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Three Essays on U.S. Social Policy’s Impact on the 

Human Capital Development of Young Adults At-Risk of Poverty 

Abstract: 

Social welfare programs and policies can have a variety of anticipated and unexpected 

effects on the human capital investments of young adults at-risk of living in poverty in the 

United States. My dissertation investigates how three large-scale public programs – means-

tested, cash welfare (e.g., Aid to Families with Dependent Children and Temporary Aid to Needy 

Families), Medicaid health insurance for children, and the Social Security Student Benefit 

Program – affected the educational attainment and work experience of vulnerable young adults. 

In the first chapter, I examine how public policies encouraging labor force participation 

by low-skilled single mothers during welfare reform unintentionally led to labor supply declines 

by young, less-educated single males. While the labor market woes of low-skilled male workers 

over the past several decades have been well documented, the academic literature on the 

identification of causal factors leading to the decline in labor force participation (LFP) by young, 

low-skilled males is relatively scant. In this paper, I use a fixed-effects, instrumental variable 

research design to exploit the timing and characteristics of welfare reform policies to explore 

whether policies targeted to increase LFP rates for low-skilled single mothers inadvertently led 

to labor force exit of young, low-skilled males. Using data from the Current Population Survey 

and the series of work inducements enacted by states throughout the 1990s as a source of 

exogenous variation in a quasi-experimental design, I find that a welfare-reform-generated 10 

percentage point (pp) increase in LFP for low-skilled single mothers resulted in a statistically 

significant 2.6 pp decline in LFP rates by young, low-skilled single males. Furthermore, after a 

series of alternative model specifications and robustness checks, I find that this result is driven 



entirely by the decline in labor supply for white males; young black males and other groups of 

workers appear to be unaffected by the labor supply response of less-educated single mothers to 

welfare reform. 

The second essay in my dissertation studies one of the long-term effects of the child 

Medicaid health insurance expansions. Prompted by the legislative decision to decouple child 

Medicaid benefits from cash welfare receipt, the number of young children qualifying for public 

health insurance grew markedly throughout the 1980s and early 1990s. This chapter extends the 

academic literature examining early childhood investments and longer-term human capital 

measures by exploring whether public health insurance expansions to low-income children led to 

a greater number of high school completers in the 2000s. Using a technique developed by Currie 

and Gruber (1994, 1996) to simulate the generosity of a state’s Medicaid program during early 

childhood, I find large and significant effects on completion rates, which are examined in two 

forms: the dropout rate and the traditional four-year high school graduation rate. Intent-to-treat 

estimates range from a 1.9 to 2.5 pp decrease in the dropout rate for each 10 pp increase in early 

childhood years covered by the state-level Medicaid program. The same 10 percentage point 

increase in child Medicaid program generosity reveals increases of 1.0 to 1.3 pp when applied to 

four-year graduation rates, indicating that dropout reductions are propelled by increases in 

traditional diplomas. In addition, results appear to be driven by Hispanic and white students, the 

two groups which experienced the greatest within-group eligibility increases due to the 

decoupling of child Medicaid from the AFDC cash assistance program. 

My final dissertation chapter investigates how a particular college fund guarantee 

affected achievements in higher education. Utilizing data from the National Longitudinal Survey 

of Youth (1979) and a difference-in-differences model, this work re-examines the impact of the 



Social Security Student Benefits Program (SSSBP) on post-secondary educational attainment, a 

topic first studied by Dynarski (2003). By exploiting a larger panel of data and exploring degree 

attainment at various ages, my coauthor and I find that disadvantaged youth potentially 

qualifying for SSSBP funds – e.g., those losing a father before they turned 18 – were over 20 pp 

more likely to obtain higher education degrees beyond their high school diploma than similar 

students who would have qualified for benefits, but-for the program’s termination in May 1982. 

Initial program impacts – i.e., those by age 23 – show an increase in Associate’s degree 

attainment. As these respondents age, however, many go on to obtain four year degrees. Impacts 

are large and statistically significant, and suggestive that social programs seeking to reduce the 

financial costs of Associate’s degrees – such as the one announced by President Obama in his 

2015 State of the Union Address – could be well-targeted.  
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Chapter 1 

Better Things to Do? 

Welfare Reform and Labor Force Exit by Young, Low-Skilled Single Males 

1.1. Introduction 

A number of authors have noted the decline in labor force participation (LFP) rates for 

young, less-educated men in the United States since the early 1980s (Holzer et al. 2005; Holzer 

and Offner 2006; Blank 2009); however, few studies have presented compelling causal evidence to 

explain these trends. This paper seeks to fill this gap in the literature by exploiting the timing and 

characteristics of welfare reform within a fixed-effects, instrumental variable (FE-IV) design to 

examine whether policies enacted under state waivers and Temporary Assistance for Needy 

Families (TANF) implementation during the course of the 1990s led to labor force exit by young, 

low-skilled single males. This paper contributes to the welfare reform literature by showing that 

the subsidies and inducements for work embedded in reform policies targeting low-skilled single 

mothers led to an unintended decline in the labor supply of young, low-skilled single males.  

After President Clinton’s vow to “end welfare as we know it,” states encouraged low-

skilled single women with children to enter the labor force through their enactment of work 

requirements, time limits, and work incentives. The results were quite striking: U.S. caseloads fell 

by 56.5% from 1994 to 2000 and LFP rates for single mothers with children under the age of 18 

increased from approximately 68% in 1994 to almost 78% in 2000 (Blank 2002). Given the 

comparatively weaker labor market attachment of young, less-educated men relative to other 

groups of working men, I investigate whether a significant number of males left the legitimate 

labor market due to government reform policies and, moreover, whether two occurrences – the 

1



 

increase in labor supply by single mothers and the decrease in labor supply for young, low-skilled 

single males – can be linked causally. 

The theoretical underpinning for this analysis of low-skilled labor supply is the 

assumption that individuals respond to work incentives in two ways: (1) directly through the 

labor market, and (2) indirectly via responses to changes in behavior by groups targeted by 

public policy. Given that single mothers with education levels at or below a high school level are 

those most likely to apply for welfare benefits, I examine how changes in their labor supply 

attributable to welfare reform impacted the LFP rates for single males with equivalent levels of 

education. Typically these men were excluded from the package of welfare reform work 

incentives – which include cash benefits and much higher Earned Income Tax Credits (EITC), as 

well as potential childcare credits and health benefits. Conceptualizing this bundle as a direct 

subsidy to single mothers, welfare reform policies greatly fostered entrance into the labor market 

for low-skilled single mothers – which prompted a sharp increase in their LFP – while tightening 

the labor market and reducing the relative work incentives for young, low-skilled single male 

workers who competed directly with many of these women for low-wage, entry level positions. 

While social policy scholars have devoted an enormous amount of attention to the 

legislative changes of the 1990s, the question of whether welfare reform policies accelerated 

labor supply declines by low-skilled male labor has been understudied. Using Bartik (2002) and 

Blank and Gelbach (2006) as guides, I employ two-stage least squares (2SLS) regression 

analysis, a wider set of instrumental variables characterizing changes to state-level Aid to 

Families with Dependent Children (AFDC) programs, and data from the Current Population 

Survey (CPS) to estimate the labor supply response of young, low-skilled male labor to welfare 

reform.  
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Labor supply declines among young, low-skilled males prompted by welfare reform are 

robust across a number of specifications. 2SLS models reveal a roughly 2.6 percentage point (pp) 

decrease in LFP rates for single males aged 16 to 29 for each 10 percentage point increase in 

LFP for single mothers. Estimates of declines in labor force participation are typically larger and 

more precise for younger, single white males – roughly 3.5 pp – while young black males appear 

to be unaffected by the labor supply response of less-educated single mothers to welfare reform. 

This last conclusion is consistent with the work of Holzer et al. (2005) who attribute much of the 

decline in labor supply for this group to increased incarceration rates and stronger child support 

enforcement. Additionally, there is no consistent evidence of labor supply declines for lower-

skilled single males aged 30 to 49 who typically have higher levels of work experience and 

operate at different margins. Nor is there proof of a labor supply response by young, low-skilled 

single women without children. These tests indicate that the indirect effects of welfare reform 

induced declines in LFP were concentrated among young, single male workers.  

While the methodology presented in this analysis cannot identify the exact mechanism of 

these labor supply declines – such as intra-household labor reallocation, increases in the number 

of discouraged workers, or reservation wages exceeding the market price for low-skilled labor – 

this paper presents the first robust estimates of young, male labor supply declines stemming from 

welfare reform policies, findings which are both statistically and economically significant. 

 

1.2. Background and Previous Research 

The 1990s were a remarkable period for the transition of individuals – mostly single 

mothers – from welfare to work. This decade witnessed the end of welfare programs as an 

entitlement, which had engendered and prolonged a long-term, and often intergenerational, 

3



 

transmission of poverty for a subset of individuals (Moffitt 1992; Moffitt 2002; DeParle 2004). 

Welfare became a program that was time-limited, full of sanctions and requirements, and, at its 

core, sought to eliminate many of the disincentives of the previous program by “making work 

pay” (Ellwood 1988; Danziger et al. 2002; DeParle 2004). While many aspects of welfare reform 

have been carefully investigated, see Blank (2002) and Grogger and Karoly (2005) for thorough 

reviews of this literature, the possibility that government welfare reform policies inadvertently 

led to labor force exit of another vulnerable population – namely young, low-skilled single 

males1 – has largely been ignored.  

Policymakers should be concerned with the labor supply responses of young, low-skilled 

single males because of their several decade decline in LFP2,3 and the strong statistical 

relationship between less-educated males and outcomes generally detrimental to a society. 

Young males who exit the legitimate labor market are at an increased risk for a number of 

socially undesirable outcomes including higher probabilities of incarceration and delinquency 

(Blanchflower and Freeman 2000; Harlow 2003; Western and Pettit 2010; Bloom and Haskins 

2010; Smeeding et al. 2011) and decreased suitability for marriage (McLaughlin and Lichter 

1997; Edin and Lein 1997; Edin and Kefalas 2005; Cherlin 2010), the latter which has been 

linked to the decline in the traditional nuclear family within low-income communities (Wilson 

                                                           
1 In this analysis, low-skilled workers are defined by those individuals with an education level of high-school or less. 

Furthermore, the phrases “low-skilled” and “less-educated” will be used interchangeably. 
2 As is common practice in this literature, I concentrate on labor force participation in this paper rather than 

employment for the following reason: LFP is arguably a more accurate depiction of labor supply because it captures 

the intent to provide labor. Employment, on the other hand, can be based upon a number of factors outside of the 

individual’s control, especially the demand for labor. 
3 The general decline in LFP rates for low-skilled males since the early 1980s has been documented very thoroughly 

by Holzer and various colleagues. In Holzer and Offner (2006), they report declines in labor supply for young, less-

educated white males from approximately 92% in 1979 to roughly 87% in 2000. Correspondingly, rates for black 

males have dropped from roughly 82% to 70% over the same time period. In Holzer et al. (2005), the authors report 

that at least half of the decline in employment among less-educated black males can be attributed to increases in 

incarceration rates and stronger child support enforcement laws.  
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1987; Edin and Kefalas 2005; Cherlin 2010). Consequently, young males who are no longer 

enrolled in school nor looking for work can create negative externalities not only for their 

families and local neighborhoods, but for the broader society as well.4 

Two notable studies have investigated the possibility of adverse effects from welfare 

reform on male labor supply. Blank and Gelbach (2006) use data from the CPS, a variety of 

empirical tests to examine the substitutability of less-educated males and females within the 

labor market, and do not find consistent evidence of male labor supply crowd-out from welfare 

reform. This paper builds on their work in two ways. Rather than examining changes in male 

LFP using female LFP as a control in their initial modeling,5 I use instrumental variables to 

uncover the exogenous increase in female labor supply stemming from welfare reform. While 

Blank and Gelbach use welfare reform policy implementation as instruments in their reduced-

form specifications, their use of a single indicator variable for each construct ignores the large 

degree of heterogeneity in AFDC waiver and TANF programs across the states. I improve on 

these identification limitations through my use of a fixed-effects, instrumental variable research 

design with a wider set of instruments not examined by the authors. This FE-IV approach allows 

me to better exploit the variation in work incentives created for low-skilled workers across the 

different state plans, increases the precision of my estimates, and, furthermore, allows me to test 

the strength and validity of my instruments. 

The second empirical guide is taken from Bartik (2002). In this work, he uses 

instrumental variables to control for welfare caseloads across the states and estimates the labor 

                                                           
4 Recent estimates of the scale of the illicit drug trade is the United States indicate that it is a highly lucrative 

industry which is estimated to produce up to $150 billion in revenue each year (Bagley 2012; UNODC 2012). Given 

this scope, it does not seem unreasonable to contend that low-skilled males are more likely than other groups to 

enter these illegal professions given that they have fewer employment options. 
5 Without instruments, female LFP would be endogenous because factors affecting female LFP, e.g., a strong 

economy, also affect males. 
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market spillover effects of welfare reform. Using simulation, Bartik estimates the displacement 

and wage elasticities for less-educated workers given the increase in supply of less-educated 

workers, under the assumption that welfare reform led to an influx of 1.4 million individuals into 

the low-skilled labor market. Moreover, with his 2SLS model, Bartik concludes that welfare 

reforms, which led directly to decreased caseloads, may have led to employment losses for less-

educated males and reduced the wages for single mothers and male high school dropouts. 6 While 

Bartik’s modeling concentrates on employment rates and wages across all ages of workers, this 

paper is focused on estimating the impact of welfare reform on the labor supply decision of 

young, less-educated males.  

Before proceeding to the theoretical framework used in this analysis, it is important to 

explain why young, single male labor supply should not be directly affected by welfare policy 

changes. As noted by Blank and Gelbach (2006), only about 10 percent of welfare recipients in 

1990 were male and received benefits as either a head of family or as a single parent. Moreover, 

the authors report that 9% of all less-educated female workers reported receiving benefits in 

1996, while only 1% of less-educated men did. Thus, males – especially young single men – 

should not directly qualify for government benefits before or after the series of welfare reform 

efforts of the 1990s. Furthermore, while a subset of unmarried young, low-income males may be 

part of informal households’ choosing to reallocate labor in response to market incentives, the 

change in female labor supply within these loosely structured family units can also be perceived 

as a mediating variable – i.e., that males formulate their labor supply decisions based upon the 

choices of their cohabiting partner and not the policies of the government itself.  

 

                                                           
6 Bartik’s finding that real wages may have decreased during the welfare reform period for select categories of low-

skilled workers will be a useful piece in my theoretical framework. 
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1.3. Theoretical Framework: Welfare Reform and Labor Supply 

Two of the explicit, political goals of welfare reform were to end welfare as an 

entitlement and to make work pay for low-income individuals (Blank 2002; DeParle 2004). In 

this section, I outline three indirect mechanisms which can explain labor force exit by young, 

low-skilled males stemming from welfare reform policies, which include (1) intra-household 

labor reallocation, (2) an increase in the number of discouraged workers due to a tightened labor 

market and an “envy story” rooted in behavioral economics, and (3) a reservation wage story, 

whereby the market price for low-skilled labor fell below the reservation wage for many low-

skilled single males.  

All three of these mechanisms are founded upon the premise that welfare reform did not 

affect males directly, rather their behavior was influenced by the behavioral responses of those 

low-skilled single women with children who previously would have qualified for government 

benefits under the old AFDC entitlement system. In other words, the direction of the causal 

relationship for labor supply responses to welfare reform for the subset of individuals explored in 

this analysis is conceptualized as follows: 

 

Note that for this instrumental variable approach to be valid, I am explicitly claiming that there 

was no direct impact of welfare reform on the labor supply by young, low-skilled single males 

and that the impact was channeled – or meditated – through the direct response by women 

potentially qualifying for welfare benefits. The remainder of this section will outline some 

potential mechanisms for these conjectures. 

Welfare Reform
Low-Skilled Single 

Mother Labor Supply

Young, Low-Skilled 
Single Male Labor 

Supply
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Public policies enacted at the state-level during welfare reform utilized a variety of 

mechanisms to increase the labor supply of single mothers. While some methods, such as time 

limits, family caps, and sanctions are, arguably, more indirect ways of influencing supply, the 

EITC, child care subsidies, and health care programs (e.g., Medicaid or CHIP) can be perceived 

as direct subsidies to working individuals with children under 18. Moreover, and critically, if 

work requirements are an explicit part of the welfare program, then benefit receipt is conditional 

on LFP and individuals must seek work to retain their monthly cash transfers from the 

government. Given this package of incentives seeking to increase labor supply, the post-welfare 

LFP decision by low-skilled single mothers should be a function of (1) potential income from 

work, (2) welfare cash benefits, (3) available EITC, (4) childcare credits, and (5) government 

provided health insurance.  

On the other hand, work incentives for young, low-skilled single males would only be a 

function of their potential income from work, though a small EITC would be available in some 

years. Given that other factors which determine LFP are likely to affect both groups of workers, 

these policy differences suggest that a substantial number of single mothers receive benefits from 

LFP in excess of what young males competing for the same types of low-skilled, entry-level jobs 

would receive. For an informal household choosing to maximize income and benefits based upon 

the set of options provided to them, it is conceivable that the males would choose to exit the 

formal labor market to concentrate on more domestic duties while the corresponding female 

would choose to participate in the labor market. 

Furthermore – and importantly for the broader set of young, low-skilled single males who 

are not cohabitating – to the extent that Bartik’s findings are valid and that real wages declined 

for low-skilled workers due to the influx of labor supply induced by welfare reform, then the 
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importance of government transfers and subsidies increase in the work/no-work decision. 

Moreover, young, low-skilled males could be disproportionately affected by this trend in targeted 

supports. Under this set of circumstances, exit of low-skilled male labor facilitated by welfare 

reform could stem from one of two primary scenarios: via (1) the reservation wage or (2) due to 

an increase in the number of discouraged workers. Under the former, the influx of low-skilled 

female labor would drive down the effective market wage for overlapping industries7 and 

encourage lower-skilled males with higher reservation wages to exit the market, especially if 

these individuals had better paying options in the informal or black market.  

The second scenario occurs when the entrance of low-skilled single mothers – who have 

more incentives for work and, consequently, may be better motivated employees – leads to a 

disproportionate hiring of and retaining of these workers, which causes some unemployed young 

males to become discouraged and exit the formal labor force. Additionally, one could easily 

envision an “envy story” routed in behavioral economics whereby young males in overlapping 

industries learn about these target supports and realize that their effective wages are much lower 

than their female counterparts due to the bundle of goods offered by the government. Under this 

story, males may be more inclined to participate in black or informal markets to receive better 

effective wages, which leads to more discouraged workers. 

Unfortunately, data and methodology used in this analysis cannot distinguish between 

these purported explanations. Future work seeks to disentangle these mechanisms. 

 

                                                           
7 While a number of scholars have noted their skepticism regarding whether low-skilled men and women compete in 

the same labor markets (Blank 2002; Blank and Gelbach 2006), there is seemingly enough overlap in some low-

skilled sectors such as fast food or custodial services, and security and retail jobs for this supposition. For example, 

Card and Krueger (1994) claim that fast-food franchises are a leading employer of low-wage workers and, 

seemingly, low-skilled workers of either gender seem equally qualified for these entry level positions. 
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1.4. Empirical Strategy 

 To isolate the causal impact of increased labor supply by single mothers stemming from 

welfare reform on young, low-skilled male labor, I use a fixed-effect, instrumental variable 

research design. Under this approach, the dependent variable in the outcome equation is the labor 

force participation rate for a given group of males (e.g., low-skilled single males, aged 16 to 29) 

at a given point in time (e.g., 1996, quarter 1). A welfare reform induced reduction in young, 

single male labor supply would be observed when an exogenous increase in the LFP rates for 

females leads to a decrease in the labor supply for males.8 A strength of this FE-IV research 

design is that it can control for time-invariant factors affecting male and female labor supply 

across both states and time, as well as isolating the indirect effect of an exogenous change in 

female labor supply increase due to welfare reform as channeled through a single mediating 

variable.  

The general estimation strategy used in this analysis can be written as: 

 

(1)  (LFPmales)syq = α + β(LFPfemales)syq + γXsyq + δs + ζy + ψq + εsyq 

 

where:  an observation is defined by a combination of state (s), year (y), and quarter (q); 

X is a vector of control variables containing measures of economic growth, state 

minimum wage rates, child support enforcement strictness, wages for low-

skilled males, and male incarceration rates; 

δ, ζ, and ψ are fixed effects for state, year, and quarter, respectively and,  

ε is the robust standard error. 
 

In this specification, the state, year, and quarter fixed-effects9 are used to detrend the labor 

supply variables across both states and time. All regressions are weighted by the corresponding 

number of males residing in the state (s) in year (y) and quarter (q). 

                                                           
8 A positive relationship could indicate peer effects, which occurs when the welfare-reform work inducements create 

positive spillovers in the form of increased LFP for applicable males residing within the household or the 

community. 
9 Quarterly variables account for seasonality in the LFP rates for young males. The CPS considers university bound 

males on summer break – in other words those between their last year of high school and first year of college – as 
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 As specified above, LFPfemales is most likely endogenous. The rationale is simple: LFP of 

men and women are influenced by many of the same economic factors, and failure to account for 

simultaneously determined LFP rates in an OLS specification leads to biased coefficients on the 

primary variable of interest, i.e., ∂LFPmales / ∂LFPfemales, which is represented by the coefficient β 

in equation 1. To derive unbiased coefficients, I require a set of instrumental variables for 

LFPfemales, which will allow me to use the exogenous portion of the increase in female LFP 

stemming from welfare reform to estimate the potential for labor force exit of young, single low-

skilled male labor.  

Under the classical definition of an instrumental variable, I need variables which are (1) 

uncorrelated with LFPmales conditional on other controls within the model (i.e., the exclusion 

restriction) but (2) explain changes in Female LFP (i.e., the relevance criteria). The welfare 

reform policies of the 1990s conveniently serve this purpose: legislation and new programs 

provided a series of incentives for welfare recipients – who were by and large single mothers – to 

enter the labor force, whereas these policies were designed to have little or no direct impact on 

young, single males simply because they did not qualify for these programs. Consequently, the 

attributes, timing, and variation of the state waivers and TANF programs can be used as 

identifying instruments for changes in female LFP rates. Furthermore, within this setup, I can 

explicitly test the relevance and exogeneity of the instrumental variables, the latter which will 

mitigate concerns over simultaneity in the second stage equation. 

 The first-stage equation, which models the trends in LFP for low-skilled single mothers 

between the ages of 16 and 44, is written as: 

 

                                                           
potential labor force participants. This influx of short-term labor drives down the LFP rate for single males between 

the ages of 16 to 29 during the summer months. 
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(2)  (LFPfemales)syq = ω + χXsyq + ρZsyq + φ(Welfare Reform)syq + τ (
Maximum Cash Benefits

Maximum EITC
)syq 

+ η(Welfare Reform X Cash Benefits )syq + κs + νy + ςq + μsyq 

 

Where: X is the same set of controls from equation 1; 

Z is a vector of attributes of state-level welfare reform policies (e.g. 

waiver type) which are in effect in year y and in quarter q; 

Welfare Reform is an indicator which is turned on after the first waiver 

implementation or the effective TANF program date;  

Maximum Cash Benefits are the maximum state AFDC or TANF cash 

benefits for a family of 3 at a particular point in time; 

Maximum EITC is the maximum state and federal earned income tax 

credit which could be earned in a state and year; 

Welfare Reform X Cash Benefits allows for a change in LFP incentives 

when cash benefits become directly linked to labor supply; 

κ, ν, and ς are vectors of fixed-effects for states, years, and quarters, 

respectively, and 

μ is the first-stage error term. 

 

In the above equation, the Z vector contains the state-level characteristics of waiver programs, 

such as the presence of work requirements, time limits, work incentives, and personal 

responsibility policies.10 Since welfare reform is defined as a single indicator variable, it 

measures the average impact of waiver and/or TANF implementation, after accounting for the 

specific elements of these programs.  

The EITC is now the largest cash transfer program in the United States (Moffitt 2007). 

Thus, in the construction of the maximum cash benefits to maximum EITC variable, I seek to 

more precisely capture the implicit tradeoff between cash transfers from no work (maximum 

AFDC/TANF cash benefits) and work (maximum state and federal EITC), which in some states 

– like New York – changes well before they implement either a welfare waiver or their state-

                                                           
10 Other instruments were considered in this analysis but were excluded due to their weak predictive power. 
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level TANF program.11 Online Appendix A shows that the ratio between cash benefits and the 

total EITC is decreasing in all states dramatically over time. A large cash benefit to EITC ratio 

reveals that the gains to work are low if one is solely seeking to maximize the amount of 

transfers received from the government and bases the “work” or “no work” decision on the 

amount of cash transfers received from the government. A higher ratio should translate into 

lower LFP rates for qualifying individuals and a ratio below 1.00 indicates that a family of three 

can earn more money in transfers via the EITC than through cash benefits and no work. Thus, a 

priori, we should expect that the coefficient on this variable (τ) will be negative. 

Another important component of these models is the interaction between cash benefits 

and the timing of welfare reform. This coefficient is constructed to capture the very different 

behavioral responses facilitated by welfare reform. In a pre-period of welfare entitlement, large 

cash benefits would be considered a work disincentive which would, in turn, decrease LFP rates 

for low-skilled single mothers. However, in a post-reform period where work requirements were 

now a critical portion of aid receipt, seeking work was now part of retaining benefits. So, as cash 

benefits grow, single mothers are greatly incentivized to increase their LFP rates in order to 

retain benefits. This interaction seeks to capture this complex, changing relationship between 

benefits and LFP and we should expect that η is positive. 

 Finally, under this fixed-effects framework, federal policies such as the Child Tax Credit, 

as well as the individual impacts of TANF programs once all states have adopted the new 

system, cannot be uniquely identified because they lack cross-sectional variation at a given point 

                                                           
11 More specifically, New York implemented their TANF program in November 1997. However, the LFP rates for 

single mothers increased markedly before this point due, presumably, to the large increases in the federal EITC 

which started in 1994. 
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in time. Stated another way, the year fixed-effects subsume any variable for which the value is 

the same for all states in a particular time period.  

 

1.5. Data Sources and Descriptive Statistics 

 All LFP variables used in this analysis were derived from monthly data collected by the 

Current Population Survey.12 Within their nationally representative, rotating sample design, the 

CPS samples approximately 50,000 housing units each month across the United States. Despite 

this seemingly broad scope, the number of observations in some subgroups (such as black men 

between the ages of 16 and 29, living in Montana) can be extremely limited, so I aggregate data 

to the quarterly level to increase the precision of the estimates. Other important notes regarding 

the LFP calculations: (1) all individuals below the age of 25 who are enrolled in school or 

university full-time are omitted13 and (2) the CPS excludes institutionalized individuals from 

their sampling, so these people cannot be included in the estimates. This latter issue is important 

because – to the extent that incarceration rates are increasing over time within a given state and 

subpopulation – the LFP rates derived are an upper-bound. 

 Data range from 1989 to 2002, which yields approximately five years of pre-data before 

the large increase in the maximum EITC and the initial mass of states implementing waivers in 

1994, as well as roughly 5 years of data for the period after the last state implemented its TANF 

program.14 Moreover, I use quarterly data as the unit of analysis to more precisely control for the 

timing of the welfare waiver or the state’s TANF program implementation. Finally, it is 

important to reiterate that my analysis is based upon individuals with a completed education 

                                                           
12 The vast majority of CPS data used in this analysis was taken from the IPUMS-CPS databased compiled at the 

University of Minnesota.  See www.ipums.org for more details. 
13 This is a common practice in the literature – see Holzer et al. (2005) and Holzer and Offner (2006). 
14 These periods are identified with vertical lines in the forthcoming graphs. 
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level of high school or less. While I am, admittedly, interested in a more refined group – high 

school dropouts – the number of cases reported in the CPS data are not sufficient to create robust 

estimates at a quarterly level. 

 Figure 1 displays the LFP rates for single males aged 16-29 and 30-49, and single 

mothers aged 16-44. These categories are used in the empirical modeling and were selected for 

the following reasons: 16-29 captures the range for “younger” workers who have relatively fewer 

years of work experience and who could be competing with single mothers for low-skilled or 

entry level positions. Moreover, the age range of 16 to 29 was chosen to facilitate more precise 

estimates of subgroups in smaller states, while the age range of 30 to 49 isolates workers with 

longer work histories and, presumably, have more consistent labor market attachment for 

individuals choosing to remain in the labor force. For females, 16 to 44 was chosen as the age 

range because welfare participation and qualification cannot be identified in the monthly CPS 

data but women of childbearing ages with low levels of education and children below the age of 

18 are those most likely to apply for, and receive, welfare benefits.15 

 Returning to the graph, Figure 1 shows the aggregated trends for the United States.16 

Broadly speaking, the U.S. witnessed relatively flat LFP rates for young less-educated males in 

the earlier period, followed by a slight decline in LFP during welfare reform, and then another 

stabilization. While these trends foreshadow, at an aggregate level, the potential for only a small 

level of labor supply decline for young males stemming from welfare reform policies, this paper 

exploits state-level trends to derive more precise estimates of the hypothesized effect. 

Furthermore, for older, less-educated single males, rates are fairly consistent over time (hovering 

                                                           
15 Upcoming modeling is not sensitive to the choice of using single mothers between the ages of 16 and 44. Single 

mothers between 16 and 30 were also examined and very similar estimates were obtained. 
16 As mentioned earlier, it is very important to control for the seasonality of LFP for young, single males given the 

influx of university-bound males during the summer months. Thus, the graph is seasonally-adjusted. 
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around 82%), while the LFP rates for single mothers across the U.S. increases dramatically from 

1994 to 1999 as reported by Blank (2002). 

 Figure 2 contains trends in LFP rates by race which are similar to the aggregated trends 

presented in Figure 1. Again, the potential for labor supply declines appears to be relatively 

small when examined at the U.S. level. However, this aggregation masks a large degree in 

potential heterogeneity in response to the state-level policies which is critical for identification in 

this paper. Stated another way, a negative labor supply response can still be identified if states 

experiencing the greatest increases in LFP by low-skilled single mothers also witness the greatest 

decline in labor supply by young, low-skilled single males. The forthcoming empirical models 

will explicitly test this proposition. 

Before proceeding to estimation, it is important to outline the instrumental and controls 

variables used in this analysis. Some important notes regarding the instruments:17 the dates for 

the first major waivers and TANF implementation were obtained from the Department of Health 

and Human Services, and there was a wide degree of heterogeneity in the implementation of the 

waivers and the new state-level TANF programs. Using information provided by Ziliak et al. 

(2000), I isolated whether the state-level waiver incorporated work requirements, time limits, 

work incentives, or responsibility clauses18 within their reform efforts. As with implementation 

there was a wide range of within- and across-state variation in these variables. Finally, the 

maximum cash benefits for a family of three under the state-level AFDC and TANF programs 

                                                           
17 A number of other characteristics of welfare reform were also analyzed but did not make it into the final first-

stage regression models because of their weak predicative power, which violates the relevance criteria of an 

instrumental variable. Examined in this analysis but not shown are TANF attributes regarding the strictness of 

sanctions and time limits (Pavetti and Bloom 2001), state diversion policies under TANF (Urban Institute, Welfare 

Rules Database), and states with child care fee waivers available through the Child Care Development Fund (Blau 

2003). 
18 While the first three are rather self-explanatory, the personal responsibility clauses include restrictions on benefits 

for increasing the family size (i.e., family caps), as well as regular school attendance and health check-ups for 

existing children. 
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and the maximum EITC – which includes both state and federal benefits – were taken from a 

comprehensive database complied by the University of Kentucky’s Center for Poverty Research 

and, like all monetary variables in this analysis, were standardized to 2002 dollars. 

 Other state-level control variables used in the FE-IV models include (1) the percentage 

growth in gross state product, (2) the effective state minimum wage, and (3) a child support 

enforcement (CSE) index, (4) a lagged measure of the average weekly earnings for low-skilled 

males aged 16 to 29, working full time, and (5) incarceration rates by race and ethnic group. The 

first two covariates account for factors impacting labor market conditions for low-skilled 

workers. The third variable seeks to capture the differential behavioral responses by low-income 

parents not residing within the same household, and is also required because the enactment of 

CSE policies are correlated with welfare reform. While stricter child support enforcement may 

increase household income and make it less likely for single mothers to seek employment, it may 

also drive many low-income males away from the formal labor market – and towards informal 

opportunities – because of the relatively high marginal tax rates (Holtzer et al. 2005). Thus, the 

child support enforcement index used in this analysis was adopted from Huang, et al. (2002) and 

updated to fit the range in this series. This variable ranges from 0 to 8 with a higher number 

indicating the presence of more state programs to enforce child support payments. 

 Average weekly earnings for low-skilled males aged 16 to 29 working full time seeks to 

control for potentially omitted factors which have contributed to the well documented decline in 

wages for this particular subset of workers. Wages are estimated by state using the March CPS 

earnings data and two techniques are used to account for simultaneity and sampling issues in the 

construction of this variable. To address the concern that LFP rates and wages are jointly 

determined, earnings data are lagged by two years. Furthermore, to avoid identifying estimates 
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based upon sampling variation stemming from the estimation of wages for sub-populations 

within a given state and March CPS, estimates are smoothed using a four year moving average. 

