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Abstract 
 

The prospect of controlling the interaction of light with matter at nanoscale has been widely 

studied in recent years, and entails characterizing optical and optoelectronic devices at 

resolution higher than the diffraction limit. One technique that allows localization of light to 

sub-wavelength dimensions is through the use of surface plasmon polaritons (SPPs) wherein 

the interaction of light with free electrons on a metal surface can lead to a bound surface 

electromagnetic field that is confined to deep sub-wavelength dimensions. Studies based on 

SPPs merged with the field of nanotechnology have resulted in novel imaging technologies, 

nonlinear and quantum-optical devices and the ability to design materials with unusual 

electromagnetic properties with potential applications ranging from enhancing the efficiency 

of photovoltaic devices to detection of bio-molecules at ultra-small concentrations.   

 

Here we report the design of nanophotonic devices based on SPP waveguide structures that 

would act as a true counterpart to today’s electronic devices, providing orders of increase in 

data speeds while maintaining nanoscale dimensions. The devices are based on metal-

dielectric-metal (MDM) waveguide structures composed of Ag/SiO2/Ag heterostructure that 

utilizes interference effect within multiple intersecting plasmonic waveguides. We have 

explored guided-wave devices such as L and T-bends, 4-way-splitters and 2x2-networked 

structures, wherein by altering the device geometry one can tune its operating frequency, and 

by changing the angle of incidence one can switch these devices between ON/OFF states. We 

plan to fabricate and experimentally characterize these devices for applications in color 

routing, directional filters and optical switches. We discuss preliminary design rules and 

constraints based on results obtained from finite-difference-time-domain simulations.  
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1. Introduction 

This thesis is a step toward the investigation of light-matter interaction at the nanoscale. At 

sub wavelength scale light-matter interaction is limited by diffraction, which restricts us to 

application of optics to wavelength scale. The diffraction limit poses a major challenge and 

restricts our capability to resolve two features under the microscope with separation below the 

Abbe’s diffraction limit of λ/2n for light with wavelength λ, traveling in a medium with 

refractive index n. The diffraction also puts a lower bound on the core dimension of optical 

fibers and optical waveguides, making the optical devices and interconnects much large in 

comparison to the integrated electrical counterpart. While light matter interaction at nano-

scale provides insight on fundamental phenomenon, from study of biological processes to 

interatomic transition, the diffraction limit has hampered the scientific community to venture 

into these studies. In turn, we had to resort to non-optical methods like electron microscopy 

and fluorescence microscopy. 

Plasmonics forms an emerging field of nanophotonics that allows electromagnetic fields 

to be confined to dimensions smaller than the wavelength. It is a result of coupling of light to 

free electrons in metals at the metal-dielectric interface leading to enhanced optical near-fields 

(resonance amplification). Surface Plasmons Polaritons (SPPs) are highly confined, non-

radiating propagating waves on the surface of a conductor, where the fields decay 

exponentially in direction normal to the surface (Fig.1.1(a)). However due to momentum 

mismatch, incident light cannot directly couple to the plasmons, hence structures such as 

prism, grating and tapered waveguide etc. are used to achieve the coupling. Since surface 

plasmons occur at the metal-dielectric interface, these charge density oscillations when 

confined to a metal nanoparticle are called Localized Surface Plasmons (LSPs), as depicted in 

Fig.1.1(b). The LSPs resemble a dipole with charges localized at the two poles. When the 

nanoparticle is small compared to the wavelength, it can be approximated as point dipole. As 
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the incident electromagnetic wave oscillates, the poles oscillate at the same frequency.  

 

Fig.1.1: Schematic showing surface plasmon oscillations on (a) planar metal-

dielectric interface and (b) metallic nanoparticle induced by electromagnetic fields 

showing the fundamental LSP mode. The fields in metal and dielectric decay 

exponentially from the interface, depending upon the permittivity of  metal, 𝜀! and 

the dielectric, 𝜀!  .  

 

Sommerfeld and Zenneck provided the initial formulation of surface waves where radio 

waves traveled along the surface the earth, or a conductor with finite conductivity [1]. The 

phenomenon of surface waves in the visible domain was first reported by R. W. Woods in 

1902, when he observed narrow-bands in the diffraction spectrum of metal-grating due to 

coupling of some part of incident light to the metal surface; commonly referred to as the 

Woods’ anomaly [2]. Later much of the pioneering work describing surface plasmons was 

carried out by Richtie et al. [3], where they studied diffraction of electron beams from thin 

metallic foils due to interactions at the metal interface which was later expanded to the study 

on diffraction gratings [4]. Although surface plasmons have been studied recently, the 

property of metallic structures to couple light has been known for centuries, dating back to the 

4th century A.D. where Lycurgus cup (Fig.1.2) made of dichroic glass appears red when lit 

from inside and green when illuminated from the outside. The dichroic effect was achieved 

due to presence of gold nanoparticles, which exhibits surface plasmon resonance producing 
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this exciting effect. 

 

 

Fig.1.2: Lycurgus Cup, the 4th century Roman glass cage cup, made of glass with 

colloidal sub-100 nm gold nanoparticles. The glass appears green when illuminated 

from outside and bright red when light is passed from inside.  

 

Despite the observation of surface plasmons - SPPs and LSPs in the early 20th century, 

the field of plasmonics did not gain much attention until mid 1970’s with the observation of 

enhanced scattering by roughened silver surface with active Raman molecules, leading to 

discovery of Surface Enhanced Raman Spectroscopy (SERS). The technology is today widely 

used in sensing biological and chemical molecules. Later in 1997, with observation of 

extraordinary transmission of light through metallic hole-arrays by Ebbeson et al. [4], re-

invigorated the interest in the field, leading to a flurry of papers and applications [5]. Later the 

concept was expanded to beam forming through bulls-eye structure [6], periodic and 

aperiodic hole arrays in visible as well as THz frequency regime [7-9]. Different waveguide 

structures for surface plasmons have also been explored recently, based on nano-wires and 

complementary metal-insulator-metal waveguides [10-12].  

Our work is inspired by recently proposed Resonant Guided Wave Networks (RGWNs), 

by E. Feigenbaum et al. [13], where color routers were proposed based on intersecting 

plasmon waveguides. In the work scattering matrix was developed for the network that was 
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optimized for operation as a color router. In this work, we proceed with study of the behavior 

of plasmon waveguides and simple waveguide components and L-, T- bends and 4-port 

splitter formed intersection of two plasmon waveguides at optical frequencies. We study the 

reflection and transmission characteristics of these structures using Finite Difference Time 

Domain (FDTD) simulations. Later we realize different directional devices, like color router 

and filters based on 2 X 2 waveguide network. 

1.1 Motivation  

With Moore’s law approaching its limits, silicon photonics is seen as the next big thing. The 

increasing demand from data centers and our move towards next generation technologies, like 

artificial intelligence and machine learning, require manifold increase in information 

processing capabilities at a much faster rate. The concept behind photonics is simple, i.e., it 

utilizes light, the fastest known phenomenon, but it comes with a drawback and deviates from 

the well-established Moore’s law. As discussed above the confinement of light is limited by 

the diffraction limit. The optoelectronic devices that are available today are much bigger in 

size when compared to semiconductor based electronic devices. Achieving technologies down 

to sub-wavelength scale requires control of light-matter interaction at nano-scale, where 

Plasmonics appears as promising candidate. Plasmonics provide unique capability to guide 

and manipulate light in sub-wavelength structures and provide true counterpart to electronic 

devices.  Fig.1.3 aptly describes the advantage of plasmonics over photonics and electronics 

as promising technologies to tackle the future challenges. The light confinement in metal-

insulator-metal (MIM) plasmonic waveguides allows propagation of waves at wavelength 

much shorter than that in free space. The intersection of waveguides acts as a power-splitting 

element. As the wave also gathers phase during the propagation, the interference and 

resonance effects can be engineered by varying the geometry of the structure while the 

amplitude of power into each waveguide, at the power splitting element, can be controlled by 
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the width of the insulator. The structures based on these waveguides are being explored for 

integrated active and passive nanophotonic devices. Along with providing faster and smaller 

devices for information processing, owing to unique properties of surface plasmons, it offers 

many opportunities in the field of medicine and quantum studies, among others. The high 

field confinement and enhancement due to resonance effects has enabled highly efficient bio- 

and chemical sensing down to single molecule detection. Due to large Photonic Density of 

States (PDOS), it can also be utilized for fluorescence decay studies and high quality factor 

(Q-factor) resonator based devices for spontaneous decay enhancement of Quantum Dot. 

Other emerging technologies based of plasmonics include highly efficient displays, nano-

antenna, and Anderson localization of light and Electromagnetically Induced Transparency 

(EIT) due to Fano resonance. 

In this thesis, we explore the theory and properties of surface plasmons in planar structures. 

We investigate the dispersion relations of multilayer metal-dielectric waveguide and derive 

relations for the two lowest order bound TM modes, referred to as the symmetric and 

asymmetric modes. We also discuss the emerging technologies based on plasmonics and 

extraordinary properties that have opened up many novel potential applications. In particular, 

we investigate the surface plasmon guided-wave devices that utilize interference effects 

within multiple intersecting MIM waveguides. These waveguides are composed of 

Ag/SiO2/Ag and the specific devices we have explored include guided-wave devices such as 

the L and T-bends, 4-way splitters and 2x2 networked structures wherein by altering the 

device geometry, one can tune its operating frequency, and by changing the angle of 

incidence one can switch these devices between on and off states. The results have been 

established using FDTD simulations and the devices are fabricated by focused-ion milling 

into thin film deposited metal-insulator layers on a silica substrate, where the milled-

structures are filled with index matching fluid. The devices are characterized using 
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transmission spectroscopy technique. 

 

Fig.1.3: Schematic depiction of comparison of feature size and operating speeds for 

plasmonics based technology vs. dielectric-based photonic devices, and 

semiconductor electronics [14].  

1.2 Scope of the Thesis 

In this thesis, an effort has been made to provide the basic theory behind the field of 

Plasmonics. In Chapter 2, we discuss the properties of metals with finite conductivity that 

supports these surface plasmons. The relations for plasmon frequency and critical conditions 

for bound surface modes have been discussed. In Chapter 3, we derive the dispersion relation 

for the plasmon at single metal-dielectric surface. Later different waveguide structures 

comprising of dielectric-metal-dielectric layer and the complementary structures have been 

studied. Chapter 4 covers the techniques adopted to excite and image surface plasmons and 

the phenomenon of plasmon excitation of metal nanoparticles. After discussing the 

fundamentals and properties of surface plasmons, in Chapter 5, we present our work on 

guided-wave devices based on MIM geometry and the FDTD simulation results of different 

waveguide components and basic design rules to be considered while designing such devices. 

