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ABSTRACT

The holomorphic functions on the unit disk D in the complex plane C have a

remarkable property: to know the values of a holomorphic function on D it suffices to

know only its values on the unit circle T. However not all holomorphic functions on D

are defined on T and the major problem of establishing such values (called boundary

values) led to the appearance of Hardy spaces Hp(D), p ≥ 1. If a function lies in

a Hardy space then its boundary values can be defined and its values on D can be

obtained using standard Cauchy or Poisson formulas.

The theory of Hardy spaces Hp(D) was well developed in the last century and the

spaces became the fundamental ground for complex analysis. To create analogous

spaces in higher dimensions Poletsky and Stessin introduced new spaces on hyper-

convex domains in Cn in [20]. We call these spaces the Poletsky–Stessin Hardy spaces.

Poletsky and Stessin used them to study composition operators but did not look at

their detailed properties.

In this thesis we fill this gap studying Poletsky–Stessin Hardy spaces on the unit

disk D. As in [20] for their definition we use subharmonic exhaustion functions u and

denote these spaces by Hp
u(D). It was mentioned in [20] that the classical Hardy spaces

form a subclass of Poletsky–Stessin Hardy spaces. Our work begins with producing

an example that shows that there are subharmonic exhaustion functions u on D for

which the Poletsky–Stessin Hardy spaces Hp
u(D) are different from classical Hardy

spaces Hp(D). Thus we have an abundance of new function spaces to be explored.



We show that the theory of boundary values for functions in Poletsky–Stessin

Hardy spaces is analogous to the classical theory of Hardy spaces and the most of

the classical properties stay true for these new spaces. Since by [20] the space Hp
u(D)

lies in Hp(D) we can use the classical boundary values for functions in Hp
u(D). This

allows us to redefine Poletsky–Stessin Hardy spaces as spaces whose boundary values

belong to weighted Lp spaces on T and we completely characterize the weights that

produce Poletsky–Stessin Hardy spaces Hp
u(D).

Many problems in complex analysis ask for existence of a bounded function in some

class. Usually it is easier to find a function in Hp
u(D) but they are not necessarily

bounded. As an application of Poletsky–Stessin Hardy spaces we provide a reduction

of such problems to the existence of a function in Hp
u(D) and use it to give shortcuts

in the proofs of the famous interpolation theorem and corona problem.

At the end of the thesis we also study the boundary behavior of functions in the

Hardy spaces on the polydisk and discuss the intersection of Poletsky–Stessin spaces

on bidisk.
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Chapter 1

Introduction

The study of Hardy spaces was initiated by G. H. Hardy in [12] in 1914. About a

decade later in 1923, F. Riesz introduced these spaces in [23] and named them after

him. Initially the Hardy spaces were defined on the unit disk D of C. Later Hardy

space theory was studied on more general domains. For instance, on the polydisc in

[25], on the unit ball of Cn in [26], on simply connected domains, on Jordan domains

with rectifiable boundary, on Smirnov domains and multiply connected domains in C

in [6], on pseudoconvex domains with C2 boundaries in [31]. In 2008, Poletsky and

Stessin introduced in [20] the weighted Hardy spaces Hp
u(Ω) on hyperconvex domains

Ω ⊂ Cn. For their definition they used a plurisubharmonic exhaustion function u on

Ω and the Monge–Ampère measures µu,r constructed by Demailly in [3]. This appears

to be the most general definition of Hardy spaces as it subsumes the classical theory

of Hardy spaces. Recently M. Alan and N. Gogus in [1], S. Sahin in [29], [30], K.

1



CHAPTER 1. INTRODUCTION 2

R. Shrestha in [27], [28] and with E. A. Poletsky in [19] have done some extensive

studies of these spaces independently. They refer to these spaces as Poletsky–Stessin

Hardy spaces.

Let λ be the normalized Lebesgue measure on the unit circle T. Let α ∈ L1(T) be

a non-negative function such that logα ∈ L1(T). Among many different definitions

of weighted Hardy spaces the closest to our purpose is the definition in [2] and [15],

which is defined as Hp
α = N+ ∩Lpα(T), where Lpα(T) is the space of all functions with

the finite norm

‖φ‖α,p =

(∫ 2π

0

|φ(eiθ)|pα(eiθ) dλ

)1/p

for 0 < p <∞ and N+ is the Smirnov class. If α ≡ 1 then we will use notations Hp

and ‖ · ‖Hp . Our study shows that if Ω is the unit disk D, the Poletsky–Stessin Hardy

spaces form a subclass of weighted Hardy spaces as defined in [2] and [15].

In this work we primarily focus our study on the Poletsky–Stessin Hardy spaces

on the unit disk. We will take an exhaustion function u whose total Monge–Ampère

mass
∫
D ∆u is finite and the Laplacian ∆u is not necessarily compactly supported.

It was proved in [20] that the space Hp
u(D), p ≥ 1, is Banach and for all exhaustion

functions u the space Hp
u(D) is contained in the classical Hardy space Hp(D) and for

u = log |z|, Hp
u(D) = Hp(D). We show by an example in Section 3.1 that, in general,

Hp
u(D) 6= Hp(D). Thus we have an abundance of Poletsky–Stessin spaces to explore

inside the classical Hardy spaces.

Most of our work is devoted to establishing the results for the Poletsky–Stessin
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Hardy spaces analogous to those for the classical space Hp(D). One thing that we

want to understand in detail is the boundary behavior of the functions in Hp
u(D).

Since Hp
u(D) ⊂ Hp(D) any function f ∈ Hp

u(D) has radial boundary values f ∗. In

classical theory, if f ∈ Hp(D) then f ∗ ∈ Lp(λ), where λ is the normalized Lebesgue

measure, and the Hp-norm of f coincides with Lp-norm of f ∗. The analogue of this

statement holds for the functions in Hp
u(D). For f ∈ Hp

u(D) the boundary value

function f ∗ ∈ Lpu := Lp(µu), where µu is the weak-star limit of the measures µu,r used

in the construction of the Poletsky–Stessin spaces, and the Hp
u-norm of f is equal

to the Lpu-norm of f ∗ (Theorem 3.14). The space Hp
u(D) is isometrically isomorphic

to Hp(D) (Theorem 3.17) and, therefore, the duality of Poletsky–Stessin spaces is

analogous to that of classical spaces (Theorem 3.19).

We can define the equivalence class Eu of exhaustion functions generating the same

space Hp
u(D) with equivalent norms. Then the class E0 of u = log |z| generates the

space Hp(D) with equivalent norms. However, the norms generated by the exhaustion

functions in a class vary so much so that the intersection of all unit balls in these

norms is the unit ball in H∞(D) (Theorem 3.16).

In Section 3.6 we give a complete characterization of Poletsky–Stessin Hardy

spaces as a subclass of weighted Hardy spaces as defined in [2] and [15]. For every

Poletsky–Stessin space Hp
u(D) there is a weight function αu ∈ L1(T) (see Proposi-

tion 3.4 for the definition of αu) so that Hp
u(D) = Hp

αu (Section 3.2 and Section 3.4).

Conversely, for every weighted Hardy space Hp
α where the weight function α is lower
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semicontinuous and α ≥ c > 0 for some constant c, there is an exhaustion function u

such that Hp
α = Hp

u(D) (Theorem 3.20).

Although the weighted Hardy spaces can be studied per se there is also an expecta-

tion that they can be useful for the classical theory. If a closed convex set A ⊂ Hp(D)

intersects unit balls in all Hp
u(D) for some p > 1 then it intersects the unit ball in

H∞(D) (Theorem 4.2). Thus to find bounded solutions to a linear problem it suf-

fices to show that they exist at all Hp
u(D) and their norms are uniformly bounded.

This fact has been used to demonstrate shortcuts to the proofs of the interpolation

theorem (Section 4.3) and corona problem (Section 4.4).

In Chapter 5, we study the boundary behavior of the functions in Hardy spaces

on the polydisk. We prove F. and M. Riesz theorem and discuss the intersection of

Poletsky–Stessin Hardy spaces on the polydisk.



Chapter 2

Preliminaries

2.1 Definitions

Definition 2.1. Let Ω ⊂ C be an open subset. A function u : Ω → R is called

harmonic if h ∈ C2(Ω) and ∆u = 0 on Ω, where ∆ is the Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z
.

Definition 2.2. Let Ω ⊂ C be an open set. A function u : Ω→ [−∞,∞) is said to

be subharmonic if

(i) u is upper semicontinuous.

(ii) if B(z0, r) ⊂⊂ Ω, h is harmonic on a neighborhood of B(z0, r) and u ≤ h on

∂B, then u ≤ h on B(z0, r).

Definition 2.3. Let Ω ⊂ Cn be a domain. An upper semicontinuous function u :

Ω → [−∞,∞) is called plurisubharmonic if u is subharmonic on each complex line,

5



CHAPTER 2. PRELIMINARIES 6

that is, u(aζ + b) is subharmonic as a function of ζ ∈ {ζ ∈ C : aζ + b ∈ Ω} for each

a, b ∈ Cn.

We will use the shorthand notation psh for the plurisubharmonic function.

2.2 Hardy Space of Harmonic Functions

Definition 2.4. The Hardy space hp(D), 0 < p < ∞, consists of the harmonic func-

tions u : D→ R satisfying

sup
0<r<1

∫ 2π

0

|u(reiθ)|p dθ <∞

and the space h∞(D) consists of the harmonic functions u such that

sup
z∈D
|u(z)| <∞.

Here D is the unit disk.

For p ≥ 1,

‖u‖hp =

(
sup

0≤r<1

1

2π

∫ 2π

0

|u(reiθ)|p dθ
)1/p

‖u‖∞ = sup
z∈D
|u(z)|

is a norm and hp(D) is Banach. Also it is clear that, if 0 < p < q <∞ then

h∞(D) ⊂ hq(D) ⊂ hp(D).
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Theorem 2.1. If u ∈ hp(D), 1 < p <∞, then there exists an f ∈ Lp[0, 2π] with

u(z) =
1

2π

∫ 2π

0

P (z, eit)f(t) dt

where

P (z, eit) =
1− |z|2

|eit − z|2
=

1− r2

1− 2r cos(θ − t) + r2
, z = reiθ

is the Poisson kernel. Same holds if p = ∞. If p = 1 there exists a finite signed

measure on [0, 2π] such that

u(z) =
1

2π

∫ 2π

0

P (z, eit) dµ(t).

We have the following converse to Theorem 2.1.

Theorem 2.2. Let f ∈ Lp[0, 2π], p ≥ 1. Then

u(z) =
1

2π

∫ 2π

0

P (z, eit)f(t) dt ∈ hp(D)

and if µ is a finite signed measure on [0, 2π] then

u(z) =
1

2π

∫ 2π

0

P (z, eit) dµ(t) ∈ h1(D).

The following is the Fatou’s theorem.

Theorem 2.3. Let f ∈ Lp[0, 2π], p ≥ 1 and let

u(reiθ) =
1

2π

∫ 2π

0

Pr(θ − t)f(t) dt.

Then u(reiθ)→ f(φ) a.e. in φ as reiθ → eiφ.
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Hence it is clear that if u ∈ hp, p > 1, then u(reiθ) → f(θ) as r → 1 almost

everywhere for some f ∈ Lp[0, 2π] and

u(z) =
1

2π

∫ 2π

0

P (z, eit)f(t) dt.

2.3 Hardy Space of Holomorphic Functions

Definition 2.5. The Hardy space of holomorphic functions Hp(D), p > 0, consists of

holomorphic functions f that satisfy

‖f‖Hp =

(
sup

0≤r<1

1

2π

∫ 2π

0

|f(reiθ)|p dθ
)1/p

<∞, when 0 < p <∞

and

‖f‖∞ = sup
z∈D
|f(z)| <∞, when p =∞.

As before, ‖.‖Hp is a norm for p ≥ 1 and Hp(D) endowed with this norm is Banach.

Also it is clear that, if 0 < p < q <∞ then

H∞(D) ⊂ Hq(D) ⊂ Hp(D).[11, Ch IX, Sec.4]

If f ∈ Hp(D), p > 0 then

lim
r→1

f(reiθ) = f ∗(eiθ)

exists almost everywhere and

f ∗(eiθ) ∈ Lp[0, 2π].
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For p ≥ 1 we have

f(reiθ) =
1

2π

∫ 2π

0

P (reiθ, eit)f ∗(eit) dt. [14, Ch.II, Sec.B] (2.1)

Theorem 2.4. [6, Theorem 2.6]If f ∈ Hp, p > 0, then

lim
r→1

∫ 2π

0

|f(reiθ)|p dθ =

∫ 2π

0

|f(eiθ)|p dθ (2.2)

lim
r→1

∫ 2π

0

|f(reiθ)− f(eiθ)|p dθ = 0. (2.3)

We have the following duality for Hp spaces [14, Ch. VII].

