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Abstract

Electric power systems (EPSs) are rapidly becoming more complex. Penetra-

tion of distributed generators (DGs) are increasing rapidly. Among them, DG units

with intermittent renewables resources, such as solar or wind, are attracting more

attention. Moreover, plug-in electric vehicles (EVs) are expected to be deployed in

large numbers over the next decade. These changes present opportunities as well as

challenges for reliable and efficient operation of EPS.

Integrating EVs in large scale, would result in over-loading of EPS. Interconnection

of DGs could impact adversely on the system operation including power quality and

safety of the EPS. However, due to the growing number of EVs in the system, faster

charging, shorter battery reaction time, and vehicle-to-grid services, EVs could be

attractive sources for system operators (SOs) to improve system reliability while

creating opportunity for EV owners to gain monetary benefits. In addition, the

potential benefits of DG could be sustained in avoiding or shifting investment in

transmission lines and/or transformers, minimizing ohmic losses, and protecting the

environment.

In this dissertation, potential benefits and challenges of EVs and DGs are explored.

For some potential benefits, the dissertation develops systematic frameworks, in order

to facilitate integration of EVs and DGs into the EPS. Also for some challenges, the

dissertation presents solutions to analyze and overcome related difficulties.

To study consequences of integrating EVs, a comprehensive model of EV operation

is presented. The model covers different modes of operation and includes impact of

battery degradation during the operation. The model is then extended to control a

large group of EVs efficiently. Several possible ancillary services which could be offered

by EVs, including voltage and frequency regulation services, are discussed. Several



systematic frameworks are developed to engage EVs in provision of ancillary services,

from economical and technical view points. Simulation results clearly indicate EVs

ability to participate in ancillary services and possible revenue stream for EV owners.

In terms of DGs, the dissertation addresses a common issue in most of utility

companies and that is the risk of unintentional islanding of interconnected DGs. A

systematic procedure is presented in this dissertation which can detect any possible

operating conditions leading to an unintentional islanding of DGs. The developed

procedure can serve utility companies as an analytical tool for any interconnection

study, in a timely and costly efficient manner. The procedure is not dependent on

the anti-islanding schemes nor DG technologies. Simulation results of different real

case studies prove the generality and practicality of the procedure.



Integration of EVs and DGs into the Electric Power System

for Grid Modernization

by

Mohammad Nikkhah Mojdehi

B.S. University of Guilan, Iran, 2006

M.S. Iran University of Science and Technology, Iran, 2009

DISSERTATION

Submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Electrical Engineering

in the Graduate School of Syracuse University

June 2015



Copyright c©Mohammad Nikkhah Mojdehi 2015

All Rights Reserved



This dissertation is dedicated to my mother, Mahnaz, and my father,

Mohammad-Reza. Their support, encouragement, and constant love

have sustained me throughout my life.



Acknowledgement

There are a lot of people without whom this dissertation could not have been

written and to whom I am deeply indebted.

To my advisor, Prof. Prasanta K. Ghosh, who has steered me from the early stage

of problem formulation to the clarification and carefulness of ideas in this dissertation,

a very special thank for his profound knowledge and brilliant mind, which have allowed

me to build a strong foundation in the field of smart grid through academic training

and industrial practice. This dissertation would have been impossible without his

mentorship.

I want to express my great appreciation to National Grid USA for their support.

During my internship, I gained valuable knowledge and experiences on unintentional

islanding of distribution electric power system. Field data and real case studies pro-

vided by National Grid made this dissertation attractive and practical.

I would like to thank Dr. Makan Fardad for insightful discussions, which enlight-

ened me with ideas in the development of system models and optimization method-

ologies used in this dissertation. A very special thank for his effort and time in helping

me to improve the content of this dissertation through many revisions.

All of my professors that I have encountered as teachers and as advisers have been

brilliant and excited about sharing their understanding. My friends and classmates

have always been around to encourage me to work and support me through hard

times.

vi



Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 EV Related Challenge . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 DG Related Challenge . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Claims of Originality . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.5 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Chapter 2: Integration of DERs into the Micro-Grid . . . . . . 8

1.4.2 Chapter 3: EV Modeling . . . . . . . . . . . . . . . . . . . . . 8

1.4.3 Chapter 4: Reactive Power Service from EVs . . . . . . . . . . 9

vii



1.4.4 Chapter 5: Frequency Regulation Service from EVs . . . . . . 9

1.4.5 Chapter 6: DGs Integration and Micro-Grid . . . . . . . . . . 9

1.4.6 Chapter 7: Conclusion and Future Work . . . . . . . . . . . . 10

2 Integration of DERs into the Micro-Grid 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Carbon Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 OPF Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Wind Energy Production . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Integration of EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Stochastic Nature of EV Usage . . . . . . . . . . . . . . . . . . . . . 28

2.8 Stochastic Optimal Scheduling of Micro-Grid . . . . . . . . . . . . . . 31

2.9 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9.1 Simulation Using Two Points Estimation . . . . . . . . . . . . 33

2.9.2 Monte-Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 41

2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 EV Modeling 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Optimization Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Battery Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 EV Operating Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Aggregator Modeling and Optimization . . . . . . . . . . . . . . . . . 59

3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.1 Single EV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.2 EV Usage Pattern Generation . . . . . . . . . . . . . . . . . . 67

viii



3.6.3 A Group of EVs . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Reactive Power Service from EVs 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Reactive Power Market: A Review . . . . . . . . . . . . . . . . . . . 72

4.3 EV’s Characteristics for Reactive Power Service . . . . . . . . . . . . 76

4.3.1 Inverter Maximum Power . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Power Ripple in Charger . . . . . . . . . . . . . . . . . . . . . 78

4.4 Reactive Power Capability of EV . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Nonlinear Approach . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Linear Approach . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Perturbation in Optimal Solutions . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Nonlinear Approach . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.2 Linear Approach . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Calculation of Reactive Power Supply Function . . . . . . . . . . . . 94

4.6.1 p∗k ≥ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.2 p∗k < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.3 Nonlinear Approach . . . . . . . . . . . . . . . . . . . . . . . 102

4.6.4 Linear Approach . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7.1 Nonlinear Approach . . . . . . . . . . . . . . . . . . . . . . . 104

4.7.1.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.1.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7.2 Linear Approach . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7.2.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



4.7.2.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . 118

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Frequency Regulation Service from EVs 124

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Frequency Regulation: A Review . . . . . . . . . . . . . . . . . . . . 126

5.3 EV’s Capability for Regulation Service . . . . . . . . . . . . . . . . . 129

5.3.1 Perturbation in Optimal Solutions due to Regulation-Up Service130

5.3.2 Perturbation in Optimal Solutions due to Regulation-Down Ser-

vice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Bidding Strategy for Single EV . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Regulation-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.2 Regulation-Down . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Bidding Strategy for an Aggregator . . . . . . . . . . . . . . . . . . . 140

5.5.1 Upper Optimization Level . . . . . . . . . . . . . . . . . . . . 141

5.5.2 Lower Optimization Level . . . . . . . . . . . . . . . . . . . . 141

5.5.3 Post-process Optimization Level . . . . . . . . . . . . . . . . . 141

5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6.2.1 Upper Optimization Level . . . . . . . . . . . . . . . 149

5.6.2.2 Lower Optimization Level . . . . . . . . . . . . . . . 149

5.6.2.3 Post-Process Optimization Level . . . . . . . . . . . 150

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 DGs Integration and Micro-Grid 153

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

x



6.2 Screening Procedure: A Review . . . . . . . . . . . . . . . . . . . . . 157

6.3 Distribution Feeder Modeling . . . . . . . . . . . . . . . . . . . . . . 160

6.4 PV Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.1 Real and Reactive Power Control Scheme . . . . . . . . . . . . 170

6.5 Islanding Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.6 Study Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.7.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.7.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Conclusion and Future Work 192

Glossary 195

xi



List of Tables

2.1 CO2 Emission of Top Ten States (Metric Tons). . . . . . . . . . . . . 14

2.2 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Emission Factors (lbs/MWh). . . . . . . . . . . . . . . . . . . . . . . 36

2.5 System Cost of Each Scenario. . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Simulation Settings for Monte-Carlo Simulation. . . . . . . . . . . . . 43

3.1 Lithium-Ion battery cell degradation specifications. . . . . . . . . . . 64

3.2 EVs battery and charger specifications. . . . . . . . . . . . . . . . . . 65

3.3 Normal Distribution Function Settings for EVs Usage Patterns. . . . 67

4.1 Potential Markets for V2G Services Offered by EV . . . . . . . . . . . 77

4.2 Operating Regions of EV Charger . . . . . . . . . . . . . . . . . . . . 78

4.3 Change in Operation Cost of EV due to Change in Active Power Flow

Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Marginal Cost of Deviation Caused by ∆pk in $/kW. . . . . . . . . . 92

4.5 Rescheduling Active Power Flow Rates in Receding Horizon Due to

Perturbation in the Optimal Solution. . . . . . . . . . . . . . . . . . . 96

4.6 Maximum decrease in charging/discharging power at current time pe-

riod k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



4.7 Simulation settings in each scenario. . . . . . . . . . . . . . . . . . . . 105

4.8 EVs specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 Normal Distribution Function Settings for EV’s Usage Patterns. . . . 120

5.1 Change in Operation Cost of EV due to Provision of Regulation-Up

Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2 Marginal Cost of Deviation Caused by ∆pk During Regulation Up Ser-

vice ($/kW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Change in Operation Cost of EV due to Provision of Regulation-Down

Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Marginal Cost of Deviation Caused by ∆pk During Regulation Down

Service ($/kW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Reschedulale deviation in the SOC of the battery. . . . . . . . . . . . 133

5.6 Reschedulable power during time interval r of receding horizon. . . . 134

5.7 Subsets R, R′, and R′′ of receding horizon in Scenario 1 and Case 1. . 144

5.8 Subsets R, R′, and R′′ of receding horizon in Scenario 1 and Case 2. . 144

5.9 EVs specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.10 Post-process optimization results for assigning AGC signal at 10 a.m. 151

5.11 Post-process optimization results for assigning AGC signal at 2:15 p.m. 152

6.1 Voltage and frequency trip set-points of the PV plants. . . . . . . . . 179

6.2 Transformers specifications of feeder in Case 2. . . . . . . . . . . . . . 186

6.3 Capacitor banks specifications of feeder in Case 2. . . . . . . . . . . . 186

xiii



List of Figures

1.1 Timeline of major events in the U.S. electric grid [3]. . . . . . . . . . 2

1.2 Smart grid features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 U.S. greenhouse gas emission by sectors. . . . . . . . . . . . . . . . . 14

2.2 33-bus Test system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The daily electricity retail price . . . . . . . . . . . . . . . . . . . . . 18

2.4 The daily base load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 PV and WT daily availability. . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Applied CO2 emission tax in Scenario 4. . . . . . . . . . . . . . . . . 19

2.7 Operating cost of the network in Scenario 1. . . . . . . . . . . . . . . 20

2.8 Active power loss in Scenario 1. . . . . . . . . . . . . . . . . . . . . . 20

2.9 Injected power from the main grid in different scenarios. . . . . . . . 21

2.10 Generation scheduling of PVs on buses 4 and 25 in different scenarios. 21

2.11 Generation scheduling of WTs on buses 7 and 30 in different scenarios. 22

2.12 Operating cost reduction in different scenarios in comparison to sce-

nario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 CO2 emission tax in scenario 4. . . . . . . . . . . . . . . . . . . . . . 23

2.14 Active power loss reduction in different scenarios in comparison to

scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xiv



2.15 Weibull probability distribution function for wind speed. . . . . . . . 25

2.16 Typical power curve of WT. . . . . . . . . . . . . . . . . . . . . . . . 26

2.17 Flow of power in proposed algorithm. . . . . . . . . . . . . . . . . . . 31

2.18 34-bus Test system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.19 The WT energy generation. . . . . . . . . . . . . . . . . . . . . . . . 36

2.20 Generation scheduling of DGs . . . . . . . . . . . . . . . . . . . . . . 37

2.21 EV group 1 scheduling: (a) Mean value of charging flow rates; (b)

Mean value of actual charging time. . . . . . . . . . . . . . . . . . . . 38

2.22 EV group 2 scheduling: (a) Mean value of charging flow rates; (b)

Mean value of actual charging time. . . . . . . . . . . . . . . . . . . . 39

2.23 EV group 3 scheduling: (a) Mean value of charging flow rates; (b)

Mean value of actual charging time. . . . . . . . . . . . . . . . . . . . 40

2.24 EV group 4 scheduling: (a) Mean value of charging flow rates; (b)

Mean value of actual charging time. . . . . . . . . . . . . . . . . . . . 41

2.25 EV group 5 scheduling: (a) Mean value of charging flow rates; (b)

Mean value of actual charging time. . . . . . . . . . . . . . . . . . . . 42

2.26 Flowchart of Monte-carlo simulation. . . . . . . . . . . . . . . . . . . 44

2.27 Mean value of daily charging flow rate of EVs. . . . . . . . . . . . . . 45

2.28 Mean value of daily discharging flow rate of EVs. . . . . . . . . . . . 45

2.29 Mean value of daily actual charging time of EVs. . . . . . . . . . . . 46

2.30 Mean value of daily actual discharging time of EVs. . . . . . . . . . . 46

2.31 Mean value of daily DGs scheduling. . . . . . . . . . . . . . . . . . . 47

2.32 Standard deviation of daily DGs scheduling. . . . . . . . . . . . . . . 47

2.33 Mean value of daily voltage profile. . . . . . . . . . . . . . . . . . . . 48

2.34 Standard deviation of daily voltage profile. . . . . . . . . . . . . . . . 48

xv



3.1 Degradation cost of a 16 kWh battery pack used in the Mitsubishi’s i

MiEV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Operating regions of the EV. . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Associated cost of active power flow of an EV. . . . . . . . . . . . . . 57

3.4 Control and operation levels of the EPS including EVs. . . . . . . . . 60

3.5 NYISO daily price of charging/dischrging electrical power. . . . . . . 64

3.6 Charging/discharging schedule of a single EV ignoring the battery

degradation effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Charging/discharging schedule of a single EV including the battery

degradation effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Number of connected EVs. . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Percentage of different EVs in simulations. . . . . . . . . . . . . . . . 68

3.10 Aggregated charging/discharging schedule of a group of 1000 EVs. . . 68

4.1 Short-term dispatch of reactive power services. . . . . . . . . . . . . . 75

4.2 The information exchange between different entities in the short-term

dispatch of reactive power services. . . . . . . . . . . . . . . . . . . . 76

4.3 A typical circuit of EV charger. . . . . . . . . . . . . . . . . . . . . . 77

4.4 Operating limit of EV charger. . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Reactive power capability of the EV: nonlinear approach. . . . . . . . 84

4.6 Perturbation in operating point due to a change in reactive power

service for: (a) Region I; (b) Region II; (c) Region III; and (d) Region

IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Linear cuts for constraint (4.23). . . . . . . . . . . . . . . . . . . . . . 87

4.8 perpendicular distance to the ith linear cut at time interval k. . . . . 88

xvi



4.9 Reactive power capability curve of the EV at time interval k in linear

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 Perturbation in scheduled operating point by increase in reactive power

service for (a) Region I; (b) Region II ; (c) Region III; and (d) Region

IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 Scheduled SOC of the EV battery. . . . . . . . . . . . . . . . . . . . . 95

4.12 Reschedulable active power flow rate at current time period k and

during receding horizon. . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.13 Classifying time intervals of the receding horizon when p∗k ≥ 0. . . . . 99

4.14 Classifying time intervals of the receding horizon when p∗k < 0. . . . . 100

4.15 Flowchart of rescheduling of the receding horizon. . . . . . . . . . . . 101

4.16 Optimal scheduled charging/discharging activities in scenario 1. . . . 105

4.17 Scheduled SOC of the EV battery in scenario 1. . . . . . . . . . . . . 106

4.18 Reactive power supply function of the EV in scenario 1 and time in-

terval k=2, 3, . . ., 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.19 Reschedulable active power in receding horizon of time interval k=1. . 107

4.20 Reactive power supply function during time interval k=1 in scenario 1. 108

4.21 Optimal scheduled charging/discharging activities in scenario 2. . . . 109

4.22 Scheduled SOC of the EV battery in scenario 2. . . . . . . . . . . . . 110

4.23 Reschedulable active power in receding horizon of time interval k=1. . 111

4.24 Reactive power supply function during time interval k=1 in scenario 2. 111

4.25 Reactive power supply function during time interval k=17 in scenario 2.113

4.26 Optimal scheduled charging/discharging activities in scenario 1. . . . 114

4.27 Reschedulable active power in receding horizon of time interval k=4,

in scenario 1 considering the battery degradation factor. . . . . . . . 116

xvii



4.28 Reactive power supply function during time interval k=4 in scenario 1

considering the battery degradation factor. . . . . . . . . . . . . . . . 117

4.29 Reactive power supply function during time interval k=4 in scenario 1

neglecting the battery degradation factor. . . . . . . . . . . . . . . . 118

4.30 Reactive power supply function during time interval k=9 in scenario 1

neglecting the battery degradation factor. . . . . . . . . . . . . . . . 119

4.31 Optimal aggregated scheduled charging/discharging activities in sce-

nario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.32 Reactive power supply function of the aggregator during time interval

k=24 in scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.33 Reactive power supply function of the aggregator during time interval

k=26 in scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.34 Reactive power supply function of the aggregator during time interval

k=30 in scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.35 Reactive power supply function of the aggregator during time interval

k=34 in scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1 Sequential phases in power system operation. . . . . . . . . . . . . . . 127

5.2 Schematic of optimal allocation of AGC signal. . . . . . . . . . . . . . 128

5.3 Frequency regulation service from EV in time step k. . . . . . . . . . 129

5.4 Reschedulable active power flow rate at current time period k and

during receding horizon. . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Classifying time intervals of the receding horizon for provision of regulation-

up service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Classifying time intervals of the receding horizon for provision of regulation-

down service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xviii



5.7 Flowchart of rescheduling during the receding horizon for providing

regulation-up service. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.8 Flowchart of rescheduling during the receding horizon for providing

regulation-down service. . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.9 Flowchart of the aggregator’s bidding strategy calculation for regula-

tion service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.10 Post-process optimization level. . . . . . . . . . . . . . . . . . . . . . 142

5.11 Optimal scheduled charging/discharging activities in scenario 1. . . . 143

5.12 Regulation services in Scenario 1 during time interval k=4 for (a) Case

1 and (b) Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.13 Regulation services in Scenario 1 during time interval k=9 for (a) Case

1 and (b) Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.14 Regulation services in Scenario 1 during time interval k=18 for Case 1. 147

5.15 Regulation services in Scenario 1 during time interval k=14 for Case 2. 148

5.16 Optimal aggregated scheduled charging/discharging activities in sce-

nario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.17 Regulation services in Scenario 2 at 10 a.m. . . . . . . . . . . . . . . 150

5.18 Regulation services in Scenario 2 at 2:15 p.m. . . . . . . . . . . . . . 151

6.1 Anti-islanding schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 SANDIA screening procedure. . . . . . . . . . . . . . . . . . . . . . . 160

6.3 Flowchart of assigning color to each node. . . . . . . . . . . . . . . . 163

6.4 Levelized graph using proposed algorithm. . . . . . . . . . . . . . . . 164

6.5 Flowchart of tracking all paths from each end node to the source node. 165

6.6 Finding path in a graph using proposed algorithm. . . . . . . . . . . 166

6.7 Diagram of a grid-connected PV system. . . . . . . . . . . . . . . . . 168

xix



6.8 The VSC averaged model. . . . . . . . . . . . . . . . . . . . . . . . . 169

6.9 Schematic diagram of a current-controlled real/reactive power con-

troller in dq-frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.10 Control block diagram of a current-controlled VSC system. . . . . . . 173

6.11 Schematic diagram of the distribution feeder under study. . . . . . . . 174

6.12 Mapping of the NDZ in LF-PF space. . . . . . . . . . . . . . . . . . . 176

6.13 Feeder single line diagram in Case 1. . . . . . . . . . . . . . . . . . . 181

6.14 Run-on time in Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.15 NDZ of PV plants in Case 1. . . . . . . . . . . . . . . . . . . . . . . . 182

6.16 Frequency at PCC of PV plants in Case 1, with LF=0.6 and PF=0.9802.183

6.17 Three-phase voltage (phase A with blue, phase B with green, and

phase C with red) at PCC of PV plant 1 in Case 1, with LF=0.6

and PF=0.9802: (a) For time window form 0 to 0.5 second; (b) For

time window form 1.7 to 2.2 second . . . . . . . . . . . . . . . . . . . 184

6.18 Three-phase voltage (phase A with blue, phase B with green, and

phase C with red) at PCC of PV plant 2 in Case 1, with LF=0.6

and PF=0.9802: (a) For time window form 0 to 0.5 second; (b) For

time window form 1.7 to 2.2 second . . . . . . . . . . . . . . . . . . . 185

6.19 Feeder single line diagram in Case 2. . . . . . . . . . . . . . . . . . . 187

6.20 Run-on time in Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.21 NDZ of PV plants in Case 2. . . . . . . . . . . . . . . . . . . . . . . . 188

6.22 Frequency at PCC of PV plants in Case 2, with LF=0.4 and PF=0.9848.189

6.23 Three-phase voltage (phase A with blue, phase B with green, and

phase C with red) at PCC of PV plant 1 in Case 2, with LF=0.4

and PF=0.9848: (a) For time window form 0 to 0.4 second; (b) For

time window form 1.7 to 2.025 second . . . . . . . . . . . . . . . . . . 190

xx



6.24 Three-phase voltage (phase A with blue, phase B with green, and

phase C with red) at PCC of PV plant 2 in Case 2, with LF=0.4

and PF=0.9848: (a) For time window form 0 to 0.4 second; (b) For

time window form 1.7 to 2.025 second . . . . . . . . . . . . . . . . . . 191

xxi



Chapter 1

Introduction

1.1 Background

The electrification of our society has empowered countless advances in other fields such

that the U.S. National Academy of Engineering ranked it as the greatest engineering

achievement of the last century [1]. Electricity consumption per capita has a strong

correlation to social development indices and especially to economic indices (such as

gross domestic product per capita). Increasing electricity consumption per capita

can directly stimulate faster economic growth and indirectly achieve enhanced social

development [2]. Therefore, existing power systems must be able to accommodate

increasing demand of electricity. However, due to limited capacity and aging of the

infrastructure, the preset-day power system is not able to keep up with fast growth

of electricity consumption. That means several events can lead the power system to

major blackouts. Figure 1.1 shows a timeline of some events related to the electricity

grid in the U.S. that have served as harbingers to important changes via mandates

and legislations [3]. PJM in the figure stands for Pennsylvania-New Jersey-Maryland

Interconnection. Several legislative mandates have been put in place to transform the
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existing power system to modernized power system so called Smart Grid.

1965 1970 1975 1980 1985 1990 1995 2000 2005

1967

Blackout in

PJM system

New England blackout

30M people in 10 states 

affected 

1977

1M people in Miami 

lose power

1978

Lightning causes 

blackout affecting 

10M people in NY

1994

2M people in western 

states lose power

1996

Western electricity coordination 

council blackout no. 1

2M people in 14 states affected

1996

Western electricity 

coordination council 

blackout no. 2

7M people affected in 

11 states and 2 

provinces in Canada 

Summer 2001

Power crises 

in CA

Aug. 2003

New England blackout

50M people affected;

Load lost: 62000 MW;

Estimated cost: $6B

Figure 1.1: Timeline of major events in the U.S. electric grid [3].

Although there is no generally accepted definition for smart grid, the U.S. Depart-

ment of Energy defines it as “an electric grid that uses information and communication

technology to gather and act on information, such as information about the behavior

of suppliers and consumers in an automated fashion to improve the efficiency, eco-

nomics, and sustainability of the production and distribution of electricity.” Based

on this definition, it can be inferred that efficiency, economics, and sustainability are

the main goals to move from current power system toward smart grid.

Since smart grid can gather real-time information and provide close to real-time

information of the system, new options have been proposed in the literature to im-

prove the efficiency, economics, and sustainability of the grid [4]- [7]. These options

could include generation, power delivery, and load part of power system. Figure 1.2

demonstrates some possible features of smart grid and their improved area.

In terms of generation, distributed generator (DG) is an attractive option. By
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Choice
Competition

Figure 1.2: Smart grid features.

the Electric Reliability Council of Texas (ERCOT)’s definition, a DG resource is

an electrical generating facility located at a customer’s point of common coupling

(PCC), of ten MW or less and connected at a voltage less than 60 kV which may

be connected in parallel operation to the utility system. Wind turbine (WT), micro-

turbine, and photovoltaic (PV) are examples of DGs. In terms of power delivery,

smart grid and management system enables a system operator (SO) to monitor and

control electric power system (EPS) and interconnected DGs. The better measuring

and communication technology, the more close to real-time control could be applied

by the SO. In terms of load, demand response (DR), and load management systems

are popular solutions to contribute in the smart grid concept. Electric vehicle (EV)

is an attractive tool to facilitate DR.

However, there are also challenges with those above mentioned approaches. The

productions of renewable energy, strongly influenced by weather conditions, are in-

termittent and cannot be forecasted accurately. That results in difficulties in power

system planning and operation. In order to mitigate the adverse impact of those

intermittencies, the stochastic characteristics and the dynamic interplay between re-

newable energy generation and load demand should be carefully considered. Integrat-

ing EVs into the power grid is also very challenging. The unregulated charging of

EVs with fast charging flow rates can results in a heavy load burden on the already

3



stressful EPS and may even cause system to break down.

1.2 Problem Definition

1.2.1 EV Related Challenge

As mentioned in Section 1.1, unscheduled charging of EVs would impose heavy load

on the already stressful EPS. Therefore controlled charging of EVs is inevitable. In

order to control a large group of EVs, a simple operating model of EV is needed. The

model should be accurate to consider different technical and economical aspects of the

EV operation. The model must be comprehensive in order to study EV capabilities

to provide different possible ancillary services.

To engage EVs in different activities, rather than just charging, one should evalu-

ate the economic values of those activities. Those activities could be several ancillary

services including voltage and frequency regulation services. A systematic framework

to evaluate economic values of the services provided by EVs is necessary. Since those

services have to be provided in a real-time or close to real-time basis, the framework

should be easy to implement and scalable to be applied for a large group of EVs.

1.2.2 DG Related Challenge

As addressed in the IEEE 1547 standard, unplanned islanding of the distribution

EPS must be prevented. According to the standard, loss of grid connection must

be detected by DGs within 2 seconds and must lead to immediate trip of the DGs

from the EPS. Hence it is crucial for the utility companies to ensure that connected

DGs preclude any unintentional island risk to the grid. To perform this task, grid

operating conditions in which interconnected DG’s anti-islanding schemes may not
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satisfy the requirements of the standard must be calculated. Although the number

and penetration of DGs are increasing rapidly, a systematic and efficient procedure

for utility companies to evaluate risk of unintentional islanding of interconnected DGs

is missing.

1.3 Claims of Originality

This dissertation builds on the works of many previous research contributions and

adapts well-established theories for EVs operating strategies to participate in energy

and ancillary markets, as well as analyzing the risk of unintentional islanding of

integrated DGs. Nonetheless, the following can be highlighted as contributions, in

each chapter, that are original and distinct.

1.3.1 Chapter 2

1. Development of a deterministic optimal power flow (OPF) in distribution power

system to analyze the effect of CO2 emission cost on distribution system schedul-

ing with PV and WT as power sources.

2. Development of a stochastic model of the distribution system considering un-

certainties for renewable resources and EVs availabilities for charging and dis-

charging. The model includes:

• Stochastic optimal power flow (SOPF) based on two points estimation

method for calculation of optimal scheduling of DGs along with optimal

scheduling of EVs charging to minimize the operating cost of the system.

• SOPF based on Monte-Carlo simulation to analyze the effects of opera-

tion of distributed energy resources (DERs) on social welfare considering
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emission taxes.

1.3.2 Chapter 3

1. Development of the scheduling algorithms for an EV aggregator to minimize

aggregator’s operating cost including:

• Rigorous modeling of the EV which includes charging/discharging modes

of operation and battery degradation cost;

• Approximating of the EV model with a linear program which improves the

efficiency and scalability of the approach;

• Extending formulations for a large group of EVs under the aggregator’s

control.

1.3.3 Chapter 4

1. Development of a structure to calculate the reactive power supply function of

EVs and that includes:

• Analyzing EV’s capability to provide reactive power service.

• Modeling EV as a reactive power service provider (RPSP).

• Inclusion of current ripple limitation of the DC-link capacitor as a con-

straint on optimal EV operation.

• Calculation of the the EV’s reactive power supply function as a step-wise

ascending function, in real-time manner.
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1.3.4 Chapter 5

1. Development of a multi-level optimization algorithm to strategize optimal par-

ticipation of the aggregator in the frequency regulation market. The algorithm

includes:

• Upper optimization level: calculation of optimal charging/discharging sched-

ules of EVs under the aggregator’s control using linear programming;

• Lower optimization level: calculation of optimal aggregator’s biding com-

ponent, capacity, and ascending step-wise energy cost functions, to par-

ticipate in regulation market and comply with Federal Energy Regulatory

Comission (FERC) Order 755;

• Post-process optimization level: optimal assignment of EV battery capac-

ity to satisfy received automatic generation control (AGC) signal from the

SO.

1.3.5 Chapter 6

1. Development of a procedure to evaluate the risk of unintentional islanding of

integrated DGs and that includes:

• Detection of distribution feeder topology and node connectivities, in a sys-

tematic way, from the data that can be obtained from softwares commonly

used by utilities;

• Using generic models of different types of DGs.

