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ABSTRACT 

Current seismic codes for building design often utilize a force or a displacement-based approach 

in their implementation.  In a force-based approach, a structure is designed to ensure it possesses 

sufficient strength to resist the maximum forces imparted to it by an earthquake.  In a 

displacement-based approach, a target displacement is calculated or identified and the structure 

is proportioned to achieve a specified performance level, defined by strain or drift limits, under a 

specified level of seismic intensity.  A third approach, which has gained momentum in the 

earthquake engineering community, is the energy-based approach. In this approach, a design is 

considered satisfactory if the capacity of a structure to absorb or dissipate energy exceeds its 

energy demand from an earthquake.  In the present research, a new energy-based approach is 

proposed in which velocity index (VI), obtained as the product of two ground motion indexes - 

peak ground velocity (PGV) and cumulative absolute velocity (CAV), is used to normalize input 

energy spectra.  The use of VI as a normalization factor not only allows for the creation of 

dimensionless input energy spectra, but can result in smaller values of coefficients of variation 

when compared to other normalization factors currently being used.  

Earthquake input energy spectra for four site classes (Site Class B, C, D and E as per IBC 2012 

soil classifications) and four hysteretic models (bilinear plastic, stiffness degradation, bilinear 

flag and bilinear slip) are developed for five ductility levels (μ=1, 2, 3, 4, 5) using ground motion 

ensembles of 38, 42, 38 and 26 recorded at site classes B, C, D and E, respectively. For purpose 

of design, the normalized input energy spectra are divided into three regions – short period, 

intermediate period and long period – that are consistent with the customary design response 

spectra contained in various seismic codes and standards.  A close examination of these spectra 



 

has shown that regardless of the hysteretic models used, the normalized seismic input energy 

decreases as ductility increases, and increases as the soil gets softer. For each site class, empirical 

ductility dependent input energy expressions are developed, and hysteretic to input energy ratio 

relationships are formulated. The proposed design input energy spectra are validated using six 

major earthquakes and are found to reasonably match the spectra generated using time history 

analysis.  

Since the input energy spectra are developed for single-degree-of-freedom (SDOF) systems, to 

facilitate the implementation of the proposed method in the design of multi-degree-of-freedom 

(MDOF) systems, simple expressions that relate earthquake input and hysteretic energies for 

MDOF system to its equivalent single-degree-of-freedom (ESDOF) systems are formulated.  The 

energy relationships are verified using four (a three story, a five story, a seven story and a nine 

story) frames each subjected to six earthquakes wherein a very good estimate for the three- and 

five- story and a reasonably acceptable estimate for the seven-, and nine-story frames were 

obtained.  A new method for distributing hysteretic energy over the height of moment resisting 

frames is also proposed.  The new distribution scheme was used in determining the energy 

demand (hysteretic energy) component of an energy-based seismic design (EBSD).  EBSD is a 

story-wise optimization design procedure developed using the relationship that exists between 

energy dissipating capacity and plastic analysis/design of structures.  Finally, the entire process 

of determining the input energy for ESDOF systems to the distribution of hysteretic energy over 

the height of MDOF structures using the proposed EBSD design procedure is demonstrated 

using two design examples: a three-story one-bay frame and a five-story two-bay frame.
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1. INTRODUCTION 

1.1 Background 

Earthquake is the result of ground shaking caused by movement of tectonic plates.  The severity 

of earthquakes can be expressed in terms of a magnitude (the Richter’s scale, surface-wave 

magnitude, body-wave magnitude, moment magnitude) or an intensity (the modified Mercalli 

scale).  Both are related to the amount of energy released by the earthquake.  This energy, if not 

properly dissipated, could cause severe damage to or even destruction of natural or man-made 

structures.  The damage could result in both social and economic mishaps.  Ground failures such 

as earth flows, landslides and liquefaction could be easily triggered by earthquakes.  Engineered 

structures such as buildings, bridges, highways and dams are not exceptions; they can be 

damaged or brought to failure during large earthquakes.  In cases where there are no early 

warning systems or where earthquake magnitudes cannot be adequately predicted, structural and 

ground failures could result in substantial fatalities.  Table 1.1 shown below lists the largest and 

deadliest earthquakes since 2000 and the number of fatalities they inflicted as documented by the 

United Stated Geological Survey (USGS).  However, when structures are designed against 

earthquakes, the property damage and related fatalities could be substantially reduced.  

The unpredictability of the nature, occurrences and magnitudes of earthquakes makes it rather 

difficult to design structures to be completely earthquake proof.  Practicing engineers and 

researchers agree that when it comes to earthquake design, “one needs to design the structure as 

per the best practices available and pray that a monster earthquake wouldn’t strike”.   Currently, 

seismic design procedures stipulated in earthquake design codes such as ASCE and IBC are 

widely used by practicing engineers to design structures that can resist earthquake forces with an 
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acceptable damage (referred to as damage levels in FEMA 356).  These procedures are also 

called performance base design procedures. Research is being continuously conducted in order to 

develop a more sound seismic design procedure that takes into account the energy imparted by 

an earthquake onto a structure. It is in this area that the present study attempts to make a 

contribution. 

Table 1.1  Largest and Deadliest Earthquakes Since 2000 

Year Date Magnitude Fatalities Region 

2014 1-April 8.2 6 Iquique, Chile 

2013 24-Sept 7.7 825 Barochistan, Pakistan 

2012 6-Feb 6.7 113 Negros-Cebu region, Philippines 

2011 11-Mar 9 20896 Near the East Coast of Honshu, Japan 

2010 27-Feb 8.8 507 Offshore Maule, Chile 

2010 12-Jan 7 316000 Haiti 

2009 29-Sept 8.1 192 Samoa Islands region 

2009 30-Sept 7.5 1117 Southern Sumatra, Indonesia 

2008 12-May 7.9 87587 Eastern Sichuan, China 

2007 15-Aug 8 514 Near the Coast of Central Peru 

2006 26-May 6.3 5749 Java, Indonesia 

2005 8-Oct 7.6 80361 Pakistan 

2005 28-Mar 8.6 1313 Northern Sumatra, Indonesia 

2004 26-Dec 9.1 227898 Off West Coast of Northern Sumatra 

2003 26-Dec 6.6 31000 Southeastern Iran 

2002 25-Mar 6.1 1000 Hindu Kush Region, Afghanistan 

2001 26-Jan 7.7 20023 India 

2000 4-Jun 7.9 103 Southern Sumatera, Indonesia 

Source (http://earthquake.usgs.gov/earthquakes/eqarchives/year/byyear.php) 
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1.2 Commonly Used Seismic Design Procedures  

Albeit some limitations and uncertainties, performance-based design procedures present the 

means to designing structures to resist seismic forces with an acceptable damage.  The two most 

widely used conventional performance-based design procedures are the forced–based design and 

displacement-based design methods.  They are both fundamentally nonlinear static procedures 

(NSPs). 

In the force-based design (FBD) method, a design seismic force for a target structure is specified 

on the basis of an elastic acceleration response spectrum.  This seismic design force is called the 

design base shear. To account for the inelasticity (ductility effect), the design force of the target 

structure obtained from the elastic acceleration response spectrum is divided by a force-reduction 

factor.  The structure is then designed for the reduced force, and the displacement can be checked 

so that the code-specified serviceability limits are met.  Regardless, the FBD method is not 

without limitations and drawbacks.  Smith and Tso (2002) through their study on a large class of 

reinforced concrete members such as piers, flexural walls and ductile moment resisting fames 

claimed that force-based design procedure is inconsistent. They argued the assumption that the 

stiffness of the lateral force resisting elements is essentially independent of their strength is 

inconsistent as strength and stiffness are usually related.  Moreover, the problems associated with 

this method, as pointed out by Priestley et al. (2007) are: 

 The elastic stiffness is not known at the start of the design process, and very 

approximate values have to be used. 

 Foundation effects are generally ignored in force-based design, and are difficult to 

incorporate in the design process as they affect both the elastic period, and 

displacement ductility demand.  
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 Even though the design force is calculated from an allowable displacement ductility 

factor, it does not properly address the force-displacement relationship of the 

structure.  

The displacement-based design (DBD) method, which is generally accepted to be a better 

alternative to the FBD method, takes displacement as a design parameter as opposed to using 

base shear as in the case for FBD.  As a result, the important task in a displacement-based design 

approach is to estimate the maximum displacement demand in a structure with reasonable 

simplicity and accuracy as a function of its local mechanical characteristics, such as member 

strain and deformation limits.  FEMA 440’s (2005) displacement-based Coefficient Method is 

one of the currently available displacement-based seismic design methods. The Coefficient 

Method modifies the linear elastic response of an equivalent single degree of freedom (SDOF) 

system by multiplying it by a series of coefficients to estimate a global displacement, commonly 

termed as the target displacement.  This method uses an idealized force-displacement curve 

(pushover curve), which is a plot (for a given damping coefficient) of base shear versus roof 

displacement developed for a multiple degree of freedom (MDOF) structure.  A corresponding 

spectral value for an effective period, Te, of an equivalent SDOF system is then obtained from an 

elastic response spectrum corresponding to a design ground motion.  The target displacement is 

then calculated using an empirical formula that involves modifying coefficients and the spectral 

value for the corresponding effective period.  The effective period is obtained from an initial 

period of the structure and accounts for the loss of stiffness in the transition from elastic to 

inelastic behavior.  

The accuracy of the DBD method is highly dependent on how closely the equivalent SDOF 

system and its corresponding MDOF system are related through the idealized pushover curve.  
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Recently, researchers have identified glitches in the use of roof displacement-based pushover 

curve.  Enrique-Hernandez Montes et al. (2004) noted that the use of roof displacement in 

generating the capacity curve can be misleading because the capacity curve so obtained 

sometimes tends to show the structure as a source of energy rather than absorbing energy. They 

suggested that an energy-based pushover analysis be used instead whereby the lateral force is 

plotted against a displacement which is a function of energy.  Manoukas et al. (2011) also 

developed an energy-based pushover procedure for estimating structural performance under 

strong earthquakes.  They showed through numerical examples that their procedure provides 

better results compared to those produced by other similar procedures. 

In addition, neither the FBD method that uses base shear as a design parameter nor the DBD 

method that uses displacement as a design parameter can directly consider the cumulative 

damage effect that result from numerous inelastic cycles of the ground motion due to 

deterioration of the structure’s hysteretic behavior.  Moreover, the effect of earthquakes on 

structures should be interpreted not just as a force or displacement quantity, but as a product of 

both, i.e., in terms of input energy.  This is the underlying concept for the inception of the 

energy-based seismic design (EBSD) method. EBSD is believed by many to be the next 

generation of seismic design methods.   
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1.3 Energy – Based Seismic Design (EBSD) and its Current Status 

The equation of motion for a single-degree-of-freedom (SDOF) inelastic system subjected to a 

ground motion is given by  

s gmu cu f mu              (1.1) 

where m= mass of the system; c= damping coefficient; 𝑓𝑠 = restoring force; �̈�𝑔= ground 

acceleration, and �̈�, �̇�, 𝑢  are the relative acceleration, velocity, and displacement of the 

system with respect to the ground, respectively.  

According to Uang and Bertero (1990) the energy balance equation for an SDOF structure based on 

relative motion can be written as  

0 0 0 0

t t t t

s gmuu dt cuu dt f u dt mu u dt      
   (1.2) 

Equation (1.2) can be rewritten as 

kr d aE E E IE                     (1.3) 

where  

2

0

1

2

t

krE relativekineticenergy muu dt mu    

2

0

t

dE damping energy cu dt    

0

t

a sE absorbed energy f u dt    

0

t

gIE relativeinput energy mu u dt  
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Ekr in Equation (1.3) vanishes when the structure ceases to vibrate.  Ed is related to the inherent 

viscous damping of the structure and/or by any supplemental damping mechanism provided by 

the presence of any damping devices in the system.  Ea consists of two different types of energy: 

elastic strain energy, Es, and hysteretic energy, HE.  Elastic strain energy does not cause 

permanent damage to the structure.  As its name indicates it occurs as a result of elastic 

deformation of the structure and becomes zero when vibration of the structures stops.  Hysteretic 

energy is related to the inelastic deformation the structure undergoes during the ground motion.  

Unless otherwise dissipated through some mechanism, hysteretic energy could inflict permanent 

damage to the structure.  

The philosophy of EBSD thus primarily focuses on ensuring that structures are designed to meet 

the energy demand of an earthquake, i.e., the hysteretic energy.  In EBSD, if the hysteretic 

energy demand of a structure due to an earthquake can be dissipated through a controlled 

inelastic deformation of the structure, the design is said to be satisfactory. Therefore, hysteretic 

energy is considered to be the main design parameter in energy-based seismic design.  Also, 

EBSD is believed to be a rational design approach for seismic design because it takes into 

account the accumulated earthquake induced damage in the design procedure.  Conversely, the 

viability of EBSD depends on the accuracy in developing inelastic design spectra for SDOF as 

well as the virtue of the equations that relate the input energy and hysteretic energy.  Moreover, 

for MDOF structures, the way the hysteretic energy is distributed over the different levels of the 

structure is equally important to the accuracy in the estimation of the input and hysteretic 

energies.  

In summary, EBSD attempts to ensure that the seismic energy demand is less than or at most 

equal to the capacity of the structure to dissipate it.  The seismic energy demand is the total 
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hysteretic energy whereas the capacity of the structure is the allowable plastic energy of the 

structure.  In lieu of any supplementary damping devices, the plastic energy is the amount of 

energy consumed in forming plastic hinges in the structure. 

1.4 Problem Statement and Objectives of the Research 

The hysteretic energy and input energy expressions for inelastic SDOF proposed so far by 

different researchers mostly targeted structures with an elasto-plastic or a bilinear hysteretic 

model.  However, structures do exhibit different kinds of hysteretic behavior, among which are 

the Bilinear Plastic, Stiffness Degradation, Bilinear flag and Bilinear Slip models. The 

description of these four different hysteretic models is presented below. 

Bilinear plastic (Figure 1.1 (a)), which is the same as the elasto-plastic hysteretic model, is one 

of the most commonly used hysteretic models to describe the cyclic behavior of reinforced 

concrete and steel frame structures that are not expected to undergo strength or stiffness 

degradation during a seismic event.  Figure 1.1(b) shows the stiffness degradation (modified 

Clough stiffness degradation) model, which is more appropriate to model the structural behavior 

that exhibits stiffness degradation and has less energy dissipation capacity than its elasto-plastic 

counterpart. 

Self-centering isolation systems and special bracing systems are used in the design of new or the 

rehabilitation of existing structural systems against earthquake induced actions.  These systems, 

such as slender unreinforced masonry shear walls and precast post-tensioned reinforced concrete 

elements, have little hysteretic energy dissipation capacity. Their cyclic behavior can neither be 

accurately modeled using the bilinear plastic model (which has the highest energy dissipation 

capacity among the hysteretic models) nor the bilinear elastic (theoretically, zero energy 
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dissipation capacity) model. The bilinear flag (Figure 1.1(c)), which combines the bilinear elastic 

and the bilinear plastic models, is more appropriate to capture the cyclic behavior of such 

systems.  

 

 

 

Figure 1.1 Hysteretic Models (source http://www.eqsols.com) 

 

 

    

a) Bilinear –Plastic        b) Modified Clough Stiffness Degradation 

 

     

c) Bilinear Flag   d)  Bilinear Slip 
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Low-rise steel frame buildings, wood, reinforced structures and other composite structures that 

are mainly subjected to shearing action may suffer from bond failure or slip.  For such structures 

their hysteretic behavior can be captured using the bilinear slip hysteretic model (Figure 1.1(d)).  

 

Thus far, research performed on determining hysteretic energy for multi-degree-of-freedom 

(MDOF) structures is quite limited and the outcome of this research is not conclusive and 

exhaustive.  Hysteretic energy for MDOF structures can be obtained from their equivalent SDOF 

(ESDOF) systems.  Hysteretic energy obtained using the ESDOF are accurate enough for cases 

where the seismic response of the MDOF is highly dominated by the first mode.  However, for 

structures in which the seismic response is influenced by higher modes, hysteretic energy 

obtained using the ESDOF system approach has shown errors. These errors can be minimized if 

multi-mode methods are adopted, in which the total hysteretic energy for the MDOF system is  

obtained by summing up the energy contribution of a series of ESDOF systems representing each 

mode and adjusted by a corresponding modal participation factor.  

It is important to highlight that by using energy-based seismic design, the overall objective is to 

design structures so that the energy-dissipation capacity (plastic deformation energy) is greater 

than the energy-dissipation demand (hysteretic energy). Therefore, this research aims to make 

contribution to the ongoing research on developing a sound energy-based seismic design 

procedure for structures by addressing the following two objectives.  
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Objective 1:  

As stated above, structures do exhibit different hysteretic behavior apart from the relatively 

simple and more researched elasto-plastic hysteretic model. Therefore, the first objective of this 

research would be to propose expressions for hysteretic and input energies of inelastic SDOF 

systems for different hysteretic models and compare their accuracy with the existing formulas.  

 

Objective 2: 

As has pointed out by Ye et al. (2009), very little research has been performed on determining 

hysteretic energy and its distribution in MDOFs systems, and so more widely applicable and 

simple methods are needed.  Thus, the second objective of this research is to propose improved 

expressions for determining hysteretic energy for MDOF structures and its distribution. 

The above objectives are achieved through numerical studies and the results are presented in this 

thesis as follows:  A literature review of research on input and hysteretic energies for SDOF 

systems is presented in Chapter 2.  This is followed by a discussion of the proposed input energy 

spectra and hysteretic energy spectra for SDOF systems in Chapter 3 and Chapter 4, respectively.  

Extending the concept to MDOF systems, the estimation of the input energy for MDOF systems 

is presented in Chapter 5, and a proposed procedure for distributing this energy to multi-story 

frames is given in Chapter 6.  The last chapter summarizes the essence of the present findings 

with conclusions and some suggestions for future research. 
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2. INPUT AND HYSTERETIC ENERGIES OF SDOF SYSTEMS: 

LITERATURE REVIEW 

2.1 Energy Spectra for an Inelastic SDOF System 

Equation 1.3 is a statement of energy balance for an SDOF system.  Alternatively, the energy 

balance can be expressed in terms of the total displacement of the SDOF system and in this case 

the resulting input energy is called an absolute/total input energy, IEa, and is given by Equation 

2.1. 

0

t

a g tIE mu u dt       (2.1) 

where �̇�𝑡 is the total velocity of the system; m, �̈�𝑔 are as defined before. 

Bruneau and Wang (1996) in their study on closed-form energy expression for an SDOF system 

subjected to rectangular and harmonic base excitations observed that there exists a close 

relationship between relative input energy and relative displacement.  As a result, they 

recommended that a relative input energy formulation is preferred over an absolute formulation 

for assessing earthquake damage on structures.  Henceforth, the relative input energy, IE, is used 

to quantify the energy content of an earthquake and is simply referred to as the input energy in 

this study. 

Before Uang and Bertero (1990) introduced the energy balance concept, a number of researchers 

have recommended different empirical formulae to estimate earthquake input energy.  For 

instance, Housner (1956) computed the input energy per unit mass of an SDOF system as 

follows 
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21
2
( )

IE
PSV

m
      (2.2) 

where m is mass of the structure and PSV is the pseudo-spectral velocity.  He was also the first to 

use an energy approach for seismic design.  He used it in the design of an elevated water tank to 

resist a 1940 S00E component El Centro accelerogram, and concluded that his equation is valid 

for both elastic and inelastic SDOF systems. 

Akiyama (1985), using Japanese design earthquakes, proposed the input energy per unit mass of 

an elastic SDOF structure due to a given earthquake as  

21
( )

2
e

IE
V

m
       (2.3) 

where the value of the equivalent velocity, 𝑉𝑒 (cm/s), is given by  

250

250

e n n g

e g n g

V T for T T

V T for T T

 

 
    (2.4) 

where Tn is the natural period of vibration of the structure (in second) and Tg is the predominant 

period of the ground motion (in second).  He showed that the predominant period of the ground 

motion is dependent on site soil characteristics. 

Kuwamura and Galambos (1989) proposed different expressions for Ve  in Equation (2.3) that 

took into account the severity and duration of an earthquake. Their expressions are given as 

follows    

1

2

1

2

e
e n n g

g

e g e n g

I
V T forT T

T

V T I forT T

 

 

       (2.5) 
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where Ie is the intensity of the accelerogram computed as 
0

t

e gI u dt   and t is duration of the 

earthquake.  

Fajfar et al. (1989) used 40 accelerograms and studied structures that fall within the constant 

velocity region of the response spectra.  From their study, they proposed the expression given in 

Equation (2.4) for estimating earthquake input energy in such structures. 

0.5 22.2 di

IE
t PGV

m
      (2.6) 

where tdi is the duration of strong motion as defined by Trifunac and Brady (1975) and PGV is 

the peak ground velocity of the ground motion. 

Out of curiosity, the different input energy expressions (Equations (2.2), (2.3) and (2.6)) were 

compared to the ‘exact’ input energy expression of Equation (2.1).  For this purpose a 1994 

Northridge earthquake recorded at Leona Valley station has been used and the corresponding 

input energies are shown in Figure 2.1. The earthquake has the following characteristics: site soil 

class C, tdi = 12.5 s, Ie = 602 in.
2
/s

3
, Tg = 0.38 s, PGV = 2.92 in./s, arms = 4.35 in./s

2
 (0.011g).  

From Figure 2.1 it can be clearly seen that, expressions by Akiyama (1985) and Fajfar et al. 

(1989) give an overestimated value of input energy (‘exact’ input energy is shown as RTH in the 

figure) by a large margin. Expressions by Housner (1956) and Kuwambura and Galambos 

(1989), on the other hand, underestimated the input energy.  It is also important to note that these 

expressions do not take into account structural behavior, e.g., ductility, which is an important 

parameter in earthquake design. 
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Figure 2.1 Input energy spectra for 1994 Northridge earthquake recorded at the Leona 

Valley station 

Uang and Bertero (1990), using five accelerograms and the absolute input energy expression IEa, 

concluded that Housner’s (1956) expression for input energy reflects the maximum elastic 

energy stored in the structures but does not include the damping energy. Uang and Bertero’s 
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(1990) conclusion is in agreement with what is observed from Figure 2.1.  Based on their 

finding, for a structure with ductility  = 5 and damping of 5%, they proposed an expression for 

the absolute input energy per unit mass as 

1 2 2(1 0.12  )    
2

IEa t PGV
dim

     (2.7) 

Manfredi (2001), using 244 accelerograms, proposed an expression for input energy spectra for 

structures with period of vibration that falls in the constant velocity region as follows 

2
1

0.45 0.23       
1

d

c

IE Sa
I

m 

  
       

  (2.8) 

Sa


 denotes pseudo spectral velocity (in which Sa = pseudo-acceleration, 𝜔 = natural frequency 

of the system), µc is the cyclic ductility, and Id is a damage index given by  

1e m
d c

y

I x
I and

PGA PGV u



  


  (2.9) 

where 
0

t

e gI u dt   is a measure of earthquake intensity, PGA is the peak ground acceleration, 

PGV is the peak ground velocity, Δxm is the maximum cyclic plastic deformation, and uy is the 

yield deformation. 

Khashaee (2004) proposed the following expression for estimating seismic input energy  

21
 ( )

2
T

IE Sa
f f

m 
      (2.10) 
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where 𝑓 ̅is a factor accounting for the ductility and ground motion characteristics, 𝑓𝑇 is a period 

factor. By using regression analysis of 160 accelerograms, Khashaee also proposed expressions 

for the period factor 𝑓𝑇  and for the factor 𝑓 ̅ as  

( 4.283 )
0.572  0.6             1

1                                         2,3,4,5

4.256
0.318 

0.5

T

T

Tnf e for

f for

f Ic








  

 

 


  (2.11) 

where µ  is the ductility and Ic an intensity index proposed by Park and Ang (1985) as  

 
1.5 0.5( )c rms diI a t     (2.12) 

where arms (g) is the root-mean-square ground acceleration and 𝑡𝑑𝑖 is the duration of strong 

motion as defined by Trifunac and Brady (1975) 

Khashaee (2004) proposed input energy expression and compared it with Manfredi’s (2001) 

expression and concluded that the two matched reasonably well.  An advantage of Khashaee’s 

method over that of Manfredi’s is that there is no need to determine the cyclic ductility of the 

structure being designed. 

It is of interest to investigate the performance of the ductility dependent input energy expressions 

given in Equations (2.8) and (2.10). For this purpose, they are graphically presented in Figure 2.2 

along with an “exact” input energy obtained from a time history analysis (RTH) for the 1994 

Northridge earthquake recorded at Leona Valley Station. The results show that, the expression 

by Khashaee (2004) overestimates the input energy by about 150 % on average for SDOF 

structures with initial periods of 0.5-2.5 s.  Whereas, Uang and Bertero (1990) expression 

underestimates the input energy by about 40% on average in the same period range.  It should be 
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noted that the fundamental period of most medium to high-rise story structures fall in this range.  

The observations made from Figures 2.1 and 2.2 clearly show that there exists an inconsistency 

and inaccuracy in estimating the input energy for SDOF structures with various ductility and 

period of vibration properties.  This presents a persuasive reason to revisit the existing research 

findings and come up with new input energy expressions that take into account the ground 

motion characteristics, structural behavior including ductility and site soil conditions.  

 

 

Figure 2.2 Input energy spectra for 1994 Northridge earthquake recorded at Leona Valley 

station, SDOF ( =5 and =5%) 

As mentioned in Section 1.3, hysteretic energy is by far the most appropriate parameter to 

quantify the energy dissipation capacity of structures subjected to earthquake excitations.  

Hysteretic energy is an important parameter used to measure the plastic cumulative damage of 

structures during an earthquake.  Knowing the amount of energy needed to be dissipated through 

inelastic deformation helps with the design if a structure that possesses sufficient energy 

dissipation capacity to avoid collapse.  For a given earthquake and a SDOF system, hysteretic 
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energy can be estimated from the corresponding input energy.  Its accuracy primarily depends on 

the accuracy of the expressions used for estimating the input energy.  Unlike input energy, 

hysteretic energy is independent of the energy formulation used in the energy balance equation.  

A literature review of research conducted thus far on estimating hysteretic energy of SDOF 

systems from the corresponding SDOF input energy is presented below. 

2.2  Hysteretic Energy for SDOF System 

Housner (1956) defined input energy that contributes to the damage of a structure as total 

seismic input energy, IE, less energy dissipated through inherent damping, Ed.  According to his 

definition, the damage energy, ED, can be written as  

D dE IE E 
    

 (2.13) 

Theoretically, per Housner’s (1956) definition, the damage energy is the sum of the absorbed and 

kinetic energy.  However, at the end of ground motion duration, the kinetic energy becomes 

small; consequently, the absorbed energy, Ea, can be assumed to be approximately equal to the 

damage energy, ED.  The expressions for the input energy, IE, and damage energy, 𝐸𝐷 , 

normalized by mass m and expressed in terms of equivalent velocities are given as follows 

2 /       :    2 /E i D DV E m V E m 
   

(2.14) 

Akiyama (1985), based on analysis of SDOF systems with elastic-perfectly plastic restoring 

force characteristics, proposed the following relationship between normalized input and damage 

energies as 

1

1 3 1.2

D

E

V

V  


      
(2.15) 

where ζ is the damping ratio. 
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Fajfar and Vidic (1994) did a parametric study on nonlinear elasto-plastic SDOF systems 

subjected to five different ground motions from different countries and proposed the following 

expression for systems with  0.05. 

0.950.9( 1)D

E

V

V








    
 (2.16) 

For a structure with damping ratio ζ= 0.05, Manfredi (2001) recommended the following 

expression be used to estimate hysteretic energy, HE, per unit mass  
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(2.17) 

He further suggested that for damping ζ 0.05, the input energy and hysteretic energy can be 

related by  

 1
0.72

c

c

HE IE







    
(2.18)                                            

Khashaee (2004), with the intention of eliminating the cyclic ductility variable in Equation 

(2.18), applied regression analysis on input and hysteretic energies data obtained from 160 

accelerograms and proposed the following expressions 

1 0.70.7

  0 1

2,3,4,2(1 ) 5

HE

HE I

for

E for



  

 
   (2.19) 

In order to get an insight into the performance of the damage/hysteretic energy expressions given 

in Equations (2.14) through (2.19), they have been compared to the hysteretic energy obtained 

from a time history analysis. The Northridge earthquake used above was also used here and the 

results are shown below.  
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Figure 2.3 Hysteretic energy to input energy ratio for Northridge earthquake recorded at 

the Leona Valley station, (SDOF: =5 and =5% ) 

Figure 2.3 indicates that the ratio of hysteretic energy to input energy for an SDOF structure ( 

=5 and =5% ) with bilinear-plastic hysteretic behavior does not significantly depend on  the 

period of vibration of the structure.  It can be clearly seen that hysteretic-to-input energy ratio 

expressions proposed by Akiyama (1985), Fajfar and Vidic (1994) and Khashaee (2004) 

overestimate the hysteretic/damage energy.  More hysteretic energy means more demand is 

placed on structural detailing to ensure that it has sufficient ductility to undergo inelastic 

displacement and rotations.  In other words, structures designed based on these expressions often 

turn out to be overly conservative.  
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3 PROPOSED INPUT ENERGY SPECTRA OF SDOF SYSTEMS  

 Introduction 3.1

In seismic design, especially when time history analysis is required, the selection of a set of 

design earthquakes is an important part of the design process.  Without the proper selection of 

the design earthquakes, the design is deemed inadequate.  The same is true for developing 

seismic design spectra.  In this study, the selection was done for four ground motion ensembles 

based on site soil classes B, C, D and E, and the procedure is detailed in Section 3.2.  The ground 

motion ensemble for each site was selected from the Pacific Earthquake Engineering Research 

Center (PEER) ground motion record data that contains a very large set of ground motions 

recorded worldwide.  Section 3.2 presents a description of the proposed SDOF system input 

energy spectra characteristics such as ductility, damping and range of period of vibration.  

Hysteretic behavior dependent constant ductility spectra are procedurally developed for site soil 

classes B, C, D and E in sections 3.4, 3.5, 3.6 and 3.7, respectively.  

The effects of hysteretic behavior and soil condition on the input energy of SDOF systems are 

addressed in Sections 3.8 and 3.9, respectively.  As described in Section 3.8, regardless of the 

hysteretic behavior of the SDOF system, when the soil gets softer the input energy decreases in 

the short period region of the spectra and increases in the intermediate and long period regions.  

In Section 3.10, the validity of the proposed input energy spectra for SDOF systems was tested 

by comparing it with the results of the more exact time history analysis.  Overall, the validation 

tests show that the proposed mean+σ and mean+2σ (where σ is the standard deviation) produce a 

fairly conservative result. 
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 Selection of Ground Motion Ensemble 3.2

In practice, when structures are designed to resist earthquakes, the effect of soil-structure 

interaction is accounted for by categorizing the soil into site classes based on seismic soil 

profiling.  Much research has been dedicated to study soil-structure interaction and its effect on 

seismic design.  Research conducted by Luco (1982), Stewart et al. (1999), Poland et al. (2000), 

Spyrakos and Vlassis (2002), Tongaonkar and Jangid (2003) and Gazetas (2006) are a few of 

them.  In this study, without giving emphasis on the details, the soil-structure interaction effect 

on seismic design was accounted for by investigating the effect of soil site class on the seismic 

input energy.  This was achieved by grouping the ground motion records used in this study into 

different soil categories.  

On the basis of the shear wave velocity of the upper 100ft (30m) depth of a soil profile, site soils 

are seismically categorized into stiff, soft, medium, etc.  Such grouping is well documented in 

current codes such as ASCE/SEI 7-10 (2010), International Building Code (IBC 2012), and the 

Euro Code, just to mention a few.  For this study, site soil classification based on IBC 2012 has 

been adopted. According to IBC 2012 soil sites classes are categorized as shown in Table 3.1.  

Ground motion records were selected from the Pacific Earthquake Engineering Research Center 

(PEER) database for each site class.  Additional criteria such as magnitude of earthquake, site 

distance to source, and target spectra have been used to further refine the data of earthquake 

records to be used in the study.  A description of these additional criteria is presented below.  
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Table 3.1 Soil site classification according to IBC 2012 

Soil Site 

Class 

Soil Description Shear wave velocity, Vs (ft/s) 

A Hard rock > 5000 

B Rock 2500 < Vs ≤ 5000 

C Very dense soil and soft rock 1180 < Vs ≤ 2500 

D Stiff soil 590 < Vs ≤ 1180 

E Soft soil 490 < Vs ≤590 

 

Magnitude: Magnitude and intensity of earthquake are two of the most widely accepted 

indicators of the size of an earthquake.  Magnitude is a measure of an earthquake in terms of the 

released energy whereas intensity is a measure of the observed effect of an earthquake.  Charles 

Richter in 1935 developed the widely used magnitude scale called the Richter’s scale.  In this 

study, ground motion records of magnitudes 6-8 based on Richter’s Magnitude Scale are 

selected.  This range of magnitude covers earthquakes labeled as strong to major earthquakes.  

Distance (km): Effect of near-source ground motions on structures is more pronounced 

compared to that of far-source ground motions.  Hall et al. (1995), Campbell (1997), Bazzurro 

and Luco (2005), have suggested that pronounced effect of near-source ground motions need to 

be addressed differently during design.  In other words, the result of a study based on a mix of 

near-source and far-source ground motion records is likely to give misleading conclusions.  As a 

result, this study has excluded near-source ground motion records in the selected ground motion 

ensemble and is primarily focused on far-source ground motion effects.  Near-source and far-

source ground motion records are considered to have an epicentral distance of less than 15 km 

and greater than 30 km, respectively, to the site of the structure or recording station. It is also 

important to note that far-source ground motions with longer epicentral distances are 
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characterized by low intensity and small magnitudes.  Therefore, this study has tried to narrow 

down the epicentral distance to a range of 30-80 km.  

Target Spectra: In developing design spectra, it is desirable to have the group of selected ground 

motion records exhibit similar spectral characteristics.  The mean spectra developed using such 

similar spectra should give a smaller standard deviation.  However, because ground motions that 

occur at different sites have different magnitudes, peak values and durations and when averaged, 

the resulting standard deviations could still be high.  To minimize the anticipated high 

discrepancies and variations, ground motions are often scaled to match some target spectra 

before they are used in time history analysis.  In this study, ground motion records were selected 

and scaled to match soil site-based response spectra.  The soil-site based spectra were generated 

by geometrically combining   the Pacific Earthquake engineering Research Center’s  Next 

Generation Attenuation (PEER-NGA) ground motion models developed by Abrahamson and 

Silva (A & S) (2008), Campbell  and Bozorginia (C & B) (2008), Boore and Atkinson (B & A) 

(2008), and Chiou and Youngs (C & Y) (2008).  The target spectra developed for each site based 

on these models represent an 84
th

 percentile of the geometric mean.  The selection and scaling of 

the ground motions has been made in such a way that the selected ground motion spectra match 

the target spectra in the period range 0.1 to 3.5 s with equal weights.  This range of period of 

vibration was chosen because most medium- to high-rise buildings have fundamental periods of 

vibrations of 0.3 to 3.0 s according to the PEER manual, and most bridges have fundamental 

periods of vibrations in the 0.2 to1.2 s range according to Kunde and Jangid (2003).  

Most structures are not built on hard rocks.  Even though it cannot be verified by collected data, 

the majority of structures are founded on soil types C and D and some on soil types B and E.  

Cognizant of this, only energy spectra for soil types B, C, D and E were developed in this study.  
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A total of 144 ground motion records selected based on the above criteria have been used.  A 

summary of the ground motion records can be found in Appendix A. 

 Input Energy Spectra 3.3

Input energy spectra that are hysteretic model and soil site class dependent have been developed 

in this study.  Traditionally, the design of earthquake-resistant structures is based on soil site class 

dependent elastic response spectra generated using a damping ratio of 5%.  It is also common to use 5% 

damping to capture the damping behavior of structures that exhibit inelastic behavior when subjected 

to dynamic loading.  Thus, a damping value of 5% was used in this study to develop the site 

class and hysteretic specific input energy spectra.  If an energy spectrum with different damping 

ratio is required, it can theoretically be generated by dividing the 5% damping spectra by a 

damping coefficient factor similar to a damping coefficient factor suggested by Ramirez et al. 

(2002) to modify the response spectrum for higher damping.  Ductility plays an important role in 

response of structures to dynamic loading.  As a rule of thumb, the more ductile a structure is, 

the less it will experience catastrophic damage during a major seismic event.  Constant ductility 

spectra developed by Peng and Conte (1997), Inel et al. (2002) and Zhai and Xie (2005) 

supported the same hypothesis.  According to Chopra and Goel (1999), constant ductility spectra 

are being use more often for seismic design.  In view of this, the input energy spectra developed 

in this study were chosen to be constant ductility spectra with ductility values of 1, 2, 3, 4 and 5.  

The force-displacement relationship or hysteretic behavior of a structure affects its seismic 

response and hence the energy spectra.  Thus, it is important that the hysteretic behavior of a 

structure under design is known and considered in the determination of the input energy.  In this 

study four different hysteretic models, namely: Bilinear Plastic (BP), Stiffness Degradation or 

Modified Clough (SD), Bilinear Flag (BF) and Bilinear Slip (BS) were considered.  The 
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properties of these hysteretic models have been discussed in Section 1.4.  In reality, structures 

after yielding do not plastify completely; some undergo strain-hardening and others go through 

strain-softening.  In structural analysis, this effect is addressed through the use of a parameter 

called post- to pre-yield stiffness ratio, α.  In this study a value of α =0.05 was used; which is 

believed to represent the post yield stiffness behavior of most structures.  The effect of the value 

of α on the shape or size of the input energy spectra is minor to insignificant.  For instance, 

Nakashima et al. (1996) studied bilinear SDOF and MDOF structures with post to pre-yield 

stiffness ratio up to 0.75 and concluded the effect of α only have a minor effect on the input 

energy.  

 Input Energy Spectra for Site Class B 3.4

A total of 38 earthquake ground motion records have been selected and used in developing the 

energy spectra for site class B (see Appendix A1).  The ground motions were selected to match a 

target spectrum, which was developed using the NGA models mentioned in Section 3.2 and 

shown in Figure 3.1.  PEER’s online beta-version web application was used to develop the 

spectrum and select relevant ground motions.  
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Figure 3.1 Target spectra for site class-B 

The ground motions were selected and scaled in such a way that the response spectrum of the 

selected ground motion reasonably matches with the target spectra.  Figure 3.2 shows the 

geometric mean and the arithmetic mean spectra of the selected ground motion records and the 

target spectra developed using the PEER-NGA spectra models.  The target spectra is the 

geometric mean of four attenuation models (see Section 3.2) and is shown in Figure 3.1.  The 

parity between the mean spectra and the target spectra clearly indicates that the selected ground 

motion records satisfactorily represent ground motions recorded at site class B.  Statistical 

analysis also proves this observation; the correlation coefficient, ρ, between the target spectrum 

and the mean spectra is 0.99.  A high value of correlation coefficient signifies that the selected 

ground motion ensemble is a good representative for site class B.  Thus, this ensemble was used 

to develop realistic energy spectra for the site.  
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Figure 3.2 Correlation between target and mean spectra for site class-B 

 

Once the representative ground motion records were selected, a series of nonlinear SDOF system 

time history analyses were performed using BISPEC (2010).  SDOF structures (with the different 

hysteretic models stated above) were each subjected to the 38 ground motion records selected for 

site class B.  The results of these analyses and the steps involved in ultimately developing the 

energy spectra are discussed below. 