Theorem 2.5. If 1 < p < ∞ and 1/p + 1/q = 1, then dual of Hp is Lq/Hq(0) and

the dual of Lq/Hq is Hp(0) where Hp(0) = zHp. Similarly, dual of H1 is L∞/H∞(0)

and dual of L1/H1 is H∞(0).

We can consider the space Hp(D) as a ‖ · ‖Lp-closed subspace of Lp(T). Let

F ∈ Lp(T), 1 < p <∞. The distance from F to Hp(D) is given by

‖F −Hp‖Lp = inf{‖F − h‖Lp ;h ∈ Hp}.

The duality result in Theorem 2.5 provides some theorems about approximation by

Hp functions [14, p. 143].

Theorem 2.6. Let F ∈ Lp(T), 1 < p <∞, and 1/p+ 1/q = 1. Then

‖F −Hp‖Lp = sup

{∣∣∣∣∫ 2π

0

F (eiθ)g(eiθ) dθ

∣∣∣∣ ; g ∈ Hq(0) and ‖g‖Lq = 1

}
.

This supremum is attained, that is, there is a g0 ∈ Hq(0) with ‖g0‖Lq = 1 such that

‖F −Hp‖Lp =

∫ 2π

0

F (eiθ)g0(eiθ) dθ.
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2.4 Hardy Spaces on Hyperconvex Domains

Let Ω ⊂ Cn be a domain. If there is a continuous negative plurisubharmonic function

u on Ω such that u(z) → 0 as z goes to ∂Ω then Ω is called hyperconvex. Such a

function u is called the exhaustion function.

For r < 0 define,

Bu,r = {z ∈ Ω : u(z) < r}

Su,r = {z ∈ Ω : u(z) = r} .

The operators d and dc are given by d = ∂ + ∂ and dc = i(∂ − ∂). For ϕ ∈ C2(Ω) we

have

ddcϕ = 2i
∑ ∂2ϕ

∂zj∂zk
dzj ∧ dzk.

We set ur = max{u, r}. Demailly in [4] introduced the positive measures

µu,r = (ddcur)
n − χΩ\Bu,r(dd

cu)n, r ∈ (−∞, 0)

supported on Su,r. The measures µu,r are called the family of Monge–Ampère mea-

sures associated with the exhaustion function u. In [3, Theorem 1.7] Demailly has

proved the following formula which is fundamental to our study.

Theorem 2.7 (Lelong–Jensen formula). Let ϕ be any plurisubharmonic function on

Ω. Then for every r < 0, ϕ is µu,r-integrable and

∫
Su,r

ϕdµu,r =

∫
Bu,r

ϕ(ddcu)n +

∫
Bu,r

(r − u) ddcϕ ∧ (ddcu)n−1. (2.4)
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The following corollary is immediate consequence of Theorem 2.7 [3, Corollary

1.9].

Corollary 2.8. If ϕ is a non-negative plurisubharmonic function then r 7→ µu,r(ϕ)

is an increasing function of r on (−∞, 0).

The total mass of µu,r is given by

‖µu,r‖ = µu,r(1) =

∫
Bu,r

(ddcu)n.

The following theorem [3, Theorem 3.1] shows that the Monge–Ampère measures

µu,r extend naturally to the boundary ∂Ω.

Theorem 2.9. Let u : Ω → [−∞, 0) be a psh continuous exhaustion function. Sup-

pose that the total Monge–Ampère mass of u is finite, that is,

∫
Ω

(ddcu)n <∞.

Then the measures µu,r converge weak-∗ in C∗(Ω) to a positive measure µu of total

mass
∫

Ω
(ddcu)n supported by ∂Ω as r → 0−.

The measure µu is called the boundary Monge–Ampère measure associated with

u.

Using the measures µu,r, E. A. Poletsky and M. I. Stessin introduced in [20] the

weighted Hardy spaces associated with an exhaustion u which we call the Poletsky–

Stessin Hardy spaces and denote by Hp
u(Ω) or simply by Hp

u whenever there is no

confusion about the domain.
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Definition 2.6. The space Hp
u(Ω), p > 0, consists of all holomorphic functions f in

Ω satisfying the growth condition

‖f‖p
Hp
u

= lim sup
r→0−

∫
Su,r

|f |p dµu,r <∞. (2.5)

By Corollary 2.8 the integral on the right is an increasing function of r. So we can

replace the lim sup in (2.5) with lim. By Theorem 2.7 and the monotone convergence

theorem it follows that,

‖f‖p
Hp
u

=

∫
Ω

|f |p (ddcu)n −
∫

Ω

u ddc|f |p ∧ (ddcu)n−1. (2.6)

For p ≥ 1, ‖ · ‖Hp
u

defines a norm on Hp
u and with this norm the spaces Hp

u are Banach

([20, Theorem 4.1]).

Every exhaustion function u on Ω generates a Poletsky–Stessin Hardy space and

thus there is an abundance of such spaces. The following theorem ([20, Corollary

3.2]) helps determine the inclusion between these spaces.

Theorem 2.10. Let u and v be continuous psh exhaustion functions on Ω and bv(z) ≤

u(z) near ∂Ω for some constant b > 0. Then Hp
v ⊂ Hp

u and ‖f‖Hp
u
≤ bn‖f‖Hp

v
.

It is clear from this theorem that if for some exhaustions u, v there is a constant

b > 0 such that

bv ≤ u ≤ b−1v (2.7)

near ∂Ω then the spaces they generate are same with equivalent norms, that is,

Hp
u = Hp

v ([20, Corollary 3.3]. For the class of exhaustion functions u on Ω with



CHAPTER 2. PRELIMINARIES 13

compactly supported (ddcu)n the inequality (2.7) holds automatically ([20, Lemma

3.4]). Thus the exhaustion functions in this class generate the same space. The

following theorem ([20, Proposition 3.5]) shows that these are the largest Poletsky–

Stessin Hardy spaces.

Theorem 2.11. Let u be a psh exhaustion function on Ω such that (ddcu)n has

compact support and let v be a continuous psh exhaustion function on Ω then there is

a constant C such that ‖f‖Hp
u
≤ C‖f‖Hp

v
and Hp

v ⊂ Hp
u.



Chapter 3

Poletsky–Stessin Hardy Spaces on

the Unit Disk

In our study we will take Ω = D, where D is the unit disk. Let u : D→ [−∞, 0) be a

continuous subharmonic exhaustion function on D such that u(z)→ 0 as |z| → 1. Let

us denote by E the set of all continuous negative subharmonic exhaustion functions

u on D with finite total Monge–Ampère mass, that is,

∫
D

∆u <∞.

The equation (2.6) takes the form

‖f‖p
Hp
u

=

∫
D
|f |p ∆u−

∫
D
u∆|f |p, (3.1)

Denote by E0 the class of continuous negative subharmonic functions on D such that

the measure ∆u is compactly supported. Since the relation (2.7) holds for the ex-

14
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haustions u ∈ E0, they generate the same Poletsky–Stessin Hardy space Hp
u(D) with

the equivalent norms and these are the largest Poletsky–Stessin Hardy spaces.

The classical Hardy spaces correspond to u(z) = log |z| ∈ E0 (see Section 4 in [20])

and will be denoted by Hp. From this the following two things are apparent:

1. By Hopf’s Lemma the Poletsky–Stessin Hardy spaces stay inside the classical

Hardy spaces, that is, Hp
u ⊂ Hp.

2. Classical Hardy spaces are particular type of Poletsky–Stessin Hardy spaces.

Hence the classical theory is subsumed in this new theory.

3.1 Example

Since the spaces Hp
u(D) ⊂ Hp(D) for all u ∈ E and Hp

u(D) = Hp(D) for u ∈ E0, a

question arises naturally whether there are exhaustions u ∈ E for which Hp
u(D) 6=

Hp(D). We construct a subharmonic function u ∈ E on D for which Hp
u(D) 6= Hp(D).

Lemma 3.1. If 0 < β < 1 the integral∫ 1

0

log

∣∣∣∣ s− t1− ts

∣∣∣∣ ds

(1− s)β
, 0 < t < 1,

tends to 0 as t→ 1.

Proof. Write∫ 1

0

log

∣∣∣∣ s− t1− ts

∣∣∣∣ ds

(1− s)β
=

∫ t

0

log

(
t− s
1− ts

)
ds

(1− s)β
+

∫ 1

t

log

(
s− t
1− ts

)
ds

(1− s)β

= I + II .
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Make a substitution of s =
x+ t

1 + tx
in II to get

II = (1 + t)(1− t)1−β
∫ 1

0

log x

(1− x)β(1 + tx)2−β dx

≥ (1 + t)(1− t)1−β
∫ 1

0

log x

(1− x)β
dx

→ 0 as t→ 1 when 0 < β < 1.

Again, make substitution of s =
t− x
1− tx

in I to get

I = (1 + t)(1− t)1−β
∫ t

0

log x

(1 + x)β(1− tx)2−β dx

≥ (1 + t)(1− t)1−β
∫ t

0

log x

(1− tx)2−β dx

= t(1 + t)(1− t)1−β
∫ 1

0

log(tx)

(1− t2x)2−β dx

≥ t(1 + t)(1− t)1−β
(∫ 1

0

log t

(1− t2x)2−β dx+

∫ 1

0

log x

(1− x)2−β dx

)
→ 0 as t→ 1 when 0 < β < 1.

Thus u(t)→ 0 as t→ 1 when 0 < β < 1.

Now define a function u : D→ [−∞, 0) by

u(z) =

∫ 1

0

log

∣∣∣∣ z − s1− sz

∣∣∣∣ ds

(1− s)β
,

where β is a number between 0 and 1. The function u is subharmonic. If z, w ∈ D,

then by the inequality (see [21, Lemma 4.5.7])

∣∣∣∣ |z| − |w|1− |w||z|

∣∣∣∣ ≤ ∣∣∣∣ z − w1− w̄z

∣∣∣∣
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and Lemma 3.1 it follows that u(z)→ 0 as |z| → 1. Also

∫
D

∆u =

∫ 1

0

dx

(1− x)β
<∞.

Thus u ∈ E .

Theorem 3.2. For 1−β
p
≤ α < 1

p
the function

f(z) =
1

(1− z)α

is in Hp(D) but not in Hp
u(D).

Proof. The function f(z) = 1
(1−z)α belongs to Hp(D) for every α < 1

p
([22, Ch. I,

Prop. 1.3]). On the other hand, by (2.6)

‖f‖p
Hp
u
≥
∫
D
|f |p ∆u =

∫ 1

0

1

(1− x)pα+β
dx =∞

when pα + β ≥ 1. Hence f(z) /∈ Hp
u(D) for α ≥ 1−β

p
.

3.2 The Hardy spaces of harmonic functions and

the measure µu

Let us denote by hpu(D), p > 1, u ∈ E , the space of harmonic functions h on D such

that

‖h‖pu,p = lim
r→0−

∫
Su,r

|h|p dµu,r <∞.
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By Theorem 2.10, hpu(D) ⊂ hp(D). Thus if h ∈ hpu(D), then h has radial boundary

values h∗ on ∂D = T.

Henceforth throughout this document λ is the normalized Lebesgue measure on

T, i.e.
∫
T dλ = 1. We have the following theorem.

Theorem 3.3. Let h ∈ hpu(D), p > 1. Then h∗ ∈ Lpu(T) := Lp(T, µu) and

‖h‖u,p = ‖h∗‖Lpu .

Proof. The least harmonic majorant on D of the subharmonic function |h|p is the

Poisson integral of |h∗|p. By the Riesz Decomposition Theorem

|h(w)|p =

∫
T
|h∗(eiθ)|pP (w, eiθ) dλ(θ) +

∫
D
G(w, z)∆|h|p(z),

where P is the Poisson kernel and G is the Green kernel.

By Lelong–Jensen formula and the monotone convergence theorem we have

‖h‖pu,p =

∫
D
|h|p∆u−

∫
D
u∆|h|p.

Again by the Riesz formula,

u(z) =

∫
D
G(z, w)∆u(w). (3.2)

Hence, by Fubini–Tonnelli’s Theorem and the symmetry of the Green kernel

∫
D
u(z)∆|h|p(z) =

∫
D

(∫
D
G(w, z)∆|h|p(z)

)
∆u(w)
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and

‖h‖pu,p =

∫
D

(
|h(w)|p −

∫
D
G(w, z)∆|h|p(z)

)
∆u(w)

=

∫
D

(∫
T
|h∗(eiθ)|pP (w, eiθ) dλ(θ)

)
∆u(w)

=

∫
T

(∫
D
P (w, eiθ)∆u(w)

)
|h∗(eiθ)|p dλ(θ).