Finally we present devices such as directional color router and filter configuration based on   
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2 X 2 waveguide structures. We also discuss the device fabrication process, experiment setup 

to be followed as the future work. The numerical techniques used to realize plasmonic devices 

are also discussed in brief. We then conclude the thesis with the discussion of results and 

prospects of future work. 
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2 Electromagnetic Modes in Metals 

One of the widely accepted theories in solid-state, Drude model for free electrons, describes 

the properties of metals using the concept of plasma. According to the Drude’s model, 

valence electrons in metals move around the fixed ions in the lattice of the metal. In the 

simplest form it assumes that the interaction between the electrons is neglected and the 

electrons are free to move through the lattice. Although Drude’s model, being classical in 

nature, interestingly describes the electrical properties of metals in good conjunction with the 

experiments, the model fails to capture the thermal properties like specific heat and thermal 

conductivities completely. The model was later modified by Sommerfeld to include the effect 

of quantum oscillations and was later challenged by Fermi that states the Fermi-Dirac 

distribution of electrons around the nucleus, considering Pauli’s exclusion principle and the 

quantization of electron levels [15]. Here we focus on Drude’s model to describe electrical 

and optical properties of material relevant and adequate to explain the fundamentals of 

plasmonics. We can describe the optical properties of metals using classical mechanics even 

for metallic nanostructures due to high density of electrons, which provides a small band-gap 

as compared to K!T  at room temperature, where K!  is the Boltzmann’s constant. We 

approach the explanation of electromagnetics in metals beginning from Maxwell’s equations.  

2.1 Metals and Electromagnetics Waves  

Metals are highly reflective for frequencies below visible part of the spectrum and hence, are 

employed as cladding material for waveguides in microwave and infrared regime. In this 

regime the approximation of metal being a perfect conductor is valid, since the fields 

penetrate very small distances into the metal, termed as the skin depth. However, when we go 

to higher frequencies, towards the visible regime, this penetration of fields increases 

significantly. This results in increased dissipation of energy, thus restricting the metal 
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structures to be used for optical and photonic devices, and hence we resort to dielectrics for 

propagation. When we go further high towards the bulk plasma frequency, metals become 

transparent, i.e., they behave like dielectric and allow propagation of EM waves, the 

phenomenon termed as Ultraviolet Transparency [15].  

The above mentioned properties of metals can be easily explained by frequency dependent 

complex permittivity, ε  (ω) . One of the explanations for this dispersive property of 

permittivity function proposes that the phase of the induced currents for driving field changes 

at different frequencies. Using the constitutive relations: 

𝐃 =    ε!𝐄+ 𝐏 = ε!ε𝐄             (2.1a) 

𝐁 =   µμ!𝐇+ µμ!𝐌 =   µμ!µμ𝐇        (2.1b) 

where, ε!and µμ!  are permittivity and permeability of free space, and ε  and µμ are relative 

permittivity and permeability of the material.  One more constitutive relation important in this 

context, relates current density 𝐉 and E by a linear relation, i.e. 

𝐉 =
𝑛𝑒!𝑬𝜏
𝑚!

,  

           (2.2) 

which gives the microscopic form of Ohm’s law (𝐉 = 𝜎𝑬). Here 𝜏 is the relaxation time 

between two scattering events by an electron, e is charge of an electron and 𝑚! denotes its 

mass. Electrons in Drude model move freely in the lattice of fixed ions, for a material with net 

charge of zero. These electrons scatter randomly while conserving the total energy. When the 

electric field is applied across the metals, the electrons are subject to a force equal to eE and 

gain a net momentum of eE  𝜏,  as shown in Fig.2.1. Thus using J= −n𝑒𝜈 gives equation (2.2), 

where 𝜈 is the net velocity gained by the electrons and n is the number of free/conduction 
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electrons. This provides an approximation to behavior of metals to static electric field.  

 

Fig.2.1 Schematic for Drude model of free electron gas where electrons move in 

random manner. When the metal is subjected to static electric field, electrons gain a 

net velocity in the direction opposite to that of the field. 

We also take into account that the optical response of metals depends upon the frequency. 

Thus equation (2.1) and Ohm’s law in Fourier domain (taking the spatially local response) are 

modified to:  

𝐃  (ω) = ε!ε(ω)𝐄(ω),     (2.3a) 

𝐉  (ω) = σ(ω)𝐄(ω)     (2.3b) 

Also, using the relation ∇.𝐏 = −ρ, and substituting in continuity equation we get: 

𝐉 = !𝐏
!!
                  (2.4) 

Now, substituting the values in Maxwell’s equations: 

∇.𝑬 = 0 
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∇.𝑯 = 0 

∇  ×  𝑬 = −
𝜕𝑩
𝜕𝑡  

            ∇  ×  𝑯 = 𝜎𝑬+ 𝜀ε!   
!𝑬
!"

 

We obtain dispersive property of permittivity,  

ε ω =   1+
iσ(ω)
ε!ω

  

At low frequencies, ε reflects the contribution of bound charges and σ the contribution of free 

charges. 

2.2 Damped Oscillator Model – Plasma model 

Since the electron gas is confined in three dimensions, the displacement of electrons with 

respect to lattice fixed positive nucleus leads to a restoring force. Thus the electrons subjected 

to an electric field can be approximated by a damped oscillator model [15]. For a  dispersive 

media the force equation is given by: 

−𝑒𝑬 = 𝑚!
𝜕!𝒓
𝜕𝑡! +   𝛾

𝜕𝒓
𝜕𝑡 + 𝜔!

!𝒓 ,                                                      (2.7)  

     

where 𝛾  is the damping coefficient and 𝜔! is the resonant frequency and 𝐫(𝑡) = 𝐫𝑒!!"# 

describes the oscillation of electrons. From (2.7), the displacement 𝐫 takes the form: 

𝒓 = !
!! !!!!!!!!"#

𝑬                (2.8) 

Thus displacement of electrons with the oscillating field leads to polarization, 𝑷 = −𝑛𝑒𝒓 

	  (2.5) 

	  (2.6) 
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𝑷 = !!!!

!! !!!!!!!!"#
𝑬      (2.9) 

For source free Maxwell’s equation, Ampere’s Law is given by: 

∇  x  𝐇 = −iω ε!  𝐄+ 𝐏 = −iω  ε!ε!  𝐄     (2.10) 

Thus we obtain    ε!(𝜔)= 1− !!!

!!!!!!!!"#
, 

where 𝜔! is the plasma frequency of free electron gas given by the relation: 

          𝜔!! =
!"!

!!!!
    

For conductors (metals):       ε!(𝜔)= 1− !!!

!!!!"#
= ε′(𝜔)+ ε′′(𝜔) 

This gives us the AC equivalent of Ohm’s law, 𝑫 =    ε! 1− !!!

!!!!"#
   .𝐄 

Separating the real and imaginary parts of relative permittivity, and using 1/𝛾 = 𝜏 we get,  

 

ε! 𝜔 =    1− !!!!!

!!!!!!
 

 

  ε!! 𝜔 =   
𝜔!!𝜏

𝜔(𝜔!𝜏! + 1)  

  Now considering the case of very high frequencies, i.e. for 𝜔 ≫   𝜔!, ε′(𝜔) is close to 1, and 

ε!! 𝜔   approaches zero, thus, the metals become transparent, hence behave as dielectric, while 

for 𝜔 <   𝜔!,  they retain their electric character and are highly reflective. For the frequencies 

close to the plasma frequency, the imaginary part approaches zero, thus the effect of damping 

is negligible and the permittivity takes the predominantly real form. 

	  (2.11) 

	  (2.12a) 

	  (2.12b) 
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𝜀(𝜔)  = 1− !!!

!!
             (2.13) 

Johnson and Christy [16] measured the real and imaginary parts of refractive index n’ and n’’, 

for different metals using ellipsometric technique, the real and imaginary values of 

permittivity can be obtained from these values by the relation: 

ε! 𝜔 = 𝑛!! − 𝑛!!!, 

ε!! 𝜔 = 2𝑛′𝑛′′ 

From the results obtained by the measurement, it was observed that the metals possess high 

negative real values for permittivity as shown for the case of silver, Ag, in Fig.2.2. 

 

Fig.2.2: Real and imaginary values of permittivity for Silver, obtained from data 

recorded by Johnson and Christy [15]. 

(2.14b)	  

(2.14b)	  
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2.3 Volume/ Bulk Plasmons 

Since we know from the dispersion relation: the propagation constant 𝒌 is related by: 

𝒌𝟐 = 𝜀 𝜔
𝜔!

𝑐!  

𝒌𝟐 = 1− !!!

!!
!!

!!
 

 

For 𝜔 <   𝜔!, 𝒌 becomes imaginary, thus the transverse wave cannot propagate inside the 

metal, and the wave attenuates into the metal. For 𝜔 >   𝜔!,  

𝜔! =   �!
! + 𝒌𝟐𝑐! 

Thus the transverse wave travels inside the metal though the metal plasma, called the volume 

plasmons as shown in Fig.2.3. 

 

Fig.2.3: Dispersion relation of volume plasmons [17] 

At 𝜔 =   𝜔! (plasma frequency), 𝜀 𝜔 = 0, thus the displacement, 

𝑫 = ε!𝜀 𝜔! 𝑬 = 0. 

𝑬 = −
𝑷
𝜀!

 

Thus at plasma frequency, a longitudinal wave travels along the metal surface. 

	  

(2.15)	  



	  

15	  

3 Surface Plasmon Polaritons in Planar Structures 

 
 
Surface Plasmon Polaritons are hybrid photon-electron modes that propagate along the 

surface of a conductor. These waves are light waves trapped on the interface due to its 

interaction with the free electrons [18] and are highly lossy due to Ohmic losses in metals. 

One of the major challenges is to concentrate light and channel them efficiently into sub-

wavelength structures. In this chapter we discuss the properties of SPP at single metal-

dielectric interface as well as in planar waveguide structures. 

3.1 SPP at Metal-Dielectric Interface 

We begin our analysis with the wave equation obtained from Maxwell’s equations that gives 

propagation of fields in media with complex relative permittivity 𝜀, with wave vector, 𝑘! in 

free-space :  

∇!𝑬 =    !
!!
  !
!𝑬
!!!

      𝑜𝑟          ∇!𝑬+   𝑘!!𝜀𝑬 = 𝟎 

For simplicity we consider the case of one dimensional planar waveguide geometry, where 

the wave is propagating in x direction, as shown in the schematic in Fig.3.1. 

 

Fig.3.1: Schematic showing one-dimension problem for SPP propagation at metal-dielectric 

interface at z=0. 𝑬𝒛𝒎  and 𝑬𝒛𝒅  represent the penetration of E field inside the metal and 

dielectric respectively. 

(3.1)	  
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For the TM wave incident on the surface, the electric field takes the form: 

𝑬 𝑥, 𝑧, 𝑡 =   𝑬𝟎𝑒!(!!!!!!|!|) 

Separating the components of curl equations for electric and magnetic fields and substituting 

harmonic time-dependence, !
!"
= −𝑖𝜔, we get the following six equations:  

 
𝜕𝐸!
𝜕𝑦 −

𝜕𝐸!
𝜕𝑧 = 𝑖𝜔𝜇!𝐻! , 

 
𝜕𝐸!
𝜕𝑧 −

𝜕𝐸!
𝜕𝑥 = 𝑖𝜔𝜇!𝐻! , 

 
𝜕𝐸!
𝜕𝑥 −

𝜕𝐸!
𝜕𝑦 = 𝑖𝜔𝜇!𝐻! , 

 

    
𝜕𝐻!
𝜕𝑦 −

𝜕𝐻!
𝜕𝑧 = −𝑖𝜔𝜀!𝜀𝐸! , 

 

    
𝜕𝐻!
𝜕𝑧 −

𝜕𝐻!
𝜕𝑥 = −𝑖𝜔𝜀!𝜀𝐸! , 

 
𝜕𝐻!
𝜕𝑥 −

𝜕𝐻!
𝜕𝑦 = −𝑖𝜔𝜀!𝜀𝐸! 

Assuming an infinite plane in y-direction, !
!"
= 0, and using !