These adjustments create a measure which can capture important factors affecting male LFP 

rates, which may be also correlated with the timing of welfare reform policies. 

 Finally, incarceration rates by race and ethnic group are constructed similar to Holzer et 

al. (2005) using National Prisoner Statistics from the Bureau of Justice Statistics and population 

data from the Surveillance, Epidemiology, and End Results Program. Estimates represent the 

fraction of the adult population incarcerated at a particular point in time within a given state. 

This value is lagged by three years to reflect the fact that the average sentence during this period 

was roughly three years (Holzer et al., 2005) and, thus, this variable is an estimate of the 

reentrance of former prisoners into a local economy. 

 Table 2 presents the unweighted summary statistics for all variables utilized in the 

empirical models. The average LFP rate for all young, single males (16-29) is 0.852 and all 

single males (30-49) is approximately 0.82, and both are estimated with a relatively wide range 

of roughly 0.50 to 1.00. As indicated by the statistics under the Min and Max columns, I 

occasionally derive LFP rates of either 0 or 100%, which is reflective of measurement error due 

to the CPS sampling design and its inability to always reach select subpopulations. Regressions 

are weighted by the number of corresponding males in each category in each quarter and bias 

from mismeasurement should be attenuated if there is classic measurement error. 

 Other notes: the unweighted average LFP rates for single mothers is 0.695, which is 

much lower over the range of data than the rates for single males, though we know from the 

graphical analysis that it is increasing markedly over time. Additionally, a little more than half 

(54%) of the observations fall in either the post welfare waiver or TANF implementation period 
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for a given state, which is indicated by the average of the Welfare Reform (Waiver or TANF) 

dummy variable. Summary statistics for the AFDC waiver attributes can be interpreted in a 

similar manner: the mean indicates the total fraction of the unweighted sample which is affected 

by that variable. 

 

1.6. Empirical Findings 

 To explicate the findings, I start with the first-stage models as they are the key to any 

causal link between welfare reform, low-skilled single mother LFP, and young, low-skilled male 

labor supply. In Table 3, the middle column for each set of regression models contains the 

coefficients for the first stage models which estimate LFP rates for low-skilled single mothers 

aged 16 to 44. For the sake of clarity, I offer some brief commentary on the reported findings for 

a solitary case: all single males.  

 As displayed by the first-stage coefficients for all young, low-skilled single males in 

Table 3, a large portion of the within-state variation in labor supply by low-skilled single 

mothers, approximately 59%, can be explained by the first-stage models. Given that marginal 

effects are derived from several variables and my goal is simply to get one coefficient correct – 

the impact of the plausibly exogenous increase in LFP rates for low-skilled single mothers on the 

labor supply decisions of single, less-educated males – I bypass an interpretation of individual 

coefficients and comment on groups of covariates.19 As displayed, variations in policies 

implemented under the state-level waiver programs appear to explain a significant share of the 

variation in female LFP during their period of enactment, all else equal. Moreover, the trio of 

Welfare Reform (Waiver or TANF), Max Cash Benefits to Max EITC credit, and Cash Benefits 

                                                           
19 Note that the natural log has been applied to several control variables. This helps to account for any potential 

nonlinearities associated with the cash variables and to facilitate easier interpretation of these coefficients. 
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X Welfare Reform are all highly statistically significant and add a large amount of explanatory 

power to the model.  

 In terms of the strength and exogeneity of the instruments proposed in this analysis, the 

F-statistic for the identifying instruments is 12.76, which is above the empiricist minimum of 10 

required to pass the weak instruments test (Angrist and Pischke 2009). Furthermore, I can 

formally test the exogeneity of the instruments since my model is over-identified. As shown, the 

Hansen J-Statistic indicates that one cannot reject the null hypothesis that the identifying 

instruments are exogenous at the 5% level of statistical significance.20 Thus, the two crucial 

components required to perform an instrumental variable analysis – the relevance criteria and the 

exclusion restrictions – are met in this analysis. 

 Turning to the other models in Table 3, the mediated impact of welfare reform on the 

LFP rates for less-educated males aged 16 to 29 are presented for three groups of men: (1) all 

single males, (2) black single males, and (3) white single males. I begin with the single equation 

OLS coefficient, which indicates a positive and significant relationship between LFP rates for 

single mothers (16-44) and all single males (16-29). As noted, this estimate is biased. Two-stage 

modeling shown in the third column reveals a negative and statistically significant relationship. 

The coefficient of -0.2567 can be interpreted as follows: an exogenous 10 percentage point 

increase in LFP of low-skilled single mothers prompted by welfare reform policies led to an 

approximately 2.6 percentage point decline in labor supply by young, low-skilled single male 

laborers. Note that the sign of the estimated relationship has changed from positive to negative as 

                                                           
20 This test reveals that the instruments in this analysis do not directly influence male labor supply, but that the 

impact is moderated through their influence on female LFP. In other words, they meet the exclusion restriction of a 

valid instrumental variable. This finding is critical to establish a valid IV research design and, as will be shown, is 

not typically found in the modeling with other groups. 
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the IV strategy addresses the endogeneity concerns highlighted earlier by removing a significant 

portion of the bias inherent within OLS estimation. 

 Examining the LFP rates for young, low-skilled black males reveals a different picture. 

Though the models also pass the weak instruments and exogeneity tests, the estimated effect of 

increases in labor supply by single mothers is statistically indistinguishable from zero. While 

somewhat surprising, these findings are in line with Holzer et al. (2005) who attribute the decline 

in LFP to factors other than welfare reform and increases in low-skilled female labor supply. 

More specifically, the authors find that CSE and incarceration rates drive a large portion of the 

drop in the labor supply of black men between the ages of 16 and 34. While the research design 

and data panel length used in this analysis do not seek to reproduce these findings,21 it is simply 

important to note that black males within the period of welfare reform appear to be unresponsive 

to the influx of labor supplied by low-skilled single mothers. 

 The last group – single white males – is the group that is driving the findings of labor 

force exit for low-skilled men. As displayed, the estimated relationship between labor supply by 

single mothers and young, single white males is negative and statistically significant in the 2SLS 

modeling and, moreover, the point estimate indicates that a 10 percentage point increase in LFP 

rates by low-skilled single mothers led to approximately a 3.5 percentage point decline in LFP 

rates by young, low-skilled single males, holding all else equal. These values are both highly 

statistically and economically significant as this decline over a base LFP rate for white males of 

87.6 pp can also be interpreted as a 4% decline in labor supply. In terms of the roughly 4 million 

young, low-skilled, single white males aged 16 to 29 in the March 2002 CPS, this represents a 

decline in supply of roughly 140,000 young men. 

                                                           
21 Holzer et al. (2005) examine the period from 1979 to 2000 as well as a different set of age categories. 
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1.7. Robustness Checks 

In this section, I present three additional robustness checks to examine the sensitivity of 

my findings. The first check is to introduce state-level time trends to the core models previously 

reported in Table 3. These specifications seek to account for time-variant omitted factors within 

a state which could either increase or decrease the propensity for LFP by low-skilled female and 

male workers. Table 4 contains the findings from this exercise. As displayed, the introduction of 

time trends diminishes the statistical significance of estimated decline in LFP rates for all single 

males aged 16 to 29. While the point estimates is still negative, the coefficients are not 

statistically significant at any conventional levels and the F-statistic on excluded instruments is 

well below the empiricist minimum of 10 to avoid the weak instruments critique. However, 

conclusions for the two subgroups of young males are similar to those reported in other tables. I 

find no evidence of labor supply changes for blacks, but statistically and economically 

significant labor force exit for young white males. Under this robustness check, the magnitude of 

the findings are very similar to those previously presented: I estimate an approximately 3.2 pp 

decline in labor supply for each 10 pp increase in LFP for single mothers. 

Though not strongly supportive at the aggregated level, the results from the models with 

time trends do provide additional evidence for causal claims for the group which appears to be 

driving the finding of labor force exit: young, single white males. However, modeling with state-

specific time trends in this analysis can be criticized on three grounds: (1) the majority of the 

data used to calculate the time trend resides in the post period and this distorts the inferences and 

value of establishing a “pre” trend because it is based primarily upon “post” data, (2) the margin 

with which labor supply decisions are changing is relatively small and, consequently, the use of a 

time trend does not leave much variation to be explained by other mechanisms, and (3) data at 
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the aggregate level – recall Figure 1 – indicate a rather quick transition of LFP rates for young 

males during the welfare reform period then a subsequent stabilization. Stated differently, time 

trends may be too blunt of an instrument which absorbs much of the variation in LFP, which is 

directly attributable to welfare reform policies, especially given that the models already contain 

state, year, and quarter fixed effects. This statement is particularly true when thinking about the 

interpretation of the first stage tests for weak instruments. Given these critiques, coefficients 

derived from core models provide a more precise measurement of labor force exit stemming 

from an exogenous shift in low-skilled female labor supply. 

The second set of robustness checks examines whether a similar subset of men who could 

have been affected by large increases in labor supply by low-skilled single mothers. As presented 

in Table 5, low-skilled single males aged 30 to 49 do not appear to be negatively impacted by the 

labor supply increases of single mothers aged 16-44. While eschewing a detailed analysis of 

these findings due to space constraints, I will simply make a few comments to explain the 

difference in patterns among the younger and older low-skilled male workers. Younger males 

may be more responsive to market conditions because they have less work history, labor force 

attachments, and are more likely to engage in criminal activity (Freeman 2000; Levitt 2001). 

Thus, they would be more influenced by changes in female labor supply, whereas many older 

males are ostensibly in the legitimate labor force, or not, a tendency which changed very little 

during the welfare reform years or are competing for positions unaffected by the influx of low-

skilled female labor. Stated differently, the labor supply decision of older males appears to be 

operating at a different margin which is not negatively impacted by the increase in labor supply 

by low-skilled women stemming from welfare reform.  
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Finally, Table 6 contains a series of other robustness check where I apply the FE-IV 

strategy used in this paper to two overlapping childless groups which should not have been 

directly impacted by welfare reform under the theoretical framework established earlier: young, 

low-skilled single females aged 16 to 29 without children and low-skilled single women aged 16 

to 44, again without children. When examining the responsiveness of single, childless women of 

each age group using the LFP responsiveness of single mothers aged 16-44 as the first-stage 

instrumented variable (i.e., equivalent to the second-stage model reported in Table 3), there is no 

evidence of labor force exit stemming from welfare reform. 

Results from these robustness checks present strong evidence that the indirect effects of 

welfare reform were targeted specifically on low-skilled male – not female – workers. This 

important differentiation reveals that young, low-skilled males may be more sensitive to 

monetary incentives offered by the marketplace – especially if they have more lucrative 

employment opportunities in the informal or black market. 

 

1.8. Discussion and Conclusions 

Seeking to isolate another factor contributing to the decline in labor supply of young, 

low-skilled males, which has confounded a number of scholars (Holzer et al. 2005; Blank 2009), 

this paper presents compelling evidence that the welfare reform policies of the 1990s 

unintentionally led to an approximately 2.6 pp decline in the LFP rates for all young, low-skilled 

single male workers and a roughly 3.5 pp decline in LFP rates for single white males within this 

same subgroup. Though findings presented in this paper are robust across a number of alternative 

specifications, there are two limitations to this work which temper the claims for a truly causal 

relationship between the welfare-induced increases in labor supply by low-skilled single mothers 

and labor force exit by some low-skilled men. Both critiques are essentially routed in the fact 
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that the fixed effects, instrumental variable design cannot control for unobserved or omitted 

factors which are changing over both time and region and which are correlated with the 

implementation of welfare waivers, TANF programs, and other work incentives enacted in a 

given state. 

The first limitation of a FE-IV strategy is that it does not directly control for 

compositional changes in population over time. Since the range of data used in this analysis is 

fairly long (1989 to 2002), bias could be introduced into these models if the sub-population of 

interest is drastically different in the latter period from the initial one and that this variation is 

correlated with the state in which the individual resides and, more importantly, the timing of the 

bundle of welfare reforms. To be more concrete, suppose that the average white male in State A 

with education at or below a high school level is markedly less employable in 2002 than in 1989. 

If this decrease in “employability” is consistent across other states (B, C, etc.) then the year 

fixed-effects identifies the general decline across all regions over time. However, if the decrease 

in employability is both time and region variant, and correlated with reform, then this cannot be 

captured by a FE-IV model and – presumably – leads to overestimation of the decline in young, 

single male labor supply attributable to labor supply changes by low-skilled single women 

prompted by welfare reform. Under this occurrence, estimates presented in this paper would 

serve as an upper-bound of the true impact. 

Secondly, other potentially omitted time-varying factors, such as the large increase in 

low-skilled individuals receiving disability insurance (DI) or supplemental security income (SSI) 

benefits, is problematic if, again, males in select states are more likely to apply and receive these 

benefits and changes in the generosity of these programs are correlated with the timing of 

welfare reform policies. While the inclusion of estimates of the number of DI or SSI recipients 
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by state and year appears, at first, like a reasonable addition to the models, it is an outcome 

variable and, thus, meets the definition of a “Bad Control” (Angrist and Pischke 2009) and is in 

all likelihood endogenous.22 What one really needs to control for in this critique is the time 

variant behavioral factors which lead to DI or SSI claims and which are correlated with the 

instruments, not to control for the outcome which can be jointly determined with LFP.  

Those critiques aside, this paper presents evidence that young, low-skilled single males 

are responsive to government policies and that there was another serious unintended 

consequence of the large set of welfare reform policies enacted during the 1990s: the facilitation 

of labor force exit by young, low-skilled single male labor. Policy wise, this paper examines how 

resources concentrated on one particular set of disadvantaged individuals, e.g., low-skilled single 

mothers, may have adversely affected the behavior of another group, e.g., young, low-skilled 

males, which has struggled to incorporate itself into a changing American economy and is 

currently linked to a host of social ills, such as black market LFP, increased incarceration rates, 

and declines in low-income nuclear families. Thus, to the extent to which policymakers believe 

that the government has a role to play in steering this group towards more socially desirable 

outcomes, it would seem that the calls by many scholars to increase work incentives to other 

segments of low-wage workers – through policies such as an extension of the EITC (see Blank 

2009; Smeeding et al. 2011; Western and Pettit 2010) – should be given more consideration in an 

attempt to reverse many of the negative trends associated with this potentially disadvantaged 

group of workers. 

  

                                                           
22 Recall that – by definition – DI and SSI beneficiaries are not part of the labor market. Furthermore, note that this 

is also the rationale behind not including variables such as the unemployment rate in the models. Other modeling – 

not shown but available upon request – includes state and federal SSI generosity in both the first and second stages 

but results remain substantively unaffected. 
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Variable Source

Welfare Reform Dates

Implementation of a State Waiver Program

Date of TANF Implementation

State Waiver Components

Work Requirements

Time Limits

Work Incentives

Personal Responsibility Requirements

Cash Benefits and the Earned Income Tax Credit

AFDC or TANF Maximum Monthly Cash Benefits - Family of Three

State and Federal Earned Income Tax Credits - Family of Three

Other Controls

Gross State Product - % Growth

State Minimum Wage

Weekly Earnings for Low-Skilled Males 16-29 March Current Population Survey Data

Incarceration Rates by race/ethnic group

National Prisoner Statistics, Bureau of Justice 

Statistics; Surveillance, Epidemiology, and End 

Results (SEER) Program

Child Support Enforcement

Child Support Enforcement Index

Table 1

Instrumental Variables and Other Controls Examined in 2SLS Modeling

Variables Influencing the LFP of Low-Skilled Single Mothers

Ziliak, Figlio, Davis, and Connolly (2000)

Huang, Kunz, and Garfinkel (2002)

Department of Health and Human Services 

(http://aspe.hhs.gov/hsp/waiver-

policies99/Table_A.PDF)

University of Kentucky Center for Poverty 

Research (UKCPR National Welfare Data, 1980-

2013)

University of Kentucky Center for Poverty 

Research (UKCPR National Welfare Data, 1980-

2013)
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Variable Obs Mean
Standard 

Deviation
Min Max

LFP - Single Males (16-29) 2856 0.852 0.063 0.574 0.994

LFP - Black Single Males (16-29) 2474 0.763 0.197 0.000 1.000

LFP - White Single Males (16-29) 2848 0.876 0.069 0.000 1.000

LFP - Single Males (30-49) 2856 0.823 0.069 0.478 1.000

LFP - Black Single Males (30-49) 2382 0.757 0.202 0.000 1.000

LFP - White Single Males (30-49) 2855 0.845 0.074 0.514 1.000

LFP - Single Mothers (16-44) 2856 0.695 0.112 0.336 0.980

Gross State Product Growth 2856 0.055 0.028 -0.110 0.173

State Minimum Wage 2856 4.48 0.89 1.60 7.15

Weekly Earnings for Low-Skilled Males 16-29 (MA4, Lag 2) 2856 397.63 42.99 296.55 567.78

Incarceration Rates - All Males - Lagged 3 Years 2856 0.009 0.006 0.002 0.051

Incarceration Rates - Blacks - Lagged 3 Years 2856 0.041 0.017 0.003 0.110

Incarceration Rates - Whites - Lagged 3 Years 2856 0.005 0.002 0.001 0.012

Child Support Index 2856 7.44 0.82 4.00 8.00

AFDC/TANF Benefits for a Family of Three 2856 469.35 186.18 129.58 1184.80

Ratio of Cash Benefits to the Max State + Federal EITC 2856 2.25 1.67 0.38 10.67

Welfare Reform (Waiver or TANF) 2856 0.540 0.498 0.000 1.000

AFDC - Work Requirement Waivers 2856 0.079 0.271 0.000 1.000

AFDC - Time Limit Waivers 2856 0.024 0.152 0.000 1.000

AFDC - Work Incentives Waivers 2856 0.080 0.272 0.000 1.000

AFDC - Responsibility Waiver 2856 0.078 0.268 0.000 1.000

Table 2

Descriptive Statistics for Variables used in the Core Empirical Modeling
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OLS
IV

First Stage

IV

Second Stage
OLS

IV

First Stage

IV

Second Stage
OLS

IV

First Stage

IV

Second Stage

LFP: All Single Mothers (16-44) 0.0524*** -0.2567*** 0.1145*** 0.0538 0.0488*** -0.3455***

[0.0136] [0.0756] [0.0414] [0.1646] [0.0135] [0.0794]

Gross State Product - % Growth -0.0358 0.0000 -0.0070 -0.0545 -0.0493 -0.0506 0.0031 -0.0302 0.0260

[0.0412] [0.0634] [0.0463] [0.1322] [0.0872] [0.1331] [0.0457] [0.0678] [0.0536]

Log of State Minimum Wage 0.0086 0.0204 0.0199* -0.0183 -0.0133 -0.0179 -0.0004 0.0260* 0.0132

[0.0099] [0.0139] [0.0112] [0.0308] [0.0196] [0.0310] [0.0099] [0.0144] [0.0116]

Log of Average Weekly Earnings (MA4, Lag 2) 0.0199 -0.1292*** -0.0444* 0.0699 -0.1346*** 0.0553 0.0353* -0.1118*** -0.0317

[0.0186] [0.0279] [0.0241] [0.0543] [0.0372] [0.0652] [0.0181] [0.0286] [0.0240]

Child Support Index 0.0003 0.0037 0.0015 -0.0051 0.0047 -0.0047 0.0033** 0.0045 0.0055***

[0.0017] [0.0027] [0.0020] [0.0052] [0.0030] [0.0053] [0.0016] [0.0027] [0.0021]

Percent of Males Incarcerated (Lag 3) 1.0677* -4.8319*** -1.3513 -0.0467 -0.9773*** -0.1274 3.5965** -6.5874*** -0.5763

[0.6452] [0.8594] [0.8824] [0.4940] [0.2289] [0.5227] [1.4567] [1.8765] [1.7820]

Welfare Reform (Waiver or TANF) -0.2642*** -0.3501*** -0.2913***

[0.0442] [0.0542] [0.0434]

AFDC - Work Requirements Waiver 0.0263*** 0.0241** 0.0289***

[0.0081] [0.0123] [0.0093]

AFDC - Time Limits Waiver 0.0289*** 0.0267** 0.0178*

[0.0101] [0.0128] [0.0106]

AFDC - Work Incentives Waiver -0.0557*** -0.0572*** -0.0494***

[0.0100] [0.0129] [0.0118]

AFDC - Responsibility Waiver 0.0087 0.0027 0.0139*

[0.0078] [0.0098] [0.0081]

Log of Max Cash Benefits to Max EITC -0.0603*** -0.0097 -0.0679***

[0.0187] [0.0243] [0.0196]

Log of Cash Benefits X Welfare Reform 0.0478*** 0.0648*** 0.0514***

[0.0071] [0.0087] [0.0071]

Number of Observations 2856 2856 2856 2474 2474 2474 2848 2848 2848

R-squared (within) 0.386 0.592 0.084 0.575 0.366 0.567

F-statistic of the Excluded Instruments 12.76 13.41 13.17

Hansen J-Statistics (P-Value) 0.0869 0.8683 0.1602

Notes:

Regression are weighted by the number of relevant males residing in a given state/period.  All models have state, year, and quarter fixed effects and robust standard errors are in brackets and statistical significance is 

indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.

Table 3

Impact of Welfare Reform on LFP for Single, Less-Educated Males Aged 16 to 29

Single White MalesAll Single Males Single Black Males
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All Black White

LFP: All Single Mothers (16-44) -0.1076 0.0579 -0.3218**

[0.1335] [0.3183] [0.1472]

Number of Observations 2856 2474 2848

First-Stage Tests:

F-statistic of the Excluded Instruments 2.77 2.96 2.82

Hansen J-Statistics (P-Value) 0.4694 0.3415 0.7343

Notes:

Impact of Welfare Reform on LFP for Single, Less-Educated Males Aged 16 to 29

Each cell represents a separate regression model which is estimated with state-specific time trends and all of the controls and instruments 

outlined in Table 3.  Regressions are weighted by the number of individuals residing in a given state/period for the age range referenced.  

Robust standard errors are in brackets and statistical significance is indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.

Table 4

Modeling with State-Specific Time Trends
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All Black White

LFP: All Single Mothers (16-44) 0.0888 0.0136 -0.0811

[0.0681] [0.1567] [0.0765]

Number of Observations 2856 2257 2850

First-Stage Tests:

F-statistic of the Excluded Instruments 14.33 13.12 14.71

Hansen J-Statistics (P-Value) 0.0013 0.0382 0.0000

All Black White

LFP: All Single Mothers (16-44) 0.3976*** 0.3571 0.4692***

[0.1492] [0.3139] [0.1742]

Number of Observations 2856 2257 2850

First-Stage Tests:

F-statistic of the Excluded Instruments 3.29 3.12 3.35

Hansen J-Statistics (P-Value) 0.5119 0.2501 0.3506

Notes:

Each cell represents a separate regression model and includes all of the controls and instruments outlined in Table 3.  Regressions are weighted by 

the number of individuals residing in a given state/period for the age range referenced.  Robust standard errors are in brackets and statistical 

significance is indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.

Include State-Specific Time Trends

Table 5

Impact of Welfare Reform on LFP for Single, Less-Educated Males Aged 30 to 49
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All Black White All Black White

LFP: All Single Mothers (16-44) -0.0423 0.0181 -0.1051 0.1046 0.2316 0.0600

[0.1023] [0.2127] [0.1113] [0.0807] [0.1858] [0.0896]

Number of Observations 2856 2257 2850 2856 2364 2853

First-Stage Tests:

F-statistic of the Excluded Instruments 12.65 11.26 13.28 12.87 11.91 13.29

Hansen J-Statistics (P-Value) 0.0090 0.5347 0.0036 0.0472 0.3984 0.0548

Notes:

Each cell represents a separate regression model and includes all of the controls and instruments outlined in Table 3.  Regressions are 

weighted by the number of individuals residing in a given state/period for the age range referenced.  Robust standard errors are in brackets 

and statistical significance is indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.

Childless Females Aged 16 to 29 Childless Females Aged 16 to 44

Table 6

Impact of Welfare Reform on LFP for Single, Less-Educated Childless Women
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State 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

AK 10.67 10.65 8.66 8.01 7.33 4.38 3.56 3.11 3.03 2.95 2.90 2.85 2.76 2.68

AL 1.56 1.49 1.20 1.29 1.30 0.78 0.63 0.55 0.54 0.52 0.52 0.51 0.49 0.48

AR 2.69 2.57 1.98 1.77 1.62 0.97 0.79 0.69 0.67 0.65 0.64 0.63 0.61 0.59

AZ 3.86 3.69 2.85 2.90 2.76 1.65 1.34 1.17 1.14 1.11 1.09 1.07 1.04 1.01

CA 8.74 8.74 6.74 5.75 4.96 2.88 2.34 2.05 1.85 1.81 1.92 1.93 1.93 1.97

CO 4.69 4.48 3.46 3.09 2.83 1.69 1.37 1.20 1.17 1.14 1.03 1.00 0.97 1.03

CT 8.22 8.17 6.61 5.90 5.40 3.23 2.10 2.15 2.09 2.03 2.00 1.96 1.90 1.84

DC 5.18 5.15 4.16 3.55 3.25 1.99 1.62 1.42 1.31 1.21 1.19 0.94 0.91 0.88

DE 4.39 4.19 3.28 2.93 2.68 1.60 1.30 1.14 1.11 1.08 1.06 1.04 1.01 0.98

FL 3.78 3.70 2.86 2.63 2.41 1.44 1.17 1.02 0.99 0.97 0.95 0.94 0.91 0.88

GA 3.56 3.44 2.72 2.43 2.22 1.33 1.08 0.94 0.92 0.89 0.88 0.86 0.84 0.81

HI 7.35 7.58 6.14 5.77 5.50 3.38 2.75 2.40 2.34 1.82 1.79 1.76 1.71 1.65

IA 5.20 4.92 3.89 3.47 3.18 1.90 1.54 1.35 1.31 1.28 1.26 1.23 1.20 1.16

ID 4.01 3.99 3.08 2.73 2.50 1.50 1.22 1.07 1.04 0.88 0.87 0.90 0.88 0.85

IL 4.51 4.62 3.57 3.18 2.91 1.74 1.45 1.27 1.24 1.20 1.19 1.11 1.07 1.04

IN 3.80 3.63 2.80 2.50 2.29 1.37 1.11 0.97 0.95 0.92 0.91 0.89 0.86 0.83

KS 5.63 5.15 3.97 3.66 3.41 2.04 1.55 1.45 1.41 1.25 1.23 1.20 1.17 1.13

KY 2.87 2.87 2.22 1.98 1.81 1.08 1.01 0.88 0.86 0.84 0.82 0.81 0.78 0.76

LA 2.51 2.39 1.85 1.65 1.51 0.90 0.73 0.64 0.62 0.61 0.60 0.59 0.72 0.70

MA 7.11 6.79 5.24 4.67 4.28 2.75 2.23 1.91 1.69 1.68 1.66 1.62 1.65 1.56

MD 3.31 3.32 2.63 2.18 1.90 1.16 0.96 0.84 0.82 0.83 0.84 0.86 0.88 0.91

ME 5.78 5.70 4.40 3.93 3.60 1.98 1.61 1.41 1.37 1.34 1.38 1.36 1.31 1.34

MI 6.76 6.50 5.10 3.98 3.65 2.18 1.77 1.55 1.51 1.47 1.44 1.42 1.37 1.33

MN 7.02 6.70 4.70 4.19 3.67 2.20 1.78 1.56 1.52 1.36 1.35 1.31 1.21 1.16

MO 3.76 3.64 2.84 2.53 2.32 1.39 1.13 0.99 0.96 0.93 0.92 0.90 0.87 0.85

MS 1.58 1.51 1.17 1.04 0.95 0.57 0.46 0.40 0.39 0.38 0.38 0.52 0.51 0.49

MT 4.73 4.52 3.60 3.38 3.10 1.90 1.45 1.43 1.44 1.44 1.45 1.45 1.48 1.43

NC 3.51 3.42 2.64 2.36 2.16 1.29 1.05 0.92 0.89 0.87 0.86 0.84 0.81 0.79

ND 5.09 4.86 3.90 3.48 3.18 1.94 1.66 1.45 1.41 1.46 1.44 1.41 1.37 1.38

NE 4.80 4.58 3.54 3.16 2.89 1.73 1.40 1.23 1.19 1.16 1.14 1.12 1.09 1.06

NH 6.54 6.37 5.01 4.47 4.10 2.61 2.12 1.86 1.81 1.76 1.73 1.77 1.80 1.74

NJ 5.59 5.34 4.12 3.68 3.37 2.01 1.64 1.43 1.39 1.35 1.33 1.31 1.10 1.05

NM 3.48 3.32 3.01 2.81 2.57 1.69 1.47 1.31 1.28 1.24 1.54 1.35 1.31 1.27

NV 4.35 4.16 3.21 3.23 2.76 1.65 1.34 1.17 1.14 1.11 1.09 1.07 1.04 1.01

NY 7.11 7.27 5.61 5.00 4.58 2.55 2.02 1.62 1.58 1.54 1.51 1.48 1.38 1.31

OH 4.23 4.21 3.25 2.90 2.71 1.62 1.32 1.15 1.12 1.09 1.14 1.15 1.12 1.08

OK 4.29 4.09 3.31 2.96 2.57 1.54 1.18 1.04 1.01 0.93 0.92 0.90 0.87 0.81

OR 5.54 5.44 4.31 3.99 3.65 2.18 1.77 1.55 1.44 1.40 1.38 1.35 1.31 1.27

PA 5.30 5.30 4.09 3.65 3.34 2.00 1.55 1.42 1.38 1.35 1.32 1.30 1.21 1.22

RI 5.54 5.56 4.22 3.77 3.45 2.06 1.68 1.47 1.43 1.39 1.38 1.36 1.32 1.28

SC 2.72 2.59 2.04 1.82 1.59 0.95 0.77 0.67 0.66 0.64 0.63 0.63 0.61 0.59

SD 4.83 4.75 3.74 3.50 3.21 1.98 1.66 1.45 1.41 1.37 1.35 1.33 1.29 1.36

TN 2.28 2.32 1.89 1.60 1.47 0.88 0.71 0.62 0.61 0.59 0.58 0.57 0.55 0.54

TX 2.43 2.32 1.79 1.60 1.46 0.87 0.73 0.63 0.62 0.60 0.59 0.62 0.60 0.58

UT 4.96 4.87 3.91 3.49 3.19 1.97 1.64 1.44 1.40 1.36 1.42 1.39 1.35 1.37

VA 4.67 4.46 3.44 3.07 2.81 1.68 1.12 1.19 1.16 1.13 1.11 1.09 1.06 1.13

VT 6.48 6.51 5.15 4.56 4.09 2.42 2.02 1.77 1.68 1.56 1.54 1.75 1.61 1.56

WA 6.49 6.31 5.16 4.60 4.34 2.59 2.11 1.84 1.79 1.74 1.72 1.69 1.63 1.58

WI 5.45 5.21 4.02 3.59 3.28 2.12 1.72 1.53 1.49 1.89 1.86 1.82 1.77 1.71

WV 3.28 3.14 2.42 2.16 1.98 1.18 0.98 0.85 0.83 0.81 0.87 1.01 1.36 1.31

WY 4.75 4.53 3.50 3.12 2.86 1.71 1.39 1.21 1.18 1.09 1.07 1.05 1.02 0.99

Note:  Cash and EITC benefits are for a three person family

Appendix A

Ratio of AFDC/TANF Annual Cash Benefit to the Maximum State/Federal EITC Credit
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Chapter 2 

 

Still “Saving Babies”? 

The Impact of Child Medicaid Expansions on High School Completion Rates 

 

2.1. Introduction 

Before the 1980s, qualification for public health insurance under state-level Medicaid 

programs was traditionally tied to the receipt of Aid to Families with Dependent Children 

(AFDC) benefits, although states could voluntarily choose to cover other low-income groups, 

such as the medically needy or single women pregnant for the first time. As the battle between 

conservatives and liberals over the direction of social welfare policy and government spending 

unfolded during the Reagan administration (Kaiser Family Foundation, 2014), a series of 

significant legislative changes from 1984 to 1989 led to a decoupling of the AFDC and the child 

Medicaid programs. As a result, millions of low-income children became eligible for public 

healthcare who would not have received benefits under the old rules.  

This paper examines one of the long-term effects of these expansions and focuses on a 

singular question: did the expansion of health insurance benefits to low-income children 

throughout the 1980s and early 1990s increase state-level high school completion rates around 

the turn of the 21st century? Exploration of the other consequences of Medicaid expansions have 

received a considerable amount of attention in the academic literature, with studies examining 

the short-term impacts on child and maternal health (Aizer et al., 2007; Currie and Grogger, 

2002; Currie and Gruber, 1994; Currie and Gruber, 1996a; Currie and Gruber, 1996b; Kaestner, 

1999; Lykens and Jargowsky, 2002), the crowd-out of private health insurance (Blumberg et al., 

2000; Busch and Duchovny, 2005; Cutler and Gruber, 1996; De La Mata, 2012; Gruber and 

Simon, 2008; Ham and Shore-Sheppard, 2005; Hamersma and Kim, 2013; Lo Sasso and 
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Buchmueller, 2004; Shore-Sheppard et al., 2000; Shore-Sheppard, 2008), the effects on 

academic achievement during early childhood years (Levine and Schanzenbach, 2009), and the 

impacts on fertility (DeLeire et al., 2011; Zavodny and Bitler, 2010). However, this present study 

is one of the first to explore whether Medicaid expansions helped to increase the high school 

completion rates – the other being the NBER working paper by Cohodes et al. (2014) – and, 

moreover, helps to assess whether governmental investments in the form of healthcare for low-

income children can lead to improvements in long-term outcomes for this vulnerable population. 

