pipeline: (i) the ability of the different search pipelines to detect a distribution of

simulated signals injected into the data, called software injections, and (ii) comparing

the distribution of coincident triggers from real LIGO data to that of Gaussian noise.

The next section describes how these tests are performed.

7.3 Testing Improvements to the Search

To test the proposed pipeline improvements, we use data from the S6 LIGO science

run [15]. Since it is planned that the first aLIGO offline search will analyze one-week

intervals of data, we test the search pipeline on one-week time intervals. To obtain

two representative times, we examined the sensitivity of the detector, as measured by

the detector’s range to a binary neutron star system which would produce a signal-

to-noise ratio of 8 in a single detector. The BNS inspiral horizon distance, shown

in Fig. 36, is calculated from the detector’s power spectral density [15]. Therefore,

a variation in the power spectral density leads to a change in the inspiral horizon

distance. For our analysis, we chose the time interval, July 08 to July 15, 2010 (blue

rectangle in Fig. 36), as a week when the sensitivity of the detectors changed consid-

erably. We also investigate a second time interval of L1 and H1 data, the week from

August 14-21, 2010 (black rectangle in Fig. 36) with a more stable range to verify our

results. We also re-analyzed these two weeks replacing the LIGO data with simulated

stationary Gaussian noise, colored with the design spectrum of the initial LIGO de-

tectors. To compare the performance of the pipeline in real data to its performance

in Gaussian noise, we show histograms of the combined reweighted signal-to-noise

ratio for coincidence background candidates obtained from analyzing Gaussian noise

and from analyzing LIGO data. These histograms allow us to determine the search

pipelines’ ability to eliminate non-Gaussian noise transients in the LIGO data.

As the primary metric of search sensitivity, we measure the sensitivity of a pipeline

by finding the sensitive volume, which is proportional to the number of detections

a pipeline will make per unit time at a given false-alarm rate. We use a simulated

population of signals to assess the sensitive volume. Masses are distributed uniformly



95

Figure 36: Sensitivity of the gravitational-wave detectors for the last part of the
sixth science run for LIGO (S6D) and the third VIRGO science run (VSR3). The

plot shows the volume-weighted average distance at which a 1.4, 1.4 BNS would be
observed with an signal-to-noise ratio of 8 for each detector. The two rectangles

indicate time intervals used for this study.
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in component mass, with the bounds dependent on the type of compact object: m ∈
[1, 3] M� for neutron stars (NS); m ∈ [1, 13] M� for black holes (BH). We also restrict

the total masses of binaries to be ≤ 14 M�. We allow template banks to extend to

a total mass of 25 M�, as shown in Fig. 37. We assume approximately equal rates

of BNS, NSBH, and BBH systems. Injections are generated at 3.5 PN order in the

time domain using the TaylorT4 approximant. We find that rmin = 0.5 Mpc and

rmax = 30 Mpc are reasonable bounds for a binary in which both component masses

are 1.4 M�.

Figure 37: Mass-ranges for software injection, shown in the m1 −m2 mass-plane. As
customary, we restrict to m1 ≥ m2. The template bank used to search for these

injections is indicated by hatched regions and the injection set by the red shaded
region. The black dashed line shows a chirp mass of 3.48 M�, the boundary

between the two mass bins used. Triggers from templates with chirp masses larger
than 6.1 M� are discarded in post-processing.

7.4 Search Sensitive Volume Comparison

We have performed a total of eight different analyses to test our proposed changes.

These are summarized in Table 3. The first analysis used the two-stage ihope search

pipeline in the same configuration originally used in the S6/VSR2,3 search for low-

mass compact binaries. Each successive analysis represents a single modification

from the previous search. Thus, the effect each change has on the search pipeline’s
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sensitivity can be individually noted. For each analysis, we compute the sensitive

volume as a function of false-alarm rate, and for analyses 1, 2, and 7 we also compare

the distribution of background triggers in LIGO data to that of Gaussian noise.

Analysis Pipeline Bank Bank PSD Detector Bank PSD Coincidence
Metric estimation banks Averaging

1
Two-stage
ihope

1.5 pN Regenerated
every
2048 s

Separate
N/A

Ellipsoid
2

Single-stage
ihope

3

Single-stage
PyCBC

4

3.5 pN
5

Harmonic
6 Fixed

for
week

Shared7 Smallest-Value
8 Harmonic Exact-match

Table 3: Overview of the eight different analysis performed to test improvements to
the search pipeline in this chapter. Each successive analysis incorporates a change

from the previous search pipeline. The pipeline column indicates the pipeline
workflow and the software used to run the search. The bank metric column

indicates whether templates are placed using a metric accurate to 1.5 pN or 3.5 pN
order. The bank power spectral density (PSD) estimation column indicates whether

the template bank was placed using a power spectral density re-computed every
2048 seconds, or if the search used one fixed template bank for the entire week. The
detector banks column indicates whether a separate template bank was generated
for each detector, or if the template bank was shared by both detectors. For fixed

template banks, the bank power spectral density averaging column gives the type of
power spectral density averaging used over the week to generate place the bank.

The coincidence column indicates whether the analysis used the ellipsoidal
coincidence method or the exact-match coincidence method.

7.4.1 Single-Stage Pipeline Workflow

Our analysis begins with pipeline used in LIGO’s sixth science run. This pipeline,

shown on the left in Fig. 35, was a two-stage pipeline, so called because there are

two times that the coincidence test is applied. The two-stage process was created in

order to avoid performing the computationally expensive χ2 test on gravitational wave

candidates that were caused by noise and would be removed by the computationally
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cheaper time coincidence test. For this reason, the coincidence test was performed

before the χ2 test.

The two-stage ihope pipeline was very effective at downweighting the significance

of triggers due to noise. Fig. 38 shows two histograms of gravitational-wave candidates

as a function of reweighted signal-to-noise ratio that survived time-lagged coincidence

tests. The red lines in the figure are from an analysis of Gaussian noise, while the

black lines denote an analysis of real LIGO data. The plots demonstrate that the

two-stage pipeline downweights significant noise-generated triggers to the point that

the LIGO data is very close to the analysis of Gaussian noise.

However, the two-stage workflow led to difficulty when estimating the signifi-

cance of surviving gravitational-wave candidates: only candidates surviving the sec-

ond round of coincidence testing had the χ2 test performed and thus the new detection

statistic calculated. In the S6/VSR2,3 search the pipeline used 100 time shifts, each

with a 5 second offset, limiting the significance that can be measured. For loud

gravitational-wave candidates, further background estimation must be performed to

calculate false-alarm rates at less than one in a thousand years. To calculate this

extended background, the data is offset by multiples of 0.2 seconds to perform a co-

incidence test. This is done as many times as possible, and the resulting coincident

triggers are used to estimate a false-alarm rate. computing as many time shifts as

possible, while coincident data remains.

In the S6/VSR2,3 analysis, applying this extended background estimation required

re-analysis of the data with the χ2 test turned on at the first stage, eliminating any

computational savings of the two-stage pipeline. Furthermore, although the output

of the two-stage pipeline should be identical to a single-stage pipeline, in practice

the two-stage pipeline does not produce the same triggers. This is primarily due to

the fact that the single-detector triggers are clustered in a 30 ms window over the

template bank after the first matched-filtering jobs, and then fed back into the search

as a new bank after coincidence [59]. This non-linearity adds additional complication

when testing and tuning the pipeline.

For both of these reasons, although primarily for the false alarm-rate considera-

tions, it is desirable to abandon the two-stage pipeline and switch to a simpler single-

stage workflow, as shown on the right in Fig. 35. The single-stage pipeline essentially

rearranges the previous pipeline computing the χ2 test before the coincidence test and
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Figure 38: This histogram shows the number of background triggers that survived
coincidence testing from the two-stage analyses. They are categorized in bins of

combined reweighted signal-to-noise ratio. The left plot represents an analysis of a
week of data from July 2010 while the right plot represents an analysis of a week of

data from August 2010. The red line denotes the background triggers from the
Gaussian analysis. The black line denotes the background triggers from the first S6

data analysis.

removing the triggered template bank generation and the second match-filter process.

Fig. 39 shows the background triggers as a function of reweighted signal-to-noise ratio

of the single-stage analysis of S6 data compared to a those of a single-stage analysis of

Gaussian data. Like the two-stage pipeline’s performance shown in Fig. 38, we see the

single-stage pipeline is also successful in removing candidates with high significance.

The single-stage pipeline is expected to perform identically to the two-stage pipeline.

Fig. 40 compares the sensitive volumes of these search pipelines. The sensitive vol-

ume measurement for the two-stage pipeline terminates at a false-alarm rate of order

one per year, limited by the 100 time-slides performed by the two-stage pipeline.

However, with the single-stage pipeline, many more time-slides can be performed and

the false-alarm rate of injections can be computed down to of order 1/10, 000 years

using one week of data. We can see that in the region where both can compute the

false-alarm rate of triggers, the sensitivities of the two pipelines agree as expected.

As described above, the primary motivation for the two-stage pipeline was to

mitigate the computational cost of the signal-based vetoes. If triggers are found

above threshold, the χ2 time-frequency signal consistency test is applied. The test

consists of breaking the waveform into p frequency bins of equal power. Each bin

is filtered against the data to obtain the partial signal-to-noise ratio contribution ρl
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Figure 39: This histogram shows the number of background triggers that survived
coincidence testing from the single stage analyses in different bins of combined

reweighted signal-to-noise ratio. The left plot represents a week analysis of data
from July 2010 while the right plot represents an analysis of a week of data from

August 2010. The red line denotes the background triggers from the Gaussian
analysis. The black line denotes the background triggers from the first S6 data

analysis.

and then compared to the expected signal-to-noise ratio contribution ρ/p. In the

ihope pipeline, the value of the χ2 statistic was computed as a function of time for

a template if there were any signal-to-noise threshold crossings in the 2048 second

block of analysis time. The calculation of the p filters for each bin requires a single

inverse complex Fast Fourier Transform, and neglecting lower-order terms, we find a

cost of pN log(N). However, as we know the location of peaks, we can also directly

calculate this test only for those points. We illustrate the method by considering a

single-phase of the signal-based veto given in Eq. (2.8). We can express the quantity

that needs to calculated in terms of existing information as

χ2 + ρ2

p
[j] =

p∑
l=1

ρ2
l , (7.1)

which can be written as

χ2 + ρ2

p
[j] =

p∑
l=1

 kmax
l∑

k=kmin
l

q̃ke
−2πijk/N

2

, (7.2)

where [j] is the set of indices of the Np peak values, and q̃k = h̃∗ks̃k. Naively, this
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Figure 40: This plot gives the relative sensitive volume of the two-stage analysis to
the single-stage analysis as a function of the false-alarm rate In the region above a
false-alarm rate of ∼ 2 per year, where both pipelines can measure the false-alarm
rate of candidates, the sensitivity of the two pipelines is the same. By performing
many more time shifts to estimate the background, the single-stage pipeline can

estimate the significance of triggers to a false-alarm rate of ∼ 10−4 per year using
one week of data. We also include an analysis with the same pipeline workflow as
the single-stage pipeline, but that uses the new PyCBC search code, instead of the

previously-used ihope code. The error bars on the PyCBC search are smaller, as the
increased computational efficiency of this pipeline allows us to perform an order of

magnitude more injections. However, the results otherwise agree. The left plot
represents an analysis of a week of data from July 2010 while the right plot

represents a week analysis of data from August 2010.
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expression involves the explicit calculation of kmax root-of-unity complex multiplica-

tive constants. However, the computational cost can be reduced to a single complex

multiply by pre-calculating a single root-of-unity complex multiplicative constant and

iteratively finding the next. To do this, we write the expression in the following form:

χ2 + ρ2

p
[j] =

p∑
l=1

 kmax
l∑

k=kmin
l

q̃k(e
−2πij/N)(e−2πijk/N)k−1

2

. (7.3)

This reduces the computational cost to two complex multiplies, one for the root-

of-unity complex multiplicative constant and one for the multiplication by q̃; which

combined with the summing of two complex numbers gives a total cost of 14kmax∗Np.

