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Abstract

In this dissertation, I describe a series of experiments using flux-tunable transmon

qubits for quantum information processing. These qubits are designed with different

levels of Josephson junction asymmetry. The first two chapters of this dissertation will

introduce the reader to superconducting qubits and circuit quantum electrodynamics.

I will present experiments using the cQED architecture to implement fast photon

swapping between an asymmetric qubit and a superconducting resonator using flux-

driven sidebands. This is the first experimental observation of flux-driven sidebands

in a superconducting system. This process also allows photon swaps between qubit

and resonator to first order in the qubit-resonator coupling strength. I will detail an

experiment to study and optimize an all-microwave two-qubit gate using the cross-

resonance effect. This work constitutes the first experimental study of the cross-

resonance effect vs. frequency and confirms effects from the higher energy levels of

the transmon in the effective coupling during a cross-resonant drive. Lastly, I will

outline a theoretical analysis and initial experiments to study the coherence properties

of asymmetric transmons.
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Chapter 1

Introduction

From its beginnings in the early 1900s, quantum mechanics has proven to be one

of the most experimentally successful theories of all time. The predictive power of

quantum mechanics covers a broad range of system energies and scales. Its effect

on experimental physics is possibly more noticeable today than in the golden age of

nearly a century ago thanks in part to the advance of experimental techniques. An

exciting new set of tools, developed in the last ten or fifteen years, has allowed physi-

cists to probe some of the more basic properties of quantum mechanics. Starting in

the 1990s scientists began experimentally studying the interactions between atoms

and photon modes inside optical cavities. Termed cavity quantum electrodynamics

(CQED), these systems highlight the basic interactions of light with matter [41]. In

2012, Serge Haroche and David Wineland shared the Nobel Prize in Physics for their

work on CQED creating Schrödinger photon cat states and providing the first time-

resolved look at the decoherence process in a quantum system [83, 20, 36]. Building

on ground-breaking experiments with atoms in cavities, there has been a renaissance

in translating these atomic systems into macroscopic devices on a chip. These devices

are made of many billions of atoms yet still exhibit quantum behavior. This "quan-

tumness" is not only manifested in the microscopic degrees of freedom, but also in

collective low-dimensional and experimentally observable quantities of the circuit.

Measurement of these quantum effects is now possible thanks to a coalescing

of technology from a variety of fields including superconductivity, microwave engi-
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neering, computer science, information theory, silicon processing and quantum foun-

dations. This direct descendant of CQED is called circuit quantum electrodynamics

(cQED) and makes it possible to explore parts of parameter space not accessible using

naturally occurring quantum systems [124]. Using existing thin-film processing and

low-temperature measurement techniques, these "quantum optics on a chip" systems

have achieved amazing experimental results including synthesizing arbitrary quantum

states in a resonator [54], cooling a mechanical resonator to its quantum mechanical

ground state [91] and allowed tracking of individual quantum trajectories [86, 127]

using a weak measurement framework [64].

In the experiments listed above, the role of the atom in CQED was replaced

with a superconducting qubit. This qubit functions as a two-level system, the same

way valence electron states in an excited atom form a two-level system in CQED.

A critical component of these cQED qubits is the Josephson junction, which will be

described in Chapter 2. It provides a nonlinear element that makes the qubit energy

level spacing anharmonic and allows individual states to be addressed. The quantum

coherent properties of the Josephson junction were observed in the early 1980s [75, 76]

and have become an important part of a variety of superconducting devices including

qubits. The first experiments with superconducting qubits were done in the early

2000s [78, 23, 88]. In the intervening years, these quantum machines have evolved

into an exciting testbed for observing quantum behavior in electrical circuits.

In the field of computation, these qubits are the basic building blocks for a quan-

tum computer. Like a classical bit, a qubit has two states, 0 and 1, but unlike a

classical bit, it can be in an arbitrary superposition of these two states α|0⟩ + β|1⟩.

A quantum computer can use this superposition principle to speed up certain key

algorithms. One of the most well known quantum algorithms is Lov Grover’s al-

gorithm [48] for searching an unsorted list. This algorithm provides a square root

speed up for searching compared to classical algorithms. Peter Shor’s factoring al-

gorithm [115] for factoring an n-bit integer runs exponentially faster than the best
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known classical algorithm, the general field number-sieve. To date, only modest im-

plementations of these have been achieved [120] on a quantum computer, though

rapid progress is being made. While these particular algorithms might not seem all

that interesting, they were some of the first glimpses that quantum computers might

have computing power beyond that of classical computers. Additionally, most mod-

ern public-key cryptography is based on the fact that multiplication and discrete log

are computationally easy but the inverse operations are computationally hard. A

quantum computer could then pose a threat to modern cryptographic systems [104].

On top of these specific uses, a quantum computer could be used to simulate quan-

tum systems providing a new tool for researchers in biology and physical chemistry.

A working quantum computer would also have consequences for some of the founda-

tional aspects of quantum mechanics, though none of these topics will be explored

here. In this work we will study in detail the superconducting transmon qubit and

a slight variant called the asymmetric transmon. In particular, we will look at how

the flux degree of freedom can be used in a few cases to engineer interactions, explore

qubit parameter space, and possibly reduce the susceptibility of these qubits to flux

noise.

1.1 Thesis outline

This dissertation will document the study and exploration of two separate types of

interactions in superconducting systems. In preparation for this I will review some

of the basic ideas of circuit quantum electrodynamics (cQED) in Chapter 2. I will

also introduce the superconducting qubit inside the cQED framework. In particular,

I will focus on the transmon-type qubit which is currently a promising type of qubit

for quantum information processing. In addition, the Jaynes-Cummings Hamiltonian

will be described, as it nicely captures the coupling of a superconducting qubit and an

electromagnetic cavity. A quick review of qubit gates and measurement can be found
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at the end of the chapter, and a section on time domain measurements is included

for the interested reader.

Chapter 3 will introduce sideband interactions in superconducting qubits induced

via an ac flux drive. This type of parametric interaction allows real photon swaps

between a qubit and cavity at rates up to 85 MHz. This is significantly faster than a

more traditional voltage drive. I’ll explain how a fast two-qubit CNOT gate can be

constructed using this type of interaction.

In Chapter 4, I describe a systematic study of the cross resonance two-qubit effect

vs. qubit-qubit detuning ∆. The cross resonance (CR) effect can be turned on by

driving one qubit at another qubit’s frequency where the two are coupled together by

a common superconducting cavity. I’ll show some recent results using a flux-tunable

transmon qubit to vary this detuning and test a theory of the CR interaction strength

Jeff including the effects of qubit energy levels outside the computation subspace

{|0⟩, |1⟩}.

Chapter 5 will present a brief analysis of asymmetric transmons made with two

Josephson junctions with different critical currents. This has the effect of removing

a divergence and flattening out the frequency modulation curves vs. flux. In theory,

this could lead to a reduced sensitivity to magnetic flux noise for this type of qubit.

I’ll present plans for a study of coherence times vs. the degree of junction asymmetry

with an end goal of highlighting the tradeoff between flux tunability and reduced

magnetic flux noise. This type of transmon could work well in systems that need

some degree of tunability but not as much as a traditional, symmetric transmon.



CHAPTER 1. INTRODUCTION 5



Chapter 2

Circuit Quantum Electrodynamics

The theoretical framework for this dissertation is termed circuit quantum electrody-

namics (cQED). The foundations of it are grounded in the basic interactions between

light and matter. This is the realm of atomic physics. The predecessor to cQED is

called cavity QED and entails just that: a single atoms interacting with a confined

electromagnetic field. Here I will outline some basics of cavity QED and how it di-

rectly relates to the circuit analog. Superconductivity will also so be presented as

it applies to superconducting resonators and devices. An important part of many

superconducting devices is the Josephson junction that forms an important nonlinear

inductive element. Artificial atoms can be made out of circuit elements and their

time-domain dynamics characterized. Finally, how these artificial atoms can be used

for quantum information processing will be outlined quickly.

2.1 QED with cavities

Quantum electrodynamics (QED) is the study of fundamental interactions between

atoms and photons of electromagnetic (EM) radiation [41, 40]. Typically the interac-

tions between atoms and photons are relatively weak, as they are not strongly coupled

to each other in free space. The situation changes, though, if the EM field is confined

to a small space, such as a high finesse cavity. This is a key concept of cavity QED:
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increase the coupling by confining the EM field to a small mode volume in which

the atom is located. The quality of a cavity is quantified by the ratio of its resonant

frequency ω0 and the FWHM κ of the peak in frequency space:

Q =
ω0

κ
. (2.1)

If the cavity were made of two mirrors in vacuum, this quality factor Q would quantify

how reflective those mirrors are and the sparseness of decay channels for the photon(s)

to escape the cavity. The peak width κ, quantifies the number of times a photon

will bounce back and forth between the mirrors before escaping the cavity. In optical

systems this quantity is called the cavity finesse. A larger κ means a broader resonance

peak. Thus, a low κ, high Q cavity increases the strength of photon interactions with

an atom having a resonant transition inside the cavity by confining the photon for a

relatively long amount of time compared with free space.

In practical experiments, the atom is a highly excited Rydberg atom that can be

effectively modeled as a two-level system composed by its valance electron energy and

angular momentum states. Such an atom has a large electric dipole d that couples it

to the field mode. Electronic transitions in these Rydberg atoms are typically on the

order of hundreds of GHz, which matches supported microwave frequency modes [52].

Pioneering work in this field has been by completed by several groups around the

world. The Nobel Prize in 2012 was awarded to Serge Haroche and David Wineland

for their work using these systems to study the fundamental quantum nature of both

light and the two-level systems confined in high-Q cavities [82, 83, 20, 36]. Strange

as it may seem, this atom-cavity system maps directly onto superconducting circuits

on a two-dimensional chip.
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2.2 Superconductivity

The phenomenon of superconductivity was discovered by H. Kamerlingh Onnes in

1911 [118] and has remained an active area of research ever since. For superconduct-

ing qubits, a thorough understanding of superconductivity is necessary to design and

build them. Several properties are of immediate importance, including the loss of

electrical resistance, flux quantization, and the Josephson effect. Though all super-

conductors have a characteristic loss of electrical resistance at a critical temperature

Tc, there is a wide variety of materials and types of superconductors. For most of

our purposes we can restrict ourselves to conventional elemental superconducting thin

films. These metals have a transition temperature Tc, a screening of magnetic fields

from the bulk called the Meissner effect, and microscopic dynamics that are well de-

scribed by BCS theory [7]. BCS theory was developed in 1957 by Bardeen, Cooper and

Schrieffer and it successfully captures the microscopic dynamics of superconductivity.

It describes the process at Tc where a phonon-mediated attractive force between the

conduction electrons causes the Fermi sea to become unstable. This interaction al-

lows a lower energy bound state between two electrons of opposite spin to form with

a characteristic energy 2∆ around the Fermi surface, called the superconducting gap.

This gap is an individual material property of metals used in this dissertation and

directly related to the critical temperature by

2∆ = 3.5kBTc. (2.2)

This pair of bound electrons, called a Cooper pair, now obeys Bose statistics. Well

below the transition temperature Tc, all the conduction electrons have formed Cooper

pairs and are condensed into a single, macroscopic ground-state wave function with

long range coherence. The wavefunction of this ground state is no longer localized
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Metal Tc (K) 2∆(0)(meV )
Niobium 9.3 3.05
Aluminum 1.18 0.34
Niobium Nitride 15.7 4.6

Table 2.1: Properties of superconducting metals Superconducting metals used
in this dissertation as well as other common thin-film superconductors [65].

and spreads throughout the superconductor. It can be written as

Ψ(r, t) = |Ψ(r, t)|e−iφ(r,t), (2.3)

highlighting the superconducting phase, which will be important later in the context

of the Josephson junction. This phase varies continuously over the extent of the

superconductor. The density of Cooper pairs is given by ns = |Ψ(r)|2. A table of

commonly used superconductors is given in Table 2.1. Most of these materials can be

easily deposited and etched using standard semiconducting processing techniques.

Despite the vanishing of dc electrical resistance below Tc, superconductors can

experience loss and dissipation at microwave frequency drives. The superconductor

can have material defects on its surface or in the bulk of the material. The breaking

of Cooper pairs is another common loss channel observed in these systems. For

T ≪ Tc, the density of unpaired conduction electrons falls off exponentially with

temperature T . Therefore, at temperatures well below Tc, the density of these single

electrons, called quasiparticles in a superconducting context, should be exponentially

small. One must take care though to properly shield a sample from radiation of

energy Eg(0) > 2∆(0) that can break Cooper pairs. This process is actually how

superconducting photodetectors work. Experimental work is ongoing in our lab [90]

to engineer systems that induce quasiparticle recombination and lower their density

inside the superconductor. These loss mechanisms are important to identify and

minimize when making qubit systems [80].

Clearly, superconducting materials can be used for a variety of other devices be-
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sides qubits. Superconducting photon counters [79], rapid single flux quanta (RSFQ)

classical digital computation [53], and high Tc power transmission lines are just a

few of the other practical uses of superconductors. The RSFQ approach to classical

computation has gained attention over the last several years as way to use Josephson

junctions and superconducting loops to push the speed of computation close to ∼ 300

GHz and with ultra-fast interconnects [19].

2.2.1 Josephson junctions

A critical part of any superconducting qubit is the Josephson junction [60]. Junc-

tions can be formed by small insulating barriers (on the order of 1 nm thick) be-

tween superconducting electrodes (SIS junction), normal metal barriers between su-

perconducting electrodes (SNS), or small constrictions of continuous superconductor

(SsS) [118, 70, 38]. The most common type of junction used for making qubits is the

SIS-type junction. The constriction-style junction can be challenging to fabricate,

while normal-metal-style junctions tend to be lossy for qubits due to dissipation in

the normal metal layer.

The defining feature of a Josephson junction is the ability of Cooper pairs to

tunnel coherently through the junction without dissipation. Additionally, the zero-

voltage relation between the Cooper pair current flowing through the junction and

the superconducting phase difference between the superconductors on either side of

the junction is given by [118]

I = I0 sin(φ1 − φ2), (2.4)

where I0 is the maximum current the junction can support and still maintain zero

voltage across its leads; φ1,2 are the phases of the superconductor on either side of

the junction. The value of I0 is set by the superconducting gap of the material and

the normal (non-superconducting) state resistance of the junction [118]. The I0 of
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CL

Al

Al

a) b) c)

Cooper pair

Figure 2-1: Qubit Effective Circuit. Diagram of an Al/AlOx/Al Josephson junc-
tion. (a) depicts the AlOx barrier through which the Cooper pairs tunnel. (b) the
circuit symbol for a Josephson junction indicated by an X through a superconducting
lead. (c) the effective circuit of a junction with lumped element components repre-
senting its self-capacitance and effective inductance. The junction is non-linear and
depends on the amount of current flowing through it. Figure adapted from [31].

a Josephson junction can be measured at room temperature using the Ambegaokar-

Baratoff formula [5]

I0Rn = π∆(0)/2e, (2.5)

where Rn is the measured normal-state resistance of the junction and ∆0 is the value

of the superconducting gap at T = 0. These properties are really quite remarkable.

The fact that Cooper pairs are able to coherently tunnel through this barrier without

dissipation is not at all obvious. This Josephson junction circuit element will be the

critical, non-linear element that allows these system to be used as qubits. An SEM

micrograph of a Josephson junction fabricated in our lab is shown in Figure 2-2. If

the current through the junction exceeds the critical current I0, a non-zero voltage

develops across the junction. This voltage is proportional to the time derivative of

the difference in superconducting phase δ = φ1 − φ2:

∂δ

∂t
=

2eV

h̄
=

2πV

Φ0
, (2.6)

where Φ0 is the superconducting flux quantum Φ0 = h/2e ≈ 2.07 × 10−15 Wb. The

Josephson junction will form a non-linear inductor that is critical to qubit anhar-
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Figure 2-2: Picture of a Josephson junction. An Al-AlxO-Al tunnel junction
deposited on a sapphire substrate. This junction in particular is part of a 3D transmon
qubit system with a junction area of ∼250 nm x 150 nm. This image was taken at
the Cornell Nanoscale Facility (CNF) with a scanning electron microscope.
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monicity. The junction inductance can be found using Faraday’s law

LJ =
V

İ
. (2.7)

The voltage from Eq. (2.6) can be substituted into Eq. (2.7) along with the derivative

of (2.4) to give

LJ =
Φ0

2π
√

I2B − I20
, (2.8)

where IB is the current bias through the junction. LJ is called the Josephson induc-

tance and it clearly shows the nonlinearity of the inductance. There is a capacitance

associated with a Josephson junction as well. This capacitance could be the junction

self-capacitance of the barrier or the junction could be shunted by explicit capaci-

tors. Plugging LJ and this capacitance C into the expression for an LC oscillator

ωJ(IB) = (LJ(IB)C)−1/2, describes a non-linear oscillator with a frequency that de-

pends on the current flowing through the junction.

The potential energy landscape of a current-biased junction forms a "tilted wash-

board" of the form [118]

U(δ) = −
Φ0I0
2π

(

cos δ +
IB
I0

δ

)

, (2.9)

for a certain current bias IB. The state of the junction can be described by the

dynamics of a fictitious phase particle of mass (h̄/2e)2C (see Figure 2-3). The pre-

factor on the cosine term EJ = Φ0I0/2π is called the Josephson energy and sets

the barrier height between local minima. While the phase particle is inside one of

these local minima, it oscillates at ωJ with zero dc voltage across the junction in

this case since the state is localized and ⟨δ̇⟩ = 0. As the bias is increased, the phase

particle can be thermally activated over the barrier or can tunnel through the barrier,

producing a non-zero dc voltage state. For a bias I0, the minima disappear and the

potential only forms inflection points on a downward slope. I0 denotes the vanishing

of local minima and Ic represents the critical current measured in experiments. Ic
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Figure 2-3: Josephson junction potential. The tilted washboard for a current
biased-junction. The green dot represents the position of the phase particle, corre-
sponding to the state of the Josephson junction and the blue line is Eq. (2.9). Local
minima form at multiples of δ = 2π when IB = 0 and shift when a bias is applied.
Data is plotted for IB = 0.35I0 and EJ = (Φ0Ic/2e) is the Josephson energy.

will be lower than I0 due to thermally assisted escape and quantum tunneling. The

first measurements of coherent properties in Josephson junctions observed quantum

tunneling out to this voltage state [76]. Shortly after, quantization of the energy

levels1 inside the minima were observed [75] and later Rabi oscillations were driven

between these quantized levels [78]. These experiments clearly show the quantum

nature of a collective macroscopic variable [67] and were important step towards the

development of superconducting qubit.

