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ABSTRACT 

This dissertation is comprised of three essays which examine innovation, both technological and 

institutional, as a response aimed to adapting to climate change and natural disasters. Specifically, 

the first two papers seek to understand the drivers and implications of adaptation-related 

technological innovations. The third paper draws on the policy innovation theory to examine 

factors that shape the decision of state governments to engage in comprehensive climate adaptation 

planning.  

In Chapter 1, I examine the drivers of technical innovation as an important form of adaptation 

by investigating the impact of three types of natural disasters—floods, droughts and earthquakes—

on the patenting activities of their respective mitigation technologies. Using patent and disaster 

damage data, this study is the first to empirically examine adaptation responses across multiple 

sectors at the country level. My empirical analysis, using a panel of 28 countries over a period of 

25 years, shows that a country’s risk-mitigating innovations increase significantly with the severity 

of disasters it has recently experienced, while the degree of impact varies across different types of 

disasters and technologies. 

In Chapter 2, I evaluate the effectiveness of the risk-mitigating innovations in reducing disaster 

impacts in the case of earthquakes. By conceptualizing adaptation as a learning process, I examine 

the effect of technical knowledge stocks, constructed by patent counts in quake-proof building 

technologies, and informal knowledge, measured by prior earthquake experiences, on reducing 

earthquake-related losses. Using a global cross section, I find that countries with more earthquake-

 



mitigation technical innovations and more earthquake exposure in the past suffer fewer fatalities. 

This “learning-by-doing” effect is much larger in high-income countries, which suggests their 

stronger adaptive capacity. 

Finally, Chapter 3 focuses on climate adaptation planning in the U.S. by examining the factors 

that drive state governments to develop comprehensive adaptation plans. I use an event history 

analysis to examine both internal factors (states’ climate risks, adaptive capacity and political 

interests in climate change) and policy diffusion among states within the same climate regions. 

This study finds that the state-level adaptation decision is highly driven by the extreme weather 

events the state has recently experienced, and also associated with the state’s potential exposure to 

climate risks, income level, civic engagement and environmental preferences. By examining the 

motivation for and barriers to subnational adaptation responses, this research has important 

implications for environmental federalism and governance. 

From the innovation perspective, my dissertation contributes to a deeper understanding of 

adaptation as a dynamic social-learning process, and sheds light on what drives society to adapt to 

environmental changes and shocks. It also informs an integrated policy approach to facilitating 

efficient climate adaptation and natural hazard mitigation.   
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INTRODUCTION TO THE DISSERTATION

Given the growing scientific consensus that climate change is taking place and will worsen in the 

future, adaptation has been increasingly recognized as an essential strategy to reduce the 

unavoidable impacts of climate change. As a matter of fact, adaptation is not something new. It is 

a process of making “deliberate changes in anticipation of or in reaction to external stimuli and 

stress” (Nelson et al., 2007). Historically, human societies have always been adapting to 

environmental changes and shocks in various ways, including relocation, building defenses, and 

changing the crops they cultivated. However, the current rate of global climate change caused by 

rapidly increasing greenhouse gas (GHG) emissions is much faster than before, which results in 

significant and unevenly distributed impacts on society and nature. Therefore, how to facilitate 

efficient and effective societal adaptation and also improve our adaptive capacity to cope with 

climate change and related disasters are important policy questions. 

 This dissertation examines examples of both historic adaptation to natural disaster at the global 

level and more recent adaptation initiatives of subnational governments in order to better 

understand the motivations and implications of various adaption responses, and also to shed light 

on adaptation policy making. It consists of three empirical papers which are linked by a common 

theme of adaptation and innovation. The underlying notion is that successful adaptation requires 

forward thinking and innovation, both technological and institutional (Rodima-Taylor et al., 2011); 

at the same time, innovation can be viewed as a social learning process reflecting human adaptation 

to their changing needs and environment. The ability to innovate, to a large extent, determines the 
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capacity of society to adapt to environmental changes. Specifically, the first two chapters focus on 

technological innovation, by examining how innovators respond to natural disasters and how 

innovation and diffusion of new risk-mitigating technologies may help mitigate disaster impacts. 

The third chapter considers adaptation planning as a policy innovation, and explores the factors 

that drive the U.S. state governments to make comprehensive plans for climate adaptation.  

The first chapter is concerned with what motivates and enables adaptation responses. Since 

technology development provides an important means for people to adjust to environmental 

changes (e.g., the invention of air conditioning), I focus on the innovation of risk-mitigating 

technologies as an outcome of adaptation and investigate whether and how innovation responds to 

the shock of natural disasters. The key question underlying this research is whether the recent 

disaster experiences raise the perceived risks and induce the private sector to develop new 

technologies to meet the higher demand for adaptation.  

My empirical analysis focuses on three types of natural disasters – floods, droughts, and 

earthquakes – and pair each of them with one mitigation technology, including flood control, 

drought-resistant crops and quake-proof buildings. Drawing upon the literature on induced 

innovation and the economics of natural disasters, I model a country’s annual patent flow in a 

given technology field as a function of a distributed lag of recent disaster impacts (measured by 

fatalities and monetary damages), its existing knowledge stocks and other socioeconomic 

characteristics that may affect its adaptive capacity, controlling for the unobserved country 

heterogeneity. Considering the potential endogeneity of knowledge stocks and disaster impacts, I 
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use meteorological and geophysical data to create hazard intensity measures as instrumental 

variables. I find that all three types of natural disasters have a significant and positive impact on 

the patenting of their corresponding technologies. I also examine whether domestic innovation can 

be induced by foreign nearby disaster shocks, and find such evidence in the case of floods.  

Overall, the study in Chapter 1 informs climate adaptation policy with empirical evidence that 

the private sector is adapting reactively rather than proactively, which suggests that government 

has an important role to play in supporting the development of these technologies before an event 

occurs. It also informs modeling of future climate change damages by suggesting that climate 

adaptation should not be treated as an autonomous process, but rather as a function of previous 

disaster damages.  

While Chapter 1 focuses on innovation as a response to natural disasters, it says little about the 

effectiveness of these technical innovations in mitigating future disaster risks. The latter question 

is then examined in the second chapter, in which I conceptualize adaptation as a social learning 

process, and knowledge as an important component of adaptive capacity. While the existing 

literature on the determinants of disaster damage has mainly focused on the aggregated effects of 

income and institutions, I extend this line of research by investigating the extent of adaptation to 

earthquakes with a particular focus on the role of technology development and social learning. 

Specifically, I examine the mitigating effect of a country’s technical knowledge (constructed using 

patent counts in quake-proof building technologies) and prior earthquake exposure, considering 
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the latter as not only a driver of learning but also a proxy for informal knowledge related to 

earthquake preparation and mitigation.  

One empirical challenge in this research is that a large proportion of the earthquakes recorded 

in the database have missing values for damages. To address this issue, I used multiple estimation 

strategies, including censored regressions and Heckman selection model, which produce consistent 

estimation results. My empirical analysis, using a global cross section of 894 earthquakes in 79 

countries between 1980 and 2010, shows that the accumulation of technical knowledge and past 

experiences leads to significant reduction in earthquake-induced fatalities. Moreover, the effect of 

prior earthquake experiences is more pronounced for developed countries, suggesting their 

stronger adaptive capacity. Given the public good nature of innovations, I also examine whether 

foreign knowledge can help reduce disaster impacts but do not find strong evidence on the 

knowledge spillover effects. These findings highlight the importance of incorporating 

technological innovation as part of a long-term disaster mitigation and adaptation policy, and also 

suggest the need for more policy efforts at the international level to facilitate the diffusion and 

transfer of risk-mitigating technologies across countries.   

Finally, the third chapter focuses on adaptation planning as an institutional innovation 

emerging rapidly at different levels of government, and examines the factors that drive state 

governments to develop comprehensive plans for adapting a variety of sectors to climate change. 

This research is motivated by a growing literature studying the development and diffusion of GHG 

mitigation policy at the subnational levels, but is much less concerned with climate adaptation. 
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This paper is the first to empirically examine the development of state-level adaptation policy from 

a planning perspective.  

Drawing upon the policy innovation literature, I hypothesize that states’ adaptation planning 

initiatives are driven by internal determinants, including a state’s climate risks, adaptive capacity, 

and political interests in climate change, as well as the external influence from other nearby states. 

I use a discrete-time event history analysis to model the likelihood that a state initiates the planning 

process in a given year.  This study shows that a state is more likely to pursue adaptation planning 

if it has experienced severe extreme weather events in the past two years. I also find that states’ 

adaptation decisions are affected by their potential exposure to climate risks (e.g., length of ocean 

coastline, size of coastal economy, and forest coverage), income level, civic engagement, and 

general environmental preferences. I do not find strong evidence on regional diffusion of 

adaptation planning among states.  

This research contributes to a deeper understanding of the motivation for and barriers to 

subnational adaptation decisions. My results further suggest that state-level adaptation actions 

strongly reflect inequality in state economic conditions, implying the need for more federal 

coordination and support. 

In sum, this dissertation seeks to understand the dynamics of societal adaptation in order to 

inform climate adaptation policy and the estimation of future climate change damages. My studies 

suggest that (1) adaptation is not autonomous. It is motivated by the impacts of salient 

environmental shocks and also shaped by socioeconomic factors; and (2) effective adaptation can 
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mitigate the impact of environmental changes on societies, while the capacity to undertake 

effective adaptation varies considerably across regions which may reinforce the vulnerability of 

those disadvantaged communities. Given the reactive nature of adaptation responses, it is crucial 

for policy makers to encourage proactive adaptation in both public and private sectors, with special 

attention devoted to those socially vulnerable areas. It is equally important to account for the 

endogeneity and dynamics of adaptation in climate modeling to appropriately estimate the costs 

of climate change.  
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Chapter 1: Necessity as the Mother of Invention: Innovative Responses to 

Natural Disasters1 

 
1. Introduction 

How people cope with natural disasters is of interest to both policy makers and researchers. This 

issue presently is gaining renewed attention because of the increasingly evident threats of climate 

change. As climate scientists warn that global warming will likely increase the frequency and 

intensity of extreme weather events (e.g., floods, droughts, tropical cyclones and heat waves), 

incorporating strategies for reducing the risk of natural disasters is an important part of climate 

change adaptation (International Panel on Climate Change, 2012).2 

In this paper, we ask whether natural disasters lead to innovations of risk-mitigating 

technologies. Such technologies are analogous to those that may aid adaptation to climate change 

and associated natural disasters. Specifically, we coin the term “risk-mitigating innovation,” 

referring to the development of new and more effective technologies that assist people in better 

coping with natural disasters and building resilience to future shocks. Such innovation may 

include both the development of new products and the improvement and commercialization of 

existing technologies to make them more appealing for consumers to adopt. Technological 

innovation is an important form of adaptation because it provides the necessary tools for people to 

utilize in adapting to a changing environment. Although adaptation in some cases can be just 

behavioral changes (e.g., relocation), people more often have to employ certain technologies, 

                                                           
1 This paper is published in the Journal of Environmental Economics and Management. It is cited in the following two chapters 

of this dissertation as Miao and Popp (2014).  
2 A term initially used to explain biological evolution, adaptation is now applied more often to human society and regarded as an 

important strategy to address climate change (for a review on the concept, see Smit and Wandel, 2006). The IPCC defines adaptation 

as “adjustment in natural or human system in response to actual or expected climatic stimuli or their effects, which moderates 

harm or exploits beneficial opportunities” (IPCC TAR, 2001: 72). 
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which take either a hard form (e.g., equipment and infrastructure such as building levees) or a soft 

form (e.g., science, technical know-how and skills such as emergency management) (UNFCC, 

2006). Technological innovation enhances their capacity to cope with natural hazards and provides 

a long-term adaptation strategy.  

As an example of how technology can affect adaptation, consider how the advent of air 

conditioning changed the development of regions in warmer climates. Moving forward, other 

innovations, such as developing new breeds of crops more resistant to drought, have the potential 

to adapt agriculture to possible future changes in climate. Smithers and Blay-Plmer (2001) discuss 

the role of technology research and development in agricultural adaptation, recognizing climate as 

an inducement for innovation. Increased attention recently has been paid to the implication of 

science and technology development in the policy world of climate adaptation, both domestically 

and internationally (e.g., UNISDR, 2009; UNFCC, 2006). In an editorial comment, Smith et al. 

(2009) suggest technology development and diffusion should be incorporated as a necessary 

component of the national adaptation architecture, given its role in “expand(ing) the range of 

adaptation possibilities by expanding opportunities or reducing costs.”   

In this research, we take a worldwide view in investigating how innovation, as an economic 

and scientific endeavor, responds to the shock of natural disasters. By using risk-mitigating 

innovations as an outcome of adaptation, our study presents the first attempt to examine 

systematically adaptation responses across multiple sectors at the country level. In particular, we 

focus on three types of natural disasters—floods, droughts and earthquakes—and match each of 

them with one mitigation technology including flood control, drought-resistant crops and quake-
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proof buildings.3 Our empirical analysis, using a panel of up to 28 countries over a period of 25 

years, shows all three types of natural disasters have a significant and positive impact on the patent 

counts of their corresponding technologies. This result implies that the private sector is adapting 

by innovating, but in a more reactive than proactive manner.4 It thus suggests government has a 

particularly important role to play in developing technologies necessary for mitigating risks so 

they are in place before a disaster occurs. In addition, we also explore whether domestic innovation 

is spurred by foreign disasters, and find such evidence in the case of floods.  

Another contribution of this paper is to explore the motivation and ability for adaptation 

responses, which is an under-researched issue in the adaptation literature. Notably, a majority of 

the current adaptation studies focuses on estimating costs or cost-effectiveness of adaptation 

measures, and many climate models simply treat adaptation as autonomous. For instance, recent 

examples of climate policy models incorporating adaptation are the AD-DICE model (deBruin et 

al., 2009), the WITCH model (Bosello, Carraro and De Cian, 2009), which assesses the optimal 

mix of mitigation and adaptation measures, and the FUND model, which has been used to analyze 

the tradeoff between mitigation and adaptation for protecting coastlines (Tol, 2007). None of these 

models consider the possibility that the tendency and ability to adapt are endogenous. Our 

empirical evidence of reactive risk-mitigating innovations can inform the current endeavors in 

integrated assessment modeling of climate change, and more specifically, suggests the possibility 

of treating adaptation as a function of previous disaster losses.  

                                                           
3 It should be noted that earthquake is normally classified as a geological hazard and regarded with a weak link to climate change. 

However, given that catastrophic climate impacts have not yet been observed, we consider not only disasters directly relevant for 

climate change such as drought and floods, but also include responses to other natural disasters like earthquakes. Moreover, as 

researchers expect the probabilities of earthquakes to rise in certain regions (such as California) because of the crust movement, 

we believe earthquake fits neatly into the context of adaptation.   
4 The adaptation literature distinguishes between reactive adaptation and proactive adaptation (Fankhauser et al., 1999). The former 

occurs when people anticipate the risks and take measures to forestall disasters or mitigate their risks, while the latter refers to 

actions taken only after a disaster happens. 
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Finally, our study also contributes to the empirical literature on the economics of natural 

disasters by addressing the potential endogeneity of disaster damage. While the severity of disaster 

damages are a driver of risk-mitigating innovations, we argue that observed human and monetary 

losses experienced by a country from natural disasters are endogenous. We thus take an 

instrumental variable approach and use objective meteorological and geophysical data to exploit 

the exogenous variation in physical disaster intensity. Our measures of hazard magnitude are 

highly predictive of disaster damages experienced by our sample countries. This approach not only 

sheds light on research of the economic impacts of natural disasters, but also inform modeling of 

disaster losses, particularly with respect to controlling for exogenous natural hazards.   

The remainder of this paper is organized as follows. Section 2 provides a review of the relevant 

literature. Section 3 presents a conceptual framework, followed by our empirical model. Section 4 

describes our data sources and descriptive statistics. Section 5 discusses the empirical results and 

Section 6 concludes.  

 

2. Relevant Literature  

This paper is part of a growing literature on the economics of natural disasters (for a survey of the 

literature, see Cavallo and Noy, 2010 and Kellenberg and Mobarak, 2011). This literature consists 

of two bodies of research that are highly related but differ regarding the treatment of disaster 

variables: one concerning the economic effects of natural disasters, and the other assessing the 

determinants of natural disaster impacts. While this study falls into the former category by 

considering how natural disasters affect innovation, we also draw on the latter research to address 

the endogeneity of disaster damages. We discuss the relevant literature on the determinants of 

natural disaster impacts while developing our conceptual framework in section 3.  
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With respect to the economic effects of natural disasters, the majority of empirical studies focus 

on how natural disasters affect economic growth using macroeconomic or sector-specific measures 

(e.g., Benson and Clay, 2004; Skidmore and Toya, 2002). A subset of research in this line looks 

into the behavioral changes induced by natural disasters. Cuaresma et al. (2008) examine how 

catastrophic risks affect the opportunity of technology transfer and capital updating, and document 

a negative effect of disaster frequency on knowledge spillovers to the affected developing 

countries.5  Yang (2008a) uses meteorological data to investigate the impact of hurricanes on 

multiple types of financial flows, including foreign aid, lending and migrants’ remittance, to the 

affected countries. At a more micro level, recent papers have examined the impact of natural 

disasters on migration decisions (Paxson and Rouse, 2008; Yang, 2008b, Boustan et al, 2012), 

fertility and human capital investment (Baez et al., 2010; Finlay, 2009), risk attitudes and risk-

taking behaviors (Callen, 2011; Cassar et al., 2011; Cameron and Shah, 2013).  

Our research question also draws on the hypothesis of induced innovation, which posits that 

changes in the relative price of an input of production lead to innovations that enable reducing the 

use of the relatively more expensive factors (Hicks, 1932). Over the past decade, this theory has 

been examined by environmental economists to understand the relationship between energy prices, 

environmental regulations and innovations of environmental technologies (for an overview of this 

topic see Popp, Newell and Jaffe, 2010). Using U.S. patent data from 1970 to 1994, Popp (2002) 

finds that both demand-side influences (e.g. energy prices) and supply-side influences (e.g., the 

existing knowledge base) determine energy-efficient innovations. Similar empirical evidence on 

the responsiveness of innovations to energy prices and environmental regulations has been found 

                                                           
5  Although Cuaresma et al. (2008) also focus on the link between natural disasters and technology, their research question is 

fundamentally different from ours. While their study asks whether natural disasters make developing countries more likely to import 

and absorb new technologies to improve their productivity, our focus is on a specific group of technologies that can mitigate the 

risks of natural disasters.  
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by other researchers using other modeling techniques (e.g., Newell et al., 1999) and conducting 

cross-national analyses (e.g., Johnstone et al., 2010; Verdolini and Galeotti, 2011).  

As climate change unfolds, there has been an increased recognition that climatic conditions 

may serve as a stimulus for technological innovation, particularly in the agricultural sector 

(Rodima-Taylor et al., 2011; Easterling, 1996; Koppel, 1995). One recent study of particular 

relevance is Chhetri and Easterling (2010) investigating how farmers in Nepal develop location-

specific technologies in response to different local climatic constraints. As evidence of 

technological change, they demonstrate convergence in the productivity of rice crops in Nepal 

from 1991-2003, suggesting that more favorable technologies spread throughout Nepal agriculture 

in this time frame. They use qualitative methods to explain these changes, finding evidence that 

drought-tolerant breeds of rice were adopted in climatically marginal regions. Our study further 

extends this line of research by using a cross-country sample with specific measures of innovation 

and considering the shocks of natural hazards as an inducement for innovation.   

 

3. Modeling 

3.1 Conceptual framework 

To understand the mechanism through which natural disasters spur risk-mitigating innovations, we 

propose a conceptual framework positing that the impact of a disaster shock raises the perceived 

risks and creates a higher demand for adaptive technologies. The anticipation of higher demand 

motivates the private sector to develop newer and more cost-effective technologies for mitigating 

future disaster risks. In essence, the key question is whether experiencing a disaster shock provides 

new information to update people’s risk perception, given the known riskiness of the environment 

they are exposed to.  



14 
 

We begin by examining the perceived risk as an important mediating factor on the demand side 

that motivates risk-mitigating innovations. The theory of protection motivation (Rogers, 1983; 

Rogers and Prentice-Dunn, 1997) proposes that individuals’ risk perception and perceived efficacy 

play a key role in affecting their self-protection decisions.6 This theory recently has been applied 

to studying natural hazard preparedness and climate change adaptation (Grothmann and Patt, 2005; 

Martin et al., 2009; Mulilis and Lippa, 1990). Meanwhile, the disaster literature consistently 

suggests risk perception is affected by the prior disaster experiences and, particularly, the severity 

of damages realized (e.g., Weinstein, 1989; Perry and Lindell, 1986). In a recent study using 

experiment data in Indonesia, Camron and Shah (2013) find that individuals who recently have 

experienced a disaster exhibit high levels of risk aversion, even after controlling for the frequency 

of natural hazards in the long term.  

Drawing on this line of research, we model the unobserved perceived risk (Rit) as a function of 

the recent shocks country i has experienced, indicated by a distributed lag of disaster damages (D), 

a country’s capacity to cope with and adapt to natural disasters (Cit), and the country’s baseline 

hazard (Hi) (e.g., does the country have a fault line?). Based on the risk perception literature 

surveyed above, we expect risk perceptions to depend on the severity of disaster damages (e.g., 

human and economic losses from natural disasters) rather than the frequency or magnitude of such 

events.7  

                                                 Rit = f( ∑ 𝐷𝑖𝑡−𝑛
𝑁
𝑛=0  , Cit , Hi)                                                (3.1) 

The baseline hazard is important for perceived risk, because people living in a region known 

                                                           
6 More specifically, the protection motivation theory discusses four cognitive factors falling on two dimensions:  risk appraisal 

includes the perceived severity of threatening events and the perceived probability of the occurrence, while the perceived efficacy 

includes the efficacy of the protective measures and the perceived self-efficacy in coping with a threat. The empirical research, 

such as Grothmann and Patt (2005), draws on this theory to examine the cognitive factors that influence people’s adaptive behavior.  
7 The rationale is simple: if a natural disaster of an extremely high magnitude occurs in an uninhabited area and results in little 

damage, it may not substantially affect people’s risk perception. 
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to be at risk for certain hazards are more likely to possess some level of risk perception. For 

example, 81 percent of all earthquakes occur in countries located along the “Ring of Fire” in the 

Pacific Ocean.8  People living in these quake-prone regions might perceive a stronger risk of 

earthquakes.9 Adaptive capacity may affect the perceived risk in different channels: first, previous 

investments to reduce vulnerability, such as sea walls or earthquake-resistant buildings, reduce the 

risk of significant damages following a disaster event. In such cases, the perceived need for 

additional innovation will be lower. Also, perceiving a strong adaptive capacity may cause over-

confidence and then lower the perceived risks.10  

Equation (3.1) raises two additional conceptual issues: first, adaptive capacity is unobserved 

and often related to national attributes; and second, a country’s adaptive capacity also influences 

the impact of a disaster shock it has experienced. To illustrate this further, we draw on the natural 

hazards and vulnerability literature, which suggests the actual disaster impact depends on both the 

physical severity of the hazard and local vulnerability or adaptive capacity (Yohe and Tol, 2002; 

Brooks et al., 2005; IPCC, 2012), with the latter being socially determined and place based. In 

other words, the same natural hazard occurring in different places will result in different impacts 

because some people and communities are more susceptible to hazards than others (Kousky, 2012; 

Cutter et al., 2003).   

In line with the notion of vulnerability and adaptive capacity is a series of empirical studies 

examining the determinants of natural disaster impacts. Using a cross-national, multi-hazard data 

set, Kahn (2005) shows that nations with higher income and more democratic institutions suffer 

                                                           
8 http://earthquake.usgs.gov/learn/faq/?faqID=95, accessed April 24, 2012. 
9 However, some psychological and cultural studies suggest communities that have been long exposed to a certain natural hazard 

may have accepted it as part of their life and have a lower level of risk perception. So the direction of influence might go in both 

directions.  
10 An analogy is the theory of “levee effect” (Stefanovic, 2003), which posits that people may excessively rely on the existing 

protective measures knowing their existence. For example, people may think the construction of levees can fully protect themselves 

against all future floods.  

http://earthquake.usgs.gov/learn/faq/?faqID=95
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fewer deaths from natural disasters. He argues that economic development and good institutions 

lead to better infrastructure and preventive technologies, as well as more effective regulations and 

emergency management, which provide “implicit insurance” against natural disasters. Subsequent 

studies have examined a variety of institutional measures, including inequality (Anbarci et al., 

2005), corruption (Escaleras et al., 2006), political regime (Keefer et al., 2010) and governance 

(Ferreira et al., 2013) as well as different patterns of the damage-income relationship (Toya and 

Skidmore, 2007; Kellenberg and Mobarak, 2008; Schumacher and Strobl, 2011; Hallegatte, 2012) 

to account for cross-national heterogeneity in the disaster fatalities. Based on this literature, we 

model disaster impact (Dit) as a function of the physical magnitude of disaster shocks (Mit) and the 

country’s adaptive capacity (Cit). 

Dit = f(Mit, Cit)                                                                                (3.2) 

We model a country’s adaptive capacity as a function of its income (Yit), quality of institutions 

(Iit) and existing knowledge stocks the country has obtained (Kit-1).  

                                            Cit = f(Yit, Iit, Kit-1)                                                   (3.3) 

While income and institutions have been widely suggested as essential elements of adaptive 

capacity in the literature, an innovation of this paper is the inclusion of knowledge stocks, which 

represent the current technologies available to cope with disasters.  The implication of including 

knowledge stocks in the model is that adaption is a dynamic process. Countries learn from their 

prior exposure to disasters and produce new knowledge that enables them to better adapt to future 

disaster risks. To the extent that previous events lead to new innovations, there will be less need 

for additional innovations after a subsequent shock.   

Finally, innovation itself depends on the perceived risk (Rit), a country’s existing knowledge 

base (Kit-1), income (Yit), and science base (Sit).  
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 PATit = f(Rit, Kit-1, Yit, Sit)                                                                   (3.4) 

In the empirical analysis, we use the count of patent applications pertaining to a given 

technology (PATit) to measure the outcome of innovative activities. A country’s science base 

includes the availability of qualified engineers to work on disaster-related research and patent 

policy, which determines the likelihood that inventors will seek patent protection for new 

innovations. We control for these by using the total number of patents by country and year. 

Combining equations (3.1), (3.3) and (3.4) to remove unobserved risk and capacity provides 

the following relationship:  

                          PATit = f(∑ 𝐷𝑖𝑡−𝑛
𝑁
𝑛=0 , Hi, Kit-1, Yit, Iit, Sit)                                            (3.5)  

Three issues are important to note regarding the final model. First, we consider multiple-year 

lags between disaster events and patents, not only because the perceived risks are affected by 

disaster damages that have occurred in recent years but also because innovation is a gradual 

process. Research projects take multiple years and staff may not be easily shifted to a new project 

just because a new profitable opportunity arises. Similarly, adjustments to perceived risk may also 

be gradual. For example, a drought in one year may be perceived as a random event. Persistent 

drought over multiple years may be perceived as a changing climate. As such, we consider 

multiple-year lags when estimating our model. 

Second, although we expect a positive relationship between disaster damages and innovations, 

the effect of variables measuring adaptive capacity are ambiguous. Equations (3.1), (3.2) and (3.3) 

suggest that both a greater existing knowledge stock and higher income increase adaptive capacity, 

thus reducing the perceived risks and also the need for additional innovations.11  At the same time, 

                                                           
11 It should also be noted that the relationship between income and disaster outcomes might be ambiguous when damages are 

measured as monetary loss. Compared to poor countries, rich countries tend to suffer higher economic damages from natural 

disasters because of their more expensive capital stocks and higher capital density (IPCC, 2012).     
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equation (3.4) suggests existing knowledge serves as a building block for future innovations. 

Although the existing knowledge may inspire more innovations, it may also be the case that a 

strong existing stock may constrain technological opportunities and make future breakthroughs 

more difficult. Similarly, because innovation is primarily carried out in industrialized countries, 

and people from higher-income countries may have a higher demand for risk-mitigating 

technologies, a positive correlation between income and patenting activity is also possible.  

Finally, equation (3.2) suggests that the observed damages experienced by a country are 

simultaneously determined by both the physical magnitude of the disasters and the country’s 

adaptive capacity.  As capacity is unobserved, but is a function of income, institution and existing 

knowledge, the resulting damages are thus endogenous. Nonetheless, our theory posits that 

disasters have their effect on risk perceptions via the damages they cause. Therefore, damages 

from recent natural disasters remain the key variable of interest in our conceptual and empirical 

model. In the following section we discuss how we address the endogeneity issue in our empirical 

work.  

 

3.2 Empirical model  

Based on the proposed conceptual framework, we use the model below for examining the 

relationship between disaster shocks and risk-mitigating innovations.  

  PATjit  =  f (∑ 𝐷𝑖𝑡−𝑛
𝑛𝑗
𝑛=0 , Yit, Iit, Kjit-1, Sit, ηi, θt)                                         (3.6) 

As the dependent variable, innovation (PATjit) is measured by the total number of successful 

patents in the technology field j applied for by the residents in country i in year t. It is the function 

of contemporaneous and lagged impacts of natural disasters that occurred in country i in the current 

year and up to nj years before (the length of lag nj is technology-specific) and a set of country 
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characteristics including real GDP per capita (Yit), political institutions (Iit), the existing domestic 

knowledge stock pertaining to the specific type of technology in question (Kjit-1) and the total patent 

applications by a country’s residents (Sit). As discussed above, we use a distributed lag of disaster 

impacts given that the adaptation response takes time. We are reluctant to impose a structure on 

the effects of recent years’ disasters on innovation because whether the most recent disasters have 

a bigger impact on innovative activities is an empirical question.  

Country fixed effects (ηi) control for the unobserved time-invariant heterogeneity across 

country (e.g., the baseline hazard, risk-related norms and culture). By controlling for the country 

individual effects we are able to test whether disaster shocks add new information to the 

background risk, providing an impetus to adaptation and innovation. Year fixed effects (θt) control 

for the time-varying factors common to all countries (e.g., global technology advancement, salient 

disaster shocks occurring in one country that may affect the global risk perception).12  

Given the count-data nature of our dependent variable (i.e., patent counts) and panel nature of 

our data, we use a Poisson fixed-effects model with robust standard errors to address possible over-

dispersion in the data (Cameron and Trivedi, 2005).13 Standard errors are clustered by country. We 

use the fixed-effects model because the unobserved heterogeneity across countries is very likely 

to exist and correlate with the explanatory variables. 14  The model is estimated using the 

Generalized Methods of Moments (GMM) technique (Hansen, 1982).  

However, estimating this model raises two endogeneity concerns. First, as discussed earlier, 

the damages a country suffers from disasters are potentially endogenous to its socio-economic 

                                                           
12 The impact of the Fukushima nuclear disaster on preferences for nuclear power around the world provides an example of how 

large natural disasters can affect global risk perception. 
13 Because of the panel nature of the data, we do not use a negative binomial model, because the negative binomial fixed effect 

model does not truly control for unobserved fixed effects (Alison and Waterman, 2002; Cameron and Trividi, 2005; Paulo, 2008).   
14 Unless we can find proper measures for the country specific heterogeneity and include them in the regression, the potential 

correlation between the observed fixed components ηi with the other regressors would make a standard random effects estimator 

inconsistent.  
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status. Although the country fixed effects control for the time-invariant characteristics, they cannot 

account for those time-varying elements of a country’s adaptive capacity that may affect disaster 

outcomes and innovation responses simultaneously. The latter would cause omitted variable bias 

for our disaster variables and presumably lead the estimated effect of disaster damages on 

innovation to be negatively biased. Second, our lagged knowledge stock variable is also 

endogenous, as it is, in part, simultaneously determined by the lagged damages included in our 

model.  

To correct for endogeneity, we use variables that measure the physical disaster intensity to 

instrument for both disaster impact and knowledge stock variables.15 Our argument for using the 

disaster magnitude as instruments is that they reflect the exogenous natural destructive power of a 

hazard, which directly affects the level of damages. Moreover, because our theory posits that 

disasters spur innovations and subsequent accumulation of the specific risk-mitigating knowledge, 

the physical intensity of previous disaster events should presumably exert a positive effect on the 

knowledge stocks. In other words, countries exposed to a hazard should possess more 

knowledge/technologies related to coping with this specific hazard. The instrumental variables 

used for each type of disaster are discussed in more detail in the data section.  

 

4. Data 

In this study we create a balanced panel of up to 28 countries (depending on the technologies) for 

the period 1984-2009, with variables measuring risk-mitigating innovations, disaster impacts and 

                                                           
15 To address the endogenous regressor issue, we have also tried other approaches following the literature on panel count-data 

models. For example, Chamberlain (1992), Wooldridge (1997) and Windmeijer (2000) have suggested a quasi-differencing GMM 

estimator using the lagged xit as instruments. This approach not only allows the unobserved heterogeneity to correlate with 

regressors but no longer rests on the strict exogeneity assumption. But the precision of the estimator may be hampered if the 

regressors are highly persistent over time, which thus have less relevance for the differenced terms. We have found the same 

problem when we applied this approach to our data.  
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country characteristics. The data are taken from a variety of sources, described in greater detail 

below.  As noted earlier, we consider three separate risk-mitigating technologies: flood control, 

drought-resistant crops and quake-proof buildings. The choice of technologies and disasters 

studied is influenced by the availability of both adequate data on disaster impacts and clearly 

identifiable technologies in the patent data.   

 

4.1 Innovation and knowledge stocks  

Our dependent variable is the flow of risk-mitigating innovations, which is measured by the 

number of successful patent applications filed by domestic residents in a country in a given year. 

All our patent data are taken from an online global patent database, Delphion.com, and are 

identified through either International Patent Code (IPC) or key word searches. A more detailed 

description of our patent search strategy is provided in online Appendix 1. Given the issue of cross-

country patenting (i.e., inventors can patent the same innovation in multiple countries where they 

desire protection), we take a set of procedures in cleaning the data to ensure that 1) one patent 

represents one unique innovation and is counted only once in our sample; and 2) each patent is 

assigned to only one country where the first inventor indicated in the patent document is located.16  

It is important to acknowledge that patents, while a common measure of invention used in the 

innovation literature, are not a perfect measurement (Griliches, 1990; Motohashi and Goto, 2010). 

There are two major shortcomings of using patent data: first, the number of patent applications in 

                                                           
16 For example, a U.S. inventor can apply to patent his/her innovations at the U.S. Patent and Trademark Office as well as in other 

countries. Filings of the same invention in multiple countries are known as patent families.  As our goal is to identify unique 

inventions, we only count each patent family once.  For example, a patent filed by a US inventor in both the US and a foreign 

country counts as a single US invention.  Likewise, if a foreigner chooses to file patent application only in the United States, we 

assign that patent to the country in which the inventor resides. Also note that nearly all patent applications are first filed in the home 

country of the inventor. Also note that for most patent applications involving multiple inventors, these inventors are from the same 

country. Patents with inventors from multiple countries are rare. For example, for flood control, we only find one patent with 

multiple inventors from different countries: one from Italy, and one from Germany. 



22 
 

a country is highly subject to its patent system. Thus, we control for country heterogeneity by 

including the overall number of patents in each country in our regression. Second, not all 

inventions get patented. Inventors have the right to hide or reveal their inventions. Because the 

propensity to patent varies by technology, we do separate regressions for each technology so our 

identification strategy focuses on patenting changes within a single technology.  

We construct a country’s stock of knowledge in a specific technology field using patent counts 

based on the perpetual inventory model, which assumes the knowledge stock depends on a 

distributed lag of the current and past flows of innovations.  

Kjit = PATjit + (1- 𝜌�) Kjit-1                                                                                                (4.1) 

ρ is the rate of stock depreciation, which we assume to be 15 percent following the conventional 

innovation literature. Using a depreciation rate implies the patent/knowledge produced earlier 

become less valueable and relevant for today’s innovations. For the first year’s knowledge stock, 

we simply equate the patent counts in the first year to knowledge stock because most countries 

have zero patents in their first year of our estimation period.17 For ease of interpreting the effect of 

knowledge stock, we use the log of the value of knowledge stock plus 1 in our regressions.   

 

4.2 Disaster data 

We measure disaster severity, our key independent variable, using both human fatalities and 

economic losses from the natural disasters, with data taken from two sources. We use drought and 

floods data from the Emergency Event Database (EM-DAT) maintained by the Centre for Research 

on the Epidemiology of Disaster. Although this database is publically assessable and used in most 

                                                           
17 In most applications of perpetual inventory model, the starting stock is calculated by dividing the first year’s flow by average 

annual logarithmic growth plus the depreciation rate (e.g., Coe and Helpman, 1995). This method cannot be applied in our case, 

because many countries in our sample have zero patents during the years studied. We feel safe to do so also because many countries 

have zero patents in their first year in our data set. Moreover, because most our regressions begin in 1984 but our patent data begin 

in 1974, we have ten years of historical data for most countries to construct the initial knowledge stock. 
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cross-country disaster studies, the accuracy of its data has been questioned given its humanitarian 

focus and specific thresholds for events to be included.18  Although we can identify no better 

alternative for information on flooding and droughts, we collect data on earthquakes from the 

National Geophysical Data Center’s (NGDC) Significant Earthquake Database.19 This database is 

preferred to EM-DAT because it contains richer information on earthquake physics (e.g., 

magnitude and Modified Mercalli Intensity), much longer timespan and more small-impact events 

that do not meet the EM-DAT threshold. All the monetary losses from disasters are adjusted at the 

2005 level by the World Bank GDP deflator index.20 

 

4.3 Instrumental variables 

In addition to disaster impacts, we also collect data on the physical disaster intensity to instrument 

for the endogenous disaster and knowledge stock variables. The instrumental variables used in 

each disaster-technology regression are summarized in Table 1-1. Specifically, we instrument for 

the disaster variables using a corresponding distributed lag of disaster magnitude measures. 

