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Abstract. The evaluation of parallel job schedulers hinges on the work-
loads used. It is suggested that this be standardized, in terms of both
format and content, so as to ease the evaluation and comparison of dif-
ferent systems. The question remains whether this can encompass both
traditional parallel systems and metacomputing systems.

This paper is based on a panel on this subject that was held at the
workshop, and the ensuing discussion; its authors are both the panel
members and participants from the audience. Naturally, not all of us
agree with all the opinions expressed here...

1 Introduction

1.1 Motivation

The study and design of computer systems requires good models of the workload
to which these systems are subjected, because the workload has a large effect



on the observed performance. This need was recognized long ago [25,1], and in
several fields workload data was indeed collected, analyzed, and modeled. Well-
known examples are address traces used to analyze processor cache performance
[56,59], and records of file system activity used to motivate the use of file caching
[48]. Recently we are witnessing a large increase in such activity, with data being
collected relating to LAN traffic [44], web server loads [3], and video streams [42].

This new wave of collecting and analyzing data for use in evaluations is
also present in the field of job scheduling on high-performance systems. Two
approaches can be identified. One is to collect the data, describe it [20,60,36],
and use it directly as input for future evaluations. This has the benefit of be-
ing considered completely realistic, but also suffers from various methodological
concerns such as the danger that the data reflects local constraints rather than
general principles [40,35]. The other approach is to use the data as a reference
in designing workload models that are used to drive the evaluation. By select-
ing only invariants found in several data sets for inclusion in the model, the
confidence in the model is improved [18,16].

A problem that remains is that too many workloads are now available, be they
naive models based on guesswork, complex models based on measurements, or
the measurements themselves. Faithful comparisons of different schemes require
a representative set of workloads to be canonized as a benchmark, and used by all
subsequent studies. The definition of a standard benchmark should include both
the benchmark data (or a program to generate it), and its format, to enable
efficient and easy use. Our goal in this paper is to explore the possibility of
creating such a standard.

1.2 Scope

Application scheduling versus job scheduling Benchmarks are only use-
ful if they sufficiently represent their target community. For instance, SPEC
benchmarks have been carefully selected to cover a wide range of different appli-
cations. Similarly, benchmarks for the evaluation of parallel job schedulers must
be based on the applications typically run on those parallel machines. Using a
slightly simplified view we can distinguish two classes for these applications:

— Rigid applications' which are fine tuned for a specific parallel machine and
configuration. The most common examples are programs written in the mes-
sage passing paradigm, where all communication between the processors is
carefully arranged to achieve a large degree of latency hiding. Such programs
cannot cope with situations where the number of processors is reduced even
by one during the execution, and there is also no benefit from assigning
additional processors, as they will remain unused.

! This includes moldable applications [24] which are written so that they can run on
different numbers of processors as chosen when the job starts execution; the point is
that the job cannot change during execution, so there is no application scheduler.



— Flexible applications® which can be run on a variety of different machine
configurations. Typically, a high degree of efficiency can only be achieved for
these jobs if they are made adaptable to the actual configuration. Therefore,
they frequently consist of a large number of interdependent modules for
which a suitable schedule must be generated. A simple approach is to use a
master-workers structure.

Based on these two applications classes it is also appropriate to distinguish
two types of schedulers: machine schedulers and application schedulers. Machine
schedulers for large parallel machines are, naturally, machine-centric. They typ-
ically do not look much inside a job. As input they receive characteristic data
from a stream of independent jobs. Computing resources, like processors, mem-
ory, or I/0 facilities, are allocated to these jobs with the goal of optimizing the
value of the actual scheduling objective function. Therefore, machine schedulers
try to keep the number of unassigned resources at a minimum while load bal-
ancing within a job is up to the owner of the job. Machine schedulers must deal
with the on-line character of job submission and with a potential inaccuracy of
job submission data, like the estimated execution time of a job. On the other
hand they need not consider dependences between the submitted jobs. The per-
formance of a machine scheduler may be highly dependent on the workload and
possibly on the given objective function. Having a representative workload may
therefore allow the administrator of a parallel machine to determine the sched-
uler best suited for him. Hence, those administrators can be assisted by a set of
benchmarks that cover most workloads occurring in practice.

Application schedulers, on the other hand, arrange the modules of flexible
applications to make best use of the currently available resources. They do not
consider other independent jobs running concurrently on the same machine.
Therefore, they are application-centric. Typically, it is their goal to minimize
the overall execution time of their applications. To this end they must consider
the dependences between the various modules of their applications. All modules
are known to the schedulers up front. While quite a few different algorithms for
application schedulers have been suggested it is not clear whether their perfor-
mance varies significantly for different applications. It may therefore be possible
to evaluate application schedulers with the help of a generic application model.
In this case benchmarks for application schedulers are not needed.

But if application schedulers start to proliferate they may significantly influ-
ence the workload characteristics of parallel machines, changing it from being
predominantly rigid to mostly flexible. It is also possible that machine schedulers
and application schedulers may cooperate in the future to make best use of the
available resources. The state of the art in workload benchmarking for rigid jobs,
and questions about extending it to flexible jobs, are discussed in Section 2.

