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Abstract 

 

Liming has been used to mitigate effects of acidic deposition in forest ecosystems. This 

study was designed to examine the effects of calcium (Ca) supply on the spatial patterns and the 

relations between soil and soil solution chemistry in a base-poor forest watershed. Watershed 1 

at the Hubbard Brook Experimental Forest in New Hampshire, USA was experimentally treated 

with wollastonite (CaSiO3) in October, 1999. Exchangeable Ca (Ex-Ca), soil pHs (in 0.01M 

CaCl2), effective cation exchange capacity (CECe), and effective base saturation (BSe) increased, 

while exchangeable acidity (Ex-Acid) decreased in organic soil horizons in 2000 and 2002. 

Mineral soils experienced either small increases in Ex-Ca, pHs, CECe, BSe, small decreases in 

Ex-Acid or no changes. Thus, most of the added Ca remained in the forest floor during the study 

period. Prior to the treatment the BSe decreased with increasing elevation in organic and mineral 

soil horizons. This spatial pattern changed significantly in the forest floor after the treatment, 

suggesting that soils at higher elevations were more responsive to the chemical addition than at 

lower elevations. Soil solutions draining the forest floor responded to the treatment by increases 

in concentrations of Ca, dissolved silica, pH, and acid neutralizing capacity (ANC), and a 

decrease in inorganic monomeric Al (Ali). Treatment effects diminished with increasing soil 

depth and decreasing elevation. Positive correlations between Ca/Alm in soil solution and Ex-

Ca/Ex-Al ratios in soil indicated that changes in the chemistry of soils significantly influenced 

the chemistry of soil water, and that Ca derived from the dissolution of wollastonite mitigated the 

mobilization of Al within the experimental watershed.   

Key words: calcium, Hubbard Brook Experimental Forest, soil, soil solution, wollastonite 
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Introduction 

 

Elevated atmospheric deposition of strong acid anions (e.g. SO4
2-

, NO3
-
) during the 20

th
 

century and continuing today contributes to the acidification of base-poor northern hardwood 

forests in the northeastern U.S. (Likens et al. 1996; Warby et al. 2005, 2009). SO4
2-

 is the 

dominant anion in atmospheric deposition and drainage waters at Hubbard Brook (Likens et al. 

2001). The forest floor of watersheds at the Hubbard Brook Experimental Forest (HBEF) in New 

Hampshire (NH), and many other regions in the northeastern U.S. are acidic, with limited ability 

to neutralize strong acid inputs by the supply of base cations (e.g. Ca
2+

, Mg
2+

, Na
+
, and K

+
) due 

to minimal mineral weathering and/or low concentrations of exchangeable basic cations in the O 

horizon (Lawrence et al. 1995; Likens et al. 1996). Sulfate exhibited pH-dependent adsorption in 

mineral soil (Nodvin et al. 1988). Mineral soils at the HBEF have shown depletion of 

exchangeable Ca and this depletion has resulted in the mobilization of elevated concentrations of 

Al to the O horizon and drainage waters (Likens et al. 1998; Palmer et al. 2004). These 

conditions may stress forest vegetation (Hawley et al. 2006; Juice et al. 2006) and limit the 

recovery of acid-impacted surface waters (Likens et al. 2001; Driscoll et al. 2001). 

Calcium is a major base cation in soils and drainage waters at Hubbard Brook soils and in 

most other regions, and is an important element for wood formation (Lawrence et al. 1995). The 

HBEF has exhibited depletion of Ca from the forest floor (Lawrence et al. 1995; Palmer et al. 

2004) and low base saturation (BS) in mineral soil horizons (Johnson et al. 1991b). In addition, 

soils in the watersheds at the HBEF have thicker forest floor and shallow soil depth at higher 

elevations, and deeper deposits of glacial till at lower elevations (Likens et al. 1998; Johnson et 
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al. 2000). Consequently, understanding elevational and horizonal variations of the Ca supply 

across the landscape is important to elucidate responses of watershed ecosystems to atmospheric 

acidic deposition and potential mitigation stategies.  

The application of basic materials such as CaCO3 has been used as a management 

approach to improve the acid-base status of forest and aquatic ecosystems by increasing 

exchangeable Ca, cation exchange capacity, and decreasing exchangeable Al concentrations in 

soils (Blette & Newton 1996). Previous studies of base additions to forest soils from the 1970s to 

the 1990s have shown: (1) changes in the composition of the soil decomposer community and 

increases in microbial activity (Zelles et al. 1987; Illmer & Schinner 1991); (2) increases in 

mineralization of soil organic carbon and changes in nitrogen mineralization (Adams et al. 1978; 

Marschner et al. 1989); (3) increases in nitrification (Tamm & Popovic 1989); (4) changes in 

species distribution and abundance of soil invertebrates (Persson 1988); (5) changes in root 

growth, and plant nutrient uptake and productivity (Smallidge et al. 1993); and (6) improvements 

in the acid-base status of drainage waters and the composition of the aquatic biotic communities 

(Baker & Christensen 1991; Driscoll et al. 1996).  

In October, 1999 a readily weatherable calcium silicate mineral, wollastonite (CaSiO3), 

was added to watershed 1 (W1) at the HBEF to enhance the supply of Ca to the forest ecosystem. 

Supplying Ca by the dissolution of a calcium silicate mineral  is similar to the natural weathering 

source of this element at Hubbard Brook, and is an alternative to the liming approach used in 

other studies (Adams and Dickson 1973; Cirmo and Driscoll 1996; Nihlgard et al. 1988; Nodar 

el al. 1992). Cho et al (2009) observed the wollastonite treatment mitigated episodic acidification 

in streamwater during summer storm events. In addition, Hawley et al (2006) and Juice et al 

(2006) found that foliar (i.e. red spruce) winter injury in W1 was reduced in comparison with red 
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spruce foliage in W6 and that regeneration of sugar maples increased markedly in the treated 

watershed as compared with the untreated reference watershed.  