Let

αu(e
iθ) =

∫
D
P (w, eiθ)∆u(w). (3.3)

Then

‖h‖pu,p =

∫
T
|h∗(eiθ)|pαu(eiθ) dλ(θ).

Let φ be a continuous function on T and let h be its harmonic extension to D.

Then h∗ = φ and by Theorem 2.9

‖h‖pu,p =

∫
T
|φ(eiθ)|p dµu(θ).

Hence µu = αuλ and αu ∈ L1(λ). Consequently, for any h ∈ hpu(D)

‖h‖pu,p =

∫
T
|h∗(eiθ)|p dµu(θ).

We normalize the exhaustion function u assuming that
∫
D ∆u = 1. The class of

such exhaustion functions will be denoted by E1.

From the proof of Theorem 3.3 it follows that the measure µu is absolutely con-

tinuous with respect to the Lebesgue measure λ and the weight function αu has the

following properties.
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Proposition 3.4. Let u ∈ E1. Then the measure µu = αuλ, where the function

αu(e
iθ) has the following properties:

(i) αu(e
iθ) ∈ L1(λ) and ‖αu‖L1(λ) = 1.

(ii) αu(e
iθ) =

∫
D P (z, eiθ) ∆u(z).

(iii) αu(e
iθ) is lower semicontinuous.

(iv) αu(e
iθ) ≥ c on T for some c > 0.

(v) αu(e
iθ) need not to be necessarily bounded.

Proof. Everything except (iii), (iv) and (v) follow from the proof of the theorem

above. Let eiθj → eiθ0 in T. By Fatou’s lemma

lim inf
j→∞

αu(e
iθj) = lim inf

j→∞

∫
D
P
(
z, eiθj

)
∆u(z) ≥

∫
D
P
(
z, eiθ0

)
∆u(z) = αu(e

iθ0).

This proves (iii).

Let v(z) = log |z|. By Hopf’s lemma there is a constant c > 0 such that cu(z) <

v(z) near T. It follows from [3, Theorem 3.8] that µv ≤ cµu. Since µv = λ, (iv)

follows.

For the exhaustion function constructed in Section 3.1,

∫
D
P (z, 1)∆u =

∫ 1

0

1 + x

1− x
· 1

(1− x)β
dx =∞

when β > 0. This proves (v).
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In the proof of the Theorem 3.3 we have deduced the norm of the functions

h ∈ hpu(D), p > 1 to

‖h‖pu,p =

∫
∂D

(∫
D
P (w, eiθ) ∆u(w)

)
|h∗(eiθ)|p dλ.

Since ∂
∂n
G(z, w)|z=eiθ = P (eiθ, w), from the Riesz formula (3.2) we get

∂u

∂n
(eiθ) =

∫
D
P (w, eiθ) ∆u(w)

and therefore the norm can be written as

‖h‖pu,p =

∫
∂D

∂u

∂n
(eiθ)|h∗(eiθ)|p dλ.

From this deduction it is clear that if u ∈ E is such that ∂u
∂n

(eiθ) is bounded then

hpu(D) = hp(D), p > 1.

3.3 Boundary values of harmonic functions with

respect to the measures µu,r

While functions in hpu(D), p > 1, have radial limits µu-a.e., we are interested in

the analogs of more subtle classical properties of boundary values. For example, if

h ∈ hp(D) then it is known that the measures h(reiθ)λ(θ) converge weak-∗ in C∗(T)

to h∗(eiθ)λ(θ) as r → 1−.

In this section we will establish the analogs of these statements.

Theorem 3.5. Let h ∈ hpu(D), p > 1. Then the measures {hµu,r} converge weak-∗ to

h∗µu in C∗(D) when r → 0−.
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Proof. Since the space C(D) is separable the weak-∗ topology on the balls in C∗(D) is

metrizable. Thus it suffices to show that for any sequence rj ↗ 0 and any φ ∈ C(D)

we have

lim
j→∞

∫
Su,rj

φh dµu,rj =

∫
∂D
φh∗ dµu.

We introduce functions

pr(e
iθ) =

∫
Su,r

P (z, eiθ) dµu,r(z) =

∫
Bu,r

P (z, eiθ) ∆u(z),

where the last equality follows from Theorem 2.7. Hence pr(e
iθ)↗ αu(e

iθ).

Let ε > 0 be given. The uniform continuity of φ implies that there is δ > 0 such

that |φ(z)−φ(eiθ)| < ε when |z− eiθ| ≤ δ. On the other hand, there exists 0 < s < 1

such that for |z| > s, |P (z, eiθ)| < ε when |z − eiθ| > δ. Hence, when r is sufficiently

close to 0, ∣∣∣∣∣
∫
Su,r

φ(z)P (z, eiθ) dµu,r(z)−
∫
Su,r

φ(eiθ)P (z, eiθ) dµu,r(z)

∣∣∣∣∣
≤
∫
Su,r\D(eiθ,δ)

|φ(z)− φ(eiθ)|P (z, eiθ) dµu,r(z)

+

∫
Su,r∩D(eiθ,δ)

|φ(z)− φ(eiθ)|P (z, eiθ) dµu,r(z)

≤2Mε+ εpr(e
iθ),

where D(eiθ, δ) is the disk of radius δ and center at eiθ M is the uniform norm of φ

on D.
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Now,∫
Su,r

φ(z)h(z) dµu,r(z) =

∫
Su,r

φ(z)

(∫
T
h∗(eiθ)P (z, eiθ) dλ(θ)

)
dµu,r(z)

=

∫
T
h∗(eiθ)

(∫
Su,r

φ(z)P (z, eiθ) dµu,r(z)

)
dλ(θ).

Hence,∣∣∣∣∣
∫
Su,r

φ(z)h(z) dµu,r(z)−
∫
T
φ(eiθ)h∗(eiθ) dµu(θ)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Su,r

φ(z)h(z) dµu,r(z)−
∫
T
φ(eiθ)h∗(eiθ)pr(e

iθ) dλ(θ)

∣∣∣∣∣
+

∣∣∣∣∫
T
φ(eiθ)h∗(eiθ)pr(e

iθ) dλ(θ)−
∫
T
φ(eiθ)h∗(eiθ) dµu(θ)

∣∣∣∣
=

∣∣∣∣∣
∫
T
h∗(eiθ)

(∫
Su,r

(φ(z)− φ(eiθ))P (z, eiθ) dµu,r(z)

)
dλ(θ)

∣∣∣∣∣
+

∣∣∣∣∫
T
φ(eiθ)h∗(eiθ)

(
pr(e

iθ)− αu(eiθ)
)
dλ(θ)

∣∣∣∣
≤ε
∫
T

∣∣h∗(eiθ)∣∣ (2M + pr(e
iθ)) dλ(θ) +M

∫
T

∣∣h∗(eiθ)∣∣ ∣∣pr(eiθ)− αu(eiθ)∣∣ dλ(θ).

Now, ∫
T

∣∣h∗(eiθ)∣∣ (2M + pr(e
iθ)) dλ(θ) ≤

∫
T

∣∣h∗(eiθ)∣∣ (2M + αu(e
iθ)) dλ(θ)

≤2M‖h∗‖Lp + ‖h‖u,p.

Since
∣∣pr(eiθ)− αu(eiθ)∣∣↘ 0 and

∣∣pr(eiθ)− αu(eiθ)∣∣ < αu(e
iθ) with

∣∣h∗(eiθ)∣∣αu(eiθ) ∈
L1(λ), by the monotone convergence theorem,∫

T

∣∣h∗(eiθ)∣∣ ∣∣pr(eiθ)− αu(eiθ)∣∣ dλ(θ)→ 0

Thus, since ε is arbitraty,∣∣∣∣∣
∫
Su,r

φ(z)h(z) dµu,r(z)−
∫
T
φ(eiθ)h∗(eiθ) dµu(θ)

∣∣∣∣∣→ 0.
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The proof is complete.

It was proved by Demailly in [3] that the measures µu,r converge weak-∗ in C∗(D)

as r → 0−. The corollary below shows that they converge weak-∗ also in the dual of

hpu(D).

Corollary 3.6. If p > 1, then the measures µu,r converge weak-∗ to µu in the dual of

hpu(D) when r → 0−.

Proof. For φ ∈ C(D), from the theorem above we have

lim
r→0−

∫
Su,r

φh dµu,r =

∫
T
φh∗ dµu

for every h ∈ hpu(D). In particular, if we take φ ≡ 1 we get

lim
r→0−

∫
Su,r

h dµu,r =

∫
T
h∗ dµu

for every h ∈ hpu(D). The corollary follows.

In [17] Poletsky introduced the weak and strong limit values for a sequence {φj}

of Borel functions defined on compact subsets Kj of a compact metric space K with

respect to a sequence of regular Borel measures µj supported by Kj and converging

weak-∗ in C∗(K) to a finite measure µ. If the measures {φjµj} converge weak-∗ in

C∗(K) to a measure φ∗µ , then the function φ∗ is called the weak limit values of {φj}.

We say that the sequence {φj} has a strong limit values on suppµ = K0 with

respect to {µj} if there is a µ-measurable function φ∗ on K0 such that for any b > a
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and any ε, δ > 0 there is j0 and an open set O ⊂ K containing G(a, b) = {x ∈ K0 :

a ≤ φ∗(x) < b} such that

µj({φj < a− ε} ∩O) + µj({φj > b+ ε} ∩O) < δ

when j ≥ j0. The function φ∗ is called the strong limit values of {φj}.

Following the definition in [17], we say that a function h ∈ hpu(D) has boundary

values with respect to the measures µu,r if it has strong limit values with respect to

{µu,rj} for any sequence rj ↗ 0 and these strong limit values do not depend on the

choice of a sequence.

The following three theorems are the results in [17] which are useful to study the

boundary values of functions in our spaces.

Theorem 3.7. Suppose that {φj} has the strong limit values on K0 equal to φ∗. Then

any two choices of φ∗ coincide µ-a.e. The sequences {cφj} and {|φj|p} have strong

limit values and (cφ)∗ = cφ∗ and (|φ|p)∗ = |φ∗|p.

Theorem 3.8. Suppose that a sequence {φj} has the strong limit values φ∗. If

lim supj→∞ ‖φj‖Lp(Kj ,µj) = A <∞, p > 1, then ‖φ∗‖Lp(K,µ) ≤ A.

Theorem 3.9. Let {φj} has weak limit values and lim supj→∞ ‖φj‖Lp(Kj ,µj) <∞ for

some p > 1. Let the measures {|φj|pµj} converge weak-∗ to ν. If

ν(K) =

∫
K

|φ∗|p dµ

then the sequence {φj} has the strong limit values equal to φ∗.



CHAPTER 3. POLETSKY–STESSIN HARDY SPACES ON THE UNIT DISK 26

The functions in hpu(D), p > 1, have boundary values in the sense of Poletsky.

Theorem 3.10. Let h ∈ hpu(D), p > 1. Then h has the boundary values equal to h∗

with respect to {µu,r}.

Proof. Let rj be any increasing sequence of numbers converging to 0. By Theorem

3.5 the measures hµu,r converge weak-∗ in C∗(D) to the measure h∗µu. By Theorem

3.3

lim
j→∞

∫
Su,rj

|h|p dµu,rj =

∫
T
|h∗|p dµu.

By Theorem 3.9 the sequence of the function h|Su,rj has the strong boundary values

equal to h∗.

3.4 Boundary values of holomorphic functions with

respect to the measures µu,r

In this section we prove results analogous to those in two previous sections but for

p > 0. To consider the Hardy spaces for 0 < p ≤ 1 we need a factorization theorem.

From the classical theory we know that every function f ∈ Hp(D), p > 0, f 6≡ 0

can be factored into f(z) = β(z)g(z) where β(z) is a Blaschke product with same

zeros as f and g is a non-vanishing function in Hp(D) with ‖g‖Hp = ‖f‖Hp . Let us

show that similar results hold for the functions in Hp
u(D).

Theorem 3.11. Let f(z) ∈ Hp
u(D), p > 0 and f(z) 6≡ 0. Then there exists a function
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g(z) ∈ Hp
u(D), g(z) 6= 0 in D, such that

f(z) = β(z)g(z) and ‖g‖Hp
u

= ‖f‖Hp
u
,

where β(z) is a Blaschke product having the same zeros as f .