For small values of Np we note that this can be vastly more efficient than the full

FFT based calculation of the veto. The crossover point can be estimated as

Np =
p ∗ 5N log(N)

14kmax

. (7.4)

This equation is only a rough guide because the computational cost of an FFT is

highly influenced by its memory access pattern, but for our typical configuration where

N = 220, it would predict the new algorithm to be more efficient whenever the number

of points at which the χ2 statistic must be evaluated is less than approximately 100.

The cost savings can therefore be quite large for data stretches that are clean enough

that the number of candidate triggers is much less than this crossover. This method

has been implemented in the new PyCBC search pipeline and is used in the second

single-stage analysis presented here. We have configured PyCBC to produce a search

pipeline that is identical to the single-stage ihope pipeline, with the exception of

adding the more computationally efficient implementation of the χ2 test described

above. The performance of this search is shown as the third curve in the sensitive

volume plot in Fig. 40. As expected, the performance of this search is essentially

identical to the single-stage ihope pipeline. Table 4 compares the computational cost

of the two-stage ihope pipeline to the single-stage PyCBC pipeline. We see that the

reduction in cost of the χ2 veto results in a pipeline that can compute the reweighted

signal-to-noise ratio for all single detector triggers, at the same computational cost of

the two-stage pipeline.
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Job Type Two-Stage ihope Single-Stage PyCBC

Computing Injection Parameters 0.0 0.0
Template Bank Generation 13.3 4.7

Match-filtering and χ2 515.4 515.5
Second Template Bank 0.1 -

Coincidence Test 0.3 9.9
Total 529.1 530.0

Table 4: This table details the computational costs of different parts of the listed
search pipelines. The costs are given in CPU days.

Finally, Fig. 39 shows the background triggers as a function of reweighted signal-

to-noise ratio for the single-stage PyCBC analysis of S6 data compared to analysis of

Gaussian data. Like the two-stage pipeline’s performance shown in Fig. 38, we see the

single-stage pipeline is also successful in removing candidates with high significance

and results in a trigger distribution that is close to Gaussian. Given the success of

this analysis, all subsequent analyses here use the single-stage PyCBC pipeline.

7.4.2 Post-Newtonian Order of the Bank Metric

The next analysis used a bank of waveforms placed at 3.5 PN order, while the previ-

ous analysis placed templates at 1.5 PN order. While a new placement algorithm was

used, the same minimum match between template waveforms was required. As with

the single-stage and two-stage volume plot, the higher line indicates a larger sensi-

tive volume and a more efficient pipeline. The 1.5 and 3.5 PN template placement

produces similar sensitivities for signals at low false-alarm rate, while the 3.5 PN

placement is slightly better for signals at high false-alarm rate. We can see this from

the volume plot in Fig. 41 This suggests that the PN order of template placement

does not have a significant effect on the sensitivity of the pipeline. For symmetry

with the templates used (which are 3.5 PN order), we configure the pipeline to use

3.5 PN template placement in our subsequent analyses.

7.4.3 Power Spectra Used for Bank Placement

Since the shape of the detector’s power spectral density changes over time, the

S6/VSR2,3 analysis recomputed the noise power spectral density used in the matched
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Figure 41: This volume plot compares the analysis with a 3.5 PN bank to our
previous analyses with a 1.5 PN bank week of S6 data. The red line shows that of

the single-stage analysis with a 1.5 PN bank and the blue line shows the single-stage
analysis with a 3.5 PN bank. The left plot represents a week analysis of data from
July 2010 while the right plot represents an analysis of a week of data from August

2010.

filter every 2048 seconds. Furthermore, the template banks used in the search were

also regenerated on the same cadence. Since the power spectral densities of the detec-

tors in the network are not the same, the template bank was computed independently

for both detectors. Since the placement of templates is not identical between detec-

tors, the pipeline must use a coincidence test that allows for mismatch between the

mass parameters of a signal. We investigate an alternative method for generating and

placing the template bank. Rather than re-generating the bank every 2048 seconds,

we explore the creation of a single, fixed bank for the entire duration of the (one

week) analysis by averaging the detector’s noise power spectral density over the full

analysis time and using this globally averaged power spectral density to place the

template bank.

We initially try independently averaging the power spectral density from each

detector, creating separate banks for each detector. We then test the use of a single,

fixed bank for both detectors by further averaging the power spectral density between

the two detectors. Using a bank shared between detectors allows us to use a new

coincidence testing code, described in Sec. 7.4.4 which requires the mass parameters

to be identical in a coincident trigger. To compare the different power spectral density

estimations, we tested several different averaging methods and compared their relative
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sensitive volumes. We begin by considering several methods to average the power

spectral density over a week of gravitational-wave data. The methods used are:

1. Separate Harmonic Mean. We first create a single bank for each detector for

the duration of the search. We measure the power spectral density of the noise

every 2048 seconds to construct N power spectra Sn, as in the existing tem-

plate placement. We then construct the harmonic mean power spectral density

defined by averaging each of the separate fk frequency bins according to

Sharmonic
n (fk) = N

/
N∑
i=1

1

Sin(fk)
. (7.5)

The use of the harmonic mean was motivated by Ref. [57] which shows that the

harmonic sum of the individual detector power spectral densities in a network

yields the same combined signal-to-noise ratio as a coherent analysis of the de-

tector data. The harmonic mean Sharmonic
n (fk) is then used to place a single

template bank that is used for the entire search using one week of data. Our

first test generated an independent harmonic mean power spectral density for

each detector, and so separate template banks were generated for each detec-

tors. These banks are used for match-filtering in their respective detectors and

the resulting gravitational-wave candidates undergo a coincidence test between

detectors using the ellipsoidal coincidence test.

2. Shared Harmonic Mean. We next average the power spectral density between

the two detectors to create a single template bank that is shared by both de-

tectors (i.e. each detector shares exactly the same templates from a single

bank). This fixed bank was averaged over the week-long data set and was

used for the entire analysis. After being match-filtered against the data and

the gravitational-wave candidates identified, the ellipsoidal coincidence test is

applied.

3. Shared Smallest-value Estimation. Our last configuration created a single bank

between the two detectors while choosing the smallest value for the power spec-

tral density. The smallest value in each frequency bin represents the best per-

formance of the detector. The template banks generated by the smallest value
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power spectral density give typically a higher number of templates than the

other averaging methods. Thus by using the smallest value for each bin of the

power spectral density, we can create the most densely packed bank of templates

possible.

Fig. 42 shows the power spectral density computed for a week of data using these

different averaging methods and the difference of these methods to the arithmetic

mean of the power spectral density.

To test how each of these banks affect the search sensitivity, we performed several

analyses with these different averaging methods. The results of these investigations

are shown in Fig. 43 which compares the sensitive volume as a function of false-

alarm rate. For the first week of data from July 2010, which has large fluctuations in

the inspiral range, the fixed template banks have approximately the same sensitivity

as the regenerated template banks for high estimated false alarms rates. For false-

alarm rates of ∼ 10−3 per year, the bank generated using the fixed harmonic-mean

power spectral density gives the best sensitive volume. For the second week of data

from August 2010, which has a more stable inspiral range, all of the bank placement

methods have the same sensitivity, within measurement error. In the case when fixed

banks provide increased sensitivity, the harmonic mean gives the best sensitivity, so

we recommend this averaging method for the search.

We also note that using a fixed template bank reduces the overall computational

cost of the search. Table 4 shows that the cost of generating the template banks used

here is a small fraction of the overall run time of the search. Fixing the template bank

essentially eliminates this cost, but since the cost of the bank generation is less than

1% of the overall computational cost, this is not a significant saving. However, for

searches that incorporate compact-object spin in the waveform templates, template

bank generation can be significantly more expensive [100, 55, 153]. For example,

for searches for binary neutron stars between 1–3 M� and dimensionless spins up

to χ ≤ 0.4, or for neutron star–black hole binaries with black holes masses between

3 and 15 M� and spins up to χ = 1, the cost of generating the template bank is

three to four orders of magnitude more expensive than the cost of the bank used here

(depending on the low-frequency sensitivity of the detector). However, the number

of templates in the bank, and hence the cost of matched filtering, only increases by

a factor of 2–5. If the template bank is re-generated every 2048 seconds for searches
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Figure 42: The top panel shows the power spectral densities for different averaging
methods of the measured power spectral densities for the one-week time interval

July 08-15, 2010 for the LIGO Livingston (L1) and LIGO Hanford (H1) detectors.
The lower panel demonstrates the ratio of the different power spectral densities to

the arithmetic mean power spectral density of the LIGO Hanford Detector.

for binaries with spin, bank placement can become a significant fraction of the overall

search cost. The power spectral density averaging methods proposed here to generate

a fixed template bank can be applied to those searches, significantly reducing the

computational cost [153].