Considering the potential influence of population’s exposure on disaster outcomes, we also include 

a distributed lag of a country’s population density, with the data taken from the World Bank 

Development Indicators. Given the availability of rich pre-sample data, we instrument for the 

lagged knowledge stock using the magnitude information over a much longer period from year t-

                                                           
18 EM-DAT includes events with either more than ten fatalities, over 100 people affected, a declaration of a state of emergency, or 

a call for international assistance. Therefore, this database tends to underreport small disaster events, and in particular, those 

occurring in developed countries. The EM-DAT data are compiled from a variety of sources including the United Nations, 

governmental and non-governmental organizations, research institutes and the press. It contains information on disaster events 

from 1900. 
19 The NGDC database includes an earthquake event with either at least $1 million damage, more than ten fatalities, a magnitude 

7.5 or greater or Modified Mercalli Intensity X or greater, or a tsunami. The earthquake data are compiled from multiple sources 

including the U.S. Geological Survey, EM-DAT, reconnaissance reports, regional and local earthquake catalogs, newspapers and 

journal articles.  
20 It is important to note that the monetary losses reported by EM-DAT and NGDC database reflect only the direct damages caused 

by disasters (e.g., destroyed and damaged properties or capital stocks). These figures do not include any indirect damages or welfare 

losses resulting from the initial destructions, such as the forgone GDP and loss of potential production.  
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1 through year t-25, with some variables already being included in the set of instruments for 

disaster impacts. The relevance of all the instrumental variables is presented in Appendix Table 1-

A5.  

Both floods and droughts are related to an unusual amount of rainfall. Hence, we measure their 

physical magnitude using precipitation data from the Tyndall Center for Climate Change Research. 

This data set contains information on monthly, quarterly and annual mean precipitation weighted 

by area (in millimeters) and aggregated at the country level between 1901 and 2012. To capture 

weather extremes, we construct a “rainfall anomaly” measure by calculating the proportional 

deviation of annual precipitation from a country’s long-run average annual precipitation over the 

period of 1901-2000.21 Positive values indicate excessive rainfall, while negative values indicate 

rainfall deficiencies relative to normal levels.  

We create additional variables to capture the physical intensity specific to these two disasters. 

For floods, considering that the rainfall anomaly variable does not fully account for the temporal 

variation of rainfall within a year, we use the same data set to create another variable measuring 

the number of months in which the amount of precipitation exceeds 150 percent of the long-term 

average monthly precipitation. Moreover, given the fact that many flooding events are induced by 

storms, we calculate the number of storms (including tropical storms, subtropical storms and 

extratropical storms) a country experienced in a given year, using storm data from the International 

Best Tract Archive for Climate Stewardship (IBTrACS) provided by the National Climate Data 

Center of the National Oceanic and Atmospheric Administration (NOAA). The IBTrACS data, 

which are compiled from numerous tropical cyclone datasets, provide the most complete global 

set of individual storm events and track its positions (latitude and longitude) at 6-hour intervals. 

                                                           
21 In other words, we normalize the annual precipitation by subtracting each country’s long-run average and dividing by each 

country’s long-run standard deviation.  
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We use geospatial software to map the storm data to affected countries and calculate the frequency 

of storm events within a country in a given year. For drought, given its chronic nature, we follow 

Felbermayr and Groschl (2013) and create a drought indicator (also using the precipitation data 

from Tyndall Center), which takes the value of 1 if a country’s precipitation is below 50 percent 

of the long-run average monthly mean in at least three subsequent months or at least five months 

within a year (zero otherwise).  

For earthquakes, we use the Richter scale, provided in the NGDC database, as a strength 

measure of seismic activities. One issue arising here is that the original database records individual 

earthquake events, which differs from the unit of observation in our panel. We thus collapse the 

events data to the country-year level and construct three variables to measure the physical intensity 

of earthquakes: a dummy variable indicating whether there is an earthquake in a country in a given 

year, the maximum magnitude of all earthquakes in a country in a given year, and the total number 

of earthquakes measuring six and above on the Richter scale in each country per year. 22   

 

4.4. Country characteristics 

To measure a country’s income, we use data on real GDP per capita from Penn World Table (7.0 

version). We use the polity variable from the POLITY IV project, which takes a value from -10 to 

10 to indicate the openness of a country’s political institutions. Higher values suggest a more 

democratic and open political institution. As discussed above, countries are different in terms of 

their science bases, patent systems and general propensity to patent innovations. Thus, we use the 

total number of patent applications filed (within the country) by a country’s residents to control 

                                                           
22 Using the same database, we also collapse the earthquake events to country-year to obtain the human and economic losses. Note 

that we use the maximum magnitude because the earthquake impact is measured by the sum of deaths and damages in a country-

year. We use scale six as a threshold here, given the conventional view that earthquakes below six usually cause minor damages. 

Also note that if a country experiences small earthquakes (below six), it can still be captured by the maximum magnitude variable.  
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for this country characteristic. The data come from the World Bank World Development Indicators 

and the database of the World Intellectual Property Organization.  

 

4.5 Sample statistics 

In this study, we pair each type of natural disasters with one risk-mitigating technology, and 

accordingly construct a sample with the selection criteria that a country should have at least five 

patents in a given technology field between 1974 and 2009. Therefore, our sample size varies 

according to different technology types. Appendix 2 lists the countries included for each 

technology. Meanwhile, it should be noted that although our patent data generally become 

available in 1974, we deliberately choose to start our estimation period at least ten years later to 

allow the stock to accumulate for ten years before it enters into the estimation equation.23 

Table 1-2 provides national summary statistics reporting the average deaths and damages from 

natural disasters per year by disaster type, and total patent counts by technology type for the period 

1970-2009. A large majority of our sample countries are industrialized countries. This is consistent 

with the notion that most of the global R&D activities are carried out by developed countries 

(National Science Board, 2010) because they have higher demand and more resources for science, 

technology and innovation. In particular, the United States, Germany and Japan appear to play 

leading roles in patenting on these mitigating technologies. Notably, China seems to be most 

severely impacted by all three types of disasters among all sample countries, while it also has a 

large number of patents on these technologies. To compare across disasters, while our samples for 

earthquakes and floods include the major affected countries, we leave out several countries that 

                                                           
23 We choose 1974 as the beginning year in our selection timeframe because patent data for many countries first appears in the 

Delphion database in the mid-1970s. However, there is no patent documented for the flood-control technology worldwide until 

1976. Thus, our estimation period for flooding begins 10 years later in 1986.   
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often experience severe droughts because many of them are poor countries with very few 

innovations.24 This suggests countries that are most adversely affected possess limited capacity to 

innovate, which would further exacerbate their vulnerability to natural disasters.   

Table 1-3, Panel A reports the descriptive statistics of main variables in the analysis. To provide 

a sense of scale of the natural disasters, Panel B shows the human and economic losses on an event 

basis and the most damaging events over our sample period, including the affected country and 

year of occurrence. In terms of average damages per country and year (shown in Panel A), 

earthquakes and floods appear to have caused much larger losses on our sample countries than 

droughts. This is consistent with the statistics in Yang (2008a) that floods and earthquakes 

altogether accounted for about 60 percent of the total global damages from natural disasters for 

1970-2002, which is ten times the drought damages. However, Panel B shows that droughts occur 

in our sample countries less frequently than the other two types of disasters. As noted earlier, this 

is partially because the countries that are often hit by droughts are not patenting and thus not 

included in our sample. Such results also demonstrate the importance of considering the 

endogeneity of damages, as one reason higher income countries report fewer drought events is that 

they are better equipped to deal with drought, such as through better irrigation practices. Thus, 

while droughts are reported less frequently in our sample countries, when a drought is reported, 

the average damage caused per event is highest among the three disaster types.   

 

5. Results 

5.1 Impacts from domestic disaster shocks 

                                                           
24  The statistics of global drought impacts by country (based on the EM-DAT data) reveals that of the top 15 countries most often 

hit by drought from 1970 to 2010, only five (China, Brazil, Australia, India, the United States) are included in our sample. The 

other countries are Mozambique, Ethiopia, Kenya, Bolivia, Somalia, Honduras, Indonesia, Mauritania, Philippines and Sudan. 
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Table 1-4 presents the estimation results of our main specification using either deaths or monetary 

losses as the measure of disaster impacts. Because we use the Poisson model for estimation, we 

are able to interpret the coefficients of disaster losses in a semi-elasticity form and of other 

variables in logs (e.g., knowledge stock and income) as elasticities. Two things are important to 

note here: first, for droughts we focus on only economic damages because a majority of our sample 

countries have zero deaths over the estimation period, which makes it difficult to identify the effect 

of disaster fatalities on innovations. Second, based on our sensitivity tests (Appendices 3 and 4), 

we use a five-year distributed lag for earthquakes and droughts, while extending the lag structure 

to seven years in the case of floods.25 We also test for serial correlation by obtaining the residuals 

from our estimation model, and we cannot reject the hypothesis of zero correlation between current 

and lagged residuals.  

The results show the impacts of recent disasters generally have a significant, stimulating effect 

on domestic patenting activities for all technologies concerned. The long-term cumulative effect, 

which is a linear combination of all the disaster variables’ coefficients above, is statistically 

significant and positive across all technologies. Such evidence supports our principal hypothesis 

that natural disasters lead to risk-mitigating innovations and the amount of patent applications 

increases with the severity of these shocks.  

In particular, floods have an exceptionally long-term stimulating effect on flood-control 

innovations. At the same time, the magnitude of impacts generally declines with the passage of 

time, suggesting innovation is most responsive to the most recent events. The coefficients on the 

current-year flood impact indicate that an additional 1,000 deaths leads to a 57 percent increase in 

patent applications, and one billion dollars of monetary damages result in an 8.14 percent increase 

                                                           
25  We find the coefficients on lagged disaster variables generally become insignificant beyond five years for earthquakes and 

droughts, while they become insignificant beyond seven years for floods.  
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in patent applications filed in the same year. The cumulative long-run effect of 1,000 deaths caused 

by flooding increases flood-control patent applications in the next seven years (including year t) 

by a factor of three, whereas one billion of damage increases cumulative patenting by 30 percent, 

with innovation mostly concentrated in the current year and the past three. While the magnitude 

of the effect of deaths is larger, it is important to note that monetary damages, rather than large 

death counts, are the primary result of flooding in the countries in our sample. To put these numbers 

in perspective, the 2008 Midwest flood in the United States, which resulted in around $9 billion 

monetary damages (above the 95th percentile for all flooding events in our sample), would increase 

flood control patent applications in the next seven years by 270 percent.   

For earthquakes, we find that the effects of earthquakes on quake-proof building innovations 

are mainly spread across a six-year horizon. An additional 1,000 deaths increase the number of 

patent applications filed in the current year and following five years by 18.2 percent, and $1 billion 

economic losses from earthquakes increases the number of patent applications filed in the current 

year and following five years by 2.8 percent. For more concrete examples, the most expensive 

earthquake so far, Kobe Earthquake (Japan, 1995), incurred more than $160 billion losses, which 

would increase the quake-proof building patent applications in the following years by a factor of 

4.5. A more moderate earthquake, such as the 1994 Northridge Earthquake that resulted in $50 

billion in damages, would increase the patent applications in the following years by 140 percent.     

Finally, for the drought-resistant crop technology, the effect of droughts on patenting is also 

positive and statistically significant in most lagged years. The cumulative effect of drought 

damages is the largest of our three disasters.  Not only is the magnitude of the cumulative effects 

larger, with an additional $1 billion drought damages increasing long-run patent applications by 

nearly 40 percent, but the mean losses per event are larger for droughts, as shown in Table 1-2B.  
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To put these results in the context, a severe drought such as the US drought of 2002, which resulted 

in $3.6 billion losses nationwide (around the 95th percentile for all drought events in our sample), 

would increase drought-resistant crop patent applications in 2002-2007 by 139 percent.  

As we discussed earlier, the knowledge stock can affect risk-mitigating innovations through 

multiple channels, thereby making its final effect somewhat ambiguous. From Table 1-4 we see 

the coefficients of one-year lagged knowledge stock variables are consistently significant and 

positive in the earthquake case: one percent increase in last year’s knowledge stock leads to a 0.8-

0.9 percent increase in today’s patent applications. This suggests that the earlier knowledge stock 

serves as a building block for future innovations even after considering its possible competing 

effects on risk-mitigation innovations as part of a country’s existing adaptive capacity. By contrast, 

the effects of the knowledge stock on the patenting activity for flood-control and drought-resistant 

crop technology are smaller and insignificant, suggesting the competing forces of knowledge as a 

building block and knowledge representing increased adaptive capacity at work. Likewise, income 

and institutional quality, as the components of a country’s adaptive capacity, also have a mixed 

effect on risk-mitigating innovations. One possible reason is that the institutional variable exhibits 

little variation within countries over time for most of our sample countries. Therefore, it is not 

surprising to see few statistically significant results for these variables after controlling for the 

country fixed effects.   

 

5.2 Impact of foreign disasters 

Given that globalization renders countries increasingly interdependent with each other, a salient 

disaster shock may generate a global effect by increasing risk perception in other countries. One 

anecdotal example is that the Netherlands launched a full re-assessment of its risk management 



31 
 

policy soon after Hurricane Katrina hit Louisiana in 2005. The possibility of such a “contagious 

effect” has also received support in micro-level studies, as some researchers find that the indirect 

experiences, which people obtain from others’ experiences, can also influence the risk perception 

of those not directly affected by a disaster and induce their precautionary behaviors (e.g., Tyler, 

1984). A recent study (Hallstrom and Smith, 2005) of the 1992 Hurricane Andrew shows that 

homeowners in an unaffected county also responded to this disaster event, leading to a 19 percent 

decline in local property values.26  Nevertheless, the extent of the influence of indirect experiences 

usually depends on the context, and plays a much less important role in affecting risk perception 

compared to direct personal experiences (Hertwig et al, 2004; Viscusi and Zeckhauser, 2014). 

However, most of these studies look at the individual and community levels. Given the greater 

heterogeneity across countries in their political, socio-economic, and cultural characteristics, 

whether innovators also respond to foreign disasters in a cross-national setting remains to be 

addressed.   

While our model already controls for foreign disasters indirectly through year fixed effects, in 

this section we further explore the influence of foreign disasters by asking whether natural disasters 

occurring in nearby foreign countries are more likely than other foreign events to induce domestic 

risk-mitigating innovations. Nearby disasters are of interest for two reasons. First, geographic 

proximity leads countries to share similar environmental characteristics and similar risk profiles. 

Second, as flows of knowledge tend to dampen with increased distance (see, e.g. Verdolini and 

Galeotti, 2011), geographic proximity makes it more likely that nearby foreign countries represent 

a potential market for new innovations. To explore the effect of nearby disasters, we group 

                                                           
26 This study focuses on Lee County, which did not experience damages from Hurricane Andrew but also face a high risk of flooding 

and storm damages. While Hurricane Andrew was a “near-miss” for the county, the authors show that this shock conveys risk 

information to change the behavior of homeowners in the county.  
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countries by continent and create variables measuring foreign disaster impacts occurring in other 

countries on the same continent as country i.27 As with domestic disasters, we include a distributed 

lag of the continent-based foreign disaster variables, measured by either human or economic losses, 

into equation (3.6) while using the same sets of instrumental variables to instrument for domestic 

disaster impacts as well as the domestic knowledge stock. As our model already controls for the 

global effect of foreign disasters via year fixed effects, the continent-specific variables test whether 

nearby disasters are more likely to spur innovation than other foreign disasters. 

Table 1-5 presents the estimation results. First note that the coefficients on both domestic 

disaster impacts and our control variables are largely similar to the results of the model only using 

domestic impacts (Table 1-4). The only exception is in the earthquake case the cumulative effect 

of domestic deaths on quake-proof building innovations over the recent five years is no longer 

statistically significant. In terms of foreign shocks, we only find a differential effect for foreign 

disasters occurring on the same continent in the case of flooding. For example, 1,000 deaths from 

regional foreign floods one year and two years ago would increase the domestic flood-control 

patent applications by 9.8 percent and 17.1 percent, respectively. We find similar results using 

economic damage as a disaster measure. For both deaths and damages, the cumulative long-term 

effect of foreign floods over the eight-year horizon (from year t through year t-7) is statistically 

significant, but the magnitude is much smaller than the effect of domestic influence on innovations. 

This finding is not surprising, and suggests that domestic disasters matter more than foreign shocks 

in shaping innovation responses.  

By contrast, we find little evidence of a differential effect for foreign disasters on the same 

continent for earthquakes and droughts. The cumulative effect is statistically insignificant in both 

                                                           
27 That is, foreign deaths and foreign damages on the same continent equal the sum of total deaths/damages by continent (including 

both sample countries and non-sample countries) in a given year minus domestic deaths/damages in country i.  
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cases, with only a couple of individual years having significant positive effects on innovation. 

However, as our model also controls for the global effect of disasters shocks through year fixed 

effects, one cannot conclude that foreign shocks do not matter at all. For instance, given the 

presence of the global crop market and the concentration of R&D by a few biotech multinational 

corporations, the innovation response to droughts might not be confined to a certain geographic 

region. Similarly, a big earthquake in California may raise concerns for the residents in Japan and 

impel the Japanese engineers to improve their building safety. However, the same earthquake 

might not alter the risk perception of the neighboring Canadians much, given their relative lower 

risk of earthquakes. We leave studying the effect of global markets and different risk profiles across 

countries for future research. 

 

6. Conclusion 

Natural disasters cause tremendous human causalities and significant economic losses worldwide. 

But apart from this, what do people learn from suffering natural disasters? Are they constantly 

adapting or only reacting after being hit by a disaster shock? These are important questions for 

both researchers and policy makers to consider, particularly given the increased threats of climate 

change. Until now, there has been no systematic study of innovation as an adaptation response to 

climate change. This paper fills this gap, linking three types of natural disasters (floods, droughts 

and earthquakes) to a set of mitigation technologies. 

By introducing the idea of “risk-mitigating innovation,” we conceptualize innovation as an 

important form of adaptation and develop a conceptual framework for assessing the effects of 

natural disasters on risk-mitigating innovations. Our empirical analysis, using a panel of up to 28 

countries covering a period of 25 years, reveals a consistent stimulating effect of natural disasters 
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on patents of risk-mitigating technologies. For all technologies included in this study, we provide 

strong evidence that risk-mitigating innovation in a country increases with the severity of its recent 

natural disasters. This finding suggests people are learning and adapting, but not until disasters 

have already occurred and losses have been incurred. This finding has important implications for 

both policymakers and modelers of climate policy because it suggests innovations that facilitate 

adaptation to climate change are unlikely to come from the private sector until after climate 

damages have been experienced. The potential role of public R&D support to facilitate earlier 

improvements in risk-mitigating technologies thus deserves investigation in future research. Our 

empirical evidence of reactive adaptation may also suggest people are less likely to adapt to those 

gradual changes (e.g., sea level rise and temperature rise) than the extreme events related to climate 

change because it takes much longer for the former to be felt and effect a change in risk perception.   

Moreover, our study shows that in the case of flooding innovators not only respond to domestic 

shocks but also respond to natural disasters occurring in nearby countries, although the influence 

of foreign shocks is much smaller than domestic ones. It is also important to acknowledge that in 

this study, we construct the measure of foreign disaster shocks in a relatively coarse way. In fact, 

not all natural disasters that have occurred abroad or in neighboring countries are relevant for 

domestic innovators. More analyses could be done in this regard; for example, taking into account 

the spatial geographic distance between countries or their similarities of baseline hazard.  

Finally and most importantly, one distinction between this study and most other research on 

the economic impacts of natural disasters is that we focus on the behavioral change that may affect 

future disaster outcomes. In essence, innovation is a social learning and knowledge-generating 

process. Linking innovation and adaptation is particularly meaningful because this expands the 

conventional view on the highly localized nature of adaptation: innovation produces new 
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knowledge and technologies that can potentially serve as a public good by being transferred to and 

adopted by non-inventors. Therefore, risk-mitigating innovations have the potential to reduce 

global disaster impacts in the face of climate change. In this context, more research is needed to 

explore the role of technological innovations in lessening disaster damages and facilitating climate 

adaptation. If these innovations are found to facilitate reduction in disaster risks effectively, it 

suggests policy makers should encourage more investment in developing and deploying new risk-

mitigating technologies. This will also have important implications in the international context 

because the transfer and diffusion of these technologies may benefit developing countries, 

especially those vulnerable to natural hazards but lacking the technological capacity to adapt. The 

potential role of knowledge spillovers in international adaptation activities deserves more attention 

and investigation.  
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                                 Table 1-1 Summary of Instrumental Variables 

Technology Instrumental Variables 

Flood Control 
∑ 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑖𝑡−𝑛
25
𝑛=0 , ���������������∑ 𝑚𝑜𝑛𝑡ℎ𝑖𝑡−𝑛

25
𝑛=0  ,  

∑ 𝑠𝑡𝑜𝑟𝑚_𝑐𝑜𝑢𝑛𝑡𝑖𝑡−𝑛,
25
𝑛=0 ��������∑ 𝑃𝑜𝑝_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡−𝑛

7
𝑛=0  

Quake-proof 

Building 

∑ 𝑄𝑢𝑎𝑘𝑒_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖𝑡−𝑛
25
𝑛=0 , �����∑ 𝑀𝑎𝑥_𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑖𝑡−𝑛

25
𝑛=0  ,  

∑ 𝑄𝑢𝑎𝑘𝑒_𝑐𝑜𝑢𝑛𝑡𝑠𝑖𝑡−𝑛,
25
𝑛=0 �����������∑ 𝑃𝑜𝑝_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡−𝑛

5
𝑛=0  

Drought-resistant 

Crop 

 

∑ 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑖𝑡−𝑛,
25
𝑛=0  ��∑ 𝐷𝑟𝑜𝑢𝑔ℎ𝑡_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

𝑖𝑡−𝑛
25
𝑛=0 , 

∑ 𝑃𝑜𝑝_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡−𝑛
5
𝑛=0  

Notes: anomaly represents the rainfall anomaly variable (the proportional deviation of annual precipitation from a 

country’s long-run average annual precipitation over the period of 1901-2000). Month measures the number of months 

in which the amount of precipitation exceeds 150 percent of the long-term average monthly precipitation. Storm_count 

measures the number of storms in a country-year. Quake_indicator is a dummy variable indicating whether there is 

an earthquake in a country-year. Max_magnitude is the maximum magnitude of all earthquakes in a country-year. 

Quake_counts measures the total number of earthquakes measuring six and above on the Richter scale in a country-

year. Drought_indicator is a dummy variable taking the value of 1 if a country’s precipitation is below 50 percent of 

the long-run average monthly mean in at least three subsequent months or at least five months within a year (zero 

otherwise).  Pop_Density represents the population density in a country year.  
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Table 1-2 Natural Disaster and Patent Statistics for Sample Nations, 1970-2009 

Disaster/Technology Flood Flood control Earthquake 

Quake-proof 

Building Drought 

Drought-resistant 

crop 

Country 

Average 

deaths 

Average 

damages 

Total patent 

counts 

Average 

deaths 

Average 

damages 

Total patent 

counts  

Average 

deaths 

Average 

damages 

Total patent 

counts 

Argentina . . . 1.93 5.5 10 . . . 

Australia 5.08 161.28 10 0.3 0.17 12 0 405.93 39 

Austria 0.98 96.13 5 0.03 0 7 0 0 6 

Belarus . . . 0 0 7 . . . 

Belgium . . . 0.05 2.17 8 0 0 22 

Brazil . . . . . . 0.5 214.86 5 

Bulgaria . . . 0.08 0.2 8 . . . 

Canada 0.93 64.22 16 0 0 35 0 270.53 39 

China 949.33 4140.81 305 9055.73 3347.25 291 88.35 685.72 636 

Czech Republic 1.85 128 46 . . . . . . 

Denmark . . . 0 0 6 . . . 

France 4.75 157.69 34 0.23 0 134 0 57.78 46 

Germany 1.08 375.95 227 0 9.28 149 0 0 182 

Greece . . . 6.78 107.88 31 . . . 

Hungary 7.73 21.173 10 0 0 11 0 35.03 10 

India . . . . . . 8 78.36 7 

Israel . . . . . . 0 2.16 23 

Italy 14.43 634.39 9 152.75 1520.69 42 0 0.0263 . 

Japan 28.15 329.41 415 146.35 4211.9 9928 0 0 93 

Mexico . . . 266 175.51 10 0 47.71 5 

Netherlands 0.03 18.07 8 0.03 3.26 11 0 0 18 

Norway . . . . . . 0 0 . 

New Zealand . . . 0.08 8.1 29 0 3.13 12 

Poland 2.35 146.64 22 0 0 13 . . . 

Republic of Korea 57.1 91.14 187 0 0 217 0 0 48 

Romania 16.7 105.69 7 39.98 82.73 23 . . . 

Russia 13.58 68.5 59 100.93 753.5 85 0 0 20 

Spain . . . 0 1.27 25 0 396.07 8 

Sweden 0.28 11.49 10 0 0 6 0 0 . 

Switzerland 0.25 72.26 13 0 0 12 0 0 13 

Ukraine . . . 0 0 22 . . . 

United Kingdom 1.23 415.47 89 0 0 33 0 0 15 

United States 35.5 1356.08 91 5.68 1406.02 323 0 203.8 864 

Total 1141.33 8394.393 1563 9775 11629.93 11478 96.85 2401.1063 2111 

Notes: Deaths are in persons and economic damages are in million US dollars (2005 level). The average values refer to average deaths/damages per month. According to our 

sample selection criteria, countries with less than five patents in the given technology are not included in the sample and are thus indicated as “.” in the table. For these 

excluded countries, we don’t indicate their disaster impact information. But this by no means implies these countries have never been hit by any disasters.    
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Table 1-3 Descriptive Statistics 

(Panel A) 

Notes: The statistics on disaster variables are calculated taking into account the length of the distributed lags included in the regressions. 

They are therefore based on the period 1979-2009.  

 

Notes: The flood and drought data are taken from EM-DAT disaster list. The earthquake data come from the NGDC Significant 

Earthquake Database. It should be noted that EM-DAT provides disaster data in both country-year panel and event formats. The 

statistics on disaster variables are calculated taking into account the length of the distributed lags included in the regressions.  

They are therefore based on the period 1979-2009.  

 

Technology Flood Control 
Quake-proof 

Building 

Drought-resistant 

Crop 

Dependent variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Patent counts 3.28 6.73 15.49 74.41 4.24 14.23 

          

Independent variables          

Deaths (thousand) 0.07 0.42 0.14 3.05     

Foreign deaths (thousand) 0.71 1.65 2.06 9.05     

Damages  (2005 US$, billion) 0.57 2.53 0.51 7.19 0.006 0.098 

Foreign damages (2005 US$, billion) 4.17 6.19 2.91 12.1 0.69 2 

Log domestic knowledge stock 1.6 1.39 1.96 1.57 1.32 1.38 

Real GDP per capita (2005 US$, 

thousand) 23.99 10.77 21.59 10.88 22.43 11.08 

Institution index (-10~10) 8.03 4.59 7.55 4.98 8.03 4.36 

Total Patent applications (thousand) 38.66 83.02 26.08 69.53 33.3 78.03 

       

          

Instrumental variables          

Maximum Earthquake Magnitude    1.44 2.74     

Count of earthquakes (>=6)    0.3 0.89     

Quake indicator (dummy)    0.22 0.42     

Drought indicator (dummy)      0.02 0.15 

Number of flooding months 1.13 1.19     

Precipitation anomaly 0.17 1.01   0.16 1.02 

Count of storms 1.65 3.05       

Population density (people per square 

kilometer) 157.75 137.5 134.27 128.2 167.03 148.58 

Number of countries 19 28 21 

Sample time span 1986-2009 1984-2009 1984-2009 

Table 1-3 (Panel B) - Statistics on Disaster Events 

Disaster Floods Earthquakes Droughts 

Frequency in sample countries 672 493 55 

Mean deaths per event 63.61 238.26  

Mean monetary loss per event (2005 b US$)  0.486 0.874 0.966 

Max. deaths 6,303 87,724  

China-1980 China-2008 (Wenchuan Earthquake)  

Max. monetary loss (2005 US$, billion) 37.09 161.13 17.21 

China-1998 Japan-1995 (Kobe Earthquake) China-1994 
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Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price. All the models include country and 

year fixed effects. Standard errors are in parentheses, adjusted for clustering at the country level.  

*** p<0.01, **p<0.05, *p<0.1.   

  

Table 1-4  Innovation in Response to Domestic Shocks 

Technology  Flood Control Quake-proof Building Drought-

resistant Crop 

Impact Measure Death Damage Death Damage Damage 

year t 0.570*** 0.0814*** 0.0116*** 0.0140*** 0.0954* 

 (0.132) (0.0234) (0.00275) (0.00172) (0.0559) 

      

year t-1 0.425*** 0.0465** -0.00627 0.00264 0.0201 

 (0.0693) (0.0206) (0.00447) (0.00208) (0.0437) 

      

year t-2 0.565*** 0.0550** 0.0626** 0.00290* 0.0996** 

 (0.157) (0.0239) (0.0294) (0.00158) (0.0492) 

      

year t-3 0.497** 0.0467* 0.0190 0.00175* 0.122* 

 (0.223) (0.0270) (0.0296) (0.000931) (0.0738) 

      

year t-4 0.185 0.0329 0.0303 0.00274** 0.0680** 

 (0.116) (0.0233) (0.0374) (0.00131) (0.0335) 

      

year t-5 0.175*** 0.0158 0.0644** 0.00367*** -0.0192 

 (0.0582) (0.0106) (0.0293) (0.00111) (0.0393) 

      

year t-6 0.370*** 0.0312**    

 (0.138) (0.0146)    

      

year t-7 0.188*** -0.00314    

 (0.0521) (0.0110)    

Cumulative effect 2.975*** 0.306** 0.182** 0.028*** 0.385*** 

(0.7682) (0.1476) (0.0896) (0.0049) (0.1259) 

      

Log knowledge 

stocks (year t-1) 

0.122 0.0315 0.914*** 0.796*** 0.135 

(0.249) (0.347) (0.188) (0.229) (0.466) 

     

Log GDP per capita 2.816 1.471 0.803 -0.375 1.999* 

 (1.913) (1.743) (0.879) (0.590) (1.209) 

      

Institution index 0.515 0.876 0.258* 0.365 0.680 

 (0.567) (0.877) (0.145) (0.241) (1.515) 

      

Log Patent 

applications 

1.198 1.109 0.402* 0.498** -0.557 

(0.911) (0.955) (0.218) (0.204) (0.534) 

      

Observations 443 443 699 699 490 

GMM criterion 0.1762 0.2148 0.1550 0.1555 0.0261 

Number of countries 19 19 28 28 21 

Timespan 1986-2009 1984-2009 1984-2009 
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Table 1-5  Innovation in Response to Domestic and Foreign Shocks  

Technology  Flood Control Quake-proof Building Drought-

resistant Crop 

Impact Measure Death Damage Death Damage Damage 

Domestic Shocks      

year t 0.504*** 0.0705*** 0.0188** 0.00694*** 0.130** 

 (0.151) (0.0181) (0.00859) (0.00170) (0.0660) 

      

year t-1 0.344*** 0.0647*** -0.00239 0.00388** 0.0276 

 (0.121) (0.0147) (0.00758) (0.00162) (0.0496) 

      

year t-2 0.503*** 0.0711*** 0.0548* 0.00121 0.107** 

 (0.0687) (0.0197) (0.0310) (0.00105) (0.0504) 

      

year t-3 0.363** 0.0396* 0.0382 0.000891 0.138** 

 (0.158) (0.0204) (0.0450) (0.00135) (0.0651) 

      

year t-4 -0.0129 0.0289 -0.00682 0.000469 0.0671** 

 (0.0818) (0.0209) (0.0417) (0.00122) (0.0298) 

      

year t-5 0.0794 0.0229* 0.0356 -0.000262 0.00694 

 (0.0736) (0.0118) (0.0324) (0.00104) (0.0244) 

      

year t-6 0.423*** 0.0321***    

 (0.119) (0.0106)    

      

year t-7 0.169** -0.00575    

 (0.0708) (0.0104)    

Cumulative effect 

 

2.372*** 0.324*** 0.138 0.013*** 0.477*** 

(0.5640) (0.1091) (0.0902) (0.0043) (0.1542) 

      

Foreign Shocks      

year t 0.0450 0.00568 0.00742 -0.00212* -0.142 

 (0.0578) (0.00575) (0.00741) (0.00111) (0.111) 

      

year t-1 0.0980** 0.0264*** 0.00402 0.00693*** -0.0540 

 (0.0486) (0.00639) (0.00481) (0.00199) (0.0924) 

      

year t-2 0.171*** 0.0183*** -0.00285 -0.00412 -0.0701 

 (0.0501) (0.00634) (0.00354) (0.00652) (0.0930) 

      

year t-3 -0.0106 0.000237 -0.00371 -0.00474 0.105** 

 (0.0798) (0.00365) (0.00448) (0.00837) (0.0490) 

      

year t-4 -0.108* 0.000640 -0.00453 -0.00382 -0.00167 

 (0.0589) (0.00502) (0.00456) (0.00322) (0.0363) 

      

year t-5 0.0108 0.000496 -0.00907*** -0.00763*** 0.0279 

 (0.0332) (0.00455) (0.00166) (0.00245) (0.0255) 
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Continued Table 1-5 

year t-6 0.106** 0.00280    

 (0.0445) (0.00393)    

      

year t-7 -0.0678* -0.0108*    

 (0.0386) (0.00576)    

Cumulative effect 

 

0.7977*** 0.0438*** -0.0087 -0.0155 -0.1341 

(0.1940) (0.0121) (0.0079) (0.0203) (0.2931) 

      

Log knowledge 

stocks (year t-1) 

0.138 0.0800 0.885*** 0.822*** -0.204 

(0.221) (0.201) (0.190) (0.147) (0.392) 

      

Log GDP per capita 1.412 1.336 1.265 0.699 1.788 

 (1.795) (1.711) (0.954) (0.753) (1.100) 

      

Institution index 0.922 0.849 0.301 0.108 1.327 

 (0.836) (0.636) (0.203) (0.139) (2.091) 

      

Log Patent 

applications 

1.143 1.128* 0.318 0.402 -0.513 

(0.802) (0.640) (0.290) (0.346) (0.450) 

      

Observations 443 443 699 699 490 

GMM criterion 0.2147 0.2468 0.1754 0.1726 0.0221 

Number of countries 19 19 28 28 21 

Timespan 1986-2009 1984-2009 1984-2009 

Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price. All the models include country and 

year fixed effects. Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.  
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Appendix  

Appendix 1. Patent Search Codes 

 

Our technology choices are driven in part by the need to avoid misclassification of technologies.  

For instance, while good data on hurricane impacts exist, we only consider their effect on 

innovation as one possible cause of increased flooding due to limitations in the IPC classification 

system.  As shown below, we are able to identify patent classes pertaining to flood control.  In 

contrast, while there are also clear patent classes for fortifying buildings from earthquakes, there 

are not clear patent classes for protecting patents from wind damage.  Rather, these would appear 

as part of patent class E04H 9/14 (protection against “other dangerous influences, e.g. tornadoes, 

floods”) or patent class E04H 9/16 (protection “against adverse conditions, e.g. extreme climate, 

pests”).  Considering such patent classes would lead to irrelevant patents also being included.  The 

list of patent classes or keyword searches used to classify each technology appears below. 

Flood control 

(flood <in> (AB,TI)) AND ((E02B 0030? OR E02B 0031? OR E02B 007??) <in> IC). 

 

E02B0030 Engineering work in connection with control or use of streams, rivers, coasts, or other 

marine sites (barrages or weirs E02B 7/00); Sealings or joints for engineering work in general. 

E02B0031 Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like (making 

embankments or dams in general E02D 17/18). 

E02B007 - Barrages or weirs; Layout, construction, methods of, or devices for, making same (for 

protecting banks, coasts, or harbours E02B 3/04; sealings or joints. 

E02B 3/16; handling building or like materials for hydraulic engineering E02D 15/00; 

foundations in general E02D 27/00). 

 

Drought-resistant crops 

((drought AND (tolerant OR tolerance OR resistant OR resisting OR resistance OR combat OR 

fight)) <in> (AB, TI)). 

 

Earthquake–proof building 

((E04H 00902) <in> IC). 