3.4.1 Hysteretic Model -BP: Bilinear Plastic  

Figure 3.3 shows input energy spectra for a SDOF system with BP hysteretic behavior subjected 

to a set of selected ground motion records for soil site B. The spectra were developed for 

ductility values of μ= 1, 2, 3, 4 and 5, and post to pre-stiffness ratio of =0.05   Also shown in 

the figure are the mean, mean+σ (68 percentile) and mean+2σ (95 percentile) energy spectra.  In 

most codes and standards, design spectra are either mean spectra or mean+σ spectra.  In this 

study mean+σ and mean+2σ were developed with the idea of presenting a viable alternative for a 

conservative design, a tradition opted by most practicing engineers.  The values shown for the 
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mean+σ and mean+2σ energy spectra in Figure 3.3 are dependent on structural properties 

(hysteretic model, period, ductility and damping), soil site characteristics and ground motion 

characteristics such as PGA, PGV, duration, etc. The structural properties and soil site effects are 

explicitly represented in the energy spectra (by hysteretic model, period, ductility and damping) 

and site class (site class B in this case), respectively.   On the other hand, the ground motion 

characteristics, similar to commonly used acceleration response spectra, are represented 

implicitly in the final output.  For a sound seismic design, the intensity of earthquake is an 

important parameter that needs to be considered when deciding which spectra are to be used. 

Therefore, the equations that define the input energy spectra should have a factor exclusively 

dedicated to representing the intensity of ground motions.  Such spectra will allow the designer 

to use design spectra with intensity and magnitude that reflect the severity of the seismic events 

of interest.  
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Figure 3.3 Input energy spectra for SDOF systems with bilinear plastic hysteretic model 

type (α= 0.05) and damping coefficient, = 5% 
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One way of developing intensity dependent spectra is to normalize the energy spectra using 

seismic damage indices or quantities that are used to measure the intensity of seismic events.  In 

this study, different damage indices of earthquake ground motion have been investigated in order 

to find a representative normalization parameter. The list of damage indices considered are as 

follows  

 Cumulative absolute velocity (CAV), EPRC (1988) :  
0

( )

t

gCAV u t dt   

 Arias intensity (IA), Arias (1970):       2

0

( )
2

t

A gI u t dt
g


   

 Seismic damage index (Id), Manfredi (2001):   2

0

1
( )

t

d gI u t dt
PGA PGV


   

 Velocity index (VI):       VI = CAV×PGV 

where  

( )gu t = ground motion acceleration time history 

PGA= peak ground acceleration 

PGV = peak ground velocity  

t = duration of ground motion and  

g = gravitational acceleration = 9.81 m/s
2
 (32.2 ft/s

2
) 

In statistics, coefficient of variation is defined as the standard deviation divided by the average or 

mean.  It is used to measure the dispersion of a data.  A low value means less dispersion.  Based 

on this fact, the coefficient of variation has been used to compare the degree of uncertainty 

involved in normalizing the input energies shown in Figure 3.3. 
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Figure 3.4 Coefficient of variation (hysteretic model- BP) 
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The input energies have been normalized by different normalizing parameters listed above and 

the results are shown in Figure 3.4.  From the figure, it can be clearly seen that input energies 

normalized by the velocity index (VI) result in the smallest coefficient of variation.  On the other 

hand, normalizing with respect to the damage index, Id, produces larger values of coefficient of 

variation.  From a statistics point of view, mathematical models obtained by regression analysis 

of more clustered data, i.e., data that has smaller coefficient of variation will result in equations 

that will better fit the data. 

The unit of VI is [distance
2
/ time

2
] which is the same as that of energy per unit mass. Thus, 

normalization of the input energy per unit mass by VI results in an energy spectrum that is non-

dimensional.  Non-dimensional spectra have an added advantage that the designer can use 

whatever units of his choice.  Moreover, for a given seismic site and soil zone, the two quantities 

PGV and CAV required to calculate VI can readily be obtained from the literature.  Publications 

by Power et al (2008), Campbell et al (2010) and Bradley (2012) are among some recent 

research findings that give CAV and PGV prediction equations.   Based on the above findings 

and the relatively ample information available about site based CAV and PGV values, the 

velocity index VI was used as the normalization parameter for developing the input energy 

spectra. 

The Normalized Energy (NE) which will be used in this study from now on is defined as the 

square root of input energy per unit mass, IE/m, divided by the velocity index, VI, i.e., 

/IE m
NE

CAV PGV



. 
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Figure 3.5  Actual (IE/m) and corresponding VI normalized input energy (NE) spectra 
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Besides simplifying the input energy spectra to non-dimensional quantity, input energy 

normalized by VI gives values that are more narrowly banded (i.e., relatively smaller peaks and 

valleys) when compared with the actual energy spectra.  Figure 3.5 shows a comparison of the 

actual input energy spectra, IE/m (left) and the VI normalized input energy spectra (NE) (right) 

for SDOF structures with bilinear plastic hysteretic behavior, ductility values of  =1,2,3,4,5 and 

site class B.  The figure clearly shows that, when normalized by VI, the peaks and valleys of the 

input energy spectra are less pronounced, thus reducing the dispersion of the spectral values. 

When the dispersion in a given set of data is reduced, the resulting standard deviation will be 

smaller.  Moreover, from the coefficient of variation plots of Figure 3.4, it can be observed that 

the VI normalized input energies have smaller coefficient of variation values compared to those 

of the actual input energies.  Smaller and more uniform values for the coefficient of variation are 

indictors that the mathematical model can provide a better fit for the given data.  

Figure 3.5 shows that the mean+σ and mean+2σ spectra envelope quite a high percentage of the 

input energy spectra for the selected ground motion records, particularly in the range of periods 

from 0.5 to 5 s. Thus, it can be said that the VI normalization design input energy spectra would 

likely lead to a rather safe and conservative design. Similar observations have been made for the 

other three hysteretic models (Modified Clough Stiffness Degradation, Bilinear-Slip and 

Bilinear-Flag hysteretic models) investigated in this study.  Looking further, the shape of the VI 

normalized energy spectra used to fit the mean+σ and mean+2σ spectra has been selected in such 

a way that it will look familiar to most engineers engaged in seismic design work.  A commonly 

used response spectra shape can be found in codes and standards (such as IBC 2012, ASCE 7 

2010, UBC 97, AASHTO 2011, EURO Code 8 2009, etc.) used by practicing engineers.  A 
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similar general shape has been adopted and is shown in Figure 3.6.  The general shape of the 

spectra consists of three regions characterized by the following: 

1. a straight line for structures in the short period range 

2. a constant (plateau) for structures in the intermediate period range 

3. a power curve for structures in the long period range. 

Accordingly, the equations used to define the proposed VI normalized energy spectra, NE, are 

given below. 

1

1 2

2

;

;

;n

sT b T T

NE C T T T

k T T T

 


  
 

    (3.1) 

where s and b are the slope and y-intercept of the linear part; C is the maximum value of the NE 

spectra; T1 and T2 separate the short and long period regions from intermediate region.  

 

Figure 3.6 Proposed normalized energy, NE, spectra  
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Values of the variables s, b, C, k, n, T1 and T2 for the SDOF input energy spectra are obtained 

through a three part nonlinear regression analysis; one each for the short, intermediate and long 

period regions. The nonlinear regression analysis attempts to mathematically model the best fit 

equations to the mean+σ and mean+2σ input energy spectra of the selected set of earthquakes for 

each site class and each hysteretic model type.  For site class B and hysteretic type BP these 

values are presented in Table 3.1.  Plots of the smoothened spectra obtained using the values 

given in Table 3.1 are shown in Figure 3.7.  

Table 3.1 s, b, C, k, n, T1 and T2 values: soil class B and hysteretic model BP 

  
Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 2.599 -0.124 0.234 0.484 1.276 0.549 -0.521 

2 2.446 -0.0969 0.224 0.451 1.122 0.476 -0.480 

3 2.259 -0.0643 0.217 0.425 1.010 0.427 -0.456 

4 1.979 -0.0261 0.220 0.409 0.947 0.399 -0.435 

5 1.928 -0.00875 0.210 0.396 0.907 0.380 -0.420 

m
ea

n
 +

 2
σ

 

1 3.519 -0.169 0.222 0.611 1.306 0.701 -0.515 

2 3.210 -0.124 0.209 0.547 1.144 0.582 -0.453 

3 2.877 -0.074 0.200 0.501 1.090 0.521 -0.437 

4 2.414 -0.0156 0.202 0.471 0.984 0.468 -0.395 

5 2.321 0.008 0.200 0.473 0.882 0.450 -0.388 
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Figure 3.7  NE spectra: hysteretic model BP and site class B  

 

From Figure 3.7, it can be seen that for a SDOF system with a given period of vibration, T, the 

mean+σ and mean+2σ input energy spectra values decrease as the ductility value of the structure 

increases.  For instance, at a period of T= 2.0 s, the input energy spectral values are: 0.383, 

0.341, 0.311, 0.295, 0.284 for the mean+σ, and 0.490, 0.425, 0.385, 0.356, 0.344 for mean+2σ, 

for ductility values of μ=1, 2, 3, 4, 5, respectively. Similar observation was also made by Chen et 

al (2010).  They used 56 earthquake records from four site classes and found that spectral values 

of the total input energy spectrum decrease with an increase in ductility coefficient.  While this is 

the general trend, the decrease in spectral values with an increase in ductility values is not that 

significant beyond some level of ductility.  For instance, Figure 3.7 shows that the input energy 

plots for ductility values 4 and 5 almost overlap each other.  Further research can be performed 

to determine the limit of ductility value beyond which the change in input energy becomes 

insignificant. 
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Figure 3.8  Ductility based single expressions: NE (mean+σ)  

 

Figure 3.9 Ductility based single expressions: NE (mean+2σ)  
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From a design perspective, it is more convenient to use simplified expressions to represent the 

variables given in Table 3.1.  Using nonlinear regression analysis on the variables given in Table 

3.1 for the mean+σ and mean+2σ input energy spectra as shown in Figures 3.8 and 3.9, 

respectively, curve-fitting equations were developed for the variables.  They are given in 

Equation (3.2) as a function of ductility, . 
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     (3.2) 

From Figures 3.8 and 3.9, it can be seen that the R
2
 values for the expressions given in Equation 

(3.2) are all very close to unity, indicating that they fit the data rather well.  Equations 3.1 and 

3.2 together can now be used to estimate the input energy per unit mass for SDOF systems with 

hysteretic type BP located in site class B for a given ductility value in the range 1 ≤ µ ≤ 5.   To 

check the accuracy of the proposed equations, plots for different ductility values are presented in 

Figure 3.10.  The comparison was carried out by evaluating the correlation coefficients given in 

the figure.  For all ductility values the correlation coefficients were found to be close to unity for 

both the mean+σ and mean+2σ energy spectra.  Thus, it can be concluded that Equations (3.1) 

and (3.2) can be used to estimate the normalized input energy spectra for SDOF systems with 

hysteretic behavior BP, ζ=5% and =0.05 located in soil site class B.  Recall that the input 

energy spectra was normalized by VI, and thus it is essential to note that the level of uncertainty 
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in the input energy estimates will also depend on the accuracy of determining the velocity index, 

VI. 

Likewise, similar procedures have been followed in developing the input energy spectra for the 

remaining three hysteretic models, namely; Strength Degradation or Modified Clough (SD), 

Bilinear- Slip (BS) and Bilinear- Flag (BF) considered in this study.  For sake of brevity, the 

detailed procedures involved and performed in developing the energy spectra are left out and 

only the final VI normalized energy spectra are presented and discussed in subsequent sections. 

The mean+σ and mean+2σ energy spectra exhibited similar general shapes as that shown in 

figure 3.6.  To be consistent, the same variables for each hysteretic model were used in defining 

the shape of each respective energy spectrum.  
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Figure 3.10 Comparison of NE: actual data and fitted curves 
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3.4.2 Hysteretic Model-SD: Strength Degradation (Modified Clough) 

As stated in Section 1.4, when reinforced concrete and steel structures are subjected to cyclic 

loading such as an earthquake, they tend to lose some strength and stiffness due to crack 

formation, bond degradation, yielding, corrosion and fatigue, etc. The loss in stiffness, also 

known as stiffness degradation, results in a structure having less energy dissipation capacity than 

that of the bilinear plastic model.  This loss of stiffness can be captured if the hysteretic behavior 

of the structural system is modeled using the Stiffness Degradation (Modified Clough Stiffness 

Degradation), SD, hysteretic model.     

A time history analysis was carried out using the same set of 38 earthquake records selected for 

site class B to develop the input energy spectra for SDOF systems with SD hysteretic behavior. 

The resulting, VI normalized, mean+σ and mean+2σ input energy spectra are shown Figure 3.11. 

It is interesting to see that the input energies display similar shapes as and the variation of input 

energy with ductility are like that of the hysteretic model BP.  The similarity also applies to the 

range of energy spectra plateau, which gets smaller as ductility increases, and the periods at the 

corner points of the spectra (T1 and T2) decrease with an increase in ductility.  It is also observed 

that the degree of decrease is more for T2 than for T1.  
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Figure 3.11  NE spectra: hysteretic model SD and site class B  

Table 3.2  s, b, C, k, n, T1 and T2 values: soil class B and hysteretic model SD 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 2.599 -0.124 0.234 0.484 1.242 0.540 -0.511 

2 
2.098 -0.0263 0.219 0.433 1.108 0.454 -0.450 

3 
1.663 0.0487 0.219 0.413 0.957 0.405 -0.423 

4 
1.433 0.094 0.215 0.402 0.869 0.380 -0.411 

5 
1.255 0.131 0.210 0.395 0.821 0.365 -0.402 

m
ea

n
 +

 2
σ

 

1 
3.519 -0.169 0.222 0.611 1.262 0.686 -0.502 

2 
2.631 -0.0222 0.205 0.516 1.212 0.560 -0.429 

3 
1.935 0.0855 0.209 0.489 1.017 0.493 -0.399 

4 
1.567 0.149 0.203 0.468 0.967 0.462 -0.389 

5 
1.290 0.201 0.200 0.459 0.897 0.440 -0.382 

 

Equation (3.3) gives mathematical expressions that define the variables of the energy spectra for 

soil site B and hysteretic model SD. The expressions are developed through regression analysis 

of the corresponding values of the variables listed in Table 3.2.  
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       (3.3) 

3.4.3 Hysteretic Model-BF: Bilinear Flag  

Figure 3.12 shows the mean+σ and mean+2σ VI normalized energy spectra for site class B and 

hysteretic model type of Bilinear Flag (BF).  The same ensemble of 38 earthquakes recorded on 

soil site B was used in developing the spectra.  Like the cases for the BP and SD hysteretic 

models, the spectral values of the input energy decrease with an increase in the ductility of the 

structure.  This may seem to contradict the argument that input energy is directly related to the 

area under the force displacement curve as was suggested by Hernandez-Montes et al. (2004).   

However, higher ductility does not necessarily mean large displacement; it can be a small 

maximum displacement over a relatively smaller yield displacement and thus resulting in a small 

amount of input energy. Unlike that of the hysteretic models BP and SD, the lower range of the 

plateau (value of T1) remains almost the same regardless of the ductility value of the structure.  

On the other hand, the (value of T2) shows a similar trend of decreasing value with an increase in 

ductility. Table 3.3 presents the variables used to define the VI normalized energy spectra for 

hysteretic model type BF, site class-B and ductility values =1, 2, 3, 4 and 5.  For easier 

manipulation, expressions shown in equation (3.4) were developed to replace the variables list in 

Table 3.3.  
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Figure 3.12  Normalized input energy spectra: hysteretic model BF and site class B  

 

Table 3.3  s, b, C, k, n, T1 and T2 values: soil class B and hysteretic model BF 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 2.599 -0.124 0.234 0.484 1.241 0.540 -0.509 

2 
2.523 -0.104 0.220 0.452 1.160 0.484 -0.457 

3 
2.236 -0.0591 0.228 0.451 0.961 0.443 -0.441 

4 
2.002 -0.0209 0.225 0.432 0.9 0.411 -0.406 

5 
1.851 0.00667 0.221 0.416 0.849 0.39 -0.4 

m
ea

n
 +

 2
σ

 

1 
3.519 -0.169 0.222 0.611 1.258 0.684 -0.496 

2 
3.336 -0.135 0.206 0.552 1.188 0.595 -0.427 

3 
2.817 -0.0624 0.216 0.539 1.032 0.546 -0.415 

4 
2.409 -0.00271 0.213 0.510 0.985 0.507 -0.380 

5 
2.146 0.0403 0.208 0.486 0.991 0.484 -0.379 
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3.4.4 Hysteretic Model: Bilinear Slip, BS  

The strength of reinforced concrete structures is dependent on the strength of concrete and 

reinforcing steel used.  This is true provided that a strong bond exists between the concrete and 

the reinforcing steel.  In cases where a strong bond does not exist between the concrete and the 

reinforcing steel, the structure could fail prematurely before the steel yields or the concrete 

crushes as a result of bond failure.  Shear failure is also one of the failure mechanisms of 

reinforced concrete structures. Both shear and bond failures are triggered by a slip phenomenon.  

Bond slip affects the integrity of a structure and could result in a reduction in both stiffness and 

strength.  A reduction in strength and stiffness means there is a corresponding reduction in 

energy dissipation capacity.  This phenomenon cannot be captured by the hysteretic models BP, 

SD and BF discussed above, and a Bilinear Slip (BS) hysteretic model should be used instead. 

Figure 3.13 shows the VI normalized mean+σ and mean+2σ input energy spectra for site class B 

and hysteretic model type BS.  The effect of ductility on input energy for structures with 

hysteretic model BS was found to have similar nature as it was observed for the case of 

hysteretic model types BP, SD and BF except in the intermediate region.  In the intermediate 

region of the mean+σ input energy spectra for hysteretic model BS, structures with a ductility 

value of =4 uncharacteristically tend to have slightly larger or almost the same spectral values 
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of input energy as those with a ductility level of = 3.  The mean+2σ even show higher values in 

the intermediate region for structures with a ductility value = 4 as compared to those with =3 

and 2.  An investigation into to the mean values; however, did not show such  differences.  Thus, 

this change in trend could be attributed to the combined effect of ductility and hysteretic model 

on the dispersion of input energy values obtained from the ensemble of earthquake records.  

Recall that highly dispersed data results in higher standard deviations.  

   

Figure 3.13 NE spectra: hysteretic model BS and site class B  
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Table 3.4 s, b, C, k, n, T1 and T2 values: soil class B and hysteretic model BS 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 2.599 -0.124 0.234 0.484 1.241 0.540 -0.509 

2 
1.941 0.0125 0.222 0.444 1.017 0.447 -0.410 

3 
1.525 0.0798 0.226 0.424 0.932 0.412 -0.404 

4 
1.467 0.106 0.222 0.432 0.719 0.380 -0.372 

5 
1.180 0.151 0.212 0.402 0.760 0.362 -0.381 

m
ea

n
 +

 2
σ

 

1 
3.519 -0.169 0.222 0.611 1.260 0.685 -0.499 

2 
2.384 0.0282 0.208 0.524 1.115 0.546 -0.372 

3 
1.693 0.126 0.221 0.499 1.008 0.501 -0.339 

4 
1.732 0.154 0.217 0.530 0.678 0.467 -0.329 

5 
1.194 0.218 0.218 0.478 0.796 0.444 -0.321 

 

Expressions given in Equation (3.5) were developed using regression analysis of the values listed 

in Table 3.4.  It is important to note that unlike the other three hysteretic models, the values of b, 

T1, T2 and C do not strictly decrease with an increase in ductility. Variables b, T1, T2 and C define 

the intermediate period region of the spectra and as discussed above the input energy variation 

with ductility in this region was not strictly decreasing or increasing.   Consequently, higher (at 

least third) degree polynomials were used to achieve values of 0.95 or greater for the correlation 

coefficients. 
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Some of the expressions in Equation (3.5) are too long and do not necessarily result in a 

significant change in the accuracy of the final values of the variables and thus the amount of 

input energy.  Hence, alternative simpler and easier expressions with R
2
 >0.9 given in Equation 

(3.6) are recommended for use.  
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 Input Energy Spectra for Site Class C 3.5

A total of 42 earthquake records (Appendix A2) have been selected and scaled to develop input 

energy spectra for site class C.  Using PEER (2011) NGA models, a target spectrum was 

developed in a similar manner as was done for site class B.  The target spectrum was then used to 

select earthquakes recorded at site class C whose spectra match reasonably well with the target 

spectrum.  The mean spectra of the selected ground motion records along with the target 

spectrum are presented in Figure 3.14 for easy comparison.  The correlation coefficient between 

the geometric mean and the target spectra and that between the arithmetic mean and the target 

spectra are both equal to 0.99.  Because a correlation coefficient close to one shows a strong 

match between two data sets, the ensemble of selected ground motion records can be considered 

as a reliable set of records that represents the nature of earthquakes recorded at site class C.  

Subsequently, this ensemble of 42 earthquakes was used to develop the input energy spectra for 

SDOF structures with the four different hysteretic models (BP, SD, BF and BS). 
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Figure 3.14 Relation between mean and target Spectra for site C 

 

Like that of site class B, an extensive time history spectral analysis has been performed using 

BISPEC (2010) for SDOF structures (with hysteretic models: BP, SD, BF and BS) subjected to 

the 42 ground motion records selected for site class C.  A summary of the analysis results and 

discussions for each hysteretic model type are presented below.  

3.5.1 Hysteretic Model: Bilinear Plastic, BP  

The VI normalized mean+σ and mean+2σ input energy spectra for ductility values of μ = 1, 2, 3, 

4, 5 are shown in Figure 3.15.  The values of the different variables used to define the input 

energy spectral shape are listed in Table 3.5.  Figure 3.15 shows that the ductility has a similar 

effect on input energy as it had for site class B.  Input energy decreases with an increase in the 

ductility value for both the mean+σ and mean+2σ spectra.  
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Figure 3.15 NE spectra: hysteretic model BP and site class C 

Table 3.5 s, b, C, k, n, T1 and T2 values: soil class C and hysteretic model BP 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 1.461 -0.0415 0.374 0.505 1.847 0.811 -0.772 

2 
1.418 -0.0321 0.346 0.459 1.838 0.761 -0.832 

3 
1.367 -0.0168 0.324 0.426 1.648 0.614 -0.731 

4 
1.300 -0.0002 0.319 0.415 1.556 0.568 -0.707 

5 
1.266 0.011 0.312 0.406 1.48 0.530 -0.680 

m
ea

n
 +

 2
σ

 

1 
1.672 -0.0367 0.393 0.621 1.889 1.032 -0.798 

2 
1.585 -0.0262 0.356 0.537 1.871 0.902 -0.826 

3 
1.495 -0.00713 0.339 0.499 1.648 0.716 -0.723 

4 
1.387 0.0146 0.334 0.478 1.585 0.661 -0.702 

5 
1.335 0.0288 0.328 0.466 1.494 0.609 -0.667 

 

In the range of ductility values from 3 to 5, the decrease in input energy is not as significant as 

the decrease in input energy observed for ductility values in the range of 1 to 3. This is true for 

both the mean+σ and mean+2σ spectra.  Based on this, it can be inferred that for a given 
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earthquake (recorded at site class C) the effect of ductility on input energy of SDOF structures 

with hysteretic behavior type BP tends to be minimal for ductility values µ ≥ 3.  It is also true for 

the case of input energy for hysteretic model BP and site class B (see section 3.4.1).  The limit of 

the ductility value beyond which its effect on input energy becomes insignificant can be further 

researched by performing spectral analysis for ductility values (say 5 - 10).  As for ductility 

values µ ═1, 2, 3, 4, 5, ductility based VI normalized input energy  expressions for SDOF 

systems with hysteretic behavior BP at soil site C are given in Equation (3.7).  
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    (3.7) 

3.5.2 Hysteretic Model: Stiffness Degradation (Modified Clough), SD  

Shown in Figure 3.16 are the mean+σ and mean+2σ VI normalized input energy spectra for 

SDOF structures with hysteretic behavior type SD and site class C and ductility values  = 1, 2, 

3, 4, 5.  A decrease in input energy with an increase in ductility value is once again observed for 

SDOF structures with hysteretic behavior type SD.  This decrease in the amount of input energy 

diminishes as the ductility value gets higher.  For instance, in the constant region of the VI 

normalized mean+σ energy spectra, the decrease in values are 10%, 3%, 3%, and 1% between  

µ=1&2, µ=2&3, µ=3&4, and µ=4&5, respectively. The corresponding values for the mean+2σ 

spectra are 15%, 3.5%, 3.5 % and 1%, respectively.  
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Figure 3.16 NE spectra: hysteretic model SD and site class C 

Table 3.6  s, b, C, k, n, T1 and T2 values: soil class C and hysteretic model SD 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 1.461 -0.0415 0.374 0.505 1.826 0.789 -0.740 

2 
1.308 0.00592 0.342 0.453 1.560 0.620 -0.703 

3 
1.275 0.0311 0.322 0.442 1.301 0.520 -0.624 

4 
1.273 0.0496 0.299 0.430 1.189 0.476 -0.594 

5 
1.256 0.0644 0.288 0.427 1.057 0.440 -0.560 

m
ea

n
 +

 2
σ

 

1 
1.672 -0.0367 0.393 0.621 1.842 0.965 -0.722 

2 
1.402 0.0216 0.359 0.525 1.602 0.715 -0.653 

3 
1.347 0.0497 0.340 0.507 1.295 0.590 -0.587 

4 
1.352 0.0686 0.311 0.489 1.198 0.541 -0.567 

5 
1.343 0.0834 0.297 0.483 1.046 0.494 -0.532 
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Table 3.6 presents the different variables used to define the VI normalized mean+σ and mean+2σ 

input energy spectra for SDOF of structures given in Figure 3.16.  These values are curve-fitted 

using nonlinear regression analysis to obtain the expressions given in Equation (3.8).  From 

Table 3.6 and Figure 3.16, it can be seen that the value of T2 decreases as ductility value 

increases resulting in a smaller constant region range. In other words, if the period of the 

structure is closer to T2, the input energy can be significantly reduced by increasing the ductility 

of the structure.  
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3.5.3 Hysteretic Model: Bilinear Flag, BF  

 Figure 3.17 shows the mean+σ and mean+2σ VI normalized input energy spectra for SDOF 

structures with hysteretic behavior type BF located at site class C. The general trend of a 

decrease in the amount of input energy with an increase in ductility value continues to hold. 

However, the amount of decrement is lower than that for the SD model.  For instance, for the 

mean+σ spectra the decrease in the amount of input energy is 6%, 2%, 4%, and ≈0% between  

µ=1&2, µ=2&3, µ=3&4, and µ=4&5, respectively.  The values of the variables that define the 

input energy diagrams shown in Figure 3.17 are presented in Table 3.7. Equation (3.9) gives 

expressions for input energy spectra expressed as a function of ductility.  
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Figure 3.17 NE spectra: hysteretic model BF and site class C 

Table 3.7  s, b, C, k, n, T1 and T2 values: soil class C and hysteretic model BF 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 1.461 -0.0415 0.374 0.505 1.847 0.811 -0.771 

2 
1.402 -0.0315 0.358 0.470 1.613 0.654 -0.689 

3 
1.342 -0.0128 0.352 0.459 1.445 0.589 -0.679 

4 
1.380 -0.00789 0.323 0.438 1.379 0.538 -0.640 

5 
1.428 -0.0066 0.311 0.438 1.208 0.489 -0.577 

m
ea

n
 +

 2
σ

 

1 
1.672 -0.0367 0.393 0.621 1.889 1.032 -0.798 

2 
1.552 -0.0242 0.375 0.558 1.638 0.770 -0.653 

3 
1.435 0.00236 0.375 0.540 1.463 0.691 -0.647 

4 
1.493 0.00529 0.347 0.523 1.364 0.632 -0.607 

5 
1.569 0.00333 0.323 0.509 1.232 0.570 -0.538 
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3.5.4 Hysteretic Model: Bilinear Slip, BS 

The mean+σ and mean+2σ VI normalized input energy spectra for SDOF systems represented by 

the bilinear slip hysteretic model are shown in Figure 3.18.  Compared to SDOF structures with 

hysteretic models BP, SD and BF, not only are the values of T1 and T2 the lowest, but the ranges 

of the constant region are the narrowest as well (see Figure 3.19). The case of µ=1 is an 

exception as it is independent of the hysteretic type considered and remains the same for all 

cases.  

    

Figure 3.18 NE spectra: hysteretic model BS and site class C 
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Figure 3.19  T1, T2 and constant region range comparison for hysteretic model types  

BP, SD, BF and BS

      

 

Values of the variables that define the VI normalized input energy spectra shape for hysteretic 

model type BS is shown in Table 3.8.  The corresponding ductility based equations obtained 

using nonlinear regression analysis are given in Equation (3.10) 

Table 3.8  s, b, C, k, n, T1 and T2 values: soil class C and hysteretic model BS 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 1.461 -0.0415 0.374 0.505 1.847 0.811 -0.771 

2 
1.462 0.0164 0.317 0.480 1.382 0.592 -0.646 

3 
1.534 0.0382 0.283 0.472 1.074 0.491 -0.567 

4 
1.555 0.0564 0.26 0.461 0.940 0.446 -0.535 

5 
1.578 0.0695 0.247 0.460 0.846 0.421 -0.529 

m
ea

n
 +

 2
σ

 

1 
1.672 -0.0367 0.393 0.621 1.889 1.032 -0.798 

2 
1.653 0.0237 0.329 0.567 1.451 0.717 -0.630 

3 
1.747 0.046 0.285 0.543 1.185 0.596 -0.546 

4 
1.762 0.0678 0.262 0.529 1.033 0.538 -0.515 

5 
1.802 0.081 0.248 0.529 0.930 0.509 -0.514 
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 Input Energy Spectra for Site Class D 3.6

A total of 38 ground motion records has been selected and used in developing the energy spectra 

for site class D.  The PGA of the ensemble ranges from 0.11g to 0.22g, and the PGV ranges from 

11.3 cm/s to 38.1 cm/s.  The set of earthquakes was scaled to match the target spectrum which 

was developed using PEER NGA models using parameters applicable to site class D.  After 

scaling, the PGA and PGV ranges were found to be 0.08g to 0.47g and 8.38 cm/s to 75.47 cm/s, 

respectively.  Upon scaling the lower limit in the range has decreased and this may seem to 

contradict the expected result.  This is acceptable because scaling is performed on the ground 

motion, not on the ground motion components.  In such cases one of the components might have 

higher PGA/PGV compared to the other and upon scaling the lower values could be further 

scaled down.  Figure 3.20 shows the mean spectra of the selected ground motion records 

ensemble and the target spectra used for scaling the ground motion records.    
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Figure 3.20 Relation between mean and target Spectra for site D 

3.6.1 Hysteretic Model: Bilinear Plastic, BP  

The mean+σ and mean+2σ VI normalized input energy spectra for SDOF structures with 

hysteretic model BP and ductility values of μ = 1, 2, 3, 4, 5 located in site class D are shown in 

Figure 3.21.  The values of the variables used to define the input energy spectra are given in 

Table 3.9.  Like that of site class B, the input energy spectral values decrease with an increase in 

ductility value for both the mean+σ and mean+2σ spectra.  From Figure 3.21, it can be easily 

seen that the decrease in input energy with an increase in ductility value is more distinct at low 

ductility values (μ=1-3) than the rate of decrement decreases at higher ductility values (μ=3-5).  

This reinforces the observation made for class sites B and C that beyond some ductility value, 

the amount of input energy in SDOF systems can be considered to be insensitive to ductility.  

The values of the input spectra shape parameters in Table 3.9 were curve-fitted through 

nonlinear regression analysis.  The resulting simple expressions are given in Equation (3.11). 
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Figure 3.21 NE spectra: hysteretic model BP and site class D 

Table 3.9  s, b, C, k, n, T1 and T2 values: soil class D and hysteretic model BP 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
+

σ
 

1 1.021 -0.00796 0.569 0.573 2.186 0.80 -0.425 

2 
1.041 -0.00607 0.498 0.512 2.083 0.731 -0.485 

3 
1.021 0.00155 0.458 0.469 2.057 0.645 -0.441 

4 
1.026 0.00688 0.428 0.446 2.047 0.647 -0.518 

5 
1.023 0.0134 0.409 0.432 2.035 0.618 -0.505 

m
ea

n
+

2
σ

 

1 
1.176 0.00671 0.593 0.704 2.182 0.904 -0.320 

2 
1.187 0.00787 0.509 0.613 2.092 0.84 -0.428 

3 
1.145 0.0172 0.466 0.551 2.055 0.728 -0.388 

4 
1.137 0.0243 0.434 0.517 2.041 0.692 -0.408 

5 
1.117 0.0332 0.415 0.497 2.045 0.68 -0.438 
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       (3.11) 

3.6.2 Hysteretic Model: Stiffness Degradation, SD  

Figure 3.22 shows the mean+σ and mean+2σ VI normalized input energy spectra for SDOF 

structures with ductility values of  = 1, 2, 3, 4, 5 and hysteretic behavior type SD located in site 

class D.  The pattern of change in input energy with respect to ductility value was observed to be 

similar to the pattern seen for SDOF structures with hysteretic behavior type BP.  The amount of 

input energy decreases with an increase in the ductility value.  For instance, in the intermediate 

region of the VI normalized mean+σ energy spectra, the decrease in the maximum values is 

15%, 5%, 2%, and 2% between  µ=1&2, µ=2&3, µ=3&4, and µ=4&5, respectively. The 

corresponding values for the mean+2σ spectra are 18%, 6%, 3 % and 2.5%.  Compared to 

hysteretic model BP, the decrease in the input energy spectral values when ductility increases is 

relatively higher for hysteretic model SD. 

The values of the variable used to define the input energy spectra shown in Figure 3.22 are given 

in Table 3.10.  Through regression analysis, simple expressions expressed as a function of 

ductility value are given in Equation (3.12). 
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Figure 3.22  NE spectra: hysteretic model SD and site class D 

Table 3.10  s, b, C, k, n, T1 and T2 values: soil class D and hysteretic model SD 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 1.021 -0.00796 0.569 0.573 2.348 0.852 -0.465 

2 
1.075 0.00785 0.447 0.488 2.334 0.849 -0.653 

3 
1.047 0.03 0.415 0.465 2.233 0.802 -0.680 

4 
1.017 0.0463 0.401 0.454 2.113 0.79 -0.741 

5 
1.024 0.0561 0.379 0.444 2.025 0.757 -0.756 

m
ea

n
 +

 2
σ

 

1 
1.176 0.00671 0.593 0.704 2.386 0.984 -0.384 

2 
1.206 0.0249 0.457 0.576 2.335 0.864 -0.478 

3 
1.136 0.0539 0.428 0.54 2.269 0.907 -0.634 

4 
1.071 0.0751 0.419 0.523 2.133 0.862 -0.659 

5 
1.068 0.0866 0.396 0.510 2.045 0.814 -0.654 
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    (3.12) 

3.6.3 Hysteretic Model: Bilinear Flag, BF  

Figure 3.23 shows the mean+σ and mean+2σ input energy spectra for SDOF structures with 

hysteretic behavior type BF located at site class D.  In the short period region, no significant 

difference in input energy for the different ductility values for both the mean+σ and mean+2σ 

input energy spectra is observed.  It may be postulated that in the short period region (0.1-0.75 s 

approximately), ductility value does not significantly affect the input energy for SDOF structures 

with hysteretic behavior type BF.  However, for longer periods, the input energy values tend to 

decrease with an increase in ductility value.  For instance, for the mean+σ spectra the decrease in 

the amount of input energy is 11%, 7%, 3%, and 2% between  µ=1&2, µ=2&3, µ=3&4, and 

µ=4&5, respectively. The corresponding values for the mean+2σ spectra are 14%, 9%, 3 % and 

2%.  Table 3.11 gives the values of the variables that define the input energy spectra shown in 

Figure 3.23 and Equation (3.13) gives expressions for those variables, obtained using nonlinear 

regression analysis, as a function of ductility. 
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Figure 3.23  NE spectra: hysteretic model BF and site class D 

Table 3.11  s, b, C, k, n, T1 and T2 values: soil class D and hysteretic model BF 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 1.021 -0.00796 0.569 0.573 2.884 1.201 -0.699 

2 
1.092 -0.0105 0.473 0.506 2.661 1.03 -0.726 

3 
1.122 -0.00803 0.428 0.472 2.511 0.92 -0.725 

4 
1.087 0.0023 0.419 0.458 2.314 0.865 -0.759 

5 
1.126 0.00463 0.395 0.449 2.235 0.861 -0.809 

m
ea

n
 +

 2
σ

 

1 
1.176 0.00671 0.593 0.704 2.748 1.175 -0.507 

2 
1.256 0.00253 0.481 0.607 2.702 1.058 -0.56 

3 
1.273 0.00596 0.428 0.551 2.676 0.986 -0.591 

4 
1.205 0.0208 0.428 0.536 2.476 1.044 -0.735 

5 
1.245 0.0236 0.405 0.528 2.398 1.071 -0.809 
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3.6.4 Hysteretic Model: Bilinear Slip, BS  

The mean+σ and mean+2σ VI normalized input energy spectra for SDOF structures with 

hysteretic behavior type BS located at site class D are shown in Figure 3.24.  The values of the 

variables used to define the spectra are given in Table 3.12. These values were also used to 

develop the simple expressions, an alternative to the tabulated values, given in Equation (3.14) 

that define the design input energy for SDOF structures with hysteretic model BS and ductility 

values of μ=1, 2, 3, 4, 5.  Unlike the case of hysteretic models BP, SD and BF, input energy 

spectral values in the short period range have been observed to increase with an increase in 

ductility value.  For instance, at a period of 0.3s, the spectral values for mean+σ are 0.3, 0.37, 

0.41, 0.44, 0.46 and for mean+2σ the values are 0.36, 0.43, 0.47, 0.5, 0.52 for ductility values of  

μ=1, 2, 3, 4, 5, respectively.  Even though this increase in normalized spectral energy with an 

increase in ductility value is minimal, it does signify that the relationship of ductility and input 

energy of SDOF structures is not always inversely proportional.  For SDOF with hysteretic type 

BS, ductility amplifies the input energy in the short period region.  
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Figure 3.24  Normalized input energy spectra: hysteretic model BS and site class D 

Table 3.12  s, b, C, k, n, T1 and T2 values: soil class D and hysteretic model BS 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 1.021 -0.00796 0.569 0.573 2.884 1.201 -0.699 

2 
1.192 0.0148 0.432 0.529 2.261 0.984 -0.759 

3 
1.30 0.022 0.374 0.508 2.130 0.928 -0.795 

4 
1.351 0.0338 0.348 0.504 1.885 0.843 -0.813 

5 
1.381 0.0433 0.321 0.487 1.831 0.816 -0.852 

m
ea

n
 +

 2
σ

 

1 
1.176 0.00671 0.593 0.704 2.748 1.175 -0.507 

2 
1.329 0.0334 0.453 0.636 2.377 1.191 -0.725 

3 
1.437 0.0386 0.394 0.605 2.237 1.114 -0.758 

4 
1.478 0.054 0.369 0.599 1.992 1.044 -0.807 

5 
1.507 0.0657 0.334 0.569 1.974 0.996 -0.823 
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 Input Energy Spectra for Site Class E 3.7

A total of 26 earthquake records have been selected and used for developing the input energy 

spectra for site class E.  Compared to the other soil site classes, there are very few earthquakes 

recorded at site class E, and among which only a few of these records meet the selection criteria 

set forth.  As a result, only a small size ensemble of earthquakes was used. The target spectrum 

was developed in a similar manner as for the other site classes using PEER NGA models 

produced using relevant parameters for site class E.  The mean spectra of the selected ensemble 

of ground motion records are presented along with the target spectrum in Figure 3.25 for easy 

comparison. The correlation coefficients between the geometric mean and the target spectra as 

well as between the arithmetic mean and the target spectra are both 0.97.  The correlation 

coefficients are slightly less than those obtained for soil classes B, C, and D, but are high enough 

to ensure a strong correlation between the mean spectra of the models and the mean spectra of 

the ensemble of 26 earthquakes. These 26 earthquake records have been used to develop the 

input energy spectra for SDOF structures with the four different hysteretic models (BP, SD, BF 

and BS) located at soil site class E. 
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Figure 3.25 Relation between mean and target spectra for site class E 

Similar to the previous cases, an extensive time history spectral analysis has been performed 

using BISPEC (2010) for SDOF structures (with hysteretic models: BP, SD, BF and BS) 

subjected to the 26 ground motion records selected for site class E. A summary of the analysis 

results and discussions for each hysteretic model type are presented below.  