Proof. We mimic the proof of the classical version [10, Theorem 2.3]. Let {aj} be

the zeros of f(z) in D not necessarily all distinct. We may assume that aj 6= 0 for all

j since otherwise if 0 is the zero of order m then we write f(z) = zmf̃(z) and work

with f̃(z). Then

β(z) =
∞∏
j=1

−aj
|aj|

z − aj
1− ajz

.

From classical theory we have g(z) = f(z)
β(z)
∈ Hp(D). We show that g(z) ∈ Hp

u(D).

Write

gN(z) =
f(z)

βN(z)
, where βN(z) =

N∏
j=1

−aj
|aj|

z − aj
1− ajz

.

For fixed N , |βN(z)| → 1 uniformly as |z| → 1. So for given ε > 0 there exists ρ0 > 0

such that |βN(z)| > 1− ε when |z| > ρ0. Thus near T we have

|gN(z)| < |f(z)|
1− ε

.

Since ε is arbitrary and µu,r(|f |p) is an increasing function of r, it follows that

∫
Su,r

|gN(z)|p dµu,r ≤ ‖f‖pHp
u
.

Since |gN(z)| ↗ |g(z)|, by the monotone convergence theorem,

∫
Su,r

|g(z)|p dµu,r = lim
N→∞

∫
Su,r

|gN(z)|p dµu,r ≤ ‖f‖pHp
u
.
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Hence ‖g‖Hp
u
≤ ‖f‖Hp

u
. The reverse inequality is trivial because |f(z)| ≤ |g(z)| in D.

Thus ‖g‖Hp
u

= ‖f‖Hp
u
. This completes the proof.

Since Hp
u(D) ⊂ Hp(D), any f ∈ Hp

u(D) has radial limits f ∗(eiθ)λ-a.e. But it is

not clear that ‖f‖Hp
u
≥ ‖f ∗‖Lpu . The theory of weak and strong limit values in [17]

provides sufficient conditions for this estimate. To implement these conditions we

have to show the existence of strong limit values for f ∈ Hp
u(D).

Theorem 3.12. Any function f ∈ Hp
u(D), p > 1, has weak limit values equal to f ∗

with respect to the measures {µu,r}.

Proof. Follows directly from Theorem 3.5.

Theorem 3.13. Let f ∈ Hp
u(D), p > 1. Then |f | has the boundary values equal to

|f ∗| with respect to {µu,r}.

Proof. For f ∈ Hp
u(D), Re f and Im f ∈ hpu(D). Hence the corollary follows from

Theorem 3.7 and 3.10 by writing |f |2 = (Re f)2 + (Im f)2.

Now we prove the main result of the section:

Theorem 3.14. Let f ∈ Hp(D), p > 0. Then f ∈ Hp
u(D) if and only if f ∗(eiθ) ∈ Lpu.

Moreover, ‖f‖Hp
u

= ‖f ∗‖Lpu .

Proof. First, we prove the theorem for p > 1. Let f ∗ ∈ Lpu. There exists f ∗j ∈ C(T)

such that

‖f ∗j − f ∗‖Lpu → 0 as j →∞.
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By Proposition 3.4,

‖f ∗j − f ∗‖Lp(λ) → 0 as j →∞.

We know that f(z) is the Poisson integral of its boundary value f ∗(eiθ) [6, Theorem

3.1], that is,

f(z) =

∫ 2π

0

P (z, eiθ)f ∗(eiθ) dλ(θ).

If we take

fj(z) =

∫ 2π

0

P (z, eiθ)f ∗j (eiθ) dλ(θ)

by Hölder’s inequality,

|fj(z)− f(z)| =
∣∣∣∣∫ 2π

0

(
f ∗j (eiθ)− f ∗(eiθ)

)
P (z, eiθ) dλ(θ)

∣∣∣∣
≤
(∫ 2π

0

∣∣f ∗j (eiθ)− f ∗(eiθ)
∣∣p dλ(θ)

) 1
p
(∫ 2π

0

P q(z, eiθ) dλ(θ)

) 1
q

.

The last integral is, evidently, bounded on compact sets in D and hence fj → f

uniformly on compacta. Therefore

lim
j→∞

∫
Su,r

|fj|p dµu,r =

∫
Su,r

|f |p dµu,r.

The weak-∗ convergence of µu,r gives

lim
r→0−

∫
Su,r

|fj|p dµu,r =

∫
T
|fj|p dµu.

Since fj(z) is harmonic, |fj|p is subharmonic and by Corollary 2.8, µu,r(|fj|p) is an

increasing function of r. It follows, for each j, that

∫
Su,r

|fj|p dµu,r ≤
∫
T
|fj|p dµu =

∫
T
|f ∗j |p dµu.
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Hence

∫
Su,r

|f |p dµu,r = lim
j→∞

∫
Su,r

|fj|p dµu,r ≤ lim
j→∞

∫
T
|f ∗j |p dµu =

∫
T
|f ∗|p dµu.

Therefore ‖f‖Hp
u
≤ ‖f ∗‖Lpu and f ∈ Hp

u(D).

Let f ∈ Hp
u(D). Then by Corollary 3.13, |f | has the boundary values |f ∗| with

respect to {µu,r}. By Theorem 3.8, it follows that

‖f ∗‖Lpu ≤ ‖f‖Hp
u
.

Hence f ∗ ∈ Lpu and ‖f‖Hp
u

= ‖f ∗‖Lpu .

Now we prove the theorem for 0 < p ≤ 1. Let f ∈ Hp(D). Then we have the

factorization f(z) = β(z)g(z) where β(z) is a Blaschke product and g(z) is a non-

vanishing function in Hp(D). Suppose f ∗ ∈ Lpu. Since |f ∗| = |g∗|λ-a.e. (and hence

µu-a.e.), g∗ ∈ Lpu. It follows from the proof for p > 1 and the fact that g
p
2 ∈ H2(D)

and (g∗)
p
2 ∈ L2

u that

‖g
p
2‖H2

u
≤ ‖(g∗)

p
2‖L2

u
.

This implies

‖g‖Hp
u
≤ ‖g∗‖Lpu .

Since |f(z)| ≤ |g(z)| in D we get

‖f‖Hp
u
≤ ‖f ∗‖Lpu

and hence f ∈ Hp
u(D).
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On the other hand if f ∈ Hp
u(D) then by Theorem 3.11, f(z) = β(z)g(z) where

g(z) is a non-vanishing function in Hp
u(D). Since g

p
2 ∈ H2

u(D), |g p2 | has the boundary

values |(g p2 )∗| with respect to {µu,r}. Then by Theorem 3.8,

‖(g
p
2 )∗‖L2

u
≤ ‖g

p
2‖H2

u
.

This implies

‖g∗‖Lpu ≤ ‖g‖Hp
u

and hence

‖f ∗‖Lpu ≤ ‖f‖Hp
u
.

Thus f ∗ ∈ Lpu and ‖f‖Hp
u

= ‖f ∗‖Lpu .

3.5 Properties of Hp
u(D) and Dual Spaces

Note that Hp
u(D) is not a closed subspace of Hp(D) because both spaces contain

H∞(D). However, the closed balls in Hp
u(D) are closed in Hp(D).

Theorem 3.15. The closed unit ball

Bu,p(1) = {f ∈ Hp
u(D) : ‖f‖Hp

u
≤ 1}

in Hp
u(D), p > 0, is closed in Hp(D).

Proof. The case p =∞ is obvious. Let {fj} ⊂ Bu,p(1) be such that fj → f in Hp(D),

i.e.

sup
0≤r<1

∫ 2π

0

∣∣fj(reiθ)− f(reiθ)
∣∣p dλ(θ)→ 0 as j →∞.
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By formula (3.2) in [20] if |z| < r then

|f(z)− fj(z)|p ≤
∫
|w|=r

|f(reiθ)− fj(reiθ)|p dλ(θ) ≤ ‖fj − f‖Hp .

Hence the functions fj → f uniformly on compacta.

Now ∫
Su,r

|fj(z)|p dµu,r →
∫
Su,r

|f(z)|p dµu,r

for all r < 0. Therefore

lim
r→0−

∫
Su,r

|f(z)|p dµu,r ≤ 1,

showing that f ∈ Bu,p(1).

For u ∈ E , define Eu = {v ∈ E : bv ≤ u ≤ b−1v for some constant b > 0 near T}.

It has been discussed in [20] that all the exhaustions in Eu generate the same Poletsky–

Stessin Hardy space Hp
u(D) with equivalent norms. Let us take the class E0 which

corresponds to the exhaustion function u(z) = log |z|. Then all the exhaustions in

E0 generate the classical Hardy space Hp(D), with equivalent norms and this is the

largest space in our class.

However as we show below the norms generated by exhaustions in E0∩E1 differ so

much that the intersection of all unit balls in these norms is the unit ball in H∞(D).

For u ∈ E define the ball of radius R in Hp
u(D) by

Bu,p(R) = {f ∈ Hp
u(D) : ‖f‖Hp

u
≤ R}.

Let B∞(R) = {f ∈ H∞(D) : |f | ≤ R}.
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Theorem 3.16. For p > 0,

⋂
u∈E0∩E1

Bu,p(1) = B∞(1).

Proof. The inclusion B∞(1) ⊂
⋂
u∈E0∩E1 Bu,p(1) is clear. For the other way around,

let f ∈ H∞(D) \B∞(1). Since |f ∗|p ∈ L1(T), by the Fatou’s theorem∫
T
P (reiϕ, eiθ)|f ∗(eiθ)|p dλ→ |f ∗(eiϕ)|p

λ-a.e. on T. Hence there exists A ⊂ T with λ(A) > 0 such that

(i) |f ∗(eiϕ)| > 1 and

(ii)
∫
T P (reiϕ, eiθ)|f ∗(eiθ)|p dλ→ |f ∗(eiϕ)|p

for every eiϕ ∈ A. We may suppose that 1 ∈ A.

Since u(z) =
∫
DG(z, w) ∆u(w), where G(z, w) is the Green’s function for the unit

disk, and ∂
∂n
G(z, w)|z=eiθ = P (w, eiθ),

∂u

∂n
(eiθ) =

∫
D
P (w, eiθ) ∆u(w) = αu(e

iθ).

Also we have for f ∈ Hp
u(D),

‖f‖p
Hp
u

=

∫
T

∂u

∂n
(eiθ)|f ∗(eiθ)|p dλ.

Let tk ↗ 1 and uk(z) = G(z, tk). Then

‖f‖p
Hp
uk

=

∫
T
P (tk, e

iθ)|f ∗(eiθ)|p dλ

−→ |f ∗(1)|p

as k →∞ because 1 ∈ A. Hence f 6∈
⋂
u∈E0 Bu,p(1). The theorem follows.
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Recall from Proposition 3.4 that we have µu = αuλ where αu ∈ L1(λ) and αu ≥

c > 0 for some constant c. Moreover, αu is lower semicontinuous. Hence, there exists

an increasing sequence of positive smooth functions αn converging to αu pointwise.

Define

α̃(z) =

∫
T

eiθ + z

eiθ − z
logαu(e

iθ) dλ(θ)

α̃n(z) =

∫
T

eiθ + z

eiθ − z
logαn(eiθ) dλ(θ).

Clearly α̃, α̃j ∈ O(D), so the functions A(z) = eα̃(z) and An(z) = eα̃n(z) ∈ O(D).

Moreover, The functions α̃n and An extend smoothly to the boundary, |A∗(eiθ)| =

αu(e
iθ) and |A∗n(eθ)| = αn(eiθ).

Theorem 3.17. The space Hp
u(D) is isometrically isomorphic to Hp(D).

Proof. First, we show that if f ∈ Hp
u(D) then A1/pf ∈ Hp(D). Clearly A

1/p
n f ∈ Hp(D).

Then by formula (9) in [11, IX.4],

∫ 2π

0

|An(reiθ)||f(reiθ)|p dλ(θ) ≤
∫ 2π

0

|A∗n(eiθ)||f ∗(eiθ)|p dλ(θ).

Since A
1/p
n f converges to A1/pf uniformly on compact subsets of D, for 0 < r < 1,

∫ 2π

0

|A(reiθ)||f(reiθ)|p dλ = lim
n→∞

∫ 2π

0

|An(reiθ)||f(reiθ)|p dλ(θ)

≤ lim
n→∞

∫ 2π

0

|A∗n(eiθ)||f ∗(eiθ)|p dλ(θ)

= ‖f‖p
Hp
u
.

The last equality above follows from the monotone convergence theorem. Thus

A1/pf ∈ Hp(D).
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Now, define an operator

Φ : Hp
u(D)→ Hp(D)

f 7→ A1/pf.

