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Abstract 

Metal and semiconductor nanocrystals (NCs) have unique optical and physical properties 

that are dependent on size, composition and morphology. When NCs are coupled to biomolecules, 

their properties are combined to create unique materials with biomimetic capabilities that can 

function as biosensors, cellular imaging agents or drug delivery vehicles. Most NCs are 

synthesized in air free, non-polar conditions, so surface chemistries must be tuned to accommodate 

hydrophilic biomolecules. This can be achieved through ligand exchange or polymer encapsulation 

procedures. This work takes advantage of both phase transfer routes to functionalize gold 

nanoparticles (AuNPs), quantum dots (QDs), and quantum rods (QRs) with DNA and proteins for 

self-assembly, energy transfer and drug delivery applications. 

In the first project, we explored the ability to assemble QDs into clusters with a high degree 

of control through DNA-mediated interactions. The hydrophobic QDs were first transferred to 

buffers using a polymer encapsulation approach that used an amphiphilic polymer. The polymer 

encapsulated QDs were successfully functionalized with oligonucleotides through both EDC/NHS 

coupling and click chemistry. The final QD/DNA conjugates were assembled into multicolor QD 

clusters through a colloidal stepwise approach. One of the greatest challenges of this project was 

an inconsistent batch-to-batch QD/DNA coupling efficiency, which was attributed to the presence 

of excess polymer, QD aggregates and poor stoichiometry. Purifying QDs via ultracentrifugation 

in a sucrose density gradient removed excess polymer, leading to a decreased optical scattering 

and increased DNA loading that was beneficial for increasing coupling efficiency. In these 

clusters, a decrease in the QD donor emission and an increase in the QD acceptor emission 

indicated that QD-QD FRET occurred. One disadvantage to using QDs as energy acceptors is their 

broad absorption profile, which causes them to be coexcited with the donor. To overcome this 



limitation, a bioluminescent protein can be used to generate QD emission through bioluminescence 

resonance energy transfer (BRET) without external excitation. 

In the next project, CdSe/CdS quantum rods (QRs) were functionalized with the 

bioluminescent firefly protein, Photinus pyralis (Ppy). The aim of this project was to improve the 

long-term stability of the QR/Ppy conjugates. To make these conjugates, hydrophobic CdSe/CdS 

QRs are rendered hydrophilic through a ligand exchange with histidine (His) followed by an 

additional ligand exchange to conjugate hexahistagged Ppy proteins to QRs (QR/His/Ppy). In these 

conjugates, there was a decrease in the stability of the BRET over time. The retention of the BRET 

signal was significantly improved by changing the QR capping ligand prior to protein conjugation 

from His to glutathione (GSH). This is because the GSH ligands that remain on the QR surface 

after Ppy coupling are more highly charged than His, leading to more efficient electrostatic 

repulsions between QRs. To incorporate the improved QR/Ppy nanoconjugates into the QD/DNA 

clusters, the QR emission should be a result of non-radiative energy transfer contributions only to 

prevent simultaneous excitation of the energy donor and acceptor. To investigate the contribution 

from radiative energy transfer to the BRET signal, control experiments were performed that 

indicated that most of the BRET signal arises from non-radiative energy transfer from the Ppy to 

the QR. 

In the last project, DNA functionalized AuNPs were used as drug carriers for idarubicin 

(IDA), a clinically approved chemotherapeutic agent. To construct these conjugates, AuNPs are 

synthesized using a citrate reduction method and a ligand exchange is carried out to exchange the 

citrate capping molecules with thiol modified DNA and thermoresponsive polymers. Drug binding 

was investigated using DNA denaturation measurements and kinetic studies. An increase in duplex 

DNA melting temperature with drug loading verified IDA intercalation at the dsDNA. The kinetics 



of drug release were investigated at physiological temperature, where the presence of drug outside 

of a dialysis membrane was monitored through IDA fluorescence. The low drug release, small 

dissociation rate constant of 0.05 min-1 and high equilibrium constant of 3.0 x 108 M-1 demonstrates 

that these nanoconjugates can act as efficient vehicles for in vivo drug delivery.
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Chapter 1 

Introduction 

 

 

Nanotechnology exploits the unique size dependent optical, electronic and physical 

properties of nanomaterials derived from metals, metal oxides and semiconductors for a gamut of 

novel applications. Nanocrystals (NCs) are typically made up of an inorganic core, with at least 

one dimension on the nanometer scale, that is coated with a monolayer of ligands that influence 

their properties and functionalities.1 NCs are increasingly popular for drug delivery and self-

assembly applications due to their high surface to volume ratio, surface plasmon resonance (SPR) 

in noble metal NCs,2–11 and quantum confinement in semiconducting NCs, or quantum dots 

(QDs).12–17 

The goal of the work presented within this thesis is to create functional nanomaterials for 

self-assembly, drug delivery and energy transfer applications. In the first project, QDs were 

functionalized with oligonucleotides and self-assembled using DNA mediated interactions 

(Chapter 2). QD clusters were assembled with defined stoichiometries on a magnetic solid support 

and we studied the QD-QD energy transfer that occurred in these clusters. Measuring the energy 

transfer in these clusters was not straightforward because there was coexcitation of the donor and 

acceptor due to the broad QD absorption spectra. To overcome this challenge, a bioluminescent 

protein was directly conjugated to quantum rods (QRs) to create nanoconjugates that emit light 

without an external light source (Chapter 3). QRs with rod-in-rod microstructures were used 

because they are the most efficient BRET acceptors. The goal of this work was to overcome 

colloidal stability issues and to investigate the nature of energy transfer in these nanoconjugates. 

We increased the colloidal stability by changing the ligand that imparted polar solubility from 

histidine to glutathione (Chapter 3). In the final project, DNA and polymer functionalized gold 
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nanoparticles (AuNPs) were used as encoded nanocarriers for the cancer drug idarubicin (IDA) 

(Chapter 4). We confirmed drug binding through the increase in DNA melting temperature and 

measured equilibrium rate constants on the order of 108. 

 

1.1 Physical and Optoelectronic Properties of Nanocrystals 

1.1.1 Metal Nanocrystals 

Colloidal solutions of silver and gold NCs display bright yellow and deep red colors, 

respectively, due to surface plasmon resonance (SPR).2–11 SPR is generated when the free electrons 

in the conduction band of a material coherently oscillate as a result of electromagnetic excitation. 

This oscillation causes the displacement of the electron cloud relative to the nuclei due to 

Coulombic forces as shown in Figure 1.1.6,7  

 
Figure 1.1: Schematic illustration showing the interaction between metal NCs with a light wave 

to produce surface plasmons. Only the electric field plane of light is shown for simplicity.  

 

SPR is generated for NCs that are smaller than or equal to the wavelength of incident light 

and create an optical excitation maximum at the plasmon resonant frequency. In noble metal NCs, 

this plasmon frequency is found in the visible region and quadrupole excitation can increase the 
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optical absorption into the infrared region. The frequency and width of the SPR band changes with 

temperature, the density of the electrons, effective electron mass, the shape and the size of the NCs 

as well as the dielectric constant of the metal and surrounding environment.6–9 This is demonstrated 

in Equation 1.1.18,19 
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Where cext is the extinction cross section in single particle, R is the radius, εm is the dielectric 

function of the medium, εr is the real part of the dielectric function, εi is the imaginary part of the 

dielectric function, and λ is the wavelength. The cext is related to the extinction coefficient, ε, and 

Avogadro’s number NA, by Equation 1.2.18,19 
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The SPR electromagnetic field is only present close to the interface so changes in the SPR 

are sensitive to molecular processes that influence the dielectric property close to the interface.11 

As the sizes of metal NCs decrease toward the size where quantum confinement effects 

predominate, the SPR band dampens in a matter that is inversely dependent on the radius from the 

scattering of surface electrons.8 As the size increases to over 85 nm, there is an increase in 

scattering efficiency of the NCs that causes a change in the power dependence on the extinction 

coefficient compared to smaller metal NCs.20 NCs with anisotropic shape can interact with light 

differently, and a secondary peak can arise from longitudinal SPR, where the energy difference 

between the two plasmon bands increase as the aspect ratio increases.7,21 
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1.1.2 Semiconductor Nanocrystals 

Unlike metal NCs, semiconductor NCs have strong size-dependent optical properties that 

arise from the quantum confinement of an electrically neutral quasiparticle called an exciton, 

which is created when a QD absorbs a photon with enough energy to cause a quantum change (hv 

> Eg). The energy gap (Eg) is the energy difference between the frontier orbitals: the Se 4p orbitals 

in CdSe that make up the top of the valence band, or the highest occupied molecular orbital 

(HOMO), and the Cd 5s orbitals that make up the bottom of the conduction band, or the lowest 

occupied molecular orbital (LUMO).12,13,17 The wavelength of the emitted photon depends on the 

degree of quantum confinement, which is a function of the ratio between the square of the Bohr 

radius of the exciton (a0
2) and the size of the QDs.13  

According to Schrödinger’s equations for a particle in a 3D box, the energy of confinement 

of an electron is inversely proportional to the size of the box; this is observed for QDs where a 

decrease in particle size leads to an increase in emission energy, as shown in Figure 1.2.13 As QDs 

get smaller in size, there are fewer orbital overlaps that cause an increase in the Eg, so the discrete 

electronic transitions QDs shift to higher energies.  Photoexcitation causes an electron (e-) from 

the valence band to be excited into the conduction band and leave behind a positively charged hole 

(h+).17  The electron relaxes to the first energy level of the excited state and then recombines with 

the hole, emitting energy radiatively with light or non-radiatively due to the presence of surface 

trap states. The amount of emitted energy is quantified through quantum yield (QY). During the 

emission process, the exciton (e--h+ pair) is held together through Coulombic charge interactions, 

which causes the electronic excitation states to be lower in energy than the Eg by tens of mV.17 

Even though the exciton fine structure excitation energies are lower than Eg, trends in exciton 
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energy as a function of size, shape or material are still largely dictated by Eg, so the e--h+ spatial 

separation is described using the Bohr radius (a0).
17  

Figure 1.2: Jabłoński diagram illustrating the effect of decreasing QD size on band gap (Eg) 

 

The energy of the emitted wavelength can be calculated using equation 1.3.22   
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Where Eg is the band gap energy, Econfinement and Eexciton are the confinement and exciton 

energies, respectively, h is Planck’s constant, a is the radius of the QD, a0 is the Bohr radius, me 

and mh are the electron and hole masses, respectively, μ is the reduced mass, Ry is the Rydberg 

constant and ε is the size dependent dielectric constant. As shown in the equation, the emission 

energy is inversely proportional to the radius of the QD and the dielectric constant of the material. 

QDs that are made up of smaller metals with smaller a0 and larger bulk Eg, such as cadmium 

chalcogenides, experience quantum confinement at smaller sizes compared to materials with a 

larger a0 and smaller Eg, so the emission wavelength can also be tuned by changing the material. 

CdSe QDs have emission in the visible range while PbSe NCs have been able to emit into the IR 

region.23 The absorbance spectra of QDs typically have multiple peaks that arise from the different 

allowed transitions in the electronic structure. At lower energy wavelengths, the UV-vis spectra 
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arises from the quantum confinement of the band gap, but at higher energies, the spectra is closer 

to that of the bulk material and is no longer in the strong confinement regime.12 The energy of the 

first transition usually carries most of the oscillator strength.12 Oscillator strength is an intrinsic 

property of nanomaterials that is the strength of coupling between two electron states and describes 

the probability of absorption or emission of electromagnetic radiation.24,25 The contribution of light 

scattering to the absorbance of QDs is usually neglected since the size of the NC is much smaller 

than the wavelength of light.15 In semiconductor NCs, carrier confinement dictates the extinction 

coefficient.14 

Electronically excited QDs typically display a Stokes shift, where the emitted radiation has 

a lower frequency than the absorbed radiation. This is present when the electron is excited above 

the first vibrational level of the excited state and non – radiative vibrational relaxation can occur 

before radiative electronic relaxation to minimize the lifetime of the excited state. Depending on 

the application, a smaller or larger stokes shift is preferred. For example, incorporation of QDs as 

a laser requires a large stokes shift to prevent self-absorption. For self-assembly and energy 

transfer applications, a small stokes shift is desired to minimize non-radiative energy losses, 

decrease co-excitation and increase the amount of energy available for the system.  

The quantum confinement can also be manipulated by growing a shell of a different 

semiconductive material over the QD core. As shown in Figure 1.3, the exciton confinement is 

dictated by the Eg alignment between the core and shell materials. In type I materials (e.g: 

CdSe/ZnS), a shell is grown with a material that has a larger Eg than the core. This eliminates 

surface trap states and protects the exciton from the environment, leading to an increased QY.17,26 

Although the core dictates the optical properties, there is typically a small red shift in emission PL 

after shell growth that is proportional to the reduction in electron confinement. This occurs because 
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there is a small amount of exciton leakage into the shell material due to the finite energy offset 

between the core and shell materials. Type I½, or quasi type II, heterostructures (e.g CdSe/CdS), 

the h+ is confined to the core and the e- is delocalized along the whole crystal.17,26 Overgrowth of 

this type of shell causes a larger red shift and longer exciton radiative lifetimes due to the larger 

loss of confinement from decreased exciton wavefunction overlaps. In type II heterostructures, 

such as CdSe/CdTe, the Eg levels are staggered, so the e- and h+ are on different sides of the 

heterjunction.17,26 Type II materials (e.g: CdTe/CdSe) have a very small, non-zero exciton overlap. 

These materials exhibit the largest stokes shift and largest red shift after shell growth.  

       

Figure 1.3: Eg and exciton confinement for different types of core/shell systems. 

 

1.1.2.1 Anisotropic QRs 

The optical emission properties of semiconductor NCs can be tuned by adjusting the height, 

width and shape of the potential that confines the exciton.16,17 For spherical QDs, the exciton is 

confined in all directions so it is experienced as zero dimensional. Quantum wires confine the 
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exciton one dimensionally in the diameter direction and quantum wells confine the exciton two 

dimensionally in the thickness direction. Quantum rods (QRs), exhibit properties between 0 and 1 

dimensionally confined charge carriers, where there is a decrease in confinement along the length 

direction.27 Consequently, the QRs exhibit Eg and emission wavelengths that are strongly 

dependent on the diameter and weakly dependent on the length. CdSe QR cores grow along the c-

axis. Normal to the c-axis, the Se 4px and 4py orbitals bond stronger because of the orbitals 

directionality. The pz orbitals lie along the c-axis at lower energies due to crystal field splitting. 

When growth occurs along the c-axis, the pz orbital density decreases and the frontier valence band 

orbitals become dominated by pz orbitals, as shown in Figure 1.4.17 This elongation causes the QR 

optical properties to be linearly polarized along the wurtzite c-axis.16,17,27,28 In this thesis, wurtzite 

type I½ CdSe/CdS QRs are utilized, which confine the h+ in the core and delocalizes the e- along 

the whole heterostructure. Longer QRs are expected to have longer lifetimes and lower QYs since 

the e- is less spatially confined, which causes the e- and h+ to be more spatially separated and 

decreases the chances of recombination.27 Also, the large QR surface area increases the probability 

of surface trapping that can lead to an increased nonradiative decay rate.27 
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Figure 1.4: (a) Schematic visualization of how the upper valence orbitals are formed by bonding 

among the Se atoms. Normal to the long axis (c-axis), the px and py orbitals bond strongly in each 

layer giving a band of orbitals. That band is further widened and increased in density by bonding 

among the layers in the stack along the c-axis. The situation is similar for the pz orbitals, but the 

upper part of the band lies lower than that of the px and py bands owing to the crystal field splitting. 

(b) When the nanocrystal grows into a rod there are more layers of orbitals in z direction and the 

net effect is that the width of the pz band increases more than that of the px and py bands. That more 

than compensates for the crystal field splitting and raises the pz orbital to be the highest lying 

frontier valence orbital. Reproduced with permission from reference 17. Copyright © 2008 John 

Wiley and Sons. 

 

1.2 NC Synthesis 

Colloidal NCs have size dependent physical and chemical properties, making synthetic size 

control very crucial.23,29–31 The stages of NC growth include formation of monomers, nucleation, 

and growth. An annealing stage can be present in some synthetic protocols, where the growth of 

NCs stops and equilibrium is achieved to improve the crystallinity and surface quality. 

Unfortunately, this may also lead to an undesirable broadening of the shape and size 

distribution.23,29 In the beginning of the reaction, the mixture is homogeneous, with no phase 
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differences in the reaction. The reaction turns into a heterogeneous solution when the nuclei are 

created, with both solid and liquid phases present. The crystal nuclei have to be above the critical 

radius, which is the minimum size for a stable nucleus; nuclei smaller than this will redissolve and 

nuclei larger than this will continue to grow.23 As the reaction proceeds, the nuclei agglomerate 

and grow into larger crystals until they reach a saturation point and stop growing or until the 

reaction is quenched. The chemical potential and solubility of the NC into monomers increases as 

the size decreases.29   

The driving force for crystal growth is the minimization of the free energy of the system, 

which is the difference between the free energy of the monomers and the crystals in solution.23,29 

The energy spent breaking the bond between the monomers and the surfactant should be less than 

the energy freed by forming the chemical bonds in the crystal’s nucleus for successful growth.23 

The monomers at the surface of the NC will have unsaturated bonds, increasing the total free 

energy of the system. This can be minimized by the presence of stabilizing ligands and surfactants, 

which lower the surface tension of the crystal faces.17,23,29 

 

1.2.1 Core/Shell QDs and QRs 

QDs and QRs are typically synthesized at high temperatures through the thermal 

decomposition of organometallic precursors.23 For CdSe QDS, a cadmium compound, such as 

CdO or Cd(CH3)2, is dissolved in a solution with ligand to form a cadmium complex.23,30 The 

ligand-cadmium complex is then mixed with a second precursor, a ligand-chalcogenide complex. 

The Cd complex cleaves the ligand-chalcogenide bond, creating a Cd-chalcogenide bond.30 It was 

hypothesized that the electron rich chalcogenide binds to Cd2+ because the cadmium acts a Lewis 

acid and facilitates a nucleophilic attack by the ligand. The cleavage of TOP-Se was found to occur 
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two times faster in the presence of Cd-oleic acid than in the presence of oleic acid, indicating the 

Lewis acidity of the cadmium.30 It was also observed that changing the concentration of the 

surfactants changed the rate of the bond cleavage, uncovering their role in monomer formation. 

The monomer formation is believed to be the rate-limiting step for NC formation.23 

 Depending on the temperature and composition of the solution, QDs with different shapes, 

sizes and microstructures can be created. At higher temperatures and in the presence of phosphonic 

acids, QDs tend to grow in a wurtzite structure, but at lower temperatures, they tend to adopt a 

zinc blende structure. At equilibrium conditions with homogenous ligands, NCs will form 

spherical crystals. To create shapes that are different than those formed at equilibrium conditions, 

the relative surface tension of the crystal faces can be altered by using surfactants that have facet-

selective adsorption.17 Coordinating ligands bind dynamically; they need to desorb from a site to 

allow monomers to attach, so stronger binding ligands will impede growth and weaker ligands will 

enable vectorial growth on the crystal face they are adsorbed to.17,23,30,31  

The surfactants change the surface tension of the different crystal faces to different extents 

through the ligand-NC bonding nature and the solvation of the ligand tails by the solvent.17 In 

kinetic growth, the structure that is produced during NC growth is dependent on the relative growth 

rates of each facet.17 If one of the crystal faces has a relatively higher surface tension, then the 

system will want to lower the surface energy by growing along that face, so this face will grow 

relatively faster. In wurtzite crystals, the (0001) face is anion rich and has more dangling bonds, 

so anisotropic growth generally grows along this face.17,23 

Overcoating the QD or QR core with an inorganic material can alter the degree of the 

Stokes shift and exciton confinement, depending on the Eg alignment between the different 
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materials. The thickness of the shell is limited by interfacial strain from the crystal lattice mismatch 

between the two materials.  

 

1.2.2 AuNPs 

The synthesis of metal NCs involves the reduction of metal salt precursors at relatively low 

temperatures, typically 90-110°C. Common reducing agents are sodium borohydride, which 

produces smaller crystals, and the weaker sodium citrate, which produces larger crystals. Once the 

reducing agent is added, the ions are reduced to atoms (Au0) until the solution is supersaturated, 

creating the reactive monomers. The Au0 atoms then coalesce into subnanometer particles that act 

as nucleation sites for particle growth, called seeds.32 Growth onto the nuclei to form seeds occurs 

either from the binding of unbound Au0 atoms in solution, the aggregation of unreacted metal 

species onto nuclei followed by reduction or the coalescence of two small nuclei together.32 After 

growth, AgNPs and AuNPs typically adopt a face centered cubic (f.c.c) crystal lattice. Final 

AuNPs are composed of a core with Au0 atoms surrounded by a layer of negative ions that creating 

a particle surface charge. This outer layer can be [AuCl2]
- ions, borohydride ions or citrate ions, 

depending on the reaction conditions. The electrostatic interactions between AuNPs increase the 

stability and prevent further growth. AuNPs can be grown into rods after they are synthesized 

through a seeded initiation route, where the addition of a surfactant such as 

cetyltrimethylammonium bromide (CTAB), which binds preferentially to one of the crystal faces 

while the other faces agglomerate, leading to growth in one direction. Seedless initiation routes 

have also been developed to create anisotropic shapes from gold atoms.33,34 
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1.3 Surface Chemistry 

Since up to half of the atoms in a NC can be surface atoms, the NCs properties are sensitive 

to the surfactant layer. Manipulating the morphology of the ligand-NC interface is pivotal to 

increase their scope of application.1,35,36 Ligands can influence the shape, size, polydispersity, 

growth rate, optical properties, chemical stability, electronic structure and chemical reactivity of 

NCs.1,30,35–43 To control the optical properties of QDs and QRs, ligands can influence the QY and 

emission peak, depending on the overlap of the ligand orbitals with the QD band gap.35,37,44 If the 

ligands shift the orbitals of the unpassivated surface molecules away from the HOMO-LUMO gap 

then they can increase the QY by decreasing non-radiative relaxation. Reduction of these trap 

states can also decrease the Stokes shift. Poor surface passivation can decrease the QY through 

aggregation, ligand desorption or surface oxidation.44  

There are also uncertainties to the ligand layer. For example, ligand binding competition 

can lead to a surface composition that isn’t dependent on the ratio of ligands used during synthesis 

or ligand exchange.45 It was found that chemical impurities in trioctylphosphine oxide (TOPO) 

influences QD synthesis and lead to a variety of ligands on the surface. The ligands on the surface 

of NCs dynamically bind on and off of the surface depending on the strength of the metal-ligand 

bond. To overcome these uncertainties and to increase their scope of applications, a plethora of 

work has been devoted to ligand characterization techniques, including ligand quantification and 

kinetics. The chemical modification of NC surfaces is a popular technique to increase the scope of 

NC applications.  