This research focused on investigating the effects of the Ca
 
supply on soil and soil 

solution chemistry in organic and mineral soil horizons of W1, examining the linkage between 

soil and soil solution chemistry. To investigate these effects, we made spatially and temporally 

detailed and coupled measurements of soil and soil solution chemistry by horizon and along the 

elevational gradient of W1 to evaluate changes in the acid-base status of the watershed prior to 

and following the chemical treatment. We hypothesized that: (1) exchangeable Ca in soils would 

increase, decreasing exchangeable acidity; (2) the enhanced supply of Ca derived from the 

wollastonite dissolution would increase Ca
2+

, pH, and acid neutralizing capacity (ANC) in soil 

waters; and (3) there would be longitudinal variations among subcatchments in the acid-base 

response to the wollastonite application. 

 

 

 

Materials and Methods  

 

Study site features 

The HBEF is located in the southern portion of the White Mountain National Forest in 

central New Hampshire, USA. Watershed 1 has an area of 11.8 ha and an elevation range from 

488 m to 747 m (Figure 1). The principal bedrock is the Silurian Rangely Formation which is 

comprised of metamorphic rocks of igneous and sedimentary origin: quartz mica schist and 

quartzite, interbedded with sulfidic schist and calc-silicate granulite (Johnson et al. 2000). The 
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soils at the HBEF are predominately Spodosols (Typic Haplorthods) derived from glacial till, 

and the average depths of the organic and the mineral soils are 7 cm and 50 cm, respectively 

(Johnson et al. 1991a, b; Johnson 2002). Mineral soils increase in depth with decreasing 

elevation, providing more opportunity for the neutralization of either strong acid anions from 

atmospheric deposition or organic anions naturally released from litter and organic soils (Palmer 

et al. 2004).  In addition, the thickness of the forest floor increases at high elevations. The 

dominant vegetation type on W1 consists of northern hardwood species (sugar maple (Acer 

saccharum), American beech (Fagus grandifolia) and yellow birch (Betula alleghaniensis)) on 

the lower 90 % of the watershed, and a montane boreal transition forest of red spruce (Ricea 

rubens), balsam fir (Abies balsamea) and white birch (Betula papyrifera) at high elevation 

(Likens & Bormann 1994). The climate at the HBEF is humid-continental, characterized by long, 

cold winters (average temperature for January is –9
o
C) and short cool summers (average for July 

is 10
o
C) with 1,400 mm of average annual precipitation, approximately 30% of which falls as 

snow (Federer et al. 1990). The Ca-treated watershed is located on a south-facing slope with 

average slope of 20-30% (Juice et al. 2006) and has three distinct landscape zones: (1) the higher 

elevation spruce-fir-white birch (SFB) zone which is characterized by relatively flat topography, 

shallow soils and flowpaths, bedrock outcrops, spruce-fir-white birch canopy trees, and 38% of 

the fine roots at O horizon (T.J. Fahey, Cornell University, unpublished data); (2) the high 

elevation hardwood (HH) zone which has steep slopes, deeper soils, often lying on bedrock with 

no C horizon, 33% of the fine roots at O horizon, and is dominated by deciduous vegetation; and 

(3) the lower elevation hardwood (LH) zone which is  dominated by deeper soils, dense glacial 

till, deciduous canopy trees, and 42% of the fine roots at O horizon. 
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The application of wollastonite 

 The experimental addition of wollastonite to W1 was designed to restore the base 

saturation of the soil to a level estimated to have existed at the advent of acidic deposition 

(Likens et al. 1998; Gbondo-Tugbawa & Driscoll 2003). Wollastonite is similar in composition 

to the naturally occurring Ca-silicate minerals, such as plagioclase and hornblende, that occur at 

the HBEF (Likens et al. 1998). Theoretically, the amount of Ca required to restore the overall 

base saturation of W1 soils from 10% to 19% was approximately 850 kg Ca/ha, equivalent to 

30.2 tons of wollastonite over the area of W1. After considering the differences in the dissolution 

rate of wollastonite between pilot laboratory studies and the field with imperfect wetting of 

mineral surfaces, accumulation of weathering products, and possible fouling of the surfaces by 

organic and metal oxide coatings, it was estimated that at least 7 years would be required for the 

dissolution of the wollastonite added to W1 (Peters et al. 2004). These phenomena were 

observed during an experimental addition of calcium carbonate (CaCO3) to the Woods Lake 

watershed in New York (Driscoll et al. 1996). To account for potential losses or inefficiencies in 

wollastonite dissolution, a “safety factor” of 50% was added to the dose, resulting in an 

application of 45 tons of wollastonite, or 1,316 kg Ca/ha. The wollastonite was pelletized into 

1.5 – 4 mm diameter pellets with a water-soluble binder, which allowed the pellets to 

disintegrate to individual particles (mean diameter 16 ㎛) in the presence of moisture after the 

manipulation (Peters  et al. 2004). The application was made in October of 1999, after leaf fall, 

by helicopter. The application rate was remarkably uniform across the watershed (Peters et al. 

2004).  

 

Soil sample collection and analyses 
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Since the short-term impacts of the Ca addition were likely to be limited to the forest 

floor and upper mineral soil, the monitoring effort for this research focused on these horizons. 

Soil samples were collected at 100 randomly selected sites in W1 prior to (1998) and after (2000 

and 2002) the treatment. Soil samples were collected from the Oi+Oe (Oie) and Oa layers, using 

15 cm x 15 cm forest floor blocks (Federer et al. 1993). After the O horizon sampling, the upper 

mineral soil was sampled using a 5-cm diameter stainless steel corer. The depth of the cores was 

a maximum of 10 cm, but often less due to refusal of the corer by rocks. 