Clearly Φ is linear. Since

∫ 2π

0

|A∗(eiθ)||f ∗(eiθ)|p dλ =

∫ 2π

0

|f ∗(eiθ)|pαu(eiθ) dλ =

∫
T
|f ∗|p dµu,

we have ‖A1/pf‖Hp = ‖f‖Hp
u
. So Φ is an isometry.

Let f ∈ Hp(D). Since |A(z)| ≥ c > 0, A−1/pf ∈ Hp(D). It follows from the

identity ∫
T
|A∗|−1|f ∗|p dµu =

∫
T
|f ∗|p dλ

together with Theorem 3.14 that A−1/pf ∈ Hp
u(D). Thus Φ is a surjective linear

isometry. We are done.

In the theorem above we have established that Hp
u = B1/pHp, where B(z) =

1/A(z). Also it is clear that Lpu = (B∗)1/pLp(λ). In order to describe the duality

of the space Hp
u, p ≥ 1, we need to identify the annihilator of Hp

u in (Lpu)
∗ = Lqu,

where 1/p + 1/q = 1. The annihilator turns out to be what we expect based on the

knowledge of classical theory.

Theorem 3.18. The annihilator of Hp
u, p ≥ 1, in (Lpu)

∗,

(Hp
u)⊥ =

{
g∗ ∈ Lqu :

∫
∂D
g∗f ∗ dµu = 0 for all f ∈ Hp

u

}
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is isometrically isomorphic to

Hq
u(0) = {g ∈ Hq

u(D) : g(0) = 0} .

Proof. Let g∗ ∈ (Hp
u)⊥, p > 1. Define

g̃∗ := g∗(B∗)1/pαu.

Observe that

∫
∂D
|g̃∗|q dλ =

∫
∂D
|g∗|q|B∗|q/pαqu dλ

=

∫
∂D
|g∗|q dµu

and since B1/pzn ∈ Hp
u,

∫
∂D
g̃∗einθ dλ =

∫
∂D
g∗
(
(B∗)1/peinθ

)
dλ

= 0.

Hence there is g̃ ∈ Hq(0) such that g̃∗ is the boundary value of g̃ and the association

g∗ 7→ g := B1/qg̃ gives isometric isomorphism between (Hp
u)⊥ and Hp

u(0). It just

remains to show that this is surjective.

Let g ∈ Hq
u(0). Then g = B1/qg̃ for some g̃ ∈ Hq(0). Define

g∗ :=
g̃∗

(B∗)1/pαu
.

Observe that ∫
∂D
|g∗|q dµu =

∫
∂D
|g̃∗|q dλ



CHAPTER 3. POLETSKY–STESSIN HARDY SPACES ON THE UNIT DISK 37

and since every f ∈ Hp
u is given by f = B1/pf̃ for some f̃ ∈ Hp,

∫
∂D
g∗f ∗ dµu =

∫
∂D
g̃∗f̃ ∗ dλ = 0.

Hence g∗ ∈ (Hp
u)⊥ and g∗ 7→ g.

The case p = 1 is handled similarly.

Now the following duality results follow from [6, Theorem 7.1 and 7.2].

Theorem 3.19. If 1 ≤ p <∞ and 1
p

+ 1
q

= 1,

1. Lqu/H
q
u(0) is isometrically isomorphic to (Hp

u)∗.

2. (Lpu/H
p
u)∗ is isometrically isomorphic to Hq

u(0).

3.6 Characterization of Hp
u(D)

Among many different definitions of weighted Hardy spaces the closest to our purpose

is the definition in [2] and [15]. Let α ∈ L1(T) be a non-negative function such that

logα ∈ L1(T). Then Lpα(T) is the space of all functions with the finite norm

‖φ‖Lpα =

(∫ 2π

0

|φ(eiθ)|pα(eiθ) dλ

)1/p

for 0 < p <∞ and Hp
α = N+ ∩ Lpα(T), where N+ is the Smirnov class. If α ≡ 1 then

we will use notations Hp and ‖ · ‖p. The Poletsky–Stessin Hardy spaces Hp
u(D) thus

correspond to the weight function αu. We have established in Proposition 3.4 that

the weight αu has the following properties:
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1.

αu(e
iθ) =

∫
D
P (z, eiθ) ∆u(z),

where P (z, eiθ) is the Poisson kernel;

2. ‖αu‖L1 = 1 if and only if u ∈ E1;

3. αu(e
iθ) is lower semicontinuous and αu(e

iθ) ≥ c on T for some c > 0.

Because of these restrictions on the weight function the class of Poletsky–Stessin

Hardy spaces is more narrow than weighted spaces discussed above. As the following

result shows these are the only restrictions on weights.

Theorem 3.20. Let α be a measurable function on T. Then α dλ = µu for some

u ∈ E1 if and only if α is lower semicontinuous, α(eiθ) ≥ c > 0 for some c on T and

∫
T
α dλ = 1. (3.4)

Proof. Let α ∈ C(T) be a function such that α ≥ c > 0 on T. For 0 < r < 1 define

αr(e
iθ) =

∫
T
P (reiθ, eiϕ)α(eiϕ) dλ(ϕ).

Then αr → α uniformly on T as r → 1. Clearly αr ∈ C∞(T).

Define

ur(z) =

∫
T

log

∣∣∣∣ z − reiϕ1− re−iϕz

∣∣∣∣α(eiϕ) dλ(ϕ).

Then ur is a subharmonic exhaustion function on D and by the Riesz Decomposition

Theorem its Laplacian ∆ur is supported by T(r) = {z = reiφ} and is equal to
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α(eiϕ) dλ(ϕ). Hence ∫
D

∆ur(z) =

∫
T
α(eiϕ) dλ(ϕ).

The weight of ur is equal to∫
T
P (reiϕ, eiθ)α(eiϕ) dλ(ϕ) = αr(e

iθ).

Hence any α ∈ C(T) can be uniformly approximated by a function βu such that

βu dλ = µu and u ∈ E .

If α is any lower semicontinuous function satisfying (3.4) and such that α ≥ c > 0

on T, then α is the pointwise limit of an increasing sequence of continuous functions

αj such that αj ≥ c/2 > 0 on T. Replacing αj with the functions αj − 2−j we may

assume that the function βj = αj − αj−1 ≥ 2−j−1 on T. (Here we set α0 = 0.) By

the argument above we can approximate the functions βj by continuous functions γj

such that γj ≥ 2−j−2 on T, γj dλ = µuj for some uj ∈ E and

∞∑
j=1

γj = α.

Let vj = max{uj,−2−j}. Since for a fixed j the weak-∗ limits of µuj ,r and µvj ,r

as r → 0− coincide we see that αvj = αuj = γj. If v =
∑
vj then v is a continuous

exhaustion of D such that lim|z|→1 v(z) = 0. Moreover,∫
D

∆v =
∞∑
j=1

∫
D

∆vj =
∞∑
j=1

∫
T
γj =

∫
T
α = 1.

Hence v ∈ E1.

Now ∫
D
P (z, eiθ)∆v(z) =

∞∑
j=1

∫
D
P (z, eiθ)∆vj(z) =

∞∑
j=1

γj(e
iθ) = α(eiθ).
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Thus µv = α dλ.

The converse statements has been established in Section 3.2.

Theorem 3.20 gives complete characterization of the Poletsky–Stessin Hardy spaces

as weighted spaces.



Chapter 4

Applications

4.1 Duality

Let α be a non-negative measurable function on T such that logα ∈ L1(T). Let

a(z) be a holomorphic function such that |a(eiθ)| = α(eiθ) a.e. on [0, 2π] and a never

takes the zero value. Such a function does exist and belongs to H1 because logα is

integrable on T so we can take a harmonic function

h(z) =
1

2π

∫ 2π

0

logα(eiθ)P (z, eiθ) dθ,

add a conjugate function g and write a(z) = eh(z)+ig(z).

In [2] for f ∈ Lpα(T) the operator Apf = a1/pf was introduced. Then

‖Apf‖pp =

∫ 2π

0

|f(eiθ)|pα(eiθ) dλ = ‖f‖pα,p.

Thus Ap is an isometrical imbedding of Lpα(T) into Lp(T).

41
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We add another requirement on the weight α asking that α ≥ c > 0 on T for some

c. Clearly, A−1
p f = α−1/pf is also an isometry and the inverse of Ap. Hence Ap is

an isometric isomorphism of Lpα(T) onto Lp(T). Moreover, Ap maps Hp
α isometrically

onto Hp.

If φ ∈ Lpα(T) then dist(φ,Hp
α) = dist(Apφ,H

p). By the classical result (see [14])

for p > 1

dist(Apφ,H
p) =

∣∣∣∣∣ sup
g∈Hq ,‖g‖Hq=1

∫ 2π

0

a1/p(eiθ)φ(eiθ)eiθg(eiθ) dλ

∣∣∣∣∣ . (4.1)

Since the Hq
α-norm of α−1/qg(z) coincides with the Hq-norm of g we can get the

following duality result:

Theorem 4.1. If φ ∈ Lpα(T) then

dist(φ,Hp
α) =

∣∣∣∣∣ sup
g∈Hq

α,‖g‖Hqα=1

∫
T
φ(eiθ)a(eiθ)eiθg(eiθ) dλ

∣∣∣∣∣ .
Among the advantages of these spaces compared to spaces studied in [2] we can

list the following. First of all, one does not need the existence of boundary values or

the notion of Smirnov class to introduce these spaces. This is especially attractive

for the theory of functions in several variables on non-smooth domains.

Another advantage is the existence of Carleson measures. Given a weight α a

measure ν on the unit disk D is called α-Carleson with the constant C(α) if∫
D
|f |p dν ≤ C(α)

∫
T
|f |pα dλ

for all p > 1 and all f ∈ Hp
α. If α ≡ 1 then such measure are called Carleson measures.

In [15] one can find the characterisation of α-Carleson measures for α satisfying Muck-
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enhoupt’s conditions similar to the classical characterisation of Carleson measures by

L. Carleson. In the case of Poletsky–Stessin Hardy spaces it follows immediately from∫
T
|f |p dµu =

∫
D
|f |p ∆u−

∫
D
u∆|f |p (4.2)

that the measure ∆u is αu-Carleson with the constant C(αu) = 1. By Theorem 3.20

we see that α-Carleson measures with constant 1 exist for all lower semicontinuous

weights.

Thirdly, the formula (4.2) helps to obtain additional information. For example,

one can get integrability of derivative. Since ∆|f |p = p2

4
|f |p−2|f ′|2 for all f ∈ Hp

u,

p ≥ 1, we have the inequality∫
T
|f |p dµu ≥

p2

4

∫
D
|u||f |p−2|f ′|2 dx dy.

4.2 From Hp
u to H∞

Let u1, . . . , uk be exhaustion functions from E1 and let u = (u1, . . . , uk). We say that

u ∈ Ek1 . Let Hp
u to be the direct product Hp

u1
× · · · ×Hp

uk
with the norm

‖(f1, . . . , fk)‖Hp
u

=
k∑
j=1

‖fj‖Hp
uj
.

We will use the notation (Hp)k and ‖f‖p when αu1 = · · · = αuk = 1. As in Section

3.5 we denote by Bu,p(r) the closed ball of radius r centered at the origin of Hp
u.

The norm on (H∞)k will be defined as

‖f‖∞ =
k∑
j=1

‖fj‖∞
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and B∞(r) is the closed ball of radius r centered at the origin of (H∞)k. Then

B∞(r) ⊂ Bu,p(r).

Theorem 4.2. Let A ⊂ (Hp)k, p > 1, be a closed convex set. Then A∩B∞(1) 6= ∅ if

and only if A∩Bu,p(1) 6= ∅ for all exhaustion vector-functions u = (u1, . . . , uk) ∈ Ek1 .

Proof. Let us take 0 < ε < 1 and suppose that A ∩ B∞(r0) = ∅ for r0 = (1 − ε)−1.

By the Hahn–Banach theorem there exists g = (g1, . . . , gk) ∈ (Lq(T))k such that

k∑
j=1

Re

∫
T
fjgj dλ ≥ 1

for all f ∈ A and
k∑
j=1

Re

∫
T
fjgj dλ ≤ 1

for all f ∈ B∞(r0). Multiplying fj by appropriate constants aj with |aj| = 1 we see

that
k∑
j=1

∣∣∣∣∫
T
fjgj dλ

∣∣∣∣ ≤ r−1
0 = 1− ε

for all f ∈ B∞(1).