Ligands can impart different functionalities and change the solubility of the NCs. The 

electrostatic and van der Waals forces for ligand-ligand and ligand-NC interactions dictate the 

solubility of the NCs and are sensitive to the degree of surface curvature and ligand density.39,46 
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Strong attractive van der Waals forces cause irreversible agglomeration of particles, whereas 

repulsive electrostatic interactions stabilize the particles and create a barrier that limits aggregation 

growth.39 Although the ligand shells govern the particle solubility by kinetically stabilizing the 

NCs through short ranged ligand-ligand interactions, long ranged van der Waals attraction between 

NCs make agglomeration energetically favored.39 Ligands tend to dynamically bind on and off of 

the surface and can bind to certain facets stronger than others depending on binding strength and 

ligand size.1,37,38,42 For stable, non-aggregating particles, the binding rate should be faster than the 

rate of agglomeration. 

To control the properties of AuNPs, QDs and QRs, the ligand layer can be manipulated 

through polymer wrapping techniques, where an amphiphilic polymer encapsulates the NC 

surface47–57 or through ligand exchange, where the native capping agents are exchanged either 

through an increased bond strength or mass action effect. In this thesis, both techniques were 

employed to impart polar solubility for QDs and QRs and to change the functionalities of AuNPs. 

 

1.3.1 Polymer Encapsulation 

One route towards polar solubility is a polymer encapsulation technique.47–57 To 

accomplish this, non-polar NCs are mixed with an amphiphilic polymer that contains polar and 

non-polar subunits. As the polarity is increased, the hydrophobic polymer subunits interact with 

the hydrophobic ligands on the NCs to create a shell surrounding the particle with the hydrophilic 

subunits exposed to the solvent, as shown in Figure 1.5.47,48 The outer polar shell of the polymer 

wrapped NC is available for further functionalization via attachment chemistries such as 

EDC/NHS coupling or click chemistry. 



 15 

 

Figure 1.5: Polymer wrapping procedure to increase QD hydrophilicity. 

 

Since the original ligands are retained, polymer coated NCs have displayed an increased 

long-term stability under a wide range of pH or ionic strengths compared to ligand exchanged 

QDs.47,48 The size of the polymer-NC nanoconjugate depends on the polymer’s size and 

conformation in a solvent, and the method used to encapsulate the NC.48 The relative dispersion 

forces between the two groups depend on the degree of intercalation between the alkyl groups on 

the NC and the hydrophobic groups on the polymer. 

 

1.3.2 Ligand Exchange 

Ligand exchange can be employed to replace the original ligand layer with new ligands to 

change the NC’s solubility and functionality. The ligands on the surface of the NC are in 

equilibrium with free ligands in the solution and ligand desorption can lead to deterioration of the 

optical properties, aggregation and precipitation.48 During ligand exchange, ligands are replaced 

either through mass action or competition based on the relative strength of all of the ligands 
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involved.1 Ligands are usually composed of an electron-donating coordinating group that has a 

high affinity for the metal and a non-coordinating group that dictates the reactivity of the NCs.1,35 

The interactions between the metal and the anchoring group are usually dictated through hard-soft 

acid-base (HSAB) theory. The most common ligands for AuNPs have a sulfur group, where sulfur 

can either bind covalently as a thiolate or form a weaker coordination bond through the lone pair 

electrons of a thiol.41,58 The most common ligands for QDs have amino or phosphorus groups. 

QDs passivated with mercaptans typically display PL quenching from hole trapping.44 

Ligand adsorption onto NC surfaces is a complex process. NC surfaces have defect sites 

(edges and vertices) and non-defect sites (terraces) with different chemical reactivities and ligand 

affinities.46 Each of these different sites have different electron densities and steric behavior due 

to the small size and high surface curvature of NCs.36,59,60 The changes in reactivity as a function 

of NC size, where a size decrease corresponds to an increased rate, has been attributed to the size 

dependent ratio of defect to non-defect sites.59 The degree of dynamic binding depends on the 

strength of the bond between the NC and anchoring group as well as the size and bulkiness of the 

ligands. For weakly binding ligands, such as histidine, there is a relatively fast dynamic on and off 

rate; if there aren’t any ligands in the surrounding environment to exchange with the ligands on 

the surface, NC aggregation is induced. For stable NCs, the ligand’s on/off rate should be faster 

than the rate of NC aggregation. Ligand exchange can be described as either an associative or 

dissociative mechanism as shown in Figure 1.6.36,59 For these mechanisms, there are different rate 

determining steps (RDS) and different kinetic constants. During the associative mechanism, the 

incoming ligand binds to the metal and subsequently displaces the old ligand. The RDS is the 

binding of the incoming ligand to the metal.61 For a dissociative mechanism to occur, a ligand on 
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the metal has to depart before the incoming ligand can bind. The RDS for these mechanisms is the 

dissociation of the outgoing ligand.61 

 

Figure 1.6: Proposed mechanisms for ligand exchange on a NC surface 

 

Compared to the kinetics of ligand exchange for smaller, inorganic complexes, the rate 

constant for ligand exchange on NCs is typically slower. Ligand substitution in metal complexes 

have first order rate constants that range from 10-5 to 109 s-1.62,63 In NC systems, the first order 

kinetic rate constants for ligand exchange were reported to be 10-3 to 102 s-1.42–44 

 

1.4 NC Applications 

1.4.1 Ligand Mediated Self-Assembly 

The main goal of ligand-mediated NC self-assembly is to obtain the controlled formation 

of organized, complex shapes from initially disordered mixtures of particles that is driven by the 

interactions between building blocks.64 The nature of these selective interactions can be 

biomolecular such as peptide conjugation65 and Watson-Crick base pairing of DNA,66,67 chemical 
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such as the host-guest chemistry of curcubit[n]urils64,68,69 and click chemistry,66 or physical such 

as the interfacial tension at liquid or air interfaces or the presence of an external field.70–75 The 

coupling of individual components is usually driven by kinetic and thermodynamic forces, where 

the local interactions between the building blocks minimizes the overall energy of the system.64,76–

78 Ideal assembly conditions allow for a high degree of control over the resulting architecture, 

including interparticle distances, composition and long-range order of the constituents.77,79 

Synergistic properties that arise from linked NCs, such as energy transfer (ET) between 

chromophores80–83, or the coupling of metal NC SPR68,69 makes these structures unique materials 

for sensing, energy transfer and catalysis applications.64,68–70,75,84 

 

1.4.1.1 Kinetics 

 The kinetics of NC self-assembly is dictated by colloidal stability, which is a balance 

between attractive van der Waals forces and repulsive electrical double layer interactions.85 

Interparticle forces can be manipulated by changing the particle shape, size and surface chemistry, 

where the surface ligands provide steric or electrostatic repulsions that influence particle-particle 

interactions.69,76 Since the ligand layer dictates most of the interparticle properties, NC 

composition does not influence the rate.86 Most ligand-mediated self-assembly studies aim to gain 

control over the interparticle distance and the size and organization of clusters.64,76,77 Uncontrolled 

self-assembly can lead to unwanted organization of the constituents or irreversible precipitation, 

so the specificity and extent of assembly needs to be highly controlled.  

 The kinetics of the aggregation of colloidal particles into clusters has been described by a 

combination of Smolukowski kinetics and a Langmuir-type surface reaction.86–89 Smolukowski 

kinetics assume that the rate of collision between two particles is proportional to the product of 
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their concentrations, as shown in Equations 1.4 for low particle concentrations and 1.5 for high 

particle concentrations.90,91  
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Where β is the reactivity rate of two particles (x1,y1 and x2,y2) x is the particle mass, y is the fractal 

dimension, kB is the Boltzmann constant, T is the temperature, W is the Fuchs stability ratio, ɳ is 

the viscosity, and γ is a fitting parameter called the product kernel.91 

Linker-induced aggregation is typically described by a “probability of sticking” term.89,92 

The probability of the particles sticking is dependent on the concentration of linkers. When no 

linkers are bound to particles, the probably of two particles sticking together is zero.92 Sticking 

only occurs when the repulsive energy barrier is small (E < kBT) during the collisions between the 

two molecules involved in the cross-linking.86 The higher the energy barrier, the more collisions 

that have to occur to result in cross linking.86 When collision results in formed bonds between the 

NCs, the cross linking is irreversible and the clusters continue to diffuse, collide and aggregate.86 

NCs have highly curved and rigid structures, so a high surface coverage of linker groups can 

increase the rate of aggregation as long as the surface molecules don’t prevent binding by blocking 

access to unbound sites.86,92 Two distinct kinetic regimes are usually observed during aggregation 

with a rate constant that is proportional to the diffusion of the particles toward each other.68,87–89 

At low particle concentrations or low ionic strengths, the aggregation is reaction-limited (RL), 

where particle collision is relatively slow due to a decreased probability of collisions, so any 

formed clusters may have time to rearrange and create more ordered structures.88 At higher 

concentrations or ionic strengths, cluster formation is dependent on diffusion-limited aggregation 
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(DL). These conditions increase the probability that collisions will occur and the aggregation is 

limited only by diffusion.68,87,88 The repulsive forces are higher for RL aggregation so the rate is 

limited to the time it takes to overcome these forces; for DL aggregation, the energy barrier of 

repulsion is much smaller than kBT.86,93  

The crossover from RL to DL kinetics has been observed by several different groups by 

altering reaction conditions.68,88 For example, Taylor et al. compared the integrated extinction over 

time for the coupling of curcubit[5]uril (CB5) with AuNPs with different CB5 concentrations. CB5 

binds to AuNP surfaces through carboxylate groups on the molecule, so fixed interparticle 

distances could be achieved.68 A transition from RL to DL kinetics with increasing CB5 

concentrations was measured. RL showed a linear increase in integrated extinction over time 

whereas DL changed abruptly after about 10 minutes. The DL change is attributed to the presence 

of two mechanisms: the immediate formation of NC dimers followed by chain-like multiparticle 

growth.68 When the AuNPs were coupled, the plasmon band at 525 nm decreased and broadened 

but a secondary band centered around 650 nm appeared, indicating aggregation.68 Cobbe et al. 

coupled AuNPs through streptavidin and DNA mediated interactions and controlled the 

aggregation kinetics by taking advantage of the RL and DL kinetic regimes. The nanocrystal 

concentration and the salt concentration were independently varied to control the rate of 

aggregation.88 Increases in particle or salt concentration led to an increased growth rate. By 

measuring the change in the hydrodynamic diameter over time, a power law dependence of the 

aggregation size on time was observed. 

The aggregation of gold, silica and polystyrene particles were theoretically and 

experimentally studied to investigate the universality of the two kinetic regimes in colloid 

chemistry.93 For AuNPs (7.5 nm), aggregation was induced through ligand exchange with neutrally 
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charged pyridine. The reduction in electrostatic charge destabilized the particles and induced 

aggregation with the creation of metallic bonds between particles. The aggregation rate was 

controlled by the concentration of pyridine. Aggregation was induced in colloidal silica (3.5 nm) 

by increasing the ionic strength in basic conditions to create siloxane bonds upon aggregation. 

Polystyrene latex (19 nm) were initially stabilized by carboxylic acid groups. The interparticle 

screening was decreased by the addition of HCl to induce aggregation. These aggregates were 

measured using TEM and light scattering techniques to compare the kinetic behavior of the 

particles. It was concluded that the RL and DL kinetic regimes are independent of the chemical 

nature of NCs.93 

The kinetics of irreversible agglomeration of NCs was investigated and was also found to 

follow a RL and DL process. In RL aggregation, the stability of NCs is temperature dependent 

because the aggregation rate is dependent on overcoming the potential barrier of the electrostatic 

interactions between ligands. RL aggregation kinetics followed an exponential dependence. DL 

aggregation is temperature independent and followed a power law.39 

The degree and rate of ligand induced self-assembly has been investigated using p-

aminothiophenol as the molecular linker for citrate capped AuNPs.69 Assembly was induced when 

the mercapto and amino groups on the p-aminothiophenol attached to different AuNPs. The 

linearly coupled AuNPs displayed a secondary plasmonic peak that arose due to the plasmonic 

coupling between the NCs.69 The rate of self-assembly was tuned through linker concentration 

added to an ensemble of AuNPs. The assembly rate decreased with increasing linker concentration 

at higher concentrations but increasing concentration increased the rate at lower linker 

concentrations.69 This was attributed to the electrostatic interactions that were available at different 

ligand concentrations; through zeta-potential measurements, the favorable conditions for assembly 
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was measured at ζ < 35 mV.69 Changing the linker concentration influenced the rate of assembly 

to a greater degree than changing the pH. It was suggested that the AuNPs underwent surface 

chemical modifications after assembly as indicated by a decreased zeta potential without a 

decrease in UV-vis peak intensities that indicate assembly.69  

Compared to chemical reactions, the kinetic equilibrium constant of self-assembly systems 

involving NCs is larger. For example, the kinetics of DNA hybridization for a fully complementary 

15mer sequence was measured with Langmuir kinetics.94 The rate constants for association and 

dissociation were 1.8 × 104 M–1s–1 and 1.3 × 10–5 s–1, respectively, with K = 14 × 108 M–1.94 The 

self-assembly of proteins onto NC surfaces was on the order of 108 × 109 M-1.95 Since the kinetic 

constants are the ratio of the associated kinetic constant and dissociative kinetic constant, NC 

assembly has a stronger association than the DNA duplex in solution.  

 

1.4.1.2 DNA-Mediated Assembly 

DNA is a unique tool to rationally design various assembled structures with NCs as the 

building blocks.64,66,67,78,80,88,96–99 Advances in nucleic acid synthetic methods allow for specific 

base pair (bp) sequence engineering and the incorporation of functional groups on the 

oligonucleotides for NC coupling. The assembly of oligonucleotides into DNA duplexes is highly 

specific through Watson-Crick base paring, allowing for a high degree of control, predictability 

and precision of the resulting nanoarchitectures. NC surfaces are also able to support a large 

number of DNA strands, typically between 1 and 300 DNA per NC, depending on the synthetic 

parameters, NC size, the length and chemical composition of the spacer between the NC surface 

and the oligonucleotide, and DNA strand length and sequence.98–101 DNA linked materials have 

been built for optical and electrical detection of analytes, siRNA delivery or to create crystalline 
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structures from NCs.78,98,102,103 The studies involved in DNA based programming aim to engineer 

the building blocks and the final assembled structures.78,80,99 In DNA-programmable NC 

crystallization, different DNA sequences directed the assembly of AuNPs into different crystal 

structures.78 When linked to particles, the DNA properties, including thermal melting transitions 

(Tm), differ from free DNA in solution.98 The properties of the DNA linked materials are dependent 

on the polyelectrolytic and base pair hybridization of the duplexes.98 The assembly of DNA coated 

colloids can either be kinetically or thermodynamically controlled.78 To achieve the 

thermodynamic product, the DNA oligonucleotides are combined above their Tm and then slowly 

cooled to room temperature.78 Park et. al. found that when two oligonucleotide coated AuNP 

particles were combined thermodynamically above the Tm, the AuNPs formed a disordered face 

centered cubic (f.c.c) crystal that increases the entropy of the entire system by creating the smallest 

volume of the crystal.78 However, when the AuNP colloids were hybridized to form the kinetically 

favored product at room temperature, the AuNPs formed a non-close packed body centered cubic 

(b.c.c) crystalline material, which maximized DNA binding events.78 These and other studies have 

shown that the product that is formed during DNA mediated assembly can be controlled through 

assembly temperature, DNA rigidity, DNA length, valency and particle size.78,80 General methods 

of DNA programmable equivalents have been developed to create DNA functionalized building 

blocks regardless of the colloid material.99 

 

1.4.2 Resonance Energy Transfer 

The self-assembly of NC clusters leads to synergistic properties including non-radiative 

energy transfer between fluorescent particles. In QD excitation, light is used to create a forced 

oscillation of dipoles. In a forced oscillation, the amplitude of the oscillation in a system is at a 
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maximum when the frequency of an external force equals the natural frequency of a system, which 

is called the resonance frequency.  

Coupled nanomaterials can participate in a variety of different energy transfer processes 

for a wide variety of applications related to chemical sensing, biological imaging and quantum 

computing. The energy transfer that occurs depends on the optical properties of the individual 

components, allowed electronic transition and intermolecular separation. For example, 

fluorophores that are in close proximity (d = 1-10 nm) can transfer energy non-radiatively from an 

excited donor to a ground state acceptor through Förster resonance energy transfer (FRET)25,104,105 

or nanometal surface energy transfer (NSET).83 If the wavefunction of donor and acceptor overlap 

and they have a smaller intermolecular separation (d < 2 nm), Dexter energy transfer (DET) can 

occur.79,106 These processes have a different dependence on the intermolecular separation and 

strength of dipole coupling. NSET has an inverse fourth intermolecular separation dependency, 

whereas FRET has an inverse sixth dependency on component separation; this causes NSET to 

undergo more efficient energy transfer than FRET. Because of the strong distance dependence, 

FRET and NSET can be used as optical rulers. Energy transfer can also occur with bioluminescent 

donors in bioluminescence resonance energy transfer (BRET)81,82,107–115 or with chemiluminescent 

donors in chemiluminescence resonance energy transfer (CRET).116 

The nanomaterials that undergo these processes must be at very short distances, typically 

under 10 nm. A donor and acceptor can be brought into close proximity through coupling 

mechanisms, including DNA mediated interactions or organic coupling reactions such as click 

chemistry. These systems are very sensitive and a large degree of control over the energy transfer 

can be obtained.  
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1.4.2.1 Förster Resonance Energy Transfer 

In FRET, energy is transferred from an excited fluorescent donor to a ground state acceptor 

that emits a lower energy photon. FRET processes occur from long range coulombic dipole-dipole 

interactions between a donor and acceptor in close proximity.25 FRET does not involve the 

emission and reabsorption of photons. Instead, FRET assumes the fluorophore acts as an 

oscillating dipole that can exchange energy with another dipole with a similar oscillating 

frequency.25 Figure 1.7 shows a summary of the electronic and spectral changes that occur as a 

result of the energy transfer process between a donor and acceptor pair.  

 

Figure 1.7: Jabłoński energy diagram illustrating the electronic changes during the FRET process 

and a donor acceptor pair and resulting spectral change from energy transfer. 

 

These processes are dependent on the degree of spectral overlap, donor and acceptor 

distance and orientation, the acceptor extinction coefficient, and donor quantum yield (QY). FRET 

usually occurs between molecules that are separated by a distance of 10 nm or less, so there is an 

intrinsic sensitivity to nanometer changes in intermolecular distance and changes in dipole 

orientations. The rate of energy transfer is given in Equation 1.6.25,104,105 
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Where τD is the donor decay time in the absence of the acceptor, r is the distance between the donor 

and acceptor and R0 is the Förster distance, a parameter that is calculated from the spectral overlap 

and dipole orientations as shown in Equation 1.7.25,104,105 
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Where κ is the orientation factor (κ = 2/3), ɳD is the refractive index of the medium, QD is 

the quantum yield of the donor and J(λ) is the overlap integral at wavelength (λ). The probability 

of energy transfer is quantified using the overlap integral, J, which describes the degree of spectral 

overlap between the donor PL spectrum and the acceptor absorbance spectrum, as shown in 

Equation 1.8.25,104,105   
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The FRET efficiency, E, describes the fraction of non-radiative energy transferred from 

the donor to the acceptor and is defined in Equation 1.9.25,104,105 
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Where FD and FDA is the fluorescence intensity of the donor in the absence and presence of 

the acceptor, respectively.25 The FRET efficiency can be measured through steady state and time 

resolved fluorescence spectroscopy. Evidence for FRET includes donor emission quenching 

shortened exciton lifetime that is concurrent with photoluminescence enhancement and increased 

exciton lifetime for a fluorescent acceptor.25,105  

QDs are ideal FRET donors due to their high QYs, large extinction coefficients, narrow 

emission peaks and high photobleaching thresholds.105,117 The larger sizes of QDs relative to 
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organic fluorophores allow systems to be configured with different donor-acceptor stochiometries 

for multiplexing capabilities. Since the fluorescence emission of QDs can be spectrally tuned, QDs 

can act as both donors and acceptors depending on the relative emission wavelengths. One 

limitation to QDs in FRET applications includes their large absorption cross-section that allows 

them to be excited at multiple wavelengths. This makes it more complicated to prevent direct 

acceptor excitation.  

A variety of mechanisms can inhibit the energy transfer between two particles. If non-

radiative pathways show up after dipole coupling, FRET efficiency can decrease. There can be 

intersystem energy transfer if two FRET pairs come into close enough contact in solution. 

Interactions with the solvent can also create non-radiative pathways. If there is any fluctuation in 

donor and acceptor distances, then the FRET efficiency will be more difficult to measure. 