7.4.4 Trigger Coincidence Test

Since the S6/VSR2,3 search used separate regenerated template banks for each detec-

tor, a coincidence test that allows triggers to have slightly different mass parameters

must be used in the search. The template placement metric was used to construct the

ellipsoidal coincidence test which determines if two waveforms are coincident in time

and mass between detectors [154]. Tuning the size of the ellipsoidal coincidence test

is performed empirically by calculating the distribution of the ellipsoidal coincidence

window for simulated signals and for noise events from the background time shifts,

and choosing a value of the parameter controlling the size of the ellipse that provides

the best separation of signals and background.
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Figure 43: This volume plot describes the sensitive volumes of the searches in
different configurations. The red line is an analysis using template banks

regenerated every 2048 s. The blue, yellow and cyan lines show different analyses
with fixed banks. The blue and yellow used a harmonic mean to estimate the power

spectral density, while the cyan simply chose the lowest power spectral density
measured at each frequency. The regenerated-bank and the independent-harmonic
analyses used separate banks for the different detectors, while the smallest-value

and harmonic analyses used a common bank for both detectors. The left plot
represents an analysis of a week of data from July 2010 while the right plot

represents a week analysis of data from August 2010.
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Using a shared, fixed bank for both detectors allows us to investigate a new,

simpler type of coincidence test. In this exact-match coincidence test, we use the

ellipsoidal window to determine if triggers are coincident in time, since there is still a

time-of-flight difference between triggers in the detectors, however we require that the

mass parameters m1 and m2 of the template are exactly the same in both detectors.

This requirement decreases the chance that triggers generated by noise transients will

be found in coincidence between detectors, as it is a stricter test than the ellipsoidal

test. The exact-match method of testing for coincidence is useful in situations where

there is no simple metric to compare gravitational waveforms, as is the case with

template waveforms for binaries with spinning neutron stars or black holes [153].

In Fig. 44, we compare the performance of the search on two weeks of S6 data

using the same, fixed harmonic bank in both detectors, but using either the ellipsoidal

coincidence test or the exact-match coincidence test. The ellipsoidal coincidence test

tends to recover injections with higher combined reweighted signal-to-noise ratio than

exact-match test: the less stringent ellipsoidal coincidence test allows more templates

in each detector to contribute to coincidence, thus there is more chance of an upwards

fluctuation in the detection statistic. The gain in sensitivity from the exact-match

test is a tradeoff between the (on average) smaller signal-to-noise ratio of signals and

the lower background level, giving an increase in detection significance at a given

signal-to-noise ratio. For the week from July 2010, the performance of the exact-

match coincidence test is slightly better than that of the ellipsoidal test, although the

difference is within the error bars at a false-alarm rate of 10−3 per year. However, for

the week from August 2010, the sensitivity of the search using the exact-match test

is clearly higher at a false-alarm rate of 10−3 per year.

We can understand this increase using Figs. 45 and 46, which compare histograms

of the combined reweighted signal-to-noise ratio of background triggers obtained in

S6 data to Gaussian noise. For the first week of data, the distribution of background

triggers using the ellipsoidal coincidence test, shown in Fig. 45, is very close to that

of Gaussian noise. However, for the second week, the S6 data contain more triggers

at higher combined reweighted signal-to-noise ratio. This difference can still be seen

in Fig. 46, which shows the distribution of background triggers from the exact-match

coincidence test. Note, also, that in the exact-match analysis, the overall rate of

triggers is significantly lower for both weeks, resulting in lower false-alarm rate at a
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Figure 44: This volume plot describes the relative sensitive volumes of the different
search pipelines as a function of false-alarm rate. The red curve describes the

sensitivity of a search pipeline using the ellipsoidal coincidence test. The blue curve
demonstrates the sensitivity of the search pipeline using a fixed bank and the new
exact-match coincidence test. The left plot represents a week analysis of data from
July 2010 while the right plot represents an analysis of a week of data from August

2010.

given value of combined reweighted signal-to-noise ratio. Our results show that the

lowering of the noise background with exact-match coincidence is the dominant effect:

signals are recovered with greater significance, raising the search sensitivity.

7.5 Conclusions

We have demonstrated the use of a new pipeline to search for gravitational waves from

compact object binaries in LIGO data. The results of our study are summarized in

Fig. 47 which compares the sensitivity of the search pipeline used in S6/VSR2,3

(analysis 1 of Table 3) with the most sensitive pipeline proposed here (analysis 8 of

Table 3) which uses a shared fixed 3.5pN template bank in both detectors generated

using a harmonic mean power spectral density, and the exact-match coincidence test.

We see that these improvements result in a gain of ∼ 10% in the sensitive volume of

the search at a false-alarm rate of 10−3 per year. The new pipeline uses a simpler,

single-stage workflow that allows us to estimate false-alarm rates to ∼ 10−4 per year

using one week of data. With our improved implementation of the χ2 signal-based

veto, we demonstrate that the new pipeline has the same computational cost as the

two-stage workflow used in the S6/VSR2,3 analysis. We propose that this workflow
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Figure 45: This histogram shows the number of background triggers that survived
coincidence testing from the analysis using a shared, fixed harmonic bank using

ellipsoidal coincidence testing in different bins of combined reweighted
signal-to-noise ratio. The red line denotes the background triggers from the

Gaussian analysis. The black line denotes the background triggers from the S6 data
analysis. The left plot represents an analysis of a week of data from July 2010 while

the right plot represents a week analysis of data from August 2010.
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Figure 46: This histogram shows the number of background triggers that survived
coincidence testing from the analysis using a shared, fixed harmonic bank using

exact-match coincidence testing in different bins of combined reweighted
signal-to-noise ratio. The red line denotes the background triggers from the

Gaussian analysis. The black line denotes the background triggers from the S6 data
analysis. The left plot represents an analysis of a week of data from July 2010 while

the right plot represents an analysis of a week of data from August 2010.
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Figure 47: This volume plot describes the relative sensitive volumes of the different
search pipelines as a function of false-alarm rate. The red curve describes the

sensitivity of the search pipeline used in LIGO’s sixth science run, reformatted to
have a single coincidence test. The blue curve demonstrates the sensitivity of the
search pipeline using a fixed bank and the new exact-match coincidence test. The

left plot represents an analysis of a week of data from July 2010 while the right plot
represents an analysis of a week of data from August 2010.

be used as a basis for offline searches for gravitational waves from compact-object

binary sources in aLIGO and AdV.

We note that a new class of search pipeline was prototyped in S6/VSR2,3 [66] that

produces triggers in low-latency for rapid follow-up by electromagnetic observatories.

These pipelines are under active development for aLIGO and AdV [155, 156]. Low-

latency searches differ from the pipeline presented here as they are constrained to only

use information available in the past and trade computational cost for speed of pro-

ducing detection candidates. However, since they are based on coincident matched fil-

tering, our results can also be used to inform the development of low-latency searches.

For example, we would expect that the harmonic mean (using recent past detector

data) would provide the best power spectral density estimation for the construction

of template banks used in the singular value decomposition proposed in Ref. [156].

Similarly, we expect that exact-match coincidence would provide the best coincidence

method for the low-latency pipelines.

Finally, we note that Figs. 45 and 46 show that, although the distribution of trig-

gers in the S6 search using the ellipsoidal test is very close to that of Gaussian noise

this is not the case for exact-match. This suggests that additional tuning is possible



113

to increase the sensitivity of the search. Investigation of improved tuning could ex-

plore the optimal length of time for a single bank, further tuning of the coincidence

test, improvements to power spectral density estimation used in the matched filter,

improved signal-based vetoes and optimization of the combined detection statistic.

Further tuning beyond what is presented here will be the subject of future studies.



114

Chapter 8

Optimizing the Matched-filtering

Implementation

8.1 Introduction

We consider the compuatational optimizations that we have made to the imple-

mentation of matched-filtering used in searches for compact binary coalescences.

In S6/VSR2,3 the dominant computational cost of the ihope pipeline was the

lalapps inspiral filtering engine. Over the last two years, the ihope pipeline has

been re-written for Advanced LIGO. The new framework, known as PyCBC is more

modular, flexible, and scalable than the LALApps framework used previously. Py-

CBC has been developed to accommodate longer templates and larger template banks

necessitated by the improved detector noise profile [153].

The PyCBC architecture implements the high-level program control in Python,

however computations are performed using C code compiled just-in-time by the

scipy.weave framework [157]. This ensures that all computationally intensive parts

of the pipeline are executed by low-level, optimized code and not by the Python

interpreter. Furthermore, direct AVX/SSE calls or OpenMP parallelization may be

performed by use of the X86 intrinsic functions in the weave-compiled C-code. The

Python frame work allow us to modularize the low-level kernels at low overhead. It

is therefore straightforward to replace these kernels with code for new compute archi-

tectures including Graphics Processing Units (GPUs) and Intel R© MICs (in addition
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to architecture-specific CPU code) in the same search engine. As a result of this de-

velopment, the the lalapps inspiral filtering engine has been retired and replaced

with the new pycbc inspiral executable [56].

We discuss improved algorithms that implement the selected scientific methods.

We have made performance improvements that can be realized independent of the

architecture used (CPU or GPU). The improved algorithms generate exactly the same

output as used in previous LIGO searches.

8.2 Optimization of thresholding and time clustering

After the matched filter SNR is computed for a given template, the resulting time

series must be searched for points above a runtime-specified threshold to obtain

gravitational-wave candidate triggers. Since both signals and glitches can produce

many nearby SNR samples above threshold (which do not represent independent

triggers), the SNR samples above threshold tend to be clustered in time. This leads

to a high probability that there is a minimum spacing of a user-specified length (the

clustering window) between any two consecutive clustered triggers. This window is

chosen based on the impulse response of the filter and the character of the data, so

that triggers produced come from independent events (noise or signal).

In lalapps inspiral these two steps (thresholding and clustering) were imple-

mented as separate kernels. We optimize this by fusing the two kernels. The primary

motivation for this fusion is the thresholding step. Searching through an array for

points above threshold is trivial to implement in serial, un-vectorized code. Vectoriza-

tion or parallelization of this code must be done with care; the problem is equivalent

to stream compaction, which is difficult to vectorize or parallelize without requiring

at least two passes over the array to be compacted [158]. However, the number of

floating point computations to be performed for each memory operation is very low,

and so this kernel will be bandwidth limited; multiple passes over the array incur

heavy performance penalties. The primary difficulty is that stream compaction takes

its input array and writes out another array consisting of all elements of the input

satisfying some criterion, consecutively. This cannot be vectorized or parallelized

in one step, because the location to which the output should be written potentially

depends on the calculation of all input array elements before any given element.
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Fusing the array compaction and the clustering allows us to bypass this difficulty.

The key idea is to find the maximum of the output over sub-arrays no longer than

the clustering window, and write one output for each such window. We can do this

in a single pass over the data, since the output destination is predetermined. We

then cluster in a followup pass that looks at the maximum for each window. While

that followup pass is not parallelized, in our typical configurations it looks at of

order one hundred array elements, rather than a million, and so has trivial cost in

comparison. This change greatly improves the performance of both CPU and GPU

implementations, and the CPU particularly when multi-threaded FFTs are used to

compute the matched filter.