!"
= 𝑖𝑘! , we get:   

!!!
!"
  = 𝑖𝜔𝜇!𝐻!    𝑜𝑟      𝐻! = −𝑖 !

!!!

!!!
!"

 

 
𝜕𝐸!
𝜕𝑧 − 𝑖𝑘!𝐸! = 𝑖𝜔𝜇!𝐻! ,  

  

        𝑖𝑘!𝐸! = 𝑖𝜔𝜇!𝐻!        or        𝐻! =
𝑘!
𝜔𝜇!

𝐸! 

	  (3.2) 

	  (3.3a) 

	  (3.3b) 

	  (3.3c) 

	  (3.3e) 

	  (3.3d) 

	  (3.3f) 

	  (3.4c) 

	  (3.4a) 

	  (3.4b) 



	  

17	  

 

            
𝜕𝐻!
𝜕𝑧 = 𝑖𝜔𝜀!𝜀𝐸!  𝑜𝑟  𝐸! = −𝑖

1
𝜔𝜀!𝜀

𝜕𝐻!
𝜕𝑧  

 

                              
𝜕𝐻!
𝜕𝑧 − 𝑖𝑘!𝐻! = −𝑖𝜔𝜀!𝜀𝐸!       

 

  𝑖𝑘!𝐻! = −𝑖𝜔𝜀!𝜀𝐸!    𝑜𝑟      𝐸! = −
𝑘!
𝜔𝜀!𝜀

𝐻!  

 

Thus for TM wave solution 𝐸! ,𝐸! ,𝐻! ≠ 0, and 𝐸! = 𝐻! = 𝐻! = 0. Alternatively for TE 

wave solution, we have 𝐸! ,𝐻! ,𝐻! ≠ 0, and 𝐸! = 𝐸! = 𝐻! = 0. 

Now defining the E fields, for TM waves for the two regions metal (m) and dielectric (d): 

  𝑯𝒅𝒚 =   𝐴𝑒!(!!"!!!!"|!|) 

  𝑬𝒅𝒙 =   𝑖 !
!!!!!

𝑒! !!"!!!!" !  

𝑬𝒅𝒛 =   𝐴   !!
!!!!

𝑒!(!!"!!!!"|!|) 

From eq. (3.4d):         𝑖𝑘!"𝐻!" = 𝑖𝜔𝜀!𝜀!𝐸!" , 

𝑖𝑘!"𝐻!" = 𝑖𝜔𝜀!𝜀!𝐸!" , 

Using the boundary conditions,  ensuring continuity of tangential components of electric and 

magnetic fields, i.e. 

𝐻!" =   𝐻!"      𝑎𝑛𝑑        𝐸!" = 𝐸!" 

	  (3.4d) 

	  (3.4f)	  

	  	  (3.4e)	  

	  (3.5a)	  

	  (3.6a)

	  (3.5c)

	  (3.5b)	  

	  (3.6b)

	  (3.7a)
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we obtain       !!"
!!

= !!"
!!

 

Also      𝑘!" =   𝑘!" ≡ 𝑘!    

Using the dispersion relation :    

                      𝑘!
! +   𝑘!"

! =    𝜀!
𝜔
𝑐

!
    

where i =m,d.        𝑘! = 𝜀!
!
!

!
− 𝑘!"

! 

From eqs. (3.7) and (3.9), we get the most important relation for our thesis, the dispersion 

relation for surface plasmon, given by: 

𝑘! =
!
!

!!!!
!!!!!

 

From dispersive properties of permitivity plotted in chapter 2, we know 𝜀!! ≫ 𝜀!!!  for 

higher frequncies for metals (Ag in our case). Thus separating the real and imaginary part 

of 𝑘! which can be represented as 𝑘! =   𝑘!! + 𝑖𝑘!′′, we get [18]  

  𝑘!! =
!
!

!!!!!
!!!!!!

,          

𝑘!′′ =
𝜔
𝑐

𝜀!𝜀!′
𝜀!+𝜀!′

!
! 𝜀!′′
2𝜀!

 

Case 1: From eq (3.10), the frequency at which 𝜀! = −𝜀!, the real part of wave vector 

𝑘!′  approaches infinity. This frequency is called surface plasmon frequency, denoted by 

𝜔!". Thus SPP approaches a finite maximum wave vector 𝐤𝐬𝐩. 

Case 2: For low frequencies 𝜀! → ∞ , thus the eq (3.10) reduces to 𝑘! =
!
!

𝜀! ,   thus 

approaching the light line  

	  (3.8)

	  (3.9)

(3.10)

(3.11a)

(3.11b)

	  (3.7b)
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Fig.3.2: Dispersion relation for SPP at metal- dielectric interface. The dotted blue line 

represents the dispersion curve for propagation in free space, the blue line represents the 

dispersion curve for metal-air interface. Corresponding grey curves represent  the 

dispersion curves for Ag-SiO2 interface.  

As the propagation of SPP decay as 𝑒!!!!!!. Thus the propagation length of the surface 

plasmon wave is given by : 𝐿 =    (2𝑘!!!)!!. 

 

Fig.3.3: Propagation Length of surface plasmon at Ag/SiO2 interface for permittivity data 

from Johnson and Christy (JC) and Palik. RPP represents the radiative plasmon 
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polaritons than propagate through the metal above the plasma frequency (Plot obtained 

from ref [21]) 

 

We now analyze TE mode solutions:  

𝐸!" =   𝐶𝑒!(!!"!!!!"|!|) 

  𝐻!" =   𝑖 !
!!!

𝑒! !!"!!!!" !   

      𝐻!" =   𝐶 !!
!!!

𝑒!(!!"!!!!"|!|) 

        𝐸!" =   𝐷𝑒!(!!"!!!!"|!|) 

      𝐻!" =     𝑖 !
!!!

𝑒!(!!"!!!!"|!|) 

      𝐻!" =   𝐶 !!
!!!

𝑒!(!!"!!!!"|!|) 

Similarly, from the boundary conditions, we ensure continuity of the tangential E and H 

fields. We get 𝐶 𝑘!" + 𝑘!" = 0 . Since ℝ   𝑘!" > 0  and ℝ   𝑘!" > 0  for surface 

confinement, thus 𝐶 = 𝐷 = 0. Thus, only TM polarized modes exist and propagate along the 

surface.  

Before moving on to the next section we investigate the the field confinement at the interface. 

We know from the dispersion relation eq (3.9): 

𝑘! = 𝜀!
𝜔
𝑐

!
− 𝑘!

! 

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(3.12f)

(3.12e)
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From the dispersion curve (Fig.3.3) we see that 𝑘!   is always greater than free space 

propagation vector for surface plasmon wave, thus the wave vector in z direction is 

imaginary. Hence we know that the fields decay as 𝑒!!!!!! normal to the surface. We also see 

that SPP near 𝜔!" has high field confinement. Also at these high frequencies the propagation 

length is small due to increased damping. Thus increased confinement is achieved at a cost of 

short propagation length. 

3.2 Coupled Surface Plasmon Polaritons 

We now consider the SPP in multilayer planar structures composed of alternating layers of 

metal and dielectric. 

 

Fig.3.4: Schematic for dielectric-metal-dielectric waveguide. 

We first consider the excitation by a TM polarized wave for dielectric-metal-dielectric 

(DMD) waveguide, shown in Fig. 3.4. The TM fields are given by: 

Region 1:  (Changing coefficients to D and 𝑧 →   −𝑧 for Region 3) 

𝐻!! =   𝐶𝑒! !!!!!!"!  

𝐸!! =   𝑖𝐶 !
!!!!!

𝑒!(!!!!!!"!) 

𝐸!! =   𝐶   !!
!!!!!

𝑒!(!!!!!!"!) 

 

	  (3.13a)

	  (3.13b)

	  (3.13c)
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Region 2:  

𝐻!! =   𝐴𝑒! !!!!!!"! + 𝐵𝑒! !!!!!!"!  

𝐸!! =   −𝑖
!

!!!!!
(𝐴𝑒! !!!!!!"! − 𝐵𝑒! !!!!!!"! ) 

𝐸!! =   
!!

!!!!!
(𝐴𝑒! !!!!!!"! + 𝐵𝑒! !!!!!!"! ) 

Inside the metal, the two surface waves at the interfaces z=a and z=-a. Solving the boundary 

conditions for continuity of Hy and Ex at interface z=a,-a, we get: 

𝐶𝑒!!"! =   𝐴𝑒!!!"! + 𝐵𝑒!!"! ,              𝑎𝑛𝑑   𝐷𝑒!!!"! =   𝐴𝑒!!!! + 𝐵𝑒!!!"! 

!
!!
𝑒!!"! =   − !

!!
𝑒!!!"! + !

!!
𝑒!!"! ,      𝑎𝑛𝑑   − !

!!
𝑒!!!"! =   − !

!!
𝑒!!"! + !

!!
𝑒!!!"! 

Using the above four equations and the dispersion relations for the two media, we obtaing the 

following result for the two different modes:  

tanh 𝑘!"𝑎 =  −
!!"!!
!!"!!

 (symmetric mode) 

coth 𝑘!"𝑎 =  −
!!"!!
!!"!!

 (anti-symmetric mode) 

Similarly for TM modes for metal-dielectric-metal (MDM) waveguide, shown in Fig. 3.5: 

 

Fig.3.5: Schematic for metal-dielectric-metal waveguide 

	  (3.13e)

	  (3.13f)

	  (3.13d)

	  (3.14b)

	  (3.14a)
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Region 1:  (Changing coefficients to D and 𝑧 →   −𝑧 for Region 3) 

𝐻!! =   𝐶𝑒! !!!!!!"!  

𝐸!! =   𝑖𝐶 !
!!!!!

𝑒!(!!!!!!"!) 

𝐸!! =   𝐶   !!
!!!!!

𝑒!(!!!!!!"!) 

Region 2:  

𝐻!! =   𝐴𝑒! !!!!!!"! + 𝐵𝑒! !!!!!!"!  

𝐸!! =   𝑖
1

𝜔𝜀!𝜀!
(𝐴𝑒! !!!!!!"! + 𝐵𝑒! !!!!!!"! ) 

𝐸!! =   
!!

!!!!!
(𝐴𝑒! !!!!!!"! + 𝐵𝑒! !!!!!!"! ) 

Similarly, solving these equations we obtain the complemetary result as eq (3.14) 

tanh 𝑘!"𝑎 =  −
!!"!!
!!"!!

  (symmetric mode) 

coth 𝑘!"𝑎 =  −
!!"!!
!!"!!  

    (anti-symmetric mode) 

3.3 Metal-Dielectric-Metal Waveguide 

For the thin film (DMD) structures, the two solutions (3.14a), (3.14b) represent the symmetric 

(odd) for  Ex and antisymmetric (even) funtions for Hy and Ez. For the antisymmetric modes, 

the confinement of fields inside the metal film is considerably less as compared to the 

symmetric modes, hence the mode is more confined in the dielectric material and attains 

plane wave behavior. These modes are called Long Range Surface Plasmon Polariton 

(LRSPP). The symmetric modes have more fields inside the metals which is highly lossy as 

compared to the dielectric. Similarly for MDM geometry two modes exist, as derived in eq. 

(3.16). Here the dominant mode is the symmetric mode and has no cut-off.  

	  (3.15a)

	  (3.15b)

	  (3.15c)

	  	  	  (3.15e)

	  (3.15f)

	  (3.15d)

	  (3.16a)

	  (3.16b)
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Fig.3.6: Schematic showing symmetric and antimmetric mode profile for MDM waveguide 

where the center layer of dielectric (blue) is sandwiched between the metal cladding (silver). 