• Finding operating regions which results in unintentional islanding, violat-

ing the IEEE 1547 standard.
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1.4 Dissertation Outline

1.4.1 Chapter 2: Integration of DERs into the Micro-Grid

This chapter presents a model based on an OPF, to solve the micro-grid generation

scheduling problem. The objective function of the OPF is to minimize the operating

cost of the micr-grid, considering air pollutants emission cost, retail electricity price of

the grid, price of generated power by DGs, and the weather conditions (including the

wind speed and sun radiation characteristics). The OPF model is then extended to an

SOPF which considers the uncertainty of EV usage pattern. Potential suppliers in the

developed SOPF are the main grid supply, a range of different DG technologies within

the micro-grid, and EVs operated in vehicle-to-grid mode. Solving SOPF based on

two different methods, two points estimation and monte-carlo simulation, we analyze

the effects of operating DERs on social welfare considering emission taxes. Based

on the simulation results, it can be inferred that the three key features of smart grid

(efficiency, economics, and sustainability) are improved through optimal coordination

of EVs charging/discharging and DGs dispatching.

1.4.2 Chapter 3: EV Modeling

After proving the significant impact of EVs on efficiency, economics, and sustainability

of EPS in Chapter 2, we provide a comprehensive EV model in this chapter. To

develop an EV model, the characteristics of the EV charger and battery, the duration

of time over which the EV is connected to EPS, the initial and the owners desired state

of charge (SOC), and the battery degradation factor are discussed in this chapter.

We present a procedure to linearize the EV model that includes charging/discharging

modes of operation as well as battery degradation cost. The model is developed to
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generate the aggregator’s model, capable of controlling a large group of EVs.

1.4.3 Chapter 4: Reactive Power Service from EVs

In this chapter we study the possibility of the EV serving as RPSP. We start with

analyzing technical constraints of the EV to provide reactive power service. Using

the developed model of the EV in Chapter 3, we present a framework to calculate

the reactive power supply function of the EV. The framework can serve the aggre-

gator, representing the participant EVs in the reactive power service, to provide the

aggregated reactive power supply function. The framework is scalable, efficient, and

can be used to calculate the reactive power supply function as a step-wise ascending

order function in real-time basis.

1.4.4 Chapter 5: Frequency Regulation Service from EVs

Capability of EV’s battery to participate in frequency regulation service is investi-

gated in this chapter. Using the EV model presented in Chapter 3, a framework

is presented to accommodate EVs, as distributed energy storages, in FERC Order

755 requirement. That means the service provided by EVs must have appropriate

biding components, including the available power capacity for the regulation service

along with a step-wise ascending energy cost function. The framework developed in

this chapter can serve the aggregator to participate in frequency regulation market,

without lowering the EV owners comfort level.

1.4.5 Chapter 6: DGs Integration and Micro-Grid

As addressed in the IEEE 1547 standard, unplanned islanding of the distribution

EPS must be prevented. According to the standard, loss of grid connection must
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be detected by DGs within 2 seconds and must lead to immediate trip of the DGs

from the EPS. Hence it is crucial for the utility companies to ensure that connected

DGs preclude any unintentional island risk to the grid. In this chapter, a proce-

dure is developed that can be used by the utility companies to analyze the risk of

occurring unintentional islanding due to integrated DG unit(s), in an efficient and

systematic fashion. The developed procedure is not dependent on the DG’s anti-

islanding schemes (active or passive) and can be used as a tool for studying the risk

of islanding in any radial distribution feeder.

1.4.6 Chapter 7: Conclusion and Future Work

This chapter summarizes the researcher’s main contributions and discusses future

research topics in the area, including problems regarding incorporation of EVs in

reactive power service and frequency regulation, at EPS level and from the SO stand

point. Also future research topics related to concerns of DGs interconnections are

discussed. Those topics include possible improvement in the developed procedure, in

order to take into account intermittent nature of renewable energy resources.
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Chapter 2

Integration of DERs into the

Micro-Grid

2.1 Introduction

Nowadays increasing demand of electricity forces power system SOs to operate their

systems close to thermal, mechanical, and electrical limits. Several solutions could

be considered to alleviate those operational conditions like increasing generation,

transmission and distribution capacity, decreasing energy consumption by increas-

ing equipment efficiency, and demand management. These scenarios have their own

advantages and disadvantages. Introducing smart grids as next generation energy

systems provides new capabilities for regulators, utilities, and customers. Those ca-

pabilities cover needs of bi-directional power flow, advanced metering infrastructure,

real-time pricing or more broadly, time-variable pricing, smart devices and in-home

energy management systems, peak load curtailment, demand side management, DR,

demand for high power quality, increased concerns about global climate changes as-

sociated with conventional means of power generation, and integration of DGs.
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Developments in DG technologies and restructuring of power system encourage

using DGs in power system. Several definitions for DG have been presented in the

literature [8]- [9]. This chapter engages in the following definition: DG is an electric

power source connected directly to the distribution network or the customer [10].

The potential benefits of DG is sustained in the following factors: increasing power

quality requirements, avoiding or shifting investment in transmission lines and/or

transformers, minimizing ohmic losses, and protecting the environment [11]- [12].

In terms of environmental concerns, using renewable resources can decrease the

amount of greenhouse gases, such as CO2. Operating PV and WT in a micro-grid,

close to load centers, can help the SO to minimize greenhouse gases emission of EPS.

Achieving this objective concludes optimal power generation scheduling of the micro-

grid. Generation scheduling of the micro-grid is regulating the input power from

the main grid and output power of DGs, meeting the power balance, the limits of

output power of each DG, the bus voltage and the line capacity of the micro-grid,

and minimizing the sum of generation cost and greenhouse gases emission cost [13]-

[17]. Hence the micro-grid scheduling problem can be categorized as an optimization

problem.

DR and load management systems are also popular options to contribute in the

smart grid concept. EVs are an attractive option to facilitate DR programs. Im-

plementing any methodologies in optimal micro-grid operation, considering DGs and

EVs separately, would not be reliable. Considering one facet of the problem, might

not give us the total picture of the system. In addition, evaluating feasibility of

the micro-grid operation (technically and economically) is a crucial part of planning

future smart grid.

This chapter presents a novel model based on an OPF, to solve the micro-grid

generation scheduling problem. We start developing the OPF, first considering DGs
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and CO2 emission. We then extend the proposed OPF formulation to include EVs in

the system operation. Then we add uncertainty of DG output, for renewable energies,

and EV usage pattern into the OPF and upgrade it to a SOPF.

The main contribution of the research in this chapter is summarized as follows:

1. Development of a deterministic OPF to analyze the effect of greenhouse gas

emission on distribution system scheduling with PV and WT.

2. Development of a SOPF considering uncertainties for renewable resources and

EV usage patterns.

3. Analyzing the SOPF with two stochastic methodologies: Two point estimation;

and Monte-Carlo simulation.

2.2 Carbon Emission

CO2 and greenhouse gases emission are usually associated with burning of fossil fuels

in different applications such as transportation, electricity, and etc. Figure 2.1 shows

the U.S. energy-related CO2 emissions by sector from 1990 to 2008 [18]. It can be

seen that in the U.S., electric power sector has the most share in greenhouse gases

emission. Therefore any reduction in greenhouse gases emission in this sector causes

remarkable reduction in the whole amount. Table 2.1 lists CO2 emission from the

top ten states produced by power plants [19].

In this chapter, the focus is on using DGs with renewable resources (WT and PV)

in order to decrease the power generation of conventional remote power plants (fossil

fuels burning) and show its affects on greenhouse gases emission reduction. Next we

develop an optimization problem to define optimal dispatch of DGs.
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Figure 2.1: U.S. greenhouse gas emission by sectors.

Table 2.1: CO2 Emission of Top Ten States (Metric Tons).

State 2009 Emission 2010 Emission
Texas 244,248,050 256,903,967

Florida 119,960,137 130,324,532
Ohio 119,793,429 124,966,156

Indiana 117,544,009 123,695,438
Pennsylvania 114,331,904 123,345741

Illinois 102,752,939 107,082,729
Kentucky 92,614,351 99,246,065
Georgia 81,906,514 86,826,424
Alabama 74,033,748 84,734,388
Missouri 75,774,756 83,279,658

2.3 OPF Formulation

The SO is responsible for operation of the micro-grid. SO must operate the micro-

grid in a way to minimize its operation cost. The operation cost includes several

terms. These terms may vary with different policies. The operation cost of the micro-

grid, considering power generation and CO2 emission cost terms, can be expressed as
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equation (2.1).

T∑
t=1

[pgridt × prrt +
M∑
i=1

pDGit × prDGi ] +
T∑
t=1

CEF × CCE × (pgridt ), (2.1)

where T is the number of time intervals for a day and t is an index for time interval,

M represents number of DGs in the micro-grid and i is an index for DGs, pgridt and

pDGit are injected active power to the micro-grid from main grid and DG respectively.

prrt is retail price of electricity in the micro-grid, prDGi is price of electricity generated

by each DG. CEF and CCE stand for Carbon Emission Factor (kg/kWh) and Cost

of Carbon Emission ($/kg), respectively. First term in the equation is for power

generation cost and the second term calculates the emission cost of network. It is

assumed that in the micro-grid, only PV and WT are operated. Hence the emission

cost associated with these kinds of DGs is zero.

The objective function of the OPF is to minimize the operating cost of the micro-

grid. Therefore the purpose of the proposed OPF, is minimizing equation (2.1),

subject to the following constraints.

pgridt +
∑M

i=1 p
DGi
t = ploadt + plosst , (2.2)

pDGimin ≤ pDGit ≤ pDGimax, (2.3)

V j
min ≤ |V

j
t | ≤ V j

max, (2.4)

P
injj
t =

∑B
k=1 |V

j
t ||V k

t ||Yjk| cos(θjk − δjt + δkt ), (2.5)

Q
injj
t = −

∑B
k=1 |V

j
t ||V k(t)||Yjk| sin(θjk − δjt + δkt ), (2.6)

|Sjkt | ≤ |Sjkmax|, (2.7)

for all t = 1, · · · , T , i = 1, · · · ,M , l = 1, · · · , N and j = 1, · · · , B, where N is

the number of lines in the micro-grid, l is an index for line, B is the number of
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buses in the micro-grid, j and k are indexes for bus, V j
t is bus voltage with phase δjt

(in radian), V j
min and V j

max are minimum and maximum values for amplitude of bus

voltage, respectively. Yjk is the element in row j and column k of the bus admittance

matrix of the micro-grid with angle θjk (in radian). plosst shows active power loss at

time interval t. P
injj
t and Q

injj
t are the net active and reactive power injected to bus j.

Injected power includes generated power from grid and DGs. Sjkt is the transmitted

apparent power (in VA) on the line between bus j and k and its maximum value

is presented by Sjkmax. Constraints (2.2), (2.3), and (2.4) represent the load balance

constraint of the micro-grid, voltage constraint on each bus of the micro-grid, and

generation constraint which are specified as upper and lower limits for the real power

outputs of DG units, respectively. Constraints (2.5) and (2.6) express active and

reactive power flow equations of the micro-grid. Transmitted power of each line is

restricted by equation (2.7). Optimization variables of the proposed OPF are pgridt and

pDGit which are the micro-grid scheduling solutions. The following section provides

some numerical results of developed OPF.

2.4 Numerical Results

The following assumptions are considered in this section:

• The OPF is run for 24 hours a day. It means that the number of time interval

is 24.

• Constant CCE (flat rate) is used.

• Storage devices in operation of renewable energy are not considered.

• V j
min and V j

max are assumed 0.9 and 1 pu respectively, for all buses.
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Figure 2.2 shows a micro-grid [20]. From the figure, it can be seen that four DGs

are installed. Two PV on buses 4 and 25 (G1 and G3), and two WTs on buses 7 and

30 (G2 and G4). Bus 1 is connected to the main grid.

Figure 2.2: 33-bus Test system.

Table 2.2 shows the DGs characteristics used in this simulation. The prices of

generated electricity by DGs are taken from reference [21].

Table 2.2: Simulation Settings

DG Unit
Minimum output

power (kW)
Maximum output

power (kW)
Electricity

price ($/kWh)
PV 0 200 0.21
WT 0 700 0.097

To have realistic solutions, we have used published data on the electricity retail

price and daily base load. The data used in our simulations are shown in Figure 2.3

and 2.4 [22].
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Figure 2.3: The daily electricity retail price

Figure 2.4: The daily base load

PV and WT generations vary with changes in sun irradiation and wind speed,

respectively. These variations are assumed to be according to Figure 2.5. It is worth

noting that the uncertainty in renewable energy resources will be considered when

the SOPF framework is developed. It is also assumed that the fuel used to generate

the imported electricity from the main grid is coal. CEF of burned coal is 95.52 (kg

co2 per MMBtu) [23].

To have a better insight, four scenarios are considered for simulation. In the first

scenario, DG units are not connected to the micro-grid. In second and third scenarios,

DG units are connected to the micro-grid and constant CCE is applied, without and

with considering price of generated electricity by DGs (fourth column of Table 2.2).

The constant CCE in Scenario 2 and 3 is 28.24 ($ per ton CO2) [24]. In scenario
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Figure 2.5: PV and WT daily availability.

4, we generate a linear function representing CO2 emission tax to calculate emission

cost, and also consider the price of generated electricity by DGs. Figure 2.6 shows

the variations of CO2 emission tax in terms of injected power from the grid, used in

scenario 4. The optimization problems of defined scenarios are solved using MINOS

to achieve optimum solutions.

Figure 2.6: Applied CO2 emission tax in Scenario 4.

Figure 2.7 and 2.8 show the operating cost and power loss of the micro-grid for

Scenario 1. From now on, Scenario 1 will be considered as a base case for operating

cost and power loss of the micro-grid under different scenarios.

In the first scenario, total load of the micro-grid is supplied by the power purchased

from the main grid. Figure 2.9–2.11 show the generation scheduling in different
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Figure 2.7: Operating cost of the network in Scenario 1.

Figure 2.8: Active power loss in Scenario 1.

scenarios. Since PVs and WTs are assumed to have similar characteristics, their

generation scheduling are the same. As expected, in Scenario 1, the micro-grid is fed

by the injected power from the main grid. In Scenario 2, all DG units are scheduled

at their maximum output. The rational is to create a scenario in which constant

CO2 tax is applied, but the price of generated electricity by DGs are not considered.

The effect of price of generated electricity by DGs with constant CO2 emission tax

can be seen from simulation results in Scenario 3. Comparing to the results from

Scenario 2, it can be seen that in Scenario 3, DG units have lower shares in generation

scheduling. Therefore it can be concluded that the applied CCE in this scenario is
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not high enough to include all DG units at their maximum output in the generation

scheduling. Also the decision to operate DG units at their maximum output, must

take into consideration the price of their generated power.

Figure 2.9: Injected power from the main grid in different scenarios.

Figure 2.10: Generation scheduling of PVs on buses 4 and 25 in different scenarios.

Since the price of generated electricity by DGs is not considered in Scenario 2,

it can be seen that operating cost decreases incredibly comparing to Scenario 1. In

scenario 2, SO dispatches all DG units at their maximum output power to avoid the

cost of CO2 emission imposed by the injected power from the main grid. Applying

price of generated electricity by DGs in scenario 3, forces SO to look for an optimal
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Figure 2.11: Generation scheduling of WTs on buses 7 and 30 in different scenarios.

point to decrease the operating cost, considering DG units cost. In this scenario,

if CCE is too low, SO prefers to purchase power from the main grid to avoid the

additional cost caused by DGs. So low CCE could not support integration of DGs

in the micro-grid, economically. Increasing CCE can support utilizing DGs but in

association with higher operating cost. Figure 2.12 also depicts that even though SO

purchases more power from DGs, the operating cost of the network increases due to

comparatively high electricity price of DGs.

Figure 2.12: Operating cost reduction in different scenarios in comparison to scenario
1.

Figure 2.13 shows the CO2 emission tax for Scenario 4. It can be seen that the

CO2 emission tax in scenario 4 follows the variations in loads. Increase in loads yields
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increase in CO2 emission tax. At time intervals 15 and 16, CO2 emission tax is high

enough for SO to operate PVs in Scenario 4. Also during time intervals 11 to 20,

CO2 emission tax is high enough for SO to operate WTs in Scenario 4.

Figure 2.13: CO2 emission tax in scenario 4.

Figure 2.14 shows that operation of DG units in the micro-grid can decrease ohmic

loss. The ohmic loss reduction in Scenario 3 is the least among the other scenarios.

The maximum active power loss reduction during the peak load in Scenario 2, 3, and

4 are 11.61%, 3.3%, and 11.07% of the maximum active power loss in Scenario 1,

respectively.
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Figure 2.14: Active power loss reduction in different scenarios in comparison to sce-
nario 1.
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Comparing simulation results for all four scenarios, it can be concluded that ap-

plied CCE in Scenario 3 is not high enough to force SO to operate DG units at their

maximum output. Whereas applying the same CCE in Scenario 2, ignoring the price

of generated electricity by DGs, encourages SO to operate DGs at their maximum

output. Increasing CO2 emission tax could lower CO2 emission by forcing SO to

operate DGs at their maximum output, even it may increase operating cost of the

micro-grid.

Results in this section, indicate the potential benefit of DGs in reduction of green-

house gases emission. Next, we investigate uncertainty of WT generation, in order to

take intermittency into the consideration.

2.5 Wind Energy Production

Production of wind energy depends on the geographical location and WT. Given a

specific WT, the production of wind energy is highly correlated with the wind speed.

Therefore the production of WT can be predicted based on the expected behavior

of wind speed. Parametric model and non-parametric models are commonly used

techniques to analyze the behavior of wind speed. Parametric models work with

probability distribution function (pdf) but non-parametric models depend on mean

and standard deviation (without having the pdf). The focus here is on a parametric

model. Weibull distribution function is the most commonly used pdf to describe the

behavior of wind speed [25]. The pdf and cumulative distribution function (cdf) of

Weibull distribution are given as follows [26]:

f(v) = (
k

c
)(
v

c
)k−1e−( v

c
)k , (2.8)

24



F (v) = 1− e−( v
c

)k , (2.9)

where v represents the wind speed. c and k are parameters of Weibull distribution

function called scale and shape parameter, respectively. Figure 2.15 depicts the pdf

of Weibull distribution for different scale and shape parameters.
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Figure 2.15: Weibull probability distribution function for wind speed.

Based on the pdf and the power curve of the WT, the output power of WT can

be calculated. Figure 2.16 shows the typical power curve of a WT. In this figure, four

operating regions can be recognized. Standby region (for the wind speed below cut-in

speed vci) with zero output power, nonlinear power production region (for the wind

speed between cut-in speed and rated speed vr) with nonlinear function for output

power, rated power region (for the wind speed between rated speed and cut-off speed

vco) with the rated output power Pr, and cut-off region (for the wind speed higher

than cut-off speed) with zero output power.

The operating regions of a typical power curve of WT can be expressed as follows
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Figure 2.16: Typical power curve of WT.

[27]:

P (v) =


0 v < vcior v > vco;

Pr(A+Bv + Cv2) vci ≤ v ≤ vr;

Pr vr ≤ v ≤ vco;

(2.10)

Calculation of coefficients A, B, and C, related to the nonlinear region, can be found

in referee [27].

Another source of uncertainty in the micro-grid, is EV. Integration of EVs into

the miro-grid may affect the optimal generation scheduling of the micro-grid. In the

following section, the stochastic nature of EVs and its coordination with DGs are

discussed.

2.6 Integration of EVs

The focus of the rest of this chapter is to evaluate the feasibility of using DGs and

EVs in coordinated fashion. Integration of DGs and EVs has several advantages and
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difficulties. For maximum utilization of renewable resources with intermittent nature,

storage devices are inevitable. Super capacitor, flywheel, pumped storage, compressed

air, battery, and superconducting magnetic technologies [28]- [30], are some examples

of storage devices. Each of these storage devices has its advantages, disadvantages,

and limitations. In addition, to have them in the system, extra investment must be

done. Considering rapid increase in number of EVs, they can be used as distributed

storage systems in grid operation.

In his 2011 State of the Union address, President Barack Obama set the goal for

the U.S. to become the first country to have 1 million EVs on the road by 2015 [31].

Vehicle batteries could provide services to electricity sector (vehicle-to-grid). Quick

battery reaction time has made vehicle-to-grid applications, an attractive solution to

stabilize the fluctuations from intermittent sources (such as wind and solar). Inte-

grating EVs into the EPSs, can provide distributed storages for SO without extra

investment. However, uncontrolled EV charging/discharging may impose more bur-

dens on power systems. Coordinated charging/discharging of EVs along with optimal

scheduling of DGs can help SO to operate its system in an efficient, economic, and

sustainable manner.

Reference [32] presented a framework and an optimization methodology for de-

signing grid-connected systems that integrate plug-in EV chargers, DGs, and storage

devices. In reference [33], by applying a non-cooperative game theoretical framework

for charging and discharging of multiple plug-in hybrid EV batteries, energy consump-

tion of a smart building was optimized. The optimized cost estimation was based on

exogenously specified tariffs and market prices. As far as we searched in literature,

the charging/discharging scheduling of EVs along with the operation of intermittent

renewable resources, at system-wide level, is missing.

In the rest of this chapter, we present a new model in which market clearing prices
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are endogenously determined. Potential suppliers include the main grid supply, a

range of different DG technologies within the micro-grid, and EVs operated in vehicle-

to-grid mode. We allow for supply uncertainties for renewable resources and also allow

for uncertainties in EV availability for charging and discharging. Using a SOPF, we

analyze the effects of operating DERs on social welfare considering emission taxes.

2.7 Stochastic Nature of EV Usage

In smart grid concept, EV can communicate with SO in real-time and can be charged

at various charging flow rates. Therefore SO is able to perform centralized integration

and control for EV charging. By applying new algorithms and automatic operation

strategies for more precise and efficient load control, SO can save on operating cost

while still satisfying customer’s charging demand.

During an scheduled charging period, SO collects information from both the power

grid and connected EVs and instructs the grid to charge each EV with a charging

flow rate given by scheduling algorithm at each time interval. The charging flow rate

is limited by EV charger’s limit and also the power system delivery capacity.

In addition to power consumed by EVs, SO should also consider the basic daily

power loads contributed by all other electronic appliances (e.g. refrigerators, coffee

makers, washing machines, and etc) which are considered uncontrollable loads (loads

which cannot be controlled by SO). Those loads are referred to as base load in this

chapter. Values of base load should be counted towards the total power load and can

be estimated from historical data.

The time of connection an EV to the micro-grid can be random. An EV can

be connected to or disconnected from the micro grid at any time according to the

customer’s need. As stated in cutting edge framework [34], a customer will inform
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SO with his/her desired departure time and final SOC of the EV battery, once the

EV is connected to the micro-grid. Each charging task can be characterized by a

5-tuple (l, sl, fl, el, e
′
l), where l is the index for EV, sl is the starting time, fl is the

desired finishing time, el is the initial SOC of the battery and e′l is the desired SOC

at finishing time.

For simplicity of problem formulation, we convert the charging time from hour :

minute format to a number between 0 and 24. For example, suppose that an EV i is

connected to the grid at 6:15 p.m. with an initial SOC of 0.6 and is scheduled to leave

at 7:30 a.m. in the next day, with the battery fully charged. Then the corresponding

charging task can be presented as (i, 6.25, 19.5, 0.6, 1).

We define a charging/discharging schedule for a given charging/discharging task

i as a vector Φi = [chri,1, dchri,1, ..., chri,t, dchri,t, ..., chri,T , dchri,T ]. Each entry of

the vector specifies the charging and discharging flow rate at time interval t, where

chri,t and dchri,t are the charging and discharging flow rate of the ith EV in time

interval t, respectively. The charging/discharging schedule must satisfy the following

constraints:

xi,t =



ei, ∀i, t = bsic,

e′i, ∀i, t = dfie,

Ei[hi,t−1chri,t−1−hi,t−1
′dchri,t−1]

Ci

+xi,t−1 otherwise,

(2.11)

CHRi,t
′ ≤ chri,t ≤ CHRi,t, (2.12)

DCHRi,t
′ ≤ dchri,t ≤ DCHRi,t, (2.13)

where xi,t is the SOC of the ith EV at time interval t; Ei and Ci are the charg-
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ing/discharging efficiency and the battery capacity of the ith EV, respectively. Set

of equations (2.11) guarantees that the EV is charged to the desired SOC at the end

of charging/discharging scheduling. Note that in these equations hi,t and hi,t
′ give

the actual charging and discharging time of each EV during each time interval, re-

spectively. Equations (2.12) and (2.13) express the minimum and maximum limits

for charging and discharging flow rate of each EV at each time interval. The value of

hi,t and hi,t
′ must satisfy the following maximum limit (their minimum value is zero):

[hi,t + hi,t
′]max =



1, bsic < t < bfic;

1, t = bsic, si = bsic;

1, t = bfic, fi = bfic;

dsie − si t = bsic, si 6= bsic;

fi − bfic, t = bfic, fi 6= bfic;

0, otherwise.

(2.14)

The initial SOC of each EV depends on the traveled distance by each EV. Con-

sidering average daily travel distance and assuming that the SOC of an EV drops

linearly with the traveled distance, the initial SOC can be expressed as follows [35]:

ei = 1− αd

dR
, (2.15)

where α is the number of days the EV has traveled since last charge, d is the daily

traveled distance by the EV, and dR is the maximum range of the EV. A typical value

for dR is 80 miles [36]. Considering normal distribution for the EV usage pattern,

sc, the probability density function of the initial SOC, is given by the following

equation [35]:
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sc(ei;µ, σ) =
1

dR
α

(1− ei)
√

2πσ2
× e−

[ln(1−ei)−(µ−ln( dRα ))]2

2σ2 ; (2.16)

After modeling stochastic nature of renewable resources and EV usage patterns,

next we provide and SOPF in order to achieve optimal generation scheduling of the

micro-grid.

2.8 Stochastic Optimal Scheduling of Micro-Grid

SO as the only entity responsible to operate the micro-grid, must utilize the available

resources in efficient, economic, and sustainable fashion while satisfying the demand

and system constraints. To reach this goal, SO should run an OPF. Consider a

micro-grid in which DGs, EVs, and several loads (base load) are connected. SO

must decide how to schedule the output of available power sources (including DGs,

the main grid power, and vehicle-to-grid services from EV). Figure 2.17 depicts flow

of power in the system. Based on the objective function of SO, he/she decides on

the dispatched power of the main grid and DGs. It also decides on the amount of

charging/discharging flow rate of each EV and its time in a way that ensures the EV

is ready when needed by the owner.

Grid

Power
DGs

SO

Charging/Discharging Base Load

EVs

Figure 2.17: Flow of power in proposed algorithm.

The following equation presents the proposed objective function of SO. Note that
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the optimization variables in this minimization are pgridt , pDGit , chrl,t, hl,t, dchrl,t, and

hl,t
′.

min
T∑
t=1

[pgridt × prrt +
M∑
i=1

pDGit × prDGi

+
N∑
l=1

prrt × chrl,t × hl,t −
N∑
l=1

prrt × dchrl,t × hl,t′]

+
T∑
t=1

[CEF × CCE × (pgridt +
M∑
i=1

pDGit )]

+
T∑
t=1

[SEF × CSE × (pgridt +
M∑
i=1

pDGit )]

+
T∑
t=1

[NEF × CNE × (pgridt +
M∑
i=1

pDGit )],

(2.17)

where N is the number of EVs in the network; and l is an index for EVs. SEF and

CSE represent sulfur oxides Emission Factor (kg/kWh) and Cost of sulfur oxides

Emission ($/kg), respectively. NEF and CNE show nitrogen oxides Emission Factor

(kg/kWh) and Cost of nitrogen oxides Emission ($/kg), respectively. The first and

second terms in the equation are for power generation cost, the third term captures

battery wear, and the last term calculates the emission cost of the air pollutants from

the grid network.

The proposed OPF in this section minimizes equation (2.17) and is subject to

constraints (2.2)-(2.7) and (2.11)-(2.14).

2.9 Numerical Results

The following assumptions are considered during the simulations:

• The OPF is run for 24 hours a day. It means that the number of time interval
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is 24.

• Constant CCE, SCE, and NCE (flat rate) are used.

• V j
min and V j

max are assumed to be 0.9 and 1 pu respectively, for all buses.

• Weibull distribution is used for wind speed.

• Normal distribution is used for EV usage pattern.

Figure 2.18 shows the test micro-grid [26]. As shown in the figure, three DGs are

connected to the network. DG1 and DG2 are WTs with 1.5 MW capacity and DG3

is a natural gas micro-turbine with 1 MW capacity. Five groups of EVs are included

in the network. Bus 1 is connected to the main grid.

For simulation we have used two different stochastic methods: Two points esti-

mation; and Monte-carlo simulation. During simulation with two points estimation,

we assume that the EVs are allowed to just charge, and the renewable DGs out-

puts are certain. For simulation with Monte-carlo method, we allow EVs to charge

and/or discharge and we consider uncertainty in renewable DGs outputs and EVs

usage patterns.

2.9.1 Simulation Using Two Points Estimation

To account for the uncertain nature of renewable resources we perform probabilistic

load flow analysis using the two points estimation method. In the two points es-

timation method [37] we assume that we have mean and variance of the uncertain

variables. Then for each of the uncertain variables we run the power flow twice for

the value above the mean and the other below the mean. These two points may be

symmetric about the mean or not. We investigate the symmetric one. While doing

this for one uncertain variable we assume that the other uncertain variables are at
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Figure 2.18: 34-bus Test system

their mean values. By doing this to each of the uncertain variables we obtain a set

of outputs which are then further used to calculate the mean and the variance of the

outputs.