8.3 CPU implementation and optimization

We now turn to the specific optimizations and implementation choices necessary for

CPU architectures. For concreteness, we focus on the Intel R© E5-2670 (Sandy Bridge)

product.Our reference system has two sockets of eight cores each, running at 2.6 GHz

clock speed. All performance results presented here, whether single or multi-threaded,

were tested with the CPU affinity of the process set to bind it to a number of cores

equal to the number of threads assigned to that process, and resident on the same

CPU socket. CPU throttling and hyper-threading were also disabled for these tests.

Each socket has a unified shared L3 cache of 20 MB, and each core has an L1 data

cache of 32 KB, and an L2 cache of 256 KB. The architecture supports the AVX

(but not AVX2) instruction set, and each core therefore has access to sixteen SIMD

registers that can hold either eight single-precision or four double-precision floating

point numbers. Potentially one add and one multiply instruction can be retired each

clock cycle, so the maximum theoretical peak single precision performance of each

socket is 2.6× 8× 8× 2 = 332.8 GFLOPS.

Standard profiling tools can reveal where pycbc inspiral spends most of its

time, and timing tests can reveal whether we are in fact able to utilize the most

efficient, multi-threaded FFT. Initially, that configuration did not give us the highest

throughput per socket: the other kernels in the core matched filter were not well

parallelized or vectorized and though their cost was small when the program was run

in a single-threaded configuration, they became unacceptably slow when the FFT was
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switched to the faster, multi-threaded configuration. Indeed these kernels before and

after the FFT were sufficiently slow in their original implementation that not only did

we not achieve close to the matched filter performance expected based on the FFT

alone, we did not achieve the highest throughput by running in a multi-threaded

configuration. We therefore began our CPU optimization by both vectorizing and

parallelizing these kernels, and in the next sections we report in some detail on those

changes, and the resulting performance improvements.

One expensive kernel remains that has not yet received a thorough optimization

in its CPU implementation: the time-frequency χ2 veto. This kernel is more com-

plex and is also only a significant bottleneck when the data quality is poor enough

that there are many candidate triggers per segment above threshold. Our next op-

timization target is a careful vectorization and parallelization of this algorithm. If

the autocorrelation χ2 veto is also shown to be necessary, we will also implement an

optimized kernel for the algorithm.

8.3.1 Parallelization of expensive kernels

Both the correlation of the frequency-domain data segment with the frequency domain

template (to produce the input to the inverse FFT) and the combined thresholding

and clustering algorithm (described in Sec. 8.2 above, and acting on the output of the

inverse FFT) are implemented in the pipeline as C-code kernels. These are parallelized

with OpenMP and will dynamically adjust to run on all cores made available to the

kernel. The optimal performance was achieved not by a straightforward for loop

parallelization, but rather by parallelizing a loop that called another function to act

on “chunks” of data, where the chunk size is chosen to maximize the amount of data

that can fit in the L2 cache of each core.

The quality of parallelization is relatively easy to quantify: a given kernel is

benchmarked running on a single core with all other cores idle, and that benchmark

compared to the kernel executing on all cores of the socket. Again, we reiterate

that we always set the CPU affinity of a kernel so that the operating system cannot

dynamically migrate it. If the parallelization is optimal, then the ratio of the single-

threaded execution to multi threaded should be the number of cores on the socket,

in our case eight.

For correlation of the first half of two arrays of length 220 with output written
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to a third such array, the parallelized kernel executed on all eight cores in a time

of 87.2µs; the single-threaded kernel in 581µs, for a ratio of 6.7. For the combined

threshold-and-cluster kernel, the eight-threaded kernel executed in 69.3µs, and the

single-threaded in 379µs, for a ratio of 5.5. While these ratios are not quite at 8, as we

would desire, they are still sufficiently close that they do not affect by themselves the

performance of the FFT greatly: he difference between the observed multi-threaded

performance and the theoretical performance that perfect scaling would imply is of

order 35µs combined, or roughly 4% of the execution time of the optimal FFT. As

described below, other cache effects dominate over this, but when this becomes a

bottleneck we will again investigate improving it further.

8.3.2 Vectorization of expensive kernels

The C implementation of the correlation and thresholding has also been vectorized to

support SSE4.1 and AVX. The vectorization is hand-coded using compiler provided

instrinsic functions that map directly onto SIMD instructions, and the loops are

unrolled to permit the vectorized kernel to operate on an entire cache line. Wherever

possible memory loads and stores are performed with the “aligned” memory intrinsics,

and the arrays on which these kernels act are allocated with 32-byte aligned memory,

as they are for the FFT call. Much as for parallelization, for the fused threshold-and-

cluster kernel, an efficient vectorization is only possible because of the algorithmic

change summarized in Sec. 8.2.

As a first estimate of the quality of vectorization, we can benchmark this kernel in

isolation and see how many of their instructions are indeed packed AVX instructions;

for threshold, this was 99.6%, and for correlate, 100%. Thus the compiler is indeed

generating exclusively AVX instructions as we have directed it to via the intrinsic

functions. We can quantify the quality of the vectorization similarly to our quan-

tification of the parallelization: benchmarking the kernel with it on and off. In our

case it is relatively straightforward to disable most of the vectorization; though it

has been hand-coded with vector intrinsics, these are always wrapped in preprocessor

directives to allow a graceful fall-back to straight C-code. Hence the intrinsics can

be commented out and compiler flags given to prevent the compiler from generating
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most such instructions on its own1. This comparison has been made for both the

correlation and thresholding and clustering kernels, where the ratios are 1.83 and

2.34, respectively.

At first sight these ratios appear quite poor, since for the Sandy Bridge AVX

instruction set, the peak theoretical speedup from vectorization is a factor of sixteen

for single precision code. That factor comes from a factor of eight for the SIMD

single-precision vector width and another factor of two because the core can generate

a multiply and an add at each clock cycle. Of course, achieving this peak theoretical

speedup is often difficult in practice: the latencies of the multiply and add instructions

are five and three clock cycles, respectively, and there are only sixteen SIMD registers

that can serve as operands for these instructions. Thus only very specific problems

will have the necessary data independence and structure to allow retiring 16 single-

precision SIMD arithmetic operations per clock cycle.

Our kernels do not have such structure. The correlate kernel is simpler to analyze,

since it is almost identical to element-by-element complex multiplication, for which

AVX optimized code is widely available (including from Intel). The only difference

between our code and these is that we must add a single instruction, to complex

conjugate one of the input vectors. A standard single-precision complex multiplication

requires six floating point operations (four multiplications and two additions); an AVX

register can hold four single precision complex numbers. Thus the relevant speedup

would be how many clock cycles are required to execute the AVX multiplication of the

24 floating point operations equivalent to the multiplication of four complex numbers

simultaneously. Because of the need to conjugate an operand as well as the shuffle

operations inherent to complex multiplication, there are seven instructions needed

for this calculation (there are six in the widely available libraries for AVX complex

multiplication; our modification to calculate the complex conjugate adds only a single

instruction with a latency of one clock cycle), giving a theoretical speedup of a factor

of 2× (24/7) = 6.86, if we were in fact able to retire two AVX instructions per clock

cycle. The analysis of the thresholding and clustering algorithm is similar if more

complex; each execution of the inner loop requires eight AVX instructions to find

1It is not possible to prevent all SIMD instructions; because the operating system is 64-bit, the C-
library is compiled with a minimal set of SSE instructions, so that turning off all SIMD instructions
generates linking errors.
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the location and values of the maximum of four consecutive complex numbers, which

corresponds to 16 scalar floating point operations if we include the comparison. Thus

the maximum speedup is only a factor of four, at most.

The further gap between the theoretical peak speedup of vectorization and our

measurement can be attributed to memory bandwidth. The correlation kernel reads

in two single precision complex numbers—equivalent to four single precision floating

point numbers—and writes out a third; between these memory operations, it performs

six floating point computations (four multiplies and two adds). There is therefore a

one-to-one ratio of memory operations to floating point operations. For the threshold

and cluster kernel, two floats are read, and three floating point operations performed,

for a floating point to memory ratio of 1.5. The low floating point to memory ratios

mean that any kernel implementing them will be memory bandwidth bound.

We can compare the execution times of these kernels to what memory bandwidth-

limited kernels could perform. A correlation for a 220 FFT length must read two

vectors of half that length (because the second half is always zero, as part of the

findchirp algorithm to maximize over unknown inspiral phase) and write out a

third vector of half that length; a total of 12 MB of memory transactions must

occur. If all of that memory lived in the computer’s RAM, then we can measure its

bandwidth using the STREAM benchmark [159]; for a single socket this bandwidth

is approximately2 26 GB/s. For correlation, this would imply an execution time of

460 µs, much higher than what is measured, and 307 µs for thresholding, again much

higher than observed.

That is unsurprising, since we want the data for those calculations to remain in

cache and the benchmark performance numbers for those kernels reflect a repeated

execution from within cache. Our kernels are parallelized with the goal that each

“chunk” remains in L2 cache, which has a published latency of 12 cycles [160]. How-

ever since our memory for each kernel is accessed sequentially we expect that hardware

prefetching ensures that the next data to be read is almost always in the L1D cache,

which has a load latency of typically five cycles, though it can be as high as seven

2It is possible to improve this by roughly a third by forcing the use of streaming stores; however,
while this significantly improves the bandwidth as measured by STREAM, it does so by bypassing
the cache on writes. Since the only kernel with significant writes is correlation, this is not beneficial:
the output of the correlation needs to remain in cache if possible since it will immediately become
the input to the FFT.
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cycles for AVX loads. For an eight-core E5-2670, which can load or store up to 32

bytes per core, these latencies and the 2.6 GHz clock speed imply an effective load

bandwidth of 95 to 133 GB/s. The 87 µs execution of the correlate kernel (which

must move 12 MB of memory) would correspond to a bandwidth of 138 GB/s, and

the 69 µs execution of the threshold and cluster kernel (which reads 8 MB of mem-

ory) would give a bandwidth of 116 GB/s. The correlate kernel slightly outperforms

this because its memory accesses are not purely loads. Thus, we conclude that these

kernels are bandwidth limited, but achieve essentially the peak bandwidth feasible.

For the two kernels that we have vectorized and parallelized, we find that the

parallelization is reasonably good but the performance of vectorization much lower

than one might expect. However, this is directly attributable to bandwidth limitation

of the kernels, which do achieve close to fthe peak bandwidth for the architecture.