 

1.4.2.2 Bioluminescence Resonance Energy Transfer 

When the energy donor is a bioluminescent species, the energy transfer is known as 

bioluminescence resonance energy transfer (BRET). Many species have independently evolved to 

be bioluminescent, including bacteria, coelenterates, and beetles,118 but the North American 

firefly, Photinus pyralis (Ppy), is believed to have the most efficient bioluminescence with 

quantum yields (QY) around 30%.107 Although the genes that are responsible for bioluminescence 

are unrelated between the different species, they all involve the reaction of molecular oxygen with 

a substrate, luciferin, and enzymes, luciferase, to produce photons.118 Figure 1.8 shows the 

mechanism of the bioluminescence for Ppy.119–123 
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Figure 1.8: Firefly bioluminescence mechanism 

 

In this mechanism, the substrate, luciferin, is oxidized in the presence of Mg-ATP and 

luciferase to form the intermediate luciferyl-adenylate complex (LH2-AMP) and inorganic 

pyrophosphate.107,119 The oxidation and decarboxylation of LH2-AMP at the active site leads to 

the production of an electronically excited oxyluciferin compound, which emits a photon when it 

decays to its ground state.119,120 The enzyme, luciferase, is a protein that is folded into two compact 

domains, the N-terminus and the C-terminus. Studies on luciferase showed that the protein adopts 

a closed structure during the formation of the oxyluciferin, creating a hydrophobic pocket around 

the active site.120 When the protein is complexed with the reactants and products, it adopts an open 

form.120 This process produces yellow-green light (λem=557 nm), but structural changes to the 

luciferin can shift the emission wavelength by causing changes in the luciferase microenvironment 

and conformation at the substrate-emitter binding pocket.107,120 Studies carried out on mutagenic 

changes to the firefly luciferase indicate that a blue shifted emission is observed when there is a 

decrease in local polarity at the active site.107 

The BRET and FRET of QDs conjugated with proteins have been studied for self-

illuminated photodynamic therapy,114 biological detection and imaging,115 and light-harvesting 

devices.124 In clinical applications, BRET circumvents issues that arise when light penetrates 

tissues, including high light scattering and tissue autofluorescence.114 In biosensing applications, 
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these conjugates can be used to prevent simultaneous excitation of the donor and acceptor for 

compounds that have broad absorption spectra, including QDs and QRs. 

 

1.4.3 Encoded Nanocarriers 

Ligand-mediated assembly has also been used to couple NCs with drug molecules.96,125,126 

Assembled nanoconjugates can function as therapeutic agents that can overcome current 

limitations in drug therapies, such as low water solubility, low targeting ability and cell drug 

resistance.96,125–135 Current chemotherapeutic moieties are administered with no target selectivity 

and high collateral damage that leads to lower quality of life for the patient.133 Current research is 

devoted to improving the drug delivery and efficacy by creating nanoconjugates that are stable, 

provide site-specific delivery and programmed release of drugs, and can be cleared by the body to 

reduce cytotoxic effects.130,131 Metal NCs, such as AuNPs and iron oxide nanoparticles (FeNPs) 

are promising candidates for drug delivery applications due to their high surface to volume ratio, 

tunable surface chemistries, low cytotoxicities, cellular uptake abilities and magnetic 

capabilities.127,130 The surface of NCs have been modified with a variety of ligands, including folic 

acid,126 thermoresponsive polymers,96,135 and peptides136 to increase the cell targeting potential and 

cellular toxicity.126 It has been shown that NCs can be internalized in cells through endocytosis.130 

The NC surface chemistry can affect cellular uptake ability, intracellular localization or cellular 

response.130 There are many promising NC conjugates for drug delivery in the literature, including 

the electrostatic assembly of NC-drug conjugates,134 covalent attachment of drugs to NC 

surfaces,127  the entrapment of drug in NC cages,135 and the intercalation of drug in DNA 

functionalized NPs.125,126,128 Oligonucleotide degradation has been a major challenge for nucleic 

acid based drug delivery. DNA modified AuNP conjugates have been found to overcome this 



 30 

limitation by resisting enzyme degradation due to the high local ion concentration on the densely 

packed DNA that inhibits enzyme activity.130  

 

1.4.3.1 Drug Release Kinetics 

The kinetics of drug release in nanoconjugates created for drug delivery is important for 

determining the strength of the drug binding and rate of release.96,125,137 This is typically measured 

using a dynamic dialysis method, where the nanoconjugate is loaded into a dialysis membrane and 

the appearance of drug outside of the membrane is measured.96,125,137  

The chemical equation for the creation of the drug complex, which is the drug bound to the 

nanoconjugate is found in Equation 1.10. 
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where ka and kd are the reaction rate constants for the association and dissociation of the drug 

complex, respectively. The rate of the reaction is expressed as shown in Equation 1.11: 
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where [drug], [site] and [complex] are expressed in molar concentrations. The rate of drug release 

is then expressed as the rate for the reverse reaction. Drug release is typically assumed to be a first 

order reaction that follows the exponential in Equation 1.12.96,125,137  
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Where  is the percent drug released after equilibrium,  is the rate of drug release after 

equilibrium, and t is the time of drug release.18 The equilibrium binding constant, Keq, can then be 

calculated using Equation 1.13. 
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where [IDA], [site] and [Complex] are the molar concentrations at equilibrium and ka and kd are 

the association and dissociation rate constants, respectively. Typical Keq values are on the order of 

102-107 for NC drug conjugates.128,137 

 

1.5 NC Characterization 

The metal and semiconductor NCs described in this thesis were characterized using a 

variety of methods, including spectroscopic and microscopic techniques. 

The photophysical properties and NC concentrations were measured using UV-Vis 

spectroscopy and photoluminescence spectroscopy (PL). These techniques measure the electronic 

changes associated with the absorption and emission of light. In UV-Vis, the extinction coefficient 

is an important parameter that measures how strongly a chemical species absorbs light at a given 

wavelength. Since various materials absorb light to different extents, the extinction coefficient is 

characteristic of the material and is related to particle size, composition, oscillator strength, 

absorption cross-section, light scattering from the particle surface and dielectric environment.2,6,15 

The Beer-Lambert Law is employed to determine extinction coefficients and concentrations as 

shown in Equation 1.14.  
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Where I0 and I are the intensity of light before and after hitting the sample, respectively, A 

is the absorbance of the sample at a given wavelength, c is the concentration of the sample and L 

is the path length (cm) of radiation that goes through the sample. There are limitations to the Beer-

Lambert law including, but not limited to: stray light, polychromatic radiation, high optical density, 

and chemical change of analyte.25 The concentration limit for colloids is smaller than for smaller 

molecules, which deviate at concentrations above 0.01 M because of their large size.138 In NC 
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optical studies, NCs can be instable at the linear portion of the Beer’s Law plot from dilute 

conditions and the small errors on the size will generate large errors in the calculation of the 

extinction coefficient due to the power dependence between volume and extinction coefficient.14 

Size dispersion also has an effect so a correction using half width at half maximum for either the 

absorption or emission spectra is sometimes applied.139,140 

Various groups have experimentally determined the extinction coefficients of AuNPs and 

QDs and QRs. The absorption arises from different effects in AuNPs compared to QDs and QRs. 

For AuNPs, UV-Vis spectra arise from surface plasmon resonance. The experimentally determined 

extinction coefficient for AuNPs smaller than 85 nm is found in Equation 1.15.141–145  

ε = 4.7x104 d3.3      (1.15) 

Where ε is at the SPR peak (λ=520 nm), d is the diameter of the AuNP in nm. For spherical CdSe 

QDs, the extinction coefficient is dependent on diameter, as shown in Equation 1.16.140 

ε = 5857 d2.65         (1.16) 

Where ε is at the first absorption peak, the diameter (d) is in nm and measured using TEM or the 

first absorption peak. The relationship between the first absorption peak and QD diameter is found 

in Equation 1.17.140 

d = (1.6122x10-9)λ4 – (2.6575x10-6)λ3 + (1.6242x10-3)λ2 – 0.4277λ + 4157         (1.17) 

Where d is the QD diameter in nm and λ is the wavelength of the first absorption peak.140 

For anisotropic CdSe QR cores, the extinction coefficient is found in Equation 1.18.146 

ε = 0.38x1026 V     (1.18) 

Where ε is at λ=350 nm, V is the volume of the QR in cm3, which can be measured using TEM.  

Other optical techniques that were used to characterize nanomaterials are dynamic light 

scattering, fluorescence polarization and confocal microscopy. The size and shape of NCs can be 
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determined using microscopic techniques including transmission electron microscopy (TEM) and 

atomic force microscopy (AFM).  

 

1.6 Research 

This thesis focuses on the preparation of AuNPs, QDs and QRs to create useful materials 

for self-assembly and energy transfer applications. In Chapter 2, hydrophobic CdSe/ZnS QDs were 

synthesized and encapsulated in an amphiphilic polymer to create hydrophilic QD polymer 

conjugates. The outer polymer shell was further functionalized with oligonucleotides through 

EDC/NHS coupling and click chemistry to create QD/DNA conjugates. QD/DNA with different 

emission wavelengths were then self-assembled on a magnetic colloidal support using DNA 

mediated interactions and the QD to QD energy transfer within these clusters was observed. In 

Chapter 3, CdSe/CdS QRs were synthesized and phase transferred using a histidine mediated phase 

transfer protocol. The QRs underwent further ligand exchange with hexahistidine tagged green 

emitting variant of firefly luciferase from Photinus pyralis (Ppy). The BRET was measured in the 

QR/Ppy conjugates, where Ppy molecules were energy donors and QRs were energy acceptors. 

The long-term stability of these conjugates was improved to make their incorporation into new 

technologies a more viable option. In Chapter 4, AuNPs were synthesized and functionalized with 

DNA duplexes that have a high affinity for the clinically approved chemotherapeutic drug 

idarubicin (IDA). The effect of drug loading on the duplex melting temperature was measured. A 

thermoresponsive polymer was also incorporated into this system and the drug release kinetics was 

measured to compare the effect of the polymer on drug release.  
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 Chapter 2 

Probing the QD-QD Energy Transfer in Self-Assembled Quantum Dot Clusters 

 

 

In this chapter, I describe the self-assembly of multi-color quantum dot (QD) clusters via 

a DNA-mediated stepwise approach. After QD assembly and disassembly at the solid support, the 

cluster’s optical characteristics were measured using fluorescence spectroscopy. This technique 

obtained purified clusters that participated in fluorescence resonance energy transfer (FRET).  

2.1 Introduction 

Discrete nanocrystal (NC) components have been spontaneously assembled into higher 

ordered structures for a variety of applications in chemical or biological sensing,1 fluorescence 

imaging,2 plasmonics3 and nanomedicine.4–6 Oligonucleotides can be used as a soft template to 

direct NC self-assembly due to their inherent molecular recognition capabilities from sequence 

specific interactions.2–16 Interparticle spacing and geometry can be tuned by tailoring the DNA 

sequence, length and rigidity. This is important in energy transfer applications, because non-

radiative energy transfer is highly dependent on interparticle distances, donor and acceptor ratios 

and relative nanoparticle sizes.12,17,18 

Although an abundance of research has focused on the self-assembly of DNA 

functionalized gold nanoparticles,8,10,19,20 quantum dots (QDs) can also be incorporated into self-

assembled structures. QD surfaces can be modified with various ligands to impart them with 

different functionalities, allowing for a high degree of engineering flexibility.21 Interesting 

synergistic effects arise from coupled nanomaterials, including charge and energy transfer.17 In 

energy transfer applications, QD size dependent emission, long lifetimes and broad absorption 

spectra make them ideal energy transfer donors.12,18,22–28 The DNA mediated self-assembly of QDs 
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and fluorescent dyes has been used for the optical detection of analytes.18 In one study, 

oligonucleotides formed duplexes in the presence of a molecular target, which resulted in a FRET 

process between the QD and dye.18 When two QDs are coupled, long-range dipole-dipole 

interactions can lead to Förster resonance energy transfer (FRET).16 The same qualities that cause 

QDs to be efficient energy donors limits their use as energy acceptors. For example, their long 

lifetimes can decrease the chances of energy transfer due to competition between energy transfer 

and radiative emission of the donor. The relative lifetimes between a donor and acceptor is an 

important consideration, where QDs have been found to be inefficient energy acceptors when 

coupled to organic dyes but efficient energy acceptors when coupled to dye complexes with long 

radiative lifetimes.29  

High quality QDs are typically synthesized in non-polar solvents and capped with organic 

aliphatic ligands, leading to non-polar solubility. Since biomolecules are stable in polar conditions, 

the QDs must be prepared to increase their buffer solubility. To accomplish this, different phase 

transferring procedures have been employed, including ligand exchange or polymer 

encapsulation.21,29–36 Direct ligand exchange involves the displacement of hydrophobic ligands 

with hydrophilic ligands to increase solubility in water. In this approach, QD quantum yield (QY) 

values tend to decrease significantly and weakly binding ligands can dissociate from the NC and 

cause aggregation, leading to long-term instability.33–35 In the polymer encapsulation technique, 

an amphiphilic polymer is adsorbed onto the surface of the QD to encapsulate the hydrophobic 

ligands of the particle and expose hydrophilic ligands to the solvent.29–32,35 The interdigitation 

between the hydrophobic polymer ligands and the hydrophobic QD ligand shell is driven by 

electrostatic van der Waals forces.37 This is advantageous because it can impart aqueous solubility 

of the QDs while maintaining their spectral properties and protecting the organic ligands from the 
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environment. Since polymer encapsulation is dependent on the surface ligands, this approach can 

be extended to other inorganic nanomaterials regardless of core composition.37 The polymer also 

prevents direct access to the QD surface, which can be advantageous with DNA, which has 

multiple functional groups that can bind to the metal atoms in the QD.21,38,39 Limiting access to the 

surface can prevent unwanted nonspecific interactions between the DNA and QD surface.  In this 

chapter, QDs were functionalized with an amphiphilic co-polymer and functionalized with DNA 

through carbodiimide crosslinking chemistry (EDC/NHS coupling) or azide alkyne Huisgen 

cycloaddition (click chemistry). The direct attachment of oligonucleotides was also investigated 

using an aqueous shell growth procedure to encapsulate the DNA into the QD shell and decrease 

the distance between the donor and acceptor.40  

Another challenge that is faced during the self-assembly of clusters is the need to tailor the 

stoichiometry of the donor and acceptor. This can be accomplished by purification via HPLC or 

gel electrophoresis after bulk assembly or by crafting the surfaces with a specific stoichiometry of 

linkers.9,41–43 In this chapter, stiochoimetric control is achieved using a stepwise self-assembly 

approach at a magnetic solid support that allows unreacted QDs to be removed after each assembly 

step, leading to highly purified clusters. The resulting two-color QD clusters can be used as smart 

biosensors that work at the single molecule level, where multiple sensing events can be performed 

in tandem with high sensitivity and efficiency.   
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2.2 Experimental 

2.2.1 Chemicals 

Cadmium oxide (CdO, 99.99%), sulfur (S, 100 mesh), zinc acetate (ZnAc, 99.99%), 

trioctylphosphine oxide (TOPO, 90%), 1-octadecene (ODE, 90%), olelyamine (OAm, 90%), oleic 

acid (OAc, 90%), tributylphosphine (TBP, 97%), dodecylamine (DDA, >98%), poly(styrene 

maleic anhydride) cumene terminated (PSMA, Mn=1600), ethanolamine (EA, >99.5%), sodium 

phosphate monobasic monohydrate (98%), sodium phosphate dibasic heptahydrate (98%), 

chloroform (CHCl3, >99.8%), methanol (MeOH >99.8%), acetone (99.5%), were obtained from 

Sigma-Aldrich and used without further purification. Selenium (Se, 99%) was purchased from 

Alfa Aesar. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC), N-

hydroxysulfosuccinimide (sulfo-NHS) and MagnaBind Streptavidin magnetic bead (MB) were 

purchased from Thermo Scientific. Jeffamine Polyetheramine M1000 (NH2-PEG, Mn=1000) was 

obtained from Huntsman Int. LLC. 2-(N-morpholino) ethanesulfonic acid (MES) and Agarose 

were obtained from Acros organics. CdSe cores were purchased from NN-Labs, LLC. 

Oligonucleotides with various functional groups were purchased from IDT Inc. A Vacuum 

Atmospheres Omni glovebox provided an inert atmosphere for synthesis.  Ultrapure water (18.2 

MΩ) was provided from a Sartorius Stedim Arium 61316 reverse osmosis unit combined with an 

Arium 611DI polishing unit. 

2.2.2 Synthesis and Functionalization of Quantum Dots. 

Quantum Dot Synthesis. CdSe/ZnS QDs that were synthesized in house followed 

traditional methods.44 In a typical synthesis of a CdSe core, 0.025 g (0.2 mmoles) of CdO was 

dissolved in 3.0 mL of OAc by heating at 230 C under Ar. Next, 0.9 g (5 mmoles) of DDA and 

0.5 g of TOPO were dissolved in 5.0 mL of ODE and heated to 270 oC. At 270 C, 0.118 g (1.5 
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mmoles) of Se dissolved in 1.0 mL of TBP was injected to induce nucleation and growth. The 

growth was quenched after a few seconds by injecting 10 mL ODE at room temperature. The 

resulting CdSe QDs were then purified free of excess ligands by multiple methanol extractions, 

and finally by precipitation in acetone.45 The DDA/TOPO-capped CdSe QDs were dried under N2 

and dispersed in chloroform. The ZnS shell was deposited via SILAR,44 in which a known amount 

of CdSe core was dispersed in ODE after evaporating chloroform and heated to 200 oC under Ar 

and 0.05-0.1 mL zinc precursor (200 mM ZnAc dissolved in OAm) and the sulfur precursor (200 

mM elemental S dissolved in ODE) were injected sequentially in order to tailor ZnS growth, 

allowing a minimum of 10 min between injections to allow for shell annealing. After enough 

precursors were added to obtain the desired shell thickness, a final 0.1 mL injection of zinc was 

added to ensure a Zn2+ cation at the outermost surface of the QD. After the final injection, the QDs 

were annealed for an additional 30 min to ensure shell quality. The reaction mixture was allowed 

to cool to room temperature and cleaned in the same manner as the core.  

 Polymer Encapsulation and ssDNA functionalization. In a typical polymer wrapping 

and phase transfer experiment, 5-15 nmoles of synthesized CdSe/ZnS QDs were ligand exchanged 

with TOP by heating a QD solution in ODE to 70 °C under Ar overnight. The QD/TOP was cleaned 

via acetone precipitation and resuspended in chloroform. Next, the QDs were gently mixed with 

0.5-1.5 moles of PSMA ([QD] : [PSMA] = 1 : 100-300) overnight in chloroform at room 

temperature followed by the addition of PEG ([PSMA] : [PEG] = 1 : 5.4) which resulted in the 

conjugation of the PEG to the maleic anhydride rings of PSMA, forming an amide linkage and a 

free carboxyl group.29 The mixture stirred for 1 h before 50-100 L of EA and 1 mL ultrapure 

water were added and stirred for another 1 h. The EA serves as both a base to deprotonate the 

carboxyl as well as to saturate any free MA moieties remaining in the PSMA.29 Next, the 
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chloroform was removed through rotary evaporation forming a dry film. Then, 1 mL of 10 mM 

phosphate buffer (pH = 7.3) was added and the reaction mixture was back-extracted with fresh 

chloroform three times, improving the clarity and stability of the solution. The final aqueous 

dispersed QD was obtained after mild centrifugation at 3000 rpm for 2 min to remove extra 

chloroform-dissolved residues and precipitates. The resulting PEG/COOH/PSMA-QDs were 

washed with 10 mM pH = 7.3 phosphate buffer using 100K molecular weight cut-off spin filter, 

as well as a 2 m and 200 nm size filter or they were purified in a sucrose based density gradient. 

Next, ssDNA coupling to the QDs proceeded via the EDC/sulfo-NHS route.46 For the CdSe/ZnS 

emitting at 520 or 570 nm (QD(520) or QD(570)), two different ssDNA were used, namely A-type 

and B-type (A = 5'-ATT GGA TTG GAA GTA(TTT)15-NH2-3'; B = 5'-TTC TCT ACA CTG 

TCT(TTT)15–NH2-3'). During the EDC/NHS reaction, EDC and sulfo-NHS were added to the QD 

([EDC] = [sulfo-NHS] = 2000 x [QD]) followed by a 1 : 1 ratio of A and B with the QD ([A] + 

[B] = 100 x [QD]). A stepwise salting technique was applied over the course of 1 h to bring the 

NaCl concentration to 0.1 M. The mixture was reacted for an additional hour before the QD/DNA 

conjugates were purified by precipitating QD/DNA at 4 C at 171,500 rcf for 2 hours. The 

supernatant was removed and the purified QD/DNA conjugates were resuspended in BBS (pH = 

7.4, [NaCl] = 0.05 M). A similar approach was used to functionalize the B’-type ssDNA (B’ = 5'-

AGA CAG TGT AGA GAA(TTT)15–NH2-3') to the surface of the QD(630). The concentration of 

resulting AB/QD(570) and B’/QD(630) were determined by measuring the first absorption maxima 

and comparing it to the calculated extinction coefficient.45  

DNA Quantification.  The number of DNA duplexes bound to the surface of A/QD(570) 

was determined using a fluorescence technique.46,47 In this procedure, the A’-type ssDNA modified 

with CY3 (A’-CY3 = CY3-5’-CTT GTG TCT ACT TCC AAT CCA ATT TTT-3’) was used. In a 
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typical experiment, A/QD(570) was incubated with 100 molar excess of A’-CY3, in PBS overnight. 

The conjugate was then centrifuged at 140,000 rpm for 1 hour to form a visible aggregate, and the 

fluorescence of the unhybridized oligonucleotides in the supernatant was measured. Fluorescence 

intensities were compared to a calibration curve, and the number of bound A’-CY3 was calculated.    

2.2.3 DNA Modification of a Solid Support 

ssDNA Modified Magnetic Support. The ssDNA modified colloidal magnetic beads 

(MB) were prepared using 300-500 μL of streptavidin-functionalized MB in 200 mM PBS. The 

MBs were first washed via magnetic separation in 100 mM PBS to remove any preservation agent 

or free streptavidin in the commercial stock. After three washing steps, 50 μL of 100 μM of A’-

type (A' = 5’-CTT GTG TCT ACT TCC AAT CCA ATT (TTT)4-Biotin-3’) was added and 

incubated for 2-3 hr. The A’ uptake was monitored by UV-vis at 260 nm. Finally, the supernatant 

was removed after collecting the A'/MB via magnetic separation and dispersed in 0.5-1.0 mL of 

100 mM BBS. 