In this part, we assume 40 EVs in each group and we use the electricity retail

price and daily base load provided in section 2.4.

We set EV battery related parameters, including the charging rate limit and bat-

tery capacity, based on the specification of the Li-ion battery model of a modern

EV [38]. Since most customers will charge their EVs during night time, we consider

a charging scheduling period starting from 12:00 p.m. (noon) and ending at 12:00

p.m. (noon) in the next day. N charging tasks were generated for a scheduling pe-
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Table 2.3: Simulation Settings

Mean of si 6 pm
Mean of fi 7 am

Standard deviation of si 2 hours
Standard deviation of fi 2 hours

Ei 0.9
Ci 16 kWh
Pi 4.4 kW
P ′i 0 kW

riod from 12 p.m. (noon) to 12 p.m. in the next day to simulate the overnight EV

charging. To reflect the real-life commute pattern [39], the starting time, si, follows

a normal distribution with a mean of µ = 6 p.m. and a standard deviation of σ = 2

hours; the desired finishing time, fi, follows a normal distribution with µ = 7 a.m.

and σ = 2 hours; and the initial SOC, ei, is also a random variable uniformly dis-

tributed in the range [0.5, 1]. The desired SOC is set to 1 (fully charged) for each EV,

i.e., e′i = 1, i ∈ {1, · · · , N}. The charging efficiency is 0.9 for all EVs. The related

simulation settings are summarized in Table 2.3:

Real wind speed data are taken from reference [40] and are converted to wind

energy generation, as shown in Figure 2.19. The wind energy forecast error follows

the error distribution given in reference [41].

The optimization variables in this OPF problem are pgridt , pDGit ,hi,t, and chri,t for

all time intervals. 200 EVs considered in this study are divided in five EV groups (40

EVs in each). Table 2.4 shows the emission factors that used in this study [42]. Note

that the micro-turbine uses natural gas and emits air pollutants.

Since micro-turbine emits lower air pollutants than the grid (using coal), it is ex-

pected that SO prefers to use it more. Also locating micro-turbine in the micro-grid,

causes lower power loss which means lower cost for SO. On the other side, using re-
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Figure 2.19: The WT energy generation.

Table 2.4: Emission Factors (lbs/MWh).

Fuel CO2 SOx NOx

Conventional Coal 2425.5 13 6
Natural Gas 1254 0.1 1.7

newable resources like wind, causes zero cost in terms of air pollution. However, since

the power production of these units are costly, SO has to decide on their scheduling,

in an optimal way, to decrease the network operating cost.

Figure 2.20 shows the optimal scheduling of DGs in the network. It can be seen

that DG3 (micro-turbine) has been scheduled to generate power with full capacity

(1 MW) in all periods. The reason is that dispatching micro-turbine reduces overall

emission cost. Also at periods 12 through 18, WTs are dispatched to minimize the

overall cost.

EVs, as variable loads with flexibility in terms of charging flow rate and time of

charging, are another parameter which should be taken in consideration by SO. Using

OPF, SO must decide on optimal charging schedule (flow rate and time of charging)

for each EV with particular pattern (starting and finishing time of charging, initial

and desired SOC). Based on the available generation scheduling, the optimal charging
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Figure 2.20: Generation scheduling of DGs

scheduling for EVs could be calculated. Figure 2.21 to 2.25 show the mean value of

optimal charging scheduling for all EV groups. This optimal charging scheduling

seems more meaningful when there are some renewable resources in the micro-grid.

Since the emission cost has been applied in the objective function of the OPF, SO

scheduled DGs generation and EVs charging in a way to decrease the emission cost

as well as the power supply cost. Based on the OPF results, it can be seen that the

scheduled charging for EVs are mostly during the off-peak periods or during DGs

dispatching time intervals.

In order to quantify the impact of DGs on the operating cost of the micro-grid,

we evaluate the operating cost for three scenarios. In the first scenario, all DGs are

disconnected. In the second scenario, just micro-turbine is considered. Note that the

operation of micro-turbine is associated with emission cost. In the third scenario, all

DGs (micro-turbine and WTs) are considered. Note that scheduling results presented

above are related to the third scenario. The mean value of the micro-grid operating

cost of three scenarios are listed in Table 2.5, where cost reduction means the cost

reduced from the first scenario.
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(a)

(b)

Figure 2.21: EV group 1 scheduling: (a) Mean value of charging flow rates; (b) Mean
value of actual charging time.

From Table 2.5, it is clear that integrating DGs in the network (especially with low

emitting resources like wind) and their optimized usage indeed decrease the micro-grid
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(a)

Hour

(b)

Figure 2.22: EV group 2 scheduling: (a) Mean value of charging flow rates; (b) Mean
value of actual charging time.

operating cost.
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Hour

EV Number

(b)

Figure 2.23: EV group 3 scheduling: (a) Mean value of charging flow rates; (b) Mean
value of actual charging time.
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Hour EV Number

(a)

(b)

Figure 2.24: EV group 4 scheduling: (a) Mean value of charging flow rates; (b) Mean
value of actual charging time.

2.9.2 Monte-Carlo Simulation

Due to the computational time, we have assumed 5 EVs in each group. For retail

price of electricity, we have used the average March 2013 monthly price of New York
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(a)

(b)

Figure 2.25: EV group 5 scheduling: (a) Mean value of charging flow rates; (b) Mean
value of actual charging time.

42



Table 2.5: System Cost of Each Scenario.
Operating Scenario Cost ($) Cost Reduction (%)

First Scenario 416,464.52 0
Second Scenario 401,761.92 3.5
Third Scenario 394,085.3 5.3

Independent System Operator (NYISO) for Upstate. To consider uncertainty in wind

energy production and EV usage pattern, we use monte-carlo simulation. To gener-

ate samples, we use Weibull distribution for WTs. Note that normal distribution is

used for EV usage pattern (initial SOC, starting time and finishing time of schedul-

ing). Figure 2.26 depicts the flowchart of the monte-carlo simulation applied in the

optimization of operation cost reduction.

We have considered two different wind patterns for two WTs in our simulation.

For one WT we consider c1 = 11.1 m/s and k1 = 2.17 and for the other WT we

assume c2 = 14 m/s and k2 = 1.5 as their scale and shape parameters [11]. Table 2.6

presents the information for EV usage pattern [26], [35], [43].

Table 2.6: Simulation Settings for Monte-Carlo Simulation.

Mean of si 6 pm
Mean of fi 7 am

Standard deviation of si 2 h
Standard deviation of fi 2 h

Mean of travelled distance 22.3 miles
Standard deviation of travelled distance 12.2 miles

Ei 0.9
Ci 16 kWh
T 24

CHRi,t, DCHRi,t 4.4 kW
CHRi,t

′, DCHRi,t
′ 0 kW

The optimization variables in this OPF problem are pgridt , pDGit , hi,t, chrl,t, hi,t
′,

43



Start

Initial input data and 

simulation conditions

Generate daily individual EV 

usage pattern based on selected 

distribution function

Generate hourly wind speed and each 

wind turbine output power guided by 

the selected distribution function 

Run hourly OPF considering 

available energy sources and load 

profile

Number of 

simulations is 

met?

Hourly OPF has 

been run for 24 hours 

the day?

Finish

N
ex

t 
h

o
u

r

N
ex

t 
si

m
u

la
ti

n
g

 d
ay

yes

yes

no

no

Figure 2.26: Flowchart of Monte-carlo simulation.

and dchrl,t for all time intervals. 25 EVs considered in this study are divided into

five EV groups (5 EVs in each). Table 2.4 shows the emission factors that are used

in this study [42].

Figure 2.27 and 2.28 show the mean value of daily charging and discharging

scheduling of EVs, respectively. Figure 2.29 and 2.30 also show the mean value

of actual charging and discharging time of EVs, respectively. From figures, it can be

seen that the OPF tries to use EVs discharged power mostly during on-peak hours,

in order to satisfy demand. Most of charging tasks of EVs also have been scheduled
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during off-peak periods.
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Figure 2.27: Mean value of daily charging flow rate of EVs.
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Figure 2.28: Mean value of daily discharging flow rate of EVs.

Since the marginal cost associated with WT production is zero, WTs are always

dispatched at their maximum available power. The associated cost of power produc-

tion from micro-turbine is assumed 3 cent per kWh. The nature of micro-turbine is
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Hour

Figure 2.29: Mean value of daily actual charging time of EVs.

Hour

EV Number

Figure 2.30: Mean value of daily actual discharging time of EVs.

deterministic. Since it is closer to the load center and is relatively cheaper than power

from the main grid, it will be dispatched almost for all periods. Figure 2.31 and 2.32
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show the mean value and standard deviation of DGs generated power.
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Figure 2.31: Mean value of daily DGs scheduling.
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Figure 2.32: Standard deviation of daily DGs scheduling.

Figure 2.33 and 2.34 depict the variation of voltage magnitude of the system.

These figures prove that the solution of proposed algorithm keeps the system safe

and within its constraint. Mean value and standard deviation of daily operation cost

correspond to our test system is $63571 and $15477, respectively.

Based on the simulation results, it can be inferred that the three key features

of smart grid (efficiency, economics, and sustainability) can be improved by coordi-

47



Hour

Bus Number

Figure 2.33: Mean value of daily voltage profile.

Hour

Bus Number

Figure 2.34: Standard deviation of daily voltage profile.

nated using of renewable resources and EVs. The proposed algorithm in this chapter

utilized the renewable and less-polluting resources in an efficient way that decreases

the operating cost of the system while satisfying all security constraints (voltage and

current constraints) and EV owners comfort level.

2.10 Conclusion

This chapter presented a model based on different OPFs to minimize operating cost

of a micro-grid, considering greenhouse gases emission cost. From simulation results,
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it can be seen that, applying fixed emission tax structures as penalty factors, without

considering the price of generated electricity by DGs, may not encourage operation

of DG units. On the other hand applying high emission tax forces SO to operate

DG units while it raises operating cost. Any increase in operating cost would yield

higher prices for end users. Therefore policy makers need to consider the level of

impact on end users, DG owners, and environmental concerns before the decisions are

made. Integrating EVs in the micro-grid can help SO to utilize renewable energies in

system operation. Results of the developed SOPF in this chapter clearly indicate that

optimal coordinated DGs dispatch along with EVs charging/discharging scheduling,

leads SO to operate the micro-grid in an economical, safe, and environmental friendly

fashion. Therefore, one can conclude that DGs and EVs can have positive impacts

on the system operation, if the optimal coordination is applied. In the following

chapters, comprehensive modeling of EVs, different beneficial services from EVs, and

systematic frameworks to engage them in the system operation are presented.
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Chapter 3

EV Modeling

3.1 Introduction

Nowadays penetration of EVs is increasing rapidly. The market share of EVs is

predicted to increase at a compound annual growth rate of 39% between 2012 and

2020 [44]. EV penetration level into the existing EPS can be increased significantly

through intelligent coordination of their charging/discharging schedules [45]. This

coordination can be done by an aggregator. An EV charging/discharging network

is then defined as a cyber-physical system, which includes a power grid and a large

number of EVs as well as aggregators that collect information and control charging

procedures of connected EVs.

Exploiting maximum benefits of EVs through providing different possible services

as well as charging EVs with minimum cost, require a precise operating model of

EVs. This model should be simple to be implementable for large number of EVs

and at the same time accurate enough to capture all cost terms associated with EVs

operation. In this chapter, a model of EV is developed. All constraint including the

initial and desired SOC, minimum and maximum SOC, arrival and departure time,
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charger characteristics, and battery characteristics are considered in the model. The

developed model then will be expanded to a large group of EVs, under an aggregator’s

control.

The main contribution of the research in this chapter is summarized as follows:

1. Modeling EV and defining an objective function to calculate the operating cost

of the EV including battery degradation cost.

2. Approximating of the optimization problem with a linear program which im-

proves the efficiency and scalability of the approach.

3.2 Optimization Horizon

We first discretize the parking time window into steps of τ , in hour, and use index k

to refer to the corresponding time intervals in the EV’s parking period. Based on this

definition, the active and reactive power flow rates of the EV in time interval k are pk

and qk in kW and kVAr, respectively. Next the SOC of the EV in time interval k is

represented by xk. Using the initial SOC as x0, the owner’s desired SOC as xf , and

capacity u of the EV’s battery, we calculate the SOC of the EV in each time interval

as follows [46]: 

x1 = x0 + τ
u
p1;

x2 = x1 + τ
u
p2;

...

xT = xT−1 + τ
u
pT ;

(3.1)

where T is the number of intervals during which EV is parked. Considering the arrival

time h0 and the departure time hf , and for a given τ , the number of time intervals
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when EV is parked would be as below:

T =
hf − h0

τ
. (3.2)

3.3 Battery Degradation

In this section, we introduce a model for battery degradation as a result of charg-

ing/discharging activity. To estimate the battery degradation, we have used the

battery health model presented in reference [47] and is shown below:

ḋk(Ik, Vk) = β1 + β2 ‖Ik‖+ β3Vk + β4 ‖Ik‖2 + β5V
2
k + β6 ‖Ik‖Vk + β7V

3
k , (3.3)

where Ik is the current (charging when Ik ≥ 0 and discharging when Ik < 0), Vk is

the battery cell terminal voltage at a given time instant k, dk is the battery health

in terms of energy capacity (Amp× hour × sec−1), and β1 to β7 are constant values

calculated from experimental results.

Based on information provided in reference [48], the battery cell has a constant

nominal voltage, V , within the typical minimum and maximum SOC. Therefore, we

can rewrite equation (3.3) in terms of pk and in Watt× hour × sec−1, as follows:

ḋk(pk) = (β1V + β3V
2 + β5V

3 + β7V
4) + (β2 + β6V ) ‖pk‖+

β4

V
‖pk‖2 , (3.4)

where pk = V Ik. The battery degradation at a given time instant k, in terms of

capacity loss, could then be expressed as shown below:

Dk(pk) =

∫ t

0

ḋk(pk)dt. (3.5)
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where t, in seconds, is the time duration in which the degradation amount is estimated.

Considering the unit price of the battery cell capacity ($/Wh), ϑ, the cost of

capacity loss, C, at a given time instant k, can be expressed as follows:

Ck(pk) = tϑDk(pk). (3.6)

Next assume a battery is composed of n cells and the charged/discharged energy

is divided equally into each cell. Then the capacity loss of the whole battery pack

can be calculated using the equation below.

Ck(pk) = tϑ

[
(β2 + β6V ) ‖pk‖+

β4

nV
‖pk‖2

]
. (3.7)

For example, consider a 6.6 kVA EV charger with a 16 kWh Lithium-Ion battery

pack used in the Mitsubishi’s i MiEV. This battery pack is composed of 22 cell modules

connected in series at nominal voltage of 330 V. Each cell module is composed of 4

cells with nominal voltage of 3.7 V and capacity of 50 Ah. Energy unit price ($/kWh)

for Lithium-Ion battery was assumed to be 1500 $/kWh based on the information in

reference [50]. Using the values for β1 to β7 provided in reference [47], the battery

degradation cost, in ¢/Sec, can be calculated as follows:

Ck(pk) = 1.22× 10−5 ‖pk‖+ 2.56× 10−10 ‖pk‖2 . (3.8)

Note that pk in equation (3.8) is in Watt.

Considering values for V and β1 to β7, one can approximate the battery degrada-

tion cost function, conservatively, to a linear function using the relation below:

Ck(pk) ≈ tγ ‖pk‖ , (3.9)

53



where γ = ϑ(β2 + β6V + β4
nV
p̄). Notice that p̄ represents the maximum active power

flow that could be used for charging/discharging the battery. For our example, linear

approximated value of γ is 1.39×10−5 ¢ × Watt−1 × Sec−1. Figure 3.1 shows the

battery degradation cost per second before and after linear approximation.
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Figure 3.1: Degradation cost of a 16 kWh battery pack used in the Mitsubishi’s i
MiEV.

3.4 EV Operating Model

The maximum apparent power (in VA) exchanged between the EV charger and the

grid is limited by the maximum apparent power of the charger’s inverter. This limi-

tation is defined as follows:

p2
k + q2

k ≤ s̄2, (3.10)

where s̄ is the maximum apparent power (kVA) of the inverter. This limit on the EV

charger will be further analyzed in next chapter. Based on the sign of pk and qk, four

operating regions can be defined as depicted in Figure 3.2.

We consider sets of non-negative prices for charging active power to be [ρ1, ρ2,
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Figure 3.2: Operating regions of the EV.

· · · , ρT ] and for discharging active power to be [ν1, ν2, · · · , νT ]. The cost function

f for operating the EV can then be defined as the summation over time of the costs

associated with active power flow rates:

f =
T∑
k=1

f c(pk), (3.11)

where

f c(pk) = τ [(
ρk
η

+ γ)p+
k + (ηνk − γ)p−k ], (3.12)

p+
k and p−k represent charging and discharging operation, respectively. p+

k = pk if pk is

non-negative and zero otherwise, and p−k = pk if pk is negative and zero otherwise. η

is the efficiency of the battery and γ is the degradation cost of the battery (expressed

in $/kWh). If the EV is charging active power, pk > 0, then the owner cost is at a

rate of (ρk
η

+ γ) per unit time. If the EV is discharging active power, pk < 0, then the

owner income is at a rate of (ηνk − γ) per unit time.

Based on the cost function presented above, an optimization problem can be
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defined as follows:

min
pk,xk

f, (3.13)

subject to

equations in (3.1), and xT = xf , (3.14)

x ≤ xk ≤ x, (3.15)

p ≤ pk ≤ p, (3.16)

for all k = 1, · · · , T . Constraint (3.14) guarantees that by the end of the parking

time, the battery meets the desired SOC.

To maintain long life of the EV battery, its SOC should be maintained within a

certain range that is recommended by the manufacturer. The parameters x and x in

(3.15) represent the minimum and maximum SOC of the EV battery, respectively.

Constraint (3.16) represents the minimum and maximum limits for active power flow

rate, p and p, respectively. Note that p could be a negative value and then can

be interpreted as the maximum discharging power. The battery active power limit

is related to the SOC of the battery. The quantitative relationship between the

maximum acceptable charging power of the EV battery and SOC of the battery can

be described by SOC curve which is presented in reference [49]. We assume that

for the acceptable range of SOC, the charger limit for active power is below the

maximum acceptable charging power of the EV battery. Therefore, p and p are equal

to maximum charging and discharging limit of the charger, respectively.

Our aim is to approximate the above optimization problem with a linear program.

To accomplish that we first redefine parameters, mentioned above, in matrix forms

as follows:

p =

[
p1, p2, . . . , pT

]T
, x =

[
x1, x2, . . . , xT

]T
,
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ρ =

[
ρ1, ρ2, . . . , ρT

]T
, ν =

[
ν1, ν2, . . . , νT

]T
,

e =

[
1, 0, . . . , 0

]T
T×1

,

D : T × T matrix with one on the first

lower subdiagonal and zero elsewhere.

The function f c in equation (3.12) discriminates between the cost of charging

active power and the income received as a result of discharging active power. It is

worth noting that at each time step k, the price of charging active power is higher

than the price of discharging active power. In other words ρk
η

+ γ > ηνk − γ. Figure

3.3 shows the cost associated with active power flow from/to the EV in time step k.

Considering the slope values, the cost function shown in Figure 3.3 is indeed convex

piecewise linear. We also note from the figure that the function plotted in solid

lines can also be considered as the pointwise maximum of the two linear functions

τ(ρk
η

+ γ)pk and τ(ηνk − γ)pk. We now rewrite the expression for f c in a way so that

Cost
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Figure 3.3: Associated cost of active power flow of an EV.
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it facilitates the formulation of a linear program.

f c(pk) = max {τ(
ρk
η

+ γ)pk, τ(ηνk − γ)pk}.

Now suppose ck constitutes an upper bound for f c(pk) at every k then f c(pk) ≤ ck.

This would imply

τ(
ρk
η

+ γ)pk ≤ ck, τ(ηνk − γ)pk ≤ ck,

for k = 1, . . . , T . Or equivalently

τ(
ρ

η
+ γ) ◦ p ≤ c, τ(ην − γ) ◦ p ≤ c,

where ◦ denotes elementwise multiplication of vectors and

c = [c1, c2, . . . , cT ]T .

Thus the function f in equation (3.11) is upper bounded by

1T c.

Using vector notation, we can rewrite the set of equations (3.1) in vector form as

follows:

x = x0e+Dx+
τ

u
p.

Furthermore, constraints (3.15)–(3.16) can be rewritten in vector notation as:

p1 ≤ p ≤ p1, x1 ≤ x ≤ x1.
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Next we replace the original optimization problem equation (3.13) with the fol-

lowing linear program:

minimize
p,x,c

1T c, (3.17)

subject to

x = x0e+Dx+
τ

u
p, xT = xf , (3.18)

p1 ≤ p ≤ p1, (3.19)

x1 ≤ x ≤ x1, (3.20)

Solving the optimization problem generates active power flow rates to or from the

EV for k = 1, 2, · · · , T . Let us assume p∗k for k = 1, 2, · · · , T represents the optimal

scheduled active power flow rate of the EV during the time interval k.

3.5 Aggregator Modeling and Optimization

As mentioned earlier, EV penetration level into the existing EPS can be increased

significantly through intelligent coordination of their charging/discharging schedules.

The EPS operation including EVs, can be studied from three point of views: SO;

Aggregator; and EV owner. All mentioned participants needs to constantly exchange

information through communication protocols [51]. Figure 3.4 shows different control

and operation levels of the EPS for charging/discharging of EVs, as well as other

possible ancillary services.

The responsibilities and objectives of each level can be listed as follows, according

to the above control and operation levels:

• Upper level

– SO is responsible for operating the EPS in safe, efficient, and reliable
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Figure 3.4: Control and operation levels of the EPS including EVs.

manner.

– SO announces the price of the electricity, as well as prices of ancillary

services.

– SO must determine the need for ancillary services and supply it from avail-

able sources.

• Middle level

– Aggregator is responsible for charging EVs under its control. THe/she

must provide desired SOC for each individual EV by the end of its parking

time.

– Aggregator can participate in the ancillary service market as an ancillary

service provider for the SO.

• Lower level

– EV owners at this level are interested in charging their EVs by the end of

their parking time.

– If there is a need for permission to use EVs for participation in the ancillary

market, then EV owners can decide on granting the permission to the

aggregator.
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After announcing the price of electricity, the aggregator must calculate the optimal

schedule of charging/discharging of a group of EVs under his/her control. The optimal

schedules must be calculated to minimize the aggregator’s cost. We superscript j =

1, . . . , J representing the ID of each EV under the aggregator’s control. We also define

a binary variable, αjk, for the EVj during time interval k, to indicate the connectivity

of the EV to the grid. αjk is 1 if the EV is connected to the grid and 0 otherwise.

The formulations developed in Section 3.4 are extended for all EVs to develop the

aggregator’s optimization problem. Considering an EVj, the following definitions will

be used for the rest of the dissertation:

pj =

[
pj1, p

j
2, . . . , p

j
T

]
, p =

[
p1, p2, . . . , pJ

]T
,

xj =

[
xj1, x

j
2, . . . , x

j
T

]
, x =

[
x1, x2, . . . , xJ

]T
,

αj =

[
αj1, α

j
2, . . . , α

j
T

]
, α =

[
α1, α2, . . . , αJ

]T
,

cj =

[
cj1, c

j
2, . . . , c

j
T

]
, C =

[
c1, c2, . . . , cJ

]T
,

Γ =

[
[ρ]T

η1
+ γ1, [ρ]T

η2
+ γ1, . . . , [ρ]T

ηJ
+ γJ

]T
,

Π =

[
[ν]Tη1 − γ1, [ν]Tη2 − γ2, . . . , [ν]TηJ − γJ

]T
,

p =

[
p111×T , p211×T , . . . , pJ11×T

]T
,

x =

[
x111×T , x211×T , . . . , xJ11×T

]T
,

x =

[
x111×T , x

211×T , . . . , x
J11×T

]T
,
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ψ =

[
1
ψ111×T ,

1
ψ211×T , . . . ,

1
ψJ
11×T

]T
,

Assuming the initial SOC to be xj0, the desired SOC to be xjf , and the capacity of

the battery to be ψj, we calculate the SOC of EVj in each time interval as follows:

xjk = αjk−1x
j
k−1 + αjk

τ

ψj
pjk, (3.21)

and  xjk = xj0, for k = arrival time step

xjk = xjf , for k = departure time step.
(3.22)

The cost of charging/discharging of EVj in time interval k can be expressed as:

f jc (pjk) = max {τ(
ρk
ηj

+ γj)pjk, τ(ηjνk − γj)pjk}.

Now suppose cjk constitutes an upper bound for f jc (pjk) at every k then f jc (pjk) ≤ ck.

This would imply

τ(
ρk
ηj

+ γj)pjk ≤ cjk, τ(ηjνk − γj)pjk ≤ cjk,

for all k = 1, . . . , T and j = 1, . . . , J . Or equivalently

τΓ ◦ p ≤ C, τΠ ◦ p ≤ C.

Thus the cost function is upper bounded by 1TC, which is linear with the opti-

mization variables C.
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We now rewrite the equation (3.21) for all EVs in matrix form as described below:

x = (IJ ⊗D)(α ◦ x) + τα ◦ ψ ◦ p, (3.23)

where IJ is the J × J identity matrix and ⊗ denotes elementwise multiplication of

vectors and Kronecker product.

Now we can extend cost function (3.17) for EVs under contract with the aggregator

and the sum of those will be the aggregator’s cost function. This function can then

be defined as:

minimize
p,x,C

1TC, (3.24)

subject to

−α ◦ p ≤ p ≤ α ◦ p, (3.25)

α ◦ x ≤ x ≤ α ◦ x, (3.26)

plus constraint 3.23 and constraint 3.22 for j = 1, 2, . . . , J .

3.6 Numerical Results

We have evaluated the performance of the proposed models using real electricity prices

and real battery data. Specifically, the hourly electricity prices in the Central New

York were obtained from the NYISO [52]. For the price of electricity, we have used

a work day (February 12, 2015) price published by NYISO for Central zone. Since

the market period for some markets in the NYISO territory is 10 minutes, the value

of τ is 0.167 hour. In the absence of any market for discharging power by EVs, we

have assumed the price of discharged power to the grid is equal to the price of the

electricity.
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Figure 3.5: NYISO daily price of charging/dischrging electrical power.

We have used the constant values of Lithium-Ion battery cell degradation, β1 to

β7 provided in reference [47] and also presented in Table 3.1.

Table 3.1: Lithium-Ion battery cell degradation specifications.

β1 1.14846× 10−7

β2 3.9984× 10−8

β3 1.3158× 10−7

β4 5.5487× 10−10

β5 4.9680× 10−8

β6 1.1166× 10−8

β7 6.5166× 10−9

For simulation purpose, we consider four types of EVs available in the market:

Chevrolet Volt; Nissan LEAF; Mitsubishi i-MiEV; and Tesla. The battery specifica-

tions of all mentioned EVs can be obtained from the manufacturer data sheet. Energy

unit price ($/kWh) for Lithium-Ion battery was assumed to be 1500 $/kWh based

on information in reference [50]. Table 5.9 shows the battery characteristics and their

chargers limit. Note that we have assumed p = −p in our calculation.

To demonstrate the efficiency of our model, we perform the simulation first for
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Table 3.2: EVs battery and charger specifications.

EV
Battery
Capacity
(kWh)

No. of
Cells

Cell Nominal
Voltage (V)

s
(kVA)

p
(kW)

γ
(¢/kWh)

Chevrolet
Volt

16.5 288 3.7 3.3 3.3 45.25

Nissan
LEAF

24 192 3.75 6.6 6.6 45.86

Mitsubishi
i-MiEV

16 88 3.7 3.3 3.3 46.94

Tesla 60 6831 3.7 11 11 44.03

single EV. We then extend our simulation to a group of 1000 EVs.

3.6.1 Single EV

In this part of the simulation, we have considered single Mitsubishi’s i MiEV. The

minimum and maximum SOC of the EV are assumed to be 20% and 90% respectively.

We also assume that the EV is connected from 9 a.m. to 7 p.m. with initial SOC of

40% and desired SOC of 80%. We have assumed 40% for initial SOC just to indicate

that EVs can be connected with initial SOC other than minimum value.

In order to show the effect of battery degradation cost on charging/discharging

scheduling, we first ignore the degradation cost factor. Figure 3.6 demonstrates the

optimal scheduling result, without considering the battery degradation effect. As

can be seen from the figure, the EV is charging during off-peak periods, with lower

prices, and discharging during on-peak periods, period with higher prices. The charg-

ing/discharging cost of the EV is $25.9471.

Figure 3.7 shows the result of optimal charging/dicharging schedule, including

the battery degradation effect. As can be seen from the figure, no discharging was
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Figure 3.6: Charging/discharging schedule of a single EV ignoring the battery degra-
dation effect.

scheduled. The reason is high degradation cost of the battery comparing to the price

of discharging power. The charging/discharging cost of the EV is $370.1007.

9 10 11 12 13 14 15 16 17 18 19
0

0.6

1.2

1.8

2.4

3
3.3

Time (hour)

C
ha

rg
in

g/
di

sc
ha

rg
in

g 
po

w
er

 (
kW

)

Figure 3.7: Charging/discharging schedule of a single EV including the battery degra-
dation effect.