E04H 00902 - Buildings, groups of buildings, or shelters, adapted to withstand or provide 

protection against, abnormal external influences (e.g. war-like action, earthquake, extreme 

climate) withstanding earthquake or sinking of ground.  
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Appendix 2. Sample Countries for each type of technology  

 

 

 Flood Control 

Australia 

Austria 

Canada 

China 

Czech Republic 

France 

Germany 

Hungary 

Italy 

Japan 

Netherlands 

Poland 

Republic of Korea 

Romania 

Russia 

Sweden 

Switzerland 

United Kingdom 

United States 

 

 Drought-resistant Crop 

Australia 

Austria 

Belgium 

Brazil 

Canada 

China 

France 

Germany 

Hungary 

India 

Israel 

Japan 

Mexico 

Netherlands 

New Zealand 

Republic of Korea 

Russia 

Spain 

Switzerland 

United Kingdom 

United States

 

 Quake-proof Building  

Argentina 

Australia 

Austria 

Belarus 

Belgium 

Bulgaria 

Canada 

China 

Denmark 

France 

Germany 

Greece 

Hungary 

Italy 

Japan 

Mexico 

Netherlands 

New Zealand 

Poland 

Republic of Korea 

Romania  

Russia  

Spain  

Sweden 

Switzerland 

Ukraine 

United Kingdom 

United States 
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Appendix 3. Sensitivity to Lag Length 

In the main paper, we include deaths and damages lagged through year t-5 for earthquakes and 

droughts, and lags of up to 7 years for floods. In this appendix we present the sensitivity analysis 

by gradually increasing the year lags. Most of our estimates are robust to the length of the lag, and 

the magnitude of coefficients for recent years does not change much as more distant lags are added 

to the model. The most sensitive result is quake-proof building in reaction to deaths, since the 

cumulative effect is only significant in the five-year distributed lag. While the contemporary effect 

remains similar across the various lags, as we add additional lags the coefficients for any one year 

become slightly smaller, with larger standard errors. We suspect this might be caused by 

multicollinearity issue, because many countries in our sample do not have any fatalities from 

earthquakes over the estimation period. In the damage model, where we have more non-zero 

observations, the cumulative effect is consistently significant and has less variation across different 

lag models, although the coefficients for certain individual years become insignificant in models 

with more lagged values. 
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Table 1-A3a: Flood Control (In reaction to deaths) 

 (1) (2) (3) (4) (5) (6) 

       

year t 0.317** 0.323** 0.333** 0.542*** 0.570*** 0.636*** 

 (0.138) (0.130) (0.131) (0.139) (0.132) (0.153) 

       

year t-1 0.154*** 0.229** 0.253*** 0.385*** 0.425*** 0.477*** 

 (0.0521) (0.0940) (0.0862) (0.0671) (0.0693) (0.0661) 

       

year t-2 0.317** 0.379** 0.407** 0.508*** 0.565*** 0.624*** 

 (0.160) (0.181) (0.173) (0.158) (0.157) (0.123) 

       

year t-3 0.117 0.182 0.183 0.408* 0.497** 0.566*** 

 (0.143) (0.179) (0.173) (0.237) (0.223) (0.196) 

       

year t-4  -0.0420 -0.0439 0.119 0.185 0.252** 

  (0.0602) (0.0540) (0.111) (0.116) (0.108) 

       

year t-5   0.0756 0.163*** 0.175*** 0.233*** 

   (0.0479) (0.0585) (0.0582) (0.0665) 

       

year t-6    0.330** 0.370*** 0.381*** 

    (0.157) (0.138) (0.120) 

       

year t-7     0.188*** 0.207*** 

     (0.0521) (0.0638) 

       

year t-8      0.0773 

      (0.0596) 

Cumulative effect 

 

0.905*** 1.070** 1.207*** 2.455*** 2.975*** 3.453*** 

(0.2817) (0.4199) (0.3774) (0.7313) (0.7682) (0.6921) 

       

Log knowledge stocks 

(year t-1) 

0.408** 0.375* 0.349* 0.210 0.122 0.0403 

(0.182) (0.208) (0.201) (0.248) (0.249) (0.244) 

       

Log GDP per capita 1.973 0.642 1.120 1.754 2.816 3.474* 

 (2.923) (2.972) (2.987) (2.228) (1.913) (1.922) 

       

Institution index 0.784 0.891 0.779 0.707 0.515 0.479 

 (1.105) (1.345) (1.186) (0.947) (0.567) (0.438) 

       

Log Patent 

applications 

0.182 0.757 0.695 1.225 1.198 1.294 

(1.120) (1.246) (1.211) (1.014) (0.911) (0.875) 

       

Number of obs. 443 443 443 443 443 443 

GMM criterion 0.1920 0.2126 0.2141 0.1729 0.1762 0.1728 

Number of countries 19 19 19 19 19 19 
Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   
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Table 1-A3b: Flood Control (In reaction to damage) 

 (1) (2) (3) (4) (5) (6) 

       

year t 0.0590*** 0.0658*** 0.0685*** 0.0810*** 0.0814*** 0.0712*** 

 (0.0151) (0.0181) (0.0179) (0.0219) (0.0234) (0.0184) 

       

year t-1 0.0437** 0.0511** 0.0506** 0.0473** 0.0465** 0.0420** 

 (0.0210) (0.0234) (0.0212) (0.0187) (0.0206) (0.0183) 

       

year t-2 0.0336*** 0.0371*** 0.0278** 0.0532** 0.0550** 0.0403** 

 (0.0119) (0.0143) (0.0123) (0.0207) (0.0239) (0.0177) 

       

year t-3 0.00364 0.00769 -0.00433 0.0490** 0.0467* 0.0374 

 (0.00642) (0.00864) (0.00851) (0.0226) (0.0270) (0.0230) 

       

year t-4  0.00745 0.00909 0.0316* 0.0329 0.0214 

  (0.0107) (0.0112) (0.0177) (0.0233) (0.0179) 

       

year t-5   -0.0116* 0.0156** 0.0158 0.00455 

   (0.00615) (0.00731) (0.0106) (0.00752) 

       

year t-6    0.0338*** 0.0312** 0.0252** 

    (0.0110) (0.0146) (0.0113) 

       

year t-7     -0.00314 -0.00644 

     (0.0110) (0.00932) 

       

year t-8      -0.0145** 

      (0.00579) 

Cumulative effect 

 

0.140*** 0.169** 0.140** 0.311*** 0.306** 0.221** 

(0.0530) (0.0689) (0.0630) (0.1157) (0.1476) (0.1110) 

       

Log knowledge 

stocks (year t-1) 

0.204 0.131 0.190 0.0268 0.0315 0.156 

(0.213) (0.230) (0.231) (0.305) (0.347) (0.291) 

       

Log GDP per capita 1.803 1.046 0.526 0.950 1.471 0.453 

 (2.008) (2.112) (1.929) (1.986) (1.743) (1.987) 

       

Institution index 1.143 1.320 1.354 1.212 0.876 0.832 

 (1.432) (1.875) (2.060) (1.552) (0.877) (0.883) 

       

Log Patent 

applications 

0.476 0.884 0.949 1.264 1.109 1.143 

(0.894) (0.963) (0.886) (0.953) (0.955) (0.924) 

       

Number of obs. 443 443 443 443 443 443 

GMM criterion 0.2113 0.2320 0.2333 0.1980 0.2148 0.2155 

Number of countries 19 19 19 19 19 19 

Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   
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Table 1-A3c: Quake-proof Building (In reaction to death) 

 (1) (2) (3) (4) (5) (6) 

       

year t 0.0116*** 0.0119*** 0.0116*** 0.0115*** 0.0118*** 0.0103*** 

 (0.00242) (0.00265) (0.00275) (0.00307) (0.00334) (0.00293) 

       

year t-1 -0.00661* -0.00590 -0.00627 -0.00591 -0.00571 -0.00883** 

 (0.00362) (0.00410) (0.00447) (0.00442) (0.00426) (0.00357) 

       

year t-2 0.0567** 0.0610** 0.0626** 0.0451 0.0405 0.0285 

 (0.0260) (0.0290) (0.0294) (0.0357) (0.0346) (0.0339) 

       

year t-3 0.00712 0.0129 0.0190 0.0130 0.00768 0.00523 

 (0.0266) (0.0280) (0.0296) (0.0335) (0.0284) (0.0257) 

       

year t-4  0.0260 0.0303 0.0147 0.0110 -0.00418 

  (0.0361) (0.0374) (0.0429) (0.0424) (0.0362) 

       

year t-5   0.0644** 0.0497 0.0372 0.0390 

   (0.0293) (0.0313) (0.0283) (0.0294) 

       

year t-6    -0.0814 -0.0936* -0.101*** 

    (0.0587) (0.0541) (0.0382) 

       

year t-7     -0.0480 -0.0459 

     (0.0328) (0.0498) 

       

year t-8      -0.00364 

      (0.0637) 

Cumulative effect  0.069 0.106 0.182** 0.047 -0.039 -0.080 

 (0.0463) (0.0800) (0.0896) (0.1659) (0.1361) (0.0884) 

       

Log knowledge 

stocks (year t-1) 

0.889*** 0.853*** 0.914*** 0.928*** 0.946*** 1.108*** 

(0.150) (0.165) (0.188) (0.187) (0.155) (0.119) 

       

Log GDP per capita 0.775 0.792 0.803 0.617 0.445 0.641 

(1.014) (0.980) (0.879) (0.972) (0.995) (1.103) 

       

Institution index 0.174* 0.155* 0.258* 0.251* 0.234** 0.319** 

 (0.0920) (0.0847) (0.145) (0.128) (0.111) (0.161) 

       

Log Patent 

applications 

0.460* 0.460* 0.402* 0.490* 0.538** 0.454 

(0.273) (0.267) (0.218) (0.257) (0.274) (0.287) 

       

Number of obs. 699 699 699 699 699 699 

GMM criterion 0.1523 0.1503 0.1550 0.1632 0.1628 0.1895 

Number of countries 28 28 28 28 28 28 
Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   



54 

 

Table 1-A3d: Quake-proof Building (In reaction to damage) 

 (1) (2) (3) (4) (5) (6) 

       

year t 0.0128*** 0.0129*** 0.0140*** 0.0133*** 0.0133*** 0.0137*** 

 (0.00155) (0.00148) (0.00172) (0.00148) (0.00163) (0.00178) 

       

year t-1 0.00162 0.00189 0.00264 0.00201 0.00190 0.00119 

 (0.00157) (0.00164) (0.00208) (0.00209) (0.00196) (0.00207) 

       

year t-2 0.00200 0.00241* 0.00290* 0.00205 0.00186 0.00114 

 (0.00122) (0.00140) (0.00158) (0.00166) (0.00153) (0.00161) 

       

year t-3 0.000794 0.00132 0.00175* 0.00137 0.00111 0.000841 

 (0.000987) (0.00102) (0.000931) (0.00117) (0.00124) (0.00104) 

       

year t-4  0.00171 0.00274** 0.00184 0.00160 0.00130 

  (0.00114) (0.00131) (0.00159) (0.00171) (0.00171) 

       

year t-5   0.00367*** 0.00231* 0.00181 0.00183 

   (0.00111) (0.00139) (0.00172) (0.00195) 

       

year t-6    -0.00265 -0.00323 -0.00334* 

    (0.00211) (0.00223) (0.00183) 

       

year t-7     -0.00152 -0.00135 

     (0.000983) (0.00130) 

       

year t-8      0.000330 

      (0.00177) 

Cumulative effect 0.017*** 0.020*** 0.028*** 0.020** 0.017** 0.016*** 

 (0.0041) (0.0046) (0.0049) (0.0082) (0.0084) (0.0053) 

       

Log knowledge 

stocks (year t-1) 

0.712*** 0.698*** 0.796*** 0.793*** 0.826*** 1.014*** 

(0.177) (0.199) (0.229) (0.252) (0.228) (0.218) 

       

Log GDP per capita -0.327 -0.220 -0.375 -0.368 -0.592 -0.707 

(0.989) (0.974) (0.590) (0.852) (0.899) (0.632) 

       

Institution index 0.158 0.149 0.365 0.239 0.251* 0.433** 

 (0.142) (0.144) (0.241) (0.151) (0.138) (0.219) 

       

Log Patent 

applications 

0.663* 0.613* 0.498** 0.589* 0.663* 0.596** 

(0.366) (0.343) (0.204) (0.310) (0.339) (0.268) 

       

Number of obs. 699 699 699 699 699 699 

GMM criterion 0.1555 0.1503 0.1555 0.1611 0.1596 0.2027 

Number of countries 28 28 28 28 28 28 
Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   
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Table 1-A3e: Drought-resistant Crop (In reaction to damage) 

 (1) (2) (3) (4) (5) 

      

year t 0.0754** 0.0754* 0.0954* 0.0997* 0.102* 

 (0.0378) (0.0396) (0.0559) (0.0521) (0.0556) 

      

year t-1 0.0126 0.00887 0.0201 0.0163 0.0158 

 (0.0339) (0.0387) (0.0437) (0.0392) (0.0383) 

      

year t-2 0.0729* 0.0640 0.0996** 0.0877 0.0923* 

 (0.0440) (0.0426) (0.0492) (0.0561) (0.0554) 

      

year t-3 0.0798 0.0733 0.122* 0.125* 0.131* 

 (0.0705) (0.0635) (0.0738) (0.0698) (0.0699) 

      

year t-4  0.00626 0.0680** 0.0697** 0.0717** 

  (0.0100) (0.0335) (0.0306) (0.0343) 

      

year t-5   -0.0192 -0.0239 -0.0270 

   (0.0393) (0.0420) (0.0449) 

      

year t-6    -0.0511 -0.0457 

    (0.0725) (0.0744) 

      

year t-7     0.00508 

     (0.0355) 

Cumulative effect 0.241** 0.228* 0.385*** 0.324*** 0.345** 

 (0.1161) (0.1190) (0.1259) (0.1169) (0.1427) 

      

Log knowledge stocks 

(year t-1) 

0.596*** 0.564*** 0.135 0.0869 0.0813 

(0.171) (0.177) (0.466) (0.525) (0.504) 

      

Log GDP per capita 1.729 1.836 1.999* 1.738 1.831 

 (1.309) (1.218) (1.209) (1.300) (1.230) 

      

Institution index -0.152 -0.145 0.680 1.061 1.425 

 (0.109) (0.114) (1.515) (2.241) (3.328) 

      

Log Patent 

applications 

-0.522 -0.542 -0.557 -0.498 -0.533 

(0.541) (0.530) (0.534) (0.498) (0.474) 

      

Number of obs. 490 490 490 490 490 

GMM criterion 0.0398 0.0404 0.0261 0.0239 0.0232 

Number of countries 21 21 21 21 21 

Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   
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Appendix 4. Lag sensitivity without knowledge stocks (no instrumental variables) 

In this section we provide additional sensitivity analysis showing the robustness of our results to 

both different finite lag structures and to potential endogeneity concerns when including 

knowledge stocks. To avoid these endogeneity concerns about the knowledge stock, the models 

presented here consider a reduced form in which the knowledge stock is replaced by the sum of 

previous deaths or damages. Essentially, the entire history of deaths or damages for each country 

is included, with the coefficient constrained to be the same after L years to allow estimation of the 

equation. The model can be written as: 

 𝑃𝐴𝑇𝑗𝑖𝑡 = 𝑓(∑ 𝛽𝑙𝐷𝑖,𝑡−𝑙
𝐿
𝑙=0 , 𝛽𝐻 ∑ 𝐷𝑖,𝑡−ℎ

𝐻
ℎ=𝐿+1 , βXXit, ��𝜂𝑖 , 𝜃𝑡)                                                                        (A1) 

For example, if L = 3, the model includes a separate damage coefficient for years 0 to t-3, and 

a single coefficient, H, on the sum of all damages occurring from year t-4 onward until 1960, the 

first year for which we have disaster data. We denote this as year H above. Xit represents a matrix 

of the various control variables used. Country fixed effects and year fixed effects are also included 

in the model.  By not instrumenting for impacts, these models also allow us to confirm the expected 

bias from potential endogeneity discussed in the body of the paper. 

Table 4A through Table 4E present the results by technologies. The tables show our results are 

robust to various lag lengths. The AIC and BIC values generally indicate out choice of the 

distributed lag length (for different types of technologies) picks up the best fit of a model. 

Moreover, in most cases, the coefficient on the sum of past events is insignificant (particularly 

with the increase of year lags), suggesting that additional lags are unimportant. In the flood control 

case (in reaction to damages), the coefficient on the sum of past damages is negative and significant 

at the ten percent level, which may suggest the earlier events may already affect the adaptive 

capacity and thus reduce the need for today’s innovations. This is consistent with the insignificant 
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coefficient on knowledge stocks discussed in the text.  Finally, without instrumenting for disaster 

damages, we find that the sum of the various 𝛽𝑗coefficients, are much lower compared to the sum 

in Table 4 in the case of flood control and drought.
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Table 1-A4a  Flood control (in reaction to deaths) 

Lags (3) (4) (5) (6) (7) (8) 

year t 0.155** 0.158** 0.163** 0.204** 0.189** 0.191** 

 (0.0664) (0.0731) (0.0753) (0.0916) (0.0848) (0.0855) 

year t-1 0.0644 0.0649 0.0849** 0.104** 0.131*** 0.122*** 

 (0.0479) (0.0473) (0.0423) (0.0420) (0.0425) (0.0432) 

year t-2 0.280*** 0.272** 0.278*** 0.301*** 0.314*** 0.321*** 

 (0.0920) (0.108) (0.106) (0.0952) (0.0904) (0.0863) 

year t-3 0.143** 0.143** 0.103 0.119* 0.146** 0.150** 

 (0.0643) (0.0643) (0.0734) (0.0709) (0.0619) (0.0599) 

year t-4  -0.0216 -0.0248 -0.0669* -0.0676* -0.0581 

  (0.0443) (0.0438) (0.0382) (0.0363) (0.0383) 

year t-5   0.0444 0.0479 -0.00798 -0.00976 

   (0.0544) (0.0559) (0.0386) (0.0385) 

year t-6    0.0756* 0.0841* 0.0549 

    (0.0452) (0.0484) (0.0395) 

year t-7     0.0534 0.0500 

     (0.0525) (0.0500) 

year t-8      -0.0218 

      (0.0463) 

Cumulative effect  0.643*** 0.617*** 0.649*** 0.784*** 0.842*** 0.799*** 

 (0.1581) (0.1458) (0.1411) (0.1639) (0.1666) (0.1623) 

Sum of past deaths -0.0383 -0.0399 -0.0486 -0.0612 -0.0708* -0.0789* 

 (0.0378) (0.0393) (0.0397) (0.0375) (0.0374) (0.0420) 

       

Log GDP per capita 2.119** 2.142** 2.284** 2.451*** 2.558*** 2.648** 

 (0.906) (0.928) (0.952) (0.951) (0.963) (1.037) 

Institution index 0.208 0.207 0.207 0.209 0.215 0.216* 

 (0.146) (0.144) (0.141) (0.134) (0.132) (0.130) 

Log Patent applications 0.439 0.447 0.480 0.576 0.628* 0.654* 

 (0.362) (0.362) (0.358) (0.355) (0.347) (0.338) 

       

Number of obs. 443 443 443 443 443 443 

AIC 1295.392 1297.327 1297.401 1294.587 1292.818 1293.933 

BIC 1422.292 1428.321 1432.489 1433.769 1436.093 1441.302 

Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   
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Table 1-A4b  Flood control (in reaction to damages) 

Lags (3) (4) (5) (6) (7) (8) 

year t 0.0443*** 0.0449*** 0.0432*** 0.0476*** 0.0479*** 0.0479*** 

 (0.0133) (0.0134) (0.0135) (0.0128) (0.0134) (0.0132) 

year t-1 0.0373** 0.0393** 0.0393** 0.0369** 0.0365** 0.0370** 

 (0.0156) (0.0158) (0.0161) (0.0179) (0.0167) (0.0166) 

year t-2 0.0264*** 0.0261*** 0.0271*** 0.0283** 0.0288** 0.0280** 

 (0.00938) (0.00979) (0.0100) (0.0114) (0.0128) (0.0119) 

year t-3 0.00412 0.00468 0.00501 0.00911 0.00911 0.0101 

 (0.0102) (0.0108) (0.0108) (0.0115) (0.0114) (0.0128) 

year t-4  0.00444 0.00419 0.00476 0.00468 0.00472 

  (0.00794) (0.00811) (0.00847) (0.00819) (0.00799) 

year t-5   -0.00281 -0.00227 -0.00189 -0.00199 

   (0.00437) (0.00486) (0.00554) (0.00545) 

year t-6    0.00221 0.00237 0.00302 

    (0.00583) (0.00614) (0.00689) 

year t-7     -0.0136** -0.0129*** 

     (0.00624) (0.00493) 

year t-8      -0.0142** 

      (0.00709) 

Cumulative effect  0.112*** 0.119** 0.116** 0.127** 0.114* 0.102 

 (0.0432) (0.0521) (0.0571) (0.0632) (0.0634) (0.0662) 

Sum of past damages -0.00709 -0.00825* -0.00951** -0.0119** -0.0115** -0.0108* 

 (0.00521) (0.00466) (0.00475) (0.00480) (0.00582) (0.00636) 

       

Log GDP per capita 1.979** 2.042** 2.116*** 2.146*** 2.126*** 2.089** 

 (0.854) (0.817) (0.800) (0.764) (0.823) (0.902) 

Institution index 0.223* 0.222* 0.222* 0.228* 0.227* 0.226* 

 (0.133) (0.128) (0.126) (0.120) (0.122) (0.123) 

Log Patent applications 0.574* 0.632** 0.661** 0.763** 0.754** 0.745*** 

 (0.310) (0.309) (0.309) (0.310) (0.296) (0.288) 

      (0.00636) 

Number of obs. 443 443 443 443 443 443 

AIC 1252.81 1251.582 1252.516 1249.781 1251.691 1253.445 

BIC 1379.711 1382.577 1387.603 1388.962 1394.966 1400.814 

Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   
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Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   

 
 
  

Table 1-A4c  Quake-proof Building (in reaction to deaths) 

Lags (3) (4) (5) (6) (7) (8) 

year t 0.0145** 0.0148** 0.0149** 0.0149** 0.0149** 0.0149** 

 (0.00640) (0.00633) (0.00613) (0.00614) (0.00609) (0.00603) 

year t-1 0.00675 0.00715 0.00783 0.00783 0.00787 0.00790 

 (0.00813) (0.00801) (0.00770) (0.00769) (0.00762) (0.00751) 

year t-2 0.0827** 0.0821** 0.0816** 0.0815** 0.0814** 0.0813** 

 (0.0384) (0.0383) (0.0382) (0.0382) (0.0380) (0.0379) 

year t-3 0.154*** 0.154*** 0.153*** 0.153*** 0.152*** 0.152*** 

 (0.0395) (0.0393) (0.0394) (0.0394) (0.0396) (0.0398) 

year t-4  0.0721* 0.0709* 0.0709* 0.0707* 0.0703* 

  (0.0374) (0.0376) (0.0375) (0.0375) (0.0376) 

year t-5   0.119*** 0.119*** 0.118*** 0.118*** 

   (0.0264) (0.0264) (0.0264) (0.0263) 

year t-6    0.0127 0.0125 0.0119 

    (0.0398) (0.0401) (0.0409) 

year t-7     0.0212 0.0208 

     (0.0335) (0.0332) 

year t-8      0.0287 

      (0.0475) 

Cumulative effect  0.258*** 0.330*** 0.446*** 0.459*** 0.479*** 0.506*** 

 (0.0533) (0.0845) (0.0975) (0.1283) (0.1513) (0.1777) 

Sum of past deaths 0.0323 0.0252 0.0104 0.00996 0.00787 0.00382 

 (0.0345) (0.0365) (0.0400) (0.0416) (0.0483) (0.0549) 

       

Log GDP per capita 1.607 1.574 1.507 1.505 1.503 1.493 

 (1.056) (1.032) (0.987) (0.991) (0.989) (0.981) 

Institution index 0.0403 0.0391 0.0378 0.0378 0.0377 0.0376 

 (0.0702) (0.0697) (0.0692) (0.0691) (0.0689) (0.0688) 

Log Patent applications 0.532** 0.516** 0.490* 0.489* 0.485** 0.480** 

 (0.264) (0.260) (0.253) (0.251) (0.242) (0.233) 

       

Number of obs. 699 699 699 699 699 699 

AIC 2115.289 2114.141 2102.199 2104.189 2105.958 2107.164 

BIC 2265.427 2268.829 2261.437 2267.976 2274.296 2280.051 



61 

 

Table 1-A4d  Quake-proof Building (in reaction to damages) 

Lags (3) (4) (5) (6) (7) (8) 

year t 0.00506* 0.00511* 0.00521* 0.00521* 0.00521* 0.00521* 

 (0.00300) (0.00302) (0.00304) (0.00305) (0.00306) (0.00303) 

year t-1 0.00378*** 0.00384*** 0.00398*** 0.00399*** 0.00400*** 0.00401*** 

 (0.00122) (0.00122) (0.00123) (0.00124) (0.00124) (0.00125) 

year t-2 0.00425*** 0.00426*** 0.00430*** 0.00430*** 0.00430*** 0.00430*** 

 (0.00136) (0.00136) (0.00135) (0.00136) (0.00136) (0.00135) 

year t-3 0.00629*** 0.00641*** 0.00641*** 0.00641*** 0.00641*** 0.00641*** 

 (0.000972) (0.00101) (0.00103) (0.00103) (0.00103) (0.00103) 

year t-4  0.00414*** 0.00438*** 0.00438*** 0.00438*** 0.00436*** 

  (0.00148) (0.00148) (0.00148) (0.00148) (0.00148) 

year t-5   0.00546*** 0.00546*** 0.00546*** 0.00544*** 

   (0.00108) (0.00110) (0.00109) (0.00108) 

year t-6    0.00226 0.00228 0.00225 

    (0.00157) (0.00155) (0.00157) 

year t-7     0.00239* 0.00244** 

     (0.00124) (0.00122) 

year t-8      0.00305** 

      (0.00154) 

Cumulative effect  0.019*** 0.024*** 0.030*** 0.032*** 0.034*** 0.037*** 

 (0.0047) (0.0058) (0.0066) (0.0077) (0.0086) (0.0096) 

Sum of past damages 0.00285** 0.00262** 0.00215 0.00213 0.00207 0.00185 

 (0.00124) (0.00127) (0.00136) (0.00137) (0.00155) (0.00176) 

       

Log GDP per capita 1.693** 1.645** 1.534* 1.530* 1.523* 1.493* 

 (0.843) (0.830) (0.813) (0.824) (0.837) (0.848) 

Institution index 0.0554 0.0532 0.0513 0.0512 0.0510 0.0504 

 (0.0649) (0.0641) (0.0635) (0.0633) (0.0630) (0.0624) 

Log Patent applications 0.623** 0.616** 0.607** 0.607** 0.604** 0.598** 

 (0.254) (0.251) (0.248) (0.246) (0.240) (0.234) 

       

Number of obs. 699 699 699 699 699 699 

AIC 2130.367 2129.542 2119.952 2121.932 2123.816 2124.201 

BIC 2280.506 2284.23 2279.19 2285.719 2292.153 2297.088 

Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   
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Table 1-A4e  Drought-resistant crop (in reaction to damages) 

Lags (3) (4) (5) (6) (7) (8) 

year t 0.0665*** 0.0646*** 0.0605*** 0.0613*** 0.0594*** 0.0580*** 

 (0.00900) (0.00922) (0.00963) (0.0116) (0.0122) (0.0119) 

year t-1 0.0158 0.0130 0.0113 0.0115 0.00919 0.00861 

 (0.0250) (0.0266) (0.0270) (0.0277) (0.0287) (0.0289) 

year t-2 0.0539** 0.0513** 0.0455* 0.0459* 0.0442 0.0380 

 (0.0247) (0.0252) (0.0262) (0.0272) (0.0279) (0.0280) 

year t-3 0.0102 0.00785 0.000994 0.00163 -0.000858 -0.00484 

 (0.0129) (0.0130) (0.0141) (0.0159) (0.0167) (0.0174) 

year t-4  0.0218 0.0174 0.0180 0.0160 0.0118 

  (0.0229) (0.0238) (0.0250) (0.0251) (0.0247) 

year t-5   0.0271 0.0275 0.0251 0.0209 

   (0.0231) (0.0245) (0.0248) (0.0241) 

year t-6    -0.00934 -0.0118 -0.0183 

    (0.0275) (0.0266) (0.0253) 

year t-7     -0.00250 -0.00907 

     (0.0355) (0.0332) 

year t-8      0.00152 

      (0.0364) 

Cumulative effect  0.146** 0.159* 0.163 0.157 0.139 0.107 

 (0.0616) (0.0842) (0.1112) (0.1440) (0.1788) (0.2086) 

sum of past damages 0.00967 0.00500 -0.00774 -0.00646 -0.0129 -0.0301 

 (0.0264) (0.0284) (0.0317) (0.0364) (0.0367) (0.0345) 

       

Log GDP per capita 0.428 0.413 0.372 0.362 0.409 0.523 

 (0.700) (0.696) (0.678) (0.703) (0.722) (0.731) 

Institution index 0.0698 0.0680 0.0595 0.0599 0.0573 0.0526 

 (0.144) (0.141) (0.132) (0.133) (0.129) (0.121) 

Log Patent applications 0.0950 0.127 0.217 0.213 0.234 0.299 

 (0.256) (0.259) (0.253) (0.253) (0.248) (0.237) 

Number of obs. 495 495 495 495 495 495 

AIC 1244.396 1245.435 1242.889 1244.859 1246.421 1244.043 

BIC 1383.146 1388.39 1390.048 1396.223 1401.989 1403.816 

Notes: Deaths are measured by 1000 people and economic damages are in $1 billion at 2005 price.  

All the models include country and year fixed effects.  

Standard errors are in parentheses, adjusted for clustering at the country level. *** p<0.01, **p<0.05, *p<0.1.   
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Appendix 5. Instrument Quality 

To assess the quality of our instruments, Table 1-A5 includes the partial R2 and Shea partial R2 

statistics for each of our endogenous variables for each technology. With multiple endogenous 

variables, simply assessing the F-statistic of the excluded instruments is not a sufficient test of the 

strength of the instrument (Baum 2006). Shea’s partial R2 statistic accounts for the inter-

correlations among instruments. If the Shea partial R2 is significantly smaller than the standard 

partial R2, it suggests there are not enough unique instruments to identify each endogenous variable. 

As we see in Table 1-A5, that is not the case, as both partial R2 values are similar for each variable.   
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Table 1-A5 Instrumental Variables Test 

 Flood Control Quake-proof Building Drought-Resistant 

Crops 

 partial R2 Shea 

partial R2 

partial R2 Shea 

partial R2 

partial R2 Shea 

partial R2 

Deaths(t) 0.4498 0.365 0.4739 0.4316   

Deaths(t-1) 0.445 0.3813 0.4668 0.438   

Deaths(t-2) 0.4193 0.4166 0.2756 0.2687   

Deaths(t-3) 0.3997 0.4292 0.2977 0.2859   

Deaths(t-4) 0.4048 0.3997 0.2957 0.2864   

Deaths(t-5) 0.4052 0.399 0.3073 0.2761   

Deaths(t-6) 0.3546 0.3129     

Deaths(t-7) 0.3778 0.3402     

Knowledge Stock 

(t-1) 

0.3092 0.3015 0.2117 0.211   

       

Damages(t) 0.3616 0.3092 0.4033 0.3849 0.1187 0.1086 

Damages(t-1) 0.3465 0.3105 0.3924 0.3752 0.1101 0.1011 

Damages(t-2) 0.3449 0.2991 0.3185 0.3053 0.1112 0.1057 

Damages(t-3) 0.3474 0.328 0.3352 0.3193 0.1214 0.1187 

Damages(t-4) 0.3489 0.3388 0.3243 0.3165 0.1193 0.1144 

Damages(t-5) 0.3545 0.34 0.346 0.3259 0.1017 0.0884 

Damages(t-6) 0.3519 0.3178     

Damages(t-7) 0.3393 0.298     

Knowledge Stock 

(t-1) 

0.3092 0.3045 0.2117 0.2027 0.1336 0.1322 
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Chapter 2: Technological Innovation, Social Learning and Natural Hazard 

Mitigation: Evidence on Earthquake Losses 

1. Introduction 

A natural disaster occurs when hazard meets vulnerability. Although most disasters are triggered 

by exogenous natural shocks, the actual impact of these events also depends on the capacity of 

human societies to effectively prepare for and cope with disaster risks (Cutter et al., 2003; Schwab 

et al., 2007). Why some communities suffer higher losses and what affects their ability to deal with 

environmental hazards are important questions in the economics of natural disasters. To date, the 

empirical literature has focused mainly on two factors, income and institutions, and provided 

consistent evidence that countries with higher income and better institutions suffer fewer fatalities 

from natural disasters (e.g., Kahn, 2005; Anbarci et al., 2005; Escaleras et al., 2007; Toya and 

Skidmore, 2007; Kellenberg and Mobarak, 2008; Keefer et al., 2011; Ferreira et al., 2013; Rashky, 

2008; Mendelsohn and Saher, 2011). The underlying argument is that these countries generally 

have better infrastructure and preventive technologies, and tend to adopt more effective regulations, 

emergency response systems, as well as other precautionary measures, that lead to better protection 

against natural disasters.  

While the existing literature mostly focuses on the aggregated effects of socioeconomic 

conditions on disaster losses, research on more disaggregated mechanisms of disaster mitigation 

and the dynamics of societal adaptation to natural hazards is lacking. Given the recurrent nature of 

most natural disasters, it is crucial for both researchers and policy makers to think about whether 

people are constantly learning from disasters, how they acquire and accumulate knowledge to cope 

with recurrent natural shocks and how effective their knowledge is in mitigating future disaster 

risks. This research extends the line of natural hazards literature by exploring these questions, and 
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furthermore, connects it with a larger emerging literature on adaptation to natural disasters and 

climate change. It elucidates the role of knowledge in adaptive capacity by linking it with social 

learning and evaluating its effectiveness in disaster mitigation.  

Specifically, in this paper I focus on earthquakes and consider two forms of knowledge that 

are relevant for mitigating earthquake impacts: 1) formal/technical knowledge (innovation), which 

is measured by the accumulation of patents in earthquake-proof building technologies in a country; 

and 2) informal knowledge, which is measured by a country’s prior earthquake experiences, since 

conventional wisdom holds that past disaster events often enhance people’s hazard awareness and 

motivate them to undertake or improve protective measures. My central prediction is that countries 

with more quake-proof building innovations and greater earthquake exposure in the past are better 

adapted to earthquakes, and would therefore suffer fewer losses.  

One unique contribution of this research is using patent data to empirically examine the role 

of technological innovation in disaster risk mitigation. Although the importance of science and 

technology development for disaster management has been widely recognized in the policy world 

(e.g., United Nations International Strategy for Disaster Reduction, 2009), there is little empirical 

research delving into this issue. I argue that the development of risk-mitigating technologies 

deserves special attention for two reasons. First, income and institutions can conceivably affect 

disaster impacts through multiple channels. While most recent studies have investigated the 

aggregated effects, it becomes increasingly important to disentangle these operating channels for 

us to better understand what contributes to adaptive capacity and inform disaster mitigation policy 

making. Second, innovation produces new knowledge that serves as a public good in the sense that 

it can be adopted by non-inventors and yields substantial social benefits at home and abroad. In 

the global context, while a vast majority of the R&D activities are performed by industrialized 
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countries (National Science Board, 2010), the developing world can potentially exploit the risk-

mitigating knowledge produced by their developed counterparts. Therefore, I also investigate the 

possible effect of foreign technical knowledge on reducing earthquake losses.  

However, examining technical innovations alone would raise endogeneity concerns because 

the risk-mitigating innovations could be induced by recent disaster impacts, as suggested in Miao 

and Popp (2014). To address this issue, I include prior earthquake experience, considering it as not 

only a driver of social learning, but also a proxy for informal knowledge of coping with subsequent 

earthquakes. Some recent studies have also examined the link between the general hazard exposure 

and actual disaster losses, assuming that countries or communities exposed to relatively greater 

hazard risks are better able to prevent losses (e.g., Anbarci et al., 2005; Escaleras et al., 2007; 

Keefer et al., 2011; Schumacher and Strobl, 2011; Hsiang and Narita, 2012; Sadowski and Sutter, 

2008; Neumayer et al. 2014). However, most of them treat hazard exposure/propensity as a 

country-specific, time-constant characteristic by measuring the frequency and intensity of 

experiencing natural hazards over a certain period of time. I take a different approach in this study 

by conceptualizing the prior disasters as the motivation for learning and creating a weighted 

experience stock, assuming that the influence of earlier events may wear off over time and people 

are more responsive to the most recent shocks.  

Another contribution of this paper is to address the issue of missing data on disaster losses, 

which is a serious problem for widely-used disaster databases, including the Emergency Events 

Database (EM-DAT), but has not yet been addressed or even acknowledged in the empirical 

literature. The earthquake data used in this paper are drawn from the National Geophysical Data 

Center’s (NGDC) Significant Earthquake Database, because it provides more details on 

earthquake physics than the EM-DAT does.  Similar to the EM-DAT, a considerable proportion 
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of the events in the NGDC database have missing values on earthquake-related deaths and 

damages. Therefore, I used multiple estimation strategies to address the missing data issue and 

obtained consistent results across different models. 