3.7.1 Hysteretic Model: Bilinear Plastic, BP  

The mean+σ and mean+2σ VI normalized input energy spectra for SDOF structures with 

ductility values of μ = 1, 2, 3, 4, 5 and hysteretic model BP located at site class E are shown in 

Figure 3.26.  These normalized input energy spectra were plotted using the spectral variables 

given in Table 3.13.  Note that the input energy spectral values decrease with an increase in 

ductility value for both the mean+σ and mean+2σ spectra in the intermediate and long period 

regions, i.e., they exhibit the same trend as those for site classes B, C, and D.  However, the 

decrease in input energy with an increase in ductility value is not uniform. The rate is higher at 

low ductility values (μ=1-3) and diminishes at higher ductility values (μ=3-5).  Similar 

observations have been made for site classes B, C, and D.  In an effort to develop simple 
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expressions for the input energy spectra, the values of spectral variables in Table 3.13 were 

curve-fitted using nonlinear regression analysis.  The resulting expressions are given in Equation 

(3.15). 

   

Figure 3.26 NE spectra: hysteretic model BP and site class E 

Table 3.13  s, b, C, k, n, T1 and T2 values: soil class E and hysteretic model BP 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 0.853 -0.00445 0.828 0.701 3.301 3.952 -1.448 

2 
0.873 -0.00147 0.68 0.592 2.978 2.031 -1.130 

3 
0.856 0.008 0.625 0.543 2.706 1.334 -0.902 

4 
0.891 0.00974 0.573 0.520 2.533 1.106 -0.811 

5 
0.903 0.013 0.547 0.508 2.435 1.084 -0.852 

m
ea

n
 +

 2
σ

 

1 
1.069 0.011 0.827 0.894 3.390 6.027 -1.563 

2 
1.068 0.0153 0.667 0.727 2.964 2.509 -1.139 

3 
1.021 0.0297 0.613 0.656 2.71 1.588 -0.887 

4 
1.046 0.0328 0.565 0.624 2.489 1.304 -0.808 

5 
1.051 0.0383 0.538 0.604 2.407 1.235 -0.815 
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     (3.15) 

3.7.2 Hysteretic Model: Stiffness Degradation, SD  

Shown in Figure 3.27 are the mean+σ and mean+2σ VI normalized input energy spectra for 

SDOF structures with ductility values of µ = 1, 2, 3, 4, 5 and hysteretic behavior type SD located 

in site class E.   Even though rather insignificant, the spectral values increase with an increase in 

ductility value in the short period region. This indicates that highly stiff structures (structures 

with short periods of vibration) located in site class E could experience more input energy with 

an increase in ductility value.  However, in the intermediate and long period regions, the spectral 

values decrease with an increase in ductility value.   Also, it can be seen that the rate of 

decrement in the amount of input energy decreases with an increase in the ductility value.  For 

instance, in the constant region of the mean+σ VI normalized energy spectra, the decrease in 

spectral values by 17%, 6%, 2%, and 2% between  µ=1&2, µ=2&3, µ=3&4, and µ=4&5, 

respectively, is observed. The corresponding decreases for the mean+2σ spectra are 21%, 8%, 2 

% and 2%, respectively. 

The variables used to define the spectra shown in Figure 3.22 are given in Table 3.10. Through 

nonlinear regression analysis, simple input energy spectra expressions expressed as a function of 

ductility value and are given in Equation (3.16). 
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Figure 3.27 NE spectra: hysteretic model SD and site class E 

Table 3.14  s, b, C, k, n, T1 and T2 values: soil class E and hysteretic model SD 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 0.828 -0.00211 0.857 0.707 3.282 3.952 -1.448 

2 
0.920 0.00821 0.625 0.584 2.741 1.686 -1.052 

3 
0.94 0.0217 0.563 0.550 2.365 1.207 -0.912 

4 
0.988 0.0291 0.519 0.541 2.181 1.119 -0.931 

5 
1.023 0.0366 0.485 0.532 2.095 1.067 -0.94 

m
ea

n
 +

 2
σ

 

1 
1.039 0.0142 0.849 0.897 3.385 6.027 -1.563 

2 
1.119 0.0266 0.609 0.708 2.695 1.883 -0.986 

3 
1.093 0.0467 0.554 0.652 2.410 1.441 -0.901 

4 
1.110 0.059 0.523 0.640 2.196 1.322 -0.921 

5 
1.131 0.07 0.494 0.629 2.171 1.365 -1 
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     (3.16) 

3.7.3 Hysteretic Model: Bilinear Flag BF  

Figure 3.28 shows the mean+σ and mean+2σ VI normalized input energy spectra for SDOF 

structures with hysteretic behavior type BF and located at site class E.  Similar to the BP 

hysteretic model, the effect of ductility value on the input energy for SDOF structures is 

insignificant in the short period region.  A distinct effect of ductility; however, was observed in 

the intermediate and long period regions of input energy spectra, especially when the ductility 

value range is between µ=1 and µ=3.  In these regions, the spectra input energy values decrease 

with an increase in ductility value.  For instance, in the intermediate period region, the decrease 

in the amount of input energy for the mean+σ spectra is approximately 7%, 5%, 3%, and ≈0% 

between  µ=1&2, µ=2&3, µ=3&4, and µ=4&5, respectively.  The corresponding decreases for 

the mean+2σ spectra are 12%, 7%, 4 % and 2%, respectively.  Table 3.15 gives values of the 

variables that define the input energy spectra shown in Figure 3.28.  Equation (3.17) gives 

alternative simple expressions for the variables as a function of ductility developed using 

nonlinear regression analysis of the corresponding values given in Table 3.15. 
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Figure 3.28  NE spectra: hysteretic model BF and site class E 

Table 3.15  s, b, C, k, n, T1 and T2 values: soil class E and hysteretic model BF 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 0.833 -0.00243 0.850 0.706 3.286 3.952 -1.448 

2 
0.857 -0.00038 0.740 0.634 2.780 2.029 -1.137 

3 
0.849 0.0064 0.683 0.586 2.496 1.512 -1.037 

4 
0.92 0.00566 0.6 0.558 2.304 1.291 -1.005 

5 
0.879 0.0165 0.614 0.556 2.151 1.198 -1. 

m
ea

n
 +

 2
σ

 

1 
1.037 0.0143 0.852 0.897 3.383 6.027 -1.563 

2 
1.038 0.018 0.736 0.782 2.752 2.366 -1.094 

3 
1.01 0.0277 0.673 0.707 2.489 1.81 -1.03 

4 
1.094 0.0275 0.586 0.668 2.339 1.59 -1.02 

5 
0.985 0.0471 0.628 0.666 2.193 1.49 -1.025 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

N
E 

Period (s) 

mean + σ 

µ=1

µ=2

µ=3

µ=4

µ=5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

N
E 

Period (s) 

mean + 2σ 

µ=1

µ=2

µ=3

µ=4

µ=5



 

76 

 

0.22

1

2

0.262

2

2

2

0.0154 0.821

0.0044 0.008

0.854

0.0115 0.107 0.801

33.308

0.283 2.32 5.848

0.0487  0.395 1.774

mean

s

b

T

C

T

k

n









 



 

 







 

 



  



  

   

          

0.219

1

2

0.266

2

2

2

2

0.0047 1.047 

 0.0075 0.0044

0.85

0.0187 0.17 1.048

3.354  

0.533 4.181 9.34

0.0716 0.544 1.992

mean

s

b

T

C

T

k

n









 



 

 







  

 



  



  

   

       (3.17) 

3.7.4 Hysteretic Model: Bilinear Slip, BS  

The mean+σ and mean+2σ VI normalized input energy spectra for SDOF structures with 

hysteretic behavior type of bilinear slip and site class E are shown in Figure 3.29. The graphs 

were created using the values of the variables given in Table 3.16.  These values were also used 

to develop simple ductility based general expressions given in Equation (3.18) for five ductility 

values of μ=1, 2, 3, 4, 5.  Figure 3.29 shows that the input energy spectral values increase with an 

increase in ductility value in the short period region. This energy-ductility relationship is similar 

to that of the hysteretic model SD and to some extent to that of the hysteretic models BP and BF.  

For instance, consider the input energy for a SDOF structure with a period of vibration of 0.3 s (a 

point in the straight line portion of the spectra, i.e., the short period region) the mean+σ spectral 

values are 0.25, 0.33, 0.36, 0.40, 0.43, and the mean+2σ spectral values are 0.33, 0.41, 0.44, 

0.48, 0.51 for ductility values of μ=1, 2, 3., 4, 5, respectively.  
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Figure 3.29  NE spectra: hysteretic model BS and site class E 

Table 3.16  s, b, C, k, n, T1 and T2 values: soil class E and hysteretic model BS 

  

Variable 

 
 s b T1 C T2 k n 

m
ea

n
 +

 σ
 

1 0.833 -0.00243 0.850 0.706 3.286 3.952 -1.448 

2 
1.037 0.0192 0.565 0.605 2.556 1.459 -0.938 

3 
1.121 0.0271 0.504 0.592 2.125 1.182 -0.917 

4 
1.261 0.0229 0.445 0.585 1.843 1.038 -0.939 

5 
1.336 0.0256 0.406 0.568 1.813 1.036 -1.01 

m
ea

n
 +

 2
σ

 

1 
1.037 0.0143 0.852 0.897 3.383 6.027 -1.563 

2 
1.199 0.0496 0.571 0.734 2.651 1.837 -0.941 

3 
1.250 0.0622 0.513 0.704 2.227 1.474 -0.922 

4 
1.412 0.0557 0.46 0.705 2.043 1.482 -1.04 

5 
1.514 0.0572 0.414 0.683 1.937 1.409 -1.094 
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 Effect of Site Soil Characteristics on Input Energy 3.8

In the preceding sections, the mean+σ and mean+2σ VI normalized input energy spectra have 

been developed and discussed for SDOF systems with BP, SD, BF and BS hysteretic behavior 

for five levels of ductility µ=1, 2, 3, 4,and 5, and four soil site types B,C, D and E.  Although it is 

not the intention of this study to investigate soil-structure interaction in details, it is of interest to 

see how different soil site classes can affect the input energy spectra. This can be accomplished 

by keeping the hysteretic type and ductility value the same while varying the soil category. 

Figures 3.30 to 3.33 show the effect of soil site class on the VI normalized input energy spectra 

for SDOF systems with the four different hysteretic types considered in this study.  For brevity, 

only figures corresponding to SDOF systems with two ductility values of µ=1 and 3 are 

presented here.   The complete set of figures that encompasses all five ductility values of µ=1, 2, 

3, 4, 5, the four soil site classes, and the four hysteretic models considered in this study can be 

found in Appendix B.  It should be noted that for ductility value of µ=1, the input energy spectra 

remain the same regardless of the hysteretic type used.  This is because when µ=1 the system is 

elastic, and so the input energy is independent of the hysteretic type.  
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Figure 3.30 Effect of soil on input energy of SDOF structures: hysteretic model BP 

As it can be seen in Figure 3.30, the maximum spectral value increases as the soil gets softer.  

Both the mean+σ and mean+2σ exhibit similar responses for soil classes E and B in that they 

produce the maximum and minimum spectral values, respectively. This trend is similar to the 

effect of soil site on elastic design response spectrum (ASCE/SEI 7-12). This observation also 

agrees with that made by Decanini and Mollaioli (1998), who used different earthquake sets and 

normalizing factors to study the elastic earthquake input energy spectra.  They found that the 

seismic input energy displays a definitive tendency to increase as the soil stiffness decreases.  In 
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addition, it should be noted that the period of vibration for SDOF systems at which the input 

energy is a maximum increases as the soil gets softer.  In other words, longer period (less stiff) 

structures founded on soft soils are likely to be subjected to a higher VI normalized input energy 

when compared to those founded on hard soils.  For instance, for the BP hysteretic model at a 

ductility value µ=3, the maximum mean+σ input energy occurs approximately at periods of 0.7 s, 

0.9 sec, 1.4 s and 2.4 s for site classes B, C , D and E, respectively.  Moreover, as the soil gets 

softer the maximum value range (i.e., the intermediate period region in Figure 3.6) gets larger, 

i.e., a wider range of structures will be affected (see Table 3.17). This reinforces the theory that 

site conditions not only alter the characteristics of ground motion such as its amplitude, but they 

also affect the frequency content of the ground motion. 

Time history analysis of SDOF structures with hysteretic behavior types SD, BF, and BS also 

show similar results (see Figures 3.31 through 3.33).  For the ductility values considered in this 

study, SDOF systems built on softer soils are more likely to be subjected to higher input energy 

than those built on stiffer soils, especially for periods that range from 0.75 to 2.0 s.  However, at 

higher periods of vibration (approximately greater than 2.5 s), SDOF systems for site class B 

tend to show higher values of input energy when compared to those for site class C.  In the short 

period region (approximately 0.5 - 0.75 s) region, it is hard to draw definitive conclusion on the 

relationship between the soil site class and maximum input energy.  Nevertheless, it can be 

generalized that at very short periods, SDOF structures founded on stiff soils are likely to be 

subjected to higher input energy as compared to those on soft soils. This phenomenon is more 

visible for cases with hysteretic models BP, SD and BF.  
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Table 3.17  Periods of maximum NE, value of the maximum NE, and range of intermediate 

region for μ=3 

Hysteretic 

Model Item 

mean+σ mean+2σ 

B C D E B C D E 

BP 

T (s) 0.7 0.9 1.4 2.4 0.2 1.1 1.4 2.4 

NEmax 0.415 0.426 0.469 0.543 0.5 0.499 0.551 0.656 

Range 0.8 1.32 1.6 2.08 0.89 1.31 1.59 2.09 

SD 

T (s) 0.3 0.6 1.3 1.6 0.3 0.6 1.3 1.6 

NEmax 0.413 0.442 0.465 0.55 0.489 0.507 0.539 0.645 

Range 0.74 0.98 1.82 1.80 0.81 0.96 1.84 1.86 

BF 

T (s) 0.6 0.8 1.1 2.2 0.6 0.6 1.3 2.2 

NEmax 0.451 0.457 0.465 0.586 0.539 0.54 0.551 0.707 

Range 0.73 1.09 1.98 1.81 0.82 1.09 2.02 1.82 

BS 

T (s) 0.4 0.5 1 1.4 0.9 0.5 1 1.4 

NEmax 0.424 0.472 0.508 0.592 0.499 0.543 0.605 0.704 

 Range 0.71 0.79 1.53 1.62 0.79 0.9 1.51 1.71 

 

  

 

Figure 3.31 Effect of soil on input energy of SDOF structures: hysteretic model SD 
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Figure 3.32 Effect of soil on input energy of SDOF structures: hysteretic model BF 

 

  

 

Figure 3.33 Effect of soil on input energy of SDOF structures: hysteretic model BS 
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 Effect of Hysteretic Behavior 3.9

Figure 3.34 shows the effect of hysteretic behavior on the VI normalized input energy spectra for 

SDOF structures at a ductility value of µ=3.  Although it is expected that hysteretic behavior will 

have an effect on the input energy of SDOF structures, given a hysteretic behavior the input 

energy shapes for all ductility levels were found to possess similar characteristics.  As a result, 

the ensuing discussions and conclusions drawn from SDOF structures with a ductility value of 

µ=3 are applicable to ductility values of 1, 2, 4 and 5 as well.   

The figure shows that for site classes B and C, irrespective of the hysteretic behavior the input 

energy spectra values in the short period region remain more or less the same.  For site classes D 

and E; however, SDOF structures with hysteretic type BS exhibit higher values of input energies 

when compared to those with hysteretic behavior types BP, SD and BF.  For periods of vibration 

greater than approximately 2 s, there appears to be some grouping of hysteretic behaviors that 

exhibit close values of input energies for all site classes: Hysteretic types BP & BF fall in one 

cluster and SD & BS in another. It is also important to note that hysteretic types SD & BS (both 

subjected to stiffness degradation; the former from the inherent property of the model and the 

latter due to bond slip) exhibit similar trend in input energy.  In this range of vibration period, a 

distinct difference in input energy between the groupings has been observed - BP & BF produce 

higher input energy spectral values than SD & BS. 
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Figure 3.34  Effect of hysteretic behavior on input energy: ductility value, µ=3 
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 Validation of Proposed Spectra  3.10

Validation or verification of any proposed models or procedures is a key process that precedes 

the use of new findings for their intended purpose. Validation can be done through a realistic 

comparison of the new finding with existing or commonly accepted procedures and/or with 

experimental results.  In this study, the proposed spectra are compared with nonlinear time 

history analysis (exact) spectra.  Nonlinear time-history analysis provides nonlinear evaluation of 

the dynamic response of a structure under an applied load that can vary according to a specified 

time function.  For this purpose, three widely studied major ground motion records, each having 

two components (fault normal and fault parallel) for each soil category, were selected from the 

PEER ground motion database and used in the verification process.  Particulars of the selected 

earthquake records are as detailed in Table 3.18.  Earthquake records from the same events were 

selected for each soil category to facilitate the comparison of the relative performance of the 

proposed spectra among the different soil site types. 

 

 

 

 

 

 

 

https://wiki.csiberkeley.com/display/kb/Nonlinear
https://wiki.csiberkeley.com/display/kb/Time+function
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Table  3.18  Earthquake records selected for validation of proposed spectra 

Vs30  : average shear wave velocity of the upper 30m depth of soil profile of a site 

It is anticipated that the selected ground motion records for a given soil site will have different 

seismic characteristics such as PGV, PGA and CAV.  Also, recall that the proposed energy 

spectra were developed based on a statistical measure (mean+σ and mean+2σ) of a set of ground 

motion records normalized by the velocity index, VI. Thus, to be consistent, the proposed spectra 

will be compared with the mean+σ and mean+2σ spectra of the time history analysis of the 

selected earthquakes for each soil.  It is also important to note that the few number of 

earthquakes selected for the verification process might give a very high standard deviation which 

in turn could result in higher design spectra value.  However, this statistical magnification can be 

minimized through proper scaling of the ground motion records, which is a necessary element in 

any nonlinear dynamic analysis that involves a group of ground motion records. Therefore, the 

selected sets of earthquake records for each site were scaled in accordance with the procedures 

Soil type Ground motion Year Magnitude Vs30(m/s) Station 

B 

Loma Prieta,  1989 6.93 1249.9 SF-Pacific Height 

Northridge-01,  1994 6.69 821.7 Anacapa Island 

Chi-Chi Taiwan, 1999 7.62 999.7 TCU085 

C 

Loma Prieta 1989 6.93 367.6 Fremont- Mission 

Northridge-01 1994 6.69 684.9 Leona Valley #1 

Chi-Chi Taiwan 1999 6.2 442.1 CHY 046 

D 

Loma Prieta 1989 6.93 271.1 Dublin- Fire Station 

Northridge-01 1994 6.69 234.9 Camarillo 

Chi-Chi Taiwan 1999 6.3 271.1 CHY037 

E 

Loma Prieta,  1989 6.93 155.1 Treasure 

Northridge-01,  1994 6.69 160.6 Carson 

Chi-Chi Taiwan 04,  1999 6.2 172.1 CHY054 
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stated in FEMA P695 and PEER database technical manual.  The ground motion indices and 

scaling factors used in the analysis are listed in Table 3.19.  

Table 3.19  Ground motion indices and scaling factor 

Soil 

type 

Ground motion Fault normal component Fault parallel component Scale 

 CAV* PGA* PGV* CAV* PGA* PGV* 

B 

Loma Prieta 72.884 24.705 5.8945 53.332 15.286 2.3685 1.1492 

Northridge-01 90.824 25.216 1.2422 67.857 14.049 0.78222 1.6342 

Chi-Chi Taiwan 122.18 27.376 2.9556 107.47 19.958 2.875 1.2052 

C 

Loma Prieta 183.69 55.743 3.7364 213.17 52.545 5.3555 0.809 

Northridge-01 107.42 41.74 3.1088 73.527 17.685 2.4956 1.4067 

Chi-Chi Taiwan 161.88 45.674 3.545 162.21 39.876 3.4653 0.9199 

D 

Loma Prieta 143.96 28.165 2.8836 122.68 28.995 1.8559 1.6785 

Northridge-01 345.68 45.131 5.1424 343.07 37.716 4.3114 1.0296 

Chi-Chi Taiwan 235.07 45.629 4.9952 276.96 60.384 6.5801 0.8985 

E 

Loma Prieta,  136.37 49.57 10.704 127.67 58.431 9.0373 0.3826 

Northridge-01 189.46 29.409 2.8617 197.77 38.045 2.7483 0.6906 

Chi-Chi Taiwan  161.05 16.986 3.306 150.45 19.4 2.6742 1.0462 

       * all units are in inches and seconds 
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Figure 3.35  Verification of proposed spectra: hysteretic model BP (ζ=5%, α=0.05) 
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Figure 3.35 shows the mean+σ and mean+2σ input energy per unit mass spectra for both the 

“exact” time history analysis and the proposed spectra for a SDOF structure with bilinear plastic 

(BP) hysteretic behavior, pre-to-post yield stiffness ratio of α=0.05 and damping coefficient of 

ζ=5%.  These spectra were developed for the different site classes using the site specific 

earthquakes listed in Table 3.18.  The “exact” spectra are the mean+σ and mean+2σ input energy 

spectra obtained from time history analyses of the six earthquake records (three earthquakes with 

two components each) selected for each soil site.  The scaling factors indicated in Table 3.19 

have been applied to the corresponding ground motion records at the beginning of the analysis.  

It is important to realize that unlike that of linear analysis, scaling should be applied before the 

nonlinear analysis is performed, but not to the responses after the analysis.  Similarly, scaling 

factors are applied to the PGV and CAV values before the mean+σ and mean +2σ normalizing 

factors, velocity indices, and VI are computed.  Consistency in scaling used for both the “exact” 

and proposed procedures is essential if a sound conclusion is to be drawn from the ensuing 

results.   

The solid black line and the pink dashed line in Figure 3.35 are the “exact” mean+σ and 

mean+2σ spectra, respectively.   The green dash-dot line and the red dotted line show the 

proposed mean+σ and mean+2σ spectra.  From this figure, it can be said that for soil sites B and 

E, and for all ductility values considered in this study, the proposed mean+σ spectra tend to give 

lower values than the “exact” mean+σ spectra, especially in the intermediate and long period 

regions; whereas in the short period region the opposite is true.  On the other hand the proposed 

mean+2σ spectra give higher input energy values compared to the “exact” mean+2σ spectra in 

all regions of the input energy spectra. 
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For soil site C, the proposed mean+2σ spectra were found to be conservative especially in the 

intermediate region of the spectrum, whereas the mean+σ spectra fairly match the “exact” 

spectra both in the short and intermediate regions.  However, the proposed mean+σ spectra 

underestimate the input energy in the long period region.  For soil site D, in the short and 

intermediate period regions, the proposed mean+σ spectra underestimate the input energy 

whereas they give higher values than the “exact” spectra at longer period regions.  On the other 

hand, the mean+2σ spectra produce conservative values in all regions of the spectra as compared 

to the “exact” mean+2σ spectra. The only exception to this observation is the case for ductility 

value μ=1 where the maximum value of the “exact” mean+2σ spectrum is greater than the 

maximum value of the proposed mean+2σ spectrum.  This type of situation is expected as the 

proposed mean+σ and mean+2σ spectra only give spectral values that are higher than the spectral 

values for 68% and 95% of the earthquake ensemble used in the analysis, respectively.  

Based on the above observations on the normalized input energy spectra for SDOF systems with 

hysteretic model BP, damping of ζ=5% and ductility values of μ=1 , 2, 3, 4, and 5, the following 

conclusions can be drawn.  

 For soil site classes B, C, D and E, the proposed mean+2σ spectra give conservative 

values in all regions, and if used for design they would give a larger factor of safety.  

 The proposed mean+σ spectra fairly match the “exact” spectra in all regions for soil site 

classes B, C, D and E, except in the long period region for soil site class B and C, in 

which the proposed spectra values would underestimate the input energy values 
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Figure 3.36  Verification of proposed spectra: hysteretic model SD (ζ=5%, α=0.05) 
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Figure 3.36 show the mean+σ and mean+2σ input energy per unit mass spectra for both the 

“exact” time history analysis and the proposed spectra for a SDOF structure with  strength 

degradation (modified Clough) (SD) hysteretic behavior, pre-to-post yield stiffness of α=0.05, 

and damping coefficient of ζ=5%.  Figures 3.36 (a) and (d) show the relationship between the 

proposed and “exact” mean+σ and mean+2σ spectra for soil site class B and E, respectively.  For 

both site classes, except for μ=1 in the short period region, the proposed mean+σ spectra 

reasonably match the “exact” spectra for ductility values of μ= 2,3,4,5.  The proposed mean+2σ 

spectra, on the other hand, result in higher spectral values and envelope the “exact” spectra in all 

regions of the spectra for ductility values of μ=1,2,3,4,5. 

As can be seen from Figures 3.36 (b) and (c), the range of the intermediate region of the 

proposed mean+2σ spectra for site classes C and D is wider than that of the “exact” spectra.  

This may result in an overly conservative design for structures with periods of vibration close to 

the higher end of the intermediate region.  For site class D, the mean+σ proposed spectra tend to 

underestimate the spectral values.  In such cases, it is suggested that either a higher factor of 

safety or more earthquake records than the number specified by current design standards be used. 

For SDOF structures behaving elastically at site classes B, C, D and E, the proposed mean+σ 

spectra underestimate the spectral values in the intermediate region. This may not be an issue 

when it comes to design as almost all structures exhibit some type of nonlinear behavior.  

However, if elastic spectra in conjunction with response modification factors are used for design, 

higher factors of safety should be used to overcome the lower values of the estimated input 

energy.   
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Figure 3.37  Verification of proposed spectra: hysteretic model BF (ζ=5%, α=0.05) 
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Comparison of the mean+σ and mean+2σ proposed spectra and the “exact” spectra of SDOF 

structures with hysteretic behavior BF for target ductility values of μ=1,2,3,4,5 and site classes 

B, C, D, and E are shown in Figure 3.37.  For site classes B and E (Figure 3.28 (a) & (d)), the 

proposed mean+σ and mean+2σ spectra give a good match to the “exact” spectra for ductility 

values of μ= 2, 3, 4,and 5.  Although the proposed spectra envelope the “exact” spectra in such 

cases, they are somewhat conservative for ductility values of μ= 3, 4, and 5 for site class B in the 

intermediate region.  For site classes C and D both the spectral values of the proposed mean+σ 

and mean+2σ spectra reasonably match the spectral values of the “exact” spectra for ductility 

values of μ= 2, 3, 4 and 5.  However, the proposed spectra overestimate the spectral values in the 

upper half of the intermediate region.  This was more pronounced for site class C, where the 

peaks of the “exact” spectra are narrowly banded in a small range of vibration periods.  

The verification diagrams for the proposed spectra for SDOF structures with hysteretic behavior 

BS are shown in Figure 3.38.  For ductility values of μ=2, 3, 4, and 5, the proposed spectra show 

conservative estimates of the “exact” spectra for site classes B and C.  For site classes D and E, 

the proposed mean+σ spectra underestimate the values at the point of maxima of the intermediate 

regions.  On the other hand, the proposed mean+2σ spectra produce a very close estimate with 

the exception of ductility value of μ= 5, where the maximum values of the “exact” spectra 

exceed those of the proposed values only at  specific periods of vibration. 
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Figure 3.38  Verification of proposed spectra: hysteretic model BS (ζ=5%, α=0.05)
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4 PROPOSED HYSTERETIC ENERGY SPECTRA FOR SDOF SYSTEMS 

 Introduction 4.1

One of the goals of this study is to develop hysteretic energy spectra for purpose of design.  The 

proposed hysteretic energy spectra are intended to help engineers estimate the seismic energy 

demand of a structure and design it to withstand the seismic energy in the event of an earthquake.  

In this study, for reasons to be explained Section 4.2, the hysteretic to input energy ratio spectra 

rather than the explicit hysteretic energy spectra will be developed. 

In Section 4.2 the procedure used to develop the proposed spectra for hysteretic to input energy 

ratio (HE/IE) are discussed and outlined.  The proposed spectra are developed based on different 

site classes and hysteretic responses of SDOF systems.  The hysteretic models considered are 

BP, SD, BF and BS for each of the following site classes: B, C, D and E. Details of these 

proposed HE/IE spectra are presented in Sections 4.3 through 4.6.   

Sections 4.7 and 4.8 summarize a study of the effect of soil site characteristics and hysteretic 

behavior on the proposed HE/IE spectra.  In general, for a given hysteretic model the effect of 

soil site characteristics on HE/IE spectra was found to be very minimal. On the other hand, for a 

given site class, SDOF systems with hysteretic behavior types BP and SD were found to produce 

higher HE/IE spectral values compared to SDOF systems with hysteretic behavior types BF and 

BS.  The validation of the proposed HE/IE spectra is presented in Section 4.9.  They were found 

to yield conservative spectral values when compared to the exact hysteretic energy spectra. 

 Proposed Hysteretic Energy Spectra Development Procedure 4.2

In the preceding chapter, input energy spectra for SDOF systems having four different hysteretic 

models (BP, SD, BF, and BS) have been proposed.  These hysteretic behavior dependent input 
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energy spectra can be used in an energy-based seismic design (EBSD) of SDOF systems that 

takes into account the ductility requirement and site soil characteristics. The normalization 

parameter, Velocity Index (VI), used in the formulation of the input energy spectra provides 

designers with the flexibility to choose the intensity of the design earthquake.  

It has been pointed out in chapter 1 that it is not the full amount of input energy imparted to a 

structure during a seismic event that causes damage.  Per Equation (1.3), input energy is the sum 

of damping energy, kinetic energy and absorbed energy.  Of these three energies, the one that 

causes damage is a part of the absorbed energy; namely hysteretic energy, HE.  Therefore, a 

designer using EBSD method is required to estimate the total hysteretic energy generated and to 

design the structure with a mechanism to dissipate this destructive energy.  Through statistical 

analysis it is possible to develop hysteretic energy spectra.  However, the damage index or 

intensity of earthquakes has little or no direct relationships with hysteretic energy or hysteretic 

behavior of structural systems.  Thus, it might be unrealistic to develop hysteretic energy spectra 

that can be scaled to a desired intensity of design earthquake.   In Chapter 3, input energy spectra 

that can be scaled to a desired intensity of earthquake by using the normalization parameter, VI, 

have been developed.  Moreover, Manfredi (2001) and Ye et al (2009) have claimed that input 

energy is a stable parameter for assessing structural response.  Mollaioli et al (2006) also 

observed that most stable seismic parameters can be obtained by setting a relationship between 

the square root of input energy and displacement (which is dependent on hysteretic behavior) and 

asserted that input energy can be considered to effectively represent seismic demand in structural 

systems.  Cognizant of this, instead of developing explicit hysteretic energy spectra, spectra that 

relate hysteretic energy (HE) to input energy (IE), i.e., hysteretic energy to input energy ratio 

(HE/IE) will be proposed in this study.  
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In developing the (HE/IE) spectra, the set of scaled earthquakes for the different site classes 

listed in Appendix A are used.  The same set of earthquake records have been used in developing 

the proposed NE spectra in Chapter 3. For each site-class a hysteretic behavior dependent 

mean+σ and mean+2σ HE/IE spectra have been proposed.  The spectra were developed from the 

energy ratios of the time history analysis results of scaled earthquakes selected for a given site-

class.  For instance, HE/IE spectra for soil class-B shown in Figure 4.1 are obtained using the 

following steps. 

Step 1:  

For a given hysteretic model and ductility value, the spectral values of input energies are 

obtained from time history analysis using BISPEC for the selected set of earthquakes for site 

class B and the corresponding mean+σ and mean+2σ of input energy spectral values are 

calculated.   

Step 2:  

Similarly, using the same set of earthquakes, the mean+σ and mean+2σ hysteretic energy 

spectral values for a given hysteretic model and ductility value are calculated using the hysteretic 

energy spectral values obtained from BISPEC. 
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Step 3:  

Hysteretic energy to input energy ratios, HE/IE, are then obtained as follows  

 
 

 

HE meanHE
mean

IE IE mean







 


   and   
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HE meanHE
mean

IE IE mean







 


 

Step 4:  

The values obtained in Step 3 are then used to generate HE/IE spectra like those shown in Figure 

4.1. 

Time history analyses for site classes C, D and E were found to have similar HE/IE spectral 

shapes like those shown in Figure 4.1.  In other words, for a given hysteretic model, the mean+σ 

and mean+2σ HE/IE spectra exhibited similar variations in spectral values with period.  This is 

true, irrespective of the soil site characteristics, for ductility values µ=2, 3, 4, and 5 considered in 

this study.  However, as can be seen from Figure 4.1, the HE/IE spectral shapes do not show 

similar characteristics among the different hysteretic models considered in this study.  As a 

result, the following hysteretic model dependent general shapes have been adopted in developing 

smoothened HE/IE spectra. 
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Figure 4.1 Actual HE/IE spectra: site class B 
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Hysteretic Model BP: Spectral values at the extreme left end of the short period region increase 

with period (albeit, for a very small period range) until the maximum value is reached (see 

Figure 4.1(a)).  For instance, the periods that correspond to these maximum values are 0.28, 0.28, 

0.32 and 0.35 sec for ductility values of µ=2, 3, 4, and 5, respectively.  These values are well 

below the periods of vibrations for most civil engineering structures.  Moreover, the spectral 

values in the short period region are not significantly lower than the maximum value.  As a 

result, the maximum value in the intermediate regions was assumed to extend into the short 

period region.  In the long period region the spectral values do not exponentially decrease and 

thus the values were considered to vary linearly.  Accordingly, the smoothened spectra were 

considered to have the general shape shown in Figure 4.2.  

Hysteretic Models SD and BF: Like hysteretic model BP, the general HE/IE spectral shape 

shown in Figure 4.2 is adopted for hysteretic models SD and BF.  For these hysteretic models, 

the HE/IE spectral values in the short period do not strictly increase or decrease with period.  

They exhibit closer values to the maximum spectral value.  Thus, extending the intermediate 

region (region of maximum value) to the short period will not greatly underestimate or 

overestimate the value of the resulting hysteretic energy. 

 

Figure 4.2 HE/IE spectra shape for hysteretic models BP, SD and BF 
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Hysteretic Model BS: The HE/IE spectra for hysteretic model BS (shown in Figure 4.1(d)) 

show a significant difference between the smallest value of the short period region and the 

maximum value of the intermediate region. Therefore, instead of extending the shape of the 

spectra in the intermediate region spectra into the short period region, a tri-linear shape as shown 

in Figure 4.3 is proposed.  

 

Figure 4.3 HE/IE spectra shape for hysteretic model –BS 

Using the steps explained above and the specific general shapes adopted, hysteretic behavior 

dependent HE/IE spectra as a function of ductility were developed for site classes B, C, D and E 

and are presented below.  

 HE/IE Spectra for Site Class B 4.3

Table 4.1 list values of the constants indicated in Figures 4.2 and 4.3 needed to define the HE/IE 

spectra for SDOF systems with hysteretic behavior types BP, SD, BF, and BS located at site 

class B.  These values were obtained for structures with pre-to-post yield stiffness ratio of 

α=0.05, damping 5%, and ductility values of µ=2, 3, 4, and 5. At ductility value of µ=1, the 

SDOF systems remain elastic and the corresponding hysteretic energy is theoretically zero.  

Figure 4.4 presents mean+σ and mean+2σ HE/IE spectra generated using the respective values 

from Table 4.1 for each hysteretic model considered in this study. 
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Table 4.1 HE/IE spectral shape constants for site class B 

 

Hysteretic Model BP 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.459 0.583 0.642 0.671 0.472 0.592 0.652 0.678 

T2 2.275 2.008 1.727 1.573 2.372 2.108 1.805 1.599 

s -0.0157 -0.0233 -0.0333 -0.0383 -0.0157 -0.02 -0.03 -0.0333 

b 0.495 0.63 0.7 0.732 0.51 0.634 0.706 0.732 

 

Hysteretic Model SD 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.588 0.656 0.678 0.684 0.593 0.663 0.686 0.691 

T2 1.565 1.306 1.096 1.041 1.685 1.479 1.104 1.129 

s -0.0362 -0.0377 -0.0423 -0.0464 -0.033 -0.0348 -0.0358 -0.0404 

b 0.645 0.706 0.725 0.732 0.649 0.714 0.726 0.737 

 

Hysteretic Model BF 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.353 0.413 0.434 0.449 0.366 0.425 0.446 0.46 

T2 3.115 2.73 2.492 2.124 3.179 2.775 2.481 2.135 

s -0.0291 -0.02 -0.022 -0.0225 -0.0291 -0.015 -0.016 -0.016 

b 0.443 0.468 0.489 0.497 0.459 0.467 0.486 0.494 

 

Hysteretic Model BS 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

s1 0.66 0.362 0.338 0.406 0.724 0.328 0.274 0.349 

b1 0.043 0.129 0.168 0.167 0.0383 0.135 0.18 0.175 

T1 0.466 0.820 0.777 0.663 0.456 0.952 0.993 0.812 

C 0.350 0.426 0.430 0.436 0.369 0.448 0.452 0.458 

T2 2.112 2.03 2.589 2.211 2.141 1.956 2.729 2.207 

s2 -0.0195 -0.0214 -0.0249 -0.028 -0.0205 -0.0186 -0.0212 -0.0236 

b2 0.392 0.469 0.495 0.498 0.412 0.484 0.509 0.510 

 

For all four cases (Figures 4.4(a-d)), both the mean+σ and mean+2σ HE/IE spectral values 

increase with an increase in ductility.  In chapter 3 it has been discussed that, in general, for 

SDOF systems the amount of input energy decreases with an increase in ductility.  Inherently, 
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hysteretic energy increases as ductility increases and hence it is logical to observe an increase in 

the HE/IE spectral value when ductility value increases. It has also been observed that the effect 

of ductility on HE/IE spectra is not uniform throughout the range of ductility values considered 

in this study. Spectral values show insignificant change as the ductility values increase (see 

Figure 4.4).  Especially in the long period region, the HE/IE spectra plots for ductility values µ= 

3, 4, and 5 appear to overlap.   

Another important finding is that, for a given hysteretic behavior and ductility value, the mean+σ 

and mean+2σ HE/IE spectral values show negligible differences (see Table 4.1). This indicates 

that the seismic parameter HE/IE is statistically stable, unlike input energy spectra where there is 

a significant difference between the mean+σ and mean+2σ values.  This observation 

corroborates with the notion of determining hysteretic energy from input energy (a more global 

seismic parameter) instead of proposing explicit hysteretic energy spectra directly. 
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Figure 4.4 HE/IE spectra: site class B 
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 HE/IE Spectra for Site Class C 4.4

Table 4.2 gives values of the constants used to define the HE/IE spectra for soil site class C. 