Scheduling for metacomputing and its requirements A recent area of
research is how to collect resources from many organizations into entities called

2 This is taken to include both malleable and evolving jobs in the terminology of [24].



metasystems or computational grids [27]. A metasystem consists of comput-
ers, networks, databases, instruments, visualization devices, and other types of
resources owned by different organizations and located around the world. In
addition to these resources, a metasystem contains software that people use to
access it. There are several projects that provide such software [26,32,45,6] and,
among many other things, this software supports meta schedulers: schedulers
that help users select what resources to use for an application and help users to
execute their application on those resources.

While there are many types of meta schedulers, they often have several com-
mon requirements. First, a user or meta scheduler has a larger and more diverse
set of resources to pick from than those present in a single supercomputer. A
meta scheduler therefore needs information about resources and applications to
determine which resources to select for an application. A meta scheduler needs
to know when resources are available, what they cost, which users have access to
them, how an application performs on them, etc. Information on current avail-
ability of resources is easily available and there is ongoing work on predicting
the future availability of network bandwidth [61] and when a scheduler will start
applications [57,14]. Predictions of application performance on various sets of re-
sources is also being investigated [6]. Even though this information is becoming
available, an additional need is a common way to gain access to this informa-
tion such as the Metacomputing Directory Service provided by the Globus [26]
software.

In addition to the new types of information described above, many meta
schedulers need resources from more than one source — similar to the idea of
gang scheduling on parallel machines [21]. This requires mechanisms for gaining
simultaneous access to resources. One such mechanism is reserving resources
at some future time. Mechanisms for network quality of service [28] allow such
reservation of networking resources and reservation mechanisms are currently
being added to scheduling systems for parallel computers [54].

The issues of benchmarking the application schedulers for metacomputing
are discussed in Section 3, and the relationship between scheduling on parallel
systems and metasystems are examined in Section 4.

Possible inclusion of the objective function The measured performance of
a system depends not only on the system and workload, but also on the metrics
used to gauge performance. It is these metrics that serve as the objective func-
tion of the scheduler, whose goal is to optimize their value. For some objective
functions, such as utilization and throughput, the goal is to maximize; for others,
such as response time or slowdown, the goal is to minimize.

The problem is that measurement using different metrics may lead to conflict-
ing results. For example, one of the papers in the workshop showed contradicting
results for the comparison of two scheduling algorithms if response time or slow-
down were used as a metric [30]. Another paper [41] specifically addressed the
issue of deriving objective functions tailored to a set of owner defined policy
rules. This paper also showed significant differences in the ranking of various



scheduling algorithms if applied to objective functions that only differ in the
selection of a weight. It may therefore be appropriate to standardize the objec-
tive functions that are used, in order to enable a truthful comparison between
different studies. However, this is only appropriate if a large number of differ-
ent objective functions are used in practice and if machine schedulers produce
significantly different results for those different objective functions. Currently,
only a few standard objective functions  like the average response time or the
machine utilization can be found in almost all installations. However, it is
not clear whether this small number is due to a missing concept for generating
objective functions that are better tailored to the rules of the owners of parallel
machines.

In this paper we do not discuss this issue further. We just note that further
research into the relative merits of different metrics is needed [23].

2 Workload Benchmarks for Parallel Systems

A mere five years ago practically no real data about production workloads on
parallel machines was available, so evaluations had to rely on guesswork. This
situation has changed dramatically, and now practically all evaluations of parallel
job schedulers rely on real data, at least to some degree. While more details can
always be added, the time seems ripe to start talking about standardization of
workload benchmark data.

2.1 State of the Art

A large amount of data on production parallel supercomputers has been collected
in the Parallel Workloads Archive [49]. This includes both raw logs and derived
models.

Workload logs Most parallel supercomputers maintain accounting logs for
administrative use. These logs contain valuable information about all the activity
on the machine, and in particular, about the attributes of each job that was
executed. The format of the logs is typically an ASCII file with one line per job
(although some systems maintain a much more detailed log). Analyzing such
logs can lead to important insights into the workload. Such work has been done
for some systems, including the NASA Ames iPSC/860 [20], the SDSC Paragon
[60], the CTC SP2 [36], and the LANL CM-5 [17].

While most logs contain the same core data about each job (such as the
submittal, start, and end times, the number of processors used, and the user
ID), there are other less-standard fields as well. Some systems contain data
about resource requests made before the job started. Some contain data about
additional resources such as memory usage. Some contain internal data about
the queue to which the job was submitted, and prioritization parameters used by
the scheduler. Moreover, these fields appear in different orders and formats. The
standard format suggested below attempts to accommodate all the important
and useful fields, even if they do not appear in every log.



Workload models Workload models are based on some statistical analysis
of workload logs, with the goal of elucidating their underlying principles. This
then enables the creation of new workloads that are statistically similar to the
observations, but can also be changed at will (e.g. to modify the system load)
[16].

The most salient feature of workload models is that they include exactly what
the modeler puts into them. This is both an advantage and a disadvantage. It
is an advantage because the modeler knows about all the features of the model,
and can control them. It is a disadvantage because real workloads may contain
additional features that are unknown, and therefore not included in the models.
As the effect of various workload features is typically not known in advance, it
is prudent to at least include as many known workload features as possible.