My empirical analysis uses a global cross section of 894 earthquake events in 79 countries 

between1980 and 2010. To preview the paper’s results, both technical knowledge stocks and past 

accumulated earthquake experiences play an important role in reducing a country’s fatalities from 

large earthquakes, controlling for the physical quake magnitude and other relevant national 

attributes. The effect of prior experiences on risk reduction is more pronounced in developed 

countries, while this influence largely operates through the mechanism of technological 

development. I did not find strong evidence on the effects of knowledge spillovers on reducing 

earthquake losses. Overall, my findings highlight the importance of incorporating technological 

innovation as part of a long-term natural hazard mitigation policy, and also suggest the need for 

more policy efforts at the international level to facilitate the diffusion and transfer of risk-

mitigating technologies across countries.   

The remainder of this paper is organized as follows. Section 2 discusses the relevant literature. 

Section 3 presents my conceptual model, followed by Section 4, which describes the data and the 

estimation strategies. Section 5 presents the main estimation results and Section 6 concludes.  

 

2. Relevant literature 

This paper is part of a growing literature on the determinants of disaster impacts (for a review of 

the recent literature, see Kousky, 2013), and my distinctive focus on the role of social learning and 

innovation naturally brings together separate strands of research on natural disasters, climate 

adaptation and technology spillovers. As discussed earlier, the empirical literature on disaster 
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damages has traditionally focused on the role of income and institutions in determining natural 

disaster deaths and damages, with institutions often being examined through various lenses 

including democracy (Kahn, 2005; Keefer et al., 2011), public sector corruption (Escaleras et al., 

2006), inequality (Anbarci et al., 2005), and governance (Ferreira et al., 2013). Very few studies 

have looked into the link between natural disasters and technological change. One exception is 

Alan Barreca et al. (2012), which examines how the adoption of residential air conditioning 

reduces mortalities from extreme hot weather in the United States. This paper further extends this 

line of research by using a cross-country sample and focusing more specifically on the mitigating 

effect of technological innovation. My study also draws upon Miao and Popp (2014), who examine 

the impact of three types of natural disasters, including floods, droughts, and earthquakes on the 

innovation of their relevant mitigating technologies and finds consistent evidence that recent 

disaster shocks spur technical innovations. While the aforementioned paper suggests the private 

sector adapts to natural hazards by innovating, this paper takes a further step by asking whether 

these innovations lead to significant reductions in current disaster losses. 

While the literature is largely silent on the effect of technical knowledge, several recent studies 

have examined long-term disaster exposure/propensity as one of the determinants of disaster losses, 

hypothesizing that countries at higher levels of risk are better prepared for the relevant disasters. 

For example, Anbarci et al. (2005) and Escaleras et al. (2007) measure earthquake exposure by 

calculating the number of 6+ Richter scale quakes that a country has experienced over a relatively 

long period, with only the latter providing modest evidence on an inverse relationship between 

exposure and fatalities. Keefer et al. (2011) take a slightly different approach by using the sum of 

physical strength (explosive equivalent) of large earthquakes that occurred between 1960 and 2008 

as a proxy for a country’s earthquake propensity. They show that not only countries more prone to 
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earthquakes suffer fewer fatalities but also the reduction effect of earthquake propensity is larger 

in developed and less corrupt nations. In another study, Neumayer et al. (2014) examine the impact 

of disaster propensity (defined as the expected frequency and magnitude of hazards) in the cases 

of earthquakes, tropical cyclones and floods using a global sample. Using a quantile regression, 

they find that a country’s disaster propensity has more pronounced effects in reducing economic 

losses of larger events (in the upper quantile of the damage function). Despite their similar focus 

on disaster exposure and adaptation, these studies differ in their interpretation of the mechanism 

that exposure affects damages. While the first two studies frame the effect of long-term exposure 

as “learning-by-doing,” the latter two argues that exposure affects the political incentive of 

government investment in disaster mitigation, thereby causing heterogeneous responses across 

different groups of nations and events of different scales.28 

The evidence on adaptation motivated by disaster exposure has also been found in studies 

concerning other types of natural hazards. Hsiang and Narita (2012) examine adaptation to tropical 

cyclones (TC) at the global scale by using the average of maximum wind speed and energy 

dissipated of TCs a country has experienced over the study period to measure its climatological 

TC exposure. They find that countries that are more exposed to TC climate suffer slightly lower 

marginal losses from a storm. Sadowski and Sutter (2008), in another study modeling damages 

from tropical cycles within the United States, find that a prior hurricane that occurred ten or more 

years earlier can significantly reduce current damages by presumably motivating disaster 

mitigation efforts. What distinguishes their study from most other research is their investigation of 

                                                           
28  To refute the explanation proposed in earlier research, Keefer et al. (2011) argue that the effect of earthquake 

exposure would be independent of the income and political characteristics of countries, if learning-by-doing is costless. 

However, it seems difficult to rule out the possibility of social learning for this reason, because one could argue that 

high-income or more democratic countries have stronger learning capacity and thus, can more effectively translate 

their prior disaster experiences into knowledge for coping with future disasters. 
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more than 60 definitions of a past hurricane to explore which type of events result in significant 

reductions in subsequent hurricane damages. Finally, Schumacher and Strobl (2011) examine how 

disaster exposure affects the relationship between income and disaster losses in a multi-hazard 

setting, arguing that countries with greater exposure are likely to experience first decreasing losses 

and then increasing ones with higher income level while the pattern is reversed for less exposed 

countries. To measure hazard-specific exposure, their study uses a global gridded spatial disaster 

risk dataset that measure natural hazard risks and local population exposure.29 

To explore the potential role of global knowledge stocks in disaster risk reduction, this research 

draws on another strand of literature on knowledge spillovers. The notion is that technological 

innovation is a public good (i.e., non-rivalry and non-excludable), meaning that the knowledge 

embodied in new technologies can be accessed and adopted by non-inventors, thereby generating 

substantial social benefits (Stephan, 2011). Most empirical studies in this field focus on knowledge 

spillovers in the global context and mainly examine two issues: the effect of technology spillovers 

on economic development and productivity growth, as well as the mechanism of knowledge 

spillovers (for a review of this literature, see Keller, 2001). My research adds to this literature by 

using disaster damages as a new outcome measure and examining the differential effects of foreign 

knowledge stocks across countries.  

 

3. Conceptual model 

To understand how societies acquire knowledge from their past disaster experiences to mitigate 

future hazard risks, I draw on the prior literature and begin with a disaster damage model in which 

the losses from a natural disaster (L) are a function of the physical intensity of the disaster (M) and 

                                                           
29  Specifically, they use the natural disaster global hot-spots data developed jointly by the World Bank Hazard 

Management Unit and the Center for Hazards and Risk Research Unit at Columbia University.  
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the characteristics of the affected countries reflecting local population exposure to the hazard (POP)   

and their capacity to respond to the shock (C). The model is consistent with the conventional 

wisdom that adaptive capacity is socially determined and place based, which leads to differential 

disaster impacts across communities, even if they are hit by natural shocks of the same strength 

(Kousky, 2013).  

                                 L = f1 (M, POP, C)                                                                                          (1)  

The key innovation of this model is conceptualizing knowledge as an important component of 

adaptive capacity, which includes both formal technical knowledge (TK), as measured by patented 

innovations, and informal knowledge (IK) of coping with disasters. It is important to note that 

while formal knowledge is often developed by experts (e.g., seismic engineers in the case of 

earthquake), informal knowledge could be laymen’s understanding of specific natural hazards (e.g., 

causes and potential consequences, probability of occurrence) and how to prepare for and respond 

to the specific hazard.30 This type of knowledge is not directly observed and thus, measured by 

prior disaster experiences (EXP), as the disaster and climate change literatures widely suggest that 

recent shocks or weather fluctuations provide new information to update people’s risk perception 

and awareness of the hazards (e.g., Gallagher, 2014; Deryugina, 2013). Another reason for 

considering how disaster experiences affect laymen knowledge is that for most of them, the 

efficacy of disaster-mitigating measures (e.g., quake-proof buildings) is unknown until a disaster 

occurs (Neumayer et al., 2013). Hence, they tend to have a better idea about disaster-proofing after 

experiencing an event. Note that the generation of disaster-specific knowledge, both formal and 

informal, is not only motivated by prior disaster experiences but also influenced by a country’s 

                                                           
30 The laymen knowledge is not necessarily the “correct” answers to factual questions but involves heuristics that 

people use to process information and make decisions. (Johnson, 1992)  
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income (Y) and institutions (I).31   

                            TK = f2 (EXP, Y, I)                                                                                          (2) 

                            IK = f3 (EXP, Y, I)                                                                                            (3) 

I then model a country’s adaptive capacity (C) as a function of its knowledge (TK, IK), income 

(Y), institutions (I), and other relevant socioeconomic characteristics (X) that may influence its 

ability to prepare for and respond to natural disasters.  

                           C = f4 (TK, IK, Y, I, X)                                                                                          (4) 

Combining all the equations above to remove the unobserved informal knowledge and adaptive 

capacity provides the following relationship:  

                           L = f5 (M, POP, TK, EXP, Y, I, X)                                                                    (5)                                                                     

In this final model, I posit that a country that has accumulated more technical knowledge in 

disaster reduction and more prior disaster experiences would suffer fewer losses from the current 

shocks. Because the capacity to generate knowledge usually varies across countries depending on 

their socioeconomic conditions, it is particularly important to account for other national attributes 

that may simultaneously affect learning and disaster losses in the model to avoid omitted variable 

bias. Also note that this conceptual model focuses on a closed economy and does not include 

foreign technical knowledge, though the investigation of foreign knowledge is discussed in the 

results section.  

 

4. Data and models 

                                                           
31  By institutions, I refer not only to the national political regime and social inequality but also to institutions 

specifically related to science and technology development, such as a country’s patent system.  
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The data used in this research are collected from a variety of sources to measure technical 

knowledge, earthquake-related losses and past experiences, and country characteristics. I discuss 

the earthquake data last, given that the nature of the data directly affects my estimation strategies.  

 

4.1 Patent data and technical knowledge  

To construct the variable for technical knowledge, I use the data on patents filed in the earthquake-

proof building technology from an online global patent database, Delphion.com. These patents are 

identified based on the International Patent Code (IPC). A majority of the identified patents are for 

seismic and structural engineering technologies such as damper device, vibration absorber, quake-

immune curtain wall system, and building collapse control systems. Appendix 1 provides more 

details on my search strategy.  Considering the fact that inventors can patent the same innovation 

in multiple countries where they desire protection, I count multiple patents representing the same 

invention only once in the sample, and assign it to only one country where the first inventor is 

located according to the patent document.32 Although patents are a common and direct measure 

for tracking technological innovation in the literature, it should be noted that it is far from a perfect 

measure because first, not all inventions get patented, and second, the number of patent 

applications is heavily influenced by a country’s patent system.33 In this study, I am less concerned 

about the first issue because in the model I include past disaster experience as a proxy for informal 

                                                           
32 I take this approach mainly because in this research I make a distinction between the knowledge (patents) produced 

by one country and knowledge produced abroad. Therefore, if a U.S. inventor has patented an invention in both the 

U.S. and Japan, it is considered as the domestic knowledge owned by the United States and foreign knowledge external 

to Japan.  
33 It should be noted that patent data seem the only choice available in this research given my focus on a specific type 

of technology, and data on other alternative measures, such as R&D expenditure and engineers in this technology field 

are generally unavailable for all countries. 
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knowledge. I address the second issue by including a variable capturing the heterogeneity across 

national patent institutions.34  

    Specifically, I construct a country’s stock of technical knowledge in quake-proof buildings 

using patent counts based on the following formula used in R&D literature (e.g., Popp, 2003; Popp 

et al., 2011). 

                                  TKc, t = e –β
1

(S) (1- e-β
2

(S+1)) PATc, t-s                                                                                   (6) 

In this equation, β1 represents a rate of decay to capture the obsolescence of older patents. β2 

represents the rate of diffusion, which captures delays in the flow of knowledge. The rate of 

diffusion is multiplied by (s+1) so diffusion is not constrained to be zero in the current period. S 

is the number of years before the current year t. All patents are sorted based on their first 

application date. PAT stands for the total count of quake-proof building-related patents in country 

c during the period of t-s. I follow the convention in the literature by assuming a decay rate of 0.10 

and a diffusion rate of 0.25.35 For ease of interpreting the effect of knowledge stock, I use the log 

of the value of knowledge stock plus 1 in the regressions.  

I use the same formula to calculate the foreign knowledge stocks based on foreign patent counts 

that are computed as total global patents minus the country’s own patents in a given year. However, 

one issue that arises is that the value of patented inventions usually varies widely, partially because 

the heterogeneity in patent systems across countries make it problematic to value each patent 

equally. Although this issue is less severe for examining domestic knowledge stocks because I 

simultaneously control for country-level patent institutions, it may cause serious concerns if I 

                                                           
34 Because a majority of the countries included in my sample are developing countries that do not even have a patent 

system in place, their patent counts are coded as zero. 
35 The parameters (the rates of decay and diffusion) used in this paper provide a lag peaking after 4 years, which is 

consistent with the length of lag structure for R&D capital in the literature. For example, Griliches (1995) notes that 

most past studies suggest a structuring peaking between 3 and 5 years.   

0S
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simply sum up all the patents filed worldwide by year. To address this issue, I follow Popp et al. 

(2011) by weighting patent counts by their patent family size to account for the variation in the 

values of these patents. I provide a detailed description of the weighting scheme in Appendix 2.  

 

4.2 Country characteristics  

I use the data on real GDP per capita from Penn World Table (7.0 version) to measure a country’s 

income. I use the political rights variable from Freedom House as a proxy for the quality of political 

institutions, which takes a value from 1 to 7, with higher values suggesting fewer political rights 

in the country. Drawing upon the prior studies modeling disaster damages, I include other country 

variables, including urbanization status (measured by the percentage of people living in urban 

areas in a country), openness (constructed as the average ratio of exports and imports of goods and 

services in GDP), and quality of the public health system (measured by the mortality rate of 

children under five). To control for countries’ patent systems and general propensity to patent 

innovations, I use the total number of patent applications filed within the country by its residents. 

All these data are drawn from the World Bank Development Indicators. Finally, I control for a 

country’s size using data on population from Penn World Table and total geographic area from the 

Global Rural-Urban Mapping Project (GRUMP).36 

 

4.3 Earthquake data 

The raw data on earthquake losses (deaths and estimated monetary damages) and physics 

(magnitude and focal depth) are taken from the National Oceanic and Atmospheric Administration 

(NOAA) National Geophysical Data Center (NGDC) Significant Earthquake Database. This 

                                                           
36 Note that in this paper I also include a variable measuring the local population exposed to individual earthquakes, 

which is discussed in the next subsection.  
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database includes an earthquake event if it meets at least one of these criteria: at least $1 million 

damage was incurred; ten or more people were killed; the earthquake had a magnitude 7.5 or 

greater or Modified Mercalli Intensity X or greater, or the earthquake generated a tsunami.37 

Using this dataset, I create two additional variables measuring a country’s prior earthquake 

history and population exposed to individual earthquakes, respectively. First, instead of simply 

calculating the total number of quakes within a certain period as other studies have, I create an 

experience stock using the number of quakes above magnitude 5 that occurred since 1900 (Quakect) 

based on the perpetual inventory model (PIM), assuming the experience stock depends on a 

distributed lag of the current and past events:38 

                               EXPc,t  = Quakec, t + (1-ρ) EXPc, t-1                                                               (7) 

ρ is the rate of stock depreciation, which is assumed to be 15 percent following the conventional 

literature. This approach distinguishes my study from most other research focusing on disaster 

exposure/propensity as a time-invariant attribute for two main reasons. First, even if the physical 

propensity of a country to experience certain natural hazards is constant from a statistical point of 

view, people may not perceive the risk or propensity at the same level over time. Social learning 

is a gradual process in which people accumulate more and more knowledge over time. It is 

problematic that earlier studies use a frequency measure that covers the entire estimation period 

when this value can only be realized at the end of the period (Neumayer et al., 2014). More 

importantly, the findings in the natural hazard literature suggest that more recent disaster 

experiences lead to a larger social response in disaster prevention and mitigation, even after 

                                                           
37 The NGDC earthquake data are compiled from multiple sources, including the U.S. Geological Survey, EM-DAT, 

reconnaissance reports, regional and local earthquake catalogs, newspapers and journal articles.  

38 I choose to use magnitude 5 as the threshold here because earthquakes that measure 5 on the Richter scale can cause 

moderate damages. For sensitivity tests I have also used magnitude 6 as another threshold and find both measures are 

highly correlated. Note that quake is a count variable. If the country does not experience any earthquakes or 

experiences quakes below 5, it is coded as zero.   
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controlling for the long-term hazard exposure of the affected areas (e.g., Gallagher, 2014; Cameron 

and Shah, 2013; Miao and Popp, 2014).39 Using a discounting model such as PIM implies that 

earthquakes that occurred earlier become less relevant for today (i.e., memories about the earlier 

events eventually wear off) and social learning is more responsive to the most recent events. For 

consistency with my measure of  knowledge stock, I also use  the logged value of experience stocks 

plus 1 in the regression.  

An earthquake can cause significant damages when it occurs in a heavily populated area. To 

measure the size of the population exposed to individual quakes, I use the coordinates information 

for earthquake locations provided by the NGDC database to calculate the number of people living 

within a 100-kilometer radius around the epicenter using the GPW spatial population data.40  

One key issue with the NGDC database is that a considerable proportion of the earthquake 

events recorded in this dataset have missing values for fatalities and monetary damages.41 It is 

important to point out that this issue is not specific to the NGDC dataset, but essentially common 

in other more widely-used disaster databases such as the EM-DAT maintained by the Centre of 

Research on the Epidemiology Disaster (CRED).42  If the data on the dependent variable are 

                                                           
39 For example, Gallagher (2014) finds that the U.S. county-level flood insurance take-up rates increase sharply the 

year after a flood occurred and then gradually declines to the normal level. Note that while these studies focus on the 

mechanism that recent events update people’s risk perception, this research focuses on learning by asking whether 

recent experience can mitigate future disaster impacts.  
40 This procedure is done using the Arcmap by intersecting the population distribution map taken from the Gridded 

Population of the World (GPW), v3 (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/about-us) with the 

earthquake event map. I used the population data of 1995 and interpolate the annual data on the local population 

exposure variable by taking into account a country’s overall population growth.   
41 Specifically, about 55 percent of the earthquake events for my sample countries in the NGDC database do not have 

information on deaths, and 80 percent of them have no information on monetary damages. According to the NGDC 

data manager, the earthquake loss data are missing because of two reasons: 1) coding error. When earthquake caused 

no deaths, it is coded as missing rather than zero. Therefore, the NGDC raw data do not have any events coded with 

zero deaths or damages; 2) truly missing. There is no information available about the exact losses.  
42 The EM-DAT states that “0” does not represent a value and can mean no information available. But in almost all 

studies that use EM-DAT data, 0 is explicitly treated as zero deaths/damages instead of missing. One reason that 

researchers are not aware of this problem is because the disaster data (available for direct downloading in advanced 

search) have been already collapsed to country-year observations as a balanced panel. The disasters impacts are all 

coded as “0” if a country has not experienced a disaster or has missing deaths/damages when a disaster strikes.  

http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/about-us
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missing completely at random (i.e., the probability of having missing values is neither dependent 

on other observed variables nor the value of the variable itself), the analysis should still provide 

unbiased estimates (Graham, 2009). However, here the missing data are not random because: first, 

the missing values include earthquakes that resulted in zero deaths or damages (but we don’t know 

exactly which portion of the missing data are true zeros or truly missing); and moreover, my 

investigation of the potential causes of missing data shows that smaller-magnitude earthquakes 

that occurred more deeply in the crust, and also in less populated areas, are more likely to have 

missing values on deaths and damages.43 This may suggest that one possible missing mechanism 

might be these earthquakes caused very few losses which are therefore unreported (in other words, 

the missingness may depend on the value of the outcome variable itself). In the next sub-section I 

discuss in more detail how I address the missing data issue by employing different estimation 

strategies.  

 

4.4   Empirical model and estimation strategies 

Based on my conceptual model, I estimate the following equation to examine the effect of technical 

knowledge and experience stocks on earthquake fatalities:  

 

Log(deathse,c, t + 1) = f (Me,c, t, POPe,c, t,, TK c, t-1, EXP c, t-1, Yc, t-1, I c, t-1, X c, t-1, continent, θt, εe,c,t)       (8) 

 

where e is an earthquake event indicator, c a country indicator, and t a year subscript. This model 

accounts for both event characteristics (magnitude, focal depth, population exposure), and country 

                                                           
43 Specifically, I create a binary variable which indicates whether an event has missing deaths or damage, and regress 

it on both earthquake characteristics and country characteristics variables using a probit model. I provide the regression 

results and more details on missing data in Appendix 3.  
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characteristics (knowledge and experience stocks, income, political rights, urbanization, trade 

openness, child mortality rate, patent applications, population and geographic size). To avoid 

potential endogeneity, I lag all the country-level variables one year. In the model, I also include 

continent fixed effects to control for the geopolitical heterogeneity and year fixed effects to account 

for time-varying factors that are common to all countries (e.g., improvement in other types of 

earthquake-preventive technologies over time).44 It should be noted that the unit of observation in 

my analysis is an earthquake event.45 Therefore, I only include an observation when a country 

experienced an earthquake in a given year. Repeated country-year observations are thus included 

in the regression when the country experienced multiple events within the same year. 

As noted earlier, one empirical challenge in modeling earthquake damages is to deal with a 

large number of missing values on the outcome variable. In previous studies, most researchers 

treated missing deaths as zero, especially when they collapsed events to the country-year 

observations. Because the NGDC’s missing data do include zero deaths and are also associated 

with smaller and less destructive earthquakes, it seems relatively safe to assume these missing 

values may indicate very few deaths. Therefore, I start with the strongest assumption (i.e., missing 

is zero) and estimate equation (7) using an ordinary least squares (OLS) and Tobit model.46 I then 

relax this assumption by left censoring all the missing deaths at ten, given that ten deaths are one 

of the thresholds for including an earthquake in the NGDC database.47 Under this assumption, I 

estimate the same equation using a censored normal regression, which is one variation of the Tobit 

                                                           
44  Note that including controls for time is particularly important in this case. Because the knowledge stocks generally 

increase over time, year dummies help rule out the possibility that the knowledge stocks only pick up other tendencies 

for earthquake damages to decrease over time.  
45 I construct my data set based on earthquake events on purpose so I can still keep the events with missing deaths or 

damages in my sample.  
46 Because the earthquake deaths and damages can never be negative, this “corner solution situation” generally renders 

OLS inappropriate as an estimation methodology and make a Tobit estimator more preferable (Woodridge, 2006).  
47 Note that this approach assumes all the events with missing deaths have killed no more than ten people. It is more 

conservative to use a wider range (<10 deaths) than assigning a specific value (zero). 
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model.48  

Finally, I use the Heckman selection model (Heckman, 1979) to first predict the events that 

have non-missing deaths and then model the earthquake fatalities in the second stage.49  One 

advantage of using a selection model is that I don’t impose any explicit restrictions on the missing 

values, since it takes into account the missing data mechanism. To model the first-stage selection 

process, I use a tsunami indicator (a binary variable coded as 1 if the earthquake has generated a 

tsunami and 0 otherwise) as an instrumental variable. Recall that the occurrence of tsunami is one 

of the criteria for including an earthquake into the NGDC database. In particular, there is a 

considerable number of earthquakes in this database that were tsunamigenic but with no 

information on their actual impacts. Therefore, the tsunami indicator can qualify as an instrument 

because first, as a criterion imposed by data collectors, it affects the selection process by bringing 

in many non-destructive events with missing deaths, and at the same time, it does not directly 

correlate with my dependent variable, which is measured by direct deaths from earthquakes only 

(not including any secondary effects caused by earthquakes). 

In addition to fatalities, I also use monetary damages as another measure of earthquake impact, 

which is normalized as a fraction of the affected country’s GDP, log[damagect / GDPct-1 + 1].50 Note 

that censoring models are no longer appropriate for modeling damages because there is a non-

negligible number of earthquakes that have missing values for dollar damages but are estimated to 

                                                           
48 I estimated this model using the “cnreg” command in Stata.  
49 Specifically, the first stage is run on the full sample of earthquake events using a probit model, and models the events 

which have non-missing deaths, considering this group is systematically different from the group with missing deaths. 

The second stage, the conditional equation, is an OLS model run only on the events with non-missing deaths and also 

includes a variable, the inverse Mills ratio which is obtained in the first stage and controls for selection into this 

subsample. The Heckman selection model imposes exclusion restrictions, which means I need to identify an 

instrument variable that determines the probability of having missing values but not directly affect the earthquake 

losses.  
50 Because the damage-GDP ratio is a very small number for most countries in my sample, I multiply the fraction by 

one million before taking the log.  
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have caused severe property losses.51 Therefore, I only employ the Heckman selection model with 

the tsuami indicator as the instrumental variable in the case of damages. For all these models 

discussed above, I use robust standard errors clustered at the country level to account for potential 

heteoskedasticity.  

 

4.5   Sample and descriptive statistics 

Considering the fact that small earthquakes may cause only minor damages or not even be felt, I 

limit my sample to earthquakes of magnitude 5 and above.52 My final sample includes a total of 

894 earthquakes that occurred in 79 countries over the period 1980-2010.53 I chose 1980 as the 

starting year in this study because the patent data generally become available in the mid 1970s, 

and I allow the knowledge stock to accumulate over several years before entering the regressions. 

Table 2-1 provides the national summary statistics reporting the sampled country’s total 

earthquake counts, total earthquake-related deaths and damages, and total counts of patents in 

quake-proof building technologies over my study period. All the monetary damages are adjusted 

at the 2005 level by the World Bank GDP deflator index. Notably, 17 countries out of the sample 

have patents in the given technology field, and among all the patenting countries, Japan, United 

                                                           
51 This is inferred based on a five-level categorical variable provided by the NGDC to classify earthquake-related 

monetary losses. Specifically, this variable classifies damages as follows: 0 = none; 1 = limited (roughly corresponding 

to less than $1 million); 2 = moderate (~1 to 5 million); 3= severe (~>5 to 24 million) and 4 = extreme (~$25 million 

or more). This variable is available for most of the events in the dataset, which thus allows me to gauge the losses of 

earthquakes with missing damages. I find that half of the events with missing damages have caused less than $1 million 

damages, while about 20 percent of these events are estimated to have caused at least $5 million damages. 
52 I performed a test by including almost all the earthquakes in the NGDC database regardless of their magnitude, and examining 

whether a country’s knowledge stocks and experience stocks have differential effects across different scales of earthquakes. In the 

results provided in Appendix 4, I show that although the two variables have a significant and negative effect on fatalities for 

earthquakes measuring 5 and above on the Richter scale, they are generally insignificant for quakes below this threshold. This 

suggests that the role of knowledge in disaster mitigation is more pronounced for larger earthquakes. 
53 This sample includes all such earthquakes for which complete data is available for all independent variables.  
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States, China and Republic of Korea have filed most patent applications.54 Figure 1 shows the 

global patent counts in quake-proof buildings over time. Table 2-2 reports the descriptive statistics 

of the main variables in the analysis.  

 

5. Results 

5.1 The effect of domestic knowledge  

Table 2-3 presents the regression results for equation (8) using earthquake fatalities as the 

dependent variable in four different estimation models as discussed earlier. Across different 

columns, I find consistent evidence that both the technical knowledge and experience stocks have 

statistically significant and negative impacts on earthquake fatalities. The marginal effects for the 

technical knowledge and experience stocks indicate that, all else constant, a 10% increase in the 

knowledge stock is on average associated with 2% to 3.5% decrease in expected earthquake 

fatalities, and a 10% increase in the experience stock is associated with a 4.3% to 5.8% decrease 

in expected fatalities.55 Notably, using the Heckman selection model and Tobit model (assuming 

missing is zero) yields higher estimated coefficients for knowledge and experience stocks 

compared to the other models.  

One thing is important to note here. Unlike some other studies that use the cumulative counts 

or average disaster frequency to characterize a country’s disaster risk that is constant over time, 

                                                           
54 It should be noted that there are other countries that have patents in quake-proof building technologies but are not 

included in the sample because they did not experience any large earthquakes during the sample period, such as 

Germany. But their patents are counted in the global pool and are used to calculate the foreign patents and knowledge 

stocks. Also note that Japan has significantly more patents than other countries because its patent systems require the 

inventors to file multiple patents for the same invention which would otherwise be covered by a single patent in other 

countries. This is why it is important to control for a country’s patent regime in this study.   
55 Note that the OLS (column 1) and Tobit model (column 2) are performed under the same assumption that missing 

deaths are zero, and in this case the latter is generally considered to provide more reliable estimates because of the 

non-negative nature of deaths. Therefore, I primarily focus on columns 2-4 in my discussion of the results. Also note 

that Tobit, censored normal, and the Heckman selection models are all modeling linear effects on the latent variables, 

not the observed outcomes. Their coefficients are interpreted in the similar manner to OLS regression coefficients.  
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the experience stock I construct here is a time-varying variable for individual countries, which 

assigns more weight to more recent earthquake events the country has experienced. Even though 

these two measures are highly correlated, they entail different conceptual implications. In the 

results I provide in Appendix 5, I test their respective explanatory power by including both such 

variables in the regressions and find that the experience stock still remains statistically significant 

and negative while the constant frequency measure becomes insignificant in all cases. This may 

suggest the dynamics of learning in disaster mitigation and, in particular, that the events that 

occurred more recently play a more important role in updating people’s knowledge on coping with 

earthquakes. In addition, I also show my estimation results are robust to using the experience stock 

variable constructed with earthquakes above magnitude  6.  

All the event-specific variables (including earthquake magnitude, focal depth and size of 

exposed population) are significant for explaining fatalities, and have the expected sign. In terms 

of other country characteristics, it is interesting to see that a country’s income is insignificant, 

despite the strong consensus reached in the prior literature on the mitigating effect of economic 

development. Notably, I include logged GDP per capita and its squared term to allow for the 

nonlinear income-mortality relationship (Kellenberg and Mobarak, 2008), and an F-test shows the 

two variables are not jointly significant. In the results provided in Appendix 6, I show that when I 

exclude knowledge stocks (which highly correlate with a country’s income level), the GDP 

variables become statistically significant and exhibit the same pattern as found in Kellenberg and 

Mobarak (2008). This finding may suggest that an important channel that income mitigates disaster 

impacts is through development of technical knowledge, since the inclusion of knowledge stock 

lowers the explanatory power of income for earthquake fatalities.  
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Consistent with the findings from prior literature, my results show that the quality of political 

institutions is another important determinant of earthquake fatalities, because the estimated 

coefficients suggest that countries with greater political rights suffer significantly fewer deaths 

from earthquakes. Another variable that is consistently significant across all models is the child 

mortality rate, with a positive estimated coefficient. This suggests that earthquakes of the same 

intensity would result in more fatalities in countries with poorer public health systems. None of 

the past studies have specifically examined this factor and I argue that the effect of health 

conditions on disaster risk deserves more attention in future empirical research in this field.  

To investigate whether the effect of the experience stock on earthquake fatalities differs across 

countries at different income levels, I estimate separate experience coefficients for developed and 

developing countries. Specifically, I create two binary variables: one variable equaling one if a 

country is a developed country and zero otherwise, and the other variable equaling one if a country 

is a developing country and zero otherwise. I interact both variables with the experience stock in 

order to directly compare the estimated effect of prior earthquake experiences in developed nations 

versus the effect on developing nations. Table 2-4, Panel A reports the results for the interaction 

terms and knowledge stocks.56 I find that while developing countries with more prior earthquake 

experiences on average have significantly fewer fatalities from earthquakes, the estimated effect 

of experience is less clear in the developed world. The coefficients are insignificant in columns 2 

and 4, and significant at only the 10% level in column 3. This is not surprising because developed 

countries usually have more patented innovations and their innovations in earthquake mitigation 

could also be motivated by their past earthquake experiences, as suggested in Miao and Popp 

(2014).  The high correlation between this interaction term and the domestic knowledge stock may 

                                                           
56  The estimated coefficients for other independent variables remain largely the same as in Table 2-3 and therefore, 

are not included in this table.  
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thus introduce multicollineary. Note that the estimated coefficients for the technical knowledge 

variable are still significant and negative, although their significance declines slightly compared 

to the results in Table 2-2.  

Considering the potential multicollineary issue,  I re-run the same specifications after removing 

the knowledge stock so I can compare the full effects of experience stocks between the two groups. 

According to the results reported in Table 2-4, Panel B, the estimated coefficient for the experience 

stock in developed nations is now statistically significant and their magnitude is consistently larger 

than that of the experience coefficient in developing countries. Furthermore, I find that the two 

coefficients are significantly different from each other at the 10% level in most of my 

specifications. This suggests that developed countries are generally more responsive to their past 

disaster experiences, and that they have stronger adaptive capacity to translate their experiences 

into effective protection against current disaster shocks. Combining the results in Panel A, I can 

also infer that technological innovation is one important channel for developed nations to engage 

in social learning and develop new knowledge to mitigate future disaster risks.  

In addition to fatalities, I also use monetary damages as another measure of earthquake impact. 

Table 2-5 reports my estimation results using a Heckman selection model, which aims to address 

the issue of missing data on dollar damages.57 Column 1 presents the baseline result, which shows 

the experience stock still has a significant and negative effect on earthquake damages, while the 

domestic knowledge stock becomes insignificant, suggesting that the accumulation of quake-

mitigating innovations in a country can save more lives when an earthquake occurs but may not 

be that effective in reducing property losses. In column 2, I interact the expereince stock with 

developed and developing dummies to see whether the past disaster experiences may exert 

                                                           
57  The independent variables included in the damage model are largely the same as those used for modeling fatalities. The only 

difference is I removed the child mortality rate, because this variable is less relevant for damage outcomes.   
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differential impacts on earthquake damages across different country groups. In contrast to the 

results in Table 2-4, I find that prior experience has a significant mitigating effect in developed 

countries (a 1% increase in their experience stock is on average associated with a 3% decrease in 

normalized earthquake damages), while the estimated coefficient of experience for developing 

nations becomes statistically insignificant. The domestic knowledge stock is also insignificant in 

this case.   

With respect to other control variables, I find the event-specific factors are consistently 

significant for explaining the severity of earthquake damages. The results on other country-level 

variables are less clear, potentially because I include the developed and developing dummies in 

the second regression. For example, the political right variable is found to be statistically 

significant and positive in column 1, although this variable is no longer significant in column 2. 

One important thing to note here is that reporting on deaths has been traditionally more 

accurate than damage reports, because the latter could be highly subject to the country 

heterogeneity in disaster loss measurement and reporting (Kousky, 2013). Monetary damages from 

natural disasters usually involve direct losses (e.g., destruction of capital stocks) and indirect losses 

(e.g., welfare effects), which adds more complications to the evaluation of actual damages. Since 

the NGDC database contains more missing values for earthquake damages than deaths, this makes 

it even more difficult to model the factors which explain the cross-country pattern of earthquake 

damages. Considering this specific data limitation, I have more confidence in the results when 

using fatalities as the measure of earthquake impact.   

 

5.2 The effect of foreign knowledge  
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Since my results from Tables 2-3 and 2-4 suggest that a country that has accumulated more 

technical knowledge in earthquake-mitigation would suffer fewer fatalities, I take a further step by 

asking whether one country’s technical innovations might benefit other countries in reducing their 

own disaster risks, given the public good nature of innovation. To investigate the potential 

knowledge spillover effect, I estimate equation (8) by including the foreign knowledge stock 

variable that is constructed based on foreign patents in quake-proof building technologies. It 

should be noted that the foreign knowledge stock is, by construction, more or less the same for all 

countries, because foreign knowledge for non-patenting countries is equivalent to the global 

knowledge stock. It is also similar for all the patenting countries because each of them only 

contributes a relatively small number of patents to the global pool. When countries exhibit very 

similar time-varying trends in the foreign knowledge stocks, it is difficult to identify the effect of 

foreign knowledge independent of the individual year dummies. Therefore, instead of the year 

fixed effects, I include linear time trend and its quadratic term in the regressions. 

Two issues are important to note here. First, although the stock of foreign knowledge available 

for individual countries is similar, one may doubt whether foreign knowledge is equally accessible 

to and exploited by every country. In other words, the effect of the foreign knowledge stocks in 

disaster mitigation is very likely to vary across the recipient countries depending on their 

characteristics. Here I consider two specific mediating factors. First, drawing upon the literature 

on international technology diffusion suggests that knowledge spillovers are often likely to occur 

throughout international trade (Coe and Helpman, 1995), I hypothesize that countries that are more 

open to trade would have better access to foreign knowledge and thus, are more likely to apply it 

in their own disaster mitigation endeavors. Furthermore, countries that are more prone to 

earthquakes might be more interested in introducing new quake-mitigating technologies that have 
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been developed abroad, and also their past experiences may also provide them stronger absorptive 

capacity to exploit foreign knowledge for disaster mitigation. To examine these two hypotheses, I 

interact the foreign knowledge stock with a country’s trade openness and experience stock, 

respectively, to test whether the increase in foreign knowledge exerts differential effects across 

countries conditional on these characteristics. 

Second, it always takes time for technical innovations to diffuse from one country to the other. 