2.2.4 Cluster Assembly and Release. In a typical stepwise assembly experiment, 30-100 pmoles 

of AB/QD(570) were incubated with 200-300 L of 4-7 M A’/MB solution ([A’]/[A/QD] = 8-15) 

for 2-3 hr in 0.5 M PBS. Here, A'/MB concentration is based on the measured A' absorbed. 

Assembly was observed by measuring the decrease of the supernatant’s PL intensity. The bound 

AB/QD(570) were separated from unreacted ones via magnetic separation of the MB support and 

decanting the supernatant, followed by replenishment of the buffer volume. Next, the B’/QD(630) 

was added in excess (or controlled stoichiometry, see text) and incubated with the bound 

AB/QD(570). Similarly to the first step, the PL spectral change was monitored. Finally, the bound 

AB/QD(570)+B’/QD(630) was again purified from excess or unreacted materials by magnetic 

separation, followed by the addition of fresh buffer. The clusters were then released from the 
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support by addition of A’’-type ssDNA fuel strands (A'' = 5’- 

ATTGGATTGGAAGTAGACACAAG-3’) at [A’’]/[AB/QD(570)] = 80-100. Cluster release was 

observed by an increase in PL intensity. Finally, the solid support was removed via magnetic 

separation, and the supernatant containing the released clusters was collected and stored in the 

refrigerator.  

2.2.5 Instrumentation 

UV Visible Spectroscopy (UV-Vis). A Varian Cary100 Bio UV-Vis spectrophotometer 

equipped with high precision Peltier heating controller and 8-cell automated holder was used in 

the range of 200-900 nm with baseline correction. 

Photoluminescence Spectroscopy (PL). QD PL emission and cy3 experiments were 

performed on a Horiba Jobin Yvon Fluoromax-4 photon counting spectrophotometer equipped 

with a 150 W xenon white light excitation source, computer controlled monochromator and a 

polarizer. The detector is a R928P high sensitivity photon counting detector that is calibrated to 

emission wavelength. QD QY measurements were measured using 2 nm excitation and emission 

slits with an excitation wavelength of 400 nm.  

Dynamic Light Scattering (DLS). DLS measurements were collected on a Malvern 

Zetasizer Nano ZS equipped with 633 nm laser source and backscattering detector at 173 for 

hydrodynamic diameter (dh) measurements using CONTIN analysis.  All samples were filtered 

using a 0.22 m syringe filter prior to analysis and measurements were averaged over 6-20 data 

points.  

Fourier Transform Infrared Spectroscopy (FTIR). FTIR measurements were 

performed on a Thermo Scientific Nicolet 6700 instrument with a diamond ATR accessory and a 

liquid N2 cooled MCT detector. Spectra were averaged over 128 scans and baseline corrected. 
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Organic soluble QDs in toluene were drop casted onto the diamond and the solvent was evaporated 

for the measurements. Aqueous soluble QDs were acetone precipitated and resuspended in 

methanol. The solutions were drop casted and the solvent was evaporated prior to the 

measurements.   

Gel Electrophoresis. A VWR 89032-292 model gel box was equipped with VWR 300 V 

model power source. Gels were photographed using a digital camera on a VWR UV 

transilluminator. 

Ultracentrifugation. All sucrose gradient ultracentrifugation measurements were 

performed on a Beckman Coulter Optima Max XP Ultracentrifuge at 4 °C for 30-60 minutes at at 

131,000 rcf.  In a typical experiment, an ultracentrifuge tube was loaded with 15%-65% sucrose 

gradient (w/v) solutions by successively adding heavier solutions from the bottom of the tube up. 

The solutions were allowed to set overnight at 4 °C to form a continuous gradient. The tubes were 

imaged using a Canon EOS Rebel T5 EOS 1200D digital camera under UV excitation. After 

ultracentrifugation, the separated regions were collected with a pipette. 

Time Correlated Single Photon Counting Measurements (TCSPC). All TCSPC 

measurements were obtained by Dr. Mircea Cotlet at Brookhaven National Laboratory in Upton, 

NY and fit to biexponential decay fits.  

2.2.6 Calculations 

Quantum Dot Concentration. QD concentration was calculated by finding the extinction 

coefficient using Equation 2.1 as previously described.45 

ε = 5857d2.65      (2.1) 

where ε is the extinction coefficient and d is the diameter of the nanoparticle. The extinction 

coefficient was used to find the concentration through Beer’s Law in Equation 2.2. 
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Abs=εbc      (2.2) 

where Abs is the absorbance at 400 nm, b is the path length (1 cm) and c is the concentration of 

the quantum dot. 

Quantum Yield. QD photoluminescence quantum yields (QY) were calculated using 

Equation 2.3 based on comparison to a reference dye.48 

2))()((
R

QD

R

QD

QD

R
RQD

PL

PL

Abs

Abs
QYQY




      (2.3) 

where QY is quantum yield, QYR is quantum yield of the reference (rhodamine 6G = 0.95), AR is 

the absorbance at 400 nm of the reference, A is the absorbance at 400 nm of the QD.  PL and PLR 

are the PL for QD and of the reference, respectively, η is the refractive index of the QD or QR 

solvent and ηR is the refractive index of the reference solvent. The samples were prepared with an 

optical absorption below 0.10 to limit inner filter effects.  

Förster Resonance Energy Transfer (FRET) Calculations. The Förster distance (R0) is 

calculated using Equation 2.4.48 
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where κ is the dipole orientation factor (κ = 2/3), η is the refractive index of the medium (η = 

1.334), QD is the donor QY and J(λ) is the spectral overlap integral with units of M-1cm3. The 

value for J(λ) is calculated using Equation 2.5. 
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where λ is the wavelength of the donor-acceptor spectral overlap, PLD(λ) is the integrated donor 

emission normalized to unity and εA is the acceptor extinction coefficient at the particular 

wavelength. The FRET efficiency (E) is calculated using Equation 2.6.49 
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where τDA is the fluorescence lifetimes of the donor in the presence of the acceptor, τD is the 

lifetime in the absence of the acceptor, PLDA is the steady state fluorescence of the donor in the 

presence of the acceptor, PLD is the fluorescence of the donor in absence of the acceptor and r is 

the distance between the donor and the acceptor. The overlap integral and Förster distance was 

calculated with the optical spectra using the software PhotoChemCad. 

Fluorescence Lifetime (τ) Calculations. Fluorescence lifetime measurements were fit to 

biexpontial decays, as expressed in Equation 2.7.49 
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where I(t) is the time domain intensity decay, A1 and A2 are the preexponential factors and τ1 and 

τ2 are the fluorescence lifetimes. 

 Average fluorescence lifetimes (τavg) were calculated using the preexponential factors (Ai) 

and lifetimes (τi) that were obtained from the biexponential decay fit as shown in Equation 2.8 and 

it is proportional to the area under the decay curve.49 


i

iiavg A        (2.8) 

The energy transfer efficiency was calculated from the fluorescence lifetimes using 

Equation 2.6.  
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2.3 Results and Discussion 

2.3.1 DNA Functionalization via Polymer Encapsulation 

The CdSe/ZnS core/shell QDs used in these studies were synthesized with varied core 

diameters to obtain tunable emission colors to control the energy transfer acceptor or donor 

character. As shown in Scheme 2.1, non-polar QDs were transferred into buffers using a polymer 

encapsulation procedure that used an amphiphilic copolymer, polystyrene-co-maleic anhydride 

(PSMA).29 The maleic anhydride rings in the PSMA were conjugated with different amine 

terminated molecules to form an amide linkage at each monomer and to introduce various 

functional groups for further DNA functionalization. For QDs that were functionalized with DNA 

via EDC/NHS coupling, an amine terminated polyethyleneglycol macromolecule (NH2-PEG) was 

used. To obtain the necessary functional groups on the polymer surface for click chemistry, 11-

azido-3,6,9-trioxaundecan-1-amine (azide) was used. In both systems, excess ethanolamine (EA) 

was also used to saturate the remaining anhydride groups and to protonate the carboxylic acids 

that were produced during the ring opening step. This process creates a combination of PSMA-, 

NH2-PEG-, EA-capped QDs or PSMA-, Azide-, EA-capped QDs. Next, multiple 30 bp DNA 

strands were conjugated to the polymer wrapped QDs using EDC/NHS coupling or click chemistry 

approaches. EDC/NHS coupling is susceptible to hydrolysis,49 so QD biofunctionalization using 

click chemistry was explored because it provides comparable functional group selectivity and is 

not as susceptible to hydrolysis.35 For the QD assembly, the QDs that emitted at lower wavelengths 

acted as the energy donors (D) and were functionalized with equal molar mixtures of A (5’-ATT 

GGA TTG GAA GTA-3’) and B (5’-TTC TCT ACA CTG TCT-3’) type DNA strands to create 

AB/QDD. The QDs that emitted at higher wavelengths acted as the energy acceptors (A) and were 

modified with B’ type DNA strands (5’-AGA CAG TGT AGA GAA-3’) to create B’/QDA. The 
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DNA/QD conjugates were purified from excess unreacted DNA by precipitating the DNA/QD and 

removing the supernatant.  

 

Scheme 2.1: Overview of the QD Polymer encapsulation procedure employed for phase 

transferring QDs into aqueous environments. 

 

Next, the QD/DNA conjugates were assembled and disassembled on a solid support (MB), 

as shown in Scheme 2.2. In these experiments, AB/QDD was coupled to the magnetic support, 

A’/MB, through 15 complementary bp. Next, the magnetic support was collected and unreacted 

QDs were removed. A second QD, B’/QDA, was assembled at the AB/QDD through 15 

complementary bp and reacted for 2 hours before the solution was magnetically collected and 

purified of unreacted QDs. Finally, the multicolor QD cluster, QDD-QDA, was released from the 

support through the addition of a fuel strand (A’’), which had a 30 bp complementarity to A’/MB.  
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Scheme 2.2: High throughput DNA-mediated assembly of two color QD clusters on a solid 

support. 

 

DLS was used to probe the change in hydrodynamic diameter (dh) at each functionalization 

step, as shown in Figure 2.1. For AB/QDD, there is an increase in dh from 7.8 nm to 12.9 nm after 

polymer encapsulation and an increase to 17.3 nm after DNA functionalization. This corresponds 

to a total increase of 9.5 nm. For B’/QDA, the total increase in dh was 24 nm. This data indicates 

that the polymer encapsulation and ssDNA functionalization leads to a significant increase in the 

shell capping layer. This is important because FRET is highly dependent on donor-acceptor 

distances. The released cluster showed a dh of 170 nm with a large broad peak, which is more than 

triple the summation of the dh for the individual ssDNA/QD conjugates. The large increase in dh 

can be attributed to the high repulsions between clusters due to the highly negatively charged 

unhybridized DNA strands.  
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Figure 2.1: Representative number weighted DLS results for QDD (blue circles) and QDA (red 

circles) of QDs after polymer encapsulation, DNA conjugation and assembly. (i) QD/TOP (QDD 

dh = 7.8 ± 2.8 nm; QDA dh = 6.4 ± 2.9 nm); (ii) NH2-PEG/EA/QD (NH2-PEG/EA/QDD (dh = 12.9 

± 3.0 nm); NH2-PEG/EA/QDA dh = 22.1 ± 9.0 nm); (iii) ssDNA/QD (AB/QDD dh = 17.3 ± 5.5 nm; 

B’/QDA dh = 30.0 ± 8.1 nm); (iv) Released AB/QDD + B’/QDA cluster from solid support (dh = 

169.1  ± 36.8 nm). 

  

 The PSMA wrapped QDs were also analyzed using FTIR to confirm the presence of the 

necessary functional groups, as shown in Figure 2.2 for the QD/PEG/EA conjugates and in Figure 

2.3 for the QD/Azide/EA. In the final PSMA wrapped QD spectra, the characteristic peaks for the 

carbonyl groups on the maleic anhydride (ν = 1850 cm-1 for the C=O symmetric stretch and ν = 

1775 cm-1 for the C=O asymmetric stretch) disappeared. This indicates successful maleic 

anhydride conjugation during the PSMA wrapping procedure. Another indication for successful 

functionalization is the appearance of the characteristic methoxy peaks for PEG at ν1 = 2860 cm-1 

in Figure 2.2 and the characteristic stretch for the azide group (ν = 2100cm-1) in Figure 2.3. The 

appearance of the broad peak at ν4 = 3250 cm-1 is at the typical location for both the OH and NH 

stretches that are associated with the creation of the carboxylic acid amide group that formed as a 
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result of opening the maleic anhydride rings. The peak at ν = 1630 cm-1 is indicative of the amide 

formation at the carboxylic acid after the PEG and azide conjugation.  

 
Figure 2.2: FTIR for surface linking through EDC/NHS coupling: (i) EA, (ii) NH2-PEG, (iii) 

PSMA, (iv) QD/PEG/EA 

 

 

 

Figure 2.3: FTIR for surface linking through click chemistry: (i) Azide, (ii) PSMA, (iii) QD/Azide. 

 



 59 

The effects of the different ring opening agents on QD optical properties and gel mobility 

are shown in Figure 2.4. After PSMA encapsulation and modification with PEG or azide alone, 

there was a significant drop in QY. When EA was used in conjunction with these molecules, the 

QY retention was higher. Although the QY decreased with these molecules, it was beneficial to 

use these molecules to impart functional groups that were reactive towards the DNA as well as the 

increased buffer stability that is associated with PEG molecules. Gel electrophoresis of PSMA 

encapsulated QDs (QD/PSMA) with different surface modifications is also shown in Figure 2.4. 

When azide or PEG was used as the nucleophile there was a streak in the gel instead of a band, 

indicating that the dots were either wrapped unevenly or precipitation occurred. An increase in gel 

mobility with EA compared to QDs functionalized with azide or PEG is consistent with the smaller 

size of the EA.  

 

Figure 2.4: Effect of polymer encapsulation and functionalization on QD QY and gel mobility. 

(0.8-1% Agarose gel, 70-75 V, 40-45 mins) 

 

In order to optimize the phase transfer protocol for the PSMA wrapping, the effect of QD 

concentration during the polymer encapsulation is shown in Figure 2.5. For these experiments, 2.5 

nmoles of QDs were diluted with chloroform to different concentrations ([QD] = 0.5 µM, 1 µM, 

5 µM, 10 µM) before the polymer wrapping procedure was carried out. The transfer efficiency (%t 
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= [QD/EA]/[QD] x100%) was used to quantify the success of the different samples. QDs polymer 

wrapped in a 0.5 µM solution had the lowest yield (%t = 4.5%) and a featureless absorbance 

spectrum. As the [QD] increased, the absorption features associated with the QD were more 

defined. The highest %t was at 1 µM and the highest QY was obtained with 5 µM solution. The 

PSMA wrapping that occurred in the 5 µM also had the lowest scattering out of all of the samples. 

The low %t at the higher QD concentrations is most likely due to the precipitation of QDs from 

the solution. When the density of QDs is too high, then the polymer can encapsulate multiple QDs 

in one PSMA micelle, creating a large and unstable aggregate. At the lower concentration, the low 

%t is most likely a result of fewer QDs coming into contact with the PSMA.  

 
Figure 2.5: Effect of QD concentration on the final QD/PSMA conjugate.  

 

The effect of encapsulating the QD with different polymers was also investigated. For these 

studies, QDs were phase transferred using three different co-polymers: poly(styrene-alt-maleic 

anhydride) (PSMA), poly(isobutylene-alt-maleic anhydride) (PIMA) and poly(maleic anhydride-

alt-octadecene) (PMAO). The absorbance spectra, gel mobility and dh for the different QD polymer 

conjugates were compared. As shown in Figure 2.6, QDs wrapped with PMAO had the smallest 

dh and faster gel mobility compared to the QDs with the other polymers. The smaller QD polymer 
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conjugate can be attributed to the stronger dispersion forces between the linear hydrocarbon chains 

of the polymer and the linear hydrocarbon chains of the TOP on the QD surface. QDs with PIMA 

had the largest dh, due to the weaker dispersion forces between the isobutylene on the polymer and 

the hydrocarbon chains of the TOP on the QD surface. Overall, the QD/PMAO species had the 

highest transfer efficiency, best quantum yield retention, the smallest dh and the most well defined 

absorption spectra.  

 

Figure 2.6: Effect of different polymers on polymer encapsulation product. UV-Vis: (a) 

QD(520)/PSMA, (b) QD(520)/PMAO, and (c) QD(520)/PIMA; gel electrophoresis and structures 

of the different polymers used in this study. [QD] = 1 μM; gel conditions: 0.8% Agarose, 70 V, 45 

mins. 

 

The effect of changing the polymer encapsulation from chloroform to the more polar THF 

was investigated. When the polymer encapsulation took place in THF, the %t was 6.7%, compared 

to 4.2% in CHCl3. These conjugates also had higher QY (24% compared to 18.2% in CHCl3) and 
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smaller dh (6.8 ± 2.4 nm in THF, 13.4 ± 4.6 nm in CHCl3). THF is a more polar solvent, which 

could help ease the transition of QDs from a non-polar to a polar solvent and help prevent 

photoluminescence quenching. These results suggest that the most successful polymer 

encapsulation requires PMAO encapsulation in THF with [QD] = 1 µM. 

 One of the largest challenges of this project was an inconsistent batch-to-batch MB-QD 

coupling efficiency. It was found that the optical scattering affected the QD coupling on the MB, 

where samples with higher UV-vis baselines had lower MB coupling success. As shown in Figure 

2.7, the UV-Vis of the polymer encapsulated QDs (QD/PSMA) generally had a high absorbance 

scattering, which varied between samples. The solution after polymer encapsulation was also very 

opaque. 

 

Figure 2.7: Effect of polymer encapsulation on the optical spectra and clarity of the QD sample. 

 

The high baseline and decreased coupling efficiency was attributed to excess polymer in 

the system, which would affect assembly by reacting with the solid support in place of the QDs. 

To remove the excess polymer, the QDs were purified in an ultracentrifuge (UC) using a sucrose 

density gradient. This purification procedure decreased the optical scattering, as shown in Figure 

2.8.  
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Figure 2.8: Sucrose ultracentrifugation results for the purification of QD(570) after PSMA/NH2-

PEG/EA wrapping and phase transfer: (a) image of QD/PSMA/NH2-PEG/EA conjugates before 

(1) and after (2) centrifugation under UV light illumination and (b) optical changes in UV-Vis of 

the QDs before (1) and after (2) purification. Inset: Gel electrophoresis of QD conjugates before 

(1) and after (2) purification.  

 

The decreased scattering in the absorption spectra and a more defined band in gel 

electrophoresis after purification indicate the removal of excess polymer conjugates. The change 

in dh as a result of sucrose purification was investigated. As shown in Figure 2.9, the dh was 

measured for the QD/PSMA conjugates before and after moving through the sucrose gradient. 

Although there was a high QD density in the top layer, the QD band that moved through the sucrose 

layer was considered the purified product. A decrease in dh by 17 nm indicates the removal of 

excess polymer micelles and QD aggregates following the polymer wrapping procedure. 
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Figure 2.9: (a) UV-illuminated image of the sucrose gradient (1) before and (2) after purification 

and (b) dynamic light scattering results before sucrose purification (grey circles, dh = 68.6 ± 4.3 

nm) and after sucrose purification (blue circles, dh = 51.9 ± 9.9 nm).  

 

To verify that the sucrose purification removed excess PSMA, the DNA coupling 

efficiency for the purified and unpurified samples were compared. The number of DNA duplexes 

on the QD surface was quantified using fluorescent hybridization studies. As shown in table 2.1, 

the number of DNA duplexes per QD in the purified sample increased by more than twofold, from 

6.0 ± 3.3 DNA/QD to 15.6 ± 1.5 DNA/QD. This indicates the removal of excess polymer that, if 

present during the DNA conjugation, would be modified with DNA and bind to the support or the 

QDs, decreasing the ssDNA coupling efficiency.  

 

Table 2.1: DNA Quantification 

Sample # DNA/QD 

Unpurified QD/PSMA 6.0 ± 3.3 

Purified QD/PSMA 15.6 ± 1.5 

  

Next, the purified QDs were conjugated with DNA. As shown in Figure 2.10, QDs and 

quantum rods (QRs) conjugated with DNA using click chemistry showed a decrease in PL but 
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release was not observed. It was hypothesized that this lack of assembly in the copper mediated 

click chemistry DNA modification was due to the presence of copper (II) ions after DNA 

modification that can mediate DNA damage50 and quench QD emission.51 Both of these processes 

will affect coupling efficiency.  

 

 

Figure 2.10: The PL monitoring of the MB supernatant for QDs and QRs incubated with the 

A’/MB solid support: AB(QD(570)) (a) before (i) and after 2 hours of incubation with A’/MB (ii), 

(b) after the addition of A” and AB/QR(625) (c) before (i) and after 2 hours of incubation with 

A’/MB (ii) and (d) after the addition of A”.  

 

Figure 2.11a and 2.11b compare the PL decrease upon addition to the solid support for QRs 

with and without DNA, respectively. Since no release was observed, the PL decrease can be a 

result of non-specific absorption or PL decay. To determine the nature of the PL decrease, the PL 

decrease in QRs were measured over time. In the absence of the MB, the PL did not decrease as 

much as in the presence of the MB. This data indicates that the QRs are non-specifically adsorbing. 
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In future experiments, QDs can undergo DNA biofunctionalization using cyclooctane click 

chemistry that doesn’t require the use of a copper catalyst35 to determine if this non-specific 

adsorption is due to the copper ions.  

 

 

Figure 2.11: (a) AB/QR(625) (i) before and (ii) after 2 hours of incubation with A’/MB and (b) 

azide/QR(625) (i) before and (ii) after 2 hours of incubation with A’/MB; (c) PL decrease for 

azide/QR(625) in solution. 