Current workload models fall into two categories: those of rigid jobs, and
those of flexible jobs. Rigid job models create a sequence of jobs with given
arrival time, number of processors, and runtime (e.g. [18,38,46]). The task of the
scheduler is then to pack these “rectangular” jobs onto the machine. Given the
relative simplicity of rigid jobs, a number of rather advanced models have been
designed. A statistical analysis [58] shows that the one proposed by Lublin [46]
is relatively representative of multiple workloads.

Flexible job models attempt to describe how an application would perform
with different resource allocations, and maybe even how it would perform if the
resources are changed at runtime. One way to do this is to provide data about
the total computation and the speedup function [55,13], instead of the required
number of processors and runtime. This enables the scheduler to choose the
number of processors that will be used, according to the current load conditions.
Another approach is to provide an explicit model of the internal structure of
the application [7,23]. This allows for a detailed simulation of the interactions
between the scheduling and the application, leading to better evaluations at the
cost of more complex simulation. While several models have been proposed, there
is still insufficient data about the relative distribution of applications with differ-
ent speedup characteristics and internal structures to allow for any statements
regarding which is more representative.

2.2 Future Work

Workload models may be improved in three main ways: by including additional
resources, such as memory and I/0O, by including feedback, and by including the
internal structure of parallel programs. In addition, the evaluation of schedulers
will benefit from data about outages that schedulers have to deal with.

Including memory requirements and I/O Current workload models con-
centrate on one type of resource: computing power. However, in reality, jobs
require other resources as well, and the interaction between the demands for
different resources can have a large effect on possible schedules.

One resource that has received some attention is memory. Several papers ac-
knowledge the importance of memory requirements and their effect on scheduling



[2,51,50]. However, there is only little data about actual memory usage patterns
[17], and this has so far not been incorporated in any workload model. Moreover,
it is necessary to model not only the total amount of memory that is used, but
also the degree of locality with which it is accessed, as this has a great impact
on the amount of memory that has to be allocated in practice [4].

Another important characteristic that has a significant impact on schedul-
ing is I/O activity. The Charisma project has collected some data on the I/O
behavior of parallel programs [47]%, but this has only been used for the design
of parallel file system interfaces. We are only beginning to see considerations of
I/0O in scheduling work [43,53], but this is so far not based on much real data.
As real applications obviously do perform I/O (and sometimes even a lot of it),
this is a severe deficiency in current practice.

For both memory and I/0, we do not have enough data yet for contemplating
a standard benchmark, at least not one that is known to be representative and
is based on measurements.

Including feedback Another problem with current workload models is the lack
of feedback. The observed workload on a production machine is not created by
random sampling from a population of programs. Rather, it is the result of inter-
leaving the sequences of activities performed by many human beings. Activities
in such sequences are often dependent on each other: you first edit your pro-
gram, then compile it, and then execute it; you change parameters and execute
it again after observing the results of the previous execution. Thus the instant
at which a job is submitted to the system may depend on the termination of a
previous job. As the time of the previous termination depends on the system’s
performance, so does the next arrival. In a nutshell, there is a feedback effect
from the system’s performance to the workload.

The realization that such feedback exists is not new. In fact, feedback has
been included explicitly in some queueing studies, especially those employing
closed queueing networks with a delay center representing user think time in the
feedback loop (see, e.g., [37]). However, this practice has so far not extended to
performance analysis based on observed workloads, because it does not appear
explicitly in the observations. Accounting logs do not include explicit informa-
tion about feedback, so this effect is lost when a log is replayed and used in an
evaluation. However, it is possible to make educated guesses in order to insert
postulated dependencies into an existing log. The methodology is straight for-
ward: we identify sequences of dependent jobs (e.g. all those submitted by the
same user in rapid succession), and replace the absolute arrival times of jobs in
the sequence with interarrival times relative to the previous job in the sequence.

Including the internal job structure The feedback noted above is between
the system and the user, and may affect the arrival process. There is also a

% A historical note — the Charisma data actually triggered the first study of a pro-
duction parallel workload in [20].



possibility of feedback between the system and the parallel job itself. Specifically,
the synchronization and communication patterns of the application may have
various performance implications, that depend on how the application’s processes
are scheduled to different processors [34,22].

For example, earlier work in the sigmetrics community compared space slic-
ing with time slicing. Two orthogonal issues were allocation of processing power
among jobs and support for interprocess synchronization (IPS). The space slicing
work recognized the importance of processing power allocation and developed
dynamic and/or adaptive algorithms. Some of the algorithms necessitated fairly
complicated mechanisms to ensure processor allocations could be changed and
not hurt interprocessor synchronization. If synchronization is frequent, then ei-
ther gang scheduling or IPS cognizant space slicing mechanisms are needed, but
if common IPS is coarse grained it may be unnecessary. Assuming it is neces-
sary, it may still be possible that IPS is coarse grained enough when doing gang
scheduling that alternates could be fragments rather than requiring complete
gangs be coscheduled.

In last year’s introductory paper we presented a strawman proposal of how
the internal structure of a parallel application can be summarized by a small
number of parameters [23]. The main parameters were the number of processors,
the number of barriers, the granularity, and the variance of these attributes.
While this cannot capture the full spectrum of possible parallel applications, it
is expected to provide enough flexibility in order to create a varied workload that
will exercise the interactions between applications and the scheduler in various
ways.