8.3.3 Performance relative to theoretical peak

We have designed our overall algorithm to be dominated by the FFT, and the optimal

FFT implementation to be the multi-threaded FFTW library. Our benchmark above

gave approximately 960 µs as the execution time of a 220 single-precision, out-of-place

complex inverse FFT; if we use 5N logN as the number of floating point operations

performed by the FFT, then this corresponds to a performance of 95 GFlops. For

comparison, we also measure the floating point operations using the Linux perf-stat

tool. That measurement indicated first that 99.999% of the instructions retired were

single-precision AVX instructions, so the FFTW library code is extremely well vec-

torized. The corresponding performance was 91 GFlops, or 83% of the 5N logN es-

timate. Since there are FFT algorithms with a floating point count as low 4N logN ,

this is consistent with the library having chosen an FFT algorithm with lower float-

ing point cost. With eight AVX capable cores that can retire as many as two AVX

instructions per clock cycle, the E5-2670 has a peak theoretical floating-point rate of

333 GFlops; we therefore achieve 27% of the peak flop rate. For an algorithm with

the complex memory access pattern of the FFT, this is a not unreasonable perfor-

mance. Regardless, since we expect to be FFT limited we should not expect higher

performance from the pycbc inspiral executable as a whole than this.

The performance of pycbc inspiral depends on the quality of the data. Through-

out our benchmarking studies we have consistently followed three different types of
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data: (i) data which is nearly Gaussian and stationary, representing very good data

quality (Type A); (ii) data containing a single, loud transient glitch (Type B), and (iii)

data which contains elevated levels of non-Gaussian noise at low frequencies (Type

C). The last category is the worst in terms of computational cost, as the χ2 test must

be invoked frequently and the cost is dominated by the computation of that signal-

based veto. In late initial LIGO science runs this level of data quality was extremely

rare, and should the first observing runs of Advanced LIGO behave similarly, it is

not expected to greatly impact the computational cost. The costs we have presented,

however, are conservative, and simply average the throughput of the three categories

of data.

Measurement of the floating point performance of pycbc inspiral showed

31 GFlops for Type C data, 41 GFlops for loud data, and 44 GFlops for Type A

(clean) data. These correspond to fractions of peak theoretical performance of 9.3%,

12.2%, and 13.3%. We therefore still have room for improvement, and discuss in the

next section profiling results and their implications that identify the next priorities

for further optimization.

8.3.4 Comparison of measured numbers with theoretical FFT throughput

Finally we assess the overall performance of pycbc inspiral through profiling.

Continuing with the same three categories of data, we present a profile run of

pycbc inspiral in Table 5 for Type A and Type C data, to illustrate the two ex-

tremes, for each kernel costing more than 1% of the overall runtime. From this table,

the largest difference we observe is that the χ2 veto is only 4.2% of the execution time

in the Type A data, but 44.7% of the time in the Type C data. This is the reason

Type C data is so problematic: in this example χ2 is calculated four times as often

as it was for Type A data. Hence more thorough vectorization and parallelization of

this kernel is our next optimization priority.

Since our goal is for the pycbc inspiral engine to be FFT limited, we also use the

profile information above to measure the average execution time per FFT in situ and

compare that to the benchmarked performance for our optimal FFT configurations.

We present this in Table 6. From these results we see that for the 2048 Hz sample

rate, the effective execution time of 516 µs is 84 µs longer than benchmarked average

FFT time of 432 µs, whereas for the 4096 Hz sample rate the observed FFT time of
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Kernel
Type A Data Type C Data

Absolute time (s) Percentage Absolute time (s) Percentage
FFT 1304 60.4 1159 32.3
correlate 332 13.9 300 8.4
template creation 203 9.4 202 5.6
threshold & cluster 97 4.5 87 2.4
χ2 90 4.2 1601 44.7
data resampling 35 1.6 – <1
recording triggers – <1 49 1.4

Total runtime 2158 100 3583 100

Table 5: Profiling results for clean and poor data at a 4096 Hz sample rate on an
E5-2670.

Sample Rate Type A Data Type B Data Type C data Average
2048 Hz 517 518 512 516
4096 Hz 1520 1530 1350 1470

Table 6: Effective execution time (µs) of FFT within pycbc inspiral on E5-2670
socket (FFTW, eight-threaded).

1470 µs is 370 µs greater than that obtained by benchmarking the FFT in isolation.

We can understand this if we recall that the last-level (level 3) cache of the E5-2670

is 20 MB. While the memory of an out-of-place 220 FFT fits inside this at 16 MB,

the total memory required for our matched-filter inner loop of correlation, FFT, and

threshold and clustering requires a total of 24 MB and does not fit in cache. Because

the different areas of memory comprising this 24 MB are accessed at widely separated

(in time) parts of this loop, hardware prefetching is unlikely to be able to hide much of

this latency. We can validate this explanation by referring to the 2048 Hz sample rate

results, where the total memory required by all of the kernels in the matched filter

is 12 MB which does fit in cache. And indeed we see that the in situ execution time

of that FFT is much closer to the isolated benchmark. As a further check, we have

counted the number of last-level cache misses of each sample rate, when analyzing

the same data with the same bank and number of segments. The 4096 Hz sample

rate analysis incurs between 11 and 15 times (depending on data quality) as many

cache misses as the 2048 Hz analysis, even though both performed exactly the same

number of matched filters.

We are investigating ways to alleviate this penalty, and discuss some of these in
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the next section on future optimizations. Alternatively, it is not yet decided on what

hardware the various PyCBC searches will run, and should they do so on hardware

with sufficiently large cache the issue could be moot.

Future CPU optimizations

We are investigating a number of performance optimizations to more efficiently im-

plement the existing computational methods: vectorization and parallelization of the

template generation and χ2 veto, and bypassing the CPU cache for loads of some

memory, to mitigate the cache eviction causing the degraded in situ performance of

the 220 size FFT. The latter are in principle possible using the streaming load opera-

tions that became available in SSE 4.1, but also require the memory from which they

read to be marked as uncacheable, speculative write-combining (USWC) which is only

possible through a kernel module. Aside from these implementation optimizations,

we are also exploring alternative scientific methods (such as hierarchical searches and

pruned FFTs) that if verified through simulations do not degrade sensitivity can

provide potentially large computational savings.

8.4 PyCBC on Graphics Processing Units

New compute architectures such as GPUs have recently become widely available

and supported for an increasing array of computing tasks. They are specialized

for the high throughput of vector operations, which maps well to the operations

of a matched-filtering algorithm, and offers the possiblity of a dramatic increase in

overall performance for a matched-filtering based gravitational-wave search. Our

goal when implementing the GPU-enabled version of pycbc inspiral is to execute

as much computation on the GPU, with as little data passing over the (slow) PCIe

host interconnect as possible. Simply off-loading the FFT to the GPU does not

significantly speed up the code, due to the rate-limiting step of moving the input

and output vectors over the PCIe bus. Fortunately, the findchirp algorithm lends

itself well to performing all computations on the GPU, as the pre-conditioned input

data segments can be stored in global GPU memory and then processed through

many templates that are generated on the GPU. Our GPU implementation therefore

implements as CUDA-native kernels both the compute-intensive steps of the algorithm
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(correlate, FFT, and time-frequency signal-based veto) and the relatively light-weight

steps (template generation and threshold/cluster), ensuring that only very minimal

PCIe bandwidth is required to initially stage the data to GPU memory and pass

triggers back to host memory.

For large regions of parameter space, template generation can be expressed as an

analytic polynomial, which we have implemented as a straightforward element-wise

GPU kernel. Work is ongoing on extending template generation to other waveform

approximants that are more appropriate for modeling higher mass BBH systems.

As the correlate kernel is a point-wise complex multiply and conjugate, the GPU

implementation is also straightforward. We make use of NVIDIA’s proprietary cuFFT

library to perform inverse FFTs. This library factors the FFT into multiple kernel

calls based on the size of the FFT and the GPU hardware capability. On a Tesla

K10, using CUDA 6.5, FFT sizes between 220 and 223 all factor into three kernels

calls. As the FFT is memory bandwidth bound, it is clear that for these range of

sizes the FFT throughput will scale linearly with vector length. Thresholding and

clustering is divided into two kernels. The first performs both thresholding and local

peak finding on small fixed window sizes. The kernel window sizes are smaller than

the scientifically chosen clustering window. This exposes an additional parallelism. A

second, very short-running kernel that executes a single block, is used to perform final

cleanup and boundary condition checking. Following this kernel, we dump triggers

back to the host, which due to the on-GPU clustering is guaranteed to be O(10−3) the

size of the data vectors in the worst case, and on average much less. Finally, we have

also implemented our time-frequency signal consistency test as a set of GPU kernels

where each is designed to handle a different number of triggers. This is implemented

using a standard parallel reduction sum operation.

8.4.1 Optimization of the GPU Implementation

Similar to the CPU implementation, the 3 kernels that dominate the inner loop of the

matched-filter (correlate, FFT, and thresholding) are all memory bandwidth bound.

Therefore both memory bandwidth and floating point performance are considerations

when selecting the optimal GPU hardware.

While our initial CUDA implementation of the the findchirp algorithm is effi-

cient in the sense that as much computation is performed on the GPU as possible, we
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have identified several areas for future optimization. Several of these optimizations

are in progress, but others require assistance from the NVIDIA CUDA and cuFFT

engineers as they require re-design of the cuFFT API.

Since all of our input data is staged to the GPU, the rate limiting factor for

our current implementation is the memory bandwidth between the GPU’s global

memory and the on-chip Level 2 cache and registers where threads access data for

computation. Our primary goal in optimizing the GPU implementation has been to

reduce the number of memory transfers and maximize the use of the GPU’s floating

point engine. CUDA kernels operate on data in GPU global memory and for each

kernel call, data is transferred across the memory bus3 from GPU global memory to

the registers of the processor cores and back to global memory at the end of the kernel.

A basic performance analysis can be obtained by counting the memory operations

executed by the correlate, FFT, and threshold kernels used in the findchirp loop:

Correlate(2in+1out)+FFT(3in+3out)+threshold(1in) = 10 memory transfers (8.1)

With the release of CUDA 6.5, a new feature was added to the cuFFT library that

allows user defined callback functions for both the load of the initial input vector and

the store of the final output vector of the FFT. This has the potential of allowing

us to fuse computations from the correlate and threshold steps into the FFT kernel,

reducing the number of memory transfers and increasing performance. Our first step

towards optimizing our CUDA implementation has been to investigate the use of

callbacks.