 The soil samples from the Oie horizons were oven dried at 80 
o
C to a constant weight, 

and ground in a Wiley mill. Large sticks and roots larger than the size of a pencil were removed 

and weighed prior to grinding. The Oa and upper mineral horizon samples were air dried, 

weighed, and sieved through 5-mm and 2-mm stainless steel screens, respectively. Sticks, roots, 

and debris (coarse fraction) not passing through the screen with mild pressure were weighed. 

Stones, which were rarely present in the Oa horizon, were also included in the coarse fraction. 

Material passing through the screen was weighed and rebagged. All soil samples that were pre-

treated and sieved were analyzed for pHs Exchangeable cations (Ca, Mg, K, Na, Al) were 

extracted with 1.0 M of ammonium chloride (NH4Cl) for 12 hrs. Blette and Newton (1996) 

observed that NH4Cl does not dissolve significant amounts of soil minerals. Furthermore, we 

observed high Ca/Si molar ratios in the NH4Cl extracts from a subset of soil samples that were 

analyzed for both Ca and Si. For the Oie horizon of the LH zone, the mean molar Ca/Si of 

NH4Cl extracts was 511 for 1998 samples (prior to treatment) and 193 for 2002 samples (after 

treatment). For the Oa horizon of the LH zone, the mean molar Ca/Si of NH4Cl extracts was 525 

for 1998 samples (prior to treatment) and 320 for 2002 samples (after treatment). The Ca/Si 

values were not significantly different for the two years. These high Ca/Si values in the NH4Cl 
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extracts suggest that dissolution of wollastonite was not an important source of Ca in the Ex-Ca 

measurements.   

Specific chemical methods for Ex-Acid, CECe, and BSe, which is computed as the sum of 

exchangeable bases divided by the CECe and multiplied by 100, in soil samples are detailed and 

referenced in Table 1.  

  

Soil solution collection and analyses 

Zero-tension lysimeters were constructed of PVC troughs filled with acid-washed quartz 

sand and installed in the wall of excavated soil pits below the forest floor (Oa horizon) and 

below the Bh and Bs horizons. Soil solutions were collected at monthly intervals throughout the 

year from the lysimeters at thirteen sites (6, 11, 15, 42, 46, and 47 on the grid system at the SFB 

zone; 88, 89, and 121 at the HH zone; 154, 158, 159, and 199 at the LH zone) within W1 (Figure 

1) as part of a long-term monitoring program. All of the soil solution samples were analyzed for 

Ca, total Al (Alt), total monomeric Al (Alm), organic monomeric Al (Alo), H4SiO4, pH, Mg, Na, 

K, NH4
+
, SO4

2-
, NO3

-
, Cl

-
, and F

-
, using the methods described in Table 1. Inorganic monomeric 

Al (Ali) concentrations were calculated as measured total monomeric Al concentration minus 

measured organic monomeric Al concentration (i.e. Ali = Alm-Alo) (Driscoll 1984). ANC values 

were also calculated based on the composition of major ions in solution (Table 1). 

 

Statistical analyses 

 To test for changes in soil chemistry between the pre- and post-treatment period, the two-

sample t-test for independent samples was used (MINITAB version 14; statistical software), 

considering the statistical significance by p-values based on an α-value = 0.05 and a 95 % 
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confidence interval. We also applied geostatistical models in order to examine changes in spatial 

patterns of soil chemistry. To evaluate the spatial structure of the soil chemical response to the 

wollastonite treatment, we calculated semivariograms and fit standard mathematical models of 

semivariance. For prediction, we used the simplest model that fit the semivariogram, and 

employed ordinary Kriging to estimate base saturation on a prediction grid of x- and y-

coordinate points (Webster & Oliver 2004). The geostatistical program GS+ (version 7.0) was 

used to calculate semivariance. Kriged values of soil BSe were displayed on 2-dimensional 

contour graphs.     

Results 

 

Soil chemistry 

 The results of this study are presented as one pre-treatment (1998) and two post-treatment 

data sets. Mean soil chemistry values in the pre-treatment and post-treatment samples are shown 

by horizon in Table 2. 

 Prior to the treatment, exchangeable Ca, pHs, CECe, and BSe at Oie, Oa, and upper 

mineral horizons in W1 were characterized by relatively low values. Coincidently, W1 showed 

high concentrations in exchangeable Al and exchangeable acidity at all horizons (Table 2). Most 

of the Ex-Acid in the Oie soil horizon was attributed to exchangeable hydrogen ions, while 

acidity in the mineral soil horizon was largely due to Ex-Al.  

 Following wollastonite addition, the soil chemistry in the Oie horizon changed 

significantly by 2000, while effects in the Oa horizon occurred by 2002 (Table 2). Though 

smaller in magnitude, significant changes in soil chemistry were also evident in the mineral soil. 

By 2002, Ex-Ca had increased to 35 cmolc/kg in the Oie horizon, 11 cmolc/kg in the Oa horizon, 
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and 0.85 cmolc/kg in the upper mineral horizon due to wollastonite addition, resulting in 

increases in pHs to 4.34 in the Oie, 3.48 in the Oa, and 3.44 in the mineral horizon, respectively, 

by the third year following the treatment (2002; Table 2). Decreases in Ex-Al were modest, from 

6.9 to 5.3 cmolc/kg in the Oa horizon, and there was the only statistically significant effect in 

2002 (Table 2). However, Ex-Acid decreased by 2002 to 5.1 cmolc/kg in the Oie, 8.5 cmolc/kg in 

the Oa, and 7.7 cmolc/kg in the mineral horizon, respectively (Table 2). CECe increased in all 

horizons due to the large increases in Ex-Ca in the organic and the upper mineral horizon. BSe 

increased to nearly 86% in the Oie horizon and approximately 56% in the Oa horizon by 2002. 

There was no statistically significant change in BSe in the upper mineral soil between pre- and 

post-treatment observation due to the small increase in Ex-Ca (Table 2).  