An investigation of the expansions of public health insurance to low-income families is 

substantively important due to the sheer size of these programs. In 1984, roughly 17% of all 

births in the United States were covered by Medicaid (Howell and Ellwood, 1991), while public 

insurance covered roughly 37% of all births after the full set of expansions was implemented in 

the early 1990s (MCH Update, 2003). More recently, this rate has grown to almost 48% of all 

U.S. births in 2010 (Markus et al., 2013). Thus, health insurance subsidized by the government 

covers a very significant proportion of all births in the United States and, moreover, provides 

access to healthcare in early childhood for a correspondingly large number of children. Access to 

care can allow medical professionals to diagnose and treat health issues in needy children before 

they become debilitating and could generate benefits beyond decreased child mortality and 

increased birth weight as noted in Currie and Gruber (1996b). 

The link between governmental investments in the health of young, low-income children 

and the high school completion rates in America is an important one. As education levels and 

technological skills become increasingly valued in a specialized U.S. economy (Autor et al., 

2008; Berman et al., 1998; Bresnahan et al., 2002), the long-term prospects for high school 

dropouts – both professionally and personally – are rather bleak. Not only are dropouts less 
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likely than other workers to find stable employment (Apel and Sweeten, 2010; Rumberger and 

Lamb, 2003), they are also less prone to the formation of stable nuclear families (Carlson et al., 

2004; Cherlin, 2010; Western and Wildeman, 2009), which can facilitate the intergenerational 

transmission of poverty (Western and Wildeman, 2009; Wilson, 1987). Moreover, those who fail 

to earn a degree – especially males – are much more likely to engage in criminal activities 

(Blanchflower and Freeman, 2000; Pettit and Western, 2004), which greatly diminishes long-

term earning potential (Western et al., 2001) and contributes to the exceptionally high 

incarceration rates in the U.S. (Western and Wildeman, 2009). Thus, government investments in 

the form of early childhood health insurance for low-income children could conceivably lead to a 

population which is better-educated and less reliant upon social welfare programs as adults.  

 By exploiting the wide degree of heterogeneity in qualification standards for state-level 

Medicaid programs – as well as differences in the timing of Medicaid expansions and the 

implementation of federal mandates – this paper estimates the intent-to-treat (ITT) effect1 of 

Medicaid expansions to low-income children on the subsequent educational attainment of all 

public high school students, measured by both the state-level dropout and four-year traditional 

graduation rates. More specifically, this paper uses a plausibly exogenous measure of the 

generosity of a state’s Medicaid program to estimate the causal effect of increases in the 

percentage of child-years potentially covered by the state’s public health insurance program from 

conception through age 5.2 Using this simulated eligibility measure – the general form of which 

was first proposed by Currie and Gruber in 1994 and then subsequently adopted and adapted by a 

                                                           
1 Like other papers in the literature, I consider this an intent-to-treat effect because the focus here is on eligibility 

and not the actual causal impact of public health insurance on the long-term graduation rates. The latter, producing 

treatment-on-the-treated estimates, would require a panel of individual-level data for all states, which does not exist. 
2 Medicaid eligibility is examined through age five for two reasons. First, this paper seeks to examine governmental 

investment in the form of public healthcare provided to young, low-income children before they enter primary 

school. Secondly, early legislative expansions to women and children in the late 1980s stipulated age 5 as the cutoff 

for mandatory Medicaid coverage. 
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number of other researchers (see Currie and Gruber, 1994; Yelowitz, 1995; Currie and Gruber, 

1996a; Currie and Gruber, 1996b; Currie and Gruber, 2001; Ham and Shore-Sheppard, 2005; 

Gruber and Simon, 2008; DeLeire et al., 2011, Cohodes et al., 2014) – I find that a 10 pp 

increase in early childhood years potentially eligible for Medicaid coverage led to a decrease in 

long-term high school dropout rates by 1.9 to 2.5 pp and an increase in four-year graduation rates 

by 1.0 to 1.3 percentage points.  

Findings are consistent across a number of alternative means to measure Medicaid 

eligibility and the number of years potentially covered during early childhood and, moreover, are 

driven by the two groups benefiting most from the public health insurance expansions: Hispanic 

and white students. Since the vast majority of states increased the generosity of their state-level 

programs by approximately 25 percentage points, this suggests that high school dropout rates 

decreased by roughly 4.75 to 6.25 pp, while traditional four-year graduation rates increased 

between 2.5 to 3.25 pp. Framing this last set of findings another way – and considering the base 

of roughly 3.8 million potential graduating seniors in the class of 2010 – public health insurance 

expansions to low-income children led to an increase of between 95,000 to 124,000 graduates 

per year in the U.S. Thus, of the 6 pp increase in the recent high school graduation rate reported 

by Murnane (2013), almost half of these gains can be attributed to child Medicaid expansions. 

These findings are both statistically and economically significant. 

 

2.2. The Medicaid Program and Eligibility Expansions 

A number of authors have detailed the history of the Medicaid program,3 as well as the 

coverage expansions impacting eligibility across the United States throughout the 1980s and 

                                                           
3 The Medicaid program dates back to 1965 when the program was officially enacted by Congress as part of 

President Johnson’s Great Society Program. From its inception, Medicaid was a state and federal partnership, 
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early 1990s. Arguably, Gruber’s 2003 book chapter, aptly titled “Medicaid”, provides the most 

comprehensive overview. Given these resources, this section highlights the significant 

benchmarks and provisions of these public health insurance expansions that are most relevant to 

the fundamental research question of this paper.4 Two notes regarding the evolution of Medicaid 

programs are particularly important to this paper. First, the bundle of goods and services 

provided by Medicaid are comprehensive and standardized across all states. Secondly, increases 

in eligibility stem from two key legislative changes: (1) the removal of the family structure 

restrictions from benefit receipt, and (2) the tying of income thresholds to some function of the 

federal poverty level rather than the AFDC payment standard established by the state.  

 

2.2.1  The Scope of Medical Care Provided by Medicaid 

As part of the agreement to receive federal funds, the government required that states 

provide a relatively standardized bundle of goods and services provided under their Medicaid 

program. Thus, potential medical treatment received during the early childhood years should 

have been roughly equivalent regardless of the state of residence for children evaluated in this 

analysis. This is important because the quality of “treatment” evaluated in this analysis should 

not be strongly dependent upon geography, conditional on time. Consequently, “generosity” in 

this paper refers to the number of children potentially eligible for public insurance and not the 

quality of medical treatment possibly received.  

                                                           
whereby participating states received federal grants to help offset a portion of total program costs borne at the state-

level. To receive federal funds, states were required to cover select sub-populations, such as individuals qualifying 

for AFDC, and states could choose to add other groups it deemed as medically needy. By 1972, all states except 

Arizona had created state-run Medicaid programs; Arizona opted into the program on a limited scale in 1982, only 

to expand coverage shortly thereafter. 
4 This overview draws heavily upon the historical overview provided in the Kaiser Family Foundation’s publication 

“Medicaid: A Timeline of Key Developments” (2013) and reports published by the old U.S. General Accounting 

Office (1991)– a more detailed summary of the developments in Medicaid coverage can be found in Appendix A. 
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Concerning these legislated benefits over the duration of the program, medical coverage 

provided has been comprehensive: the wide range of services included physician care, inpatient 

and outpatient hospital procedures, laboratory and x-ray services, as well as access to skilled 

nursing facilities. A critical component of this coverage as it applies to health investments in 

low-income children are the Early and Periodic Screening, Diagnostic, and Treatment (EPSDT) 

services, which were enacted under the Social Security Mandates of 1967, and provide 

preventative and treatment services including dental, vision, hearing, and mental health. As the 

name implies, the goals of the EPSDT program are to identify health problems starting at birth, 

to keep monitoring the development of the child at regular intervals, and to treat the problems 

once they are discovered. So, where low-income children without Medicaid benefits may wait 

years to receive a diagnosis and treatment, children with coverage are more likely to receive help 

in their infancy. In turn, this could potentially eliminate or reduce the negative impact of 

debilitating conditions and increase cognitive development during the formative years of early 

childhood.  

 

2.2.2 Determinants of Medicaid Eligibility 

During Medicaid’s early period, the vast majority of those covered by Medicaid received 

benefits based upon their qualification for AFDC benefits within a particular state. Due to the 

wide range of criteria used to determine AFDC qualification, a large number of poor children 

were excluded from public health insurance in the early period because of family structure or 

income requirements legislated at the state level.  

Historically, qualification for AFDC typically precluded the presence of able-bodied 

males within the household. This means that low-income children residing within two-parent, 
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nuclear families were typically not eligible for Medicaid benefits and that AFDC was essentially 

a program for low-income, single parents. Acknowledging the distortive effects of this policy, 

legislative changes sought to break this link between AFDC receipt and child Medicaid by 

expanding eligibility to all children below some multiple of the federal poverty guideline, 

regardless of family structure type. As Figure 1 notes, Hispanic and white children are most 

likely to reside in two-parent, married families during their early childhood years. Thus, they are 

the two groups most likely to benefit from the removal of the family structure restrictions on 

child Medicaid receipt. 

Furthermore, since individual states determined the need and payment standards under 

the state-level AFDC programs, there was tremendous variation in the income level that qualified 

single-parent families for benefits during the early period of the Medicaid program. For example, 

Alabama’s monthly need standard for a family of 3 in 1980 was $192 in nominal dollars, 

whereas the standard for a high-threshold state such as Vermont was $670. A comparison of 

these values to the federal poverty guideline of approximately $520 per month for a family of 

three at the same point in time reveal the potential for a significant number of poor children and 

families not qualifying for AFDC benefits and Medicaid simply because their states had chosen a 

low threshold to determine the “needy”.  

While minor changes to rules governing Medicaid eligibility occurred before the 1980s,5 

the bulk of the coverage expansions occurred during the mid to late 1980s and early 1990s – 

which were the early childhood years for students graduating after the turn of the 21st century. 

Under a number of legislative acts which sought to simultaneously limit federal expenditures and 

                                                           
5 Despite the failure of President Carter’s push to expand coverage to low-income children under the age of 6 who 

did not qualify for insurance under current state laws in the late 1970s, the notions of separating welfare receipt from 

Medicaid qualification and the expansion of coverage during early childhood – defined as conception through age 5 

– help set the agenda for comprehensive expansions of the 1980s.  
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expand Medicaid coverage to needy populations during the Reagan administration,6 Medicaid 

eligibility was extended to a large set of low-income children during early childhood and to their 

mothers during pregnancy. Details of these incremental expansions have been highlighted in a 

number of publications (in particular, see Currie and Gruber, 1994; Yelowitz, 1995; Currie and 

Gruber, 1996a; Currie and Gruber, 1996b) and, thus, I refer the interested reader to Appendix A 

for more information regarding the key developments in Medicaid expansions to low-income 

children which affected cohorts examined within this analysis. The key note is that – after the 

full enactment of the sweeping mandates throughout the 1980s – Medicaid for children in the 

United States had completed its transition from an optional state program, which was typically 

tied to AFDC receipt, to a stand-alone program which potentially covered all children at or 

below some federally mandated multiple of the federal poverty line, regardless of family 

structure type.  

 

2.3. Theoretical Framework 

This is an early childhood investments paper which examines governmental expenditures 

impacting children before they enter primary school. As such, the main mechanisms through 

which access to public health insurance for low-income children could raise the long-term 

human capital accumulation is a healthier childhood and increased cognitive and non-cognitive 

development during the formative years of early childhood. By being able to diagnose and treat 

aliments afflicting low-income children earlier in their development via Medicaid’s EPSDT 

program, low-income children with access to Medicaid may not only be better prepared to enter 

                                                           
6 Important measures included the Omnibus Budget Reconciliation Act of 1981 (OBRA81), the Deficit Reduction 

Act of 1984, the Consolidated Omnibus Budget Reconciliation Act of 1985 (COBRA85), the Omnibus Budget 

Reconciliation Act of 1986 (OBRA86), the Omnibus Budget Reconciliation Act of 1987 (OBRA87), the Medicare 

Catastrophic Coverage Act of 1988 (MCCA88), and the Omnibus Budget Reconciliation Act of 1989 (OBRA89). 
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school because of increased development in their early years, but they might miss fewer days of 

school once entering primary school relative to those without access to insurance. These two 

factors, in turn, should increase their long-term performance relative to equivalent students 

without insurance and, perhaps, increase their odds of obtaining a high school diploma, holding 

all else equal. 

Several studies have linked healthcare access to health improvements.7 Currie and Gruber 

(1996b) find that the Medicaid expansions that included pregnant women over the period 1979 to 

1992 substantially decreased the incidence of infant mortality8 and decreased the probability of a 

low birth weight baby. This finding was confirmed by Levin and Schanzenbach (2009). While 

the benefits of decreased infant mortality are clear, it is important to note that low birth weight 

has been linked to a host of long-term health issues for the child (Barker et al., 1989; Gluckman 

and Hanson, 2004), as well as lower reading and math scores during childhood (Chatterji et al., 

2014) and decreased levels of education and employability as adults (Currie and Hyson, 1999). 

In another paper, Currie and Gruber linked Medicaid expansions to increases in healthcare 

utilization by the low-income population (Currie and Gruber, 1996a), a finding which was 

confirmed again in Currie and Gruber (2001). While they report that take-up of public insurance 

was less than 100% – e.g., a number of families qualified for Medicaid insurance but did not 

formally apply for benefits – they report high levels of medical care utilization, especially 

preventative care delivered in the offices of physicians. Thus, low-income children appeared to 

                                                           
7 In a recent literature review, Levy and Meltzer (2008) examine the causal link between health insurance coverage 

and health and conclude that “the evidence available to date conclusively demonstrates that health insurance 

improves the health of vulnerable subpopulations such as infants, children…” 
8 As noted by Currie and Gruber (1996b), Medicaid expansions to pregnant women and children stemmed, in part, 

from a desire of politicians to address the infant mortality rate in the U.S., which was among the highest in the 

industrialized world. 
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be using the care afforded to them under the Medicaid expansions and received treatments in 

excess of what they would have experienced in the absence of the eligibility extensions. 

As a result of their access to care earlier in their lifecycle, low-income insured children 

experience fewer avoidable hospitalizations than children without insurance (Dafny and Gruber, 

2005), which is presumably beneficial not only for the child’s long-term development but can 

decrease the financial burden placed on the family (Gross and Notowidigdo, 2011; Finkelstein et 

al., 2012), as well as other consumers of healthcare services in the case of non-payment by the 

low-income family. Finally, a number of other studies and reviews have argued that access to 

medical care for low-income children improves their health during childhood. See Currie and 

Almond (2011), Gruber (1997), and Lykens and Jargowsky (2002) for further evidence 

supporting this link. 

Comparatively fewer studies have examined the relationship between expansions of 

public health insurance and cognitive development during early childhood or other longer-term 

outcomes. This is due, in part, to the fact that many of the low-income children affected by 

Medicaid expansions are only now reaching adulthood. Levine and Schanenbach (2009) show 

that better health status at birth – as proxied by low birth weight and infant mortality – is related 

to improvements in 4th and 8th grade reading achievement. They use data from the National 

Assessment of Educational Progress (NAEP), a version of Currie and Gruber’s simulated 

benefits, and a triple-difference identification strategy. Two other recent working papers have 

also investigated topics central to the theme in this one. Brown et al. (2014) use linked Internal 

Revenue Service data to report a positive impact of child Medicaid expansions on longer-term 

labor force earnings. 
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The current NBER working paper by Cohodes et al. (2014) is most similar in spirit to this 

work. They also utilize a form of Currie and Gruber’s simulated Medicaid eligibility to study the 

effect of public health insurance expansions to low-income children aged 0 to 17 on high school 

and college completion rates. Using data from the 2005-2012 American Community Survey, the 

authors find that federal expansions led to declines in the high school non-completion rate of 

approximately 4.0 to 5.9% and, furthermore, that the gains were confined to non-whites. This 

analysis complements and extends Cohodes et al.’s work in a number of ways. First, this paper 

concentrates – and isolates – impacts of public health insurance expansions on early childhood 

only, as opposed to ages 0 to 17, and exploits a longer panel to produce more precise estimates of 

the impacts on the public high school completion rates. The longer panel is particularly 

important to establish a sufficient baseline before the family structure restrictions for Medicaid 

receipt were rescinded which, as noted, differentially affects individual race and ethnic groups.  

This paper also contains two measures of public high school completion which were not 

analyzed in Cohodes et al.’s work: dropout rates using Current Population Survey (CPS) data 

and the traditional four-year high school graduation rate using data from the Common Core of 

Data (CCD). In particular, the restriction of the sample to individuals born in the U.S. increases 

the precision of the dropout estimates, because it isolates changes in trends only applicable to 

students who could have qualified for the public health insurance expansions throughout their 

entire early childhood. Analysis of CCD data reveals that increased completion rates applies to 

traditional diplomas, rather than simply increases in the number of General Education 

Development (GED) holders. This is important because GED holders do not fare better in the 

labor market relative to high school dropouts (Cameron and Heckman, 1993; Boesel et al., 

1998), and, consequently, gains in completion rates reveal real improvements in human capital.  
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Finally, unlike Cohodes et al. (2014), I find that gains in completion rates are driven by 

Hispanics and whites. By estimating models by race and ethnic group, the identification strategy 

used in this paper explicitly addresses a potential limitation of the other study, which is that gains 

by “non-whites” are driven by increases in the proportion of Asian students over time – which 

have historically had completion rates more similar to whites. In other words, the authors may be 

missing a significant compositional change correlated with Medicaid expansions within their 

classification of a “non-white” group. Those caveats aside, the consistency in findings across 

these papers indicate that benefits from child Medicaid expansions are real and substantial. 

 

2.4. Data 

Data in this analysis come from three general sources: demographic information in the 

Current Population Survey, education statistics from the Common Core of Data, and a database 

of state rules used to determine Medicaid eligibility. The first source, the CPS, is a monthly 

survey of roughly 60,000 dwellings across the United States conducted by the U.S. Census 

Bureau for the Bureau of Labor Statistics.9 While data collected in this survey serve as the basis 

of the government’s monthly estimate of the unemployment rate, researchers frequently use it to 

investigate issues pertaining to educational attainment, family structure, and family income. Data 

from the CPS are used in two segments of this analysis. Monthly CPS data are used to calculate 

the dropout rates for individuals aged 18 to 20. Estimates are examined from 1994 to 2010, 

which allows a number of years to establish a baseline in each state before the large-scale 

Medicaid eligibility expansions. March CPS data are used to simulate the generosity of a state’s 

Medicaid program by comparing family unit structure and income to eligibility rules established 

                                                           
9 Monthly Current Population Survey data was downloaded from IPUMS-CPS.  See www.ipums.org. 
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within a particular state. More details regarding this simulation are supplied shortly and technical 

details can be found in Appendix B. 

The second source of data, the Common Core of Data comes from a repository of 

educational data maintained by the U.S. Department of Education’s National Center for 

Education Statistics (NCES). NCES collects both fiscal and non-fiscal data from all public 

schools in the United States on an annual basis, including the number of traditional diplomas 

awarded and student enrollment by grade level. Data are supplied directly from state education 

agencies and uploaded to the CCD; I use the public-use, state-level data in the calculation of 

four-year high school graduation rates. Diploma and enrollment figures were first documented 

by the CCD in the early 1990s which means that, given the lag structure required to measure the 

four-year graduation rate, the first graduation cohort for which a rate can be estimated is 1997. 

This allows for the construction of a minimal pre-period before the large-scale Medicaid 

mandates begin impacting children during early childhood years. 

Finally, a number of resources were used to compile a database of the rules used to 

determine Medicaid eligibility for pregnant women and children in each state from 1975 to 1997 

(Currie and Gruber, 1994; Hill, 1992; Kaiser Family Foundation, various publications; The 

National Governors Association, various publications; U.S. Department of Health and Human 

Services, various publications). This 20-plus year period covers the early childhood years for the 

graduation cohorts from the class of 1994 to the class of 2010. As with the other variables, more 

details regarding this database are provided in the forthcoming sections. 

 

2.5. Empirical Strategy 

This section outlines three vital components of this empirical analysis. It starts with a 

general discussion of the requirements for the identification of a casual effect of increased access 
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to public health insurance for low-income children on the long-term public high school 

completion rates. Other portions describe the construction and findings from the two variables of 

central importance in this paper: the simulation of the generosity of the state-level Medicaid 

program, and the estimation of public high school completion rates in the United States. 

 

2.5.1. Identification of a Causal Effect 

This paper builds off of literature which uses estimates of the generosity of a state’s 

Medicaid program for children as a time-varying, exogenous source of variation in a quasi-

experimental research design (Currie and Gruber, 1994; Yelowitz, 1995; Currie and Gruber, 

1996a; Currie and Gruber, 1996b; Currie and Gruber, 2001; Ham and Shore-Sheppard, 2005; 

Gruber and Simon, 2008; DeLeire et al., 2011; Cohodes et al., 2014). Employing a form of the 

methodology adopted by these authors, I combine fixed-effects modeling with simulated 

Medicaid eligibility – using a nationally representative sample of CPS data and the eligibility 

requirements of state-level programs – to investigate the causal impact of healthcare expansions 

to low-income children on the subsequent high school completion rates. Exploiting the timing of 

Medicaid expansions to women and children, which varied significantly across geographic areas 

in terms of the percentage of the population potentially eligible, I estimate an intent-to-treat 

(ITT) effect of these expansions on the high school completion rates. The general estimation 

strategy can be written as follows: 

(𝟏)  (𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 𝑹𝒂𝒕𝒆)𝒔𝒄𝒈 =  𝜶 +  𝜷 (
% 𝑬𝒂𝒓𝒍𝒚 𝑪𝒉𝒊𝒍𝒅𝒉𝒐𝒐𝒅 𝒀𝒆𝒂𝒓𝒔 

𝑬𝒍𝒊𝒈𝒊𝒃𝒊𝒍𝒆 𝒇𝒐𝒓 𝑴𝒆𝒅𝒊𝒄𝒂𝒊𝒅
)

𝒔𝒄𝒈

+ 𝜹𝒔 + 𝜻𝒄 + 𝝃𝒈 + 𝜺𝒔𝒄𝒈 

 

 where:  Completion Rate is measured by either the CPS dropout or CCD graduation rate for a 

given state (s), cohort (c), and race/ethnic group (g); 

% Early Childhood Years Eligible for Medicaid is the percentage of all early 

childhood years potentially eligible for Medicaid under existing state laws for a 

particular race/ethnic group in a graduation cohort; 
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δs, ζc, and ξg are state, cohort, and race/ethnic group fixed effects, respectively, 

εscg is the error term, which is clustered at the state level, and 

all models are weighted by the number of relevant individuals residing in a state for a 

particular cohort and group. 

 

The major challenge in this research is to construct a plausibly exogenous measure of the 

generosity of a state’s Medicaid program during early childhood. Since this variable is the key to 

my identification strategy and any causal claims, I discuss issues in estimation and potential 

empirical solutions, as well as describe – in detail and in a separate section – the estimation 

procedure used to simulate this variable. As is common in quasi-experimental research designs, 

two major sources of bias in the estimation of β are particularly relevant: (1) simultaneity 

between the outcome and main explanatory variables, and (2) other forms of omitted variable 

bias.  

 The main concern with using actual Medicaid use rather than a measure of the generosity 

of the rules governing access to the state-level plan is that strategic behavior by local residents 

can lead to changes in Medicaid enrollment (e.g., local residents choose an income level to 

qualify for benefits), yet this does not represent a real change in access to public healthcare. 

Consequently, and considering the within-estimator specified in the fixed-effects model above, 

an “effect” could be attributed to this strategic behavior by the child’s parents, which could be 

influenced by third factors impacting completion rates.10 A more convincing independent 

variable is one which is exogenously determined from the vantage point of the aggregated 

individuals within a state. Therefore, a covariate based upon the series of federal mandates 

                                                           
10 One example: parents’ education level, which may be a function of the ability endowments they bestow to the 

child, affects their potential earnings level. This, in turn, could influence their choice of an income level, one which 

qualifies them for the public insurance program.  
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leading to legislative changes in access to state-level child Medicaid programs could provide an 

exogenous measure of program generosity. 

Restating the problem more generally, actual Medicaid use is probably correlated with 

other factors impacting early childhood health, the probability of family income falling below 

specified income levels, and high school completion rates. Consequently, Medicaid utilization is 

likely endogenous; DeLeire et al. (2011) provide a comprehensive, recent discussion of why 

other techniques must be employed. Given this issue of endogeneity, I adopt a form of the 

methodology established in the literature and use individual-level data to simulate the percentage 

of all March CPS sample children who would have qualified under a state’s eligibility 

requirements in a given year, regardless of where they reside. This procedure yields a measure of 

the state plan’s generosity because it is not dependent upon the characteristics or choices of the 

residents currently living within that state but simply the eligibility requirements established by 

the state legislators,11 which were determined, in part, by federal mandates. Details regarding 

these simulations are provided in the next subsection and, moreover, a host of alternative 

estimation strategies are examined in the robustness checks section to analyze the sensitivity of 

my estimates to different simulation choices. 

Other types of omitted variables can result in biased estimates of the relationship between 

Medicaid expansions and the high school completion rates. To isolate a causal effect after 

constructing the plausibly exogenous measure of the generosity of a state’s Medicaid program, 

other variables potentially linked with Medicaid eligibility during the formative early childhood 

years and graduation rates more than a decade later must be included. Unfortunately, it is 

                                                           
11 In addition, the values produced in the simulation are meaningful in a statistical sense, especially when 

considering a within-state analysis. For example, a simulated value of 20% means that the program is twice as 

generous as programs where only 10% of the early childhood years for a given cohort are potentially coverable by 

Medicaid.  
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theoretically unclear as to what variables could be correlated and when they should be measured.  

Given this conceptual ambiguity, I choose to address these other forms of omitted variable bias 

through a variety of econometric demeaning techniques – including fixed effects and time trends 

– and to test the sensitivity of my finding under a range of definitions of Medicaid generosity.  

Fixed effects address a number of potentially relevant, unobserved factors in this 

analysis. Given that states can differ in their historical completion rates for a variety of reasons, 

state-specific fixed effects can be used to account for factors which are time-invariant within a 

given state (such as general levels of spending per pupil or general marginal propensities of 

graduation). Race/ethnic group fixed effects hold constant for historical gaps in high school 

completion rates which may affect black, Hispanic, and white students at an aggregated level 

(e.g., across the entire U.S.), regardless of the time period. Extending these two constructs, state-

race fixed effects are an even more flexible form of state-specific and race/ethnic group fixed 

effects. They control for differential graduation levels by race/ethnic groups residing within the 

same state. In other words, this functional form allows whites in Alabama to have historically 

different graduation rates than black students in that same state and, importantly, this racial 

differential – if existing – can vary in magnitude by the individual state.  

Cohort-specific fixed effects can be used to control for macro factors affecting graduation 

trends in a particular year, such as the economy or binding federal education mandates. Modeling 

with state, cohort, and race/ethnic group fixed effects – which are indicated by δs, ζc, and ξg in 

Equation 2 – imply that identification of an impact rests upon the comparison of graduation rates 

within a state for cohorts exposed to varying levels of Medicaid generosity during early 

childhood, while simultaneously controlling for (1) unobserved factors affecting all students at a 

macro level within a chosen cohort, and (2) general differentials in propensities to complete high 
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school for each race/ethnic group. Stated differently, if all states are experiencing increases in 

both high school completion and Medicaid eligibility (which they generally are), then 

identification of a positive estimate of β occurs only if states with greater increases in the 

generosity of their state Medicaid programs also experience larger increases in their long-term 

high school completion rates. Modeling with state-race fixed effects is interpreted similarly, but 

identification now occurs from changes within a state-race group rather than only a state. 

In addition to controlling for time-invariant unobservables, other strategies account for 

the possibility that graduation rates are evolving differently across states. State-specific time 

trends identify impacts of Medicaid expansions only when high school completion rates exceed 

the level which would have been expected after controlling for the existing trends in 

completion.12 Secondly, state-cohort fixed effects fully drop the linearity assumption implicit in 

the use of time trends. Under this specification, an effect is identified when increases in 

Medicaid generosity to a particular race or ethnic group residing within a state result in greater 

than anticipated gains in the high school completion rates, after accounting for all other factors. 

In other words, it can test whether the group receiving the greatest gains in access to public 

healthcare also experience the largest increases in completion rates. When included with the 

other techniques discussed above, this specification is the most stringent test of an effect and, 

potentially, the most convincing estimate of a causal impact because it can capture time-varying, 

unobserved factors at the state-level. All of these fixed-effects methods can significantly reduce 

the probability of an important omitted variable biasing estimation relative to the form presented 

in equation 1 above.  

 

                                                           
12 Since the panel of data used in this analysis is long, I allow for quadratic time trends. Results are similar in 

magnitude when estimated with linear time trends. 
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2.5.2. Medicaid Eligibility Simulations 

Having addressed the challenges in estimating a causal relationship between increases in 

the generosity of state-level child Medicaid programs and longer-term high school completion 

rates, it is useful to discuss a few elements of the simulation process. Appendix B contains a 

number of technical details required to accurately estimate the generosity of the state-level 

Medicaid program – as proxied by the percentage of children in a graduation cohort who would 

have been eligible for Medicaid during their early childhood years. This section broadly covers 

two steps used in this process: (1) the construction of a Medicaid eligibility rules database, and 

(2) the simulation of program generosity using CPS sample data. 

The first step in the Medicaid eligibility simulation process is to properly document and 

categorize the large volume of legislative changes affecting qualification for child Medicaid and 

Aid to Families with Dependent Children (AFDC) from 1975 to 1997, which covered the early 

childhood years for the graduation cohorts from 1994 to 2010.13 Over the range analyzed, there 

was a large degree of heterogeneity in the laws governing qualification for Medicaid benefits for 

both pregnant women and children. Timing and stipulations governing the access to care 

appeared to be essentially random from the perspective of individuals living within a state until 

the federal mandates became binding at various junctures. And, as noted, the removal of the 

family structure restrictions is particularly important for certain race/ethnic groups. These 

differences provide the exploitable source of variation which can identify coefficients in a causal 

analysis.  

 Once this database of state-level requirements for Medicaid qualification is compiled, the 

second major phase is to use data from the March CPS to estimate the generosity of a state’s 

                                                           
13 See Table 1 for more detail regarding the ages and years required to estimate eligibility for all cohorts in the 

sample. 
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Medicaid program during a cohort’s early childhood years. Like other researchers in the 

academic literature – most notably Currie and Gruber (1994, 1996a, 1996b), I use a national 

sample of March CPS children age 0 to 5 – e.g., all children regardless of their original home 

state and early childhood age14 – and statistically ask the question: conditional on their family 

structure and family income level, would they have qualified for Medicaid had they lived in a 

particular state in a given year?15 As Table 1 outlines, I perform this exercise for seven different 

CPS years for a single cohort – from conception through age 5 – and then take the simple 

average of these seven years to define the variable % of Early Childhood Years with Medicaid 

Eligibility.16 Mathematically, this calculation for a particular state (s) and graduation cohort (c) 

can be written as follows:  

(2)  (
% 𝐸𝑎𝑟𝑙𝑦 𝐶ℎ𝑖𝑙𝑑ℎ𝑜𝑜𝑑 𝑌𝑒𝑎𝑟𝑠 
𝑤𝑖𝑡ℎ 𝑀𝑒𝑑𝑖𝑐𝑎𝑖𝑑 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦

)
𝑠𝑐

=
1

7
 [ ∑

∑ 𝐶𝑃𝑆 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ∗ 𝑀𝑒𝑑𝑖𝑐𝑎𝑖𝑑 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑠
𝑛
𝑖=1

∑ 𝐶𝑃𝑆 𝑊𝑒𝑖𝑔ℎ𝑡𝑖
𝑛
𝑖=1

𝑐−13

𝑦=𝑐−19

] 

 

where: the simulation is estimated from cohort c=1994 to c=2010; 

 i represents an individual March CPS observations from year (y) for a child aged 0 to 5;  

Medicaid Eligibility is an indicator variable which is 1 when the family unit or 

individual child qualified for Medicaid benefits under a particular state (s) legislative 

thresholds and 0 otherwise; and 

CPS Weight are person weights reported by the March CPS. 
 