The current implementation of NVIDIA’s cuFFT callback API allows element-

by-element functions to be easily applied, with no guarantee about the relationship

between nearby elements or order of operations within the kernel itself. Because

the callbacks cannot be compiled into the FFT kernels themselves, and can handle

only single elements, there is significant overhead to their use that cannot be easily

predicted without benchmarking. Fig. 48 compares the relative execution time of

the three kernels that make up the inner loop of the matched-filter code under three

cases. The first case (left) uses the initial kernel implementations without making

use of the callback API. The second case (middle) fuses the correlate kernel, without

3Typically DDR3 or GDDR5 depending on the model of GPU card.
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modification, into a load callback. We see that there is a noticeable drop in the total

execution time. The savings comes from the removal of both a full vector length

store and read operation. Note however, that this is significantly less improvement

than would expected from a naive counting of the memory savings. The final case

takes full advantage of the known contiguous regions where the input vectors are

zero, and where the output vector does not produce valid results due to wrap-around

corruption. Callbacks appear to be a very promising avenue of optimization, and

our collaborators on the NVIDIA cuFFT team are interested in our application as a

use-case for developing the API further.

For certain kinds of commonly used waveform templates, in particular the Tay-

lorF2 approximant, the amplitude of the waveform is a simple power series. This

allows it to be precomputed, and instead of including it with the template itself can

be pre-multiplied into the segment of data to analyze. Where this is possible, the

remaining portion of the template can be expressed in the form eiψ(f). It is possible

to trade floating point operations for a savings in global memory reads by storing

only the Fourier phase of the template, ψ(f), and recalculating the full eiψ(f) within

a load callback of the FFT. If the callback API can be extended to allow a vectorized

version of the store callback that operates on contiguous elements, it may be possi-

ble to merge a portion of the peak finding algorithm into the store callback, vastly

decreasing the memory writes at the end of the fused kernel.

More optimal use of the available memory bandwidth can also be achieved by

reducing the amount of data sent over the memory bus. We are investigating the

possibility of storing the output SNR time and input template phase as half-precision

(FP16) numbers to reduce memory bandwidth. We have also discussed with NVIDIA

the possibility of adding callbacks to the intermediate steps of the cuFFT implemen-

tation (since our 220 point FFTs are implemented by three kernel calls in cuFFT)

that would allow us to use FP16 precision between each FFT radix. Performing the

FFT operations in FP32 and storing the intermediate products in FP16 may be pos-

sible. We are beginning a study to determine if this model could meet our accuracy

requirements.

Finally, we are investigating the optimal GPU/CPU ratio for systems and parel-

lization between the host CPU and GPU kernel execution. As GPU kernel launches
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Figure 48: The relative performance of the kernels that make up the critical inner
matched-filtering code. Shorter bars represent better performance. Left: The initial

GPU kernel implementations without the use of cuFFT callbacks. Middle: Naive
fusion of the correlate into a load callback. Right: Fusion of the correlate kernel into
the load callback, where memory reads are avoided where the input is known to be

zeros, and output writes are avoided where it is known to be corrupted by
wrap-around effects. It is not currently possible to fuse the threshold kernel into the
FFT, however we are working with NVIDIA to make the necessary changes to the

cuFFT callback API to further optimize the code.
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are asynchronous compared to host execution, it is possible to hide trivial serial oper-

ations that occur within the host code. The exception is where triggers are offloaded

from the GPU onto the CPU, which is a blocking operation. Host execution does

not proceed until the GPU queue is drained. When the data is synchronized there

is a noticeable delay before new GPU kernels are executing. This can be minimized

by executing multiple host processes that submit work to the same GPU, and by

batching additional work together to amortize the device offload latency. We have

shown that two processes running on the same CPU launching kernels to a single

GPU makes more efficient use of the GPU resources; tests to find the optimal ratio

are ongoing.
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Chapter 9

Focused Search for Binary Neutron

Stars

9.1 Introduction

We present an offline search pipeline tuned for the detection of gravitational-waves

from binary neutron start sources, and show that this targeted search yields significant

improvements in sensitivity to BNS sources. Whereas in prior searches for BNS

systems, such as the last one conducted in S6/VSR2,3, a non-spinning template bank

was constructed that contained masses up to 25M� [15] and was tuned to maximize

the overall sensitivity, in this work we focus solely on BNS systems with a mass

range from 1 − 3M�. We consider two banks of templates, a non-spinning template

bank designed to be sensitive to mergers where the components have neglible intrinsic

angular moment, and an aligned spin template bank which is designed to be sensitive

to BNS mergers where the intrinsic angular momentum of the components can be

as large as χ = 0.4. To approximate the conditions of the first observing run with

Advanced LIGO, we focus on a two-detector network composed of the Hanford (LHO)

and Livingston (LLO) observatories. To assess proposed improvements to the search

pipeline we test the search on three weeks of LIGO data from S6.

This chapter is organized as follows. In Sec. 9.2 we describe the methodology of the

search pipeline, and we present a method for estimating the significance of candidate

events. In Sec. 9.3, starting with the configuration suggested in Ch. 7, which improved

upon the S6/VSR2,3 by requiring exact-match coincidence, we present a procedure for
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further improving the search sensitivity of the pipeline by optimizing key parameters

of the search, namely the configuration of the power spectral estimation, the signal-

consistency tests, the single detector SNR thresholds, and the lower frequency cutoff.

9.2 Significance of Candidate Events

The focused BNS search pipeline implements the single stage analysis pipeline pro-

posed in Ch. 7. A bank of post-Newtonian TaylorF2 3.5 PN order templates, gen-

erated using the metric based placement algorithm proposed in Ch. 4, is created to

span the extended binary neutron star mass range from 1 − 3M�. A template bank

is generated separately for each of the three S6 analysis weeks, using the harmonic

mean of the detector data during that week. Each template is match-filtered against

the data to calculate a signal-to-noise time series. Excursions in the SNR time series

from each detector are recorded if they exceed a fixed SNR threshold, which was 5.5

in S6/VSR2,3, and it is the loudest within one second. To cope with the large number

of transient non-Gaussian events, we apply a signal consistency test, and calculate a

reweighted signal-to-noise ratio, defined in Eq. (2.9).

We additionally require that a candidate is seen by both the Hanford and Liv-

ingston observatories. In keeping with the findings of Ch. 7 we require that the trigger

in each detector be found by the same template, and within the light-travel time be-

tween the detectors. A combination of single detector events that passes this test is

a coincident event, whose combined statistic is given by Eq. (2.10).

In order to claim a candidate signal as the detection of a gravitational-wave, we

need to determine the probability that it could have been attributed to noise. We

estimate the false-alarm rate by forming coincidences between single detector triggers

that are outside of the standard coincident time window. For both computational

efficiency and simplicity, we choose to form background coincidences by applying a

time shift to one detector. The triggers from one detector are offset by all possible

non-zero integer multiples of a fixed interval, Ts, known as the timeslide interval. For

this analysis, we haven chosen Ts to be 0.2 s. From these time slides, we collect a set

of coincident triggers. As this set was formed from all of the original single detector

triggers, we will refer to it as the inclusive background, Binc. Note, that if there is

a loud gravitational-wave signal its component single detector triggers will also form
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coincidences with noise triggers from the other detector, and those will be contained

in this background set. The inclusive set of background triggers can be expanded as

Binc = {NH ⊕NL} ∪ {NH ⊕ SL} ∪ {SH ⊕NL}, (9.1)

where NH/L are single detector noise triggers, SH/L are single detector triggers from

gravitational-wave signals, and {A ⊕ B} represents the set of coincidences between

the single detector triggers A and B. We can define a set of background triggers that

excludes coincidences between signals and noise, Bexc, by excising single detector

time surrounding each of the foreground coincident triggers, with components FH

and FL. We refer to the amount of time ignored around each foreground event as the

blinding window, Tblind, which in this case we have chosen to be 100ms. This value is

chosen as a balance between the amount of triggers removed and the influence that

a gravitational-wave signal may have on the template. This can be expressed as,

Bexc = Binc − {SH ⊕ TL} − {RH ⊕ SL} − {SH ⊕RL}, (9.2)

where RL/H ∈ NL/H , and the time difference between any element in RL/H and any

element of FH/L is greater than the blinding window Tblind.

Both backgrounds are valid for different types of questions. The inclusive back-

ground admits the possibility that all triggers could be noise generated, including

the triggers of a candidate signal. The exclusive background presumes that a given

candidate is a signal while testing it against the remainder of the background. Esti-

mating the significance of a candidate by comparing against the inclusive background

will result in a more conservative value. This was exemplified during a blind in-

jection challenge performed during the S6/VSR2,3 lowmass CBC search, where a

signal was injected into the detectors to test the procedure for validating a candidate

gravitational-wave detection. However, it was found that while the candidate had a

FAR of 1 per 7000 years, the limiting background coincident events were all made

from the signal in one detector and a time-shifted noise trigger in the other. [15].

We use the false-alarm rate as our principle measure of the significance of a can-

didate event. Given an event wih a ρcnew = x, we can express the false-alarm rate
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(FAR), when comparing to both the inclusive and exclusive background sets as

FAR(x) = N(x)/TB, (9.3)

where N(x) is the number of coincident events in the estimated background set with

a ρcnew > x. A separate FAR is calculated using both the inclusive and exclusive

background sets, giving two significance measures, FARinc and FARexc. TB is the

effective background time, which can be accurately estimated from the single-detector

livetimes TH and TL for the Hanford and Livingston detectors, respectively, as

TB = TH × TH/Ts (9.4)

Note, that this is not an exact calculation of the background livetime. The exact time

can be obtained by explicitly calculating the amount of overlapping time between the

Hanford and Livingston gravitational-wave data for each time slide and taking the

sum. The estimate is equivelant to the exact calculation in the case that the start

and end of every chunck of analyzed data lies on a multiple of the timeslide interval.

As such, we can calculate the upper bound on the difference between the true and

estimated value of the background livetime as

|Tb,estimate − Tb,exact| < 2×Nchunks × Ts, (9.5)

where Nchunks is the number of non-contiguous analysis chunks. As our analysis

discards chunks of data that are less than 2048 seconds in length, and Ts = 200 ms,

the relative error is strictly less than .02%, and so can safely be considered negligible.

9.3 Optimizing Search Sensitivity

In this section, we retune several parameters of the CBC search, with the aim of

creating a search optimized for the detection of binary neutron star mergers. The

potential parameter space of tuning choices is quite large, so we have started with

the filtering settings used in the lowmass CBC search performed in S6/VSR23, and

include the proposed changes from Ch. 7.

In the following sections, we test proposed changes to the analysis pipeline using a
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template bank which is designed to have a 97% minimal match with non-spinning BNS

signals with component masses between 1−3M�. We evaluate the search performance

of a particular set of tuning parameters, by using the sensitive volume of the search

integrated over the coincident livetime of each of our three sample weeks of S6 data.

The sensitive volume is estimated by simulating a population of sources, inserting

them into real detector data, and recovering them using the search pipeline. In

this work, we choose the test injection set to consist of non-spinning BNS sources

distributed uniformly between 1− 3M�.