 The elevational patterns in organic (weighted average of Oie and Oa) and mineral soil 

chemistry are shown in Figure 2, including mean values, standard deviations, and statistical 

significance. The organic soil horizon at all elevations exhibited a marked response to the 

wollastonite treatment in comparison with the mineral soil, with the exception of Ex-Al (Figure 

2). The magnitudes of changes in concentrations of Ex-Ca, Ex-Acid, CECe, and BSe in the 

organic soil were greater at higher elevation than lower elevation after the Ca manipulation. The 

forest floor appears to have retained most of the added wollastonite, as little transport into the 

mineral soil was evident by 2002. The exception occurred in the SFB zone, where mineral-soil 

Ex-Ca more than doubled between 1998 and 2002 (Figure 2). The SFB zone had the lowest Ex-

Ca values prior to treatment, so this increase brought the SFB mineral soil Ex-Ca up to a level 

similar to the pretreatment values in the hardwood zones.  

 The only significant change in the concentration of Ex-Al in either organic or mineral soil 

occurred in SFB organic horizons (Figure 2), but this decrease of 3.6 cmolc/kg was small in 
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comparison to the 21 cmolc/kg increase in Ex-Ca that was observed in these horizons. Aluminum 

was the dominant cation associated with the mineral soil exchange sites (Table 2, Figure 2). The 

decreases in Ex-Acid in organic horizons were closely linked to the increase in pHs, since 

exchangeable hydrogen ions were the predominant form of exchangeable acidity in O-horizon 

soils. As pHs increased, Ex-Acid decreased in the organic soil horizon in all zones except in the 

HH zone during 2000. In contrast, there was a slight increase in pHs and decrease in Ex-Acid in 

the HH zone and no statistically significant change in the SFB and LH zones in mineral soil 

horizons. Increases in CECe and BSe were also largely associated with increases in Ex-Ca in the 

organic soil horizon, while there was either a slight increase or no change in the mineral soil. 

 

Soil solution chemistry 

 For consistency, we compare soil solution data from 1998, 2000, and 2002 to correspond 

with the soil sampling program. Prior to wollastonite addition, soil solutions draining the O 

horizon had higher Ca, H4SiO4, Ali, SO4
2-

, and DOC and lower pH and ANC than solutions 

draining the mineral horizons (Table 3). Higher concentrations of Ca in the O horizon compared 

to the mineral horizon prior to the Ca application probably reflect the cycling of Ca by trees and 

throughfall and litter inputs of Ca.  

 During the first year after the wollastonite treatment (2000), concentrations of Ca, H4SiO4, 

and ANC all significantly increased in both the O and the mineral horizon soil solutions (Table 

3). Increases in Ca, H4SiO4,
 
and ANC were also evident during the third year (2002), probably 

reflecting the continuing dissolution of wollastonite and downward transport of the dissolution 

products (Table 3). The pH of soil water for all horizons did not change significantly in 2000 but 

increased to 4.72 in the O horizon and to 4.74 in the mineral soil by the third year after the 
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manipulation (Table 3). In contrast, the concentrations of Ali in O horizon solutions decreased 

significantly in both 2000 and 2002, whereas a decrease in Ali concentration in mineral soil 

solutions was not evident until 2002. The Ca application on W1 also resulted in an increase in 

the concentrations of SO4
2-

 in the first year after the treatment (Table 3). Sulfate concentrations 

subsequently decreased to 33 µmol/L in the O horizon and 45 µmol/L in the mineral horizon 

solutions, respectively, by the third year following the treatment.  

 Unlike the gradual increasing patterns in soil solution Ca, pH, and ANC concentrations, 

dissolved H4SiO4 rapidly increased for the first year following the treatment and then decreased 

during the third year. This initial H4SiO4 response may be attributed to rapid dissolution of Si 

from the added wollastonite following the application. Whereas a substantial amount of Ca
 
was 

retained as exchangeable Ca in the O horizon, much of the H4SiO4 released during dissolution 

apparently remained in solution. As a result, the Ca/Si molar ratio decreased during the first year 

after CaSiO3 application from 0.45 to 0.18 in organic soil solution and from 0.25 to 0.14 in 

mineral soil solution. Following this initial period, there was an increase in the Ca/Si ratio (i.e. 

mean ratio: 0.45 in organic and 0.36 in mineral soil solution in 2002) back to pre-treatment levels 

(Figure 3). This pattern indicates that with additional time, the dissolution of wollastonite had 

diminished somewhat resulting in lower (but still elevated relative to pre-treatment levels) 

concentrations of H4SiO4 in O horizon solutions. Retention of Ca by exchange sites in the O 

horizon appears to have decreased as well, resulting in increasing Ca concentrations in soil 

solutions and higher Ca/Si ratios. DOC concentrations exhibited no significant changes in any 

horizon between the pre- and post-treatment.  

 Six sets of lysimeters in the SFB zone, 3 in the HH zone, and 4 in the LH zone (Figure 1) 

were used to investigate landscape patterns in solute concentrations in soil solutions draining 
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organic and mineral soil horizons in W1 prior to (1998) and after (2000 and 2002) the Ca 

manipulation (Figure 4). Prior to the wollastonite treatment, Ca, H4SiO4, pH, and ANC were low 

and Ali concentration was high in both the organic and the mineral soil solution across almost all 

elevations, especially in the SFB zone. This pattern could be linked to the fact that 

concentrations of exchangeable Ca were low in soil at higher elevations and increased with 

decreasing elevation (Figure 2; Johnson et al. 2000). 

 The magnitude of both increases in Ca, H4SiO4, pH, and ANC, and decreases in Ali was 

greater at the SFB zone (higher elevation) than at the HH and LH zones (lower elevations). This 

phenomenon was attributed to lower concentrations of Ca, H4SiO4, pH, and ANC, and higher Ali 

concentrations at the SFB zone than at the HH and LH prior to the Ca treatment. The increase in 

SO4
2-

 concentrations was more evident at the higher elevation than at the lower elevation in both 

organic and mineral soil solutions during the first year following the treatment. There were no 

significant changes in DOC concentrations at any of the elevations (Figure 4). The SFB zone has 

shallow soil depth, relatively flat topography resulting in high soil moisture, and limited mineral 

weathering (Johnson et al. 2000). As a result, the effects of the wollastonite treatment are likely 

to be more pronounced than in the deeper and drier soils of lower elevations.   