Since I use one-year lagged values of the domestic knowledge stocks, it is reasonable to assume 

that the effect of foreign knowledge would take longer than one year to realize. I conduct a set of 

sensitivity tests with different number of lags (more details on the sensitivity analysis provided in 

Appendix  7) and here I present the results using foreign knowledge stock lagged by five years. 

Table 2-6,  Panel A reports the results when the foreign knowledge variable is included. Panel 

B includes the interaction term between foreign knowledge and trade openness, and Panel C 

includes the interaction between foreign knowledge and experience stocks. My results generally 

do not provide strong evidence on the mitigating effect of foreign knowledge in quake-proof 

building, as the coefficient on foreign knowledge is negative but not statistically significant. There 

is also little evidence that the effect of foreign knowledge varies with the receiving country’s trade 

openness and past earthquake experiences, because neither of the interaction terms is statistically 

significant. In the meantime, including the foreign knowledge stocks does not change the 

significance and magnitude of the estimated coefficients of domestic knowledge stocks. This 

finding may suggest that compared to domestic knowledge stocks, foreign knowledge is less 

effective in reducing a country’s disaster risk. This might be because the quake-proof building 

technologies are specific to local geography (Lanjouw and Mody, 1996) or that building and 
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infrastructure construction is largely a local industry, which make it more difficult for these 

specific innovations to diffuse across countries. 

Another reason that may cause the insignificance of foreign knowledge is multicollinearity, 

because the stock variable gradually increases over time and highly correlates with the time trend 

variables. Thus, I take a further step by asking whether there has been a global downward trend in 

earthquake fatalities, given that technologies are always improving over time (including not only 

quake-proof buildings, but also other relevant techniques such as detection, warning, debris 

removal) that may contribute to the global adaptive capacity in general. In the results provided in 

Appendix 8, I re-run the regressions by removing the foreign knowledge stock but still keeping 

the time trend variables to account for the general global technological progress in earthquake 

mitigation. I find that the time variables are still statistically insignificant, which indicates that in 

the past thirty years there has been no significant decrease in earthquake fatalities worldwide after 

controlling for country-specific attributes. This may suggest that disaster mitigation relies more on 

the efforts of affected countries themselves rather than the advancement of global knowledge.  

 

6. Discussion and conclusion 

Considerable work has been devoted in the past decade to modeling damages of natural disasters 

to understand the factors that determine a community or nation’s ability to cope with them. This 

growing literature not only informs policies for natural hazard mitigation, but also has important 

implications for climate change adaptation, particularly given the growing scientific consensus 

that climate change could worsen certain natural disasters.58  This paper extends this line of 

                                                           
58 Although the focus of this paper is on earthquakes which obviously have a weaker link to climate change, we could 

potentially consider the responses to earthquakes as an analogue of the responses to climate change and climate-related 

extreme events.  
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literature by considering knowledge as an important determinant and indicator of social capacity 

to adapt to natural disasters. Specifically, I present the first attempt to empirically examine the role 

of technical innovation in disaster risk mitigation by making use of patent data to track the 

technological change. Because innovation is only one form of social learning, I also account for a 

country’s prior earthquake experience considering it as not only the motivation for learning, but 

also a measure of the unobserved informal knowledge for coping with earthquakes. My results 

provide strong evidence that countries that have more innovations in quake-proof building 

technologies and were more exposed to earthquakes in the past suffer significantly fewer fatalities 

from later earthquakes. Moreover, I show that past quake experiences result in a larger mitigating 

effect in developed countries than in developing countries, though this difference could be partially 

explained by the stronger capacity of industrialized nations to develop new and more effective 

risk-mitigating technologies.  

An important distinction between this study and prior research that examines country-level 

baseline hazard is that I place my conceptual argument for disaster mitigation in a learning 

framework, and emphasize that past events that occurred at different points in time may have 

differential implications for learning, since the effects of earlier events may eventually wear off. 

This approach not only provides a better understanding of adaptation as a dynamic learning process, 

but also sheds light on what drives society to adapt to environmental changes and shocks. This 

research further informs the modeling of potential future climate damages and climate adaptation 

(e.g., de Bruin et al., 2009; Bosello et al., 2009), as my results may suggest that past experiences 

with climate variability and extreme weather events would motivate adaptation, which in turn, 

reduces the future damages of climate change.  
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This paper also makes an important methodological contribution to the empirical literature on 

natural disasters by addressing the issue of missing data on disaster fatalities and damages. 

Moreover, I use multiple estimation strategies to model earthquake fatalities, which produce 

consistent results across different specifications. Because the EM-DAT data that are most 

commonly used in current disaster research also have this data limitation, it is important for 

researchers to carefully think about how their choice of models and data structure (based on 

country-year or events) may relate to assumptions regarding the missing deaths and damages, and 

ultimately affect their estimation results. I envision my study provides a starting point for more 

discussion and investigation of this empirical challenge.  

Finally, given my findings on the effect of technical innovation on reducing earthquake 

fatalities, this research highlights the importance of incorporating technology development into an 

integrated policy approach for natural hazard mitigation and climate adaptation. While the 

traditional literature suggests economic development and institution improvement can provide 

“implicit insurance” against natural disasters (Kahn, 2005), this research suggests that countries 

adjust their allocation of resources in mitigation-specific investment and put more effort into 

encouraging the development of risk-mitigating technologies. Concerning the global diffusion of 

these technologies, in this paper I did not find strong evidence on the effect of foreign knowledge 

on reducing domestic earthquake fatalities. However, this does not suggest that foreign knowledge 

does not matter. One possibility could be that countries tend to rely more on their domestic 

knowledge in risk mitigation and do not effectively exploit the technical innovations available 

abroad. If this is the case, one policy recommendation is that international institutions should play 

a more important role in encouraging and facilitating technology transfer of risk-mitigating 
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technologies between the developed and developing world. I leave studying the implications of 

foreign knowledge and knowledge spillovers for future research.   
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Table 2-1 Earthquake and patent statistics for sample nations 

country 

# of 5+ 

earthquakes  

Total deaths 

(persons) 

Total damages (million 

$, adjusted at 2005 

price) # of Patents  

Afghanistan 26 9204 66.72598 0 

Albania 3 0 0 0 

Algeria 10 7509 16269.53 0 

Argentina 5 9 8.11293 10 

Armenia 1 0 0 0 

Australia 4 12 1.580914 12 

Austria 1 1 0 7 

Azerbaijan 2 32 5.757715 0 

Bangladesh 4 5 0 0 

Belgium 1 2 86.73025 8 

Bhutan 5 11 0 0 

Bolivia 1 105 0 0 

Bulgaria 1 3 7.93777 8 

Canada 2 0 0 35 

Chile 27 605 29525.37 0 

China 94 92072 114574.6 291 

Colombia 11 1551 2203.106 0 

Congo, Dem. Rep. 4 54 0 0 

Costa Rica 9 130 719.0294 0 

Croatia 1 0 0 0 

Cuba 1 0 0 0 

Cyprus 1 2 5.317976 0 

Dominican Republic 2 8 0 0 

Ecuador 10 1050 1098.794 0 

Egypt 3 557 1566.58 0 

El Salvador 5 2303 2858.237 0 

Ethiopia 2 0 0 0 

Fiji 5 5 0 0 

France 1 0 0 134 

Georgia 1 0 0 0 

Greece 29 218 3686.261 31 

Guatemala 9 33 0 0 

Haiti 2 222574 7207.856 0 

Honduras 4 12 0 0 

Iceland 3 0 36.06854 0 

India 27 33217 3603.956 0 

Indonesia 107 11742 15840.01 0 

Iran 74 81214 13859.2 0 

Continued on the next page 
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Italy 15 5060 49344.18 42 

Japan 65 5769 166315.4 9928 

Jordan 1 0 0 0 

Kazakhstan 1 1 0 0 

Kyrgyzstan 8 131 210.1828 0 

Laos 1 0 0 0 

Lebanon 1 0 0 0 

Macedonia 3 1 9.015505 0 

Malawi 3 13 40.24146 0 

Mexico 27 9962 6951.751 10 

Morocco 1 628 0 0 

Mozambique 1 4 0 0 

Nepal 3 1291 708.7818 0 

Netherlands 1 1 130.5483 11 

New Zealand 17 3 323.9742 29 

Nicaragua 4 7 0 0 

Pakistan 16 86556 5219.308 0 

Panama 8 2 0 0 

Papua New Guinea 20 87 57.84026 0 

Peru 26 853 20.83241 0 

Philippines 28 2685 526.5851 0 

Portugal 4 79 94.59422 0 

Republic of Korea 1 0 0 217 

Romania 7 18 1191.713 23 

Russia 14 2018 15069.15 79 

Saudi Arabia 1 0 0 0 

Slovenia 1 1 0 0 

Solomon Islands 15 55 0 0 

South Africa 1 15 0 0 

Sudan 3 33 0 0 

Tajikistan 5 68 1.351473 0 

Tanzania 2 2 0 0 

Thailand 1 0 0 0 

Tonga 1 0 0 0 

Trinidad and Tobago 3 1 29.54035 0 

Turkey 39 20442 24503.51 0 

Turkmenistan 1 11 0 0 

Uganda 1 7 87.56567 0 

United States 59 149 54131.79 323 

Vanuatu 14 5 0 0 

Venezuela 10 98 106.864 0 

Notes: While the earthquake counts and impact data cover the period 1980-2010, my patent data reflect the total 

counts of patent applications filed between 1974 and 2009.  
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Table 2-2  Descriptive Statistics 

  Mean Std. Dev. Min Max N 

Independent variables      

EXP* 1.96 0.95 0 3.66 897 

TK* 1.22 2.08 0 7.96 897 

FTK# 5.81 1.01 2.83 6.76 897 

Magnitude 6.24 0.81 5 9.1 897 

Focal Depth (kms) 31.69 53.97 0 675 897 

log(exposed population) 19.62 3.42 0 24.25 897 

log(GDP per capital)* 8.66 1.07 5.23 10.69 897 

Political Rights* 3.41 2.15 1 7 897 

log(population)* 17.86 2.03 11.55 21 897 

Urban* (%) 53.78 21.7 5.84 95.6 897 

Health* (%) 4.37 3.54 0.29 23.44 897 

Open*(%) 26.08 12.98 6.17 82.69 897 

log(patent applications)* 6.12 3.75 0 12.86 897 

log(area) 13.7 1.74 6.5 16.63 897 

      

Dependent variables      

log(death+1)a  2.48 1.53 0.69 12.31 897 

log(death+1)b  2.68 2.19 0.69 12.31 429 

log(damage+1)b 4.69 2.95 0.15 13.22 206 

Notes: Varibales with * are one year lagged, and # indicates five-year lagged value. Log(death+1)a indicates that all 

the missing deaths are replaced as zero, while variables with “b” are logged with only the non-missing values.  
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Figure 2-1. Global patent counts in quake-proof building, 1974-2009 
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Table 2-3 Modeling the effect of knowledge on earthquake fatalities [DV: log(death +1)] 

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

     

EXP (t-1) -0.364*** -0.470*** -0.436*** -0.582** 

 (0.104) (0.178) (0.127) (0.238) 

TK (t-1) -0.174*** -0.348*** -0.201** -0.318* 

 (0.0649) (0.115) (0.0860) (0.163) 

magnitude 1.278*** 2.356*** 1.795*** 2.697*** 

 (0.175) (0.227) (0.211) (0.421) 

focal depth -0.00341*** -0.0125*** -0.00930*** -0.0130*** 

 (0.00108) (0.00365) (0.00242) (0.00392) 

log(exposed population) 0.155*** 0.502*** 0.353*** 0.534*** 

 (0.0300) (0.117) (0.0810) (0.116) 

log(GDP per capital) (t-1) 1.185 0.993 1.745 2.517 

 (1.148) (2.022) (1.408) (2.375) 

[log(GDP per capital)]2(t-1) -0.0501 -0.0327 -0.0854 -0.132 

 (0.0701) (0.128) (0.0896) (0.145) 

political rights(t-1) 0.132** 0.214** 0.144* 0.239** 

 (0.0557) (0.100) (0.0744) (0.0988) 

log(population)(t-1) 0.206 0.233 0.127 0.154 

 (0.153) (0.298) (0.209) (0.264) 

urban (t-1) 0.00314 0.00730 0.00260 0.00753 

 (0.00787) (0.0140) (0.0103) (0.0159) 

health (t-1) 0.0923** 0.179*** 0.104** 0.168** 

 (0.0441) (0.0685) (0.0478) (0.0826) 

open (t-1) -0.0148** -0.0110 -0.0156 -0.0242 

 (0.00681) (0.0156) (0.00994) (0.0159) 

log(patent applications) (t-1) 0.0101 0.0630 0.0271 0.0731 

 (0.0475) (0.0912) (0.0567) (0.101) 

log(area) -0.0732 0.0170 0.0456 -0.0121 

 (0.155) (0.260) (0.201) (0.222) 

Constant -17.99*** -34.81*** -27.66*** -41.38*** 

 (5.133) (8.996) (6.178) (11.85) 

     

Left censored  465 465  

N 894 894 894 894 
Notes: All the models include continent fixed effects, year fixed effects, with robust standard errors clustered at the 

country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2-4  Interacting expereince with developed and developing country dummies 

Panel A  - DV: log(death +1)  

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

     

Developed * EXP(t-1) -0.433** -0.612 -0.545* -0.716 

 (0.174) (0.417) (0.288) (0.447) 

Developing* EXP(t-1) -0.344*** -0.438** -0.412*** -0.549** 

 (0.111) (0.180) (0.128) (0.245) 

TK(t-1) -0.161** -0.320** -0.179* -0.287* 

 (0.0696) (0.132) (0.103) (0.174) 

     

N 894 894 894 894 

     

 

Panel B  - DV: log(death +1)  

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

     

Developed * EXP(t-1) -0.613** -0.995*** -0.762*** -1.019*** 

 (0.174) (0.324) (0.227) (0.386) 

Developing* EXP(t-1) -0.311*** -0.365** -0.372*** -0.483** 

 (0.121) (0.195) (0.142) (0.220) 
Test the equality of the 

two coefficients(prob>F) 
    

0.0927 0.0800 0.0990 0.1650 

     

N 894 894 894 894 

     
Notes: All the models include continent fixed effects, year fixed effects, with robust standard errors clustered at the 

country level. All the specifications include all the other controls variables.  

*** p<0.01, ** p<0.05, * p<0.1 
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                     Table 2-5 Modeling the effect of knowledge on earthquake damages 

DV:  log[damagect / GDPct-1 + 1] 

   

Independent variables (1) (2) 

   

EXP (t-1) -0.949**  

 (0.470)  

TK (t-1) -0.0453 0.306 

 (0.235) (0.310) 

Developed * EXP(t-1)  -3.064*** 

  (1.143) 

Developing* EXP(t-1)  0.0323 

  (0.579) 

magnitude 3.266*** 3.594*** 

 (0.873) (1.025) 

focal depth -0.0204** -0.0209** 

 (0.00852) (0.00982) 

log(exposed population) 0.769*** 0.852*** 

 (0.217) (0.255) 

log(GDP per capital) (t-1) -4.550 -9.672* 

 (4.521) (5.819) 

[log(GDP per capital)]2(t-1) 0.304 0.628* 

 (0.272) (0.356) 

political rights(t-1) 0.417** 0.278 

 (0.166) (0.196) 

log(population)(t-1) -0.565 -0.341 

 (0.417) (0.492) 

urban (t-1) -0.0419* -0.0362 

 (0.0252) (0.0290) 

open (t-1) -0.0427 -0.0991** 

 (0.0303) (0.0414) 

log(patent applications) (t-1) 0.196 0.285 

 (0.172) (0.204) 

log(area) -0.0625 -0.930* 

 (0.383) (0.505) 

   

Constant -3.454 22.40 

 (22.22) (24.46) 

   

N 894 894 
Notes: All the models include continent fixed effects, year fixed effects, with robust standard errors clustered at the 

country level. All the specifications include all the other controls variables. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2-6 Modeling the effect of foreign knowledge on earthquake fatalities 

Panel A  - Only adding foreign knowledge stock   

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

EXP (t-1) -0.337*** -0.412** -0.376*** -0.500* 

 (0.107) (0.189) (0.136) (0.279) 

TK (t-1) -0.212*** -0.396*** -0.248*** -0.433** 

 (0.0689) (0.115) (0.0915) (0.205) 

FTK(t-5) -0.396 -0.567 -0.580 -0.714 

 (0.466) (0.851) (0.628) (1.418) 

magnitude 1.262*** 2.322*** 1.761*** 2.857*** 

 (0.177) (0.243) (0.221) (0.524) 

focal depth -0.00326*** -0.0119*** -0.00904*** -0.0144*** 

 (0.00109) (0.00397) (0.00260) (0.00469) 

log(exposed population) 0.155*** 0.483*** 0.336*** 0.590*** 

 (0.0304) (0.122) (0.0832) (0.148) 

log(GDP per capital) (t-1) 1.319 1.279 1.856 2.475 

 (1.192) (2.090) (1.485) (2.802) 

[log(GDP per capital)]2(t-1) -0.0563 -0.0462 -0.0907 -0.124 

 (0.0722) (0.132) (0.0930) (0.172) 

political rights(t-1) 0.152*** 0.250** 0.162** 0.290** 

 (0.0560) (0.0980) (0.0720) (0.125) 

log(population)(t-1) 0.225 0.288 0.149 0.249 

 (0.156) (0.312) (0.218) (0.321) 

urban (t-1) 0.00421 0.00944 0.00340 0.0102 

 (0.00779) (0.0139) (0.0104) (0.0192) 

health (t-1) 0.109** 0.203*** 0.121** 0.223** 

 (0.0441) (0.0704) (0.0509) (0.104) 

open (t-1) -0.0139** -0.00966 -0.0157* -0.0220 

 (0.00639) (0.0144) (0.00932) (0.0189) 

log(patent applications) (t-1) 0.0251 0.0845 0.0471 0.109 

 (0.0493) (0.0970) (0.0596) (0.120) 

log(area) -0.0915 -0.0317 0.0173 -0.0554 

 (0.157) (0.277) (0.212) (0.266) 

time trend 0.102 0.153 0.136 0.167 

 (0.139) (0.246) (0.186) (0.417) 

time trend^2 -0.00160 -0.00316 -0.00206 -0.00294 

 (0.00252) (0.00439) (0.00335) (0.00727) 

Constant -18.34*** -35.37*** -26.76*** -44.46*** 

 (5.165) (9.285) (6.642) (14.87) 

     

N 894 894 894 894 

                                                                                                               continued on the next page  
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Panel B – foreign knowledge interacted with openness  

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

EXP (t-1) -0.326*** -0.380** -0.359*** -0.456* 

 (0.105) (0.188) (0.134) (0.269) 

TK (t-1) -0.208*** -0.388*** -0.244*** -0.412** 

 (0.0696) (0.115) (0.0921) (0.195) 

FTK(t-5)*open(t-1) 0.00345 0.00985 0.00536 0.0117 

 (0.00302) (0.00652) (0.00422) (0.0121) 

FTK(t-5) -0.292 -0.292 -0.433 -0.391 

 (0.489) (0.901) (0.664) (1.390) 

open(t-1) -0.0338* -0.0664 -0.0465* -0.0898 

 (0.0190) (0.0420) (0.0261) (0.0713) 

     

N 894 894 894 894 

 

Panel C – foreign knowledge interacted with experiences 

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

EXP (t-1) -0.506 -0.745 -0.454 -0.563 

 (0.488) (0.904) (0.548) (0.863) 

TK (t-1) -0.211*** -0.395*** -0.248*** -0.427** 

 (0.0690) (0.114) (0.0915) (0.202) 

FTK(t-5)* EXP (t-1) 0.0289 0.0575 0.0134 0.0107 

 (0.0751) (0.142) (0.0837) (0.141) 

FTK(t-5) -0.399 -0.575 -0.583 -0.705 

 (0.463) (0.849) (0.625) (1.396) 

     

N 894 894 894 894 
Notes: All the models include continent dummies, linear and squared time trends, with robust standard errors 

clustered at the country level. Open and Experience variables are demeaned when being interacted with the foreign 

knowledge stock variables. Regressions in panel B and C include all the other controls variables. 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 

Appendix 1. Patent Search Codes 

 

In search of the quake-proof building patents, I used the following code on delphion.com: 

 

((E04H 00902) <in> IC). 

 

E04H 00902 - Buildings, groups of buildings, or shelters, adapted to withstand or provide 

protection against, abnormal external influences (e.g. war-like action, earthquake, extreme climate) 

withstanding earthquake or sinking of ground.  
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Appendix 2. Measurement of foreign knowledge: Weighting foreign patents 

To construct the foreign knowledge stocks, I first identify the number of foreign patents external 

to a country in a given year, and apply it in the equation (5). Because the inherent values of patents 

vary substantially across countries, I follow Popp et al. (2011) by weighting each patent by its 

family size and including only those that are filed in multiple countries.59 More specifically, to 

investigate the impact of global technological change on investment in renewable energy capacity, 

Popp et al. (2011) developed four alternative methods for counting patents: 1) no weighting for an 

indivudal patent and counting each patent family as one invention; 2) no weighting but only 

including inventions for which patents are filed in multiple countries; 3) weighting each patent by 

its family size; and 4) weighting patents by family size and only including inventions for which 

patents are filed in multiple countries. They find that using the last method generally leads to the 

best fit of the model.  

One issue is about dealing with patents filed with the European Patent Office (EPO), which 

gives inventors patent protections in multiple European countries at lower costs compared to filing 

through individual-country patent offices. Also based on Popp et al. (2011), I treat EPO as a single 

entity, but give more weights to patents filed through the EPO. Specifically, patents that are firstly 

filed through the EPO receive a weight of at least two: one for the home country, and a second for 

the EPO application (they will receive more credits if these patents are filed in countries outside 

Europe). For patents that are not initially filed in Europe, an EPO duplicate they receive is counted 

twice, while they receive a maximum of two credits for filing in multiple EPO member states 

instead of EPO. Finally, for patents that are initially filed in an EPO country but not with the EPO, 

                                                           
59 A patent family refers to the patent filings for the same invention in different countries. It is widely regarded that 

inventors tend to file patents for their most valuable and potentially profitable inventions in multiple countries, which 

makes the size of patent family a proxy for the quality of individual patents.  
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all duplicate patent filings in any EPO country are counted as a single family member.  

  



110 
 

Appendix 3. Examination of missing data 

To investigate the potential causes of missing data on earthquake losses, I create a binary variable 

indicating whether an earthquake event has missing deaths or damage, and then I regress this 

variable on all my independent variables (including event-specific and country-specific 

characteristics) using a probit model. Columns 1 and 2 report the regression results with the 

dependent variable on missing deaths, while Columns 3 and 4 report the results of the dependent 

variable on missing monetary damages. For both measures, I run the regression on the full sample 

(all earthquake events of all magnitudes), and my final sample (earthquakes that are above 5 on 

the Richter scale). The estimation results for both deaths and damages indicate that smaller-

magnitude earthquakes that occurred more deeply in the crust, and also in less populated areas, are 

more likely to have missing values. Moreover, the probability of missing deaths also correlates 

with a country’s political right, health condition and domestic knowledge. As discussed in the main 

paper, this result could be largely driven by the earthquake events that have actually caused zero 

deaths/damages, but are coded as missing in the NGDC database.   

  



111 
 

Table 2-A3  Modeling the events with missing deaths and damages 

 Missing on deaths Missing on damages 

Independent variables (1) (2) (3) (4) 

     

magnitude -0.528*** -0.704*** -0.699*** -0.803*** 

 (0.0654) (0.0930) (0.0844) (0.0863) 

focal depth 0.00410*** 0.00409*** 0.00305** 0.00300** 

 (0.00138) (0.00119) (0.00125) (0.00121) 

log(exposed population) -0.139*** -0.161*** -0.168*** -0.183*** 

 (0.0363) (0.0423) (0.0415) (0.0448) 

log(GDP per capital) (t-1) 0.244 0.840 0.173 0.334 

 (1.014) (1.074) (1.074) (1.126) 

[log(GDP per capital)]2(t-1) -0.0214 -0.0596 -0.0182 -0.0303 

 (0.0618) (0.0650) (0.0646) (0.0685) 

political rights(t-1) -0.0765* -0.0875* -0.0237 -0.0237 

 (0.0394) (0.0471) (0.0384) (0.0447) 

log(population)(t-1) -0.0336 -0.114 0.0208 0.000561 

 (0.103) (0.115) (0.145) (0.147) 

urban (t-1) -0.00535 -0.00548 0.00429 0.00741 

 (0.00511) (0.00548) (0.00663) (0.00671) 

health (t-1) -0.0927*** -0.0944***   

 (0.0318) (0.0350)   

open (t-1) -0.00356 -0.00255 -0.00300 -0.00638 

 (0.00647) (0.00724) (0.00619) (0.00696) 

log(patent applications) (t-1) -0.0323 -0.0381 -0.0126 -0.0194 

 (0.0377) (0.0421) (0.0361) (0.0356) 

log(area) -0.0186 0.0431 -0.151 -0.140 

 (0.0804) (0.0914) (0.103) (0.110) 

EXP(t-1) -0.00952 0.0697 0.120 0.217** 

 (0.0747) (0.0801) (0.0875) (0.0949) 

TK(t-1) 0.0914* 0.156*** -0.0167 -0.00735 

 (0.0482) (0.0453) (0.0534) (0.0584) 

Constant 6.689 6.638 8.881* 9.639* 

 (4.520) (4.851) (5.328) (5.467) 

     

Magnitude all >=5 all >=5 

Observations 1,095 894 1,095 894 
Notes: All the models include continent dummies, year fixed effects and are estimated with robust standard errors 

clustered at the country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 4. Estimating the impact of knowledge on smaller-magnitude earthquakes 

Given that earthquakes below magnitude 5 usually result in very minor damages, we may expect 

that both technical knowledge and past experience play a limited role in mitigating the impacts of 

these events. To investigate this issue, I estimate separate coefficients on knowledge measures for 

earthquakes below 5 and earthquakes that measure 5 and above on the Richter scale. Specifically, 

I create two binary variables: one variable equals one if an earthquake is below 5 and zero 

otherwise, and the other variable equaling one if an earthquake is 5 and above and zero otherwise. 

I interact both two variables with the technical knowledge and experience stocks, respectively. 

Columns 1-4 report the results using earthquake fatalities' as the outcome variable, while column 

5 indicates monetary damages. The estimation results generally indicate that neither technical 

knowledge nor experience has a significant impact on the losses caused by smaller earthquakes, 

while their mitigating effects are more pronounced for larger ones.  
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Table 2-A4  Testing the differential effect of knowledge on earthquakes of different scales             

Dependent variables Fatalities  Damages 

 (1) (2) (3) (4) (5) 

Independent variables OLS Tobit Censored Normal Selection Selection 

EXP(t-1)*quakes 5+ -0.284*** -0.249 -0.290** -0.357 -1.322** 

 (0.0934) (0.178) (0.120) (0.303) (0.609) 

EXP(t-1)*quakes 5- -0.140 -0.0807 -0.0818 -0.0887 0.470 

 (0.114) (0.254) (0.184) (0.413) (0.841) 

TK(t-1)* quakes 5+ -0.135** -0.265** -0.155** -0.322 0.179 

 (0.0553) (0.112) (0.0788) (0.212) (0.290) 

TK(t-1)* quakes 5- 0.0430 0.0364 0.0622 -0.0190 -0.539 

 (0.103) (0.288) (0.192) (0.365) (0.642) 

magnitude 1.061*** 1.986*** 1.493*** 2.674*** 3.637*** 

 (0.153) (0.201) (0.185) (0.531) (1.069) 

focal depth -0.00356*** -0.0133*** -0.00963*** -0.0166*** -0.0220** 

 (0.00108) (0.00418) (0.00263) (0.00582) (0.0103) 

log(exposed population) 0.134*** 0.445*** 0.305*** 0.580*** 0.852*** 

 (0.0281) (0.100) (0.0653) (0.153) (0.264) 

log(GDP per capital) (t-1) 1.223 1.604 1.865 3.006 -4.138 

 (0.920) (1.998) (1.296) (3.228) (5.370) 

[log(GDP per capital)]2(t-1) -0.0573 -0.0773 -0.0971 -0.168 0.263 

 (0.0561) (0.126) (0.0822) (0.197) (0.323) 

political rights(t-1) 0.0951** 0.171* 0.103 0.218* 0.347* 

 (0.0440) (0.0891) (0.0626) (0.132) (0.197) 

log(population)(t-1) 0.136 0.0779 0.0486 -0.00608 -0.651 

 (0.131) (0.284) (0.194) (0.356) (0.496) 

urban (t-1) 0.00600 0.0110 0.00552 0.0154 -0.0268 

 (0.00690) (0.0137) (0.00990) (0.0223) (0.0290) 

health (t-1) 0.101*** 0.199*** 0.119*** 0.246**  

 (0.0368) (0.0620) (0.0407) (0.116)  

open (t-1) -0.0101* -0.00914 -0.0133 -0.0206 -0.0481 

 (0.00599) (0.0151) (0.00913) (0.0209) (0.0371) 

log(patent applications) (t-1) 0.000715 0.0578 0.0198 0.101 0.110 

 (0.0415) (0.0892) (0.0552) (0.137) (0.210) 

log(area) -0.0184 0.0977 0.0853 0.123 0.157 

 (0.124) (0.234) (0.176) (0.298) (0.470) 

      

Constant -16.31*** -32.07*** -24.85*** -44.94*** -12.73 

 (4.477) (8.938) (5.706) (16.41) (27.92) 

      

N 1095 1095 1095 1095 1095 

     
Notes: All the models include continent dummies, year fixed effects and are estimated with robust standard errors 

clustered at the country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 5 Further checks on experience stocks 

As discussed in the main paper, the previous literature often uses the cumulative counts of or 

average disaster frequency to characterize a country’s disaster risk and model the “learning-by-

doing” effect. I construct a time-varying measure of the experience stocks, which puts more 

weights on more recent earthquake events. To test their individual explanatory power, I also create 

a similar frequency measure by counting the number of 5+ earthquakes that occurred in a country 

during the period 1960-2010, and include both the experience stocks and frequency variables in 

the same regression. Table 2-A5a, columns 1-4 report the results using earthquake fatalities' as the 

outcome variable, while column 5 indicates monetary damages. I find that none of the frequency 

variables are statistically significant across all specifications. By contrast, most of the experience 

stocks are still significant (suggesting their stronger explanatory power), although their 

significance declines because of the high correlation with the frequency measures.  

As another robustness check, I use the earthquakes that measure 6 and above on the Richter 

scale to calculate the experience stocks. This variable is consistently significant across all 

specifications for explaining earthquake fatalities and damages, as shown in Table 2-A5b.  
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Table 2-A5a  Testing the explanatory power of experiences stocks vs a frequency measure  

Dependent variables  Fatalities Damages 

 (1) (2) (3) (4) (5) 

Independent variables OLS Tobit Censored 

Normal 

Selection Selection 

      

EXP (t-1) -0.433** -0.527 -0.524* -0.622* -1.849** 

 (0.195) (0.395) (0.274) (0.370) (0.828) 

Frequency(t-1) 0.00183 0.00148 0.00225 0.000939 0.0238 

 (0.00490) (0.00965) (0.00669) (0.00715) (0.0150) 

TK (t-1) -0.176*** -0.349*** -0.203** -0.320* -0.0613 

 (0.0649) (0.115) (0.0860) (0.163) (0.218) 

magnitude 1.275*** 2.354*** 1.791*** 2.706*** 3.147*** 

 (0.173) (0.223) (0.207) (0.426) (0.817) 

focal depth -0.00338*** -0.0125*** -0.00924*** -0.0130*** -0.0173** 

 (0.00107) (0.00367) (0.00243) (0.00398) (0.00793) 

log(exposed population) 0.156*** 0.503*** 0.355*** 0.537*** 0.755*** 

 (0.0305) (0.121) (0.0841) (0.117) (0.207) 

log(GDP per capital) (t-1) 1.285 1.068 1.854 2.509 -2.220 

 (1.180) (2.122) (1.452) (2.432) (4.420) 

[log(GDP per capital)]2(t-1) -0.0566 -0.0376 -0.0926 -0.132 0.146 

 (0.0715) (0.133) (0.0913) (0.149) (0.267) 

political rights(t-1) 0.125** 0.208** 0.135** 0.238** 0.275 

 (0.0505) (0.0926) (0.0662) (0.104) (0.171) 

log(population)(t-1) 0.204 0.231 0.122 0.146 -0.658* 

 (0.151) (0.297) (0.206) (0.268) (0.395) 

urban (t-1) 0.00409 0.00811 0.00386 0.00817 -0.0313 

 (0.00826) (0.0144) (0.0106) (0.0165) (0.0231) 

health (t-1) 0.0993* 0.185** 0.112* 0.172**  

 (0.0525) (0.0800) (0.0576) (0.0866)  

open (t-1) -0.0147** -0.0109 -0.0155 -0.0244 -0.0535* 

 (0.00677) (0.0156) (0.00983) (0.0162) (0.0285) 

log(patent applications) (t-1) 0.0152 0.0668 0.0329 0.0743 0.245 

 (0.0460) (0.0881) (0.0557) (0.103) (0.166) 

log(area) -0.0831 0.0103 0.0363 -0.0105 -0.159 

 (0.161) (0.260) (0.201) (0.226) (0.348) 

Constant -19.90*** -36.64*** -29.82*** -43.88*** -13.57 

 (5.547) (10.07) (6.912) (12.10) (23.06) 

      

Left censored  465 465   

N 894 894 894 894 894 
Notes: All the models include continent dummies, year fixed effects and are estimated with robust standard errors 

clustered at the country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2-A5b Robustness Check – using experiences stock based on 6+ earthquakes 

Dependent variables  Fatalities Damages 

 (1) (2) (3) (4) (5) 

Independent variables OLS Tobit Censored 

Normal 

Selection Selection 

      

EXP (t-1) -0.537*** -0.757*** -0.664*** -0.951*** -1.393** 

 (0.113) (0.188) (0.127) (0.284) (0.545) 

TK (t-1) -0.130** -0.282** -0.143* -0.272 0.0810 

 (0.0622) (0.113) (0.0819) (0.185) (0.244) 

magnitude 1.323*** 2.418*** 1.850*** 2.922*** 3.379*** 

 (0.178) (0.219) (0.205) (0.495) (0.905) 

focal depth -0.00323*** -0.0118*** -0.00867*** -0.0129*** -0.0190** 

 (0.00105) (0.00340) (0.00221) (0.00444) (0.00834) 

log(exposed population) 0.154*** 0.493*** 0.345*** 0.563*** 0.776*** 

 (0.0294) (0.116) (0.0795) (0.133) (0.217) 

log(GDP per capital) (t-1) 1.478 1.496 2.171 3.062 -4.007 

 (1.096) (1.965) (1.343) (2.728) (4.482) 

[log(GDP per capital)]2(t-1) -0.0712 -0.0671 -0.115 -0.170 0.267 

 (0.0676) (0.127) (0.0867) (0.167) (0.270) 

political rights(t-1) 0.0901 0.157 0.0956 0.186 0.351** 

 (0.0575) (0.110) (0.0785) (0.113) (0.164) 

log(population)(t-1) 0.226 0.277 0.166 0.246 -0.500 

 (0.147) (0.289) (0.201) (0.305) (0.417) 

urban (t-1) 0.00554 0.0110 0.00623 0.0148 -0.0357 

 (0.00765) (0.0139) (0.0101) (0.0182) (0.0244) 

health (t-1) 0.0853** 0.169*** 0.0974** 0.179*  

 (0.0411) (0.0646) (0.0439) (0.0928)  

open (t-1) -0.0148** -0.0102 -0.0147 -0.0216 -0.0357 

 (0.00653) (0.0152) (0.00949) (0.0183) (0.0309) 

log(patent applications) (t-1) -0.0179 0.0199 -0.0101 0.0302 0.134 

 (0.0466) (0.0855) (0.0528) (0.116) (0.173) 

log(area) -0.0533 0.0476 0.0642 0.0133 -0.0355 

 (0.150) (0.252) (0.194) (0.250) (0.384) 

Constant -19.51*** -37.50*** -29.91*** -47.27*** -7.743 

 (4.984) (8.463) (5.647) (13.88) (22.78) 

      

Left censored  465 465   

N 894 894 894 894 894 
Notes: All the models include continent dummies, year fixed effects and are estimated with robust standard errors 

clustered at the country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 6. Test of income without including the knowledge stocks 

As discussed in the main paper, most of the prior empirical studies have found that income is an 

important determinant of disaster losses. One contribution of this research is to examine the role 

of technology development in disaster mitigation and I find that the income variables are 

statistically insignificant with the inclusion of the variable capturing a country’s accumulation of 

technical innovations for earthquake mitigation. In Table 2-A6, I dropped the technical knowledge 

variable and re-ran the same regressions. I find that without controlling for technology, the income 

variables, including the logged GDP per capita and its quadratic term, both become significant, 

and the pattern of the income-disaster relationship, as suggested by the signs of the estimated 

coefficients, are consistent with the findings in Kellenberg and Mobarak (2008). Specifically, they 

find that that disaster-related fatalities do not decrease monotonically with income. They argue for 

a non-linear relationship between disaster impacts and wealth, because economic development can 

result in competing influences on disaster risks (i.e., people at lower-income levels may favor 

consumption over risk reduction). Combining the results in Table 2-3, this research shows that the 

inclusion of knowledge stock lowers the predictive power of income for earthquake fatalities, and 

furthermore, it suggests that an important mechanism that higher income reduces disaster impacts 

is because it enables more resources devoted to the development of technical knowledge.   
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Table 2-A6 Modeling earthquake fatalities without including domestic knowledge stocks 

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

     

EXP (t-1) -0.384*** -0.486** -0.442*** -0.582*** 

 (0.110) (0.186) (0.133) (0.229) 

magnitude 1.240*** 2.298*** 1.760*** 2.556*** 

 (0.173) (0.221) (0.205) (0.359) 

focal depth -0.00373*** -0.0133*** -0.00969*** -0.0132*** 

 (0.00110) (0.00403) (0.00263) (0.00363) 

log(exposed population) 0.157*** 0.509*** 0.357*** 0.513*** 

 (0.0306) (0.120) (0.0829) (0.103) 

log(GDP per capital) (t-1) 2.797** 4.160** 3.563*** 5.191*** 

 (1.172) (2.071) (1.352) (1.848) 

[log(GDP per capital)]2(t-1) -0.151** -0.232* -0.200** -0.302*** 

 (0.0713) (0.132) (0.0853) (0.111) 

political rights(t-1) 0.115* 0.181* 0.125 0.199** 

 (0.0583) (0.106) (0.0760) (0.0857) 

log(population)(t-1) 0.211 0.243 0.135 0.144 

 (0.157) (0.305) (0.213) (0.240) 

urban (t-1) 0.00652 0.0133 0.00599 0.0123 

 (0.00785) (0.0146) (0.0106) (0.0146) 

health (t-1) 0.0994** 0.191*** 0.110** 0.169** 

 (0.0458) (0.0695) (0.0490) (0.0757) 

open (t-1) -0.0148** -0.0116 -0.0159 -0.0252* 

 (0.00746) (0.0166) (0.0104) (0.0145) 

log(patent applications) (t-1) -0.0627 -0.0783 -0.0544 -0.0502 

 (0.0413) (0.0775) (0.0476) (0.0735) 

log(area) -0.0466 0.0467 0.0579 0.0183 

 (0.159) (0.268) (0.205) (0.201) 

Constant -24.36*** -47.10*** -34.68*** -50.05*** 

 (5.320) (8.822) (6.077) (11.10) 

     

Left censored  465 465  

N 894 894 894 894 
Notes: All the models include continent fixed effects, year fixed effects, with robust standard errors clustered at the 

country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 7 Sensitivity test of the foreign knowledge stocks lagged by different years 

In Table 2-6, I report the estimation results using 5-year lagged foreign knowledge stocks. Because 

of the length of time it may take technical innovations to diffuse to other countries is unknown, I 

perform a set of sensitivity tests using 3-year and 10-year lagged foreign knowledge, respectively. 