The product of the sensitive volume and the coincident analysis time, V T , can be

expressed as,

V T (F ) =
2∑

w=0

V (w,F )Tcoinc(w) (9.6)

where V(w, F) is the sensitive volume as given by Eq. (2.13) for a given week, w,

of the sample analysis. The total amount of analysis time for a given week is given

by Tcoinc(w). The quanitity VT is directly proportional to the expected number of

detected gravitaional-wave signals from the simulated population.

9.3.1 Power Spectrum Estimation

Because the overall sensitivity of a detector, along with the shape of its power spectral

density (PSD) changes over time, the spectral density used to calculated the matched-

filtering SNR of candidate events is periodically recalculated. The S6/VSR2,3 analysis

recomputed the PSD using every 1920 seconds, an interval known as the analysis

chunk. However, due to the additional padding required for filtering, 2048s of data

was used for each PSD estimate. Every 2048s chunk of data was subdivided into 15

segments, each with 256s duration and overlapped by 50%. The PSD of each analysis

chunk is calculated by first taking the median average of the Fourier transform of

each segment. Finally, we truncate the inverse of the PSD in the time domain to

restrict the filter corruption to a fixed length of time. In addition, this has the effect

of smoothing out lines within the spectrum. An inverse truncation value of 16 seconds

was used throughout S6/VSR2,3.
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We investigate a straightforward improvement to this algorithm. Instead of calcu-

lating the PSD using 256 second segments and applying a 16 second inverse spectrum

truncation, we propose calculating the PSD using 16 second segments directly, inter-

polating for the intended use case, and finally applying the same 16s inverse spectrum

truncation. Increasing the number of samples in the PSD estimate decreases the vari-

ance, and reduces the influence of outlier estimates, such as those caused by the

nearby presence of a glitch. The results of this investigation are shown in figure

Fig. 49, where the sensitive volume-time is compared for the initial reference config-

uration and for the proposed configuration as a function of the inverse false-alarm

rate. The proposed PSD estimation shows clear improvement over the method used

in S6/VSR2,3, resulting in an average ≈ 12% increase in sensitivity between inverse

false-alarm rates of 103 and 104 years.

9.3.2 Signal-to-noise Threshold

For each detector, triggers are recorded when the signal-to-noise ratio exceeds a pre-

determined threshold, ρt. For the S6/VSR2,3 CBC search, only triggers with an SNR

above 5.5 were recorded. Beginning with the PSD tunings proposed in Sec. 9.3.1,

we investigate the effect of lowering the SNR threshold to 5.0. A comparison of the

search sensitivity at ρt = 5.5 and ρt = 5.0 is shown in Fig. 50. We see that lowering

ρt from 5.5 to 5.0 has not resulted in a significant improvement in sensitivity. We

observe that at high inverse false-alarm rate, the inclusive IFAR is identical between

the two thresholds, but that there is a very minor increase in sensitivity when using

the exclusive IFAR.

In Fig. 51 we explore where the differences between the inclusive and exclusive

IFAR estimates are the greatest. At a fixed exclusive IFAR, which monotonically

increases with the combined weighted SNR of an injection trigger, we find that there

is an inverse relation between the inclusive IFAR and the minimum single detector

SNR. This indicates that lowering the SNR threshold below ≈ 5.3 will not yield an

improvement in sensitivity at inclusive false-alarm rate of 1 in 1000 years, for a two-

detector search composed of the Hanford and Livingston LIGO observatories. Note

that this result cannot be generalized to a multi-detector network, where there can

be a non-trivial increase in detection confidence due to the presence of quiet trigger

in the additional detectors. Further work is required to characterize the appropriate
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Figure 49: The combined VT as a function of inverse false-alarm rate, for the
combined three weeks of analysis, and for an injection population that uniformly

covers the parameter space of the non-spinning BNS region, with component masses
between 1− 3M�. Darker colored lines indicate the inclusive IFAR value, while

lighter lines show the exclusive IFAR. The reference (red) PSD estimation uses 15,
256s segments. The proposed (purple) tuning which uses 252, 16s segments. Both

truncate the inverse spectrum in the time domain to 16 seconds. The proposed
configuration improves the search sensitivity by ≈ 12% at a false-alarm rate of 1 per

1000 years.
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SNR thresholds for multi-detector networks.

9.3.3 Signal-consistency Test and Ranking Statistic

As detailed in Ch. 2, the single-detector ranking statistic is the SNR weighted by a

time-frequency signal consistency test. The test breaks a template into p frequency

bins of each power. Although the boundaries of the bins are defined in the frequency

domain, as the TaylorF2 templates we use in the analysis are a monotonic functions

of time and frequency, we can outline the rough time-frequency boundaries of each

bin as demonstrated in Fig. 52. We show the 16 bins used in the S6/VSR2,3 analysis.

Since the response of the time-frequency chisq is dependent on the morphology of the

non-Guassian noise present in the data, we investigate if increasing the number of

time-frequency bins for a BNS focused search, where the average template duration

is significantly longer than for searches that include higher mass templates, has an

effect on the search sensitivity.

Starting with the analysis tunings suggested in Sec. 9.3.2, we compare the search

sensitivity at a fixed exclusive FAR of 1 per 1000 years. The results in Fig. 53, show

that increasing the number of time-frequency bins from 16 to 64-256 results in an

≈ 12% improvement in search sensitivity. From the results of Fig. 54 we see that this

improvement occurs at all values of the FAR. Based on this result, we propose using

a value of 128 bins for a BNS analysis, but would suggest re-examining this choice as

the effective length of a BNS template increases as detectors such as Advanced LIGO

proceed towards design sensitivity.

9.3.4 Lower-frequency cutoff of the matched filter

As we have been using data from the sixth LIGO science run, we expect that seis-

mic noise will dominate at low frequencies, and so have used the same 40Hz lower-

frequency cutoff used in the S6 analysis. We can verify that using a 40Hz lower-

frequency cutoff does not impact search performance by constructing

V (fmin) =

[∫
fmin

h∗(f)h(f)
Sn(f)

df∫
0
h∗(f)h(f)
Sn(f)

df

]3

(9.7)

where h(f) is a template waveform, Sn(f) is the power spectral densitity, and the
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Figure 50: The combined VT as a function of inverse false-alarm rate, for the
combined three weeks of analysis, and for an injection population that uniformly

covers the parameter space of the non-spinning BNS region, with component masses
between 1− 3M�. Darker shaded lines indicate the inclusive IFAR value, while

lighter lines show the exclusive IFAR. We find that dropping the SNR threshold of
the analysis from 5.5 (red) to 5.0 (purple) has a negligible effect on the overall

search sensitivity.
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Figure 51: The distribution of exclusive IFAR as a function of the minimum single
detector SNR, for an injection population that uniformly covers the parameter space

of the non-spinning BNS region, with component masses between 1− 3M�.
Injections are colored by the value of their inclusive IFAR. We observe that there is
an inverse relationship between the inclusive IFAR and the minimum SNR value.
This indicates that for a given value of inclusive IFAR, there is a corresponding
SNR threshold, below which, the search sensitivity as function of inclusive IFAR

will not improve
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Figure 52: Approximate boundaries of the 16 bins that make up the time-frequency
signal consistency test, as used in S6/VSR2,3, overlaid on the track of a

1.4− 1.4M� BNS waveform.
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Figure 53: The combined VT at inclusive inverse false-alarm rate of 1/1000 years
as a function of the number of time-frequency bins in the signal-consistency test, for
the combined three weeks of analysis, and for an injection population that uniformly
covers the parameter space of the non-spinning BNS region, with component masses
between 1− 3M�. There is an ≈ 13% improvement in the analysis sensitivity when

using 64-256 bins, as compared to the reference 16 bins.
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Figure 54: The combined VT as a function of inverse false-alarm rate, for the
combined three weeks of analysis, and for an injection population that uniformly

covers the parameter space of the non-spinning BNS region, with component masses
between 1− 3M�. Darker colored lines indicate the inclusive IFAR value, while

lighter lines show the exclusive IFAR.
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Figure 55: The fraction of the optimal search volume for a 1.4− 1.4M� TaylorF2
BNS waveform, as a function of the lower-frequency cutoff of the matched filter.

quantity V (fmin) represents the fraction of the optimal volume for a single template

filtered from the lower-frequency cutoff, fmin. Fig. 55 shows that filtering from 40Hz

only results in only a 1% loss in search volume, for a single 1.4-1.4M� TaylorF2

template, and so it is an appropriate choice for this data.

9.4 Sensitivity to Astrophysical Sources

In the following sections we compare the sensitivity of tuned BNS analysis we find

from Sec. 9.3.3 to the original filter settings used in Ch. 7, and which mimic those used

in the S6/VSR2,3 analysis. We consider two choices banks of templates, a nonspin

template bank designed to be sensitive to mergers where the components have neglible

intrinsic angular moment, and an aligned template bank which is designed to be

sensitive to BNS mergers where the intrinsic angular momentum of the components



144

can be as large as χ = 0.4, and is aligned with the binary’s orbital angular momentum.

9.4.1 Broad distribution of non-spinning sources

In this section we test the sensitivity of the BNS analysis to broad mass distribution

(1 − 3M�) of sources where the component neutron stars are non-spinning. The

parameter space corresponds to the intended coverage of the non-spinning template

bank we have tuned against in Sec.9.3. In Fig. 56 we show the reference and tuned

pipeline configuration using both the aligned spin and nonspin template banks. We

see that for either template bank there is a 25% increase in search volume using the

improved pipeline tunings. Both template banks use the same geometric placement

algorithm and required minimal match, and since the injection set is strictly within

the boundaries of both template banks, the loss of ≈ 6% loss in search volume when

using the aligned spin template bank is due to the increase in background associated

with the ≈ 10x increase in template bank size.

9.4.2 Broad distribution of aligned-spin sources

In this section we choose a distribution of sources drawn uniformly from the parameter

space that the aligned spin template bank is intended to cover, where each compo-

nents’ mass is between 1 and 3 M� and the spin magnitude is uniformly distributed

between χ =0 and 0.4. The intrinsic spin of each neutron star is restricted to aligned

to the orbital angular momentum. One would expected this distribution to be more

favorable to the aligned spin template bank than the non-spinning one. We find in

Fig. 57 that the aligned spin template only provides a marginal ≈ 2% improvement

in search volume, which we note is close to the measured statistical error.