 The concentrations of total Al and organically bound monomeric Al showed different 

behavior from inorganic monomeric Al concentrations. There were significant increases in Alt in 

the SFB (annual mean values: 22 µmol/L in 1998 to 30 µmol/L in 2000; p<0.05) and the LH (8 

µmol/L in 1998 to 18 µmol/L in 2000; p<0.05) sites, and there was an insignificant increase in 

Alt at the HH (18 µmol/L in 1998 to 26 µmol/L in 2000; p>0.05) site in the O horizon soil 

solution. These values decreased to 20 µmol/L at SFB and 13 µmol/L at the both HH and the LH 

sites in 2002. Soil solutions draining mineral horizon soils also showed significant increases in 
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Alt at the SFB (annual mean values: 24 µmol/L in 1998 to 39 µmol/L in 2000; p<0.05), the HH 

(22 µmol/L in 1998 to 37 µmol/L in 2000; p<0.05) , and the LH (10 µmol/L  in 1998 to 17 

µmol/L  in 2000; p<0.05) sites, and then these increased Alt concentrations decreased to 31 

µmol/L at the SFB, to 32 µmol/L at the HH, and to 14 µmol/L at the LH during the third year 

following the wollastonite treatment, respectively. There were no significant changes in Alo at 

the SFB site in both the O (9 µmol/L in 1998, 11 µmol/L in 2000, and 7 µmol/L in 2002; p>0.05) 

and mineral (6 µmol/L in 1998, 9 µmol/L in 2000, and 7 µmol/L in 2002; p>0.05) horizon soil 

solutions. Nor were there distinct patterns at the hardwood sites. Alo concentrations at the HH 

and the LH sites in the O horizon soil solutions averaged 10 and 5 µmol/L in 1998, 10 and 8 

µmol/L in 2000, and 6 and 5 µmol/L in 2002, respectively. Alo concentrations in mineral soil 

solutions at the HH and the LH sites were 6 and 1 µmol/L (1998), 8 and 3 µmol/L (2000), and 7 

and 2 (2002), respectively. 

 

 

Discussion 

 

Horizonal patterns   

 

Retention of Ca and Al immobilization 

 Prior to wollastonite application, the CECe was significantly negatively correlated with 

pHs in both the O horizon (average of Oie and Oa, p<0.05, r=-0.323) and the mineral soil 

(p>0.05, r=-0.147; Table 4, Figure 5). Negative correlations between CECe and pHs at Hubbard 

Brook and in other forest soils in the northeastern U.S.A have been ascribed to the contribution 
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of soil organic matter to CEC and soil acidity (Johnson 2002). The O horizon contains an 

abundance of carboxyl groups (R-COOH) that both lower pH and provide sites for cation 

binding. In mineral horizons, Ex-Al is the predominant exchangeable cation, which results from 

the dissolution of mineral Al. Thus, there is more Al available for release to mineral soil 

solutions than organic soil waters (Figure 3). The importance of Ca to CECe decreases with soil 

depth, perhaps due to Ca cycling by vegetation and natural soil pedogenesis. In the O horizon, 

Ca accounted for 27% of CECe, whereas it comprised only 7% in the upper mineral horizon 

(Figure 5). Exchangeable H
+
 represented 35% of the CECe in the O horizon, whereas 

exchangeable Al was 70% of the CECe in the upper mineral horizon (Figure 5).   

 After Ca addition, the correlations between CECe and pHs in the O horizon were 

significantly positive in 2002 (p<0.01, r=+0.433), corresponding with significant positive 

correlations between Ex-Ca and pHs (p<0.01, r=+0.340 in 2000; and p<0.01, r=+0.570 in 2002, 

respectively). In the mineral horizons, however, no significant correlations were observed 

between either CECe and pHs or Ex-Ca and pHs (Table 4).  

The large and continuing increase in Ex-Ca and CECe in O horizons implies that much of 

the Ca released from the dissolution of the added wollastonite was retained by forest floor 

exchange sites for the period shortly after treatment. In fact, Ca largely remained in the forest 

floor, accounting for 49% of CECe in 2000 and 66% of CECe in 2002, and limiting penetration to 

the mineral soil. The large increases in Ex-Ca in organic horizons coincide with much smaller 

decreases in Ex-Al and Ex-Acid (Table 2, Figure 2). Thus, the release of Ca from wollastonite 

dissolution resulted in an increase of CECe rather than the displacement of exchangeable acidic 

cations by Ca. This pattern of increases in CECe following the wollastonite application was 

evident at all elevations. The mechanism of increases in CECe in response to the treatment is 
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likely due to the deprotonation of carboxyl sites associated with soil organic matter, thus creating 

pH-dependent cation exchange capacity. This pattern was also reported following CaCO3 

application to Woods Lake watershed in the Adirondack (Blette & Newton 1996). 

 

SO4
2-

 desorption 

 Previous investigators at the HBEF have shown that SO4
2-

 adsorption is pH-dependent, 

particularly in B horizon soils (Fuller et al. 1985; Mitchell et al. 1989; Nodvin et al. 1986; 1988). 

Therefore, increases in Ca concentrations and concomitant decreases in H
+
 concentration in W1 

soil solutions after the wollastonite addition were expected to cause SO4
2-

 desorption, and an 

increase in soil solution SO4
2-

 concentrations. This response was only significant in mineral soil 

solutions, and was a transient phenomenon, evident only during the first year (2000) following 

the treatment (Figure 3). By 2002, mineral soil SO4
2-

 concentrations returned to the pre-treatment 

levels in all subcatchments. This pattern appears to be consistent with pH-dependent adsorption 

of SO4
2-

 on iron and aluminum sesquioxides in the mineral soil (Nodvin et al. 1986).  