We can also solve for any arbitrary geometry of planar layered structures by solving the 

bounday conditons at each interface and using the dispersive properties for permittivity of 

metal layers. We limit ourselves here to discussion of symmetric modes in MDM waveguides.  

These MDM structures have no cut-off for the fundamental mode and here the light can be 

squeezed to sub-nanometer dimension. The dispersion relation also depends on the width of 

the dielectric material and as the width is reduced,  larger wavevectors are achieved as shown 

in Fig.3.7. The slope of the dispersion relation also gives the effective mode index. Thus the 

wave-vector of the SPPs can be engineered by varying the width of the dielectric waveguide. 

As the width of the waveguide is increased, the coupling between the SPPs at the two metal-

dielectric decreases, as seen in the field profile for varying width given in Fig. 3.8.  The group 

velocity, thus the effective mode index of the plasmon mode, can be obtained by calculating 

the slope of the curves in Fig. 3.7. The plots for effective mode index for different input 

wavelength  are shown in Fig. 3.9. 
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Fig.3.7: Dispersion relation for Ag-SiO2-Ag waveguide for varying width, the results 

were eshatablised using the relation obtained by Economou et al. 

 

Fig.3.8: The figure shows the mode profile of the symmetric mode in Ag-SiO2-Ag 

waveguide for different dielectric width. The results were obtained from FDTD 

simulation. 
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Fig.3.9: Effective mode index for MDM waveguide at different wavelength. The 

mode index is higher for small width of dielectric and the signal velocity is 

considerable reduced as the field is more confined into the metal. Also the mode 

showcases higher effective mode index as we approach the surface plasmon 

frequency. 

It can also be seen from the Fig. 3.8, that the normalized  field intensity is smaller for 

narrower waveguides as the amout of field confined in metal increases, leading to increased 

losses. Also from Fig.3.10, we see that the propagation length of SPP is smaller at the higher 

frequencies while the longer wavelengths support longer propagation length. This is attributed 

to the increased damping in metals at higher frequncies. Also the propagation length in MDM 

waveguide is determined by the width of the dielectric. For symmetric mode as the width is 

decreased the fields are more confined in the metal and attenuate more rapidly, hence 

decreasing the propagation length. Fig.3.11 below show the effect of wavelength and width 

on the propagation length. The knowledge of 1/e decay length can be useful in determining 

the optimal propagation length, hence defining the dimension of the devices. It can be seen 

that there exists a trade-off between the waveguide width and propagation length. The results 

were obtained through FDTD simulations. 
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Fig.3.10: Plasmon decay with distance for different wavelength for Ag-SiO2-Ag for 

dielectric width of 75nm 

 

Fig.3.11: 1/e decay length for different wavelength and varying width of the 

waveguide. 

In this chapter we studied the electromagnetic wave solutions in planar waveguide structures. 

We have established the basic properties of Ag-SiO2-Ag plasmon waveguide. The results 

eshtablished through FDTD simulations provide us the optimum range of width and length to 

develop devices based on these waveguide structures.  
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4. Excitation and Imaging of Surface Plasmon Polaritons 

 

In the previous chapter we have derived the electromagnetic wave solutions for the single 

interface and for multilayer structures. In this chapter we will discuss the widely used 

techniques and geometries used to excite the SPPs on the planar structures. We also discuss 

the common apparatus and methods used to image the surface plasmons and to determine the 

propagation lengths, field confinement (out-of plane fields) and intensity profile of the 

evanescent fields. We then discuss the phenomenon of plasmon scattering by the rough 

surface and the concept of Localized Surface Plasmon polaritons (LSPPs). In the end, we 

briefly analyze finite difference based numerical techniques to realize plasmonic structures. 

4.1 Excitation of Surface Plasmon Polaritons on Planar Surfaces 

From the dispersion relation derived in the previous chapter we see that the dispersion curve 

of the surface plasmon lies to the right of the free space propagation, thus the surface waves 

cannot be excited directly by shining light on the metal surface. In order to excite surface 

plasmon polaritons by TM polarized, two conditions must be met. Firstly, the frequency of 

the incident light must match the frequency of the SPP; secondly the component of wave-

vector parallel to the metal surface must be equal to the wave vector of the SPPs. The first 

condition is inherently met, the wave vectors are matched by either photon tunneling or by 

using geometries/configurations which work on diffraction or total internal reflection. 

Different plasmon excitation geometries are shown in Fig. 4.1.  

A. Grating Coupler  

When the light is incident on the grating at an angle 𝜃, its component in the direction parallel 

to the surface attains a wave-vector 𝜔 𝑐 sin  θ±  𝑛𝑔, where n is an integer and 𝑔 = 2𝜋/𝑎 

with a being the lattice spacing. Thus the extra momentum achieved using the gratings fulfills 



	  

29	  

the dispersion relation: 

𝑘! =
!
!

!!
!!!!

= 𝑘!" =
!
!
sin   𝜃 ±   𝑛𝑔 

This can be generally written as  

𝑘! =
𝜔
𝑐 sin  θ±  ∆𝑘! 

 

The resulting coupling to the surface can be observed as a dip in the frequency spectrum of 

the reflected light. These grating structures can also work as a decoupling device, i.e., a 

surface plasmon wave traveling along the grating discards the wave-vector component ∆𝑘! 

and can propagate as a free wave. 

 

Fig. 4.1: Schematic showing different SPP excitation techniques (a) Kretschmann geometry, 

(b) two-layer Kretschmann geometry, (c) Otto geometry, (d) excitation with a SNOM probe, 

(e) diffraction on a grating, and (f) diffraction on surface features. (image taken from [23]) 

 

B. Prism Coupling  

This technique utilizes the presence of evanescent wave extending into the surface at the point 

of total internal reflection. Different geometries have been proposed using prism as a 

dielectric medium on one side on the dielectric-metal-dielectric configuration. In the 

	  (4.1)
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Kretschmann geometry, a metal film placed on top of the dielectric is illuminated through the 

prism at the angle to incidence exceeding the critical angle causing the wave to undergo total 

internal reflection at the point of intersection where the evanescent wave tunnels through the 

metal film. The wave-vector of light being higher in the optically dense media provides the 

phase matching condition and the light is coupled to the surface plasmons:  

𝑘! =
!
!

𝜀!"#$% sin𝜃 = 𝑘!" 

In order to excite surface plasmons on the inner surface of the metal, an additional dielectric 

is used between the prism and the metal where the refractive index n of the dielectric is less 

than that of the prism. In Kretschmann configuration as the metal thickness is increased, the 

tunneling through the metal is decreased and so is the intensity of surface plasmons. In case 

when the metal film is thick enough (or bulk metal) or when the Kretschmann configuration 

cannot be used, Otto configuration is used where the prism is placed close to the metal 

surface. When the total internal reflection occurs the photon tunneling occurs through the free 

space present between the prism and the metal surface.  These SPPs are the leaky waves 

which lose energy by radiation into the prism along with the loss due to the absorption in the 

metal. In the case of prism coupling, a sharp minimum due to the destructive interference 

between the reflected and the radiated fields is observed in the reflection spectrum. The 

reflection coefficient using the Fresnel equation can be given by :  

𝑅 = !!!"

!!!"

!
= !!"!"!!!"

!"!!!!!!

!!!!"!"!!!"
!"!!!!!!

!
  , 

where  𝑟!"!"   is the reflectivity at the interface given by :  

                                                                                                    𝑟!"!" =
!!!
!!
!!!!!!

   !!!!!
!!!!!!

    

Using the Lorentzian approximation for the reflection coefficient given that the dielectric 

constant for metal satisfies 𝜀! ≫ 1 and 𝜀!! ≪ 𝜀!, we obtain the reflection coefficient as: 

	  (4.2)

	  (4.3)

	  (4.4)
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𝑅 = 1− !!!  !!"#
!!!(!!!!  ∆!!)

!
!(!!  !!!"#)!

 

Here Γ!    and  Γ!"# represent internal damping and radiation damping, where Γ!   = 𝐼𝑚(∆𝑘!), 

which depends upon the metal film thickness and Γ!"#   = 𝐼𝑚 𝑘!! . The reflection coefficient 

goes to zero when Γ!   =   Γ!"#. 

C. Coupling Using Highly Focused Beams 

Another approach to couple the SPP using total internal reflection utilizes highly focused 

beam passing through a high numerical aperture objective lens illuminating the glass substrate 

as shown in Fig. 4.2. This excitation method allows for excitation in a diffraction limited 

spots, excitation for a continuum of frequencies as well as technique to subsequently 

determine the propagation lengths.    

 

Fig. 4.2 : Schematic showing SPP excitation using a focused continuum light source [17].  

Other SPP excitation techniques as shown in Fig. 4.1 (d),(f) include excitation using an near-

field scanning optical microscopy (NSOM) tip, a tapered optical fiber which when brought 

sufficiently close to sample illuminates the metal surface with high k-vectors, matching the 

requirement for coupling. SPPs can also be excited by the random surface roughness. Here 

the near-field diffracted components of the light as scattered by the surface are coupled to the 

surface in the form of SPPs. The excitation due to random rough surface leads to low 

efficiency due to the non-resonant condition.  

4.2 Imaging Surface Plasmon Polaritons: Near-field Scanning Optical Microscopy 

Near-Field Scanning Optical Microscopy (NSOM or SNOM), shown in Fig. 4.3 is a scanning 

	  (4.5)
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probe technique used to image surface plasmons on the surface of the metal. NSOM also 

provides the technique used to excite SPP where an evanescent field from the tapered optical 

fiber tip that locally launches circular SPPs onto a metal surface.  

As the SPPs propagate only a few microns, only scanning probe techniques could be applied 

to image surface plasmons. Earlier Scanning Tunneling Microscope (STM) technique was 

applied where presence of surface plasmon could be measured as an additional tunneling 

current produced due to interaction of surface charge oscillations with STM tip in the setup 

[17]. Other scanning probe techniques were used to detect surface plasmons, but it was later 

realized that such methods introduce perturbation effects caused by field enhancement due to 

LSPs. In NSOM technique a probe made up of optical fiber tip, which is tapered at the end, is 

used to scan the sample. The sharpened tip is usually made by pulling and tapering off the 

optical fiber in a controlled manner. The aperture of the optical fiber tip defines the resolution 

of the imaging technique. The refractive index of glass used in the sample is relatively small 

compared to the previous methods, thus minimizing the perturbation due to probing. The 

scanning probe technique allows detection of propagation length and the decaying tail of 

SPPs.  

 

Fig. 4.3: Schematic for basic setup for Near-field Scanning Optical Microscopy. The 

techniques can also be used for excitation of surface plasmons by switching to the 

illumination mode through the optical fiber tip, where due to tapering of the fiber tip, the 

propagating mode turns evanescent and hence couples to the metal surface [17]. 
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Imaging using Fluorescence technique:  Another technique to image SPPs has emerged 

recently; it utilizes emitters like fluorescent molecules or quantum dots, which when placed in 

proximity to the surface plasmons absorbs the fields and in turn emit radiation. If the 

absorption band of the emitter covers the frequency of the surface plasmons, the emitters can 

be excited. Thus the emitted fluorescence radiation can be used to image SPPs while the 

intensity of radiation determines the strength of the fields [27]. The image can be used to 

study interference effects in surface plasmons in addition to field confinement and 

propagation lengths. The imaging resolution is limited by the diffraction limit defined by 

conventional optics. 