The corresponding output from Equation 3 is the average number of child-years potentially 

coverable by a state Medicaid program for a nationally representative sample of children. This is 

                                                           
14 Parents in the CPS data appear to become wealthier as their children age. Thus, to avoid eligibility changes 

resulting from a changing demographic, the same sample of children aged 0 to 5 are used to simulate eligibility for 

all early childhood years estimated from a single March CPS following the mapping outline in Table 1. 
15 Families were defined by the most disaggregated units identified within the CPS data. Total family income less 

certain time-varying disregards were compared to income thresholds established by the individual state. 
16 The CPS and CCD do not provide the individual-level data required to simulate early childhood eligibility. As 

such, I need to make the assumption that students graduate, on average, at age 18 and benefits during early 

childhood are covered by the March CPS years as outlined in Table 1. This assumption should not be problematic so 

long as the age composition of the graduation class is not changing greatly from the class of 1994 to the class of 

2010 in a given state. Moreover, the size of the expansions in the latter period, the smoothing of the estimates over 

the seven early childhood years, and the use of the within-estimation in the fixed-effects estimation should further 

mitigate any concerns over this procedure. 
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a plausibly exogenous measure of the generosity of a state’s Medicaid program during early 

childhood for reasons outlined earlier in this text. Moreover, the simulation methodology 

outlined above can be easily altered to estimate eligibility by race and ethnic group. 

The simulation contains three assumptions which are important to disclose. To start, the 

use of equal weights for each early childhood year contains the implicit supposition that each 

year of potential Medicaid coverage is uniformly important to a child’s development and long-

term probability of high school completion. This enters equation 2 through the 1/7 term. 

Although insurance coverage could be more important earlier in a child’s development, it is 

theoretically unclear how the years from conception through age 5 should be weighted. Due to 

this ambiguity, I examine other potential measures to test the sensitivity of my preferred 

estimation strategy.  

Two other assumptions stem from the lack of administrative or individual-level data 

following the potential graduate from early childhood through their high school years. The first 

is that any potential distortions in estimation from individuals migrating from state to state are 

minimal. Selective migration towards states with more generous Medicaid programs would cloud 

the relationship between those with eligibility increases and those not benefiting from legislative 

changes. Most likely, this would lead to attenuation bias in estimation due to misclassification 

error. Secondly, as an important reminder, I make the additional assumption that potential 

graduates would have finished at age 18, on average, as outlined in Table 1. This allows me to 

match the early childhood years in a consistent manner across cohorts but could also lead to 

misclassification error and attenuation bias in estimation if this central tendency is changing over 

time.  
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Those caveats aside, the simulated percent of early childhood years with Medicaid 

eligibility are shown, by state and for all children, in Appendix Table C1. Some important items 

to recall when interpreting these numbers: simulated values are estimated by graduation cohort 

and the value reported is the number of child-years potentially covered by Medicaid from 

conception through age 5. Estimates are a quantifiable and comparable measure of a state 

Medicaid program’s generosity over time. Examples can help clarify the interpretation of this 

variable: 10.9% for Alabama’s class of 1997 indicates that 10.9% of the early childhood years 

for the national sample of CPS children would have been covered under Alabama’s eligibility 

requirements for child Medicaid. Under the eligibility simulation method established in the 

literature, the same exact CPS children are also run through the eligibility requirements for all 

other states in the same year and, as in places like California at 20.2% or Arizona at 4.4%, the 

percent of child-years covered can be higher or lower depending upon the state-level eligibility 

requirements. Thus, these simulations quantify the generosity of coverage in the various state-

level Medicaid programs for the same set of low-income children during early childhood. In this 

table, all states experience a marked increase in the percentage of early childhood years covered, 

which occur, in part, as the federal coverage minimums become binding.  

Similar tables were generated by race and ethnic group and are shown in Tables C2 

through C4 in the appendix. These are the simulated values used in the core empirical 

modeling.17 Figure 2 summarizes these tables with an aggregated depiction of the increases in 

the generosity of the average state’s Medicaid program during early childhood for all U.S. states 

and by race and ethnic group. Not surprisingly, access to public health insurance increases 

markedly over time. Another striking feature of this graph is the change in eligibility impacting 

                                                           
17 Other methods of Medicaid eligibility simulation are examined to reveal the sensitivity of estimates to key 

modeling choices. 
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the average Hispanic student. Over the period examined, Hispanic students were often raised in 

families with marital patterns most resembling whites, but with incomes most closely 

characterized by blacks. Thus, their estimated Medicaid eligibility during early childhood begins 

closer to whites. However, as family structure restrictions from child Medicaid are lifted, the 

fraction of early childhood years increases markedly for Hispanics and converges toward blacks 

at the end of the sample. This is an important source of exploitable variation. 

 

2.5.3.  The Outcome Variables: High School Completion Rates in the United States 

The primary goal of this paper is to investigate the causal impact of a single public policy 

decision – the expansion of health insurance coverage to low-income children – on long-term 

dropout and traditional four-year high school graduation rates. Given this singular objective, the 

next two sub-sections bypass the multitude of factors affecting completion trends over the past 

several of decades.18 Instead, the first section describes important choices made in the 

construction of the two rates, as well as outlines the strengths and weaknesses of each measure. 

More technical details regarding the construction of both measures can be found in Appendix B. 

The second sub-section contains a general discussion of the trends in U.S. dropout and traditional 

four-year high school graduation rates from the mid-1990s into the 2000s. 

 

2.5.3.1. Estimation of Dropout and Graduation Rates 

Despite being a widely reported statistics used as a barometer for the effectiveness of the 

public school system, estimation of U.S. high school completion rates is not straightforward, 

                                                           
18 For those interested in other factors affecting dropout rates in the United States, see the relatively recent, thorough 

review by Rumberger and Lim (2008). Murnane (2013) also provides a comprehensive analysis of the challenges 

and trends associated with the public high school graduation rate. 
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primarily due to conceptual ambiguities and data limitations.19 Given these challenges, I present 

and discuss two measures of public high school completion, each of which has strengths and 

weaknesses. Analyzing both constructs together exposes the true nature of the relationship 

between child Medicaid expansions and the long-term human capital investments of low-income 

children. 

As previously noted, cohort-specific dropout rates were computed using monthly data 

taken from the Current Population Survey. As with the Medicaid eligibility simulations, Table 1 

outlines how individuals of a particular age were assigned to a graduation cohort, which is 

defined by when the average student would have turned 18. Two other conditions were used to 

estimate the dropout rate.20 Instead of using only age 18 in the construction of dropout rates, the 

CPS estimates were smoothed by using all sample individuals aged 18 to 20. This approach 

yields a more accurate estimation of dropout rates for minority groups living in predominately 

white states because the sample size is greatly increased. Secondly, since the research objective 

in this paper is to explore the impact of increased access to public healthcare in early childhood, 

dropout rates are estimated only on CPS respondents who were born in the United States. Low-

income children not born in the U.S. would most likely either (1) not qualify for public health 

insurance because of residency requirements, or (2) have some significant delay in access to care 

during early childhood. While estimates for black and white students are not impacted by this 

restriction, the magnitude, but not general trends, of dropout rates for Hispanics are. Again, 

please refer to the technical details in Appendix B for more information.  

19 For a comprehensive discussion of the challenges associated with the estimation of completion rates, please see 

Heckman and LaFontaine (2010). 
20 As is standard in the literature, a dropout is identified when the CPS respondent has less than a high school level 

of education and is no longer enrolled in school. 

63



 While CPS dropout rates have the advantage that one can exclude respondents not living 

in the U.S. at the time of their birth – and thus, those may not fully benefit from Medicaid 

expansions during early childhood – this measure has two other disadvantages. The first is that 

researchers cannot exclude the GED certificate. The GED is the most common alternative to a 

traditional high school diploma; however, studies have argued that GED holders do not fare any 

better in the labor market than high school dropouts (Cameron and Heckman, 1993; Boesel et al., 

1998).21,22 Consequently, care must be taken in the conclusions drawn from an analysis of 

dropout rates if the percentage of GED holders is increasing over time; this would indicate a 

decrease in the dropout rate which is not a real long-term gain in human capital. 

 The second limitation is that the CPS sampling design excludes institutionalized 

populations. This could be problematic if the sample captured by the CPS is changing 

significantly over time due to factors such as mass incarceration. If the boom in U.S. prison 

population differentially impacts racial groups or individuals on the margin of graduation, which 

it most likely does, then CPS estimates serve as an upper-bound of the true rates. Furthermore, 

rates could be artificially higher in the later period if dropouts are more likely to be excluded 

from the CPS sample due to these changing trends in incarceration. 

 Given the potential limitations of the CPS dropout rate due to the use of the 18-20 year 

old smoothing technique, the non-excludability of non-traditional diplomas, and the non-

sampling of institutionalized populations, a second outcome variable is examined. This measure 

concentrates on diplomas awarded in the traditional manner: e.g., students who attended an 

                                                           
21 This effect is generally attributed to the general lack of non-cognitive skills characteristically held by these 

individuals, such as perseverance and motivation, traits which are essential to success in the academic and 

professional arenas (Heckman and LaFontaine, 2010). 
22 Furthermore, the federal government has formally recognized the non-substitutability between GED and 

traditional high school diplomas by excluding GED holders from the count of high school graduates under No Child 

Left Behind (NCLB) measures.  
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accredited high school program and received a traditional high school diploma, as discussed in 

Heckman and LaFontaine (2010). Following Heckman and LaFontaine (2010), I estimate a four-

year graduation rate using diploma counts and enrollment data from the Common Core of Data. 

In this calculation, a graduation cohort (e.g., the Class of 2000) is defined by the number of 

diplomas awarded in a state in a given year. Thus, diplomas awarded are the numerator. To 

estimate four-year graduation rates, the number of 8th graders enrolled in that same state 4 years 

earlier is used as the proxy for the maximum number of potential completers. These enrollees are 

used as the denominator from which a four-year graduation rate can be constructed. Please see 

the technical appendix for more details. 

While addressing the GED issue, the traditional diploma measure introduces two other 

limitations. First, students born outside of the United States – and, thus, most likely not 

qualifying for Medicaid benefits during early childhood – cannot be excluded. Secondly, an 

implicit assumption of using the four-year graduation measure, especially while using fixed-

effects regression modeling, is that any measurement error needs to remain constant over time. 

When students do not all finish in exactly four years, measurement error on the outcome variable 

is a potential problem.23 Under this scenario, degree duration would be an omitted third factor. 

When correlated with the primary covariate of interest, regression estimates would be biased. 

Unfortunately, given data restrictions,24 there is no way to explicitly test the assumption of a 

constant number of years required for completion within a particular state. Thus, I discuss the 

direction of the potential bias later in this paper.  

                                                           
23 In other words, and illustrating via an example, so long as students take, on average, 4.10 years to graduate in 

Alabama over the period explored in this analysis, then the same level of mismeasurement occurs across each time 

period, which can be controlled for via standard econometric procedures. A concern would be that the average time 

towards high school completion is time-varying within a state – e.g., that the time spent towards graduation in the 

earlier period is statistically different from the amount required in the latter period.  
24 To test this proposition, one would need administrative-level data across all states over a long period of time. This 

data is not available at a national level. 
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Neither outcome variable flawlessly captures the trends in public high school completion 

rates which are most relevant to the child Medicaid expansions of the 1980s and early 1990s. 

However, the two measures are complementary, strengthening one where the other fails. Thus, 

consistency in findings from the two measures would establish whether a statistically significant 

and robust relationship exists between public healthcare expansions to low-income children in 

early childhood and long-term gains in the high school completion rates. 

 

2.5.3.2. U.S. Trends in the Dropout and Four-Year Graduation Rates 

 Trends in 18 to 20 year old dropout rates by race and ethnic group are shown in Figure 3. 

As displayed, rates appear to be flat in the early period and then fall dramatically after the turn of 

the century. All groups experience large declines in their dropout rates. At an aggregated level, 

dropout rates for all students fall from approximately 14% in 1994 to 9% in 2010. This 

represents roughly a 35% decline relative to the original baseline established during the period 

before the large-scale increases in public healthcare access to low-income children. 

 Figure 4 presents trends in traditional four-year high school graduation rates for the 1997 

to 2010 graduation cohorts for all U.S. students, and by race and ethnic groups. Graduation rates 

at the aggregate level for all students have generally experienced an upward trajectory in the 

2000s, starting at roughly 76% in 2000 and exceeding 82% by 2010.25 Like dropout rates, 

improvements were experienced by all groups: black, Hispanic, and white students all 

experienced marked gains in their graduation rates throughout this period. The primary objective 

of this paper is to measure the extent to which these advances in completion rates at state-

specific levels can be attributable to early childhood Medicaid expansions. 

                                                           
25 These trends and estimates are consistent with those presented by Heckman and LaFontaine (2010). 
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2.6. Descriptive Statistics 

Table 2 contains a series of descriptive statistics for the data used to estimate the 

empirical models. Results are presented for all U.S. students, as well as separately by race and 

ethnic group. As noted earlier, Medicaid eligibility is estimated by the group of students, which 

means that the fraction of black, Hispanic, and white students which would have qualified for a 

state’s Medicaid program had they lived in a given state during early childhood varies markedly 

across both group and cohort. This time-varying measure of Medicaid program generosity at the 

state level is the identifying source of variation exploited in this analysis, and the fraction of CPS 

children qualifying for the average state’s Medicaid program in early childhood is contained in 

the third column. Medicaid eligibility rises from approximately 15% of all child-years in the first 

graduation cohort (1994) to above 40% by the end of the period analyzed (2010). These 

generosity increases represent almost 2.8 times more child-years eligible for Medicaid.  

Table 2 reveals the magnitude by which Medicaid eligibility increases vary across race 

and ethnic groups. At the start of the time-series, the average black student in this analysis had 

40.4% of their early childhood years potentially coverable by Medicaid. By 2010, this number 

rose to 70.0%. While large in absolute magnitude, this change corresponds to less than a 

doubling of program generosity. Thus, the marked within-group increases in eligibility are driven 

by the Hispanics and white students, which were the two groups benefiting most from the 

decoupling of Medicaid from AFDC. In the CPS samples analyzed, the average Hispanic lived in 

a state where the generosity of the program increased more than threefold: from 20.7% of all 

early childhood years coverable in 1994 to 67.4% eligible in 2010. Though not nearly as high in 

magnitude, whites also experienced a near tripling of eligibility, going from 10.8% in 1994 to 

32.1% in 2010.  
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As discussed in the last section, blacks, Hispanics, and whites all experienced large gains 

in high school completion rates over the period analyzed. This fact is confirmed by the trends 

shown in aggregated CPS Dropout Rates and the CCD Graduation Rates.26 However, since the 

completion measures and simulated Medicaid eligibility estimates are both increasing over the 

period examined, it is important to use a variety of econometric techniques to de-trend the data to 

avoid attributing an effect to the Medicaid expansions when some other third factor is truly 

driving part of the relationship. 

 

2.7. Empirical Models: High School Dropouts 

 To explicate findings from my empirical models, I start with the full analysis of the high 

school dropout rate, which constitutes the most consistent and robust finding of a causal link 

between child Medicaid expansions and long-term gains in high school completion rates. After 

dropouts, I discuss the modeling of four-year high school graduation rates, which can address 

whether gains in completion rates were driven by increases in traditional diplomas or by other, 

less valuable, forms of high school completion. 

 

2.7.1.  Core Modeling 

Table 3 contains estimates of the impact of Medicaid expansions in early childhood on 

the subsequent high school dropout rates, which constitute the core modeling in this analysis. 

                                                           
26 One limitation of the CCD data is that states did not always provide complete information on diplomas awarded. 

For example, two states failed to report diploma counts for all students in 2004, while 3 did not report in 2006. This 

issue becomes more serious when examining the trends in graduation rates by race and ethnic group, where the 

earlier period experiences greater frequencies of non-reporting. Here, the maximum number of potential 

observations is 14 * 51 * 3 = 2142, while only 1875 observations have valid data. A similar issue exists in the CPS 

data which stems from the lack of a sufficient sample of 18 to 20 year olds to calculate dropout rates for blacks and 

Hispanics in select states in particular years. In both cases, the length of the panel examined should still facilitate 

reliable estimates from the unbalanced panel. 
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Model 1 estimates the functional form proposed in equation 1 above. The three other models are 

shown in this table are extensions of this base form: Model 2 adds state-race fixed effects, while 

Models 3 and 4 account for existing trends in state-level graduation rates by exploiting state-

specific time trends and state-cohort fixed effects, respectively. All standard errors in estimation 

are clustered at the state-level to account for the fact that the state-level residuals are probably 

not independent and identically distributed even after conditioning on the other right-hand-side 

variables. 

Starting with the baseline presented in Model 1, there is a negative and statistically 

significant relationship between Medicaid eligibility expansions during early childhood and the 

dropout rate. However, it is easily argued that estimates from Model 1 suffer from omitted 

variable bias, forms of which are addressed in the other three models. Adding the state-race fixed 

effects in Model 2 increases the size of the estimated coefficient of interest, as well as decreases 

the standard error. Once accounting for state-specific time trends in high school completion in 

Model 3, the statistical precision of the estimate increases even further. The point estimate of -

0.2422 can be interpreted as follows: a 10 percentage point increase in the Medicaid generosity 

of a state-level program resulted in an approximately 2.4 pp decrease in high school dropout 

rates, holding all other factors constant. Moreover, using state-cohort fixed effects to account for 

even more of the unexplained variation in factors affecting graduation within a given state, the 

point estimate increases slightly to 2.5 pp. This last finding strongly suggests that the groups 

benefitting the most from the Medicaid expansions (e.g., Hispanics and whites) also experience 

the greatest decreases in the dropout rates because identification now rests upon deviations from 

the mean within a particular state and cohort.  
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Summarizing the findings from these models, estimates from the core modeling – which 

are all estimated with a high level of statistical precision – indicate that Medicaid eligibility 

expansions led to long-term decreases in the high school dropout rates, with estimates ranging 

from 1.9 to 2.5 pp for each 10 pp increase in the generosity of the state’s Medicaid program. 

Extending this estimate to the roughly 25 percentage point increase in program generosity 

generally witnessed by all states during the expansion period reveals a decrease in the dropout 

rate of between 4.75 to 6.25 pp. Thus, relative to a dropout baseline of roughly 14% in 1994, this 

indicates a decline of at least one third in the dropout rate, which can be attributed to Medicaid 

expansions. These estimates are both large and economically meaningful. 

 

2.7.2.  Heterogeneity Tests 

 Findings from the core empirical models and the Medicaid eligibility graphs suggest that 

racial and ethnic groups may be differentially impacted by the magnitude of Medicaid 

expansions, because each group starts with different levels of Medicaid access.27 Table 4 

presents formal tests of this proposition by showing the results from group-specific modeling. As 

the reader may quickly note, the power of the regressions are significantly diminished in the non-

pooled models because the number of observations decline by 2/3. However, modeling presented 

– which corresponds to the first two functional forms in Table 2 – confirms intuition: decreases 

in dropout rates are greatest for Hispanics, who benefit the most from Medicaid eligibility 

expansions. Blacks gain the least in terms of their completion rates. Whites reside somewhere in 

the middle, as with eligibility gains, while the large standard errors on the point estimates 

preclude the reporting of a statistically significant relationship at conventional levels. Moving 

                                                           
27 This is shown most noticeably by the trends in Medicaid eligibility expansions by group (Figure 2) and from the 

models with state-cohort fixed effects (Model 4) in Table 3.  

70



past the smaller sample and power issues, there are two other reasons why whites could gain 

from access to public health insurance despite this finding in the disaggregated modeling. To 

start, the additional fixed effects in the pooled modeling increase the precision of the estimates, 

yet this important source of variation cannot be identified within the single group model.28 

Moreover, since regressions are weighted by the relevant number of students, whites have a 

disproportionate weight in pooled modeling. Thus, if the true impact on whites was zero, the 

finding of a statistically significant result would not occur in the larger sample because results 

are driven by the central tendency for whites. These facts, when coupled with the issues 

previously established, indicate that whites also benefit significantly from the early childhood 

public health insurance expansions. 

 

2.7.3.  Alternative Measures of Medicaid Eligibility, Part I: Fixed Cohort Demographics 

Given the consistency of coefficients presented in Table 3, concerns regarding estimation 

bias from unobserved omitted variables should be mitigated. The second major issue is to test 

whether choices and assumptions made while constructing the % of Early Childhood Years with 

Medicaid Eligibility inadvertently drives the statistically significant relationship between 

expansions in public health insurance and high school dropout rates. To meet this objective, I 

examine eight alternative estimates of a state’s Medicaid program generosity during the early 

childhood years, analyses which investigate whether CPS sample selection or length of potential 

Medicaid exposure differentially impact the estimates presented thus far. To ensure that changes 

in sample composition over time are not driving the findings, the first series of models examine 

                                                           
28 To be clearer, the state-cohort fixed effects identify unobserved factors which are changing over time within the 

same state. Examples would be per pupil spending or graduation requirements. This potentially important source of 

bias cannot be accounted for in the single group modeling because there is only one observation per state and year. 
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the impact of fixing CPS demographics to a single sample of individuals choosing their family 

structure and income levels. The second set tests whether the duration of Medicaid exposure 

during early childhood matters. Having established that the dropout results are driven by 

Hispanics and whites, all of these robustness checks exclude black students. 

Table 5 contains estimates derived from fixing the sample to three distinct March CPS 

years: 1975, 1980, and 1985.29 This set of analyses investigate whether the changing CPS sample 

impacts the relationship between Medicaid generosity and dropout rates by fixing the cohort 

demographics to a single CPS year and then using CPI adjustment factors to convert family 

earnings into the nominal dollars required to determine eligibility for AFDC or child Medicaid 

eligibility within a given state-year.30 By choosing different fixed samples, I can potentially 

alleviate lingering concerns of strategic behavior by a subset of families who may choose their 

income level in order to qualify for public assistance programs in a particular state and year.  

Table 5 starts with the core modeling estimated with Hispanic and white students only. 

Coefficients are larger than those presented in Table 3 because black students were driving the 

coefficient towards zero. As shown across a variety of specifications, results from the fixed CPS 

sample are consistent with the limited core modeling, although the point estimates are often 

larger than what was previously reported for the more highly specified models. Excluding the 

potentially biased estimates presented in Model 1, estimated impacts range from roughly a 1.7 to 

4.0 pp decrease in the high school dropout rate for each 10 pp increase in the generosity of the 

state’s Medicaid program.  

                                                           
29 When interpreting this table, please note that each cell represents a separate regression model. 
30 To inflate the fixed CPS year (e.g., 1975, 1980, or 1985) earnings to “contemporaneous” values, I use a composite 

CPI index created from the CPI-U-X1 and CPI-U-RS series constructed by the Bureau of Labor Statistics. 
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While this methodology leads to larger estimates of the impact of Medicaid expansions, it 

suffers from the primary criticism that the use of a CPI inflator tacitly contains an unreasonable 

assumption, namely that wages – especially those for low-wage workers – rose exactly by the 

amount of inflation in a given year. Adjusting income under this methodology understates 

generosity during a high inflationary period – which corresponds to the baseline period – because 

the CPI adjustment factor allocates more income to low-income families then they would have 

reasonably earned given market constraints.31 Although limited, this approach lends support to 

the finding of an impact of public health insurance expansions during early childhood on the 

subsequent long-term completion rates; it indicates that the use of the contemporaneous CPS 

sample during early childhood is not arbitrarily driving the finding of a statistically significant 

relationship between Medicaid eligibility expansions and fewer high school dropouts. Fixing the 

demographics to a single year, if anything, would lead to larger estimates. 

 

2.7.4.  Alternative Measures, Part II: Tests of the Potential Exposure to Medicaid  

The remaining five alternative definitions of Medicaid eligibility test what happens when 

the dose of Medicaid treatment is altered statistically or, in other words, as the cumulative 

duration of Medicaid eligibility “received” changes. Since it is theoretically unclear how much 

Medicaid exposure is required to produce an effect, I examine point estimates when eligibility is 

estimated (1) as the lower bound of coverage, which is defined as the minimum percentage of the 

cohort covered in any single year, (2) as the upper bound of coverage, which is the maximum 

percentage of the cohort covered in any single year of early childhood, (3) during the conception 

                                                           
31 Inflation rates in the late 1970s and early 1980s often exceeded 10% in a single year and were above 5% in a 

number of other years in this analysis. To maintain the assumption required by use of the fixed sample from either 

1975, 1980, or 1985, low-skilled wages would also need to rise by the same amount. This assumption is implausible 

given sticky wages and minimum wage regulations. 
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year only (e.g., prenatal care and birth), (4) from conception through age 2 in the traditional 

manner, and finally, (5) coverage from age 3 to age 5, also with the core methodology 

established earlier.  

The latter cases are relatively straightforward in their construction and interpretation: by 

examining a subset of ages potentially covered during early childhood – conception year only, 

from conception through age 2 and from age 3 to age 5 – I examine whether eligibility in the 

earlier years is more important than eligibility in the latter ones. As other measures of the 

duration of Medicaid eligibility, I also estimate the lower- and upper-bound of any potential 

Medicaid coverage, which technically envelop the % of Early Childhood Years with Medicaid 

Eligibility variable, which has been the focal point of this entire analysis.32 The lower-bound of 

any coverage is defined by the minimum percentage of the estimated eligibility for any single 

year of early childhood and seeks to proxy the maximum number of children within a state-

cohort which could have received treatment throughout the 7 years of early childhood. The 

second measure – the upper-bound of any coverage – attempts to measure the maximum number 

of children within a state-cohort who could have ever qualified for coverage during their 

childhood, at any time.  

The second series of findings in Table 6 contain estimates from the lower-bound of the 

estimated Medicaid eligibility percentage in any single year, which again, seeks to proxy the 

maximum number of children which could have received benefits in all seven years. This 

                                                           
32 A numerical example should help clarify the calculation of the lower- and upper-bounds. As provided in the 

appendix, the estimated percent of early childhood years with Medicaid eligibility for all students in the graduating 

class of 1997 in Alabama was 10.9%. This number is constructed as the simple average of the simulated eligibility 

for the seven years from conception through age 5 or the CPS simulated estimates of 10.7%, 10.5%, 10.5%, 10.0%, 

9.5%, 10.0%, and 15.2%, respectively. To estimate the lower-bound of coverage in any single year for a cohort, one 

simply takes the smallest value from the seven years; here it is 9.5%. To estimate the upper-bound of coverage, one 

uses the maximum number of CPS respondents covered in any single early childhood year, which is 15.2%. These 

are the lower- and upper-bounds of potential coverage because they envelop the simple average of all seven years 

which is used in the main modeling. 
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measure of the cohort “always covered” during early childhood produces statistics estimated 

with a high degree of statistical precision and which substantiate estimates presented in other 

sections. The models report impacts on high school dropout rates ranging from 1.8 to 2.3 pp for 

each 10 pp increase in Medicaid program generosity. Combined with the findings from the third 

estimation exercise – which is a proxy for the maximum percentage of the state-cohort ever 

potentially qualifying for Medicaid insurance – it appears that qualifying for Medicaid benefits at 

some point during early childhood leads to the health and cognitive development benefits 

outlined earlier. That stated, there is some evidence that there may be less of an impact as 

expansions reached the upper tail of the low-income distribution as indicated by the smaller and 

less precise estimates derived from the upper-bound exercise, especially in Models 1 through 3. 

Finally, when potential eligibility is examined in the conception year only, from 

conception through age 2, and from age 3 to age 5, coefficients are essentially in line with the 

point estimates of 1.9 pp to 2.5 pp derived from core modeling. Given these findings, it does not 

appear that any of the periods differentially impact high school graduation rates, i.e., the choice 

of equal weighting to each of the early childhood years does not appear to be consequential. 

Thus, while the methodology presented in this paper cannot precisely identify exactly which 

early childhood period is most crucial – if there really is such a period – the link between 

eligibility expansions from conception through age 5 and the long-term dropout rates is strong 

and robust to a number of alternative estimation procedures.  

 

2.8. Empirical Models: Traditional Four-Year Graduation Rates 

Given the consistency and robustness of findings across the various models examining 

dropout rates, this section examines whether fewer high school dropouts translated into more 
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traditional high school graduates. As noted, holders of non-traditional diplomas do not fare better 

in the labor market than high school dropouts. Thus, to have a real influence on the human 

capital accumulation of low-income children, Medicaid must alter the number of traditional 

diplomas instead of other vehicles to graduation, such as the GED. 

Table 7 presents a simplified version of the core modeling outlined in Table 3. While not 

nearly as precise as the dropout modeling, coefficients on the Medicaid generosity variable 

indicate a significant and robust relationship between increases in the percentage of early 

childhood years with Medicaid eligibility and the long-term traditional high school graduation 

rate. Estimates from modeling with black, Hispanic, and white students range from a 1.0 to 1.3 

pp increase in completion rates stemming from a 10 pp increase in state program generosity. 

Again, extending these point estimates to the over 25 pp increase in eligibility in the average 

state, this suggests an increase in the four-year graduation rates of between 2.5 to 3.25 pp which 

can be attributed to Medicaid expansions. 

Findings for Hispanic and white students only are very similar to the coefficients reported 

for the three race/ethnic groups. Though similar in magnitude to the other point estimates, Model 

4 coefficients under both specifications are no longer statistically distinguishable from zero. This 

fact indicates that the greatest beneficiaries of the Medicaid expansions – Hispanics – may not be 

experiencing the largest gains in four-year graduation rates. While contrary to the other findings, 

this is a reminder of one of limitations of the CCD data: one cannot exclude students likely to 

have been ineligible for the large increases in access to public healthcare during early childhood. 

Thus, to the extent to which graduation rates are diluted by recent immigrants for a particular 

group – which they almost certainly are for Hispanics – then the estimates presented serve as a 

lower-bound of the true impact. Consequently, it does not seem unreasonable to conclude that 
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the gains in the decreased dropout rates translated into more traditional diplomas and that 

Hispanics and whites propel this finding. 

The same set of robustness checks examined with the dropout models can be applied for 

the four-year graduation rates. For the sake of brevity, they are not presented in this paper. In 

general, coefficients are similar to those presented in Table 7, though estimates can be less 

statistically significant. This precision issue highlights another advantage of the CPS dropout rate 

measure: it has a much longer time series at baseline, as it starts in 1994 as opposed to 1997. 

Recalling Figure 3, this extended period is important to establish a baseline of Medicaid program 

generosity within a state before the large scale public insurance expansions. 

 

2.9. Discussion and Conclusions 

Seeking to examine the long-term impact of early childhood investments by the U.S. 

government in the form of increased healthcare access to low-income children before they enter 

primary school, this paper presents evidence that the Medicaid expansions to qualifying children 

throughout the 1980s and early 1990s led to an increase in the high school completion rates in 

the 2000s. By exploiting the large degree of heterogeneity in policy implementation of the public 

insurance expansion mandates, as well as econometric techniques to account for otherwise 

unobserved factors which cause certain states or race/ethnic groups to have differential trends in 

graduation, I find a positive, consistent, and statistically significant relationship between 

Medicaid eligibility expansions during early childhood and longer-term high school completion 

rates.  

The results presented in this paper are economically significant. For dropouts, the 1.9 to 

2.5 pp decline in dropout rates for each 10 pp increase in public insurance program generosity 
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translates into approximately a 4.75 to 6.25 pp decline in overall dropout rates from 1994 to 

2010. Relative to the estimated 14.4% dropout rate for all students in 1994, this suggests a 33 to 

43% decrease in the number of students exiting high school without a diploma or equivalent 

degree. Furthermore, dropout impacts appear to be driven by Hispanic and white students, the 

two groups benefiting the most from increased within-group access to public health insurance. 

To test whether these gains impacted traditional manners of high school graduation, and 

not imperfect substitutes such as the GED, I also examined four-year graduation rates using 

traditional diploma counts from the Common Core of Data. The intent-to-treat estimates of a 1.0 

to 1.3 percentage point increase in four-year graduation rates for each 10 pp increase in child-

years potentially covered by a state’s Medicaid program implies that – on a base of roughly a 25 

pp increase for the average state – there were 95,000 to 124,000 more graduates across the U.S. 

in 2010 due to public health insurance expansions and healthier low-income children. Moreover, 

improvements appear to be shared by all race and ethnic groups. This exercise confirms that 

gains from public healthcare access did not stem from non-traditional means of high school 

completion, which further indicate that these advances represent real improvements in long-term 

human capital accumulation for a potentially vulnerable population. 

This paper corroborates findings from two other recent working papers in the literature 

which find substantial positive impacts on educational attainment and labor market outcomes 

stemming from the child Medicaid expansions of the late 1980s and early 1990s (Brown et al., 

2014; Cohodes et al., 2014). In particular, it complements and extends Cohodes et al. (2014) by 

more precisely targeting the source of the completion rate gains (Hispanic and whites), as well as 

deriving more precise estimates of the effect by exploiting a longer data panel and other sources 

of data. However, work in this arena is not without its current limitations. Important items left 
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for future research are to unpack the mechanisms prompting these positive effects and to better 

understand when public insurance interventions matter the most. Stated another way, current 

research has not identified what exactly facilitates these increases in performance. Is it from the 

general increase in child health, increases in cognitive and non-cognitive development before 

entrance into primary school, the potential increase in seat-time for students who otherwise 

would have been battling health issues in the absence of insurance, a more positive 

predisposition towards academics, or other factors related to the benefits of health insurance, 

including income effects? Furthermore, it is still unclear as to when public insurance matters the 

most: is it in utero as claimed by those prescribing the fetal origins hypothesis, throughout early 

childhood as supported by this paper, or throughout the entire childhood (e.g,. ages 0-17) as 

analyzed by Cohodes et al.? Other datasets, sources, and methodologies are required to unravel 

these mechanisms and to evaluate when these interventions have the greatest impacts. 