The problem with including internal structure in the workload benchmark
is the complete lack of knowledge about what parameter values to use. This in-
formation could be collected by augmenting a library providing synchronization
facilities to trace this information (as was done in Charisma for the I/O library).
This functionality already exists in PVM and Legion for example. If the library
is a dynamic library then theoretically it would be easy to take someone’s code
and measure it. Such an undertaking has to be done at a large production site,
provided it would not slow down users production level codes for measurement
purposes.

An obvious alternative to modeling the internal structure is to use real ap-
plications [62,12]. However, the question remains of which applications to use,
in what mixes, and how to create different sizes. This again boils down to the
question of how to create a representative workload, and the lack of data about
the relative popularity of different application types.

Including outage information While simulations and models are useful for
comparing different algorithms, in the real world, there are many more variables
that come into play than the few that are typically used in scheduling models.
If the purpose of running a new scheduling algorithm through a simulator on a
real workload is to measure how well that algorithm will work in production on



a similar workload, then it cannot possibly be accurate if it ignores all factors
external to a scheduler’s trace file.

Parallel systems have matured considerably over the past decade, but still
are not as stable or reliable as traditional vector systems like the Cray C90. This
instability should be taken into consideration when creating a scheduler simula-
tor. Such factors as node failure, network interruption, disk failure, mean time
between failure, and length of failures are important variables that a production
scheduler has to cope with. In a distributed memory system like the IBM SP, it
is possible for a node to drop offline, but the system continues to operate. Any
job running on that node would have to be restarted, but it has no affect on
any other running jobs. The system scheduler detects the failed nodes, and takes
action to schedule around the failed hardware. This information however is not
recorded in typical job trace files, and is therefore not taken into account during
the analysis of the traces.

Another important aspect of system availability is the impact of human-
generated outages. All production systems are taken down for scheduled main-
tenance and often for dedicated time. This outage information is often available
to the job scheduler so that jobs can be scheduled around the outages, or such
that the system is drained up to the outage. This information does not appear
in the scheduler trace files, but is needed input for simulators. Most sites col-
lect outage data, and many archive it for historical comparisons (like NAS). A
standard format for outage data should be created to compliment the scheduling
workload traces. The two datasets should be keyed to each other, and should
contain the necessary information to accurately predict scheduler behavior in a
real work environment.

As an initial start, we propose the following information should be collected
and reported in a standard format, for every outage that removes any portion
of a system from operation:

— Announced time of outage (e.g. when did the outage info become available
to the scheduler — was it known in advance, or did the scheduler suddenly
detect that there were fewer nodes available?)

— Start time of outage (when the outage actually occurred)

— End time of outage (when the affected resources were again schedulable)

— Type of outage (CPU failure, network failure, facility)

— Number of nodes affected (or perhaps percentage of machine affected —
for example, a failed scratch file system may prevent only a few users from
running, but the others can continue.)

— Specific affected components (which nodes went down, what part of the
network failed)

2.3 A Standard Workload Format

The goal of the standard format is to help researchers using workloads, either
real or synthetic. Its main advantages over what is currently available are:



— Ideas and tests regarding workload models could be easily applied to all
available workloads. This is rarely done because of the need to write scripts
to handle the different formats of workloads today.

— The file format is easy to parse and use: while it is a text file (to avoid prob-
lems with converting data files) all data is in integers (no character strings!),
so there are no problems with parsing dates or other special entries. This
provides simplicity and absolute standardization at the expense of general-
ity and extensibility: you are guaranteed to be able to parse and understand
every file abiding by the standard, because users cannot add their own new
fields.

— Every datum must abide to strict consistency rules, that when checked ensure
that the workload is always “clean”.

— Data is in standard units. Moreover, users and executables are given by in-
cremental numbers, which makes their parsing easier, makes grouping by
users/executables easier, hides administrative issues, and hides sensitive in-
formation.

A major design goal was to be able to use the format for both real and
synthetic workloads. This means that only some of the fields will usually be
meaningful for any given workload  a synthetic workload may only include in-
formation about submit times, runtimes, and parallelism, while a real workload
won’t include any information about scheduler feedback. Therefore, unknown
values are part of the standard. The fields were chosen so that all information
from logs we have will be saved except very rare fields (that appeared in only one
log, for example). For synthetic workloads, future research directions were also
considered: For example, the format enables expressing the existence of sched-
uler feedback, which can be generated using a variety of models. The internal
structure (I/O, barriers, and so forth) of jobs is still not included, since no logs
and only one model address this issue and the right way of doing it is still un-
clear. Future version of the standard may include additional fields for this and
other purposes.

The data fields Standard workload files contain one line per job, that contains
a list of space separated integers. Missing values are denoted by -1, and all
other values are non-negative. Lines beginning with a semicolon are treated as
comments and ignored. The beginning of every file contains several such lines
that describe the workload in general. The unique job ID is its line number in the
log file (disregarding comments and empty lines). Job IDs from workloads that
are converted to the standard format are discarded, since they are not always
integers and not always unique (if they combine data from several years). Each
line in the file has these fields, in this order:

1. Job Number — a counter field, starting from 1.

2. Submit Time — in seconds. The earliest time the log refers to is zero, and
is the submittal time the of the first job. The lines in the log are sorted by
ascending submittal times.



3. Wait Time  in seconds. The difference between the job’s submit time and
the time at which it actually began to run. Naturally, this is only relevant
to real logs, not to models.