4.3 Localized Surface Plasmons  

After reviewing the properties of propagating surface plasmons on planar surface, here we 

discuss in brief about another type of surface plasmon oscillations in metallic nanostructures, 

which upon interaction with light results in Localized Surface Plasmons (LSPs). LSPs unlike 

SPPs are non-propagating plasmon modes which are generated on surface of these metallic 

structures due to oscillating fields. The modes in nanoparticles, due to the geometry and 

curvature exhibit resonance, result in field amplification both inside and in near field of these 

particles [17].  

We discuss here the electromagnetic field solutions of isotropic metallic sphere of radius a 

(where a<< 𝜆 ) and frequency dependent dielectric constant 𝜀 𝜔 ,  placed at the origin 

surrounded by medium with dielectric constant 𝜀!   ,  in the presence of uniform 

electric field  

𝑬 = 𝐸!𝑧 = 𝐸!𝑟  𝑐𝑜𝑠  𝜃 

The solution to the Laplace equation is ∇!𝝍 = 𝟎  , where the wave function 𝝍 is given by : 

 

	  (4.5)
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1
𝑟! sin𝜃 sin𝜃

𝜕
𝜕𝑟 𝑟!

𝜕
𝜕𝑟 +

𝜕
𝜕𝜃 sin𝜃

𝜕
𝜕𝜃 +

1
sin𝜃

𝜕!

𝜕𝜙! 𝝍 𝒓,𝜽,𝝓 = 0 

 

𝝍 𝒓,𝜽,𝝓 =    𝝍𝒍,𝒎 𝒓,𝜽,𝝓
!,!

 

The wave function 𝝍 𝒓,𝜽,𝝓 , due to azimuthal symmetry has only 𝑟 and 𝜃 dependence. 

Thus the solution of wave functions in terms of  Legendre Polynomials can be given as : 

 

𝝍𝒊𝒏 = 𝐴!!
!!!   𝑟!   𝑃! (cos𝜃)                                                                  𝑓𝑜𝑟    𝑟 < 𝑎, 

𝝍𝒐𝒖𝒕 = (𝐵!

!

!!!

  𝑟! + 𝐶!  𝑟!(!!!))𝑃! (cos𝜃)            𝑓𝑜𝑟    𝑟 > 𝑎, 

Using the boundary conditions for continuation of tangential components of E fields, we get 

for r = a: 

− !
!
!𝝍𝒊𝒏
!" !!!

= − !
!
!𝝍𝒐𝒖𝒕
!" !!!

 

and from normal components of displacement fields: 

 

−𝜀!𝜀(𝜔)
𝜕𝝍𝒊𝒏

𝜕𝑟 !!!
= −𝜀!𝜀!

𝜕𝝍𝒐𝒖𝒕

𝜕𝑟 !!!
 

Now solving for the first order mode, i.e., 𝑙 = 1 we get solutions [18]: 

 

𝝍𝒊𝒏 = −𝐸!   
3𝜀!

𝜀(𝜔)+ 2𝜀!
          𝑟 cos𝜃                                                                                 𝑓𝑜𝑟    𝑟 < 𝑎, 

 

𝝍𝒐𝒖𝒕 = −𝐸!  𝑟 cos𝜃   + 𝐸!   
𝜀−𝜀!

𝜀(𝜔)+ 2𝜀!
𝑎!   

cos𝜃
𝑟!                                       𝑓𝑜𝑟    𝑟 > 𝑎, 

 

Defining the polarizing vector P, we represent 𝝍𝒐𝒖𝒕   as :  

	  (4.6a)

	  (4.6b)

	  (4.7a)

	  (4.7b)

	  (4.8a)

	  (4.8b)

	  (4.9)
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𝝍𝒐𝒖𝒕 = −𝐸!  𝑟 cos𝜃   +   
𝑷.𝒓

!!!!!!!!
 

𝑷 =           4𝜋𝜀!𝜀!
𝜀−𝜀!

𝜀(𝜔)+ 2𝜀!
𝑎!  𝑬       =      𝜀!𝜀!   𝛼  𝑬 

 

where polarizability takes the frequency dependent form: 

𝛼  (𝜔) =         4𝜋
𝜀(𝜔)−𝜀!
𝜀(𝜔)+ 2𝜀!

𝑎!       

 

It is to be noted that the Localized Surface Plasmons considered here are different from SPPs 

discussed in the previous chapter where SPPs are characterized by its dispersion relation:   

𝑘! =
𝜔
𝑐

𝜀!𝜀!
𝜀!+𝜀!

 

 and represent a propagating surface wave. In contrast LSPs are confined to curved metal 

surfaces which are characterized by discrete and complex frequency dependent permittivity 

and the resonant condition which is defined by the shape and the geometry of the 

nanostructure. The LSPs in these particles can be excited by direct illumination by 

electromagnetic radiation of appropriate frequency irrespective of the wave vector. Hence the 

condition to match the wave vector to couple to plasmon modes is not required in this case.  

LSPs can also be attributed to structures present on the metal surface or due to roughness of 

the surface. If the LSP resonant frequency lies close to surface plasmon frequency, LSPs can 

decay into surface plasmons while, in turn, the SPPs propagating on the surface can couple 

into LSPs. Thus it is important to realize the contribution of surface defects or roughness for 

the scattering of SPPs. Due to the small volume of the nanostructures, the field enhancement 

is observed due to presence of LSP resonances. This phenomenon of field enhancement leads 

to very interesting applications like Surface Enhanced Raman Scattering (SERS) and 

photovoltaic current enhancement and aperture-less Scanning near-field microscopy [25, 26]. 

	  (4.10)

	  (4.11)
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4.4 Scattering of Surface Plasmons 

The scattering of surface plasmon (SP) is characterized by three effects: scattering of SP to 

another direction as a result of reflection, scattering of SP modes to out-of-plane propagating 

light and propagation of SPs through or over the surface feature. Like other scattering 

phenomenon, the scattering of SPs depends upon the geometry/size (with comparison to the 

SPP wavelength) and dielectric constant of the surface feature.  

The process of scattering phenomenon due to small particles, as mentioned in last section, has 

caught considerable interest, leading to enhancement in efficiency of fluorescence imaging,  

photovoltaics and quantum optics. We study here the effect of scattering which exhibits a 

scattering cross-section much larger than physical cross-section of the particle. As the 

continuation of previous section, we consider scattering due to a sphere (radius a << 𝜆), which 

can be modeled as a point spherical dipole whose scattering cross-section (𝐶!) and absorption 

cross-section (𝐶!) can be defined as [27]: 

𝐶! =   
1
6𝜋

2𝜋
𝜆

!

𝛼 !      𝑎𝑛𝑑    𝐶! =   
2𝜋  
𝜆 𝐼𝑚 𝛼  

 

where  𝛼 is the polarizability as derived in the previous section. 

𝛼   𝜔 =         4𝜋
𝜀 𝜔 −𝜀!
𝜀 𝜔 + 2𝜀!

𝑎!       =     3𝑉    
𝜀 𝜔 −𝜀!
𝜀 𝜔 + 2𝜀!

 

We note here that when 𝜀 𝜔 =   −2𝜀!,  the particle polarizability attains bulk resonance 

frequency. We see that the scattering cross-section is very large near the bulk resonance 

frequency. The cross-sections defined above are valid only for small particles i.e. a << 𝜆.  As 

the particle size increases, dynamic depolarization, formation of multi-poles and radiation 

dampening effects cannot be neglected.  

Substituting the values of frequency dependent dielectric constant, derived using Drude 

model  (eq. (2.10)) i.e.  

	  (4.12)
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ε! 𝜔 = 1− !!!

!!!!"#
  

we get  

𝛼   𝜔       =     3𝑉   !!!

!!!!!!!!!"#
  

Thus, the bulk plasmon frequency for a spherical nanoparticle is related to plasma frequency  

𝜔 = 3  𝜔! = 𝜔!"#$. 

4.5 Extraordinary transmission through Sub-Wavelength Apertures 

One of the most exciting and intriguing phenomena related to plasmonics has been that of 

transmission properties of single apertures in a thin metal film and the enhanced transmission 

through periodic and aperiodic hole arrays. In this section, we begin the discussion with the 

transmission properties of sub-wavelength hole arrays and then discuss the role of surface 

plasmons in enhanced transmission.  

The optical properties of a single aperture in a infinite perfect conductor has been defined by 

principle of Huygens-Fresnel diffraction. The scalar mathematical form for the problem, as 

defined by Kirchhoff, requires the fields at the aperture which are approximated equal to 

incident field at the hole. This assumption might be considered true when the aperture is 

much larger when compared to the wavelength, as diffracted field is relatively small on the 

screen, that would not violate the boundary conditions. The intensity distribution of the 

transmitted field in this case is essentially given in terms of first order Bessel functions and 

transmission pattern defined by Airy function. The transmission coefficient, T, defined by the 

intensity of transmitted field over incident intensity over the aperture area is close to 1 (𝑇 ≅

1.). However, it is noted that the Kirchhoff’s approximation doesn’t hold true when the 

aperture is much smaller than the wavelength. The transmission through sub-wavelength 

	  (4.13)

	  (4.14)
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aperture was first explained by Rayleigh and analytical expression was derived by Bethe, 

which is given by [31]:  

𝑇 = !"
!"  !!

  (𝑘𝑟)! 

Note that transmission through the hole is very weak and is of the order of !
!

!
. This relation 

is only defined for an infinitely thin film. For a practical case for thin film of finite 

conductivity and thickness, h, the transmission further decreases exponentially with h. We are 

interested in the fields tunneling through the hole, i.e., the hole diameter is small enough to 

allow any propagation modes inside the aperture (i.e. d < 𝜆/2). The effect was contributed to 

the presence of localized surface plasmons (LSP) modes of the aperture. Degiron et al. [30] 

experimentally captured the presence of LSPs at the interface of the film using high energy 

electron beam induced surface plasmon emission (Fig.4.4). 

 

Fig. 4.4: (a) High electron micrograph images of two orthogonal polarizations of LSP 

located at the interface of the hole aperture. (b) Transmission spectrum obtained in the 

micrograph [30] 

	  (4.15)
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Similar effect was observed for rectangular and square apertures and direction dependent LSP 

modes were observed. The results also indicated that the LSP modes of each aperture in an 

array could also interact with one another, which can be controlled by appropriate 

arrangement of the apertures in the array in periodic and aperiodic fashion [30]. Ebbesen et al. 

[7] , observed an unusual transmission spectra from a square array of sub-wavelength holes 

and found peaks at wavelengths larger than diameter of the cylinder which exceeded the unity 

transmission coefficient by orders of magnitude. The existence of the peaks was attributed to 

surface plasmon modes which were excited using a grating coupler. It was shown that for a 

normally incident light over the square lattice the peaks are approximated by: 

𝜆!"#$ 𝑖. 𝑗 = 𝑃 !
!!!!!

  𝑛!"" = 𝑃 !

𝑖!!!!
   !!!!