Let g̃j(z) = gj(z)/z. Then g̃j ∈ Lq(T) ⊂ L1(T) for all j. By a duality result (see

[14, VII.2]) there exist hj ∈ H1 and pj ∈ H∞ such that ‖pj‖∞ = 1, pj(0) = 0 and

(g̃j − hj)pj = |g̃j − hj|

almost everywhere.

We take f = (f1, . . . , fk) ∈ (H∞)k such that fi ≡ 0 when i 6= j and fj(z) =

pj(z)/z. Clearly, f ∈ B∞(1). Therefore,

1− ε ≥
∣∣∣∣∫

T
fjgj dλ

∣∣∣∣ =

∣∣∣∣∫
T
(g̃j − hj)pj dλ

∣∣∣∣ =

∫
T
|g̃j − hj| dλ.
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There is h̃j ∈ Hq so that ‖hj − h̃j‖1 ≤ ε/2. Let φj = |g̃j − h̃j|. Then

∫
T
φj dλ ≤

∫
T

(
|g̃j − hj|+ |hj − h̃j|

)
dλ ≤ 1− ε/2.

And for f ∈ A,

k∑
j=1

∫
T
φj|fj| dλ =

k∑
j=1

∫
T
|(gj − zh̃j)fj| dλ ≥

k∑
j=1

∣∣∣∣∫
T
(gj − zh̃j)fj dλ

∣∣∣∣ ≥ 1.

Let φ̃j = max{φj, ε/4}. Then ‖φ̃j‖1 ≤ ‖φj + ε/4‖1 ≤ 1− ε/4. Now for f ∈ A,

k∑
j=1

∫
T
|fj|φ̃j dλ ≥

k∑
j=1

∫
T
|fj|φj dλ ≥ 1.

For any δ > 0 and 1 ≤ j ≤ k there exists ψj ∈ C(T) such that ψj ≥ ε/8,

‖ψj‖1 = ‖φ̃j‖1 and ‖ψj − φ̃j‖q < δ.

For f ∈ A,

k∑
j=1

∫
T
|fj|ψj dλ ≥

k∑
j=1

∫
T
|fj|φ̃j dλ−

k∑
j=1

∫
T
|fj||ψj − φ̃j| dλ ≥ 1− δ‖f‖p.

By Theorem 3.20 there are exhaustion functions uj, 1 ≤ j ≤ k, such that µuj =

ajψj, where aj is chosen so that ‖ajψj‖1 = 1. Let u = (u1, . . . , uk). Note that

aj ≥ (1− ε/4)−1.

If f ∈ Bu,p(1) then

k∑
j=1

∫
T
|fj|ajψj dλ ≤

k∑
j=1

‖fj‖Hp
uj
‖ajψj‖1/q

1 ≤ 1

and

‖f‖p =
k∑
j=1

(∫
T
|fj|p dλ

)1/p

≤
(ε

8

)−1/p
k∑
j=1

‖fj‖Hp
uj
≤
(ε

8

)−1/p

= c.
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Thus if f ∈ A and ‖f‖p > c then f 6∈ Bu,p(1). On the other hand if f ∈ A and

‖f‖p ≤ c, then
k∑
j=1

∫
T
|fj|ajψj dλ ≥ (1− ε/4)−1(1− cδ).

Taking δ > 0 so small that (1 − ε/4)−1(1 − cδ) > 1 we see that A ∩ Bu,p(1) = ∅.

Hence A ∩B∞(r0) 6= ∅ for all r0 > 1.

Let {fn} be a sequence of functions such that fn ∈ A ∩ B∞(1 + 1/n). We may

assume that {fn} converges uniformly on compacta to a function f ∈ B∞(1). This

implies that {fn} converges to f weakly. Since any convex closed set is weakly closed

we see that f ∈ A.

The second part is trivial.

As the following corollary shows it is possible to use the theorem above when all

functions uj are equal although constants will change.

Corollary 4.3. Let A ⊂ (Hp)k, p > 1, be a closed convex set. Suppose A∩Bu,p(1) 6= ∅

for all exhaustion vector-functions u = (u, . . . , u) ∈ Ek1 . Then A ∩ B∞(k) 6= ∅.

Conversely, if A ∩B∞(1) 6= ∅ then A ∩Bu,p(1) 6= ∅.

Proof. Let v = (v1, . . . , vk) ∈ Ek1 . Let

u =
1

k

k∑
j=1

vj.

Then u ∈ E1 and by the assumption of the corollary there is f = (f1, . . . , fk) ∈

A ∩ Bu,p(1), where u = (u, . . . , u). Note that vj ≥ ku. By Corollary 3.2 in [20]
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‖fj‖vj ,p ≤ k‖fj‖u,p, 1 ≤ j ≤ k. Hence f ∈ Bv,p(k) and A ∩ Bv,p(k) 6= ∅. By Theorem

4.2, A ∩B∞(k) 6= ∅.

4.3 Interpolation Theorem

A sequence {zj}∞1 ⊂ D is δ-sparse for δ > 0 if

inf
k

∏
j 6=k

∣∣∣∣ zj − zk1− z̄kzj

∣∣∣∣ ≥ δ

for all k.

A sequence {zj} ⊂ D is called interpolating if for any sequence s = {sj} ∈ l∞

there is a function f ∈ H∞ such that f(zj) = sj for all j and ‖f‖H∞ ≤ C‖s‖∞ and

the constant C does not depend on ‖s‖∞.

The famous theorem of Carleson states

Theorem 4.4. A sequence {zj} ⊂ D is interpolating if and only if it is δ-sparse for

some δ > 0.

Now we can present a shorter proof of Theorem 4.4 by using the result of Section

4.2. Theorem 3.2 in [13], which is a quick consequence of the general characterization

of Carleson measures, states that if a sequence {zj} ⊂ D is δ-sparse then the measure

ν =
∞∑
j=1

(1− |zj|2)δzj

is Carleson with a constant C depending only on δ.
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We take an integer N > 1 and denote by XN the set of all functions f ∈ H2 such

that f(zj) = sj, 1 ≤ j ≤ N . Clearly XN is closed and convex.

Let

B(z) =
N∏
j=1

z − zj
1− z̄jz

and Bk(z) =
N∏

j=1,j 6=k

z − zj
1− z̄jz

, k = 1, . . . , N.

Then any function f in XN has the form

N∑
j=1

sj
Bj(zj)

Bj(z) +B(z)h(z) =

(
N∑
j=1

sj
Bj(zj)

1− z̄jz
z − zj

+ h(z)

)
B(z),

where h ∈ H2.

We set Cj = sjB
−1
j (zj) and let

φ(z) =
N∑
j=1

Cj
1− z̄jz
z − zj

.

Let u ∈ E1 and let a = au be the function introduced in Section 4.1. Then for g ∈ H2

with ‖g‖H2 = 1 we have

1

2π

∫
T
φ(z)a1/2(z)g(z)) dz =

N∑
j=1

Cj(1− |zj|2)g(zj)a
1/2(zj)

=
‖s‖∞
δ

∫
D
|ga1/2| dν ≤ ‖s‖∞

δ

(∫
D
|g|2 dν

)1/2(∫
D
|a| dν

)1/2

≤ C2‖s‖∞
δ

‖g‖H2‖a1/2‖H2 =
C2‖s‖∞

δ
= C ′‖s‖∞.

Hence by (4.1) dist(φ,H2
u) ≤ C ′‖s‖∞ and this means that XN ∩ Bu,2(C ′‖s‖∞) 6= ∅.

Thus by Theorem 4.2 there is fN ∈ XN ∩B∞(C ′‖s‖∞). Since C ′ does not depend on

N there is f ∈ B∞(C ′‖s‖∞) interpolating s.

The proof of necessity is quite elementary and can be found in [10].
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4.4 Corona Theorem

The space H∞(D) of bounded holomorphic functions on the unit disk is a Banach

algebra over C. For every z ∈ D, the point evaluation

f 7→ f(z)

is a multiplicative homomorphism of H∞(D) onto C. Since C is a field the kernel

of any homomorphism is a maximal ideal in H∞(D). So the kernel of the point

evaluation at z, that is

{f ∈ H∞(D) : f(z) = 0}

is maximal ideal in H∞(D). The set of multiplicative homomorphisms of H∞(D) onto

C is in one-to-one correspondence with the maximal ideal space M of H∞(D). Hence

by identifying z with

{f ∈ H∞(D) : f(z) = 0}

it follows that D ⊂ M. The corona theorem which states that D is weak-∗ dense in

M was conjectured by Kakutani in 1941 and first proved by Carleson in 1962. In

1979 T. Wolff gave two equivalent formulations of the corona theorem:

1. If m ∈M there is a net {zα} in D with zα → m in M.

2. If f1, · · · , fn ∈ H∞(D) and

sup
k
|fk(z)| ≥ δ > 0
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for all z ∈ D, there exist functions g1, · · · , gn ∈ H∞(D) such that

f1g1 + · · ·+ fngn ≡ 1

on D.

We use the result of Section 4.2 to demonstrate a shortcut to the proof of the

corona problem, as formulated in statement (2) above.

Theorem 4.5. If the functions f1, . . . , fn are in the unit ball of H∞ and

n∑
j=1

|fj|2 ≥ δ > 0,

then there are functions g1, . . . , gn in H∞ such that

n∑
j=1

fjgj = 1 (4.3)

and ‖gj‖ ≤ C, where C depends only on δ.

We will discuss only the case when n = 2. It suffices to prove this theorem for

functions fj that can be continuously extended to D and have finitely many zeros in

D. In this case one can easily find functions φ1 and φ2 smooth up to the boundary

such that

f1φ1 + f2φ2 = 1.

To make them holomorphic we look for a function v such that

∂̄(φ1 + f2v) = ∂̄φ1 + f2∂̄v = 0
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and

∂̄(φ2 − f1v) = ∂̄φ2 − f1∂̄v = 0.

Since f1∂̄φ1 + f2∂̄φ2 = 0 we see that

∂̄v = f−1
1 ∂̄φ2 = −f−1

2 ∂̄φ1 =: ψ.

The following lemma can be found in [10].

Lemma 4.6. There are solutions φ1 and φ2 to (4.3) continuous up to the boundary

such that the measure ν = |ψ| dzdz̄ is Carleson with constant C depending only on δ

and |φ1|+ |φ2| ≤ K(δ).

Let

Ψ(z) =

∫
D

ψ(ζ)

ζ − z
dζdζ̄.

Then ∂̄Ψ = ψ and for any u ∈ E1∣∣∣∣∫
T

Ψ(z)au(z)g(z) dz

∣∣∣∣2 =

∣∣∣∣∫
D
ψ(ζ)au(ζ)g(ζ) dζdζ̄

∣∣∣∣2
≤
∫
D
|au(ζ)|ψ(ζ) dζdζ̄

∫
D
|ψ(ζ)||au(ζ)g2(ζ)| dζdζ̄ ≤ C2‖g‖2

u,2.

Thus by Theorem 4.1 dist(Ψ, H2
u) ≤ C. Hence there is v = Ψ+h such that h ∈ H2

u

and ‖v‖H2
u
≤ C. Therefore the function h1 = φ1 + f2v is holomorphic, lies in H2

u and

‖h1‖u,2 ≤ K(δ) + C = R. The same estimate holds for the function h2 = φ2 − f1v.

Thus if A ⊂ (H2)2 is the set of all solutions (g1, g2) to (4.3), then A∩Bu,2(R) 6= ∅

for all pairs (u, u), where u ∈ E1. Since the set A is convex and closed, by Corollary

4.3 A ∩B∞(2R) 6= ∅. This ends the proof.



Chapter 5

Hardy Spaces on the Polydisk

5.1 Hardy Spaces and Poisson Integral Formula

An n-harmonic function u on Dn is a function which is harmonic in each variable

separately. Similarly, an n-subharmonic function u on Dn is a function which is

subharmonic in each variable separately.

We will use the following notations:

z = (z1, · · · , zn)

ζ = (ζ1, · · · , ζn)

P (z, ζ) = P (z1, ζ1) · · ·P (zn, ζn)

where P (z, ζ) is the Poisson kernel and

P (zj, ζj) = Re

(
ζj + zj
ζj − zj

)
=

1− |zj|2

|ζj − zj|2
, j = 1, · · · , n.

52
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Denote by hp(Dn) the space of all n-harmonic functions satisfying

sup
0≤r<1

∫
Tn
|ur(ζ)|p dm(ζ) <∞ (5.1)

where dm is the normalized Lebesgue measure on Tn and ur(ζ) = u(rζ1, · · · , rζn).

The p -th root of (5.1) defines a norm on hp(Dn) when p ≥ 1. With this norm hp(Dn)

is Banach.