The charging/discharging cost including the battery degradation effect has been

increased by $344.1536 (1326.37%) comparing to the charging/discharging cost of

the EV ignoring the battery degradation effect. This finding implies the necessity of

taking battery degradation effect into consideration.
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3.6.2 EV Usage Pattern Generation

In order to develop our simulations for a group of 1000 EVs, we need to generate

realistic usage patterns of EVs. The initial SOC of each EV depends on the traveled

distance by each EV. In this part, we consider the stochastic behaviour of EV usage

presented in Section 2.7. Table 3.3 presents the information for EV usage pattern.

Table 3.3: Normal Distribution Function Settings for EVs Usage Patterns.

Mean of arrival time 9 a.m.
Mean of departure time 4 p.m.

Std. deviation of arrival time 2 hours
Std. deviation of departure time 2 hours

Mean of traveled distance 22.3 miles
Std. deviation of traveled distance 12.2 miles

Figure 3.8 shows the number of connected EVs, based on the generated patterns

for all EVs under study ,in our simulation.
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Figure 3.8: Number of connected EVs.
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3.6.3 A Group of EVs

Figure 3.9 shows the share of different EV types used for simulations. Also Table

5.9 summarizes the specification of each EV type. Based on usage pattern of EVs

30%
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30%

10%

 

 

Chevrolet Volt

Nissan LEAF

Mitsubishi i-MiEV

Tesla

Figure 3.9: Percentage of different EVs in simulations.

and their connectivities according to Figure 3.8, the optimal charging/discharging

schedule of the aggregator can be calculated as shown in Figure 3.10. Note that the

battery degradation factor has been included in the calculation and that is the reason

for the aggregator to not schedule any discharging activities. The aggregator cost due

to charging activities for all connected EVs is $453,695.78.
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Figure 3.10: Aggregated charging/discharging schedule of a group of 1000 EVs.
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3.7 Conclusion

In this chapter, we presented a linear model of the EV which includes charging and/or

discharging modes of operation and the battery degradation factor. We defined a

cost function for EV operation and then minimized the operating cost of the EV

using linear programming. We then developed the the formulations to define the

aggregator’s operating cost. The optimal charging/discharging schedules of a group

of 1000 EVs under the aggregator’s control was calculated using linear programming,

to minimize the aggregator’s operating cost. Simulation results showed the scalability

of developed framework. We also observed that the battery degradation effect on the

operating cost is significant. Due to high battery degradation cost, the aggregator

did not schedule any discharging activities. The developed model of EV operation in

this chapter will serve as a foundation for modeling EVs services for grid operation

in the following chapters.
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Chapter 4

Reactive Power Service from EVs

4.1 Introduction

Reactive power is an important ancillary service needed by the SO to manage effects

of inductive loads in power systems. Due to localized nature of reactive power, the

relevant geographic market may be much smaller than a market for active power.

Currently, generators are main sources of reactive power. However, the market with

distributed RPSPs might be less concentrated than if only generation sources of re-

active power were considered. Therefore, Federal Energy Regulatory Commission

(FERC) suggested the use of competitive solicitations, in Order No. 784, to acquire

ancillary services such as reactive power support and voltage regulation. Such compet-

itive processes could elicit responses from a variety of resources, including generation,

transmission, DR, and energy storage [53].

EV battery chargers are often composed of a voltage converter circuit. Such

circuits can adjust injected/absorbed reactive power to/from the grid by controlling

the magnitude and phase angle of the voltage generated by the AC-DC converter of

the charger. Moreover reactive power service (injection/absorption) does not degrade
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the battery [54]- [55]. Since EVs are scattered across the system (mostly near load

centers) and parked for about 22 hours a day on an average [56], they have the

potential to become distributed RPSPs when equipped with intelligent chargers.

In addition to fulfilling the technical requirements of EV as an RPSP [57]- [58],

finding conditions for their optimal operation has been a challenge. In reference [59]

the optimal combined frequency and voltage regulation, using a day-ahead command-

based (contract-based) model and a day-ahead price-based model, was achieved by

controlling both the active and reactive power flow rates of EVs. In the model

proposed in reference [60], EV owners have to submit information regarding their

preferred charging station, required charging energy, preferred parking interval, and

arrival/departure times to the scheduling coordinator a day ahead. The coordinator

schedules the charging activities and reactive power injection to the grid for each

EV parked in the station, based on a multi-objective resource allocation problem.

Clearly, this type of day-ahead information submission can be challenging for EV

owners. Also, if SO requires more reactive power than anticipated, the coordinator

will not be able to accommodate the additional service. In reference [61] a method

used to generate the expected payment function of EVs, especially to include the lost

opportunity costs, which was designed originally for DGs (e.g. reference [62]) rather

than for EVs. It seems that this approach may not be appropriate since, as opposed

to DGs, EVs demand active power as a load.

In this chapter we present a model of an EV as a load for active power in charging

mode, as a generator for active power in discharging mode, and as an RPSP (in-

jection/absorption). We first study the characteristics of EV for providing reactive

power service. The developed model of EV in Chapter 3 is analyzed under various

constraints such as limits on the current ripple in the DC-link capacitor of the EV

charger. Next, we linearize the nonlinear constraints. We then develop a mathemati-
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cal model to evaluate the cost of providing reactive power service by the EV. Finally,

we introduce a novel algorithm to extract the reactive power supply function of the

EV, as a step-wise accenting order function, with optimized cost for providing reac-

tive power service. SOlution guarantees that the flow of reactive power is consistent

with all constraints on the EV.

The main contributions of this chapter are as follows:

1. Modeling EV as an RPSP and defining an objective function to calculate the

operating cost of the EV under several constraints.

2. Approximation of the optimization problem with a linear program to improve

the efficiency and scalability of the approach.

3. Inclusion of current ripple limitation of the DC-link capacitor as a constraint

on optimal EV operation.

4. Evaluation of the cost and capability of reactive power service by an EV taking

into consideration its load nature.

5. Development of reactive power supply function of the EV as a step-wise ascend-

ing order function.

4.2 Reactive Power Market: A Review

Provision of reactive power and payments to service providers are mainly based on

bilateral agreements and contracts between transmission SOs and large generators.

In this section, we review the current practices of providing reactive power in United

States.
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NYISO has contracts with eligible generators to provide reactive power service.

The contracts provide a fixed payment plus a recovery payment for the lost opportu-

nity costs. The reactive power charge is computed by dividing the anticipated annual

cost of providing reactive power service, plus-or-minus any under/over collections

from the previous year [63]. Projected 2013 NYISO reactive power service payments

to generators is $60.9M [64].

Generators managed by the California Independent SO are mandated to operate

within a power factor band of 0.90 lag (consuming VAr) to 0.95 lead (producing VAr)

[65]. Based on annual bilateral contracts, the generators are paid for providing the

reactive power service to maintain the mandatory power factor range. The payment

is based on the generator’s capacity and operation.

The Independent SO of New England recovers the capacity cost (the fixed capital

costs incurred by the installation and maintenance of the capability to provide reac-

tive power support), the lost opportunity costs (the value of a generator’s foregone

opportunity to supply active power when providing reactive power support), the cost

of energy consumed, and the cost of energy produced (the costs incurred by a genera-

tor dispatched out of economic merit to create reactive power capability) of qualified

generators [66]. Independent SO of New England charges its customer on a monthly

basis. The amount to be paid is determined by summing the hourly capacity cost

component with the hour-specific lost opportunity costs, cost of energy consumed,

and cost of energy produced by all generators providing reactive power supply.

Pennsylvania New Jersey Maryland Interconnection LLC treats reactive power

supply and voltage control as a non-market, cost-of-service product. All generators

and non-generation sources capable of providing reactive power are obligated to do

so in accordance with the interconnection agreement. RPSPs receive a cost of service

payment equal to their monthly revenue requirement for providing reactive power [67].
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In territory managed by the Energy Regulatory Commission of Texas, all gener-

ation resources that have a gross generating unit rating greater than 20 MVA must

provide reactive power service [68]. These service providers are dispatched to provide

voltage support via an out-of-merit capacity deployment [69].

As discussed above, in most cases, SO contracts with RPSPs. In the absence of

market mechanism for reactive power service, we think that reactive power ancillary

services, in deregulated electricity markets, can be provided based on a two-stage

approach, namely, reactive power procurement and reactive power dispatch, as pro-

posed in reference [70]. Reactive power procurement is essentially a long-term issue,

where SO signs seasonal contracts with possible service providers that would best

suit its needs and constraints in the given season [71]. Reactive power dispatch, on

the other hand, corresponds to the short-term allocation of reactive power, to meet

the system need, from the contracted suppliers based on “real-time” operating con-

ditions [72]. This chapter concentrates on defining a reactive power supply function

of EVs that would allow us to engage them in reactive power dispatch activity using

the framework explained in reference [73].

Figure 4.1 illustrates the schematic of the proposed procedure for short-term dis-

patch of reactive power that includes EVs as RPSP. The calculation of reactive power

price components for procurement process has been explained in reference [70] and is

out of the scope of this dissertation. SO determines the available sources for reactive

power dispatch from the list of procured/contracted generators, the generating units

available from the short-term energy market clearing, and the reactive power supply

functions of the available EVs. The units are then dispatched using the OPF model,

presented in reference [73], that minimizes total payments associated with reactive

power dispatch, subject to appropriate system security constraints. It is worth em-

phasizing that the focus of this chapter is only calculating the reactive power supply
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function of EVs, on a real-time basis, which can be incorporated into the OPF model

mentioned above. Payments will be calculated after real-time operation, based on

the actual usage and the dispatch requested by SO.

Generator’s 

active power bids

24-hour load 

curve

Market clearing with 

P-dispatch decissions

Available generation units 

and Q-capacity

Contracted/procured 

generators for Q-provision

Reactive power price components 

from procurement process

Q-dispatch minimizing 

total cost

Reactive power settlement 

and payment

Active power prices from 

day-ahead market 

Scheduling of charging 

discharging activities of EVs

Reactive power supply 

function of EVs

Figure 4.1: Short-term dispatch of reactive power services.

Figure 4.2 shows the information exchange between different entities in the short-

term reactive power dispatch. As can be seen from the figure, an aggregator, rep-

resenting aggregated EVs, is responsible for satisfying charging requirements of EVs

and also submitting the reactive power supply function to SO.

Solving the optimization problem defined in Chapter 3, generates active power

flow rates to/from the EV for k = 1, 2, · · · , T . Let us assume p∗k for k = 1, 2, · · · , T

represents the optimal scheduled active power flow rate of the EV during the time

interval k. Next, we discuss the EV’s reactive power capability, during an optimized

scheduled charging/discharging point.
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Figure 4.2: The information exchange between different entities in the short-term
dispatch of reactive power services.

4.3 EV’s Characteristics for Reactive Power Ser-

vice

Considering EV just as a pure demand of active power could not lead us to an

efficient and cost-effective operation of power system. Based on the technological

characteristics and location of EVs, we can include EVs in several potential activities

rather than just charging active power. Table 4.1 summarizes these activities [54],

[74]- [77]. From the table it can be seen that the services related to reactive power

(reactive power regulation and motor starting) do not engage the battery. In fact,

the DC-link capacitor Cdc in the charger of EV, enables it to provide reactive power

support.

Figure 4.3 depicts a typical charger circuit of an EV. In this figure pk and qk rep-
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Table 4.1: Potential Markets for V2G Services Offered by EV

Potential Markets Duration of Battery
of V2G Service Degradation

Coordinated Charging - No
Peak Shaving 15 min - 2 h Yes

Spinning Reserve 15 - 20 min Yes
Active Regulation 1-5 min Yes

Reactive Regulation Seconds to 5 min No
Renewable Transients Seconds to 30 min Yes

Motor Starting Seconds No

resent the active and reactive power flow rate of the charger at time interval k, Lc is

the coupling inductor, vi and ii are the voltage and current of the grid side and Vo and

Io are the voltage and current of the battery side. Independently of the power con-

verter topology, the battery chargers can be categorized as on-board or off-board [57].

The on-board charger placed inside the vehicle (for slow charging) and the off-board

charger is placed outside of the vehicle (for fast charging). Based on the requested

signal from SO for reactive power support, digital control system injects/absorbs the

desired reactive power into/from thr gtid, by controlling the magnitude and the phase

angle generated by the AC-DC converter part of the EV charger [58].
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Figure 4.3: A typical circuit of EV charger.
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Based on the directions of pk and qk, four operating regions for the EV can be

defined as summarized in table 4.2 shown below.

Table 4.2: Operating Regions of EV Charger

Operating Operating Active Reactive
Region Range Power Power

Region I pk ≥ 0 and qk ≥ 0 Charging Absorption
Region II pk ≤ 0 and qk ≥ 0 Discharging Absorption
Region III pk ≤ 0 and qk ≤ 0 Discharging Injection
Region IV pk ≥ 0 and qk ≤ 0 Charging Injection

To evaluate the ability of the EV in providing reactive power service, we need

to extract the capability curve of the EV. This capability curve can be calculated

considering the limitations of the EV charger for providing reactive power service. In

the following subsections, these limitations are presented.

4.3.1 Inverter Maximum Power

Maximum apparent power exchanged between the EV charger and the grid is limited

by the maximum output power of the inverter. This limitation is defined as follow:

p2
k + q2

k ≤ s2, (4.1)

where s is the maximum power of inverter.

4.3.2 Power Ripple in Charger

Due to single-phase conversion of AC power into DC power, we experience oscillating

power between grid and charger [90]. It is worth to mention that the average power
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is used for charging or discharging the battery.

Assuming that during time interval k, sinusoidal voltage at grid side (vi in Figure

4.3) and default active power flow from the grid to the charger which causes charger

voltage, vc in equation (4.3), lagges grid voltage by δ, we have [90]:

vi(t) =
√

2Vi sin(ωt), (4.2)

vc(t) =
√

2Vc sin(ωt− δ), (4.3)

where Vi and Vc are the rms values of grid voltage and charger voltage , respectively

(V), ω is the angular frequency (rad/s), and δ is the lagging angel. Charger current,

ic in Figure 4.3, can be calculated using phasor analysis as follows:

ic(t) =
√

2Ic sin(ωt− θ), (4.4)

where

Ic =

√
(Vi − Vc cos(δ))2 + (Vc sin(δ))2

ωLc
, (4.5)

θ = tan−1(
Vi − Vc cos(δ)

Vc sin(δ)
). (4.6)

Instantaneous power drawn from the grid, pi(t), can be calculated as below:

pi(t) = vi(t)ic(t), (4.7)

which must be equal to the summation of instantaneous power of the coupling in-

ductor, pL(t), and instantaneous power that the charger receives, pc(t). After some
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modification, we can calculate the instantaneous power of charger as follows:

pc(t) = pi(t)− pL(t) = Pavg − pripple(t), (4.8)

where

Pavg = ViIc cos(θ), (4.9)

pripple(t) = −ViIc cos(2ωt− θ)− ωLcI2
c sin(2ωt− 2θ). (4.10)

From equation (4.8), can be seen that the instantaneous power of charger has

two terms, average power Pavg and ripple power pripple(t). Defining s = ViIc, q =

ViIc sin(θ), p = ViIc cos(θ), and some modification and phasor analysis, we can restate

equation (4.10) as:

pripple(t) = Pripple cos(2ωt+ β), (4.11)

where

Pripple =

√
s2 + (

ωLc
V 2
i

s2)2 − 2
ωLc
V 2
i

s2q, (4.12)

and

β = tan−1(
ViIc sin(θ) + ωLcI

2
c cos(2θ)

−ViIc cos(θ) + ωLcI2
c sin(2θ)

). (4.13)

The oscillating component of the instantaneous power of charger pripple(t) is stored

in the DC-link capacitor of the charger and is used to to balance the power transfer

between the grid and the charger [90]. It is worth to note that the stored energy in

the DC-link capacitor can be calculated by integrating the ripple power between its

minimum and maximum values. For a predefined average DC-link voltage Vdc and a

DC-link peak-to-peak voltage ripple ∆Vdc the required capacitance can be calculated
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as [90]:

Cdc =

√
s2 + (ωLc

V 2
i
s2)2 − 2ωLc

V 2
i
s2q

ωVdc∆Vdc
. (4.14)

Neglecting the pulse width modulation (PWM) ripple components, instantaneous

DC-link voltage can be expressed as [90]:

vdc(t) = Vdc +
∆Vdc

2
sin(2ωt). (4.15)

The current of DC-link capacitor can be calculated as:

icap(t) = Cdc
dvdc(t)

dt
=
√

2Icap cos(2ωt), (4.16)

where Icap is the rms value of the second harmonic current and defined as:

Icap =
1√
2
ωCdc∆Vdc. (4.17)

By calculating ∆Vdc from equation (4.14) and plugging it in equation (4.17), we

can express the rms value of the second harmonic current as:

Icap =

√
s2
k + (ωLc

V 2
i
s2
k)

2 − 2ωLc
V 2
i
s2
kqk

√
2Vdc

. (4.18)

From equation (4.18), can be seen that for the same apparent power si, the rms of

the second harmonic current has higher value for operating point in regions III and

IV (q < 0) rather than for operating point in regions II and I (q ≥ 0). Since the value

of the term ωLc
V 2
i

is small (considering values for Vi and coupling inductor Lc in mH
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range), we can use the following approximation for equation (4.18 ).

Icap ≈

√
s2
k − 2ωLc

V 2
i
S2
kqk

√
2Vdc

, (4.19)

and also by using Taylor series we have:

Icap ≈
sk(1− ωLc

V 2
i
qk)

√
2Vdc

. (4.20)

For charging operation of charger (pk > 0 and qk = 0), the maximum rms value

of the second harmonic current can be calculated as:

Imaxcap =
s√
2Vdc

. (4.21)

Based on equations (4.20) and (4.21), we can express the operation limit of the

EV charger as:

sk(1−
ωLc
V 2
i

qk) ≤ s. (4.22)

One can infer that the union of constraints (4.1) and (4.22) for q ≥ 0 is equal to

the constraint (4.1). Similarly the union of constraints (4.1) and (4.22) for q < 0 is

equal to the constraint (4.22). Recalling that sk =
√
p2
k + q2

k, we can formulate the

operating limit of charger as:

 p2
k + q2

k ≤ s2, ∀ qk ≥ 0;

(p2
k + q2

k)(1− ωLc
V 2
i
qk)

2 ≤ s2, ∀ qk < 0.
(4.23)

We define q to represent the maximum value of reactive power injection by the
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charge. q can be calculated (by plugging pk = 0 in equation (4.22)) as:

q =

√
1 + 4ωLc

V 2
i
s− 1

2ωLc
V 2
i

. (4.24)

Figure 4.4 depicts the operating limit of the charger. As can be seen from the

Figure 4.4, the operating limit is not symmetrical.
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Figure 4.4: Operating limit of EV charger.

4.4 Reactive Power Capability of EV

The reactive power capability of an EV depends on the charger limits and the active

power flow rate of the charger. Figure 4.5 demonstrates the EV’s reactive power

capability considering the optimal active power flow rate to be p∗k. Assume q∗k as the

maximum reactive power flow rate corresponding to p∗k (shown by blue dashed lines

in the figure). The red solid line in the figure represents the maximum reactive power

injection limit of the charger calculated using equation (4.24).
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Figure 4.5: Reactive power capability of the EV: nonlinear approach.

Figure 4.5 shows four ranges of reactive power, qk. Operating points on the

dashed line AB provide a range of reactive power absorption without changing the

scheduled active power flow rate of the charger. On the other hand, more reactive

power absorption would result in moving the operating point of the charger on the

circular section BC and causing change in scheduled active power flow rate. Similarly

all operating points on the dashed line AD provide a range of reactive power injection

without changing the scheduled active power flow rate. More reactive power injection

will force the operating point of the charger to move on the circular section DE

and reduce active power flow rate. Note that the maximum limit of reactive power

absorption/injection is asymmetric. In Figure 4.5 one also can observe that the lower

the active power flow rate p∗k (charging/discharging), the bigger the range of reactive

power q∗k (injection/absorption) without changing the active power flow rate.

As explained above, in some ranges, provision of reactive power service results

changes in scheduled active power flow rate. The change in scheduled active power

flow rate, as solution of pre-defined optimization problem in Chapter 3, is termed as
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perturbation of the optimal solution. This perturbation from optimal solution may

increase the operating cost of the EV. In the following section, perturbations caused

by reactive power service and associated costs are studied.

4.4.1 Nonlinear Approach

After calculating the optimal active power flow rates, p∗k for k = 1, 2, · · · , T , the cor-

responding reactive power flow rates q∗k to meet maximum apparent power of charger

is calculated for k = 1, 2, · · · , T . As shown in Figure 4.5, during a time period k, any

reactive power service from 0 to |q∗k| for absorption and from zero to − |q∗k| for injec-

tion, does not perturb the optimal scheduled active power flow rate. However, any

increase in reactive power service above q∗k by ∆qk, yields in perturbation of active

power flow rate by ∆pk.

Since the optimal solution minimizes the cost function, any perturbation can in-

crease the EV’s operating cost. In the remainder of the chapter, the increment in

total cost caused by the perturbation, will be called the imposed cost.

Any increase in reactive power service by ∆qk, moves the operating point, for

example, from position 1© to position 2© as shown in Figure 4.6. The change in the

operating cost of the EV can be explained as follows:

• If p∗k ≥ 0 then lower costs due to less active power consumption.

• If p∗k < 0 then lower income for discharging less active power.

In order to meet the EV owner’s desired SOC at the departure time, any change

in active power flow rate at current time period k must be reschedulable during the

remainder of its parking time, termed as receding horizon in our calculation. Therefore

∆pk, and corresponding ∆qk, is limited by maximum reschedulable active power flow

rate in the receding horizon.
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Figure 4.6: Perturbation in operating point due to a change in reactive power service
for: (a) Region I; (b) Region II; (c) Region III; and (d) Region IV.

4.4.2 Linear Approach

The first step in the analysis is to approximate constraint (4.23) in such a way that

the problem can be formulated as a set of linear equations. Since constraint (4.23)

describes a convex set [91], we can use linear cuts to obtain a polyhedron, as depicted

in Figure 4.7.

Since constraint (4.23) is asymmetric, we first divide the circular part into N arcs

of angle θ, such that Nθ = π, to generate the linear cuts. The position of points

on the upper semicircle can be calculated as pik = s̄ cos(iθ) and qik = s̄ sin(iθ) for

i = 1, ..., N . Images of these points represent the position of the points when qk is
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Figure 4.7: Linear cuts for constraint (4.23).

negative. Position of the points when qk is negative can also be calculated using the

equation below: 
pi+Nk =

1−
√

1+4ωLc
V 2
g
s̄ sin(iθ)

2ωLc
V 2
g

cot(iθ),

qi+Nk =
1−

√
1+4ωLc

V 2
g
s̄ sin(iθ)

2ωLc
V 2
g

,

(4.25)

for i = 1, ..., N .

We have used aiqk + bipk + ri = 0 to represent the ith side of the polyhedron

corresponding to time interval k. The perpendicular distance from the origin to this

line is given by

di =
|ri|√
a2
i + b2

i

as shown in Figure 4.8. Therefore, any point (pk, qk) that falls below solid line in

Figure 4.8 satisfies the following constraint.

[
cos(iθ) sin(iθ)

]pk
qk

 ≤ di.

Letting i = 1, ..., 2N and stacking the inequalities gives the following matrix repre-
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Figure 4.8: perpendicular distance to the ith linear cut at time interval k.

senting points inside the polyhedron area.



cos(θ) sin(θ)

cos(2θ) sin(2θ)

...
...

cos(2Nθ) sin(2Nθ)


︸ ︷︷ ︸

A

pk
qk

 ≤


d1

d2

...

d2N


︸ ︷︷ ︸

d

.

We now replace constraint (4.23) with the following constraint.

[
IT ⊗ A1 IT ⊗ A2

]p
q

 ≤ 1⊗ d, (4.26)

where IT in constraint (4.26) is the T × T identity matrix, ⊗ denotes the Kronecker

product, and A1 and A2 denote the first and second columns of the matrix A, respec-

tively.

To illustrate the reactive power capability of an EV, we have assumed that during

the time interval k, the scheduled active power flow rate of the EV is p∗k. We then

calculate the maximum reactive power flow rate for absorption, q+
k , and for injection,

q−k , when pk = p∗k, by considering the charger operating point on the corresponding

linear cut boundary. Figure 4.9 demonstrates the reactive power capability of the EV,
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by red solid lines ABCDEF . Three ranges for reactive power can be recognized from

the figure. Any reactive power in the range q−k ≤ qk ≤ q+
k can be provided without

changing the scheduled active power pk = p∗k (operating points on line CD). However

any reactive power absorption in the range q+
k ≤ qk ≤ s would result reduction

of scheduled active power flow rate. To experience minimum reduction of pk, the

operating point should be on lines DE and EF . Similarly for any reactive power

injection in the range −q ≤ qk ≤ q−k the operating point should be on lines BC and

AB.

kq

kp

*

kp

kq
kq

A

B

C D

E

F

Figure 4.9: Reactive power capability curve of the EV at time interval k in linear
approach.

As explained above, in some ranges, provision of reactive power service results

changes in scheduled active power flow rate. The change in scheduled active power

flow rate, which is solution of pre-defined optimization problem, is termed as pertur-

bation in the optimal solution. This perturbation from optimal solution may increase

the operation cost of the EV. In the following section, perturbations caused by reac-

tive power service and associated costs are explained.

After calculating the optimal active power flow rates, p∗k for k = 1, 2, · · · , T , the

corresponding reactive power flow rates, q+
k and q−k , are calculated for k = 1, 2, · · · , T .

As shown in Figure 4.9, during time period k, any reactive power service from 0 to

q+
k for absorption and from zero to q−k for injection, does not perturb the optimal
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scheduled active power flow rate. However, any increase in reactive power service

above q+
k for absorption or beyond q−k for injection, by ∆qk, results in perturbation

of active power flow rate by ∆pk.

Any increase in reactive power service by ∆qk, moves the operating point, for

example, from position 1© to position 2© as shown in Figure 4.10. The change in the

operating cost of the EV can be explained as follows:

• If p∗k ≥ 0 then lower costs due to less active power consumption.

• If p∗k < 0 then lower income for discharging less active power.
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Figure 4.10: Perturbation in scheduled operating point by increase in reactive power
service for (a) Region I; (b) Region II ; (c) Region III; and (d) Region IV.

In order to satisfy constraint (3.18), any change in active power flow rate at current

time period k must be reschedulable during the remainder of its parking time, termed

as receding horizon in our calculation. Therefore ∆pk, and corresponding ∆qk, is

limited by maximum reschedulable active power flow rate in the receding horizon.

4.5 Perturbation in Optimal Solutions

Let us assume that the change in active power flow rate at the current time period,

k, is rescheduled during a time period r of the receding horizon. Any decrease in
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charging power, when p∗k ≥ 0, must be compensated by increasing charging power

at time period r if p∗r ≥ 0 or by decreasing discharging power if p∗r < 0. Similarly,

any decrease in discharging power, when p∗k < 0, must be compensated by decreasing

charging power at time period r if p∗r ≥ 0 or by increasing discharging power if p∗r < 0.

Table 4.3 summarizes changes in operation cost of the EV during current time period

k and rescheduling that during time period r.

Table 4.3: Change in Operation Cost of EV due to Change in Active Power Flow
Rate.

p∗k p∗r ∆f ck ∆f cr
p∗k ≥ 0 p∗r ≥ 0 −τ(ρk

η
+ γ)∆pk τ(ρr

η
+ γ)∆pk

p∗k ≥ 0 p∗r < 0 −τ(ρk
η

+ γ)∆pk τ(ηλpr − γ)∆pk
p∗k < 0 p∗r ≥ 0 τ(ηλpk − γ)∆pk −τ(ρr

η
+ γ)∆pk

p∗r < 0 p∗k < 0 τ(ηλpk − γ)∆pk −τ(ηλpr − γ)∆pk

Therefore, the total change in the operation cost of the EV, f , can be calculated

as follows:

∆f = ∆f ck + ∆f cr . (4.27)

The marginal cost due to a deviation of ∆pk from optimal solutions, p∗k and p∗r,

can be calculated by differentiating equations in third and fourth column of Table 4.3

with respect to ∆pk. Table 4.4 lists the marginal cost, MCk, for deviation form p∗k,

and the marginal cost, MCr, for deviation form p∗r all in $/kWh.

Therefore, the total marginal cost, MCtotal
k , for deviation from optimal solutions

can be calculated as follows:

MCtotal
k = MCk +MCr. (4.28)
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Table 4.4: Marginal Cost of Deviation Caused by ∆pk in $/kW.

p∗k p∗r MCk MCr
p∗k ≥ 0 p∗r ≥ 0 −τ(ρk

η
+ γ) τ(ρr

η
+ γ)

p∗k ≥ 0 p∗r < 0 −τ(ρk
η

+ γ) τ(ηλpr − γ)

p∗k < 0 p∗r ≥ 0 τ(ηλpk − γ) −τ(ρr
η

+ γ)

p∗k < 0 p∗r < 0 τ(ηλpk − γ) −τ(ηλpr − γ)

Note that the marginal cost terms expressed in Table 4.4 are in $/kW. Next we

present marginal cost terms in $/kVAr.