Finally, there may be lingering concerns over the measures of completion explored in this 

analysis. Presumably, arguments would be rooted in a measurement error critique, one which 

would have to further assume non-classical error (since classical error on an outcome variable 

simply leads to larger standard errors, but no bias in estimation). In the construction of 18-20 

year old dropout rates, the smoothing technique would be problematic if it fails to adequately 

account for some time-varying aspect of completion which is correlated with treatment (e.g., 

early childhood Medicaid expansions). While migration to other states after high school would 

influence the general completion levels within a state, it is still not obvious how a source of 

omitted variable bias would work under this scenario, especially given the other panel data 

controls in the modeling.  
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Critiques of the four-year graduation rate could be more valid. Some race and ethnic 

groups – such as black and Hispanics – may take longer, on average, to graduate from high 

school than the standard of four years (Murnane, 2013). Consequently, these students would not 

count as diploma holders in time period t (the numerator of the four-year graduation rate 

calculation) which is compared to the number of students enrolled in 8th grade at time period t-4 

(the denominator). Like the dropout rates, this is not problematic so long as the marginal 

propensity of completion remains constant over the time period examined, as this constant 

measurement error is accounted for using the panel data techniques employed in this paper. 

However, it would be a concern if these tendencies are time varying and occur simultaneously 

with Medicaid expansions to low-income children. In other words, a biased coefficient results if 

blacks or Hispanics in states with large Medicaid expansions are increasingly finishing within 

four years and the sequence of these two events is highly correlated. Although it appears as 

though this issue is ignored by those using the CCD in the academic literature because there is no 

obvious solution – it would imply that the estimates derived in this analysis serve as an upper-

bound of the effect of Medicaid expansions. That stated, the robustness of the findings across the 

two definitions of completion and the various constructs of Medicaid eligibility, concerns 

regarding measurement error on the outcome variable should be abated. 

To conclude, academic accountability studies, early childhood investments, and the 

impact of Medicaid expansions have all received a considerable amount of attention in the 

academic literature. This paper extends this work by examining how government investments in 

the form of increased healthcare access in early childhood for low-income children impact 

longer-term outcomes. Findings from this research reveal a large decline in dropout rates and a 

complementary increase in the four-year completion rates. For the latter, the 2.5 to 3.25 pp 
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increase in the high school graduation rate stemming from the increases in healthcare access, 

which explains the majority of the recent 6 pp increase in the U.S. graduation rates reported by 

Murnane (2013). Policy implications of these findings are also meaningful given the high 

correlation between education and outcomes deemed generally desirable to a society: as 

individuals become more educated they are less likely to become reliant upon governmental 

programs as adults, less likely to engage in criminal activities, and more likely to be attached to 

the labor market. Thus, it appears as though the Medicaid expansions to children throughout the 

1980s and early 1990s generated social benefits well beyond “saving babies” and “free 

healthcare” for qualifying low-income children during early childhood. 
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Figure 1

Trends in CPS Children Aged 0 to 5 Residing in Two Parent Families: By Group
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Figure 2

U.S. Trends in Medicaid Eligibility Expansions by Group
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Figure 3

U.S. Trends in 18 to 20 Year Old Dropout Rate by Group
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Figure 4

U.S. Trends in the Four-Year Graduation Rate by Group
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Graduation 

Cohort
Conception Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 … Age 18

1994 1975 1976 1977 1978 1979 1980 1981 … 1994

1995 1976 1977 1978 1979 1980 1981 1982 … 1995

1996 1977 1978 1979 1980 1981 1982 1983 … 1996

1997 1978 1979 1980 1981 1982 1983 1984 … 1997

1998 1979 1980 1981 1982 1983 1984 1985 … 1998

1999 1980 1981 1982 1983 1984 1985 1986 … 1999

2000 1981 1982 1983 1984 1985 1986 1987 … 2000

2001 1982 1983 1984 1985 1986 1987 1988 … 2001

2002 1983 1984 1985 1986 1987 1988 1989 … 2002

2003 1984 1985 1986 1987 1988 1989 1990 … 2003

2004 1985 1986 1987 1988 1989 1990 1991 … 2004

2005 1986 1987 1988 1989 1990 1991 1992 … 2005

2006 1987 1988 1989 1990 1991 1992 1993 … 2006

2007 1988 1989 1990 1991 1992 1993 1994 … 2007

2008 1989 1990 1991 1992 1993 1994 1995 … 2008

2009 1990 1991 1992 1993 1994 1995 1996 … 2009

2010 1991 1992 1993 1994 1995 1996 1997 … 2010

Note: Each highlighted year corresponds to the March CPS used in estimation.

Table 1

Linking the March CPS Samples with the Early Childhood Years for a Given Graduation Cohort
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Group Graduation Cohort Medicaid Eligibility

CPS Dropout Rate 

(18 to 20

year olds)

States with Sufficient 

Obs for Estimation

CCD Graduation 

Rates

States Reporting 

Graduates in CCD

All 1994 15.1% 14.4% 51 0

All 1995 14.7% 14.7% 51 0

All 1996 14.3% 14.0% 51 0

All 1997 15.3% 14.1% 51 75.4% 51

All 1998 16.7% 14.1% 51 75.1% 51

All 1999 18.1% 14.1% 51 75.3% 51

All 2000 19.4% 13.5% 51 76.1% 51

All 2001 20.9% 13.5% 51 75.5% 51

All 2002 22.8% 12.0% 51 76.8% 51

All 2003 24.7% 11.5% 51 78.2% 51

All 2004 27.5% 11.7% 51 79.0% 49

All 2005 31.3% 11.0% 51 79.0% 51

All 2006 33.9% 10.9% 51 77.6% 48

All 2007 37.2% 9.7% 51 78.0% 51

All 2008 39.6% 9.3% 51 78.8% 51

All 2009 41.5% 9.2% 51 79.5% 51

All 2010 42.2% 8.8% 51 82.3% 51

Black 1994 40.4% 20.9% 48 0

Black 1995 39.8% 19.2% 46 0

Black 1996 39.5% 19.4% 46 0

Black 1997 39.9% 19.7% 49 61.0% 43

Black 1998 40.5% 19.6% 48 61.6% 43

Black 1999 41.5% 18.8% 50 61.5% 46

Black 2000 41.8% 17.9% 50 63.0% 45

Black 2001 44.0% 17.6% 49 61.9% 46

Black 2002 46.8% 17.4% 50 63.3% 46

Black 2003 49.3% 14.9% 46 64.3% 49

Black 2004 53.5% 16.1% 46 66.3% 47

Black 2005 58.8% 15.0% 48 65.8% 49

Black 2006 62.4% 13.3% 49 64.7% 45

Black 2007 66.8% 13.5% 50 64.2% 48

Black 2008 68.3% 12.0% 50 66.5% 50

Black 2009 69.6% 13.0% 48 68.1% 51

Black 2010 70.0% 11.9% 49 71.3% 51

Hispanic 1994 20.7% 23.8% 46 0

Hispanic 1995 20.5% 22.6% 47 0

Hispanic 1996 21.3% 24.3% 48 0

Hispanic 1997 23.4% 23.0% 46 64.5% 43

Hispanic 1998 26.5% 24.7% 48 66.2% 43

Hispanic 1999 30.6% 24.7% 48 66.2% 46

Hispanic 2000 34.5% 22.7% 49 66.4% 45

Hispanic 2001 38.5% 21.6% 50 66.2% 46

Hispanic 2002 42.7% 18.6% 51 68.6% 46

Hispanic 2003 45.1% 17.9% 50 70.5% 49

Hispanic 2004 49.0% 18.6% 51 72.8% 47

Hispanic 2005 55.4% 17.6% 49 72.0% 49

Hispanic 2006 57.7% 17.5% 50 68.4% 45

Hispanic 2007 61.7% 15.4% 51 67.9% 48

Hispanic 2008 64.5% 13.9% 51 69.4% 50

Hispanic 2009 66.8% 12.9% 51 71.0% 51

Hispanic 2010 67.4% 11.5% 51 77.6% 51

White 1994 10.8% 11.9% 51 0

White 1995 10.4% 12.8% 51 0

White 1996 9.9% 11.5% 51 0

White 1997 10.6% 11.6% 51 79.8% 43

White 1998 12.0% 11.7% 51 79.7% 43

White 1999 13.1% 11.6% 51 79.9% 46

White 2000 14.2% 10.9% 51 81.0% 45

White 2001 15.1% 11.3% 51 81.9% 46

White 2002 16.3% 9.8% 51 80.6% 46

White 2003 17.8% 9.9% 51 81.0% 49

White 2004 20.0% 9.7% 51 81.5% 47

White 2005 23.0% 9.1% 51 83.0% 49

White 2006 25.3% 9.2% 51 82.5% 45

White 2007 28.0% 7.8% 51 82.6% 48

White 2008 30.2% 7.7% 51 83.1% 50

White 2009 31.8% 7.6% 51 83.8% 51

White 2010 32.1% 7.6% 51 85.0% 51

Note: Aggregated Medicaid Eligibility  and CPS Dropout Rates  are weighted by the number of the relevant 18 to 20 year olds residing in a particular state in a given 

year.  CCD Graduation Rates  are weighted by the relevant number of enrolled 8th graders for a given graduation cohort.  Please see text for more detail.

Table 2

Completion Rates and Medicaid Expansions

Aggregated Analysis

CPS CCD
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Model 1 Model 2 Model 3 Model 4

% of Early Childhood Years with Medicaid Eligibility -0.1727*** -0.1906*** -0.2422*** -0.2491***

[0.0441] [0.0411] [0.0498] [0.0694]

Black Students 0.1159*** 0.2798*** 0.2968*** 0.2950***

[0.0160] [0.0142] [0.0175] [0.0243]

Hispanic Students 0.1436*** 0.1662*** 0.1778*** 0.1806***

[0.0146] [0.0092] [0.0113] [0.0157]

Constant 0.1614*** 0.1695*** 0.2166*** 0.2131***

[0.0045] [0.0041] [0.0049] [0.0041]

Number of obs. 2526 2526 2526 2526

R-Squared 0.6308 0.6930 0.7180 0.7988

Adjusted R-Squared 0.6204 0.6710 0.6844 0.6735

State Fixed-Effects X X X X

Cohort Fixed-Effects X X X X

State-Race Fixed Effects X X X

State-Specific Time-Trends X

State-Cohort Fixed Effects X

Table 3

Estimated Impact of Medicaid Expansions in Early Childhood on High School Completion Rates

Outcome Variable = 18 to 20 Year Old Dropout Rate using CPS Data

Range Analyzed: 1994 to 2010

Notes: Early childhood years are defined by the seven years from conception through age 5.  Regressions are weighted by the number of relevant CPS individuals aged 

18 to 20 residing within a particular state for a given year and ethnic group.  Standard errors are clustered at the state-level and are in brackets with statistical significance 

indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Explanatory Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

% of Early Childhood Years with Medicaid Eligibility 0.1641 -0.0279 -0.1141 -0.2797** -0.1054 -0.1397

[0.1058] [0.2135] [0.1044] [0.1356] [0.0705] [0.1237]

Number of obs. 822 822 837 837 867 867

R-Squared 0.4826 0.5670 0.4896 0.5818 0.6919 0.7593

Adjusted R-Squared 0.4366 0.4564 0.4451 0.4774 0.6661 0.7018

State Fixed-Effects X X X X X X

Cohort Fixed-Effects X X X X X X

State-Specific Time-Trends X X X

Notes: Early childhood years are defined by the seven years from conception through age 5.  Regressions are weighted by the number of relevant CPS individuals aged 18 to 20 residing 

within a particular state for a given year and ethnic group.  Standard errors are clustered at the state-level and are in brackets with statistical significance indicated as follows: * p<0.1, ** 

p<0.05, *** p<0.01.

Table 4

Estimated Impact of Medicaid Expansions in Early Childhood on High School Completion Rates

Outcome Variable = 18 to 20 Year Old Dropout Rate using CPS Data

Response Heterogeneity - Models by Race/Ethnic Group

Black Hispanic White
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Medicaid Eligibility Definition Model 1 Model 2 Model 3 Model 4

-0.2083*** -0.2149*** -0.2579*** -0.2624***

[0.0401] [0.0386] [0.0498] [0.0811]

-0.1680*** -0.1717*** -0.2943*** -0.3514**

[0.0604] [0.0606] [0.0671] [0.1346]

-0.1930*** -0.2008*** -0.3370*** -0.3985***

[0.0684] [0.0692] [0.0746] [0.1428]

-0.2014*** -0.2140*** -0.3348*** -0.3786**

[0.0618] [0.0614] [0.0818] [0.1534]

Number of obs. 1704 1704 1704 1704

State Fixed-Effects X X X X

Cohort Fixed-Effects X X X X

State-Race Fixed Effects X X X

State-Specific Time-Trends X

State-Cohort Fixed Effects X

Notes: Early childhood years are defined by the seven years from conception through age 5.  Regressions are weighted by the number of relevant CPS individuals aged 

18 to 20 residing within a particular state for a given year and ethnic group.  Standard errors are clustered at the state-level and are in brackets with statistical significance 

indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.

Demographics at CPS Year = 1985

Table 5

Alternative Dropout Estimates - Fixed Cohort Demographics

Limited Core Modeling

Demographics at CPS Year = 1975

Demographics at CPS Year = 1980

Hispanics and White Students Only
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Medicaid Eligibility Definition Model 1 Model 2 Model 3 Model 4

-0.2083*** -0.2149*** -0.2579*** -0.2624***

[0.0401] [0.0386] [0.0498] [0.0811]

-0.1759*** -0.1820*** -0.1834*** -0.2320***

[0.0320] [0.0310] [0.0421] [0.0626]

-0.0972** -0.0974** -0.0982** -0.2208**

[0.0375] [0.0368] [0.0420] [0.0906]

-0.1560*** -0.1620*** -0.1760*** -0.2400***

[0.0318] [0.0305] [0.0380] [0.0657]

-0.2036*** -0.2113*** -0.2528*** -0.2551***

[0.0331] [0.0314] [0.0445] [0.0742]

-0.1364*** -0.1377*** -0.1711*** -0.2390***

[0.0461] [0.0453] [0.0490] [0.0881]

Number of obs. 1704 1704 1704 1704

State Fixed-Effects X X X X

Cohort Fixed-Effects X X X X

State-Race Fixed Effects X X X

State-Specific Time-Trends X

State-Cohort Fixed Effects X

Notes: Early childhood years are defined by the seven years from conception through age 5.  Regressions are weighted by the number of relevant CPS individuals aged 18 to 

20 residing within a particular state for a given year and ethnic group.  Standard errors are clustered at the state-level and are in brackets with statistical significance indicated 

as follows: * p<0.1, ** p<0.05, *** p<0.01.

Age 3 to Age 5

From Conception Through Age 2

Table 6

Alternative Dropout Estimates - Tests of the Potential Exposure to Medicaid Insurance

Lower Bound of Any Coverage: Minimum % in any single year

(from conception through age 5)

Upper Bound of Any Coverage: Maximum % in any single year

(from conception through age 5)

Limited Core Modeling

Conception Only

Hispanic and White Students Only
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Modeling with all Race/Ethnic Groups Model 1 Model 2 Model 3 Model 4

% of Early Childhood Years with Medicaid Eligibility 0.1061** 0.1294*** 0.1004** 0.1203

[0.0467] [0.0464] [0.0478] [0.0971]

Number of obs. 1875 1875 1875 1875

R-Squared 0.3052 0.3387 0.3525 0.4288

Adjusted R-Squared 0.2798 0.2744 0.2453 0.0668

Modeling with Hispanic and Whites Only Model 1a Model 2a Model 3a Model 4a

% of Early Childhood Years with Medicaid Eligibility 0.1218*** 0.1371*** 0.0865** 0.1111

[0.0413] [0.0439] [0.0404] [0.1129]

Number of obs. 1250 1250 1250 1250

R-Squared 0.2101 0.2294 0.2409 0.7572

Adjusted R-Squared 0.1667 0.1512 0.0831 0.4708

State Fixed-Effects X X X X

Cohort Fixed-Effects X X X X

State-Race Fixed Effects X X X

State-Specific Time-Trends X

State-Cohort Fixed Effects X

Table 7

Estimated Impact of Medicaid Expansions in Early Childhood on High School Completion Rates

Outcome Variable = Four-Year Graduation Rates using Diploma Counts from the Common Core of Data

Range Cohorts Analyzed: 1997 to 2010

Notes: Early childhood years are defined by the seven years from conception through age 5.  Regressions are weighted by the number of enrolled 8th graders for a given 

graduation cohort residing within a particular state for a given year and ethnic group.  Standard errors are clustered at the state-level and are in brackets with statistical 

significance indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.
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Year Development

1965
The Medicaid and Medicare programs are signed into law in June and established as a volunteer federal-state partnership 

in which participating states receive grants to cover mandatory populations (e.g. AFDC recipients) and services.

1967
Social Security Amendments mandate Early and Periodic Screening, Diagnostic, and Treatment (EPSDT) services for all 

children up to age 21.

1972 Excluding Arizona, all states have established Medicaid programs.

1981

Despite the Reagan Administration's failure to convert Medicaid to a block grant, the Omnibus Reconciliation Act of 

1981 (OBRA81) decreases federal matching payments.  This affects fiscal years 1982 to 1984 and leads to coverage 

decreases in some states for single mothers pregnant for the first time.

1982 Arizona becomes the last state to establish a Medicaid program.

1984

The Deficit Reduction Act of 1984 (DEFRA84) affects coverage to children under two mechanisms.  First, coverage for 

children born after September 20, 1983 is mandated for qualifying AFDC families, up through age 5.  Secondly, 

Medicaid coverage for first-time pregnant women eligible for AFDC and pregnant women in two-parent unemployed 

families becomes mandatory.  These policies take effect in 1985 and essentially eliminate the family structure restriction 

on Medicaid receipt for all pregnant women.

1985

Under the Consolidated Omnibus Budget Reconciliation Act of 1985 (COBRA85), coverage for all remaining AFDC 

eligible pregnant women is now mandatory.  Moreover, this act extended DEFRA84 coverage for children up through age 

5, effective immediately.

1986

Under the Omnibus Reconciliation Act of 1986 (OBRA86), the federal government allows states to cover pregnant 

women and infants (up to age 1) up to 100 percent of the federal poverty line (FPL).  As another Medicaid option, 

insurance coverage for children up to age 5 is expanded to 100% of the FPL which can be phased in over time.

1987
The Omnibus Reconciliation Act of 1987 allowed states to again expand medical coverage to pregnant women and 

infants (up to age 1) for families with incomes up to 185 percent of the federal poverty line.

1988
The Medicare Catastrophic Coverage Act of 1988 (MCCA88) mandates that states begin phasing in coverage for 

pregnant women and infants from families with income levels equal to or below 100% of the federal poverty line.

1989

The Omnibus Reconciliation Act of 1989 (OBRA89) further mandated coverage for pregnant women and children under 

the age of 6 in families with income at or below 133 percent of the federal poverty line, regardless of whether they also 

were receiving AFDC benefits .  Moreover, it required coverage up to age 6 for children in families below 133% of the 

FPL.  This act effectively decoupled Medicaid for children from AFDC.

Additionally - and importantly - the federal government mandated that states must treat any issues identified during 

EPSDT screening, even if these procedure were not traditionally covered under the state's Medicaid program.

Primary Sources:

Kaiser Family Foundation: http://kff.org/medicaid/timeline/medicaid-a-timeline-of-key-developments/

U.S. General Accounting Office (GAO) Reports: http://gao.gov/products/HRD-91-78

Appendix A

Summary of Key Benchmarks in Medicaid Expansions to Low-Income Children
affecting the Graduation Cohorts from the Class of 1997 to the Class of 2010
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Medicaid Eligibility Simulation

Issue: In the early period, AFDC receipt is the general basis for Medicaid receipt

Category Sub-Category Details Source(s)

General issues

The CPS contained detailed information intra-family 

relationships.  Thus, it is typically possible to link the 

child to their parent(s), which can then be used in 

establishing the size of the family unit applicable for 

AFDC eligibility.  To mitigate the issue of the 

endogeneity of family size due to social welfare 

policies, families with either 1, 2, or 3 children are used 

in simulations.

March Current 

Population Survey 

(various years)

Unborn children

Before DEFRA 1984 - and effective in 1985 - a limited 

number of states counted the unborn child as part of the 

family unit in the determination of AFDC eligibility.  

Thus, the family size would be smaller by one for 

pregnant women in states not counting unborn children.  

This applies to the conception year only.

Analysis of State 

Medicaid Program 

Characteristics (various 

years)

Definition of a 

family unit

     Before the decoupling of child Medicaid and AFDC, the primary basis for Medicaid qualification was AFDC 

receipt.  Given this, Medicaid eligibility determination in the early period is straightforward: only children in single-

parent households qualified for care if their family income – less certain disregards – fell below the state’s payment 

standards.  As noted, these mandated thresholds varied greatly across states.  During this early period, some states 

did make allowances for children in two parent households with an unemployed parent (AFDC-UP), as well as for 

“Ribicoff children” which, in this case, were typically teens who would have qualified for AFDC under their own 

income thresholds but did not qualify in the traditional manner due to family structure issues (e.g. they still lived 

with their parents).  Archived documents outlined reveal states participating in these programs.

     Another wrinkle in estimation during this early period was whether an unborn child counted in AFDC 

determination.  Before DEFRA 1984, which mandated coverage of the unborn, states differed greatly in their 

positions especially when considering a single mother pregnant for the first time.  When the unborn child did not 

count, these mothers typically failed to receive coverage during their pregnancy because single individuals without 

dependents rarely qualified for benefits.  Preceding the federal mandate, a number of states incorporated programs to 

support single mothers pregnant for the first time at the point of verification by medical professionals.  Again, there 

was wide variation in the implementation of these programs.  All of these changes were documented and 

incorporated into the simulation procedure.

     Finally, the last step in the collection of legislative procedures was to acquire all of the effective dates and poverty 

thresholds for the state Medicaid expansions to pregnant women, infants, and children in the late 1980s and early 

1990s which effectively decoupled child Medicaid from AFDC.  Documents outlining these transitions are 

obtainable through the variety of resources (see list in the data section).  These documents, in turn, can then be used 

to compile a database of Medicaid eligibility requirements by state and year for young children in all states from 

1975 to 1997.

     Tables below disclose how specific rules governing qualification for either AFDC or Medicaid were handled in 

the simulation:

Appendix B - Technical Details
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Before OBRA 1981: although there were no 

standardized allowances before 1981, Currie and Gruber 

assume that the levels were the same as those mandated 

under OBRA 1981.

OBRA 1981: starting in October 1981, the standardized 

allowances per month for work expenses was $75, while 

states allowed up to $160 per month per child for child 

care.

Family Support Act of 1988: effective October 1989, 

allowances were increased to $90 per month for work 

expenses and $175 dollars per child per month for child 

care. 

30 and One-Third: at its inception, this work incentive 

feature allowed families to keep the first $30 of earned 

income, 1/3 of the remainder, while the remaining 2/3 

lead directly to a reduction in AFDC benefits.  See 

Currie and Gruber for details regarding the evolution of 

this program.

Binding 

Constraint for 

Qualification

Since the vast majority of the state's payment standards 

were well below the needs standards, the binding 

constraint for AFDC qualification was that a family 

unit's gross earnings - minus earnings allowances 

outlined in Currie and Gruber (1994) - were less than or 

equal to the state's payment standard. 

Historical payment 

standards were available 

through state-level data 

provided by the 

University of Kentucky 

Center for Poverty 

Research.

Issue: As Medicaid becomes delinked from AFDC, other groups become eligible for coverage

Category Sub-Category Details Source(s)

DEFRA 1984

Medicaid coverage is mandated for children in AFDC 

qualifying families born after September 20, 1983 

through age 5

Kaiser Family 

Foundation

COBRA 1985

All pregnant women who meet income requirements 

were now eligible for Medicaid, regardless of family 

structure or the presence of other children. DEFRA 

coverage for children is expanded for all children at or 

below the age of 5 residing in AFDC families.

Currie and Gruber 

(1994)

Kaiser Family 

Foundation

OBRA 1986

States were given the option to expand the income 

thresholds for Medicaid eligibility regardless of family 

structure type.  As an option, states are allowed to 

expand coverage to children up to age 5 residing in 

families at or below 100% of the federal poverty line.

OBRA 1987

States were allowed to increase the income thresholds 

up to 185% of the poverty line for pregnant women and 

infants.

Income 

requirements

Earnings 

Allowances

General 

expansions for 

all women, 

infants, and 

children.

Currie and Gruber 

(1994)

Hill (1992); 

The National Governors 

Association MCH 

Updates (various years);

Kaiser Family 

Foundation
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OBRA 1988

States were mandated to cover pregnant women, infants, 

and children up to 133% of the poverty line by April 

1990, again regardless of family structure type.  Some 

states choose thresholds above this mandated minimum.

Single mothers 

pregnant for the 

first time

Unborn children 

and benefits 

qualification

DEFRA 1984 mandated coverage for all pregnant 

women qualifying for AFDC under the typical 

mechanisms, regardless of whether she already had 

children.  This policy became effective in 1985.

Currie and Gruber 

(1994)

Programs for 

married women 

below income 

requirements

DEFRA 1984

Coverage of all pregnant women in AFDC-UP type 

families now required.  Before this mandate, states 

different in their timing and coverage of AFDC-UP type 

families.

Analysis of State 

Medicaid Program 

Characteristics (various 

years)

Minors Ribicoff children

Since the goal was to estimate the number of child-years 

potentially covered by Medicaid, pregnant teens were 

considered as their own family unit and, consequently, 

the child qualified based upon the teenage mother's 

income (and not the larger family unit that they may 

have resided in).  This simplifying assumption was 

made because historical details regarding state-level 

Ribicoff programs is limited.

Other 

categories

Medically needy 

program

Lacking information on Medical expenditures at the 

household level, it is difficult to identify medically 

needy families.  Consequently, they were not 

incorporated into the simulations.

18-20 Year Old Dropout Rate using Current Population Survey Data

where:

Currie and Gruber 

(1994)

General 

expansions for 

all women, 

infants, and 

children.
Hill (1992); 

The National Governors 

Association MCH 

Updates (various years);

Kaiser Family 

Foundation

Sharing the same underlying data - the CPS - simulated Medicaid eligibility and the 18 to 20 year old dropout rates 

are estimated in a similar manner.  Given the necessity of the smoothing technique already discussed, as well 

limiting the CPS respondents to only those individuals born in the United States, the 18-20 year old Dropout Rate in 

a single CPS month is calculated as:

i represents a CPS observation for a relevant 18 to 20 year old;

No Degree, Not Enrolled identifies respondents who did not complete high school and are no 

longer enrolled in school - this defines a dropout; and

CPS Weight are the person weights reported by the individual CPS survey.
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Four-Year Graduation Rates using the Common Core of Data

As noted in the primary text, dropout rates are estimated using monthly data from the Current Population Survey.  

Thus, instead of only a single month, 12 distinct CPS samples actually feed into a single cohort calculation.  Since 

the traditional secondary school year usual ends around June, rates for a graduation cohort are estimated using the 

July CPS of a particular year through the June CPS of the next.  For example, the sample used to calculate dropout 

rates for the class of 2000 are taken from the July 2000 CPS through the June 2001 CPS.  These twelve individuals 

samples, along with the estimation using 18 to 20 year olds, ensures that a sufficient sample size produces the most 

reliable statistics.

     To avoid the problems associated with grade retention, Warren (2005) proposed that the number of enrolled 

Grade 8 students be used as a proxy for the number of incoming Grade 9 students for a particular graduation 

cohort,
[2]

 an approach was later employed by Heckman and LaFontaine (2010).  I follow this approach in my 

analysis.  This implies that the cohort is defined by the year in which they graduate and not some other measure, 

such as the year they enter 9
th

 grade .
[3]

  With the lag structure required to estimate the graduation rate under this 

process, the first cohort for which a graduation rate can be estimated using the CCD data is the class of 1997.  

Conveniently, this covers a minimal pre-period before the rules governing child Medicaid coverage were 

significantly expanded in all states, which means that I can establish a baseline of graduation rates before estimating 

the impacts of the marked increases in Medicaid eligibility during early childhood.  Moreover, trends and estimates 

are consistent with those presented by Heckman and LaFontaine (2010).

     Although it is one of the best measure currently available to researchers, this choice of four-year graduation rate 

using CCD data is not an uncontroversial because of two possible sources of measurement error.  Before proceeding 

to the issues associated with the four-year graduation rate measure, it is useful to first discuss how a perfect measure 

would be constructed and then reveal how the four-year graduation rate potentially falls short.  In an ideal thought 

experiment, all students would (1) enter 9th grade at the same age and (2) never repeat grades but simply drop out in 

a readily identifiable manner.  Under this scenario and with accurate administrative data, once could construct a 

graduation rate measure for state (s) at time (t) as:

     Unfortunately, the two conditions listed above are not met in practice.  Estimation of high school graduation rates 

can be surprisingly challenging, due largely in part to some students taking longer than the standard of 4 years to 

finish their diploma – an issue of degree duration – and because other students remain in administrative systems 

longer than 4 years but never finish their degrees – a matter of grade retention.  To simplify these issues, I follow 

Heckman and LaFontaine (2010) in their calculation of the four-year graduation rate.

     While issues associated with degree duration are discussed in detail in the primary text, the second form of 

measurement error, grade retention , invokes less controversial assumptions.  Importantly, it also relates to how a 

graduation cohort is determined in this analysis.  Returning to the ideal equation above, calculation of a graduation 

rate takes some measure of completion as the numerator and some baseline measure of potential graduates as the 

denominator.  While the exclusion of GED holders from the high school graduation calculation is simple – 

essentially one just subtracts these individuals from the numerator – the definition of the denominator is more 

challenging, given the problem of grade retention and the definition of a cohort.  Since students who are held back in 

high school are much more likely to drop out, it is important to properly control for these individuals across cohorts 

so that they are not counted multiple times.
[1]
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Section Endnotes:

[3] Thus, for example, students graduating in 2010 are referred to as the class of 2010 even though some 

individuals may have originally had other anticipated graduation years (e.g. the class of 2009 for those repeating 

one year).

[1] As outlined by Warren (2005), a flawed estimation methodology using CCD data is to simply take the number 

of graduating seniors at time t and to divide by the number of freshman reported at time t-3.  The problem with this 

approach is that students can stay registered in Grade 9 when they remain in the system, attend school sparingly, 

and do not progress past Grade 9; this is true especially with the end of social promotion policies.  Thus, including 

these individuals in the Grade 9 calculation could lead to the double-counting of select individuals and a dilution 

of the graduation rate.