The Josephson junction will allow the construction of quantum two-level systems

in superconducting circuits. As described in the next section, these artificial atoms

will take the place of actual atoms in cavity QED.
1These are the energy levels of a phase qubit which consists of the two lowest energy states in

one of the potential minima.
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2.3 Intro to cQED

In the translation between cavity QED and circuit QED (cQED), the atom will be

replaced by an anharmonic oscillator made with Josephson junctions, which forms a

quantum two-level system. The cavity will be replaced by a one-dimensional coplanar

waveguide (CPW) cavity made with strips of thin superconducting material on a

dielectric substrate [15]. In this section I’ll work through the properties of this cQED

formalism that will be important in the remaining chapters. The quantization of the

superconducting cavity will be presented briefly, along with the physics of the coupling

between such a cavity and a two-level system. The superconducting qubit will be built

using the Josephson junction from the previous section. There are several types of

qubits one can make with Josephson junctions, including the phase, flux, and charge

qubit. The basic properties of these circuits will be discussed with an emphasis on a

variant of the charge qubit, called the transmon, that will be used in the experiments

described in this dissertation. With the two important systems, the cavity and the

qubit, and their coupling in place the process of measuring the quantum state of

these qubits is described. A major portion of the data presented in the remaining

chapters will be time-domain measurements that characterize the coherence of the

qubit or its interaction with other qubits. As a primer, a detailed section on these

types of measurements in superconducting systems is provided. Finally, a discussion

of quantum gates and how they are assessed is included at the end of this chapter as

a reference for later chapters.

In cQED, the CPW cavities are patterned from thin films of superconductor, typ-

ically on the order of ∼100 nm thick. The CPW dimensions are chosen to provide a

matching microwave impedance throughout the device and measurement lines. The

dimension with the longest length sets the fundamental frequencies. This cavity res-

onance will depend on several factors, including the total effective capacitance of the

resonator, the kinetic and geometric inductance of the superconductor at microwave

frequencies and the state of the qubit. Kinetic inductance [81] appears in supercon-
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Figure 2-4: Coplanar waveguide resonator. Sketch of a coplanar waveguide.
Blue areas represent superconductor and the red lines show the fundamental voltage
mode. The center width and separation from ground are chosen to match a charac-
teristic impedance of 50 Ω. The fundamental frequency is set by the length of the
resonator along with material parameters and the geometry of the CPW.

ductors as a consequence of the loss of electrical resistance. Without this resistance

the electrons in Cooper pairs acquire an appreciable amount of kinetic energy. The

inertia of the electron response appears as an additional inductance. Figure 2-4 shows

a rough sketch of such a CPW resonator and the mode structure of the fundamental

voltage oscillation in the cavity. This configuration drastically reduces the mode vol-

ume (∼ 100 nm × 5µm × 10mm). This decrease in mode volume is accompanied by

an increase in the root-mean-square electric field Erms in the resonator. This increases

the strength of the electric field coupling to systems like qubits [15].

The superconducting resonator can be analysed starting from basic circuit prin-

ciples following the derivation of Devoret [37]. Branch voltages and currents can be

defined in terms of fields in the resonator and linked to fluxes and charges in the

circuit. Using these variables and Kirchoff’s laws as a constraint, the Hamiltonian

for any such circuit can be derived. Of particular interest, are CPW resonators and

later, Josephson junction devices. In the CPW case, the effective capacitance and

inductance per unit length, Cl and Ll shown in Figure 2-5 can be defined. Following
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Figure 2-5: Lumped-element LC oscillator. Transmission-line resonator decom-
posed into lumped-element nodes made of inductors and capacitors. Each node has
an effective inductance Ll and capacitance Cl. The ends of the LC chain are capped
with coupling capacitors which, allow coupling of ac signals into the resonator. The
smaller the Ccs the smaller the coupling to the reset of the circuit.

a standard procedure [37, 16, 111], Φ is defined as the time integral of the voltage

Φ(t) =

∫ t

−∞

V (τ)dτ, (2.10)

[37]. This Φ can be related to the potential energy in the capacitive elements U =

(1/2)ClV 2 = (1/2)ClΦ̇2 and kinetic energy in the inductive elements T = (1/2Ll)Φ2

using Faraday’s law V = Llİ = Φ̇. With these relations, the Lagrangian per unit

length can be written as

L = 2ClΦ̇
2 −

1

2Ll
Φ2, (2.11)

[37]. In this expression, Φ can be viewed as flux stored in the inductive elements,

with a conjugate charge Q in the capacitive elements. Neglecting for now the coupling

capacitors at the ends and assuming a uniform Cl and Ll, this expression can be

integrated over the length of the resonator and the capacitances and inductances per

unit length can be replaced with a single L and C. Further, the standard Legendre

transform, with Q = δL/δΦ̇ = CΦ̇ as the conjugate to Φ [37], can be used to construct

a Hamiltonian from the Lagrangian, which gives

H =
Q̂2

2C
+

Φ̂2

2L
, (2.12)

[37]. A Hamiltonian of this form corresponds precisely to the standard harmonic
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oscillator. This means we can write H, Q, and Φ as quantum operators Ĥ,Q̂, and Φ̂

with the standard commutation relation

[Q̂, Φ̂] = −ih̄. (2.13)

With this expression, we can write the Ĥ in the standard, dimensionless form

Ĥ = h̄ωr(a
†a+ 1/2), (2.14)

where ωr = 1/
√
LC and {a, a†} are the traditional raising and lowering operators:

In most cases the zero-point energy of the oscillator will be shifted to remove the

1/2 term when the oscillator is represented in cQED Hamiltonians as

Hr = h̄ωr(a
†a). (2.15)

This energy is still present in the physical system, but typically doesn’t play a role

in the dynamics of the system. It should be noted though that the Lamb shift from

this zero-point motion can be measured in a cQED system [43]. The voltage inside

the resonator can now be written in terms of a and a†

VLC = V 0
rms(a

† + a), (2.16)

with the RMS voltage given by

V 0
rms =

√

h̄ωr

2C
, (2.17)

where C is the total capacitance on the resonator.
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2.3.1 QED with superconducting circuits

With the resonator described above, we can now introduce a two-level system with

some coupling to the cavity. For this section, we will take the qubit to be a spin-1/2

particle with some energy h̄ωge separating the ground and excited energy states of

the system. I will show how this two-level qubit can be built using superconductors

and Josephson junctions in the next section. In this context, the traditional Pauli

spin operators σ{x,y.z} apply to the spin. Taking the canonical z-axis as the states

on which the energy states lie–this is the same as placing the spin 1/2 particle in a

magnetic field pointing the z direction; this implies the ground state is aligned with

the field and the excited state is aligned opposed to the field– and setting the zero-

energy point halfway between the two states, we can write the qubit Hamiltonian as

Ha =
h̄ωge

2
σz. (2.18)

The standard raising and lowering operators σ± = (1/2)(σx ± iσy) also apply.

The dipole moment of the qubit couples to the electric field of the cavity with a

coupling strength g = dErms/h̄. Erms can be made quite large in cQED due to the

mode volume reduction and the effective d that is larger since the atom is stationary,

as opposed to flying through the cavity with some time of flight t in the case of CQED.

This is a key difference between cavity QED and cQED. The coupling strength g can

be made larger than the photon loss rate from the cavity κ, which allows a cQED

system to reach the "strong coupling limit" of QED [51]. This coupling allows the

spin and electric field to exchange energy when ωge = ωr, with the expression

(a+ a†)σx = (a+ a†)(σ+ + σ−). (2.19)

For drives with frequencies on the order of the cavity resonance or the spin energy

difference, the rotating wave approximation is made where terms like aσ− and a†σ+

are ignored [125]. These terms represent a change in the number of excitations in
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the system and can be neglected in the case ωr + ωge ≫ g, |ωr − ωge|. The two

remaining terms are aσ+ and a†σ−, where a quantum of energy is swapped back and

forth between the qubit and the cavity at a rate g. Combining terms, the Jaynes-

Cummings Hamiltonian is defined as

H = h̄ωra
†a+

h̄ωge

2
σz + h̄g(a†σ− + aσ+), (2.20)

[52]. This equation can be diagonalized exactly in the energy eigenbasis yielding

eigenenergies

E±,n = h̄nωr ±
h̄

2

√

4ng2 +∆2, (2.21)

where ∆ = ωr − ω0,1 is the qubit-cavity detuning and eigenstates [52]

|−, n⟩ = cosθn|g, n⟩ − sinθn|e, n− 1⟩

|+, n⟩ = sinθn|g, n⟩+ sinθn|e, n− 1⟩.
(2.22)

In this case, the plus and minus signs refer to the qubit ground and excited state

respectively. When the qubit system is coupled to the photon modes of the cavity,

the eigenstates of the system acquire characteristics of both systems. Therefore, they

exhibit both the two-state nature of the qubit and bosonic properties of the cavity

photons. The degree of each is set by the mixing angle [111, 16]

θn =
1

2
arctan

(

2g
√
n

∆

)

. (2.23)

An avoided level crossing between the qubit and the cavity is plotted in Figure 2-7. In

this case, a qubit with a tunable Josephson energy EJ is tuned through the resonance

of the cavity. The splitting of the cavity resonance is twice the coupling strength 2g.

The eigenenergies and eigenstates above represent the resonant case when ∆ = 0.

In typical quantum information processing experiments, it is advantageous to work

in the dispersive limit, where the qubit and cavity are far detuned from each other
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Figure 2-6: The Jaynes-Cummings ladder. An energy level diagram for the
Jaynes-Cummings Hamiltonian in the resonant case . |g⟩ and |e⟩ represent the state
of the atom or qubit in the computational basis. The number states moving up the
y-axis represent photon number states in the cavity. ωa is the transition frequency of
the qubit. Figure reproduced from Fig 1. of [16]
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Figure 2-7: Vacuum Rabi splitting of between the qubit and cavity. Density
plot showing the qubit frequency ωge crossing the cavity frequency ωr. The distance
of closest approach is equal to 2g. This is a convenient way to measure the bare
coupling g. This data was measured using a capacitively shunted flux qubit and is.

with ∆ = |ωr − ωge| and g ≪ ∆. In this case the qubit and cavity cannot exchange

energy directly. The dynamics in this case become more clear by removing the direct

coupling term with the dispersive transformation U given by [16].

U = exp
[ g

∆
(a†σ− − aσ+)

]

, (2.24)

with H̃ = UHU †. Or equivalently, this result can be reached using non-degenerate

perturbation theory to expand in powers of the small parameter g/∆ [16]. The

transformed Hamiltonian is

H̃ ≈ h̄

[

ωr +
g2

∆
σz

]

a†a+
h̄

2

[

ωge +
g2

∆

]

σz, (2.25)

[16] where the qubit and cavity have been shifted by (g2/∆) and (g2/∆)σz respectively.
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The eigenenergies are just a Taylor expansion of Eq. (2.21)

E±,n = h̄nωr ±
(

∆+
h̄

2
ng2

)

, (2.26)

which is valid for small ∆2/4g2. This defines a critical number of photons that can

occupy the cavity and still have the dispersive approximation hold [111]

ncrit =
∆2

4g2
. (2.27)

To highlight the effect on the cavity in this regime, we can rearrange terms in (2.25)

H̃ = h̄(ωr + χσz)a†a + (h̄ωge/2)σz where χ = g2/∆ and the vacuum energy terms

were dropped. In this expression, the cavity frequency acquires a shift of ±χ depen-

dent on the state of the qubit. This will be discussed more in the context of qubit

measurement in Section 2.4.2. Terms could also be arranged to feature the effects on

the qubit frequency as photons are added to the cavity through the ac Stark shift,

but this will not be a major focus of this dissertation. In most cases the cavity

will only be populated with photons to perform a measurement of the qubit state

(see Section 2.4.2).

2.4 Superconducting Qubits

The initial implementations of superconducting qubits can be divided into three cat-

egories: flux, phase and charge [31, 133]. While all three of these are superconducting

circuits and utilize Josephson junctions, they all use different degrees of freedom to

form qubits. Another property distinguishing the qubits is the ratio of the relevant

energy scales EJ/EC . EJ is the Josephson energy introduced in the Section 2.2.

Again, it is defined as

EJ =
Φ0I0
2π

, (2.28)
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Figure 2-8: Dispersive shift of the cavity. The dispersive shifts the cavity are
plotted for the qubit in the ground and excited state. In the dispersive case, the
cavity bare resonance ωr is shifted by ±χ depending on the state of the qubit. Figure
adapted from Fig 4. of [16] and from [111].
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and EC is the charging energy of the capacitance across the junction, given by

EC =
e2

2CΣ
, (2.29)

where CΣ is the total capacitance. The EC value represents the energy necessary

to bring a charge of 2e onto one of the qubit electrodes from infinitely far away.

The charge qubit operates in the low EJ/EC regime where the electrostatic charging

energy associated with Cooper pairs crossing the junction is large compared to the

Josephson energy associated with tunneling through the junction. In this case, the

number of Cooper pairs n̂ which have tunneled across the junction is the relevant

quantum variable [124]. Phase qubits operate with very large EJ/EC ratios and

are essentially current-biased single-junction devices [78]. The computational states

of a phase qubit are the two lowest energy levels of a minimum in the Josephson

washboard potential shown in Figure 2-3. Finally, the flux qubit operates with an

EJ/EC ∼ 50 with computational states formed by persistent current states in a ring

of superconductor interrupted by one or several Josephson junctions [84].

In this section, I will describe the properties of these qubits. In particular, the

charge qubit will be outlined to motivate and put into context the next section on

the transmon qubit. This type of qubit has become a popular choice for cQED

experiments for a variety of reasons, including improved coherence times compared

to its charge qubit ancestor. All qubits presented in this dissertation are transmon-

style qubits.

The flux qubit [84, 24] is made of a loop of superconductor interrupted by a

Josephson junction. The quantum states in such a system are states of supercur-

rent flowing clockwise and counterclockwise through the loop. In the case of the

flux qubit the superconducting phase φ̂ is well defined and is the relevant quantum

variable. Because Cooper pairs can tunnel coherently through the junction and the

superconducting wavefunction can interfere with itself, superpositions of the distinct

left and right circulating currents can be created with the proper biasing and con-
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trol pulses. In the case of the flux qubit, the state can be read out by measuring

the magnetic flux induced by the current state. This is done by coupling the qubit

to a superconducting quantum interference device (SQUID). The SQUID is made of

another loop interrupted by two Josephson junction with leads on both sides. With

proper biasing, a current pulse can be applied to the SQUID causing it to switch into

the finite voltage state with V = 2∆s/e dependent on the state of the qubit [24].

Phase qubits [78] are composed of a current-biased Josephson junction. This bias

creates a ’tilted washboard’ (see Figure 2-3) profile in the potential energy vs. phase

difference across the junction. With a proper bias less than I0, the state of the

system in phase space is such that it remains in a local minimum of the washboard.

The low-level states of this local minimum provide the anharmonic state space for

the qubit. For readout, a fast current pulse is used to bias the junction close to

its critical current I0 and this tilts the washboard such that the phase particle has a

certain probability of tunneling out of the minimum and running down the washboard.

Critically, this tunneling probability depends exponentially on the energy state of the

qubit. Thus, a qubit in the |1⟩ state is exponentially more likely to tunnel out of the

minimum than a qubit in the |0⟩ state when the potential is strongly tilted with a bias

current. An escape of the phase particle from the well corresponds to the junction

switching into a non-zero voltage state, thus producing a voltage pulse that can be

easily measured [78].

Finally, the charge qubit (also called the Cooper pair box) is made of an isolated

island of superconductor connected to the superconducting ground of the circuit by

two Josephson junctions [88, 18]. The quantum degree of freedom in this circuit is the

number n̂ of Cooper pairs on the island. The charging energy EC can be made large

compared to kBT by making the capacitance between the island and all other parts

of the circuit small. The charge state of the qubit is traditionally measured using a

single-electron transistor (SET). This device is also made of two Josephson junctions

and is capacitively coupled to the charge island. A resistance measurement of the
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SET is very sensitive to the charge state of the qubit. This resistance can be added

in parallel with a resonant circuit and a measurement of its quality factor Q = f/∆f

is used to infer the quantum state [68, 4]. Charge qubits were also the first type

of superconducting qubits measured in a cQED system [15] in several experiments

in the Schoelkopf lab at Yale [109, 110, 123]. In this more modern approach, the

charge qubit is controlled and measured in a cQED architecture that is identical to

the transmon qubit (see section 2.4.1) and the methods discussed in Section 2.4.2.

The charge qubit is hampered by several noise sources that limit its coherence.

Charge noise in particular leads to significant dephasing in this type of qubit. The

transmon was the product of efforts to make the charge qubit robust against this type

of noise.

2.4.1 Transmon qubits

A significant modification of the traditional charge qubit was proposed in Ref. [63] and

measured in Ref. [108]. This turned out to be a significant change in course for cQED

systems. This transmon qubit boasts several advantages over the original charge

qubit. The first and most important difference is an exponentially reduced sensitivity

to charge noise with only an algebraic reduction in anharmonicity. This means the

qubit will lose its sensitivity to charge fluctuations much faster than its anharmonicity.

Another significant difference compared with the charge qubit is the lack of external

dc biasing circuitry. Additionally, the typically large capacitors used to fabricate

transmons, which push the charging energies EC lower, allow for large capacitive

coupling to transmission lines and therefore easy integration into a cQED architecture.

The transmon has become a popular choice for cQED style experiments due to its ease

of fabrication and measurement compared to other qubit types. More importantly,

the transmon also has excellent coherence properties due to its insensitivity to charge

noise.
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V

Figure 2-9: Transmon diagram. Sketch of a transmon inside a CPW resonator.
The blue strips represent ground relative to the center strip of the resonator. The
teal and green blocks form the capacitor making up the transmon with x’s marking
the locations of the Josephson junctions. Adapted from [63].

The Hamiltonian of the Cooper pair box is given by [63]

Ĥ = 4EC(n̂− ng)
2 − EJcosφ̂, (2.30)

where ng is the offset charge produced by an applied gate voltage or environmentally

induced charge offset. It is significant to note that the Hamiltonian for the transmon is

structurally similar to that of the Cooper-pair box charge qubit. The only difference is

the ratio of the energy scales EJ/EC . The ’transmon regime’ is defined by EJ/EC ≫

1. This means the first term in equation (2.30) becomes small compared to the term

involving the Josephson coupling energy EJ and the role of the offset charge ng is

reduced (see Figure 2-10). Recall that these energy scales are set by the total qubit

capacitance CΣ and the sum of junction critical currents Ic. In addition, the EJ/EC

ratio can be set and fixed at the time of fabrication by using a single Josephson

junction or can be tuned in situ by using two junctions to form a SQUID loop.