Table 4.2 HE/IE spectral shape constants for site class C 

 

Hysteretic Model BP 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.476 0.592 0.651 0.676 0.509 0.605 0.658 0.684 

T2 5 3.548 2.674 2.605 5 3.727 2.858 2.742 

s 
 

-0.0244 -0.0247 -0.0308 
 

-0.0123 -0.0153 -0.0208 

b 
 

0.679 0.717 0.756 
 

0.651 0.702 0.741 

 

Hysteretic Model SD 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.6 0.667 0.699 0.711 0.607 0.667 0.697 0.718 

T2 5 5 2.441 1.848 5 5 3.244 2.11 

s 
  

-0.0363 -0.0388 
  

-0.0275 -0.0275 

b 
  

0.787 0.783 
  

0.787 0.776 

 

Hysteretic Model BF 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.337 0.406 0.434 0.444 0.35 0.428 0.442 0.45 

T2 5 5 5 5 5 5 5 5 

s 
        

b 
        

 

Hysteretic Model BS 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

s1 0.351 0.39 0.458 0.424 0.355 0.395 0.466 0.436 

b1 0.0556 0.0892 0.102 0.119 0.0529 0.0871 0.098 0.113 

T1 0.732 0.745 0.642 0.644 0.772 0.806 0.681 0.707 

C 0.312 0.38 0.396 0.392 0.327 0.406 0.416 0.421 

T2 5 5 5 5 5 5 5 5 

s2         
b2         
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HE/IE spectra for SDOF systems with hysteretic behavior types BP, SD, BF, and BS and 

ductility values of µ=2, 3, 4, and 5 located at site class C generated using these constants are 

shown in Figure 4.5.  The pre-to-post yield stiffness ratio and damping coefficient used were 

α=0.05 and ζ=5%, respectively.  Similar to what was observed for site class B, the same trend of 

an increase in HE/IE with an increase in ductility value is observed.  In the long period region for 

hysteretic type SD (Figure 4.5 (b)), the proposed HE/IE values for ductility values µ=4&5 are 

seen to be greater than that for ductility values µ=2&3. This is in agreement with the actual 

HE/IE values, which are higher for µ=4&5 than for µ=2&3.    

It should be noted that the variation of HE/IE with ductility value is not uniform.  For instance, 

the percentage increases of the mean+σ HE/IE values are 27%, 10%, 5% for hysteric type BP; 

11%, 5%, 2% for hysteric type SD; 20%, 7%, 2% for hysteretic type BF and 21%, 4%, 1% for 

hysteric type BS between ductility values 2&3, 3&4, 4&5, respectively.  The values for the 

mean+2σ HE/IE are (27%, 10%, 4%), (10%, 5%, 3%), (22%, 3%, 2%) and (24%, 2%, 1%) for 

hysteretic models BP, SD, BF and BS, respectively.  This observation indicates that the effect of 

ductility on HE/IE is more significant at lower ductility values (µ=2 to 3) than higher ductility 

values (µ=4 to 5). Compared to site class B, HE/IE values for site class C do not change 

significantly with period.  For instance, for hysteretic models BP and SD (µ=2, 3) and in the long 

and intermediate regions of hysteretic models BF and BS (µ=2, 3, 4, 5) HE/IE values generally 

remained constant.  
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Figure 4.5 HE/IE spectra: site class-C 
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 HE/IE Spectra for Site Class D 4.5

Table 4.3 gives values of the constants used to define the HE/IE spectra for soil site class D. 

Table 4.3 HE/IE spectral shape constants for site class D 

 

Hysteretic Model BP 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.512 0.623 0.668 0.696 0.531 0.637 0.677 0.703 

T2 5 5 3.48 3.094 5 5 3.6 3.061 

s 
  

-0.0256 -0.0289 
  

-0.0244 -0.0233 

b 
  

0.757 0.785 
  

0.765 0.775 

 

Hysteretic Model SD 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.609 0.682 0.699 0.712 0.617 0.686 0.700 0.712 

T2 2.230 2.071 1.486 1.321 2.368 2.162 1.633 1.605 

s -0.0142 -0.0262 -0.0283 -0.0335 -0.0142 -0.0262 -0.0235 -0.0291 

b 0.641 0.736 0.741 0.756 0.642 0.732 0.738 0.759 

 

Hysteretic Model BF 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.336 0.417 0.442 0.460 0.349 0.426 0.45 0.469 

T2 5 5 5 2.99 5 5 5 3.066 

s 
   

-0.038 
   

-0.0383 

b 
   

0.574 
   

0.587 

 

Hysteretic Model BS 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

s1 0.367 0.437 0.408 0.395 0.373 0.473 0.448 0.427 

b1 0.0493 0.0813 0.111 0.127 0.0477 0.0752 0.105 0.121 

T1 0.755 0.678 0.696 0.680 0.773 0.659 0.671 0.682 

C 0.326 0.377 0.395 0.395 0.336 0.387 0.405 0.412 

T2 5 5 5 5 5 5 5 5 

s2         
b2         
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Figure 4.6 shows the HE/IE spectra for SDOF systems with hysteretic behavior BP, SD, BF and 

BS having a pre-to-post yield stiffness ratio of α=0.05 and damping ζ=5% located in site class D 

generated using the spectral constants given in Table 4.3.  Like that for site classes B and C, 

HE/IE values increase as ductility value increases.  The increment, however, is minimal beyond 

some ductility value; in this case beyond µ=3.  For hysteretic type SD, in the intermediate and 

long period regions the effect of ductility on HE/IE even becomes negligible resulting in an 

overlap of the graphs for ductility value µ≥3 (see Figure 4.6b).   

A comparison of the mean+σ and mean+2σ maximum HE/IE values shows almost no difference.  

On average, the difference in the mean+σ and mean+2σ maximum HE/IE values were (0.036, 

0.012, 0.007, 0.008) for BP, (0.007, 0.000, 0.002, 0.006) for SD, (0.013, 0.023, 0.008, 0.007) for 

BF and (0.015, 0.026, 0.019, 0.029) for BS, for ductility values of µ=2,3,4 and 5, respectively.  

These values are relatively small compared to the maximum values of their respective spectra.  

This observation is also true for site classes B and C so this further supports the argument that 

HE/IE is a statistically stable parameter.  It is therefore possible that the mean HE/IE spectra will 

give more or less the same values as the mean+σ and mean+2σ HE/IE spectra if used for 

calculating hysteretic energy from input energy.   Although not part of this study, it has been 

observed that all the mean, mean+ σ and mean+2σ HE/IE spectra tend to give very close values 

for a given hysteretic model, ductility value and site class.   
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Figure 4.6 HE/IE spectra: site class D 
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 HE/IE Spectra for Site Class E 4.6

Table 4.4 gives values of the constants used to define the HE/IE spectra for soil site class E. 

Table 4.4  HE/IE spectra shape constants for site class E 

 

Hysteretic Model BP 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.521 0.651 0.693 0.717 0.535 0.658 0.7 0.724 

T2 3.808 3.45 3.241 2.905 3.857 3.547 3.316 2.852 

s -0.0567 -0.07 -0.0575 -0.0483 -0.0571 -0.0771 -0.06 -0.0457 

b 0.736 0.892 0.88 0.858 0.756 0.932 0.899 0.855 

 

Hysteretic Model SD 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.633 0.708 0.736 0.746 0.631 0.704 0.73 0.741 

T2 2.307 1.867 1.317 1.2 2.4 1.861 1.357 1.353 

s -0.0483 -0.0471 -0.0459 -0.0521 -0.0483 -0.0471 -0.0395 -0.0476 

b 0.745 0.796 0.796 0.809 0.739 0.780 0.783 0.805 

 

Hysteretic Model BF 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

C 0.347 0.426 0.454 0.469 0.355 0.432 0.462 0.476 

T2 3.053 2.428 2.323 2.136 3.07 2.472 2.279 2.273 

s -0.021 -0.0225 -0.03 -0.035 -0.021 -0.0225 -0.0275 -0.035 

b 0.411 0.481 0.524 0.544 0.419 0.481 0.525 0.555 

 

Hysteretic Model BS 

 
mean+σ mean+2σ 

µ 2 3 4 5 2 3 4 5 

s1 0.332 0.313 0.256 0.208 0.358 0.306 0.241 0.195 

b1 0.0591 0.0968 0.122 0.143 0.054 0.0945 0.118 0.139 

T1 0.767 0.824 0.956 1.095 0.748 0.867 1.096 1.334 

C 0.314 0.355 0.367 0.372 0.322 0.359 0.382 0.3991 

T2 5 5 5 5 5 5 5 5 

s2         
b2         
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Figure 4.7 shows the HE/IE spectra for SDOF systems with hysteretic behavior types BP, SD, 

BF and BS having a pre-to-post yield stiffness ratio of α=0.05 and damping ζ=5% located at site 

class E generated using the spectral constants given in Table 4.4.  Like those for site classes B, C 

and D, HE/IE values increase with ductility for site class E.  Note that the region where the 

maximum HE/IE values lie for hysteretic model type SD is narrower compared to the other three 

hysteretic models.  A similar phenomenon was observed for soil site class B.  In a similar 

manner as for site classes B, C and D, the rate of increment for HE/IE values with ductility 

reduces at higher ductility values. 

Whether it is extending towards the short period region (for hysteretic models BP, SD, and BF) 

or extending towards the long period region (for hysteretic model BS), the range of the 

intermediate region gets narrower as ductility value increases.  This is in clear agreement with 

what has been observed for the input energy spectra of SDOF systems (See section 3.7).  For 

instance, for hysteretic model type SD  (see Figure 4.7b) the range is 2.31, 1.87, 1.31, 1.2 s for 

the mean+ σ spectra, and  2.4, 1.86, 1.36, 1.35 s for the mean+2σ spectra for ductility values of 

µ=2, 3, 4 and 5, respectively.  
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Figure 4.7 HE/IE spectra: site class E 
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 Effect of Soil Site Type on HE/IE 4.7

In Section 3.8, the effect of site soil class on input energy spectra was discussed. Regardless of 

the hysteretic behavior considered, it has been found that the maximum spectral value of input 

energy increases and the range of the intermediate region becomes wider as the soil gets softer.  

Moreover, it has been observed that for a given ductility value, the input energy increases in the 

intermediate and long period regions but reduces in the short period region as the soil gets 

weaker (see Figures 3.30-33).  In this section, the effect of site soil on HE/IE will be discussed. 

Figure 4.8 shows HE/IE spectra for SDOF systems having ductility value of µ=3 located at site 

classes B, C, D and E with the four hysteretic behavior types considered in this study.  For a 

given hysteretic behavior and soil site class, HE/IE spectra for ductility values of µ=2, 4 &5 

exhibit a similar trend and variation as those of ductility value µ=3.  Consequently, observations 

made based on HE/IE spectra for ductility value µ=3 (shown in Figure 4.8) will also apply to 

ductility values of µ=2, 4 & 5.  From Figures 4.8(a), it can be seen that for SDOF systems with 

hysteretic behavior BP, HE/IE values increase as the site soil gets softer.  However, for SDOF 

systems with hysteretic behaviors SD and BF (see Figures 4.8 (b&c), HE/IE values increase as 

the site soil gets softer only in the short and intermediate regions of the spectra.  They show a 

mixed response in the long period region.  For hysteretic behavior type BS, HE/IE values 

decrease as the soil gets softer.  Upon further scrutiny, it can be observed that when compared to 

hysteretic types BP and BS, hysteretic types SD and BF tend to show less difference in the 

amount of HE/IE values among the different soil sites.  As a result, it is not possible to make a 

general statement about the relationship of site class and hysteretic to input energy ratio without 

taking the hysteretic behavior of the system into consideration.  This finding to a certain extent 

disagrees with the conclusion reached by Ye et al (2009) on the effect of site soil conditions on 
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the ratio of hysteretic energy to input energy.  They concluded that the influence of soil site 

conditions and ground motion characteristics on the ratio of hysteretic energy (HE) to input 

energy (IE) is negligible. However, the differences are small enough that it may be concluded 

that the effect of site class on HE/IE spectra for a given hysteretic model can be neglected.   For 

instance, for ductility value of µ=3, the mean square errors of HE/IE values between that of site 

class B and the other class sites ranges from 3.82E-05 to 5.34E-03 (see Table 4.5).  The same 

order of magnitude for these values has been observed for the other ductility values as well.  

Thus, for a given hysteretic model a single HE/IE spectrum that envelops all the others and 

independent of site class can be conservatively proposed for practical design purposes.  

Table 4.5  HE/IE mean square error values (µ=3) 

Hysteretic mean+2σ mean+2σ 

Model Site B&C Site B&D Site B&E Site B&C Site B&D Site B&E 

BP 9.04E-04 4.40E-03 5.34E-03 1.04E-03 4.32E-03 4.70E-03 

SD 6.25E-03 3.51E-03 3.34E-03 4.12E-03 2.95E-03 1.96E-03 

BF 2.25E-04 4.35E-04 9.20E-05 2.28E-04 1.86E-04 3.82E-05 

BS 9.72E-04 1.02E-03 2.79E-03 7.36E-04 1.68E-03 4.44E-03 
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Figure 4.8 Effect of site soil on HE/IE spectra: ductility value µ=3 
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 Effect of Hysteretic Behavior on HE/IE 4.8

Figure 4.9 shows the effect of hysteretic behavior on HE/IE spectra for SDOF structures with 

ductility value of µ=3.  It has been observed in Sections 4.3-4.6 that for a given hysteretic 

behavior, HE/IE spectra of SDOF systems with ductility values of µ≥3 exhibit only small 

differences for all soil site classes considered in this study.  In some cases, the HE/IE spectra 

graphs for ductility values µ≥3 have been found to be overlapping in the intermediate and long 

period regions.  In addition, HE/IE spectra for SDOF systems for ductility values of µ=2, 4, 5 

show similar pattern as those indicated in Figure 4.9 for ductility value of µ=3. Thus, the 

inference made from Figure 4.9 is also applicable to SDOF systems with ductility values µ=2, 4, 

5.     

As can be seen from Figure 4.9, SDOF systems with hysteretic behavior BP exhibit higher 

values of hysteretic to input energy ratio.  For site classes C, D and E, it can be said that HE/IE 

generally varies with hysteretic behavior in the following order: BP>SD>BF>BS.  However, 

except in the short period region, the same cannot be said for site class B where the graphs of 

HE/IE spectra overlap for hysteretic behavior types BF and BS in the intermediate and long 

period region.  The HE/IE spectra reveal that for all soil site classes considered in this study, 

hysteretic models BP and SD often result in higher and almost equal HE/IE values when 

compared to hysteretic models BF and BS.  This noticeable difference between the HE/IE values 

means for practical application the hysteretic models can be grouped into two groups with 

hysteretic models BP and SD in one group and BF and BS in another.  Thus, for design purposes 

the maximum HE/IE value in each group could be used without significantly overestimating the 

energy demand on the structure.   
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Figure 4.9 Effect of hysteretic model on HE/IE spectra: ductility value µ=3 
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 Validation of Proposed Hysteretic Energy Spectra 4.9

Scaled earthquake records listed in Table 3.19 were used to examine the validity of the proposed 

HE/IE spectra.  The same set of earthquakes has been used to investigate the performance of the 

proposed input energy spectra in Chapter 3.  The validity of the proposed spectra is established 

through comparison with the corresponding “exact” spectra obtained from nonlinear time history 

analysis. 

The mean+σ and mean+2σ “exact” hysteretic energy spectra shown in Figures 4.10 to 4.13 were 

obtained from the mean+σ and mean+2σ nonlinear time history analysis of SDOF systems 

subjected to the selected set of earthquakes that corresponds to each site class as shown in Table 

3.19.  The proposed mean+σ and mean+2σ hysteretic energy spectra were obtained using the 

following steps   

Step1: For a given site, the mean+σ and mean+2σ values of the velocity index (VI) of the 

selected earthquakes were calculated. 

Step2: For a given hysteretic model and ductility value, the corresponding input energy spectra 

was then obtained by multiplying the ordinates of normalized proposed energy spectra by the VI 

values obtained in Step 1, i.e., 

mean+σ (IE/m) = mean+σ (VI) × {mean+σ (N)}
2
   and 

mean+2σ (IE/m) = mean+2σ (VI) × {mean+2σ (NE)}
2
 

Step 3: The corresponding mean+σ and mean+2σ proposed hysteretic energy spectra were then 

obtained as a product of the values in Step 2 and corresponding (HE/IE) values proposed in 

sections 4.3 through 4.6. 
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Figure 4.10Verification of proposed spectra: hysteretic model BP  
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Figure 4.10 shows the mean+σ and mean+2σ hysteretic energy spectra (both proposed and 

“exact”) for SDOF systems with bilinear plastic (BP) hysteretic behavior, pre–to-post yield 

stiffness ratio of α=0.05 and damping coefficient of ζ=5%.  The six earthquake records selected 

for each site class and presented in Table 3.19 were used to develop these spectra.  For site class 

B (Figure 4.10a), the proposed spectra reasonably match both the mean+σ and mean+2σ exact 

spectra in all regions of the spectra for the period of vibration range 0-5 s.  For the mean+σ 

spectra a stronger agreement is observed between the proposed and the exact spectra, and only a 

small value of root mean square error is noted.  It is also observed that the proposed spectra 

envelope the exact spectra obtained from nonlinear time history analysis for all ductility values.  

This suggests that the use of the proposed spectra for design will produce safe results.  

For site class C and hysteretic model BP, the proposed mean+σ spectra reasonably match the 

mean+σ exact spectra (see Figure4.10b).  However, the proposed mean+2σ spectra seem to 

overestimate the spectral values regardless of the ductility value.  If a designer chooses to use the 

proposed mean+2σ spectra, the design will probably be overly conservative. For site classes D 

and E, the proposed mean+σ spectra compare well with the exact mean+σ spectra.  The 

mean+2σ proposed spectra; however, appear to overestimate the hysteretic energy values over a 

range of periods: In the intermediate and long period region for site class D and in the 

intermediate region for site class E. Overall, the proposed spectra for most cases tend to envelope 

the exact spectra, which is desirable as it leads to safe design. 
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Figure 4.11Verification of proposed spectra: hysteretic model SD 
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The verification graphs for both the proposed mean+σ and mean+2σ hysteretic energy spectra for 

SDOF systems with hysteretic behavior SD, pre-to-post yield stiffness ratio α=0.05, damping 

ratio ζ=5% and ductility values of µ=2,3,4, 5 located at site classes B, C, D and E are shown in 

Figure 4.11.  For site class B, Figure 4.11(a), it can be seen that the proposed mean+σ and 

mean+2σ spectra adequately emulate the corresponding exact spectra.  In fact, the proposed and 

exact mean+σ  spectra match very well in all regions of the spectra for ductility values µ=2, 3, 4, 

5. This is a good indication that a minimum of six earthquakes might be considered enough for 

seismic design of structures exhibiting a stiffness degradation hysteretic behavior and located in 

site class B.  For site class C shown in Figure 4.11(b), it is evident that the proposed mean+σ 

hysteretic energy spectra give a good estimate of the exact spectra.  However, the proposed 

mean+2σ spectra appear to overestimate the actual hysteretic energy spectra obtained from 

nonlinear time history analysis. The degree of overestimation is rather prominent in the 

intermediate region with about 35% increase on average over the spectral values from the exact 

spectra. 

For site class D shown in Figure 4.11(c), both the proposed mean+σ and mean+2σ hysteretic 

energy spectra appear to match the exact spectra in the short and intermediate region.  On the 

other hand, both spectra give overestimated values in the long period region.  The proposed 

mean+σ hysteretic energy spectra for site class E shown in Figure 4.11(d) produce a reasonable 

estimate of the actual hysteretic energy in all regions.  Except in the short period region where 

the spectra appear to overestimate the hysteretic energy values, the proposed mean+2σ spectra 

generally show a good estimate of the exact spectra in the intermediate and long period regions. 
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Figure 4.12 Verification of proposed spectra: hysteretic model BF 
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A comparison of the proposed and exact hysteretic energy spectra for SDOF systems with 

hysteretic behavior BF is shown in Figure 4.12(b)-(d) for soil site classes C, D and E.  As can be 

seen, the proposed spectra envelop the exact hysteretic energy spectra for all ductility values.  

Similar to hysteretic model SD, the proposed spectra for site classes D and E exhibit relatively 

higher values of hysteretic energy when compared to the exact spectra in the long period and 

short period regions, respectively. 

For site class B as shown in Figure 4.12(a), the proposed mean+σ spectra tend to underestimate 

the actual hysteretic energy especially in the long period region whereas the proposed mean+2σ 

spectra tend to overestimate the actual hysteretic energy.  Also, for site class B the maximum 

mean+σ and mean+2σ spectral values for both the proposed and exact spectra are found to be 

nearly equal. The parity in the maximum spectral values indicates that the proposed spectra can 

effectively estimate the actual hysteretic energy in the worst case scenario.  More importantly, 

the proposed spectra often produce conservative values over a large region of the spectra.  

Similar results have been observed for hysteretic type BS (see Figure 4.13). The only exception 

is that for site class D, the proposed spectra tend to overly overestimate the hysteretic energy 

values.  In particular the mean+2σ proposed hysteretic energy spectra are found to have values 

about 1.85 times the corresponding exact spectral values.  Also, for site class B the shapes of the 

proposed spectra have uncharacteristically pointed maximums instead of plateaus but appeared 

to follow the trend of the exact spectra.  
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Figure 4.13Verification of proposed spectra: hysteretic model BS 
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5 ESTIMATION OF SEISMIC INPUT ENERGY IN MDOF SYSTEMS 

 Introduction 5.1

In Chapters 3 and 4, simple expressions for input energy and hysteretic to input energy spectra 

for SDOF systems have been developed.  For a given design record and site condition, these 

expressions will enable a designer to estimate the maximum hysteretic energy demand on SDOF 

systems with a desired ductility value of µ ≤ 5 and with a damping ratio of 5%.  In reality, the 

designer often needs to deal with MDOF rather SDOF systems.  Recognizing this fact, this 

chapter aims to formulate relationships for estimating input energy and hysteretic demand for 

MDOF systems using the equivalent single degree of freedom (ESDOF) system concept.  

Section 5.2 presents a review of existing literature on input energy for MDOF systems. Section 

5.3 discusses how a MDOF system can be discretized into a series of ESDOF systems based on 

modal pushover analysis.  Also in this section, a pushover based input energy relationship 

between the MDOF system and its series of equivalent SDOF systems is to be developed.  

Section 5.4 presents a description of the frames to be used for case study and the development of 

the ESDOF systems based on the procedures outlined in Section 5.3.  Finally, six earthquake 

records were used to validate the proposed input energy relationships between the MDOF 

systems and their associated series of ESDOF systems.   

 Input Energy in MDOF Structures: Literature Review 5.2

Regardless of the size of the structure, or whether it is a SDOF or an MDOF system, the first step 

in energy-based seismic design is to determine the seismic energy demand on the structure due to 

the design earthquake.  Seismic energy demand or hysteretic energy, as explained in Chapter 2, 

is the inelastic component of the absorbed energy of the total seismic input energy imparted onto 
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a structure and is a function of the hysteretic behavior of the structure.  For a given design 

earthquake, as described in chapter 4, structures of equal weight/mass but have different 

hysteretic behavior will be subjected to different seismic energy demands.  Expectedly, different 

seismic energy demands will require different energy dissipation capacities.  In energy-based 

design, the structure has to be designed so its energy dissipation capacity will exceed the energy 

demand, i.e., the hysteretic energy.  In the present study, hysteretic behavior dependent input 

energy and hysteretic energy expressions that are functions of ductility and period of vibration 

for SDOF systems with damping ratio of ζ =5% have been developed in Chapter 3 and Chapter 

4, respectively. The fact that almost all practical structures are MDOF systems means we need to 

go beyond SDOF systems and study the seismic input and hysteretic energy of MDOF systems.  

Compared to SDOF systems, seismic energy analysis of MDOF systems is relatively difficult to 

understand and carry out.  The number of dynamic equations involved along with the coupling 

effect of different responses makes the determination of seismic input energy and the 

accompanying hysteretic energy in MDOF systems rather difficult to assess and comprehend.  

Clearly, one can say that the determination of seismic energy for MDOF systems in not as 

straightforward as that for SDOF structures.  However the handiness of SDOF systems can be 

exploited to study the seismic energy of MDOF systems.  Research performed up to now and 

presented below has enabled engineers to reach the conclusion that input energy for MDOF 

structures can be obtained from their equivalent SDOF components.  

Akiyama (1985) used the S00E component of the 1940 El Centro record to compute the input 

energy using a Fourier Spectra for a five-story building.  He compared it with an input energy of 

an equivalent one-story building having the same fundamental period of vibration, total mass, 

and yield strength.  Based on his observation, he concluded that the input energy for MDOF 
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structures can be estimated from the input energy of equivalent SDOF systems.  He also claimed 

that the parameters that affect earthquake input energy are mainly the mass and period of the 

structure.  Nakakashima et al (1996) in their study on the energy behavior of structures with 

hysteretic dampers found that the total input energy and hysteretic energy for MDOF systems are 

approximately the same as those of the equivalent SDOF systems. They also found that this is 

true even for a large value of post-to-pre-yield stiffness ratio. The effect of post-to-pre-yield 

stiffness ratio was only seen on the distribution of hysteretic energy at different levels of the 

structure.  

Shen and Akbas (1999) computed earthquake input energy for a three-, six- and ten-story 

moment resisting steel frames using equivalent SDOF systems.  They compared the input energy 

expressions they formulated based on the energy balance equation and empirical equations by 

Housner (1956), Akiyama (1985), Fajfar et al. (1989), Kuwambura and Galambos (1989) and 

Uang and Bertero (1990).  They found that energies for MDOF and their corresponding 

equivalent SDOF structures are significantly different since the empirical equations do not take 

into account structural properties such as period of vibration and hysteretic behavior.  

Chou and Uang (2003) developed an empirical formula to estimate the absorbed energy in 

multistory fames using an energy spectra developed for SDOF systems. They used a static 

pushover analysis to determine the yield force and ductility factor of an equivalent SDOF 

system.  For low-to-medium rise buildings they showed that their expressions (Equation 5.1) can 

be used to estimate the absorbed energy in MDOF systems from their equivalent SDOF system. 
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21
2

1

( )
n

a i ai i
i

E m V


            (5.1) 

where i is mode number, mi is the modal mass of mode i, Vai is the equivalent velocity obtained 

from the Va spectra, i  is the modal participation factor for mode i, and n is the number of modes 

considered.  Chou and Uang (2003) used n=2 and they claimed that two modes were enough to 

give reasonably good results. 

Li et al. (2007) and Ye et al. (2009) also proposed a procedure for obtaining hysteretic energy of 

MDOF structures from their equivalent SDOF structures.  Their procedure takes into account 

only the first mode of the MDOF structures.  They used eight examples (two regular and six 

irregular MDOF structures) and concluded that their procedure is an effective and simple way of 

obtaining the hysteretic energy demands of MDOF structures.  Ye et al. (2009) also studied the 

energy-based seismic design and its application for steel braced frame structures. They proposed 

an inelastic input energy spectrum for SDOF structures and a relationship between hysteretic 

energy and input energy.  They concluded that the input energy for MDOF structures can be 

estimated from their equivalent SDOF structures.  For structures in the moderate and long period 

regions, they proposed expressions shown in Equations (5.2) and (5.3) for estimating the input 

energy for MDOF systems from their equivalent SDOF systems and the ratio of hysteretic 

energy to input energy for MDOF structures, respectively. 

 , ,  MODF SODF oIE IE T                      (5.2) 
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where IESDOF is the input energy for the equivalent SDOF system, To is the fundamental period 

of the MDOF system, HESDOF is the hysteretic energy of the ESDOF system, IEMDOF is the input 

energy for the MDOF system and HEMDOF is the hysteretic energy of the MDOF system. 

In this study, aligned with the work done by Chou and Uang (2003), an analytical relationship 

between the energy balance for MDOF systems and their equivalent SDOF systems is 

formulated and investigated.  This approach will result in a relationship between the input energy 

of the MDOF systems and their equivalent SDOF systems.  The hysteretic energy for MDOF 

structures is then obtained from the calculated input energy by using equations of hysteretic to 

input energy ratio that were developed for SDOF structures.  This approach is consistent with the 

approach used in estimating the hysteretic energy from the input energy developed for SDOF 

systems in Chapter 4.  

 Equivalent SDOF Systems for Determination of Input Energy in MDOF Systems 5.3

5.3.1 Equivalent SDOF Systems 

The equations of motion for a MDOF system with n degrees of freedom subjected to earthquake 

ground motion, ( )gu t  can be expressed as in Equation (5.4).  

( ) ( ) ( ) ( )gMu t Cu t Ku t M u t            (5.4) 

where M, ,C K  are the mass, damping and stiffness matrices of size (n×n), respectively; ( )u t ,

( )u t , ( )u t  are the relative acceleration, velocity and displacement vectors of the n-degrees of 

freedom system, respectively and 𝜾 is the influence vector.   
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If we denote 
1

( ) ( ) ( )
n

i i

i

u t x t x t


   where  is the mode shape matrix composed of mode 

shape vectors 
i , and ( )x t  is the modal displacement vector composed of modal displacements  

( )ix t  for mode I, then upon substituting the terms for u(t), Equation (5.4) will have the form of 

Equation (5.5) 

   
1 1 1

( ) ( ) ( ) ( )
n n n

i i i i i i g

i i i

M x t C x t K x t M u t   
  

           (5.5) 

For mode r, multiplying both sides of equation (5.5) by 
T

r  results in 

1 1 1

( ) ( ) ( ) ( )
n n n

T T T T

r i i r i i r i i r g

i i i

M x t C x t K x t M u t       
  

            (5.6) 

In nonlinear analysis, responses in different modes are coupled.  In other words, the response in 

one mode is affected by the response in another mode.  However, in modal analysis, responses in 

different modes are assumed to be independent.  This assumption has been widely accepted for 

linear analysis and has been found to give reasonable accurate results.  Coupling of responses is 

evident due to the non-linearity nature of the structural system.  Though this is the reality, the 

same assumption has been extended and used in nonlinear analysis of systems with material 

nonlinearity.  Chopra and Goel (2002), Chou and Uang (2003), Hernandes-Montes et al (2004) 

and recently Prasanth et al (2008) have applied the assumption for determining seismic demand 

in building and found that the assumption is reasonably acceptable.  In this study, this basic 

assumption is maintained in deriving input energy relationship between MDOF system and their 

equivalent SDOF systems.  Thus, responses in different modes are considered to be independent 

and the modes are assumed to be orthogonal to one another.  By using this assumption and by 
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assuming classical damping for the system, Equation (5.6) can be written for any mode r of an 

MDOF system as 

( ) ( ) ( ) ( )T T T T

r r r r r r r r r r gM x t M x t K x t M u t                  (5.7) 

Defining 
T

r r rM M   and 
T

r r rC C   , and substituting these equation in Equation (5.7) yields 

     ( ) ( ) ( ) ( )T T

r r r r r r r r gM x t C x t K x t M u t             (5.8) 

 Dividing both sides of equation (5.8) by Mr , results   

( ) 2 ( ) ( ) ( )
T T

r r r
r r r r r g

r r

K M
x t x t x t u t

M M

   
 


          (5.9) 

Defining a modal participation factor for mode r as 
T

r r
r

r r

M L

M M

 
     and a nonlinear stiffness–

displacement relationship as ( ) ( )T

r r r rK x t F t    , Equation (5.9) then becomes  

( )
( ) 2 ( ) ( )r

r r r r r g

r

F t
x t x t u t

M
           (5.10) 

If the modal displacement is redefined as ( ) ( )r r rx t D t   where ( )rD t is a generalized 

displacement for mode r, Equation (5.10) after simplification becomes  

( )
( ) 2 ( ) ( )r

r r r r g

r

F t
D t D t u t

L
           (5.11) 

According to Chopra and Goel (2002), Equation (5.11) can be interpreted as the governing 

equation for the r
th

- mode inelastic SDOF with the initial natural frequency 𝝎r and damping 

ratio ζr for the r
th

- mode linear MDOF system.  Equation (5.11) can be conveniently solved by 
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standard software as it is similar to a standard equation of motion of a SDOF system.  Chopra 

and Goel (2002) named this approach of analysis as Uncoupled Modal Response History 

Analysis (UMRHA).  

5.3.2 Properties of r
th

-mode Inelastic SDOF System 

The properties of an r
th

-mode inelastic SDOF system are determined using a pushover curve 

obtained from a non-linear static analysis of the MDOF structure pushed to some predetermined 

displacement using a lateral force distribution given by Sr =Mϕr.  The force distribution is set to 

be proportional to the mode shape ϕr of the MDOF system.  In a classical pushover analysis, the 

roof displacement is considered to be a representative response and is taken as a predetermined 

target displacement to which the structure is pushed.  However, it is important to note that some 

researchers (e.g., Manoukas et al. (2011)) have proposed energy-based static pushover analysis 

procedures where the predetermined displacement will be independent of any particular story 

displacement but a displacement pertinent to the energy. 

Generally, the base shear (Vbr) versus roof displacement urr plot obtained from a pushover 

analysis of a MDOF system is converted into an r

r

F

L
 versus Dr  plot of an equivalent SDOF 

(ESDOF) system.  After Chopra (2007), where the proof can be found, the relationship between 

(Vbr, urr) of the MDOF system pushover curve and ( r

r

F

L
, Dr) of the ESDOF system are given by 

Equation (5.12) shown below. 

*
;br brr rr

r

r r r r r rr

V VF u
D

L M L 
  

 
      (5.12) 

where 
*

r r rM L   is the mass participation factor or effective modal mass for mode r.  
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Figure 5.1 (a) an r
th

 mode pushover curve (MDOF system); (b) Force-deformation relation 

for the r
th

 mode inelastic SDOF system 

 

Figure 5.1 (a) shows a typical actual and idealized pushover curve obtained from a pushover 

analysis of a MDOF system pushed to a predetermined roof displacement using a lateral force 

distribution specified for mode shape r.  Figure 5.1(b) is a force-displacement relationship for the 

r
th

 mode of an equivalent inelastic SDOF system generated from the actual pushover curve of 

Figure 5.1(a). The properties of the equivalent inelastic SDOF (αr, 𝝎r, Dry) are used in Equation 

(5.11) for the analysis of the equivalent SDOF system. 

5.3.3 Energy Balance in MDOF Systems 

The energy balance equation for SDOF systems was given in Equation (1.2).  By the same logic 

and using the equation of motion for MDOF structures given in Equation (5.4), the energy 

balance equation for MDOF structures can be expressed as  
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0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t t t t

gMu t u t d Cu t u t d Ku t u t d M u t u t d              (5.13) 

Equation (5.13) can be rewritten as  

kr d a iE E E E          (5.14) 

where  

0

0

0

0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

t

kr

t

d

t

a

t

g

E relative kinetic energy Mu t u t d

E damping energy Cu t u t d

E absorbed energy Ku t u t d

IE relativeinput energy M u t u t d







 

 

 

 

  









 

For a particular mode r with the modal equation of motion shown in Equation (5.8), the modal 

energy balance equation can be expressed as 

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t t t t

T T

r r r r r r r r r r r g rM x t x t d C x t x t d K x t x t d M u t x t d                (5.15) 

or 

kr d a

r r r rE E E IE          (5.16) 

where Ekr
r
, Ed

r
, Ear

r 
and IE

r
 are the relative kinetic energy, damping energy, absorbed energy and 

input energy contributions by mode r, respectively. 

Equation (5.11) gives the equation of motion of a SDOF with unit mass corresponding to mode r.  

The absorbed and input energy components for this equivalent SDOF system can be expressed as  
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, ,

0 0

( )
( ) and ( ) ( )

t t

r rr
a SDOF r i SDOF g r

r

F t
E D t d E u t D t d

L
         (5.17) 

Since ( ) ( )T

r r r rK x t F t     and ( ) ( )r r rx t D t  , Equation (5.17) can be rewritten as 

,

0 0

0 0

( ) 1 1
( ) ( ) ( ) and

1 1
( ) ( ) ( ) ( )

t t

r rr
a SDOF r r r a

r r r r r

t t

r T r

SDOF g r r g r

r r r r

F t
E D t d F t x t d E

L L L

IE u t D t d M u t x t d IE
L L

 

   

  
 

    
 

 

 

    (5.18) 

If the mode shapes are mass normalized, then Mr =1 and 
r rL  , the energy equation between 

MDOF and their equivalent SDOF systems with properties as described in Section 5.3.2 can be 

further simplified and given as follows  

, 2 2

1 1
and

( ) ( )

r r r r

a SDOF a SDOF

r r

E E IE IE 
 

     (5.19) 

The two expressions in Equation (5.19) are used to relate the input and absorbed energy of a 

given vibration mode for the MDOF system to that of its equivalent SDOF system. The amount 

of input energy and absorbed energy of a MDOF system obtained using these mode-based 

relationships is primarily dependent on the modal characteristics of the MDOF system besides 

the seismicity of the site.    

5.3.4  Procedure for Estimating Hysteretic and Input Energies in MDOF Structures 

In this study, a vibration mode-based procedure is proposed for estimating the input and 

hysteretic energy for MDOF structures from their equivalent SDOF structures. The proposed 

procedure involves a series of steps given below:   
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1. Determine the initial periods of vibrations of the MDOF structures and their corresponding 

effective modal masses. 

2. Decide on the number of modes to be used so that the sum of effective modal masses 

considered is ≥ 90% of the total mass of the structure.  

3. For each mode considered, generate pushover curve by pushing the MDOF structure with a 

lateral load pattern that matches the respective mode shape. 

4. For each mode, using the expressions given in Equation (5.12), develop a force-displacement 

relationship for an inelastic equivalent SDOF system from the modal pushover curve of the 

MDOF. 

5. From the resulting pushover force displacement curve, determine the yield force, initial 

stiffness and post-yield stiffness ratio for each mode  

6. Using the yield force, initial stiffness and post-yield stiffness ratio for each mode, determine 

the corresponding ductility factor. The ductility factor can be determined using one of the 

following approaches 

(a) by time history analysis of the SDOF for a given earthquake, or 

(b) from a ductility-based yield force spectra if readily available, or 

(c) from a prescribed desired ductility level 

Options (a) or (b) is used if the main objective is to determine the energy capacity of an 

MDOF systems, whereas option (c) is used if the objective is to design an energy dissipating 

mechanism for an MDOF system.  

7. Using the ductility factor and period of vibration, determine the corresponding input and 

hysteretic energies for each mode using the input energy spectra (Chapter 3) and the 

hysteretic-to-input energy ratio spectra (Chapter 4), respectively.  
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8. The input energy and hysteretic energies of  the MDOF structure are then given by  

2

1

2

1

( )

( )

n
r

MDOF r SDOF

r

n
r

MDOF r SDOF

r

IE IE

HE HE





 

 




       (5.20) 

where  

 r           = modal participation factor for mode r 

n             = number of modes considered  

IEMDOF     = estimated input energy for the MDOF system 

HEMDOF   = estimated hysteretic energy for the MDOF system 

IE
r
SDOF   = estimated input energy for the equivalent SDOF system for mode r 

HE
r
SDOF  = estimated hysteretic energy for the equivalent SDOF system for mode r 

 Description of Frames Used for  Case study 5.4

Low and medium height moment resisting frames were used to investigate the validity of the 

expressions given in Equation (5.20) for estimating hysteretic and input energies for MDOF 

structures using equivalent SDOF systems.  Four moment resisting frames with 3-, 5-, 7- and 9-

stories were used in the study.  The moment resisting frames have been previously used by 

researchers such as Gupta and Krawinkler (1999), Chou and Uang (2003) and Prasanth et al 

(2008) for estimating the seismic responses of MDOF systems using equivalent SDOF systems.  

Their known physical and structural properties were used in checking the accuracy of the SAP 

2000 and PERFORM 3D computer models the frames used in this study.   