[2] Under this assumption, graduation rates are calculated as the number of high school graduates at time t divided 

by the number of 8th graders enrolled at time t-4, an estimation strategy which can reduce the bias from repeating 

students.  
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State 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Alabama 10.7% 10.4% 10.2% 10.9% 11.6% 12.3% 12.7% 13.3% 14.1% 17.5% 20.7% 24.8% 30.4% 34.2% 37.5% 38.6% 38.7%

Alaska 12.7% 12.7% 12.9% 16.0% 20.0% 23.9% 27.2% 31.2% 34.8% 36.1% 37.3% 40.9% 41.6% 43.0% 44.0% 45.3% 45.3%

Arizona 0.0% 0.0% 1.6% 4.4% 7.3% 10.5% 13.4% 16.5% 20.3% 22.8% 27.1% 30.9% 33.4% 36.3% 37.7% 39.1% 39.4%

Arkansas 10.6% 10.4% 10.2% 11.0% 11.9% 12.9% 13.6% 14.9% 17.8% 20.7% 26.7% 30.7% 33.8% 36.3% 37.5% 38.6% 38.7%

California 19.3% 19.1% 18.7% 20.2% 22.5% 24.8% 26.9% 29.0% 31.4% 32.4% 33.0% 35.8% 36.4% 39.0% 41.3% 43.4% 43.3%

Colorado 17.2% 16.7% 16.2% 17.0% 18.3% 19.4% 20.2% 21.3% 22.5% 24.5% 26.6% 29.8% 31.9% 34.5% 36.6% 38.6% 38.7%

Connecticut 18.7% 18.4% 18.0% 19.4% 21.6% 23.8% 25.6% 28.2% 30.4% 31.4% 32.2% 34.7% 37.6% 40.5% 44.8% 46.3% 47.8%

Delaware 16.8% 16.3% 15.5% 16.0% 16.8% 17.8% 18.5% 19.4% 20.6% 23.0% 27.7% 31.0% 33.4% 36.3% 38.3% 40.3% 41.8%

District of Columbia 17.4% 16.8% 16.1% 16.6% 17.8% 18.7% 19.7% 21.0% 22.5% 22.9% 28.1% 31.4% 33.5% 35.3% 38.1% 40.8% 43.3%

Florida 11.4% 11.2% 11.1% 12.3% 13.6% 14.9% 16.0% 17.3% 20.2% 22.7% 27.1% 30.5% 33.2% 36.8% 38.5% 40.1% 41.2%

Georgia 10.4% 10.4% 10.4% 11.4% 12.7% 13.9% 14.9% 16.4% 17.8% 20.4% 25.1% 29.0% 31.8% 34.9% 37.5% 38.6% 39.2%

Hawaii 20.2% 19.7% 18.9% 19.9% 21.4% 22.8% 23.9% 25.4% 27.4% 29.2% 31.1% 34.7% 37.0% 41.4% 45.1% 48.0% 52.3%

Idaho 12.7% 12.4% 12.3% 13.6% 15.0% 16.3% 17.4% 18.8% 20.1% 22.3% 25.1% 28.4% 31.2% 34.1% 36.6% 38.6% 38.7%

Illinois 16.9% 16.4% 15.8% 16.2% 17.2% 18.2% 19.0% 20.0% 21.1% 23.2% 26.0% 29.3% 32.6% 35.3% 37.5% 38.6% 38.7%

Indiana 11.4% 11.3% 11.2% 12.4% 13.8% 15.1% 16.1% 17.6% 18.9% 21.3% 24.3% 28.1% 30.6% 33.6% 36.1% 39.2% 39.7%

Iowa 17.8% 17.4% 16.7% 17.3% 18.5% 19.6% 20.4% 21.6% 22.8% 24.7% 27.1% 31.1% 34.5% 38.6% 42.2% 43.4% 43.3%

Kansas 18.5% 17.9% 17.1% 17.7% 18.9% 20.0% 21.0% 22.0% 23.6% 25.6% 27.5% 31.3% 33.2% 36.1% 38.5% 40.1% 40.2%

Kentucky 14.2% 13.3% 12.3% 12.5% 13.1% 13.8% 14.6% 15.8% 17.0% 19.6% 24.4% 30.0% 33.7% 37.0% 39.9% 41.8% 43.3%

Louisiana 11.1% 10.9% 10.8% 11.8% 13.0% 13.9% 14.8% 15.9% 18.7% 21.4% 24.6% 28.2% 31.2% 34.6% 37.5% 38.6% 38.7%

Maine 12.5% 12.9% 13.5% 15.2% 17.4% 19.5% 20.8% 22.4% 24.5% 26.4% 28.2% 31.9% 36.2% 40.0% 43.3% 43.4% 43.3%

Maryland 16.7% 16.3% 15.7% 16.4% 17.5% 18.5% 19.5% 20.7% 22.1% 24.3% 26.5% 31.5% 33.6% 39.3% 43.6% 47.7% 49.2%

Massachusetts 18.6% 18.2% 17.5% 18.2% 19.5% 20.9% 22.4% 24.0% 26.0% 27.8% 29.7% 32.8% 37.1% 40.5% 43.3% 43.4% 43.3%

Michigan 19.3% 18.8% 18.2% 19.1% 20.6% 22.3% 23.5% 25.2% 27.0% 28.5% 30.2% 35.7% 39.6% 43.0% 43.8% 44.3% 44.8%

Minnesota 19.2% 18.8% 18.2% 19.5% 21.6% 23.6% 25.1% 26.8% 28.6% 29.9% 30.7% 33.6% 41.1% 48.0% 54.7% 58.5% 60.8%

Mississippi 9.9% 9.7% 9.7% 10.2% 10.8% 11.4% 12.0% 12.9% 13.8% 16.9% 22.8% 29.0% 35.1% 40.5% 43.3% 43.4% 43.3%

Missouri 15.2% 15.0% 14.6% 15.1% 16.0% 16.8% 17.4% 18.4% 19.3% 21.7% 26.9% 30.7% 33.3% 36.3% 37.5% 38.6% 38.7%

Montana 15.9% 15.0% 14.1% 14.9% 16.2% 17.3% 18.8% 20.6% 22.3% 24.2% 26.7% 29.9% 31.9% 34.5% 36.6% 38.6% 38.7%

Nebraska 17.7% 17.4% 16.8% 17.6% 18.7% 19.7% 20.5% 21.5% 22.6% 24.6% 27.5% 30.7% 32.8% 35.4% 37.5% 38.6% 38.7%

Nevada 12.1% 11.9% 11.8% 12.8% 14.0% 15.4% 16.5% 18.1% 19.7% 22.2% 25.3% 28.7% 31.2% 34.1% 36.4% 38.6% 38.7%

New Hampshire 12.2% 12.0% 11.9% 13.4% 15.4% 17.2% 18.7% 21.0% 23.2% 25.2% 27.6% 31.2% 33.2% 36.6% 39.3% 42.2% 44.3%

New Jersey 17.7% 17.2% 16.5% 17.1% 18.5% 19.8% 20.7% 22.1% 23.4% 23.6% 26.0% 30.3% 32.9% 35.3% 36.5% 39.2% 41.7%

New Mexico 11.6% 11.5% 11.4% 12.7% 14.1% 15.3% 16.4% 17.7% 19.1% 21.5% 27.2% 30.6% 33.2% 36.3% 37.5% 41.6% 44.7%

New York 19.4% 18.9% 18.3% 19.5% 21.2% 23.0% 24.4% 26.1% 27.9% 28.3% 29.5% 32.5% 33.6% 37.9% 40.6% 43.4% 43.3%

North Carolina 11.0% 10.8% 10.7% 11.6% 12.8% 13.9% 14.9% 16.3% 17.6% 20.3% 26.8% 30.3% 33.1% 36.8% 39.6% 42.3% 43.3%

North Dakota 12.6% 12.4% 12.4% 14.0% 16.1% 17.9% 19.4% 21.1% 23.0% 24.8% 27.2% 30.3% 32.3% 34.7% 36.8% 38.6% 38.7%

Ohio 16.8% 16.3% 15.7% 16.2% 17.1% 18.0% 18.7% 19.7% 20.9% 23.2% 25.6% 28.9% 32.3% 35.2% 37.5% 38.6% 38.7%

Oklahoma 11.6% 11.5% 11.4% 12.7% 14.3% 15.9% 17.1% 18.7% 20.2% 22.5% 26.4% 31.2% 33.5% 36.3% 37.5% 38.6% 39.2%

Oregon 17.7% 16.6% 15.2% 15.9% 17.2% 18.3% 19.9% 21.8% 23.8% 25.6% 28.7% 31.8% 33.5% 35.8% 37.5% 38.6% 38.7%

Pennsylvania 18.3% 17.7% 16.9% 17.6% 18.8% 20.0% 21.0% 21.9% 23.2% 25.1% 28.4% 32.0% 33.9% 36.3% 37.5% 38.6% 40.1%

Rhode Island 18.7% 18.2% 17.7% 18.8% 20.7% 22.5% 24.0% 25.4% 27.5% 28.9% 30.4% 33.3% 37.2% 40.5% 46.6% 49.8% 52.9%

South Carolina 10.8% 10.5% 10.5% 11.3% 12.4% 13.4% 14.3% 15.2% 18.1% 21.0% 24.7% 29.9% 32.9% 37.8% 40.7% 43.4% 43.3%

South Dakota 12.8% 12.5% 12.4% 13.8% 15.4% 16.8% 18.1% 19.3% 20.9% 23.0% 25.7% 29.4% 32.7% 35.3% 37.5% 38.6% 38.7%

Tennessee 10.8% 10.5% 10.4% 11.0% 11.8% 12.7% 13.4% 14.4% 17.3% 20.4% 25.7% 29.4% 32.6% 36.8% 38.5% 41.2% 42.2%

Texas 10.1% 9.8% 9.7% 10.5% 11.6% 12.6% 13.5% 14.7% 15.8% 18.8% 22.2% 28.1% 31.1% 34.6% 37.5% 40.2% 41.7%

Utah 16.8% 15.8% 14.7% 15.4% 16.6% 17.7% 19.2% 20.9% 22.6% 24.5% 27.0% 30.1% 33.0% 35.5% 37.5% 38.6% 38.7%

Vermont 19.6% 19.3% 18.8% 20.1% 22.2% 24.3% 25.9% 27.2% 29.0% 30.2% 31.3% 34.0% 39.9% 45.5% 51.0% 53.5% 54.6%

Virginia 11.8% 11.7% 11.6% 12.9% 14.7% 16.3% 17.7% 19.5% 21.1% 23.2% 25.9% 29.6% 32.7% 35.3% 37.5% 38.6% 38.7%

Washington 17.8% 16.8% 15.6% 16.7% 18.5% 20.3% 22.2% 24.5% 26.7% 27.9% 29.7% 32.6% 33.8% 37.2% 42.3% 47.1% 49.0%

West Virginia 16.2% 15.6% 14.8% 15.1% 15.6% 16.3% 17.0% 17.5% 19.9% 22.5% 26.6% 30.6% 34.7% 38.3% 40.0% 40.1% 40.2%

Wisconsin 19.5% 19.0% 18.5% 19.9% 22.0% 24.1% 25.7% 27.3% 29.0% 30.0% 31.6% 35.0% 37.2% 39.4% 41.3% 43.2% 44.8%

Wyoming 12.6% 12.4% 12.4% 13.8% 15.4% 16.9% 18.2% 19.7% 21.2% 23.3% 26.1% 29.3% 32.6% 35.3% 37.5% 38.6% 38.7%

Appendix - Table C1

Estimated Percent of Early Childhood Years with Medicaid Eligibility

By Graduation Cohort - From Conception through Age 5

All Students
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State 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Alabama 36.1% 35.2% 34.9% 35.1% 34.9% 35.1% 35.0% 35.7% 37.0% 41.8% 45.4% 51.5% 58.6% 63.8% 67.1% 67.9% 67.9%

Alaska 40.6% 40.8% 41.2% 43.5% 47.1% 50.8% 53.4% 58.4% 62.5% 64.2% 65.4% 69.0% 70.1% 72.2% 72.5% 73.2% 73.3%

Arizona 0.0% 0.0% 5.2% 11.3% 17.9% 24.6% 30.8% 38.4% 45.5% 48.7% 53.7% 59.3% 62.7% 66.6% 67.1% 68.1% 68.3%

Arkansas 35.8% 35.4% 35.0% 35.1% 35.5% 36.2% 36.3% 38.3% 41.9% 45.5% 53.3% 59.1% 63.3% 66.6% 67.1% 67.9% 67.9%

California 47.8% 47.4% 47.2% 48.0% 49.8% 51.7% 53.2% 55.9% 58.9% 60.2% 61.7% 64.9% 66.1% 68.9% 69.9% 71.0% 70.9%

Colorado 44.7% 43.7% 43.4% 43.8% 44.3% 45.0% 45.2% 47.0% 48.8% 51.0% 54.1% 58.1% 61.1% 64.6% 66.1% 67.9% 67.9%

Connecticut 46.1% 45.8% 45.5% 46.0% 47.9% 50.1% 51.3% 55.1% 57.8% 59.0% 60.8% 63.9% 67.1% 70.2% 72.9% 73.3% 74.6%

Delaware 44.1% 42.9% 42.2% 42.2% 42.5% 42.9% 43.0% 44.9% 46.8% 49.4% 55.1% 59.3% 62.7% 66.6% 67.6% 69.0% 70.0%

District of Columbia 45.1% 44.0% 43.3% 43.3% 43.6% 44.2% 44.7% 46.9% 49.1% 49.6% 56.1% 60.1% 63.2% 65.7% 67.2% 69.1% 70.9%

Florida 38.0% 37.5% 37.4% 38.0% 38.7% 39.4% 39.9% 42.1% 45.8% 49.0% 54.3% 58.7% 62.5% 67.1% 67.9% 69.2% 69.7%

Georgia 35.4% 35.4% 35.4% 35.8% 36.9% 37.8% 38.4% 40.7% 42.7% 46.0% 51.3% 57.0% 60.9% 65.1% 67.1% 67.9% 68.3%

Hawaii 48.9% 48.1% 47.5% 47.9% 48.7% 49.8% 50.1% 52.4% 54.8% 56.8% 59.4% 63.4% 66.3% 70.7% 72.8% 74.8% 77.7%

Idaho 41.0% 40.4% 40.1% 40.8% 41.5% 42.0% 42.3% 44.4% 46.4% 49.1% 52.6% 56.7% 60.5% 64.3% 66.1% 67.9% 67.9%

Illinois 43.5% 42.9% 42.0% 41.8% 42.4% 43.3% 43.3% 45.2% 46.7% 49.1% 53.5% 57.6% 61.8% 65.4% 67.1% 67.9% 67.9%

Indiana 37.7% 37.6% 37.3% 37.7% 38.7% 39.5% 39.8% 42.2% 44.0% 46.9% 50.6% 56.1% 59.7% 63.8% 65.6% 68.3% 68.7%

Iowa 44.9% 44.4% 43.6% 43.5% 44.2% 44.9% 45.3% 47.4% 48.8% 50.9% 55.0% 59.8% 64.2% 68.4% 70.6% 71.0% 70.9%

Kansas 46.9% 45.8% 45.1% 45.1% 45.5% 45.9% 46.5% 48.2% 50.5% 52.7% 55.6% 60.1% 62.8% 66.4% 67.9% 69.2% 69.1%

Kentucky 40.1% 39.0% 38.0% 37.3% 37.6% 37.9% 38.0% 39.8% 41.6% 44.9% 50.6% 58.0% 63.0% 67.5% 68.9% 69.9% 70.9%

Louisiana 37.2% 36.6% 36.6% 37.1% 37.6% 38.1% 38.3% 40.0% 43.6% 47.0% 51.0% 55.6% 59.8% 64.4% 67.1% 67.9% 67.9%

Maine 38.7% 39.0% 39.5% 40.7% 42.6% 44.7% 45.6% 48.2% 50.7% 52.7% 55.5% 60.7% 65.6% 69.7% 71.6% 71.0% 70.9%

Maryland 44.0% 43.0% 42.6% 42.8% 43.3% 43.9% 44.3% 46.4% 48.5% 51.0% 54.0% 59.9% 63.0% 68.8% 71.5% 74.4% 75.7%

Massachusetts 46.9% 46.1% 45.5% 45.7% 46.3% 47.3% 48.2% 50.7% 53.1% 55.2% 57.9% 61.6% 66.5% 70.2% 71.6% 71.0% 70.9%

Michigan 47.8% 47.0% 46.5% 46.9% 47.5% 49.0% 49.6% 52.1% 54.4% 56.0% 58.5% 64.3% 68.5% 72.2% 72.2% 72.1% 72.4%

Minnesota 47.8% 47.1% 46.5% 47.3% 48.9% 50.5% 51.4% 53.9% 56.1% 57.6% 59.2% 62.6% 69.0% 75.0% 79.0% 81.1% 83.0%

Mississippi 33.6% 33.5% 33.2% 33.0% 32.9% 33.0% 33.2% 34.8% 36.3% 40.5% 48.1% 56.8% 64.0% 70.2% 71.6% 71.0% 70.9%

Missouri 40.9% 40.7% 40.4% 40.2% 40.8% 41.2% 41.3% 43.2% 44.6% 47.4% 53.5% 59.0% 62.7% 66.6% 67.1% 67.9% 67.9%

Montana 43.3% 42.2% 41.3% 41.8% 42.4% 43.1% 44.1% 46.7% 48.9% 51.2% 54.2% 58.3% 61.2% 64.7% 66.1% 67.9% 67.9%

Nebraska 45.6% 44.9% 44.3% 44.6% 44.8% 45.4% 45.6% 47.3% 49.0% 51.2% 55.0% 59.0% 62.0% 65.5% 67.1% 67.9% 67.9%

Nevada 39.6% 39.0% 38.8% 39.1% 39.6% 40.4% 40.9% 43.2% 45.5% 48.7% 52.5% 56.9% 60.5% 64.3% 66.0% 67.9% 67.9%

New Hampshire 39.5% 39.4% 39.1% 39.8% 41.3% 42.8% 43.8% 47.0% 49.4% 51.9% 54.9% 60.1% 62.9% 66.8% 68.5% 70.7% 72.5%

New Jersey 44.6% 44.1% 43.2% 43.2% 44.2% 45.1% 45.7% 47.9% 49.5% 49.8% 53.1% 59.0% 62.6% 65.7% 66.2% 68.2% 70.0%

New Mexico 38.7% 38.1% 38.1% 38.8% 39.5% 40.2% 40.7% 42.8% 44.7% 47.7% 54.4% 58.7% 62.5% 66.6% 67.1% 70.0% 72.4%

New York 48.0% 47.2% 46.7% 47.2% 48.2% 49.6% 50.5% 52.8% 55.2% 55.9% 58.1% 61.6% 63.3% 67.7% 69.1% 71.0% 70.9%

North Carolina 36.8% 36.6% 36.2% 36.4% 37.2% 38.1% 38.5% 40.7% 42.6% 45.9% 54.0% 58.5% 62.4% 67.1% 68.5% 70.4% 70.9%

North Dakota 40.9% 40.4% 40.4% 41.6% 42.8% 44.1% 45.0% 47.6% 49.8% 52.1% 55.1% 59.0% 61.9% 65.0% 66.3% 67.9% 67.9%

Ohio 44.2% 43.0% 42.5% 42.5% 42.8% 43.2% 43.3% 45.2% 47.1% 49.6% 53.1% 57.2% 61.6% 65.4% 67.1% 67.9% 67.9%

Oklahoma 38.2% 38.0% 37.9% 38.5% 39.7% 41.0% 41.5% 43.9% 45.9% 48.5% 53.2% 59.5% 62.8% 66.6% 67.1% 67.9% 68.3%

Oregon 46.2% 44.7% 43.5% 43.7% 44.3% 44.9% 45.7% 48.3% 50.7% 53.0% 56.7% 60.5% 63.1% 66.2% 67.1% 67.9% 67.9%

Pennsylvania 46.4% 45.4% 44.7% 44.9% 45.3% 45.9% 46.4% 47.6% 49.3% 51.4% 55.4% 60.7% 63.4% 66.6% 67.1% 67.9% 68.9%

Rhode Island 46.9% 46.1% 45.7% 46.3% 47.6% 49.2% 50.1% 52.4% 55.0% 56.6% 58.8% 62.3% 66.6% 70.2% 73.9% 75.7% 78.3%

South Carolina 36.5% 35.7% 35.6% 36.1% 36.8% 37.1% 37.5% 38.9% 42.5% 46.1% 51.2% 57.9% 62.0% 67.7% 69.1% 71.0% 70.9%

South Dakota 41.1% 40.6% 40.4% 41.2% 42.0% 42.7% 43.4% 44.8% 46.7% 49.3% 52.5% 57.9% 62.1% 65.6% 67.1% 67.9% 67.9%

Tennessee 36.3% 35.5% 35.3% 35.4% 35.4% 35.8% 35.9% 37.7% 41.6% 45.4% 52.2% 57.1% 61.6% 67.1% 67.9% 69.9% 70.4%

Texas 34.3% 33.9% 33.5% 33.7% 34.5% 35.5% 36.0% 37.9% 39.8% 43.6% 47.9% 55.5% 59.7% 64.4% 67.1% 69.0% 70.0%

Utah 45.0% 43.7% 42.7% 43.0% 43.4% 44.0% 44.8% 47.3% 49.3% 51.7% 54.8% 58.7% 62.5% 65.7% 67.1% 67.9% 67.9%

Vermont 48.3% 47.7% 47.4% 48.1% 49.7% 51.5% 52.4% 53.9% 55.8% 57.1% 59.9% 63.1% 68.3% 73.5% 77.1% 78.4% 79.6%

Virginia 38.6% 38.5% 38.2% 38.9% 40.2% 41.7% 42.4% 45.0% 46.9% 49.3% 52.6% 58.0% 62.0% 65.5% 67.1% 67.9% 67.9%

Washington 46.6% 45.4% 44.4% 45.0% 46.1% 47.6% 48.8% 51.6% 54.1% 55.7% 58.1% 61.6% 63.3% 67.0% 70.3% 74.0% 75.6%

West Virginia 43.4% 42.2% 41.5% 40.9% 40.8% 40.9% 41.0% 41.8% 44.7% 47.9% 53.0% 58.7% 64.0% 68.6% 69.5% 69.2% 69.1%

Wisconsin 48.1% 47.4% 47.1% 47.7% 49.3% 51.2% 52.0% 54.4% 56.4% 57.7% 59.9% 63.7% 66.5% 69.4% 70.6% 71.6% 73.0%

Wyoming 40.8% 40.4% 40.5% 41.3% 42.2% 43.2% 43.8% 46.0% 47.9% 50.5% 53.8% 57.9% 62.0% 65.5% 67.1% 67.9% 67.9%
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State 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Alabama 14.8% 14.6% 14.9% 16.6% 18.6% 20.6% 22.3% 23.9% 25.8% 31.0% 36.4% 43.1% 51.8% 57.5% 62.5% 63.7% 63.6%

Alaska 16.7% 16.9% 17.7% 23.0% 30.1% 37.2% 43.4% 50.3% 56.9% 58.4% 60.7% 66.3% 66.9% 68.6% 69.5% 70.9% 70.9%

Arizona 0.0% 0.0% 2.8% 7.5% 12.7% 18.7% 24.1% 29.9% 37.2% 41.1% 47.8% 54.0% 56.9% 61.0% 62.7% 64.2% 64.5%

Arkansas 14.8% 14.6% 14.9% 16.7% 19.1% 21.8% 23.9% 26.8% 32.5% 37.0% 47.1% 53.6% 57.7% 61.0% 62.5% 63.7% 63.6%

California 27.0% 27.1% 27.7% 30.7% 35.2% 40.3% 45.0% 49.3% 54.1% 55.4% 56.1% 61.0% 61.2% 64.1% 66.6% 68.6% 68.4%

Colorado 24.9% 24.6% 24.7% 26.3% 29.2% 32.4% 35.1% 38.0% 41.2% 43.9% 47.0% 52.3% 54.8% 58.3% 60.9% 63.7% 63.6%

Connecticut 26.4% 26.3% 26.9% 29.7% 34.0% 39.1% 43.3% 48.3% 53.0% 54.4% 55.4% 59.7% 62.4% 65.5% 70.1% 71.6% 73.2%

Delaware 24.5% 24.1% 24.1% 25.1% 27.2% 30.1% 32.5% 35.0% 37.9% 41.4% 48.5% 54.1% 57.1% 61.0% 63.4% 65.5% 67.0%

District of Columbia 25.0% 24.6% 24.6% 25.7% 28.4% 31.4% 34.3% 37.4% 41.0% 41.8% 49.9% 55.3% 57.9% 59.9% 63.1% 65.8% 68.4%

Florida 15.6% 15.6% 15.9% 18.4% 21.8% 25.0% 27.9% 31.1% 36.7% 40.6% 47.4% 53.1% 56.6% 61.6% 63.7% 65.5% 66.4%

Georgia 14.6% 14.6% 15.1% 17.4% 20.3% 23.3% 26.0% 29.4% 32.6% 36.7% 44.3% 50.6% 54.4% 58.9% 62.5% 63.7% 64.3%

Hawaii 27.8% 27.4% 27.7% 30.0% 33.5% 37.5% 40.9% 44.4% 48.9% 51.5% 53.9% 59.5% 61.8% 66.4% 70.0% 72.8% 75.9%

Idaho 16.8% 16.9% 17.2% 20.0% 23.5% 27.0% 30.1% 33.2% 36.4% 39.7% 44.2% 49.9% 53.5% 57.6% 60.9% 63.7% 63.6%

Illinois 24.6% 24.1% 24.3% 25.4% 27.7% 30.7% 33.1% 36.0% 38.9% 41.9% 45.9% 51.5% 55.9% 59.6% 62.5% 63.7% 63.6%

Indiana 15.7% 15.7% 16.2% 18.7% 22.1% 25.4% 28.0% 31.5% 34.6% 38.3% 43.0% 49.1% 52.3% 56.7% 60.0% 64.3% 64.8%

Iowa 25.6% 25.2% 25.5% 26.8% 29.5% 32.8% 35.5% 38.5% 41.6% 44.4% 47.9% 54.5% 58.3% 63.2% 67.6% 68.6% 68.4%

Kansas 26.2% 25.7% 25.8% 27.3% 30.0% 33.5% 36.5% 39.2% 43.0% 45.7% 48.6% 55.0% 57.0% 60.6% 63.7% 65.5% 65.4%

Kentucky 21.0% 19.9% 18.9% 19.3% 21.0% 23.1% 25.3% 28.2% 30.9% 35.2% 42.9% 52.0% 56.9% 61.8% 65.0% 66.9% 68.4%

Louisiana 15.2% 15.2% 15.5% 17.8% 20.6% 23.2% 25.5% 28.0% 33.7% 37.8% 43.1% 49.1% 53.2% 58.2% 62.5% 63.7% 63.6%

Maine 17.5% 18.2% 20.0% 23.4% 28.1% 33.0% 36.4% 40.2% 44.8% 47.6% 50.3% 56.0% 60.5% 64.9% 68.7% 68.6% 68.4%

Maryland 24.4% 24.1% 24.2% 25.5% 28.0% 31.1% 33.9% 36.8% 40.3% 43.6% 46.8% 54.9% 57.5% 64.3% 68.9% 73.2% 74.8%

Massachusetts 26.3% 26.1% 26.2% 27.9% 30.9% 34.8% 38.7% 42.4% 46.9% 49.4% 52.1% 57.3% 61.7% 65.5% 68.7% 68.6% 68.4%

Michigan 26.9% 26.6% 27.0% 28.9% 32.5% 36.9% 40.8% 44.4% 48.8% 50.8% 52.9% 60.8% 64.5% 68.3% 69.1% 69.5% 70.0%

Minnesota 26.8% 26.6% 26.9% 29.5% 33.5% 38.2% 42.5% 46.1% 50.6% 52.4% 53.5% 58.5% 65.4% 71.9% 78.0% 81.1% 82.6%

Mississippi 14.1% 13.8% 14.2% 15.7% 17.4% 19.3% 21.1% 23.3% 25.4% 30.2% 39.9% 50.5% 58.2% 65.5% 68.7% 68.6% 68.4%

Missouri 23.0% 22.7% 23.1% 23.9% 26.0% 28.7% 30.7% 33.2% 35.7% 39.3% 47.3% 53.5% 56.8% 61.0% 62.5% 63.7% 63.6%

Montana 22.9% 22.0% 21.0% 22.8% 25.6% 28.8% 32.6% 36.4% 40.4% 43.1% 47.1% 52.4% 54.9% 58.3% 61.0% 63.7% 63.6%

Nebraska 25.5% 25.3% 25.5% 27.1% 29.8% 32.9% 35.5% 38.2% 41.3% 44.0% 48.5% 53.8% 56.3% 59.7% 62.5% 63.7% 63.6%

Nevada 16.3% 16.4% 16.8% 19.2% 22.3% 25.8% 28.9% 32.3% 35.9% 39.8% 44.6% 50.4% 53.4% 57.6% 60.6% 63.7% 63.6%

New Hampshire 16.3% 16.4% 16.9% 19.8% 24.2% 28.7% 32.5% 37.1% 41.9% 45.0% 49.0% 54.7% 56.9% 61.2% 64.2% 67.5% 69.9%

New Jersey 25.4% 25.1% 25.2% 26.7% 29.6% 33.3% 36.1% 39.4% 42.7% 43.2% 47.0% 53.9% 56.9% 59.9% 61.3% 64.0% 66.7%

New Mexico 15.8% 15.9% 16.3% 18.9% 22.4% 25.7% 28.5% 31.5% 34.6% 38.3% 47.5% 53.2% 56.6% 61.0% 62.5% 66.8% 70.0%

New York 27.1% 26.8% 27.0% 29.4% 33.2% 37.8% 41.7% 45.4% 49.8% 50.7% 52.2% 57.2% 58.0% 62.8% 65.9% 68.6% 68.4%

North Carolina 15.2% 15.1% 15.6% 17.6% 20.4% 23.5% 26.1% 29.2% 32.1% 36.3% 46.8% 52.7% 56.4% 61.6% 64.8% 67.5% 68.4%

North Dakota 16.7% 16.9% 17.3% 20.8% 25.3% 29.8% 33.8% 37.6% 41.6% 44.3% 48.2% 53.4% 55.5% 58.6% 61.2% 63.7% 63.6%

Ohio 24.6% 24.2% 24.2% 25.3% 27.6% 30.4% 32.8% 35.3% 38.3% 41.6% 45.2% 50.8% 55.5% 59.4% 62.5% 63.7% 63.6%

Oklahoma 15.8% 15.8% 16.3% 18.9% 22.5% 26.4% 29.7% 33.4% 37.0% 40.5% 46.6% 54.5% 57.2% 61.0% 62.5% 63.7% 64.3%

Oregon 24.5% 23.4% 22.1% 23.7% 26.7% 30.3% 34.4% 38.5% 42.7% 45.4% 50.5% 55.7% 57.5% 60.4% 62.5% 63.7% 63.6%

Pennsylvania 25.8% 25.5% 25.5% 27.1% 30.0% 33.5% 36.6% 39.2% 42.5% 45.3% 50.3% 56.0% 58.0% 61.0% 62.5% 63.7% 65.2%

Rhode Island 26.4% 26.1% 26.5% 28.9% 32.7% 37.2% 41.4% 44.6% 49.3% 51.3% 53.1% 58.1% 61.9% 65.5% 71.2% 74.0% 76.7%

South Carolina 14.9% 14.8% 15.1% 17.0% 19.8% 22.5% 24.8% 27.2% 32.9% 37.6% 43.3% 52.0% 56.0% 62.7% 65.9% 68.6% 68.4%

South Dakota 16.9% 17.0% 17.4% 20.3% 24.0% 27.7% 31.3% 34.4% 37.9% 41.2% 45.6% 51.6% 56.2% 59.7% 62.5% 63.7% 63.6%

Tennessee 14.9% 14.8% 15.0% 16.7% 18.9% 21.2% 23.3% 25.8% 31.6% 36.3% 44.9% 51.2% 55.7% 61.6% 63.7% 66.4% 67.3%

Texas 14.3% 14.0% 14.3% 16.1% 18.8% 21.4% 23.6% 26.5% 29.1% 33.7% 39.2% 48.9% 53.1% 58.2% 62.5% 65.2% 66.7%

Utah 23.7% 22.8% 21.7% 23.3% 26.0% 29.4% 33.2% 37.0% 40.8% 43.6% 47.6% 52.9% 56.6% 59.8% 62.5% 63.7% 63.6%

Vermont 27.2% 27.3% 27.8% 30.4% 34.6% 39.5% 43.8% 47.0% 51.2% 53.1% 54.2% 59.1% 64.7% 70.2% 75.6% 78.0% 78.8%

Virginia 15.9% 15.9% 16.5% 19.3% 23.0% 27.1% 30.6% 34.6% 38.3% 41.6% 46.0% 52.0% 56.2% 59.7% 62.5% 63.7% 63.6%

Washington 24.5% 23.6% 22.5% 24.7% 28.6% 33.1% 38.1% 42.6% 47.7% 49.6% 52.4% 57.3% 58.2% 61.9% 67.3% 72.4% 74.3%

West Virginia 23.6% 23.2% 23.0% 23.7% 25.3% 27.8% 29.9% 31.7% 36.6% 40.5% 46.9% 53.2% 58.2% 63.2% 65.3% 65.5% 65.4%

Wisconsin 27.2% 27.0% 27.5% 30.1% 34.5% 39.3% 43.5% 47.0% 51.2% 52.7% 54.6% 60.1% 62.1% 64.6% 66.6% 68.9% 70.6%

Wyoming 16.7% 16.8% 17.4% 20.4% 24.0% 27.9% 31.3% 34.8% 38.2% 41.4% 45.8% 51.4% 55.9% 59.6% 62.5% 63.7% 63.6%
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State 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Alabama 6.5% 6.3% 6.2% 6.7% 7.3% 7.9% 8.4% 8.6% 9.0% 11.8% 14.5% 17.8% 22.3% 25.3% 28.0% 28.7% 28.4%

Alaska 8.3% 8.2% 8.3% 11.1% 14.9% 18.4% 21.4% 24.7% 27.6% 28.7% 29.5% 32.5% 32.9% 33.8% 34.7% 35.6% 35.2%

Arizona 0.0% 0.0% 1.0% 3.0% 5.1% 7.4% 9.5% 11.4% 14.1% 16.1% 19.7% 22.8% 24.7% 27.0% 28.2% 29.2% 29.1%

Arkansas 6.5% 6.3% 6.1% 6.8% 7.6% 8.4% 9.1% 9.9% 12.1% 14.5% 19.4% 22.6% 25.1% 27.0% 28.0% 28.7% 28.4%

California 14.3% 14.1% 13.5% 14.8% 17.1% 19.0% 20.9% 22.4% 24.2% 24.9% 25.1% 27.3% 27.6% 29.7% 31.9% 33.8% 33.4%

Colorado 12.3% 11.9% 11.3% 11.9% 13.1% 14.0% 14.8% 15.3% 16.0% 17.6% 19.2% 21.7% 23.4% 25.3% 27.2% 28.7% 28.4%

Connecticut 13.9% 13.5% 13.0% 14.3% 16.3% 18.2% 19.7% 21.6% 23.2% 23.9% 24.3% 26.2% 28.9% 31.3% 35.7% 36.9% 38.0%

Delaware 12.0% 11.5% 10.7% 11.1% 11.9% 12.6% 13.2% 13.6% 14.3% 16.2% 20.2% 22.8% 24.8% 27.0% 28.9% 30.5% 31.7%

District of Columbia 12.5% 12.0% 11.2% 11.6% 12.7% 13.5% 14.3% 15.0% 15.9% 16.1% 20.5% 23.0% 24.7% 26.0% 28.8% 31.2% 33.4%