As shown in Tables 2-A7a and 2-A7b, neither of the lagged foreign knowledge stocks is 

statistically significant for explaining domestic fatalities.    
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Table 2-A7a    Using three-year lagged foreign knowledge stocks 

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

EXP (t-1) -0.337*** -0.413** -0.378*** -0.504* 

 (0.107) (0.189) (0.136) (0.279) 

TK (t-1) -0.221*** -0.416*** -0.268*** -0.463** 

 (0.0750) (0.118) (0.0975) (0.212) 

FTK(t-5) -0.598 -1.022 -1.057 -1.442 

 (0.625) (1.028) (0.770) (1.818) 

magnitude 1.262*** 2.320*** 1.758*** 2.850*** 

 (0.177) (0.244) (0.221) (0.524) 

focal depth -0.00328*** -0.0120*** -0.00912*** -0.0145*** 

 (0.00109) (0.00397) (0.00260) (0.00469) 

log(exposed population) 0.155*** 0.483*** 0.337*** 0.591*** 

 (0.0304) (0.122) (0.0833) (0.148) 

log(GDP per capital) (t-1) 1.353 1.356 1.940 2.608 

 (1.188) (2.097) (1.470) (2.809) 

[log(GDP per capital)]2(t-1) -0.0586 -0.0520 -0.0970 -0.134 

 (0.0719) (0.132) (0.0921) (0.173) 

political rights(t-1) 0.154*** 0.253** 0.164** 0.293** 

 (0.0561) (0.0983) (0.0725) (0.126) 

log(population)(t-1) 0.226 0.291 0.153 0.257 

 (0.156) (0.312) (0.218) (0.321) 

urban (t-1) 0.00431 0.00975 0.00379 0.0110 

 (0.00777) (0.0139) (0.0103) (0.0192) 

health (t-1) 0.109** 0.202*** 0.121** 0.221** 

 (0.0441) (0.0696) (0.0503) (0.104) 

open (t-1) -0.0136** -0.00914 -0.0152 -0.0214 

 (0.00641) (0.0144) (0.00932) (0.0189) 

log(patent applications) (t-1) 0.0265 0.0867 0.0492 0.111 

 (0.0503) (0.0977) (0.0604) (0.120) 

log(area) -0.0898 -0.0281 0.0209 -0.0515 

 (0.157) (0.276) (0.211) (0.266) 

time trend 0.134 0.238 0.226 0.311 

 (0.155) (0.255) (0.193) (0.450) 

time trend^2 -0.00213 -0.00458 -0.00356 -0.00535 

 (0.00274) (0.00453) (0.00345) (0.00779) 

Constant -17.61*** -33.95*** -25.30*** -42.35*** 

 (5.257) (9.298) (6.693) (15.20) 

     

N 894 894 894 894 
Notes: All the models include continent fixed effects and are estimated with robust standard errors clustered at the 

country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2-A7b  Using ten-year lagged foreign knowledge stocks 

 (1) (2) (3) (4) 

Independent variables OLS Tobit Censored Normal Selection 

EXP (t-1) -0.304*** -0.357** -0.326** -0.464 

 (0.104) (0.178) (0.132) (0.346) 

TK (t-1) -0.200*** -0.380*** -0.229*** -0.468* 

 (0.0588) (0.120) (0.0837) (0.251) 

FTK(t-5) 0.0904 -0.0813 0.289 0.0679 

 (0.310) (0.514) (0.397) (1.112) 

magnitude 1.254*** 2.366*** 1.787*** 3.134*** 

 (0.175) (0.274) (0.233) (0.699) 

focal depth -0.00317*** -0.0120*** -0.00900*** -0.0153*** 

 (0.00108) (0.00416) (0.00270) (0.00576) 

log(exposed population) 0.158*** 0.525*** 0.364*** 0.706*** 

 (0.0320) (0.149) (0.102) (0.210) 

log(GDP per capital) (t-1) 1.531 1.855 2.190 3.105 

 (1.114) (2.175) (1.447) (3.548) 

[log(GDP per capital)]2(t-1) -0.0737 -0.0818 -0.114 -0.162 

 (0.0682) (0.136) (0.0908) (0.215) 

political rights(t-1) 0.132** 0.218** 0.134* 0.287* 

 (0.0536) (0.0975) (0.0722) (0.155) 

log(population)(t-1) 0.223 0.286 0.104 0.259 

 (0.148) (0.307) (0.214) (0.415) 

urban (t-1) 0.00463 0.00700 0.00111 0.00889 

 (0.00822) (0.0154) (0.0119) (0.0245) 

health (t-1) 0.106*** 0.215*** 0.121*** 0.264* 

 (0.0382) (0.0647) (0.0448) (0.154) 

open (t-1) -0.0148** -0.0107 -0.0181* -0.0233 

 (0.00685) (0.0151) (0.0103) (0.0239) 

log(patent applications) (t-1) 0.0497 0.110 0.0883 0.178 

 (0.0452) (0.0994) (0.0591) (0.156) 

log(area) -0.138 -0.0784 -0.0254 -0.148 

 (0.156) (0.285) (0.220) (0.336) 

time trend -7.72e-05 0.103 -0.0734 0.0396 

 (0.139) (0.219) (0.179) (0.493) 

time trend^2 -0.000312 -0.00293 0.000814 -0.00180 

 (0.00257) (0.00403) (0.00331) (0.00890) 

Constant -19.60*** -39.95*** -29.24*** -53.13*** 

 (5.028) (10.52) (7.100) (19.97) 

     

N 806 806 806 806 
Notes: All the models include continent fixed effects and are estimated with robust standard errors clustered at the 

country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 8 Examining the global trend in earthquake losses 

Instead of limiting foreign knowledge to a specific type of technology, here I test whether there 

has been a significant global decrease in earthquake-related losses over time, considering the 

gradual improvement of knowledge of coping with earthquakes. Therefore, I re-run the same 

regressions by replacing the year fixed effects with a time trend (in Table 2-A8a) and quadratic 

time trends (Table 2-A8b). However, my results do not provide strong evidence on the downward 

global trend in earthquake fatalities and damages, since the estimated coefficients on time variables 

are all statistically insignificant across all specifications. To allow for the differential trends in 

developed versus developing countries, I interact the time trend with developing and developing 

country dummies, respectively. As shown in Table 2-A8c, the interaction terms are also statistically 

insignificant, suggesting no differences between the two country groups.  
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Table 2-A8a  Replace year fixed effects with a simple time trend 

Dependent variables  Fatalities Damages 

 (1) (2) (3) (4) (5) 

Independent variables OLS Tobit Censored 

Normal 

Selection Selection 

      

EXP (t-1) -0.329*** -0.423** -0.360*** -0.479* -1.095** 

 (0.104) (0.181) (0.128) (0.287) (0.483) 

TK (t-1) -0.197*** -0.371*** -0.229*** -0.415** -0.0727 

 (0.0610) (0.115) (0.0817) (0.203) (0.220) 

magnitude 1.265*** 2.335*** 1.762*** 2.926*** 3.388*** 

 (0.177) (0.246) (0.225) (0.550) (0.904) 

focal depth -0.00325*** -0.0118*** -0.00898*** -0.0148*** -0.0179** 

 (0.00108) (0.00394) (0.00256) (0.00487) (0.00845) 

log(exposed population) 0.155*** 0.483*** 0.334*** 0.604*** 0.765*** 

 (0.0301) (0.122) (0.0830) (0.154) (0.220) 

log(GDP per capital) (t-1) 1.257 1.266 1.713 2.241 -2.160 

 (1.214) (2.075) (1.521) (2.911) (4.210) 

[log(GDP per capital)]2(t-1) -0.0512 -0.0441 -0.0790 -0.106 0.175 

 (0.0740) (0.131) (0.0956) (0.178) (0.253) 

political rights(t-1) 0.150*** 0.251*** 0.158** 0.292** 0.380** 

 (0.0550) (0.0959) (0.0721) (0.132) (0.156) 

log(population)(t-1) 0.228 0.291 0.155 0.257 -0.401 

 (0.156) (0.312) (0.219) (0.335) (0.403) 

urban (t-1) 0.00422 0.00942 0.00305 0.0101 -0.0431* 

 (0.00785) (0.0140) (0.0105) (0.0201) (0.0244) 

health (t-1) 0.112** 0.204*** 0.129** 0.237**  

 (0.0436) (0.0681) (0.0504) (0.105)  

open (t-1) -0.0136** -0.00997 -0.0145 -0.0198 -0.0401 

 (0.00644) (0.0139) (0.00907) (0.0193) (0.0286) 

log(patent applications) (t-1) 0.0238 0.0820 0.0450 0.108 0.149 

 (0.0495) (0.0974) (0.0609) (0.126) (0.169) 

log(area) -0.0994 -0.0391 0.00772 -0.0561 -0.0898 

 (0.156) (0.274) (0.212) (0.278) (0.371) 

t -0.00200 -0.0248 -0.00731 -0.0264 -0.0747 

 (0.00860) (0.0179) (0.0121) (0.0258) (0.0738) 

Constant -19.14*** -36.67*** -27.89*** -46.60*** -17.39 

 (5.258) (9.258) (6.650) (15.27) (23.25) 

      

Left censored 0 465 465   

N 894 894 894 894 894 
Notes: All the models include continent fixed effects and are estimated with robust standard errors clustered at the 

country level.  

*** p<0.01, ** p<0.05, * p<0.1 

  



124 
 

Table 2-A8b  Replace year fixed effects with linear and squared time trend 

Dependent variables  Fatalities Damages 

 (1) (2) (3) (4) (5) 

Independent variables OLS Tobit Censored 

Normal 

Selection Selection 

      

EXP (t-1) -0.335*** -0.413** -0.378*** -0.505* -1.088** 

 (0.107) (0.189) (0.137) (0.276) (0.462) 

TK (t-1) -0.195*** -0.373*** -0.226*** -0.408** -0.0740 

 (0.0604) (0.115) (0.0827) (0.196) (0.213) 

magnitude 1.268*** 2.331*** 1.770*** 2.860*** 3.322*** 

 (0.179) (0.246) (0.224) (0.520) (0.884) 

focal depth -0.00325*** -0.0119*** -0.00895*** -0.0142*** -0.0181** 

 (0.00109) (0.00393) (0.00255) (0.00464) (0.00814) 

log(exposed population) 0.155*** 0.482*** 0.335*** 0.585*** 0.751*** 

 (0.0302) (0.122) (0.0829) (0.147) (0.216) 

log(GDP per capital) (t-1) 1.287 1.221 1.792 2.399 -2.178 

 (1.192) (2.090) (1.492) (2.774) (4.072) 

[log(GDP per capital)]2(t-1) -0.0533 -0.0407 -0.0847 -0.116 0.175 

 (0.0725) (0.132) (0.0940) (0.170) (0.246) 

political rights(t-1) 0.151*** 0.249** 0.161** 0.289** 0.374** 

 (0.0558) (0.0974) (0.0720) (0.124) (0.150) 

log(population)(t-1) 0.227 0.292 0.154 0.255 -0.401 

 (0.156) (0.311) (0.217) (0.318) (0.388) 

urban (t-1) 0.00428 0.00933 0.00322 0.00954 -0.0428* 

 (0.00782) (0.0140) (0.0105) (0.0190) (0.0237) 

health (t-1) 0.111** 0.206*** 0.125** 0.225**  

 (0.0446) (0.0705) (0.0518) (0.103)  

open (t-1) -0.0139** -0.00943 -0.0155* -0.0217 -0.0411 

 (0.00635) (0.0143) (0.00924) (0.0187) (0.0281) 

log(patent applications) (t-1) 0.0235 0.0822 0.0446 0.106 0.147 

 (0.0495) (0.0978) (0.0601) (0.119) (0.163) 

log(area) -0.0987 -0.0402 0.00892 -0.0633 -0.0991 

 (0.156) (0.274) (0.210) (0.263) (0.361) 

t -0.0118 -0.0105 -0.0313 -0.0407 -0.0867 

 (0.0358) (0.0528) (0.0424) (0.0767) (0.0973) 

t^2 0.000293 -0.000434 0.000729 0.000553 0.000646 

 (0.00104) (0.00166) (0.00131) (0.00234) (0.00292) 

Constant -19.19*** -36.60*** -28.02*** -45.88*** -16.22 

 (5.238) (9.277) (6.544) (14.46) (22.45) 

      

Left censored  465 465   

N 894 894 894 894 894 
Notes: All the models include continent fixed effects and are estimated with robust standard errors clustered at the 

country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2-A8c  Interact time trend with developed and developing nation dummies 

Dependent variables  Fatalities Damages 

 (1) (2) (3) (4) (5) 

Independent variables OLS Tobit Censored 

Normal 

Selection Selection 

      

EXP (t-1) -0.329*** -0.422** -0.360*** -0.481* -1.103** 

 (0.105) (0.182) (0.128) (0.286) (0.496) 

TK (t-1) -0.198*** -0.373*** -0.229*** -0.411** -0.0766 

 (0.0608) (0.115) (0.0819) (0.205) (0.229) 

magnitude 1.265*** 2.335*** 1.762*** 2.921*** 3.420*** 

 (0.177) (0.246) (0.225) (0.547) (0.947) 

focal depth -0.00324*** -0.0119*** -0.00898*** -0.0147*** -0.0180** 

 (0.00109) (0.00389) (0.00253) (0.00485) (0.00875) 

log(exposed population) 0.155*** 0.483*** 0.334*** 0.602*** 0.774*** 

 (0.0302) (0.123) (0.0838) (0.153) (0.229) 

log(GDP per capital) (t-1) 1.328 1.358 1.721 2.098 -2.091 

 (1.468) (2.421) (1.803) (3.282) (5.241) 

[log(GDP per capital)]2(t-1) -0.0559 -0.0502 -0.0796 -0.0960 0.172 

 (0.0908) (0.154) (0.115) (0.206) (0.322) 

political rights(t-1) 0.150*** 0.251*** 0.158** 0.292** 0.377** 

 (0.0550) (0.0961) (0.0721) (0.131) (0.160) 

log(population)(t-1) 0.228 0.291 0.155 0.256 -0.404 

 (0.156) (0.312) (0.219) (0.333) (0.415) 

urban (t-1) 0.00433 0.00963 0.00307 0.00981 -0.0435* 

 (0.00803) (0.0143) (0.0109) (0.0204) (0.0254) 

health (t-1) 0.112** 0.204*** 0.129** 0.237**  

 (0.0437) (0.0680) (0.0505) (0.104)  

open (t-1) -0.0135** -0.00985 -0.0145 -0.0199 -0.0392 

 (0.00658) (0.0141) (0.00930) (0.0195) (0.0298) 

log(patent applications) (t-1) 0.0240 0.0825 0.0450 0.107 0.147 

 (0.0491) (0.0966) (0.0605) (0.125) (0.176) 

log(area) -0.0987 -0.0380 0.00785 -0.0565 -0.0735 

 (0.156) (0.275) (0.213) (0.278) (0.382) 

Developing*t -0.00231 -0.0252 -0.00735 -0.0257 -0.0773 

 (0.0100) (0.0206) (0.0138) (0.0266) (0.0844) 

Developed*t -0.000697 -0.0227 -0.00710 -0.0292 -0.0758 

 (0.0103) (0.0203) (0.0157) (0.0467) (0.0773) 

Constant -19.40*** -37.02*** -27.92*** -45.97*** -18.31 

 (6.221) (11.05) (8.035) (16.30) (29.01) 

      

Left censored  465 465   

N 894 894 894 894 894 
Notes: All the models include continent fixed effects and are estimated with robust standard errors clustered at the 

country level.  

*** p<0.01, ** p<0.05, * p<0.1 
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Chapter 3: What Drives Climate Preparedness: An Assessment of State 

Climate Adaptation Planning in the United States 

 

1. Introduction  

There is a growing consensus that climate change is taking place and posing unevenly distributed 

risks across regions and sectors. The risks, as warned by climate scientists, include not only long-

term changes, such as higher temperature and sea level rise, but also greater climate variability and 

more frequent and intense extreme events, including tropical cycles, floods, severe storms, 

droughts and heat waves. Effectively addressing climate change requires adaptation, which 

encompasses a wide range of actions individuals, firms and governments take to reduce the adverse 

climate impacts or exploit beneficial opportunities (Tompkins and Eakin, 2012; IPCC, 2007; Smit 

et al., 1999; Fankhauser et al., 1999). 60  While some adaptation occurs autonomously (e.g., 

migration from regions at high risk of climate change), other adaptation requires greater foresight 

and planning (e.g., building preventive infrastructure to accommodate sea level rise), and therefore, 

is purposive and policy-driven (Stern, 2006). In recent years, states and localities have started 

making plans to prepare their communities for climate change in the absence of a federal climate 

policy.   

In this paper, I investigate the factors that lead U.S. state governments to engage in formal 

planning for climate change adaptation. Fussel (2007:268) characterizes adaptation planning as 

“… the use of information about present and future climate change to review the suitability of 

current and planned practices, policies and infrastructures.” From a policy process perspective, 

making an adaptation plan represents the first step in undertaking systematic actions to build long-

                                                           
60  Adaptation is formally defined by the International Panel on Climate Change (IPCC) as “adjustment in natural or human systems 

in response to actual or expected climatic stimuli or their effects, which moderates harm or exploit beneficial opportunities” (IPCC, 

2001: 72). 
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term climate preparedness. The plan articulates the adaptation policy by assessing climate risks 

and identifying principles, strategies and recommendations. Moreover, usually formulated through 

a participatory decision-making process, adaptation plans facilitate consensus building on key 

issues and solutions, and improves communication between public officials and stakeholders, 

thereby leading to more coordinated decisions and actions. They also help legitimize and 

institutionalize climate adaptation on states’ political agenda, by providing an “ongoing framework” 

for governments to identify and implement strategies and evaluate progress (Wheeler, 2008).  

Recent years have witnessed the rapid development of adaptation plans at all levels of 

government across the world, accompanied by an emerging body of research on adaptation 

planning. Studies have mostly focused on tracking the progress of adaptation planning (e.g., 

Bieraum et al., 2013; Cruce, 2009; Carmin et al., 2012a; Preston et al., 2011a; Lesnikowski et al., 

2013; Berrang-Ford et al., 2011; Ford et al., 2011), evaluating plan documents (Preston et al., 

2011b; Preston et al., 2009; Baker et al., 2012; Chou et al., 2012; Wilson, 2006), proposing 

approaches and principles (Fussel, 2007, Philip Berke and Lyles, 2012), linking scientific research 

with planning decisions (Mastrandrwa et al., 2010; Larsen et al., 2012; Moser, 2010), and 

examining adaptation planning more specifically in urban and local contexts (Carmin et al., 2012b; 

Anguelovski and Carmin, 2011; Hunt and Watkiss, 2011; Berrang-Ford et al., 2014; Measham et 

al., 2011).  

This research takes a new angle by examining the factors that may have influenced the 

development of statewide adaptation plans through a policy innovation lens. From a research point 

of view, understanding the determinants of plan development provides the foundation necessary 

for assessing the effects of these plans on improving climate resilience. More importantly, this 

paper advances our understanding of subnational adaptation policy-making in four ways. First, 
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while the extant literature often discuss barriers to undertaking climate adaptations (e.g., limited 

resources and lack of information), it devotes much less attention to the motivation for adaptation 

and therefore, does not fully explain why adaptation occurs in some communities but not the others. 

This paper fills this gap by incorporating both motivation and capacity factors to account for the 

state-level decision to pursue adaptation planning.  

Second, this paper adds to a growing literature that seeks to explain state and local adoption of 

climate policies, which, to date, has predominantly dealt with reducing greenhouse gas (GHG) 

emissions (e.g., Rabe, 2004; Lyon and Yin, 2010, Brody et al., 2008). Although mitigation and 

adaptation are both recognized as important strategies to combat climate change, the problems 

they address are different in nature and in scope. Unlike mitigation which provides a global public 

good with non-excludable benefits, adaptation is mostly local and provides local benefits given 

the spatial variation of climate impacts. This naturally puts states and localities on the frontline of 

climate adaptation, and implies distinct drivers of adaptation policy making at the subnational level 

from that of mitigation. This paper is the first of its kind to explain the development of adaptation 

plans at the state level.  

Third, examining the drivers of state-level adaptation decisions contributes to the existing 

literature on environmental federalism (Oates, 2001). Because decentralization gives states the 

freedom to tackle local climate risks in their own ways, an essential question is whether they are 

effective enough, especially those most threatened by climate change. Answering this question is 

critical to identifying the role of the federal government in advancing national adaptations. Fourth, 

the practice of adaptation planning as experiments in the “laboratories of democracy” may provide 

important lessons to other state governments. Therefore, in this research I also consider spatial 

diffusion by examining whether states located within the same climate regions learn from and 



129 
 

emulate each other in planning for climate adaptation. 

Drawing upon policy innovation literature (Berry and Berry, 1990), I incorporate both state 

internal characteristics and spatial diffusion to explain states’ decisions to undertake adaptation 

planning. I construct a longitudinal data set for 50 states between 2005 and 2013, and employ a 

discrete-time event history analysis (EHA) to model the probability that a state initiates adaptation 

planning in a given year. I find that the state-level adaptation decision is highly responsive to the 

severity of recently experienced extreme weather events, with the response varying depending on 

the type of hazards. This finding on reactive adaptation suggests that the federal government has 

an important role to play in facilitating proactive subnational adaptation. Moreover, I find that 

adaptation planning is closely associated with states’ exposure to climate impacts, income level, 

civic engagement and environmental preferences. Although the results reveal rational elements in 

adaptation responses, the pattern of states’ adaptation planning reflects inequality in their capacity 

and resources available to adapt, suggesting the need for more coordination and support to 

integrate climate adaptation and economic development.  

The rest of the paper is organized as follows. Section two provides a brief overview of current 

status of adaptation planning in the United States. Section three provides a theoretical discussion 

of the factors that may have shaped the development of adaptation plans and lays out key 

hypotheses. I present the empirical analysis in Section four, which includes a description of the 

data, empirical model and my findings. Section five concludes.   

 

2. Adaptation Planning in the United States 

Climate adaptation planning is a relatively new topic for government. In the United States, the 

awareness and actions of adaptation lag far behind those for GHG mitigation. In a review of the 
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first-generation U.S. state and municipal climate plans, Wheeler (2008) concludes that these plans 

are mostly preoccupied by GHG mitigation rather than climate adaptation. The first formal 

adaptation plans emerged in the U.S. in the mid-2000s, with jurisdictions using local climate 

projections to identify adaptation strategies in single or multi-sector settings. For a more 

comprehensive overview on this topic, see Bierbaum et al. (2013).  

 

2.1       Measurement and data 

To assess the current status of state adaptation planning, I collect states’ planning documents using 

databases compiled by the Center for Climate and Energy Solutions (C2ES) and the Georgetown 

Climate Center, complementing the information with online searches and e-mail inquiries to the 

state environmental agencies.61  I limit my analysis to the comprehensive statewide adaptation 

plans that address multiple major climate-sensitive sectors.62  Additionally, the plans must be 

written and released by state governmental agencies, provide formal assessment of the projected 

climate change impacts, and explicitly identify adaptation strategies and recommendations.  

As of 2013, seventeen states had completed a comprehensive adaptation plan and five states 

were in the process of developing plans (Figure 1). Noticeably, most of these are coastal states. 

This may be attributed to the increased awareness of sea level rise and their exposure to other 

coastal extreme events (e.g., hurricanes, coastal floods and storm surges). Additionally, these 

coastal states also possess many similar political and socio-economic characteristics that may lead 

them to take the same adaptation initiatives. Appendix 1 provides a detailed descriptive analysis 

of these plans (e.g., their origination process and common features). Although adaptation plans are 

                                                           
61 Appendix 1 provides more detailed descriptions of my data sources. 
62  Note that some states that have sector-specific adaptation plans are not considered here. This is because the wide-range impacts 

of climate change create challenges that cut across multiple sectors. For example, intense precipitation events not only affect 

agriculture but may also cause disruption of transportation and energy supply, and threaten public health. Therefore, multi-sector 

planning indicates a more coordinated and holistic approach to address adaptation.  
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generally nonbinding, there is evidence that most of these states are making important progress 

toward the goals they have set in their plans, which suggests these plans are not just symbolic.63   

 

3. Conceptual Framework 

3.1       Related literature 

The development of an adaptation plan marks the initiation of a state’s planned adaptation as well 

as an important change in its overall climate policy. I view adaptation planning as a policy 

innovation because it is a new program for the adopting government.64 This perspective ties the 

study to an extensive literature that seeks to explain the adoption of new polices or policy changes 

by considering the internal determinants (e.g., states’ political, economic and social characteristics) 

and spatial diffusion from other states that have previously adopted the policy. Berry and Berry 

(1990) first introduced this unified policy innovation model by incorporating both internal and 

regional factors in an EHA to explain state lottery adoptions. They have theorized three sets of 

conceptual factors that influence policy innovations: motivation to address a policy issue; the 

obstacles for policy changes; and the availability of resources to overcome the obstacles.  

With a growing interest in the development of public policies, the policy innovation model has 

been applied to study a wide variety of environmental policies, including hazardous waste 

programs (Sapat, 2004), local watershed partnerships (Lubell et al., 2002), electricity sector 

reforms (Andrews 2000; Ka and Teske, 2002), renewable energy policies (Huang et al., 2007; 

Matisoff, 2008; Chandler, 2009; Lyon and Yin, 2010; Carley and Miller et al., 2012), and local 

                                                           
63 The Georgetown Climate Centers has recently released a new tool that tracks state progress implementing their adaptation plans 

(http://www.georgetownclimate.org/adaptation/state-and-local-plans). 
64 The policy innovation literature refers to innovation as the adoption of a new policy or program by a government entity that had 

never utilized it before (Walker, 1969). In other words, a policy innovation is new to the adopting government, even though it might 

have been adopted by other governments. The concept of policy innovation is thus different from policy invention, because the 

latter means the development of a new policy idea.  

http://www.georgetownclimate.org/adaptation/state-and-local-plans
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climate actions and initiatives (Sharp et al., 2011; Zahran et al., 2008; Lubell et al., 2009). In 

addition to geographic variables to account for spatial diffusion, internal factors examined in these 

policy innovation studies generally fall into the following categories: (1) the severity of the 

environmental problems that prompt new policy; (2) the available resources for launching new 

programs; (3) political and citizen ideology; (4) characteristics of the adopting agency; and (5) 

characteristics of the related industries and interest groups. In addition to this line of research, one 

study of particular relevance is Berrang-Ford et al (2014), which links national adaptation actions 

with multiple determinants of adaptive capacity (e.g., income, technology, education, and 

institutional quality), and shows that good governance is the strongest predictor.  However, their 

cross-sectional analysis does not take into account adoption dynamics and potential spatial 

diffusion of adaptation planning. 

 

3.2       Factoring influencing the development of adaptation plans 

Drawing upon the policy innovation literature, I propose four principal explanations for state-level 

development of adaptation plans and discuss my independent variables in each category.  

 

3.2.1    Climate Risks 

Given the nature of climate adaptation, I expect that states facing larger adverse impacts of climate 

change are more motivated to pursue adaptation planning. Specifically, I consider two aspects of 

climate risks including a state’s recent extreme-weather experiences and its social vulnerability to 

climate impacts.  

First, there is growing evidence indicating that recently-experienced extreme weather events 

can affect climate-change belief and perceptions, and serve as a stimuli for adaptation actions (e.g., 
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Rudman et al. 2013; Ford et al. 2011). These findings are similar to findings from natural hazard 

research which suggest that natural disasters provide “windows of opportunity” for political and 

institutional changes, and also induce other societal responses aiming to reduce future disaster risk 

(e.g., Birkmann et al. 2008; Miao and Popp, 2014). These lines of research suggest an important 

causal relationship between recent climate experiences and adaptation decisions.  

Hypothesis 1.1: States that have experienced larger losses from recent extreme weather events are 

more likely to undertake adaptation planning.  

 

In addition to recent climate damages, the severity of climate risks also depends on various 

state internal attributes that may make states more vulnerable to the effects of climate change (e.g., 

Cutter et al, 2003; Adger, 2006). 65   Therefore, I consider climate vulnerability as another 

motivation for adaptation, and operationalize it by examining the characteristics of major climate 

sensitive sectors, given that a multi-sector perspective is a common feature of the statewide 

adaptation plans considered in this study. In particular, I consider public health, agriculture, coastal 

management, forestry and infrastructure, and I link each of them with specific measures of state-

level attributes. First, there is a growing recognition of the health implications of climate change, 

especially for the elderly who are regarded as vulnerable to air pollution, heat waves and other 

extreme events. Thus, the public health benefits of adaptation actions might be particularly 

attractive to states with a large aging population.  

Hypothesis 1.2: States with large proportions of the elderly are more likely to pursue adaptation 

planning.  

                                                           
65 As an important concept in the scholarship of natural hazards and climate adaptation, vulnerability encompasses socio-economic 

and demographic factors to account for the propensity of local populations to be affected by extreme events and environmental 

change.  
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Among all sectors, agriculture is arguably most dependent on climate and highly sensitive to 

climate change and variability. Climate adaptation in agriculture sectors has important 

implications for crop production, livestock and the fisheries industry. Therefore, I expect 

adaptation planning to be especially compelling for states with a larger agricultural sector.   

Hypothesis 1.3: States that are more economically dependent on agriculture are more likely to 

pursue adaptation planning.  

 

Climate change is putting particular high stress on coastal regions by inducing sea-level rise, 

increased precipitation, more frequent and intense storms, and warmer ocean temperatures. The 

heavy development and population density in U.S. coastal states have also made their communities 

even more sensitive to these climate impacts. Therefore, their vulnerability to climate change is 

determined by both physical and economic exposure. Specifically, the higher the concentration of 

economic activities in coastal regions, the more vulnerable the entire state’s economy is to the 

disruptions of climate change. 

Hypothesis 1.4: States with longer ocean coastlines and larger shares of gross domestic product 

(GDP) generated from coastal areas are more likely to pursue adaptation planning.  

 

In addition to coastal areas, climate change has also been posing risks to forest ecosystems 

through increased atmospheric carbon dioxide and various climate-related disturbances, including 

wildfires, storms, insect outbreaks and the occurrence of invasive species. The state’s forest cover 

could be another geographic characteristic that prompts the need for adaptation.  

Hypothesis 1.5: States with larger forest coverage are more likely to pursue adaptation planning.  
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Extreme weather events associated with climate change are increasingly threatening local 

infrastructure such as transportation. In this paper, I consider aging road bridges as one measure 

of infrastructure vulnerability and expect states with more road bridges in poor condition to have 

a stronger desire for adaptation planning. However, it is important to note that the problem of aging 

infrastructure might be rooted in a state’s lack of capacity and resources to plan and invest in 

adaptation, which would further constrain its tendency to undertake adaptation planning. Therefore, 

the hypothesis that poor infrastructure is related to the probability of adaptation planning will be 

tested with no prediction about the direction of the relationship. 

Hypothesis 1.6: A state’s poor infrastructure affects its likelihood of adopting adaptation plans.  

 

3.2.2    Adaptive capacity 

In the climate change context, adaptive capacity refers to a society’s capacity to undertake or 

overcome the obstacles to adaptation actions (IPCC, 2007). Here I consider a state’s economic 

conditions and civic engagement as two key elements of its adaptive capacity. First, I expect a 

positive correlation between a state’s income and its propensity for adaptation planning because 

higher-income states are more capable of affording adaptation measures. More affluent states may 

also have a higher demand for adaptation because they have more assets that could be destroyed 

by climate hazards.  

Hypothesis 2.1: States with higher incomes are more likely to engage in adaptation planning.  

Given the wide-ranging impacts of climate change on different sectors and geographic regions, 

adaptation is increasingly blurring the traditional boundaries between the public and the private 

sector, and requires the society to act collectively.  In particular, adaptation planning is a collective 
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decision-making process that heavily relies on the participation of non-governmental actors. To be 

consistent with the adaptive capacity literature (Adger, 2003; Rydin, 2000), I expect civic 

engagement to contribute to adaptive capacity because it reflects a community’s ability to 

undertake collective actions.  

Hypothesis 2.2: States with higher levels of civic engagement are more likely to engage in 

adaptation planning.  

 

3.2.3 Political Interests 

The impact of political interests on policy changes is unequivocal. Here I consider political factors 

from two perspectives: political ideology and competing priorities on the agenda. First, recent 

research on state-level energy policy innovations suggests political ideology, in terms of both 

citizen preferences and partisan legislative control, exerts a significant effect, and liberal states are 

generally more favorable to pro-environmental legislation (e.g., Chandler, 2009; Lyon and Yin, 

2010; Huang et al., 2007; Carley and Miller, 2012). Given the current partisan divide over climate 

change, I expect political ideology to play a role in shaping state-level adaptation decisions.  

Hypothesis 3.1: More liberal states, in terms of both elected officials and state legislature 

composition, are more likely to undertake adaptation planning.   

 

Hypothesis 3.2: States with stronger environmental preferences are more likely to undertake 

adaptation planning. 

Because government usually faces multiple issues on its agenda, the political interest in climate 

change and adaptation must compete with other priorities such as economic development and job 
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growth. Here I consider the unemployment rate as one competing factor that may hamper the 

incentive to address climate adaptation.  

Hypothesis 3.3: States with higher unemployment rates are less likely to pursue adaptation 

planning.  

 

3.2.4 Regional Diffusion 

Recent developments of the policy diffusion literature provide an additional lens to examine and 

understand how state policies are influenced by other governments in an increasingly 

interconnected world. Following Berry and Berry (1990), more studies have incorporated both 

internal determinants and regional influence to account for policy innovations.66 In this paper I 

consider the potential regional diffusion of adaptation planning for two reasons. First, the theory 

of institutional isomorphism suggests organizational imitation (also called “mimetic processes”) 

can be driven by uncertainty (DiMaggio and Powell, 1983). This explanation is particularly 

relevant for adaptation decisions because the highly uncertain nature of climate change and climate 

variability may make states more inclined to draw on each other’s actions. Second, diffusion of 

adaptation decisions is more likely to occur within the same geographic region, because these 

states may share similar climatic characteristics and risks, which makes one jurisdiction’s 

adaptation policy more relevant for the others.67 Therefore, I expect geographic proximity to be an 

important mediating factor in the state-level diffusion of adaptation planning.  