4.5.1 Nonlinear Approach

Considering the charger constraint, the optimal and non-optimal quantities are related

as follows:

p∗
2

k = s̄2 − q∗2k , (4.29)

p2
k = s̄2 − (|q∗k|+ ∆qk)

2. (4.30)

By plugging equation (4.29) into equation (4.30), and simplifying it, ∆pk can be

expressed as a function of ∆qk as follows:

∆pk =

 |p
∗
k| −

√
p∗

2

k −∆qk(∆qk + 2q∗k), ∀q∗k ≥ 0;

|p∗k| −
√
p∗

2

k −∆qk(∆qk − 2q∗k), ∀q∗k ≤ 0;
(4.31)

The marginal cost terms MCRtotal
k in $/kVAr, is then developed using the follow-

ing equation:

MCRtotal
k = MCtotal

k

∂(∆pk)

∂(∆qk)
= MCtotal

k


∆qk+q∗k√

p∗
2
k −∆qk(∆qk+2q∗k)

, ∀ qk ≥ 0;

∆qk−q∗k√
p∗

2
k −∆qk(∆qk−2q∗k)

, ∀ qk < 0;
(4.32)
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Therefore, based on the optimal scheduled active power flow rate at time period

k, p∗k, corresponding reactive power flow rate q∗k, and the rescheduling time period r

in the receding horizon, the marginal cost for providing different ranges of reactive

power service, can be calculated using Table 4.4 and equation (4.32).

4.5.2 Linear Approach

Providing reactive power services in the ranges −q ≤ qk ≤ q−k and q+
k ≤ qk ≤ s will

force the operating point to be on the linear boundaries. Therefore for cut i (where

the operating point for the EV during time k falls), we can express qk in terms of pk

as below:

qk = − bi
ai
pk − ri. (4.33)

Now if we define mi = − bi
ai

, then from equation (4.33), it can be inferred that ∆qk

is equal to mi∆pk. The marginal cost terms MCRtotal
k in $/kVAr, is then developed

using the following equation:

MCRtotal
k =

∂(∆pk)

∂(∆qk)
MCtotal

k =
1

mi

MCtotal
k . (4.34)

Therefore, based on the optimal scheduled active power flow rate at time period

k, p∗k, corresponding reactive power flow rates, q+
k for absorption and q−k for injection,

and the rescheduling time period r in the receding horizon, the marginal cost for

providing different ranges of reactive power service, can be calculated using Table 4.4

and equations (4.28) and (4.34).

In the following section, we provide a framework to find minimum marginal cost

and calculate a reactive power supply function for the EV.
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4.6 Calculation of Reactive Power Supply Func-

tion

The first step in the development of the framework is to calculate optimal scheduled

active power flow rates, while minimizing the charging/discharging cost and provide

desired SOC at the departure time. This effort provides information of the optimal

scheduled active power flow rate, p∗k, corresponding reactive power rate at optimal

scheduled point, q∗k, in nonlinear approach or the maximum reactive power flow rate

for absorption, q+
k , and for injection, q−k , in linear approach, for k= 1, 2, . . . , T . Also

x∗k, SOC of the EV battery can be calculated using equation (3.1). Then during each

time period k, the reactive power supply function is calculated. Next, we develop a

framework to calculate the reactive power supply function, using above mentioned

parameters value, to get minimum marginal cost of providing the service.

As explained before, any reactive power service from 0 to |q∗k| for absorption and

from 0 to -|q∗k| for injection in nonlinear approach or any reactive power in the range

q−k ≤ qk ≤ q+
k in linear approach, does not result in perturbation of optimal solutions.

Therefore, neglecting the switching losses, the cost of reactive power service for this

ranges is zero. However, any reactive power service above q∗k in nonlinear approach

or any reactive power absorption above q+
k and any reactive power injection beyond

q−k in linear approach, perturbs the scheduled active power flow rate during time

period k. We define ∆pk, the deviation in scheduled active power from its scheduled

value and ∆xk, the deviation in SOC of the battery from its scheduled value as a

result of change in active power activity. We have used superscripts ↑ for deviation in

increase mode and ↓ for deviation in decrease mode. Figure 4.11 shows an example of

scheduled SOCs of the EV battery. Note that SOC in each time interval must satisfy

constraint (3.15).
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Figure 4.11: Scheduled SOC of the EV battery.

The following set of equations can be applied for all time intervals k=1, 2, . . ., T

of the optimization horizon.



∆x↑k = min

{
x− x∗k, (p− p∗k) τu

}
, if p∗k ≥ 0;

∆x↑k = min

{
x− x∗k,

∣∣∣∣p∗k∣∣∣∣ τu} , if p∗k < 0;

∆x↓k = min

{
x∗k − x, p∗k τu

}
, if p∗k ≥ 0;

∆x↓k = min

{
x∗k − x, (p−

∣∣∣∣p∗k∣∣∣∣) τu} , if p∗k < 0;

(4.35)

Note that equation (4.35) guarantees that the perturbation in active power flow rates

do not violate constraint (3.20).

Any decrease in optimal active power flow rate at current time period k, as a

result of reactive power service, must be rescheduled, as listed in Table 4.5, to fulfill

the desired SOC at the departure time.

Consider time interval k as the current time interval. ∆pk is defined as the

maximum decrease in charging/discharging power at current time period k that is

reschedulable in the receding horizon. In the receding horizon at the time period r,

we define p+↑
r as available charging power increment, p+↓

r as available charging power
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Table 4.5: Rescheduling Active Power Flow Rates in Receding Horizon Due to Per-
turbation in the Optimal Solution.

p∗k
Perturbation in p∗k due

to reactive power service
Rescheduling strategy in

the receding horizon

Charging ↓ charging power
↑ scheduled charging
↓ scheduled discharging

Discharging ↓ discharging power
↓ scheduled charging
↑ scheduled discharging

decrement, p−↑r as available discharging power increment, p−↓r as available discharging

power decrement; q+
k and q−k as maximum available reactive power service for absorp-

tion and injection, respectively. Figure 5.4 shows an example of optimal scheduled

charging/discharging power activities. Red bars in the figure indicates the scheduled

active power flow rate at each time period (p∗k, p
∗
k+1, . . ., p∗T ). Note that positive

and negative values for active power flow rates represent charging and discharging

activities, respectively. Also p+↑
r , p+↓

r , p−↑r , and p−↓r are shown by yellow, green, blue,

and purple arrows in the figure, respectively. The following set of equations can be

recognized, from the figure, for the calculation of the maximum reschedulable power

in receding horizon ∆pr.

∆pr =



p+↑
r = ∆x↑ru

τ
, if p∗r ≥ 0;

p+↑
r = 0, if p∗r < 0;

p+↓
r = ∆x↓ru

τ
, if p∗r ≥ 0;

p+↓
r = 0, if p∗r < 0;

p−↑r = ∆x↓ru
τ
, if p∗r ≤ 0;

p−↑r = 0, if p∗r > 0;

p−↓r = ∆x↑ru
τ
, if p∗r ≤ 0;

p−↓r = 0, if p∗r > 0;

(4.36)
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Figure 4.12: Reschedulable active power flow rate at current time period k and during
receding horizon.

Deviation in p∗k and consequently in ∆xk, will depend on the sign of p∗k (charg-

ing/discharging). However, any perturbation in SOC of the EV battery during current

time interval and receding horizon must comply with constraint (3.15). For exam-

ple consider a case in which SOC of the battery in current time interval is 0.6 and

in time interval r of the receding horizon is 0.3. Decreasing SOC of the battery at

current time interval by 0.2 will decrease SOC of the battery in time interval r below

x. That means the time interval r can not accommodate the perturbation. In order

to establish the reactive power supply function, the ability of all time intervals of the

receding horizon to accommodate any perturbation must be investigated. We define

three subsets in the receding horizon, namely set of reschedulable time intervals R,

set of critical time intervals R′, and set of non-reschedulable time intervals R′′. Any

r ∈ R can accommodate any perturbation in current time interval k. Any r ∈ R′ has

limited room to accommodate perturbation in current time interval k. And finally

members of R′′ can not accommodate any perturbation in current time interval k.

In the following subsections, we present a procedure to establish sets R, R′, and R′′

based on the sign of p∗k.
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4.6.1 p∗k ≥ 0

Any decrease in charging power during time interval k, ∆p↓k, will result in decrease

in scheduled SOC during time interval k and in receding horizon (k+1, k+2, . . .,

and T ) by ∆x↓k =
τ∆p↓k
u

. Figure 4.13 shows the flowchart of establishing three pre-

defined sets of the receding horizon. The flowchart starts with the first time interval

of receding horizon. This time interval will fall into R, if it can accommodate ∆x↓k,

and p+↑
r 6= 0 when p∗r ≥ 0 or p−↓r 6= 0 when p∗r < 0. The time interval will fall into

R′ if it can not accommodate ∆x↓k, and p+↑
r 6= 0 when p∗r ≥ 0 or p−↓r 6= 0 when

p∗r < 0. The time interval will fall into R′′ otherwise. Note that when the flowchart

reaches a time interval of receding horizon in which x∗r < x∗k and p+↑
r = 0 if p∗r ≥ 0

or p−↓r = 0 if p∗r < 0, the time interval r and the remaining time intervals of the

receding horizon will fall into R′′. The reason is that, the deviation in x∗k will drop

x∗r below the minimum SOC (x). Since p+↑
r = 0 if p∗r ≥ 0 or p−↓r = 0 if p∗r < 0,

the scheduled charging/discharging power (p∗r) and SOC of the EV battery (x∗r) must

remain unchanged. That will result in not changing any activity during time intervals

of receding horizon occurring after time interval r.

4.6.2 p∗k < 0

Any decrease in discharging power during time interval k, ∆p↓k, will result in increase

in scheduled SOC during time interval k and in receding horizon (k+1, k+2, . . .,

and T) by ∆x↑k =
τ∆p↓k
u

. Figure 4.14 shows the flowchart of establishing three pre-

defined sets of the receding horizon. The flowchart starts with the first time interval

of receding horizon. This time interval will fall into R, if it can accommodate ∆x↑k,

and p+↓
r 6= 0 when p∗r ≥ 0 or p−↑r 6= 0 when p∗r < 0. The time interval will fall into R′

if it can not accommodate ∆x↑k, and p+↓
r 6= 0 when p∗r ≥ 0 or p−↑r 6= 0 when p∗r < 0.
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Figure 4.13: Classifying time intervals of the receding horizon when p∗k ≥ 0.

The time interval will fall into R′′ otherwise. Similar to previous subsection, when the

flowchart reaches a time interval of receding horizon in which x∗r > x∗k and p+↓
r = 0 if

p∗r ≥ 0 or p−↑r = 0 if p∗r < 0, the time interval r and the remaining time intervals of

the receding horizon will fall into R′′.

Note that members of set R′, the critical time intervals, are arranged based on

their occurrence in the receding horizon. For example, r=10 has higher priority than

r=15. It is worth mentioning that, in case of scheduling the EV just for charging

(when scheduled SOC of the EV battery is increasing in the optimization horizon)

or just for discharging (when scheduled SOC of the EV battery is decreasing in the

optimization horizon), the set R′ is empty.

The maximum decrease in charging/discharging power at current time period k,

∆pk, can then be calculated using Table 4.6.
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Figure 4.14: Classifying time intervals of the receding horizon when p∗k < 0.

The marginal cost of perturbation at current time period k, MCk, and the marginal

cost of rescheduling at time period r of receding horizon, MCr, are presented in Table

4.4. Rescheduling of active power flow rates in the receding horizon must be done in a

way so that leads us to minimum total marginal cost, MCtotal
k . Figure 4.15 presents a

flowchart to perform the rescheduling task with the goal of minimizing total marginal

cost. The flowchart starts with arranging r ∈ R, based on its MCr, from the lowest

to the highest. Since critical time intervals have limited rescheduling capacity and

also to satisfy constraint (3.20), the rescheduling process starts with critical time in-

tervals r ∈ R′. After rescheduling all critical time intervals, if the maximum decrease

in charging/discharging power at current time period is still not met, the process

continues with rescheduling charging/discharging power during time intervals r ∈ R.

Note that rescheduling task during time intervals r ∈ R, starting with the lowest
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Table 4.6: Maximum decrease in charging/discharging power at current time period
k.

p∗k ∆pk
p∗k > 0 min

{
p∗k,
∑

r∈R′(p
+↑
r + p−↓r ) +

∑
r∈R(p+↑

r + p−↓r )
}

p∗k = 0 0
p∗k < 0 min

{
|p∗k| ,

∑
r∈R′(p

+↓
r + p−↑r ) +

∑
r∈R(p+↓

r + p−↑r )
}

marginal cost, guarantees the minimum total marginal cost.

Rank               from the one with 

lowest           to the one with 

highest          .

r R

rMC
rMC

R  
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Figure 4.15: Flowchart of rescheduling of the receding horizon.

After calculation of MCtotal
k , one can develop the MCRr for different range of

reactive power service.
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4.6.3 Nonlinear Approach

Maximum available reactive power absorption and injection can be calculated as

below.

q+
k =

√
s2 − (|p∗k| −∆pk)2, (4.37)

q−k = min

{
q,

√
s2 − (|p∗k| −∆pk)2

}
. (4.38)

Considering above explanation and reactive power capability of the charger, the

reactive power supply function at current time period k can be calculated as follows:

• Any reactive power absorption from 0 to |q∗k| with zero cost;

• Any increase in reactive power absorption by ∆qk, beyond |q∗k| up to q+
k , would

result in marginal cost of MCRtotal
k calculated with equation (4.32);

• Any reactive power injection from 0 to |q∗k| with zero cost;

• Any increase in reactive power injection by ∆qk, beyond |q∗k| up to q−k , would

result in marginal cost of MCRtotal
k calculated with equation (4.32);

Note that the range of reactive power service at time period k where R =

{
∅
}

and

R′ =

{
∅
}

, is limited to 0 to |q∗k| with zero cost for absorption and 0 to min

{
|q∗k| , q

}
with zero cost for injection. The reason for that is lack of reschedulable time intervals

in the receding horizon.

4.6.4 Linear Approach

Maximum available reactive power for absorption, q+
k , and for injection, q−k , can be

calculated by equations (4.39) and (4.40). Note that m+ = mi when the operating

point (|p∗k| −∆pk,q
+
k ) falls on the ith linear cut boundary. Similarly m− = mi when
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the operating point (|p∗k| −∆pk,q
−
k ) falls on the ith linear cut boundary.

q+
k = m+(|p∗k| −∆pk), (4.39)

q−k = m−(|p∗k| −∆pk). (4.40)

Considering above explanation and reactive power capability of the charger, the

reactive power supply function at current time period k can be calculated as follows:

• Any reactive power absorption from 0 to q+
k with zero cost;

• Any increase in reactive power absorption by ∆qk, beyond q+
k up to q+

k , would

result in marginal cost of MCRtotal
k calculated using equation (4.34);

• Any reactive power injection from 0 to q−k with zero cost;

• Any increase in reactive power injection by ∆qk, beyond q−k up to q−k , would

result in marginal cost of MCRtotal
k calculated using equation (4.34);

Note that the range of reactive power service at time period k where R =

{
∅
}

and

R′ =

{
∅
}

, is limited to q−k ≤ qk ≤ q+
k with zero cost due to the lack of reschedulable

time intervals in the receding horizon.

4.7 Numerical Results

In this section, we perform simulations for nonlinear and linear approach separately.

We have defined several scenarios in each case. In both cases, the minimum and

maximum SOC for all EVs are assumed to be 0.2 and 0.9, respectively. We have used

a work day (February 12, 2015) price published by NYISO for Central zone. From

the price data, the on-peak periods can be recognized as 7 a.m. to 10 a.m. and 6 p.m.
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to 8 p.m. Also the price of discharging active power has been assumed to be equal to

the price of charging active power during corresponding time interval. Energy unit

price ($/kWh) for Lithium-Ion battery is assumed to be $1500/kWh [50]. A multi-

period security constrained unit commitment and dispatch model that co-optimizes

to solve simultaneously for load, operating reserves, and regulation service is run by

NYISO over fifteen minute intervals. Therefore, τ is assumed to be 0.25 hour in the

calculation.

4.7.1 Nonlinear Approach

For simulation purpose, an EV with a 6.6 kVA charger, 95% battery efficiency, and 16

kWh battery capacity is considered [90]. Based on the specifications of the charger,

the maximum injected reactive power, q, can be calculated using equation (4.24) and

the value is 6.11 kVAr. The 16 kWh battery pack used for simulation is similar to the

battery used in Mitsubishi’s i MiEV. This battery pack is composed of 22 cell modules

connected in series at nominal voltage of 330 V. Each cell module is composed of 4

cells with nominal voltage of 3.7 V and capacity of 50 Ah. Using the values for β1 to

β7 from reference [47], the battery degradation factor γ, in ¢/kWh, is equal to 49.97

¢/kWh.

We have defined two scenarios. In scenario 1, we include the degradation cost

of the battery, equation (3.9), due to charging/discharging activities. In scenario

2 we ignore the degradation effect on the battery because of two reasons: First to

demonstrate the effect of the battery degradation by comparing simulation results in

scenario 1; Second, to incorporate discharging activities in the simulations. Table 4.7

lists the simulation settings used in each scenario.

Assuming τ equal to 0.25 hour, the optimization horizon, in each scenario, includes
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Table 4.7: Simulation settings in each scenario.

h0 hf x0 xf
Scenario 1 6 a.m. 11 a.m. 0.2 0.9
Scenario 2 6 p.m. 11 p.m. 0.3 0.9

20 time intervals (T=20).

4.7.1.1 Scenario 1

Figure 4.16 shows the optimal charging/discharging activities of the EV in scenario 1.

Since the battery degradation cost is higher than price of electricity, no discharging

activity has been scheduled in the optimization horizon. Also one can observe from

the figure that during the on-peak periods, no charging activities have been scheduled.
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Figure 4.16: Optimal scheduled charging/discharging activities in scenario 1.

Since EV is scheduled for charging in the optimization horizon, SOC of the EV

battery is accenting during optimization horizon, as depicted in Figure 4.17.

For any time interval k=2, 3, . . ., 13 in which the scheduled charging/discharging
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Figure 4.17: Scheduled SOC of the EV battery in scenario 1.

power is zero, the entire range of reactive power service can be provided by the EV

with zero marginal cost. Therefore the reactive power supply function of the EV for

those time intervals is as demonstrated by the red line in Figure 4.18.

kq

$/kVAr

(kVAr)
-6.11 6.6

Figure 4.18: Reactive power supply function of the EV in scenario 1 and time interval
k=2, 3, . . ., 13.

During other time intervals in which the charging/discharging power is non-zero,

the marginal cost of reactive power service is different for different ranges of reactive

power service. Consider time interval k=1 as current time interval. The receding

horizon includes r=2, 3, . . ., 20. Scheduled active power during current time interval,

p∗k, is equal to 6.6 kW. Therefore q∗k=0 kVAr. Any decrease in charging power during

current time interval k must be rescheduled in the receding horizon (r=2, 3, . . ., 20)

by increasing charging power or decreasing discharging power. Since SOC of the EV
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battery is accenting during the receding horizon we can conclude that R′ =

{
∅
}

. Also

using flowchart shown in Figure 4.13, one can conclude that R =

{
2, 3, . . . , 15

}
and R′′ =

{
16, 17, 18, 19, 20

}
.

Figure 4.19 shows the ranked reschedulable active power r ∈ R, starting from

the lowest marginal cost MCr, in the set R of the receding horizon. The maximum

decrease in charging/discharging power at current time period ∆p1, calculated from

Table 4.6, is shown in the figure with black solid line. One can conclude that any

decrease in charging power of current time interval, caused by reactive power service,

can be rescheduled during time intervals 14 and 15, equally. Therefore, considering

the marginal cost of decreasing charging power at current time interval, MC1, equal

to ¢-13.9846/kW, the total marginal cost of rescheduling active power, MCtotal
1 , can

be calculated using Table 4.4 and is equal to ¢0.1529/kW.
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Figure 4.19: Reschedulable active power in receding horizon of time interval k=1.

Using equation (4.32), the marginal cost of providing reactive power service during

current time interval k=1, MCR1, is calculated and is shown in Figure 4.20. Note

that positive and negative value for reactive power in the figure represent absorption
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and injection of reactive power, respectively.
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Figure 4.20: Reactive power supply function during time interval k=1 in scenario 1.

Now we consider k=14 as current time interval. p∗14 is equal to 1.69 kW and

accordingly, q∗14 will be equal to 6.38 kVAr. Also R =

{
15

}
, R′ =

{
∅
}

, and

R′′ =

{
16, 17, . . . , 20

}
. Therefore any decrease in charging power during time

interval 14, caused by providing reactive power service above 6.38 kVAr, can be

rescheduled just in time interval 15. Using Table 4.6 and 4.4, we have ∆p14=1.69 kW

and MCtotal
14 =¢0/kW. The reactive power supply function during time interval k=14

is equal to zero from 0 to q∗14=6.38 kVAr, zero from 0 to max

{
−q,−q∗14

}
=-6.11 kVAr,

and zero from q∗14=6.38 kVAr to 6.6 kVAr (since MCtotal
14 is equal to 0). Therefore the

cost of reactive power service is equal to zero for the entire range of reactive power

service (Figure 4.18).

During time interval k=15, p∗15=3.5 kW and accordingly q∗15=5.59 kVAr. From

Figure 4.16 one can observe that R =

{
∅
}

, R′ =

{
∅
}

, R′′ =

{
16, 17, . . . , 20

}
,

and therefore ∆p15 is equal to zero. Hence the reactive power supply function during

this time interval is zero for any reactive power service from -5.59 kVAr to 5.59 kVAr.

In scenario 1, during on-peak periods, the optimal active power was scheduled to
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zero. That means the reactive power service can be provided, from zero to 6.6 kVAr

for absorption and from 0 to 6.11 kVAr for injection, without any cost. The cost of

reactive power service provided by the EV is relatively lower during on-peak periods,

compare to off-peak periods. This opportunity can be a win-win situation for both,

EV owner and SO, since the need for reactive power during on-peak periods is most

likely higher.

4.7.1.2 Scenario 2

Figure 4.21 shows the optimal charging/discharging activities of the EV in scenario

2. Since the battery degradation cost is ignored and the initial SOC battery is 0.3 in

this scenario, discharging activities are scheduled in time intervals 2, 3, 4, and 5. In

time interval 1, although it is on-peak period, charging activity is scheduled to take

advantage of energy arbitrage. Figure 4.22 shows SOC of the EV battery during the

optimization horizon.
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Figure 4.21: Optimal scheduled charging/discharging activities in scenario 2.

For time intervals 6 to 13, in which the scheduled charging/discharging power is

zero, the entire range of reactive power service can be provided by the EV with zero
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Figure 4.22: Scheduled SOC of the EV battery in scenario 2.

marginal cost (Figure 4.18).

Consider time interval k=1 as current time interval. Scheduled active power during

current time interval, p∗k, is equal to 6.6 kW. Therefore q∗k=0 kVAr. Any decrease

in charging power of current time interval k must be rescheduled in receding horizon

(r=2, 3, . . ., 20) by increasing charging power or decreasing discharging power. The

receding horizon is divided into three sets as R =

{
∅
}

, R′ =

{
2, 3, 4, . . . , 13

}
,

and R′′ =

{
14, 15, . . . , 20

}
. Since the set of reschedulable time intervals is empty,

the rescheduling task has to be performed during critical time intervals in set R′.

Note that the time intervals in set R′ is ranked based on their occurrence in the

receding horizon. Figure 4.23 shows the ranked reschedulable active power, starting

from the first element of set R′. The maximum decrease in charging/discharging

power at current time period ∆p1, calculated fram Table 4.6, is shown in the figure

with black solid line. One can conclude that any decrease in charging power of current

time interval, caused by reactive power service, can be rescheduled starting from time

interval 2 up to 2.13 kW, then time interval 3 up to 2.13 kW, then time interval 4 up

to 2.13 kW, and finally time interval 5 up to 0.21 kW.

Therefore, considering the marginal cost of decreasing charging power at current
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Figure 4.23: Reschedulable active power in receding horizon of time interval k=1.

time interval, MC1, equal to ¢-1.5634/kW, the total marginal cost of rescheduling

active power, MCtotal
1 , can be calculated using Table 4.4 and is equal to ¢0.1219/kW.

Using equation (4.32), one can calculate the marginal cost of providing reactive power

service during current time interval k=1, MCR1, is calculated and results are in

Figure 4.24.
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Figure 4.24: Reactive power supply function during time interval k=1 in scenario 2.

Now we consider k=2 as current time interval. p∗2 is equal to -2.13 kW and

accordingly, q∗2 will be equal to 6.24 kVAr. Also using the flowchart presented in Figure
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4.14, one can conclude R =

{
∅
}

, R′ =

{
3, 4

}
, and R′′ =

{
5, 6, . . . , 20

}
in the

receding horizon. Therefore any decrease in discharging power during time interval

2, caused by providing reactive power service above 6.24 kVAr, can be rescheduled in

time intervals 3 and then 4, by increasing their discharging power. Using Table 4.6, we

have ∆p2=2,13 kW. Also MCr for r=3 and 4, is calculated to be ¢1.6853/kW using

Table 4.4. ConsideringMC2=¢-1.6853/kW for current time interval, one can conclude

that MCtotal
2 =¢0/kW. The reactive power supply function during time interval k=2

is equal to zero from 0 to q∗2=6.24 kVAr, zero from 0 to max

{
−q,−q∗2

}
=-6.11 kVAr,

and zero from q∗2=6.24 kVAr to 6.6 kVAr (since MCtotal
2 is equal to 0). Therefore the

cost of reactive power service is equal to zero for the entire range of reactive power

service (Figure 4.18).

During time interval 4 (k=4), p∗4 is equal to -2.13 kW and accordingly, q∗4 will be

equal to 6.24 kVAr. However, R =

{
∅
}

, R′ =

{
∅
}

, and R′′ =

{
5, 6, . . . , 20

}
in the receding horizon. Therefore, any decrease in discharging power during time

interval 4, caused by providing reactive power service above 6.24 kVAr, can not be

rescheduled in the receding horizon. Hence the reactive power is equal to zero from

0 to q∗4=6.24 kVAr and zero from 0 to max

{
−q,−q∗4

}
=-6.11 kVAr. Similarly during

time interval 5, where p∗5 is equal to -6.6 kW and accordingly q∗5 is equal to 0, R =

{
∅
}

,

R′ =

{
∅
}

, and R′′ =

{
6, 7, . . . , 20

}
in the receding horizon. Therefore the EV is

not able to provide any reactive power service during time interval 5.

Let us consider k=17 as current time interval. p∗17=6.6 kW and q∗17=0 kVAr.

R =

{
∅
}

, R′ =

{
18

}
, and R′′ =

{
∅
}

in the receding horizon. Since ∆p17=1.4 kW,

it can be rescheduled in time interval r=18 by increasing the charging power. MCr

and MCk is equal to ¢1.0197/kW and ¢-1.0182/kW, respectively. Therefore, the total

marginal cost, MCtotal
17 , is equal to ¢0.0015/kW. Figure 4.25 shows the reactive power
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supply function during time interval 17. Considering the value of ∆p17, the reactive

power service provided by the EV is limited to 4.06 kVAr absorption/injection.
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Figure 4.25: Reactive power supply function during time interval k=17 in scenario 2.

In scenario 2, as a result of ignoring the battery degradation cost, discharging

activities have been scheduled during some on-peak periods. Higher initial SOC and

longer parking time before the on-peak periods (which gives the EV an opportunity

for energy arbitrage) result in more discharging activities during on-peak periods.

Therefore, provision of reactive power service during those periods with discharging

activities is incorporated with relatively higher marginal cost. However, for those

time intervals of on-peak periods in which the EV is not scheduled for discharging, the

reactive power service can be provided, from zero to 6.6 kVAr in absorption and from 0

to 6.11 kVAr in injection, without any cost. As mentioned before, ignoring the battery

degradation cost would not be practical at this time. But improvement in battery

technology can decrease battery degradation cost and then would allow discharging

to be economically viable under certain conditions. Simulation results in scenario 2

clearly demonstrate efficient functionality of our framework during discharging and

charging activities.

113



4.7.2 Linear Approach

We have defined two scenarios for simulations. In the first scenario, we have consid-

ered single EV and then expanded the number of EVs to 1000 in the second scenario.

We have assumed that all of EVs considered for simulations are under one aggregator

control and participating in the reactive power service.

4.7.2.1 Scenario 1

In this scenario, a Mitsubish i-MiEV with 3.3 kVA charger and a 16 kWh Lithium-Ion

battery pack is considered. Based on the specifications of the charger, the maximum

injected reactive power, q, can be calculated using equation (4.24) and the value is

3.23 kVAr. The arrival time and departure time are assumed to be 4 p.m. and

11 p.m., respectively, in this scenario. Considering τ=0.25 hour, the optimization

horizon includes 27 intervals. The initial and desired SOC are assumed to be 0.2 and

0.9, respectively. Figure 4.26 shows the optimal charging/discharging scheduling in

scenario 1.
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Figure 4.26: Optimal scheduled charging/discharging activities in scenario 1.
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To highlight the impact of battery degradation factor on the operation of EV, we

have included the optimal scheduling results with and without the battery degrada-

tion factor in Figure 4.26, with black and red bars, respectively. Since the battery

degradation cost is higher than price of electricity, no discharging activity has been

scheduled in the optimization horizon, when we consider the battery degradation fac-

tor. Also it can be seen that the charging activities are scheduled during off-peak

periods. However, ignoring the battery degradation factor results in scheduling of

discharging activities during on-peak periods, when the price is high.

For any time interval in which the scheduled charging/discharging power is zero,

the entire range of reactive power service, from 0 to s for absorption and from 0 to q

for injection, can be provided by the EV with zero marginal cost.