The following theorem [25, Theorem 2.1.2] shows that any n-harmonic functions

in Dn continuous up to the boundary can be restored by the Poisson integral of its

boundary values on the distinguished boundary.

Theorem 5.1. If u is continuous on Dn and n-harmonic in Dn then

u(z) =

∫
Tn
P (z, ζ)u(ζ) dm(ζ)

for z ∈ Dn.

Theorem 5.2. Let u ∈ hp(Dn), p > 1. Then there exists a function f ∈ Lp(Tn)

such that

u(z) =

∫
Tn
P (z, ζ)f(ζ) dm(ζ).

Proof. The equation (5.1) implies that there is a weakly convergent sequence urj .

Hence for g ∈ Lq(Tn)

g 7→ lim
j→∞

∫
Tn
g(ζ)urj(ζ) dm(ζ)

is a linear functional on Lq(Tn). By Riesz theorem there exists an f ∈ Lp(Tn) such

that

lim
j→∞

∫
Tn
g(ζ)urj(ζ) dm(ζ) =

∫
Tn
g(ζ)f(ζ) dm(ζ).
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Now take g(ζ) = P (z, ζ). Then

u(z) = lim
j→∞

urj(z) = lim
j→∞

∫
Tn
P (z, ζ)urj(ζ) dm =

∫
Tn
P (z, ζ)f(ζ) dm(ζ).

The second equality above follows from Theorem 5.1.

What makes the above proof work is the duality of Lp spaces. Since L∞ is the

dual of L1, the same result holds with the same proof for p =∞. Of course we have

to change the statement accordingly. But since L1 is not dual of anything, we don’t

have the same result for p = 1. Instead, since the space of finite signed measures on

Tn is dual of the space of continuous functions C(Tn) we have the following result

from [25, Theorem 2.1.3, (e)]

Theorem 5.3. Let u ∈ hp(Dn), p = 1. Then there exists a finite signed measure µ

on Tn with

u(z) =

∫
Tn
P (z, ζ) dµ(ζ).

By Theorem 5.2, for p > 1, the function u ∈ hp(Dn) is the Poisson integral of

a function f ∈ Lp(Tn). Is there any other connection between u and f? We know,

when n = 1, f is the boundary value function of u and when n > 1 the following

theorem ([25, Theorem 2.3.1]) answers this question.

Theorem 5.4. If f ∈ L1(Tn), if σ is a measure on Tn which is singular with respect

to dm, and if u = P [f + dσ], then u∗(ζ) = f(ζ) for almost every ζ ∈ Tn, where

u∗(ζ) = limr→1 u(rζ).



CHAPTER 5. HARDY SPACES ON THE POLYDISK 55

Theorems 5.2 and 5.4 together imply that every function u ∈ hp(Dn), p > 1, has

radial limit u∗ ∈ Lp(Tn) and the function u can be restored by the Poisson integral

of u∗. However, for p = 1 we just saw in Theorem 5.3 that u(z) = P [dµ](z). By the

Lebesgue decomposition theorem

dµ = f dm+ dσ

where σ is singular with respect to m and f ∈ L1(Tn). Again by Theorem 5.4,

u∗(ζ) = f(ζ) but u can not be restored by the Poisson integral of its boundary value

function unless, of course, P [dσ] = 0.

Also in [25] it has been proved that if f ∈ Lp(Tn), 1 ≤ p <∞, and u = P [f ] then

ur converges to f in the Lp-norm as r → 1, i.e. limr→1 ‖ur − f‖Lp = 0. But when

p = 1 we have the weak-∗ convergence.

Theorem 5.5. Let f(z) = P [dµ](z) with µ a finite signed measure on Tn. Then

fr dm→ dµ weak-∗ as r → 1.

Proof. Let ϕ ∈ C(Tn). Then∣∣∣∣∫
Tn
ϕ(ζ)fr(ζ) dm(ζ)−

∫
Tn
ϕ(ζ) dµ(ζ)

∣∣∣∣
=

∣∣∣∣∫
Tn
ϕ(ζ)

(∫
Tn
P (rζ, η) dµ(η)

)
dm(ζ)−

∫
Tn
ϕ(η) dµ(η)

∣∣∣∣
=

∣∣∣∣∫
Tn

(∫
Tn
P (rη, ζ)ϕ(ζ) dm(ζ)

)
dµ(η)−

∫
Tn
ϕ(η) dµ(η)

∣∣∣∣
=

∣∣∣∣∫
Tn

(∫
Tn
P (rη, ζ)ϕ(ζ) dm(ζ)− ϕ(η)

)
dµ(η)

∣∣∣∣
→0
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because the inner integral goes to zero uniformly on η. Hence fr dm→ dµ weak-∗ as

r → 1.

We define Hp(Dn), 0 < p <∞, to be the class of all holomorphic functions f ∈ Dn

for which

sup
0≤r<1

∫
Tn
|fr(ζ)|p dm <∞

and H∞(Dn) is the space of all bounded holomorphic functions in Dn.

Since |f |p is n-subharmonic, sup in the definition can be replaced by lim as r → 1.

It is known that if f ∈ Hp(Dn), 0 < p <∞, then f has a non-tangential limit at

almost all points of Tn [32, Ch. XVII, Theorem 4.8]. We denote this limit by f ∗ as

in [25] and call it a boundary value function for f . Moreover, we have the following

results from Rudin (see [25, Theorem 3.4.2 and 3.4.3]).

Theorem 5.6. If f ∈ Hp(Dn), 0 < p <∞, then f ∗ ∈ Lp(Tn) and

1. limr→1

∫
Tn |fr|

p dm =
∫
Tn |f

∗|p dm

2. limr→1

∫
Tn |fr − f

∗|p dm = 0.

When p ≥ 1 the function in Hp(Dn) can be represented by the Poisson integral of

its boundary value function.

Theorem 5.7. If f ∈ H1(Dn), then

f(z) =

∫
Tn
P (z, ζ)f ∗(ζ) dm.

(The case n = 1 can be found in [24, Theorem 17.11].)
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Proof. Since for every z ∈ Dn, P (z, ζ) is bounded on Tn, by Theorem 5.6 (2)

∣∣∣∣∫
Tn
P (z, ζ)fr(ζ) dm(ζ)−

∫
Tn
P (z, ζ)f ∗(ζ) dm(ζ)

∣∣∣∣
≤
∫
Tn
P (z, ζ)|fr(ζ)− f ∗(ζ)| dm(ζ)

→0.

Now by [25, Theorem 2.1.2]

f(z) = lim
r→1

fr(z)

= lim
r→1

∫
Tn
P (z, ζ)fr(ζ) dm(ζ)

=

∫
Tn
P (z, ζ)f ∗(ζ) dm(ζ).

5.2 The F. and M. Riesz Theorem

Now we generalize the F. and M. Riesz theorem.

Theorem 5.8. Let µ be a complex Borel measure on Tn. If

∫
Tn
ei(kθ) dµ(θ) = 0

for k = (k1, · · · , kn) ∈ Zn with at least one kj, j = 1, 2, · · · , n positive, where (kθ) =

k1θ1 + · · ·+ knθn, then µ is absolutely continuous with respect to dm.

(When n = 1 see [24, Theorem 17.13].)
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Proof. Define f(z) = P [dµ](z). Then, with the notations

z = (z1, · · · , zn) with zj = rje
iθj , j = 1, · · · , n

r|k| = r
|k1|
1 · · · r|kn|n

(k · θ) = k1θ1 + · · ·+ knθn

(k · t) = k1t1 + · · ·+ kntn

and using the series representation for the Poisson kernel, we get

f(z) =

∫
Tn
P (z, eit) dµ(t)

=

∫
Tn

(∑
k∈Zn

r|k|ei(k·θ)e−i(k·t)

)
dµ(t)

=
∑
k∈Zn

(∫
Tn
e−i(k·t)dµ(t)

)
r|k|ei(k·θ)

=
∑
k∈Zn+

ckz
k

where ck =
∫
Tn e

−i(k·t) dµ(t) and zk = r|k|ei(k·θ). Notice that all other integrals in the

above sum vanish by the hypothesis. Thus f(z) is holomorphic.

For 0 ≤ r < 1,

∫
Tn
|fr(ζ)| dm(ζ) =

∫
Tn

∣∣∣∣∫
Tn
P (rζ, η) dµ(η)

∣∣∣∣ dm(ζ)

≤
∫
Tn

(∫
Tn
P (rζ, η) d|µ|(η)

)
dm(ζ)

=

∫
Tn

(∫
Tn
P (rζ, η) dm(ζ)

)
d|µ|(η)

= ‖µ‖.
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Thus f ∈ H1(Dn) and by Theorem 5.7, f(z) = P [f ∗](z), where f ∗ is the boundary

value function for f . Now the uniqueness of the Poisson integral representation shows

that

dµ = f ∗dm

and the proof is completed.

5.3 Boundary Values

Do the boundary values of functions in Hp(Dn) exist on the non-distinguished bound-

ary? Now we look into this question.

Let {j1, · · · , jk} and {i1, · · · , il} be disjoint sets of indices such that their union

is {1, · · · , n} where j1 < j2 < · · · < jk and i1 < i2 < · · · < il. Define the sections of

Dn as follows

Dn
zj1 ,··· ,zjk

= {(z1, · · · , zn) ∈ Dn : zj1 , · · · , zjk are fixed}

and define fzj1 ,··· ,zjk = f |Dnzj1 ,··· ,zjk . We will write fzj1 ,··· ,zjk (zi1 , · · · , zil) instead of

fzj1 ,··· ,zjk (z1, · · · , zn).

We will see below that for f ∈ Hp(Dn), 1 ≤ p < ∞, the non-tangential limit

of fzj1 ,··· ,zjk exists at almost all points of the distinguished boundary of the section

Dn
zj1 ,··· ,zjk

which is Tl and the function fzj1 ,··· ,zjk can be restored by the Poisson integral

of this limit.

Theorem 5.9. Let f ∈ Hp(Dn), 1 ≤ p <∞. Then fzj1 ,··· ,zjk ∈ H
p(Dl).
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Proof. Without loss of generality we suppose that {j1, · · · , jk} = {1, · · · , k}. Let’s

use the following notations for the Poisson kernels

Pj(ζj) =


P (zj, ζj) j = 1, · · · , k

P (rξj, ζj) j = k + 1, · · · , n

where |ξj| = 1. Then, for 0 < r < 1, by Theorem 5.7

fz1,··· ,zk(rξk+1, · · · , rξn) =

∫
Tn
P1(ζ1) · · ·Pn(ζn)f ∗(ζ1, · · · , ζn) dmn.

For p > 1, by Hölder and Fubini

∫
Tl
|fz1,··· ,zk(rξk+1, · · · , rξn)|pdml

=

∫
Tl

∣∣∣∣∫
Tn
P1(ζ1) · · ·Pn(ζn)f ∗(ζ1, · · · , ζn) dmn

∣∣∣∣p dml

≤
∫
Tl

(∫
Tn
P1(ζ1) · · ·Pn(ζn)|f ∗(ζ1, · · · , ζn)|p dmn

)
dml

=

∫
Tn
P1(ζ1) · · ·Pk(ζk)|f ∗(ζ1, · · · , ζn)|p

(∫
Tl
Pk+1(ζk+1) · · ·Pn(ζn) dml

)
dmn

≤ 2k

(1− |z1|) · · · (1− |zk|)

∫
Tn
|f ∗(ζ1, · · · , ζn)|pdmn.

The same estimate holds for p = 1 also. The last quantity above is independent of r

and is finite by Theorem 5.6. Thus the theorem is proved.

The following corollary is immediate.

Corollary 5.10. If f ∈ Hp(Dn), 1 ≤ p < ∞, then the non-tangential limit f ∗zj1 ,··· ,zjk

of the function fzj1 ,··· ,zjk exists almost everywhere on Tl and belongs to Lp(Tl).

The following theorems are the direct consequences of Theorems 5.6 and 5.7.
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Theorem 5.11. If 1 ≤ p <∞ and f ∈ Hp(Dn), then

1. limr→1

∫
Tl |(fzj1 ,··· ,zjk )r|p dml =

∫
Tl |f

∗
zj1 ,··· ,zjk

|p dml

2. limr→1

∫
Tl |(fzj1 ,··· ,zjk )r − f ∗zj1 ,··· ,zjk |

p dml = 0

where (fzj1 ,··· ,zjk )r(ζi1 , · · · , ζil) = fzj1 ,··· ,zjk (rζi1 , · · · , rζil).