4. Run Time — in seconds. The wall clock time the job was running (end time

minus start time).
We decided to use “wait time” and “run time” instead of the equivalent
“start time” and “end time” because they are directly attributable to the
scheduler and application, and are more suitable for models where only the
run time is relevant.

5. Number of Allocated Processors — an integer. In most cases this is also the
number of processors the job uses; if the job does not use all of them, we
typically don’t know about it.

6. Average CPU Time Used — both user and system, in seconds. This is the
average over all processors of the CPU time used, and may therefore be
smaller than the wall clock runtime. If a log contains the total CPU time
used by all the processors, it is divided by the number of allocated processors
to derive the average.

7. Used Memory — in kilobytes. This is again the average per processor.

Requested Number of Processors.

9. Requested Time. This can be either runtime (measured in wallclock seconds),
or average CPU time per processor (also in seconds)  the exact meaning is
determined by a header comment. If a log contains a request for total CPU
time, it is divided by the number of requested processors.

10. Requested Memory (again kilobytes per processor).

11. Completed? 1 if the job was completed, 0 if it was killed. This is meaningless

for models, so would be -1.

®

if a log contains information about checkpoints and swapping out of jobs, a job
can have multiple lines in the log. In fact, we propose that the job information
appear twice. First, there will be one line that summarizes the whole job: its
submit time is the submit time of the job, its runtime is the sum of all partial
runtimes, and its code is 0 or 1 according to the completion status of the whole
job. In addition, there will be separate lines for each instance of partial execution
between being swapped out. All these lines have the same job ID. Only the first
has a submit time; the rest only have a wait time since the previous burst. The
completed code for all these lines is 2, meaning “to be continued”; the completion
code for the last such line is 3 or 4, corresponding to completion or being killed.
It should be noted that such details are only useful for studying the behavior of
the logged system, and are not a feature of the workload. Such studies should
ignore lines with completion codes of 0 and 1, and only use lines with 2, 3, and
4. For workload studies, only the single-line summary of the job should be used,
as identified by a code of 0 or 1.

12. User ID  anatural number, between one and the number of different users.

13. Group ID — a natural number, between one and the number of different
groups. Some systems control resource usage by groups rather than by indi-
vidual users.



14. Executable (Application) Number a natural number, between one and
the number of different applications appearing in the workload. in some logs,
this might represent a script file used to run jobs rather than the executable
directly; this should be noted in a header comment.

15. Queue Number — a natural number, between one and the number of different
queues in the system. The nature of the system’s queues should be explained
in a header comment. This field is where batch and interactive jobs should
be differentiated: we suggest the convention of denoting interactive jobs by
0.

16. Partition Number a natural number, between one and the number of
different partitions in the systems. The nature of the system’s partitions
should be explained in a header comment. For example, it is possible to use
partition numbers to identify which machine in a cluster was used.

17. Preceding Job Number — this is the number of a previous job in the work-
load, such that the current job can only start after the termination of this
preceding job. Together with the next field, this allows the workload to in-
clude feedback as described in Section 2.2.

18. Think Time from Preceding Job  this is the number of seconds that should
elapse between the termination of the preceding job and the submittal of this
one.

The last two fields work as follows. Suppose we know that a.out, job number
123, should start ten seconds after the termination of gcc x.c, which is job
number 120. We could give job number 123 a submittal time that is 10 seconds
after the submittal time plus run time of job 120, but this wouldn’t be right
— changing the scheduler might change the wait time of job 120 and spoil the
connection. The solution is to use fields 17 and 18 to save such relationships
between jobs explicitly. In this example, for job number 123 we’ll put 120 in its
preceding job number field, and 10 in its think time from preceding job field.

Header Comments The first lines of the log may be of the format ;Label:
Valuel, Value2, ....These are special header comments with a fixed format,
used to define global aspects of the workload. Predefined labels are:

Computer : Brand and model of computer

Installation : Location of installation and machine name

Acknowledge : Name of person(s) to acknowledge for creating/collecting the
workload.

Information : Web site or email that contain more information about the work-
load or installation.

Conversion : Name and email of whoever converted the log to the standard
format.

Version : Version number of the standard format the file uses. The format
described here is version 2.

StartTime : In human readable form, in this standard format: Tuesday, 1 Dec
1998, 22:00:00



EndTime : In the same format as StartTime.

MaxNodes : Integer, number of nodes in the computer (describe the sizes of
partitions in parentheses).

MaxRuntime : Integer, in seconds. This is the maximum that the system allowed,
and may be larger than any specific job’s runtime in the workload.

MaxMemory : Integer, in kilobytes. Again, this is the maximum the system al-
lowed.

AllowOveruse : Boolean. 'Yes’ if a job may use more than it requested for any
resource, 'No’ if it can’t.

Queues : A verbal description of the system’s queues. Should explain the queue
number field (if it has known values). As a minimum it should be explained
how to tell between a batch and interactive job.

Partitions : A verbal description of the system’s partitions, to explain the par-
tition number field. For example, partitions can be distinct parallel machines
in a cluster, or sets of nodes with different attributes (memory configuration,
number of CPUs, special attached devices), especially if this is known to the
scheduler.

Note : There may be several notes, describing special features of the log. For
example, “The runtime is until the last node was freed; jobs may have freed
some of their nodes earlier”.