Traditionally a split junction device is used to allow some tunability and certain

types of logic gates, one of which we will discuss further in Chapter 3. In this case,

the Josephson energy EJ can be tuned in the same manner as in the charge qubit

case in Eq. (2.34).
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The eigenenergies of Eq. (2.30) take the form

Em(ng) = ECa2[ng+k(m,ng)](−EJ/EC), (2.31)

[63] where m is the relative energy level of the qubit; ng is again the gate offset

charge; aν(q) are the Mathieu characteristic values and k(m,ng) is a sorting function

to arrange the eigenvalues properly for ng > 1. Given these eigenenergies and a

definition of the charge dispersion,

Em(ng) ∼ Em(ng = 1/4)−
ϵm
2
cos(2πng),

ϵm ≡ Em(ng = 1/2)− Em(ng = 0),
(2.32)

[63] defined as the energy difference between a gate voltage at integer and half-integer

values of ng (see Figure 2-10), the asymptotics of Eq. (2.32) can be found using

approximate WKB methods [32]:

ϵm ∝
(

EJ

2EC

)
m
2
+ 3

4

e−
√

8EJ/EC (2.33)

From this it is clear from Eq. (2.32) and Eq. (2.33) that the charge dispersion, de-

fined as the variation in qubit energy splitting with gate charge nq (Equation (2.32)

and Equation (2.33)), in the transmon shrinks exponentially with EJ/EC ratio for

all energy states m. At the same time, the relative anharmonicity defined by the

energy difference between successive energy level spacings, shrinks by a weak power

law as αr ≃ −(8EJ/EC)−1/2 [63]. This scaling can be derived from the first order

perturbation theory which is outlined below in Eq. (2.37) [63].

For a split-junction transmon with two junctions, the junction term becomes a

sum of two terms HJ = −EJ1 cosφ1 − EJ2 cosφ2. The Josephson energy can now be
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Figure 2-10: Transmon charge dispersion. The reduction in charge dispersion
for four different values of EJ/EC plotted vs. gate charge.

√
8EJEC denotes the

resonance frequency of the transmon. Taken from Koch et al. [63].
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tuned with external magnetic flux Φ

EJ(Φ) = EΣ
J cos

(

πΦ

Φ0

)

, (2.34)

[63] and EΣ
J is the sum of the two Josephson energies. In Eq. (2.34) it is assumed

that EJ1 ≈ EJ2. This condition defines the symmetric transmon case. For arbitrary

values of the two Josephson energies, equation (2.34) is modified

EJ → EΣ
J cos

(

πΦ

Φ0

)

√

1 + d2tan2

(

πΦ

Φ0

)

, (2.35)

[63] where d ≃ EJ1−EJ2

EJ1+EJ2
. We refer to a transmon with intentional asymmetry as

an asymmetric transmon, and the properties of such a device will be important

in Chapter 3 and Chapter 5.

The transmon can also be understood in terms of perturbation theory, viewing the

anharmonicity as a perturbation of an otherwise harmonic oscillator [63]. In this case,

the cosine term in (2.30) can be expanded to third order. Following the derivation

in Koch et al. [63] and grouping harmonic and anharmonic terms, the Hamiltonian

becomes

H =
√

8ECEJ(b̂
†b̂+ 1/2)− EJ −

EC

12
(b̂+ b̂†)4 (2.36)

where b̂ and b̂† are the standard creation and annihilation operators for a harmonic

oscillator. The energy eigenstates of Eq. (4.6) are

Em ≃ −EJ +
√

8ECEJ

(

m+
1

2

)

−
EC

12
(6m2 + 6m+ 3), (2.37)

[63] for energy level m. Some very useful approximations for transmon qubits are

for the transmon anharmonicity α ≈ −EC . This is the energy difference between

the transition for ground to excited state vs. the transition from excited to next-

excited state. The negative sign indicates the spacing between the energy levels of

the transmon get smaller with increasing energy. This will be important in Chapter 4
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to model the cross-resonance effect including higher energy levels. Also, the plasma

oscillation frequency, ωp =
√
8EJEC/h̄ is a good approximation for the ground to

excited state transition in a transmon qubit.

2.4.2 Qubit measurement

All measurements of qubits in this work are done in the energy eigenbasis. As with

all measurements made on qubits, the experimenter will only ever measure the |0⟩

or |1⟩ state. To measure any other qubit component, appropriate rotations are made

to project that part of the state onto the z-axis and measure (as in quantum state

tomography in Section 2.6.1). For example, to measure the ⟨X⟩ component of a qubit

state, a rotation (gate see Section 2.5) of π/2 is applied about the y-axis to rotate

that component onto the energy eigenbasis (z-axis).

For a state in a superposition of these basis states |Φ⟩ = α|0⟩+ β|1⟩, the average

of many measurements will yield the proper probability |α|2 for the ground state and

|β|2 for the excited state. In particular, the assumption is made that a measurement

happens as an ideal Von Neumann measurement and projects the state of the qubit

onto one of its eigenstates. Typical cQED experiments can be viewed this way to

varying degrees based on circuit parameters and the goals of the experiment. More

general measurement formalisms exist [89] but were not explored in this work.

The majority of measurements in this work were done in the low-power, dispersive

regime. A high power ’bright state’ [98] type measurement was also used in places

and will be discussed below. The low-power type of measurement is carried out in

the dressed state of the cavity by filling the cavity with some number of photons less

than ncrit and recording the transmitted or reflected signal. To see how this process

works, it helps to rewrite Eq. (2.25)

H = h̄(ωr + χσz)(a
†a+ 1/2) + h̄ωge

σz

2
, (2.38)
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where χ = g2/∆ is the state-dependent pull on the cavity by the qubit [15]. The χ

parameter is modified for a transmon system as χ = χge−χ12/2, where the subscripts

indicate the cavity pull for the respective transition [63]. When the cavity is populated

with photons, a measurement is made of σz, revealed through the shift in cavity

frequency. Therefore, the cavity will have a qubit-dependent resonance at ω′
r = ωr±χ.

By setting the measurement frequency to ωr − χ, there should be an enhancement

(reduction) in transmitted (reflected) amplitude when the qubit is in the excited state

and the opposite when the qubit is in the ground state. The bright-state scheme [98]

works in a similar way but uses the nonlinearity of the Jaynes-Cummings system to

engineer a qubit state-dependent shift in ω′
r out of the dressed state ωr ± χ and back

to the bare resonance ωr. This involves photon numbers greater than ncrit and fine

tuning the power and frequency of the measurement signal to maximize the contrast

between the two states. This process can be tedious to tune up by hand, but can

yield a high signal-to-noise ratio.

The measurements of Chapter 3 were done using the bright-state technique. It is

also used in some of our 3D qubit [93] experiments at Syracuse where signal to noise

can be low due to microwave filtering and small χ shifts. In some experiments we

have observed other detrimental effects when using the bright-state readout. Due to

the large number of photons, we have seen evidence of Cooper pair breaking from

drives with energy greater than the superconducting gap 2∆.

In our lab, signals leaving the device under test pass through a series of microwave

isolators before being amplified with a high electron mobility transistor (HEMT). The

signal then travels out of the fridge to additional amplification before being recorded.

The noise added by the HEMT is an order of magnitude too high to allow the state

of the system to be inferred accurately from a single measurement. In particular, the

HEMT adds around 20 photons of noise at the cavity measurement frequency. This

requires measurements to be averaged many times to reach an accurate measure to

the system. So called ’single shot measurements’ can be done using a quantum lim-



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS 34

ited limited amplifier such as a Josephson bifurcation amplifier [121, 116], Josephson

parametric converter [11] or a superconducting low-inductance undulating galvanome-

ter [55]. These devices allow for high-fidelity, single-shot quantum non-demolition

(QND) measurements [44]. A QND measurement means the state after measurement

is not destroyed in the measurement process. Additionally, the measurement can be

repeated many times returning the same result over time scales that are short com-

pared to the qubit lifetime. QND measurements are one of the necessary building

blocks for a fault-tolerant quantum computer.

2.5 Quantum gates

Single-qubit gates in superconducting systems can be achieved with microwave pulses

of the proper length, frequency, amplitude and phase. These can be viewed as manip-

ulations of a pointer state on the Bloch sphere [89]. A microwave pulse on resonance

with the qubit 0-1 transition will implement a rotation about an axis in the equatorial

plane of the sphere. The direction of this axis will depend on the phase of the pulse.

The length and the amplitude of the pulse set how far the state is rotated on the

sphere. A rotation of π around the x-axis in the equatorial plane has the effect of

flipping the qubit state along the z-axis. As the z-axis is typically chosen as the basis

for the qubit energy states, this rotation implements a bit flip from |0⟩ → |1⟩ if the

qubit was in the ground state before the pulse. The opposite occurs if the qubit was

in the excited state |1⟩ → |0⟩. In a two-dimensional state space, these operations are

well described by the Pauli spin operators where σ{x,y,z} represent π rotations around

the x, y, and z axes [89]

σx =

⎛

⎝

0 1

1 0

⎞

⎠ , σy =

⎛

⎝

0 i

−i 0

⎞

⎠ , σz =

⎛

⎝

1 0

0 −1

⎞

⎠ . (2.39)

We can denote an arbitrary rotation around one of the cardinal axes by some
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amount θ as

RJ(θ) = e−iθJ/2, (2.40)

with J equal to one of the spin operators [89]. The rotation axes need not be restricted

to the cardinal directions. The formalism can be extended to any arbitrary axis since

that axis could be decomposed into its three Pauli components. In the scope of work

presented here, the most common gates will be π and π/2 rotations about the x-axis.

These gates are used in the time-domain experiments described earlier and will make

appearances in Chapter 3 and Chapter 4. Rotations about both x and y-axes are

used in quantum state tomography to project different parts of the quantum state

onto the z-axis. If the qubit has a SQUID loop and a flux degree of freedom, dc

current pulses that can be used to quickly tune the frequency implementing a phase

gate as a rotation around the z-axis.

The case of two-qubit gates is naturally more complicated. There are a variety of

ways these gates can be implemented in superconducting qubits. A controlled phase

gate [77] can be executed with fast dc pulses that tune the frequencies of two qubits

near each other for a set amount of time. In this case, one qubit obtains a phase

dependent on the energy state of the other qubit. The cross-resonance effect [99] can

be used to make a CNOT gate between two qubits with only microwave control. The

CNOT gate will be of particular importance in Chapter 3 and Chapter 4.

The CNOT gate is a conditional bit flip operation on a designated target qubit

based on the state of a control qubit. In the quantum case the operation can be

represented with a matrix
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.41)

written in terms of the two-qubit computational basis {|00⟩, |01⟩, |10⟩, |11⟩} with the

first qubit used as the control. This type of gate is very useful for creating entangle-
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|q0⟩ H •

|q1⟩ ⊕
Figure 2-11: Bell state generation. The H box represents a Hadamard gate on
the first qubit followed by a CNOT gate represented by a solid dot on the control
qubit connected to the target qubit (cross symbol) by a solid line. The end result of
the process is |Ψ+⟩ = (|00⟩+ |11⟩)/2 the two qubits q0 and q1 are in the ground state.

ment between qubits. A Hadamard gate and CNOT are shown in Figure 2-11. The

Hadamard gate creates superpositions of the two energy eigenstates (α|0⟩+β|1⟩) with

a matrix
⎛

⎝

1 1

1 −1

⎞

⎠ , (2.42)

acting on a general [α.β] state. If q0 and q1 are both in the ground state |0⟩, the process

generates a Bell state of the first kind |Ψ+⟩ = (|00⟩+ |11⟩)/2. This type of process is

used in error detection and correction schemes where direct measurement of a qubit

is prohibited, but an auxiliary qubit can be measured after it has been entangled

with the original qubit with a CNOT gate. The ubiquitous nature of the CNOT gate

make it an important gate for scaling qubit systems. The CNOT gate along with the

continuum of single qubit gates is universal for quantum computing [89].

Other two-qubit gate types exist, including resonant swaps and ac-Stark shift

based gates [15], all microwave gates [28] and FM sideband gates2 [10] among others.
2Primitive two-qubit interactions for this type of gate will be the focus of Chapter 3

and Chapter 4.
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Rabi drive

a)

b)

c)

d)

Figure 2-12: Time domain pulse schematics. Pulse schematics showing the four
most common types of time-domain measurements used to quantify qubits in our lab.
(a) Rabi oscillation experiment where the qubit is driven on or near resonance for a
variable amount of time τ then read out through a measurement of the cavity state.
(b) A T1 or inversion recovery measurement of energy relaxation. The qubit is first
prepared its |1⟩ state then its excited state probability is measured as a function of
the measurement delay τ . (c) T ∗

2 or Ramsey fringe measurement which is used to
measure the phase coherence of the qubit. (d) Hahn echo sequence used to measure
T2 by inserting a refocusing pulse halfway through the measurement.

2.6 cQED time-domain measurements

To begin measuring the quality of cQED systems and their resilience to decoherence,

we need to measure system dynamics in the time-domain. In general, time-domain

measurements can be broken into two sections: manipulation and measurement. A

state will be prepared or a drive turned on and the state is allowed to evolve for

a set time. Then the state of the qubit is read out as a function of time. These

control sequences are typically designed to highlight individual noise sources and

decay channels.

The two broad categories of qubit decoherence are energy relaxation and the loss

of phase coherence. In the case of energy relaxation the physical mechanism could be

a variety of things from proximity to a superconducting resonator to spurious two-

level states (TLS) on the surface or interfaces of the materials making up the circuit.
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Regardless of the underlying microscopic cause, the effect on the qubit is to provide

a system with which to exchange energy. Thus a qubit prepared in the excited state

will decay, through some energy exchange mechanism, to its ground state with some

characteristic time called T1.

To measure this energy relaxation time, the qubit is repeatedly prepared in its

first excited state and measured at some time τ later as in fig. 2-12. Where the π box

corresponds to a pulse tuned in time, amplitude and frequency to drive the energy

splitting between the ground and first excited state to prepare the qubit in its excited

state |1⟩. A T1 measurement trace is shown in Figure 2-15. Typically this pulse is

short compared to the characteristic time T1 to allow for a quick drive to the |1⟩.

This increases visibility of the decay envelope. If the pulse is on the order of T1, the

qubit will undergo significant energy relaxation during the state preparation. This

leads to a loss in visibility. If short pulses are not experimentally feasible, a pulse

much longer that T1 will leave the qubit excited population P (e) = 0.5 and this state

will also decay with the same characteristic exponential decay time as a full excited

state. The drawback to this method is a decrease in decay signal by one half.

Essentially, this long T1 type measurement corresponds to a Rabi oscillation ex-

periment where the Rabi oscillations have been completely damped. In a traditional

Rabi experiment, the qubit is pulsed at its transition frequency for a variable length

of time (see Figure 2-12). A Bloch sphere represnetation of a Rabi oscillation exper-

iment is shown in Figure 2-13. For each τ , the qubit state is measured and averaged

with identical state preparations. As the pulse length is increased, the qubit state

population first transitions to the excited state, then continues back to the ground

state. A measured Rabi oscillation is shown in Figure 2-14. This first cycle of a Rabi

oscillation is useful for determining the time parameter of a π-pulse for a given drive

amplitude. This oscillating behavior continues until the end of the qubit drive pulse

or until system noise has completely damped them.

Dephasing for a qubit system is generally captured by considering frequency vari-
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Figure 2-13: Bloch sphere representation. Rabi oscillation experiment plotted
on the Bloch sphere. The blue line shows the precession of the state while being
driven and the red arrow represents the axis around which the drive is being applied.
In this case, the drive is applied around the x-axis. This corresponds to a Pauli σx

operator continuously acting on the system over the time period of the drive. Plots
created using Qutip [58]
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Figure 2-14: Rabi oscillation measurement. This Rabi oscillation was measured
using a capacitively shunted flux qubit. To extract the oscillation parameters, the
measurement trace was fit to an exponentially damped cosine with the simple least-
squares method. a

aThe MATLAB code used to produce this plot is from the Qlab package written by Blake Johnson
and Colm Ryan at Raytheon-BBN Technologies. https://github.com/BBN-Q/Qlab

https://github.com/BBN-Q/Qlab
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Figure 2-15: T1 measurement. A measurement of energy relaxation for one of
the qubits on the chip used in Chapter 4. The decay envelope is extracted from the
data by a least-squares fit to an exponential decay model.

ations in the qubit ωge transition frequency. This loss channel will be discussed in

greater detail in Chapter 5. Here I will give a brief overview of how this quantity,

called T ∗
2 , is measured in cQED systems. To measure qubit dephasing, we need to

put the qubit in a state where it is sensitive to dephasing. This corresponds to a

state on the equator of the Bloch sphere. In Figure 2-16, a π/2 pulse is applied to

the qubit, creating the |0⟩ + |1⟩ state. Note that we could also have driven around

any of the other axes in the x-y plane to create a superposition of the ground and

excited states. All of these would be equally susceptible to dephasing.

A second π/2 pulse is applied and this projects the qubit state onto the z-axis. As

τ is increased, the probability of measuring |1⟩ decreases exponentially as the state

dephases. In a Ramsey fringe measurement, the drive frequency also matters. A

pulse that is off-resonant with the qubit transition will create a Bloch pointer state

in a rotating frame processing at the frequency difference |ωge − ωd|, where ωd is the

drive frequency. This frequency difference leads to fringe oscillations in the measured
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Figure 2-16: Bloch sphere dephasing. The qubit is prepared in |0⟩ + |1⟩ state
with a π/2 pulse. The blue arrows represent possible qubit states after some time
τ in a Ramsey type experiment. Note an off resonant π/2 pulse will create states
in the plane, but oscillating at a different frequency. This type of drive will induce
oscillations in the measured trace at a frequency fRamsey = |ωeg − ωd|
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Figure 2-17: T ∗
2 measurement. A Ramsey fringe measurement of dephasing time

for one of the qubits on the chip used in Chapter 4

traces.

Finally, the Ramsey sequence is, in general, much more sensitive to pulse calibra-

tion. In a T1 measurement, ideal pulses drive the qubit completely into the excited

state, but the state decay can be measured (in the large average limit) with any decay

envelope. Therefore, as long as some percentage of the |1⟩ state is populated, T1 can

be measured. In the case of T ∗
2 , it is important to have a well tuned π/2 which puts

the Bloch vector on the equator as in Figure 2-16.

Spin echo techniques [50] can also be used in superconducting systems to measure

T2 instead of T ∗
2 . In an echo sequence, a π-pulse is applied to the qubit about the

x or y-axis halfway through a Ramsey type experiment. This causes the winding of

the Bloch vector in the equatorial plane due to low-frequency dephasing noise to be

reversed precisely halfway through the measurement. This refocuses the qubit state

in the equatorial plane of the Bloch sphere and only intrinsic, random variations in

the qubit energy splitting, of higher frequency noise, on timescales faster than the
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echo time will be measured. This is the difference between a measurement of T2 and

T ∗
2 .