 We observed significant decreases in SO4
2-

 concentrations in organic horizon soil 

solutions throughout the watershed in 2002 (Table 3, Figure 3). This pattern occurred despite 

large increases in the pHs of both Oie and Oa soils (Table 2). The mechanism responsible for this 

decrease in SO4
2-

 in O horizon solutions is not evident. 

 

Landscape patterns 

 

Change in BSe  
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 As part of our evaluation of the effects of the Ca addition to watershed 1, we evaluated 

the spatial patterns of biogeochemical changes. The effective base saturation in the mineral soil 

can be used as general indicator of ecosystem stress from elevated Al concentrations at the 

HBEF, with a threshold value of 15% BSe suggestive of adverse conditions for tree health and 

surface water acidification (Cronan & Grigal 1995; Cronan & Schofield 1990; Palmer et al. 

2004). To determine spatial patterns in BSe, we interpolated the soils data by Kriging from maps 

with coordinate values. This approach allowed us to map the modeled output and identify areas 

sensitive to changes in atmospheric deposition prior to treatment and evaluate the intra-

watershed response to the experimental addition of wollastonite.   

   The BSe was less than 20% in the upper mineral soil everywhere in W1 except a few 

restricted locations prior to the treatment, with the lowest values in the upper areas of the 

watershed (Figure 6). After the treatment, the fraction of the watershed with very low BSe 

(<10%) decreased substantially, and a few locations showed BSe values >30% (Figure 6). 

Changes in the spatial patterns in the O horizon (weighted average of Oie and Oa) were more 

evident than changes in the upper mineral horizon. The BSe of the O horizon decreased with 

increasing elevation prior to the treatment and more than half of the watershed had BSe below 

50% (Figure 6). However, this pattern changed after the treatment. By 2002, organic horizons 

throughout W1 had BSe greater than 60%, and values were relatively constant throughout the 

watershed. The application rate of wollastonite was relatively uniform across the watershed 

(Peters et al. 2004). Thus, the application of wollastonite to wetter soil provides a more 

immediate change in watershed soils and drainage waters of the SFB zone than application to 

more well-drained soils at lower elevations. The differing responses of organic and mineral soils 

(Figure 6) support the conclusion that much of the Ca released by wollastonite dissolution 
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remained in the forest floor. Whereas the BSe increased by as much as 60% or more in O 

horizons, the greatest increase observed in mineral soil was only 20-30%.   

 

Ca/Al ratio 

 Cronan and Grigal (1995) suggested that there is a 50% risk of harmful effects on tree 

growth and nutrition when the Ca/Al molar ratio in soil solution is less than 1, with the risk 

increasing to 75% and 100% risk when the Ca/Al ratio decreases below 0.5 and 0.2, respectively.  

We used total monomeric Al (Alm) to calculate the Ca/Al molar ratio in soil solutions, and Ex-Ca 

and Ex-Al to calculate the Ca/Al in soil. Prior to the treatment the mean Ca/Alm molar ratios 

were 0.4 and 0.4 in the SFB zone, 1.6 and 0.8 in the HH zone, 2.1 and 1.5 in the LH zone in the 

organic and the mineral soil solutions, respectively. These values suggest that there may be 

evidence for Al stress on acid sensitive vegetation in the SFB zone and the HH zone.  

After the wollastonite treatment, increases in solution Ca/Alm were evident at all 

landscape positions due to increases in Ca and decreases in Alm. Although the Ex-Ca/Ex-Al ratio 

is not as widely used as soil solution Ca/Al as an indicator of Al stress, it is useful to evaluate the 

coupling of these stoichiometric relationships. Prior to the treatment there were consistent spatial 

patterns in solution and soil Ca/Al, with the lowest values in the SFB zone, increasing in the HH 

and the LH zones (Figure 7). Broadly speaking, solution and soil Ca/Al ratios were similar in 

magnitude in O horizon samples. In mineral soil, however, the soil Ex-Ca/Ex-Al ratios were 

much lower than solution values due to the dominance of Ex-Al on soil exchange sites. 

Following the wollastonite application, Ca/Al ratios increased in both soils and solutions in 

organic and mineral horizons except Ca/Al ratio in mineral soils of the HH zone during the first 

year (Figure 7).  
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Hawley et al. (2006) showed that winter injury to red spruce, due to cold temperature 

coupled with depletion of available Ca in soils, decreased in W1 compared with the untreated 

reference watershed (W6). This response coincided with increases in foliar Ca concentrations 

derived from the dissolution of added wollastonite. Juice et al. (2006) examined the response of 

sugar maple to the Ca addition and found that increased foliar Ca concentrations of canopy sugar 

maples in W1 increased health, growth, and survivorship after the treatment.  

The magnitude of the increases in Ca/Al ratios was much greater in the organic horizon 

than mineral soil. This response is likely due to the strong retention of Ca in the forest floor. Also, 

the solubility of Al decreases with increases in pH to neutral values (Driscoll and Postek 1995; 

Cho et al. 2009). In the O-horizon there was an uncoupling of the spatial pattern in Ca/Al ratios 

due to enhanced wollastonite dissolution in the SFB zone, such that in 2002 the Ex-Ca/Ex-Al 

ratio in the SFB zone was greater than the HH zone and comparable to the LH zone. Less 

striking changes were evident in the mineral soil, although the SFB zone exhibited marked 

increases in both solution and soil Ca/Al, probably due to the shallow, wet soils which allowed 

for greater dissolution of wollastonite than the HH and the LH zones. The LH zone demonstrated 

large changes in solution Ca/Al with little change in exchangeable Ca/Al (Figure 7). Tracking 

these shifts in Ca/Al stoichiometry over the long-term, along with the associated forest 

vegetation response, should provide insight on the use of Ca/Al ratios as indicators of forest 

health.  