3 Workload Benchmarks for Metacomputing

Most of the resources of a conventional parallel computer are used by batch
jobs. Therefore, job schedulers are typically not required to provide compute
resources at a specific time. However, this has changed with the appearance of
metacomputers. Many metasystems are based on the concept of a single virtual
machine which can also be used to run large parallel jobs. But this requires the
availability of compute resources on different machines at the same time. In ad-
dition network resources may be needed as well. This can only be achieved if the
schedulers that control the participating parallel machines accept reservations.
Unfortunately, it is not clear how to include resource reservation into present
scheduling algorithms. A simple approach may be an extension of backfilling. In
the workshop some participants reported promising results with this concept.
However, this assumes that the best time instant for such a resource reservation
is already known. In any case, the widespread use of a parallel computer as part
of a metasystem will certainly affect the workload and may therefore require
new benchmarks.

3.1 Scheduling in a Metacomputing Environment

In the metacomputing scenario, there are many schedulers simultaneously acting
over the system. Some of these schedulers control the resources they schedule over
and thus constitute the access point to such resources (i.e., one has to submit
a request to the scheduler in order to use the resources it controls). On the



other hand, there are schedulers that do not actually control the resources they
use. Instead they communicate with multiple lower-level schedulers and decide
which of them should be used, and which part of the parallel computation each
of them should carry out. Requests to the appropriate low-level schedulers are
then created and submitted on behalf of the user.

N

Application Meta
scheduler scheduler
Machine Machine Machine
scheduler scheduler scheduler
Node Node Node Node
D scheduler scheduler scheduler scheduler

=] @3 e

Fig. 1. Entities involved in scheduling in a metacomputing environment.

In order to keep the discussion focused, we suggest the following terminol-
ogy and definitions (which are summarized graphically in Figure 1). We call the
scheduler that controls a certain machine a machine scheduler. this is typically
the OS scheduler on this machine, especially on desktop machines. On a par-
allel supercomputer, this may be the parallel operating environment scheduler
running on the front end, or a batch queueing system such as NQS or PBS
used to access the machine. Parallel machines may also have node schedulers,
which control individual nodes, usually according to the directions of the ma-
chine scheduler (e.g. to implement gang scheduling). These are internal to the
parallel machine implementation and therefore not relevant in a discussion of
external workloads. Finally, there are meta-schedulers that interact with several
machine schedulers in order to find usable resources and use them to schedule
metacomputing applications. A special case of meta schedulers are application
schedulers, that are developed in conjunction with a specific application, and use



application-specific knowledge to optimize its execution.

In order to decide which machine schedulers to use (and what each of them
should do), the meta-scheduler needs to know how long a given request will take
to be processed on a given machine scheduler, under the current system load.
That is, in order to make reasonable decisions, the meta-scheduler needs informa-
tion on how the machines schedulers are going to deal with its requests. Although
some have proposed mechanisms to promote effective communication among the
different schedulers in the system [11,8], the machine schedulers currently in use
have not been designed with this need in mind. Therefore, researchers in meta-
computing have developed tools that monitor and forecast how long a request is
going to take to run over a particular set of resources (e.g., [61]).

Today there is no such tool for space-sliced parallel supercomputers. Since
jobs run on a dedicated set of nodes in these machines, the information meta-
schedulers can expect to obtain regards the queue waiting time. In principle,
work on supercomputer queue time prediction [15,57,31] could be used to provide
this information. However, the results obtained for queue time predictions are
still relatively inaccurate, making them inadequate for many metacomputing
applications, notably those that perform co-allocation (i.e., that spread across
multiple machine schedulers). This has prompted the metacomputing community
to ask for the enhancement of supercomputer schedulers by the introduction of
reservations [28] or guaranteed computing power [29,52]. Reservations consist of a
guarantee that a certain amount of resources is going to be available continuously
starting at a pre-determined future time. Computing power guarantees consist
of guarantees that a certain amount of computing power will be available over
time, e.g. 25% of the time on 16 processors. However, there is still the question
of how the meta-scheduler decides what is the right reservation to ask for. The
very first efforts towards answering this question are now under way [10].

3.2 Components of a Benchmark Suite

One of the challenges in building a benchmark suite is determining the appli-
cation space to be covered, and assembling a set of applications which cover
the space (the analog of a basis set in linear algebra). The obstacle to doing
this is that we lack two fundamental pieces of information: what a real metasys-
tem workload looks like, and what the appropriate axes of the application space
should be. While we have experience running one or two applications simultane-
ously, we do not have experience running truly large-scale systems (thousands
to millions of nodes with hundreds to thousands of simultaneous users). We are
therefore required to take an evolutionary approach. We will build a benchmark
suite based on the “tools at hand”, and will refine it over time as we learn more
about metasystem computation.

A good first step will be to use accepted practice and generate micro-benchmarks:
individual programs which stress one particular aspect of the system. For exam-
ple, we can create a compute-intensive meta-application that can use all the cy-
cles from all the machines it can get, a communication-intensive meta application
that requires extensive data transfers between its parts, or a meta-application



that requires a specific set of devices from different locations. To test meta-
computing schedulers, we can generate workloads consisting of large numbers
of applications of a single type, and also mixed-mode workloads composed of
diverse meta-applications.