!!!!!
  

where P is the lattice constant and i and j are the scattering orders of the hole array. Thus the 

transmission pattern for a plane wave impinging on the hole array is defined by the 

interference and diffraction due to each aperture of the hole array. The corrugations on the 

input side determine the transmission peaks that diffracts in all directions when passing 

through the sub-wavelength aperture. The diffraction pattern of the bare hole can also be 

engineered by adding the periodic or aperiodic structure to the exit plan, where selective 

scattering and interference phenomenon defines the shape of the beam. Lezec et al. [5] 

demonstrated the phenomenon wherein a bull’s-eye structure formed by periodic grooves 

around a sub-wavelength hole where the transmission through the hole can be engineered by 

the periodic groove on the surface. Similarly, the beam shaping device was demonstrated 

using the groove array on the output side of the Ag film. 

The phenomenon of frequency selective enhanced transmission through sub-wavelength 

apertures has also been demonstrated using periodic and aperiodic aperture and groove arrays 

[28-30]. The phenomenon mediated by LSPs or aperture waveguide resonances has been 
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explored for some very intriguing applications like optical filtering, enhancement of 

fluorescent molecules, near-field imaging and optical and thermal switching using non-linear 

materials. Since the SPPs are highly sensitive to the refractive index of the surrounding 

dielectric medium, thus with an effective control over the refractive index one can control the 

optical transmission from the periodic structures and resonances in metallic structures.  Using 

medium composed of ferroelectric or electro-optic, non-linear medium one can change the 

resonant conditions of light tunneling through the aperture and can design all optical devices. 

4.6 Numerical Techniques 

Surface plasmons, as discussed in the previous chapters, can be described by Maxwell’s 

equations and the field solutions for SPPs can be effectively obtained using different 

numerical techniques. In this section we will discuss the common electromagnetic simulation 

methods as well as the equivalent methods used to solve these problems.  

While modeling plasmonic structures certain factors specific to surface plasmons need to be 

addressed. Firstly, the dielectric constant of metals is to be defined in complex form, which is 

also inherently a function of frequency. Thus the numerical technique for solving fields in the 

presence of metals is required to be modeled using Drude-Lorenz model (eq. (2.11a, 2.11b)). 

It is also to be noted that even the Lorenz-Drude model does not account for interband 

transitions in metals, the simulation technique needs to be programmed using experimental 

data. Secondly, as the fields are highly confined to the metal-dielectric interface and decay 

exponentially away from the surface, a very fine mesh size is required, usually of the orders 

of !
!"
  to !

!""
  depending upon the application. The accuracy of the simulation results for 

nanoscale plasmonic devices depends highly on the mesh size and the geometry defined (as 

for curved or pointed surfaces, non-uniform mesh yields more accurate results). Different 

finite-difference techniques, where the differential equations are approximated by finite 

differences, are used model electromagnetic devices; we discuss here the basic concept of 
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these techniques (FDFD and FDTD) without going into much detail. 

Finite Difference Frequency Domain (FDFD): As in finite difference methods, a continuous 

problem involving electromagnetic fields is converted to a discrete problem where the fields 

are calculated only at the points defined by the mesh. Later the fields are approximated over 

the entire region. In FDFD technique the fields are calculated at the grid of the nodes. The 

differential equation in special domain is approximated to accuracy of second order using the 

Taylor’s series expansion, given by:  

                                                                                !"
!" !!

= ! !!!!! !! !!!!!
!!!

+ 𝑜𝑟𝑑𝑒𝑟  [ Δ𝑥)! +⋯  

where Δ𝑥 is defined by the mesh size. Similarly, the value of a function at a point, 𝒑𝐢𝐣𝐤, in 

three dimensions defined by coordinates (𝑥!   ,𝑦!  , 𝑧!) can be approximated. For a 1D problem 

with uniform grid, 𝑥! = 𝑖Δ𝑥, the central-difference formula gives the relation: 

 

𝑑𝑓   𝑥!
𝑑𝑥

!
≅
𝑓 𝑖 + 1 − 𝑓 𝑖 − 1

2Δ𝑥  

Similarly the second order differential takes the form :  

𝑑!𝑓   𝑥!
𝑑𝑥!

!
≅
𝑓 𝑖 + 1 − 2𝑓 𝑖 + 𝑓 𝑖 − 1

(Δ𝑥)!   

By using the above approximation, the second order wave equation obtained from Maxwell’s 

equations can be deduced in terms of finite differences.  

                                                                              ∇  ×  ∇  ×  𝑬 𝒓 − 𝑘! 𝑟 𝑬 𝒓 = −𝑖𝜔𝜇!  𝑱(𝒓)  

Considering the two-dimensional case, for simplicity, where E field vector has no z-

dependence, i.e., for a TE polarization, the above equation can be represented as: 

𝑑!

𝑑𝑥! +
𝑑!

𝑑𝑦!   𝑬𝒛 𝒓 − 𝑘! 𝑟 𝑬𝒛 𝒓 = −𝑖𝜔𝜇!  𝑱𝒛(𝒓) 

Considering a uniform rectangular mesh defined by 𝑥! = 𝑖Δ𝑥  and 𝑦! = 𝑗Δ𝑦 , we get :  

(4.16)

(4.17)	  

(4.18)	  

(4.19)	  

(4.20)	  
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𝑓 𝑖 + 1, 𝑗 − 2𝑓 𝑖, 𝑗 + 𝑓 𝑖 − 1, 𝑗
(Δ𝑥)! +   

𝑓 𝑖, 𝑗 + 1 − 2𝑓 𝑖, 𝑗 + 𝑓 𝑖, 𝑗 − 1
(Δ𝑦)! + 𝑘! 𝑖, 𝑗   𝑓 𝑖, 𝑗

= 𝐶  𝑱(𝒊, 𝒋) 

In the above equation 𝑘! 𝑖, 𝑗  can be defined as 𝑘!
!𝜀! 𝑖, 𝑗,𝜔  to account for dispersive 

properties of the metal. Thus the fields at a point can be calculated using fields at neighboring 

2, 4 or 6 in case of one-, two-, or three- dimensional case.  The equations can be later solved 

by solving the set of linear equation given by 𝑨  𝒙 = 𝑩, where B is defined by the source 

currents J. As can be seen from above argument, the FDFD technique yields a sparse matrix 

that can be solved efficiently.  

Finite Difference Time Domain (FDTD): FDTD is a time domain technique that uses the 

similar concept of finite differences but in this case for time differential equations [33]. Thus 

the source free solutions for Faraday’s law and Ampere’s law can be given by: 

 

∇  𝑋  𝑬 𝒕 = −𝜇  
𝜕𝑯 𝑡
𝜕𝑡   →       ∇  𝑋  𝑬 𝒕 ≅ −𝜇    

𝑯 𝑡 + Δ𝑡 −𝑯 𝑡
Δ𝑡  

 

∇  𝑋  𝑯 𝒕 = −𝜇  
𝜕𝑬 𝑡
𝜕𝑡   →       ∇  𝑋  𝑯 𝒕 ≅ 𝜀    

𝑬 𝑡 + Δ𝑡 − 𝑬 𝑡
Δ𝑡  

The equations can also be represented as : 

∇  𝑋  𝑬 𝒕 = −𝜇  
𝜕𝑯 𝑡
𝜕𝑡   →       ∇  𝑋  𝑬 𝒕 ≅ −𝜇    

𝑯 𝑡 + Δ𝑡 2 −𝑯 𝑡 − Δ𝑡 2
Δ𝑡  

 

∇  𝑋  𝑯 𝒕 = −𝜇  
𝜕𝑬 𝑡
𝜕𝑡   →       ∇  𝑋  𝑯 𝒕+ Δ𝑡 2 ≅ 𝜀    

𝑬 𝑡 + Δ𝑡 − 𝑬 𝑡
Δ𝑡   

 

We can see from the above equations that the right hand that we need to know H fields at 

time 𝑡 + Δ𝑡  in order to compute E fields at time instant t. Thus the problem can be 

extremely difficult to solve. This can be solved by staggering E and H fields in time, where H 

(4.21a)

(4.21b)

(4.22b)

(4.22a)

(4.23)



	  

43	  

fields are computed at every (Δ𝑡 2, t+ Δ𝑡 2 , 2t+ Δ𝑡 2 ,… ) and E fields at (0, Δ𝑡, 𝑡 +

Δt,…). The eq. (4.22b) can be written as: 

𝑬 !!!! =   𝑬 ! +
𝜀
Δ𝑡   .∇  𝑋  𝑯 𝒕!!! !  

Thus the coefficients 
!
!!

 can be computed beforehand and EM solutions using FDTD method 

can be computed. Next problem is to define fields in space in the grid (unit cell). 

Yee in his 1966 paper described the technique to solve the Maxwell’s curl equations  on the 

grid points that are staggered in time as well as space. Thus the fields that are continuous in 

space are computed at discrete points staggered at points defined by the Yee cell [34]. A 

typical Yee cell in 1D, 2D and 3D is shown in Fig.4.6:  

 

Fig. 4.5:   Schematic showing Yee grid cell in 1D, 2D and 3D. 

Thus the curl equations are given by:  

𝜕𝐸!
𝜕𝑥 −

𝜕𝐸!
𝜕𝑦 =   −𝜇

𝜕𝐻!
𝜕𝑡   →

𝐸!
!!!,!,!

!
− 𝐸!

!,!,!
!

∆x −
𝐸!
!,!!!,!

! − 𝐸!
!,!,!

!
∆y

= −𝜇
𝑯𝒛
𝒊,𝒋,𝒌

𝒕!∆𝒕𝟐
−𝑯𝒛

𝒊,𝒋,𝒌

𝒕!∆𝒕𝟐
Δ𝑡  

𝜕𝐸!
𝜕𝑦 −

𝜕𝐸!
𝜕𝑧 =   −𝜇

𝜕𝐻!
𝜕𝑡 →

𝐸!
!,!!!,!

! − 𝐸!
!,!,!

!
∆y −

𝐸!
!,!,!!!

!
− 𝐸!

!,!,!
!

∆z

= −𝜇
𝑯𝒙
𝒊,𝒋,𝒌

𝒕!∆𝒕𝟐
−𝑯𝒙

𝒊,𝒋,𝒌

𝒕!∆𝒕𝟐
Δ𝑡  
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𝜕𝐸!
𝜕𝑧 −

𝜕𝐸!
𝜕𝑥 =   −𝜇

𝜕𝐻!
𝜕𝑡   →   

𝐸!
!,!,!!!

! − 𝐸!
!,!,!

!
∆z −

𝐸!
!!!!,!

! − 𝐸!
!,!,!

!
∆x

= −𝜇
𝑯𝒚
𝒊,𝒋,𝒌

𝒕!∆𝒕𝟐
−𝑯𝒚

𝒊,𝒋,𝒌

𝒕!∆𝒕𝟐
Δ𝑡  

and 

𝜕𝐻!
𝜕𝑥 −

𝜕𝐻!
𝜕𝑦 =   −𝜀

𝜕𝐸!
𝜕𝑡   →

𝐻!
!!!,!,!

𝒕!∆𝒕𝟐
− 𝐻!

!,!,!
𝒕!∆𝒕𝟐

∆x −
𝐻!
!,!!!,!

𝒕!∆𝒕𝟐
− 𝐻!

!,!,!
𝒕!∆𝒕𝟐

∆y

= −𝜀
𝑬𝒛
𝒊,𝒋,𝒌

𝒕!!!
− 𝑬𝒛

𝒊,𝒋,𝒌

𝒕
Δ𝑡  

!!!
!"

− !!!
!"

=   −𝜀 !!!
!"
  →

!!
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We observe that in the Yee cell, the derivatives are central and are thus second order accurate. 