 

 

Conclusions 

 



 - 21 - 

 The magnitude of increases (Ex-Ca, pHs, CECe, and BSe in soil; Ca, pH, and ANC in soil 

water) and decreases (Ex-Al and Ex-Acid in soil; Ali concentrations in soil water) in both soils 

and soil solutions was greater in the third year than in the first year after the Ca manipulation. In 

contrast, H4SiO4 concentrations were highest in the first year after the treatment, suggesting 

relatively rapid direct dissolution of wollastonite. The changes in soil and soil solution chemistry 

were most evident within the organic horizon, since most of the Ca derived from the dissolution 

of added wollastonite was retained in the forest floor due to increases in CECe. The increase in 

CECe was likely due to the deprotonation of carboxyl sites associated with soil organic matter. 

Wollastonite dissolution was greatest in the high-elevation SFB zone due to shallow soils and a 

relatively high water table. There were positive relationships between Ca/Alm in soil water and 

Ex-Ca/Ex-Al in soil in both the pre-treatment and the post-treatment periods, suggesting that 

concentrations of Ca and Alm in soil solution were correlated with the patterns in Ex-Ca and Ex-

Al concentrations in soil horizons. The Ca/Alm ratio in soil solution increased following the 

treatment, possibly alleviating acidification stress and resulting in the improvement in the health 

of red spruce and sugar maple.  
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indicates the high elevation spruce-fir-white birch zone, HH is the high elevation hardwood zone, 

and LH is the low elevation hardwood zone. 

 

Figure 5. Relationships between CECe and pHs, and components of the CECe for pre- and post-

treatment soil samples in the organic and mineral horizons in watershed 1 (W1) at the Hubbard 

Brook Experimental Forest (HBEF), New Hampshire. 

 

Figure 6. Spatial patterns in BSe from organic (a, b, c) and mineral (d, e, f) horizons at watershed 

1 (W1) of the Hubbard Brook Experimental Forest (HBEF) in New Hampshire prior to (a, d) and 

after the Ca manipulation (b, c, e, f): north lies towards highest elevation (738.2 m) and south 

towards lowest elevation (488.1 m). 

 

Figure 7. Relationships between Ca/Ali ratio in soil solution and Ex-Ca/Ex-Al ratio in soil for 

spruce-fir-white birch (SFB: high elevation), high hardwood (HH: mid elevation), and low 

hardwood (LH: low elevation) zones of watershed 1 (W1) at the Hubbard Brook Experimental 
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Figure 4.  
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Table 1.  

 
Analyte Method Reference 
Soil properties 

Exchangeable Ca, Mg, K, Na, Al  

(Ex-Ca, Ex-Mg, Ex-K, Ex-Na, Ex-Al, cmolc/kg)  

  Exchangeable acidity (Ex-Acid, cmolc/kg) 

pHs 

Effective cation exchange capacity (CECe, cmolc/kg) 

  Effective base cations (BCe, cmolc/kg) 

  Effective base saturation (BSe, %) 

 

Soil solution 

Ca, Mg, Na, K (µmol/L) 

NH4
+ 

(µmol/L) 

Total monomeric Al (Alm, µmol/L),  

Organic monomeric Al (Alo, µmol/L) 

  Inorganic monomeric Al (Ali, µmol/L) 

pH 

  Dissolved silicate (H4SiO4, µmol/L) 

SO4
2- 

, NO3
-
, Cl

-
, F

-
 (µmol/L) 

Acid neutralizing capacity (ANC, µeq/L)** 

 

Dissolved organic carbon (DOC, µmol/L) 

 

Extracted in 1.0 M NH4Cl + ICP* 

 

Extracted in 1.0 M KCl at pH 8.2 

Dissociated H
+
 in 0.1 M CaCl2 

Ex-Acid + Ex-Ca + Ex-Mg + Ex-K + Ex-Na 

Ex-Ca + Ex-Mg + Ex-K + Ex-Na 

100 ×  (BCe/CECe) 

 

 

Atomic absorption spectroscopy (AAS) 

Automated phenate method 

Automated pyrocatechol violet method (PCV)  

Automated pyrocatechol violet method (PCV) 

Alm - Alo 

Potentiometric 

Molybdenum blue colorimetry 

Ion chromatography (IC) 

2[Ca]+2[Mg]+[Na]+[K]+[NH4
+
]- 

2[SO4
2-

]-[NO3
-
]-[Cl

-
]-[F

-
] 

UV enhanced persulfate oxidation, infrared (IR) CO2 

detection 

 

Johnson et al., 1991b 

 

Johnson et al., 1991b 

Johnson, 2002 

Skyllberg, 1999 

Skyllberg, 1999 

Skyllberg, 1999 

 

 

Slavin, 1968 

Cappo et al., 1987 

McAvoy et al., 1992 

McAvoy et al., 1992 

Driscoll, 1984 

APHA, 1992 

APHA, 1992 

Tabatabai & Dick, 1983 

Stumm and Morgan, 1981 

 

Dohrman, 1984 

*ICP: Inductively coupled plasma spectroscopy  

**Ion concentrations are expressed in µmol/L and the unit of ANC is µeq/L. 
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Table 2.  