Implicit in the discussion above is the assumption that the qubit starts in the |0⟩

state. There are several reasons why that might not be a safe assumption. Ideally,

with h̄ωge ≫ kBT a qubit would start in its ground state, however it is possible for a

qubit to be excited by non-equilibrium processes or insufficient shielding from infrared

radiation [35, 9]. Even with proper shielding and an exponentially suppressed thermal

population, in practice the population can be as high [46]. This is especially the case

in 3D qubit systems where at sub-Kelvin temperatures both the substrate and the

microwave cavity are thermal insulators [17]. Another important issue as coherence

times increase is the amount of time needed for passive thermal reset. This is the

process of waiting a fixed amount of time for the qubit population to passively relax

back to the ground state, and is the most standard process for qubit initialization.

To reduce this time, active reset protocols have been developed [103] and are being

improved [46]. Though none of these active reset techniques were used in the work

of this dissertation, they are an increasingly important part of larger qubit systems.

The coherence of superconducting qubits has steadily increased in recent years.

Energy relaxation and dephasing times have both improved to the tens and even one

hundred microsecond range in some superconducting systems [100, 94]. A good ex-

ample is the contrast between characteristic T1 times for devices used in Chapter 3

vs. Chapter 4, where devices were measured with T1 ≃ 2 − 3µs and T1 ≃ 58µs,

respectively. It is likely the energy relaxation of the first device was enhanced by

over-coupling to the bias lines [117], but the improvements are still impressive. Only

a few years separate these transmon qubits, but a substantial amount of microwave

and material engineering went into removing relaxation channels in these systems [28].

Coherence times and gate error rates have exceeded the threshold for quantum er-

ror correction [8] in superconducting systems and some basic operations have been

demonstrated [61, 102].



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS 45

2.6.1 Gate metrics

There are two canonical ways of quantifying the quality of qubit gate operations:

quantum process tomography [129, 12] and randomized benchmarking [25]. Quantum

process tomography is a descendant of standard quantum state tomography used to

characterize the effect of a process on a spanning set of states. This is accomplished

by preparing a spanning set of states3 and measuring how the process changes the

basis states [89, 26]. Comparing the measured data with the ideal process, a gate

fidelity can be defined as

Fstate(ρideal, ρnoisy) =
(

Tr[
√√

ρnoisyρideal
√
ρnoisy ]

)2

, (2.43)

[33] where ρnoisy is the total state density matrix measured after the process and ρideal

represents a perfect gate implementation. Quantum process tomography suffers from

two major drawbacks. The first is the exponential scaling in the number of qubits.

As the number of qubits is increased the states space grows exponentially with the

number of qubits making full process tomography infeasible for systems of more than

a few qubits. Second, quantum process tomography is sensitive to state preparation

and measurement (SPAM) errors. It is not possible to distinguish errors in the process

one would like to characterize from errors in the state preparation or measurement

of the system. This is particularly troublesome if the SPAM errors are of the same

magnitude as the process to be characterized.

Randomized benchmarking (RB) is the process of applying a random sequence

of gates4 of length N to a qubit or mulit-qubit system [62, 25]. A final N + 1 gate

is added on to the end, which is calculated to be the inverse of all the N gates in

the sequence. This process is repeated for increasing values of N , where the system
3This is d2 where d is the dimension of the system. A two qubit system would have d = 4 and

need 16 orthogonal states to characterize a two-qubit process. A three qubit system would require
a 64x64 matrix.

4A set of gates much be chosen to pick from. A traditional choice is the Clifford group which
makes up the 24 different rotations that take one cardinal axis to another on the Bloch sphere.
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ground state |00...0⟩ is chosen as a starting point. The fidelity is defined simply as

the probability of finding the two qubit state in the ground state |0⟩ ⊗ |0⟩, measured

as a function of N . An exponential fit to this data returns the average fidelity of

qubit gates used [62, 105]. A recent modification [71, 73] to the RB protocol allows

the average error per gate of a particular gate to be extracted by interleaving the

gate of interest in an otherwise random sequence. This process replaces every other

random gate with the gate of interest. RB is also not sensitive to SPAM errors and

scales favorably (sub-exponentially) in the number of qubits. A more quantitative

description of RB is given in Chapter 4, where the technique is used to benchmark a

CNOT gate produced with the cross-resonance effect.

2.6.2 Scaling superconducting systems

In recent years, gate times have gone down and fidelities have increased to the point

that researchers are now thinking seriously about scaling from a few qubits to many

thousands of qubits. To maintain quantum coherence and control in systems that

large, quantum error correction codes will be necessary [47, 97, 42]. A variety of error

correcting codes exist, with the surface code being the most popular due to its rela-

tively high tolerance to errors and only requiring nearest-neighbor interactions [42].

The requirements for building a surface code implementation with superconducting

qubits are the motivation behind many of the recent experiments demonstrating low

error rates [8] and parity measurements [29, 102, 34] necessary for error detection and

correction.

2.7 Device fabrication

Significant work for this dissertation involved the fabrication of superconducting qubit

devices. This section will quickly detail some of the processes used to make the

systems measured in later chapters. The design for samples presented in this work
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Figure 2-18: Transmon micrograph. An optical micrograph of a asymmetric
transmon device. The lighter color material is aluminum, which forms the qubit
capacitors and two Josephson junctions. The orange colored material is niobium,
forming a resonator (line across the picture) and the ground plane (waffle textured
material) surrounding the qubit. The silicon substrate is a slate grey.

was accomplished mostly at Syracuse using commercially available software layout

packages such as Cadence Virtuoso or K-Layout. Simulation was carried out in a

similar manner with commercial software such as ANSYS HFSS, ANSYS Q3D and

Sonnet. All of the devices presented here, except for the chip measured in chapter 4

were designed and made here at Syracuse with critical steps of the process done in the

cleanroom at the Cornell Nanoscale Facility (CNF). For a more complete description

of the fabrication process, see Appendix A.

Our process starts with a clean from-factory substrate. In most cases this is a

high resistivity silicon or sapphire wafer. A superconducting metal is then deposited

without further processing in a UHV chamber dedicated to a particular process and

chemistry. For instance, we have a dedicated sputter system for depositing niobium

and niobium nitride. This is done to avoid contamination from other metals, in par-

ticular ferromagnetic metals. The first layer forms the ground planes and resonant

structures of the chip. This 100-200 nm-thick layer is then patterned in a photolithog-
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raphy step and etched in a class 1000 cleanroom at the CNF. After cleaning, a second

lithography step, this time with electron-beam lithography, is used to pattern an alu-

minum (and aluminum oxide) layer that makes up our qubits and Josephson junctions.

The metal and oxidation processes in this final layer are carried out in a dedicated

aluminum evaporation and oxidation chamber at Syracuse. The final resist layer and

metal are removed in a lift-off process. See Figure 2-18 for a representative device.
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Chapter 3

Sideband Interactions

As superconducting systems have advanced, so have the variety of interactions re-

searchers have been able to explore. For single-qubit gates, resonant microwave tones

with proper phase, duration, and frequency are sufficient to manipulate the qubit

state (see Section 2.5). Two-qubit gates are naturally more complicated due to the

doubling of the number of qubit controls and the need for engineering the couplings

between qubits. In superconducting qubits, this coupling takes the form of induc-

tive or capacitative coupling between qubits directly or through shared microwave

cavities [16].

In this chapter, I will describe a parametric interaction between a superconducting

qubit and a cavity that allows excitations to be quickly swapped between the two sys-

tems via red sidebands. These interactions were first explored in trapped ion systems

[30, 22]. This chapter will detail their experimental observation in superconducting

qubit systems. The first Section 3.1 will work through the theory of sideband inter-

actions in trapped ions and superconducting systems. Section 3.2 will describe the

experimental techniques used to study these sideband interactions in the microwave

regime. In Section 3.3, data and analysis will be presented on red sideband Rabi

oscillations in a superconducting qubit system. In the final Section 3.4, details will

be presented on how the sideband swap can be used to build a multi-qubit entangling

gate.
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3.1 Theory

3.1.1 Trapped Ions

Sideband transitions for quantum information processing were first explored in trapped

ion systems. First proposed in Ref. [30] and experimentally implemented in [22], these

methods have become a commonly used primitive for qubit gates in trapped ion sys-

tems [49, 69]. Following the presentations in [15, 22, 89], I will present the dynamics

in these systems and highlight the similarities between ion trap sidebands and the

sidebands in a superconducting cQED system.

The interaction of a spin 1/2 state in a harmonic potential can be written as [89]

Hint = −µ⃗ · B⃗ = µmS⃗ ·B1ẑcos(kx− ωt+ φ), (3.1)

where S is the traditional spin operator, µm is the Bohr magneton, B1 is the magnetic

field strength, k is the momentum in the x direction for the spin, ω is the motional

frequency and φ is the motional phase. In this harmonic potential, the position of the

atom is quantized and x becomes x0(a† + a), with x0 representing the RMS or zero-

point motion. Taking η = kx0 and making the assumption the vibrational amplitude

is small , the cosine term can be expanded as [89]

Hint ≈
[

h̄Ω

2

(

S+e
i(φ−ωt) + S−e

−i(φ−ωt)
)

]

+

[

i
ηh̄Ω

2

{

S+a+ S−a
† + S+a

† + S−a
} (

ei(φ−ωt) + e−i(φ−ωt)
)

]

, (3.2)

where Ω = µmB1/2h̄ and S{+,−}
1 are the raising and lowering operators for the spin

(recall Sx = (S+ + S−)/2). The spin and harmonic terms on line two represent red

and blue photon transitions. The first two terms are the red sideband single-photon

swaps and the last two are the higher frequency blue sideband terms. Recall that
1in following Ref. [89], the Pauli operators were redfined as Sx = X/2, Sy = Y/2, Sz = Z/2. So

the raising and lowering operators S+ and S
−

are related to the standard ones by a factor of two.
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those terms evolve under the influence of H0 = h̄ωra†a + h̄ωgeσz/2 and cause the

operators to evolve as

S−(t) = S−e
−iωget,

S+(t) = S+e
iωget,

a(t) = ae−iωrt,

a†(t) = a†eiωrt

(3.3)

in the lab frame. The red sideband terms become [89, 22]

iηh̄Ω

2

{

S+ae
i(ωge−ωr)t + S−a

†ei(ωr−ωge)t
}

, (3.4)

appearing when the system is driven with a laser at ω′ = ωge − ωr, and the blue

sideband terms become [89]

iηh̄Ω

2

{

S+a
†ei(ωge+ωr)t + S−ae

−i(ωr+ωge)t
}

, (3.5)

for a drive at ω′ = ωge + ωr. The red sideband interaction of equation (3.4) has been

used to make a π-swap between a trapped ion and magnetic trap with a gate time of

190µs (5.3 KHz) at a magnetic cavity frequency of 6.5MHz [92]. This interaction can

be driven much faster in a superconducting qubit system [117] using a fast frequency

modulating drive.

3.1.2 Sideband transitions with superconducting qubits

Sideband interactions also arise naturally in systems governed by the Jaynes-Cummings

Hamiltonian [56]. As we saw in the last Section 3.1.1 for trapped ions, these inter-

actions can be be used to drive transitions between the energy state of a spin 1/2

particle and its motional modes in a magnetic trap. The rest of this chapter will show

how these transitions can be driven in a superconducting system [15, 117, 10].
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Recall the basic Jaynes-Cummings (JC) Hamiltonian from Chapter 2 with a qubit

coupled on resonance to a harmonic oscillator in the rotating-wave approximation

H = h̄ωra
†a+

h̄ωge

2
σz + h̄g(a†σ− + aσ+). (3.6)

All terms in the Hamiltonian (3.6) are even in the number of ladder operators for

both the qubit and cavity. This means energy is conserved in the absence of a drive

term and the last term only mixes states of the same parity [15]. In this context,

parity refers to the total number of excitations in the system including the cavity

and qubit. In the dispersive regime |∆| = |ωr − ωge| ≫ g, the last term acts only

perturbatively. This means direct qubit-resonator coupling is prohibited to order

(g/∆)2. Conversely, a voltage drive term at the qubit frequency has the form (a† +

a)(see equation (2.16) in Section 2.3.1), and has terms with an odd number of cavity

creation and annihilation operators. This implies a voltage drive can only drive

transition that change the total number of excitations in the qubit-cavity system. It

will not be able to drive transitions with the same excitation parity like |0, e⟩ → |1, g⟩

or vice versa where |n, e⟩ would be the n-photon cavity state with the qubit in the

excited. This transition can only be driven at second order in g with a two photon

process where the drive term essentially acts twice [15]. For example, a standard Rabi

drive is implemented using an ac voltage drive of the form (a + a†) applied to the

resonator and corresponds to a transition like

|0, g⟩ → |0, e⟩. (3.7)

This type of transition changes the number parity of total system excitations from

even to odd.

With a transmon qubit in a split junction arrangement, it is possible to use the

flux degree of freedom for qubit drive as well as the voltage drive just described [10]

In a transmon qubit operated away from the flux-insensitive sweet spot, it is possible
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Figure 3-1: Red sideband level diagram. In the red sideband transition is
highlighted. This is the energy level transition that will be driven with a time-varying
flux drive. ∆ represents the detuning between the qubit and cavity. Figure is adopted
from Ref. [66]

to drive transitions of the same parity like

|0, e⟩ → |1, g⟩, (3.8)

to first order in g using an ac flux coupled drive ωFC . This transition is plotted

in Figure 3-1. We can define the qubit energy term as

HFC =
f(t)

2
σz, (3.9)

if an ac flux drive is allowed to modulate the qubit’s transition frequency. For a

sideband drive, f will have the functional form

f(t) = ωge +
ϵ

2
sin(ωFCt), (3.10)

where ωge is the stationary frequency of the qubit at the static flux bias and ϵ is

the amplitude of the frequency control (FC) drive [10]. Driving the qubit away from

the sweet spot in this way breaks the symmetry of the JC Hamiltonian. The qubit-

photon interaction can effectively be turned on by driving the flux degree of freedom

with (3.10). To see this more clearly, we can make a unitary transformation using
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H ′ = U †HU − iU †∂U/∂t and

U(t) = exp[−i(ωge t)−
ϵ

2ωFC
cos(ωFCt)σz − iωra

†a t]. (3.11)

The transformed effective Hamiltonian can be written as

H ′(t) = ga†σ−J0

(

ϵ0
ωFC

)

e−i∆t + h.c.+ ga†σ−

∞
∑

m=1

(−i)mJm

(

ϵ0
ωFC

)

ei(mωFC−∆)t + h.c.,

(3.12)

where Jm(z) are Bessel functions of the first kind, a† is the standard photon creation

operator , σ− is the standard qubit lowering operator and ∆ is the qubit-resonator

detuning [10, 117]. Data taken in the dispersive regime, which means the qubit-cavity

detuning ∆ is large. In our case ∆/2π = 400MHz. This means the first term of (3.12)

will oscillate rapidly and average away in the dynamics. The second term in (3.12)

also oscillates rapidly except for the cases where (mωFC − ∆) = 0. Crucially, this

implies a static term of order gJm(ϵ/ωFC) appears when ωFC = ∆/m. This condition

corresponds to the m-photon sideband transition. This speed of this transition is

controlled by the amplitude of the magnetic flux drive. For large amplitudes, the

swap interaction can be driven at a rate slightly higher than g. If we take the bare,

on-resonant swap frequency 2g (see Figure 2-6) times max[J1(ϵ/ωFC)] a value of 1.16g

is found for the optimal value of ϵ/ωFC = 1.84. Blue sidebands could also be driven

with a drive at ωFC = ωr + ωeg. This type of drive was harder to realize in practice

for our system since ωFC needed to be roughly 16 GHz. This would have pushed the

bandwidth limits of our measurement wiring.

3.2 Experimental Implementation

To measure the frequency-modulated sideband oscillations we designed a supercon-

ducting system made of two flux-tunable qubits coupled to a single CPW resonator.

The device parameters were chosen so the qubits could be tuned close to the res-
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still plate
   (0.7 K)

mixing chamber
    (25 mK)

sample cold
   fingers

measurement lines

cryogenic microwave
        equipment
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    shield (300 K)
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Figure 3-2: Dilution refrigerator. A picture of our 3He/4He dilution refrigerator.
All qubit experiments done at Syracuse are conducted using this fridge. Arrows point
out some of the important parts of the fridge with temperatures getting colder towards
the bottom of the photograph.

onator frequency and be in a favorable part of its flux modulation curve. The device

was cooled to 25mK in a custom dilution refrigerator(Figure 3-2). This is well below

the transition temperatures of the superconducting metals used in the circuit and in

the regime where qubit and cavity energies are large compared with thermal energies

h̄ω{r,eg} ≫ kBT . Control pulses were produced using the pulsing capabilities of com-

mercially available microwave generators. In contrast, the sideband drive tones were

digitally synthesized using a custom arbitrary pulse sequencer with no microwave

electronics hardware [1]. The qubits were measured using the dispersive frequency

shift of the resonator (see Section 2.4.2). The control and measurement sequence was

initiated and controlled by a MATLAB program.

3.2.1 System parameters and design

To study this type of interaction, an ideal qubit system would be tunable and have

long coherence times relative to the timescale of the experiment. For these reasons,
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we chose the transmon-style qubit made with two Josephson junctions forming a

SQUID loop shunted by a capacitor. The loop formed by the junctions allows flux

to be threaded through and the EJ of the qubit to be changed as in (5.1). This

allows the ∆ = |ωr − ωge| parameter to be adjusted with a static flux bias and

for fast flux pulses at ωFC to be applied to the qubit. A modification is made to the

traditional transmon system for this experiment. The two junctions forming the qubit

are made to be identical in conventional transmon systems. Here we intentionally

break this symmetry by making one junction much larger in the lithography process.

We call this type of transmon an asymmetric transmon. This has several effects on the

qubit’s response to flux biasing. First, with significant asymmetry, equation (2.34)

is described by (2.35) and the vanishing of EJ at odd half-odd integer flux quanta

is removed. It is replaced by a second ‘lower sweet-spot’ where the sign of ∂f/∂Φ

changes. At this bias point the qubit is insensitive to flux noise to first order just as

it is at integer multiples of Φ0. Second, an inflection point forms between the two

sweet spots. At this point, the flux-to-frequency transfer function is approximately

linear. This behavior is plotted in Figure 3-4. If the qubit is statically biased with

ωge in this region, the linearity of the transfer functions means harmonics of the

FC drive will not show up as harmonics in the frequency modulation. The absence

of geometric distortions to the sideband frequency from the modulation curve is an

appealing feature of an asymmetric transmon for a flux modulation drive. Finally,

the ability to control the amount of asymmetry allows the experimenter to pick how

much the qubit will modulate with flux. In this experiment, a 3:1 asymmetry was

chosen to give a 3 GHz range of tunability between the upper and lower sweet spots.

A more asymmetric qubit would modulate less with magnetic flux bias. This aspect

of the asymmetric transmon will be discussed in further detail in Chapter 5.