While modeling metals at optical frequencies using FDTD methods, the dispersive effects of 

permittivity is applied using auxiliary differential equation (ADE) [33]. These equations 

relate electric field E to the displacement fields D. 

𝑫 = 𝜀(𝜔)𝑬 

where 𝜀 𝜔  is given by the Lorenz-Drude model as  𝜀 𝜔 = !!!

!!!!!! !!"#
. Thus the inverse 

Fourier transform of the dispersion relation we get  

𝜔!!𝑫+ 𝛾
𝜕𝑫
𝜕𝑡 +

𝜕𝟐𝑫
𝜕𝑡! = 𝜔!𝜀!𝑬 

Using the ADE method H is obtained from D using the Ampere’s law. The performance of 

FDTD method is almost similar to FDFD method but here the dispersive properties of metals 

have to be approximated using ADE method [34]. 

(4.24)

(4.25)
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5. Guided-Wave Devices Based on Networked Plasmonic 

Waveguides	  
 
Photonic and optoelectronic technologies provide inherent advantage of faster processing 

speeds at low power levels when compared to electronic counterparts. One of the major 

hurdles in wide acceptance of these technologies has been the large feature size associated 

with them, limited by diffraction.  Thus, photonic devices with sub-wavelength footprint are 

highly desired. One of the most promising approaches towards the miniaturization is achieved 

by harnessing surface plasmon polaritons within waveguide geometries. The field of  

plasmonics has facilitated research in all-optical nano-circuits, compact and integrable optical 

sources, modulators etc. [35-37]. Guided-wave structures to channel these SPPs with sub-

wavelength confinement would form the backbone of such integrated optical technologies. In 

this chapter we will discuss the design rules and constraints in designing plasmon waveguide 

structures. Using interference effects within the waveguides we demonstrate different 

nanophotonic devices such as directional color-routers, filters and optical switch based on 

plasmon waveguide networks.  

5.1 Sub-wavelength Confinement and Waveguide Configuration.  

The minimum confinement, as mentioned previously, in case of dielectric waveguide is 

limited to (𝜆  /2𝐧)  , defined by the waveguide mode size. In the case of plasmonic waveguide 

the confinement of the fields are set by the spatial extent of the evanescent fields which decay 

away from the interface. Different plasmon waveguide structures proposed include nanowire 

waveguide, metal-trench waveguide, MIM (metal-insulator-metal or MDM) and IMI 

(insulator-metal-insulator or DMD) planar waveguides, slot waveguide, coaxial waveguide, 

nanoparticle array based waveguide etc. [38-42]. We limit our discussion to three layer core 

based MIM and IMI waveguide geometries.  

The dispersion relation, for a wave propagating in x-direction and considering infinite 
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geometry in y direction: 

𝑘!"
! +   𝑘!

! =   !
!

!!
  𝜀!   

𝑘!"
! +   𝑘!

! =   !
!

!!
  𝜀!   , 

For a guided mode to exist,  

𝑘!
! ≥   

𝜔!

𝑐!   𝜀! 

Thus the spatial extent into the two media is given by: 

 

𝑘!" = 𝑖 𝑘!
! − !!

!!
  𝜀!  

𝑘!" = 𝑖 𝑘!
! − !!

!!
  𝜀!  

From the above equation the spatial confinement in the dielectric is limited by the diffraction  

(𝜆  /2𝐧), thus we obtain : 

𝑘!" ≤
2𝜋
𝜆   𝑛!"#$ =   

𝜔
𝑐    𝜀! 

We can clearly see that the fields are more confined inside the metal as the rate of exponential 

decay is much faster: 

𝑘!" ≤
𝜔
𝑐    𝜀! 

Thus MIM waveguide structures showcases improved confinement at the cost of allowing 

increased field intensities inside the metal. The confinement factor Γ, is defined as ratio of 

power in the core region to the total power in the waveguide [43] :  

Γ =    !"#$%  !"#$"%!#&  !"  !"#$
!"#$%  !"#$%  !"  !!!  !"#$%&'($

=   
!!!!   !"

  
!"#$

!!!!   !"
!
!!

  

The tradeoff between the propagation length and the field confinement as calculated by Zia et 

al. is plotted in Fig. 5.1. 

(5.1)	  

(5.2)	  

(5.3)	  

(5.4a)	  

(5.4b)	  

(5.5)	  

(5.6)	  

(5.7)	  
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Fig. 5.1: Plots showing (a) propagation length and (b) spatial extent vs. center layer 

thickness for IMI and MIM waveguide based on Au-air at 1550 nm wavelength [43].  

 

To achieve reasonable confinement the IMI waveguide requires very symmetric dielectric 

cladding, whereas for MIM waveguides, the spatial extent is restricted by the Ohmic losses in 

the metal as the fields penetrate only up to about skin depth into the metal. Since the MIM 

geometry allows us to place waveguides very close to each other, to design structure with 

very accurate mode dimensions, the MIM geometry is preferred for circuit-based designs.  

The modes in MIM plasmon waveguide structures can be excited using simple end-fire 

technique, where focused light beams when incident on the open end of the waveguide, 

excites the dominant mode of the waveguide.  

5.2 Plasmon Waveguide Structures 

In this section we discuss the behavior of different basic plasmon waveguide structures that 

are composed of planar metal-insulator-metal geometries, composed of silver and silicon 

dioxide (Ag-SiO2-Ag waveguide). The results were obtained using a commercial EM solver, 

Lumerical FDTD solutions. The simulations were run for different optical frequencies. We 

will also present the different models that have been proposed (when applicable) for the 

structures.  
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The importance of understanding these waveguide components is necessary to describe the 

behavior and thus, reduce the reflections and hence cross-talk between different components. 

For our purpose we simulate the waveguide structures in 2D, and excite the waveguide at 

optical frequencies, 650nm and 750 nm. As we have seen in last chapter the plasmons are 

highly lossy in visible range as we go towards ultraviolet, thus we limit ourselves to design 

devices to longer visible wavelengths. However the propagation lengths are much longer at 

near-IR and optical communication wavelength, i.e., 1550 nm (restricted to 1550 due to high 

absorption in silicon at smaller wavelength), but due to adequate technologies in silicon 

photonics and optical fibers, available in the frequency regime we intend to design devices 

with smaller footprint at the higher frequencies.  

 

L-bend Waveguide   

The structure is composed of a sharp 90° bend in an MIM waveguide we simulate the 

structure with a 750 nm monochromatic plane wave source, that excites surface plasmon 

modes in the waveguide. We measure the transmission and reflection as a function of output 

waveguide width.  
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Fig. 5.2: L-bend Waveguide: (a) 2D Schematic of L bend MIM waveguide, (b) 

Simulation results for L bend waveguides. Plots show normalized reflected power with 

varying Input WG width, for different values of output WG, (c) plot shows the 

transmitted power for w1=w2= 50 nm. 

 

We observe that plasmon waveguides suffer substantial reflection when bent sharply at 90° 

and thus introduces extra loss into the waveguides. The reflection suppressed by rounding the 

sharp edge around the bend slightly, or by introducing additional structure at the site of the 

bend to reduce the effective waveguide dimension. We observe that for small waveguide 

dimensions, the L-bend follows the transmission line model where the reflection coefficient, 

R, is given by:  

                                                                              𝑅 =    !!!!!"
!!!!!"

!
=    !!"!(!!")!!!"!(!!"#)

!!"! !!! !!!"!(!!"#)

!
 (5.8)	  
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where 𝑤!"  and 𝑤!"# represent the width of input and output waveguide respectively. The 

impedance of MIM plasmon waveguide is given by: 

𝑍!"! =   !!"#
!!!

  𝑤 

This approximation is valid for TE modes (as well as Quasi-TEM modes). Note when the 

𝑍! = 𝑍!" , i.e., the input waveguide width equals output waveguide width, the reflection 

should go to zero. This is valid in our case as long as 𝜆!"" >   𝑤 (waveguide width), under 

this limit, the plasmon modes are coupled to one another and hence no standing wave can 

exist in the waveguide. The behavior deviates from the model when waveguide width 

comparable to the wavelength of SPP. This reflection is also reduced for higher wavelength 

for same waveguide dimensions [40]. The reflection in the L-bend increases as the width of 

the waveguide (input and output) increases due to increase in effective width at the bend; this 

can be overcome by using a curved bend or tapered bend keeping the waveguide width 

constant throughout. 

 

T-bend Waveguide   

T bend in MIM plasmon waveguide, like a conventional waveguide, act as a power splitting 

element and divides the power equally among the two waveguides provided the width of the 

two waveguides is equal. We see from the plots in Fig. 5.3 that the T-bend waveguide 

complies with the transmission line model more accurately. Here the condition of zero 

reflection is met when the input waveguide width is double than that of the output waveguide.  

 

 

 

(5.9)	  
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Fig. 5.3: T-bend Waveguide: (a) 2D Schematic of T bend MIM waveguide, (b) 

Simulation results for T bend waveguides. Plots show normalized reflected power vs. 

output waveguide width.  

 

The transmission line model in this case is modified to:   

𝑅 =   
𝑍! − 𝑍!"
𝑍! + 𝑍!"

!

=   
2𝑍!"!(𝑤!")− 𝑍!"!(𝑤!"#)
2𝑍!"! 𝑤!" + 𝑍!"!(𝑤!"#)

!

 

We see from the plots above that the T-bend structure abides by the model relatively well.  

Side-Waveguide Divider 

 Here we demonstrate the simulation results of a similar geometry as the T-bend, but side 

waveguide branches out of the main waveguide. Such structure could be crucial while 

designing plasmon based nano-circuits. 

(5.10)	  
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Fig. 5.4:  Side-port Waveguide: (a) 2D Schematic of Side port in MIM waveguide, (b) 

Simulation results for Side-port waveguide structure. Plot shows normalized 

transmitted power to side WG and (c) shows normalized transmitted power to Forward 

WG vs. output waveguide width 

 

We observed that the transmission to the side port is large when the side waveguide is 

narrower, while when the side port width is increased, the transmission to the side port is 

decreased. Almost 50:50 split in power is observed when the side waveguide and main 

transmission waveguide widths are equal. It is also observed that the transmission is more in 

the waveguide with smaller side waveguide width, providing a low impedance path. Also 

when the width of the side waveguide is increased, the gap or discontinuity in the input 

waveguide increases leading larger reflected power. The reflection in the input waveguide 

increases as the width of the input waveguide is decreased showcasing SPP with longer 𝜆!". 
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4-port Splitter 

One of the interesting and comparatively widely studied waveguide components is a 4-port 

splitter (4-way network, X-junction).  

        

 

 

   

 

Fig. 5.5:  4 Port Splitter: 2D color plots for 4 port-network. To avoid reflection from 

the side ports, side waveguides are modeled as infinitely long, using PML boundary 

condition. (a), (b) Schematic and simulation screen-shot for 4-port network. Only one 

waveguide is excited with 750 nm source and the transmission is measured at the four 

ports. (c) shows the measured output power at the four ports vs. horizontal waveguide 

width for w2 = 50 nm (left) and transmission through different ports of 4-port splitter 

(c)	  
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for w1=w2=50 nm (right). The device behaves as an equal power splitting element at 

longer wavelengths. 