Theorem 5.12. If f ∈ H1(Dn), then

fzj1 ,··· ,zjk (zi1 , · · · , zil) =

∫
Tl
P (zi1 , ζi1) · · ·P (zil , ζil)f

∗
zj1 ,··· ,zjk

(ζi1 , · · · , ζil) dml.

Theorem 5.13. Let f be a holomorphic function in Dn. If 1 ≤ p <∞ and

sup
(zj1 ,··· ,zjk )

|zj1 |=···=|zjk |

‖fzj1 ,··· ,zjk‖Hp(Dn−k) = M <∞,

for some integer k, 1 ≤ k ≤ n, then f ∈ Hp(Dn).

Proof. For simplicity we take {j1, · · · , jk} = {1, · · · , k}. Now for 0 ≤ r < 1,

∫
Tn
|f(rζ1, · · · , rζn)|p dmn

=

∫
Tk

(∫
Tn−k
|f(rζ1, · · · , rζn)|p dmn−k

)
dmk

≤
∫
Tk

(
sup

0≤t<1

∫
Tn−k
|f(rζ1, · · · , rζk, tζk+1, · · · , tζn)|p dmn−k

)
dmk

=

∫
Tk
‖frζ1,··· ,rζk‖

p
Hp(Dn−k)

dmk

≤Mp.

Thus f ∈ Hp(Dn).
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5.4 Poletsky–Stessin Hardy Spaces on the Bidisk

Let u be a negative continuous plurisubharmonic function on the bidisk

D2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}

such that u(z1, z2)→ 0 as (z1, z2)→ (ζ1, ζ2) ∈ ∂D2. Following Demailly [3], for r < 0

we define

Su(r) =
{

(z1, z2) ∈ D2 : u(z1, z2) = r
}

and Bu(r) = {(z1, z2) ∈ D2 : u(z1, z2) < r}.

For convenience we will write z = (z1, z2). Associated with this u, Demailly in [3] has

defined the positive measure µu,r, which we call the Monge-Ampère measure, by

µu,r = (ddcur)
2 − χD2\Bu(r)(dd

cu)2

where ur = max{u, r}. These measures are supported by the level sets Su(r). De-

mailly has proved the following [3, Theorem 1.7].

Theorem 5.14 (Lelong–Jensen Formula). For all r < 0 every plurisubharmonic

function ϕ on D2 is µu,r-integrable and

µu,r(ϕ) =

∫
Bu(r)

ϕ(ddcu)2 +

∫
Bu(r)

(r − u)(ddcϕ) ∧ (ddcu).

Denote by E(D2) the set of all continuous negative plurisubharmonic functions u

on D2 and equal to zero on ∂D2 whose Monge–Ampère mass is finite, i.e.

∫
D2

(ddcu)2 <∞
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and denote by E1(D2) the set of those u ∈ E(D2) for which
∫
D2(dd

cu)2 = 1.

In [20] Poletsky and Stessin introduced the spaces Hp
u(D2), which are defined to

be the space of all holomorphic functions on D2 for which

lim sup
r→0−

µu,r(|f |p) <∞.

We call these spaces the Poletsky–Stessin Hardy spaces. These spaces are contained

in the classical spaces, that is, Hp
u(D2) ⊂ Hp(D2). Since µu,r(|f |p) is an increasing

function of r the lim sup in the definition can be replaced by lim. For p ≥ 1, the pth

root of

‖f‖p
Hp
u

= lim
r→0−

µu,r(|f |p)

defines a norm and with this normHp
u(D2) is Banach [20, Theorem 4.1]. The Poletsky–

Stessin Hardy spaces on the unit disk have been studied in detail in [1], [29], [27], [19]

and [28].

In [18], Poletsky has shown that the intersection of all Poletsky–Stessin Hardy

spaces Hp
u(D), p ≥ 1, where D is a strongly pseudoconvex domain D with C2 bound-

ary, is H∞(D), the space of bounded holomorphic functions. Hence it immediately

follows that the intersection of all Hp
u(D) is H∞(D). We will prove this result for the

polydisk. It is enough to consider the bidisk.

Let ζ = (ζ1, ζ2) ∈ T2 and α = (α1, α2), 0 < α1, α2 < π/2. Following [32] we define

the approach region Tα(ζ) as

Tα(ζ) = Tα1(ζ1)× Tα2(ζ2)
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where Tαj(ζj) is the Stolz angle at ζj ∈ T with vertex angle 2αj. Here we will

consider only the congruent symmetric approach regions meaning that the Stolz angles

are symmetric with respect to the radius to ζj and the vertex angles are equal, i.e.

α1 = α2. Following [18] we define the Green ball of radius 0 < r < 1 and center at w

to be the set

G(w, r) = {z ∈ D2 : g(z, w) < log r}

where g(z, w) is the Green function for D2 with pole at w. The Green function for

D2 is explicitly given by

g(z, w) = log max

{∣∣∣∣ z1 − w1

1− w1z1

∣∣∣∣ , ∣∣∣∣ z2 − w2

1− w2z2

∣∣∣∣} .
Hence it follows that

G(w, r) =

{
z1 ∈ D :

∣∣∣∣ z1 − w1

1− w1z1

∣∣∣∣ < r

}
×
{
z2 ∈ D :

∣∣∣∣ z2 − w2

2− w2z2

∣∣∣∣ < r

}
.

Lemma 5.15. Let ζ = (ζ1, ζ2) ∈ T2 and 0 < r < 1. For any 0 < t < 1 there

exists 0 < α < π/2 such that G(tζ, r) ⊂ Tα(ζ) where tζ = (tζ1, tζ2) and Tα(ζ) =

Tα(ζ1)× Tα(ζ2).

Proof. Observe that {
zj ∈ D :

∣∣∣∣ zj − tζj1− tζjzj

∣∣∣∣ < r

}
is the image of the disk {|wj| < r} ⊂ C under the conformal map

wj 7→
wj + tζj

1 + tζjwj



CHAPTER 5. HARDY SPACES ON THE POLYDISK 65

which is a disk contained in D with center at

t(1− r2)

1− r2t2
ζj

and radius equal to

r(1− t2)

1− r2t2
.

The tangents to this disk that pass through ζj make an angle of

α = arcsin

(
r(1 + t)

1 + tr2

)
with the radius to ζj. Hence{

zj ∈ D :

∣∣∣∣ zj − tζj1− tζjzj

∣∣∣∣ < r

}
⊂ Tα(ζj)

for j = 1, 2 and G(tζ, r) ⊂ Tα(ζ). Since for fixed 0 < r < 1

t 7→ r(1 + t)

1 + tr2

is an increasing function of t ∈ [0, 1] we have

0 <
r(1 + t)

1 + tr2
≤ 2r

1 + r2
< 1.

From this it follows that

0 < α ≤ arcsin

(
2r

1 + r2

)
<
π

2
.

Remark 5.1. For fixed 0 < r < 1

t 7→ r(1− t2)

1− r2t2
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is a decreasing function of t ∈ [0, 1] that decreases to zero as t → 1. Therefore we

can make the size of the Green ball G(tζ, r) as small as we want simply by choosing

t close enough to 1.

The plurisubharmonic envelope Eφ of a continuous function φ on a domain Ω ⊂

Cn is the maximal plurisubharmonic function on Ω less than or equal to φ. For a

sequence of functions {uj} ⊂ E(D2), we denote by E{uj} the envelope of inf{uj}. The

following lemma [18, Theorem 3.3] gives the estimate on the Monge–Ampère mass of

the envelope.

Lemma 5.16. If Ω is a strongly hyperconvex domain and continuous plurisubhar-

monic functions {uj} ⊂ E(Ω), then

∫
Ω

(ddcE{uj})n ≤
∑∫

Ω

(ddcuj)
n.

Theorem 5.17. Let f be a holomorphic function on D2. Suppose that f has non-

tangential limits at points {ζj} ⊂ T2 and limj→∞ |f ∗(ζj)| = ∞. Then for any p ≥ 1

there exists u ∈ E1(D2) such that f /∈ Hp
u(D2).

We will mimic the proof of this theorem from Poletsky’s manuscript [18].

Proof. Let us take a sequence {aj} of positive numbers such that

∞∑
j=1

aj <∞ and
∞∑
j=1

a2
j |f ∗(ζj)|p =∞.

For 0 < tj < 1 we write Gj = G(tjζj, e
−1). By Lemma 5.15 there exists 0 < αj < π/2

such that Gj ⊂ Tαj(ζj). Now we inductively construct a sequence {tk}, 0 < tk < 1,
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satisfying certain conditions. Choose any 0 < t1 < 1. Suppose that t1, · · · , tk−1 have

already been chosen. Now chose 0 < tk < 1 so that the following conditions are

satisfied:

(i) |f | > |f ∗(ζk)|/2 on Gk

(ii) Gk ∩Gj = φ

(iii) g(z, tkζk) > −aj/2k+1 on Gj

(iv) ajg(z, tjζj) > −ak/2j+1 on Gk

for 1 ≤ j ≤ k − 1. The conditions (i) and (ii) can be achieved simply by taking tk

close enough to 1. Since Gj, j < k, and Gk are disjoint, g(z, tkζk) → 0 uniformly on

Gj as tk → 1. Hence (iii) can be achieved for tk close enough to 1. Since g(z, tjζj) = 0

when z ∈ ∂D2, we can choose tk so close to 1 that

Gk ⊂
k−1⋂
j=1

{
z ∈ D2 : ajg(z, tjζj) > −ak/2j+1

}
.

Thus (iv) can be achieved.

Define

uj(z) = aj max{g(z, tjζj),−2}.

Note that if F is an open set in D2 containing G(tjζj, e
−2) then∫

F

(ddcuj)
2 = a2

j .

Let u = E{uj}. Since the series v =
∑∞

j=1 uj converges uniformly on D2, v ∈ E(D2).

So u ≥ v is a continuous plurisubharmonic function on D2 equal to 0 on ∂D2. By
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Lemma 5.16, ∫
D2

(ddcu)2 ≤
∞∑
j=1

∫
D2

(ddcuj)
2 =

∞∑
j=1

a2
j <∞.

Hence u ∈ E(D2).

Now we evaluate
∫
Gk

(ddcu)2. Observe that uk ≥ u ≥ v on D2. By the conditions

on the choices of tj, on ∂Gk we get

−ak ≥ u ≥ −
k−1∑
j=1

ak
2j+1

− ak −
∞∑

j=k+1

ak
2j+1

≥ −3

2
ak.

Hence u+ 3ak/2 ≥ 0 on ∂Gk and the set Fk = {6(u+ 3
2
ak) < uk} compactly belongs

to Gk. Moreover, if z ∈ ∂G(tkζk, e
−2) then

6

(
u(z) +

3

2
ak

)
≤ 6

(
uk(z) +

3

2
ak

)
= −3ak < −2ak = uk(z).

Thus G(tkζk, e
−2) ⊂ Fk. By the comparison principle

36

∫
Gk

(ddcu)2 =

∫
Gk

(ddc6(u(z) +
3

2
ak))

2 ≥
∫
Fk

(ddcuk)
2 = a2

k.

Hence by Lelong–Jensen formula

‖f‖p
Hp
u
≥
∫
D2

|f |p(ddcu)2 ≥
∞∑
k=1

∫
Gk

|f |p(ddcu)2 ≥ 1

36 · 2p
∞∑
k=0

|f ∗(ζk)|pa2
k =∞.

Hence f /∈ Hp(D2).

The following corollary shows the existence of nontrivial Poletsky–Stessin Hardy

spaces on the bidisk.

Corollary 5.18. For every p ≥ 1 there exists a function u ∈ E1(D2) such that

Hp
u(D2) ( Hp(D2).
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Proof. Take f ∈ Hp(D2) that is unbounded. Then the non-tangential limit f ∗ on T2

must be unbounded because otherwise

f(z) =

∫
T2

P (z, ζ)f ∗(ζ) dm

would imply that f(z) is bounded. So there exists a set of points {ζj} ∈ T2 such that

limj→∞ |f ∗(ζj)| =∞. Hence the corollary follows from Theorem 5.17.

Now we prove the most important theorem of this section.

Theorem 5.19. Let p ≥ 1. Then

⋂
u∈E1(D2)

Hp
u(D2) = H∞(D2).

Proof. Let f ∈
⋂
u∈E1(D2) H

p
u(D2). Then the non-tangential limit f ∗ on T2 is bounded

because otherwise by Theorem 5.17 there would exist a u ∈ E1(D2) such that f /∈

Hp
u(D2). Thus, since f ∗ is bounded,

f(z) =

∫
T2

P (z, ζ)f ∗(ζ) dm

implies that f ∈ H∞(D2).
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