For this experiment, we fabricated two asymmetric transmon qubits though side-

band experiments were only carried out on one of these qubits. Both were coupled

capacitively to the voltage antinodes of a CPW resonator made of niobium with a bare
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Figure 3-3: Sideband chip picture and diagram. Picture of the device showing
the cavity and qubit, Q2, used in the experiment. (a) an energy level diagram
showing the red sideband driven in the experiment. (b) optical micrograph of one of
the asymmetric transmons on the chip. (c) another optical micrograph showing the
chip with both qubits, microwave cavity and bias lines. (d) a microwave schematic
of the circuit showing how the chip is driven during the experiment. Figure taken
from [117].
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Figure 3-4: Asymmetric transmon modulation. Plot of the change in frequency
vs. flux for several different asymmetries in an asymmetric transmon. This pattern
is periodic in the applied magnetic flux with period Φ0

resonance frequency of ωr/2π = 8.102GHz and a linewidth κ/2π = 0.37MHz [117].

The mode structure for the fundamental of the resonator was such that the volt-

age antinodes were at the ends of the resonator. A junction asymmetry of d =

(I10 − I20 )/(I
1
0 + I20 ) ≈ 0.5, where d is from equation (5.2) and I10 (I

2
0 ) are the critical

currents for the large (small) junctions. This led to a modulation depth of roughly

3 GHz between the upper and lower sweet spots. Figure 3-5 shows the measured

frequency modulation of the qubit used in this experiment. As shown in Figure 3-3,

each qubit has individual flux-bias lines. (b) shows the interdigitated capacitor that

forms the qubit body and the SQUID loop. The lower part of Figure 3-3 shows a

microwave schematic of the system, where the resonator is capacitively coupled to two

both qubits and to the input and output lines. Red and blue sideband oscillations

were measured on both qubits, but the data presented below is from Q2 only. Pa-

rameters measurements for Q2 yielded a charging energy EC = 158MHz, Josephson

energy EJ = 66GHz and an asymmetry d = 0.49. These parameters were close to
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Figure 3-5: Asymmetric transmon modulation. The flux modulation of the
asymmetric transmon. The solid blue dots represent the fundamental ωge tran-
sition and the red, hollow dots are transitions to the second excited state ωef .
Solid and dashed lines represent numerical diagonalization of the system Hamilto-
nian including 4 transmon energy levels. The amplitude of the FM drive is shown
as 2∆Φ = 70.9mΦ0, which corresponded to an amplitude in frequency space of
2∆ωge/2π = 572MHz. This drive amplitude corresponds to the strongest drive
in Figure 3-6 and Figure 3-7. Figure taken from [117].
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the design targets meant to place the resonator fundamental frequency within a few

hundred MHz of the qubit modulation inflection point.

Time domain measurements were preformed at the lower flux sweet spot and

close to the inflection point where the sideband oscillations were carried out. At the

sweet spot, an energy relaxation time T1 = 2.7µs and dephasing time T ∗
2 = 3.0µs

were measured. At the bias point where the sideband measurements were performed,

T1 = 1.7µs and T ∗
2 = 0.6µs were measured [117]. The reduction in T ∗

2 away from the

flux sweet spot will be discussed further in Chapter 5. The reduction in T1 is most

likely due to the Purcell effect as the qubit-cavity detuning is lowered. This is also

discussed in Chapter 5.

3.2.2 Control electronics

The control frequencies for this experiment are in the GHz range and usual microwave

measurement protocols were used to insure high fidelity control. Here all microwave

pulses were created directly with microwave generators. This has the advantage of

simplicity, as the generator can be programmed and triggered with relative ease.

The disadvantage in this case is the lack of control over the shape of the pulse. A

commercial generator in pulse mode will output a square envelope at the programmed

carrier frequency, but the sharp edges of the pulse will result in higher frequency

components. This introduces noise in the drive signal that could drive the qubit

out of the {|g⟩, |e⟩} subspace for example. This importance of the pulse rise and

fall effects can be reduced by increasing the pulse length, which is the strategy we

adopt in this case. Ideally, the pulse shape would be controlled by a microwave vector

generator or modulated with an IQ-mixer that can independently control the phase

and amplitude. For this experiment, the first approach is used and qubit π-pulses

were set to 100 ns as a compromise between speed and pulse fidelity.

The sideband drive was digitally synthesized with a custom arbitrary waveform

generator made at Raytheon-BBN Technologies, though any arbitrary waveform gen-
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erator that could produce a sinusoidal drive signal at the qubit-resonator detuning

could be used. This is one of the most appealing parts of qubit control in a sideband

scheme as the control pulses do not need to be in the microwave regime and can be

controlled with the qubit-resonator detuning. Instead, the necessary frequency range

is set by the qubit-cavity detuning ∆. The lower limit on ∆ in practical cases is set

by the Purcell effect which is discussed briefly in Section 5.2. This means some of the

control electronics for enacting this kind of qubit drive do not need to be microwave

equipment. This lowers the cost and measurement infrastructure necessary for qubit

control.

In our system, all measurements are done at the cavity frequency. This is a

consequence of the circuit QED dispersive readout used. As a result, the signal we

want to measure is typically on the order of several GHz. For measurement electronics

to process a signal at that frequency, it first needs to be down-converted to a frequency

of a few MHz so that a fast digitizing card can record the signal. Similarly, control

signals at the system frequencies need to be up-converted to on or near resonant with

the system. This translation is done by sending the phase and amplitude control

signals to the Q and I ports of an IQ-mixer. An IQ-mixer is a four port microwave

device that takes a strong signal called the local oscillator (LO) and multiplies it by

signals sent to the I and Q ports. This produces a second microwave signal called the

radio frequency (RF) that is a mixture of the LO and the other control channels. The

RF signal could then be sent to the device under test for control and measurement.

This allows microwave signals with arbitrary amplitude and phase to be synthesized.

The process just described is called up-conversion and the reverse, down-conversion

process is also possible where the phase and amplitude information of a signal sent to

the RF port can be extracted. This is the process used to record the measurement in

this chapter. By driving the LO port with a slightly different frequency (∼ 1 MHz)

from that of the measurement pulse, the I and Q ports produce the amplitude and

phase of the cavity response encoded in the amplitude of the I and Q signals with a
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frequency equal to the difference between the signal and LO frequencies.

This signal is then digitized with an Agilent AP240 fast data acquisition card. The

measurement traces are then numerically integrated in software to produce a data

point. Typically this process is repeated many times. Measurements are identically

prepared and measured thousands of times to accurately determine the energy state

of the qubit. In this sideband study, the state of the qubit is probed with a 8 µs

pulse near the cavity resonance. The power and frequency of this pulse were finely

tuned to induce a ’bright state’ readout using the inherent non-linearity of the Jaynes-

Cummings interaction [98].

To begin the sideband swap experiment, the chip was allowed to thermalize with

the coldest stage of a dilution refrigerator. This allows for thermal initialization of

the qubit in its ground state and a minimum number of thermal photons in the

cavity. Then a π-pulse of appropriate time and power is sent into the cavity at the

qubit ωge frequency to drive it into the excited state. Immediately following this,

the flux modulation tone is applied to the flux-bias line of the qubit at the qubit-

cavity detuning ∆. This signal had a Gaussian envelope to avoid unwanted harmonic

structure. At the end of each time step t of the Rabi pulse, the state of the qubit is

immediately measured as described above.

3.3 Sideband oscillations

A detuning of ∆/2π = 400MHz was chosen as a trade off between proximity to the

linear regime of flux modulation, detuning from the cavity fundamental frequency to

avoid Purcell loss, and the maximum frequency which could be digitally synthesized

with the custom digital synthesizer. Plots of the red sideband oscillations are plotted

in Figure 3-6 as a function of duration t and flux modulation drive pulse frequency

ωFC for three different drive strengths. Measured data is on the left and numerical

simulation to the master equation are on the right [117]. The scale bar in Figure 3-6
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Figure 3-6: Red sideband oscillations. Rabi density plots of oscillations in and
out of the cavity. (a-c) are experimentally measured density plots. (a) and (b) cor-
respond to a reduction in drive amplitude of 10 and 4 dB respectively relative to (c).
(d-f) are numerical simulations produced with measured chip parameters. A solid
(dashed) white line indicates the slice used in Figure 3-7. Figure taken from [117].

is calibrated using signal amplitudes from T1 and standard Rabi oscillation mea-

surements. The agreement between theory and data in Figure 3-6 is good and the

frequency and power dependence is well captured. There are a few noticeable differ-

ences between the data and simulations. First, there is a frequency offset of 7 MHz

between the center of the Rabi feature in the data and theory. As the theory plots

were produced with parameters fitted from Figure 3-5, a likely source of error is the

uncertainty in these numbers. There is also a small asymmetry in the Rabi ’chevron’

patterns. This can be likely attributed to the frequency dependence of the waveform

generator output leveling [117]. Lastly, there is a spurious feature around 430 MHz
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Figure 3-7: Sideband Rabi frequency vs. drive. a-c) are oscillations taken
from the white cuts of Figure 3-6 where the red lines correspond to simulations on
the right side of Figure 3-6 and the dots are experimental data points for the four
different drive powers: 0,-4, and -10 dB. d) plots the oscillation rate vs. the flux drive
amplitude (in flux and frequency). Figure taken from [117].

in the data at the strongest drive strengths. The feature could not be produced in

the numerics, even when including the far detuned second qubit, Q1. Most likely this

feature is caused by a spurious chip mode or unwanted resonance on the sample.

Figure 3-7 a-c shows individual frequency slices of Figure 3-6 for the three different

drive powers. The red traces are not fits, but numeric solutions to the master equa-

tion done by our theory collaborators Félix Beaudoin and Alexandre Blais. Again,

agreement between the data and simulations is excellent. The lack of data for t <

20 ns is a technical limitation resulting from the minimum pulse length that could

be produced by the generator. This limitation could easily be removed with more

advanced pulsing capabilities. The oscillation decay observed in Figure 3-7 is fully

captured by (κ + γ1)/2, where κ and γ1 are the independently measured cavity and

qubit energy relaxation rates respectively. Figure 3-7 also shows the sideband rate

vs. FM drive amplitude plotted in units of frequency excursion from ωge and flux am-
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plitude in mΦ0. The response remains linear, even to swap rates as high as 85 MHz.

Although for strong enough drives, Eq. (3.12) becomes nonlinear and the transmon

frequency excursions will move into nonlinear regions of the flux-frequency curve.

Despite the large ac flux drive and frequency excursions, there was no loss of

contrast in the sideband oscillations or additional decay dynamics observed that were

not observed while the qubit was operated with a static flux bias. This is remarkable,

as the qubit resonance frequency is passing through the cavity resonance at strong

drives and should be sampling the loss channels and spurious resonances over a range

of frequencies. This was the case for both the experimental data and the numerical

simulations.

3.4 Sideband CNOT

The CNOT gate along with single qubit rotations is universal for quantum computing,

as discussed in Section 2.5, and is a crucial part of many error correction schemes

(see Section 2.6.2 and Chapter 6). The sideband interaction described above can be

used to generate a CNOT gate as described in Beaudoin et al. [10]. The process

involves a sequence of red sideband and traditional π-pulses [15, 16, 10]. These

drive pulses exploit the higher levels of the transmon system that we neglected in

the sideband oscillation experiment of this chapter. The notation in this section

follows [10], where a sideband swap between the i and i+1 levels of the kth qubit and

the resonator is defined as R(k)
i,i+1 = |i⟩⟨i+ 1|(k)a† + |i+ 1⟩⟨i|(k)a. Similarly, a π-pulse

is define for the i → j transition of kth qubit as σ(k)
x,i,j = |i⟩⟨j|(k) + |j⟩⟨i|(k).

Using these definitions, the operation can be constructed as

Uent = R(1)
01 R

(2)
12 σ

(2)
x R(2)

12 R
(1)
01 , (3.13)

which is equivalent to a CNOT gate modulo individual qubit phases. These phases
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can be removed with additional single qubit phase gates as [10]

CNOT = U (1)
θ1

UentU
(2)
θ2

U (1)
θ3

. (3.14)

3.5 Outlook

The speed at which photons can be swapped between each qubit and the cavity with

the red sideband drive could give rise to CNOT gates on the order of 30-50 ns. This

compares well with the current state of the art [8, 29] and a sideband-based gate

would have the added advantage of not requiring microwave electronics for the FC

drive. Moving forward, there are still a variety of studies that could be done with

a sideband-driven qubit including actually implementing a CNOT gate. Work has

been done in this direction [106], though practical gate implementation has proven

to be rather challenging so far. Because this sideband process populates the cavity

with real photons, all the qubits coupled to it have their transition frequencies ac-

Stark shifted by the photon’s electric field. This adds an extra layer of complexity

when operating high fidelity gates since it is necessary to know the qubit resonance

frequencies to high precision.

This requirement is not a complete roadblock and could in theory be circumvented.

At the current date, there are there are other, more practical two-qubit gate protocols.

Future work could also be done to mitigate the photon Stark effect. Tunable coupling

could be implemented to isolate the qubit from the resonator while the red sideband

interaction was off.
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Chapter 4

Cross resonance

4.1 Introduction

Fast two-qubit gates are critical for any quantum computing scheme. Over the past

decade, a variety of gates have been envisioned and implemented in superconducting

qubits including controlled-phase gates [77, 8], cross-resonance [99, 27] and swap

gates [39]. Most of these gates are used with other single-qubit gates to construct a

controlled-NOT operation that can generate entanglement between two qubits. The

CNOT gate is popular due to its heavy use in error detection and correction schemes.

Along with single-qubit rotations, the CNOT is universal for quantum computing as

discussed in Section 2.5. In this chapter I will describe a scheme for inducing state-

dependent Rabi flopping in a two-qubit system. More specifically, we will study the

cross-resonance effect (CR) [99] in detail and how the effect depends on qubit-qubit

detuning.

CR arises in a two-qubit system when one qubit is driven at the frequency of a

second qubit where both qubits are coupled through a common resonator. The second

qubit, which is not being directly driven, Rabi oscillates at a rate that is dependent

on the state of the first qubit. In a CR control scheme, the qubits will be detuned

from the cavity and each other by at least a qubit linewidth to make the qubits
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individually addressable. In this gate setup, one qubit will be designated the ’target’

qubit. This is the qubit that is not directly driven, but whose frequency is used to

drive a second ’control’ qubit. The control qubit is always the qubit being driven

in a CR-based gate. This also means a CR control scheme requires individual drive

lines to each qubit in most practical situations. Clearly a CR drive sent to a common

drive line would induce strong Rabi oscillations in the target qubit with which it was

on resonance regardless of the state of the control qubit, though the cross resonance

effect would still be present at a much reduced relative strength.

4.2 Cross resonance in superconducting systems

Following [99, 27] and basic ideas from Chapter 2 we can write the system Hamiltonian

in the lab frame as,

H/h̄ =
1

2
ω1σ

z
1 +

1

2
ω2σ

z
2 + Jσx

1σ
x
2 , (4.1)

where σ{x,y,z}
i are the Pauli spin operators and the resonator energy has been ne-

glected. Throughout this chapter, Q2 will be used as the control qubit and Q1 will

always be the target. The notation in places will be |Q2, Q1⟩. Similarly, Pauli op-

erators indexed with 1 and 2 refer to operations on Q1 and Q2, respectively. J

in Eq. (4.1) is the always-on resonator-mediated coupling strength between the two

qubits. The analytic expression for J , neglecting higher levels of the transmon, is [74]

J =
g1g2
2

(1/∆1 + 1/∆2), (4.2)

where gi is the coupling strength of qubit i to the resonator and ∆i is the detuning

between qubit i and the resonator frequency. This Hamiltonian can be diagonalized,

resulting in a slight qubit frequency shift ω̃{1,2} = ω{1,2} ± J/∆, where ∆ = ω1 −ω2 is

the detuning between the qubits. The key to the cross-resonance effect is a σx drive

on a designated target qubit with a sign dependent on the state of the other qubit,
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Figure 4-1: Cross-resonance energy levels. Energy level diagram for the cross
resonance interaction. The undressed energy levels for |01⟩ and |10⟩ are represented
by dashed lines and the dressed states corresponding to ω̃ = ω ± J/∆ are indicated
by the solid lines. With the control qubit in the |1⟩ state (red), a drive at ω̃1 incident
on the control qubit induces rotations in the target qubit’s Bloch vector in a direction
opposite to rotations induced when the control is in the |0⟩ state. This rate is recuded
by a factor of J/∆ from a resonant dirve. Reproduced from Chow et al. [27].

as in Figure 4-1. To see this, we can write the Hamiltonian when qubit drives are

present,

H/h̄ =
1

2
ω1σ

z
1 + Ω1cos(ω

rf
1 t+ φ)σx

1 +
1

2
ω2σ

z
2 + Ω2cos(ω

rf
2 t+ φ)σx

2 + Jσx
1σ

x
2 , (4.3)

where Ωi and ωrf
i /2π are the amplitude and frequencies of the drives on qubit i; ωi/2π

are the qubit ground-to-excited transition frequencies of qubit i and J/2π is the trans-

verse exchange coupling strength in the absence of driving. Assuming the detuning

between qubits is much larger than their linewidth and making the rotating wave

approximation, this Hamiltonian can be taken through a series of unitary transfor-

mations (see [99]) to highlight the nonlocal dynamics. The remaining terms oscillate

rapidly unless certain drive conditions are met. Chief among these is ωrf
1 → ω2. In a
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frame rotating at the qubit and drive frequencies, a static term develops [99]

Heff
DF/h̄ =

Ω1J

4∆
(cosφ1σ

z
1σ

x
2 + sinφ1σ

z
1σ

y
2). (4.4)

With a proper choice of phase φ and drive time, this term becomes a two-qubit inter-

action and leads to unitary evolution as exp(−iπσz
1σ

x
2/4)

1. To shorten the notation, I

will make the substitution σx = X, σy = Y, σz = Z along with the identity operation

I for the Pauli spin operators. A group of two Pauli operators like ZX is shorthand

notation for ẐX̂ = σz ⊗ σx, where the first operator operates on the control qubit

subspace and the second operates on the target subspace.

In the previous analysis, we have ignored some complicating factors. Given the

microwave environment on the chip, a level of crosstalk is unavoidable. A strong drive

resonant with the target qubit frequency will leak onto the chip and be sensed by the

target qubit independent of the state of the control qubit. In practice, this value is

on the order of the drive felt by the target qubit. This leads to an IX term involving

Rabi rotations of the target qubit that are independant of the state of the control

qubit. A second complication comes from the control qubit being driven strongly off

resonance. This leads to an ac-Stark shift ZI term [33] in the drive Hamiltonian.

The effective Hamiltonian when the system is driven becomes

Heff/h̄ = ϵ(t)(ZI + (m− ν)IX + µZX), (4.5)

including the ac-Stark shift term, an IX crosstalk term and the CR term from (4.4).