 

We can clearly see from Fig. 5.5 that the 4-port network acts a 4 way equal power splitter 

element when the two waveguides are of equal width. The 4-port network can also be used as 

a unit cell for dividing complex waveguide network structures and can be designed for 

uneven transmission by varying the ratio of horizontal and vertical waveguide widths. It can 

also be noticed that when the width of horizontal waveguide is large as compared to the 

vertical waveguide, the SPPs propagating in the vertical waveguide see high impedance node 

(open circuit) and most of the wave is reflected back.  On the contrary if the width of 

horizontal waveguide is small as compared to the vertical waveguide, the SPPs propagating 

in the vertical waveguide jump over the node and are transmitted in the forward direction, 

while only negligible power is transferred to the side waveguides. Similarly, other devices, 

stubs, Fabry-Perot cavities (open-ended plasmon waveguide resonator) structures have been 

demonstrated [44].  

5.3 Networked Plasmonic Waveguides (NPW) and Devices 

Based on the results obtained in the previous section and the last chapter, we can find the 

appropriate width of the waveguides and the propagation length as well as the frequency of 

operation. We now utilize the phenomenon of interference between two SPPs and design 

devices like color router and directional filter and optical switch based on plasmon waveguide 

network. 

 

2 × 1 Networked Plasmonic Waveguides 

In this geometry we cascade two 4-Port networks horizontally such that the horizontal 

waveguide of the two 4-Port networks form a interference network which also acts as a 
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resonant cavity. Here the two input waveguides are simultaneously excited. Using the concept 

of 4-port network, we know power splits at the 4-port junction and some power is transmitted 

to the common horizontal-waveguide. Now the length D, of the common side-waveguide can 

be varied to cause destructive and constructive interference at the waveguide junction. Thus 

by varying the length D now the splitting at the two original 4-port waveguide junctions can 

be modified. Through the simulations we see that at certain dimension D, the SPPs travelling 

in the vertical waveguide get canceled due to destructive interference with the SPPs 

introduced in the vertical waveguide by horizontal waveguide at the power splitting element. 

Thus we observe different transmission bands in the plots of Fig. 5.6. Using this property of 

the waveguide network, when we change the angle of the source illumination, the path length 

difference is introduced in the two vertical waveguides and hence the interference between the 

two SPPs at the common waveguide is also modified. As can be seen for the plots, different 

transmission outputs can be obtained at different angles.  

 

(b) 
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Fig. 5.6: (a) Schematic of 2 × 1 Networked Plasmonic Waveguides. The angle of the input 

source is varied from 0°  𝑡𝑜  20°, all the ports are perfectly matched through PML boundary 

condition. (b) 2D image plot for transmission through the two output ports. The plots show 

the transmission for different vertical waveguide width (y-axis) where W2 is kept equal to 

W3, while the x-axis shows the transmission for different values of D, length of the common 

horizontal waveguide. The plots are given for different angles of incidence 

(0°, 5°, 10°, 15°, 20°)  while the value of W1 (width of horizontal waveguide) is kept constant.  

 

Note that the wavelength of SPPs depend on the width of the waveguide, thus the 

modification in transmission due to interference in the common waveguide will happen at 
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different values of length D.  Similar argument is also valid if we change the wavelength of 

the excitation source. The plots shown above are for 750 nm source wavelength. Using the 

data from above, different directional devices can be designed.  

2 X 2 Waveguide Network 

We further modify the design where intersection of 2 vertical and 2 horizontal waveguide 

form a 2 × 2 Networked Plasmonic Waveguides (NPW). The geometry of 2 × 2 NPW is 

shown in Fig.5.7:  

 

Fig. 5.7: Schematic of 2 × 2 Networked Plasmonic Waveguides 

 

The 2 ×  2 NPW utilizes the effect of the interference between SPPs in effectively 4 

waveguides, i.e., two internal horizontal as well as the vertical waveguides. Thus now the 

parameters D and T can be varied to design and improve performance of different directional 

devices. We now demonstrate different devices designed using 2 × 2 NPW. 

 

Directional Filter 

As observed from 2 × 1 NPW (Fig. 5.5(a)), the output at the two output ports T1 and T2 can 

be modulated by introducing a phase difference between the two input ports, we propose  

directional filter device based upon 2 × 2 NPW as demonstrated in Fig. (5.8):  
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 (c) 

 

Fig. 5.8:  NPW based directional filter (a) Schematic showing operation of directional filter 

based on 2x2 waveguide network, (b) plot showing power transmitted through port T1 with 

different length D. (c) shows the directional filter for different angles for 650 nm (left) and 

750 nm (right) source excitation, respectively.  

As can been seen from Fig. 5.8(b), different transmission levels can be obtained for different 

angle for a particular D. For example, at length D = 400nm, the transmission can be varied 

from max at 0º to minimum at 20º. Note that the output at port 2 is different than port 1 thus 

the device can be used as a single or two port device based on the device geometry and how 

	   	  

Output= 0 

	   	  	   	   	  
	  

	   	  	   	  

	   	  

(a)	  

(b)	  
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the outputs are being measured. The plots in Fig. 5.8(c) show varied transmission output for a 

single output port device for 650 nm and 750 nm source excitation.  

Directional Optical Switch 

Based on similar concept, the variable lengths and waveguide width can be modified to design 

an optical switch. The diagram in Fig. 5.9(a) shows a 2-bit optical switch where the outputs at 

port T1 and T2 can be modulated by changing the direction of the light, or by inducing phase 

change between the two input ports.  

        

          

Fig. 5.9:  2-bit optical Switch (a) Steady state Simulation screen shots 750 nm source showing 

the field intensities at the two output waveguides. (b) plots represent an operation of NPW as  

optical switch.  

 

For operation of the device as an optical switch, an optimal threshold level can be set, thus 

enabling the device to provide all 4 output combinations for the 2-bit switch. As seen from the 

above figure (Fig. 5.9 (a)), the output at the other side ports can be extracted to generate a 6-

bit switch (or 8-bit by including the reflection ports).  

(a)	  

(b)	  
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Directional Color router  

We also demonstrate an optical color router based on 2 × 2 plasmonic waveguide networks 

(Fig. 5.10 (a)) where the device can be used as an color router as well as an color mixer. The 

simulation results have been obtained for 750 nm and 650 nm wavelength sources. Due to the 

symmetry of the device, the color routing to the ports can be switched by changing the input 

source excitation by 180º.   

          

 

Fig. 5.10: Schematic showing directional color router using 2 X 2 NPW.  

 

The plots in Fig. 5.10 (b) show, for different values of length D, varied values of transmission 

for the two wavelengths can be achieved. At D = 410 nm, the 650 nm source excitation can be 

guided while 750 nm is restricted. At D = 360 nm, transmission of 650 nm can be restricted, 

while 750 nm is transmitted. For the same geometry, the behavior can be reversed for 

different source angle. Fig.5.10(c) shows operation of 2×2 NPW as a color router for source 

inclined at 10º. The similar structure can be used as a mixer, where combination of the two 

	   	   	   	  

	   	   	   	  

(a)	   (b)	  

(c)	  
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wavelengths can be obtained at the output ports when each input waveguide is excited with 

individual wavelength. 

5.4 Fabrication and Experiment Procedure 

The NPW devices can be fabricated using a planar or a non-planar device based on the 

simulation results obtained above. These devices are highly integrable to the silicon devices 

where plasmons can be excited using gratings or tapered waveguides. The waveguides can be 

closed structures (slot, coaxial etc.) or open (wedge, groove etc.). We propose in Fig.5.11 a 

novel bottom-up fabrication approach for a stand-alone planar NPW device, which can be 

fabricated using simple physical deposition and milling technique. 

 

Fig.5.11: Schematic showing the proposed fabrication steps for 2 X 2 networked 

plasmonic devices. 

The different device dimensions are to be fabricated based on the simulation results. The 

lateral x- dimensions would be kept high enough that the plasmons decay and the effect of 

reflection from open ends is negligible. For the experiment procedure we propose 

transmission spectroscopy technique using super-continuum and tunable laser source. The 

plasmons would be excited using end fire technique. As the two output ports are separated by 

distance smaller than the diffraction limit, the two outputs can be distinguished under the 

optical microscope; thus we plan to mill the second vertical waveguide partially through the 
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bottom Ag layer. The simulations confirmed that the output at output port 1 is minimally 

altered by partially milling the second port. 

Fabricated Sample  

 

Fig.5.12: SEM image at 52º tilt angle for 2x2 NPW obtained through FIB milling tool. The 

fabricated sample shows a taper angle of ≃ 4º. The sample is fabricated for D=T=400 nm, 

W1=W2=30nm, W3=W4=100nm.  

 

The simulations with the tapering in the vertical waveguides (Fig.5.12) showed that the 

general trend in the transmission plots still persists.  
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6 Summary and Future Work 
 
 
Over the past few years, interest in plasmonics has revived with great vigor. Research in 

plasmonics has emerged to practical devices ranging from discrete to integrated devices, and 

from optical communication wavelengths to visible and ultraviolet. In this report we have 

investigated the behavior of surface plasmon polaritons at optical frequencies, determining the 

effective refractive index and dispersion curves for different width of metal-insulator-metal 

based plasmonic waveguide geometry. For the Ag-SiO2-Ag geometry we found that as we 

squeeze the plasmons into smaller core dimensions, the wave-vector increases. To design 

effective and practical devices, we determined the propagation length and the plasmon decay 

rate with waveguide width for different optical frequencies. As the losses in metal (Silver in 

our case) increases at higher frequencies or lower wavelengths, we determined an optimal 

trade-off between operating frequency and the propagation length at 750 and 650 nm source 

wavelengths.  

To lay foundation for plasmonic based integrated circuit devices we begin by developing 

generic design rules and challenges in basic plasmonic waveguide components. We found that 

plasmonic waveguide structures show similar response as transmission lines and the reflection 

and transmission through L-bend, T-bend and Side-port waveguides can be modeled by 

impendence matching, where effective impendence can be found using the effective refractive 

index for the waveguide geometries. We found that these conditions are satisfied when only 

when the effective wavelength of surface plasmon polariton is greater than the width of the 

waveguide. We also investigated the behavior of 4-port splitting devices and deduced that the 

structure behaves as an equal power splitting device as we go towards near infrared 

wavelength. For optical frequencies the reflection into the input port increases as we increase 

the waveguide width. Using these generic knowledge, we designed networked plasmonic 
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devices at optical frequencies which utilize the effect of interference between the intersecting 

waveguides. Due to this interference effect the output at the ports can easily be modulated. 

Using 2 X 2 Networked Plasmonic Waveguides (NPW), comprising of network of two 

parallel vertical and horizontal waveguides, we designed different devices for 750 nm and 650 

nm source excitations. However, the plasmonic waveguide networks have already been 

proposed and designed for optical wavelengths in ref [12], where the modulation and 

tunability of device could be controlled. We propose here a novel approach to modulate the 

output at the ports by introducing a phase difference into the two input ports by changing the 

angle of source excitation. Based on the angle modulation for 2 X 2 NPW we designed 

devices like optical switch, directional filter and color routers. The plasmon waveguide 

network can also be used to enhance the absorption of light in photovoltaic devices by 

trapping and propagating the light along the absorption layer. The devices can also be 

effectively utilized for chemical and biological sensing where one vertical waveguide can be 

filled with sample under test.  

The 2D simulation results obtained using FDTD technique could be effectively used to design 

planar discrete and integrated devices. As an initial step, we propose a fabrication technique 

for a stand-alone device where the devices would be fabricated using Focused Ion Beam 

milling into alternate Ag and SiO2 layers. The devices are under fabrication and the 

experimental setup has been designed for transmission spectroscopy. We also plan to 

incorporate the directional control on light electro-optic technique. 
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