Let us consider k=4 as current time interval, when p∗4=3.3 kW, accordingly

q+
4 =q−4 =0, and the receding horizon includes intervals 2, 3, . . ., and 27. First we per-

form our analysis for the case in which the battery degradation factor is considered. In

this case, R =

{
5, 6, 7, . . . , 15, 16, 18, 19, 20

}
, R′ =

{
∅
}

, and R′′ =

{
17, 21, . . . , 27

}
.

∆p4 is equal to 3.3 kW and Figure 4.27 shows the ranked reschedulable active power

in r ∈ R, starting from the lowest marginal cost MCr, in the set R of the receding

horizon to accommodate ∆p4.

Now, considering the marginal cost of decreasing charging power at current time

interval, MC4, equal to ¢-12.99 /kW, the total marginal cost of rescheduling active

power, MCtotal
4 , can be calculated using Table 4.4. Using equation (4.34), the marginal

cost of providing reactive power service during current time interval k=4, MCR4, is

calculated and is shown in Figure 4.28. Note that positive and negative value for

reactive power in the figure represent absorption (red solid line) and injection (blue

solid line), respectively.

One can observe that the marginal cost of reactive power service during k=4, an
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Figure 4.27: Reschedulable active power in receding horizon of time interval k=4, in
scenario 1 considering the battery degradation factor.

off-peak period, comparing to those time intervals during on-peak periods in which

the entire range of reactive power service can be provided by zero marginal cost, is

relatively high.

During time interval k=18, when p∗18=1.9 kW, accordingly q+
18=2.62 kVAr and

q−18=-2.56 kVAr, ∆p18=1.9 kW, and the receding horizon includes intervals 19, 20, . . .,

and 27. Therefore any reactive power service in the range −2.56 ≤ q18 ≤ 2.62, which

does not perturb p∗18, can be provided with zero marginal cost. In the receding horizon

we find R =

{
19, 20

}
, R′ =

{
∅
}

, and R′′ =

{
21, 22, . . . , 27

}
. Any perturbation

in p∗18, due to reactive power service, can be rescheduled during time interval r=19.

Since MC18=¢-13.09/kW and MC19=¢13.09/kW, the total marginal cost, MCtotal
18 ,

is equal to zero. Therefore, any reactive power service above q+
18 and below q−18 can be

provided with zero marginal cost. That will result in a reactive power supply function

with zero marginal cost for the entire range of reactive power service, −q ≤ q18 ≤ s.

It should be noted that for any time interval k=21, 22, . . ., 27, since in their receding

horizon R = R′ =

{
∅
}

, the EV will not be able to provide any reactive power service.
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Figure 4.28: Reactive power supply function during time interval k=4 in scenario 1
considering the battery degradation factor.

Now we repeat our analysis neglecting the battery degradation cost. Considering

k=4 as current time interval, when p∗4=3.3 kW, q+
4 =q−4 =0, and ∆p4=3.3 kW. In the

receding horizon R =

{
5, 6, 7, 8

}
, R′ =

{
9, 10, 11, 12

}
, and R′′ =

{
13, 14, . . . , 27

}
.

Note that since R′ is not empty in this case, the rescheduling procedure starts with

the first time intervals of set R′, which is r=9. Since ∆p4 can be accommodated in

time interval 9, therefore the rescheduling procedure can be done in this time interval.

Considering MC4=¢-1.26/kW and MC9=¢1.6/kW, the total marginal cost, MCtotal
4 ,

is equal to ¢0.34/kW. Using equation (4.34), the marginal cost of providing reactive

power service during current time interval k=4, MCR4, is calculated and is shown in

Figure 4.29.

Now consider k=9 as current time interval, when p∗9=-3.3 kW (discharging),

q+
9 =q−9 =0, and ∆p9=3.3 kW. In the receding horizon R={13, 14, 17}, R′={18, 19,

. . ., 27 }, and R′′={10, 11, 12, 15, 17 }. The rescheduling procedure starts with

the first time intervals of set R′, which is r=18. ∆p9 can be accommodated in time

interval 18, therefore the rescheduling procedure can be done in this time interval.
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Figure 4.29: Reactive power supply function during time interval k=4 in scenario 1
neglecting the battery degradation factor.

Considering MC9=¢1.6/kW and MC18=¢-1.36/kW, the total marginal cost, MCtotal
9 ,

is equal to ¢0.24/kW. Using equation (4.34), the marginal cost of providing reactive

power service during current time interval k=9, MCR9, is calculated and is shown in

Figure 4.30.

For any time interval k=17, 18, . . ., 27, since in their receding horizon R = R′ ={
∅
}

, the EV will not be able to provide any reactive power service.

4.7.2.2 Scenario 2

In the second scenario, we have considered a fleet of 1000 EVs under one aggregator

control. Table 5.9 summarizes the specification of EVs. The minimum and maximum

SOC of all EVs are assumed to be 0.2 and 0.9 respectively.

To generate 1000 usage patterns for EVs, we have used a normal distribution

function as described in Chapter 3. Table 4.9 presents the information used for EV

usage pattern generation. Notice that the data in Table 4.9 represents day time when

EVs are parked and connected to the system.
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Figure 4.30: Reactive power supply function during time interval k=9 in scenario 1
neglecting the battery degradation factor.

Table 4.8: EVs specifications.

EV no.
battery
capacity
(kWh)

s
(kVA)

q
(kVAr)

γ
(¢/kWh)

Chevrolet Volt 300 16.5 3.3 3.23 45.25
Nissan LEAF 300 24 6.6 6.33 45.86

Mitsubishi i-MiEV 400 16 3.3 3.23 46.94

Considering the simulation settings in Table 4.9, EVs will be connected from 7

a.m. to 6 p.m. and our focus will be on this time window. Therefore the optimization

horizon in second scenario includes 45 time intervals. Figure 4.31 shows the optimal

aggregated charging/discharging scheduling in scenario 1. Since the battery degra-

dation cost is higher than price of discharging power back to the grid, no discharging

activities have been scheduled. As can be seen in the figure, most of the charging

activities are scheduled during off-peak periods.

During on-peak periods, when scheduled active power flow rates are zero, the
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Table 4.9: Normal Distribution Function Settings for EV’s Usage Patterns.

Mean of arrival time 9 a.m.
Mean of departure time 4 p.m.

Std. deviation of arrival time 2 hours
Std. deviation of departure time 2 hours

Mean of traveled distance 40.3 miles
Std. deviation of traveled distance 6.2 miles
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Figure 4.31: Optimal aggregated scheduled charging/discharging activities in scenario
2.

entire range of reactive power service can be offered with zero marginal cost. For

example, during time interval k=16 (10 a.m.), any reactive power absorption from 0

to 4.29 MVAr, and any reactive power injection from 0 to 4.16 MVAr can be provided

with zero marginal cost. For the sake of demonstration, we have picked four time

intervals to show the reactive power supply function of the aggregator, k=24 (12:45

p.m.), k=26 (1:15 p.m.), k=30 (2:15 p.m.), and k=34 (3:15 p.m.).

Fig 4.32 to Fig 4.35 shows the reactive power supply function during those time

intervals. From figures, once can observe that during off-peak periods when most
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of charging activities are scheduled, the aggregator still has significant capacity to

provide reactive power service. Also it is clear that a vast range of the capacity for

reactive power service can be offered with a marginal cost lower than ¢0.1/kVAr.
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Figure 4.32: Reactive power supply function of the aggregator during time interval
k=24 in scenario 2.
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Figure 4.33: Reactive power supply function of the aggregator during time interval
k=26 in scenario 2.
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Figure 4.34: Reactive power supply function of the aggregator during time interval
k=30 in scenario 2.
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Figure 4.35: Reactive power supply function of the aggregator during time interval
k=34 in scenario 2.

In scenario 2, similar to scenario 1, during on-peak periods, the entire range of

reactive power service can be offered with zero marginal cost. In this case, the range

of reactive power service offered by the aggregator, during on-peak periods, is up to

4.29 MVAr for absorption and 4.16 MVAr for injection. Since the need for reactive

power service is most likely high during on-peak periods, providing reactive power
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service by aggregated EVs would be a win-win situation for the aggregator and SO.

The aggregator can have a revenue stream while no charging activities are scheduled,

and SO can use this low-cost reactive power service to improve the power system

operation.

4.8 Conclusion

Since reactive power support from an EV could be provided in a short response time

and has very little, if any, affect on the vehicle’s battery, it becomes a high promise

for ancillary service. In this chapter, we presented a novel structure to calculate

optimal conditions for active/reactive power service by the EV while minimizing the

total operating cost for the EV owner. After estimating optimal operating points

of an EV, we have developed an algorithm to calculate the reactive power supply

function of the EV on a real-time basis. The calculated supply function is in step-

wise ascending order. Results indicate the EV’s capability to provide reactive power

service, especially during on-peak periods, with low marginal cost. Since the need for

reactive power service is most likely high during on-peak periods, providing reactive

power service by aggregated EVs could be a win-win situation for both, the aggregator

and SO. As shown, the developed methodology for calculating operating cost as well

as reactive power supply function can be easily applied to a large group of EVs.
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Chapter 5

Frequency Regulation Service from

EVs

5.1 Introduction

Climate Change 2014 Synthesis Report suggests renewables will have to grow from

their current 30% share to 80% of the power sector by 2050. In the longer term, the

report states that fossil fuel power generation without carbon capture and storage

technology would need to be phased out almost entirely by 2100 [78]. For wider

adoption, intermittent nature of renewable sources needs to be overcome first.

According to reference [79], the highest value ancillary service for EVs is frequency

regulation. Frequency regulation is the use of on-line generation, storage, or load that

is equipped with AGC and that can change output quickly (MW/min) to track the

moment-to-moment fluctuations in customer loads and to correct for the unintended

fluctuations in generation [80].

According to reference [81], as the penetration of renewable energy sources in the

system increases, frequency regulation requirements as well as need for faster ramping
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resources will increase. This need has been recognized by FERC. On October 20, 2011,

FERC issued a final ruling establishing a two-component market-based compensation

scheme (capacity payment and performance-based payment) for providing frequency

regulation service [82]. Considering rapid response and large instantaneous power,

EVs can provide a fast response when the mismatch between load and generation is

large and happens in short duration [83].

Various DR strategies for ancillary services by EVs have been reported in liter-

ature [84]- [87]. But so far no framework has been developed which could be easily

implemented, scalable for large number of EVs, and fulfill FERC order 755. In this

chapter, we present a systematic three-level optimization framework, from aggrega-

tor’s prospective, to estimate the optimal operating conditions of EVs for frequency

regulation service. The framework schedules EVs for charging/discharging activities

with minimum cost, calculates biding components (capacity and associated cost func-

tion) for frequency regulation service, and assigns each connected EVs, optimally, to

provide the service.

The main contribution of the research in this chapter is summarized as follows:

1. Evaluating the EV’s capability to provide frequency regulation service.

2. Developing a framework to estimate the supply function of the service provided

by EV, complying with FERC Order 755.

3. Calculation of the service cost function in step-wise ascending order.

4. Developing a multi-level optimization approach, from aggregator’s stand point,

to engage a large group of EVs in the frequency regulation market.
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5.2 Frequency Regulation: A Review

Frequency regulation, sometimes referred to as secondary frequency control, is a re-

quired ancillary service for which participating generation capacity follows the power

commands from the SO [93]. The regulation power command is referred as AGC sig-

nal which is used to regulate grid frequency and maintain scheduled power exchanges

between control areas [94]. This signal is usually updated every 2-10 seconds and indi-

cates the new requested power output of participating generators, whether the power

setpoint should be raised or lowered [80]. A common name for secondary frequency

regulation in the seven U.S. electric energy regions managed by Independent System

Operators (ISOs) or Regional Transmission Organizations (RTOs) is “regulation”, or

“regulation-up” and “regulation-down”. While secondary frequency control can serve

to restore frequency following a contingency or the loss of a large block of load, it

cannot serve to limit the magnitude of the initial frequency swing following such an

event [94].

In general, frequency regulation is performed by a subset of various power plants

which have the capability to respond to an AGC signal, by dedicating a small portion

of their power capacity to AGC [95]. A comprehensive literature survey of research

on AGC is presented in reference [96]. Research in AGC covers different areas, such

as determination of the area control error (ACE) [97], methods of calculating the fre-

quency bias factor in frequency control [98], and effects of the intermittent renewable

generations on AGC [99]– [101]. Optimal allocation of AGC signal to each partici-

pating generator is another critical aspect of AGC, since it can minimize the cost and

improve the quality of frequency regulation service.

After the advent of deregulation, there has been much effort to form competitive

markets for frequency regulation. These markets are usually for capacity reserves
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and have been called regulation, balancing, load-following, frequency control or even

combined with spinning reserve markets [102]. Figure 5.1 sectionizes operation of

power system in different operational phases. In phase 1, based on the day-ahead

load forecast, committed generators are selected using unit commitment process. An

hourly-based economic dispatch is run in phase 2 to dispatch committed generators

optimally, based on an objective function. In phase 3, the match between load and

generation is achieved applying AGC, to minimize ACE.

Day-ahead unit commitment

Hour-ahead economic dispatch

Day-ahead 

load forecast

Minutes-ahead economic dispatch

Minutes-ahead 

load forecast

AGC

ACE

Power system 

dynamics

days

minutes

seconds

real-time

phase 1 phase 2 phase 3 phase 4

Figure 5.1: Sequential phases in power system operation.

Procurement of regulation service can be done through a market mechanism. A

comprehensive survey of regulation market in the U.S. can be found in reference

[103]. Based on the survey, four factors complicate understanding of the business

practice manuals (BPMs) of ISOs/RTOs: “First, the business practices in question

are extremely complex, covering the operations of multiple interconnected markets

operating at multiple time scales. Second, the BPMs are lengthy documents written

in highly legalistic language, which hinders their readability. Third, the BPMs are
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continually being updated to include changes in rules of operation. Fourth, with one

exception (Midwest ISO), the ISOs/RTOs do not include in their BPMs the precise

forms of the optimization problems (objective functions plus constraints) that are used

to determine their price, commitment, and dispatch solutions for energy and reserve.”

Therefore, in this chapter, we consider the framework presented in reference [104], to

allocate AGC signal optimally among participants in the regulation market. Figure

5.2 summarizes the framework, in which the SO receives the ACE. Then considering

the available committed generator and regulation service provider’s bids, the SO

assigns the AGC signal optimally, to minimize service cost and ACE. The formulation

of optimal allocation of AGC signal was presented in references [104]– [105] and is

out of the scope of this dissertation.

Regulation service providers

System operator

Committed generators

Optimal allocation 

of AGC signal

ACE

Figure 5.2: Schematic of optimal allocation of AGC signal.

Considering the characteristics of energy storage systems, high power and low en-

ergy, they are a suitable candidate satisfying FERC 755 requirements. The rapidly

controllable power from energy storage devices can be valuable for frequency reg-

ulation, as discussed in reference [106]. Since EVs are equipped with battery and

the charging flow rate of EVs can be controlled continuously, they can be considered

as distributed energy storage units when vehicle-to-grid is available [107]. Involving
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EVs in AGC has been studied in references [108] and [109]. However, evaluation of

economic value and estimation of the bidding functions for regulation service by EVs,

in a systematic way, is missing in the literature.

In order to estimate the supply function of the service, we first study the capability

of an EV in provission of frequency regulation.

5.3 EV’s Capability for Regulation Service

An EV can participate in regulation up service by decreasing its scheduled charging

demand or increasing its discharging power. The regulation down service can also be

provided from the EV by increasing its charging demand or decreasing its discharging

power. Assuming p∗k to be the optimal operating point of EV in time step k, Figure

5.3 demonstrates the frequency regulation service that needs to be provided by the

EV to fulfil the service requirement.

0
kp

pp
kp

Reg. downReg. up

Figure 5.3: Frequency regulation service from EV in time step k.

Provision of regulation service results in changing the scheduled active power

flow rate. The change in scheduled active power flow rate, which is the solution

of pre-defined optimization problem in Chapter 3, is termed as perturbation in the

optimal solution. This perturbation may increase the operation cost of the EV. Let

us consider time interval k as current time period. Any regulation service during time

interval k results in perturbation of active power flow rate by ∆pk. In order to satisfy

constraint (3.18), any change in active power flow rate at current time period k must
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be reschedulable during the remainder of its parking time, termed as receding horizon

in our calculation. Therefore ∆pk is limited by maximum reschedulable active power

flow rate in the receding horizon. Let us assume that the change in active power

flow rate at the current time period, k, is rescheduled during a time period r of the

receding horizon. In the following subsection, perturbations caused by regulation

services and associated costs are discussed.

5.3.1 Perturbation in Optimal Solutions due to Regulation-

Up Service

Any decrement in charging power, when p∗k ≥ 0, or increment in discharging power,

when p∗k < 0, to provide regulation-up service during time interval k, is rescheduled

in the receding horizon. Table 5.1 summarizes changes in operation cost of the EV

during current time period k and rescheduling time period r.

Table 5.1: Change in Operation Cost of EV due to Provision of Regulation-Up Service.

p∗k p∗r ∆f ck ∆f cr
p∗k ≥ 0 p∗r ≥ 0 −τ(ρk

η
+ γ)∆pk τ(ρr

η
+ γ)∆pk

p∗k ≥ 0 p∗r < 0 −τ(ρk
η

+ γ)∆pk τ(ηλpr − γ)∆pk
p∗k < 0 p∗r ≥ 0 −τ(ηλpk − γ)∆pk τ(ρr

η
+ γ)∆pk

p∗r < 0 p∗k < 0 −τ(ηλpk − γ)∆pk τ(ηλpr − γ)∆pk

The marginal cost due to a deviation of ∆pk from optimal solutions, p∗k and p∗r,

can be calculated by differentiating equations in third and fourth column of Table 5.1

with respect to ∆pk. Table 5.2 lists the marginal cost, MCk, for deviation form p∗k,

and the marginal cost, MCr, for deviation form p∗r all in $/kWh.
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Table 5.2: Marginal Cost of Deviation Caused by ∆pk During Regulation Up Service
($/kW).

p∗k p∗r MCk MCr
p∗k ≥ 0 p∗r ≥ 0 −τ(ρk

η
+ γ) τ(ρr

η
+ γ)

p∗k ≥ 0 p∗r < 0 −τ(ρk
η

+ γ) τ(ηλpr − γ)

p∗k < 0 p∗r ≥ 0 −τ(ηλpk − γ) τ(ρr
η

+ γ)

p∗k < 0 p∗r < 0 −τ(ηλpk − γ) τ(ηλpr − γ)

5.3.2 Perturbation in Optimal Solutions due to Regulation-

Down Service

Any increment in charging power, when p∗k ≥ 0, or decrement in discharging power,

when p∗k < 0, to provide regulation-down service during time interval k, is rescheduled

in the receding horizon. Table 5.3 summarizes changes in operation cost of the EV

during current time period k and rescheduling time period r.

Table 5.3: Change in Operation Cost of EV due to Provision of Regulation-Down
Service.

p∗k p∗r ∆f ck ∆f cr
p∗k ≥ 0 p∗r ≥ 0 τ(ρk

η
+ γ)∆pk −τ(ρr

η
+ γ)∆pk

p∗k ≥ 0 p∗r < 0 τ(ρk
η

+ γ)∆pk −τ(ηλpr − γ)∆pk
p∗k < 0 p∗r ≥ 0 τ(ηλpk − γ)∆pk −τ(ρr

η
+ γ)∆pk

p∗r < 0 p∗k < 0 τ(ηλpk − γ)∆pk −τ(ηλpr − γ)∆pk

The marginal cost due to a deviation of ∆pk from optimal solutions, p∗k and p∗r,

can be calculated by differentiating equations in third and fourth column of Table 5.3

with respect to ∆pk. Table 5.4 lists the marginal cost, MCk, for deviation form p∗k,

and the marginal cost, MCr, for deviation form p∗r all in $/kWh.

The total marginal cost, MCtotal
k , for deviation from optimal solutions (due to
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Table 5.4: Marginal Cost of Deviation Caused by ∆pk During Regulation Down
Service ($/kW).

p∗k p∗r MCk MCr
p∗k ≥ 0 p∗r ≥ 0 τ(ρk

η
+ γ) −τ(ρr

η
+ γ)

p∗k ≥ 0 p∗r < 0 τ(ρk
η

+ γ) −τ(ηλpr − γ)

p∗k < 0 p∗r ≥ 0 τ(ηλpk − γ) −τ(ρr
η

+ γ)

p∗k < 0 p∗r < 0 τ(ηλpk − γ) −τ(ηλpr − γ)

provision of regulation-up/down service) can be calculated as follows:

MCtotal
k = MCk +MCr. (5.1)

Therefore, based on the optimal scheduled active power flow rate at time period k,

p∗k, and the rescheduling time period r in the receding horizon, the marginal cost for

providing regulation services can be calculated using Table 5.2 and 5.4 and equation

(5.1). In the following section, we provide a framework to find minimum marginal

cost and calculate the bidding components for the EV to participate in the regulation

market.

5.4 Bidding Strategy for Single EV

The bid from the EV must contain the offered capacity of power (kW) for the reg-

ulation service along with an energy cost function [82]. In this section we present a

framework to calculate the optimal bidding components for a single EV. The first step

in the development of the framework is to calculate optimal scheduled active power

flow rates, while minimizing the charging/discharging cost and providing desired SOC

at the departure time. This effort provides information of the optimal scheduled ac-
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tive power flow rate, p∗k, and scheduled SOC of the EV battery, x∗k, for k= 1, 2, . . . , T .

Then during each time period k, the bidding components are calculated.

We define ∆pk, the deviation in the active power from its scheduled value and

∆xk, the deviation in the SOC of the battery from its scheduled value, x∗k, as a result

of change in active power activity. We define x∗r as the scheduled SOC of the battery

at time interval r of the receding horizon. We also use superscripts ↑ for deviation in

increase mode and ↓ for deviation in decrease mode.

In order to meet constraint (3.20), ∆xk is limited to ∆x↑k and ∆x↓k. Table 5.5 lists

the reschedulable SOC, during time interval k, for increasing and decreasing modes.

Table 5.5: Reschedulale deviation in the SOC of the battery.

p∗k ∆x↑k ∆x↓k
p∗k ≥ 0 min

{
x− x∗k, (p− p∗k) τu

}
min

{
x∗k − x, (

∣∣p∣∣+ p∗k)
τ
u

}
p∗k < 0 min

{
x− x∗k, (

∣∣p∗k∣∣+ p) τ
u

}
min

{
x∗k − x, (

∣∣p∣∣− ∣∣p∗k∣∣) τu}

Therefore, reschedulable active power flow rate in each time interval, is limited

to the reschedulable SOC of the battery during the corresponding time interval. We

consider time interval k as the current time interval, and r representing a time interval

of the receding horizon. During time interval r of the receding horizon, we define p+↑
r

as available charging power increment, p+↓
r as available charging power decrement,

p−↑r as available discharging power increment, p−↓r as available discharging power

decrement. Figure 5.4 shows an example of optimal scheduled charging/discharging

power activities. Red bars in the figure indicates the scheduled active power flow

rate at each time period (p∗k, p
∗
k+1, . . ., p∗T ). Note that positive and negative values

for active power flow rates represent charging and discharging activities, respectively.

Also p+↑
r , p+↓

r , p−↑r , and p−↓r are shown by yellow, green, blue, and purple arrows in
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the figure, respectively.
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Figure 5.4: Reschedulable active power flow rate at current time period k and during
receding horizon.

Considering Figure 5.4, Table 5.6 can be developed to calculate the reschedulable

power during time interval r of the receding horizon.

Table 5.6: Reschedulable power during time interval r of receding horizon.

p∗r p+↑
r p+↓

r p−↑r p−↓r
p∗r > 0 ∆x↑ru

τ
∆x↓ru
τ

0 0

p∗r < 0 0 0 ∆x↓ru
τ

∆x↑ru
τ

p∗r = 0 ∆x↑ru
τ

0 ∆x↓ru
τ

0

Deviation in p∗k and consequently in x∗k, will depend on the type of service (regulation-

up/regulation-down). We define three subsets in the receding horizon, namely set

of reschedulable time intervals R, set of critical time intervals R′, and set of non-

schedulable time intervals R′′ regulation service. Any r ∈ R can accommodate any

perturbation in current time interval k. Any r ∈ R′ has limited room to accommo-
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date perturbation in current time interval k. And finally members of R′′ can not

accommodate any perturbation in current time interval k. In the following subsec-

tions, we present a procedure to establish sets R, R′, and R′′ for regulation-up and

regulation-down services during time interval k.

5.4.1 Regulation-Up

Perturbation in the scheduled SOC, as the result of regulation-up service, is in decreas-

ing direction (∆x↓k). Figure 5.5 shows the flowchart of establishing three pre-defined

subsets of the receding horizon.

r=k+1

Assign r to set R.

0rp 

Assign r to set   . Assign r to set   .R

0rp 

0rp 

0rp 

0rp 

0rp 

R

yes no

yes no

yes

no

yes no

yes
yes

no

no no

r=r+1

Assign all time 

intervals from r+1 to 

T, to set    and r=T.R

yes

r T

Finish

yes

no

*

r kx x x  

Figure 5.5: Classifying time intervals of the receding horizon for provision of
regulation-up service.

The flowchart starts with the first time interval of the receding horizon. This time

interval will fall into R, if it can accommodate ∆x↓k, and p+↑
r 6= 0 when p∗r ≥ 0 or
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p−↓r 6= 0 when p∗r < 0. The time interval will fall into R′ if it can not accommodate

∆x↓k, and p+↑
r 6= 0 when p∗r ≥ 0 or p−↓r 6= 0 when p∗r < 0. The time interval will

fall into R′′ otherwise. Note that when the flowchart reaches a time interval of the

receding horizon in which x∗r − x < ∆x↓k and p+↑
r = 0 if p∗r ≥ 0 or p−↓r = 0 if p∗r < 0,

the time interval r and the remaining time intervals of the receding horizon will fall

into R′′. The reason is that, the deviation in x∗k will drop x∗r below the minimum SOC

(x).

5.4.2 Regulation-Down

Perturbation in the scheduled SOC, as the result of regulation-down service, is in

increasing direction (∆x↑k). Figure 5.6 shows the flowchart of establishing three pre-

defined subsets of the receding horizon.

The flowchart starts with the first time interval of receding horizon. This time interval

will fall into R, if it can accommodate ∆x↑k (x−x∗r ≥ ∆x↑k), and p+↓
r 6= 0 when p∗r ≥ 0

or p−↑r 6= 0 when p∗r < 0. The time interval will fall into R′ if it can not accommodate

∆x↑k (x − x∗r < ∆x↑k), and p+↓
r 6= 0 when p∗r ≥ 0 or p−↑r 6= 0 when p∗r < 0. The time

interval will fall into R′′ otherwise. Similar to previous subsection, when the flowchart

reaches a time interval of receding horizon in which x − x∗r < ∆x↑k and p+↓
r = 0 if

p∗r ≥ 0 or p−↑r = 0 if p∗r < 0, the time interval r and the remaining time intervals of

the receding horizon will fall into R′′.

Note that members of set R′, the critical time intervals, are arranged based on

their occurrence in the receding horizon. For example, r=10 has higher priority than

r=15. It is worth mentioning that, in case of scheduling the EV just for charging or

just for discharging, the set R′ is empty.

The maximum power available for regulation-up and regulation-down services
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Figure 5.6: Classifying time intervals of the receding horizon for provision of
regulation-down service.

during current time interval k, ∆pupk and ∆pdownk respectively, are calculated using

the following equations.


∆pupk = min

{
∆x↓k

u
τ
,
∑

r∈R′(p
+↑
r + p−↓r ) +

∑
r∈R(p+↑

r + p−↓r )

}
;

∆pdownk = min

{
∆x↑k

u
τ
,
∑

r∈R′(p
+↓
r + p−↑r ) +

∑
r∈R(p+↓

r + p−↑r )

}
;

(5.2)

The marginal cost of perturbation at current time period k, MCk, and the marginal

cost of rescheduling at time period r of receding horizon, MCr, are presented in Table

5.2 and 5.4. Rescheduling of active power flow rates in the receding horizon must be

done in a way so that it leads to minimum total marginal cost, MCtotal
k . Figure 5.7

and 5.8 present flowcharts to perform the rescheduling task with the goal of mini-

mizing total marginal cost of providing regulation-up and regulation-down service,
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respectively. The flowcharts start with arranging r ∈ R, based on its MCr, from the

lowest to the highest. Since critical time intervals have limited rescheduling capacity

and also to satisfy constraint (3.20), the rescheduling process starts with critical time

intervals r ∈ R′. After rescheduling all critical time intervals, if the maximum power

for regulation up/down at current time period is still not met, the process contin-

ues with rescheduling charging/discharging power during time intervals r ∈ R. Note

that rescheduling during time intervals r ∈ R, starting with the lowest marginal cost,

guarantees the minimum total marginal cost.
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Figure 5.7: Flowchart of rescheduling during the receding horizon for providing
regulation-up service.
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Figure 5.8: Flowchart of rescheduling during the receding horizon for providing
regulation-down service.

Notice that the marginal cost assigned for each range of regulation services in

Figure 5.7 and 5.8 is the cost of providing the services for that range.

After developing the framework for providing the regulation services from a single

EV, we extend the framework to take care of a group of EVs. At this level, an

aggregator would be responsible for this task.
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5.5 Bidding Strategy for an Aggregator

In this section, we extend the framework for single EV to a group of EVs, from the

aggregator’s stand point. The aggregator is responsible for the EVs under his/her

control. Also EV owners have granted the permission to the aggregator to participate

in the regulation market.