Florida 7.1% 6.9% 6.8% 7.8% 9.0% 10.0% 11.0% 11.9% 14.0% 16.1% 19.8% 22.5% 24.6% 27.4% 28.9% 30.3% 31.0%

Georgia 6.4% 6.3% 6.2% 7.1% 8.2% 9.2% 10.2% 11.1% 12.0% 14.1% 18.0% 21.1% 23.4% 25.8% 28.0% 28.7% 28.9%

Hawaii 15.2% 14.7% 13.8% 14.6% 16.0% 17.1% 18.0% 18.9% 20.2% 21.7% 23.3% 26.2% 28.2% 32.3% 36.0% 38.7% 43.3%

Idaho 8.2% 8.0% 7.7% 8.8% 10.1% 11.2% 12.2% 13.1% 13.9% 15.7% 18.0% 20.6% 22.8% 25.0% 27.1% 28.7% 28.4%

Illinois 12.2% 11.7% 11.0% 11.4% 12.3% 13.1% 13.7% 14.2% 14.7% 16.5% 18.7% 21.3% 24.0% 26.1% 28.0% 28.7% 28.4%

Indiana 7.2% 7.0% 6.9% 8.0% 9.2% 10.2% 11.2% 12.1% 13.0% 14.9% 17.3% 20.3% 22.3% 24.6% 26.7% 29.3% 29.5%

Iowa 13.0% 12.5% 11.8% 12.3% 13.4% 14.3% 14.9% 15.5% 16.2% 17.8% 19.6% 22.9% 25.9% 29.4% 32.9% 33.8% 33.4%

Kansas 13.6% 13.0% 12.1% 12.6% 13.7% 14.6% 15.4% 15.9% 16.9% 18.5% 20.0% 23.1% 24.5% 26.8% 28.9% 30.3% 30.0%

Kentucky 9.7% 8.8% 7.8% 8.0% 8.6% 9.1% 9.8% 10.6% 11.3% 13.5% 17.5% 22.0% 25.1% 27.7% 30.5% 32.2% 33.4%

Louisiana 6.9% 6.7% 6.5% 7.4% 8.4% 9.3% 10.0% 10.7% 12.8% 15.0% 17.7% 20.5% 22.9% 25.6% 28.0% 28.7% 28.4%

Maine 8.2% 8.6% 9.0% 10.4% 12.5% 14.1% 15.2% 16.2% 17.7% 19.3% 20.7% 23.5% 27.6% 30.8% 34.1% 33.8% 33.4%

Maryland 11.9% 11.5% 10.8% 11.4% 12.4% 13.3% 14.1% 14.7% 15.6% 17.4% 19.1% 23.2% 25.0% 30.0% 34.4% 38.4% 39.4%

Massachusetts 13.7% 13.2% 12.4% 13.0% 14.2% 15.4% 16.6% 17.7% 19.0% 20.5% 22.0% 24.4% 28.3% 31.3% 34.1% 33.8% 33.4%

Michigan 14.3% 13.8% 13.1% 13.8% 15.2% 16.6% 17.6% 18.7% 19.9% 21.1% 22.4% 27.3% 30.9% 33.9% 34.5% 34.7% 34.8%

Minnesota 14.2% 13.9% 13.1% 14.3% 16.2% 17.8% 19.2% 20.2% 21.4% 22.4% 22.8% 25.1% 32.8% 39.6% 46.7% 50.6% 52.7%

Mississippi 6.0% 5.9% 5.7% 6.3% 6.8% 7.3% 7.8% 8.3% 8.8% 11.4% 16.2% 21.2% 26.7% 31.3% 34.1% 33.8% 33.4%

Missouri 10.6% 10.4% 9.9% 10.4% 11.1% 11.8% 12.3% 12.8% 13.2% 15.3% 19.6% 22.6% 24.7% 27.0% 28.0% 28.7% 28.4%

Montana 11.1% 10.3% 9.3% 10.0% 11.2% 12.1% 13.4% 14.6% 15.8% 17.3% 19.3% 21.8% 23.4% 25.3% 27.2% 28.7% 28.4%

Nebraska 12.8% 12.5% 11.9% 12.5% 13.5% 14.3% 15.0% 15.5% 16.1% 17.7% 20.0% 22.5% 24.2% 26.1% 28.0% 28.7% 28.4%

Nevada 7.7% 7.5% 7.3% 8.2% 9.3% 10.4% 11.4% 12.5% 13.5% 15.6% 18.1% 20.8% 22.8% 25.0% 27.0% 28.7% 28.4%

New Hampshire 7.8% 7.6% 7.4% 8.7% 10.5% 12.0% 13.3% 15.0% 16.6% 18.2% 20.1% 22.9% 24.4% 27.3% 29.8% 32.5% 34.1%

New Jersey 12.9% 12.4% 11.6% 12.2% 13.4% 14.4% 15.2% 15.9% 16.8% 16.7% 18.6% 22.1% 24.2% 26.0% 27.0% 29.5% 31.6%

New Mexico 7.3% 7.1% 7.0% 8.1% 9.3% 10.4% 11.4% 12.2% 13.0% 15.0% 19.9% 22.6% 24.6% 27.0% 28.0% 32.0% 34.7%

New York 14.5% 14.0% 13.2% 14.2% 15.9% 17.3% 18.5% 19.6% 20.8% 20.9% 21.7% 24.0% 24.8% 28.6% 31.3% 33.8% 33.4%

North Carolina 6.8% 6.6% 6.5% 7.3% 8.3% 9.2% 10.1% 11.0% 11.8% 14.0% 19.5% 22.3% 24.6% 27.4% 30.2% 32.6% 33.4%

North Dakota 8.1% 7.9% 7.8% 9.2% 11.0% 12.6% 13.9% 15.0% 16.3% 17.8% 19.7% 22.1% 23.7% 25.5% 27.3% 28.7% 28.4%

Ohio 11.9% 11.5% 10.8% 11.2% 12.1% 12.8% 13.4% 13.9% 14.5% 16.5% 18.4% 21.0% 23.8% 26.0% 28.0% 28.7% 28.4%

Oklahoma 7.3% 7.2% 7.0% 8.2% 9.6% 10.9% 12.0% 13.0% 14.0% 15.8% 19.1% 23.1% 24.9% 27.0% 28.0% 28.7% 28.9%

Oregon 12.8% 11.7% 10.3% 10.8% 12.1% 13.0% 14.3% 15.7% 17.1% 18.6% 21.0% 23.4% 24.8% 26.6% 28.0% 28.7% 28.4%

Pennsylvania 13.4% 12.8% 11.9% 12.4% 13.6% 14.5% 15.4% 15.8% 16.6% 18.2% 20.8% 23.7% 25.1% 27.0% 28.0% 28.7% 29.9%

Rhode Island 13.7% 13.3% 12.6% 13.6% 15.3% 16.8% 18.1% 19.0% 20.4% 21.5% 22.6% 24.9% 28.4% 31.3% 37.7% 40.9% 43.8%

South Carolina 6.6% 6.4% 6.3% 7.0% 8.0% 8.8% 9.6% 10.1% 12.3% 14.8% 17.8% 22.0% 24.4% 28.6% 31.4% 33.8% 33.4%

South Dakota 8.3% 8.0% 7.8% 9.0% 10.4% 11.6% 12.8% 13.5% 14.6% 16.3% 18.5% 21.4% 24.2% 26.1% 28.0% 28.7% 28.4%

Tennessee 6.6% 6.4% 6.2% 6.8% 7.5% 8.3% 8.9% 9.5% 11.7% 14.2% 18.6% 21.6% 24.2% 27.4% 28.9% 31.4% 32.1%

Texas 6.1% 5.9% 5.8% 6.4% 7.3% 8.2% 9.0% 9.8% 10.4% 12.9% 15.7% 20.4% 22.9% 25.5% 28.0% 30.4% 31.6%

Utah 12.0% 11.0% 9.8% 10.4% 11.5% 12.4% 13.7% 14.9% 16.0% 17.5% 19.5% 22.0% 24.3% 26.2% 28.0% 28.7% 28.4%

Vermont 14.6% 14.2% 13.6% 14.8% 16.7% 18.5% 19.9% 20.7% 21.9% 22.8% 23.4% 25.5% 31.4% 36.8% 42.3% 44.8% 45.5%

Virginia 7.5% 7.3% 7.2% 8.4% 9.9% 11.3% 12.5% 13.7% 14.8% 16.5% 18.7% 21.6% 24.1% 26.1% 28.0% 28.7% 28.4%

Washington 12.9% 11.9% 10.6% 11.6% 13.3% 14.7% 16.4% 18.0% 19.6% 20.6% 21.9% 24.2% 25.0% 28.0% 33.1% 37.8% 39.2%

West Virginia 11.4% 10.9% 10.0% 10.2% 10.7% 11.4% 12.0% 12.0% 13.8% 16.0% 19.4% 22.5% 26.1% 28.9% 30.5% 30.3% 30.0%

Wisconsin 14.5% 14.0% 13.4% 14.6% 16.6% 18.3% 19.7% 20.7% 21.8% 22.5% 23.7% 26.6% 28.5% 30.1% 31.8% 33.5% 34.7%

Wyoming 8.1% 7.9% 7.8% 9.0% 10.4% 11.7% 12.8% 13.9% 14.8% 16.5% 18.8% 21.3% 24.1% 26.1% 28.0% 28.7% 28.4%

Appendix - Table C4

Estimated Percent of Early Childhood Years with Medicaid Eligibility

By Graduation Cohort - From Conception through Age 5

White Students
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Federal Financial Aid and Educational Attainment:  

Re-Examining the Social Security Student Benefit Program 
 

with Leonard M. Lopoo 

 

 

3.1. Introduction 

For some time now, social scientists have described the United States as a country 

divided into two classes: the “haves” and “have-nots.” McLanahan (2004) argues that the 

disparity in resources between the children of these two classes has grown over time, with the 

low-income group suffering from even greater social isolation, the dissolution of family ties, and 

deeper poverty. She also shows that one of the primary factors that distinguishes these two 

groups is college completion, which comports with the common notion that higher education is 

one of the safest routes to the middle-class for low-income families. 

 Given the importance of obtaining a post-secondary degree for economic success, recent 

news media accounts have called attention to the increasing cost of higher education (see e.g., 

Campos 2015; Lewin 2013; Hildreth 2014). Figure 1 reports data from the College Board (in 

constant 2014 dollars) on the mean cost of tuition and fees in both private and public four-year 

colleges and universities from the 1971-72 academic year to the 2014-15 academic year. Both 

trends clearly show an increase in the advertised price of higher education, with the annual mean 

cost more than tripling for private colleges and universities and nearly quadrupling for public 

higher education.  

With these increasing costs, one might worry about a reduction in access to higher 

education for less affluent Americans, which could limit their upward mobility. However, 

beginning with the Higher Education Act of 1965, the federal government has increasingly 

subsidized higher education for families across the income distribution through Pell Grants, tax 
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credits, and a number of subsidized and unsubsidized loan programs. Figure 2 shows federal 

spending on several different programs that encourage post-secondary educational attainment. 

The Pell Grant program, which provides funding for low-income individuals who attend college, 

has increased considerably over the past twenty years, growing from awards of around $900 per 

full-time equivalent (FTE) in the 1993-94 academic year to over $2,200 by the 2013-14 

academic year. The figure also shows that the Stafford loan program grew the most in dollar 

terms among the federal loan programs increasing from around $2,200 per FTE to over $5,000 

per FTE during that same time span.  

Simple economic theory dictates that, holding constant the cost, these subsidies should 

increase the likelihood that people will attend college. Recent research has consistently shown 

that these federal programs designed to reduce the cost of higher education have increased 

college access for many groups, including the low-income population, recent high-school 

graduates, middle-class families, and older students who start college in their twenties and 

thirties (Dynarski 2000; Seftor and Turner 2002; Dynarski 2003; Abraham and Clark 2006; Kane 

2007; Turner 2011; Dynarski and Scott-Clayton 2013); however, much less is known about 

college completion. Among the low-income population, these programs may be encouraging 

students who are poorly prepared for college into a situation that is unsuccessful and potentially 

counterproductive to their human capital development. If true, these investments may be more 

efficacious if made earlier in the child’s educational career. On the other hand, these programs 

may have given disadvantaged students the opportunity to obtain the human capital necessary to 

succeed in today’s labor market. 

The current paper is a follow-up to Dynarski’s 2003 American Economic Review article 

on financial aid investments, college attendance, and years of education. In her analysis, 
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Dynarski uses the National Longitudinal Survey of Youth, 1979 cohort (NLSY) and a difference-

in-differences (DD) model to estimate the changes in college enrollment for children who 

finished high school near the phase-out of the Social Security Student Benefit Program (SSSBP), 

a program that provided large subsidies to qualified children who were in college.1 By 

identifying potential program participants as those with a father passing before the NLSY 

respondent’s 18th birthday, Dynarski shows that a $1,000 increase in higher education subsidies 

increased the likelihood of college attendance by about 3.6 percentage points by age 23. While 

receiving a lot less attention in that same article, Dynarski also estimates the effect on total 

education completed by age 28 writing that her result “suggests that aid eligibility did not simply 

speed up investment in schooling but also raised its optimal level (p. 284).”  

This work re-investigates the latter claim. We use the same NLSY cohorts, as well as 

analyses with additional NLSY cohorts, to estimate respondents’ educational attainment in their 

twenties through their forties. Our results show marginally significant effects of the SSSBP 

program on the educational attainment of recipients when measured as years of education. 

However, when we allow for differential impacts by degree type, we find strong evidence that 

the program increased the likelihood that high school graduates would go on to earn additional 

postsecondary degrees. Specifically, we find that access to the SSSBP for youth aged 18 to 22 

created large increases in the likelihood of Associate’s degree receipt by age 23 and 28 for 

individuals whose father died before they turned 18. Furthermore, the evidence suggests that 

many beneficiaries eventually went on to earn a Bachelor’s degree. 

                                                           
1 While targeted in the sense that only children with deceased, disabled, or retired parents paying into the Social 

Security system qualified for the SSSBP, the program was “universal” in that all students, once meeting the minimum 

requirements, qualified for aid regardless of the family’s ability to pay for college. Thus, there could have been a 

significant fraction of children participating in this program who had the means to pay for college in the absence of 

the program. For these students, the SSSBP may have simply crowded out other forms of payment. As we show in 

our samples below, lower-income and minority children are much more likely to have a deceased parent; thus, we 

believe the results from this study are more likely generalizable to the low-income population.  
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Analysis of the SSSBP should provide information about the expected effects of higher 

education subsidies on educational attainment. The program was large in scope, provided 

generous benefits for students entering university full-time immediately after high school 

completion, had no conditions on the family’s ability to pay, and contained no requirements for 

student performance. While this federal program no longer exists, lessons learned from the 

SSSBP could potentially inform the ongoing debate regarding the efficacy and cost-effectiveness 

of tuition assistance programs currently in place in the United States. 

More specifically, findings from this study have important implications for recent policy 

discussions. In his 2015 State of the Union address, President Obama proposed a plan to provide 

two years of community college education at no cost to anyone who maintains a minimum grade 

point average and makes steady progress toward their degree. Our results suggest that federal 

investment in higher education could substantially increase Associate’s degree completion rates 

among the disadvantaged population, i.e., this proposed program would be well targeted. Equally 

interesting is the finding that, for some, this opportunity could eventually lead to a Bachelor’s 

degree. 

 

3.2. The Social Security Student Benefit Program 

Shortly after the enactment of the Social Security Program in 1935, it was amended to 

provide benefits to any dependent child of a disabled, retired, or deceased parent who qualified 

for the program, with a dependent child usually defined as a minor.2,3 In the 1965 Social Security 

Amendments, Congress expanded the definition of a dependent child to include full-time 

                                                           
2 Except where noted, the legislative history described in this section comes from DeWitt (2001). 
3 Dynarski (2003) reports that 90 percent of student beneficiaries in 1982 qualified for benefits based upon their 

father’s Social Security earnings history. Thus, survivor benefits are tied to the father’s life course in this analysis.  
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students under the age of 22, under the premise that parents traditionally help pay their child’s 

higher education expenses. This legislative change effectively extended the Social Security child 

benefits into early adulthood under a program commonly referred to as the Social Security 

Student Benefits Program. The program was very popular, and in 1981, the largest pay-out year, 

over 760,000 students received the benefit at a monthly cost of nearly $200 million. Dynarski 

(2003) reports that during its peak, around 12 percent of all full-time students between the ages 

of 18 and 21 were receiving the benefit.  

For a variety of reasons, including reducing the cost of the Social Security program, 

President Reagan signed the Omnibus Reconciliation Act of 1981, which legislated that Social 

Security child benefits for full-time students aged 18 to 21 would be phased-out by 1985. 

Specifically, students who were enrolled in college by May 1982 would continue to receive 

benefits annually, but at a 25% reduction with benefits terminating in April of 1985. Younger, 

and previously qualified college students, would no longer receive any tuition supports in the 

form of the child benefit extensions. We use the elimination of the SSSBP for full-time college 

students, the policy change investigated by Dynarski (2003), to estimate the effect of federal 

subsidies for higher education on the educational attainment of several cohorts who would have 

completed high school around the time the benefits were eliminated. 

In an effort to increase the higher education levels of at-risk young adults with a 

deceased, disabled, or retired wage earning parent, the SSSBP was very generous in a number of 

dimensions. Dynarski (2003) reported that the average annual benefit for a qualifying student 

was $6,700 in 1980. To put these nominal funds in perspective, she reports, the average Pell 

Grant was $2,000 while guaranteed student loans were approximately $4,500, on average, in the 

same year. From this, Dynarski concluded, average benefits were more than sufficient to cover 
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tuition and fees at public four-year colleges and university, where costs averaged about $1,900 in 

1980. Moreover, and importantly for low-income youth at the margin of college enrollment, 

these funds could have been sufficient to cover a significant portion, if not all, of their living 

expenses. 

While there were large financial benefits, the barriers to SSSBP enrollment were 

minimal. The Social Security Administration (SSA) would contact child benefit recipients 

slightly before their 18th birthday to investigate whether the beneficiary would attend college 

full-time after high school graduation. If the recipient declared that s/he was college-bound, the 

SSA would continue mailing a lump-sum check directly to the child until they either (1) left 

school, (2) married, or (3) turned 22. To validate enrollment, colleges and universities would 

provide proof of full-time enrollment on an annual basis.4 Thus, the SSSBP provided substantial 

benefits in terms of aid receipt and ease of enrollment, which explains the popularity of the 

program and its large number of beneficiaries. It also illustrates why, as Dynarski (2003) writes, 

“Except for the introduction of the Pell Grant program in the early 1970s, and the various G.I. 

bills, this is the largest and sharpest change in grant aid for college students that has ever 

occurred in the United States.” 

 

3.3.  Literature Review  

This section outlines the academic literature that investigates the relationship between 

federal higher education financial assistance and education outcomes. Given that this is an 

extension of Dynarski (2003), however, we first provide a detailed review of her article.  

                                                           
4 Program details in this paragraph were taken from Dynarski (2003), Committee on Ways and Means (1979, 1982) 

and the Office of the Comptroller General (1979). 
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As mentioned, Dynarski (2003) uses data from the NLSY and the elimination of the 

SSSBP in 1982 to estimate the impact of the tuition benefits on college enrollment and 

completion. She finds that a $1,000 decrease in college costs increases college enrollment by 3.6 

percentage points, which is within the 3 to 6 percentage points range established by other authors 

(Leslie and Brinkman 1988; Dynarski 2000; Seftor and Turner 2002; Dynarski 2003; Abraham 

and Clark 2006; Kane 2007). In addition, Dynarski reports that the SSSBP appears to have 

boosted full-time college attendance for qualifying students by over 20 percentage points.  

While the academic literature has consistently shown that college enrollment increases as 

students receive more financial aid, the research investigating total education or degree 

attainment remains thin. Dynarski (2003) also examines the number of years of education 

completed at age 23 and age 28. She shows that students qualifying for the federal tuition 

supports under Social Security completed a little over a half year more of college than those who 

would have qualified for the program had it not been eliminated in 1982. Estimates rise to 

between 0.679 and 0.754 more years of education at age 28 depending on how attriters and 

misclassification error is handled. With this increase in education at age 28, Dynarski concludes 

that the educational gains are attributable to SSSBP benefits and not a delay in the timing of 

higher education by non-qualifying students. 

 Although the estimates for full-time college attendance are precisely measured in her 

paper, coefficients on the number of years of schooling are not. In fact, of the eight coefficients 

related to post-secondary education, none is statistically distinguishable from zero at the 0.05 

level. In other words, while she estimates statistically significant impacts of the probability of 

full-time college attendance, Dynarski does not show that attendance translates into degree 

completion. 
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There are a number of plausible reasons to explain why Dynarski does not find an effect 

for total education. First, and perhaps most obvious, the program may be pushing students who 

are poorly prepared for higher education into college. These students may have higher rates of 

attendance but subsequently drop out of college before completing their degree. Second, there 

are relatively few “treated” cases in the NLSY data, and the small sample may be insufficient to 

identify an effect with precision, despite there being enough cases to identify impacts on college 

attendance. Third, Dynarski is estimating a mean effect on the program on years of education 

across all potential students. However, additional years of education are not necessarily rewarded 

by the labor market. Instead, degree completion typically translates into larger financial rewards. 

Consequently, her models may be misspecified: one should instead estimate changes in degree 

completion rather than years of education. Finally, the universal benefits provided under the 

SSSBP may have crowded out other sources of funding for more affluent students in the sample. 

While NLSY respondents are disproportionately from the low-income population, the more 

affluent students in the sample would have attended anyway, but financed their education 

through other sources, such as their parents. In other words, there could have been crowd out of 

private funding sources but no real impact on human capital accumulation. By pooling both 

types of students, the signal to noise ratio could be insufficient to produce significant results.  

Other studies examine the impact of tuition subsidies on post-secondary years of 

education or degree attainment. Angrist (1993) and Bound and Turner (2002) explore changes in 

the G.I. education bill after World War II and the Korean War to show that grant aid greatly 

increased the probability of degree attainment by veterans. Bettinger (2002) utilizes 

discontinuities in the federal Pell Grant eligibility formulas to estimate the impact of grant size 

on the persistence rates of college students. Although his findings are sensitive to functional 
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form, he also reports evidence of a positive link between aid receipt and increases in post-

secondary educational attainment. 

More recently, the academic literature has moved away from the analysis of large-scale, 

federal programs toward isolating impacts of state-level programs which typically tie aid to 

student performance. Dynarski (2008) uses the implementation of merit aid program in Arkansas 

and Georgia to analyze why students exit college without receiving a diploma. These state 

programs were similar in that they provided substantial scholarships for students meeting GPA 

and test standards established by the state. Exploiting the cross-cohort changes in probability of 

college completion in Arkansas and Georgia, she reports that the scholarship programs increased 

college completion by 3 percentage points or roughly an 11 percent increase in graduation rates 

for cohorts qualifying for the generous state tuition support programs. 

Similar to the state merit aid programs in Arkansas and Georgia, which both tied aid 

receipt to academic performance, Scott-Clayton (2011) explores the impacts of the PROMISE 

program in West Virginia. With access to administrative data, she exploits discontinuities in 

eligibility rules and implementation timing to conclude that the state-level program led to 

statistically significant increases in the number of credits earned. Moreover, the West Virginia 

PROMISE program increased the probability of four-year BA completion rates by almost 60 

percent (9.4 percentage points on a baseline of approximately16 percentage points). Five-year 

Bachelor’s degree completion rates also increased by 12 percent.  

Two MDRC randomized controlled trials (RCTs) also provide insights into the effects of 

performance-based scholarships and years of college completed, which can eventually result in 

completed degrees. Richburg-Hayes et al. (2009) report findings from MDRC’s Opening Doors 

Study targeting low-income students in Louisiana; this demonstration tied relatively modest 
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scholarships to enrollment and GPA minimums. Although follow-up of the program was 

disrupted by the aftermath of Hurricane Katrina, the authors still report a positive and significant 

impact of the program on college enrollment, persistence, and credits completed. MDRC 

extended this pilot program to six other states – each with varying target populations, eligibility 

requirements, and scholarship amounts – via the Performance-Based Scholarship demonstration. 

Analyzing data from these RCTs, Patel and Richburg-Hayes (2012) generally find significant 

increases in credits earned across the various state programs, with some evidence of positive 

impacts on student performance.  

This paper contributes to the existing literature in two important ways. First, we expand 

Dynarski (2003) by utilizing more NLSY cases over a longer period of time. Secondly, we 

advance the literature by examining the influence of these subsidies on educational attainment 

measured both in years and degree attainment. 

 

3.4.  Data and Descriptive Statistics 

 The National Longitudinal Survey of Youth, 1979, (NLSY) is a cohort survey conducted 

by the Bureau of Labor Statistics. It began with a nationally representative sample of 12,686 

American youth aged 14 to 22 in 1979, the survey baseline. Respondents were interviewed 

annually through 1994 and then biennially thereafter. Data collected by the BLS provide life-

course information for respondents on a number of items, including school enrollment, 

educational attainment, and detailed family history information. This implies that, for 

respondents remaining in the survey through the most recent release in 2012, we have data 

through ages 47 to 55. 
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 With the elimination of the SSSBP by Congress in May 1982, the NLSY sample includes 

a set of cohorts finishing high school directly before and after program cessation. Like Dynarski 

(2003), we are able to use enrollment information captured by surveyors to assign cohorts to pre- 

and post-periods by the spring in which they were enrolled in grade 12. In what we label the 

“Replication Sample,” we follow her original analytic sample construction and assign a subset of 

NLSY respondents to cohorts around this threshold by limiting data to respondents meeting the 

following criteria: 

(1) Enrolled in 12th grade or less in 1979, 

(2) Lived with their parent(s) during their senior year, and 

(3) Participated in the 1988 survey. This wave collected the only detailed set of life-history 

information on the respondent’s parents during childhood.  

With these restrictions, the sample of 12,686 original respondents drops to 3,987 matching 

Dynarski’s original sample.5 From the Dynarski sample, we further remove 126 cases. First, we 

exclude children not born in the United States and also not living in the U.S. at age 14 because 

they most likely do not qualify for the program based upon their father’s work history. Secondly, 

we further restrict the data to respondents which have finished high school by age 23. This is 

done for three reasons: (1) to simplify interpretation in our empirical modeling, (2) to allow us to 

add cases of respondents graduating before 1979, and (3) because the SSSBP did not impact high 

school graduation.6 

                                                           
5 The “Replication Sample” includes one more observation than the total reported in her original publication. Inclusion 

of this respondent – who falls into the post-comparison group – should have minimal impact on our estimates. 
6 In footnote 3, Dynarski (2003) reports that the SSSBP does not impact high school graduation rates. We have 

independently verified these claims with results available upon request. 

119



 
 

In Table 3 (discussed below), we show how removing these cases affects our results. 

Ultimately, we end up with 3,861 cases after our two exclusions, which we call the “Limited 

Dynarski Sample.” These observations are further split into four quasi-experimental groups 

based on two categories: 

(1) Respondents whose senior years occurred before 1982 constitute the pre-period group 

(i.e., the potential graduation classes of 1979, 1980, 1981). These students could have 

been eligible for the SSSBP. Remaining individuals, with later graduation dates, were 

seniors during the post-period. 

(2) “Treatment” – as in Dynarski’s analysis – is defined by having a deceased father before 

the NLSY child turns 18. Again, following Dynarski, treatment status is identified using 

the detailed family history information provided in the 1988 survey. For consistency, we 

will refer to the students with a deceased father in the cohorts after the SSSBP was 

phased out as being in the “pseudo-treatment” or “pseudo-treated” group. 

In her original sample, Dynarski has a relatively small number of “treated” observations 

used for identification in her DD design. To increase the statistical power of the modeling, 

therefore, we also utilize a larger sample, which we label the Expanded NLSY Sample. In 

addition to Dynarski’s original sample, the Expanded NLSY Sample: 

(1) Includes youth finishing high school before 1979. While we are unable to identify their 

exact senior year because we lack enrollment information before 1979, we know that this 

subset of individuals likely became high school seniors while the SSSBP was still in 

place, and are, therefore, observations from the pre-period. Importantly, parental 

information is still collected for these individuals in 1988, so we can identify respondents 
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with deceased fathers before age 18, which made them potentially eligible for SSSBP 

funds. 

(2) Removes the restriction that the students must have lived with their parents during the 

spring of their senior years. This decision is made, in part, because the NLSY does not 

capture this information for respondents no longer living within their childhood homes at 

baseline (e.g., 1979). 

Descriptive statistics for the Limited Dynarski Sample and the Expanded NLSY Sample 

are shown in Tables 1 and 2, respectively. These tables are modeled after Table 1 in Dynarski 

(2003). There are four general sets of variables used in Dynarski and our analysis. Appendix A 

outlines how these variables were created. It also discloses which covariates differ from the 

original Dynarski specification. Substitutions were required to expand our sample because 

historical information required to construct select controls was not recorded for respondents no 

longer living in their childhood homes in 1979. 

As noted, the quasi-experimental design groups are constructed based upon the childhood 

family roster information collected in the 1988 survey. We were able to replicate and expand 

Dynarski’s original categories for this analysis. Regarding individual controls, Dynarski used the 

AFQT score administered in 1979, race/ethnic group indicators, the respondent’s age in 1988, 

and state of residence indicators (during the first survey year).  Rather than age-adjusting AFQT 

as prescribed by Dynarski (2003), we use the NLSY age-adjusted measured released in 2006.  

Lacking access to the non-restricted data, we currently use Census Region dummies instead of 

the more specific state dummies employed by Dynarski. Two of the four family-level controls 

utilized by Dynarski – e.g., father/mother attended college – are also used in this analysis. In 
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order to expand the NLSY sample to cohorts finishing before 1979, we use alternative 

definitions of family income and family structure. 

The last set of variables are the outcomes. Our college attendance and years of schooling 

variables are exactly the same as Dynarski’s. Utilizing the information collected in nearly every 

NLSY wave, we also construct a series of variables which indicate the highest degree attained at 

a particular age. High school degrees – which include both traditional diplomas and GEDs – are 

the minimum degree level analyzed in this analysis. The next level is “other credentials” which 

includes other qualifications such as certificates, licenses, or journeyman’s card which were 

required in professions such as nursing, automotive repair, steel working, etc. Junior college and 

Associate’s degrees are henceforth referred to as “Associate’s degrees”, while we combine 

Bachelor’s and higher level degrees (e.g., Master’s, professional, etc.) to simplify exposition.  

As displayed at the bottom of Table 1, there are 134 individuals in the sample who could 

have received SSSBP funds before the program’s termination in May 1982. In the post-period, 

there are 53 young men and women who could have qualified for tuition supports had they not 

been eliminated. Expanding the sample, as described and outlined in Table 2, increases the 

number of potentially qualifying individuals to 339, while the post pseudo-treated group also 

increased to 59. Sample sizes for the second comparison groups in our DD analysis are large – 

e.g., exceeding 1,000 individuals – in both the Limited Dynarski and Expanded samples, for both 

the pre- and post-periods.  

The last column in both tables shows a t-test for the difference-in-differences coefficient 

in a model without controls. This set of simple tests identifies the covariates and outcome 

variables that differ across the time and treatment categories before entering the multivariate 

modeling. For the covariates, this serves as a balance check to determine whether there is a 
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significant compositional change in respondent type from the pre- to post-period. Optimally, the 

treated groups would be identical to the control groups with the exception that the treatment 

group experienced a parental death. Though the death of a parent is not necessarily a random 

event, the DD model is still identified if the trend in educational outcomes for the control group 

appropriately serves as the counterfactual trend for the respondents with deceased parents. One 

way to test for this common trends assumption is to compare the DD estimates for factors 

exogenous to parental death to determine if there are differences in the patterns observed in the 

period before and after the SSSBP was phased out.  

As displayed in the last column, the common trends assumptions appears to be supported 

for most of the covariates in Table 1 and 2, with the exception of the AFQT score. In both 

samples, we see a noticeable decline in the percentile AFQT scores among the respondents with 

a deceased father in the post-period. While we account for the AFQT scores in our models, if 

other unobservable factors are different between the treatment and control, then our results are 

potentially spurious. In the empirical section below, we explain adjustments we make to account 

for this potential source of bias. 

 Tables 1 and 2 also show results from t-tests for a select subset of outcomes. We provide 

these t-tests to initially identify potential program impacts from the SSSBP. Note that there 

appears to be a statistically significant difference in the probability of full-time college 

attendance by age 23, the maximum education ever reported, and select degree attainment at age 

23.7 Graphical analysis of degree attainment can provide further insights which are not obvious 

from the descriptive statistics. The bottom of Figure 3 contains two histograms, which display 

the distribution of degrees at age 23 by the four quasi-experimental groups. Degree attainment is 

                                                           
7 Recall that the most robust finding in Dynarski (2000) is on the probability of full-time college attendance by age 

23. 
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shown in a disaggregated form, ranging from a high school diploma only to those who completed 

a four year degree or more.  

Starting with the Limited Dynarski sample, the distribution of diplomas is fairly constant 

when comparing educational attainment for the comparison group in the pre- to post- periods. 