The 3-, 5-, and 7- story office building have ductile moment resisting frames in both directions to 

resist earthquake load as per the requirements of FEMA (1994).  The design parameters used and 



 

141 

 

the design procedures involved can be found in Chou (2001).  The 9-story building has steel 

moment resisting frames in both directions and was designed by a SAC commissioned 

consulting firm based on the procedures of UBC (1994).  The 3- story and 9-story building were 

composed of steel columns and beams whereas the 5-story and 7-story buildings were designed 

using steel encased reinforced concrete (SRC) columns and steel beams.  For the 3-, 5- and 7-

story frames, a reduced beam section with 50% reduction in both the top and bottom flanges was 

used to reduce the demand to the connections.  Other than at the base of the columns, this 

ensures that hinges do form first at beam ends for a given connection. The elevations, member 

sizes and strengths of these four frames are listed in Appendix C. 

5.4.1 Equivalent SDOF Systems  

FEMA 273 (1997) recommends that the number of modes with a combined effective modal mass 

of larger than 90% of the total mass be used in a modal analysis to estimate the dynamic 

response of a structure.  In addition, Filiatrault (1998) suggested that the effective modal mass 

(Lr Гr, or simply Lr
2
 when modes shapes are mass normalized) can be used as an index for the 

number of modes to be considered for elastic dynamic analysis.  In this study, the 

recommendation by FEMA 273 was adopted for determining the number of modes used for 

comparing the input energy imparted to the MDOF systems (i.e., the frames described above) to 

their equivalent SDOF systems.  The periods of vibration, mass participation factors and 

effective modal masses using two modes for each of the frames considered are shown in Table 

5.1  
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Table 5.1 Periods of vibration and effective modal masses 

Frame 3-Story 5-Story 7-Story 9-Story 

Period T1 (s) 1.06 1.48 1.85 2.14 

Period T2 (s) 0.35 0.53 0.66 0.80 

L1
2
 (kips

2
/in.) 2.195 3.654 5.175 21.241 

L2
2
, kips

2
/in.) 0.279 0.494 0.649 2.765 

ΣLr
2
 (kips

2
/in.) 2.474 4.148 5.824 24.006 

Total Mass M (kips
2
/in.)

 2.527 4.349 6.172 25.723 

ΣLr
2
/M 0.979 0.954 0.944 0.933 

 

From Table 5.1, it can be seen that for all the frames considered in this study the total mass 

contribution from just two modes was found to exceed 90% of the total mass. Thus, according to 

FEMA 273 (1997), it can be concluded that only two modes are needed for estimating the 

dynamic response of the frames.  Based on the procedures outlined and the expressions 

formulated in Section 5.3, the equivalent SDOF systems of the first two modes for each frame 

were calculated and are presented below.  Subsequently, these equivalent SDOF systems were 

used for estimating the input energies for the MDOF frame systems.  

Static pushover analysis results for the 3-, 5-, 7- and 9-story frames for the first and second mode 

are shown in Figures 5.2 and 5.3, respectively.  As mentioned earlier, the static pushover 

analyses were obtained by subjecting the frames to a pattern of lateral loads that emulate the 

modal shape of the respective mode until the roof displacement reaches a prescribed value.  The 

prescribed displacement of each frame for each mode is limited to a drift ratio of 0.02.  Drift 

ratio limit is often used as a criterion in the design of frames (see Appendix C). 
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Figure 5.2 First mode MDOF system pushover curves 

 

Figure 5.3 Second mode MDOF system pushover curves 
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The 9-story building was designed for site class D, which is higher than that of site class C to 

which the 3-story, 5-story, and 7-story frames were designed for.  The higher yield force 

observed for the first and second modes of the 9-story frame when compared to the other three 

frames emanates from the inherent demand of higher yield force for a higher seismic coefficient.  

It has been observed that for the first mode pushover case most of the yielding occurred at lower 

stories with plastic hinges forming at base of columns and beams in the first and second stories, 

whereas in the second mode case much of the yielding happens at the upper stories, mainly 

concentrated approximately at level where the lateral force pattern for the second mode shape 

changes its sign. 

Figures 5.4 and 5.5 show the force–displacement relations of the ESDOF components that 

correspond to the first and second modes of the corresponding MDOF systems.  They were 

developed from pushover curves shown in Figures 5.2 and 5.3.  Expressions given in Equation 

(5.12) were used to convert the MDOF pushover curves to the ESDOF force-displacement 

relationships.  The ESDOF yield forces for the frames considered in the first and second modes 

(shown in Figures 5.4 and 5.5) indicate that the yield forces are higher for the second modes.  

This is in direct correlation to the notion that very limited yielding occurs in the second mode.  It 

is probable that most of the yielding is contributed by the first mode, leaving the second mode to 

respond elastically.  A summary of the yield forces and other parameters that were used in the 

input energy analysis for the ESDOF using BISPEC (2010) are listed in Tables 5.2 and 5.3. 
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Table 5.2  ESDOF parameters for the 1
st
 mode 

 
Period (s) D1y (in.) F1y/L1(in./s

2
)  1 

3-Story 1.06 3.23 114 0.07 1.481 

5-Story 1.49 5.2 93 0.03 1.912 

7-Story 1.85 6.7 77.3 0.02 5.175 

9-Story 2.14 11 95 0.06 4.609 

 

Table 5.3  ESDOF parameters for the 2
nd

 mode  

 
Period (s) D2y (in.) F2y/L2(in./s

2
)  2 

3-Story 0.342 3.2 1080 0.02 0.528 

5-Story 0.537 3.85 528 0.05 0.703 

7-Story 0.654 5.75 530 0.035 0.649 

9-Story 0.781 8.5 550 0.01 1.663 

 

 

Figure 5.4 First mode force-deformation relationships for the inelastic ESDOF system 
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Figure 5.5 Second mode force-deformation relationships for the inelastic ESDOF system 

 

 Comparison of Input Energy in MDOF and ESDOF Systems 5.5

As shown in Equation (5.20), a simple relationship exists between earthquake input energy for 

MDOF system and its series of equivalent SDOF systems.  In order to demonstrate the 

applicability and validity of these equations, the MDOF frames and their modal ESDOF systems 

have been subjected to three different earthquake ground motions.  The earthquake ground 

motions selected for this purpose have both fault parallel and fault normal components.  Their 

characteristics are as listed in Table 5.4.   
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Table 5.4  Ground motions used for demonstration 

Ground motion 
Fault Normal (FN) Component Fault Parallel (FP) component 

CAV* PGA* PGV* CAV* PGA* PGV* 

Loma Prieta 72.88 24.71 5.895 53.33 15.29 2.369 

Northridge-01 90.82 25.22 1.242 67.86 14.05 0.7822 

Chi-Chi Taiwan 122.2 27.38 2.956 107.5 19.96 2.875 

* all units are in inches and seconds 

The same earthquakes were used for all four frames.  It is important to note that the frames need 

to behave non-linearly when subjected to the ground motions in order to capture their hysteretic 

behavior.  Thus, the earthquakes listed in Table 5.4 were scaled in such a way that they will 

cause yielding in the frames without collapse and/or excessive distress.  As a result, the ground 

motion components were scaled differently.  The scale factors applied to each earthquake for 

each frame are shown in Table 5.5. 

Table 5.5  Ground motion scaling factors 

Ground motion Loma Prieta (LP) Northridge-01 (NR) Chi-Chi-Chi Taiwan 

(CHI) 
FN FP FN FP FN FP 

3-Story 7.14 12.5 5 11 7.14 10 

5-Story 8.33 12.5 5 11 7.14 10 

7-Story 8.33 12.5 5 11 7.14 10 

9-Story 6.5 12.5 5 11 7.14 10 

  

A total of 72 earthquake time history analyses were performed: 48 using BISPEC (2010) for the 

ESDOF components and 24 using PERFORM -3D (2006) for the MDOF systems. The results 

from both systems were analyzed and compared, and are presented below for each frame.  As a 

side note, it has been found that in a linear analysis the expressions of Equation (5.20) are 
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capable of estimating the input energy in MDOF systems from their equivalent SDOF systems to 

an accuracy of about 95%.  

5.5.1 Three-Story Frame 

Input energy imparted to the three-story MDOF frame and its series of ESDOF components from 

the earthquakes given in Table 5.4 are shown in Figure 5.6.  The combined ESDOF input energy 

from the first two modes is compared with the input energy obtained from a direct analysis of the 

MDOF system for each of the three earthquakes (two components each). As can be seen, the 

modal pushover based expressions of Equation (5.20) are able to estimate the input energy of the 

MDOF system with reasonable accuracy.  The level of accuracy; however, is not uniform for all 

earthquakes considered.  For instance, the MDOF and the combined ESDOF input energy time 

histories for the fault parallel components of the Loma Prieta and Northridge records match for 

the entire duration of the excitation, whereas the input energy time histories for the fault normal 

components of all three records and the fault parallel component of the Chi- Chi record slightly 

bifurcate after the maximum input energy is reached.  This indicates that the input energy 

relationships of Equation (5.20) not only depend on the structural properties of the system but 

also on the characteristics of the ground motion. 

In Chapter 3, site soil based input energy spectra were developed where the input energy was 

normalized through division by the velocity index (VI) and then taking the square root of the 

resulting quantity.  Because the VI normalized input energy spectra are dimensionless, this 

allows the designer the flexibility to choose the proper intensity of the design earthquake.  It is 

now of interest to investigate the effect of velocity index on the MDOF and the combined 

ESDOF systems maximum input energies and their ratio.  For the three-story frame, the results 

are presented in Figure 5.7.  
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Figure 5.6  Input energy (IE) time histories: three-story frame 
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Figure 5.7 Velocity index (VI) - input energy (IE) relationships: three-story frame 

      

Recall that the velocity index combines two characteristics of ground motion (CAV and PGV) 

that are closely related to the energy imparted by an earthquake to a structure. CAV and PGV 

show the cumulative effect of ground motion duration and the sudden jolt due to a spike in the 

magnitude of the earthquake, respectively.  Generally, earthquakes with higher values are 

deemed as strong earthquakes.  Thus, earthquakes with high VI values are anticipated to impart 

high input energy to a structure.  From Figure 5.7; however, the effect of VI on input energy is 

rather unclear.  For LP-FP, NR-FN, and NR-FP, a direct relationship is observed between the 

maximum input energy and VI.  On the other hand, among the six records used, CHI-FP has the 
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maximum input energy relationships could be attributed to the difference in the frequency 
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SDOF systems based on the expressions given in Equation (5.20).  For the three-story frame, the 

IEESDOF/IEMDOF values were obtained to be 0.98, 1.08, 1.11, 0.98, 0.99, and 0.99 for LP-LN, LP-

FP, NR-FN, NR-FP, CHI-FN and CHI-FP earthquake records, respectively.  

5.5.2 Five-Story Frame 

Figure 5.8 shows a comparison of the input energies for the MDOF and its two ESDOF systems 

for the five-story frame subjected to the earthquakes given in Table 5.4.  Like the three-story 

frame, the input energy of the MDOF system was obtained from a direct nonlinear analysis and 

then compared to that obtained from the sum of the input energies two ESDOF systems that 

correspond to the first two modes of the MDOF system.  The corresponding input energy ratios, 

IEESDOF/IEMDOF , were found to be 0.92,1.12,0.97,0.96,1.03 and 0.82 for the LP-FN, LP-FP, NR-

FN, NR-FP, CHI-FN and CHI-FP earthquake records, respectively.  Except for the CHI-FP 

record where the input energy obtained using the ESDOF systems underestimates the actual 

input energy; the input energy relations of Equation (5.20) produce a rather good estimate of the 

actual input energy of the MDOF system.  

Table 5.6  IEESDOF /IEMDOF for 3-Story and 5-Story Frames 

  Input Energy Ratio, IEESDOF /IEMDOF 

Record LP-FN LP-FP NR-FN NR-FP CHI-FN CHI-FP 

3-Story 0.98 1 1.11 0.98 0.99 0.99 

5-Story 0.92 1.12 0.97 0.96 1.03 0.82 

 

Upon comparison of the IEESDOF /IEMDOF ratios for the three- and five-story frames, some 

irregularities are observed for the different earthquakes.  For instance, for the five-story frame 

the input energy relations produce an exact estimate for LP-FN with an energy ratio of unity, 



 

152 

 

whereas a less accurate estimate is obtained for the CHI-FP record (see Table 5.6).  

Theoretically, with an increase in the number of stories, higher modes effect is anticipated and so 

the energy relationships are expected to give less accurate results.  However, as shown in the 

above results, this theory does not always hold given the random nature of earthquakes. 

The energy ratios IEMDOF /max IEMDOF and IEESDOF /max IEESDOF for the five-story frame are 

shown in Figure 5.9.  As can be seen, they display similar characteristics as the three-story frame 

shown in Figure 5.7.  For both frames, the maximum and minimum ratios occur for the same 

earthquake.  This demonstrates that the input energy relationships are rather consistent in 

estimating input energy for MDOF systems from their ESDOF components.  Form Figure 5.9, 

except for the CHI-FP record, it can also be observed that the variations of IEMDOF /max IEMDOF  

and IEESDOF /max IEESDOF follow a similar trend as VI/maxVI.  This suggests that input energy 

estimation for MDOF structures from their ESDOF components is related to the VI value of the 

specific earthquake.  
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Figure 5.8 Input energy IE time histories: five-story frame 
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Figure 5.9 Velocity index (VI) - input energy (IE) relationships: five-story frame 
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relatively weak compared to the other records.  Clearly the performance of the proposed input 

energy relationships is dependent on the earthquake record –structure interaction.  

Table 5.7 IEESDOF /IEMDOF for 3-story, 5-story and 7-story frames 

  Input Energy Ratio, IEESDOF /IEMDOF 

Record LP-FN LP-FP NR-FN NR-FP CHI-FN CHI-FP 

3-Story 0.98 1.08 1.11 0.98 0.99 0.99 

5-Story 0.92 1.12 0.97 0.96 1.03 0.82 

7-Story 1.11 0.89 0.94 1.06 0.81 0.84 

 

  

Figure 5.10 Velocity index (VI) - input energy (IE) relationships: seven-story frame 
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Figure 5.11  Input energy IE time histories: Seven-story frame 
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5.5.4 Nine-Story Frame 

A comparison of the input energy time histories for the nine-story MDOF frame and its two  

ESDOF systems is shown in Figure 5.13.  The max IEESDOF /max IEMDOF ratios are 1.03, 1.11, 

0.76, 1.00, 0.94, and 0.76 for the LP-FN, LP-FP, NR-FN,NR-FP, CHI-FN and CHI-FP 

earthquake records, respectively.  Even though the input energy ratios for LP-FN, LP-FP, NR-FP 

and CHI-FN records show a good correlation, the same cannot be said about the input energy 

ratios for the NR-FN, and CHI-FP records.  The NR-FN and CHI-FP input energies obtained 

using Equation (5.20) underestimate the actual input energy for this nine-story frame.  As shown 

in Figure 5.12, the variations of IEMDOF /max IEMDOF and IEESDOF /max IEESDOF for the nine-story 

frame exhibited similar trend as the VI/maxVI variation.  This was also the case for the 3-, 5- and 

7-story frames discussed earlier. 

  

Figure 5.11 Velocity index (VI) – input energy (IE) relationships: nine-story frame 
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Figure 5.12  Input energy IE time histories: nine-Story Frame 
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Higher mode effects on the dynamic response of structures are well documented if not well 

quantified.  The effect of higher modes on the seismic response of structures has been the subject 

of much research.  It has been generally agreed that higher mode effects are more pronounced in 

high-rise and irregular structures as well as in structures where the responses from different 

modes are likely to be coupled.   It is therefore reasonable to anticipate that the performance of 

the MDOF-ESDOF input energy relationships will deteriorate when the number of stories of the 

MDOF system increases.  Thus, for a given earthquake, the max IEESDOF /max IEMDOF ratio is 

expected to deviate further away from unity as the number of stories increases.  However, from 

the results generated in this study using just two modes, this is not always the case.  For instance, 

for the six earthquake records considered in this study and from the results summarized in Table 

5.8, it can be seen that except for NR-FN and CHI-FP the max IEESDOF /max IEMDOF ratios 

neither increase nor decrease as the number of stories increases.  On the other hand, the max 

IEESDOF /max IEMDOF ratios for NR-FN and CHI-FP do substantiate the theoretical expectation.   

Table 5.8 IEESDOF /IEMDOF for 3-story, 5-story, 7-story, and 9-story frames 

  Input Energy Ratio, IEESDOF /IEMDOF 

Record LP-FN LP-FP NR-FN NR-FP CHI-FN CHI-FP 

3-Story 0.98 1.08 1.11 0.98 0.99 0.99 

5-Story 0.92 1.12 0.97 0.96 1.03 0.82 

7-Story 1.11 0.89 0.94 1.06 0.81 0.84 

9-Story 1.03 1.11 0.77 1.00 0.90 0.76 

 

From the discussions in Sections 5.4.1 through 5.4.4, it can be concluded that for the three-, five-

, seven-, and nine-frames the energy relationships developed in Section 5.3.3 are capable of 

producing a reasonable estimate of the actual input energy for MDOF systems using input energy 
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from their associated ESDOF components.  For the six earthquake ground motions used in this 

study, the average input energy estimation ( both under and over estimation) errors are found to 

be 4.3%, 7.9%, 11.4% and 11.8% for the three-, five- , seven- and nine-story frames, respectively 

(see Table 5.9).  Based on this observation, it can be concluded that using pushover-based modal 

combination, the input energy (and by extension the hysteretic energy) for MDOF system can be 

estimated from its ESDOF components to a reasonable accuracy even though the increase in 

error as the number of frame stories increases does suggest that the effect of higher modes on the 

input energy relationships can be significant.  

Table 5.9 MDOF system input energy estimation error 

 

𝐸𝑟𝑟𝑜𝑟(%) =
|𝐼𝐸𝐸𝑆𝐷𝑂𝐹 − 𝐼𝐸𝑀𝐷𝑂𝐹| ∗ 100

𝐼𝐸𝑀𝐷𝑂𝐹
 

 

LP-FN LP-FP NR-FN NR-FP CHI-FN CHI-FP Ave. Error 

3-Story 2.4 8.1 10.9 1.9 1.2 0.6 4.2 

5-Story 8.1 12.1 3.0 3.7 2.7 17.8 7.9 

7-Story 10.9 11.2 6.3 5.4 19.0 15.8 11.4 

9-Story 3.0 11.5 22.5 0.4 9.9 23.6 11.8 
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6 HYSTERETIC ENERGY DISTRIBUTION FOR MDOF SYSTEMS 

6.1 Introduction 

The advantage of energy-based seismic design (EBSD) over other code-based seismic design 

methods is its ability to capture the duration related cumulative damage effect of the seismic 

event.  The duration related cumulative damage of a seismic event has been defined as hysteretic 

energy of the system.  In Chapter 4, expressions for estimating hysteretic energy in SDOF 

systems have been developed.  Subsequently, in Chapter 5 relationships between hysteretic 

energy of MDOF system and its series of equivalent SDOF systems have been established.  

Hysteretic energy is the main design parameter in EBSD to determine member sizes.  For a given 

earthquake, the hysteretic energy demand in a member depends on its relative location with 

respect to the structure.  For multi-story frames, the distribution is made among the different 

stories instead of individual members.  In Section 6.2, a literature review of some existing 

hysteretic distribution schemes for multistory frames is presented along with a proposed scheme 

which will be shown to be an improvement over the existing ones. Section 6.3 presents a 

relationship between the hysteretic energy demand due to earthquakes and the conventional 

plastic capacity of structures.  Based on this relationship and other code related requirements, an 

EBSD procedure for the design of MDOF systems is proposed.   

In Section 6.4, the entire work of this study is illustrated using two design examples: a three 

story single bay and a five story two bay frames.  The design examples show each and every 

steps for determining the input energy and hysteretic energies for equivalent SDOF systems and 

the corresponding hysteretic energy for MDOF frames and its distribution along the height.  



 

162 

 

6.2 Hysteretic Energy Distribution 

6.2.1 Literature Review 

Using a statistical approach, Seneviratna and Krawinkler (1997), and Shen and Akbas (1999) 

investigated the hysteretic energy (HE) distribution over the height of a building and were not 

able to identify any consistent pattern.  However, Akbas et al. (2003) from their study of regular 

frames with a damping ratio of ζ=0.02 concluded that hysteretic energy distribution along the 

height is linear.  Ye et al. (2009) counter argued that hysteretic energy distribution can be 

considered linear only for damping ratio ζ>0.1 and proposed the linear equations shown in 

equation (6.1) to distribute the HE over the building height for structures with damping ratio 

ζ>0.1.  It is imperative to note that such high damping could only be attained if supplementary 

damping devices are installed in the structure.  
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                 (6.1) 

where N is the total number of stories; i is the story of interest; HE and HEi are the total and story 

i hysteretic energies, respectively.   

An attempt has been made by Chou and Uang (2003) to distribute hysteretic energy in multi-

story frames based on a multi-mode pushover analysis approach.  In their approach, HE for 

MDOF systems is distributed using a relationship between the end rotations and hysteretic 

energy of the elements in a particular story.  They recommended distribution patterns which they 

referred to as energy shapes at different stages of loading.  These energy shapes are functions of 

cumulative end rotations of each story.  They proposed three different energy shapes for each of 
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the first two modes and distribute the hysteretic energy contribution by each mode to the 

different stories of the structure.  From their study on 5-, 7- and 9-story frames, they concluded 

that their proposed procedure was able to predict damage distribution in low to medium-rise 

frames when the first two modes are considered.  They also pointed out that the majority of the 

energy was contributed by the first mode for each of the frames considered in their study.  

Peak responses have been dominantly taken as damage indices for structures subjected to 

earthquakes in most of the research on dynamic response of structures.  Pushover analysis, also 

known as nonlinear static procedure, has been widely used in estimating structural peak 

responses.  Over the years, different but complementary approaches of pushover analysis have 

been suggested by various researchers.  Some examples include: adaptive pushover by Gupta and 

Kunnath (2000), pushover result combination (PRC) by Monghadam and Tso (2002), modal 

pushover analysis by Chopra and Goel (2002) and consecutive modal pushover (CMP) procedure 

by Poursha et al. (2009).  Although with some reservations, the above researchers concluded that 

pushover analysis is capable of estimating structural peak responses.  This finding and findings 

from previous research on the topic made the static pushover analysis a widely accepted and 

used analysis for seismic performance evaluation of existing and new structures.  However, as it 

was clearly stipulated in the problem statement in Chapter 1, it is the cumulative effect of 

earthquake throughout its duration of occurrence and not just the ultimate peak response that 

affects structures the most.  In light of this, hysteretic energy which is a measure of the 

cumulative effect of earthquakes on structures is being considered as damage index in place of 

the peak structural responses.   

There is no doubt that an earthquake that causes a substantial deformation in structures is going 

to impart high deformation energy.  Thus, it is a forgone conclusion that there exist a relationship 
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between the structural peak responses and the hysteretic energy accumulated in structures during 

an earthquake event. To this end, Ye et al. (2009) established a relationship between the peak 

story responses and plastic deformation energy PEi obtained from a pushover analysis.  They 

proposed that the peak story responses and the corresponding story plastic deformation energy 

can be related by equation (6.2).  They further pointed out that there is a direct relationship 

between HE distribution and PE in MDOF systems and proposed an expression for HE 

distribution in MDOF systems as shown in equation (6.3). 

(1 )( 1)i i i yi yiPE F d                              (6.2) 

1 1

i i
N N

i i
i i

HE PE

HE PE
 



 
                           (6.3) 

where PEi is the plastic energy, ai is the post-yield stiffness ratio, µi is the ductility ratio, Fyi is 

the yield force, dyi is the story yield deformation and i is the story number in question.  

Recently, Wang and Yi (2012) developed a procedure for estimating the total hysteretic energy 

for MDOF systems from their equivalent SDOF systems.  They also studied the relationship 

between hysteretic energy of a given story and its momentary story shear and story drift.  Based 

on their findings, they proposed distribution equations of hysteretic energy for MDOF systems as 

follow. 
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where k,n = the displacement at story n in mode k ; k, n =k, n  - k, n-1 ; mi = mass of story i ; 

HEn = hysteretic energy dissipated by story n in mode k and HE = total hysteretic energy in mode 

k.  They also proposed a hysteretic energy distribution for multi-story buildings with modes 

shapes for different plastic stages, which is simply the expression in equation (6.4) except that 

mode shapes k, n to k, n-1 are replaced by p,k, n  top,k, n-1 where p refers to the plastic stage 

under consideration.  They tested their formulations on three six-story pin supported buildings 

subjected to a total of nine ground motions; three records each on hard, intermediate and soft 

soils.  They concluded that their proposed equations were suitable for hard soil site and for 

buildings whose lateral displacement shape is controlled by the first mode shape. 

The expression proposed by Wang and Yi (2012) is actually similar to the work done by external 

forces applied at each story level during story displacements.  For instance consider the lateral 

force distribution and story displacement shown in Figure 6.1 below.  

 

Figure 6.1 (a) Lateral forces and masses; (b) Lateral displacements 
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For the hypothetical story external forces and displacements shown in Figure 6.1, the external 

work done by the set of lateral forces due to the resulting story displacement can be obtained as 

follows.  Let’s define WEi as the external work done by the set of lateral forces due to the 

displacement of story i, di, then we have: 
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(6.5) 

From the above expressions, a general expression for the external work done by a set of lateral 

forces as shown in Figure 6.1 due to a story i drift, di = di-di-1 can be written as follows. 

( )
n

i k i

k i

WE F d


                         (6.6) 

The total external work done by the set of lateral forces due to the resulting displacements shown 

in Figure 6.1 is then given as 

1 1 2 2 1 1

1

...
n

total n n n n k k

i

WE F d F d F d F d F d 



        (6.7) 

Then, the story-wise distribution of the total external work done expressed in terms of energy 

ratio, R; for story i, Ri is given by 
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In modal pushover analysis, it is common practice to define the lateral load pattern as a product 

of the mass matrix and mode shape vector.  In such cases, the story forces Fi are directly 

proportional to the product mii .   If the story displacements, di, are assumed to be proportional 

the story mode shape values i,, then replacing Fi , di and di in equation (6.4) by mii, i  and 

i, respectively, the expression shown in Equation (6.9) can be obtained. 
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     (6.9) 

Equation (6.9) is the same as Equation (6.3), a hysteretic energy distribution scheme proposed by 

Wang and Yi (2012).  The only difference is that Wang and Yi’s (2012) expression expands for 

mode shapes at different pushover stages; however, Equation (6.9) is based on the modes of the 

undeformed shape of the structure.  In other words, Equation (6.9) doesn’t capture the behavior 

of the structure beyond the yield point.  Equation (6.8), on the other hand, is capable of 

simulating the nonlinearity behavior of the structures through the inelastic deformations that are 

used in calculating the external work done by the story forces.  For this reason, the distribution 

scheme of Equation (6.8) is proposed for use in this study. 
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6.2.2 Comparison of Hysteretic Energy Distributions 

The effect of structural properties on hysteretic energy distribution can be readily studied by 

changing the size, material and geometry of the structure.  However, it is difficult to either 

qualitatively or quantitatively describe the effect of the nature of earthquake on hysteretic energy 

and its distribution for MDOF systems.  Hysteretic energy distribution for MDOF systems due to 

a seismic excitation is erratic and frenzied.  Such erratic hysteretic energy distributions were 

observed from a study made for 3-, 5-, 7- and 9-story frames subjected to six different 

earthquakes and are presented in Figure 6.2.  The frames and the earthquakes were previously 

used in chapter 5.  From Figure 6.2, it can be seen that the hysteretic energy demand distribution 

due to any of the earthquakes is neither peculiar nor follows any discernible pattern.  For 

instance, the hysteretic energy demand distribution due to the Loma Prieta Fault Normal (LP-

FN) component decreases with height for the 3-, 5- and 7- story fames but this decrease is not 

obvious for the 9-story frame.  Similarly, the distribution patterns of the hysteretic energy due to 

the other five earthquakes for the different frames were found to be inconclusive.  This 

observation contradicts a statement made by Shen and Akbas (1999) that hysteretic energy is 

insensitive to ground motion and is more uniformly distributed along the height of the structure 

when they did their study on 3-, 6- and 10-story regular moment resisting steel frames. 

The time history analysis results shown in Figure 6.2 clearly indicate that there is no definitive 

way of distributing hysteretic energy along the height of MDOF structures.  It can be said that 

hysteretic energy distribution is ground motion specific and is sensitive to the interaction 

between the nature of the earthquake and the structural properties of the MDOF system.  Despite 

this observation, as outlined in Section 6.2, researchers have retorted to suggesting possible 

schemes of distributing hysteretic energy demand in MDOF systems.  It is important to recall 
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that the main purpose of energy-based design is to ensure that the hysteretic energy demand is 

met by the energy dissipating capacity of the structure.  In addition, because seismic load is just 

one of several design loads acting on a structure, a designer needs to consider the force effects of 

other design loads such as dead and live loads in sizing the structural elements while meeting the 

hysteretic energy demand of the seismic load.  Generally, for multistory frames, the dead load 

and live load analysis would require stronger columns at lower stories.  As a result, it is 

imperative to distribute the hysteretic energy in such a manner that takes the relative story 

stiffness and strength into account.  

A close look at the hysteretic energy distributions discussed in Section 6.2 reveals that these 

distributions do implicitly take into account the story stiffness and strengths as they directly 

affect the story displacements and forces.  In order to evaluate the relative suitability of the 

hysteretic energy distribution schemes stated in Section 6.2, they need to be compared to actual 

seismic hysteretic energy distribution.  However, it was observed that hysteretic energy 

distributions obtained from exact time history analysis were erratic and cannot be taken as a 

benchmark for comparison.  Alternatively, an actual hysteretic energy distribution obtained using 

a pushover analysis can be used.  Hysteretic energy demand in a structure during a pushover 

analysis can be easily computed at each stage of pushover by multiplying the plastic moment 

capacity of the elements and the resulting plastic joint rotations.   
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Figure 6.2 Hysteretic Energy Distribution Results from Time History Analysis 
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This is conceptually the same as the internal work done component in formulating the 

fundamental energy equation in plastic analysis of structures.  By summing the energy 

contributions from all elements in a given story, it can be readily observed how hysteretic energy 

is distributed along the height of a given structure.  Using this approach the hysteretic energy in 

each story can be obtained using the expression shown in equation (6.10).  

, , , ,

1 1

nb nc

i pb k pb k pc j pc j

k j

HE M M 
 

                        (6.10) 

where  

Mpb,k , pb,k = plastic moment capacity and plastic rotation of beam at end k in story i  

Mpc,j , pc,j= plastic moment capacity and plastic rotation of column at end j in story i  

nb = number of plasticized beam ends in story i, and  

nc = number of plasticized column ends in story i 

In Figure 6.3, the actual hysteretic energy distribution based on Equation (6.10) is compared with 

the hysteretic energy distribution schemes stated in Section 6.2.  As can be seen, the hysteretic 

energy distribution schemes by Ye et al. (2009), Wang and Yi (2012) and the proposed method 

underestimate the hysteretic energy demand at the lower story and overestimate it at the upper 

stories.  This can be clearly seen in Figures 6.3 (a), (b), (c) and (d) for the 3-, 5-, 7- and 9- story 

frames, respectively.  The figures also show that the margin of error for estimating hysteretic 

energy demand is larger for Wang and Yi’s (2012) distribution  scheme when compared to that 

of Ye et al.’s (2009) and the proposed method given by Equation (6.8). 

 



 

172 

 

 

 

 

Figure 6.3 Comparison of hysteretic energy distribution in MDOF systems 
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The larger margin of error for the Wang and Yi’s (2012) method, especially for the 7- and 9-

story frames, may be attributed to the fact that the distribution does not take into account the 

effect of nonlinearity.  This is clear from Equation (6.4) where the modes shapes only reflect the 

elastic behavior of the frames.  However, it is also equally important to note that Wang and Yi 

(2012) did give an extension of their formulation if the structure goes into the plastic stage.  They 

suggested that mode shapes for each stage of plasticity needed to be recalculated based on the 

stiffness and geometric condition of the structure and used in Equation (6.4).  This is not a 

simple task because the reformulation of stiffness and mass matrices for different stages of 

plasticity is computationally demanding and impractical for design purposes.  

On the other hand, Ye et al. (2009) and the proposed distribution schemes appear to match the 

actual distribution for the 2
nd

 story and above fairly well despite a significant difference being 

observed for the 1
st
 story.  In order to explain why such substantial difference is exhibited only 

for the 1
st
 story, we need to examine the formulation of the actual hysteretic energy distribution 

more carefully.  Recall from Equation (6.9) that the hysteretic energy demand for the 1
st
 story 

includes the hysteretic energy demand for the 1
st
 floor beams and 1

st
 floor columns.  It was 

observed that when the frames were pushed beyond the performance limit of life safety, the 

hinges at the base of the frames start to form suddenly.  This sudden increase in hinge 

deformation sharply increases the hysteretic energy demand in the first story and ultimately 

causing the structure to collapse.  

Based on the above observation, some adjustment to the method by Ye et al. (2009) and the 

proposed method may result in a better distribution scheme when compared with the actual 

distribution given by Equation (6.10).  With this in mind, the proposed method is to be adjusted 

and will be presented below.  Nevertheless, it is important to consider the comparative advantage 
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of the proposed method over Ye et al.’s (2009) scheme.  Both schemes required the computation 

of story displacements and story forces/shears.  In addition, Yet et al.’s (2009) approach involves 

the following extra steps: 

1. Development of story level pushover curves for each story  

2. Computation of  story yield forces, story pre-to-post yield stiffness ratio and story 

ductility ratio by idealizing the story level pushover curves 

The story level pushover curves for the 3-, 5-, 7- and 9-story frames presented in Figure 6.4 were 

used in developing the hysteretic energy distributions according to Ye et al.’s (2009) scheme 

shown in Figure 6.3.  Idealization of story level pushover curves and obtaining the corresponding 

yield forces, pre-to-post stiffness ratio and ductility ratio are not that straightforward.  It is rather 

time consuming and the final values of the parameters that define the idealized pushover curves 

are only approximates.  It is also likely that the long mathematical manipulations are needed for 

each story and these have the potential to introduce computational errors.  It is possible that a 

single error in computing one of the parameters used to define the story based pushover curves 

could lead to a misleading hysteretic energy distribution.  

On the other hand, the proposed method does not involve any of these additional computations 

and only depends on the story forces and story displacements.  Also, from the foregoing 

discussion, it is evident that the proposed method is preferred for two reasons: (1) it is easier, i.e., 

less computation time, and (2) there is less chance of making errors that would have been 

inevitable if computation was to involve a number of approximations and steps.  Even though the 

proposed distribution, Equation (6.8), is more desirable from these standpoints, modifications 



 

175 

 

still need to be made so it can better approximate the actual hysteretic energy distribution.  The 

modifications are given below. 

  

  

Figure 6.4 Story level pushover curves           
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In Figure 6.3 it was observed that the proposed energy distribution ratio for the first story was 

significantly lower than the actual value but they were slightly higher than the actual values for 

the upper stories.  An attempt has been made to modify Equation (6.8) and the modified energy 

distribution equation is given in Equation (6.11). 
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         (6.11) 

where Ri, i, di, di and Fi are as defined in Equation (6.8). 

For comparison, the hysteretic energy distributions based on Equation (6.11) were plotted in 

Figure 6.5 along with the actual hysteretic distributions.  From the figure, it can easily been seen 

that hysteretic energy distributions according to Equation (6.11) match reasonably well with the 

actual hysteretic energy distributions for the 3-, 5-, 7- and 9-story frames. Therefore, for design 

purposes the improved energy distribution equation will be used from now on to determine the 

hysteretic energy demand. 
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Figure 6.5 Hysteretic energy distribution comparison 
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6.3 Energy-based Seismic Design Procedure 

6.3.1 General  

Input energy and hysteretic energy spectra for different site classes and different hysteretic 

models have been developed in Chapter 3 and Chapter 4, respectively.  These spectra can be 

used to determine the input energy imparted to and the hysteretic energy demand of a SDOF 

system due to an earthquake with far-fault characteristics.  In reality, designers rarely deal with 

SDOF systems as most structures are MDOF systems.  However, in order to minimize the 

complexity of having to carry out dynamic analysis for MDOF structures, researchers often opt 

to convert the MDOF to equivalent SDOF systems and relate the ESDOF results to MDOF 

systems.  In Chapter 5, input and hysteretic energy relationships between MDOF and their 

equivalent SDOF systems have been developed.  The ESDOF-MDOF relationships developed in 

Chapter 5 provide a means to estimate the total hysteretic energy demand for MDOF systems.  

Further, in Section 6.2 a distribution scheme for the total hysteretic energy demand along the 

height of a framed structure has been proposed.  

At this juncture it is important to underline that the objective of EBSD is to design a structure in 

such a manner that its energy dissipation capacity exceeds the hysteretic energy demand from a 

design earthquake or a set of design earthquakes, i.e., mathematically the following inequality 

has to be satisfied. 

( ) ( )demand capacityHyteretic Energy Hysteretic Energy   (6.12)  

For a structure subjected to a given earthquake, the left side of Equation (6.12) can be obtained 

using the expressions proposed in Chapter 3 through Section 6.2 of this study.  The question here 

is what constitutes the right side of the equation.  EBSD in essence is a plastic design; as it is an 
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ultimate/extreme state design that involves the formation of plastic hinges.  Thus, the right hand 

side of Equation (6.12) can be formulated using the fundamental concepts of plastic design.  

6.3.2 Energy-based Seismic Design and Plastic Design Relations 

Recall that the underlining concept of plastic design of structures lies in the formation of plastic 

hinges and the resulting collapse mechanisms.  Collapse mechanisms are said to have formed 

when a structure can no longer carry any load or is undergoing such excessive deform to a state 

where the integrity of the structure is severely compromised.   Consider a sway mechanism, 

shown in Figure 6.6, of a portable frame subjected to a horizontal joint load and a concentrated 

span load.  The work equations for the two collapse mechanisms using the geometry of the 

structure, plastic moment capacities of the beam and columns, the applied forces and the 

anticipated plastic rotations at collapse can be written as in Equation (6.13).  The work done by 

the internal plastic moments is called the internal work, whereas the work done by the external 

forces is called the external work.  

( ) (2 2 )

( ) (6 )
2

p pc pb p

p pb p

ExternalWork InternalWork

Sway Mechanism P h M M

b
Beam Mechanism H M

 

 



    

   

  (6.13) 
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(a) Sway Mechanism                                               (b) Beam Mechanism 

Figure 6.6 Collapse mechanisms of portable frame  

For design purposes, it is rational to consider the external work done as the energy demand and 

the internal work as dissipation capacity.  Henceforth, for energy-based seismic design the 

external work can be replaced by hysteretic energy demand.  This approach has been used by 

Estes and Anderson (2004) in an energy-based seismic design of steel frames and Terapathana 

(2012) for an energy-based seismic design of reinforced concrete structures.  Recall that the 

energy demand due to an earthquake involves cyclic load reversals that contribute to the 

cumulative hysteretic energy whereas the right hand side of Equation (6.13) does not involve 

load reversal and is monotonic.  Thus, it is necessary to adjust the static monotonic hysteretic 

energy given by the right hand side of Equation (6.13) in order to correlate it to the dynamic 

hysteretic energy capacity of structures subjected to earthquake loads. 