The aggregator is responsible to provide required charging energy for each EV

in order to provide the desired SOC at the departure time. This task should be

accomplished with minimum cost. The aggregator is allowed to submit optimal bid

for regulation services. After submitting the bid, if an AGC signal is allocated to

the aggregator, he/she must satisfy the signal in an optimized way. To perform

aggregator’s tasks optimally, we present a framework consists of three hierarchical

optimization levels, as displayed in Figure 5.9 and discussed below.

Calculate optimal charging/discharging strategy.

AGC 

signal

Calculate available capacity for regulation up and down.

Calculate the energy cost function with minimum marginal cost for 

each connected EV.

Submit the aggregated capacity for regulation up and down 

service as well as the energy cost function. 

Satisfy the AGC signal by optimally 

assigning it to available EVs.

Update optimal charging strategies based on the net-

energy of the AGC signals of the market period.

New EV arrival? 

availability of new EVs 

upon arrival

yesno

next market periodnext market period

Upper optimization level

Lower 

optimization 

level

Post-process 

optimization level

Figure 5.9: Flowchart of the aggregator’s bidding strategy calculation for regulation
service.
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5.5.1 Upper Optimization Level

The aggregator’s cost function is defined by the summation of all EV’s cost functions,

as defined in equation (3.12). The cost function is minimized by solving the linear

optimization problem (3.17) for each EV. The optimal active power scheduling is

calculated for each connected EV.

5.5.2 Lower Optimization Level

At this level, during each time interval, the available capacity for regulation-up and

regulation-down service (∆pupk and ∆pdownk ) is calculated for each connected EV using

equation (5.2). Also the cost function of providing services for each connected EV is

calculated using flowcharts presented in Figure 5.7 and 5.8. It should be emphasized

that the cost function at this level is calculated with minimum marginal cost for

providing the service. To build the aggregated cost function, the aggregator must

define the regulation service range from the lowest cost to the highest.

5.5.3 Post-process Optimization Level

As shown in Figure 5.10, after receiving the allocated AGC signal from the SO, the

aggregator must assign a portion of the signal to each participating EV in order to

satisfy the signal. To perform this task in an optimal fashion, the aggregator must

provide the service (either regulation-up or regulation-down service), starting with

the EV which has the lowest marginal cost, until the AGS signal is met.

Since the optimization problem in upper optimization level is solved using linear

programming, the developed multi-level framework can be performed in a real-time

fashion efficiently.
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Figure 5.10: Post-process optimization level.

5.6 Numerical Results

We have defined two scenarios for simulations. In the first scenario, we have consid-

ered an EV and then expanded the number of EVs to 1000 in the second scenario.

We have assumed that all of EVs considered for simulations are under one aggregator

control and participating in the regulation service. Energy unit price ($/kWh) for

Lithium-Ion battery is assumed to be $1500/kWh [50]. The minimum and maximum

SOC for all EVs are assumed to be 0.2 and 0.9, respectively. We have used a work

day (February 12, 2015) price published by NYISO for Central zone. This price data

is the same price data used in simulations of Chapter 4. Since NYISO runs operating

reserves and regulation service market over fifteen minute intervals, τ is assumed to

be 0.25 hour in the calculation.

5.6.1 Scenario 1

In this scenario, a Mitsubish i-MiEV with 3.3 kVA charger and a 16 kWh Lithium-

Ion battery pack is considered. As explained in Section 4.7, the battery degradation

factor γ, in ¢/kWh, is equal to ¢46.94/kWh. The arrival time and departure time

are assumed to be 4 p.m. and 11 p.m., respectively, in this scenario. Considering

τ=0.25 hour, the optimization horizon includes 27 intervals. The initial and desired
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SOC are assumed to be 0.2 and 0.9, respectively. To highlight the impact of battery

degradation factor on the operation of EV, we have defined two cases in this scenario:

Case 1 in which the battery degradation is consider; and Case 2 in which the battery

degradation is ignored.

Optimal charging/discharging scheduling in Scenario 1 is the same as optimal

scheduling results in 4.7.2.1. Figure 5.11 repeats the optimal charging/discharging

scheduling in this scenario.
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Figure 5.11: Optimal scheduled charging/discharging activities in scenario 1.

We have performed the proposed framework for three time intervals in each case,

including k=4, k=9, and k=18 in Case 1 and k=4, k=9, and k=14 in Case 2. Table

5.7 and 5.8 list the three subsets R, R′, and R′′ of receding horizons in each case.

From tables, one can observe that scheduling discharging activity in Case 2, results

in changing the subsets of the receding horizons. For example, during time interval

k=4, the subset R′ for regulation-up service in case 1 is empty. However, in case 2,

the subset R′ contains time interval 12 because of the scheduled discharging activities

in Case 2.
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Table 5.7: Subsets R, R′, and R′′ of receding horizon in Scenario 1 and Case 1.

Case 1
k=4 k=9 k=18

∆pupk (kW) 6.6 3.3 5.2

∆pdownk (kW) 0 3.3 1.4

{R} for reg. up
5, . . ., 16,
18, 19, 20

10, . . ., 16,
18, 19, 20

19, 20

{R} for reg. down ∅ 17, 18, 21,
. . ., 26

21, . . ., 27

{R′} for reg. up ∅ ∅ ∅
{R′} for reg. down ∅ 27 ∅

{R′′} for reg. up
17, 21,
. . ., 27

17, 21, . . .,
27

21, . . ., 27

{R′′} for reg. down 5, . . ., 27
10, . . ., 16,

19, 20
19, 20

Table 5.8: Subsets R, R′, and R′′ of receding horizon in Scenario 1 and Case 2.

Case 2
k=4 k=9 k=14

∆pupk (kW) 6.6 0 5.2

∆pdownk (kW) 0 6.6 1.4

{R} for reg. up
5, . . ., 11,
14, 15, 16

∅ 15, 16

{R} for reg. down ∅ 13, 14, 17,
. . ., 25

17, . . ., 27

{R′} for reg. up 12 ∅ ∅
{R′} for reg. down ∅ 26, 27 ∅

{R′′} for reg. up
13, 17, . . .,

27
10, . . ., 27 17, . . ., 27

{R′′} for reg. down 5, . . ., 27
10, 11, 12,

15, 16
15, 16

The effect of battery degradation cost on the regulation-up and regulation-down

cost function is clearly visible in simulation results. Figure 5.12 shows the regulation
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service cost function during k=4 for both cases. Regulation-down service is not

available from the EV since ∆pdown4 =0. As can be seen in Figure 5.12 (a), in Case 1,

perturbation in p∗4 due to provision of regulation-up service from 0 to 1.4 kw, from

1.4 to 4.7 kW, and from 4.7 kW to 6.6 kW is rescheduled during r=18, r=19, and

r=20, respectively. From Figure 5.12 (b), it can be observed that in Case 2, the

rescheduling task is performed during time interval r=12, since this time interval is a

critical time interval. Also comparing the cost range of regulation services shows that

in Case 1, for the range of regulation-up service in which the EV is being discharged,

the cost of service is high (¢24/kW). That is because of the degradation cost of the

battery caused by discharging activity. However this cost in Case 2, when the battery

degradation is ignored, is less than ¢1/kW.

Figure 5.13 demonstrates the regulation service cost function during k=9 for both

cases. In case 1, the values for ∆pup9 and ∆pdown9 are equal and is 3.3 kW. In Case

1, the perturbation in p∗9 caused by regulation-up service is rescheduled during time

intervals r=18 and r=19, as shown in Figure 5.13 (a). The perturbation caused

by regulation-down service is rescheduled at time interval r=17, because this time

interval falls in subset R′. The cost associated with regulation-up service is very

high since the service is provided by discharging the EV. In Case 2, the EV is not

able to provide regulation-up service (∆pup9 =0). The rescheduling task for providing

regulation-down service in this case, is performed at time interval r=26.

Figure 5.14 shows the result during time interval k=18 for Case 1. ∆pup18 and

∆pdown18 are 5.2 kW and 1.4 kW, respectively. The perturbation caused by regulation-

up service from 0 to 3.3 kW and from 3.3 kW to 5.2 kW is rescheduled at time

intervals r=19 and r=20, respectively. The spike in regulation-up cost function, from

0 to ¢13.1/kW is due to the battery degradation cost for discharging activity. The

perturbation caused by regulation-down service (from 0 to 1.4 kW) is rescheduled at
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Figure 5.12: Regulation services in Scenario 1 during time interval k=4 for (a) Case
1 and (b) Case 2 .

time intervals r=25.

Figure 5.15 shows the result during time interval k=14 for Case 2. ∆pup14 and

∆pdown14 are 5.2 kW and 1.4 kW, respectively. The perturbation caused by regulation-

up service from 0 to 3.3 kW and from 3.3 kW to 5.2 kW is rescheduled at time

intervals r=15 and r=16, respectively. Notice that the regulation-up cost function

from 1.9 kW to 5.2 kW, although the service is provided by discharging the battery,

is relatively low. That is because of ignoring the battery degradation factor. The

perturbation caused by regulation-down service (from 0 to 1.4 kW) is rescheduled at

time intervals r=17.
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Figure 5.13: Regulation services in Scenario 1 during time interval k=9 for (a) Case
1 and (b) Case 2 .
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Figure 5.14: Regulation services in Scenario 1 during time interval k=18 for Case 1.
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Figure 5.15: Regulation services in Scenario 1 during time interval k=14 for Case 2.

From the results in Scenario 1, one can observe that ignoring the battery degra-

dation effect significantly impacts the regulation service cost function. However,

improvement in battery technologies would eventually lowers the battery degradation

cost in the future.

5.6.2 Scenario 2

In the second scenario, we have considered a fleet of 1000 EVs under one aggregator

control. Table 5.9 summarizes the specification of EVs. The minimum and maximum

SOC of all EVs are assumed to be 0.2 and 0.9 respectively.

Table 5.9: EVs specifications.

EV no.
battery
capacity
(kWh)

p
(kW)

p
(kW)

γ
(¢/kWh)

Chevrolet Volt 300 16.5 3.3 -3.3 45.25
Nissan LEAF 300 24 6.6 -6.6 45.86

Mitsubishi i-MiEV 400 16 3.3 -3.3 46.94
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To generate 1000 usage patterns for EVs, we have used a normal distribution

function as described in 4.7.2.2.

5.6.2.1 Upper Optimization Level

The optimal charging/disharging scheduling in this scenario is the same as the optimal

scheduling in 4.7.2.2. Figure 5.16 repeats the optimal aggregated charging/discharging

scheduling.
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Figure 5.16: Optimal aggregated scheduled charging/discharging activities in scenario
2.

5.6.2.2 Lower Optimization Level

Figure 5.17 demonstrates the available regulation services and its cost function from

the aggregated EVs at 10 a.m. (which is k=13 in the optimization horizon). Al-

though there are number of EVs connected to the charging facilities at 10 a.m.,

one of on-peak periods, no charging/discharging activities have been scheduled. But

3.955 MW power is available for regulation services (∆P up
13 =∆P down

13 =3.95 MW). The
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price of regulation-up service is relatively higher because this service is provided by

discharging participating EVs batteries.
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Figure 5.17: Regulation services in Scenario 2 at 10 a.m.

Figure 5.17 shows the results at 2:15 p.m. (k=30 in the optimization horizon),

during off-peak periods. Since 2:15 p.m. is an off-peak period, most of the charging

activities have been scheduled at this time. Scheduling more EVs for charging, the

less regulation-down service is expected. As can be seen from the figure, although

there is not any capacity available for regulation-down service (∆P down
30 =0), 1.23 MW

capacity is available for regulation-up service (∆P up
30 =1.23 MW).

5.6.2.3 Post-Process Optimization Level

At this stage, the aggregator receives the allocated AGC signal from the SO. To satisfy

the allocated AGC signal, either for regulation-up or regulation-down service, the

aggregator must assign a portion of the service to each connected EV appropriately.

Table 5.10 and 5.11 lists the results of post-process optimization level. For example,

at 10 a.m. the regulation-up service from 0 to 1.77 kW is assigned to EV 5 (the

perturbation in the scheduled power of the EV is rescheduled at r=31 of its receding
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Figure 5.18: Regulation services in Scenario 2 at 2:15 p.m.

horizon).

Table 5.10: Post-process optimization results for assigning AGC signal at 10 a.m.

Service From (kW) To (kW)
Assigned
EV no.

Rescheduling interval
of the receding horizon r

Regulation-up

0 1.177 5 31
1.177 4.477 7 31

...
3946.7 3950 930 18

Regulation-down

0 2.611 586 37
2.611 5.911 596 34

...
3949.3 3950 586 29

Power capacity available to provide regulation services, from the aggregated EVs,

are highest during on-peak periods. Any regulation services which is provided by

discharging EVs, the associated cost is relatively high due to the high battery degra-

dation cost. In the future it is expected that battery technologies will improve and the

battery degradation factor would decrease. The less the battery degradation factor

is, the more economical regulation services can be provided by EVs.
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Table 5.11: Post-process optimization results for assigning AGC signal at 2:15 p.m.

Service From (kW) To (kW)
Assigned
EV no.

Rescheduling interval
of the receding horizon r

Regulation-up

0 0.655 39 32
0.655 3.955 5 34

...
1229.8 1230 609 35

5.7 Conclusion

In this chapter, we presented a novel multi-level optimization framework for an aggre-

gator, responsible for a group of EVs, to decide on the bid components of regulation

services. In the upper optimization level, optimal charging/discharging activities of

aggregated EVs are calculated. The objective function at this level is the charg-

ing/discharging cost of aggregated EVs. The objective function is minimized using

linear programming. In the lower optimization level, biding components (capacity

and cost function) of regulation services, for aggregated EVs are calculated. The

components are calculated in an optimal fashion, to minimize the cost of the service.

In the post-process optimization level, when the aggregator receives the allocated

AGC signal, participating EVs are assigned optimally to satisfy the signal. The pro-

posed framework is scalable for a large group of EVs and easy to implement in a

real-time manner. It should be noted that the framework does not lower the EV

owners comfort level.
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Chapter 6

DGs Integration and Micro-Grid

6.1 Introduction

Improvement in renewable generation technologies and environmental concerns along

with restructuring of the electricity market make Distributed Generators (DGs) an

attractive solution to meet the electricity demand. However integrating DGs into

the distribution Electric Power System (EPS) could challenge the operation of it.

These challenges could be listed as: voltage rise effect, power quality, protection, and

stability [110].

Challenges related to protection can be identified as: Protection of the generation

equipment from internal faults; Protection of the distribution network from fault

currents supplied by the DG; Anti-islanding or loss-of-main source protection; and

Impact of DG on existing distribution system protection.

The focus of this chapter is on islanding issue. Islanding can be defined as a

condition in which a portion of the utility system containing both load and DG,

remains energized while being isolated from the remainder of the EPS [111]. Under

islanding conditions, the magnitude and frequency of the voltage at the point of
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common coupling (PCC) tend to drift from the rated grid values as a function of the

generation-load imbalance. As addressed in standards like IEC 62116, IEEE 1547,

and IEEE 929, DG is required to be disconnected from the grid in case of islanding.

The main issues engaged with islanding are [112]:

• Safety issues to utility workers and the public since a portion of the EPS remains

energized while it is not expected to be;

• The islanded system may be inadequately grounded by the DG interconnection;

• Instantaneous reclosing could cause out-of-phase between DGs and the EPS;

• Loss of control over voltage and frequency in the islanded system;

• Excessive transient voltage and current stresses upon reconnection to the grid;

• Uncoordinated protection in the EPS;

This chapter engages with IEEE 1547 requirement for anti-islanding which is, loss

of grid connection must be detected by DGs within 2 seconds and must lead to

immediate trip of the DGs from the EPS.

From the DG’s perspective, many anti-islanding schemes have been reported in

technical literature to satisfy the standard requirement, which can be grouped in two

wide categories: Communication based; and Local detection. Figure 6.1 demonstrates

these two categories and corresponding subcategories.

Communication based schemes are known as remote techniques integrating the

EPS and the DG facility. They are more reliable than local detection schemes but

they are more costly due to installation, recurring operation, and maintenance. Lo-

cal detection schemes are based on the measurement of some parameters (voltage,

current, and frequency) at the DG facility. Local detection schemes are classified as
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Figure 6.1: Anti-islanding schemes.

passive (based exclusively on the measured parameters) and active (intentionally in-

troducing disturbance at the output and observing its effect on measured parameters)

techniques [113].

Unfortunately, local detection anti-islanding schemes are not 100% reliable as they

present an inherent operation region, characterized by small power imbalances in an

island system, where they are not able to detect islanding condition in a timely manner

[114]. The corresponding system operating conditions are called non-detection zone

(NDZ) and the islanding detection failure is named unintentional islanding [115].

From a utility stand point, understanding the behavior of NDZs is very important

because they may violate the standard requirements for unintentional islanding.

Considering the substantial growth in DG sources that are requesting to be con-

nected to the distribution EPS, the time frame to assess the risk of islanding of

units by a utility is getting shorter, typically caused by regulated timelines imposed

on utilities. When PV systems are involved, the time scale is often uncomfortably

shorter [116]. To avoid extra cost, extra time, and excessive level of pessimism in as-

sessing the risk of unintentional island, a useful tool which could be used not only for

155



risk-of-islanding study, but also for utility’s evaluation of DG interconnection impacts,

seems crucial.

Several screening procedures have been reported in literature [117]- [118], as a

utility interconnection acceptance process of DG. Most of the screening procedures

are based on the FERC Small Generator Interconnection Procedure (SGIP) or Mid-

Atlantic Distributed Resources Initiative (MADRI) procedures. These screening pro-

cedures are based on a singular or over-simplified parameters and may be no definitive

technical basis for the criteria level of screen [118]. The purpose of a screening proce-

dure is to determine additional measures or if more in-depth evaluation is necessary

or not. As can be implied, screening tools do not provide in-depth analysis of the

distribution feeder and interconnected DGs. Increasing penetration of DGs results in

tighter screening criteria. Therefore, an analytical toll which can perform in-depth

and sufficiently rigorous islanding analysis, could help utilities to assess the risk of

islanding in more reliable fashion and also facilitate DGs interconnections in safer

manner.

In this chapter, we present a framework, which can be used by utility companies,

to assess the risk of unintentional islanding of interconnected DGs with the distribu-

tion EPS. The proposed framework can also provide a platform for other studies at the

distribution level, such as voltage flicker. The proposed framework is simple to imple-

ment and fast, which means savings in cost and time of islanding studies. Since PV

is a dominant type of DG technology being interconnected to the EPS in the United

States in recent years and deployment of PV systems continues to increase rapidly,

the focus of results demonstrated in this chapter is on PV interconnection. However

the framework is not dependent on DG technology and can be used for other kinds

of DG technology. The framework is also independent of the kind of anti-islanding

schemes used in DGs (active/passive) and can be used for any islanding case studies
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in radial distribution feeder systems.

The main contribution of the research in this chapter is summarized as follows:

1. Developing an algorithm to detect nodes connectivities in radial distribution

feeder;

2. Developing an algorithm to model radial distribution feeder independent of node

and/or branch numbering;

3. Developing a procedure to identify NDZ of interconnected DGs in a radial dis-

tribution feeder, in a systematic and efficient manner.

6.2 Screening Procedure: A Review

Interconnection procedures vary depending on state or federal jurisdiction, and im-

plementation practices vary by utility. Most procedures allow for expedited intercon-

nection without additional technical studies if the proposed interconnection passes

a series of technical screening. In this section, a quick review of different screening

procedures used in the United States, at the time of this writing, is presented.

In California a screening procedure, as outlined in their state regulated Rule 21,

is used to determine the level of review process required for interconnected systems.

There is no specified system capacity limit. However for systems larger than 1 MW,

a system stabilization function and telemetering could be required. In California,

additional study is required for those DG units that satisfies at least one of the

following criteria: the unit injects power into the grid, its rating is greater than 500

kW, and the total generation connected to the line section is less than 15% of the line

section’s peak load [119]. The 15% threshold was then adopted in the FERC SGIP

and is used as a model for developing their interconnection procedures [120].
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The FERC SGIP process has been revised in 2003 [121]. The review process first

examines total penetration by capacity and determines whether penetration level is

less than 15% of the line-section peak load or not. For typical distribution circuits

in the United States, minimum load is approximately 30% of peak load [120]. Based

on this generalization, the 15% penetration level, which is one half of the 30%, was

selected as a conservative penetration level for general screening purposes.

To understand the rationale behind the FERC SGIP criterion, we consider the

island voltage as VI , the feeder nominal voltage as VN , the PV output active power

as P , and the load power at nominal voltage as PN . Therefore we have [116]:

VI
VN

=

√
P

PN
. (6.1)

From equation (6.1), one can imply that any ratio of the PV power to the minimum

feeder load greater than 0.77 results in island voltage greater than 0.88 p.u. (the IEEE

1547 low voltage limit [10]). Or for PV penetration higher than 77%, the voltage of

the island will be above the minimum limit. Therefore by limiting the DG penetration

below 77% or roughly 3/4 of the feeder minimum load, the risk of islanding would be

zero.

The scope of the MADRI procedures include DG systems under 10 MVA that

are not interconnected under federal jurisdiction [122]. The MADRI procedures are

organized into four levels. Level 1 is for certified inverter-based systems that are

below 10 kVA. Level 2 is for certified inverter-based systems that are below 2 MVA

or systems that did not pass the level 1 review. Level 3 is for systems that are below

10 MVA and do not qualify for or did not pass level 1 or the level 1 or level 2 reviews.

Level 4 is for systems that do not qualify for level 1 or level 2 review and do not inject

power to the grid. The MADRI procedures follows FERC SGIP criteria for screening
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phase of each level. For example, in level 1, for interconnection to a radial distribution

circuit, aggregated generation on circuit including the proposed DG system must be

less than 15% of the line section annual peak load.

The Interstate Renewable Energy Council (IREC) recommended interconnection

procedures provide four review paths, following FERC SGIP criteria: Simplified path

for certified DG systems up to 25 kVA; Expedited path for certified DG systems up

to 2 MVA; Standard path for certified DG systems between 2 MVA and 10 MVA;

and the last review path includes all DG systems that do not qualify for last three

paths [123].

In 2012, SANDIA published a guideline, specifically to assess the risk of uninten-

tional islanding of a proposed DG system [117]. The guideline, based on a four-step

procedure, indicates when the risk of islanding may not be negligible. Figure 6.2

demonstrates the screening procedure.

The SANDIA screening procedure is based on an assumption that inverters are uti-

lizing positive feedback based active anti-islanding. Therefore, for cases in which

there are PVs that do not utilize positive feedback based active anti-islanding, the

procedure is not applicable. The reason that the SANDIA guideline recommends 2/3

instead of 3/4 as the threshold for DG penetration level is essentially to provide a

comfortable margin of error to account for reduced-voltage behavior of the load, while

continuing to use a standard threshold [117]. Also mismatch in reactive power gener-

ation and consumption guarantees that inverter-based DG will deviate in frequency

after a loss of main [125]. The VAr mismatch recommended by the SANDIA report,

to eliminate the risk of islanding, is more than 1%.

As explained above, all of screening procedures are used to avoid unnecessary

in-depth supplementary study to assess the risk of unintentional islanding in a DG

system. However, considering the rapid growth rate of DG penetration, it is expected
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Figure 6.2: SANDIA screening procedure.

that the simplified screening tools will not be able to address the risk of unintentional

islanding of the EPS with many DGs. In that case, in-depth supplementary study

seems necessary. To reduce the time and cost of DG system installations, the study

should be effective and easy to implement. In this work we developed a framework

for in-depth evaluation of risk of unintentional islanding of a DG system, which can

be generalized and easy to implement. We start with distribution feeder modeling.

6.3 Distribution Feeder Modeling

Since most of DGs are connected to distribution feeders, providing an accurate model

of the feeder is the first step of our framework. Considering the size of the feeders and

number of elements in the feeders, this step could be complicated, time consuming,

and not easy to implement. This task could be more challenging considering chaotic
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IDs for sections and nodes. In this section we present a novel and simple algorithm

to detect distribution feeder topology, nodes conductivities, and all pathes from sub-

station to end nodes of the feeder. The proposed algorithm, which can be used for a

radial feeder with any size and number of element, is based on graph theory.

To have a better understanding of proposed algorithm, first we provide some

definitions of graph theory. A graph G consists of two sets:

• A set V = V(G) whose elements are called vertices, points, or nodes of G.

• A set E = E(G) of unordered pairs of distinct vertices called edges of G.

Vertices u and v are said to be adjacent or neighbors if there is an edge e = {u, v}. In

such a case, u and v are called the end points of e, and e is said to connect u and v.

Also, the edge e is said to be incident on each of its end points u and v. The degree

of a vertex v in a graph G, written deg(v), is equal to the number of edges in G which

contain v, that is, which are incident on v.

Since distribution systems have radial nature, we can consider the distribution

feeder as a tree graph G which is connected and has no loop. Therefor the distribution

feeder can be treated as a connected directed tree graph. A finite tree with n vertices

must have n-1 edges. A vertex coloring, or simply a coloring of G is an assignment of

colors to the vertices of G such that adjacent vertices have different colors. We say

that G is m-colorable if there exists a coloring of G which uses m colors. Algorithm

1 gives an algorithm by Welsh and Powell [124] for coloring of a graph G.

Based on the degree of a node, we define four types of nodes: Source Node; End

node; Junction node; and Interconnected node. Source node is the node representing

the substation on the feeder. End node is a node in the graph with degree of one. If

the distribution system has a single feeder, then the source node will have a degree of

one but we should notice that it is not an end node. Junction node is a node with the
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Algorithm 1 Welsh-Powell algoritm

1: Order the vertices of G according to decreasing degree.
2: Assign the first color C1 to the first vertex and then, in sequential order, assign
C1 to each vertex which is not adjacent to a previous vertex which was assigned
C1.

3: Repeat step 2 with a second color C2 and the subsequence of noncolored vertices.
4: Repeat step 3 with a third color C3, then a fourth color C4, and so on until all

vertices are colored.
5: Exit.

degree of 3 or more. These nodes send power to more than one downstream nodes.

Since distribution system is modeled as directed tree, it should be mentioned that

there is just only one way from each node to its upstream node (which receive power

from) otherwise we would have loop. Interconnected node is a node with the degree

of 2.

The data that are available and commonly used in all utility companies, are the

substation node ID and line data. In order to detect conductivities of nodes and

generate the accurate topology of the feeder, we use a coloring algorithm which was

discussed in Section 6.3. The algorithm starts with the substation node or source

node. We refer this node as the first level of the graph. The degree of the source

nodes is equal to the number of feeders (branches) coming out of the node. The

algorithm will go through all branches coming out of the source node, till faces the

end node. Whenever the algorithm reaches a junction node, it increases the level. So

each junction node will increase its level. We can consider the number of level as the

color of each junction node and assign 1 to the color of source node. There are three

states for position of interconnected nodes. They could be between level 1 (source

node) and a junction node level, between two junction nodes levels, or after the last

junction node level (between junction node and end node). If they are between the

level 1 and a junction node level, we will assign color 1 to them. If they are between
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two junction nodes levels, we will assign the color of the upper junction node level

to them. If they are after the last junction node, we will assign the color of the

last junction node level to them. After this step, we have levelized the network and

assigned a color to all nodes. Assigning a color to each node helps us to find the

topology of the feeder regardless of node IDs.

Start

Read the feeders data including the substation ID and line data.

From line data, determine the degree of each node.

Start from substation bus. Put the substation bus in the node 

pointer and its degree in the degree pointer.

i=1, Level=1, source node=substation bus

Now we are considering the ith branch coming out of the node 

pointed by node pointer.

From line data, find the next node connected to this node 

and check its degree.

If the degree of the next node is

Assign it the color 

pointed by Level. Now 

consider this node as the 

current node.

It is an end node and assign 

it the color pointed by Level.

It is a junction node. In this 

case, put the next node as a 

junction node and assign it the 

color Level+1.

i=i+1

i is greater than the degree of bus pointed by pointer?

Have all junction 

nodes been met?

Finish

source node=Junction node

Level=Level+1

i=1

2

1

>2

No

Yes

No

Yes

Figure 6.3: Flowchart of assigning color to each node.
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Figure 6.4, as an example, shows a levelized graph. All nodes in each level shown

by dashed black border for level 1, dashed red border for level 2, dashed green border

for level 3, and dashed blue border for level 4, have been assigned the same color of

their containing level.

Substation

1 1 1

2 1 2

3 2 2 2 2

23 2 2

4

4
4

Figure 6.4: Levelized graph using proposed algorithm.

After levelizing the graph and assigning a color to each node, we introduce an

algorithm, as shown in Figure 6.5, to detect the conductivities of nodes and find the

path from each end node to the source node. The number of paths in a graph is

equal to the number of end nodes of the graph. The key point here is when the

algorithm reaches a junction node. When the algorithm reaches an interconnected

node, there is just one way to continue, however when it reaches a junction node, there

are more than one way to continue. Just one branch from junction node conducts the
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algorithm to the upper level (color with lower number) node. So in this situation,

the algorithm checks the color of all adjacent nodes which have been assigned in the

previous step. The algorithm will continue by the adjacent node which has a color

with lower number.

Start

Read the feeders data including the substation ID and line data.

From line data, determine the degree of each node. Consider n 

equals to the number of end nodes (node with degree of one).

i=1

Start from the ith end node. Put the node in the node pointer.

If the degree of the node pointed by the node pointer is

From line data, find the next node connected 

to this node and check its degree.

From line data, find the next node with lower 

color connected to this node and check its degree.