 

The assembly and disassembly of QDs modified with DNA via EDC/NHS coupling was 

investigated, as shown in Figure 2.12. In these experiments, the assembly and disassembly of equal 

molar amounts of the donor (AB/QD(590)) and acceptor (B’/QD(630)) QDs (r = 

[QD(590)]/[QD(630)] = 1) were quantitatively measured using PL. In Figure 2.12a, the decrease 

in AB/QD(590) indicated assembly and the remaining unreacted QDs were magnetically separated 

from the MB solution. Figure 2.12b shows the assembly of B’/QD(630) at AB/QD(590) on the 

solid support through the decrease in emission. In Figure 2.12c, the addition of A’’ resulted in the 

appearance of an emission peak, indicating the release of QD clusters from the support. The 

appearance of one emission peak is most likely due to the emission overlap between the two QDs. 
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Figure 2.12: The PL monitoring of the MB supernatant during the assembly of (a) AB/QD(590) 

at the A’/MB support, (b) B’/QD(630) at the immobilized AB/QD(590) and (c) the release of the 

DNA-linked AB/QD(590)+B’/QD(630) cluster upon addition of A’’ with release times of (iii) 5, 

(iv) 14, and (v) 24 h. (r = [QD(630)]/[QD(590)] = 1; QYD = 2%, QYA = 1%). 

  

Although the released emission peak only shows one peak, peak deconvolution software 

calculated PLA/PLD of 4.2, which is higher than PLA/PLD of 1.8 prior to cluster assembly. The peak 

deconvolution results and FRET parameters are found in Figure 2.13. Current literature values 

report an R0 around 5-7 nm for QD thin films52 and 5-6.5 nm for colloidal QD and QR systems53 

and 3-6 nm for QDs coupled to organic dyes54 so this value is a little smaller than other measured 

R0 values involving QD FRET. The low calculated Förster distance for the cluster is due to the 

low QY of the donor (2%) and the small overlap between the absorbance of the donor and the PL 

of the acceptor. As shown in Figure 2.13c, a 5 nm separation corresponds to an efficiency of 12%. 

The diameters of QD(590) and QD(630) are about 3.6 and 5 nm, respectively, based on the 

absorption maximum,45 are polymer encapsulated and then are functionalized with 20 bp 

oligonucleotides, where the 15 hybridized bps in the cluster have a distance of about 5 nm (0.34 

nm/bp).55 Taking these distances into account, the QDs are separated by a distance of over 10 nm, 

which corresponds to FRET efficiency around 0.2%. Since the relative PL ratios increased more 

than 0.2%, the FRET efficiency in this cluster is larger than that predicted by the Förster distance. 
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This may give insight into the geometry of the cluster, where the QDs are in a bent rather than a 

linear configuration. This would decrease the distance between them and lead to a greater FRET 

efficiency.  

 

 
Figure 2.13: (a) Peak deconvolution for the released cluster after 24 hours of measured release 

(PLA/PLD = 4.2), (b) Spectral overlap of the absorbance of the acceptor (QD(630)) with the PL of 

the donor (QD(590)) and acceptor and (c) FRET efficiency plot for the released cluster (R0 = 3.7 

nm).  

 

A control experiment was performed to investigate the non-specific binding of the QDs on 

the solid support. As shown in Figure 2.14, QD/PEG/EA incubated with A’/MB did not show a 

decrease in PL, indicating the lack of non-specific adsorption onto the solid support. This confirms 

that the decreased emission in the assembly experiment was a result of assembly at the solid 

support and not non-specific adsorption or PL decay. 
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Figure 2.14: (a) QD/PEG/EA before (i) and after (ii) incubation with A’/MB and (b) after the 

addition of a fuel strand for (i) 2 hours and (ii) 14 hours. 

 

The assembly and disassembly was measured for QDs with a larger separation in emission 

wavelengths. Figure 2.15 shows the assembly and disassembly of AB/QD(570) and B’/QD(635) 

(r = [QD(635)]/[QD(570)] = 1). As shown in Figure 2.15a, AB/QD(570) was assembled onto the 

support and the remaining unreacted 3% was removed from the MB solution using a magnetic 

purification. In Figure 2.15b, about 80% of the B’/QD(635) conjugates were assembled onto the 

support at the AB/QD(570). After the addition of A” to release the QD cluster, the PL emission 

increased at 570 nm and 635 nm, indicating the release of both QDs. The PL increase over time in 

Figure 2.15c indicates an increasing concentration of clusters over time.  
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Figure 2.15: The PL monitoring of the supernatant during the assembly of AB/QD(570) at the 

A’/MB support (a), the B’/QD(635) at the AB/QD(570) immobilized on the A’/MB (b), and the 

release of the DNA-linked AB/QD(570)+B’/QD(635) cluster upon addition of A’’-F (c), with 

release times of 2, 5, and 14 h. 

 

Using this approach, the release of clusters with different acceptor and donor 

stochiometries (r = [QD(630)]/[QD(570)] = 0-1.3) were prepared. As shown in Figure 2.16, the 

different PL emission ratios (PLA/PLD) of the released clusters at the different r values indicate the 

release of different types of clusters. The only way for the increase in PL for B’/QD(635) is if it is 

bound to AB/QD(570), so this data shows that the release of clusters with different stoichiometries 

was successful. 
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Figure 2.16: PL spectral changes for release of AB/QD(570) + B’/QD(635) clusters after 

introducing fuel strand A’’ at assembly ratios, r = [B’/QD(635)] / [AB/QD(570)] = 0 (a), 0.1 (b), 

0.25 (c), 0.50 (d), 0.95 (e), and ~1.3 (f). Arrow indicates release times of 2, 5, and 14 h. (QYD = 

6.7%, QYA = 1.8%). 

 

 The AB/QD(570) + B’/QD(635) cluster was calculated to have a Förster distance 

(R0) of 5.2 nm (figure 2.17c inset), which is low considering the use of the QD acceptor 

because of QD(635)’s low quantum yield. Figure 2.17c shows the PLA/PLD ratios of the 

QD(635) acceptor (PLA), and QD(570) donor (PLD) from the released clusters and the 

PLA/PLD control ratio based on the QY values (QY(570) = 6.7%, QY(635) = 1.8%) for 

each experimental r. A comparison of the two indicates a considerable increase in PLA/PLD 

for the assembled clusters, suggesting improved emission from the QD(635), possibly due 

from QD-to-QD FRET. This FRET efficiency is similar to previously reported values of 

QD conjugates.43 In an ideal model, DNA-linkage between each QD should account for ~5 

nm from the 15bp double-stranded region (0.34nm/bp), with additional length and 
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flexibility from the two separate 15bp poly-T spacers, and the additional TOPO and PSMA 

wrapping. Considering also the radii of each QD (1.8, 2.5 nm), one can expect donor-to-

acceptor distances (center-to-center) to be at least on the order of ~12 nm.  

 

Figure 2.17: (a) The PL and UV-vis spectra for QD(570) (green) and QD(635) red. (b) Spectra 

overlap of QD(570) energy donor and QD(635) energy acceptor. (c) Observed PL intensity 

changes between the QD(570) donor (PLD) and QD(635) acceptor (PLA) for the released 

AB/QD(570) + B’/QD(635) clusters at increasing r (i). Red dashed line (ii) represents simulated 

PLA/PLD based on individual QY values. Inset: Corresponding FRET efficiency plot. 

 

In Figure 2.18, the assembly and disassembly of AB/QD(570) and B’/QD(630) at r = 0.3 

was investigated where the QY of B’/QD(630) was higher than the QY for AB/QD(570).  This is 

the reverse QY trend from Figure 2.16. Figure 2.18a shows the PL of the supernatant before and 

after the addition of AB/QD(570), where the PL decrease indicates assembly at the A’/MB support. 

In this step, about 40% of the QDs remained unreactive. The PL decrease of B’/QD(630) indicates 

assembly at the immobilized AB/QD(570). In this step, about 64% of the QDs remained 

unreactive. After addition of the fuel strand, A’’, an increase in PL of both QD(570) and QD(630) 

was observed, indicating the release of a cluster. In this released cluster, the PL of the acceptor is 

higher than the PL of the donor, which is most likely due to the higher QY of the acceptor. In 
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Figure 2.16b, the PL of the donor (QYD = 6.7%) was higher than the PL for the acceptor (QYA = 

1.8) at the same r, so the reverse trend observed here is due to the higher QY of the acceptor (QYA 

= 5%) compared to the donor (QYD = 2%). This data suggests that the PL is not a reliable way to 

measure the QD stoichiometry.  

 

 
Figure 2.18: The PL monitoring of the MB supernatant during the assembly of (a) AB/QD(570) 

at the A’/MB support, (b) B’/QD(630) at the immobilized AB/QD(570) and (c) the release of the 

DNA-linked AB/QD(570)+B’/QD(630) cluster upon addition of A’’ with release times of (i) 2, (ii) 

5, and (iii) 14 h. (r = [QD(630)]/[QD(570)] = 0.3; QYD = 2%, QYA = 5%). 

 

In Figure 2.18c, the PLA/PLD in the cluster is 3.1 before assembly and 5.3 after assembly, 

which corresponds to about 40% energy transfer efficiency. The relative increase in acceptor PL 

after assembly is indicative of QD-QD FRET, so the FRET parameters for this cluster were 

calculated, as shown in Figure 2.19. A Förster distance (R0) of 5.3 nm was calculated for the 

coupled QDs from the spectral overlap and optical properties of the individual QDs.  
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Figure 2.19: FRET parameters for the assembled cluster: (a) Spectral overlap of the absorbance 

of the acceptor (QD(630)) with the PL of the donor (QD(570)) and acceptor. 

 

As shown in Figure 2.20, the lifetime was measured for a QD donor-acceptor pair (r = 

[QD(630)]/[QD(530)] = 1). The decrease in the donor lifetime in the absence (τD = 6.08 nm) and 

presence of the acceptor (τDA = 4.05 ns) verifies that energy transfer is occurring with an efficiency 

of 26%. 

 

 
Figure 2.20: Fluorescence lifetime measurements for (i) QD(530) in the absence of the acceptor 

(τD) and (ii) donor in the presence of the acceptor (τDA). Data was fit to a biexponential fit. 

 

This data was fit to a biexponential decay to obtain lifetime measurements, as shown in 

table 2.2. 
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Table 2.2: Biexponential fit results for lifetime measurements 

 A1 τ1 (ns) A2 τ2 (ns) τavg (ns) 

Donor 3816.03 3.296 976.66 10.967 6.08 

Donor in the presence of the 

acceptor 
2832.3 0.287 509.56 6.855 4.50 

  

This data demonstrates the ability to control QD assembly at a solid support with a variety 

of different donor acceptor pairs and cluster stoichiometries. Lifetime measurements verified that 

the the enhancement in acceptor PL after QD cluster release is due to QD-QD FRET which may 

be due to structural changes in the QD cluster. 

 

2.3.2 DNA functionalization via Aqueous Shell Growth 

FRET is highly dependent on donor and acceptor distance,56 so the large spatial distribution 

between the PSMA functionalized QDs leads to a decreased FRET efficiency. To decrease the 

donor acceptor distance, the direct attachment of oligonucleotides during aqueous shell growth 

using a phosphorothiolate modified DNA strand (pt-ssDNA) was investigated.40 The direct 

attachment eliminates the large PSMA shell so distance between coupled QDs should be smaller 

than QD/PSMA conjugates. The aqueous shell growth procedure has also been found to embed 

the DNA into the QD shell, which should lead to an increased conjugate stability since the DNA 

is unable to dynamically bind off of the surface.40 For this approach, QDs were phase transferred 

using a histidine mediated direct ligand exchange33,36 and a ZnS shell was epitaxially grown in the 

presence of pt-ssDNA.40 First, the spectral changes were investigated during the shell growth 

procedure in the presence of mercaptopropionic acid only (MPA). As shown in Figure 2.21a and 

2.21b, the absorbance peak became less defined and the fluorescence peak became broader and 

red shifted with increasing time, respectively. These spectral changes indicate an increase in QD 
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size with increasing shell growth times. The QY also increased during shell growth from 2.5% to 

10.1% after 4 hours but decreased back to 2.8% after 24 hours. The increase in QY is very 

beneficial because there is usually a significant QY loss during phase transfer, which will affect 

energy transfer efficiency in the final assembled QD clusters. 

 

 
Figure 2.21: Spectral change with time of ZnS shell growth on CdSe/CdS-His conjugates in the 

presence of MPA: (a) UV-Vis, (b) PL and (c) emission wavelength as a function of time.  

 

The shell growth in the presence of different ratios (r = [pt-ssDNA]/[QD]) was investigated 

via UV-Vis, PL and gel electrophoresis, as shown in Figure 2.22. As the ratio increased, the 

mobility of the QDs in the gel decreased, indicating an increase in QD size due to a higher loading 

of DNA on the surface. The emission peak also red shifted from 597 to 620 nm during the shell 

growth, but the addition of more pt-ssDNA did not change the red shifted emission, indicating that 

the red shifted emission is not from the presence of pt-ssDNA, but only from the deposition of ZnS 

onto the CdSe/CdS QD.  
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Figure 2.22: (a) UV-vis and (b) PL of (i) QD/His (CdSe/CdS-His) and (ii) QD/DNA 

(CdSe/CdS/ZnS-DNA) after ZnS shell growth in the presence of DNA (r [DNA] / [QD] = 100); 

(c): Gel electrophoresis of CdSe/CdS/ZnS-DNA conjugates after ZnS shell growth in the presence 

of DNA with different DNA/QD ratios (r = 0-100). Inset: UV-illuminated image of QD/His and 

QD/DNA (r = 100). 

 

The QD/pt-ssDNA conjugates were assembled and disassembled on a solid support, as 

shown in Figure 2.23. A decrease in photoluminescence after incubation with the solid support is 

indicative of DNA hybridization with the support. After the addition of a fuel strand, the cluster 

was released, which is shown by an increase in PL over time. The PL is at the emission location 

of the acceptor and, based on DNA hybridization, the acceptor emission will only be present after 

the addition of A’’ is through coupling with the donor. The absence of the donor emission could 

be due to the large overlap in emission wavelengths of the donor and acceptor, the energy transfer 

and the low QY of the donor (QY = 0.4%). 
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Figure 2.23: The PL monitoring of the MB supernatant during the assembly of (a) AB/QD(590) 

at the A’/MB support, (b) B’/QD(620) at the immobilized AB/QD(590) and (c) the release of the 

DNA-linked AB/QD(590)+B’/QD(620) cluster upon addition of A’’ with release times of (iii) 2, 

(iv) 5, and (v) 22 h. (r = [QD(630)]/[QD(590)] = 1; QYD = 0.4%, QYA = 1.7%). 

 

 

The FRET parameters and deconvolution of the released cluster PL are shown in Figure 

2.24. This assembly is comparable to the assembly of polymer wrapped AB/QD(590) and 

B’/QD(630) in Figure 2.13. The polymer wrapped conjugates (QD/PSMA/DNA) had an R0 of 3.7 

nm, which is comparable to the R0 of 3.8 nm in Figure 2.24c for QD/pt-DNA conjugates. The QDs 

are closer together compared to the previous experiments, where they are separated by about 10 

nm from the QD radii (r = 1.8 nm for QD(590) and r = 2.3 nm for QD(615))45 and length of the 

DNA strands (5 nm),55 which corresponds to an energy transfer efficiency of 3%.  
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Figure 2.24: (a) Peak deconvolution for the released cluster after 22 hours of measured release 

(PLA/PLD = 32), (b) spectral overlap of the absorbance of the acceptor (QD(615)) with the PL of 

the donor (QD(590)) and acceptor and (b) FRET efficiency plot for the released cluster.  

 

 The released cluster is compared for the assembly of the QD/PSMA/DNA conjugates 

(figure 2.25a) and the QD/pt-DNA (figure 2.25b). The QD/PSMA/DNA and QD/pt-DNA 

conjugates had similar PL intensities before assembly, but the PL for released cluster for the 

QD/pt-DNA conjugates were 100 times higher, despite the lower donor QY values. This is 

indicative of increased energy transfer efficiency and the release of a higher concentration of QD 

clusters. The enhanced the PLA/PLD ratio for the QD/pt-DNA conjugates (PLA/PLD = 32) 

compared to the QD/PSMA/DNA conjugates (PLA/PLD = 4.2) suggests that there is an increased 

energy transfer efficiency. This is expected because FRET is highly dependent on distance48 and 

the direct DNA attachment is expected to lead to smaller donor-acceptor distances. 
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Figure 2.25: PL of the QD cluster release at the solid support for (a) QDs functionalized with 

DNA via polymer wrapping procedure (QD/PSMA/DNA) and (b) QDs functionalized with DNA 

via the direct attachment procedure (QD/pt-DNA). 

 

This data suggests that there is an enhancement of energy transfer when the DNA is 

attached directly to the QD surface from the shorter donor-acceptor distances.  

  

2.4 Conclusions 

 In conclusion, the stepwise DNA-mediated assembly of two color QD clusters was 

demonstrated. QDs were phase transferred using a polymer wrapping procedure and purified in a 

sucrose density gradient to remove impurities (QD aggregates, unreacted polymer conjugates) that 

can bind to the MB support. QDs were functionalized with DNA through EDC/NHS and click 

chemistry routes and assembled and released at a magnetic colloid. The QD/DNA conjugates that 

were prepared using click chemistry did not show release at the MB. This may be due to Cu (II) 

ions that were not removed during QD purification. QDs that were functionalized with DNA using 

the EDC/NHS coupling route were successfully assembled and released. The released QD 

stoichiometry could be controlled by the assembly ratios and the clusters PL intensity suggested 

evidence of QD-to-QD energy transfer.  
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To improve the energy transfer efficiency in the QD clusters, the direct attachment of DNA 

to the QD surface using an aqueous shell growth procedure was investigated. The shell growth and 

DNA functionalization was measured using gel electrophoresis, UV-Vis and PL. The cluster 

assembly and release at the solid support for the final conjugates was quantitatively measured 

using PL. The R0 and FRET efficiency was compared for the QDs functionalized with DNA via 

polymer wrapping procedure (QD/PSMA/DNA) and QDs functionalized with DNA via the direct 

attachment procedure (QD/pt-DNA). The enhanced acceptor PL for the QD/pt-DNA conjugates 

indicate an increase in energy transfer efficiency. Since the DNA was directly attached to the QD 

surface in the QD/pt-DNA conjugates, smaller donor-acceptor distances can be achieved. These 

final clusters are candidates to perform as smart biosensors that can perform multiple sensing 

events in tandem with high sensitivity and efficiency. The clusters can also be used as unique 

models to probe QD-to-QD energy transfer. For all of these applications, a higher energy transfer 

efficiency is desired.   
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Chapter 3 

Investigating the Colloidal Stability and Energy Transfer of Quantum Rod Bioconjugates 

 

 

 In Chapter 2, I discussed the self-assembly of QD clusters, where the QD energy acceptor 

ability is limited by the broad absorption profile that causes co-excitation in QD FRET pairs. In 

this chapter, a bioluminescent protein was attached to a quantum rod (QR) to generate QR emission 

through bioluminescence resonance energy transfer (BRET), which eliminated the need for an 

external excitation source. Previous experiments showed that quantum rods with rod-in-rod 

microstructures are the most efficient BRET acceptors; however, the colloidal stability was not 

optimized. Here, the colloidal stability was investigated and improved, and the nature of energy 

transfer was investigated. 

 

3.1 Introduction 

Many species have independently evolved to be bioluminescent, including bacteria, 

coelenterates, and beetles.1,2 Although the genes that are responsible for bioluminescence between 

the different species are unrelated, they all involve the reaction of molecular oxygen with a 

substrate, like luciferin (LH2), and an enzyme, like luciferase, to produce photons.1–8 The 

bioluminescence produced can be transferred to fluorescent proteins or inorganic fluorescent 

nanocrystals, such as quantum dots (QDs) and quantum rods (QRs) through bioluminescence 

resonance energy transfer (BRET).9–17 Thus, these inorganic materials are illuminated without an 

external light source, which is the common route. BRET to fluorescent proteins and QDs have 

been studied for self-illuminated photodynamic therapy,18 biological detection and imaging,19,20 

and light-harvesting devices.21 For example, BRET was used to study the interactions between a 
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G protein coupled receptor and the neurotransmitter, norepinephrine, to determine if 

oligomerization occurred upon receptor binding.20 The BRET was studied as a function of the 

stoichiometry between a fluorescently tagged G protein coupled receptor to the luciferase fused 

norepinephrine and a linear relationship indicated that oligomerization did not occur.20 In another 

report by Yao et al, the sea pansy’s bioluminescent protein, Renilla luciferase, was conjugated to 

QDs for the detection of matrix metalloproteinases, a peptide biomarker for in vivo cancer tumor 

detection.19 In these studies, a hexahistagged substrate for the metalloproteinase was genetically 

fused to a Renilla luciferase mutant. In the absence of the peptide, Ni2+ coordinated the 

hexahistagged protein to a carboxylate functionalized QD and BRET occurred. In the presence of 

the metalloproteinase, the hexahistag was cleaved off of the Renilla luciferase to prevent 

coordination to the QD and BRET did not occur.19  

Using bioluminescence or BRET prevents photobleaching as well as issues that arise when 

light penetrates tissues during external excitation, including high light scattering and tissue 

autofluorescence.14,15,18,22,23 Another issue that BRET can overcome is the co-excitation that occurs 

with QR or QD energy acceptors in FRET pairs.12 Coexcitation occurs when both the energy donor 

and acceptor are excited. This increases the complexity of energy transfer analysis since the 

acceptor emission is from radiative excitation and non-radiative energy transfer. A bioluminescent 

donor in a pure BRET system generate acceptor emission that is only possible through non-

radiative energy transfer. The energy transfer efficiency for BRET and FRET has been found to 

be dependent on the donor-acceptor distances, QD shape, dimensionality and microstructure. For 

example, QRs with rod-in-rod morphology were found to be more efficient FRET acceptors than 

dot-in-dot QDs and dot-in-rod QRs when coupled to organic dye donors.24 Previous experiments 

in our lab were consistent with this finding, where rod-in-rod QRs with an aspect ratio (l/w) of 
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around 3 were the most efficient BRET acceptors, with BRET ratios (BR = PLA/PLD) as high as 

44.11–13 The increased energy accepting abilities of rod-in-rod QRs were attributed to the higher 

QR surface area that can accommodate more protein molecules as long as the protein molecules 

remain relatively close to the core (r ≥ R0) where QR emission originates. Other QR properties 

that can contribute to their increased energy accepting abilities include the longer lifetimes, 

broader absorption profiles and aspect ratio tuneability.25 Previous experiments also found that the 

optimum protein loading for the highest BR is at lower protein loading (L = [Ppy] : [QR] = 5). 