In the case of ideal two-level qubits, µ = J/∆. In general, the crosstalk term has

a quantum and classical component. The ν parameter quantifies the amount of

quantum crosstalk during the drive and m quantifies the classical component. In this

chapter, I will forgo any analysis on the ν or m parameter and focus instead on µ and
1More generally, the interaction can be written exp(−iβπσz

1σ
x
2/4) with a parameter β =

Ω1ωxxt/2π∆ where ∆ is the qubit-qubit detuning.
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the effects of the higher energy states in the transmon. As noted elsewhere [33], these

interactions do not degrade the conditional CR term ZX, as these terms commute.

4.3 Higher-Level Effects

The transmon qubit is not a perfect two-level system as we assumed in the last sec-

tion. In reality, the transmon is a weakly anharmonic oscillator with many other

eigenstates besides the computational subspace {|g⟩, |e⟩}. Leakage out of the compu-

tational subspace is a continual problem in transmon qubits. Luckily, this particular

kind of leakage can be suppressed using a pulse-shaping technique derived from opti-

mal control theory called DRAG, or derivative removal via adiabatic gate [85]. This

technique can reduce leakage errors by an order of magnitude. Regardless, the anhar-

monicity of the transmon qubit sets the ultimate speed limit for gate times. As the

inverse of the gate time 1/τ approaches the qubit anharmonicity, the pulse develops

frequency components resonant with transitions to the second excited state of the

qubit.

Higher-level states can also be used to construct two-qubit gates within the com-

putational subspace. In Ref. [8], these higher levels can be brought near resonance

with each other and one qubit can acquire a phase that is dependent on the state

of the other. These higher levels will appear in a quite different role in the cross-

resonance gate. To model this dependence, we study the transmon with first-order

perturbation theory, modeling the qubit as a Duffing oscillator [63]. The Duffing os-

cillator is a convenient model for an anharmonic oscillator, starting with a harmonic

oscillator and adding a quartic perturbation.

The Duffing oscillator can be written in terms of creation and annihilation oper-

ators for this anharmonic oscillator [63]

HDuff/h̄ = ωge(b̂
†b̂)−

EC

12
(b̂+ b̂†), (4.6)
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where ωeg is the frequency difference between the ground and first excited state and

EC is the qubit charging energy. For two qubits modeled as Duffing oscillators and

coupling strength J , the Hamiltonian can be written as [2]

Ĥsys = h̄
[

ω̃1b̂
†b̂+

1

2
δ1b̂

†b̂(b̂†b̂− 1)
]

+ h̄
[

ω̃2ĉ
†ĉ+

1

2
δ2ĉ

†ĉ(ĉ†ĉ− 1)
]

+ h̄J(b̂ĉ† + b̂†ĉ). (4.7)

Here δi is the anharmonicity of the ith qubit. {b, c} and their conjugates represent

ladder operators on the individual qubits. A drive Hamiltonian in the two-qubit case

Ĥcont = ϵ1(b̂+ b̂†) + ϵ2(ĉ+ ĉ†)

= H1 +H2

(4.8)

is added to Equation (4.7) while a cross-resonance drive is applied. In a qubit sys-

tem, it is much more convenient to work in the energy eigenbasis and take this as

the computation basis. Treating J as a perturbation to second order and truncat-

ing Equation (4.3) at the first excited level for each qubit, we find [126, 2]

Ĥsys =

[

ω2 −
J2

∆

]

|01⟩⟨01|+
[

ω1 +
J2

∆

]

|10⟩⟨10|

+ [ω1 + ω2 + ζ] |11⟩⟨11|,
(4.9)

where ζ = 2J2(δ1+δ2)
(∆+δ1)(∆−δ2)

, and more importantly, the traditional drive Hamiltonians

become

H1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 − J
∆ 1 0

− J
∆ 0 0 1

1 0 0 J
(

1
∆ − 2

δ1+∆

)

0 1 J
(

1
∆ − 2

δ1+∆

)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.10)
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and

H2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 J
∆ 0

1 0 0 J(δ2+∆)
∆(∆−δ2)

J
∆ 0 0 1

0 J(δ2+∆)
∆(∆−δ2)

1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.11)

with the matrices ordered in the two-qubit subspace as {|00⟩, |10⟩, |01⟩, |11⟩} [126] and

the subscript corresponds to which qubit is being driven, or equivalently which qubit

is being used as the control. Here we clearly see the cross-resonance effect. Looking

at H2 there are now matrix elements that drive both Q1 and Q2 with the elements on

Q2 being different depending on the state of qubit 1: J/∆ and J(δ2+∆)/∆(∆− δ2).

In the limit δ2 → ∞, the states rotate in completely opposite directions, while as

δ2 → 0, both states rotate in the same direction giving no conditional operation [2].

Here one can see the higher qubit levels entering to first order as δ1 and δ2 in the

elements of H1 and H2.

We can recover the ZX prefactor µ in Eq. (4.5) for a drive on Q2 at the Q1

transition frequency by looking at the difference in H2 matrix elements representing

the transitions we are interested in

⟨10|H2|11⟩ − ⟨00|H2|01⟩ = 2
J

∆

δ2
∆− δ2

, (4.12)

which corresponds to the difference of the effective Hamiltonian acting on the system

with the control qubit in the |1⟩ and |0⟩ states, respectively. The anharmonicity δ for

a transmon is negative by definition. If the negative signs absorbed into Eq. (4.5).

Half this rate difference is µ which controls the participation ratio of the CR term in

the dynamics

µ =
J

∆

− | δ2 |
| δ2 | +∆

.
(4.13)
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This arrangement corresponds to Q2 being used as the control qubit and ∆ is the

detuning between the two qubits. This is the quantity we would like to measure. The

ν parameter can be calculated from this theory in a very similar way by adding the

matrix elements instead of subtracting them: ⟨10|H2|11⟩+ ⟨00|H2|01⟩ = 2 J
∆

∆
∆−δ2

.

4.4 Cross-resonance rates vs. detuning

From equation (4.13) we expect to see a divergence in the parameter µ at frequencies

of ∆ = 0 and ∆ = δ2. In this case we have chosen to use Q2 as the control qubit

throughout the rest of this chapter2. To measure µ vs. detuning, we need to use a

tunable qubit of some kind to allow for experimental control over ∆. This is in contrast

to a typical CR control scheme where typically fixed-frequency qubits are employed.

While CR can definitely be driven using tunable qubits, one of the key advantages

of the CR control scheme is that fixed-frequency qubits are insensitive to flux noise.

These qubits are made with a single Josephson junction instead of the traditional split

junction SQUID arrangement. Due to the prevalence of flux noise in superconducting

qubit systems, fixed-frequency qubits can have much improved T2 dephasing times

compared to tunable qubits away from the flux-insensitive sweetspot. One of the key

motivations of this chapter is to explore the parameter space of detuning to inform

the fabrication of future, fixed-frequency qubit systems.

4.4.1 Experimental setup

To investigate the variation of µ with detuning, we cooled a three-transmon system

in a dilution refrigerator to a temperature of 10 mK in a BlueFors dilution refrig-

erator. The chip is very similar to the device used in [29] with the exception that

here the center qubit is a flux-tunable transmon, where the device in [29] was made

with all fixed-frequency qubits. A picture of the chip is shown in Figure 4-2 along
2The dynamics are symmetric in the case the control and target are swapped
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with a diagram of the measurement. The central block structures are the transmon

qubits. Each qubit {Q1,Q2,Q3} is capacitively coupled to its own CPW resonator

{R1,R2,R3} that is used for individual control and readout. A subsection of the chip

was selected to study the CR effect vs. detuning. Q1 was fabricated as a traditional

split-junction transmon and was designated as the target qubit throughout the ex-

periment. Q2 was a fixed-frequency qubit and was designated as the control qubit.

This allowed the frequency of Q1, ωQ1
ge , to be tuned both above and below that of Q2,

ωQ2
ge . The remaining parts of the circuit were unused and unmeasured in this series of

experiments. Measurements presented in this chapter were taken during an extended

stay at Raytheon BBN Technologies in Cambridge, Massachusetts.

Pulsed spectroscopic measurements were made of all cavities and qubits using an

autodyne scheme [107] that corrects for spurious phase jumps produced by the mi-

crowave generators. This is accomplished by splitting the microwave source used for

the measurement tone and using one of the signals as the LO for signal demodulation.

The demodulation scheme is described in Section 3.2. A set of custom arbitrary wave-

form generators allowed precise pulse shaping for both qubit manipulation and cavity

measurement. In this case, both the phase and the amplitude of the pulse is under

the control of the experimenter. This allows for precise single-qubit gates around

arbitrary axes and was necessary for quantum process tomography and randomized

benchmarking in Section 4.5. It also allows additional microwave isolation techniques

like single-sideband modulation with a mixer to be used. Additionally, short pulses

on the order of 10 ns could be produced, thus removing one of the experimental

constraints from Chapter 3, and more sophisticated pulse shapes [85] could also be

used.

Resonator fundamentals were ωR1/2π = 6.5882GHz, ωR2/2π = 6.6905GHz, ωR3/2π =

6.7190GHz and linewidths κR1/2π = 0.398MHz, κR2/2π = 0.443MHz, κR3/2π =

0.2845MHz. R3 was measured initially, although it was unused in this experiment.

Two bus resonators, B1 and B2, connect Q2 to Q1 and Q1 to Q3, respectively. These
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Figure 4-2: Chip and measurement diagram. (a) is an optical micrograph
of the device with false color, highlighting the qubits and resonators used in the
experiment. Q3 as measured but not used in the experiment. (b) Circuit schematic.
Qubit drive and resonator measurement tones are sent to the resonators through
directional couplers and back out of the system through a series of isolators before
being amplified by a HEMT at the 3 K stage. A flux bias was applied to Q1 through
an off-chip flux bobbin.
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resonators were unmeasured on this device as there are no direct connections to them,

but they were designed to resonate at ωr/2π = 8.0GHz.

The states of Q1 and Q2 were read out by sweeping through a second pulsed mi-

crowave tone while probing the state of R1 and R2 near their fundamental resonant

frequency. This is done in the dressed dispersive regime, as discussed in Section 2.4.2.

Q2 and Q3 transition frequencies were found at ωQ2
ge /2π = 4.349GHz and ωQ3

ge /2π =

4.3435GHz, with Q3 not being used in the experiment. The anharmonicity of Q2

was measured to be δ2/2π = (ωQ2
ef − ωQ2

ge )/2π = −360MHz, which will be impor-

tant later as µ is a function of δQ2. When flux Φ is applied to the SQUID loop

of Q1, its transition frequency follows Eq. (5.1). The frequency dependence on flux

is shown in Figure 4-3. A flux-insensitive sweet spot at ωQ1
ge /2π = 5.786GHz and

an anharmonicity δ1/2π = −347MHz was observed. The modulation allows ωQ1
ge to

be adjusted to various detunings around ωQ2
ge . We extract a qubit-qubit coupling

J/2π = 1.08MHz± 0.1MHz by tuning the qubits on resonance with each other and

observing their anticrossing in spectroscopy [74] (Figure 4-3).

The coherence properties of Q1 and Q2 were measured using time-domain mea-

surements (see Section 2.6). Energy relaxation times of TQ2
1 = 57µs for Q2 and

TQ1
1 = 50µs on average were measured. Here the average value of TQ1

1 is the rough

average over the frequency space of the experiment. In general, T1 will vary slightly

over time as well. Phase coherence times for the qubits were T ∗
2 = 7.8µs for Q2 and

T ∗
2 = 2.8µs for Q1 on average in the parameter space where the data was taken. The

phase coherence of the transmon will be a function of frequency in the same fashion

as T1 as the microwave environment will be frequency-dependent, but it will also

depend on the flux bias. A steeper ∂f/∂Φ curve implies increased sensitivity to flux

noise. This process will be explored in greater detail in Chapter 5. The significantly

shorter T ∗
2 times can be explained by a mixture of charge noise and flux noise. Q2 is

a single-junction transmon and was not sensitive to flux noise, but its EJ/EC ratio of

18.5, while still in the transmon regime, is rather close to the charge qubit regime [63].
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2J

Figure 4-3: Flux spectroscopy. Spectroscopy showing the flux-modulation of the
tunable qubit (Q1) above and below the fixed-frequency qubit (Q2). The inset shows
the avoided crossing between the two qubits. From this we extract a J/2π coupling
of 1.08MHz between the qubits. Blue dots and green diamonds mark the transition
of the first and second excited states of Q1. Red and teal lines mark the same for Q2.
The right axis shows the relative detuning between the qubits.
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In addition, a charge splitting of 400 kHz was observed on the qubit peak in spec-

troscopy, which indicates the presence of two partially distinct charge states. For Q1,

with a slightly smaller EC and flux tunability, the most likely source of dephasing is

flux noise since the qubit was operated away from its sweetspot, although this does

not rule out another source of dephasing for this qubit that limited T ∗
2 .

4.4.2 Cross-resonance data

With the system parameters mapped out, we are in a position to begin measuring

the cross resonance effect. The process begins by setting the flux bias Φ to a fixed

value and finding the qubit transitions with spectroscopy. The CR effect is very

sensitive to the frequency of the CR tone. This means having a good measurement

of the target qubit ground-to-excited transition is important. To achieve this, further

tuneup is usually necessary. Once a rough estimate of the frequency is determined,

Rabi oscillation experiments might be necessary to help hone in on the true frequency.

A scan for Rabi experiments vs. frequency will yield a plot similar to Figure 3-6,

where the true resonance is the slowest oscillation frequency. In the data presented

here, a further tuneup was used involving repeated Ramsey fringe experiments [96]

vs. the Q1 drive frequency. For a drive at the true qubit transition frequency in this

measurement, the Ramsey fringe will disappear and the time trace will look like an

exponential decay. This comes from the fact that the fringe frequency is equal to

the detuning between the drive and the transition frequency and the Bloch vector is

prepared at the same point on the equatorial plane. Only slow diffusion of the vector

in the plane is measured. The fringes never completely disappear due to the charge

splitting of this qubit. See Section 2.6 for discussion of these types of measurements.

A qubit transition frequency was found with a typical accuracy of ±200 kHz using

this method.

Once all the system frequencies were determined, some additional pulse calibration

and microwave calibration were completed quickly. π and π/2-pulses were tuned up
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via repeated application and measurement cycles. 2N π-pulses should produce the

ground state |0⟩ for all N and 4N π/2-pulses should do the same. This process

magnifies small errors in the pulse, which can be corrected for in an automated

process. The CR experiment was then carried out by applying a set of Rabi-like

pulses to the control qubit. Microwave calibration involved checking and adjusting

frequency-dependent tuning parameters. In particular, the microwave IQ mixers used

in the creation of control pulses need to be recalibrated at different frequencies. Even

temperature variations in the room can cause drift in these components.

As shown in Figure 4-4, this involves a CR pulse at the target qubit (Q1) frequency

applied to the control qubit (Q2). After some time τ , the state of the target qubit

is read out. Immediately following this, a second pulse sequence is created identical

to the first except it is placed between two π-pulses at the control qubit frequency.

This, ideally, sets the control qubit in its |1⟩ state for the duration τ , and is returned

to the ground state by a second π-pulse at the end of the sequence.

To extract the value of µ, we also need to vary the magnitude of the drive strength

ϵ. This will quantify how the ZX term varies relative to the total drive Hamilto-

nian (4.4). Data from a single detuning point is plotted in Figure 4-5. Clearly the

frequency of oscillations are different in both cases, but recall that the oscillations are

not due only to the CR effect. The cross-talk term accounts for a significant fraction

of the oscillations.

4.4.3 Analysis

For each drive power, the two different traces are individually fit to an exponen-

tially damped sinusoid model via a least-squares method. This process is aided by

a frequency estimation process to obtain starting points for the fits [119]. The fit

returns the frequency for each drive power and each control-qubit state. We define
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Figure 4-4: Cross resonance pulse sequence. The top pulse sequence shows the
cross-resonance drive when the control qubit is not excited. The lower pulse sequence
shows the cross-resonance drive gated by π pulses on the control.
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Figure 4-5: Cross-resonance density plots. (a) and (b) show the Rabi oscilla-
tions of the target qubit vs. power for the cases with no π pulses and with π pulses
respectively. For this particular case, ∆ = −78MHz. The x-axis is a simple linear
scale for the increasing amplitude of the CR pulse. Oscillations occur at different
frequencies for the two cases. (c) plots the frequency difference, Jeff , in the two cases
with the no-π-case subtracted from the π-case.
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the effective coupling strength Jeff as

Jeff/2π =
fπ
Rabi − fRabi

2
, (4.14)

As noted earlier, Jeff is half of the difference in the Rabi frequency since the CR

contributions to the oscillations act with different signs depending on the state of

the control qubit. The values of Jeff/2π are plotted vs. CR drive amplitude in (c)

of Figure 4-5 for ∆ = −78MHz. Finally, the µ value is extracted by performing a

linear fit to the low-power region of the trace. To help quantify the uncertainty in the

extracted µ value, we calculate standard 95% confidence intervals on the fit lines for

each bias point. This was accomplished in a Frequentist framework using bootstrap

methods in MATLAB using the nlparci method. Additional Jeff vs. amplitude traces

are plotted in Figure 4-6. The three traces illustrate the dependence of the linear

slope µ on detuning. The ∆ = -78 MHz case displays relatively fast CR where the

∆ = -130 MHz data point is significantly slower. The ∆ = 55 MHz trace also shows

the change in sign of the CR effect at positive detunings. In general, the value of µ

depends strongly on ∆.

Eventually, as drive power is increased, Jeff saturates and can not be driven faster

due to leakage to higher levels of the transmon. This saturation power describes the

fastest the CR interaction can be driven at a particular detuning. Another interest-

ing feature appears after the trace saturates: the Jeff briefly decreases towards zero

before recovering. This characteristic was observed at all detunings for which a sat-

uration in Jeff was observed. Similar behavior was observed in numerical simulations

by our collaborators [59] but was very sensitive to the choice of parameters, so direct

comparison between simulations and experiment is not possible. At this point, this

feature is unexplained, though given the level structure of the transmon, its plausible

that dynamics are happening between the levels outside the computational subspace.

To compare the theory Eq. (4.13), we need to scale the linear fit values by a value

that captures the susceptibility of the control qubit to a drive at a given amplitude.
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Figure 4-6: Jeff vs. drive strength. Plots of Jeff vs. amplitude for three selected
detunings with fast, slow, and negative CR. Error bars for the points indicate uncer-
tainty in the frequency difference while the dash grey lines indicate 95% confidence
intervals.
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Figure 4-7: CR µ parameter. Plot of the extracted µ values. Error bars are the
confidence intervals from Figure 4-6. The theory curve for µ is (4.13) with data scaled
by a factor as described in the text.
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This could be accomplished by measuring Rabi oscillations on the control qubit when

driven with the same microwave drive line and over the same power range. Unfor-

tunately, with the experimental setup this wasn’t possible as such a strong drive on

resonance with the control quibt’s frequency drove Rabi oscillations that were too

fast for the down-converting electronics to digitize.