                                                           
66 However, many empirical studies on policy diffusion have been criticized for their simple focus on geographic clustering and 

ignorance of the causal mechanism of policy diffusion (Shipan and Volden, 2012; Karch, 2007). This literature has by far offered 

mixed evidence on policy diffusion because the empirical results are often sensitive to the choice of model specifications (Buckley 

et al., 2004). 
67 Karch (2007) summarizes that policy diffusion can arise from three processes: (1) imitation based on similar policy-relevant 

characteristics; (2) emulation during which policy makers learn from the successes and failures of others; and (3) competition with 

other jurisdictions. The diffusion of adaptation planning, if there is any, is more likely to fall into the first category, because most 

of these plans were made just recently and have not yet exhibited their effects, and also one’s adaptation plan should not directly 

affect the interests of other states.  
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Hypothesis 4.1: States with more regional peers that have started adaptation planning are more 

likely to adopt adaptation plans.  

 

Finally, it is noteworthy that the four sets of proposed explanatory factors are not mutually 

exclusive but rather may overlap each other. One single variable could fall into multiple categories 

of explanation and pick up different influences. As discussed earlier, the poor infrastructure not 

only reflects the societal vulnerability to climate impacts but also relates to the inadequate capacity 

to engage in adaptation and climate-proofing development. Additionally, the high unemployment 

rate could act as a political obstacle to the development of adaptation policy and also imposes 

resource constraints on undertaking adaptation activities.  

 

4.       Empirical Analysis 

4.1 Data Description 

My analysis uses data from a variety of sources to operationalize the four categories of factors that 

influence the development of state adaptation plans. First, I measure the recent climate impacts 

using fatalities and economic damages from extreme weather events including droughts, heat 

waves, floods, wildfires, severe storms, hurricanes and coastal hazards (including storm surges, 

coastal flooding and erosion), using  data from the Spatial Hazard Events and Losses Database for 

the United States (SHELDUS). I normalize the monetary damages that consist of both property 

and crop losses using its share of the affected state’s GDP.68 

                                                           
68  I choose to normalize disaster damage using its ratio of state GDP because the influence of economic losses on risk perception 

may likely depend on the economy size of the affected communities. However, I use the absolute level of fatalities as another 

impact measure because its effect on perceived risks would be less subject to a state’s aggregate characteristics such as population 

size. In particular, all these events are natural disasters and the human losses they caused are found to have little correlation with a 

state’s total population.  
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To measure a state’s aging population, I use the 2010 Decennial census data to calculate the 

percentage of population at the age of 65 and above. I measure the size of a state’s agriculture 

sector by dividing its annual agricultural production by its total GDP, using the data from the 

Bureau of Economic Analysis. I obtain the information on the length of states’ ocean coastlines 

from the National Oceanic Atmospheric Administration (NOAA). I measure a state’s coastal 

economy size using the percentage of its GDP contributed by its coastal shore adjacent counties, 

using the data compiled by the National Ocean Economics Program from the reports by the Bureau 

of Labor Statistics for the coastal counties. To measure a state’s forest cover, I use the data from 

the United States Department of Agriculture Economic Research Service. I measure a state’s 

infrastructure using the data on road bridges from the Department of Transportation.69  

For the adaptive capacity variables, I measure a state’s income level using data on median 

household income from the Bureau of Economic Analysis. 70  To measure state-level civic 

engagement, I use a variable from the 2008-2010 Civic Health Assessment Civic Engagement data 

that estimates the proportion of population who often attend public meetings. This data set is 

compiled and collected by the National Conference on Citizenship through the Current Population 

Survey (CPS) Supplements on Voting, Volunteering and Civic Engagement.  

For the political interest variables, I use the data on party affiliation of state governors and 

partisan legislative control from the Council of State Governments. To capture states’ 

environmental preferences, I follow previous studies (e.g., Lyon and Yin, 2010) and use the 

average League of Conservation Voters (LCV) scores of Senators and Representatives in each 

state. The LCV scores reflect the voting records of all members of Congress on selected key 

                                                           
69 I use the percentage of road bridges that are categorized as either “structurally deficient” or “functionally obsolete” as a proxy 

for poor infrastructure. 
70 There are multiple measures of state income I can potentially use in this analysis. I have considered using GDP per capita but 

found it is highly correlated with the coastal economy variable.    
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environmental issues, with a range from 0 to 100 (a higher value indicates more votes in favor of 

environmental legislation). My data on the state-level unemployment rate are from the U.S. 

Department of Labor Local Area Unemployment Statistics.  

Finally, the regional diffusion variable measures the percentage of states within the same 

climate regions that have started adaptation planning other than the state of interest, lagged by one 

year. Appendix 2 presents my regional division criteria, which is based on the 2014 National 

Climate Assessment. All the variables discussed above are summarized in Table 3-1, including 

their data sources. Table 3-2 presents the descriptive statistics.  

 

4.2 Model Specification 

To empirically examine the factors that influence the development of state adaptation plans, I 

follow the standard approach in the policy innovation literature by using a discrete-time EHA 

(Berry and Berry, 2007). This approach treats time as discrete units (taking positive integer values 

t = 1, 2, 3…), and includes a total of n independent individuals (i=1, 2, 3…n) observed from at a 

certain starting point t1 through ti, at which point either an event occurs or the observation is 

censored (Allison, 1982).71 The discrete-time survival analysis is used to model the hazard rate, 

which is the conditional probability that an individual will experience the event during a particular 

time period, given that it has not experienced it before.  

Specifically, I estimate the hazard rate Pit (for a state i in the year t) using a logistic model that 

incorporates a vector of both time varying and time-invariant covariates X, their corresponding 

                                                           
71 Right censoring is a common problem in longitudinal data, which occurs when some individuals do not experience any events 

so an event time cannot be measured. An important advantage of survival analysis is its capacity to handle the right censoring 

problem (Allison, 1982).  



141 
 

parameters β, the constant α, and baseline hazard rate, a(t), which is a function of survival time t. 

I cluster standard errors at the state level to account for the potential heteoroskedasticity.  

 

(1) logit(Pit)  = log 
𝑃𝑖𝑡

1−𝑃𝑖𝑡
  = α + βX + a(t);  

 

Using the survival model to predict the probability of policy adoption raises several empirical 

issues that require careful attention. First, modeling the timing of a policy change is complicated 

by the fact that the development of an adaptation plan usually takes multiple years. Figure 2 shows 

the timeline and duration of states’ planning process. Here I consider the onset (starting year) of 

the entire planning process as the event to be explained, because of my focus on the drivers of 

adaptation planning. Thus, to be more specific, the conceptual dependent variable Pit is the 

conditional probability that a state i began to prepare for its adaptation plan in year t.72 Because 

the event is now defined as the onset of planning, states with plans in progress are also considered 

as “adapting” states, while states that have not yet started adaptation planning are treated as right 

censored.  

Second, a starting year has to be chosen, which implies that all states have been “at risk” of 

starting adaptation planning since then (Box-Steffensmeier and Jones, 1997). As Figure 2 shows, 

adaptation planning started in seven states (AK, FL, MD, NH, VA, WA, WI) as early as 2007. But 

studies suggest that public concerns over climate change had been arising prior to that (e.g., Brulle 

et al., 2012).73 I deliberately choose 2005 as the starting year of my sample, considering two 

                                                           
72 The observed dependent variable is a binary variable that equals 1 when a state i began the planning process in year t and zero 

otherwise.  
73 Brulle et al. (2012) used the data from 74 separate surveys from 2002 to 2010 to develop a national aggregate index of public 

opinion on climate change, which started to increase around 2004 and peaked in 2007, which appears to be consistent with the 

wave of adaptation planning we have observed in this study.   
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important events that occurred in this year that may make all states “at risk” of adaptation planning. 

The first one is marked by the climate change conference held in King County, Washington, which 

engaged a broad range of stakeholders, state and local government officials to discuss their climate 

adaptation strategy. The second is Hurricane Katrina, which prompted considerable discussion on 

climate change.  

Third, the functional form of a(t) needs to be specified, which allows the baseline hazard rate 

to change over time.74 In this paper I allow for duration dependence considering the potential effect 

of the accumulation of information on climate change (e.g., observational data, climate science) 

on adaptation decisions. Because such information generally increases with time but is hard to 

quantify as a specific variable, including duration variables can help account for the information 

effect. I specify a(t) using a quadratic function of survival time t.75  

My study sample includes 50 U.S. states over the period 2005-2013, for which I assemble a 

pooled cross-sectional time-series data set with state-year being my unit of observation. As a 

standard data-construction approach in EHA, I remove all observations for a given state for years 

once it starts the planning process because it already falls out the risk set of experiencing the event.  

 

4.3 Empirical Findings 

4.3.1 Baseline model 

                                                           
74 The recent literature on policy innovation using EHA views the inclusion of a(t), also known as duration dependence, as an issue 

entailing both substantive and statistic importance (Buckley and Westerland, 2004).  
75 As noted in Buckley and Westerland (2004), there are different approaches to modeling duration dependence, such as including 

discrete-time dummy variables (non-parametric approach) or time/time-transformed variables (a parametric approach that imposes 

assumptions on the functional form of the time effect). Here I did not take the non-parametric approach for the sake of model 

parsimony. To find the proper duration variables, I conducted a set of tests using a simple time counter, quadratic and cubic terms 

of time trend as well as natural log of time. I choose the quadratic specification based on the likelihood ratio test and Akaike 

information criterion.   
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As laid out in Section 3, my empirical analysis considers the impacts on state-level adaptation 

planning of various state characteristics that reflect their climate risks, adaptive capacity, political 

interests and influences from nearby adapting states. Table 3-3 presents the regression results for 

equation (1) where a state’s recent climate experiences are measured by the total economic or 

human losses caused by major weather/climate hazards (including heat waves, droughts, flooding, 

severe storms, hurricanes, coastal events and wildfires) in the past two years. I choose to focus on 

the past two years based on a set of sensitivity tests, which show that disaster losses generally 

become insignificant beyond year t-2.76 Columns 1 and 2 report the logit coefficient estimates and 

average marginal effects, respectively, when disaster impact is measured by monetary damages, 

while columns 3 and 4 report the same estimates when impact is measured by fatalities.  

First of all, I find that a state’s likelihood of undertaking adaptation planning increases 

significantly with the severity of climate-induced disasters it has experienced recently. Specifically, 

as a state’s total climate-related damages that occurred in the past two years increase by one percent 

as a fraction of its GDP, the state’s probability of undertaking adaptation planning will increase by 

0.4 percent on average. To put the coefficient into context, the 2013 Colorado floods, which caused 

over one-billion-dollar in damages that would account for about 6 percent of a median state GDP, 

would increase its likelihood of adaptation planning by 2.4 percent. As for climate-related fatalities, 

an additional 100 deaths would increase a state’s likelihood of adaptation planning by 3 percent 

on average. To put this coefficient into perspective, Hurricane Sandy, which caused around 285 

deaths, would increase the likelihood of undertaking adaptation planning by 9 percent.  

As another aspect of climate risks, the vulnerability variables produce mixed evidence on their 

effects on the state-level adaptation decisions. For coastal characteristics, I find that states with 

                                                           
76 Appendix 3 provides full results of the sensitivity analysis. 
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longer ocean coastlines and larger coastal economies are more likely to pursue adaptation planning. 

Specifically, the probability of making adaptation plans would increase by roughly 3 percent on 

average if a state’s ocean coastline length increases by one thousand miles, or if the ratio of its 

coastal economy increases by one standard deviation. A state’s forest coverage also has a 

significant and positive effect on its probability of developing adaptation plans, which is consistent 

with my hypothesis. Although these results suggest that climate vulnerability may serve as a 

motivation for adaptation, the other variables provide less clear support. The estimated effect of 

the elderly variable is negative and statistically insignificant. But this finding is not surprising 

because the elderly may perceive climate change as a problem less likely happen or intensify 

during their lifetimes, so that they show less support of adaptation planning. 

The estimated coefficient on the agriculture variable is positive but statistically insignificant, 

which indicates no clear relationship between a state’s agricultural economy and its decision on 

adaptation planning. One possible explanation is that the heavy agricultural subsidy provided by 

the federal government may distort states’ incentive to adapt agriculture to climate change, which 

suggests a moral hazard problem. Another reason may be the major agricultural states in the U.S. 

are also more politically conservative and therefore, the agricultural variable does not provide 

additional explanatory power after controlling for a state’s political ideology. 

The estimated coefficient on the poor infrastructure variable is negative and significant, which 

implies that states with more infrastructure at risk are less likely to undertake adaptation planning. 

This result may suggest that not all aspects of vulnerability would necessarily translate to the 

motivation to reduce vulnerability to climate change. In fact, vulnerability may relate to the 

inherent unwillingness or inadequate capacity to address climate change, which may limit further 

actions on climate adaptation.  
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Table 3-3 also shows that both income and civic engagement have a positive and significant 

impact on a state’s decision to plan for adaptation, which provides support for the adaptive capacity 

hypothesis. Specifically, I find that the likelihood of states’ undertaking adaptation planning would 

increase by 4 percent when median household income increases by ten thousand dollars, all else 

equal. The result for the public meeting attendance variable suggests that civic engagement plays 

an important role in facilitating collective actions in the area of adaptation planning.  

With respect to political ideology, the only variable that emerges as statistically significant is 

the state-level environmental preference with the coefficient in the expected direction. The 

probability of a state’s developing an adaptation plan would increase by 5.5 percent with one 

standard deviation (27.61) increase in its LCV score. Neither of the partisan variables has an 

estimated coefficient that is significantly distinguishable from zero, after controlling for a state’s 

general environmental preference.  The estimated effect of unemployment rate also insignificant, 

which provides unclear evidence on the competing effect of other pressing issues, particularly job 

growth, on the state-level adaptation decision. 

My results do not provide clear support to the hypothesis of regional diffusion of adaptation 

planning, since the variable that tracks nearby state’s adaptation status is statistically insignificant. 

This may be because the diffusion variable is highly correlated with the quadratic time trend.77 It 

should also be acknowledged that grouping states by climatic regions may assign some 

neighboring states to different regions and thus fail to account for diffusion among them. To 

address this issue, I took another approach by creating bilateral spatial weights and including all 

states in calculating a weighted sum of external influence, following Aichele and Felbermayr 

(2012). Specifically, this spatial diffusion variable is computed as ∑ (𝑃𝑂𝑃𝑗,𝑡𝑗≠𝑖 /𝐷𝑖𝑠𝑡𝑖,𝑗)𝑃𝐿𝐴𝑁𝑗.𝑡, 

                                                           
77 I find that the diffusion variable is positive and statistically significant if I drop the baseline hazard rate or only include the time 

trend. This suggests the possible multicollinearity between the diffusion variable and my duration variables.  
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where 𝐷𝑖𝑠𝑡𝑖,𝑗�is geographic distance between states i and j, and 𝑃𝑂𝑃𝑗,𝑡 is population of state j. 

𝑃𝐿𝐴𝑁𝑗.𝑡 is a binary variable taking the value 1 if state j starts adaptation planning in year t. By 

creating the bilateral spatial weights, I allow the influence of other adapting states to diminish with 

the distance from state i and also to increase with their population size. Data on population and 

inter-state spatial distance matrices are separately drawn from the Bureau of Economic Analysis 

and Scott (2005). In Table 3-4 I present the estimation results using the alternative spatial diffusion 

variable, lagged by one year. Similarly, column 1 and 3 report the logit coefficients, and column 

2 and 4 report the estimates of average marginal effects. The new results might be suggestive of 

some spatial diffusion of state-level adaptation initiatives, since the estimated coefficients are 

marginally significant in both cases (using either dollar damages or deaths to measure recent 

disaster severity). But the evidence is far from conclusive and should be interpreted with caution. 

In the meantime, employing the new diffusion variable does not alter the main estimation results 

for other explanatory variables, except that the social capital variable becomes insignificant in 

column 1.   

  One thing important to note here is that policy diffusion/imitation might occur through 

multiple channels and in different contexts, and it is highly possible that geographic proximity is 

not the only mediating factor. Other factors such as ideological similarities might also play an 

important role when states exert influence on each other’s decision of adopting climate policies. I 

leave investigating this issue for future research.   

Finally, to provide some perspective on the predictive power of my empirical model, I present 

a classification table (Table 3-5) listing states that are either correctly or falsely predicted on their 

adaptation status, using the estimated coefficients in column 1 of Table 3-3 and a 50% cutoff point 

for predicting success. The table has four cells indicating (A) states that are correctly predicted to 



147 
 

have adaptation plans; (B) states that have plans but are predicted not; (C) states that have no plans 

but are predicted to have plans; and (D) states that are correctly predicted to have no plans. The 

table shows that my model has correctly predicted 10 out of the 22 states that have actually initiated 

adaptation planning. Notably, my model predicts that five states (listed in Cell C) would start 

planning earlier than they actually did. Another 12 states (listed in Cell B) are predicted to have 

no plans in the years when they actually started adaptation planning. The model appears to have 

correctly predicted all the states that have never initiated adaptation planning.  

 

4.3.2  Disaggregating climate hazards 

Although using the total climate-induced damages captures a state’s aggregate climate risk level, 

it is important to note that different types of climate hazard usually generate different levels of 

consequence and may have different implications for adaptation responses. As my descriptive 

statistics indicate (Table 3-2), states’ total climate-related losses are highly dominated by damages 

caused by hurricanes. This is consistent with the statistics from the National Climatic Data Center 

on the distribution of damages from U.S. billion-dollar climate disaster events.78 More specifically, 

their statistics indicate that over the 1980-2013 period, hurricanes not only caused the most damage 

but also the highest average cost per event. In addition to the variation in damage scale, climate 

impacts could also be different depending on the sectors affected and how losses are measured. 

For example, droughts usually affect the agriculture sector the most and can cause significant crop 

losses, but they rarely cause direct human losses. To the contrary, heat waves pose a serious threat 

to public health by causing heat-related deaths and illness, while the direct economic losses from 

heat wave are negligible compared to those caused by other hazards. Finally, disasters differ in 

                                                           
78 http://www.ncdc.noaa.gov/billions/, accessed on September 1, 2012.  

http://www.ncdc.noaa.gov/billions/
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their impact timeframes. Some hazards, such as hurricanes and heat waves, have a sudden onset 

and only last for a relatively short time period. Chronic hazards, such as drought and sea level rise, 

have a much less noticeable onset and their consequences do not manifest until they have 

accumulated for a long time period. This distinction can also affect the perception of climate 

change and how quickly people respond to these events.  

To further assess the effect of different climate hazards on adaptation planning, I disaggregate 

the total impacts by the types of climate hazard and compute the sum of hazard-specific damages 

over different time periods.79  Specifically, I create three disaster groups: (1) hurricanes and other 

coastal hazards; (2) heat waves, droughts and wildfires (all related to hot and dry weather); and (3) 

flooding and severe storms.  

As shown in Table 3-6, Panel A, monetary losses caused by coastal hazards in the past two 

years have a significant and positive effect on a state’s probability of pursuing adaptation planning, 

though this variable becomes insignificant beyond the two-year lag. This is consistent with my 

finding in Table 3-2, because hurricanes have accounted for most of the climate-related damages 

(as indicated in the descriptive statistics). Cumulative losses from hot and dry weather hazards (as 

dominated by drought damages) have a consistently positive impact across different time horizons. 

This result may be attributed to the chronic nature of drought events. Because the drought impact 

is usually manifested after it persists for a certain period of time, droughts may cause a relatively 

longer lag in adaptation responses.  

Panel B reports the estimated coefficients for hazard-specific fatalities. Again, the impact of 

coastal disasters on adaptation planning is mostly concentrated in the most recent two years. Only 

                                                           
79 Ideally, the analysis would still include hazard-specific damages in distributed lag structure. But this approach would ask too 

much from the data, especially given my relative small sample size. Using the sum of hazard-specific damages over multiple years 

is more parsimonious. It also allows me to identify the impacts of different hazards in different time scales. The downside is to 

assign the same weight to different years. But this problem could be alleviated because my analysis uses different time scales.   
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fatalities for the second disaster category (as largely dominated by heat waves) in the past two 

years have a significant and positive impact, also suggesting a short-term response.80  Finally, 

results in both Panel A and B show that recent flooding and storm events are not an important 

predictor of states’ planning decisions. This might be because the link between these events and 

climate change is less clear, at least from the public perception perspective. 

Overall, these results suggest that different types of climate hazards may exert different 

influences on prompting subnational adaptation responses. One thing to note here is that the 

coefficients for hot and dry weather hazards are much larger for those of coastal hazards (e.g., 

hurricanes). This is potentially because hurricanes are typically more destructive and result in 

much larger losses than other extreme weather events. In a scenario where drought, heatwaves, 

and wildfires cause the same amount of damage as hurricanes, the former might be perceived to 

be more severe and salient, and therefore have a larger impact on adaptation decisions.   

 

5 Discussion and Conclusion 

Over the past decade, formal planning for climate change adaptation has emerged rapidly at all 

levels of government in the United States. Planning has been a traditional approach to preparing 

for natural hazards and extreme events in this country, and is found to have effectively reduced 

disaster losses (Burby, 2005). Adaptation planning is related to but distinct from hazard mitigation 

planning. Given the uncertain, complex and wide-ranging impact of climate change, adaptation 

planning requires forward thinking, scientific analyses and an integrated approach. It is a new task 

for government, which marks the beginning of planned adaptation activities undertaken by 

government on behalf of society. 

                                                           
80  Drought is excluded because no direct deaths are reported. 
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This paper draws upon the policy innovation literature and employs an EHA to explain the 

state-level decision to develop comprehensive climate adaptation plans. Overall, I find that states’ 

adaptation decision is driven by a combination of internal factors related to its climate risks, 

adaptive capacity, and environmental preferences. There is no strong evidence suggesting regional 

diffusion of adaptation planning among states. 

My results highlight several important implications for subnational adaptation actions. First, 

the finding that recent extreme weather events would accelerate a state’s adaptation planning 

efforts confirms the prevailing view that most adaptation actions are reactive to problems after 

they are manifested (e.g., Bierbaum et al., 2013). It further suggests that the federal government 

has an important role to play in encouraging and informing proactive subnational adaptation before 

an event occurs. This finding also provides implications on the framing of climate change, in 

particular on how to leverage these extreme events to create the political window for promoting 

climate adaptation on the political agenda. 

Second, I find that a state’s tendency to engage in adaptation planning is affected by its 

vulnerability to climate change and adaptive capacity. While some characteristics that may 

aggravate a state’s exposure and sensitivity to climate impacts (e.g., ocean coastlines, size of 

coastal economy, forest cover) can move the state toward adaptation planning, some aspect of 

vulnerability (e.g., weak infrastructure) is found to have a negative effect on state-level adaptation 

decision. This finding implies that communities that are socially vulnerable to climate change may 

also lack adequate capacity or resources to adapt. Along with my other finding on the positive 

correlation between state affluence and its probability of undertaking adaptation planning, these 

results highlight the implications of economic inequality for adaptation actions. To address this 

problem requires more coordinated efforts, at both the federal and state level, integrating climate 
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adaptation and economic development. For example, the federal government may provide 

financial incentives and support to encourage climate-proof development, particularly on 

investment in long-term capital stocks such as infrastructure.   

Third, in this paper I consider state-level adaptation planning as not just a policy innovation 

but also a collective decision to address climate change. My findings suggest that both civic 

engagement and environmental preferences play an important role in facilitating adaptation 

planning, which enriches our understanding of climate adaptation as a collective action and social 

aspects of adaptive capacity. It may also provide policy makers with additional insights that may 

help facilitate the planning process. 

Finally, assessing statewide adaptation plans provides the very first step to understanding 

subnational adaptation decisions. Although an adaptation plan is an important prediction for 

coordinated actions, it is also true that plans do not necessarily guarantee concrete adaptation 

actions. How these plans are actually used to guide adaptation actions and their effect in reducing 

the negative climate impacts deserves more attention and investigation in future research. To be 

able to track and evaluate the adaptation progress also requires more updated information provided 

by state governments in a regular and timely manner. Moreover, it is reasonable to expect that 

these adaptation plans would also evolve with changes in economic situations and political 

leadership, as well as with more feedback from the ongoing adaptation activities. Therefore, it 

would be also interesting to further explore adaptation planning as a recurrent and ongoing process. 

Examining the evolution of adaptation plans will provide additional insights to understand the 

determinants of adaptation policy development, and also shed light on the implication of political 

changes on states’ persistent efforts to address climate adaptation. Last but not least, to fully 

understand the dynamics of subnational adaptation actions requires more attention given to local 
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governments. In fact, some cities have already adopted local adaptation plans even though their 

state governments have not yet taken any formal actions. The interactions between state and local 

governments in adaptation planning and the potential vertical diffusion of adaptation strategies 

will be interesting issues for future research.  
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Table 3-1  Variable and Data Description 

Factors Variable Measurement  Data Sources 

Climate risks   

Impact of Extreme 

Weather Events 
Fatalities and monetary loss (property and crop) from climate-related disasters (including 

floods, heat waves, droughts, wildfires, coastal disasters).  

Spatial Hazard Events and Losses 

Database for the United States  

Vulnerability People at the age of 65 and above as  % of a state’s total population* US Census 

 Agricultural production as % of state total GDP Bureau of Economic Analysis 

 Length of ocean coastline in thousand miles* NOAA 

 Coastal economy as % of state total GDP  

National Ocean Economics Program, 

Bureau of Labor Statistics 

 Forest land as % of state total land area* Department of Agriculture 

 Poor road bridges as % of state total road bridges  Department of Transportation 

Adaptive Capacity   

Income Median household income (1000 dollars, adjusted at 2005 price) # Bureau of Economic Analysis 

Civic Engagement Public meeting attendance (% of adults who say they often attend public meeting)* 

National Conference on Citizenship, 

Current Population Survey 

Political Interests   

Ideology Party affiliation of state governor (=1 for democratic state governor)  Council of State Government 

 
Partisan Dominance in state legislature (= 1 if state Senate and House are both controlled 

by democratic party and 0 otherwise)  Council of State Government 

Environmental 

preference Average League and Conservation Voters scores of Senators and Representatives  League of Conservation Voters 

Competing issues Unemployment rate # Department of Labor 

Diffusion   

Spatial Diffusion 

Percentage of other states within the same climate regions that have started 

adaptation planning # 

Center for Climate and Energy 

Solutions; Georgetown Climate Center; 

EPA; my own online searches and e-

mail inquiries.  

Note: *indicates the independent variables are time-invariant. Specifically, the elderly variable is based on the 2010 census data. The forest land ratio is based on the 2007 data. The coastline describes the general outline of 

the seacoast, including large sounds and bays, with the data based on the 1948 measurement.  The variables marked with "#" are included in the regressions with one year lag. For variables with "+", I consider their 
cumulative effects in a recent period by using either a distributed lags or sums over multiple years. 
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Table 3-2 Summary Statistics for Explanatory Variables 

Variables Mean Std. Dev Min Max 

The elderly (%) 13.28 1.51 7.7 17.3 

Agricultural sector (%) 1.53 1.75 0.05 7.15 

Coastline length (thousand miles) 0.14 0.64 0 6.64 

Coastal economy (%) 17.86 30.14 0 100 

Forest cover (%) 35.80 22.14 1.58 87.86 

Poor infrastructure (%) 25.23 8.81 10.04 55.14 

Median household income in year t-1 

(thousand dollars adjusted at 2005 price)  52.23 7.92 36.64 77.51 

Public meeting attendance (%) 10.86 3.36 6 21 

Democratic governor 0.45 0.5 0 1 

Democratic legislative control 0.39 0.49 0 1 

League of Conservation Voter (LCV) score 44.68 27.61 0 100 

Unemployment rate in year t-1 (%) 5.89 2.2 2.5 13.7 

Percent nearby adapting states in year t-1 14 21 0 100 

     

Total monetary losses as fraction of state 

GDP in the past two years (%) 0.51 3.21 0 32.40 

Droughts 0.018 0.12 0 1.77 

Heat waves 0.0003 0.002 0 0.027 

Wildfire 0.005 0.05 0 0.8 

Floods 0.1 0.49 0 6.19 

Severe Storms 0.0005 0.003 0 0.03 

Hurricanes 0.39 3.18 0 32.3 

Coastal hazards 0.002 0.02 0 0.29 

     

Total deaths in the past two years (persons) 14.37 54.83 0 690 

Heat waves 4.22 10.74 0 71 

Wildfire 0.3 1.82 0 22 

Floods 3.2 6.02 0 53 

Severe storms 0.11 0.47 0 4 

Hurricanes 5.32 53.14 0 686 

Coastal hazards 1.22 3.99 0 49 
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Note: Clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

The damage variable is a state’s total climate-related damages in the past two years (from droughts, heat waves, 

wildfires, hurricanes, flooding, severe storms, and other coastal hazards) as fraction of the state’s GDP. The death 

variables measures the number of fatalities (in hundred) caused by climate hazards in the past two years. Column 1 

and 3 report the logit coefficient estimates, and column 3 and 4 report the corresponding average marginal effect.   

Table 3-3 Logistic Model of the Adoption of State-level Adaptation Planning  

 With damages With deaths 

 (1) (2) (3) (4) 

     

Total damages as fraction of GDP (%) 0.132** 0.42%   

 (0.0567)    

Total deaths (hundred)   0.804** 3% 

   (0.329)  

The elderly (%) -0.124 -0.4% -0.0759 -0.2% 

 (0.582)  (0.567)  

Agricultural sector (%) 0.106 0.3% 0.137 0.4% 

 (0.401)  (0.381)  

Coastline length (thousand miles) 1.019*** 3.3% 1.060*** 3.4% 

 (0.384)  (0.395)  

Coastal economy (%) 0.0264*** 0.1% 0.0263** 0.1% 

 (0.0101)  (0.0104)  

Forest cover (%) 0.0939*** 0.3% 0.0960*** 0.3% 

 (0.0252)  (0.0263)  

Poor infrastructure (%) -0.104* -0.3% -0.108* -0.3% 

 (0.0543)  (0.0562)  

Median household income in year t-1  0.112** 0.4% 0.122** 0.4% 

(thousand dollars) (0.0509)  (0.0530)  

Public meeting attendance (%) 0.175* 0.5% 0.187* 0.6% 

 (0.104)  (0.103)  

Democratic governor 1.055 3.4% 1.101 3.5% 

 (1.025)  (1.009)  

Democratic legislative control -0.357 -1.5% -0.379 -1.2% 

 (1.030)  (1.043)  

League of Conservation Voter score 0.0486** 0.2% 0.0472** 0.2% 

 (0.0239)  (0.0239)  

Unemployment rate in year t-1 (%) -0.0636 -0.2% -0.0589 -0.2% 

 (0.183)  (0.184)  

Percent adapting states in year t-1 (%) 0.011 0.04% 0.0121 0.04% 

 (0.0156)  (0.0155)  

t 4.487*** 14.5% 4.570*** 14.8% 

 (1.192)  (1.214)  

t^2 -0.381*** -1.2% -0.387*** -1.2% 

 (0.119)  (0.121)  

     

     

Constant -26.37***  -28.00***  

 (7.387)  (7.544)  

Observations 349  349  

AIC 111.2  110.7  

Log likelihood -38.59  -38.37  
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Note: Clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

The damage variable is a state’s total climate-related damages in the past two years (from droughts, heat waves, 

wildfires, hurricanes, flooding, severe storms, and other coastal hazards) as fraction of the state’s GDP. The death 

variables measures the number of fatalities (in hundred) caused by climate hazards in the past two years. Column 1 

and 3 report the logit coefficient estimates, and column 3 and 4 report the corresponding average marginal effect.  

Table 3-4 Using alternative spatial diffusion measure 

 With damages With deaths 

 (1) (2) (3) (4) 

     

Total damages as fraction of GDP (%) 0.155** 0.49%   

 (0.0628)    

Total deaths (hundred)   0.945*** 3% 

   (0.363)  

The elderly (%) -0.193 -0.6% -0.141 -0.4% 

 (0.663)  (0.650)  

Agricultural sector (%) 0.304 0.9% 0.357 1.1% 

 (0.449)  (0.437)  

Coastline length (thousand miles) 0.119*** 3.8% 0.126*** 4.0% 

 (0.0391)  (0.0409)  

Coastal economy (%) 0.0258** 0.8% 0.0257** 0.08% 

 (0.0110)  (0.0113)  

Forest cover (%) 0.104*** 0.3% 0.107*** 0.3% 

 (0.0302)  (0.0321)  

Poor infrastructure (%) -0.109* -0.3% -0.113* -0.4% 

 (0.0614)  (0.0641)  

Median household income in year t-1  0.121** 0.4% 0.133** 0.4% 

(thousand dollars) (0.0532)  (0.0557)  

Public meeting attendance (%) 0.153 0.5% 0.165* 0.5% 

 (0.0985)  (0.0988)  

Democratic governor 1.159 3.7% 1.228 3.9% 

 (1.122)  (1.116)  

Democratic legislative control -0.532 -1.7% -0.565 -1.8% 

 (0.982)  (1.004)  

League of Conservation Voter score 0.0581** 0.2% 0.0573** 0.2% 

 (0.0277)  (0.0283)  

Unemployment rate in year t-1 (%) -0.170 -0.5% -0.170 -0.5% 

 (0.187)  (0.188)  

Spatial diffusion in year t-1 0.00948 0.03% 0.0102* 0.03% 

 (0.00590)  (0.00593)  

t 4.204*** 13.5% 4.300*** 13.7% 

 (1.022)  (1.035)  

t^2 -0.360*** -1.2% -0.367*** -1.2% 

 (0.108)  (0.110)  

Constant -25.94***  -27.93***  

 (7.577)  (7.654)  

     

Observations 349  349  

AIC 109.821  109.23  

Log likelihood -37.91  - 37.62  
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      Table 3-5 Logit Classification Table 

Classified Having plans Having no plans Total 

 

 

 

 

 

Predicted to have plans 

A 

 

Alaska   2007  

Connecticut   2008  

Delaware   2009  

Hawaii   2011  

Maine   2007  

Maryland   2009  

New Hampshire   2007  

New York   2009  

Oregon   2009  

Vermont   2008 

 

C 

 

Delaware   2008  

Hawaii   2009  

Maryland   2008  

New Jersey   2009  

Oregon   2008  

 

 

 

 

 

 

15 

 

 

 

 

 

 

 

Predicted to have no 

plans 

B 

 

California   2008  

Colorado   2008  

Florida   2007  

Massachusetts   2008  

Minnesota   2009  

New Jersey   2011  

North Carolina   2009  

Pennsylvania   2010  

Rhode Island   2010  

Virginia   2007  

Washington   2007  

Wisconsin   2007  

 

D 

 

 

 

 

 

 

All others 

 

 

 

 

 

 

334 

Total 22 327 349 
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Table 3-6  Logistic model of adaptation planning (hazard-specific impacts) 

Panel A – Impact measured by damage as fraction of GDP (%) 

 Past two years Past three years Past four years 

Coastal hazards 0.132** 0.0736 0.0307 

 (0.0543) (0.0562) (0.0582) 

A.M.E 0.4% 0.2% 0.1% 

    

Drought, wildfires, 

Heat waves 3.347* 3.361* 3.487** 

 (1.831) (1.844) (1.765) 

A.M.E 10.8% 10.8% 11.3% 

    

Flooding and severe 

storms -2.489 -0.198 -1.620 

 (7.876) (0.628) (3.772) 

A.M.E -8% 0.6% -5.2% 

     

Panel B – Impact measured by number of deaths (persons) 

 Past two years Past three years Past four years 

Coastal hazards 0.00793*** 0.00513* 0.00373 

 (0.00251) (0.00275) (0.00312) 

A.M.E 0.02% 0.016% 0.01% 

    

Heat waves and 

wildfires 0.0441* 0.0531 0.0303 

 (0.0242) (0.0390) (0.0307) 

A.M.E 0.13% 0.16% 0.1% 

    

Flooding and severe 

storms -0.384 -0.212 -0.0456 

 (0.266) (0.211) (0.128) 

A.M.E -1.1% 0.6% -0.14% 
Note: Clustered standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1. 

A.M.E represent the average marginal effect of the logit coefficient estimates. Panel A reports the results when disaster 

damage is measured by cumulative economic losses (as fraction of state GDP) for the three hazard groups over the 

past 2-year, 3-year and 4-year period. Panel B reports the results using cumulative death tolls as a measure of disaster 

impact.   
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Figure 3-1 Progress on Adaptation Planning in the United States 

 
 

 

 

 

 

 

 

  



165 
 

 

 

Figure 3-2 Timeline: Development of Statewide Adaptation Plans 
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Note:  For Washington and Maryland with multiple adaptation plans, the 

completion year denotes the year of publication of their last planning 

document. 
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Appendix  

Appendix 1. Descriptive analysis of statewide adaptation plans.  

The two primary databases I use to identify statewide comprehensive adaptation plans are from 

the Center for Climate and Energy Solutions (C2ES) and the Georgetown Climate Center.81 The 

two databases are cross-referenced and therefore, highly similar.82  I rely more heavily on the C2ES 

dataset because this is the source more commonly used in studies of domestic adaptation planning, 

including the 2014 National Climate Assessment. Furthermore, I also use the information compiled 

by the Environmental Protection Agency on statewide adaptation actions to check whether the data 

from the first two sources have included all states with extant planning documents. Based on these 

data sources, I also conduct online searches and make e-mail inquiries to state environmental 

agencies to construct my database of statewide adaptation planning documents.83 

I undertake a systematic review of the identified state adaptation plans and summarize their 

planning documents in Table 3-A1a, including plan titles, preparation organizations, document 

lengths and publication years. For states with a complete plan, most of their planning documents 

have exclusively focused on climate change adaptation, while four states (Florida, New Hampshire, 

New York, and Virginia) have adaptation plans embedded in a broader climate change action plan, 

which also include planning components related to greenhouse gas mitigation.  