This is counter intuitive since QRs have a higher surface area to accommodate more donors, which 

should lead to an increase in energy transfer efficiency.24,26 It was hypothesized that the reduced 

BR was due to either preferential Ppy binding at defect rich interfaces close to the core, lower 

accessibility to the substrate at higher coverage or cooperative effects that quench 

bioluminescence.11 Recently, it was reported that over-labeling biomolecules with chromophores 

leads to decreased sensitivity due to the resonance energy transfer migration between 

chromophores and background fluorescence.27 In these studies, gold nanoparticles (AuNPs) were 

used to limit the FRET between a chromophore, fluorescein, and a biomolecule, cytochrome c, to 

prevent resonance energy transfer migration and autofluorescence, which resulted in lower 

detection limits for cytochrome c.27 This work demonstrates the importance of keeping energy 

transfer an intramolecular process. 

In this chapter, CdSe/CdS QRs were functionalized with a green thermally stable North 

American firefly luciferase, Photinus pyralis (Ppy).28 Ppy bioluminescence is one of the brightest 

in nature, with QYs as high as 41%.29 Native Ppy emits yellow-green light (λem = 560 nm) at pH 

= 7.8 but luciferase and luciferin can both be engineered to create emission at different 

wavelengths, increasing the breadth of energy donor capabilities.28–32 In these studies, QRs 
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underwent a histidine (His) mediated phase transfer followed by an additional ligand exchange 

with N-terminus hexahistidine tagged (6xHis) Ppy, which has been shown to coordinate directly 

to QD surfaces.11–13,33 One challenge we encountered in previous studies was the long-term 

instability of the BRET nanoconjugates. Here, we address this by investigating the use of different 

QR capping ligands. By changing the ligand that imparted water solubility from His to glutathione 

(GSH), the BRET signal remained stable over the course of one week.  

To investigate how the protein binds to the QR surface, QRs were immobilized onto glass 

substrates. Monolayers of QDs and QRs have been investigated for a wide range of applications 

in thin film and microchip technologies.34,35 Glass substrates are normally unreactive, hydrophilic 

inorganic surfaces, but different methods have been employed to chemically attach molecules to 

the surface, including the chemical vapor and liquid phase deposition of organosilanes. 

Organosilanes are organic compounds that contain carbon silicon bonds and can be used as 

coupling agents to glass to impart functionality and reactivity.36–38 Other deposition methods, such 

as the Langmuir Blodgett technique, result in monolayers that are physisorbed rather than 

chemically adsorbed on the surfaces. In this chapter, glass substrates were silanized with 3-

mercaptopropyltrimethoxysilane (MPTS) through liquid phase deposition and QR/His conjugates 

were immobilized to the substrate through a thiol linkage. The QRs were then functionalized with 

Ppy and imaged under confocal and AFM.  
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3.2 Experimental 

3.2.1 Chemicals 

Cadmium oxide (CdO, 99.99%), sulfur (S, 100 mesh), Zn Acetate (ZnAc, 99.99%), 

Methylphosphonic acid (MPA, 98%), Trioctylphosphine oxide (TOP, 97%), 1-octadecene (ODE, 

90%), oleylamine (OAm, 70%), oleic acid (OA, 99%), sodium phosphate monobasic monohydrate 

(NaH2PO4 H2O, 98.0-102.0%), sodium phosphate dibasic hepta-hydrate (Na2HPO47H2O, 98.0-

102.0%), L-Histidine (His, 99%), (11-Mercaptoundecyl)tetra(ethylene glycol) (PEG-SH), 

thioglycolic acid (TGA), reduced L-glutathione (GSH, 99%), and 3-

mercaptopropyltrimethoxysilane (MPTS, 95%) were purchased from Sigma Aldrich. 

Trioctylphosphine Oxide (TOPO, 90%), Octadecylphosphonic acid (ODPA, 97%), 

Tetradecylphosphonic acid (TDPA, 97%), mercaptophosphonic acid (MPPS) and 

hexylphosphonic acid (HPA, 97%) were purchased from Strem Chemicals, Selenium Powder (Se, 

200 mesh, 99.999%) was purchased from Alpha Aesar, Agarose NA was from GE Healthcare.  

3.2.2 Synthesis and Functionalization of QRs 

 Synthesis of CdSe/CdS QRs. First, TOPO was purified through recrystallization in 

acetonitrile and dried under vacuum. CdSe rod cores were prepared by heating 0.5 mmoles CdO, 

7.8 mmoles TOPO, 0.7 mmoles ODPA, 0.12 mmoles MPPA and 2 mL ODE to 150 °C under 

vacuum. After 1 hour, the solution was heated to 330 °C under Ar until clear. The temperature was 

increased to 365 °C, where 1 mL TOP was injected. Once the temperature stabilized, 0.07 g Se in 

0.5 mL TOP was injected and the solution was annealed for 10 minutes. The final phosphonic acid 

capped QR cores were cleaned via acetone precipitation and resuspended in toluene. The CdSe 

core surface was passivated with a CdS shell using a seeded initiation route. Briefly, 8.7 nmoles 

of CdSe QR cores were resuspended in a warm solution of 1 mL TOP and 0.06 g Sulfur. 
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Meanwhile, 0.25 mmoles CdO, 7.8 mmoles TOPO, 0.25 mmoles HPA, 0.4 mmoles ODPA and 2 

mL ODE were heated to 150 °C under vacuum for 1 hour. The solution was then heated under Ar 

to 330 °C until clear then the temperature was increased to 365 °C when 1 mL TOP was added. 

After the temperature stabilized at 365 °C, the core solution was swiftly injected and annealed for 

10 minutes. The final CdSe/CdS QRs were cleaned via acetone precipitation and resuspended in 

toluene. 

 Histidine and Glutathione Mediated Phase Transfer. Organic soluble QRs were 

transferred to aqueous conditions using a ligand exchange procedure.39,40 The QRs were cleaned 

using an acetone precipitation and resuspended in chloroform. For histidine capped QRs, a 0.1 M 

his solution in a 1 : 4 water : basic methanol mixture was added to the QRs in 40,000-100,000 

molar excess. The solution was vortexed and immediately separated into a clear and colorless 

chloroform layer and a colored aqueous solution at the top. The aqueous soluble QRs were 

removed from the solution and back extracted with chloroform 4-5 times. Excess ligands were 

removed by precipitating the QRs in a methanol/acetone mixture. The final QR/His conjugates 

were resuspended in borate buffer (pH = 8.4). For GSH capped QRs, a similar protocol was 

followed except the QR/GSH solution was reacted for 2 hours at room temperature. 

 QR conjugation with TGA or PEG-SH. To functionalize the QR surface with TGA or 

PEG-SH, QR/His was incubated with a 5000 molar excess of ligand (pH=12) at 50 °C for 2 hours. 

Excess ligands were removed using a 100 kDa spin filter and the final QR conjugates were 

suspended in borate buffer (pH=8.4). 

 QR/Ppy Conjugation. To assemble the QR/Ppy nanoconjugates, the 6x histagged Ppy was 

incubated with His-functionalized or GSH-functionalized QRs for 20 minutes on ice prior to BRET 

analysis. 
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3.2.3 BRET Measurement and Analysis. In a typical BRET experiment, the QR/Ppy 

nanoconjugates ([QR]=150-500 nM) were quickly added to a mixture of 100 μL of 91 μM LH2 

and 30 μL of 8.66 mM Mg-ATP in 25 mM gly-gly buffer (pH 7.8) in a 96 well plate. For the 

control experiments involving imidazole, QR/GSH was incubated with 6xhistagged Ppy for 20 

minutes. The BRET was measured for 5 scans. A 5 μL aliquot of imidazole 

([imidazole]:[QR]=100,000) was quickly added to the solution and the bioluminescence emission 

was measured immediately. 

3.2.4 QR Immobilization on Glass Substrates. Glass slides were cleaned with a 1 : 1 mixture of 

HCl : Methanol for 30 minutes. The slides were washed with water and dried under Ar flow. The 

glass substrates were dipped in a Piranha solution (3 parts concentrated H2SO4 to 1 part 30% H2O2) 

and then washed copiously with deionized water and dried under Ar flow. To attach MPTS, dried 

glass slides were placed in a 2.5% (w/v) MPTS solution in toluene. After 2 hours, the slides were 

washed with toluene, dried under Ar flow and placed in an 80 °C oven for 15-18 hours.36–38 The 

glass slides were cleaned in toluene and dried under Ar flow. To attach organic soluble QDs, glass 

slides were incubated with 1.5 × 10-9 to 1.5 × 10-10 moles of QDs in toluene for 7-20 hours. The 

slides were then washed with toluene, dried under Ar flow and stored in toluene. For aqueous 

attachment of QDs, the glass was incubated in a 1.5 × 10-10 M QD/His solution in borate buffer 

(pH = 7.8) for 7-15 hours. The glass substrates were washed with deionized water, dried under Ar 

flow and stored in borate buffer in the refrigerator. To attach Ppy, the glass containing QD/His 

were submerged into a solution of Ppy overnight at 4 °C.  

3.2.5 Instrumentation 

UV-Vis Spectroscopy (UV-Vis). See section 2.2.5  

Dynamic Light Scattering (DLS). See section 2.2.5 
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Fourier Transform Infrared Spectroscopy (FTIR). See section 2.2.5   

Photoluminescence (PL). See section 2.2.5 

Polarized Photoluminescence Excitation Spectroscopy. A photoselection experiment 

was performed where, in an ensemble solution of randomly oriented QRs, only fluorophores of 

the correct orientation are excited by a polarized excitation source.41–43 Polarization experiments 

were performed on a Horiba Jobin Yvon Fluoromax-4 photon counting spectrophotometer 

equipped with a 150 W xenon white light excitation source, computer controlled monochromator 

and a polarizer. The polarization and anisotropy as a function of excitation wavelength was 

measured. The emission wavelength was held constant at a wavelength 5-10 nm red shifted from 

the QR emission maximum.  

Bioluminescence (BL). All BRET measurements were obtained on a Varian Cary-Eclipse 

spectrophotometer in bioluminescence/chemiluminescence mode with a 96 well plate reading 

accessory with the emission source blocked. Bioluminescence scans were performed in a white 

well plate and spectra were collected every 15 seconds for 7.5 minutes. The emission spectra were 

manually corrected for source intensity and detector sensitivity by comparing the relative emission 

intensities with the corrected detector on the Fluoromax 4 spectrophotometer.  

Atomic Force Microscopy (AFM). AFM images were acquired with a SiN2 tip in tapping 

mode. The samples were placed on a mica substrate. First, mica substrates were cleaved with tape 

to obtain a clean, flat surface. Then, 100 mM MgCl2 was drop casted and wicked off followed by 

the sample, which was also drop casted and wicked off.  

Transmission Electron Microscopy (TEM). TEM measurements were performed on a 

JEOL 2000EX instrument operated at 100 kV with a tungsten filament (SUNY-ESF, N.C. Brown 
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Center for Ultrastructure Studies). TEM measurements were performed by Lili Karam. Particle 

size and aspect ratio were analyzed manually using CorelDraw on populations of at least 50 counts. 

Confocal Microscopy. Confocal images were collected on a Zeiss LSM 710 Inverted 

Confocal Microscope with an argon laser with a 22 μm pinhole. The samples were excited at 405 

nm (Diode laser, 30 mW), 488 nm (Ar laser, 25 W), 543 nm (HeNe laser, 1.2 mW) and 633 nm 

(HeNe laser, 5 mW) based on the QD emission. Light was focused through a Plan-Apochromat 

1.4 NA/63x DIC M27 oil immersion objective. 

3.2.6 Calculations 

Quantum Dot Concentration. See section 2.2.4. 

Quantum Rod Concentration. The extinction coefficient of the CdSe QRs based on the 

optical absorption at 350 nm was calculated using Equation 3.1 as determined by Shaviv et al.44 

ε350 = (0.34x1028)V     (3.1) 

where ε350 is the extinction coefficient at 350 nm and V is the average volume of the CdSe cores 

(in cm-3) as determined by TEM. 

Quantum Yield (QY). See section 2.2.4 

Förster Resonance Energy Transfer (FRET). See section 2.2.4. 

BRET Ratios (BR).  The BR was calculated by taking the ratio of the signal from the Ppy 

and the QR, as shown in Equation 3.2. 

D

A

PL

PL
BR           (3.2) 

Where PLD and PLA are the integrated emission of the Ppy and acceptor, respectively. The 

integrated emission was measured using a multi peak-fitting package in IgorPro.  

Fluorescence Polarization. Polarization (pol) is calculated using Equation 3.3.41 
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II

II
pol

II

II
     (3.3) 

where III and I   are the parallel and perpendicular components of light, respectively.  

Protein Charge and Hydrophobicity. MacPyMol was used to calculate the charge 

distribution and hydrophobicity for the North American firefly (PDB: 3IEP). The surface charge 

was calculated using vacuum electrostatics protein contact potential and the hydrophobicity was 

calculated using an open source code that changed the color of the amino acid residues based on 

the hydrophobicity. 
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3.3 Results and Discussion 

3.3.1 Improving QR/Ppy Colloidal Stability 

To create self-illuminating QR bioconjugates, hydrophobic CdSe/CdS QRs were phase 

transferred into buffers following a histidine mediated phase transfer protocol to create QR/His. 

The QRs were then conjugated with hexahistidine tagged Ppy to create QR/His/Ppy. The 

hexahistidine tag displaces the His layer and directly attaches the Ppy to the QR surface,13 

providing short QR-Ppy distances for an increased energy transfer efficiency. Firefly luciferin 

(LH2) and Mg-ATP is then added and the Ppy converts the chemical energy and non-radiatively 

transfers the energy to the QRs in the form of BRET, as shown in Scheme 3.1.11 

 

Scheme 3.1: Functionalization of QRs with Ppy for BRET studies 

 

BRET efficiency was found to be highly dependent on QR microstructure,11 so QRs with 

rod-in-rod morphology were synthesized using an organometallic route to synthesize the CdSe 

cores followed by seed-mediated growth approach to create CdSe/CdS. Figure 3.1 shows the TEM 

and optical spectra for a typical QR sample. As shown in the TEM micrographs, the QR length (l) 

increased from 17.1 to 44.8 nm and the width (w) increased from 4.3 to 8.7 nm after shell growth, 
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indicating there is CdS growth over the entire CdS seed. This is important because the CdS shell 

improves the fluorescence QY by protecting the core from the surrounding environment. The final 

CdSe/CdS QR(665) reveals an aspect ratio (l/w) of 5.2 ± 1.7. The fluorescence polarization showed 

a slight increase in polarization (pol) from 0.17 to 0.20 upon growth of the CdS shell. Since the 

emission originates from the core, a slight increase in polarization after shell growth is possibly 

due to the slight change in exciton confinement. A control experiment of an unpolarized organic 

dye, rhodamine 6g (rh6g), had a measured pol ≈ 0, as shown in Figure 3.1c. Both BRET and 

fluorescence polarization has been found to be strongly dependent on QR aspect ratio.11,41,42  

 

Figure 3.1: (a) TEM of CdSe QR core and (b) TEM of CdSe/CdS QR(665) core/shell; (c) 

ensemble fluorescence polarization measurements of (i) Rhodamine 6G, (ii) core and (iii) 

core/shell QRs.  

 

Figure 3.2 shows the results from a typical BRET experiment for QR(665) that had a BR 

of 3 and a Förster distance of 10 nm. In this system, there is no direct external excitation, so the 

QR emission is due to the energy transfer from Ppy. The BR and signal intensity is dependent on 

the Ppy molar loading ratio, QD microstructure and acceptor QY.11 
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Figure 3.2: (a) BRET measurement for QR(665) (BR = 3); (b) spectral overlap (J = 1.3 x 10-11 

cm-6), (c) energy transfer efficiency plot (R0 =10 nm). 

 

 The dependence of the long-term stability on the BR was investigated by measuring the 

BRET of QR/His/Ppy at different Ppy-QR incubation times. As shown in Figure 3.3, the BRET 

signal of these conjugates is almost completely quenched after 24 hours and the BR decreased 

from 27 after 20 minutes to 1.2 after 24 hours. The bioluminescence of Ppy alone retains about 

65% of its original value, so the majority of the instability is most likely from the QR/His/Ppy 

conjugates.  

 

Figure 3.3: BRET stability of (a) QR/His/Ppy conjugates over time; (b) scatter plot of (i) 

QR/His/Ppy BRET stability and (ii) Ppy bioluminescence stability over time. 
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We hypothesize that this loss was due to decreased electrostatic repulsions between the 

QR/His/Ppy conjugates after the ligand exchange. Before Ppy conjugation, the carboxylate 

moieties on the His ligands provide the electrostatic repulsions between QRs to prevent them from 

aggregating. After Ppy conjugation, the solvent exposed amino acids on the Ppy provide the 

colloidal stability but there are many bulky, hydrophobic residues on the surface that can decrease 

stability.45 To test this, the His layer was displaced by either thioglycolic acid (TGA) or glutathione 

(GSH) prior to Ppy conjugation, and the BRET was studied at 20 mins and 360 mins as shown in 

Figure 3.4.  

 
Figure 3.4: BRET at (i) 20 mins and (ii) 360 mins of (a) QR/His/Ppy, (b) QR/TGA/Ppy and (c) 

QR/GSH/Ppy. Inset: UV illuminated images of the solutions prior to BRET measurements. 

 

Figure 3.4a shows that the QR/His/Ppy conjugate still had a BRET signal after 360 minutes 

but the QR conjugates crashed out of solution even prior to the 20 minute BRET scan. The 

QR/TGA/Ppy solution in Figure 3.4b never showed a BRET signal but the solution remained 

suspended for the entire experiment. In Figure 3.4c, the BRET signal for QR/GSH/Ppy remained 

stable for 360 minutes and the colloidal solution remained suspended. Since the QR/GSH/Ppy was 

the most stable nanoconjugate, the BRET for this system was further investigated.  

The nature of the binding of GSH on the QR surface was investigated using FTIR, as shown 

in Figure 3.5.  
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Figure 3.5: FTIR of (i) GSH and (ii) QR/GSH. 

  

The FTIR of free GSH compared to QR/GSH shows that the peak for the thiol stretch, 

around ν = 2520 cm-1, decreases, indicating that the GSH binds to the QR through the thiol. The 

disappearance of the peak around 1710 cm-1 for the carboxylic acid C-O stretch could be due to 

alcohol deprotonation at the basic pH or interactions with the QR surface. Amines have also been 

found to bind to the QR surface, but the characteristic amine peaks between 3350-3250 cm-1 

become convoluted, which is characteristic for molecules bound to a surface. Table 3.1 

summarizes the characteristic FTIR vibrations for Figure 3.5. 

 

Table 3.1: FTIR Vibrations 

Vibration ν 

 N-H stretch 3340 cm-1, 3240 cm-1 

OH stretch (COOH) 3120 cm-1 

S-H stretch 2520 cm-1 

C = O stretch (COOH) 1710 cm-1 

C = O stretch (amide) 1660 cm-1 
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Figure 3.6: FTIR of (i) Ppy, (ii) QR/GSH, (iii) QR/GSH/Ppy 

 

 

Figure 3.6 shows that after Ppy was bound to the QR/GSH nanoconjugates, the thiol peak 

in the FTIR around 2500 cm-1 reappears. This indicates that the Ppy displaces GSH on the QR 

surface. Table 3.2 shows the FTIR vibrations for the major peaks in Figure 3.6. 

 

Table 3.2: FTIR Vibrations 

Vibration ν 

 N-H stretch 3340 cm-1, 3240 cm-1 

OH stretch (COOH) 3120 cm-1 

S-H stretch 2520 cm-1 

C = O stretch (COOH) 1710 cm-1 

C = O stretch (amide) 1660 cm-1 
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Figure 3.7: Effect of Ppy loading (L = [Ppy]:[QR]) on (a) the BRET signal and (b) BRET 

efficiency.  

 

The effect of molar loading ratio (L = [Ppy] : [QR]) on the BRET efficiency for the new 

QR/GSH/Ppy conjugates was investigated as shown in Figure 3.7. The BR decreased with 

increasing Ppy loading but the BRET signal intensity increased. This is consistent with previous 

data for the QR/His/Ppy system, where an optimum L was attributed to the distance of the Ppy 

donor from the QR core acceptor.11 The increase in BRET signal intensity and decrease in BRET 

efficiency with increasing Ppy loading is indicative of an increasing contribution of radiative 

energy transfer. 

The stability of the BRET signal was measured for five days, as shown in Figure 3.8. The 

BR and signal intensity remained stable, around BR = 26, for the QR/GSH/Ppy conjugates for the 

duration of the experiment. The BRET signal showed a very small emission peak for the LH2 

compared to the QR emission, so it is hypothesized that the majority of the signal is from non-

radiative energy transfer, however, it is possible that there is some radiative energy transfer 

occurring. The increased stability is hypothesized to be due to the zwitterionic nature of GSH, 

which has been found to lead to an increase in colloidal stability.46 
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Figure 3.8: BRET stability of (a) QR/GSH/Ppy; (b) scatter plot of (i) QR/His/Ppy BRET stability 

and (ii) QR/GSH/PPy BRET stability over time. 

 

Control experiments were performed to determine if the high QR emission intensity in the 

BRET signal was due to radiative or non-radiative energy transfer. First, a non-histagged protein 

was incubated with the QR solution. As shown in Figure 3.9, the ratio of the emission from the 

QR and from the LH2 is much lower than in the QR/Ppy BRET experiments with the histagged 

protein. This is a good indication that radiative energy transfer is occurring in this sample, 

however, the bioluminescence of Ppy-LH2 in the absence of QRs is much more intense than the 

Ppy-LH2 peak in Figure 3.9, indicating non-radiative energy transfer. Since the protein is made up 

of amino acids, non-specific interactions can arise from the presence of surface reactive amine and 

thiol functional groups on the Ppy surface. The non-specific interactions can bring the Ppy close 

to the QR for non-radiative energy transfer to occur.  
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Figure 3.9: Bioluminescence of QR/His + non-histagged Ppy. 