 For seismic evaluation of existing reinforced concrete structures, ATC 40 (1996) suggests the 

use of a dynamic to monotonic hysteretic energy ratio of four.  In the same document it is also 

suggested that the factor of four be subjected to reduction factors to account for a reduction in 

the dynamic hysteretic energy due to pinching nature of the hysteresis behavior of concrete 
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sections.  For moment resisting steel frames, with properly designed connections and stable 

hysteresis, it is reasonable to consider a factor of four as the ratio of dynamic-to-monotonic 

hysteretic energy.  The justification behind the use of a factor of four can be better explained 

from the energy calculation of one cycle of an idealized hysteresis loop as shown in Figure 6.7.  

  

  

From Figure 6.7, it can be readily seen that the full cycle area is four times the monotonic area. 

This substantiates the assumption that for moment resisting steel frames with stable hysteresis 

behavior which is devoid of any stiffness or strength degradation, the dynamic hysteretic energy 

is approximately equal to four times the static plastic energy.  Thus, a dynamic-to-static 

hysteretic ratio of four will be used in this study to design an earthquake resistant moment 

resisting steel frames based on energy method.  For instance, for the frame mechanism shown in 

Figure 6.6 (a), the hysteretic energy capacity given by the right hand side of Equation (6.13) 

shall be greater than or equal to the hysteretic energy demand due to a design earthquake, i.e.,  

( ) 4.0 [(2 2 ) ]demand pc pb pHE M M        (6.14) 

where (HE)demand = the hysteretic energy demand due to the design earthquake or suite of 

earthquakes. 
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Figure 6.7 Elastic- plastic hysteresis cycle 
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To a practicing engineer, the effect of earthquake on structures is more readily understandable 

when it is tied to the resulting horizontal motions/deformations of the structure.  This is a useful 

observation to assess the applicability of Equation (6.14) to the different possible collapse 

mechanisms a structure may undergo.  For the beam mechanism shown Figure 6.6 (b), it is 

obvious that the mechanism is related to vertical loads and is minimally affected by earthquake 

events.  Thus, equating the external work causing a beam mechanism to a hysteretic energy 

demand due to an earthquake renders it unrealistic.  Similarly, for a combined mechanism of 

sway and beam mechanisms, vertical loads are involved and the resulting external work cannot 

be fully related to the hysteretic energy demand due to an earthquake.  As a result, the beam and 

combined collapse mechanisms will be discarded in the energy-based seismic design formulation 

without significantly affecting the final design result.  This argument is supported by Estes and 

Anderson (2004) who showed that vertical load mechanisms are not significant when earthquake 

forces are considered. 

It is important to highlight that a design method is deemed appropriate if it ensures that the 

resulting structure is safe against the design actions and is also cost effective.  EBSD is no 

exception to this requirement.  The cost of a structure, among others, is related to the final sizes 

of the members that form the structure.  Obviously, as size and weight are directly related, the 

cost aspect of a design can be addressed by minimizing the weight of the structure.  For moment 

resisting frames, in most cases the weight of beams and columns can be reasonably associated 

with their corresponding plastic moment capacity.  Thus, a weight function can be expressed in 

terms of the length of the members and their plastic moment capacities.  For instance, for the 

frame in Figure 6.6, the weight function can be written as  
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2 pc pbW h M b M          (6.15) 

By minimizing the weight function given in Equation (6.15), a cost effective energy-based 

seismic design of the portal frame can be achieved.  This design concept practically reduces the 

energy- based seismic design to an optimization problem.  In mathematics, an optimization 

problem involves minimization or maximization of an objective function which is subjected to 

certain constraint equations.  For an energy-based seismic design, the objective function is the 

weight function whereas the inequalities of the collapse mechanisms form the constraint 

equations.  For the frame shown in Figure 6.6, the objective function and the constraint equation 

are given by Equations (6.14) and (6.15), respectively.  In moment resisting frame design, 

additional constraints such as beam to column capacity ratio, that arise from code or detailing 

requirements may need to be considered.  For instance, for the frame in Figure 6.6 the 

mathematical formulation of the minimization problem will be described below.  

Objective function:   

Minimize the weight function:  W = 2×h×Mpc + b×Mbc 

Subjected to the constraint equations: 

4.0×[(2Mpc+2Mpb)×p]   ≥ (HE)demand   ;   Strong Column – Weak Beam scenario 

4.0×[(2Mpc+2Mpc)×p]   ≥ (HE)demand   ;   Strong Beam – Weak Column scenario 

Mpc - Mpb  ≥   1.0                                 ;  Code Requirement 

where Mpb, Mpc ≥ 0  
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The above minimization for Mpc and Mpb can be easily achieved by using a Microsoft Excel 

built-in analysis function called Simplex Method.  The Simplex method was developed by 

George Dantzig in 1947, and is a method for solving problems in linear programming. 

6.3.3 Application to Multistory Frames 

The application of an optimization problem for an energy-based seismic design of a single story 

portal frame is rather simple.  However, for multistory frames the optimization problem involves 

many possible collapse mechanisms and many feasible constraint equations and becomes rather 

complex.  Ridha and Wright (1967) proposed a classical safe approach called a story-wise 

optimization that reduces the plastic design of multistory frames into the design of a series of 

single story frames stacked vertically.  In this approach, one story at a time is designed starting 

with the topmost story.  The story-wise approach was also used by Disque (1971) for the design 

of multistory braced frames and recently adopted by Estes and Anderson (2004) and Terapathana 

(2012).   

Consider a four-story frame shown in Figure 6.8 (a) with possible sway mechanisms.  According 

to Ridha and Wright (1967), the design of the frame for safety against the sway mechanism 

occurring at the second story of the entire frame as shown in Figure 6.8(b) can be achieved by 

simultaneously satisfying the design requirements for the standalone story mechanism shown in 

Figure 6.8(d) and the resulting mechanism of the story above it as shown in Figure 6.8 (c).  This 

can be easily verified by comparing the external and internal work equations of the collapse 

mechanisms shown in Figures 6.8 (b), (c) and (d).  Let’s assume that plastic hinges have formed 

in the second story at joints i, j, k and l and denote the plastic moment capacity of the columns as 

Mnm where n stands for the story and m is an index which equals 1 if the end of the column is 
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above and 2 if the end of the column is below the joint being considered.  The corresponding 

internal and external work equations are:  

 

Figure 6.8  Standalone story and whole frame collapse mechanisms 

For collapse mechanism shown in Figure 6.8 (b);  

4 3 2 2 21 21 22 22( ) ( )P P P h M M M M              (6.16) 

For collapse mechanism shown in Figure 6.8 (d); 

2 2 31 31 21 21 22 22( ) ( )P h M M M M M M               (6.17) 

For collapse mechanism shown in Figure 6.8 (c); 

4 3 2 31 31( ) ( )P P h M M            (6.18) 
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The sum of Equations (6.17) and (6.18) gives Equation (6.16).  This means that if the design 

requirements for the story sway mechanisms of Figures 6.8 (c) and (d) are met, the safety of the 

sway mechanism of the entire frame shown in Figure 6.8 (b) can be ensured. 

Because the plastic capacity of compressive members is affected by the simultaneous action of 

axial force and bending moment, especially in multistory frames where gravity loads increase 

toward the lower stories.  Thus, it is necessary to include the effect of axial force in the 

formulation of the energy-based seismic design.  One way to incorporate axial force effect into 

EBSD is to use the code recommended axial force-bending moment interaction equations such as 

the one given in the American Institute of Steel Construction (AISC) manual.  Per AISC (2010) 

steel construction manual’s Chapter H, the interaction equations for doubly symmetric section in 

compression and flexure are given as follows. 

8
1.0 0.2

9

P
1.0 0.2

2

ryrxr r

c cx cy c

ryrxr r

c cx cy c

MMP P
for

P M M P

MMP
for

P M M P

 
     

 

 
     
 

       (6.19) 

where the subscripts c, r, x, and y represent the available moment strength, required moment 

strength, strong axis and weak axis bending, respectively.  For uniaxial bending about the strong 

axis, which is the often case for frame analysis and design, the subscripts x and y can be dropped 

from Equation (6.18) and after rearranging the interaction equation will take the form shown in 

Equation (6.19).  
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 (6.20) 

The modification factor m accounts for the reduction in moment capacity Mc due to the presence 

of an axial force by applying an amplification factor to the required plastic moment capacity Mr 

obtained per the energy-based seismic design procedure.  According to AISC Load and 

Resistance Factor Design (LFRD) method, the design moment (Mc) and axial force (Pc) 

capacities of a column are given by cPn and bMn, respectively where c and b are resistance 

factors for compression and bending, respectively.  Because these factors are likely to be 

different for different specifications, they are both taken as unity in the following design 

examples.  The primary objective here is to demonstrate how the energy-based design process 

can be applied without regard to the exact values of resistance factors used.  The AISC LRFD 

design manual also gives detail procedures for determining the nominal capacities Pn and Mn for 

almost all commonly used structural shapes.  However, for purpose of demonstrating the 

proposed EBSD procedure, the nominal capacities are calculated as follows. 

Mn = y Z   and    Pn = Fcr Ag  

where Z = plastic section modulus about the axis of bending, Fcr = flexural buckling stress, and 

Ag = gross cross-sectional area of the member 
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6.3.4 Proposed Energy-Based Seismic Design Flowchart 

The flowchart shown in Figure 6.9 summarizes the steps used in the proposed EBSD procedure 

for the design of multistory frames.  The details involved in each step will be described in the 

following section through design examples of a three-story and five-story frames.  The flow 

chart shown in Figure 6.9 is simple and easy to follow but the design, like any other designs, 

needs engineering judgment in its execution. 

 

** It is also required to check that Mpc,i-1 is not excessively greater than Mpd,i 

Figure 6.9 Flowchart: Energy based seismic design 

i=1 

Start with preliminary 

member selection 

Hysteretic Energy:                  

Obtain hysteretic energy demands 

due to the design earthquake(s) 

Optimization Problem:          

Formulate story-wise objective 

function and constraint equations 

Intermediate Member Sizes: Solve the 

optimization problem, determine member 

plastic moment demands, MPd,i 

**Compare Member 

plastic capacity (Mpc) with 

demand Mpd,i ≥ Mpc,i-1  

Final Design 

i=i+1 

Yes 

No 
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6.4 Energy-based Seismic Design (EBSD): Design Examples 

So far in this study, expressions for the input and hysteretic energies for SDOF and MDOF 

systems, the hysteretic energy distribution for MDOF systems and an energy-based seismic 

design procedure have been proposed.  The next step is to demonstrate how all these concepts 

can be put together and applied to the design of real structures.  For this purpose, two frames, a 

three-story and a five-story, will be designed.  The design examples will show how the hysteretic 

energy demand for each frame is determined and how this demand is to be distributed to the 

different levels of the frame.  The design examples will also elucidate how member sizes are 

optimized based on the Simplex method of linear optimization. 

Both frames are assumed to be built in a location with site soil class C.  The choice of the soil 

site classes is arbitrary, as the main purpose of these examples is to illustrate the different steps 

involved in applying the proposed EBSD procedure.   A set of five earthquakes were selected 

from the PEER Beta Data Base and scaled to match an IBC 2009 response spectrum.  The 

response spectrum is generated using a built-in procedure in SAP 2000 for soil class C at a site 

with zip code 94704.  The location is chosen because it lies in one of the highly seismic active 

areas in the west coast of the United States and it is also where the headquarters of CSI 

Structures, the company that develops SAP 2000, is located.  The design earthquakes are 

selected to be the Horizontal-1 (the main horizontal direction) component of the respective 

earthquake records.  Details of the selected earthquakes are given in Table 6.1. 
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Table 6.1 List of selected design earthquakes 

Earthquake 

Name 
Station Name Year CAV* PGA* PGV* Scale 

Loma Prieta Bear Valley #5 1989 114.84 26.3 3.64 11.5 

Loma Prieta Fremont - Mission San Jose 1989 210.17 48.9 5.55 7.5 

Loma Prieta Hayward City Hall - North 1989 80.76 18.88 2.21 18.5 

Loma Prieta SF - Telegraph Hill 1989 44.96 13.78 1.42 25.5 

Loma Prieta Yerba Buena Island 1989 49.44 11.36 1.71 28 

Landers Amboy 1992 362.91 44.43 7.17 6 

* units are of inches and seconds 

The normalized input energy spectra as described in Chapter 3 and the hysteretic-to-input energy 

ratio spectra as discussed in Chapter 4 have been formulated for SDOF systems with ductility 

level of µ = 2, 3, 4 and 5.  Later in Chapter 5, a relationship between the input energy for MDOF 

systems and their ESDOF systems was established.  Thus, for the design of a structural system 

with a required level of ductility, the energy expressions and relationships formulated in 

Chapters 3, 4 and 5 can be used to estimate the hysteretic energy demand for use in the EBSD 

procedure.  

Equation (6.13) shows the relationship between hysteretic energy demand and capacity.  From 

the right hand side of the equation, it is clear that the capacity is dependent on the plastic 

moment and plastic rotation capacities.  In EBSD, the plastic rotation capacity is considered as a 

known variable and needs to be determined before the design procedure is applied to optimize 

the member sizes.  Intrinsically, the performance level of the structure is dependent on the 

performance level of each individual element that constitutes the structure.  Per FEMA 350, 

moment resisting steel frames are capable of developing large plastic rotations, in the order of 

0.02 radians or larger, without significant strength degradation.  According to FEMA (1997) 
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Interim Advisory No.1, based on the work of SAC (a consortium of the Structural Engineers 

Association of California, the Applied Technology Council, and the California Universities for 

Research in Earthquake Engineering) and other researchers on full scale tests done after the 

Northridge earthquake, a plastic rotation of 0.025 to 0.030 was recommended for steel moment 

connections. Thus a design plastic rotation of 0.03 radians has been used in this study.  

6.4.1 Design Example: Three Story One Bay Frame 

The three story frame shown Figure 6.10 is one of the design examples considered for 

demonstrating the step by step procedures of the proposed EBSD.  The moment resisting steel 

frame consists of beams and columns with rigid moment connections.  The roof level beams 

were subjected to uniform dead and live loads of 2.5 k/ft and 1.75 k/ft, respectively.  The loading 

on the remaining floor beams was considered to be 3.0 k/ft and 2.25 k/ft for dead and live loads, 

respectively.  The seismic mass was taken to be a proportion of the gravity loads lumped at the 

joints.  For this purpose a 100% of the dead loads and 25% the live loads are considered.  To 

incorporate diaphragm action, as is the case of decks in frames for buildings, diaphragm 

constraints were employed to force the joints at a given floor to displace the same horizontally.  

From the flow chart in Figure 6.9, it can be seen that the proposed EBSD method is an iterative 

procedure.  Iterative procedures always start with a set of initial solutions or values.  For the 

EBSD procedure, the initial values are the preliminary member sizes.  For this example, the 

preliminary members of the frame were determined from a gravity load design of the frame 

using the AISC – LFRD procedure built in the SAP 2000 structural analysis and design software.  

The results are presented as Step 1 of Iteration 1 below. 
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Using these preliminary member sizes, modal properties for the first two modes that constitute 

more than 90% of the seismic mass were calculated and are given as Step 2 of Iteration 1. 

 

Figure 6.10 Design example: three story-one bay frame 

Iteration 1 

Step 1: Preliminary Member Sizes  

Preliminary Column Sizes  Preliminary Beam Sizes 

Story Size  Floor Level Size 

1
st
 W14×90  2

nd
  (1

st
 story) W18×76 

2
nd

 W14×90  3
rd

 W18×76 

3
rd

 W14×90  Roof (5
th

 story) W18×76 

 

Step 2: Modal Properties 

 Period  (s) Г
2
, kips

2
in.

-1
 Σ Гi

2
/ M Ductility, µ 

Mode 1 0.83 0.607 0.889 4 

Mode 2 0.25 0.065 0.095 4 

  Σ Гi
2
/ M = 98.4%  

 

 

24 ft 

2
@

1
2
 f

t 
1
4
 f

t 
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Step 3: Normalized Input Energy per Unit Mass (NE) 

Normalized input energy spectra for ESDOF for soil site class C and hysteretic model BP were 

developed and presented in Chapter 3.  Using the expression for the meant +σ NE spectra, given 

by Equation 3.7, for a design ductility level µ=4, we have  

0.116 0.116

1

2 2

2

0.0507   1.515 = 0.0507 4 1.515 = 1.312

0.0137   0.0569 = 0.0137 4 0.0569 0.0021

0.374 0.374 4 0.318sec

0.0069  0.0657   0.563 = 0.0069 4 0.0657 4 0.563 0.411

0.102   1.

s

b

T

C

T







 



 

     

     

   

       

  
2 2

2 2

978 = 0.102 4 1.978 1.57sec.

0.0089  0.129   0.946 = 0.0089 4 0.129 4 0.572

0.0072  0.0124   0.786 = 0.0072 4 0.0124 4 0.786 0.702

k

n

 

 

   

      

        

 

where µ is the ductility ratio and s, b, T1, C, T2, k, n are parameters used to define the NE spectra 

as shown in Figure 3.6 and Equation (3.1).  

From Equation (3.1), the normalized energy is given as follows  

For Mode 1:  (T1= 0.318 s ) ≤ (T= 0.83 s)  <  (T2= 1.57s)   

==>  NE = C = 0.41 

For Mode 1:   (T= 0.25 s)  ≤  (T1= 0.318s) 

==>  NE = sT + b = 1.3122×0.25-0.0021 = 0.326 

Recall that NE is defined as the square root of the input energy per unit mass (IE/m) divided by 

the velocity index, VI (= CAV×PGV).  Therefore, the input energy per unit mass is given by  

         IE/m = NE
2
×CAV×PGV 

where CAV = Absolute Cumulative Velocity; PGV = Peak Ground Velocity of the design 

earthquake.  Since the frame is to be designed for the mean+σ of the selected design earthquakes 
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listed in Table 6.1, the corresponding mean+σ VI needs to be calculated.  The calculation of the 

mean+σ  VI  is shown in the table below. 

 

(a) (b) (c) (d)= (a×b×c
2
) 

Earthquake  CAV (in./s) PGV (in./s) Scale VI (in.
2
/s

2
) 

 Loma Prieta 114.8 3.64 11.5 5.53×10
4
 

 Loma Prieta 210.2 5.55 7.5 6.56×10
4
 

 Loma Prieta 80.76 2.21 18.5 6.11×10
4
 

 Loma Prieta 44.96 1.42 25.5 4.15×10
4
 

 Loma Prieta 49.44 1.71 28 6.63×10
4
 

 Landers 362.91 7.17 6 9.37×10
4
 

 
 

mean+σ  VI = 8.11×10
4
 

 

The input energy per unit mass (IE/m) for each mode is now obtained as follows: 

Mode 1:  IE/m = NE
2×

VI = (0.41)
2
×8.11×10

4
 in.

2
/s

2 
= 1.36×10

4
 in.

2
/s

2
 

Mode 2:  IE/m = NE
2
×VI = (0.326)

2
×8.11×10

4
 in.

2
/s

2 
= 0.86×10

4
 in.

2
/s

2
 

Step 4: Hysteretic Energy per Unit Mass (HE/m)  

Once the input energy per unit mass is obtained, the hysteretic energy per unit mass is calculated 

using the hysteretic to input energy relationships developed in Chapter 4.  For soil site class C 

and hysteretic model BP, such relationships are given in Table 4.1.  Using Figure 4.2 and Table 

4.1, the ratio HE/IE for the two modes of the design example can be calculated as follows. 

Entering Table 4.1 for hysteretic model BP, the mean+ HE/IE spectra parameters for = 4 are 

given as below. 

C = 0.651; T2  = 2.674 s; s = -0.0247 and b = 0.717 

where C, T2, s, and b are as defined in Figure 4.2 
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According to the HE/IE spectra shown in Figure 4.2, since the periods of vibrations for mode 1 

and mode 2 are less than T2, the HE/IE ratio for both modes is within the constant region of the 

spectra and is equal to C = 0.651.  The modal hysteretic energies per unit mass are then given by:  

Mode 1: HE/m= (IE/m) × (HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.89×10

4
 in.

2
/s

2
 

Mode 2: HE/m= (IE/m) × (HE/IE) = 0.86×10
4
 in.

2
/s

2
×0.651 = 0.56×10

4
 in.

2
/s

2
 

Step 5:  MDOF System Total Hysteretic Energy Demand and its Distribution  

The hysteretic energy demand for MDOF systems can be obtained using the hysteretic energy 

relationships between MDOF systems and their Equivalent SDOF systems developed in Chapter 

5.  Using Equation (5.20), the hysteretic energy demand for the three story frame is given as 

follows: 

HEtotal =  (Г
2
 × HE/m)mode 1 + (Г

2
 × HE/m)mode 2 

HEtotal =  (0.607 ks
2
in.

-1
) (0.89×10

4
 in.

2
/s

2
) +  (0.065 ks

2
in.

-1
) (0.56×10

4 
in.

2
/s

2
) 

           = 5752 kip-in. 

The total hysteretic energy demand should now be distributed to the different levels of the three 

story frame according to the hysteretic energy distribution proposed in Section 6.2 and given by 

Equation (6.10).  The forces and displacements to be used in Equation (6.10) are obtained from 

modal pushover analysis results for Mode 1.  The design ductility level 4 roughly corresponds to 

a roof drift ratio of 0.04, which is larger than the conventional value of 0.02 often used for the 

design of building frames for lateral loads.  However, a properly designed frame per current 

codes rarely passes its elastic limit at a roof drift ratio of 0.02, in which case the use of the 

energy-based seismic design becomes irrelevant.  Therefore, for better distribution of the 
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hysteretic energy demand to the different levels of the structure, the frame is pushed to roof drift 

ratio of 0.04. Presented below are the story level forces, displacements and story drifts obtained 

from the pushover analysis. 

Story Force (kips) Displacement (in.) Story Drift (in.) 

Story 1 37.0 9.01 9.01 

Story 2 72.0 15.74 6.73 

Story 3 77.0 18.24 2.5 

Using Equation (6.11), for purpose of hysteretic energy demand distribution, the total and story 

level external work done during the pushover are computed as follows. 

1 1

1

2 2

2

3 3

3

1: 2( ) 2 (37 72 77) 9.01 3352 kip-in.

2 : ( ) (72 77) 6.73 1003 kip-in.

3 : ( ) 77 2.5 195.2 kip-in.
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k

k
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k

k
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k

k

For Story WE F d

For Story WE F d

For Story WE F d
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( )

(37 72 77) 9.01 (37 9.01) (72 15.74) (77 18.24) 4547 kip-in.
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total i i i

i i

WE F d Fd
 

 

          

   

The hysteretic energy demands at different story levels are then given as:

1 1
1

2 1
2

3 1

3352
1: 0.737 0.737 5752kip-in. 4240 kip-in.

4547

1003
2 : 0.221 0.221 5752kip-in. 1269kip-in.

4547

192.5
3: 0

4547

total total

total total

total total

HE WE
Story R HE

HE WE

HE WE
Story R HE

HE WE

HE WE
Story R

HE WE

       

       

    3.042 0.042 5752kip-in. 243.5kip-in.HE   
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Step 6: Member Size Optimization  

The story-wise optimization of members involves formulating a series of story-wise collapse 

mechanisms and solving an optimization problem.  The optimization problem relates the story 

level hysteretic energy demand to the collapse mechanism based on internal work done (treated 

in this study as plastic energy capacity or energy dissipating capacity).  The steps involved in the 

EBSD method of optimization of member sizes are presented below starting with the third (i.e., 

top) story.  Columns in the same story are assumed to have the same size and the following 

designation is used to denote a member. 

       MkC  = column member in story k, and MkB = beam member in story k  

 Optimization of Members in the Third Story  

  

      (a)                                                       (b) 

Constraint equation based on mechanism (a) – Strong beam and weak column 

3 3 3 34 ( ) 0.03 243.5 kip-in.C C C CM M M M       

Constraint equation based on mechanism (b) – Strong column and weak beam 

3 3 3 34 ( ) 0.03 243.5 kip-in.C C B BM M M M       

Additional constraint equation at joints – code requirement 

3 3 0C BM M   

Objective Function – Weight , W  

3 32(144 ) 288C CW M M   

M
3C

 

M
3C

 

M
3C

 

M
3C

 

M
3B

 

M
3C

 

M
3B

 

M
3C
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Mathematical formulation of the minimization problem 

3 3

3

3 3

3 3

3 3

:

288 288

:

0.48 243.5kip-in.

0.24 0.24 243.5kip-in.

0

0, 0

C B

C

C B

C B

c b

Minimize

W M M

Subjected to

M

M M

M M

where M M

 



 

 

 

 

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is; 

M3C = 508 kip in. and M3B = 508 kip-in. 

Optimization of Members in the Second Story  

 

(c )                                                   (d) 

Constraint equation based on mechanism (c) – Strong beam and weak column 

2 2 2 24 ( ) 0.03 4 (508 508) 0.03 1269kip-in.C C C CM M M M           

Constraint equation based on mechanism (d) – Strong column and weak beam 

2 2 2 24 ( ) 0.03 1269 kip-in.C C B BM M M M       

Additional constraint equation at joints – code requirement 

2 2508 0C BM M    

 

M
2C

 

M
2C

 

M
2C

 

M
2C

 

M
2B

 

M
2C

 

M
2B

 

M
2C

 

M
3C

 M
3C

 



 

199 

 

Objective Function – Weight, W  

2 2 2144 144 288C C BW M M M    

Mathematical formulation of the minimization problem 

2 2

2

2 2

2 2

2 2

:

288 288

:

0.48 1391kip-in.

0.24 0.24 1269kip-in.

508kip-in.

0, 0

C B

C

c B

C B

C B

Minimize

W M M

Subjected to

M

M M

M M

where M M

 



 

  

 

 

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

M2C = 5286 kip-in. and M2B = 0 kip-in. 

The above solution for M2C and M2B is unrealistic, as the beam size cannot be zero.  This is an 

intermediate solution and if accepted as is, the solution doesn’t converge rapidly.  As a result, 

additional constraint equation might be needed to tweak the optimization problem to give a 

realistic solution.  In such cases, a constraint equation that requires the beam capacity to be at 

least greater than 60% of the column moment capacities may be used without adversely affecting 

the optimization problem.  Employing such constraint yields a modified solution to the 

optimization problem given as 

M2C  = 3304 kip-in. and M2B = 1982 kip-in. 
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Optimization of Members in the First Story  

 
(e )                                                         (f) 

Constraint equation based on mechanism (e) – Strong beam and weak column 

1 1 1 14 ( ) 0.03 4 (3304 3304) 0.03 4240kip-in.C C C CM M M M           

Constraint equation based on mechanism (f) – Strong column and weak beam 

1 1 1 14 ( ) 0.03 4240kip-in.C C B BM M M M       

Additional constraint equation at joints – code requirement 

1 13304 0C BM M    

Objective Function – Weight, W  
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Mathematical formulation of the minimization problem 
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The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

M1C = 10490 kip-in. and M1B = 7181 kip-in. 
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Step 7: Effect of Axial Force on Plastic Capacity Demands  

Per Equation (6.16), the plastic moment demands obtained in Step 6 need to be amplified by a 

factor m to account for the reduction in the plastic moment capacities of columns due to the 

presence of an axial compression force.  The axial compressive force is present due to the 

simultaneous actions of gravity and lateral loads during a seismic event.   The amplification 

factor m is obtained as a ratio of the applied axial force during a seismic event to the axial 

compression capacity of the member under consideration.  In line with the load proportions 

considered while determining the seismic mass, the axial forces were obtained from a 

combination of 100% and 25% of the applied dead and the live loads, respectively.   

Story 

Column 

size 

Axial  Force (kips) 
m 

Plastic Moment (kip-in.) 

Capacity Applied Required Modified 

1 W14×90 968 127 1.070 10490 11220 

2 W14×90 1008 82 1.042 3304 3445 

3 W14×90 1008 37 1.019 508 518 

 

Step 8: Plastic Moment Capacity versus Demand Comparison  

The last step of each iteration cycle for the proposed EBSD procedure is the selection of new 

member sizes that meet the required plastic moment capacity obtained in Step 7.  When selecting 

new member sizes for columns, it is important to avoid the possibility of weak or extremely 

strong story with respect to the story immediately above it.  At this step the plastic moment 

capacities of current member sizes are compared with the required plastic moment capacities 

based on the energy-based seismic design.  If the plastic moment required is less than the plastic 

moment capacity of the current member size, then the current size remains unchanged.  



 

202 

 

However, this is not always true, as will be shown in the design example of the five story frame 

to be discussed in the next section.  At the end of the first iteration the member sizes can be 

excessively large and need to be optimized in successive iterations.  The plastic moment 

demand-capacity comparison and selection of new member sizes as required are tabulated below. 

 

Story 

Current 

size 

Plastic Moment (kip-in.) Member Size 

 Capacity Required Decision New 

C
o
lu

m
n
s 

1 W14×90 7580 11220 Change W14×132 

2 W14×90 7580 3445 Keep W14×90 

3 W14×90 7580 518 Keep W14×90 

B
ea

m
s 

1 W18×76 8150 7071 Keep W18×76 

2 W18×76 8150 1762 Keep W18×76 

3 W18×76 8150 508 Keep W18×76 

Iteration 2 

For brevity, detailed descriptions of the remaining iterations for each step including the different 

collapse mechanisms will not be repeated.  Only important details along with the final results of 

each step will be presented.  

Step 1: Member Sizes at end of Iteration 1 

Column Sizes @ end of Iteration 1  Beam Sizes@ end of Iteration 1 

Story Size  Floor Level Size 

1
st
 W14×132  2

nd
  (1

st
 story) W18×76 

2
nd

 W14×90  3
rd

 W18×76 

3
rd

 W14×90  Roof (5
th

 story) W18×76 
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Step 2: Modal Properties 

 Period  (s) Г
2
, kips

2
in.

-1
 Σ Гi

2
/ M Ductility, µ 

Mode 1 0.77 0.589 0.859 4 

Mode 2 0.24 0.077 0.112 4 

  Σ Гi
2
/ M = 97.1%  

 

Step 3: Normalized Input Energy per Unit Mass (NE) 

 

 s b T1 C T2 k n T NE 

Mode 1 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.77 0.41 

Mode 2 4 1.312 -0.0021 0.318 0.411 1.57 0.574 -0.720 0.24 0.31 

 

Modal input energy per unit mass (IE/m): 

Mode 1:  IE/m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
= 1.36×10

4
 in.

2
/s

2
 

Mode 2:  IE/m = NE
2
×VI = (0.31)

2
×8.11×10

4
 in.

2
/s

2
= 0.78×10

4
 in.

2
/s

2
 

Step 4: Hysteretic Energy per Unit Mass (HE/m)  

 

µ C T2 s b T EH/EI 

Mode 1 4 0.651 2.674 -0.0247 0.717 0.77 0.651 

Mode 2 4 0.651 2.674 -0.0247 0.717 0.24 0.651 

 

Mode 1 : EH/m= (EI/m) × (EH/EI) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.89×10

4
 in.

2
/s

2
 

Mode 2 : HE/m= (IE/m) × (HE/IE) = 0.78×10
4
 in.

2
/s

2
×0.651 = 0.51×10

4
 in.

2
/s

2
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Step 5:  MDOF System Total Hysteretic Energy Demand and its Distribution  

HEtotal  =  (Г
2
×HE/m)mode1 + (Г

2
×HE/m)mode2 

HEtotal   =  (0.589 ks
2
in.

-1
) (0.89×10

4
 in.

2
/s

2
) + (0.077 ks

2
in.

-1
) (0.51×10

4
in.

2
/s

2
) 

 = 5618 kip-in. 

Story forces, displacements, and hysteretic energies:   

Story 

Force 

(kips) 

Displacement 

(in.) 

Story Drift 

(in.) 

External Work 

Done (kip-in.) 

Hysteretic 

Energy (kip-in.) 

Story 1 38.0 8.01 8.01 3428 3866 

Story 2 84.0 15.3 7.29 1283 1447 

Story 3 92.0 18.24 2.94 271 305 

 

Step 6: Member Size Optimization  

Optimization of Members in the Third Story 

Objective Function – Weight, W  

3 3 3144 144 288C C CW M M M    

Mathematical formulation of the minimization problem 

3 3

3

3 3

3 3

3 3

:

288 288

:

0.48 305kip-in.

0.24 0.24 305kip-in.

0

0, 0

C B

C

C B

C B

c b

Minimize

W M M

Subjected to

M

M M

M M

where M M

 



 

 

 

 

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

M3C = 636 kip-in. and M3B = 636 kip-in. 
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Optimization of Members in the Second Story 

Objective Function – Weight, W  

2 2 2144 144 288C C BW M M M    

Mathematical formulation of the minimization problem 

2 2

2

2 2

2 2

2 2

:

288 288

:

0.48 1600kip-in.

0.24 0.24 1477 kip-in.

636kip-in.

0, 0

C B

C

c B

C B

C B

Minimize

W M M

Subjected to

M

M M

M M

where M M

 



 

  

 

 

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

M2C = 3768 kip-in. and M2B = 2261 kip-in. 

Optimization of Members in the First Story 

Objective Function – Weight, W  

1 1 1168 168 288C C BW M M M    

Mathematical formulation of the minimization problem 

1 1

1

1 1

1 1

1 1

:

336 288

:

0.48 4771kip-in.

0.24 0.24 3866kip-in.

3768kip-in.

0, 0

C B

C

C B

C B

C B

Minimize

W M M

Subjected to

M

M M

M M

where M M

 



 

  

 

 

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

M1C = 9940 kip-in. and M1B = 6169 kip-in. 
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Step 7 : Effect of Axial Force on Plastic Capacity  

Story 

Column 

size 

Axial  Force (kips) 
m 

Plastic Moment (kip-in.) 

capacity Applied Required Modified 

1 W14×132 1424 128 1.052 9940 10457 

2 W14×90 1008 82 1.042 3768 3927 

3 W14×90 1008 37 1.019 636 648 

 

Step 8: Plastic Moment Capacity versus Demand Comparison 

 

Story 

Current 

size 

Plastic Moment (kip-in.) Member Size 

 
Capacity Required Decision New 

C
o
lu

m
n
s 

1 W14×132 11700 10457 Keep W14×132 

2 W14×90 7580 3927 Keep W14×90 

3 W14×90 7580 648 Keep W14×90 

B
ea

m
s 

1 W18×76 8150 6169 Keep W18×76 

2 W18×76 8150 2261 Keep W18×76 

3 W18×76 8150 636 Keep W18×76 

Because the current member sizes have more capacity than what is required as per the design, 

there is no need to continue the iterations. The current sizes can be taken as the final design 

sections.  

6.4.2 Design Example 2: Five Story Two Bay Frame 

The five story two bay frame shown in Figure 6.11 is formed by adding two stories and a bay to 

the three story one bay frame considered in the previous design example. The primary purpose of 

this example is to show the proposed energy-based seismic design method can be applied to the 

design of frames with more than one bay.  Similar to the previous example, the roof beams for 

this frame were subjected to uniform dead and live loads of 2.5 k/ft and 1.75 k/ft, and the beams 

at other floor levels were subjected to uniform dead and live loads of 3.0 k/ft and 2.25 k/ft, 



 

207 

 

respectively.  The sources of the seismic mass were considered to be the applied loads and the 

weight of the frame itself.  100% of the dead load and 25% of the live load were assumed to 

contribute to the seismic mass.  Floor level diaphragm constraints were also employed to force 

the joints at a given floor to have equal horizontal displacement.   

 

Figure 6.11 Design example: five story-two bay frame 

The iterative design procedure for this five story frame is similar to the procedure followed in the 

design of the three story frame outlined in the preceding section.  Thus, for brevity, only the 

important details and the final results of each step will be presented.  

 

 

 

1
4
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t 
4
@
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2
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Iteration 1 

Step 1: Preliminary Member Sizes  

The preliminary member sizes were determined by designing the frame for gravity loads using 

the AISC – LFRD design procedures built in the SAP 2000 structural analysis and design 

software.  The resulting member sizes are shown below. 

Preliminary Column Sizes  Preliminary Beam Sizes 

Story Internal External  Floor Level Size 

1
st
 W14×90 W14×74  2

nd
  (1

st
 story) W18×65 

2
nd

 W14×90 W14×74  3
rd

 W18×65 

3
rd

 W14×90 W14×74  4
th

 W18×65 

4
th

 W14×74 W14×74  5
th

 W18×65 

5
th

 W14×74 W14×74  Roof (5
th

 story) W18×65 

 

Step 2: Modal Properties  

Using these preliminary member sizes, modal properties for the first two modes that constitute 

more than 90% of the total seismic mass were calculated and are shown below.  Like the three 

story frame example, a ductility level of 4 is considered for each mode in the design of the frame. 

 Period  (s) Г
2
, kips

2
in.

-1
 Σ Гi

2
/ M Ductility, µ 

Mode 1 1.59 1.596 0.86 4 

Mode 2 0.51 0.222 0.097 4 

  Σ Гi
2
/ M= 95.7%  

 where M = total seismic mass 

 

Step 3: Normalized Input Energy per Unit Mass (NE) 

 

 s b T1 C T2 k n T NE 

Mode 1 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 1.59 0.41 

Mode 2 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.51 0.41 
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The input energy per unit mass (IE/m) design earthquakes with a mean+σ VI value of 8.11×10
4
 

in.
2
/s

2 
(see design example 6.4.1 above) are then computed as follows. 

Mode 1:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
 = 1.36×10

4
 in.

2
/s

2
 

Mode 2:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
 = 1.36×10

4
 in.

2
/s

2
 

Step 4: Hysteretic Energy per Unit Mass (HE/m)  

 
µ C T2 s b T HE/IE 

Mode 1 4 0.651 2.674 -0.0247 0.717 1.59 0.651 

Mode 2 4 0.651 2.674 -0.0247 0.717 0.51 0.651 

 

Mode 1: HE/m= (IE/m) × (HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

Mode 2: HE/m= (IE/m) × (HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

Step 5:  MDOF System Total Hysteretic Energy Demand and its Distribution  

HE total  =  (Г
2
 × HE/m)mode 1 + (Г

2
 × HE/m)mode 2 

HE total  =  (1.965 ks
2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) + (0.222 ks

2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) 

 =  1.94×10
4
 kip-in. 

Story forces, displacements and drifts; 

Story Force (kips) Displacement (in.) Story Drift (in.) 

Story 1 21 10.16 10.16 

Story 2 43 17.82 7.66 

Story 3 62 22.22 4.4 

Story 4 75 24.44 2.22 

Story 5 68 25.52 1.08 
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External work done at each story:

5

1 1

1

5

2 2

2

5

3 3

3

5

4 4

4

1: 2( ) 2 (21 43 62 75 68) 10.16 5466 kip in.

2 : ( ) (43 62 75 68) 7.66 1990 kip in.

3 : ( ) (62 75 68) 4.4 902 kip in.

4 : ( )

k

k

k

k

k

k

k

k

For Story WE F d

For Story WE F d

For Story WE F d

For Story WE F d









          

        

       

  








5

3 5

5

(75 68) 2.02 317.5 kip in.

5 : ( ) 68*1.08 73.4 .k

k

For Story WE F d kip in


   

   

 

Total external work done:  

5 5

1

1 1

( )

(21 43 62 75 68) 10.16 (21 10.56) (43 17.82)

(62 22.22) (75 24.44) (68 25.52)

8659 kip in.

total i i i

i i

WE F d Fd
 

 

         

     

 

 

 

Hysteretic energy distribution: 

41 1
1

42 1
2

3 1

5466
1: 0.631 0.631 1.91 10 kip-in. 12250 kip -in.

8659

1900
2 : 0.22 0.22 1.91 10 kip-in. 4259 kip-in.

8659

902
3:

8

total total

total total

total total

HE WE
Story R HE

HE WE

HE WE
Story R HE

HE WE

HE WE
Story R

HE WE

        

        

   4

3

44 1
4

45 1
5

0.104 0.104 1.91 10 kip-in. 2022kip-in..
659

317.5
4 : 0.037 0.037 1.91 10 kip-in. 712kip-in..