 
Pre-treatment Post-treatment 

Parameter                     Horizon Statistics 
1998 2000 2002 

Significant differences 

x  5.62 24.4 34.7 
Oie 

SD 2.43 14.6 16.2 

1998 < 2000 < 2002 

 

x  4.44 4.94 11.1 
Oa 

SD 3.45 3.79 10.6 

x  0.58 0.65 0.85 

Ex-Ca 

(cmolc/kg) 

Mineral 
SD 0.44 0.75 0.64 

1998, 2000 < 2002 

 

1998, 2000 < 2002 

 

x  1.13 0.84 0.87  
Oie 

SD 1.65 2.32 1.32  

x  6.90 7.07 5.29 
Oa 

SD 5.37 5.09 4.45 

1998, 2000 > 2002 

 

x  6.19 5.26 6.02 1998 > 2000 

Ex-Al 

(cmolc/kg) 

Mineral 
SD 3.33 2.86 3.17  

x  8.41 5.69 5.11 
Oie 

SD 3.91 3.19 2.72 

1998 > 2000, 2002 

 

x  11.9 11.6 8.48 
Oa 

SD 4.16 5.19 4.21 

1998, 2000 > 2002 

 

x  7.79 6.68 7.71 

Ex-Acid 

(cmolc/kg) 

Mineral 
SD 3.30 3.18 3.69 

1998, 2002 > 2000 

 

x  3.26 4.21 4.34 
Oie 

SD 0.23 0.51 0.49 

x  3.03 3.24 3.48 
Oa 

SD 0.35 0.32 0.57 

1998 < 2000 < 2002 

 

1998 < 2000 < 2002 

 

x  3.35 3.47 3.44 

pHs 

Mineral 
SD 0.36 0.33 0.37 

1998 < 2000, 2002 

 

x  16.2 32.7 43.6 
Oie 

SD 4.08 14.5 17.1 

1998 < 2000 < 2002 

 

x  18.0 18.2 21.4 
Oa 

SD 5.30 6.23 9.86 

1998, 2000 < 2002 

 

x  8.80 7.68 8.96 

CECe 

(cmolc/kg) 

Mineral 
SD 3.61 3.45 4.07 

1998, 2002 > 2000 

 

x  48.7 78.6 86.1 
Oie 

SD 15.7 15.4 9.74 

1998 < 2000 < 2002 

 

x  32.9 35.8 56.0 
Oa 

SD 15.8 17.6 21.3 

1998, 2000 < 2002 

 

x  12.1 13.1 14.3 

BSe 

(%) 

Mineral 
SD 5.85 7.80 7.38 

1998 < 2002 

 

1. x = arithmetic mean, SD = standard deviation  

2. Both alternative hypotheses (year > or < year) and null hypotheses (year ≈ year) were tested by two  

    sample t-test based on p-value, using the significance level of 0.05 and 95 % confidence intervals for all  

    tests.  

3. Sample numbers are 85 in 1998, 91 in 2000, and 76 in 2002 at Oie and Oa horizons, 88 in 1998, 81 in  

    2000, and 79 in 2002 at mineral horizon, respectively.  
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Table 3.  

 
Pre-treatment Post-treatment 

Parameter Horizon Statistics 
1998 2000 2002 

Significant differences 

x  27.4 47.9 57.9 
O  

SD 29.6 47.7 48.3 

1998 < 2000, 2002 

 

x  15.8 24.8 33.4 

Ca
 

(µmol/L 
Mineral 

SD 9.14 18.3 25.9 

1998 < 2000 < 2002 

 

x  73.0 273 162 
O  

SD 43.5 165 103 

x  68.1 180 152 

H4SiO4 

(µmol/L) 
Mineral 

SD 33.5 113 76.5 

1998 < 2002 < 2000 

 

1998 < 2002 < 2000 

 

x  4.43 4.46 4.72 
O  

SD 0.42 0.47 0.54 

x  4.58 4.56 4.74 
pH 

Mineral 
SD 0.41 0.36 0.47 

1998, 2000 < 2002 

 

1998, 2000 < 2002 

 

x  17.0 13.8 9.04 
O  

SD 8.83 7.40 6.48 

1998 > 2000 > 2002 

 

x  16.3 21.0 12.8 

Ali 

(µmol/L) 
Mineral 

SD 9.03 7.54 7.90 

2000 > 1998 > 2002 

 

x  47.0 50.3 33.2 
O  

SD 17.4 19.0 16.3 

2000 > 1998 > 2002 

 

x  42.4 54.1 45.0 

SO4
2-

 

(µmol/L) 
Mineral 

SD 11.8 16.8 15.4 

1998, 2002 < 2000 

 

x  -52.9 11.1 45.8 
O  

SD 130 81.5 100 

x  -40.8 -31.8 -3.57 

ANC 

(µeq/L) 
Mineral 

SD 58.1 47.5 46.3 

1998 < 2000 < 2002 

 

1998 < 2000 < 2002 

 

x  1483 1605 1513 
O  

SD 1453 1479 1247 

x  670 684 649 

DOC 

(µmol/L) 
Mineral 

SD 871 841 792 

1998 ≈ 2000 ≈ 2002 

 

1998 ≈ 2000 ≈ 2002 

 

1. x = arithmetic mean, SD = standard deviation,  

2. Both alternative hypotheses (year > or < year) and null hypotheses (year ≈ year) were tested by two  

    sample t-test based on p-value, using the significance level of 0.05 and 95 % confidence intervals for all  

    tests.  

3. The range of sample numbers in each constituent is from 69 to 128 in 1998, from 71 to 172 in 2000, and  

    from 93 to 192 in 2002.  

4. ANC values were calculated by the equation in Table 1. 
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Table 4.  

 
 O horizon Mineral horizon 

Year rCECe-pHs pCECe-pHs rExCa-pHs pExCa-pHs rCECe-pHs pCECe-pHs rExCa-pHs pExCa-pHs 

1998 -0.323 0.003 -0.366 0.001 -0.147 0.171 -0.337 0.001 

2000 +0.153 0.148 +0.340 0.001 +0.055 0.624 -0.157 0.160 

2002 +0.433 0.000 +0.570 0.000 -0.097 0.393 -0.023 0.840 

1. Pearson correlation coefficients (r) and P-values (p) were tested by the significance level of 0.05 and  

    95% confidence intervals for all regression analyses.  

2. Pre- (1998) and post-treatment (2000, 2002) 

3. O horizon is the weighted average of Oie and Oa. 
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