Although these plans meet the basic criteria for analysis, the breadth and depth of the planning 

content vary considerably across states. Notably, some states have more than one adaptation plan. 

                                                           
81 The former database is accessed on http://www.c2es.org/us-states-regions/policy-maps/adaptation, while the link to the latter is 

http://www.georgetownclimate.org/adaptation/state-and-local-plans. 
82  Both two databases use comprehensiveness (i.e., covering multiple climate-sensitive sectors) as a key criteria to identify 

statewide climate adaptation plans. But one difference is that C2ES also include states if they have a collection of sector-level plans 

that collectively represent all major sectors.   
83 I have also included North Carolina as a “completion” state through communication with the officials from its state environmental 

agency. Their planning document is not mentioned by either C2ES or Georgetown Climate Center, but is included in the database 

of adaptation examples compiled by the EPA. 

http://www.c2es.org/us-states-regions/policy-maps/adaptation
http://www.georgetownclimate.org/adaptation/state-and-local-plans
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For example, Maryland conducted adaptation planning in two stages: the first one focusing 

specifically on coastal management and the second one dealing with multiple climate-relevant 

sectors. The state of Washington released its first adaptation plan in 2008, and drew on this initial 

effort to finalize its integrated climate adaptation strategy in 2012.  

In terms of the origin, these state adaptation plans were developed through either a top-down 

request, in the form of executive orders issued by state governors or requirement from the state 

legislature, or a bottom-up initiative by state agencies. Table 3-A1b provides a brief description of 

how these plans were initiated in each state, including the five states with an adaptation plan-in-

progress. The fact that a majority of the adaptation plans were guided by the governors’ 

requirements may illustrate the importance of political entrepreneurs in shaping state-level climate 

policy agenda. Besides the elected leaders, the agency’s bottom-up approach to adaptation 

planning reflects their rising power in the new era of governance, and in particular, their capacity 

of engaging stakeholders and coordinating partnerships. 

Comprehensive adaptation planning requires consideration of the complex effects of climate 

change as well as their implications for various sectors. Table 3-A1c presents the common 

concerns in these plans, classified by either impacts or sectors. As Panel A shows, the climatic 

impacts most often discussed in these plans include not only the gradual changes (e.g., increased 

temperatures and sea level rise) but also extreme weather events (e.g., flooding, storm events, 

droughts, heat waves) that are expected to become more frequent and intense as a result of climate 

change. These plans also consider other secondary effects, particularly decreased air quality and 

ecological changes. In all the plans, the climate change-related impacts and corresponding 

adaptation strategies are explored in a multi-sector setting (as shown in Panel B), with most 

attention given to public health, agriculture, ecosystem, coastal management, water resource and 
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infrastructure. For each sector, specific adaptation strategies are proposed in these plan documents. 

Additionally, most of the state plans have identified a set of overarching strategies to guide their 

general adaptation practices (as shown in Table 3-A1d), which include, for example, advancing 

climate research and promoting the public awareness on climate adaptation as well as 

incorporating climate adaptation into existing planning and programs (known as “mainstreaming”).   

It is important note that some traditional government functions may have already incorporated 

climate change into their planning processes without necessarily developing a so-called adaptation 

plan. To address this concern, I compared my list of “adapting” states with a recent study, which 

rates the discussion of climate change in statewide hazard mitigation plans (Babcock, 2013).84 

Table 3-A1e provides a comparison between the two lists of states. It indicates that most of the 

states that have already addressed adaptation in their existing framework of natural hazard 

mitigation are also more likely to develop an independent adaptation plan.  

  

                                                           
84 The study conducted in the Columbia Law School provides a rating for each state to assess its planning component particularly 

related to climate change based on their state hazard mitigation planning documents. More specifically, its ranks states by four 

categories; a higher ranking indicates more substantial discussion of climate change and adaptation actions.  
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Table 3-A1a: Summary of Statewide Adaptation Plans 

State Planning document title 

# of Pages 

(discussing 

adaptation)  

Publication 

year 
Preparing organization 

Alaska Alaska's Climate Change Strategy: addressing impacts in Alaska 94 2010 
The Alaska Climate Change Adaptation Advisory Group 

(including four working groups)  

California 2009 California Climate Adaptation Strategy 200 2009 
The California Natural Resources Agency (in collaboration with 

other agencies) 

Colorado Colorado Climate Preparedness Project Final Report  114 2011 Western Water Assessment for the State of Colorado 

Connecticut Connecticut Climate Change Preparedness Plan  111 2011 
Adaptation Subcommittee of the Governor’s Steering Committee 

on Climate Change 

Florida Florida's energy & climate change action plan 7/124 2008 Governor's Action Team on Energy and Climate Change  

Maine People and Nature Adapting to a changing climate: charting Maine's Course 12 2010 Maine Department of Environmental Protection 

Maryland 
Comprehensive Strategy for Reducing Maryland's Vulnerability to Climate 

Change phase 1: sea-level rise and coastal storms 
44 2008 

The Maryland Commission on Climate Change Adaptation and 

Response Working Groups. 

Maryland 
Comprehensives strategy for reducing Maryland's vulnerability to climate 

change. Phase ii: Building societal, economic, and ecological resilience 
124 2011 

The Maryland Commission on Climate Change Adaptation and 

Response Working Groups. 

Massachusetts Massachusetts Climate Change Adaptation Report 128 2011 
Massachusetts Executive Office of Energy and Environmental 

Affairs and the Climate Change Adaptation Advisory Committee  

New 

Hampshire 

New Hampshire Climate Action Plan: A plan for New Hampshire's Energy, 

Environmental and Economic Development Future.  
6/82 2009 

New Hampshire Climate Change Policy Task Force; Department 

of Environmental Services  

New York New York State Climate Action Plan Interim Report 86/428 2010 

New York State Climate Action Council;  New York State 

Department of Environmental Conservation (DEC);  New York 

State Energy Research and Development Authority 

(NYSERDA) 

North 

Carolina 
Climate Ready North Carolina: Building a resilient future. 152 2012 North Carolina Interagency Leadership Team (ILT) 

Oregon The Oregon Climate Change Adaptation Framework 151 2010 
State of Oregon (state agencies) 

Oregon Climate Change Research Institute (OCCRI) 

Pennsylvania Pennsylvania Climate Adaptation Report 104 2011 Pennsylvania Department of Environmental Protection 

Vermont Vermont Adaptation White Papers 58 2011 Vermont Agency of Natural Resources 

Virginia Virginia's Final Report: A Climate Change Action Plan 7/125 2008 Virginia Governor's Commission on Climate Change 

Washington 
Leading the Way: Preparing for the Impacts of Climate Change in 

Washington 
84 2008 

Department of Ecology, 

Department of Community, Trade and Economic Development 

Washington 
Preparing for a Changing Climate: Washington State’s Integrated Climate 

Response Strategy  
207 2012 Department of Ecology, Four advisory groups  

Wisconsin Wisconsin's Changing Climate: Impacts and Adaptation 226 2011 

Wisconsin Initiative on Climate Change Impacts (WICCI) -- the 

Nelson Institute for Environmental Studies at the University of 

Wisconsin-Madison and the Wisconsin Department of Natural 

Resources. 

Note: As discussed in the text, Maryland and Washington have released more than one statewide adaptation planning documents. Column 3 (# of pages) compares the length of various state 

adaptation plans. For those marked with “/”, this means their discussions of adaptation planning are incorporated in a broad state climate action plan (normally containing GHG mitigation strategies), 

with the number after “/” indicating the pages of the entire document. 

 



170 
 

 

Table 3-A1b  Summary on the Initiation of Statewide Adaptation Plans 

S
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te
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N
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States with a completed adaptation plan 

Alaska 2007 x   

Governor Sarah Palin signed Administrative Order 238, which established and charged the Alaska Climate Change Sub-Cabinet to 

advise the Office of the Governor on the preparation and implementation of a comprehensive Alaska Climate Change Strategy (AO 

238). 

California 2008 x   

Governor Schwarzeegger's Executive Order S-13-08 directed state agencies to plan for climate impacts and collaborating on a 

statewide climate adaptation strategy. The Natural Resource Agency is tasked with overseeing the development of the state 

adaptation plan 

Colorado 2008 x   

On April 22, 2008, Governor Ritter issued Executive Order B007 08 to create the state's Climate Change Advisory Panel and 

authorize the panel to make recommendations to achieve the goals of Colorado's Climate Action Plan, including mechanisms for 

adaptation planning. 

Connecticut 2008  x  

Public Act No. 08-98, An Act Concerning Connecticut Global Warming Solutions, Section 7 required the Governor‘s Steering 

Committee on Climate Change to establish an Adaptation Subcommittee to evaluate the projected impacts of climate change on 

Connecticut and develop strategies to mitigate these impacts. 

Florida 2007 x   

Executive Order (07-128) signed by Governor Charlie Crist created the Governor's Action Team on Energy and Climate Change 

and tasked it with creating a comprehensive Florida Energy and Climate Change Action Plan to achieve or surpass the statewide 

targets for greenhouse gas reduction. 

Maine 2009  x  

The state legislature passed a resolution ("Resolve, To Evaluate Climate Change Adaptation Options for the State": Maine SP0163 / 

LD 460) charging the Department of Environmental Protection to initiate a stakeholder-based process evaluating options and actions 

to prepare for the impacts of climate change. 

Maryland 2007 x   
Governor Martin O'Malley signed an Executive Order (01.01.2007.07) establishing the Maryland Climate Change Commission 

(MCCC) and charging them with developing a state climate action plan that addresses both mitigation and adaptation. 

Massachusetts 2008  x  

The Global Warming Solutions Act, passed by the Massachusetts Legislature and signed by Governor Deval Patrick, created the 

Climate Change Adaptation Advisory Committee which is responsible for analyzing strategies for adapting to predicted impacts of 

climate change in the Commonwealth. 

New 

Hampshire 
2007 x   

Governor John Lynch issued EO 2007-3 creating the Climate Change Policy Task Force. The Task Force is comprised of 6 working 

groups, with one dedicated to Adaptation. 

New York 2009 x   
Executive Order 24 signed by Governor David Patterson created the New York Climate Action Council and charged it with creating 

a Climate Action Plan. 

North Carolina 2009   x 

Since 2009, the North Carolina Interagency Leadership Team (ILT) has been looking at how multiple government agencies could 

consider potential climate and extreme weather event impacts on their areas of responsibility. In March, 2010, the ILT hosted a 

workshop “Planning for North Carolina’s Future: Ask the Climate Question.” 

Oregon 2009 x   
In October 2009, Governor Ted Kulongoski asked the directors of several state agencies, universities, research institutions and 

extension services to develop a climate change adaptation plan. 

Pennsylvania 2010   x The Pennsylvania Climate Change Act, Act 70 of 2008 authorized the Department of Environmental Protection (DEP) to prepare a 

report recommending mitigation actions. Although not a requirement of Act 70, the DEP and the Climate Change Advisory 

Committee (CCAC) recognized the need to also address adaptation planning. During the 2009 meeting of the CAAC, a motion was 
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made and passed with unanimous support that the action plans should include a recommendation to the Governor and the 

Pennsylvania General Assembly to address climate adaptation.  

Vermont 2008 x    The Governor's Commission on Climate Change was created in 2005 by Governor James Douglas' Executive Order 07-05, tasked 

with developing a climate action plan on reducing GHG emissions.  In 2008, a multi-agency Climate Change Transition Team was 

created to develop a work plan. The group released a draft work plan in 2008, which included an outline for the creation of a 

Climate Adaptation Plan.  

Virginia 2007 x   Executive Order 59 (2007), signed by Governor Timothy Kaine in 2007, established the Governor's Commission on Climate 

Change that is responsible for creating a Climate Change Action Plan that would evaluate expected impacts of climate change and 

identify adaptation strategies. 

Washington  2007 x   The state's 2008 adaptation plan was initiated by the Executive Order 07-02 issued by Governor Christine O. Gregoire, which 

requires identifying specific steps to prepare for the impact of global warming on multiple sectors.  

 2009 x x  The state's 2012 plan was guided by the requirement of state legislature and governor. The Washington State Legislature approved 

the State Agency Climate Leadership Act SB 5560, which included provisions in sections 10 through 13 for the formation of an 

“integrated climate change response strategy”. Governor Gregoire’s May 2009 Executive Order reinforced this requirement, 

directing the Department of Ecology to collaborate with affected local, state, and federal agencies to develop adaptation 

recommendations, guidelines, and tools.  

Wisconsin 2007   x In 2007, the Wisconsin Initiative on Climate Change Impacts (WICCI) was formed as a joint initiative between the Wisconsin 

Department of Natural Resources and the University of Wisconsin - Madison's Nelson Institute for Environmental Studies. WICCI 

is a unique and innovative process that relies on a bottom-up approach to engage scientists, researchers, and management agencies 

in understanding the impacts of climate change and developing strategies to make them more resilient to climate change. 

States with adaptation plans in progress 

Delaware 2009   x In 2009 Delaware began its adaptation planning by convening a workshop bringing together stakeholders to discuss unique threats 

of sea level rise to each stakeholder. Following this workshop, technical workgroups and an advisory committee were established. 

The adaptation plan is organized around three key tasks: defining the threats of sea level rise, developing strategies to mitigate 

damages, and implementing recommendations. 

Hawaii 2011   x Recognizing the need to address climate change adaptation, the Office of Planning held a set of workshops in 2011 and started 

coordinating a climate change adaptation policy with its partner agencies. Based on these workshops, Act 286 (2012), Climate 

Change Adaptation Priority Guidelines, was passed by the legislature and signed into law by Governor Neil Abercrombie. 

Minnesota 2009   x In 2009, Minnesota formed the Interagency Climate Adaptation Team (ICAT), which is composed of representatives from multiple 

state agencies. The ICAT began examining projected climate impacts and released its preliminary report entitled "Adapting to 

Climate Change in Minnesota" in 2010, making the first step towards building a long-term strategic plan that includes goals and 

objectives for the state.  

New Jersey 2011   x The New Jersey Department of Environmental Protection partnered with Sustainable Jersey to form the Climate Adaptation Task 

Force. The Task Force is working on a slate of actions that lead communities through a vulnerability and preparedness self-

assessment, and a set of steps to mitigate these potential threats.  

Rhode Island 2010  x  The Rhode Island Climate Risk Reduction Act of 2010 (RIGL 23-84) established the Rhode Island Climate Change Commission, 

which is tasked with studying the projected impacts of climate change and identifying adaptation strategies and mechanisms to 

mainstream existing state and municipal programs. 

Note: the materials presented in this table are primarily based on each state’s adaptation planning documents. For states that are still in the process of plan development, I referred to the data of the 

Center for Climate and Energy Solutions as well as the website of the state environmental department. Because the state of Washington released two planning documents are different time, I 

describe the development process for each one.    



172 
 

Table 3-A1c  Adaptation Highlights by Impact and Sectors 

Panel A - Impacts of Climate Changes Considered in Adaptation Plans 

State 
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Alaska x x x x x x x x x x x 

California x x x x x x x x x x x 

Colorado x    x x x x x x x 

Connecticut x x x  x x x x x x x 

Florida x x   x x x x x  x 

Maine x x   x x x    x 

Maryland x x x  x x x x x x x 

Massachusetts x x x x x x x x x x x 

New Hampshire x x x  x x x x  x x 

New York x x x  x x x x  x x 

North Carolina x x x x x x x x x x x 

Oregon x x x x x x x x x x x 

Pennsylvania x x   x x x x x x x 

Vermont x x   x x x x  x x 

Virginia x x x  x x x x x x x 

Washington x x x  x x x x x x x 

Wisconsin x  x  x x x x  x x 

 

Panel B- Major sectors considered in adaptation plans  

State 
Public 

Health Agriculture 

Coastal 

management 

Water 

management Infrastructure 

Energy 

use 

Tourism & 

recreation Biodiversity 
Forestry 

Alaska x x x  x x x x 
x 

California x x x x x x x x 
x 

Colorado  x  x x x x x 
 

Connecticut x x x x x x  x 
x 

Florida x  x x x   x 
 

Maine x x x x x  x x 
x 

Maryland x x x x x x  x 
x 

Massachusetts x x x x x x x x 
x 

New Hampshire x x x x x  x x 
x 

New York x x x x x x  x 
 

North Carolina x x x x x x x x 
x 

Oregon x x x x x   x 
x 

Pennsylvania x x  x x  x x 
x 

Vermont x x  x x  x x 
x 

Virginia x x x x x  x x 
 

Washington x x x x x   x 
x 

Wisconsin x x x x x x  x 
x 



173 
 

Table 3-A1d  Highlights on the Overarching Adaptation Strategies in State Plans 

State 

Intergovernmental 

coordination and 

collaboration 

Assisting local 

communities 

Mainstreaming 

(incorporate 

climate change 

into existing 

planning & 

programs) 

Adaptive 

Management 

Advancing 

climate 

science 

research 

Public 

Education, 

communication 

and Outreach 

Emergency 

management 

Integrating 

adaptation 

and 

mitigation 

strategies 

Alaska x x   x x   

California  x x x x  x  

Connecticut x x x x x x x  

Colorado  x x x  x x   

Florida x x x  x x x  

Maine x    x   x 

Maryland  x x  x x x x 

Massachusetts x x  x x x x x 

New 

Hampshire 
x    x x x  

New York  x  x x x x  

North 

Carolina 
x x x x x x   

Oregon x  x x  x  x 

Pennsylvania   x x x x x x 

Vermont         

Virginia x x x  x    

Washington   x  x  x  

Wisconsin  x x x x x  x 
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Table 3-A1e  Summary on State Adaptation Planning and Their Discussion of Climate Change in Hazard 

Planning 

state 

Adaptation 

planning 

Climate 

adaptation in 

hazard 

planning state 

Adaptation 

planning 

Climate 

adaptation in 

hazard 

planning 

Alabama No 1 Montana No 1 

Alaska Completed 4 Nebraska No 1 

Arizona No 2 Nevada No 1 

Arkansas No 2 New Hampshire Completed 4 

California Completed 4 New Jersey In progress 3 

Colorado Completed 4 New Mexico No 1 

Connecticut completed 4 New York Completed  4 

Delaware In Progress 1 North Carolina Completed 3 

Florida Completed 3 North Dakota No 1 

Georgia No 1 Ohio No 2 

Hawaii In progress 4 Oklahoma No 1 

Idaho No 1 Oregon Completed 3 

Illinois No 2 Pennsylvania Completed  2 

Indiana No 1 Rhode Island In progress 3 

Iowa No 1 South Carolina No 2 

Kansas No 2 South Dakota No 1 

Kentucky No 1 Tennessee No 1 

Louisiana No 2 Texas No 2 

Maine Completed 3 Utah No 2 

Maryland Completed 4 Vermont Completed 4 

Massachusetts completed 4 Virginia Completed 2 

Michigan No 3 Washington Completed 4 

Minnesota In progress 3 West Virginia No 3 

Mississippi No 1 Wisconsin Completed 3 

Missouri No 1 Wyoming No 1 

Notes: Scores for climate change discussion in state hazard mitigation plans (Babcock, 2013):   

1. no discussion of climate change or inaccurate discussion of climate change   

2. minimal mention of climate related issues     

3. accurate but limited discussion of climate change and/or brief discussion with acknowledgement of need for future inclusion 

4. thorough discussion of climate change impacts on hazards and climate adaptation actions  
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Appendix 2.  Grouping of States by Regions 

The regional division is from the 2014 National Climate Assessment (NCA). I have made slight 

changes by considering Alaska and Hawaii as part of northwest and southwest, respectively. The 

two states are treated separately in the NCA document.   
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Appendix 3 Sensitivity Test of Lag Length 

In the main paper (Table 3), I include cumulative damage and deaths from major climate-related 

hazards that have occurred in a state over the past two years. In this appendix, I report the 

sensitivity tests that are performed using two approaches: (1) I use the cumulative damage and 

deaths that have occurred in a state over different time periods ranging from the past one to four 

years; (2) I use a distributed lag model with each year’s disaster damage and deaths and gradually 

increase the year lags. The sensitivity tests suggest that for either damage or deaths-related losses, 

extreme weather events that occurred in year t-2 have a consistently significant and positive effect 

on a state’s probability to start adaptation planning. In the paper I use the cumulative losses in the 

past two years instead of a distributed lag model because it is more parsimonious and yields a 

slightly better goodness of fit.
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Table 3-A3a Modeling the effect of cumulative damages over past years  

 Past year Past two years Past three years Past four years 

 (1) (2) (3) (4) 

     

Total damages (% of GDP) -3.338 0.132** 0.0773 0.0320 

 (7.088) (0.0567) (0.0553) (0.0588) 

The elderly (%) -0.133 -0.124 -0.116 -0.112 

 (0.595) (0.582) (0.582) (0.598) 

Agricultural sector (%) 0.158 0.106 0.105 0.112 

 (0.382) (0.401) (0.402) (0.400) 

Coastline length (thousand miles) 1.037*** 1.019*** 1.023*** 1.015*** 

 (0.400) (0.384) (0.384) (0.385) 

Coastal economy (%) 0.0256** 0.0264*** 0.0263*** 0.0262*** 

 (0.0104) (0.0101) (0.0101) (0.0100) 

Forest cover (%) 0.0930*** 0.0939*** 0.0934*** 0.0928*** 

 (0.0257) (0.0252) (0.0252) (0.0253) 

Poor infrastructure (%) -0.103* -0.104* -0.104* -0.104* 

 (0.0548) (0.0543) (0.0540) (0.0545) 

Median household income in year t-1  0.108** 0.112** 0.115** 0.113** 

(thousand dollars) (0.0507) (0.0509) (0.0523) (0.0530) 

Public meeting attendance (%) 0.160 0.175* 0.179* 0.176* 

 (0.105) (0.104) (0.105) (0.106) 

Democratic governor 1.032 1.055 1.089 1.069 

 (1.059) (1.025) (1.014) (1.027) 

Democratic legislative control -0.268 -0.357 -0.375 -0.349 

 (1.038) (1.030) (1.042) (1.053) 

League of Conservation Voter score 0.0480* 0.0486** 0.0487** 0.0478** 

 (0.0248) (0.0239) (0.0239) (0.0240) 

Unemployment rate in year t-1 (%) -0.0597 -0.0636 -0.0619 -0.0585 

 (0.183) (0.183) (0.183) (0.182) 

Percent adapting states in year t-1 (%) 0.0109 0.0110 0.0109 0.0110 

 (0.0151) (0.0157) (0.0158) (0.0156) 

t 4.379*** 4.487*** 4.475*** 4.446*** 

 (1.163) (1.192) (1.195) (1.192) 

t^2 -0.373*** -0.381*** -0.379*** -0.378*** 

 (0.116) (0.119) (0.118) (0.119) 

Constant -25.50*** -26.37*** -26.68*** -26.46*** 

 (7.171) (7.387) (7.621) (7.732) 

     

Observations 349 349 349 349 

AIC 111.3 111.2 111.1 111.4 

Log likelihood -38.66 -38.59 -38.55 -38.69 

Note: Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3-A3b  Distributed lag model of total economic losses 

 (1) (2) (3) (4) 

     

Total damage in year t-1 -3.338 -3.661 -3.365 -3.761 

 (7.088) (7.647) (7.440) (8.042) 

Total damage in year t-2  0.140** 0.145** 0.184** 

  (0.0557) (0.0593) (0.0750) 

Total damage in year t-3   0.0597 0.0595 

   (0.0544) (0.0576) 

Total damage in year t-4    -8.258 

    (10.14) 

The elderly (%) -0.133 -0.139 -0.135 -0.128 

 (0.595) (0.583) (0.579) (0.517) 

Agricultural sector (%) 0.158 0.159 0.153 0.131 

 (0.382) (0.381) (0.385) (0.348) 

Coastline length (thousand miles) 1.037*** 1.051*** 1.057*** 1.144** 

 (0.400) (0.405) (0.404) (0.456) 

Coastal economy (%) 0.0256** 0.0256** 0.0257** 0.0242** 

 (0.0104) (0.0105) (0.0106) (0.0111) 

Forest cover (%) 0.0930*** 0.0943*** 0.0946*** 0.0937*** 

 (0.0257) (0.0256) (0.0257) (0.0233) 

Poor infrastructure (%) -0.103* -0.104* -0.105* -0.0995** 

 (0.0548) (0.0547) (0.0544) (0.0486) 

Median household income in year t-1  0.108** 0.110** 0.113** 0.113** 

(thousand dollars) (0.0507) (0.0517) (0.0534) (0.0539) 

Public meeting attendance (%) 0.160 0.162 0.168 0.151 

 (0.105) (0.105) (0.107) (0.114) 

Democratic governor 1.032 1.056 1.088 1.017 

 (1.059) (1.041) (1.026) (0.971) 

Democratic legislative control -0.268 -0.306 -0.343 -0.467 

 (1.038) (1.053) (1.070) (1.109) 

League of Conservation Voter score 0.0480* 0.0492** 0.0498** 0.0481** 

 (0.0248) (0.0247) (0.0246) (0.0240) 

Unemployment rate in year t-1 (%) -0.0597 -0.0639 -0.0654 -0.116 

 (0.183) (0.184) (0.185) (0.199) 

Percent adapting states in year t-1 (%) 0.0109 0.0111 0.0111 0.0115 

 (0.0151) (0.0153) (0.0155) (0.0161) 

t 4.379*** 4.417*** 4.434*** 4.521*** 

 (1.163) (1.169) (1.172) (1.195) 

t^2 -0.373*** -0.375*** -0.375*** -0.382*** 

 (0.116) (0.117) (0.117) (0.119) 

Constant -25.50*** -25.81*** -26.20*** -25.72*** 

 (7.171) (7.321) (7.593) (7.377) 

     

Observations 349 349 349 349 

AIC 111.3 113.0 114.8 115.7 

Log likelihood -38.66 -38.48 -38.40 -37.86 

Note: Clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 3-A3c  Modeling the effect of cumulative damages over past years 

 Past year Past two years Past three years Past four years 

 (1) (2) (3) (4) 

     

Total deaths (hundred) 0.737 0.804** 0.524* 0.428 

 (0.514) (0.329) (0.294) (0.297) 

The elderly (%) -0.103 -0.0759 -0.0798 -0.0734 

 (0.589) (0.567) (0.571) (0.577) 

Agricultural sector (%) 0.116 0.137 0.161 0.187 

 (0.394) (0.381) (0.372) (0.367) 

Coastline length (thousand miles) 1.024*** 1.060*** 1.055*** 1.058*** 

 (0.391) (0.395) (0.393) (0.393) 

Coastal economy (%) 0.0264*** 0.0263** 0.0264** 0.0267** 

 (0.0101) (0.0104) (0.0103) (0.0104) 

Forest cover (%) 0.0935*** 0.0960*** 0.0961*** 0.0970*** 

 (0.0253) (0.0263) (0.0262) (0.0267) 

Poor infrastructure (%) -0.104* -0.108* -0.108* -0.109* 

 (0.0553) (0.0562) (0.0562) (0.0569) 

Median household income in year t-1  0.113** 0.122** 0.123** 0.128** 

(thousand dollars) (0.0504) (0.0530) (0.0543) (0.0570) 

Public meeting attendance (%) 0.179* 0.187* 0.186* 0.187* 

 (0.102) (0.103) (0.104) (0.106) 

Democratic governor 1.054 1.101 1.116 1.145 

 (1.036) (1.009) (0.994) (0.989) 

Democratic legislative control -0.312 -0.379 -0.372 -0.386 

 (1.017) (1.043) (1.032) (1.028) 

League of Conservation Voter score 0.0467* 0.0472** 0.0478** 0.0480** 

 (0.0239) (0.0239) (0.0241) (0.0244) 

Unemployment rate in year t-1 (%) -0.0607 -0.0589 -0.0434 -0.0337 

 (0.183) (0.184) (0.186) (0.189) 

Percent adapting states in year t-1 (%) 0.0111 0.0121 0.0113 0.0114 

 (0.0154) (0.0155) (0.0156) (0.0155) 

t 4.510*** 4.570*** 4.512*** 4.512*** 

 (1.207) (1.214) (1.207) (1.216) 

t^2 -0.384*** -0.387*** -0.382*** -0.382*** 

 (0.120) (0.121) (0.120) (0.122) 

Constant -26.70*** -28.00*** -28.05*** -28.56*** 

 (7.386) (7.544) (7.747) (8.127) 

     

Observations 349 349 349 349 

AIC 111.4 110.7 110.7 110.6 

Log likelihood -38.69 -38.37 -38.35 -38.32 

Note: Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Note: Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 3-A3d  Distributed lag model of total deaths 

 (1) (2) (3) (4) 

     

Total deaths in year t-1 (hundred) 0.737 0.758 0.784 0.789 

 (0.514) (0.606) (0.604) (0.639) 

Total deaths in year t-2 (hundred)  0.810*** 0.839** 0.869** 

  (0.314) (0.329) (0.348) 

Total deaths in year t-3 (hundred)   0.421 0.444 

   (0.281) (0.295) 

Total deaths in year t-4 (hundred)    0.322 

    (0.00290) 

The elderly (%) -0.103 -0.0765 -0.0671 -0.0587 

 (0.589) (0.571) (0.563) (0.560) 

Agricultural sector (%) 0.116 0.138 0.162 0.186 

 (0.394) (0.383) (0.372) (0.367) 

Coastline length (thousand miles) 1.024*** 1.059*** 1.073*** 1.084*** 

 (0.391) (0.400) (0.403) (0.405) 

Coastal economy (%) 0.0264*** 0.0263** 0.0265** 0.0267** 

 (0.0101) (0.0104) (0.0105) (0.0106) 

Forest cover (%) 0.0935*** 0.0960*** 0.0973*** 0.0988*** 

 (0.0253) (0.0262) (0.0266) (0.0274) 

Poor infrastructure (%) -0.104* -0.107* -0.109* -0.111* 

 (0.0553) (0.0565) (0.0572) (0.0581) 

Median household income in year t-1  0.113** 0.122** 0.127** 0.132** 

(thousand dollars) (0.0504) (0.0530) (0.0557) (0.0587) 

Public meeting attendance (%) 0.179* 0.187* 0.191* 0.194* 

 (0.102) (0.103) (0.103) (0.105) 

Democratic governor 1.054 1.101 1.130 1.166 

 (1.036) (1.012) (0.988) (0.978) 

Democratic legislative control -0.312 -0.379 -0.393 -0.411 

 (1.017) (1.043) (1.042) (1.042) 

League of Conservation Voter score 0.0467* 0.0472** 0.0476** 0.0480** 

 (0.0239) (0.0240) (0.0240) (0.0242) 

Unemployment rate in year t-1 (%) -0.0607 -0.0583 -0.0484 -0.0400 

 (0.183) (0.186) (0.188) (0.191) 

Percent adapting states in year t-1 (%) 0.0111 0.0121 0.0119 0.0120 

 (0.0154) (0.0155) (0.0156) (0.0156) 

t 4.510*** 4.565*** 4.580*** 4.600*** 

 (1.207) (1.215) (1.225) (1.235) 

t^2 -0.384*** -0.387*** -0.387*** -0.388*** 

 (0.120) (0.121) (0.122) (0.124) 

Constant -26.70*** -27.98*** -28.66*** -29.35*** 

 (7.386) (7.633) (7.963) (8.317) 

     

Observations 349 349 349 349 

AIC 111.4 112.7 114.5 116.3 

Log likelihood -38.69 -38.37 -38.24 -38.14 
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Appendix 4 – Full results of Table 4 in the main paper 

 

In this section, I present the coefficient estimates on all the independent variables that are used to 

produce the regression results in Table 4.  
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Note: Clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1  

Coastal hazards include hurricanes and other coastal events identified by SHELDUS such as storm surges, coastal flooding 

and coastal erosion. The hazard-specific damage is measured as a percentage of a state’ total GDP, and it represents the 

cumulative damages that have occurred in a state in the past two years, three years and four years, respectively.    

Table 3-A4a Modeling the effect of hazard-specific damages on state-level adaptation planning 

 Past two years Past three years Past four years 

 (1) (2) (3) 

    

Coastal hazards 0.132** 0.0736 0.0307 

 (0.0543) (0.0562) (0.0582) 

Drought, heat waves and wildfire 3.347* 3.361* 3.487** 

 (1.831) (1.844) (1.765) 

Floods and severe storms -2.489 -0.198 -1.620 

 (7.876) (0.628) (3.772) 

The elderly (%) -0.107 -0.0942 -0.0977 

 (0.585) (0.583) (0.581) 

Agricultural sector (%) 0.140 0.104 0.102 

 (0.399) (0.394) (0.393) 

Coastline length (thousand miles) 1.056*** 1.035*** 1.070** 

 (0.399) (0.385) (0.424) 

Coastal economy (%) 0.0256** 0.0262** 0.0249** 

 (0.0110) (0.0103) (0.0114) 

Forest cover (%) 0.0945*** 0.0938*** 0.0932*** 

 (0.0263) (0.0262) (0.0256) 

Poor infrastructure (%) -0.105* -0.105* -0.103* 

 (0.0547) (0.0545) (0.0538) 

Median household income in year t-1  0.116** 0.119** 0.117** 

(thousand dollars) (0.0505) (0.0523) (0.0513) 

Public meeting attendance (%) 0.173 0.184* 0.174 

 (0.109) (0.106) (0.111) 

Democratic governor 1.126 1.138 1.106 

 (1.065) (1.036) (1.020) 

Democratic legislative control -0.265 -0.350 -0.392 

 (1.098) (1.063) (1.044) 

League of Conservation Voter score 0.0473* 0.0473* 0.0475** 

 (0.0248) (0.0245) (0.0231) 

Unemployment rate in year t-1 (%) -0.0488 -0.0491 -0.0751 

 (0.187) (0.187) (0.196) 

Percent adapting states in year t-1 (%) 0.0120 0.0114 0.0126 

 (0.0148) (0.0156) (0.0146) 

t 4.585*** 4.606*** 4.517*** 

 (1.272) (1.278) (1.194) 

t^2 -0.394*** -0.395*** -0.386*** 

 (0.130) (0.129) (0.117) 

Constant -27.05*** -27.55*** -26.83*** 

 (7.423) (7.642) (7.104) 

    

Observations 349 349 349 

AIC 114.7 114.8 115.0 

Log likelihood -38.35 -38.38 -38.49 
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Table 3-A4b Modeling the effect of hazard-specific fatalities on state-level adaptation planning 

 Past two years Past three years Past four years 

 (1) (2) (3) 

    

Coastal hazards 0.00793*** 0.00513* 0.00373 

 (0.00251) (0.00275) (0.00312) 

Heat waves and wildfire 0.0441* 0.0531 0.0303 

 (0.0242) (0.0390) (0.0307) 

Floods and severe storms -0.384 -0.212 -0.0456 

 (0.266) (0.211) (0.128) 

The elderly (%) -0.0963 -0.0165 0.0137 

 (0.721) (0.633) (0.578) 

Agricultural sector (%) 0.230 0.363 0.260 

 (0.403) (0.383) (0.351) 

Coastline length (thousand miles) 1.198*** 1.267*** 1.178*** 

 (0.442) (0.458) (0.445) 

Coastal economy (%) 0.0219* 0.0224** 0.0262** 

 (0.0117) (0.0108) (0.0113) 

Forest cover (%) 0.107*** 0.115*** 0.106*** 

 (0.0261) (0.0267) (0.0263) 

Poor infrastructure (%) -0.113* -0.117* -0.120* 

 (0.0603) (0.0611) (0.0655) 

Median household income in year t-1  0.159*** 0.185*** 0.153*** 

(thousand dollars) (0.0591) (0.0635) (0.0585) 

Public meeting attendance (%) 0.157 0.132 0.184* 

 (0.102) (0.101) (0.103) 

Democratic governor 1.665 1.257 1.122 

 (1.394) (1.017) (0.960) 

Democratic legislative control -0.00527 -0.376 -0.297 

 (0.904) (0.967) (0.961) 

League of Conservation Voter score 0.0498* 0.0495** 0.0454** 

 (0.0259) (0.0237) (0.0231) 

Unemployment rate in year t-1 (%) -0.0624 -0.0756 -0.0347 

 (0.201) (0.184) (0.178) 

Percent adapting states in year t-1 (%) 0.00171 0.00530 0.00966 

 (0.0166) (0.0156) (0.0158) 

t 5.176*** 5.083*** 4.724*** 

 (1.164) (1.278) (1.181) 

t^2 -0.421*** -0.415*** -0.393*** 

 (0.109) (0.116) (0.116) 

Constant -31.80*** -33.84*** -31.81*** 

 (8.369) (9.929) (8.754) 

    

Observations 349 349 349 

AIC 108.0 111.5 113.5 

Log likelihood -35.00 -36.76 -37.76 
Note: Clustered standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1  

Coastal hazards include hurricanes and other coastal events identified by SHELDUS such as storm surges, coastal flooding and coastal 

erosion. The hazard-specific fatalities measure the cumulative deaths (in people) that are caused by climate hazards within a state in 

the past two years, three years and four years, respectively.   
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