As a second step, we can add real-world applications which we already run on
metasystems. These applications will be components of an overall metasystem
workload, and can help us to understand the interactions of complex applications
in a metasystem environment. Using this benchmark suite, we can attempt to
determine how well particular schedulers work, both alone and in competition.

3.3 Logging Scheduling Events in a Metacomputer

The two traditional methods of analyzing the performance of scheduling algo-
rithms are to simulate synthetic workloads or simulate trace data recorded from
parallel computers. Even though synthetic workloads do not explicitly require
trace data, a synthetic workload that is useful must approximate actual work-
loads and therefore the characteristics of actual workloads must be known.

It is very difficult to collect data to form a workload of the events that occur
in a metasystem. The problems are the distributed ownership of the constituents
of the metasystem, the many points of access to it, and its sheer size. First, the
metasystem consists of a diverse set of resources owned by dozens of organiza-
tions. These organizations are fully autonomous and cannot be forced to record
the events on their local resources and provide them for a metasystem work-
load. Also, collecting events in a large distributed system is not a trivial task.
Clock synchronization and causal order techniques can help, but the size and
geographic dispersion of the metasystem makes it a hard problem. Second, each
user may have their own application scheduler and thus there may be a large
number of different application schedulers. We cannot force these schedulers to
record events or to provide these events for a metasystem workload. Third, even
if we could record all of these events and form them into a workload, the system
would probably be too large to simulate conveniently.

There are some steps we can take toward recording a metasystem workload.
First, events can be recorded on a subset of the metasystem. Small sets of sites
tend to be closely aligned with each other and willing to share data with each
other. One problem with this technique is that the resources used by users may
not lie entirely within or without the subset we are recording. If programs use
resources from across a sub-system boundary, important application information
will not be recorded. Second, machine scheduling systems typically already have
recording mechanisms to record events. Third, the current metacomputing soft-
ware [26,32] each provide a common interface to machine schedulers and events
can be recorded in this interface. Such trace data may provide enough data to
extract information on which requests are co-allocation requests and are part of
the same application. Note, however, that recording metacomputing applications
alone would miss applications submitted directly to the local scheduler.



3.4 Evaluating Matacomputing Scheduling

Another problem we have not discussed is how do we evaluate the performance
of schedulers in metacomputing environments? First we need to recognize that
there will be many meta schedulers with different goals. Some schedulers will try
to run applications on single parallel computers as soon as possible, some will
try to co-allocate resources, others will try to run many serial applications, and
others will try to have their applications complete as soon as possible by adapting
to resource availability. The metrics used will vary for each meta scheduler and
will include metrics such as wait-time, throughput, and turn-around time.

Even though we cannot record a complete metasystem workload, we can use
synthetic data to evaluate scheduling algorithms. We have the advantage that
we may be able to construct a synthetic workload by expanding on trace data
from part of the metasystem and we can at least use the currently available trace
data from parallel computers to form synthetic trace data for machine scheduling
systems. In essence, this means that sampling is used to solve size problem, as
has also been done with address traces [39]. More research is required to establish
the methodological basis and limitations of this approach.

4 Convergence

4.1 A Comparison

Scheduling for parallel systems has been studied for a long time, and many
schemes have been proposed and evaluated [19]. Scheduling in metasystems is
relatively new, and the evaluation methodology still needs to be developed. A
relevant question is therefore the degree to which ideas and techniques developed
for parallel systems can be carried over to metacomputing systems.

The main difference that is usually mentioned in comparisons of parallel
systems and metacomputing is that metacomputing deals with heterogeneity,
whereas parallel systems are homogeneous [5]. This is in fact not so. Hetero-
geneity comes in three flavors: architectural heterogeneity, where nodes have a
different architecture, configuration heterogeneity, where nodes are configured
with different amounts of resources (e.g. different amounts of memory, or differ-
ent processors from the same family), and load heterogeneity, which means that
the available resources are different due to current load conditions. While par-
allel systems usually do not contain architectural heterogeneity, they certainly
do encounter configuration and load heterogeneities. Therefore their schedulers
need to deal with nodes that have different amount of resources available, just
as in metacomputing. They need to make decisions based on estimates of when
resources will become available, just as in metacomputing. They need to employ
models of application behavior to estimate how sensitive the application is to
heterogeneity, just as in metacomputing. They need to deal with requests for
specific resources (such as extra memory, a certain device, or use of a specific
license), just as in metacomputing.



The difference between parallel systems and metacomputing is therefore not
a clear cut absence of certain problems, but their degree of severity. Some of
the above issues could be ignored by parallel schedulers, at the cost of some
inefficiency. This has been a common practice, and is one of the reasons for the
limited utilization observed on many parallel systems. At the present time, these
issues are beginning to be addressed. This is happening concurrently with the
emergence of metacomputing, where these issues cannot be ignored, and have to
be handled from the outset.

4.2 Integration of Parallel Systems and Metacomputing

In a metasystem environment, there is interaction between scheduling at the
local level and scheduling at the meta level. An obvious example is that meta
schedulers send applications to local schedulers. Another example is that the
local schedulers can dictate what resources are available to meta applications
by limiting the number of nodes made available to meta applications or by the
scheduling policy used when scheduling meta applications versus locally sub-
mitted applications. A third example is that meta applications my ask for si-
multaneous access to resources from several local schedulers. This requires local
mechanisms such as reservation of resources and these reservations affect the
performance of local scheduling algorithms.