 

Figure 3.10 shows the molecular modeling results for the charge and hydrophobicity 

calculations of Ppy. The surface charge calculations for Figure 3.10a were performed using a 

protein contact potential calculation program in PyMOL. This is a qualitative, not quantitative, 

calculation because it calculates surface charge by averaging charges over a small region of space 

and ignores solvent screening effects. Assuming that only the thiol group of glutathione is bound 

to the QR, the QR/GSH conjugate should have a -2 charge in borate buffer so non-specific 

interactions would favor the positively charged locations on the protein. As shown in Figure 3.10a, 

there are a few positively charged regions that could interact. Figure 3.10b shows the 

hydrophobicity of the Ppy, which was measured by giving a false color to the amino acids based 

on their individual hydrophobicity. The Ppy surface appears to have a lot of hydrophobic regions, 

which would contribute to QR colloidal instability in buffers.  
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Figure 3.10: Qualitative molecular calculations for Ppy of (a) surface charge and (b) 

hydrophobicity (red regions are hydrophobic). 

 

Two control experiments were performed to observe the signal intensity when the QR 

surface was inaccessible for the Ppy to adsorb. As shown in Figure 3.11, a bulky PEG-SH ligand 

was bound to the QR surface prior to protein conjugation to prevent Ppy binding. The Ppy emission 

in the QR/PEG-SH mixture has the same intensity in the bioluminescence of the protein alone, 

whereas in the QR/His/Ppy conjugates, the Ppy intensity is very low. Since non-radiative energy 

transfer is characterized by a decrease in donor emission, the retention of the Ppy intensity 

indicates that the QR emission is due to radiative energy transfer, where the Ppy acts as a light 

source for the QRs. The intensity of the QR is around 400 a.u, which is much higher than in 

previous BRET studies. Using these results, it is likely that the BRET from the stability 

experiments in Figures 3.3 and 3.8 is due to non-radiative energy transfer, since the Ppy emission 

is almost completely diminished. In those experiments, the QR intensity is due to the high QY of 

the sample (QY = 20%). 
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Figure 3.11: Probing the energy transfer of QR/Ppy conjugates (a) (i) BRET of QR/Ppy; (b) 

Bioluminescence of (ii) QR/PEG-SH+Ppy and (iii) Ppy alone; (c) Ppy intensity for the different 

conjugates to investigate the extent of energy transfer.  

  

In Figure 3.12, imidazole was added to QR/Ppy conjugates after BRET was measured to 

observe the release of the surface bound Ppy. Protein attachment to the QR surface is driven by 

the polyhistag imidazole, so excess imidazole was chosen to displace the polyhistag. The decrease 

in the BR and the increase in the bioluminescence intensity indicates that the imidazole displaced 

Ppy molecules from the QR surface and the energy transfer has more non-radiative contributions 

to the signal. The LH2 peak in the QR/GSH/Imidazole+Ppy is not as intense as LH2-Ppy mixture 

alone, so it is likely that some of the signal contributions are still due to non-radiative energy 

transfer. This also indicates that it is difficult to displace the bound protein. When the same 

experiment was performed but with the imidazole added first to prevent Ppy from binding, the 

LH2-Ppy intensity was higher than when imidazole was added after the Ppy conjugation, as shown 

in Figure 3.13. It still wasn’t as intense as LH2-Ppy bioluminescence alone and it wasn’t as low as 

it was in the QR/Ppy conjugate, so there is both radiative and non-radiative energy transfer 
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occurring in Figure 3.13a. This data also indicates that it is hard to displace bound Ppy molecules 

from the QR surface. 

 
Figure 3.12: Bioluminescence of QR/GSH/Ppy (a) before and (b) after the addition of imidazole 

([Imidazole]-:[QR]=100,000); (c) change in LH2+Ppy intensity for the different nanoconjugates. 

 

 

 
Figure 3.13: (a) Bioluminescence of QR/GSH/Imidazole+Ppy (b) Ppy intensity for the different 

nanoconjugates. 
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The only successful route to prevent non-radiative energy transfer was the addition of a 

large, bulky ligand that blocked the Ppy from the surface. In the next control study, a very high 

molar excess of imidazole was added to displace Ppy from the surface. Although this was 

successful, as indicated by the increase in signal intensity, the Ppy signal was still not completely 

recovered, indicating that non-radiative energy transfer occurred. When the imidazole was bound 

before the Ppy, the Ppy intensity was almost ten times higher. Since the non-radiative energy 

transfer was much higher when the Ppy was bound before the imidazole, the Ppy may 

preferentially bind to locations on the QR that lead to more efficient energy transfer. There are 

defect sites close to the core that can act as electron sinks,47 so molecules that bind to this location 

will bind stronger. 

 

3.3.2 Investigation of BRET of Immobilized QRs 

It was previously hypothesized that the low optimum loading ratios is a result of 

preferential protein binding on the defects near the core or the inaccessibility of the substrate at 

higher Ppy loading.11 To test the location of the protein binding as a function of BR, QR/Ppy 

conjugates were immobilized onto glass substrates. As shown in Scheme 3.2, silane was coupled 

to glass substrates via liquid phase deposition.36–38 The glass substrates were silanized with 3-

mercaptopropyltrimethoxysilane (MPTS) to increase reactivity towards QDs by incorporating a 

thiol linker. Once QDs were successfully bound to the glass substrates, the substrates were 

analyzed using FTIR, AFM and confocal microscopy. 
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Scheme 3.2: Illustration demonstrating the silanization of glass substrate immobilized with QDs. 

 

 

The silane is bound to the glass substrate and to adjacent silanes through a siloxane bond. 

Figure 3.14 shows the QD absorption and fluorescence that is seen on glass substrates after 

silanization, indicating successful attachment. QDs and QRs were attached either in toluene or 

they were phase transferred into aqueous conditions using a histidine mediated ligand exchange.  

 
Figure 3.14: (a) UV-Vis and (b) PL spectra of (i) unsilanized glass after incubation with QDs for 

7 hrs in toluene and (ii) silanized glass after incubation with QDs for 7 hrs in toluene; (c) UV 

illuminated image of an unsilanized blank slide, (i) unsilanized glass slide after QD incubation and 

(ii) silanized glass slide after QD incubation.  
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QD attachment with different conditions was investigated. The effect of time, solvent and 

QD concentration on the fluorescence of the glass was monitored. In Figure 3.15, QD/TOPO in 

toluene was incubated with glass slides for 7 and 74 hours. Between 7 and 74 hours, the 

concentration on the glass slide did not increase, indicating that QDs are immobilized after 7 hours. 

A slight red shift over time was observed and this could be due to interactions between adjacent 

QDs. The small QD PL on the unsilanized glass shows a slight nonspecific attraction for the glass, 

which may be due to electrostatic interactions between the QDs and free hydroxyl groups on the 

glass substrate.  

 

 
Figure 3.15: Fluorescence spectra showing the effect of different QD/TOPO incubation times with 

silanized and unsilanized glass (i) unsilanized glass incubated for 74 hours, (ii) unsilanized glass 

incubated for 7 hours, (iii) silanized glass incubated for 7 hours and (iv) silanized glass incubated 

for 74 hours.  

 

For future energy transfer studies with Ppy, it is necessary to use QDs in buffers. Figure 

3.16 shows the fluorescence of glass slides after incubating with QDs in toluene and in borate 

buffer. The glass slides have a higher fluorescence signal after incubation with QD/TOPO in 

toluene compared to QD/His in borate buffer. This can be due to two different effects: a larger 

concentration of QD/TOPO on the glass as well as the higher QY of QD/TOPO. After histidine-



 111 

mediated phase transfer, QD PL tends to drop. To determine more conclusively if there are more 

QDs on the glass, a calibration curve is needed.  

 
Figure 3.16: Effect of solvent on QR glass incubation: (a) (i) QR/TOPO in toluene and (ii) QR/His 

in borate buffer; (b) TEM of QR/TOPO (Aspect ratio = 3.72) (c) AFM of QR/TOPO and (d) AFM 

of QR/His. 

 

To image the QR binding, AFM images were acquired for the hydrophilic and hydrophobic 

QRs, as shown in Figure 3.16. The AFM image of QR/TOPO appears to have multiple layers, so 

the QDs could be coupling to one another, causing aggregation. The AFM of the QR/His sample 

appears to be less densely populated and have less of a multilayer. This is useful for imaging the 

location of the protein on the QR for future studies.  

Two different approaches were concurrently taken to quantify the QD/His coverage on 

glass. In one approach, the absorbance of the QD solution before and after glass incubation was 
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measured to determine the concentration of QDs that were immobilized on the glass. In the second 

approach, a calibration curve on silanized glass was created, where different QD/His 

concentrations were drop casted on to the glass and the fluorescence was measured to obtain a 

calibration curve. These two techniques were compared and the data is found in Figure 3.17 and 

table 3.3. 

 

 
 

Figure 3.17: Quantification of QD(655) on glass: (a) UV-Vis of the QD glass supernatant (i) 

before and (ii) after glass incubation (εQD = 2.1 × 106 M-1cm-1); (b) Fluorescence spectra for known 

QD concentrations drop casted on glass and (c) Beer’s Law plot for the fluorescence spectra (y = 

9.59x – 2.82; R2 = 0.98) 

 

As shown in table 3.3, the QD concentrations measured using the two techniques are 

comparable, with a 4-5% difference between them.  

Table 3.3: Comparison of different techniques to quantify QDs 

immobilized to glass substrates 

Technique [QD]glass (nM) Surface Density (QD/cm2) 

UV – Vis 1.2 3.7 x 105 

Fluorescence 1.3 3.9 x 105 

% Difference 4.0 % 5.3 % 
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The QR immobilization was examined using FTIR. As shown in Figure 3.18, the intense 

peak for the siloxane bond before deposition, around 1080 cm-1, becomes broader and shifts to a 

lower energy frequency after deposition (Si-O, ν = 950 cm-1).  

 
Figure 3.18: FTIR: (i) MPTS, (ii) Silanized glass, (iii) QD/His on glass. These samples were 

baseline corrected using a piece of glass freshly cleaned with piranha solution.  

 

The characteristic FTIR vibrations for Figure 3.18 are listed in table 3.4.48  

Table 3.4: FTIR Vibrations 

Vibration ν 

Alkane 2950 cm-1 

Alkane 2850 cm-1 

S-H stretch 2550 cm-1 

C – O stretch 1450-1390 cm-1 

Si-CH3 1190-1150 cm-1 

Si-O 1080-950 cm-1 

 

 Confocal microscopy was used to obtain fluorescent images of the QD layer. Figure 3.19 

shows a confocal image of QD655 immobilized on a glass substrate using a laser excitation with 
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an emission of 405 nm. The red fluorescence is attributed to QD655 and the image shows a high 

QD coverage on the surface. The coverage does not appear uniform and there are locations on the 

glass where there are clusters of QDs, which is consistent with the coverage seen on AFM.  

 

 
Figure 3.19: (a) False color confocal image for glass with QD655 (red) excited with a 405 nm 

laser and under 10x magnification; (b) PL of QD655 on glass. 

 

Next, a glass substrate was incubated with two different color QDs and examined under 

confocal microscopy. A silanized glass substrate was incubated with QD515 and QD580 with a 

stoichiometric ratio (r = [QD515]/[QD580]) of 1. PL calibration experiments confirmed that 

[QD515] = 4.6 nM and [QD580] = 3.2 nM. Control glass slides containing only QD515 and only 

QD580 were prepared and the confocal images were acquired. In Figure 3.20, confocal 

fluorescence was measured of QD515 immobilized on glass substrates. When the sample was 

excited at 405 nm, QD515 emission appeared. At an excitation of 488 nm, the emission for QD515 

is still present but the fluorescence is not as strong because the absorption at 488 nm is less than 

the absorption at 405 nm. At 633 nm, the QD or emission from the QD, so the absence of signal 

at 633 nm indicates that the emission at the previous wavelengths were from QDs.   

 



 115 

 
Figure 3.20: False color confocal images for glass with QD515 (green): (1a) Overlay of 

fluorescence images for the QD515 and the QD580 channel (λex = 405 nm), (1b) Fluorescence of 

the QD515 channel (λex = 405 nm), (1c) Fluorescence emission from the QD580 channel (λex = 

405 nm); (2) Overlay of both channels, excited at 488 nm; (3) Overlay of the emission from QD515 

and QD580 (λex = 633 nm).  

 

Figure 3.21 shows the confocal images for QD580 immobilized on glass. As indicated with 

the images for QD515, the emission for QD580 was present and the emission for QD515 was 

absent. The sample was also imaged during an excitation of 543 nm and 633 nm. Since the 

fluorescence was still present at 543 nm and not 633 nm, the fluorescence emission observed was 

from QD580.  
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Figure 3.21: False color confocal images for glass with QD580 (purple): (1a) Overlay of the 

fluorescence channels for QD515 and QD580 excited at 405 nm, (1b) Fluorescence channel for 

QD 515, excited at 405 nm, (1c) Fluorescence intensity for QD580 only excited at 405 nm; (2) 

Overlay of both channels, excited at 543 nm; (3) Fluorescence emission overlayed for both QDs, 

excited at 633 nm.  

 

Fluorescence images were obtained for the glass that was incubated with QD515 and 

QD580. In Figure 3.22, emission from both QD515 and QD580 is present when the sample was 

excited at 405 nm. At an excitation wavelength of 543 nm, the emission from QD515 disappears, 

but the emission for QD580 is still present. At an emission wavelength of 633 nm, no emission is 

present. The confocal data shows that both QDs were immobilized onto the glass.  
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Figure 3.22: False color confocal images for glass with QD515 (green) + QD580 (purple): (1a) 

Excited at 405 nm overlayed both channels, (1b) Excited at 405 nm channel for QD515 only, (1c) 

Excited at 405 nm channel for QD580 only; (2) Excited at 543 overlayed both channels; (3) Excited 

at 633 overlayed both channels.  

 

QD/Ppy was immobilized on glass to image BRET using bioluminescence imaging and on 

the confocal. In Figure 3.23, the PL and BL was collected for QD/PPy immobilized on glass. 

 
Figure 3.23: QR/Ppy+LH2 on glass (a) PL, (b) BL. 
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The PL shows the presence of the QD and LH2. Unfortunately, the BL was unable to be 

captured using BL spectroscopy or confocal imaging, as shown in Figure 3.24; however, the BRET 

on glass was visible by eye.  

 

 
Figure 3.24: Confocal imaging of BRET on glass substrates (a) QD(655)/PPy on glass before the 

addition of LH2 excited at 633 nm; (b) QD(655)/PPy + LH2 in the absence of an excitation source; 

(c) QD(655)/PPy+ LH2 excited at 633 nm.  

 

The concentration of QDs on glass is in the nanomolar regime, so the BRET emission may 

be too low to be imaged using the current equipment. These images were acquired on a confocal 

that is equipped with a photomultiplier tube (PMT), but it may not be sensitive enough to image 

the low signal intensity that is associated with BRET. In vivo imaging of BRET has been 

accomplished using a more sensitive cooled charge coupled diode detector (CCD).49   

 

3.4 Conclusions 

In summary, a bioluminescent protein was coupled to QRs to create energy donor-acceptor 

pairs that do not require an external excitation source. This system can be incorporated into the 

QD/DNA self-assembly system in Chapter 2 to prevent coexcitation of the donor and acceptor in 

the FRET pair. This is important because it can make energy transfer calculations easier and it can 

increase the sensitivity of biosensors created from these conjugates since the QD emission is a 
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result of energy transfer alone. To make the transition into the QD FRET system more viable, the 

QD/Ppy conjugates should have long-term stability and no radiative energy transfer. The long term 

stability of the QR/Ppy conjugates was improved by changing the ligand during the phase transfer 

from his to GSH. This colloidal stability is believed to occur due to the zwitterionic nature of GSH. 

FTIR measurements indicate that the GSH binds to the QR surface through the thiol group. This 

work also showed that beyond the optimum loading ratio (L > 2), the decrease in BR the increase 

in signal intensity is due to radiative energy transfer, however, even with a nonhistagged Ppy or a 

large excess of imidazole, there was evidence of non-radiative energy transfer. To obtain a purely 

radiative system, the QRs were functionalized with a bulky ligand that made the surface 

inaccessible to the Ppy. The higher BR at lower loading ratios may be due to the protein binding 

close to the core first. 

To probe the effect of the protein binding location on the BR, QRs were immobilized onto 

glass substrates using a liquid phase deposition technique for single particle studies. The glass 

substrates were imaged using photoluminescence, AFM, FTIR and confocal microscopy. The data 

shows successful QD immobilization in various solvents and conditions but with non-uniform 

multilayers. Confocal microscopy shows the presence of QDs on the glass and the ability to 

simultaneously attach QDs with different emission. The biggest limitation for future studies in this 

chapter was the inability to use confocal or BL to measure the BRET of the immobilized QRs. 

More sensitive instrumentation is needed to be able to measure the effect of protein binding on 

BR. 
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Chapter 4 

Investigating the Drug Binding in Encoded Nanocarriers for the Delivery of Idarubicin 

 

 

 In this chapter, I investigated the binding of an anticancer drug, idarubicin, to DNA capped 

AuNP nanocarriers through DNA duplex melting temperature and kinetic studies. The use of a 

thermoresponsive polymer for controlled drug retention and release was also explored for this 

system. 

4.1 Introduction 

Oligonucleotide functionalized AuNPs (DNA-AuNP) have been incorporated into many 

different applications to improve current technologies in targeted drug delivery,1–7 biosensing,8 in-

vivo imaging,9 gene regulation10 and self-assembly.11–15 In one example, Mirkin and coworkers 

used antisense DNA functionalized AuNPs to prevent mRNA from translating into proteins to 

control protein expression in cells.1,10 In these studies, the DNA-AuNP system was more efficient, 

more non-toxic and had a higher cellular delivery than commercial systems.10 This study 

demonstrates that AuNPs are excellent drug delivery candidates.9 AuNP surfaces are also very 

versatile and can easily be functionalized with other molecules to increase the targeting ability or 

control the drug release.4,7,16 Xia et. al. created drug loaded photosensitive gold nanocages to 

control the drug release with nIR light.16 In this system, the wavelength of nIR light matched the 

Au absorption, causing the Au to absorb the light and release heat energy that cause the 

thermoresponsive polymer chains to collapse to release the drug.16–18 For drug delivery, studies 

have also shown that AuNP drug delivery vehicles enhance the cytotoxicity and apoptosis of drug 

resistant cancer cells.19  
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Thermoresponsive “smart” polymers based on poly(N-isopropylacrylamide) (PNIPAAm) 

have interesting stimuli-responsive properties that make them an ideal addition to drug delivery 

systems.16–18 These polymers have a sharp, reversible, phase transition at the low critical solution 

temperature (Tc). When T ≤ TC, the polymer is hydrophilic and the chains are extended; when T ≥ 

TC, the polymer is hydrophobic and the chains agglomerate. The turbid state that is created after 

this transition can be measured through the amount of light that is transmitted before and after Tc. 

Compared to other polymers, PNIPAAm polymers have lower Tc, which is ideal for biological 

applications where the physiological temperature is 37 °C. 

Our group recently invented encoded nanocarriers for the delivery of doxorubicin (Dox) 

and Actinomycin D (ActD).2–4 In my project, I designed the system to accommodate IDA, which 

is important because IDA interacts more efficiently with DNA and is more potent than the other 

anthracyclines.20,21 In this chapter, AuNPs were functionalized with DNA duplexes that had a high 

affinity for the intercalation of idarubicin (IDA). IDA is an anthracycline antineoplastic agent that 

is used for the treatment of a variety of cancers.22 Anthracyclines induce many intracellular effects 

including intercalation into nuclear DNA with a high affinity for 5’-TCA sequence, free oxygen 

radical liberation and direct membrane toxicity.21,22 The final event that leads to cell death is the 

inhibition of topoisomerase II, an enzyme that cleaves DNA and controls DNA supercoiling.21–23 

The amount of anthracyclines that bind to cellular DNA correlates directly to cell death, indicating 

the importance of DNA intercalation for the drug toxicity.21 As shown in Figure 4.1, the flat, planar 

aglycan portion of IDA intercalates in the major groove of the DNA and alters the structure by 

slightly unwinding the double helix, while the daunosamine sugar bends to interact with the minor 

groove.4,24 The increase in π stacking and van der Waals interactions upon IDA intercalation 

correspond to an increased duplex stability. Although research suggests that the prerequisite for 
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cell death is accumulation of IDA in the nucleus, cell studies have shown that only a small portion 

of drug delivered accumulates in the cell or even in the nucleus.21 AuNP drug delivery vehicles 

can be utilized to increase IDA drug targeting. Since anthracyclines have a cardiotoxic effect, 

increasing the drug efficacy and targeting is beneficial to limit the amount of drug needed for 

effective treatment. 

 

 

Figure 4.1: a) PyMOL representation of the drug molecule complex upon IDA intercalation in the 

DNA helix; b) chemical structure and functional groups of IDA. 

 

In this chapter, the surface of AuNPs were functionalized with dsDNA (ab) that had a high 

affinity for IDA. In addition, a thermoresponsive polymer, poly(N-isopropylacrylamide-co-

propylacrylamide) (p) with Tc=51 °C was incorporated into this system to control the drug release 

of IDA. When T ≥ Tc, the polymer compresses, exposing the DNA and the intercalated IDA on 

the AuNPs.  At lower temperatures, (T ≤ Tc), the polymer is extended in an attempt to protect the 

intercalated IDA from desorbing from the AuNP vehicle. 
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4.2 Experimental 

4.2.1 Chemicals.  

Gold (III) chloride Hydrate (HAuCl4, 99.999%), Trisodium Citrate (Na3C6H5O7, %), DL-

dithiothreitol (DTT, 99.5%), sodium phosphate monobasic monohydrate (NaH2PO4 H2O, 98.0-

102.0%), sodium phosphate dibasic hepta-hydrate (Na2HPO47H2O, 98.0-102.0%), tris(2-

carboxyethyl)phosphine) (TCEP, 98%) were purchased from Sigma Aldrich. Sodium chloride 

(NaCl, 100%) was purchased from Fischer Scientific and sephadex G25 DNA grade columns and 

agarose were purchased from GE Healthcare. Idarubicin HCl (IDA) was a gift from Transo-Pharm 

GmbH, Siek, Germany. Poly(N-isopropylacrylamide-co-propylacrylamide) (p) was synthesized 

in house by Kristen Hamner. All oligonucleotides were purchased from Integrated DNA 

technologies Inc. Dialysis membranes (15 kDa) were purchased from Biotech RC. 