9.4.3 Broad distribution of precessing Sources

In contrast to the distribution of injections used in Sec. 9.4.2, we do not expect

that coalescing systems will preferentially contain binary neutron stars whose spin

is aligned with the orbital angular momentum. In this section, we test the same

population of sources, but where the spin angles are isotropically distributed. This

will allow the systems to precess, however, as the mass ratio of a BNS systems and the

magnitude of the spin is small, the effect of precession is not significant. Although the
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Figure 56: The combined VT as a function of inverse false-alarm rate, for the three
sample analysis weeks, for an injection population that uniformly covers parameter
space of the non-spinning BNS region, 1− 3M�. Darker shaded lines indicate the

inclusive IFAR value, while lighter lines show the exclusive IFAR. For both the
non-spinning template bank and the aligned spin template bank there is ≈ 25%

improvement in search sensitivity.
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Figure 57: The combined VT as a function of inverse false-alarm rate, for the three
sample analysis weeks, for an injection population that uniformly covers parameter
space of the aligned spinning BNS region, 1− 3M�, and |χ| <= 0.4. Darker shaded
lines indicate the inclusive IFAR value, while lighter lines show the exclusive IFAR.
At a false-alarm rate of 1 per 1000 years, the aligned spin template bank improves

the overall search sensitivity by only ≈ 2%
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injection population covers the full range of spin magnitudes, which the aligned spin

template bank is designed to recover, the nonspinning template bank is marginally

more sensitive. Fig. 58 shows there is an ≈ 1.5% increase in search volume. A source

population that is highly weighted towards highly spinning systems would be required

for the aligned spin template to substantially improve the search sensitivity over the

nonspinning template bank.

9.4.4 Astrophysically-motivated Conservative Source Distribution

We test the focused BNS analysis against an estimate of astrophysical sources using

an injection population drawn from a conservative range of mass and spin distribu-

tions. Based on the population of observed BNS sources, as noted in Sec. 3.1, we

draw injections from a population with a Gaussian distribution of component masses

centered on 1.40M�, and a standard deviation of 0.13. The intrinsic spin of each

neutron star is chosen from a uniform distribution of spin magnitudes |χ| < 0.05, and

an isotropic distribution of spin angles.

We clearly see in Fig. 59 that a search using only a non-spinning template bank

yields a ≈ 7% improvement in search sensitivity over one that covers an expansive

spin range. If the true distribution of signals matches the expectations from current

observations, then a non-spinning template bank is the preferred option. Note, that

future work should investigate alternate possibilities for incorporating expected pop-

ulation distributions into the search directly, which may allow a more fine-grained

inclusion of spinning regions of the parameter space, while sacrificing less in overall

sensitivity to the most likely signals.

9.5 Conclusions

We have presented a new pipeline specifically targeted for the detection of

gravitational-waves from binary neutron star sources in LIGO data. Using the single

stage search pipeline we investigated the configuration choices used for PSD esti-

mation, SNR thresholds, low frequency cutoff, and χ2 bins used within the ranking

statistic. To assess the sensitivity, we develop a method to measure the false-alarm

rate of possible signals, and introduce the concept of both the inclusive and exclusive

FAR measures. We find that for S6 data, the choices for low frequency cutoff at
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Figure 58: The combined VT as a function of inverse false-alarm rate, for the three
sample analysis weeks, for an injection population that uniformly covers parameter

space of the non-spinning BNS region, 1− 3M�, where the spin angles are
isotropically distributed, and the spin magnitude |χ| < 0.4. Darker shaded lines
indicate the inclusive IFAR value, while lighter lines show the exclusive IFAR.

There is a negligible difference in search performance between using the aligned spin
and nonspinning template bank.
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Figure 59: The VT as a function of inverse false-alarm rate, for the three sample
analysis weeks, for an astrophysically-motivated conservative mass and spin

distribution. Darker shaded lines indicate the inclusive IFAR value, while lighter
lines show the exclusive IFAR. There is an ≈ 7% drop in sensitivity when using the
full aligned spin template bank when compared to the the non-spinning template

bank.
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40Hz, and the SNR threshold at 5.5, as used in prior S6/VSR2,3 searches for BNS

sources, were appropriate. Additionally, we find that for a two detector search con-

ducted using the Hanford and Livingston observatories, decreasing the SNR threshold

below 5.3 will not result in any gain in search sensitivity using the conservative in-

clusive IFAR. In Sec. 9.3.1 and Sec. 9.3.3 we show significant improvements in search

sensitivity for BNS sources by retuning the number of PSD samples per estimate,

and the number of bins used in the signal consistence test, respectively. We find

an additional 25% increase in the detection rate of BNS systems when using the re-

tuned BNS search over a BNS search that uses the configuration proposed in Ch. 7,

which already showed a 10% increase over the S6/VSR2,3 configuration. We also

find that using an aligned spin template bank marginally decreases the sensitivity to

BNS mergers for conservative estimates of the BNS populations when comparing to

a bank of stictly non-spinning templates. As these tuning significantly differ from

those used in the wider lowmass search performed in S6/VSR2,3, we propose that a

focused, non-spinning search for binary neutron stars be conducted for aLIGO and

AdV.
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Chapter 10

Conclusions

We have investigated the effects of neglecting spin when searching for binary neutron

star systems in aLIGO and AdV. We have found that if component spins in binary

neutron star systems are as large as 0.4 then neutron star spin cannot be neglected,

and there is a non-trivial loss in signal-to-noise ratio even if the maximum spin is

restricted to be less than 0.05. We have shown that the geometric algorithm for

placing and aligned spin template bank works for aligned spin systems and have

demonstrated that it does significantly better for generic, precessing BNS systems

than the traditional non-spinning bank. However, for the BNS aligned spin χi < 0.4

parameter space the aligned spin bank requires approximately five times as many

templates as the non-spinning bank. This increased number of templates will increase

the computational cost of the search and increase the number of background events,

so needs to be balanced against the potential gain in being able to cover a larger

region of parameter space. A further advantage of this method is the ease with which

it can be incorporated into existing or future search pipelines, which include the use

of signal-based vetoes [58] and coincidence algorithms [115].

We have found that there is significant disagreement between NSBH waveforms

modelled with the TaylorT2, TaylorT4, and SEOBNRv1 approximants. This will

pose problems for the construction of optimal NSBH detection searches, potentially

reducing the event rate, and may cause significant biases in the parameter measure-

ment of detected signals. The discrepancies are not accounted for by the differences

between frequency and time domain waveforms and start at fairly low (v ∼ 0.2)

orbital velocities. Since the discrepancies in the approximants result from how the
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PN expansions of the energy and flux are combined and truncated, we conclude that

the calculation of higher order PN terms is required to increase the faithfulness of

these approximants, and more importantly, to improve the ability to detect NSBH

coalescences. The discrepancies between approximants are significantly smaller when

the spin of the black hole is close to zero, which further motivates the calculation of

the PN terms associated with the spin of the objects beyond those known completely

up to 2.5PN order and partially up to 3.5PN.

We have explored the effect that the angular momentum of the black hole will

have on searches for neutron-star black-hole binaries with aLIGO. The black hole’s

angular momentum will affect the phase evolution of the emitted gravitational-wave

signal, and, if the angular momentum is misaligned with the orbital plane, will cause

the system to precess. We have found that if these effects are neglected in the filter

waveforms used to search for NSBH binaries it will result in a loss in detection rate of

31−36% when searching for NSBH systems with masses uniformly distributed in the

range (3− 15, 1− 3)M�. When restricting the masses to (9.5− 10.5, 1.35− 1.45)M�

we find that the loss in detection rate is 33−37%. The error in these measurements is

due to uncertainty in the PN waveform models used to simulate NSBH gravitational-

wave signals. We have found that an aligned spin template bank offers a 16%− 30%

improvement in the detection rate of neutron-star black-hole mergers when compared

to a non-spinning template bank when searching for NSBH systems with masses

in the range (3 − 15, 1 − 3)M�. However, when searching for NSBH systems with

masses restricted to the range (9.5 − 10.5, 1.35 − 1.45)M� we find the improvement

is reduced to 5 − 17%. Some systems are not recovered well with this new bank of

filters. These systems are ones where the black-hole spin is misaligned with the orbit

and the waveform is significantly modified due to precession of the orbital plane. This

happens most often when mBH/mNS and the spin magnitude are both large. Note,

that these results are for an idealized search that neglects the effects of non-Gaussian

noise.

We have demonstrated the use of a new pipeline to search for gravitational waves

from compact object binaries in LIGO data. We find that the sensitivity of the search

pipeline used in S6/VSR2,3 is ∼ 10% less sensitive at a false-alarm rate of 10−3 per

year than the most sensitive pipeline proposed, which uses a shared fixed 3.5pN

template bank in both detectors generated using a harmonic mean power spectral
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density, and the exact-match coincidence test. The new pipeline uses a simpler,

single-stage workflow that allows us to estimate false-alarm rates to ∼ 10−4 per year

using one week of data. With our improved implementation of the χ2 signal-based

veto, we demonstrate that the new pipeline has the same computational cost as the

two-stage workflow used in the S6/VSR2,3 analysis. We propose that this workflow

be used as a basis for offline searches for gravitational waves from compact-object

binary sources in aLIGO and AdV. Finally, we note that although the distribution

of triggers in the S6 search using the ellipsoidal test is very close to that of Gaussian

noise this is not the case for exact-match. This suggests that additional tuning is

possible to increase the sensitivity of the search.

We have presented a new pipeline specifically tuned for the detection of

gravitational-waves from binary neutron star sources in LIGO data. Using the single-

stage search pipeline we investigated the configuration choices used for PSD esti-

mation, SNR thresholds, low frequency cutoff, and χ2 bins used within the ranking

statistic. To assess the sensitivity, we develop a method to measure the false alarm

rate of possible signals, and introduce the concept of both the inclusive and exclusive

FAR measures. We find that for S6 data, the choices for low frequency cutoff at 40Hz,

and the SNR threshold at 5.5, as used in prior S6/VSR2,3 searches for BNS sources,

were appropriate. Additionally, we find that for a two detector search conducted using

the Hanford and Livingston observatories, decreasing the SNR threshold below 5.3

will not result in any gain in search sensitivity using the conservative inclusive IFAR.

We show significant improvements in search sensitivity for BNS sources by retuning

the number of PSD samples per estimate, and the number of bins used in the signal

consistence test, respectively. We find an additional 25% increase in the detection rate

of BNS systems when using the retuned BNS search over a BNS search that uses the

initially proposed single-stage pipeline, which had already demonstrated a 10% im-

provement over the S6/VSR2,3 configuration. We also find that using an aligned spin

template bank marginally decreases the sensitivity to BNS mergers for conservative

estimates of the BNS populations when comparing to a bank of stictly non-spinning

templates. As these tuning significantly differ from those used in the wider lowmass

search performed in S6/VSR2,3, we propose that a focused, non-spinning search for

binary neutron stars be conducted for aLIGO and AdV.
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