One major question is how much interaction is there and can we evaluate
local and meta schedulers independently or using a simple model of the other
type of scheduler? For example, mechanisms for combining queuing scheduling
with reservation in a local scheduler can be evaluated using a synthetic workload
of reservation requests or a recording of reservation requests. This requires little
to no knowledge of meta-scheduling algorithms.

Another example is that meta schedulers can be evaluated using simple mod-
els of local schedulers if we assume that meta schedulers will not interfere with
each other. A simple model of a local scheduler would just model the wait time
of applications submitted to it, the error of wait time predictions, when reserva-
tions can be made, etc. We can assume meta schedulers will not interfere with
each other if there are relatively few metasystem users when compared to the
number of resources available. If meta schedulers can interfere with each other,
we will have to simulate other meta schedulers using recorded or synthetic data.

We must take care when designing our metrics. In the past, supercomputer
centers have focused on low-level, system-centric metrics such as percent uti-
lization. Metaschedulers, on the other hand, are more focused on high-level,
user-centric metrics such as turnaround time and cost. We believe that these ap-
parently contradictory metrics can be unified through a proper economic model.
Utilization metrics are frequently used to justify the past or future purchase of
a machine (“Look, the machine is busy, it must’ve been worth the money we
spent!” or “The machine is swamped! We need to buy a new one!”), but in the
end, all they really tell us is that the machine is busy, not how much effective
work is being done. With an economic model, the suppliers (supercomputer cen-
ters, et al.) can control utilization by altering the cost charged per unit time.



Users can employ personal schedulers to optimize their important criteria. In
the end, this step has to be taken if metasystems are to become a reality, so we
should make it work for us.

4.3 An Evaluation Environment

As noted earlier, it will be nearly impossible to run real benchmark suites across
large-scale metasystems. Therefore, we opt for simulation to evaluate schedulers.
A proposed evaluation environment for schedulers is the WARMstones project
(WARM = Wide-Area Resource Management, and stones is from the traditional
naming of “stones” for benchmark suites). This is somewhat of a misnomer,
as WARMstones will encompass a simulation and evaluation environment in
addition to a benchmark suite, and part of the WARMstones environment will
simulate and evaluate scheduling for local systems.

The primary components of WARMstones include a benchmark suite, an
implementation toolkit for schedulers, a canonical representation of metasys-
tems, and a simulation engine to evaluate execution of a suite of applications on
a metasystem using a particular scheduler. As we have already described, the
benchmark suite will initially comprise combinations of micro-benchmarks and
existing applications. Rather than executing these applications directly, we will
represent them using annotated graphs, and simulate the execution by interpret-
ing the graphs. Legion program graphs [33] are well-suited to this purpose. Users
will also be able to produce representations of their own applications.

The implementation toolkit will allow users to implement particular schedul-
ing algorithms for simulation and evaluation. Again, we draw on earlier expe-
rience, and plan to use a system much like that in the MESSIAHS distributed
scheduling system [9].

To evaluate a scheduler, we will first run the scheduler on the benchmark
suite to produce mappings of programs (graphs) to resources, and then run the
simulator using the resultant mapping and a system configuration (in canonical
form) as input. The representation will encapsulate both the local infrastructure
(workstations, clusters, supercomputers) and the overall structure of the meta-
system. The system will also employ multiple levels of detail in the simulation.
For example, depending on how much precision is required and how much time
and computational resources are available, we could simulate every packet be-
ing transmitted across a network, or we can simply assume a simple model and
estimate the communication time.

This evaluation system will enable evaluations of multiple scenarios and fac-
tors, e.g.:

— I have devised a new scheduling algorithm. I want to evaluate it using the
benchmark suite and a range of “standard” machine representations, so that
I can make “apples-to-apples” comparisons to other schedulers.

— I have an application I want to run, and I know the target system envi-
ronment. I can use the evaluation system to help me select among several
candidate scheduling algorithms.



— I want to enable run-time selection of “good” scheduling algorithms. I can
make off-line runs iterating across the benchmark suite, the set of available
schedulers, and a number of “standard” system configurations. I can store
these results in a table, and at run time I can look up the closest matches
on application structure and system configuration to find a scheduler which
should work well for me.

— I'have the choice of purchasing machine A or machine B for my system. I can
generate program graphs for my top five applications and test them using an
implementation of my current scheduler on system configurations including
both machine choices.

5 Conclusions

Standardization and benchmarking are important for progress because without
them research is harder to perform and results are harder to compare. While
there is always place for improvements and additions, it is also necessary to
draw the line and decide to standardize now. It seems that we can immediately
do so for parallel systems, as enough data is available, at the same time leaving
the door open for changes as more data becomes available in the future. The
definitive definition and updates will be posted as part of the Parallel Workloads
Archive [49].

Benchmarking for meta-scheduling is harder, because even less data is avail-
able, and the environment is more complex. It therefore seems that the best
current, course of action is to try and reduce the complexity by partitioning the
problem into sub-problems, and trying to deal with each one individually. Thus
application schedulers will be evaluated using simplified models of resource avail-
ability provided by separate machine schedulers, and machine schedulers will be
evaluated using rudimentary models of the requests generated by application
schedulers. As larger implementation materialize and data is accumulated, inte-
grated evaluations may become possible.
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