4.2.2 Synthesis and Functionalization of Gold Nanoparticles.  

AuNP Synthesis. Citrate capped gold nanoparticles (13.8  1.2 nm) were prepared using 

a standard citrate reduction of HAuCl4.
11 A solution of 1 mM HAuCl4 in water was heated to 100 

°C for about 30 minutes while stirring before a 38 mM solution of cold sodium citrate was added. 

After the solution turned red, it was taken off of the heat and stirred overnight. The concentration 

was determined using UV-visible spectroscopy (UV-Vis) using an extinction coefficient of 2.0 x 

108 cm-1M-1 at  = 525 nm. Size was determined using dynamic light scattering (DLS) and 

transmission electron microscopy (TEM). 

AuNP with ssDNA monolayer. A 5’ thiol functionalized 35-mer oligonucleotide (a = 5’-

HS-T15 GTT TCA GTT TCA GTT TCA GT-3’), was reduced using dithiothreitol and purified 

through a DNA grade sephadex g25 column from GE. The concentration was determined using 

UV-Vis at  = 260 nm with an extinction coefficient of 307,700 cm-1 M-1. The reduced and purified 
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DNA was introduced onto the AuNP surface through a slow salt aging process.25 Briefly, the AuNP 

were incubated with 300 molar excess of the oligonucleotide for 9 hours at room temperature. The 

salt concentration of this solution was slowly increased to 200 mM over five days. The solution 

was then purified through centrifugation at least 3 times before the final product was resuspended 

in phosphate buffer saline (PBS).  

AuNP with mixed polymer and ssDNA monolayer. The salt aging process was modified 

to graft the pNIPAAm-co-pAAm polymer onto the AuNP surface. A disulfide initiator was used 

during the polymer (p) synthesis to create a disulfide bond in the middle of the polymer chain. 

Reducing the disulfide with TCEP separated the chains and introduced a thiolate group to bind to 

the AuNP surface. AuNPs (0.01-0.1 nmoles) were incubated with 300 molar excess of a and 12.5 

molar excess of p for 9 hours at room temperature. The salt concentration of this solution was 

increased in daily 50 mM increments to a final [NaCl] = 200 mM. The solution was purified 

through centrifugation (2 hours, 9000 rpm). The supernatant was replaced with fresh PBS at least 

3 times. The final p-a/AuNP conjugates were resuspended in 10 mM PBS ([NaCl] = 100 mM). 

DNA-hybridization and drug loading. The complementary DNA strand, (b = 5’-ACT 

GAA ACT GAA ACT GAA ACA A-3’), was added to the a/AuNP in 100 molar excess relative 

to the AuNP and incubated overnight at room temperature. To hybridize a in the p-a/AuNP system, 

the solution was heated to 51 C and incubated with b for 1 hour then slowly cooled for an additional 

hour. The solutions were purified through centrifugation and resuspended in PBS. To determine 

the number of duplexes on the surface of AuNP, complementary oligonucletides were modified 

with a fluorophore, (b/cy3 = 5’-cy3-TAC TGA AAC TGA AAC TGA AAC AA-3’), from IDT 

DNA. The a/AuNP were hybridized with b/cy3 in the same manner as with the unmodified 

oligonucleotides (b). The solution was centrifuged for 2 hours at 14000 rpm and the supernatant 
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was removed and measured using fluorescence. A calibration curve was created to determine the 

concentration of DNA that was not hybridized to the surface of the AuNP.26 To load the drug, 

different ratios (r = [drug] / [DNA]) of drug to DNA were incubated with ab/AuNP at room 

temperature for 40 minutes. The interaction of the drug with the DNA was examined through 

melting temperature by evaluating the change in absorbance at  = 260 nm while changing the 

temperature 1 C / min from 25 - 80 C.  

Gel Electrophoresis. Gels containing 1% agarose were prepared by mixing 0.500 g of 

agarose with 50 mL 1x TBE buffer, heating in the microwave for about 65 s then cooling slightly 

before pouring in the mold. The gel was allowed to set for 40 minutes before sample loading. All 

samples were mixed with 10 L glycerol prior to loading. Electrophoresis was carried out at 75 V 

for 40-50 minutes at room temperature. Gels were photographed using a digital camera under 

ambient light.  

4.2.3 Dialysis Monitoring of Drug Release. Each kinetics experiment was carried out using 

dialysis, where a 15 kDa dialysis membrane was loaded with 200 L of IDA/ab/AuNP (r = 3) or 

IDA/p-ab/AuNP (r = 3), sealed and submerged in 2 mL PBS. The membrane was stirred in the 

buffer at 37 C for the duration of the experiment. The fluorescence intensity of aliquots from the 

solution outside of the membrane was measured every 5-10 minutes until the intensity remained 

constant, indicating that equilibrium had been reached. All IDA intensities were converted into 

concentrations using a fluorescence calibration curve.  

4.2.4 Instrumentation 

UV Visible Spectroscopy (UV-Vis). See section 2.2.5  

Photoluminescence Spectroscopy (PL). See section 2.2.5 

Dynamic Light Scattering (DLS). Malverne Zetasizer Nano ZS equipped with 633 nm 
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laser source and backscattering detector at 173 for hydrodynamic diameter (dh) measurements, 

which are averaged from 6-10 measurements.  All samples were filtered using a 0.22 m syringe 

filter.  

Transmission Electron Microscopy (TEM). TEM spectra were collected on a JEOL 

2000EX at 120 kV with a tungsten filament by Rabeka Alam at SUNY-ESF, N.C Brown Center 

for Ultrastructure Studies.  

Fourier Transform Infrared Spectroscopy (FTIR). See section 2.2.5 

Gel Electrophoresis. See section 2.2.5 

4.2.5 Calculations 

Kinetics. The free drug concentration at equilibrium was determined by fitting the kinetics 

data (%IDA released vs time) to an exponential as shown in Equation 4.1 using Microsoft Excel 

solver.2–4 

)1( tey         (4.1) 

Where y is the percent drug released at time t,  is the percent drug released after equilibrium and 

 is the first order dissociation rate constant.3 The free drug concentration at equilibrium [IDA] 

was determined using Equation 4.2.  

TotalIDAIDA ][*
100

][


     (4.2) 

Where [IDA]total is the total drug concentration in the system. The chemical equation describing 

the association and dissociation of the IDA-DNA complex is shown in Equation 4.3. 



ComplexsiteIDA
a

d

k

k
      (4.3) 
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where site is the dsDNA binding site and complex is the intercalation of IDA into the binding site 

and ka and kd are the association and dissociation rate constants, respectively. Equation 4.4 shows 

the rate equations at equilibrium, where the rate of the association and dissociation are equal. 

][]][[ ComplexksiteIDAk da            (4.4) 

Equation 1.4 can be rearranged to express equilibrium constant, Keq, in terms of the products and 

the reactants or the rate constants, as shown in Equation 4.5. 

]][[

][

siteIDA

Complex

k

k
K

d

a
eq      (4.5) 

AuNP Concentration. The concentration of AuNPs was determined by using the 

extinction coefficient () of 2x108 M-1 and Beer’s Law, as shown in Equation 4.6. 

A = εbc      (4.6) 

Where A is the absorbance at 400 nm, b is the path length (1 cm) and c is the AuNP 

concentration. 
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4.3 Results and Discussion 

In this project, the use of DNA functionalized AuNPs as a drug delivery vehicle to transport 

the intercalating chemotherapeutic agent idarubicin (IDA) was investigated. This system is unique 

because the AuNP vehicle can support a high drug concentration and is very flexible; it can be 

functionalized with molecules that target receptors that are overexpressed in cancer cells, such as 

folic acid or G protein-coupled receptors, to deliver the drug straight to the cancer tumor.27 A 

thermoresponsive polymer was also incorporated to attempt to increase drug retention in the 

delivery vehicle for more controlled drug release.16–18 

TEM measurements showed the citrate capped AuNPs (cit/AuNP) had a diameter of 13.8 

 1.2 nm, as shown in Figure 4.2. 

 

Figure 4.2: (a) TEM and (b) size distribution histogram (c) number weighted DLS spectra for 

cit/AuNP.  

 

To create encoded nanocarriers, AuNPs were functionalized with DNA and a 

thermoresponsive polymer, as shown in Scheme 4.1. Cit/AuNPs were functionalized with SH-

ssDNA (a) through a slow salt aging process followed by hybridization with a complementary 

strand (b).25 The ab/AuNP conjugates were incubated with IDA to produce IDA/ab/AuNP through 

intercalation into the DNA duplex. To incorporate a thermoresponsive polymer pNIPAAm-co-
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pAAm (p), the polymer was added during the salt aging process and hybridization and IDA loading 

was achieved at 52 °C, which is higher than the polymer’s Tc.  

 
Scheme 4.1: The polymer and dsDNA functionalization of AuNPs. IDA binding sites are 

highlighted in red. 

 

The number of DNA complexes (ab) on the AuNPs were quantified by hybridizing the 

ssDNA on the particle to a fluorescent complementary strand (b-cy3) and hybridized to the DNA 

strand on the particle.26 The hybridized AuNP conjugates were centrifuged and the supernatant 

photoluminescence was measured to determine the concentration of unbound b-cy3. A dsDNA 

loading of 44  2 DNA duplexes (ab) per AuNP was measured for the ab-AuNP system, which 

corresponds to about 132 high-affinity IDA sites per AuNP, and the p-ab/AuNP system had an 

average dsDNA loading of 41  5 DNA/AuNP, which corresponds to about 123 high-affinity IDA 

sites per AuNP.  

The AuNP systems were characterized via DLS, UV-Vis, DNA duplex melting 

temperature (Tm) and kinetic studies. Figure 4.3 compares the UV-Vis surface plasmon shift upon 
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binding dsDNA to the AuNP. The peak at  = 260 nm correlates with the DNA, so as the DNA is 

introduced and hybridized, the peak becomes more defined. The slight red shift of the surface 

plasmon indicates a change in the particle’s interface upon displacing the weakly bound citrate 

molecules with the stronger binding thiolated DNA. 

 
Figure 4.3: (a) Full UV-Vis Spectra for dsDNA/AuNP and cit/AuNP; (b) UV-Vis zoomed into 

the surface plasmon peak. 

 

Dynamic light scattering (DLS) shows an increase in the particle’s hydrodynamic diameter 

(dh) upon ssDNA modification and hybridization as shown in table 4.1. The increase in dh after 

ssDNA, dsDNA and polymer indicate successful functionalization. The highly negatively charged 

DNA strands cause the dh to almost double compared to the cit-AuNPs. 

 

Table 4.1: Change in AuNP dh for the various functionalization steps 

Sample dh (nm) 

Cit-AuNP 17.6 ± 0.2 

a/AuNP 32.1 ± 0.6 

ab/AuNP 42.2 ± 0.8 

p-a/AuNP 85.8 ± 7.5 
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 The electrophoretic gel movement of the a/AuNP and p-a/AuNP were compared, as shown 

in Figure 4.4. After polymer modification, the dh increased by over 50 nm at room temperature, 

indicating the polymer is extended past the ssDNA strands. As expected, the p-a/AuNP conjugate 

moved slower due to the larger dh and the shielding of the highly negatively charged DNA 

backbone by the polymer. 

 
Figure 4.4: (a) gel electrophoresis and (b) DLS spectra of the a/AuNP and p-a/AuNP conjugates 

 

The thermal denaturation of the DNA duplex for the p-ab/AuNP conjugates couldn’t be 

measured as shown in Figure 4.5. The thermal profile resembled that of the p-a/AuNP conjugates 

and the polymer alone, where the absorption transition is at the polymer’s Tc. The Tm for the 

ab/AuNP conjugate before drug loading was 66 °C, which is higher than the reported Tm of 56.4 

°C for ab in the absence of the AuNP due to the cooperative melting effects on the AuNP surface.28 
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Figure 4.5: Change in absorbance as a function of Tm for a/AuNP, ab/AuNP, and p-ab/AuNP. 

 

The effect of drug loading (r = [IDA] / [AuNP]) on the Tm of the DNA duplex was 

evaluated, as shown in Figure 4.6. As drug loading increased, the melting temperature increased, 

indicating successful IDA intercalation at the double helix. The increase in Tm is due to reduced 

electrostatic interactions, stronger van der Waals interactions and increased π stacking between 

DNA strands due to the intercalation of the aglycone portion of the drug. A higher, secondary 

melting temperature (Tm
’) appears after drug loading compared to the ab/AuNP system without 

IDA. This secondary Tm also appeared in the DOX system that was previously developed in our 

lab, but it occurred at temperatures below Tm, around 25-30 °C.2,3 Since this secondary Tm
’ only 

occurs after drug binding, it suggests that there are stronger binding interactions between the DNA, 

IDA and the AuNP. 
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Figure 4.6: (a) Thermal denaturation of IDA/ab/AuNP loaded with different ratios of drug. (b) 

Ratio of drug as a function of melting temperature (y = 66.2 + 0.3x; R2 = 0.92). ([ab/AuNP] = 7 

nM) 

 

 The kinetics of drug release at equilibrium was measured for the two different nanocarriers. 

To do this, the nanocarrier was loaded into a dialysis membrane and the appearance of the 

fluorescent IDA outside of the membrane was measured and compared to a calibration curve to 

determine the drug binding at equilibrium. Scheme 4.2 gives an overview of this process. 

 

Scheme 4.2: Schematic describing the drug equilibrium for the association and disassociation of 

IDA from the AuNP nanocarrier. 
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Figure 4.7 shows the results of the dialysis experiments for the two nanocarriers at 

physiological temperature (T = 37 °C). The data was fit to an exponential to calculate the 

equilibrium constants.2–5 

 

Figure 4.7: Results of dialysis experiments monitoring the dissociation of IDA from (i) 

IDA/ab/AuNP ( )1(76.3 05.0 tey  , R2=0.96), and (ii) IDA/p-ab/AuNP ( )1(96.5 02.0 tey  , 

R2=0.99). 

 

The data was fit to exponential equations to determine the kinetic parameters, α and β and 

the results are tabulated in table 4.2.  

 

Table 4.2: Summary of Kinetic and Equilibrium results for the release of IDA from the 

different nanocarriers at 37 °C. 

Nanocarrier α (%) β (min-1) Keq (M-1) 

IDA/ab/AuNP 3.8 0.05 3.0 x 108 

IDA/p-ab/AuNP 6.0 0.02 1.6 x 108 

 

As shown in table 4.2, the associated complex is highly favored due to the large equilibrium 

constants for both of the nanocarriers. The IDA/p-ab/AuNP system had a higher Keq and slower 

drug release compared to IDA/ab/AuNP, but it was also expected to have a lower drug release 
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since the polymer should block the drug from desorbing from the nanocarrier. There was only a 

2.2% difference in drug release between the two vehicles. Since the DNA hybridization studies 

had a 4.5% uncertainty, which is larger than the difference in drug release between the two 

vehicles, this data is inconclusive as to whether there is less drug retention in the IDA/p-ab/AuNP 

system. The drug was added to completely saturate the drug binding sites (r = 3) so excess IDA 

present in the system would give a higher than expected drug release since excess IDA would be 

nonspecifically bound. In future experiments, the drug release at lower drug loading and at the 

polymer’s transition temperature can be measured to determine if the drug released at equilibrium 

is due to a lower drug retention or if it is due to experimental errors.  

The binding constant of IDA complexed with free DNA duplexes in solution has been 

reported as K = 5.14x105 M-1.20 This is 1000 times smaller than the values calculated in both drug 

delivery vehicles, indicating a stronger drug-molecule complex in the AuNP systems. Stronger 

binding constants for molecules bound to AuNP surfaces compared to unbound molecules has 

been reported previously and described through a cooperative binding theory, where a higher DNA 

packing density leads to increased association constants.10,28  

Previously in our lab, the release of DOX was measured from AuNP functionalized with 

DNA alone (DOX/2ab/AuNP) and DNA and p (DOX/p-2ab/AuNP) and the release of ActD from 

ActD/3ab/AuNP, where 2ab and 3ab are the high affinity dsDNA strands for DOX and ActD, 

respectively.2–4  

 

Table 4.3: Summary of Published Kinetic and Equilibrium results for the release of DOX 

and ActD from the different nanocarriers at 37 °C. 

Nanocarrier α (%) β (min-1) Keq (M-1) 

DOX/2ab/AuNP5 28.8 0.00635 9.4 x 106 

DOX/p-2ab/AuNP5 21.5 0.00429 1.9 x 107 

ActD/3ab/AuNP3 35.5 0.0068 1.0 x 106 
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As shown in table 4.3, the DOX and ActD systems had a higher percentage of drug released 

at equilibrium than the IDA system and a higher rate constant, which is consistent with studies that 

showed that IDA interacts more strongly with DNA than other anthracyclines. Unlike in the IDA 

system, the DOX system showed an increase in Keq by about 50% with the addition of a polymer, 

demonstrating that the drug is more strongly bound to the p-AuNP system. In this system, there 

was a 50% decrease in Keq indicating that IDA is less strongly bound in the p-AuNP system, but 

that system released less drug at equilibrium.  

 

4.4 Conclusions 

In these studies, there was an increase in DNA Tm after drug binding, indicating successful 

intercalation of IDA at the double helix. A thermoresponsive polymer was integrated into the 

system to increase drug retention. The IDA/p-ab/AuNP system had a higher equilibrium constant 

but a lower rate constant and higher percent drug release. Since the percent drug release for both 

systems is on the same order as the uncertainty for the DNA quantification, it is inconclusive if 

one nanocarrier is better than the other. The high number of IDA binding sites (120-132 

IDA/AuNP), the stabilization of the DNA duplex with the addition of the anticancer drug and the 

high binding constant makes this a promising system as a therapeutic agent for drug delivery.  
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Chapter 5 

 

Conclusions and Future Outlook 

 

 

 In this thesis, I discussed my dissertation work involving the biofunctionalization of 

various nanoparticles for self-assembly and energy transfer applications. In Chapter 2, 

hydrophobic QDs were encapsulated in amphiphilic polymers and functionalized with 

oligonucleotides through EDC/NHS coupling and click chemistry. One of the largest challenges 

in this project was an inconsistent batch to batch coupling, which was hypothesized to be due to 

the presence of excess polymer and QD aggregates. To overcome this, the QDs were purified in a 

sucrose density gradient, which lead to decreased absorbance scattering, an increased DNA 

loading on the particles and a decreased dh. The purified QDs were then assembled into multicolor 

clusters on a solid support using DNA mediated interactions. The QD dimers were released from 

the support and the QD-QD energy transfer was measured indirectly by comparing the PL ratio 

before and after assembly. An increase in PL for the QD acceptor and a decrease for the QD donor 

was indicative of energy transfer. The energy transfer had to be measured indirectly because QDs 

have a broad absorption profile that causes both the donor and the acceptor QDs in the cluster to 

be coexcited. To overcome these limitations that arise with QDs as energy acceptors, a 

bioluminescent protein was used as an energy donor to excite quantum rods (QRs) without the 

need for an external light source, as discussed in Chapter 3. 

 In Chapter 3, a bioluminescent protein from the North American firefly, Photinus pyralis 

(Ppy) was conjugated to QRs. Since the spectra was obtained with the excitation source blocked, 

the resulting signal is either a result of non-radiative energy transfer through bioluminescence 

resonance energy transfer (BRET), radiative energy transfer from unbound protein, or a 

combination of the two. Control experiments showed that the signal was mostly from non-radiative 
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energy transfer and a small amount is possibly from unbound protein illuminating the sample. 

Elimination of the radiative contributions to the BRET signal is important to make the 

incorporation of Ppy into the energy transfer QD clusters a viable option. Another limitation that 

needed to be overcome was the long term instability of the BRET signal. In these conjugates, I 

measured the stability of the BRET signal and found that the signal decreased almost entirely 

within 24 hours. To overcome this limitation, I used glutathione (GSH) in place of histidine (His) 

to facilitate the phase transfer by replacing the native organic capping ligands. After subsequent 

functionalization with Ppy, the BRET signal remained stable over the course of one week. His is 

a small, low charged molecule but GSH is a larger and more highly charged molecule, so it is 

hypothesized that GSH increases stability because the ligands that remain after Ppy conjugation 

increase the electrostatic interactions between the colloidal QRs. Future experiments can focus on 

incorporating the Ppy donor into the QD cluster assembly system and creating higher ordered 

structures with QDs or other nanomaterials such as AgNPs for biosensing applications. 

 In the final Chapter, I functionalized AuNPs with a thermoresponsive polymer and dsDNA 

that had a high affinity for IDA to create encoded nanocarriers for controlled drug delivery. 

Thermal melting experiments confirmed that the thermoresponsive polymer had a Tc of 51 °C and 

DLS measurements showed that the polymer extended past the DNA strands. At physiological 

temperature, the DNA was encapsulated in the AuNP conjugates, which protects IDA from 

desorbing from the surface. After drug intercalation, an increase in DNA Tm indicated intercalation 

at the double helix. Kinetics studies revealed that the addition of the thermoresponsive polymer 

lead to an increase in the equilibrium constant by two fold. There was only a 2.2% difference in 

drug release between the two vehicles, and since the DNA hybridization studies had a 4.5% 

uncertainty, this data is inconclusive as to whether the polymer increases drug retention. Both 
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vehicles showed low drug release, small dissociation rate constant of 0.02-0.05 min-1 and high 

equilibrium constant of 1.6 x 108-3.0 x 108 M-1, indicating that these nanoconjugates can act as 

efficient vehicles for in vivo drug delivery. Compared to the ActD and DOX vehicles that were 

developed previously in our lab, the IDA vehicles released less drug. This is consistent with the 

reports in literature that indicate that IDA interacts stronger with DNA than the other 

anthracyclines. This vehicle can be modified to increase drug targeting by further functionalizing 

the AuNP surface with molecules that target the receptors that are overexpressed in cancer cells.  
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