8659

73.4
5 : 0.008 0.008 1.91 10 kip-

8659

total total

total total

HE

HE WE
Story R HE

HE WE

HE WE
Story R HE

HE WE

     

        

        in. 165 kip-in.
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Step 6: Member Size Optimization  

For multi-story multi-bay frames, the formulation of the story level optimization problem 

inevitably involves many variables (i.e., unknown plastic moments).  Thus, it is important to 

group members that are expected to be subjected to similar magnitudes of force actions and 

assign them the same member sizes.  In this design example, it is suggested that for a given story 

the external columns will have the same size.  Likewise, beams in a given floor level are 

designed to have the same plastic moment capacity.  For easy manipulation, the plastic moment 

capacity of the different member groups is designated as follows. 

MIC,k = plastic moment capacity of an internal column in story k 

MEC,k = plastic moment capacity of an external column in story k 

MB,k = plastic moment capacity of a floor beam in story k 

Optimization of Members in the Fifth Story  

 

  (a)                  (b) 

Constraint equation based on mechanism (a) – Strong beam and weak column 

,5 ,54 (4 2 ) 0.03 165kip-in.EC ICM M     

Constraint equation based on mechanism (b) – Strong column and weak beam 

,5 ,5 ,54 (2 4 ) 0.03 165kip-in.EC IC BM M M      

Additional constraint equations at joints – code requirement 

,5 ,5 0EC BM M    at an exterior joint 

,5 ,52 0IC BM M    at an interior joint 

M
EC,5

 

M
EC,5

 

M
IC,5

 

M
IC,5

 

M
EC,5

 

M
EC,5

 

M
B,5

 

M
EC,5

 

M
B,5

 

M
IC,5

 

M
B,5

 

M
EC,5

 

M
B,5
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Objective Function - Weight, W   

,5 ,5 ,5288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,5 ,5 ,5

,5 ,5

,5 ,5 ,5

,5 ,5

,5 ,5

,5 ,5 ,5

:

288 144 288

:

0.48 0.24 165kip-in.

0.24 0.12 0.48 165kip-in.

0

2 0

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

 

 

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,5 = 172 kip-in., MIC,5 = 344 kip-in., and MB,5 = 172 kip-in. 

Optimization of Members in the Fourth Story  

 

  (c)                  (d) 

Constraint equation based on mechanism (c) – Strong beam and weak column 

,4 ,4 ,5 ,54 (4 2 ) 0.03 4 (2 ) 0.03 712kip-in.EC IC EC ICM M M M          

Constraint equation based on mechanism (d) – Strong column and weak beam 

,4 ,4 ,44 (2 4 ) 0.03 712kip-in.EC IC BM M M      

Additional constraint equations at joints – code requirement 

,4 ,5 ,4 0EC EC BM M M     at an exterior joint 

,4 ,5 ,42 0IC IC BM M M     at an interior joint 

M
B,4

 

M
EC,4

 

M
B,4

 

M
IC,4

 

M
B,4

 

M
EC,4

 

M
B,4

 

M
EC,5

 M
IC,5

 M
EC,5

 

M
EC,4

 

M
EC,4

 

M
IC,4

 

M
IC,4

 

M
EC,4

 

M
EC,4
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Objective Function - Weight, W   

,4 ,4 ,4288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,4 ,4 ,4

,4 ,4

,4 ,4 ,4

,4 ,4

,4 ,4

,4 ,4 ,4

:

288 144 576

:

0.48 0.24 794.6kip-in.

0.24 0.12 0.48 712kip-in.

172kip-in.

2 344kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

  

 

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,4 = 2967 kip-in., MIC,4 = 0 kip-in., and MB,4 = 0 kip-in. 

Obviously, the above solution for MEC,4, MIC,4 and MB,4 is unrealistic.  Like the case of the three 

story design example additional constraint equations are needed to tweak the optimization 

problem to give a realistic solution.  In this study, the additional constraint equations that will be 

used are that the beam capacity to be at least greater than 60% and 40% of the external and 

internal column moment capacities, respectively.  In addition, the external columns are required 

to have at least 60% of the internal moment capacities.  Employing such constraints to the above 

optimization problem gives a modified solution as follows. 

MEC,4 = 903 kip-in., MIC,4 = 1505 kip-in., and MB,4 = 656 kip-in. 
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Optimization of Members in the Third Story  

 

  (e)                  (f) 

Constraint equation based on mechanism (e) – Strong beam and weak column 

,3 ,3 ,4 ,44 (4 2 ) 0.03 4 (2 ) 0.03 2022kip-in.EC IC EC ICM M M M          

Constraint equation based on mechanism (f) – Strong column and weak beam 

,3 ,3 ,34 (2 4 ) 0.03 2022kip-in.EC IC BM M M      

Additional constraint equation at joints – code requirement 

,3 ,4 ,3 0EC EC BM M M     at exterior joint 

,3 ,4 ,32 0IC IC BM M M     at interior joint 

Objective Function - Weight, W   

,3 ,3 ,3288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,3 ,3 ,3

,3 ,3

,3 ,3 ,3

,3 ,3

,3 ,3

,3 ,3 ,3

:

288 144 576

:

0.48 0.24 2419kip-in.

0.24 0.12 0.48 2022kip-in.

903kip-in.

2 1505kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,3 = 2925 kip-in., MIC,3 = 4231 kip-in., and MB,3 = 1693 kip-in. 

M
B,3

 

M
EC,3

 

M
B,3

 

M
IC,3

 

M
B,3

 

M
EC,3

 

M
B,3

 

M
EC,4

 M
IC,4

 M
EC,4

 

M
EC,3

 

M
EC,3

 

M
IC,3

 

M
IC,3

 

M
EC,3

 

M
EC,3
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Optimization of Members in the Second Story  

 

  (g)                  (h) 

Constraint equation based on mechanism (g) – Strong beam and weak column 

,2 ,2 ,3 ,34 (4 2 ) 0.03 4 (2 ) 0.03 4259kip-in.EC IC EC ICM M M M          

Constraint equation based on mechanism (h) – Strong column and weak beam 

,2 ,2 ,24 (2 4 ) 0.03 4259kip-in.EC IC BM M M      

Additional constraint equations at joints – code requirement 

,2 ,3 ,2 0EC EC BM M M     at an exterior joint 

,2 ,3 ,22 0IC IC BM M M     at an interior joint 

Objective Function - Weight, W   

,2 ,2 ,2288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,2 ,2 ,2

,2 ,2

,2 ,2 ,2

,2 ,2

,2 ,2

,2 ,2 ,2

:

288 144 576

:

0.48 0.24 5469kip-in.

0.24 0.12 0.48 4259kip-in.

2925kip-in.

2 4231kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,2 = 7423 kip-in., MIC,2 = 7941 kip-in., and MB,2 = 3176 kip-in. 

M
B,2

 

M
EC,2

 

M
B,2

 

M
IC,2

 

M
B,2

 

M
EC,2

 

M
B,2

 

M
EC,3

 M
IC,3

 M
EC,3

 

M
EC,2

 

M
EC,2

 

M
IC,2

 

M
IC,2

 

M
EC,2

 

M
EC,2
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Optimization of Members in the First Story  

 

  (i)                  (j) 

Constraint equation based on mechanism (i) – Strong beam and weak column 

,1 ,14 (4 2 ) 0.03 4 (2 7423 7941) 0.03 12250kip-in.EC ICM M          

Constraint equation based on mechanism (j) – Strong column and weak beam 

,1 ,1 ,14 (2 4 ) 0.03 12250kip-in.EC IC BM M M      

Additional constraint equations at joints – code requirement 

,1 ,12942 0EC BM M     at an exterior joint 

,1 ,19306 2 0IC BM M     at an interior joint 

Objective Function - Weight, W   

,1 ,1 ,1336 168 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,1 ,1 ,1

,1 ,1

,1 ,1 ,1

,1 ,1

,1 ,1

,1 ,1 ,1

:

336 168 576

:

0.48 0.24 14100kip-in.

0.24 0.12 0.48 12250kip-in.

7423kip-in.

2 7941kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,1 = 16020 kip-in., MIC,1 = 26700 kip-in., and MB,1= 10840 kip-in. 
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M
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M
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Step 7: Effect of Axial Forces on Plastic Capacity Demands  

Story 

Column 

size 

Axial  Force (kips) 
m 

Plastic Moment (kip-in) 

Capacity  Applied Required Modified 

1 
Internal W14×90 969 440 1.628 26700 43470 

External W14×74 663 208 1.295 16200 20980 

2 
Internal W14×90 1008 348 1.358 7941 10780 

External W14×74 724 166 1.153 7423 8561 

3 
Internal W14×90 1008 257 1.193 4231 5048 

External W14×74 724 123 1.093 2925 3197 

4 
Internal W14×74 724 167 1.155 1505 1739 

External W14×74 724 79 1.058 903 955 

5 
Internal W14×74 724 77 1.056 344 363 

External W14×74 724 35 1.025 172 176 

 

Step 8: Plastic Moment Capacity versus Demand Comparison  

When selecting new member sizes for columns, it is important to avoid the possibility of weak or 

extremely strong story with respect to the story immediately above it.  The reason is very simple; 

weak story conditions are not allowed in frame design.  On the other hand, extremely strong 

story could force most of the yielding to occur in the upper weaker stories where the hysteretic 

energy demand becomes larger.  Unless the selection is done arbitrarily, the effect can be clearly 

seen in a subsequent iteration where the demand for members with large plastic moment capacity 

becomes smaller. 
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Story 

Current 

size 

Plastic Moment (kip-in.) Member Size 

 Capacity Demand Decision New 
C

o
lu

m
n
s 

1 
Internal W14×90 7850 43470 Change W33×169 

External W14×74 6300 20980 Change W14×109 

2 
Internal W14×90 7850 10780 Change W14×109 

External W14×74 6300 8561 Change W14×109 

3 
Internal W14×90 7850 5048 Change W14×90 

External W14×74 6300 3197 Keep W14×74 

4 
Internal W14×74 6300 1739 Keep W14×74 

External W14×74 6300 955 Keep W14×74 

5 
Internal W14×74 6300 363 Keep W14×74 

External W14×74 6300 176 Keep W14×74 

B
ea

m
s 

1 W18×65 6650 10840 Change W18×97 

2 W18×65 6650 3176 Keep W18×65 

3 W18×65 6650 1693 Keep W18×65 

4 W18×65 6650 656 Keep W18×65 

5 (Roof) W18×65 6650 172 Keep W18×65 

 

Iteration 2 

Step 1: Member Sizes at end of Iteration 1 

Column Sizes @ end of Iteration 1  Beam Sizes @ end of Iteration 1 

Story Internal External  Floor Level Size 

1
st
  W33×169 W14×109  2

nd
  (1

st
 story) W18×97 

2
nd

 W14×109 W14×109  3
rd

  W18×65 

3
rd

  W14×90 W14×74  4
th

  W18×65 

4
th

  W14×74 W14×74  5
th

  W18×65 

5
th

  W14×74 W14×74  Roof (5
th

 story) W18×65 
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Step 2: Modal Properties  

 Period  (s) Г
2
, kips

2
in.

-1
 Σ Гi

2
/ M Ductility, µ 

Mode 1 1.34 1.758 0.759 4 

Mode 2 0.44 0.293 0.126 4 

Mode 3 0.25 0.135 0.058 4 

  Σ Гi
2
/ M= 94.3%  

 

Step 3: Normalized Input Energy per Unit Mass (NE) 

 

 s b T1 C T2 k n T NE 

Mode 1 4 1.3122 -0.0021 0.318 0.411 1.57 0.572 -0.720 1.34 0.41 

Mode 2 4 1.3122 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.44 0.41 

Mode 3 4 1.3122 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.25 0.33 

 

Modal input energy per unit mass (IE/m): 

Mode 1:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
= 1.36×10

4
 in.

2
/s

2
 

Mode 2:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
 = 1.36×10

4
 in

2
/s

2 

Mode 3:  IE /m = NE
2
×VI = (0.33)

2
×8.11×10

4
 in.

2
/s

2
 = 0.883×10

4
 in

2
/s

2 

Step 4: Hysteretic Energy per Unit Mass (HE/m): 

 

µ C T2 s b T EH/EI 

Mode 1 4 0.651 2.674 -0.0247 0.717 1.34 0.651 

Mode2 4 0.651 2.674 -0.0247 0.717 0.44 0.651 

Mode3 4 0.651 2.674 -0.0247 0.717 0.25 0.651 

 

Mode 1 : HE/m= (IE/m) × (HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

Mode 2 : HE/m= (IE/m) × (HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

              Mode 3: HE/m= (IE/m) × (HE/IE) = 0.883×10
4
 in.

2
/s

2
×0.651 = 0.575×10

4
 in.

2
/s

2
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Step 5:  MDOF System Total Hysteretic Energy Demand and its Distribution 

HE total  =  (Г
2
 × HE/m)mode 1 + (Г

2
 × HE/m)mode 2 + (Г

2
 × HE/m)mode 3 

HE total  =  (1.758 kips
2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) + (0.293 kips

2
in

-1
) (0.888×10

4
 in.

2
/s

2
) 

     +  (0.135 kips
2
in

-1
) (0.575×10

4
 in

2
/s

2
) 

  = 1.85×10
4
 kip-in. 

Story forces, displacements, and hysteretic energies:   

Story 

Force 

(kips) 

Displacement 

(in.) 

Story Drift 

(in.) 

External Work 

Done (kip-in.) 

Hysteretic 

Energy (kip-in.) 

Story 1 21 1.82 1.82 1292 2716 

Story 2 43 10.73 8.91 3029 6368 

Story 3 62 20.6 9.87 2902 6100 

Story 4 75 27.19 6.59 1404 2951 

Story 5 68 28.88 1.69 174 366 

 

Step 6: Member Size Optimization 

Optimization of Members in the Fifth Story  

Objective Function - Weight, W   

,5 ,5 ,5288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,5 ,5 ,5

,5 ,5

,5 ,5 ,5

,5 ,5

,5 ,5

,5 ,5 ,5

:

288 144 288

:

0.48 0.24 366kip-in.

0.24 0.12 0.48 366kip-in.

0

2 0

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

 

 

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,5 = 436 kip-in., MIC,5 = 726 kip-in., and MB,5 = 363 kip-in. 
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Optimization of Members in the Fourth Story  

Objective Function - Weight, W   

,4 ,4 ,4288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,4 ,4 ,4

,4 ,4

,4 ,4 ,4

,4 ,4

,4 ,4

,4 ,4 ,4

:

288 144 576

:

0.48 0.24 3142.8kip-in.

0.24 0.12 0.48 2951kip-in.

436kip-in.

2 726kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,4 = 3883 kip-in., MIC,4 = 6472 kip-in., and MB,4 = 2589 kip-in. 

Optimization of Members in the Third Story  

Objective Function - Weight, W   

,3 ,3 ,3288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,3 ,3 ,3

,3 ,3

,3 ,3 ,3

,3 ,3

,3 ,3

,3 ,3 ,3

:

288 144 576

:

0.48 0.24 7808.6kip-in.

0.24 0.12 0.48 6100kip-in.

3883kip-in.

2 6472kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,3 = 8873 kip-in., MIC,3 = 14790 kip-in., and MB,3 = 5916 kip-in. 
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Optimization of Members in the Second Story  

Objective Function - Weight, W   

,2 ,2 ,2288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,2 ,2 ,2

,2 ,2

,2 ,2 ,2

,2 ,2

,2 ,2

,2 ,2 ,2

:

288 144 576

:

0.48 0.24 10270kip-in.

0.24 0.12 0.48 6368kip-in.

8873kip-in.

2 14790kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,2 = 11670 kip-in., MIC,2 = 19460 kip-in., and MB,2 = 7782 kip-in. 

Optimization of Members in the First Story  

Objective Function - Weight, W   

,1 ,1 ,1336 168 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,1 ,1 ,1

,1 ,1

,1 ,1 ,1

,1 ,1

,1 ,1

,1 ,1 ,1

:

336 168 576

:

0.48 0.24 7852kip-in.

0.24 0.12 0.48 2716kip-in.

11670kip-in.

2 19460kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,1 = 8923 kip-in., MIC,1 = 14871 kip-in., and MB,1= 5948 kip-in. 
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Step 7 : Effect of Axial Forces on Plastic Capacity  

Story 

Column 

size 

Axial  Force (kips) 
m 

Plastic Moment (kip-in.) 

Capacity Applied Required Modified 

1 
Internal W33×169 1514 445 1.259 14870 18720 

External W14×109 1173 208 1.097 8923 9791 

2 
Internal W14×109 1220 350 1.246 19460 24250 

External W14×109 1220 165 1.073 11670 12520 

3 
Internal W14×90 1008 259 1.196 14790 17690 

External W14×74 724 121 1.091 8873 9682 

4 
Internal W14×74 724 168 1.157 6472 7491 

External W14×74 724 78 1.057 3883 4104 

5 
Internal W14×74 724 78 1.057 726 767 

External W14×74 724 35 1.025 436 447 

 

Step 8: Plastic Moment Capacity versus Demand Comparison 

 

Story 

Current 

size 

Plastic Moment (kip-in.) Member Size 

 Capacity Required Decision New 

C
o
lu

m
n
s 

1 
Internal W33×169 31450 18720 Change*** W14×176 

External W14×109 9600 9791 Change W14×132 

2 
Internal W14×109 9600 24250 Change W14×176 

External W14×109 9600 12520 Change W14×132 

3 
Internal W14×90 7850 17690 Change W14×176 

External W14×74 6300 9682 Change W14×120 

4 
Internal W14×74 6300 7491 Change W14×109 

External W14×74 6300 4104 Keep W14×74 

5 
Internal W14×74 6300 767 Keep W14×74 

External W14×74 6300 447 Keep W14×74 

B
ea

m
s 

1 W18×97 10550 5948 Change*** W18×71 

2 W18×65 6650 7782 Change W18×71 

3 W18×65 6650 5916 Change W18×71 

4 W18×65 6650 2589 Change ** W18×71 

5 (Roof) W18×65 6650 363 Keep W18×65 

*** Demand is too small compared to the capacity of the member  

** Change is required as a result of design for gravity loads 
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Iteration 3 

Step 1: Member Sizes at end of Iteration 2 

Column Sizes @ end of Iteration 2  Beam Sizes @ end of Iteration 2 

Story Internal External  Floor Level Size 

1
st
  W14×176 W14×132  2

nd
  (1

st
 story) W18×71 

2
nd

 W14×176 W14×132  3
rd

  W18×71 

3
rd

  W14×176 W14×120  4
th

  W18×71 

4
th

  W14×109 W14×74  5
th

  W18×71 

5
th

  W14×74 W14×74  Roof (5
th

 story) W18×65 

 

Step 2: Modal Properties  

 Period  (s) Г
2
, kips

2
in.

-1
 Σ Гi

2
/ M Ductility, µ 

Mode 1 1.37 1.93 0.831 4 

Mode 2 0.45 0.251 0.108 4 

Mode 3 0.25 0.087 0.038 4 

  Σ Гi
2
/ M = 97.7%  

 

Step 3: Normalized Input Energy per Unit Mass (NE) 

 

 s b T1 C T2 k n T NE 

Mode 1 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 1.37 0.41 

Mode 2 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.45 0.41 

Mode 2 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.25 0.33 

 

Input energy per unit mass (IE/m):  

Mode 1:  IE /m = NE
2
×VI = (0.41)

2
×0.811×10

4
 in.

2
/s

2
= 1.363×10

4
 in.

2
/s

2
 

Mode 2:  IE /m = NE
2
×VI = (0.41)

2
×0.811×10

4
 in.

2
/s

2
 = 1.363×10

4
 in.

2
/s

2 

Mode 3:  IE /m = NE
2
×VI = (0.33)

2
×0.811×10

4
 in.

2
/s

2
 = 0.883×10

4
 in.

2
/s

2 



 

225 

 

Step 4: Hysteretic Energy per Unit Mass (HE/m)  

 

µ C T2 s b T EH/EI 

Mode 1 4 0.651 2.674 -0.0247 0.717 1.34 0.651 

Mode 2 4 0.651 2.674 -0.0247 0.717 0.44 0.651 

Mode 3 4 0.651 2.674 -0.0247 0.717 0.25 0.651 

 

Mode 1: HE/m = (IE/m) × (HE/IE) = 1.363×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

Mode 2: HE/m = (IE/m) × (HE/IE) = 1.363×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

             Mode 3: HE/m = (IE/m) × (HE/IE) = 0.883×10
4
 in.

2
/s

2
×0.651 = 0.575×10

4
 in.

2
/s

2
 

Step 5:  MDOF System Total Hysteretic Energy Demand and its Distribution  

HE total  =  (Г
2
 × HE/m)mode 1 + (Г

2
 × HE/m)mode 2 + (Г

2
 × HE/m)mode 3 

HE total  =  (1.93 kips
2
in

-1
) (0.888×10

4
 in.

2
/s

2
) + (0.251 kips

2
in

-1
) (0.888×10

4
 in.

2
/s

2
) 

      +  (0.087 kip. s
2
.in

-1
) (0.575×10

4
 in.

2
/s

2
) =1.99×10

4
 kip-in. 

Story forces, displacements, and hysteretic energies:   

Story 

Force 

(kips) 

Displacement 

(in.) 

Story Drift 

(in.) 

External Work 

Done (kip-in.) 

Hysteretic 

Energy (kip-in.) 

Story 1 25.0 7.83 7.83 5669 9924 

Story 2 55.0 15.62 7.79 2625 4596 

Story 3 82.0 22.47 6.85 1932 3382 

Story 4 104.0 27.3 4.83 966 1691 

Story 5 96.0 28.88 1.58 152 266 
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Step 6: Member Size Optimization 

Optimization of Members in the Fifth Story  

Objective Function - Weight, W   

,5 ,5 ,5288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,5 ,5 ,5

,5 ,5

,5 ,5 ,5

,5 ,5

,5 ,5

,5 ,5 ,5

:

288 144 288

:

0.48 0.24 266kip-in.

0.24 0.12 0.48 266kip-in.

0

2 0

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

 

 

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,5 = 317 kip-in., MIC,5 = 528 kip-in., and MB,5 = 264 kip-in. 

Optimization of Members in the Fourth Story  

Objective Function - Weight, W   

,4 ,4 ,4288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,4 ,4 ,4

,4 ,4

,4 ,4 ,4

,4 ,4

,4 ,4

,4 ,4 ,4

:

288 144 576

:

0.48 0.24 1830kip-in.

0.24 0.12 0.48 1691kip-in.

317 kip-in.

2 528kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is; 

MEC,4 = 2225 kip-in., MIC,4 = 3708 kip-in., and MB,4 = 1483 kip-in. 
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Optimization of Members in the Third Story  

Objective Function - Weight, W   

,3 ,3 ,3288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,3 ,3 ,3

,3 ,3

,3 ,3 ,3

,3 ,3

,3 ,3

,3 ,3 ,3

:

288 144 576

:

0.48 0.24 4361kip-in.

0.24 0.12 0.48 3382kip-in.

2225kip-in.

2 3708kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,3 = 4955 kip-in., MIC,3 = 8260 kip-in., and MB,3 = 3304 kip-in. 

Optimization of Members in the Second Story  

Objective Function - Weight, W   

,2 ,2 ,2288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,2 ,2 ,2

,2 ,2

,2 ,2 ,2

,2 ,2

,2 ,2

,2 ,2 ,2

:

288 144 576

:

0.48 0.24 6676kip-in.

0.24 0.12 0.48 4596kip-in.

4955kip-in.

2 8260kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,2 = 7700 kip-in., MIC,2 = 12830 kip-in., and MB,2 = 5133 kip-in. 
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Optimization of Members in the First Story  

Objective Function - Weight, W   

,1 ,1 ,1336 168 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,1 ,1 ,1

,1 ,1

,1 ,1 ,1

,1 ,1

,1 ,1

,1 ,1 ,1

:

336 168 576

:

0.48 0.24 13310kip-in.

0.24 0.12 0.48 9924kip-in.

7700kip-in.

2 12830kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,1 = 15130 kip-in., MIC,1 = 25210 kip-in., and MB,1= 10080 kip-in. 

Step 7 : Effect of Axial Forces on Plastic Capacity  

Story 

Column 

size 

Axial  Force (kips) 
m 

Plastic Moment (kip-in.) 

Capacity Applied Required Modified 

1 
Internal W14×176 1938 446 1.155 25213 29111 

External W14×132 1425 209 1.079 15128 16325 

2 
Internal W14×176 2005 353 1.097 12834 14073 

External W14×132 1481 165 1.059 7700 8154 

3 
Internal W14×176 1938 262 1.072 8260 8859 

External W14×120 1346 121 1.047 4955 5188 

4 
Internal W14×109 1220 170 1.075 3708 3986 

External W14×74 724 78 1.057 2225 2352 

5 
Internal W14×74 724 78 1.057 528 558 

External W14×74 724 35 1.025 317 325 
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Step 8: Plastic Moment Capacity versus Demand Comparison 

 

Story 

Current 

size 

Plastic Moment (kip-in.) Member Size 

 Capacity Required Decision New 

C
o
lu

m
n
s 

1 
Internal W14×176 16000 29110 Change W14×233 

External W14×132 11700 16330 Change W14×145 

2 
Internal W14×176 16000 14070 Keep W14×176 

External W14×132 11700 8154 Keep W14×132 

3 
Internal W14×176 16000 8859 Change W14×132 

External W14×120 10600 5188 Keep W14×120 

4 
Internal W14×109 9600 3986 Keep W14×109 

External W14×74 6300 2352 Keep W14×74 

5 
Internal W14×74 6300 558 Keep W14×74 

External W14×74 6300 325 Keep W14×74 

B
ea

m
s 

1 W18×71 7300 10080 Change W18×86 

2 W18×71 7300 5133 Change W18×71 

3 W18×71 7300 3304 Change W18×71 

4 W18×71 6650 1483 Keep W18×71 

5 (Roof) W18×65 6650 264 Keep W18×65 

 

Iteration 4 

Step 1 Member Sizes at end of Iteration 3 

Column Sizes @ end of Iteration 3  Beam Sizes @ end of Iteration 3 

Story Internal External  Floor Level Size 

1
st
 W14×233 W14×145  2

nd
  (1

st
 story) W18×86 

2
nd

 W14×176 W14×132  3
rd

 W18×71 

3
rd

 W14×132 W14×120  4
th

 W18×71 

4
th

 W14×109 W14×74  5
th

 W18×71 

5
th

 W14×74 W14×74  Roof (5
th

 story) W18×65 
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Step 2: Modal Properties  

 Period  (s) Г
2
, kips

2
in

-1
 Σ Гi

2
/ M Ductility, µ 

Mode 1 1.32 1.879 0.808 4 

Mode 2 0.44 0.278 0.12 4 

Mode 3 0.25 0.103 0.044 4 

  Σ Гi
2
/ M = 96.2%  

Step 3: Normalized Input Energy per Mass (NE) 

 

 s b T1 C T2 k n T NE 

Mode 1 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 1.32 0.41 

Mode 2 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.44 0.41 

Mode 3 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.25 0.33 

 

Input energy per unit mass (IE/m):  

Mode 1:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
 = 1.36×10

4
 in.

2
/s

2
 

Mode 2:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
 = 1.36×10

4
 in.

2
/s

2 

Mode 3:  IE /m = NE
2
×VI = (0.33)

2
×8.11×10

4
 in.

2
/s

2
 = 0.883×10

4
 in.

2
/s

2 

Step 4: Hysteretic Energy per Unit mass (HE/m)  

 

µ C T2 s b T EH/EI 

Mode 1 4 0.651 2.674 -0.0247 0.717 1.32 0.651 

Mode 2 4 0.651 2.674 -0.0247 0.717 0.44 0.651 

Mode 3 4 0.651 2.674 -0.0247 0.717 0.25 0.651 

 

Mode 1: HE/m = (IE/m) × (HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

Mode 2: HE/m = (IE/m) × (HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

         Mode 3: HE/m = (IE/m) × (HE/IE) = 0.883×10
4
 in.

2
/s

2
×0.651 = 0.575×10

4
 in.

2
/s

2
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Step 5:  MDOF System Total Hysteretic Energy Demand and its Distribution  

HE total =  (Г
2
 x HE/m)mode 1 + (Г

2
 x HE/m)mode 2 + (Г

2
 x HE/m)mode 3 

HE total  =  (1.879 kips
2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) + (0.279 kips

2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) 

      +  (0.103 kips
2
in.

-1
) (0.575×10

4
 in.

2
/s

2
) =1.97×10

4
 kip-in. 

Story forces, displacements, and hysteretic energies:   

Story 

Force 

(kips) 

Displacement 

(in.) 

Story Drift 

(in.) 

External Work 

Done (kip-in.) 

Hysteretic 

Energy (kip-in.) 

Story 1 25.0 6.34 6.34 5009 8509 

Story 2 57.0 13.8 7.46 5760 4689 

Story 3 89.0 21.38 7.58 2373 4030 

Story 4 116.0 27.17 5.79 1297 2203 

Story 5 108.0 28.88 1.71 185 314 

Step 6: Member Size Optimization 

Optimization of Members in the Fifth Story  

Objective Function - Weight, W   

,5 ,5 ,5288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,5 ,5 ,5

,5 ,5

,5 ,5 ,5

,5 ,5

,5 ,5

,5 ,5 ,5

:

288 144 288

:

0.48 0.24 314kip-in.

0.24 0.12 0.48 314kip-in.

0

2 0

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

 

 

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,5 = 374 kip-in., MIC,5 = 623 kip-in., and MB,5 = 312 kip-in. 
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Optimization of Members in the Fourth Story  

Objective Function - Weight, W   

,4 ,4 ,4288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,4 ,4 ,4

,4 ,4

,4 ,4 ,4

,4 ,4

,4 ,4

,4 ,4 ,4

:

288 144 576

:

0.48 0.24 2367.5kip-in.

0.24 0.12 0.48 2203kip-in.

374kip-in.

2 623kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,4 = 2889 kip-in., MIC,4 = 4831 kip-in., and MB,4 = 1933 kip-in. 

Optimization of Members in the Third Story  

Objective Function - Weight, W   

,3 ,3 ,3288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,3 ,3 ,3

,3 ,3

,3 ,3 ,3

,3 ,3

,3 ,3

,3 ,3 ,3

:

288 144 576

:

0.48 0.24 5305.5kip-in.

0.24 0.12 0.48 4030kip-in.

2899kip-in.

2 4831kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,3 = 6029 kip-in., MIC,3 = 10048 kip-in., and MB,3 = 4020 kip-in. 
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Optimization of Members in the Second Story  

Objective Function - Weight, W   

,2 ,2 ,2288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,2 ,2 ,2

,2 ,2

,2 ,2 ,2

,2 ,2

,2 ,2

,2 ,2 ,2

:

288 144 576

:

0.48 0.24 7342kip-in.

0.24 0.12 0.48 4689kip-in.

6029kip-in.

2 10050kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,2 = 8342 kip-in., MIC,2 = 13905 kip-in., and MB,2 = 5562 kip-in. 

Optimization of Members in the First Story  

Objective Function - Weight, W   

,1 ,1 ,1336 168 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,1 ,1 ,1

,1 ,1

,1 ,1 ,1

,1 ,1

,1 ,1

,1 ,1 ,1

:

336 168 576

:

0.48 0.24 12180kip-in.

0.24 0.12 0.48 8509kip-in.

8342kip-in.

2 13905kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,1 = 13840 kip-in., MIC,1 = 23070 kip-in. and MB,1= 9227 kip-in. 
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Step 7: Effect of Axial Forces on Plastic Capacity  

Story 

Column 

size 

Axial  Force (kips) 
m 

Plastic Moment (kip-in.) 

Capacity Applied Required Modified 

1 
Internal W14×233 2575 448 1.095 23070 25270 

External W14×145 1593 209 1.070 13840 14810 

2 
Internal W14×176 2005 353 1.097 13905 15250 

External W14×132 1481 165 1.059 8342 8834 

3 
Internal W14×132 1481 262 1.097 10050 11020 

External W14×120 1346 121 1.047 6029 6313 

4 
Internal W14×109 1220 170 1.075 4831 5193 

External W14×74 724 78 1.057 2899 3064 

5 
Internal W14×74 724 78 1.057 623 658 

External W14×74 724 35 1.025 374 383 

 

Step 8: Plastic Moment Capacity versus Demand Comparison 

 

Story 

Current 

size 

Plastic Moment (kip-in) Member Size 

 Capacity Required Decision New 

C
o
lu

m
n
s 

1 
Internal W14×233 21800 25270 Change W14×257 

External W14×145 13000 14810 Change W14×176 

2 
Internal W14×176 16000 15250 Keep W14×176 

External W14×132 11700 8834 Keep W14×132 

3 
Internal W14×132 11700 11020 Keep W14×132 

External W14×120 10600 6313 Change W14×109 

4 
Internal W14×109 9600 5193 Keep W14×109 

External W14×74 6300 3064 Keep W14×74 

5 
Internal W14×74 6300 658 Keep W14×74 

External W14×74 6300 383 Keep W14×74 

B
ea

m
s 

1 W18×86 9300 9227 Keep W18×86 

2 W18×71 7300 5562 Keep W18×71 

3 W18×71 7300 4020 Keep W18×71 

4 W18×71 7300 1933 Keep W18×71 

5 (Roof) W18×65 6650 312 Keep W18×65 
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Iteration 5 

Step 1: Member Sizes at end of Iteration 4 

Column Sizes @ end of Iteration 4  Beam Sizes @ end of Iteration 4 

Story Internal External  Floor Level Size 

1
st
 W14×257 W14×176  2

nd
  (1

st
 story) W18×86 

2
nd

 W14×176 W14×132  3
rd

 W18×71 

3
rd

 W14×132 W14×109  4
th

 W18×71 

4
th

 W14×109 W14×74  5
th

 W18×71 

5
th

 W14×74 W14×74  Roof (5
th

 story) W18×65 

 

Step 2: Modal properties  

 Period  (s) Г
2
, kips

2
in.

-1
 Σ Гi

2
/ M Ductility, µ 

Mode 1 1.30 1.855 0.797 4 

Mode 2 0.43 0.283 0.121 4 

Mode 3 0.24 0.11 0.047 4 

  Σ Гi
2
/ M = 96.5%  

 

Step 3: Normalized Input Energy per Unit Mass (NE) 

 

 s b T1 C T2 k n T NE 

Mode 1 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 1.32 0.41 

Mode 2 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.44 0.41 

Mode 2 4 1.312 -0.0021 0.318 0.411 1.57 0.572 -0.720 0.24 0.31 

 

Input energy per unit mass (IE/m):  

Mode 1:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
= 1.36×10

4
 in.

2
/s

2
 

Mode 2:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
 = 1.36×10

4
 in.

2
/s

2 

Mode 3:  IE /m = NE
2
×VI = (0.31)

2
×8.11×10

4
 in.

2
/s

2
 = .779×10

4
 in.

2
/s

2 
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Step 4: Hysteretic Energy per Unit mass (HE/m)  

 

µ C T2 s b T EH/EI 

Mode 1 4 0.651 2.674 -0.0247 0.717 1.30 0.651 

Mode 2 4 0.651 2.674 -0.0247 0.717 0.43 0.651 

Mode 3 4 0.651 2.674 -0.0247 0.717 0.24 0.651 

 

Mode 1: HE/m = (IE/m)×(HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

Mode 2: HE/m = (IE/m)×(HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

            Mode 3: HE/m = (IE/m)×(HE/IE) = 0.779×10
4
 in.

2
/s

2
×0.651 = 0.507×10

4
 in.

2
/s

2
 

Step 5: MDOF System Total Hysteretic Energy Demand and its Distribution  

HE total  =  (Г
2
 x HE/m)mode 1 + (Г

2
 x HE/m)mode 2 + (Г

2
 x HE/m)mode 3 

HE total  =  (1.855 kips
2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) + (0.283 kips

2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) 

  +  (0.11 kips
2
in.

-1
) (0.507×10

4
 in.

2
/s

2
) =19534 kip-in. 

Story forces, displacements, and hysteretic energies:   

Story 

Force 

(kips) 

Displacement 

(in.) 

Story Drift 

(in.) 

External Work 

Done (kip-in.) 

Hysteretic 

Energy (kip-in.) 

Story 1 24.0 5.33 5.33 4381 7400 

Story 2 58.0 12.66 7.33 2837 4791 

Story 3 93.0 20.63 7.97 2622 4429 

Story 4 122.0 27.06 6.43 1518 2563 

Story 5 114.0 28.88 1.82 207 350 
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Step 6: Member Size Optimization 

Optimization of Members in the Fifth Story  

Objective Function - Weight, W   

,5 ,5 ,5288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,5 ,5 ,5

,5 ,5

,5 ,5 ,5

,5 ,5

,5 ,5

,5 ,5 ,5

:

288 144 288

:

0.48 0.24 350kip-in.

0.24 0.12 0.48 350kip-in.

0

2 0

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

 

 

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,5 = 417 kip-in., MIC,5 = 695 kip-in., and MB,5 = 348 kip-in. 

Optimization of Members in the Fourth Story  

Objective Function - Weight, W   

,4 ,4 ,4288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,4 ,4 ,4

,4 ,4

,4 ,4 ,4

,4 ,4

,4 ,4

,4 ,4 ,4

:

288 144 576

:

0.48 0.24 2747 kip-in.

0.24 0.12 0.48 2563kip-in.

417 kip-in.

2 695kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,4 = 3373 kip-in., MIC,4 = 5621 kip-in., and MB,4 = 2249 kip-in. 
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Optimization of Members in the Third Story  

Objective Function - Weight, W   

,3 ,3 ,3288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,3 ,3 ,3

,3 ,3

,3 ,3 ,3

,3 ,3

,3 ,3

,3 ,3 ,3

:

288 144 576

:

0.48 0.24 5913kip-in.

0.24 0.12 0.48 4429kip-in.

3373kip-in.

2 5621kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,3 = 6720 kip-in., MIC,3 = 11200 kip-in., and MB,3 = 4480 kip-in. 

Optimization of Members in the Second Story  

Objective Function - Weight, W   

,2 ,2 ,2288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,2 ,2 ,2

,2 ,2

,2 ,2 ,2

,2 ,2

,2 ,2

,2 ,2 ,2

:

288 144 576

:

0.48 0.24 7748kip-in.

0.24 0.12 0.48 4791kip-in.

6720kip-in.

2 11200kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,2 = 8805 kip-in., MIC,2 = 14674 kip-in., and MB,2 = 5870 kip-in. 
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Optimization of Members in the First Story  

Objective Function - Weight, W   

,1 ,1 ,1336 168 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,1 ,1 ,1

,1 ,1

,1 ,1 ,1

,1 ,1

,1 ,1

,1 ,1 ,1

:

336 168 576

:

0.48 0.24 11270kip-in.

0.24 0.12 0.48 7400kip-in.

8805kip-in.

2 14670kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,1 = 12810 kip-in., MIC,1 = 21350 kip-in. and MB,1= 8541 kip-in. 

Step 7: Effect of Axial Forces on Plastic Capacity   

Story 

Column 

size 

Axial  Force (kips) 
m 

Plastic Moment (kip-in.) 