If the next node is the substation node?

Finish

2 >2

No Yes

No

Yes

Include it in the path ending to the end node. 

Now consider this node as the current node.

The algorithm has reached the substation bus. Include 

the substation bus in the path ending to the end node.

i=i+1

i n

Figure 6.5: Flowchart of tracking all paths from each end node to the source node.

Figure 6.4, demonstrates two paths, shown by black and red arrows, of the levelized

graph. Note that each path starts from an end node and finishes at the source node.

When the algorithm reaches a junction node, it will be directed to the node of higher
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level (with lower assigned color).

Substation

1 1 1

2 1 2

3 2 2 2 2

23 2 2

4

4
4

Figure 6.6: Finding path in a graph using proposed algorithm.

By this point, we have configured the topology of the feeder. Now we can create

the feeder model in a software platform. Due to the MATLAB/SIMULINK ability

in modeling and simulations, we have chosen MATLAB/SIMULINK as our software

platform. To model each node, we have used the Three-phase VI Measurement block.

Also we have modeled each section with a Three-phase Mutual Induction block. The

input parameters for a Three-phase Mutual Induction block are the zero and positive

sequence impendence of the line. These information can be easily obtained from line

data. After modeling the feeder, it is time to connect our DG units. In the next

section we present the used DG model.
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6.4 PV Modeling

Amongst all DG technologies, PV systems have attracted considerable attention and

investment in several countries, [126], such that a significant penetration of PV energy

into the EPS is anticipated, [127]. In this section, we discuss a generic model of PV

for islanding study.

Figure 6.7 shows the schematic diagram of a three-phase (3ph) PV system. As

shown in the figure, a PV systems includes a PV generator (consisting of many PV

panels) along with a boost DC/DC converter connected to the DC side of 3ph DC/AC

converter, LC low-pass filter which is connected to the AC side of the 3ph DC/AC

converter, and an isolation transformer to connect the rest of the system to the grid.

We focus on the DC/AC converter as a Voltage-Sourced Converter (VSC). Each leg

of a 3ph VSC consists of two semiconductor valves corresponding to a phase. The

valves in each leg are switched in a complementary manner, based on the carrier-based

Pulse-Width Modulation (PWM) strategy or state-vector modulation strategy [127].

Magnitude and phase angle of the voltage at AC side are controllable through the

switching strategy. Variables md and mq are the d- and q-axis components of the

PWM modulation waveforms.

For simulation of power system transients, the VSC can be modeled in differ-

ent ways. Circuit-based models of semiconductor switches with different degrees of

complexity and switched or topological models which ignore the switching transient

phenomena [127]. For faster simulations, especially if a fairly complex network is

to be simulated, the switched model of the VSC can be replaced by an equivalent

dynamic average-value model [128]- [129]. In such a model, which is known as av-

eraged model, instead of applying switching scheme, terminal variables of the VSC

are approximated by their respective per-switching-cycle moving average values [127].
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Figure 6.7: Diagram of a grid-connected PV system.

Based on the averaged model, an algebraic relationship can be developed between AC

and DC variables in an orthogonal reference frame (the αβ or dq frame). In the rest

of the report indexes t, s, d, q, α, β, a, b, and c refer to terminal of the VSC, point of

common coupling, d component of dq frame, q component of dq frame, α component

of αβ frame, β component of αβ frame, phase A, phase B, and phase C, respec-

tively. Also parameters v, i, ρ, P , Q, and m represent voltage, current, reference

angle, nominal value, active power, reactive power, and PWM modulation waveform,

respectively.

The power balance between DC and AC side terminals of the VSC can be presented

as follows [127]:

vdcidc = vtaita + vtbitb + vtcitc. (6.2)

idc =
vtaita + vtbitb + vtcitc

vdc
. (6.3)

Notice that in equations (6.2) and (6.3) the VSC power loss has been ignored. We
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can rewrite the equation (6.3) in αβ or dq frame as follows:

idc =
3
2
(vtαitα + vtβitβ)

vdc
=

3
2
(vtditd + vtqitq)

vdc
. (6.4)

Figure 6.8 shows the averaged model of the VSC by controllable voltage and

current sources, [127]. kdc in Figure 6.8 represents a fraction of the DC-link voltage

(vdc) and limits the maximum attainable amplitude of voltage at AC side. Also the

branch including the diode, resistor, and the DC voltage source has been added to

simulate the dc-link capacitor (C in Figure 6.7) precharging process.
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Figure 6.8: The VSC averaged model.

An important feature of a grid-connected PV system is the synchronisation. Syn-

chronisation identifies the angle of the grid voltage and can be achieved with variety

of methods. A phase locked loop (PLL) control system based on the model provided

by [133], is used in this chapter for synchronisation purpose.

In a normal operating condition, four control schemes, namely: the real and

reactive power control scheme, the DC-link voltage control scheme, the maximum

power point tracking control scheme, and the VAr and AC-voltage control scheme,
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co-operate in a nested control architecture, [127]. Assuming a fixed input DC power

at DC side of the VSC, the variation in sun irradiations and its effect on DC-link volt-

age could be ignored, for islanding studies purpose. Also based on current practises

in utilities, PVs are not allowed to do voltage regulation, instead the voltage and fre-

quency is imposed by the grid. Therefore, for islanding studies, the real and reactive

power control scheme plays an important role. This control scheme is explained in

the following subsection.

6.4.1 Real and Reactive Power Control Scheme

The goal of this control loop is to regulate Ps and Qs. However, based on the diagram

presented in Figure 6.7, Ps and Qs are related to P and Q (active and reactive power

before filter stage). Neglecting the active power loss in filter stage, we can express

Ps ≈ P and Qs ≈ Q+Qf (where Qf is the reactive power of the filter stage). On the

other side, P and Q must be controlled by two respective reference values, Pref and

Qref . As mentioned before, current practices in utilities do not allow DGs to support

reactive power in distribution EPS. Pref could be interpreted as the input DC power

in DC side of the VSC.

The real and reactive power control could be achieved based on either the voltage-

mode control strategy or the current-mode control strategy, [127]. In the voltage-mode

control method, P and Q are controlled, respectively, by the phase angle and the

amplitude of the VSC terminal voltage, relative to the grid voltage, [130]. The voltage-

mode control has been mainly utilized in high voltage or high power applications

such as flexible AC transmission systems, [131] and [132]. The voltage-mode control

strategy is easy to implement in practice, however, it is vulnerable to large currents

due to lack of closed loop regulation on the AC side of the VSC, [127]. In the current-
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mode control method, first the AC-side current of the VSC is controlled by a dictated

control scheme through the terminal voltage of the VSC. Then both real and reactive

power are controlled by the phase angle and the amplitude of the line current of the

VSC, with respect to the grid voltage, [133]. The advantages of the current-mode

scheme are robustness against overload conditions, variations in parameters of the

VSC and AC system, superior dynamic performance, and higher control procession,

[134]. This chapter is engaged with the current-mode control.

Figure 6.9 shows a schematic diagram of a current-controlled real/reactive power

controller in dq-frame, [133]. The feedback and feed-forward signals are first trans-

formed to the dq frame and then processed by compensators to produce the control

signals in dq frame. Finally, the control signals are transformed to the abc frame and

fed to the VSC (Figure 6.8). irtd and irtd in Figure 6.9, are reference values of the VSC

current in dq frame. Also we consider vrtd and vrtq as the d− and q− components of

the VSC voltage respecting to the reference values.
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Figure 6.9: Schematic diagram of a current-controlled real/reactive power controller
in dq-frame.
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The active and reactive power P and Q can be expressed as follows, [133]:

P =
3

2
(vsditd + vsqitq). (6.5)

Q =
3

2
(vsqitd − vsditq). (6.6)

Considering the synchronization scheme, vsq = 0, P and Q could be rephrased as

follows, [127]:

P =
3

2
vsditd. (6.7)

Q = −3

2
vsditq. (6.8)

We can observe the linear relationship between P and itd, and between Q and

itq from equations (6.7)-(6.8). Having vsd approximated by the nominal grid voltage

amplitude, we can have the d− and q− component of the VSC current respecting to

the reference values as follows:

irtd = (
3

2
vsdn)−1Pref . (6.9)

irtq = −(
3

2
vsdn)−1Qref . (6.10)

Considering a steady-state operating condition, in which ω(t) = ω0, we can have

L
ditd
dt

= Lω0itq − (R + ron)itd + vtd − vsd, (6.11)

L
ditq
dt

= −Lω0itd − (R + ron)itq + vtq − vsq. (6.12)

Based on the VSC model in dq frame, and equations (6.11)-(6.11), vtd and vtq can be
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expressed as equations (6.13)-(6.14), [133].

vtd =
vdc
2
md. (6.13)

vtq =
vdc
2
mq. (6.14)

According to equations (6.9)-(6.14), Figure 6.10 shows a block representation of the

d- and q-axis current controllers of the VSC system, [133].
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Figure 6.10: Control block diagram of a current-controlled VSC system.

Blocks Kp(s) and Kq(s), in their simplest form, can be the proportional integrator

compensator. Due to strong linear relationship between P and itd, and between Q

and itq, Kp(s) and Kq(s) may be omitted, [127]. Procedures to tune compensator

Ki(s) and feed-forward filter Gff (s), are explained comprehensively by [133]. It is

worth noting that the control, feed-forward, and feedback signals are DC quantities

in the steady state.

After understanding the feeder and DG model, next we present operational con-

ditions in which the potential risk of island is high.
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6.5 Islanding Conditions

All grid-connected PV inverters are supposed to have over/under frequency protection

(OFP/ UFP) and over/under voltage protection (OVP/UVP) to force the PV inverter

from supplying power to the utility grid if the frequency or amplitude of the voltage

at its PCC falls outside of pre-defined limits. Considering the PV output active and

reactive power as P and Q, respectively, and the load active and reactive power as

PL and QL, respectively, Figure 6.11 shows the schematic diagram of the distribution

feeder under study. As can be seen from the figure, the mismatch between generation

and consumption in the feeder, shown by ∆P + j∆Q, is compensated by the Grid.

PV

RLC

P jQ

L LP jQ

Load

P j Q  

PCC

Utility 

breaker Grid

Figure 6.11: Schematic diagram of the distribution feeder under study.

The following equations can be developed from Figure 6.11.

PL = P + ∆P, (6.15)

PL =
V 2
PCC

R
, (6.16)

QL = Q+ ∆Q, (6.17)

QL =
3V 2

PCC

2πfL
[1− (

f

f0

)2], (6.18)
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where VPCC and f are the magnitude of voltage and frequency at PCC and f0 is the

resonant frequency of the load. Therefore, from equations (6.15) to (6.18), one can

infer that in loss of main, VPCC and f depend on the load characteristics if P and Q

are known.

The quality factor of the load, Qf , is defined as follows:

Qf = R

√
C

L
. (6.19)

Therefore, the frequency at PCC can be calculated using the following equation [135].

f =
1

2π
√
LC

(

√
(
QL

QfPL
)2 + 4− QL

QfPL
). (6.20)

The behavior of the system at the time of utility disconnection will depend on

∆P and ∆Q at the instant before the breaker opens to form the island. If ∆P 6= 0,

the amplitude of VPCC will change, and the OVP/UVP can detect the change and

prevent islanding. If ∆Q 6= 0, the load voltage will show a sudden shift in phase,

and then the inverter’s control system will cause the frequency of the inverter output

current, and thus the frequency of VPCC , to change until ∆Q = 0 (that is, until the

load’s resonant frequency is reached). This change in frequency can be detected by

the OFP/UFP [136]. Notice that increasing Qf , forces f0 to converge to f and that

means the islanding detection becomes difficult.

If ∆P = ∆Q = 0 when the utility disconnects, there will be insufficient change in

the voltage amplitude or frequency at PCC to activate any of the standard OVP/UVP

or OFP/UFP devices. In reality, ∆P and ∆Q do not have to be exactly equal to

zero for this to occur because the magnitude of the utility voltage can be expected to

deviate slightly from nominal values, and therefore the thresholds for the OVP/UVP
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and OFP/UFP devices cannot be set arbitrarily small or the PV inverter will be

subject to nuisance trips [136].

Any values of ∆P and ∆Q which result in remaining the island energized more

than 2 seconds, is recognized as NDZ. However, providing NDZ in terms of ∆P

and ∆Q might not give us a transparent view of the feeder operational condition.

Therefore, in this chapter, we define NDZ based on the load fraction (LF) and power

factor (PF) of the feeder. LF denotes the load fraction of the feeder, as percentage

of the feeder peak load. Figure 6.12 demonstrates NDZ in LF-PF plane with dotted

area. Notice that defining NDZ in LF and PF helps utilities to evaluate the risk of

island of calculated NDZ based on the history of operating load characteristics of the

feeder under study.
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Figure 6.12: Mapping of the NDZ in LF-PF space.

Next we present a procedure to calculate NDZ, in terms of LF and PF, based on

the feeder and PVs model.
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6.6 Study Procedure

In this section, we develop a procedure, step by step, to perform a risk of islanding

study, on a radial distribution feeder. The procedure starts by generating the feeder

and PVs model. Notice that to generate the feeder model, we can use the feeder’s data

base available from commonly-used softwares, for example CYME. Using Algorithm

1 and flowcharts in Fig 6.3 and 6.5, one can detect the feeder conductivities and

generate the feeder topology. Developed PV model can then be connected to its

connecting node.

The next step is selecting a location where loss of main is occurring. Therefore,

based on the formed island, its load and containing DGs, one can find the balance

point at which the active/reactive power generation matches the active/reactive power

consumption. We denote this balance point by LF ∗ and PF ∗ and calculate as follows:

LF ∗ =

√
P 2 + (Q+Qcap)2√

P 2
L +Q2

L

, (6.21)

PF ∗ =
P√

P 2 + (Q+Qcap)2
, (6.22)

where Qcap stands for reactive power injection by capacitor bank. Notice that in

equations (6.21) and (6.22), we use the aggregated DG plants generation capacity (P

and Q) and peak load of the feeder (PL and QL).

After calculating the balance point (LF ∗, PF ∗), a batch-mode coarse-resolution

sweep is run over the expected range of LF and PF. For all pairs of LF and PF in

the batch, a simulation is run in which an island is formed, by applying loss of main,

and the resulting run-on time of all DG plants in the island is recorded. Notice that

the run-on time of a DG plant is defined as the time from occupance of loss of main

to the plant disconnection. The NDZ is defined as the range of loads over which the

177



run-on times of the DG plant are longer than the IEEE 1547 limit of 2 sec. Once

any NDZ is located, batches utilizing finer resolution are run to determine the peak

run-on time values and refine the prediction of the shape of the NDZ in the LF-PF

plane. Finally, once the NDZ location has been determined with suitable confidence

and the maximum run-on times are known, utility engineers confer to decide whether

the NDZ is such that the risk of islanding is negligible, or whether it represents a

realistic loading scenario and additional mitigation is needed.

It is worth to emphasize that the proposed framework in this chapter is not depen-

dent on the islanding detection schemes. The developed PV model is equipped with

OVP/UVP and OFP/UFP relays. If the PV plant utilizes an active anti-islanding

scheme and the algorithm of its detection scheme is provided by the PV manufacturer,

then OVP/UVP and OFP/UFP relays will be operated based on the anti-islanding

detection response. However, in the absence of active anti-islanding, the OVP/UVP

and OFP/UFP relays in the PV model will be operated based on the voltage magni-

tude and the frequency at PCC.

6.7 Numerical Results

As mentioned earlier, we use MATLAB/SIMULINK as our main software platform.

The feeder data we have used for simulations was accessible through CYME soft-

ware. The data base includes nodes, loads, transformers, and lines/sections data of

the feeder. We first exported the feeder data from CYME and imported to the MAT-

LAB/SIMULINK software platform for our simulations. We have tested our islanding

study procedure on two actual cases in National Grid USA territories. Each case in-

cludes an operating radial distribution feeder and several PV plants inservice. It is

worth noting that both cases are based on actual islanding study projects defined in
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Table 6.1: Voltage and frequency trip set-points of the PV plants.

Element Pickup Range Time Delay
Under Voltage 0.5 pu 160 ms
Under Voltage 0.88 pu 2 s
Over Voltage 1.1 pu 1 s
Over Voltage 1.2 pu 160 ms

Under Frequency 57 Hz 160 ms
Over Frequency 60.5 Hz 160 ms

National Grid USA operating region in Northeastern U.S. For each case, we run each

scenario for 2.1 seconds, after occurring loss of the main feeder protective device. If

any DG plant remains connected more than 2 seconds after loss of main, that will be

recognized as a potential island risk. To consider the effect of all loads on the feeder,

we locate the loss of source right at the substation. However, the loss of source can

be defined by the user at any point of the feeder. Table 6.1 lists the settings for

OVP/UVP and OFP/UFP relays used in protection scheme of DG facilities.

In current practices, DGs are operating at constant PF. In order to achieve max-

imum advantage of the DG, they are usually operating at unity PF. That means the

reactive power injection/absorption by the DG is zero. Therefore, in our simulations,

we have assumed that all DG plants are operating at unity PF. The only sources of

reactive power in test distribution feeders are capacitor banks.

6.7.1 Case 1

In Case 1 a four-wire multi-grounded neutral overhead distribution feeder operated at

13.2 kV, as shown in Figure 6.13, has been considered. Note that the voltage levels for

step down transformers in the figure are in kV. The feeder contains 1438 nodes, 1437

branches, 2 fixed shunt capacitor banks, and 4 transformers. The feeder’s measured
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peak daytime load during the past twelve months was approximately 9.469 MVA,

and the daytime minimum load was measured to be approximately 3.0 MVA, which

is slightly less than 1/3 of the peak load. Two PV plants, PV plant 1 and PV plant 2,

are connected to the feeder. PV plant 1 is composed of 6 inverter modules, each with

500 kW capacity. The total capacity of PV plant 1 is 3 MW. PV plant 2 is composed

of 4 inverter modules, each with 500 kW capacity. The total capacity of PV plant 2

is 2 MW. Both PV plants are connected to the feeder with a step up 0.32/13.2 kV

transformer. In the absence of any information regarding any active anti-islanding for

each plant, we have assumed that each plant utilizes passive anti-islanding protection

with set-points presented in Table 6.1.

Figure 6.14 shows the run-on time over a range of LF and PF. Black bars indicate

that for corresponding PF and LF, all PV plants have been disconnected within

2 seconds. Red bars indicate that for corresponding PF and LF, at least one PV

plant has not been disconnected within 2 seconds. Therefore, red bars are identifying

unintentional islanding situations.

Figure 6.15 shows the NDZ of each PV plant. Black plus symbols demonstrate

the NDZs regarding PV plant 1 and red cross symbols represent NDZs related to PV

plant 2. From this figure, the range of LF and PF in which each PV plant remains

connected, can be defined. Considering these ranges, and also the daytime minimum

load of the feeder, it can be concluded that the risk of unintentional islanding of

interconnected PV plants is high and additional protection scheme (such as direct

transfer trip) is required.

We define the high-voltage side of each PV plant’s transformer connection to

the utility feeder as its PCC. To illustrate the behaviour of each PV plants in their

NDZs, we consider a point from their NDZs with LF=0.6 and PF=0.9802. Figure

6.16 demonstrates the frequency at PCC of PV plants for defined LF and PF . From
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Figure 6.13: Feeder single line diagram in Case 1.

the figure, one can observe that the range of frequency, after occurrence of loss of

main, for both PV plants, are not in the range to actuate the OFP/UFP relay.

Figure 6.17 and 6.18 show the voltage at PCC of PV plant 1 and PV plant 2, after

occurrence of loss of main, respectively. From these figures also one can conclude that

the range of voltages are not in the range to actuate the OVP/UVP relay.

6.7.2 Case 2

In Case 2 a four-wire multi-grounded neutral overhead distribution feeder operated

at 13.2 kV, as shown in Figure 6.19, has been considered. The feeder contains 1614
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Figure 6.14: Run-on time in Case 1.
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Figure 6.15: NDZ of PV plants in Case 1.

nodes, 1613 branches, 5 fixed shunt capacitor banks, and 10 transformers. Table 6.2

and 6.3 lists the specifications of transformers and capacitor banks. Two PV plants,

PV plant 1 and PV plant 2, are connected to the feeder. The feeder’s measured peak

and minimum daytime load during the past twelve months were approximately 6.584

MVA and 2.97 MVA, respectively. PV plant 1 is composed of 4 inverter modules,

each with 500 kW capacity. The total capacity of PV plant 1 is 2 MW. PV plant 2
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Figure 6.16: Frequency at PCC of PV plants in Case 1, with LF=0.6 and PF=0.9802.

is composed of 6 inverter modules, each with 500 kW capacity. The total capacity

of PV plant 2 is 3 MW. Both PV plants are connected to the feeder with a step up

0.48/13.2 kV transformer with the PCC at the 13.2 kV connection to the utility. In

the absence of any information regarding any active anti-islanding for each plant, we

have assumed that each plant utilizes passive anti-islanding protection with set-points

presented in Table 6.1.

Figure 6.20 shows the run-on time over the expected range of LF and PF. Black

bars indicate that for corresponding PF and LF, all PV plants have been disconnected

within 2 seconds. Red bars indicate that for corresponding PF and LF, at least one PV

plant has not been disconnected within 2 seconds. Therefore, red bars are identifying

unintentional islanding situations.

Figure 6.21 shows the NDZ of each PV plant. Black plus symbols demonstrate

the NDZs regarding PV plant 1 and red cross symbols represent NDZ related to

PV plant 2. From this figure, the range of LF and PF in which each PV plant

remains energizing the grid, can be defined. Considering the range of LF in the
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Figure 6.17: Three-phase voltage (phase A with blue, phase B with green, and phase
C with red) at PCC of PV plant 1 in Case 1, with LF=0.6 and PF=0.9802: (a) For
time window form 0 to 0.5 second; (b) For time window form 1.7 to 2.2 second .
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Figure 6.18: Three-phase voltage (phase A with blue, phase B with green, and phase
C with red) at PCC of PV plant 2 in Case 1, with LF=0.6 and PF=0.9802: (a) For
time window form 0 to 0.5 second; (b) For time window form 1.7 to 2.2 second .
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Table 6.2: Transformers specifications of feeder in Case 2.

Transformer Capacity (kVA) Primary Voltage (kV) Secondary Voltage (kV)
Trans. 1 50 13.2 4.8
Trans. 2 50 13.2 4.8
Trans. 3 90 13.2 4.8
Trans. 4 167 13.2 4.8
Trans. 5 250 13.2 4.8
Trans. 6 50 13.2 4.8
Trans. 7 167 13.2 4.8
Trans. 8 100 13.2 4.8
Trans. 9 100 13.2 4.8
Trans. 10 50 13.2 4.8

Table 6.3: Capacitor banks specifications of feeder in Case 2.

Capacitor
Bank

Capacity in
Phase A (kVAr)

Capacity in
Phase B (kVAr)

Capacity in
Phase C (kVAr)

Cap. 1 50 0 0
Cap. 2 50 50 0
Cap. 3 100 0 0
Cap. 4 50 0 0
Cap. 5 100 100 100
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Figure 6.19: Feeder single line diagram in Case 2.
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Figure 6.20: Run-on time in Case 2.
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figure and day time minimum load of the feeder (0.45), it can be concluded that the

risk of unintentional isnlading of both PV plants is zero. Therefore, no further action

regarding islanding protection is required.
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Figure 6.21: NDZ of PV plants in Case 2.

SSimilar to the previous case study, we define a loading condition for the feeder,

from the detected NDC, and demonstrate the behaviour of each PV plant after

occurrence of loss of main. The loading condition is assumed to be LF=0.4 and

PF=0.9848. Figure 6.22 shows that the frequency at PCC od each PV plant is in

the safe range.

Figure 6.23 and 6.24 show the voltage at PCC of PV plant 1 and PV plant 2, after

occurrence of loss of main, respectively. From these figures one can observe that the

range of voltages are not in the range to actuate the OVP/UVP relay.

In summary, a screening procedure for risk-of-islanding can lead to margins where

risk needs further time-based transient condition analysis. The developed analytical

tool then can model the radial distribution feeder and its loading characteristics

profile, in order to drive better accuracy of the islanding risk. Choosing LFs and PFs
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Figure 6.22: Frequency at PCC of PV plants in Case 2, with LF=0.4 and PF=0.9848.

for operating conditions of the feeder’s loading characteristics will drive specific case

risk analysis where there are NDZs.

6.8 Conclusion

Considering the rapid growth in penetration of DGs in distribution EPS, it is crucial

for the utility companies to ensure that connected DGs preclude any unintentional is-

land risk to the grid. Several screening procedures have been reported in the literature

which based on a singular or over-simplified parameters and may offer no definitive

technical basis for the criteria level of screening. In this chapter, we presented a novel

framework, from a utility stand point, to study the risk of unintentional islanidng of

interconnected DGs in a systematic manner. The framework can help utility compa-

nies to avoid extra cost, extra time, and excessive level of pessimism in assessing the

risk of unintentional island. Simulation results of real case studies clearly indicate

the simplicity, efficiency, and accuracy of the framework.
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Figure 6.23: Three-phase voltage (phase A with blue, phase B with green, and phase
C with red) at PCC of PV plant 1 in Case 2, with LF=0.4 and PF=0.9848: (a) For
time window form 0 to 0.4 second; (b) For time window form 1.7 to 2.025 second .
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Figure 6.24: Three-phase voltage (phase A with blue, phase B with green, and phase
C with red) at PCC of PV plant 2 in Case 2, with LF=0.4 and PF=0.9848: (a) For
time window form 0 to 0.4 second; (b) For time window form 1.7 to 2.025 second .
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Chapter 7

Conclusion and Future Work

High penetration of DGs along with integration of EVs are increasingly observed

worldwide. In smart grid context, these new participants can have positive and

negative impacts on the system operation. This dissertation demonstrates the posi-

tive impacts of optimal coordinated DG’s generation and EV’s charging/discharging

schedulings on the micro-grid operation. In this way, an optimization problem defined

to maximize the social welfare using an SOPF, considering the stochastic nature of

renewable energy resources and EV usage pattern.

By providing a comprehensive operating model of EV, the dissertation investigated

other possible services form EVs which can have positive impacts on grid operation

and also monetary gains for EV owners. Those services include reactive power support

and frequency regulation services. A framework was developed in this dissertation

to calculate reactive power supply function of EV as a step-wise ascending order

function. The framework is practical which consider realistic constraints of EV’s

charger (current ripple on DC-link capacitor) and battery degradation factor. The

frame work is easy to be implemented for a large group of EVs in a real-time basis.

In addition to reactive power support, a multi-level approach was presented in the
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dissertation to engage EVs in frequency regulation services. Complying with FERC

Order 755, the approach calculates optimal bidding components including available

capacity and energy cost function for the service. Simulation results clearly showed

the opportunity for EV owners to generate revenue streams through providing reactive

power support and frequency regulation services, without lowering their comfort level.

In this dissertation, a procedure, which can be used by utility companies, is de-

veloped to assess the risk of unintentional islanding of interconnected DGs into the

distribution EPS. The developed procedure is simple to implement and fast, which

means savings in cost and time of isnlading studies. The procedure is not dependent

on DG technology and can be used for other kinds of DG technology. The procedure

is also independent of the kind of anti-islnding schemes used in DGs (active/passive)

and can be used for any islanding case studies in radial distribution feeder.

Methodologies and results presented in this dissertations open new research hori-

zons from different perspectives. The developed frameworks for exploiting reactive

power support and frequency regulation services from EVs are from aggrgetaor’s per-

spective. However, studying the EV’s participation in those services from the SO’s

stand point could be an exciting research area. Due to the location of EVs in the

EPS (near to load centers) and low cost of providing the services, they might have

significant impacts on the system operation cost.

Another possible interesting research area can be defined based on results provided

regarding islanding studies. In the case of high DG penetration, studying NDZ with

fixed DG output power (usually at maximum level) and variable LF and PF may

not be enough. The reason is that a fraction of DG output power can lead to a

reasonably high risky LF and PF in order to have match between load and generation.

Therefore, the NDZ has to be explored in three domains: LF; PF; and DG output

power. To explore the NDZ in three domains, running simulation for more samples
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is inevitable. That means the time of simulation will increase. To overcome this

challenge, appropriate stochastic modeling and analysis which are fast to implement

and accurate enough, are necessary.
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Glossary

ACE Area Control Error. 126

AGC Automatic Generation Control. 7

cdf Cumulative Distribution Function. 24

DER Distributed Energy Resources. 5

DG Distributed Generator. 2

DR Demand Response. 3

EPS Electric Power System. 3

ERCOT Electric Reliability Council of Texas. 3

EV Electric Vehicle. 3

FERC Federal Energy Regulatory Commission. 7

IREC Interstate Renewable Energy Council. 159

ISO Independent System Operator. 126

MADRI Mid-Atlantic Distributed Resources Initiative. 156
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NDZ Non-Detection Zone. 155

NYISO New York Independent System Operator. 43

OPF Optimal Power Flow. 5

PCC Point of Common Coupling. 3

pdf Probability Distribution Function. 24

PJM Pennsylvania-New Jersey-Maryland Interconnection. 1

PLL Phase Locked Loop. 169

PV Photovoltaic. 3

PWM Pulse Width Modulation. 81

RPSP Reactive Power Service Provider. 6

RTO Regional Transmission Operator. 126

SGIP Small Generator Interconnection Procedure. 156

SO System Operator. 3

SOC State of Charge. 8

SOPF Stochastic Optimal Power Flow. 5

WT Wind Turbine. 3
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