To allow a comparison of Eq. (4.13) with the data, a least-squares analysis was used

to fit the data to the theory curve. This process returned a value of 75 MHz/amp to

translate the measured µ slopes to unitless data points that can be directly compared

to theory. To help justify this fit process and confirm that it returns sensible numbers,

we perform a circuit analysis of the drive-line. The analysis models the drive line,

amplifiers, on-chip couplings and resonator linewidths. By performing this calculation

for the known drive powers used in the π-Rabi experiments, we calculate what the

slope of the drive-power/Rabi-rate curve should have been. This process yielded a

value of ∼100 MHz/amp, within 30% of the fit value.

The measured µ values for each detuning are shown in Figure 4-7, where each data

point corresponds to a linear slope extracted from a set of pi-Rabi experiments at

that ∆. The data matches the theory reasonably, capturing the expected divergences

at ∆ = 0 and ∆ = δ2 as well as the sign changes in the CR rate at the divergences

(see Figure 4-7). While the theory captures the qualitative behavior of the data, there

are significant deviations in certain areas. These deviations could be explained by

spurious, unwanted couplings to microwave chip and slot line modes which form on the

chip or in the sample holder. A second source of deviation could come from frequency

drift of the tunable qubit. As the target qubit was a symmetric transmon flux-biased

on the side of its modulation curve, small drift in the magnetic flux threading the

loop could lead to significant shifts in the target qubit frequency. This shift would

suppress the CR effect since the resonant drive condition on the control qubit would

no longer be met.

Finally, the saturation level of Jeff for each data point was extracted and plotted
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Figure 4-8: CR saturation rate vs. ∆. Dashed lines mark the zero detuning
point, the anharmonicity of Q2, and a CR rate of zero.

in Figure 4-8. The values were taken as the highest Jeff value before the characteristic

decrease in Jeff for the Jeff vs. amplitude trace at each ∆. Regions near the control

qubit 0-1 transition and anharmonicity tend to saturate at the highest rates. In

contrast to µ, there is no analytic expression for the saturation rate. This makes

quantitative statements about the saturation rate difficult.

4.5 Two-qubit gates with the ZXπ/2

So far in the analysis, we have only been concerned with the speed of the CR in-

teraction. In this section we’ll briefly describe how a gate can be made from CR in

practice. In addition, we will used one of the gate metrics described in Section 2.6.1

to examine the quality of the gate.

The extra terms in Eq. (4.4) are unwanted in an actual gate implementation. They

could be cancelled after the fact by a set of calibrated single-qubit pulses. This would

be a brute force approach requiring accurate phase stability between all the microwave
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electronics. A second tactic involves the spin-echo techniques in the CR sequence [33].

This is the same type of spin-echo technique for measuring T2 in Section 2.6, the CR

gate can be broken in half and the polarity of the unwanted terms flipped in the

middle of the sequence. This process is diagrammed in Figure 4-9. The IX term,

representing the crosstalk in a CR sequence (see Eq. (4.5)), can be cancelled by

flipping the phase of the CR pulse by 180 degrees. This causes any leakage of the

CR signal to the target qubit in the first half of the gate to be driven in the opposite

direction for the second half of the gate. Ideally, this cancels the contribution from

the IX term. In a similar fashion, a π-pulse is applied to the control qubit at the

halfway point. This has the effect of flipping the state of the control qubit and the

sign of the ZI term for the second half of the gate. Again, this ideally cancels the

contributions from this term.

4.5.1 Interleaved randomized benchmarking

The two standard tools for assessing the quality of a gate are quantum process tomog-

raphy [12, 129, 25] and interleaved randomized benchmarking [62, 25]. These were

briefly outlined in Section 2.6.1. Here data of interleaved randomized benchmarking

for a CR-based two-qubit gate is presented [35, 71, 73, 45] for this sample using the

Q2 as the control and Q1 as the target just as in the previous sections of this chapter.

Randomized benchmarking is accomplished by creating random strings of gates from

a gate set to be characterized. This random string is applied to the qubit followed by

a final gate which is calculated to be the inverse of the entire random string of gates

preceding it. The ground state of the system is typically chosen as the starting point

for a benchmarking sequence. This process ideally leaves the system unchanged as

the whole process should be equal to an identity operation, which does nothing to

the system. Strings with different numbers of gates are applied and the fidelity F

of the identity operation is measured. Because the gates are not perfect, errors will

accumulate over time, leading to an exponential decay of the overlap between the
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Figure 4-9: Echo cross resonance pulse sequence. The top sequence corre-
sponds to exciting the control qubit and executing an echo CR sequence. The lower
sequence starts with the control in its ground state. Here the CR pulse is broken into
two parts with a control qubit π-pulse in the middle. By flipping the state of the
control qubit and the phase of the CR drive, the unwanted single-qubit terms in the
effective drive Hamiltonian are echoed away.
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initial and final state. As the errors accumulate, the state is driven further from the

ground state. This envelope can be fit with a model [33]:

F (i, |00⟩) = Aαi + B, (4.15)

where A and B are constants are related to state-preparation and measurement errors,

F is the sequence fidelity, i is the length of the sequence and α is related to the average

error per gate r for all gates in the set by the relation r = 1 − α − (1 − α)/2n for n

qubits [33].

This process only measures the average error per gate over the entire gate set. To

measure the error on a particular gate, the process has to be modified, as described

in Ref. [73, 45], by interleaving the gate to be measured inside the random series of

gates. That is, every other gate is the gate of interest. This will produce a decay

curve similar to the traditional randomized benchmarking, but with a different decay

constant. Figure 4-10 shows a randomized benchmarking experiment with the ZXπ/2

gate interleaved in the sequence. This data was taken at a qubit-qubit detuning of ∆ =

80 MHz. An average of 0.120 errors per gate was measured for the whole interleaved

sequence. Figure 4-10 shows data from the interleaved RB experiment. Here only

an interleaved sequence was extracted and it was not compared against a standard

RB measurement over the Clifford group with out the ZXπ/2 gate. Therefore it is

not possible to extract the gate fidelity of the ZXπ/2 gate in particular. Here the

Clifford group was chosen because it describes transitions between all the cardinal

directions of the Bloch sphere and should sample the noise in all directions. Choosing

a random Clifford in a multi-qubit Clifford group scales polynomially [33] and would

scale favorably in a multi qubit system.
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Figure 4-10: Two qubit randomized benchmarking of the ZXπ/2 gate. In-
terleaved Randomized benchmarking of the ZXπ/2 gate composed using the cross-
resonance effect using Q2 as the control and Q1 and the target.a The fidelity of the
ground state is plotted on the y-axis and the total length of the sequence of gates.
The grey dots correspond to individual fidelity measurements and stars noting the
average value. The green line is the extracted fit and the error bars are the standard
deviation of the measurements for each sequence length.

aCode generating this plot was generously provided by Colm Ryan.
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Chapter 5

Decoherence in asymmetric

transmons

5.1 Introduction

In Chapter 2 we presented some state-of-the-art coherence numbers without con-

sidering the microscopic and macroscopic sources of dissipation in superconducting

systems. Energy relaxation and dephasing are an immensely important topic in su-

perconducting systems. In this chapter we will present an analysis and preliminary

data on flux noise as it affects tunable transmons, with different levels of junction

asymmetry. In Chapter 3, we saw an asymmetric transmon made of two junctions

with significantly different junction critical currents. In both the symmetric and

asymmetric case, the two Josephson junctions form a SQUID loop through which

magnetic flux can be threaded. This loop makes the transmon sensitive to magnetic

flux noise coupled to the loop and translates into variations in the qubit’s Josephson

energy EJ . This noise in EJ leads to variation in the qubit frequency δωeg(t), which

leads to dephasing of the qubit.

To see the magnetic field’s effect on frequency, recall equations (5.1) and (5.2)
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from Chapter 2 were

EJ(Φ) = EΣ
J cos

(

πΦ

Φ0

)

(5.1)

for the symmetric case and

EJ → EΣ
J cos

(

πΦ

Φ0

)

√

1 + d2tan2

(

πΦ

Φ0

)

(5.2)

for the asymmetric case. Here EΣ
J is the sum of the two Josephson energies and

d = EJ1−EJ2
EJ1+EJ2

. Variation in Φ appears in the transmon qubit transition frequency

as δωeg =
√

8ECEJ(δΦ, d). The slope of the EJ modulation depends on the static

magnetic flux bias. At the sweet spots ,where the derivative of EJ vanishes, the qubit

is insensitive to variations in Φ to first order. Away from these points, the δωeg will

depend on the slope of EJ at a particular bias φ

δωeg ∝
∂EJ

∂Φ

∣

∣

∣

∣

Φ=φ

. (5.3)

The slope of the frequency vs. flux curve can be controlled by intentionally varying

the d parameter as shown in Figure 5-1. This junction asymmetry can be set at

fabrication time by making the area of one junction x times larger than the second

junction. The inverse relationship between critical current and junction resistance

insures the proper difference in the junction energies EJ . This type of asymmetric

transmon was used in Chapter 3 to implement fast photon swaps between a qubit and

a cavity. In this chapter we will examine the asymmetric transmon system comparing

it more carefully to the traditional transmon system. We’ll discuss how increasing d

should decrease susceptibility to flux noise. This could be ideal for qubit systems that

need some flux tunability, but not as much as the traditional symmetric transmon.

In a Ramsey fringe type experiment, the characteristic decay rate can be written

as
1

T ∗
2

=
1

Tφ
+

1

2T1
, (5.4)
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Figure 5-1: Asymmetric frequency modulation. Plot showing the variation of
ωeg vs. flux. The x-axis is in units of Φ0 and y-axis is in units relative to maximum
value of ωmax

eg at integer values of Φ0. The modulation curves fan out as the zeros
in EJ seen for the symmetric transmon are removed and replaced by a second flux-
insensitive sweet spot at odd half integers of Φ0. This pattern is periodic in the
applied magnetic flux with period Φ0
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where T1 is the energy relaxation time and Tφ is the pure dephasing time. This pure

dephasing time is set by variation in the qubit frequency, as noted above. To highlight

the role of the dephasing noise, the Hamiltonian describing the qubit can be rewritten

as

H(t)/h̄ = [ωeg + δω(t)]σz. (5.5)

In this chapter, we will focus on magnetic flux noise, though this is not the only source

of dephasing in superconducting transmon qubits. One of the qubits in Chapter 4

displayed a small amount (∼400 kHz) of charge noise [101]. Even though this type

of noise is exponentially suppressed in a transmon (see Section 2.4.1), as EJ/EC is

reduced, the transmon continuously transitions back to the charge regime for small

EJ/EC [63]. Quasiparticle tunneling describes the process of an unpaired electron

(quasiparticle excitation out of the superconducting BCS ground state) tunneling

through the junction. This can also lead to qubit dephasing [21]. Unlike Cooper-

pairs, normal electron tunneling is also dissipative [94] (energy relaxation). Junction

critical current fluctuations due to defect dynamics in the amorphous oxide layer of

the junction tunnel-barrier are yet another source of dephasing. Fortunately, the

levels of this type of noise have recently been shown [87] to be quite low relative to

other sources for state-of-the-art qubits.

The microscopic source of flux noise in these systems is still an intensively re-

searched topic [13, 112]. A characteristic level of flux noise was first measured thirty

years ago in dc SQUIDs. At low temperatures, this magnetic flux noise was found

to be roughly independent of SQUID loop size [128]. This independence of loop

area persisted over a wide range and hinted that the noise source was not a global

background field, but some locally produced noise on or around the superconducting

electrodes. In recent years, this same level of flux noise has been observed in su-

perconducting qubit systems [131, 13, 80]. This noise is characterized by a roughly

1/f spectrum yielding a characteristic noise spectral density of 1 µΦ0/
√
Hz at 1 Hz.

Recent experimental studies [112, 113] have pointed to coherent clusters of unpaired
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magnetic spins on the superconducting surface as a likely source for this magnetic

flux noise. Precision measurements of flux noise continue to improve [131, 132, 6],

hopefully providing new insight into the microscopic origins flux noise.

As this noise is ubiquitous in superconducting qubit systems and there is currently

no known way of mitigating it, some groups have removed flux tunability entirely [27,

29] and focused on systems using two-qubit gates with fixed-frequency qubits [99].

A second approach, taken here, is to reduce the susceptibility of qubit frequency

to flux ∂ωeg/∂Φ without removing flux-tunability completely. By increasing the d

parameter, the tunability of the system would decrease, but this should also reduce

the susceptibility to magnetic flux noise. Ideally this would offer a promising trade off

between flux noise versus tunability. Below we will examine this track and show some

preliminary results in addition to planned experiments and those currently under way

in our lab.

5.2 Future work

As described above, be varying the junction asymmetry in a transmon qubit we

should see a reduced susceptibility to flux noise as the modulation curves flatten out

(see Figure 5-1). To study this, experiments are underway in our lab to fabricate

several transmon qubits with different levels of asymmetry on the same sample. Fab-

ricating a variety of qubit asymmetries on the same chip will help remove any question

of variability between measurement runs and samples. We expect to see the magnetic

flux noise sensitivity vary in a similar way as the derivative of qubit frequency with

respect to flux. This relation is plotted in Figure 5-2. The line of d = 0 corresponds to

a symmetric transmon with zeros in transition frequency at odd half-integer values of

Φ0. At these points, an asymmetric transmon returns to a point where its derivative

vanishes. Clearly as d is increased the slope of the modulations decreases. Figure 5-3

show the relative change in lower sweet spot transition frequency as d is increased.
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Figure 5-2: Derivative frequency modulation. Plot of the derivative with
respect to flux of ωeg/ωmax

eg for different values of asymmetry. Excursions further from
the zero line indicate a higher flux sensitivity.

This plot helps to quantify the loss of tunability as d is increased.

I order to motivate and inform future experiments, we analyze some preliminary

data from a chip similar to the sample of Chapter 3. This sample had two asym-

metric transmon qubits coupled to a common drive and readout cavity. Coherence

data was extracted and is plotted in Figure 5-5. The asymmetry of the qubit was

3:1, giving a modulation depth of close to 3 GHz. A plot of frequency vs. flux is

show in Figure 5-4. Here we can see the asymmetric transmon lower sweet spots at

multiples of Φ0/2. These points also corresponds to a significant increase in T1 and

T ∗
2 shown in Figure 5-5. A similar increase in coherence is not seen at the upper

sweet spots of integer Φ0. This is most likely due to the upper sweet spot’s proximity

to the cavity resonance frequency ωr/2π, resulting in a limited T1 due to the Purcell

effect. The Purcell effect is observed when a two-level system is placed in a resonant

structure nearby in frequency space. If the detuning is small, the structure provides

a decay channel for the qubit, enhancing the relaxation rate of the qubit [63]. The
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Figure 5-3: Modulation depth of an asymmetric transmon. The normalized
qubit frequency at the lower sweet spot (Φ = Φ0/2) vs. d. ωmax

ge is undefined at
d = 0 since the transmon transition frequency diverges. At d = 1, the transmon is
essentially a single junction transmon with a fixed frequency.

|1⟩ → |0⟩ decay rate will have a Purcell contribution of

γg,e
κ = κ

g2ge
∆2

0

. (5.6)

∆0 for this sample is close to 1 GHz which is likely limiting the energy relaxation time.

It is also possible that higher order Purcell transitions are playing a role in suppressing

the T1 times of the sample. A short T1 can limit the accuracy for extracting Tφ,

particularly when pure dephasing is weak. Near the Φ/Φ0 = 0 point, T ∗
2 is essentially

T1-limited, as the upper limit for T ∗
2 is 2T1.

Figure 5-6 shows Tφ times for the this chip plotted vs. flux bias. The Tφ values

are calculated using Equation (5.4) using the measured values for T1 and T ∗
2 . To

compare this data to the expected flux noise observed in other studies [128], we can

follow the analysis in Yoshihara et al. [130] using extracted parameters from our chip.

The qubit energy band can be estimated by interpolating the data in Figure 5-4.



CHAPTER 5. DECOHERENCE IN ASYMMETRIC TRANSMONS 101

Figure 5-4: Sideband frequency modulation. Plot showing the qubit ωge vs
flux. Flux-insensitive sweet spots appear at integer and odd half-integer values of Φ0.

The derivative of this function can be calculated and combined with the scheme in

Yoshihara et al. [131] to produce the curve in Figure 5-6, assuming a flux noise density

of 2 µΦ0/
√
Hz. The match is not perfect, but the curve follows the Tφ data at least

qualitatively. the discrepancy could be due to limitations in applying the flux noise

model of Yoshihara et al. to our system or to the rather low T1 values on this chip.

5.2.1 Coherence study

We have begun designing and testing a new chip design with four transmon qubits

all coupled to a common feedline through an individual CPW resonator. This type

of design allows for increased isolation for each qubit, as no two qubits are coupled

to the same cavity. Additionally, all qubits will be designed to avoid Purcell loss by

keeping ∆ large and κ small. Flux bias lines will be removed to have avoid over-

coupling to the qubit, leading to reduced T1 times. To accomplish this, new qubit

designs used in Chapter 4 and in [29] were adapted for the design. These qubits have



CHAPTER 5. DECOHERENCE IN ASYMMETRIC TRANSMONS 102

Figure 5-5: Sideband coherence data. Coherence times T1 and T ∗
2 for a qubit

from the sideband sample from Chapter 3. A sharp increase in coherence is seen near
−Φ0/2 corresponding to a lower flux sweet spot. T1 and T ∗

2 times should similarly
increase at Φ/Φ0 = 0, but is likely suppressed at this upper sweet spot due to Purcell
loss into the cavity. At this point, T ∗

2 is limited by the short T1 times.



CHAPTER 5. DECOHERENCE IN ASYMMETRIC TRANSMONS 103

Figure 5-6: Sideband Tφ. Calculated Tφ times using Equation (5.4) plotted vs.
flux bias. A calculated limit set by a flux noise of 2 µΦ0/

√
Hz is also plotted with

the data [130], as described in the text. The noise level indicated by this Tφ data is
consistent with other flux noise measurements [128].

been shown to have long T1 relaxation times. A picture of the basic device is shown

in Figure 5-7. Each cavity is designed to have a slightly different resonant frequency,

which allows individual drive and readout. Additionally, this design is compatible

with frequency-multiplexed readout [57]. This system will allow direct comparison

between qubits with different or no asymmetry.

Measurements on this new chip design will involve measurements of T1 and T ∗
2

over the full range of tunability for each qubit. A systematic sweep of T1 vs. fre-

quency would highlight radiative loss and coupling to other unwanted sources of loss

throughout frequency space. This could potentially help identify unknown sources

of loss for a particular sample design. The data-taking process for these types of

measurements is laborious as there is no robust way to automate sensitive steps in

the tune up process. An even more interesting data set would involve a map of T ∗
2 vs.

flux for a variety of transmon asymmetries. Ideally the dephasing time would increase
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Figure 5-7: Quad asymmetric transmon. Picture of a four transmon device with
each qubit coupled through a readout resonator to a common feedline. The new qubit
capacitor and coupling design is taken from the chip of Chapter 4. Different amounts
of asymmetry are designed to be different for each qubit. Flux will be coupled into
each qubit through an external flux bobbin in the device holder. The central line in
the device is not a resonator and has no intentional mode structure. Each cavity is
designed to have a slightly different resonant frequency which allows individual drive
and readout.
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by an amount proportional to the decrease in modulation slope (see Figure 5-3) and

this could be observed for multiple asymmetries.