For the respondents who have a deceased father, the proportion who do not achieve any other 

degrees by age 23 increases over 20 percentage points: from 66 to 85 percent from the pre- to the 

post-period. The likelihood for an Associate’s degree drops from 11 percent to 2 percent for the 

treatment group and remains flat for the comparison group. The “other” credential shows similar 

results. The proportion receiving Bachelor’s degrees falls slightly for the treatment group and has 

an even smaller decline for the comparison group. These patterns are similar for the Expanded 

NLSY Sample. This set of results suggests that the SSSBP may have increased educational 

degree attainment for some beneficiaries changing their degree attainment from high school to 

other credentials and Associate’s degrees. 

 

3.5. Empirical Strategy 

Given that we observe cohorts of high school graduates in the NLSY immediately before 

and after the elimination of the SSSBP, we use the DD research design employed by Dynarski. 

Specifically, we estimate the following model: 

(1) 𝑦𝑖,𝑎 =  𝛼 + 𝛽1(𝑃𝑅𝐸)𝑖 + 𝛽2(𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐷𝑎𝑑)𝑖 + 𝛽3(𝑃𝑅𝐸 ∗  𝐷𝑒𝑐𝑒𝑎𝑠𝑒𝑑𝐷𝑎𝑑)𝑖 + 𝑿′𝛾 + 𝜀𝑖,𝑎, 

where y is years of education for individual i at age a, PRE is an indicator variable signaling 

students who could have qualified for SSSBP funds before program termination in May 1982, 

DeceasedDad is an indicator for youth with a father who died before their 18th birthday, X is a 

matrix of other controls (the family and individual characteristics outlined in Appendix A), and 

𝜺𝒊,𝒂 is a robust standard error term which is clustered at the household level.  
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In addition, following Dynarski, we also interact all of the covariates in matrix X with the 

PRE variable and the DeceasedDad variable. We include these interactions to capture 

unobserved differences between the treated and control group (and for cohort differences) that 

we cannot explicitly account for in our models. 

This DD model identifies the change in educational attainment of youth with deceased 

fathers who had access to federal supports relative to those who did not. The second difference, 

derived from the change in the outcome for a second group who never qualified for benefits, 

serves as the counterfactual difference in educational attainment had the program remained 

intact. Under the common trends assumptions implicit within this DD design, this second group 

yields more precise program effects because it nets out factors, such are the strength of the 

macroeconomy or changes in the cognitive ability of the cohorts, that would introduce omitted 

variable bias in a simple pre-post analysis. 

 The SSSBP provided benefits for students until age 22; therefore, we should expect 

educational differences to surface as early as age 23. Thus, like Dynarski, we report estimates for 

educational attainment at age 23 and age 28. In addition, we also examine education attainment 

at other points – including ages 30, 35, and 40, as well as the maximum age the individual ever 

reported in the NLSY – to determine the long-term impact of this program. 

The DD framework utilized by Dynarski identifies the mean differences in the total years 

of education, and we start by attempting to duplicate her results. However, employers are 

typically interested in degree attainment because it serves as a stronger signal of labor market 

productivity than years of schooling (Hungerford and Solon 1987; Belman and Heywood 1991; 

Jaeger and Page 1996; Card 1999). This suggests that we should model postsecondary degree 
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attainment as an outcome as well, while explicitly considering the distribution of post-secondary 

degrees in the United States. 

Potential changes in the educational attainment continuum can be best illustrated via a 

series of graphs. Figure 4 contains two charts: the first shows the total years of education 

completed using a pooled sample of all waves from the Current Population Survey collected in 

1990, and the second reports degree attainment from the 1990 Census micro sample. In both 

cases, educational attainment is limited to individuals aged 25 to 33 with at least a high school 

level of education.8 These figures clearly illustrate that educational attainment is discrete and 

tends to cluster at degree completion points. In the case of years of education, almost half of the 

sample has exactly 12 years of education and there are jumps in the frequencies at two, four, and 

six years of college education which correspond roughly to Associate’s, Bachelor’s, and 

Master’s (plus) degrees. For the highest degree received, the two most common values, high 

school diploma or Bachelor’s degree, represent over 80% of sampled individuals.  

 We use a second set of linear probability models, building off of equation 1, to 

investigate the probability that a respondent potentially qualifying for SSSBP benefits obtains a 

particular terminal degree: e.g., having a high school diploma, an “other” credential, an 

Associate’s degree, or a Bachelor or graduate degree. We also examine attainment at several 

ages to measure if the program affects people differently at various points during their lives.  

 

3.6.  Results 

The first panel in Table 3 reports the impact of the SSSBP on completed years of 

education by age 23 using several different samples. The first entry shows a 0.564 year increase 

                                                           
8 This matches the original sampling frame of the NLSY79, where respondents were 14 to 22. Moreover, the sample 

is limited to high school graduation because they should be most affected by the SSSBP. 

126



 
 

in the mean years of education completed. This estimate was reported by Dynarski (2003) using 

her sample and variable construction. The next entry under the column titled “Replication 

Sample” uses nearly the same respondents as Dynarski with the variables we constructed to 

match her specification. The point estimate for the replication is 0.327, somewhat lower than 

Dynarski’s estimate. Thus, our variable construction clearly affects the DD point estimates.9 In 

the third column, we report coefficient estimates when we use the Limited Dynarski Sample, and 

the last column provides estimates when we use the Expanded NLSY Sample. All of the point 

estimates are similar, but those obtained using the Expanded NLSY Sample are closest to 

Dynarski’s result and are the most precisely measured. The same is true when we measure years 

of education at age 28 (panel 2). In the last two panels, we report the results for educational 

attainment at age 35 and age 40. Dynarski does not report on educational attainment at these 

older ages. Our point estimates using the Expanded NLSY Sample range between 0.5 and 0.9 

years of education depending on the age when educational attainment is measured. Dynarski’s 

estimates ranged between 0.5 and 0.7. Given the extra sample size and the similarity in result, we 

report estimates for the Expanded NLSY Sample from this point forward. 

 Depending on the sample, variable construction, and age used, one estimates a mean 

increase in educational attainment of between 0.5 and 0.9 years. While this increase is potentially 

important, degree attainment is a stronger signal to employers about human capital accumulation. 

In Table 4, we report the DD estimate for the likelihood of having only a high school diploma in 

the first panel. By age 23, those who were eligible for the SSSBP program were much more 

likely to continue their education following high school than those who had a deceased father 

after the program ended. The DD estimate is nearly 22 percentage points, which on a sample 

                                                           
9 One potential issue is that Dynarski uses the Restricted NLSY79 data to add state fixed-effects. We have applied 

for access to this data and will incorporate these variables in the forthcoming months. 
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weighted average baseline of roughly 60 percent, is very large. This difference persists as the 

potential beneficiaries aged and, notably, may have actually increased over time. By age 30, the 

DD estimate is nearly 30 percentage points. By 35 or 40, the difference is around 25 percentage 

points. Clearly, degree attainment declined for individuals with a deceased father, relative to 

those without a deceased father after the SSSBP was eliminated. Results are both large and 

statistically significant. 

 The next three panels use different degree attainment outcomes, which essentially 

decompose the results reported in the first panel. Panel 2 shows that individuals were 10 

percentage point more likely to receive an “other” credential by age 23, and while estimate 

precision declines for the measure at different ages, the point estimate is fairly constant. In panel 

3, we see an initial increase in the likelihood of an Associate’s degree. By age 23, there is a 7.6 

percentage point increase in the probability of an Associate’s degree and, by age 30, there is an 

8.6 percentage point increase. Both estimates are statistically significant at the 0.10 level. 

However, by age 35, the marginal change in the probability of obtaining an Associate’s degree 

declines to about zero.  

Interestingly, in panel 4, we see little impact on a Bachelor’s degree before age 35, but 

we observe the DD estimates starts to increase around age 30 and becomes larger and more 

significant as the individual ages. By the maximum age in the NLSY, which is typically 

measured after the respondent turns 45, we observe a statistically significant 18.7 percentage 

point increase in the likelihood of a Bachelor’s degree.  

Collectively, this set of results suggests a compelling story. Clearly, the program reduces 

the likelihood that a high school diploma was the terminal degree for SSSBP candidates. When 

one considers the type of degree obtained, we see a couple of patterns emerge. Apparently, some 
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of the beneficiaries used the benefit for “other” credentials and cease their educations once they 

have finished their training. The other group appears to enter a track that uses the subsidy to 

complete his/her Associate’s degree. However, many of this group continued to pursue their 

educations after they no longer receive benefits from the program, which must terminate at age 

22. Therefore, the SSSBP may have pushed these recipients on a different educational trajectory, 

one which ultimately ended in a Bachelor’s degree. 

 To test this interpretation of our results, in Table 5 we show a transition matrix for those 

who reported they had an other credential by age 23 (Panel 1) and those who reported that they 

had earned an Associate’s degree by age 23 (Panel 2) separating the cases into four groups: 

treatment in the pre-period, “pseudo-treatment” in the post-period, and the comparison group in 

the pre- and post-periods. If our hypothesis is correct, we should see flat proportions of 

attainment for the other credential for the pre-treated group and growth in the proportion who 

have a Bachelor’s degree for those with an Associate’s degree as the respondents age. This is 

exactly what we find.  

Among the treated group who had other credentials by age 23, 94 percent remained at 

that degree level by age 30. By age 40, 88 percent had not earned more education. For those in 

the post “pseudo-treatment” group and those in the two comparison groups, this pattern was 

quite similar. Thus, while there may have been some growth in the likelihood of an other 

credential among those who received tuition supports while the SSSBP was in place, there was 

not a lot of additional educational attainment over the life course for this group. 

 Panel 2 conditions the Expanded NLSY sample to those with Associate’s degrees by age 

23. This group follows a much different pattern over the life course than those in the first panel.  

Relative to the comparison groups, we find larger proportionate changes in Bachelor’s degree 
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attainment for the treatment/pseudo-treatment cohorts finishing around the time of the SSSBP 

elimination in May 1982. By the maximum age education was measured, we find that nearly two 

in five in the pre-treated group – e.g., those qualifying for the tuition supports in early adulthood 

– had a Bachelor’s degree. The change observed in Bachelor’s degrees for those in the 

comparison group is somewhere between 20 and 25 percent. Stated differently, youth qualifying 

for SSSBP funds were substantially more likely to receive a Bachelor’s degree or more by the 

end of the sample period than respondents who never would have qualified for the program and 

who had also obtained an Associate’s degree by age 23.  

 

3.7. Sensitivity Analysis 

 Earlier we showed that the post “pseudo-treated” group had much lower percentile AFQT 

scores than the pre-treated group. We included interactions between the covariates and treatment 

groups to potentially account for compositional changes in the treatment groups, but one should 

remain concerned that the composition change remains an issue. This difference could introduce 

an important source of bias into our findings. 

Scholars frequently use a number of econometric techniques to reduce the heterogeneity 

between the treatment groups. One common approach is to match cases. Unfortunately, the 

“pseudo treatment” group is quite small in the post-period and the NLSY does not include many 

measures for the father of the NLSY respondents that are exogenous to the father’s health or that 

could be linked to death. When we attempted to match “treatment” respondents to the 

comparison group, the common support was small and we could not achieve balance in the 

AFQT scores.  

 Instead, one easy approach to test the sensitivity of our results is to trim the sample by 

AFQT scores. Figure 5 shows that the individuals in the post “treatment” group are 
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disproportionately in the bottom decile of the AFQT distribution. These differences could be 

driven by the procedure used to age-adjust the AFQT scores, the smaller sample size, shifts in 

the abilities of the youth with deceased fathers in the post-period, or simply sampling variation. 

To create more homogeneous analytic samples in a straightforward manner, we trim all 

of the samples below the 10th percentile of the AFQT distribution. This choice clearly reduces 

the generalizability of the result: we no longer include those at the bottom of the AFQT 

distribution. Nevertheless, this simple approach creates balance in the AFQT scores for the four 

quasi-experimental design groups. Table 6 shows the same descriptive statistics previously 

reported in Table 2 with the trimmed sample. The t-test column shows that there is no longer a 

statistically significant differences in AFQT scores at any conventional level of significance, 

making the common trends assumption more likely.  

In Table 7, we report the same results as shown in Table 4. While we lose some precision 

with the lost cases, the overall patterns are the same. We see a large increase in the likelihood 

that a high school diploma is an individual’s terminal degree once the SSSBP ended. We also 

observe that the increase in the probability of other credentials is constant across all ages. For 

higher degree attainment, the trends match Table 4: we find an increase in the probability of 

earning an Associate’s degree through age 30 and, starting at age 35, we see a large increase in 

the likelihood of a Bachelor’s degree. 

 

3.8. Discussion and Conclusions 

In the 21st century labor market in the United States, post-secondary degrees are 

increasingly becoming the minimum requirement necessary to obtain financial and employment 

security in an economy no longer providing large numbers of well-paid manufacturing positions. 

However, the costs of higher education continue to skyrocket. To the extent that policymakers 
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are concerned about addressing the growing income and life course divisions in the U.S., 

increasing post-secondary educational outcomes for youth at-risk of living in poverty as adults 

appears to be the surest path towards the middle class and self-sufficiency. This means not only 

increasing access to college but promoting diploma completion. 

While research has consistently shown that federal programs have reduced the burden of 

these higher education costs and have increased college access for many groups – including the 

low-income population, recent high-school graduates, middle-class families, and older students – 

much less is known about college completion. This paper seeks to address this latter shortcoming 

by using the framework established by Dynarski (2003) to explore and isolate SSSBP’s impact 

on post-secondary diploma attainment for a potentially disadvantaged group of students. 

Eligibility for the SSSBP occurred only after a child lost a parent before they turned 18, and low-

income and minority children were much more likely to have a qualifying parent. Thus, the 

estimation strategy utilized by Dynarski provides useful insights into how generous supports, 

which could be used to cover tuition and living expenses, can influence the educational 

attainment of a particularly vulnerable group of students.  

Like Dynarski, we begin by analyzing the programs impact on completed years of 

education. We find that program effects by age 23 and 28 were relatively small and marginally 

significant: roughly 0.5 years more of education, on average, and statistically significant only at 

the 10 percent significance level. By utilizing data collected after her publication, we see that 

program impacts persist, and actually increase in both size and statistical precision, as the 

respondents got older. By age 40, we observe that individuals with potential access to the SSSBP 

have accumulated nearly one more year of post-secondary education. 
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Conceding that 0.93 years of education, on average, does not necessarily translate into 

more degrees, we examine a series of linear probability models which estimate the likelihood of 

having a particular degree type as the highest level of education received at a given age. 

Unequivocally, these models show that youth potentially qualifying for the SSSBP had greatly 

increased probabilities of obtaining degree types beyond a high school diploma. This is true at all 

ages. Notably, it appears that the youth accumulated other credentials or Associate’s degrees 

while qualifying for the SSSBP (i.e., before they turned 22) and, furthermore, a significant 

margin of those with Associate’s degrees would finish their Bachelor’s degree at later points in 

their lives. Relative to other groups of student who had obtained an Associate’s Degree by age 

23, SSSBP qualifiers were over 50% more likely to have completed Bachelor’s degrees by their 

last recorded age in the NLSY survey. Moreover, sensitivity analysis confirms that these 

tendencies were not driven by compositional changes in the four quasi-experimental groups. 

The findings from this study have important policy implications in light of recent 

political developments. In his 2015 State of the Union address, President Obama unveiled a 

proposal which would provide two years of community college education at no cost to students 

maintaining minimum grade point averages and making steady progress toward their degree. 

While this proposal does not exactly match the SSSBP – a program which provided no-string-

attached funds which could cover both tuition and living expenses – our results suggest that 

federal investment in higher education via community college access could substantially increase 

Associate’s degree completion rates by fostering an initial avenue for low-income youth to fund 

their higher education. If SSSBP beneficiaries identified in this analysis are in anyway 

representative of the youth today, students would be closer – and much more likely – to complete 

their four-year degrees as well. With these more advanced degrees, at-risk youth can further 
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increase their human capital and better insulate themselves against structural changes in future 

labor markets. These benefits, in turn, could help policymakers begin addressing some of the 

systemic factors contributing to the diverging destinies for American youth described by 

McLanahan (2004). 
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Recode Degree Attainment by 23 Pre  - Treated

Post 

Pseudo-

Treated

Pre  - 

Comparison

Post - 

Comparison
Total Pre  - Treated

Post 

Pseudo-

Treated

Pre  - 

Comparison

Post - 

Comparison
Total

1 High School Diploma (Or Equivalent) 88 45 1,795 722 2,650 206 50 3,775 780 4,811

2 Other Credentials 12 1 146 18 177 34 1 572 19 626

3 Associate/Junior College 15 1 239 88 343 41 1 529 94 665

4 Bachelor's Plus 19 6 494 172 691 58 7 1,229 175 1,469

Total 134 53 2,674 1,000 3,861 339 59 6,105 1,068 7,571

Recode Degree Attainment by 23 Pre  - Treated

Post 

Pseudo-

Treated

Pre  - 

Comparison

Post - 

Comparison
Total Pre  - Treated

Post 

Pseudo-

Treated

Pre  - 

Comparison

Post - 

Comparison
Total

1 High School Diploma (Or Equivalent) 66% 85% 67% 72% 2,650 61% 85% 62% 73% 4,811

2 Other Credentials 9% 2% 5% 2% 177 10% 2% 9% 2% 626

3 Associate/Junior College 11% 2% 9% 9% 343 12% 2% 9% 9% 665

4 Bachelor's Plus 14% 11% 18% 17% 691 17% 12% 20% 16% 1,469

Total 134 53 2,674 1,000 3,861 339 59 6,105 1,068 7,571

Degree Attainment by Age 23 - NLSY79 Observations
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Sources:  Authors calculations using Census and PSID micro sample data from IPUMS.

Figure 4
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Figure 5

AFQT Score Distribution by Treatment Group
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Variable
Father not 

Deceased
Father Deceased

Father not 

Deceased
Father Deceased

Difference-in-

Differences
t-stat

Mean Family Income 79-82 (2010$) $61,401 $37,546 $60,652 $38,739 -$1,942 -0.36

AFQT Percentile (Age Adjusted) 56.30 55.63 52.74 41.09 10.98 2.08

Black 0.133 0.228 0.150 0.299 -0.054 -0.79

Hispanic 0.050 0.053 0.060 0.055 0.008 0.34

Two-Parent Household 0.874 0.400 0.850 0.307 0.069 0.74

Mother Attended College 0.239 0.123 0.209 0.167 -0.074 -0.87

Father Attended College 0.332 0.186 0.307 0.159 0.002 0.03

Number of Siblings in School 1.72 1.84 1.89 2.15 -0.15 -0.51

Age in 1988 25.95 25.90 23.93 23.94 -0.07 -0.51

Female 0.485 0.490 0.476 0.482 -0.001 -0.01

Attended College by 23 0.504 0.565 0.492 0.354 0.199 2.06

Completed Any College by 23 0.490 0.567 0.475 0.363 0.189 1.93

Years of Schooling at 23 13.43 13.47 13.33 12.91 0.46 1.53

Highest Grade Completed by 28 13.77 13.69 13.74 13.08 0.59 1.75

Max Education Ever Reported 14.20 14.28 14.11 13.23 0.97 2.62

Degree Attainment - Age 23

High School Diploma (Or Equivalent) 0.628 0.586 0.656 0.809 -0.195 -2.20

Other Credentials 0.050 0.094 0.023 0.008 0.058 1.82

Associate/Junior College 0.090 0.108 0.091 0.007 0.101 2.86

Bachelor's Plus 0.232 0.213 0.230 0.175 0.036 0.44

N 2,674 134 1,000 53 3,861

Table 1

Limited Dynarski NLSY Sample - Regression Data Set

High School Seniors: 1979-1981 High School Seniors: 1982-1983

Notes: Analysis is weighted by the 1988 NLSY respondent weights.  Attrition is not explicitly accounted for: the last reported value is assigned to all long-term outcomes.
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Variable
Father not 

Deceased
Father Deceased

Father not 

Deceased
Father Deceased

Difference-in-

Differences
t-stat

Mean Family Income 79-82 (2010$) $55,928 $37,446 $60,291 $37,094 $4,714 1.12

AFQT Percentile (Age Adjusted) 56.23 55.68 52.58 42.28 9.74 1.94

Black 0.125 0.160 0.150 0.254 -0.069 -1.26

Hispanic 0.048 0.057 0.061 0.045 0.025 1.17

Two-Parent Household 0.883 0.427 0.842 0.319 0.067 0.79

Mother Attended College 0.246 0.189 0.212 0.138 0.017 0.25

Father Attended College 0.321 0.206 0.305 0.131 0.060 0.85

Number of Siblings in School 1.59 1.40 1.89 1.86 -0.16 -0.66

Age in 1988 27.86 28.14 23.95 23.93 0.29 1.87

Female 0.502 0.486 0.472 0.487 -0.030 -0.36

Attended College by 23 0.394 0.403 0.489 0.300 0.198 2.45

Completed Any College by 23 0.490 0.550 0.466 0.307 0.219 2.66

Years of Schooling at 23 13.40 13.43 13.29 12.78 0.54 2.15

Highest Grade Completed by 28 13.74 13.71 13.71 12.92 0.75 2.64

Max Education Ever Reported 14.19 14.20 14.10 13.13 0.98 3.24

Degree Attainment - Age 23

High School Diploma (Or Equivalent) 0.590 0.580 0.665 0.835 -0.180 -2.60

Other Credentials 0.099 0.113 0.022 0.007 0.029 1.22

Associate/Junior College 0.086 0.115 0.091 0.006 0.113 4.53

Bachelor's Plus 0.225 0.193 0.223 0.152 0.038 0.58

N 6,105 339 1,068 59 7,571

Table 2

Expanded NLSY Sample - Regression Data Set

High School Seniors: 1981 & Before High School Seniors: 1982-1983

Notes: Analysis is weighted by the 1988 NLSY respondent weights.  Attrition is not explicitly accounted for: the last reported value is assigned to all long-term outcomes.
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By Age 23 Dynarski AER Replication Sample
Limited Dynarski 

Sample

Expanded NLSY 

Sample

Deceased Father X Before 0.564 0.327 0.3520 0.4954*

[0.379] [0.3583] [0.3471] [0.2933]

Observations 3986 3987 3861 7571

By Age 28 Dynarski AER Replication Sample
Limited Dynarski 

Sample

Expanded NLSY 

Sample

Deceased Father X Before 0.727* 0.4030 0.4240 0.6276*

[0.397] [0.3727] [0.3655] [0.3356]

Observations 3986 3987 3861 7571

By Age 35 Replication Sample
Limited Dynarski 

Sample

Expanded NLSY 

Sample

Deceased Father X Before 0.7154* 0.7271* 0.8467**

[0.4106] [0.4002] [0.3486]

Observations 3987 3861 7571

By Age 40 Replication Sample
Limited Dynarski 

Sample

Expanded NLSY 

Sample

Deceased Father X Before 0.8796** 0.8986** 0.9273**

[0.4264] [0.4201] [0.3609]

Observations 3987 3861 7571

Table 3

SSSBP Impacts on Completed Years of Education - NLSY79 Data

Note: Please see Appendix A for a thorough discussion of the controls utilized in this analysis.
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by Age 23 by Age 30 by Age 35 by Age 40 Max Age

Deceased Father X Before -0.2191** -0.2999*** -0.2584** -0.2541** -0.2618**

[0.0962] [0.1008] [0.1024] [0.1042] [0.1037]

by Age 23 by Age 30 by Age 35 by Age 40 Max Age

Deceased Father X Before 0.1011** 0.0990* 0.0963 0.1076* 0.0937

[0.0455] [0.0591] [0.0586] [0.0579] [0.0588]

by Age 23 by Age 30 by Age 35 by Age 40 Max Age

Deceased Father X Before 0.0764* 0.0855* 0.0098 -0.0005 -0.0190

[0.0452] [0.0498] [0.0745] [0.0772] [0.0770]

by Age 23 by Age 30 by Age 35 by Age 40 Max Age

Deceased Father X Before 0.0415 0.1154 0.1523* 0.1471* 0.1871**

[0.0797] [0.0835] [0.0864] [0.0869] [0.0884]

Notes: All regressions are limited to respondents with at least a high school level of education.  "Other credentials" includes qualifications such as 

certificates, licenses, or journeyman's cards (see https://www.nlsinfo.org/content/cohorts/nlsy79/other-documentation/codebook-supplement/nlsy79-

attachment-7-other-certificate for the full list of NLSY79 other certificate codes).  The individual-level controls used in the above modeling were female, 

black, and Hispanic indicators, age-adjusted AFQT score, respondent Age in 1988, and their Census Region in 1979.  Family controls include an indicator for 

those residing in a two-parent household at age 14, the number of siblings still enrolled in school at baseline, and the number of older siblings. Parental 

controls are the mean family income from 1979 to 1982 and dummy variables for whether the mother or father completed college. Indicator variables are also 

used to identify all imputed values.  Standard errors are clustered at the family-level and are in brackets with statistical significance indicated as follows: * 

p<0.1, ** p<0.05, *** p<0.01.

Prob( Diploma = High School )

Prob( Diploma = Other Credentials)

Prob( Diploma = Associates )

Table 4

Exact Degree Attainment by Select Age Thresholds

 Expanded NLSY Data

Prob( Diploma = BA+ )

145



Degree at Age 23 = Other Credential

Treatment Group N @ 23 Other Associates
Bachelors 

Plus
Other Associates

Bachelors 

Plus
Other Associates

Bachelors 

Plus
Other Associates

Bachelors 

Plus

Pre  - Treated 34 94% 6% 0% 91% 9% 0% 88% 12% 0% 88% 12% 0%

Post - "Pseudo-Treated" 1 100% 0% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

Pre  - Comparison 572 86% 6% 8% 82% 9% 10% 80% 9% 12% 80% 9% 12%

Post - Comparison 19 95% 5% 0% 89% 5% 5% 89% 5% 5% 89% 5% 5%

626

Degree at Age 23 = Associates

Treatment Group N @ 23 Other Associates
Bachelors 

Plus
Other Associates

Bachelors 

Plus
Other Associates

Bachelors 

Plus
Other Associates

Bachelors 

Plus

Pre  - Treated 41 83% 17% 76% 24% 76% 24% 63% 37%

Post - "Pseudo-Treated" 1 100% 0% 100% 0% 100% 0% 100% 0%

Pre  - Comparison 529 87% 13% 84% 16% 82% 18% 79% 21%

Post - Comparison 94 85% 15% 79% 21% 78% 22% 76% 24%

665

Degree at 30 Degree at 35 Degree at 40 Maximum Age Ever

Table 5

Transition Matrix - From Other Credential or Associate's Degree to Higher Level Degrees

Degree at 30 Degree at 35 Degree at 40 Maximum Age Ever
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Covariate
Father not 

Deceased
Father Deceased

Father not 

Deceased
Father Deceased

Difference-in-

Differences
t-stat

Mean Family Income 79-82 (2010$) $56,855 $37,814 $62,163 $39,000 $4,121 0.83

AFQT Percentile (Age Adjusted) 58.67 58.05 56.35 51.95 3.79 0.79

Black 0.105 0.143 0.125 0.191 -0.029 -0.55

Hispanic 0.046 0.055 0.057 0.039 0.026 1.16

Two-Parent Household 0.889 0.425 0.850 0.357 0.029 0.30

Mother Attended College 0.254 0.191 0.226 0.174 -0.012 -0.14

Father Attended College 0.333 0.216 0.325 0.165 0.044 0.53

Number of Siblings in School 1.57 1.39 1.85 1.89 -0.23 -0.81

Age in 1988 27.85 28.12 23.92 23.91 0.28 1.67

Female 0.503 0.493 0.484 0.548 -0.074 -0.78

Attended College by 23 0.407 0.414 0.512 0.343 0.177 1.86

Completed Any College by 23 0.506 0.564 0.494 0.362 0.190 1.97

Years of Schooling at 23 13.46 13.49 13.39 12.94 0.47 1.59

Highest Grade Completed by 28 13.82 13.77 13.82 13.12 0.66 1.98

Max Education Ever Reported 14.27 14.28 14.23 13.38 0.86 2.50

Degree Attainment - Age 23

High School Diploma (Or Equivalent) 0.577 0.575 0.648 0.800 -0.154 -1.87

Other Credentials 0.100 0.103 0.020 0.009 0.016 0.64

Associate/Junior College 0.089 0.120 0.092 0.008 0.116 4.34

Bachelor's Plus 0.235 0.202 0.240 0.184 0.023 0.29

N 5635 311 943 44 6933

Table 6

Expanded NLSY Sample - Regression Data Set

High School Seniors: 1981 & Before High School Seniors: 1982-1983

Notes: Analysis is weighted by the 1988 NLSY respondent weights.  Attrition is not explicitly accounted for: the last reported value is assigned to all long-term outcomes.

Exclude AFQT < 10th Percentile
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by Age 23 by Age 30 by Age 35 by Age 40 Max Age

Deceased Father X Before -0.1895* -0.2701** -0.2213* -0.2176* -0.2528**

[0.1062] [0.1131] [0.1157] [0.1180] [0.1166]

by Age 23 by Age 30 by Age 35 by Age 40 Max Age

Deceased Father X Before 0.0737 0.0573 0.0522 0.0629 0.0608

[0.0476] [0.0648] [0.0643] [0.0635] [0.0637]

by Age 23 by Age 30 by Age 35 by Age 40 Max Age

Deceased Father X Before 0.0919* 0.0981* 0.0140 0.0081 -0.0011

[0.0503] [0.0540] [0.0789] [0.0812] [0.0813]

by Age 23 by Age 30 by Age 35 by Age 40 Max Age

Deceased Father X Before 0.0239 0.1147 0.1551 0.1467 0.1930*

[0.0889] [0.0937] [0.0967] [0.0973] [0.1008]

Prob( Diploma = Other Credentials)

Notes: All regressions are limited to respondents with at least a high school level of education.  "Other credentials" includes qualifications such as 

certificates, licenses, or journeyman's cards (see https://www.nlsinfo.org/content/cohorts/nlsy79/other-documentation/codebook-supplement/nlsy79-

attachment-7-other-certificate for the full list of NLSY79 other certificate codes).  Regression controls are the same as those outlined in Table 4. Standard 

errors are clustered at the family-level and are in brackets with statistical significance indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.

Table 7

Exact Degree Attainment by Select Age Thresholds

Expanded NLSY Data - Exclude AFQT < 10th Percentile

Prob( Diploma = High School )

Prob( Diploma = BA+ )

Prob( Diploma = Associates )
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Variable Type Dynarski's Variable Definition
Expanded NLSY 

Variable
Definition

Deceased Father

Childhood family roster information collected in 

1988 is used to identify when the sample child 

stopped living with their father before age 18.  A 

one for this indicator variable signals that the 

NLSY child has their father passed before their 

18th birthday.

Before

This dummy variable identifies all students eligible 

to enroll in college before May 1982.  It is based 

upon grade enrollment information.

AFQT Score

The original AFQT scores were not age adjusted 

to account for the fact that younger children were 

less developed in their abilities than older 

respondents.  Dynarski uses a series of regression 

models to age-adjust these values.

Age Adjust AFQT Score 

(2006)

The NLSY now provides an age adjusted AFQT 

score.

Black Race of the child at baseline (1979).

Hispanic Ethnic group of the child at baseline.

Age in 1988 This variable allows for cohort-specific trends.

State Dummies
These variables identify the location of the 

respondent in the first NLSY survey.

Currently we use Census 

Region Dummies.

With access to the restricted data, we will 

incorporate the state-level indicators.  For 

respondents finishing their degrees before 1979, 

we must assume that the current state is also the 

state in which they went to high school.

Senior-Year Family 

Income / 10,000 ($2000)

This variable measures the family income of the 

respondent during their senior year of high school.  

Values are normalized to 2000 dollars.

Average Family Income 

from 1979 to 1982 

/ 10,000 ($2010)

Rather than using income from a single year, we 

smooth family income over four years from 1979 

to 1982.  Since we lack childhood family income 

for respondents completing high school before 

1979 and no longer living in their childhood 

household, we implicitly invoke the assumption 

that the family income from 1979 to 1982 is 

roughly the same as the income generated by the 

child's family while they were in high school. This 

should be a reasonable assumption for the low-

income children analyzed in the sample, 

Father Attended College
Based upon the educational attainment of the 

respondent's father in 1979.

Mother Attended College
Based upon the educational attainment of the 

respondent's mother in 1979.

Single-Parent Household Construction unclear in Dynarski's Stata code.
Two-Parent Household at 

age 14

The baseline 1979 survey gathers family 

information on all respondents at age 14.  Children 

identified as living with some combination of a 

mother/father (including step-parents) were coded 

as living in two-parent households.

Attended College by (age)

This indicator identifies any student which have 

attended college full-time by a particular age using 

enrollment information.

Years of Schooling at 

(age)

This continuous variable is based upon reoccurring 

sample question which capture the highest grade 

completed.

Degree Attainment by 

(age)

In nearly every wave in the NLSY, information 

regarding the highest diploma awarded was 

recorded.

Appendix A

NLSY79 Variable Construction

Quasi-Experimental 

Group Construction

Individual Controls

Family Controls

Outcomes

Notes: For variables with missing values, we follow the imputation method employed by Dynarski (2003).  First, we assign the average value for the corresponding quasi-experimental 

group used in the regression sample.  Next, we create an indicator to signal the values which have been imputed.

Same as Dynarski

Same as Dynarski

Same as Dynarski

Same as Dynarski
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