Capacity Applied Required Modified 

1 
Internal W14×257 2847 448 1.085 21350 23180 

External W14×176 1938 210 1.057 12810 13550 

2 
Internal W14×176 2005 354 1.097 14670 16100 

External W14×132 1481 165 1.059 8805 9324 

3 
Internal W14×132 1481 262 1.097 11200 12290 

External W14×109 1220 121 1.052 6720 7071 

4 
Internal W14×109 1220 170 1.075 5621 6042 

External W14×74 724 78 1.057 3373 3565 

5 
Internal W14×74 724 78 1.057 695 735 

External W14×74 724 35 1.025 417 427 
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Step 8: Plastic Moment Capacity versus Demand Comparison 

 

Story 

Current 

size 

Plastic Moment (kip-in.) Member Size 

 Capacity Required Decision New 

C
o
lu

m
n
s 

1 
Internal W14×257 24350 23180 Keep W14×257 

External W14×176 16000 13550 Keep W14×176 

2 
Internal W14×176 16000 16100 Keep W14×176 

External W14×132 11700 9324 Keep W14×132 

3 
Internal W14×132 11700 12290 Change W14×145 

External W14×109 10600 7071 Keep W14×109 

4 
Internal W14×109 9600 6042 Keep W14×109 

External W14×74 6300 3565 Keep W14×74 

5 
Internal W14×74 6300 735 Keep W14×74 

External W14×74 6300 427 Keep W14×74 

B
ea

m
s 

1 W18×86 9300 8541 Keep W18×86 

2 W18×71 7300 5870 keep W18×71 

3 W18×71 7300 4480 keep W18×71 

4 W18×71 7300 2249 Keep W18×71 

5 (Roof) W18×65 6650 348 Keep W18×65 

 

Iteration 6 

Step 1: Member Sizes at end of Iteration 5 

Column Sizes @ end of Iteration 5  Beam Sizes @ end of Iteration 5 

Story Internal External  Floor Level Size 

1
st
  W14×257 W14x176  2

nd
  (1

st
 story) W18×86 

2
nd

 W14×176 W14x132  3
rd

  W18×71 

3
rd

  W14×145 W14x09  4
th

  W18×71 

4
th

  W14×109 W14x74  5
th

  W18×71 

5
th

  W14×74 W14x74  Roof (5
th

 story) W18×65 
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Step 2: Modal Properties  

 Period  (s) Г
2
, kips

2
in.

-1
 Σ Гi

2
/ M Ductility, µ 

Mode 1 1.30 1.857 0.797 4 

Mode 2 0.43 0.288 0.121 4 

Mode 3 0.24 0.109 0.047 4 

  Σ Гi
2
/ M = 96.5%  

 

Step 3: Normalized Input Energy per Unit Mass (NE) 

 

 s b T1 C T2 k n T NE 

Mode 1 4 1.312 -0.0021 0.318 0.411 1.57 0.5724 -0.720 1.32 0.41 

Mode 2 4 1.312 -0.0021 0.318 0.411 1.57 0.5724 -0.720 0.44 0.41 

Mode 3 4 1.312 -0.0021 0.318 0.411 1.57 0.5724 -0.720 0.24 0.31 

 

Input Energy per Unit Mass (IE/m):  

Mode1:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
= 1.36×10

4
 in.

2
/s

2
 

Mode2:  IE /m = NE
2
×VI = (0.41)

2
×8.11×10

4
 in.

2
/s

2
 = 136×10

4
 in.

2
/s

2 

Mode3:  IE /m = NE
2
×VI = (0.31)

2
×8.11×10

4
 in.

2
/s

2
 = 0.779×10

4
 in.

2
/s

2 

Step 4: Hysteretic Energy per Unit Mass (HE/m)  

 

µ C T2 s b T EH/EI 

Mode 1 4 0.651 2.674 -0.0247 0.717 1.30 0.651 

Mode 2 4 0.651 2.674 -0.0247 0.717 0.43 0.651 

Mode 3 4 0.651 2.674 -0.0247 0.717 0.24 0.651 

 

Mode 1: HE/m = (IE/m)×(HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

Mode 2: HE/m = (IE/m)×(HE/IE) = 1.36×10
4
 in.

2
/s

2
×0.651 = 0.888×10

4
 in.

2
/s

2
 

          Mode 3: HE/m = (IE/m)×(HE/IE) = 0.779×10
4
 in.

2
/s

2
×0.651 = 0.507×10

4
 in.

2
/s

2
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Step 5:  MDOF System Total Hysteretic Energy Demand and its Distribution  

HE total  =  (Г
2
 × HE/m)mode 1 + (Г

2
 × HE/m)mode 2 + (Г

2
 × HE/m)mode 3 

HE total  =  (1.857 kips
2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) + (0.288 kips

2
in.

-1
) (0.888×10

4
 in.

2
/s

2
) 

      +  (0.109 kips
2
in

-1
) (0.507×10

4
 in.

2
/s

2
) =1.96 ×10

4 
kip-in. 

Story forces, displacements, and hysteretic energies:   

Story 

Force 

(kips) 

Displacement 

(in.) 

Story Drift 

(in.) 

External Work 

Done (kip-in.) 

Hysteretic 

Energy (kip-in.) 

Story 1 24.0 5.35 5.35 4394 7445 

Story 2 58.0 12.68 7.33 2837 4802 

Story 3 93.0 20.60 7.92 2606 4411 

Story 4 122.0 27.06 6.46 1525 2581 

Story 5 114.0 28.88 1.82 208 351 

 

Step 6: Member Size Optimization 

Optimization of Members in the Fifth Story  

Objective Function - Weight, W   

,5 ,5 ,5288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,5 ,5 ,5

,5 ,5

,5 ,5 ,5

,5 ,5

,5 ,5

,5 ,5 ,5

:

288 144 288

:

0.48 0.24 351kip-in.

0.24 0.12 0.48 351kip-in.

0

2 0

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

 

 

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,5 = 418 kip-in., MIC,5 = 697 kip-in., and MB,5 = 348 kip-in. 
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Optimization of Members in the Fourth Story  

Objective Function - Weight, W   

,4 ,4 ,4288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,4 ,4 ,4

,4 ,4

,4 ,4 ,4

,4 ,4

,4 ,4

,4 ,4 ,4

:

288 144 576

:

0.48 0.24 2765kip-in.

0.24 0.12 0.48 2581kip-in.

418kip-in.

2 697 kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,4 = 3396 kip-in., MIC,4 = 5661 kip-in., and MB,4 = 2265 kip-in. 

Optimization of Members in the Third Story  

Objective Function - Weight, W   

,3 ,3 ,3288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,3 ,3 ,3

,3 ,3

,3 ,3 ,3

,3 ,3

,3 ,3

,3 ,3 ,3

:

288 144 576

:

0.48 0.24 5905kip-in.

0.24 0.12 0.48 4411kip-in.

3396kip-in.

2 5661kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,3 = 6711 kip-in., MIC,3 = 11185 kip-in., and MB,3 = 4474 kip-in. 
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Optimization of Members in the Second Story  

Objective Function- Weight, W   

,2 ,2 ,2288 144 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,2 ,2 ,2

,2 ,2

,2 ,2 ,2

,2 ,2

,2 ,2

,2 ,2 ,2

:

288 144 576

:

0.48 0.24 7755kip-in.

0.24 0.12 0.48 4802kip-in.

6711kip-in.

2 11190kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,2 = 8813 kip-in., MIC,2 = 14687 kip-in. and MB,2 = 5875 kip-in. 

Optimization of Members in the First Story  

Objective Function - Weight, W   

,1 ,1 ,1336 168 576EC IC BW M M M    

Mathematical formulation of the minimization problem 

,1 ,1 ,1

,1 ,1

,1 ,1 ,1

,1 ,1

,1 ,1

,1 ,1 ,1

:

336 168 576

:

0.48 0.24 11320kip-in.

0.24 0.12 0.48 7445kip-in.

8813kip-in.

2 14687 kip-in.

0, 0, 0

EC IC B

EC IC

EC IC B

EC B

IC B

EC IC B

Minimize

W M M M

Subjected to

M M

M M M

M M

M M

where M M M

  

 

  

  

  

    

The optimized solution obtained using the Simplex linear solver built in Microsoft Excel is 

MEC,1 = 12870 kip-in., MIC,1 = 21450 kip-in., and MB,1= 8578 kip-in. 
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Step 7: Effect of Axial Forces on Plastic Capacity   

Story 

Column 

size 

Axial  Force (kips) 
m 

Plastic Moment (kip-in.) 

Capacity Applied Required Modified 

1 
Internal W14×257 2847 449 1.086 21450 23280 

External W14×176 1938 210 1.057 12870 13600 

2 
Internal W14×176 2005 354 1.097 14690 16110 

External W14×132 1481 165 1.059 8813 9333 

3 
Internal W14×145 1650 262 1.086 11190 12150 

External W14×109 1220 121 1.052 6711 7061 

4 
Internal W14×109 1220 170 1.075 5661 6085 

External W14×74 724 78 1.057 3396 3589 

5 
Internal W14×74 724 78 1.057 697 737 

External W14×74 724 35 1.025 418 428 

 

Step 8: Plastic Moment Capacity versus Demand Comparison 

 

Story 

Current 

size 

Plastic Moment (kip-in.) Member Size 

 Capacity Required Decision New 

C
o
lu

m
n
s 

1 
Internal W14×257 24350 23280 Keep W14×257 

External W14×176 16000 13600 Keep W14×176 

2 
Internal W14×176 16000 16110 Keep W14×176 

External W14×132 11700 9333 Keep W14×132 

3 
Internal W14×145 13000 12150 Keep W14×145 

External W14×109 10600 7061 Keep W14×109 

4 
Internal W14×109 9600 6085 Keep W14×109 

External W14×74 6300 3589 Keep W14×74 

5 
Internal W14×74 6300 737 Keep W14×74 

External W14×74 6300 428 Keep W14×74 

B
ea

m
s 

1 W18×86 9300 8578 Keep W18×86 

2 W18×71 7300 5875 keep W18×71 

3 W18×71 7300 4474 keep W18×71 

4 W18×71 7300 2265 Keep W18×71 

5 (Roof) W18×65 6650 348 Keep W18×65 
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6.4.3 Proposed EBSD Procedure: Observation  

Like any iterative procedure, the rate of convergence of the proposed EBSD method is dependent 

on the quality of the first trial solution, i.e., the preliminary member sizes.  Even though not 

explicitly mentioned in the design examples, it was observed that when designing the frames for 

gravity loads a lower value of force to moment (P-M) ratio for columns and a value closer to the 

desired P-M ratio for beams often help speed up the rate of convergence.  Except for lower floor 

beams, it is likely that beam sizes mainly remain unchanged from their preliminary sizes during 

the iterative procedure.  This supports the notion that the lateral force effect of earthquakes is 

mainly resisted by columns.  

After the first iteration, the EBSD gives results that require an excessively large plastic moment 

capacity demand for the first story columns (see Iteration 1 of the five story two bay frame 

design example) and thus unnecessarily large member sizes.  Therefore, the selection of member 

sizes after the first iteration shall not solely depend on the resulting plastic demand but should 

take into account the expected plastic demand for the subsequent iterations.  Recall per the 

proposed EBSD procedure, the hysteretic energy distributions among the different stories depend 

on the story drifts.  Say, if member sizes for the first story columns are chosen based on the 

plastic demand from the first iteration, the first story becomes stiff enough to force plastic hinges 

to form at upper stories, thus leaving the first story drift to be small.  A small story drift is 

translated to a small hysteretic energy demand hence smaller member sizes.  This phenomenon 

can be clearly seen from Figure 6.12, where the hysteretic energy demand and story drift of the 

first story for Iteration 2 are substantially smaller than those for Iteration 1.  In addition, large 

member size means larger compressive capacity and smaller moment amplification factor, m.  If 
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the member sizes for the first story columns are not selected wisely, they can be excessively 

large, and thus more iterations are required to arrive at the final solution.  

 

Figure 6.12  First story level hysteretic energy demand and drifts for five story frame 

From a design perspective, the solution of the optimization problem using the Simplex method 

can sometimes give unrealistic solutions.  Examples are zero plastic moment demands for beams 

or for columns.  Zero plastic moment demands mean no plastic hinges are expected to form.  

However, without the formation of plastic hinges, there will not be any collapse mechanisms and 

the optimization problem cannot be formulated.  In such cases, additional constraint equations 

that do not change the integrity of the problem are added intuitively.  Pending further research, it 

is recommended that these constraint equations require that beams shall have at least 60% and 

40% of the plastic moment demands of the external and internal columns, respectively; and 

external columns shall have at least 60% of the plastic moment demands of the internal columns.
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7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary and Conclusions 

1. The differences between the current seismic design procedures; namely, the force-based 

design (FBD) and displacement-based design (DBD), and the proposed energy-based seismic 

design (EBSD) were discussed.  Unlike FBD and DBD, EBSD captures the duration 

dependent cumulative damage effect of earthquakes on structures.  The main design 

parameters in FBD, DBD and EBSD are force, displacement and energy demand (hysteretic 

energy), respectively. 

2. A new earthquake intensity index called velocity index (VI), obtained by multiplying two 

earthquake indices: the peak ground velocity (PGV) and the cumulative absolute velocity 

(CAV) and has dimensions of energy per unit mass, was introduced.  VI is preferred over 

other existing earthquake intensity indexes for normalizing earthquake input energy per unit 

mass spectra for two reasons: (i) input energy per unit mass when normalized by VI becomes 

dimensionless, and (ii) the coefficient of variation of VI normalized input energies for a set of 

earthquakes is smaller when compared to the other normalization factors.  

3. Soil site condition and structural hysteretic behavior dependent VI normalized input energy 

per unit mass (NE) spectra for SDOF systems with damping ratio of ζ= 0.05 and ductility 

levels µ=1, 2, 3, 4 and 5 were developed.  The structural hysteretic models considered are: 

bilinear plastic (BP), stiffness degradation (SD), bilinear flag (BF) and bilinear slip (BS). 

They cover a wide range of hysteretic behavior of existing and new structures that encompass 

moment resisting to self-centering steel frames and reinforced concrete to prestressed 

concrete structures.   
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4. For hysteretic models BP, SD, BF and BS and soil site classes B, C, D and E, NE decreases 

with ductility.  The rate of decrement with an increasing ductility value is more distinct at 

low ductility values (μ=1-3) than at higher ductility values (μ=3-5), suggesting that input 

energy in SDOF systems becomes relatively insensitive to ductility for ductility levels greater 

than 5. 

5. Mean+σ and mean+2σ NE spectra for SDOF systems with hysteretic behavior types -BP, 

SD, BF and BS and site soil classes B, C, D and E were developed.  For purpose of design, 

the normalized input energy spectra were divided into three regions: short period, 

intermediate period and long period.  These are consistent with the customary design 

response spectra contained in various seismic codes and standards.   

6. Irrespective of the hysteretic behavior, NE  maximum spectral value (for both mean+ σ and 

mean+2σ spectra) and the corresponding  period at which it occurs increase as the soil gets 

softer.  In addition, the range of the intermediate period (region of maximum spectral value) 

of the normalized energy spectra becomes larger for sites with poor soil conditions. 

7. When compared with the exact time history spectra, the proposed NE spectra provide 

conservative estimates of input energy for SDOF systems.  An exception to this 

generalization is that for hysteretic behavior type BP in soil site classes B & C, and for 

hysteretic types SD, BF and BS in soil site class B, the proposed mean +σ spectra 

underestimate the input energy in the long period region by a slight margin.  

8. Mean+σ and mean+2σ hysteretic energy to input energy ratio (HE/IE) spectra for SDOF 

systems with ductility levels µ= 2, 3, 4, and 5, hysteretic behavior types of BP, SD, BF and 

BS and site soil classes of B, C, D and E were developed.  HE/IE values generally increase 
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with an increase in ductility.  But, like the NE spectra, the HE/IE spectral values show very 

small differences for ductility values µ≥3 for soil site classes B, C, D and E.  

9. For hysteretic behavior type BP, HE/IE spectral values tend to increase with decrease in the 

stiffness of the foundation soil.  However, the effect of soils on HE/IE spectra for SDOF 

systems with hysteretic behavior types SD, BF and BS is neither significant nor shows a 

specific trend. 

10. For a given hysteretic behavior and ductility level, the difference in the magnitude of the 

mean+σ and the mean+2σ HE/IE spectral values is negligible.  As a result, either spectrum 

can be used for estimating the hysteretic demand without a significant change in the final 

value.  

11.   With respect to hysteretic behavior, HE/IE spectral values vary in the following order 

BP>SD>BF>BS.  Hysteretic energy demand for SDOF systems is highest for hysteretic 

behavior type bilinear plastic (BP) and lowest for hysteretic behavior type BS. 

12. The proposed HE/IE spectra yield conservative mean+σ and mean+2σ hysteretic energy 

values for SDOF systems when compared to the exact mean+σ and mean+2σ hysteretic 

energy values obtained from time history analysis.  The only exception to this generalization 

is that the proposed mean+σ HE/IE underestimates the hysteretic energy for SDOF systems 

with hysteretic behavior type BF within the long period region of the spectra.  

13. Simple vibration modes based expressions for estimating input and hysteretic energy for a 

MDOF system from its equivalent SDOF systems were developed.  The energy relationship 

between the MDOF system and its ESDOF systems was derived from an energy balance 

equation where the MDOF was discretized into its orthogonal modes. The properties of the 

ESDOF system for each mode are determined using non-linear static (pushover) analysis of 
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the MDOF system subjected to a lateral force (with mode-based distribution) and pushed to a 

target (roof) displacement.  

14. The simple input energy relationships between the MDOF system and its ESDOF systems 

were validated using four (a three, five, seven and nine story) frames.  For each of the 

frames, two modes were enough to satisfy the 90% or greater effective modal mass 

requirement for mode based dynamic analysis.  Using two modes, the proposed energy 

relationships provided a very good estimate for the three and five story frame with an 

estimation error of 4.5% and 6.5%, respectively.  An acceptable result was also obtained for 

the seven and nine story frames with an estimation error of 10% and 11.5 %, respectively. 

15.  For low and medium height moment resisting frames, much of the input energy due to an 

earthquake is contributed by the 1
st
 mode of vibration of the MDOF system. 

16.  Hysteretic energy distribution in moment resisting frames obtained from exact time history 

analysis is characteristically chaotic.  It does not follow a specific trend nor is it consistent.  

An approximate pushover based hysteretic energy distribution is therefore proposed.  

17.  The proposed hysteretic energy distribution scheme is simpler and easy to use when 

compared with existing distribution schemes found in literature.  It involves only story forces 

and displacements in determining the distribution ratios.  When compared to the actual 

plastic energies ratios (product of plastic moment and plastic rotations), the proposed scheme 

produced very good results and is shown to be better than other distribution schemes. 

18. A story-wise energy-based seismic design (EBSD) procedure was presented.  The 

relationship that exists between EBSD and plastic analysis/design of structures was 

discussed.  For moment resisting frames, the cyclic/dynamic hysteretic energy demand is 

approximately equal to four times the monotonic/static plastic energy. 
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19. The story-wise EBSD procedure reduces to an optimization problem, wherein the plastic 

moment capacities are determined by minimization of the weight function of the story 

subjected to a set of constraint equations (formulated using collapse mechanisms and code 

based requirements) using the Simplex method of linear optimization. 

20. The expressions used for determining input energy, hysteretic energy and distribution scheme 

proposed in the present study were demonstrated using two design examples. The proposed 

expressions are easy to use and can significantly reduce the computational effort required for 

determining the hysteretic energy demand using nonlinear dynamic analysis.   

21. Like any iterative procedure, the rate of convergence of the EBSD method is dependent on 

the quality of the first trial solution, i.e., the preliminary member sizes. Preliminary member 

sizes can be determined by designing the frame for gravity loads.  It has been observed that 

the final member sizes for beams and columns in the upper stories do not significantly 

change from the preliminary sizes obtained by designing the frame for gravity loads. 

22. The solution to an optimization problem using the Simplex method can sometimes produce 

unrealistic solutions, such as zero plastic moment demands for beams and/or columns.  These 

solutions are obviously unacceptable, and additional constraint equations requiring that these 

plastic moment demands meet certain conditions and will not change the integrity of the 

problem should be added.   

7.2 Recommendations for Future Research 

1. Based on the distance from the source/fault, earthquake records are categorized as near-fault 

and far-fault records.  Generally, seismic demand due to near-fault earthquakes is greater 

than far-fault earthquakes.  In this study, only far-fault earthquakes were considered.  A 

similar study on near-fault earthquakes will complement the current study.  
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2. Although the vibration mode based input and hysteretic energy relationships between a 

MDOF system and its equivalent SDOF systems developed in this study have been verified 

for regular low and medium rise moment resisting frames with hysteretic behavior type BP, 

applicability of the proposed method for high rise and irregular frames with hysteretic 

behavior type BP needs to be investigated.  In addition, extension of the method to MDOF 

systems with hysteretic behaviors SD, BF and BS need to be performed. 

3. The proposed scheme for distributing hysteretic energy was found to be sufficient for low 

and medium rise moment resisting frames when the overall dynamic response of the system 

is controlled predominantly by the first mode.   In order to extend the distribution scheme to 

irregular and/or high rise frames, the distribution method needs further validation.  

4. Even though the cost of moment resisting frames is directly related to the weight of the 

structure, joint detailing also significantly contributes to the cost of the structures. A better 

optimized design can be achieved if joint detailing cost is included in the optimization 

problem.  

5. As demonstrated in the two design examples, the Simplex method of linear optimization can 

sometimes give unrealistic results.  In such cases, the addition of supplementary constraint 

equations to the code-based and collapsed mechanism related constraint equations is needed.  

These supplementary equations can be added from design experience, but the final design 

would depend on the designer’s choice of the conditions.  For a more uniform design output, 

there is a need to formulate such equations based on plastic moment relationships between 

story external/internal column to floor beams and those between internal and external 

columns.  These equations can also be used to replace the commonly used code-based joint 

constraint equations. 
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APPENDIX  A   GROUND MOTION ENSEMBLES  

A1.  Site Class B – Summary of Selected Ground Motion Records 

 

Comp. NGA# 

Scale 

Factor D5-95(s) Event Year Station Mag Rrup(km) Vs30(m/s) 

FN &FP 2107 0.8985 19.7  24.7 Denali- Alaska 2002 Carlo (temp) 7.9 50.9 963.9 

FN &FP 946 1.7258 14.4  14.9 Northridge-01 1994 Antelope Buttes 6.69 46.9 821.7 

FN &FP 804 0.9561 9.5  11.8 Loma Prieta 1989 So. San Francisco- Sierra Pt. 6.93 63.1 1020.6 

FN &FP 283 2.1701 15.8  18.1 Irpinia- Italy-01 1980 Arienzo 6.9 52.9 1000 

FN &FP 1033 1.2158 20.2  11.6 Northridge-01 1994 Littlerock - Brainard Can 6.69 46.6 821.7 

FN &FP 2111 0.8937 18.8  23.7 Denali- Alaska 2002 R109 (temp) 7.9 43 963.9 

FN &FP 1347 1.1725 25.6  21.1 Chi-Chi- Taiwan 1999 ILA063 7.62 61.1 996.5 

FN &FP 1518 1.1402 19.8  22.2 Chi-Chi- Taiwan 1999 TCU085 7.62 58.1 999.7 

FN &FP 788 1.0313 10.9  10.7 Loma Prieta 1989 Piedmont Jr High 6.93 73 895.4 

FN &FP 1587 1.2211 33.6  34.7 Chi-Chi- Taiwan 1999 TTN042 7.62 65.2 845.3 

FN &FP 797 0.8949 10.9  13.9 Loma Prieta 1989 SF - Rincon Hill 6.93 74.1 873.1 

FN &FP 1021 1.2027 13.6  13.2 Northridge-01 1994 Lake Hughes #4 - Camp Mend 6.69 31.7 821.7 

FN &FP 925 2.0055 26.5  22.5 Big Bear-01 1992 Rancho Cucamonga - Deer Can 6.46 [59.4] 821.7 

FN &FP 1074 0.8161 17.4  13.5 Northridge-01 1994 Sandberg - Bald Mtn 6.69 41.6 821.7 

FN &FP 1060 1.4735 15.1  16.2 Northridge-01 1994 Rancho Cucamonga - Deer Can 6.69 80 821.7 

FN &FP 1096 1.5746 14.2  14.8 Northridge-01 1994 Wrightwood - Jackson Flat 6.69 64.7 821.7 

FN &FP 2929 3.4843 17.4  18.3 Chi-Chi- Taiwan-04 1999 TTN042 6.2 69 845.3 

FN &FP 943 2.4764 11.8  14.4 Northridge-01 1994 Anacapa Island 6.69 68.9 821.7 

FN &FP 795 1.1371 8.6  11.4 Loma Prieta 1989 SF - Pacific Heights 6.93 76 1249.9 

FN &FP 1041 1.0261 10.1   9.5 Northridge-01 1994 Mt Wilson - CIT Seis Sta 6.69 35.9 821.7 
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A2.  Site Class C – Summary of Selected Ground Motion Records 

Comp. NGA# 

Scale 

Factor D5-95(s) Event Year Station Mag Rrup(km) Vs30(m/s) 

FN&FP 299 2.4946 19.3  22.1 Irpinia- Italy-02 1980 Brienza 6.2 42.6 500 

FN&FP 353 1.4575 18.8  19.4 Coalinga-01 1983 Parkfield - Gold Hill 4W 6.36 41.1 438.3 

FN&FP 762 0.9005 18.3  16.4 Loma Prieta 1989 Fremont - Mission San Jose 6.93 39.5 367.6 

FN&FP 798 2.182 9.2   8.4 Loma Prieta 1989 SF - Telegraph Hill 6.93 76.5 712.8 

FN&FP 980 1.6481 29.1  26.9 Northridge-01 1994 Huntington Beach - Lake St 6.69 77.5 370.8 

FN&FP 1015 1.3589 25.7  26.0 Northridge-01 1994 LB - Rancho Los Cerritos 6.69 51.9 405.2 

FN&FP 1026 0.9721 23.3  23.5 Northridge-01 1994 Lawndale - Osage Ave 6.69 39.9 361.2 

FN&FP 1027 1.5469 11.8  13.1 Northridge-01 1994 Leona Valley #1 6.69 37.2 684.9 

FN&FP 1028 1.4716 13.2  12.5 Northridge-01 1994 Leona Valley #2 6.69 37.2 446 

FN&FP 1029 1.3395 13.1  13.0 Northridge-01 1994 Leona Valley #3 6.69 37.3 684.9 

FN&FP 1190 1.6949 38.0  38.7 Chi-Chi- Taiwan 1999 CHY019 7.62 50.5 478.3 

FN&FP 1284 1.3759 22.2  21.6 Chi-Chi- Taiwan 1999 HWA035 7.62 48.4 500.8 

FN&FP 1594 2.8355 36.5  37.0 Chi-Chi- Taiwan 1999 TTN051 7.62 36.7 680 

FN&FP 2609 3.0711 61.4  59.5 Chi-Chi- Taiwan-03 1999 TCU053 6.2 40.6 454.6 

FN&FP 2714 0.9412 16.8  12.8 Chi-Chi- Taiwan-04 1999 CHY046 6.2 38.1 442.1 

FN&FP 2916 3.0915 20.0  23.2 Chi-Chi- Taiwan-04 1999 TTN022 6.2 56.3 507 

FN&FP 2952 2.4116 16.8  17.3 Chi-Chi- Taiwan-05 1999 CHY042 6.2 67.7 680 

FN&FP 3202 2.3519 21.7  22.9 Chi-Chi- Taiwan-05 1999 TCU102 6.2 52.8 714.3 

FN&FP 3224 2.6425 18.6  25.5 Chi-Chi- Taiwan-05 1999 TTN001 6.2 59.2 424 

FN&FP 3447 2.7129 31.9  25.0 Chi-Chi- Taiwan-06 1999 TCU032 6.3 59.6 454.4 

FN&FP 3495 1.1679 34.9  36.4 Chi-Chi- Taiwan-06 1999 TCU109 6.3 37.9 424.2 
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A3.  Site Class D – Summary of Selected Ground Motion Records 

 

Comp. NGA# 

Scale 

Factor D5-95(s) Event Year Station Mag Rrup(km) Vs30(m/s) 

FN&FP 3271 1.2106 35.3  28.6 Chi-Chi- Taiwan-06 1999 CHY032 6.3 65 192.7 

FN&FP 1816 1.9373 27.7  21.8 Hector Mine 1999 North Palm Springs Fire Sta #36 7.13 61.8 345.4 

FN&FP 3276 1.0657 29.3  36.0 Chi-Chi- Taiwan-06 1999 CHY037 6.3 53.7 212.1 

FN&FP 2695 2.9223 59.0  54.0 Chi-Chi- Taiwan-04 1999 CHY016 6.2 79.8 200.9 

FN&FP 832 0.9457 25.2  29.9 Landers 1992 Amboy 7.28 69.2 271.4 

FN&FP 1177 1.3668 39.3  38.9 Kocaeli- Turkey 1999 Zeytinburnu 7.51 53.9 274.5 

FN&FP 1290 2.3407 25.7  26.1 Chi-Chi- Taiwan 1999 HWA043 7.62 58 228.6 

FN&FP 1637 1.3285 27.8  27.7 Manjil- Iran 1990 Rudsar 7.37 64.5 274.5 

FN&FP 862 1.3058 37.9  36.4 Landers 1992 Indio - Coachella Canal 7.28 54.2 345.4 

FN&FP 3313 2.0942 55.7  48.4 Chi-Chi- Taiwan-06 1999 CHY094 6.3 59.6 221.9 

FN&FP 941 2.7963 28.0  29.0 Big Bear-01 1992 Yermo Fire Station 6.46 [71.0] 353.6 

FN&FP 907 2.2741 22.9  22.6 Big Bear-01 1992 Hesperia - 4th & Palm 6.46 [44.8] 345.4 

FN&FP 3265 1.1293 16.7  16.5 Chi-Chi- Taiwan-06 1999 CHY025 6.3 40.3 277.5 

FN&FP 958 1.1067 32.4  41.1 Northridge-01 1994 Camarillo 6.69 40.3 234.9 

FN&FP 3480 2.7385 40.7  43.1 Chi-Chi- Taiwan-06 1999 TCU086 6.3 64.2 222.2 

FN&FP 1762 0.7422 24.0  27.9 Hector Mine 1999 Amboy 7.13 43 271.4 

FN&FP 1791 1.6048 23.6  32.9 Hector Mine 1999 Indio - Coachella Canal 7.13 73.5 345.4 

FN&FP 1776 2.1505 24.7  19.4 Hector Mine 1999 Desert Hot Springs 7.13 56.4 345.4 

FN&FP 2720 2.5407 39.9  27.2 Chi-Chi- Taiwan-04 1999 CHY056 6.2 79.4 193 
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A4.  Site Class E – Summary of Selected Ground Motion Records 

Comp. NGA# 

Scale 

Factor D5-95(s) Event Year Station Mag Rrup(km) Vs30(m/s) 

FN&FP 3319 1.8138 33.0  42.5 Chi-Chi- Taiwan-06 1999 CHY107 6.3 79.8 175.7 

FN&FP 962 1.903 22.5  23.3 Northridge-01 1994 Carson - Water St 6.69 49.8 160.6 

FN&FP 1147 0.7059 36.9  37.2 Kocaeli- Turkey 1999 Ambarli 7.51 69.6 175 

FN&FP 1229 2.3854 38.6  41.2 Chi-Chi- Taiwan 1999 CHY078 7.62 77.2 160.7 

FN&FP 3285 1.9532 27.8  34.5 Chi-Chi- Taiwan-06 1999 CHY054 6.3 77.6 172.1 

FN&FP 2736 5.6455 42.1  39.2 Chi-Chi- Taiwan-04 1999 CHY076 6.2 56.4 169.8 

FN&FP 3302 1.4669 41.3  38.3 Chi-Chi- Taiwan-06 1999 CHY076 6.3 70.4 169.8 

FN&FP 2510 2.8682 37.6  45.4 Chi-Chi- Taiwan-03 1999 CHY107 6.2 72.5 175.7 

FN&FP 1212 1.3432 39.9  36.4 Chi-Chi- Taiwan 1999 CHY054 7.62 48.5 172.1 

FN&FP 2476 2.8264 33.3  44.3 Chi-Chi- Taiwan-03 1999 CHY054 6.2 70.4 172.1 

FN&FP 808 1.0323 4.7   4.6 Loma Prieta 1989 Treasure Island 6.93 77.4 155.1 

FN&FP 2755 2.7405 42.9  46.0 Chi-Chi- Taiwan-04 1999 CHY107 6.2 63.4 175.7 

FN&FP 2718 2.6975 41.1  42.4 Chi-Chi- Taiwan-04 1999 CHY054 6.2 61.1 172.1 
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APPENDIX  B: GRAPHICAL PRESENTATION OF SOIL EFFECT ON INPUT ENERGY 

 

Figure B.1 Effect of soil on input energy of SDOF structures: hysteretic model BP 
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Figure B.2 Effect of soil on input energy of SDOF structures: hysteretic model SD 
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Figure B.3 Effect of soil on input energy of SDOF structures: hysteretic model BF 
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Figure B.4 Effect of soil on input energy of SDOF structures: hysteretic model BS 
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APPENDIX  C: CASE STUDY FRAME DIMENSIONS AND SECTIONS 

C1. Three-Story Moment-Resisting Frame (all dimensions in mm) 

   

(a) Plan View     (b) Elevation View 

Summary of Frame Design Parameters  

Floor Weight (kN) Design Load (kN) Drift (cm) Drift Limit (cm) 

2
nd

 1566 60 1.20 1.44 

3
rd

 1566 130 1.27 1.33 

Roof 1212 163 1.02 1.33 

 

Steel Beam Moment Strength and Demand 

Floor Beam Mub (kN-m) Mpb (kN-m)) 

2
nd

 W21x44 309 360 

3
rd

 W18x40 251 282 

Roof W14x34 168 186 

 

Steel Column Strength and Demand 

Floor Column Mpc (kN-m) 

Interior Exterior Interior Exterior 

1
st
  W14x109 W14x48 1085 443 

2
nd

  W14x109 W14x48 1085 443 

3
rd

  W14x109 W14x46 1085 443 
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C2. Five-Story Composite Special Moment- Resisting Frame (all dimensions in mm) 

 

(a) Plan View     (b) Elevation View 

Summary of Frame Design Parameters  

Floor Weight (kN) Design Load (kN) Drift (cm) Drift Limit (cm) 

2
nd

 1566 23 1.23 1.44 

3
rd

 1566 57 1.25 1.33 

4
th

  1566 100 1.29 1.33 

5
th

  1566 150 1.28 1.33 

Roof 1212 160 1.01 1.33 

 

Steel Beam Moment Strength and Demand 

Floor Beam Mub (kN-m) Mpb (kN-m)) 

2
nd

 W24x62 393 581 

3
rd

 W24x62 378 581 

4
th

  W21x50 319 411 

5
th

  W18x40 257 282 

Roof W14x34 164 186 

 

 

 

 3
@

7
6
2
0
 

4@7315 

4
@

3
6
5
8

4
2
6
7

 

4@7315 



 

264 

 

Steel Column Strength and Demand 

Floor Column Mpc (kN-m) Em (×10
8
 kN/m

2
) 

Interior Exterior Interior Exterior Interior Exterior 

1
st
  W14x74 

(508x559) 

W12x53 

(508x508) 

1180 777 3.018 3.306 

2
nd

  W14x74 

(508x559) 

W12x53 

(508x508) 

1180 777 3.018 3.306 

3
rd

 

W14x74 

(508x559) 

W12x53 

(508x508) 

1180 777 3.018 3.306 

W14x68 

(508x559) 

W12x45 

(457x508) 

1097 694 3.114 3.394 

4
th

  W14x68 

(508x559) 

W12x45 

(457x508) 

1097 694 3.114 3.394 

5
th

  W14x68 

(508x559) 

W12x45 

(457x508) 

1097 694 3.114 3.394 

   

( ) is the SRC column dimension in millimeters 

Em Elastic modulus of composite section 

 

C3. Seven-Story Composite Special Moment-Resisting Frame (all dimension in mm) 

   

(a) Plan View     (b) Elevation View 
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Summary of Frame Design Parameters  

Floor Weight (kN) Design Load (kN) Drift (cm) Drift Limit (cm) 

2
nd

 1566 9 1.40 1.44 

3
rd

 1566 27 1.36 1.33 

4
th

  1566 51 1.35 1.33 

5
th

  1566 80 1.29 1.33 

6
th

  1566 115 1.30 1.33 

7
th

  1566 155 1.15 1.33 

Roof  1212 154 0.66 1.33 

 

Steel Beam Moment Strength and Demand 

Floor Beam Mub (kN-m) Mpb (kN-m)) 

2
nd

 W24x76 461 718 

3
rd

 W24x76 422 718 

4
th

  W24x68 407 642 

5
th

  W24x68 375 642 

6
th

  W21x50 326 411 

7
th

  W21x50 255 411 

Roof W21x50 145 411 

 

Steel Column Strength and Demand 

 

Floor Column Mpc (kN-m) Em (×10
8
 kN/m

2
) 

Interior Exterior Interior Exterior Interior Exterior 

1
st
  W14x82 

(508x559) 

W12x58 

(508x508) 

1284 830 2.915 3.197 

2
nd

  W14x82 

(508x559) 

W12x58 

(508x508) 

1284 830 2.915 3.197 

3
rd

  W14x82 

(508x559) 

W12x58 

(508x508) 

1284 830 2.915 3.197 

4
th

  W14x82 

(508x559) 

W12x58 

(508x508) 

1284 830 2.915 3.197 

5
th

  

W14x82 

(508x559) 

W12x58 

(508x508) 

1284 830 2.915 3.197 

W14x68 

(508x559) 

W12x45 

(457x508) 

1097 694 3.114 3.394 

6
th

  W14x68 

(508x559) 

W12x45 

(457x508) 

1097 694 3.114 3.394 

7
th

  W14x68 

(508x559) 

W12x45 

(457x508) 

1097 694 3.114 3.394 

   

( ) is the SRC column dimension in millimeters 

Em Elastic modulus of composite section 
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C4. Nine-Story Composite Special Moment-Resisting Frame (all dimensions in mm) 

   
 

 

(a) Plan View     (b) Elevation View 

Summary of Frame Design Parameters  

Floor Weight (kN) Design Load (kN) Drift (cm) Drift Limit (cm) 

2
nd

 5053 21.92 1.71 2.0 

3
rd

 5053 58.85 1.34 1.44 

4
th

  5053 111.24 1.41 1.44 

5
th

  5053 178.14 1.49 1.44 

6
th

  5053 258.87 1.47 1.44 

7
th

  5053 352.94 1.41 1.44 

8
th

  5053 459.95 1.43 1.44 

9
th

  5053 579.55 1.35 1.44 

Roof  3790 533.6 0.94 1.44 

 

Steel Beam Moment Strength and Demand 

Floor Beam Mub (kN-m) Mpb (kN-m) 

2
nd

 W36x160 1755 3470 

3
rd

 W36x160 1742 3470 

4
th

  W36x135 1707 2832 

5
th

  W36x135 1642 2832 

6
th

  W36x135 1537 2832 

7
th

  W36x135 1384 2832 

8
th

  W30x99 1176 1735 

9
th

  W27x84 905 1357 

Roof W24x68 564 985 
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Steel Column Strength and Demand 

Floor Column Mpc (kN-m) 

Interior Exterior Interior Exterior 

1
st
  W14x500 W14x370 6836 4792 

2
nd

 
W14x500 

W14x370 
6836 

4792 
W14x455 6094 

3
rd

   W14x455 W14x370 6094 4792 

4
th

   
W14x455 W14x370 6094 4792 

W14x370 W14x283 4792 3529 

5
th

   W14x370 W14x283 4792 3529 

6
th

 
W14x370 W14x283 4792 3529 

W14x283 W14x257 3529 3171 

7th W14x283 W14x257 3529 3171 

8
th

 
W14x283 W14x257 3529 3171 

W14x257 W14x233 3171 2839 

9
th

  W14x257 W14x233 3171 2839 
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