This amount of data would likely require automation. This will prove challenging,

as Ramsey fringe experiments typically require copious amounts of human interven-

tion to fine tune pulse and system parameters.
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Chapter 6

Conclusions

6.1 Outlook

In this dissertation I have presented work using superconducting transmon qubits to

study two-qubit interactions. I have shown the flux modulation degree of freedom

allows fast swapping of photon excitations between a CPW resonator and a qubit.

A flux-tunable transmon was also used to explore parameter space and improve the

cross resonance effect for a new round of fixed frequency multi-qubit devices. Finally,

we outlined an ongoing experiment to study the coherence properties of asymmet-

ric transmons for different junction asymmetries. Further exploration of sideband

interactions could produce fast two qubit gates or fast Fock state creation inside a

resonator. A deeper understanding of the cross-resonance effect could lead to faster

gate times, higher fidelity gates or new types of qubit gates using higher energy levels

for example. Asymmetric transmon qubits could lead to more coherent qubits and

more interesting flux-driven dynamics.

Future work will involve carrying out the experiments outlined in Chapter 5 and

continuing to study two-qubit interactions. Transmons are currently an appealing

style of superconducting qubit for quantum information processing. This may change

in the future as work continues to improve multiple realizations of superconducting
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quantum circuits. The CNOT gate, which can be built using the flux-modulation

drive form Chapter 3 and the cross resonance effect from Chapter 4, will continue to

be researched heavily due to its importance in scaling qubit systems and controlling

the inevitable errors that will occur in these systems. Researchers are now working

to implement the basic operations of quantum error detection/correction schemes[29,

34, 8, 102, 72] that use the CNOT gate extensively.

Quantum error correction (QEC) is a process of identifying and correcting errors

in qubit systems [42]. QEC borrows many ideas from classical error correction, but

must be modified to work with qubits. To work in quantum systems, extra qubits,

called ancillary qubits, must be used to detect errors by measuring the state of a

qubit used in a computation that would otherwise destroy an arbitrary quantum

state and project it onto an eigenstate. Using a CNOT gate between data qubits and

measure (ancillary) qubits, it is possible to measure the parity state of a group of

qubits to indicate whether a bit-flip error has occurred. This is one of the simplest

possible cases of QEC, but the idea scales to general qubit errors and larger systems.

The CNOT gate is important in most QEC schemes to help entangle data and ancilla

qubits. This includes the surface code [42] which is currently the most experimentally

appealing due to its relative high tolerance for gate errors and the requirement for

only nearest-neighbor two-qubit interactions. An outstanding goal for scaling qubit

systems is to build a logical qubit which is resistant to general errors over an arbitrary

amount of time. A logical qubit will be made of many physical qubits using a QEC

scheme working to preserve the logical qubit coherence. Many engineering challenges

need to be overcome before that device is built, but significant and steady progress

is being made on multiple fronts to meet those challenges [34, 61].

For now, in the year 2014, the future for superconducting qubit and supercon-

ducting quantum information processing devices is bright indeed. Companies like

Google, IBM and numerous defense department contractors are investing heavily in

the future of this technology. Recently, a Canadian company, D-Wave, has begun
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producing and selling a many-qubit device for the purpose of quantum computation.

The chips produced by D-Wave also use superconducting qubits, though the compu-

tational approach is quite different from the gate-based model that is discussed in this

dissertation. The D-Wave device uses a process called quantum annealing to find the

ground state configurations of complex Hamiltonians in particular spin models. This

model of quantum computation is fundamentally different than gate-based universal

quantum computation. It does not allow for the execution of Grover’s algorithm or

Shor’s algorithm.

A quantum annealing process can be used to solve a variety of computationally

difficult optimization and machine-learning problems that can be mapped isomorphi-

cally onto a two-dimensional lattice of spins. The device works by finding the ground

state configuration of the spin system. The current topology of the D-Wave device

spins, the so-called Chimera graph, is set at the time the chip is made. Here the

Chimera graph describes the arrangement of possible qubit-qubit couplings. This

limits the types of problems which can be solved. A more severe limitation is the

short coherence times in the current generation of devices. Given the amount of de-

coherence in the system, there is some skepticism in the research community about

the proper model for computation in D-wave devices [114] and how much classical or

quantum effects play a role in the observed dynamics. With all this in mind, there

has been interesting research accomplished with the D-Wave devices [122]. Future

work could be done to lower the noise in these devices allowing the system to exhibit

quantum characteristics clearly or to search for a quantum speedup in computational

tasks.

Beyond the computational aspect of these projects and proposals, new areas of

basic science are being explored with superconducting systems. They have allowed the

basics tenets of quantum mechanics to be tested in artificial systems. The decoherence

barrier that separates our classical experience and the quantum world is being pulled

back, at least in artificial quantum systems. Physicist John Preskill has optimistically
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hailed the coming "quantum supremacy" [95], which will hopefully prove to be an

exciting time for everyone in quantum information science.



CHAPTER 6. CONCLUSIONS 111



CHAPTER 6. CONCLUSIONS 112



Appendices

113



Appendix A

Device fabrication

A rough outline of the fabrication methods used in our lab at Syracuse was given

in the Chapter 1. Here I will fill in the specific details used to make the samples

presented in this thesis.

A.1 Circuit Design

Systems built with quantum information processing in mind have several, almost op-

posing design constraints. We would like the systems to be easily controllable with

our classical instruments. To this end, we want to have precise control in the form

of microwave drives. These drives are further abstracted to quantum logic gates

which are used to build actual algorithms. Ideally we could also measure the state

at anytime with perfect fidelity, projecting the system onto one of it’s eigen states in

whatever basis we happen to measure. At the same time we would like our informa-

tion processing system to be well isolated from it’s environment (and measurement

apparatus) so it can remain as coherent as possible. Quantum mechanics precludes a

perfect realization of anyone of these three goals. Further, being able to control and

discriminate the state well is antithetical to having it well isolated from control and

readout devices.

Therefore choosing circuit parameters becomes a task of balancing trade offs be-

114
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tween these competing goals. For high fidelity measurement we want to be able to

get information out of the system quickly. So we might want couple more strongly

to our measurement apparatus. The same argument could be made for the drive side

coupling. You might want to change design parameters depending on the goals of

any one particular experiment.

A.1.1 Design and Layout

A.1.2 Simulation

Modeling superconducting circuits can save valuable measurement time when it can

take a few days to a week to cool these systems to 30 mK. It also typically takes a

week or more to iterate on a chip layout. If you can partially hone a design before

making and cooling a sample, copious amounts of time can be saved. Though you

should keep in mind it it typically difficult to get highly accurate results. This stems

from the large parameter space and large number of nuisance parameters such as

mesh details, material parameters and boundary conditions that are necessarily part

of any realistic electromagnetic simulation.

For simulating capacitance, we typically used Ansys Q3D for pulling out a rough

number of pF. This value tends to be within 20% the measured value. A frequency

domain simulation can be accomplished using Sonnet or Ansys HFSS though these

tend to be tricky to get right as noted above.

A.2 Circuit Fabrication

All devices in this thesis were made in a similar fashion with a two step lithographic

process. All metal layers were deposited in dedicated chambers in our lab. This

was done to avoid any contaminants or unwanted materials likely to be present in

shared metal deposition chamber. All the device layers were patterned and etched

at the Cornell Nanoscale Facility on Cornell’s campus. The fabrication process was
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intentionally and consciously kept as simple as possible. All devices were made in

two lithographic steps. The first was used to pattern a ground plain, resonators,

flux trapping mesh, etc. in a Niobium film. A second layer consisted of the qubit

capacitors, resonator coupling capacitors and most importantly Josephson Junctions

were written in an electron-beam lithography step. In some ways this final step is the

most critical and hardest to reproduce. More details can be found in Section A.2.3.

Below is on outline of the fabrication process in the order which the process steps are

carried out.

A.2.1 Metal deposition

The fabrication process began with an high resistivity (> 10,000 Ω/cm2) 4 inch wafer

of Si. This wafer forms the flat substrate for all subsequent processing. Near intrinsic

Silicon is used to reduce the ion concentration as the semiconducting properties of

doped Si are not necessary in our superconducting circuits. The substrate is loaded

into a ultra high vacuum system equipped with multiple RF magnetron sputter guns.

The film deposited is set by the target material and the gas chemistry in the cham-

ber. For example, a Niobium target sputtered with Argon will produce a Niobium

film (assuming you have a working recipe!). On the other hand, sputtering a Nio-

bium target with Argon and Nitrogen will produce a Niobium nitride film. Clearly

I’m glossing over some finer details, but the broad ideas should be clear. A typical

deposition process is accomplished with the following steps:

• Pump the chamber to ≈ 1e-8 Torr

• To minimize the throw distance, position the substrate 1-2 mm above the lowest

possible vertical position. If the wafer holder gets lowered too low, it can rub

against the shutter and cause it to become misaligned.

• flow of 60 sccms of Ar is allowed in the chamber and the total pressure is

adjusted by throttling the gate valve on the system’s cryopump. Set a total
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pressure of 6.5e−3 Torr in the chamber.

• once the pressure has stabilized, turn on the sputter gun power supply and set

the power to 250 Watts.

• Set the sputter time based on your calibrated target film thickness. In most

cases a rule of thumb is 70 sec measured on the system clock corresponds to

a film of 110 nm (≈ 1.5 nm/s). Typically one would like to ’pre-sputter’ for a

minute or two to make sure any contaminants have been cleaned off the target’s

surface.

• Strike the plasma by turning the selected gun to on using the power supply.

• Open and close the gun shutter at the appropriate times based on your desired

film thickness. Once the deposition clock on the power supply reaches zero, the

gun will automatically ramp the power back down to zero and the power can

them be shut off.

At the end of the deposition, the gas is turned off and pumped out of the chamber

by the cryopump. The wafer can them be loaded back into the loadlock and removed

from the system.

A.2.2 Photolithography

Photolithography is the process of imprinting a pattern on a substrate, based on

a template design. In our context photolithography will correspond to shaping 2D

layers of metal. Broadly speaking there are two processes we typically use to pattern

superconducting metals, namely etching and liftoff. The major difference is the order

in which the resist layer coated on the wafer. In an etch process, the metal is deposited

first and the resist is patterned on top. The opposite is done in a liftoff process

where a resist layer is deposited and patterned before metal is evaporated. Both can



APPENDIX A. DEVICE FABRICATION 118

accomplish the same thing in theory though in practice one approach might be better

suited for a particular process.

Once a metal layer is deposited on the wafer the next step is to pattern the ground

plane and resonator structures with photolithography. This is accomplished at the

Cornell Nanoscale Facility using an ASML 300C deep UV photo stepper. Before the

image can be printed on the substrate, a photosensitive polymer must be put on

the surface, exposed and developed. These are the standard photolithography steps

used throughout the semiconductor industry and there are a large number of specific

processes that can be realized in general photolithography.

• Spin DS-K101 (Brewer Science) @ 5000 rpm with a 10000 rpm/s ramp for 60

sec. This layer functions as a anti-reflecting coating (ARC) which keeps UV

light from reflecting off the surface causing standingwave patterns and double

exposing the resist. When coated with the right thickness the ARC caused

destructive interference of the incident light inside it’s layer.

• Bake the ARC at 185 C for 90 sec.

• Spin UV c⃝-210-0.6 (Electronic Materials) @ 3000 rpm with an 8000 rpm/s ramp

for 60 sec.

• Bake the resist @ 135 C for 60 sec.

• Expose the wafer (Ideally wait a minute or two for water to diffuse into the

resist to complete the reaction.)

• Bake the resist @ 135 C for 90 sec. This post exposure bake will harden the

rearrangement of the polymers.

• Develop the resist in MIF-726. I typically use a 90 sec, double puddle program

on one of the Hamitech automated developers. Sometimes the pattern you’re

developing may need a little more time, but modern resist are typically very

resilient to over developing.
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In our case we’ll be using a positive tone resist that will dissolve away in areas

exposed with light from the stepper. The first step in this process coats the wafer in

an anti-reflective coating (ARC). This keeps UV light from reflecting off the surface

and double exposing the resist and distorting lithographic the lithographic pattern.

These layers function by using light absorbing materials and, when coated in the

right thickness, forming destructive interference patterns in inside the ARC layer. In

our case we used DS-K101 (Brewer Science) spun at 5000 rpm with a 10000 rpm/s

ramp rate to accomplish this task. After coating the wafer is baked at 185 C for

90 sec. This leaves a layer of ARC nominally 70 nm thick. Once the ARC layer

is baked in place, photoresist is coated on the wafer in the same spinning process

as the ARC. The photoresist is a suspension of photosensitive polymers that change

chemical properties when exposed to light at a certain wavelength. For all the devices

reported in this paper a deep UV resist UV c⃝-210-0.6 (Electronic Materials).

A.2.3 Electron beam lithography

At Syracuse, we are lucky to be located close to Cornell’s Nanoscale Facility. It

houses one of the most advanced electron beam lithography tools available to aca-

demic researchers. Over the years, our group has made extensive use of these tools

manufactured by JEOL in Japan. These systems use 10 keV beams of electrons to

write sub 10 nm features. Here I’ll describe our process of patterning Josephson

Junctions, our most critical circuit element, and other superconducting devices using

this equipment. The Josephson Junction is formed by a small insulating barrier in

an otherwise continuous superconductor. These junctions can be formed in other

ways such as SC-normal metal-SC barriers and even tight constrictions implanted in

a continuous piece of superconductor. The qubit inductance is formed by the junc-

tion. Critically, this inductance is nonlinear which gives the qubit it’s anharmonic

level spacing. Without this nonlinearity, the superconducting qubit would not have

distinguishable energy eigen states thus precluding a two-level system. There would
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only be an thermal distribution of states through out the energy levels all with equal

spacing.

The entire electron beam patterning step is critical for producing qubits. To

reach an acceptable parameter regime for making qubits, we need to have the ability

to write 100 nm lines. These form the superconducting electrodes on either side of

a Josephson Junction.

In general, e-beam lithography is typically more complicated to execute and re-

produce than standard optical lithography. Patterns we would like to imprint in the

e-beam resist must first be converted from plutonic, solid shapes into a grid of point

exposures in a process called fracturing. The shapes are essentially turned into a large

number of point exposures where the electron beam, which is always on while expos-

ing, moves to a given coordinates and waits for an amount of time called a ’dwell’

time. The dose received by the resist at the point is directly proportional to this dwell

time. To accomplish fracturing, our group uses a program called LayoutBeamer from

GenISys-GmbH to convert design files into files the e-beam tools can understand.

Another layer of complexity appears when large shapes need to be exposed close to

each other. Due to the particle nature of the electron beam exposure, areas designed

to experience zero electron dose will still be slightly exposed due to forward and

back scattering electrons in the resist. These effect can depend on resist chemistry,

substrate and beam current/accelerating voltage. To help correct this, we use a

process called proximity correction to scale the electron dose of a small region based

on its proximity to near by exposed regions. This is accomplished by a Monte Carlo

simulation of electron scattering events. These simulations are produced using a

program called Sceleton which is also commercially avaliable from GenISys-GmbH.

The program takes into account material properties, accelerating voltage, etc... to

produce a homogeneous effective dose across the pattern and a minimal stray dose to

the rest of the resist. I will detail how to use this program below.
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A.2.3.1 Substrate preparation

The process begins in a similar fashion to traditional photolithography. Except in the

e-beam case we coat the wafer in an electron sensitive polymer. These polymers can

function as resist in two ways. In the positive resist case, the high energy electrons

break the backbone chain of the molecule, increasing it’s sensitivity to solvents. In

the negative case, the electrons cross link the polymers causing the opposite effect,

increasing their resistance to chemical solvents. For all but one of the samples in this

thesis, a multi layer stack of positive resist polymers was used.

• Ash the wafer in a light oxygen plasma to clean the surface of any resist residues

that might be left from a previous round of lithography. 2-3 minutes @ 100

Watts in a pure O2 plasma.

• spin Methyl Methacrylate (MMA), in %11 Ethyl Lactate MicroChem c⃝ at 2300

rpms, 1000 rpm/s ramp to form a 600 nm thick layer

• bake the wafer at 170 C for 10 minutes

• spin Poly Methyl Methacrylate (PMMA), in %2 Anisole MicroChem c⃝ at 2500

rpms, 1000 rpm/s ramp to form a 70 nm thick layer

• bake the wafer at 170 C for 10 minutes

An additional complication arises we the process requires using an insulating sub-

strate such as Sapphire. This was not necessary for any of the devices in this thesis

it is the substrate of choice in other groups and for 3D qubits [93]. With these sub-

strates, electrons incident on the wafer have nowhere to go and charge begins to build

up inside the substrate and resist. This causes distortions in the pattern and overlay

errors when the stage has to move while stitching larger shapes together. To combat

this, a conducting layer is placed on top of the resist stack to serve as a charge dis-

persion layer. It can be spun on with a conducting polymer called ESPACER though
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this approach tends to yield inconsistent results most likely due to anisotropy in the

spacer coating. In our group, we prefer to thermally evaporate conducting metals,

typically 10nm of aluminum, in a UHV chamber just before exposure. This thin

metal layer is essentially transparent to the high energy electrons but allows a path

to ground so that charge doesn’t build up.

A.2.3.2 File preparation and proximity correction

The path from drawing to exposure in an electron bean process can be a long and

convoluted one. There are large variety of systems which can function as e-beam

writers. This typically means a plethora of different proprietary programs and file

formats. Fortunately, the electron beam systems at Cornell are among the best in

the world and relatively easy to use.

Preparing files for the JEOL 9500 ebeam writer involves three major step: drawing

the pattern, fracturing the pattern and compiling the job into a magazine file the tool

can understand. your pattern can be drawn with any of your favorite layout programs

such as K-Layout. When shooting aligned exposures, it’s usually a good idea to draw

one, large box around everything in your pattern. It should be a square and centered

on the center of the die you want to shoot. This is called a bounding box and holds

the center of the pattern to the same location throughout the fracturing process. It

is typical for your pattern to not be completely symmetric an would be shifted by

some offset when the pattern in rejustified based on its minimum extent.

With your pattern drawn and surrounded by a bounding box, you are now ready

to fracture your pattern. This process will turn your drawing into the electron beam

’spots’ alluded to earlier. At Syracuse and Cornell we use Layout-Beamer for this part

of the process. The CNF has other commandline tools available for simple patterns,

but I will only talk about fracturing with Layout-Beamer.
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