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Abstract 

 
The modeling of an individual gate and the optimization of circuit performance has long been a 

critical issue in the VLSI industry. In this work, we first study of the gate sizing problem for today’s 

industrial designs, and explore the contributions and limitations of all the existing approaches, which 

mainly suffer from producing only continuous solutions, using outdated timing models or 

experiencing performance inefficiency. 

In this dissertation, we present our new discrete gate sizing technique which optimizes different 

aspects of circuit performance, including delay, area and power consumption. And our method is fast 

and efficient as it applies the local search instead of global exhaustive search during gate size selection 

process, which greatly reduces the search space and improves the computation complexity. In 

addition to that, it is also flexible with different timing models, and it is able to deal with the constraints 

of input/output slew and output load capacitance, under which very few previous research works 

were reported. 

We then propose a new timing model, which is derived from the classic Elmore delay model, 

but takes the features of modern timing models from standard cell library. With our new timing 

model, we are able to formulate the combinatorial discrete sizing problem as a simplified 

mathematical expression and apply it to existing Lagrangian relaxation method, which is shown to 

converge to optimal solution. We demonstrate that the classic Elmore delay model based gate sizing 

approaches can still be valid. Therefore, our work might provide a new look into the numerous 

Elmore delay model based research works in various areas (such as placement, routing, layout, buffer 

insertion, timing analysis, etc.). 
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Chapter 1 

Introduction 

Gate sizing technique is an important technique for improving circuit performance. 

Researchers have been working on the gate sizing problems for more than thirty years. 

They have built different timing models, and developed numerous kinds of algorithms to 

solve this problem. 

In this chapter, we will have a detailed review of the gate sizing problem, including 

the models that researchers have applied for circuit performance evaluation, and the 

techniques that have been developed so far. 

1.1 Gate Sizing Problem 

Gate sizing problem is to assign each gate with a proper cell from a standard cell 

library in a way that it will meet certain design requirement or optimize the circuit 

performance, such as circuit delay, layout area or power consumption, etc. Gate sizing is a 

flexible and powerful method to reduce circuit delay, minimize layout area, and optimize 

statistical power consumption, etc. Besides, it is also versatile in circuit design flow as it 

may be used to correct timing errors, fix design rule violations and setup and hold 

violations, fix noise constraints due to crosstalk, improve yield, etc [1].   

As circuit performance can be evaluated from different aspects, the gate sizing 

problem may vary with different optimization objectives. When the timing closure is the 

first priority, we may want to solve the constraint free gate sizing problem for delay 
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minimization.  And we may solve the power minimization problem with delay constraint 

if it is the first priority to reduce the power consumption. Hence, there are extensive 

research works focusing on different optimization objectives with different gate models. 

1.2 Gate Model 

The way we model the gate and evaluate the delay is of vital importance in gate sizing 

problems. Over simplified gate model may be easier to solve and implement, but it may 

not be accurate with the real circuit. However, if the model is too complicated, it may be 

too hard to solve the problem and require extra runtimes even though it has high accuracy. 

So we need to balance between the accuracy and performance in modeling the circuit. In 

this part, we will have a short review of the popular models that previous researchers have 

used.  

First of all, the most common way is to model a circuit as a resistance-capacitor circuit 

(RC). In a RC circuit, all the gates and interconnects are modeled as components with 

resistors and capacitors only, then the analysis of the circuit is the same as the analysis of 

the resistor and capacitor behaviors.   

Among the studies of measuring the delay of a RC circuit [2, 3, 5],  Elmore delay [2] 

is widely used because of its simplicity. Elmore delay approximates the circuit delay by 

the first order impulse response. And the delay of each gate is to multiply the gate resistor 

with its downstream capacitance, which is easy to implement. And it is proved to be an 

absolute upper bound on the actual 50% delay on an RC tree response [4]. Then for better 

accuracy, AWE [5] are usually applied for higher order moments.  
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Although Elmore delay in RC circuit has been efficient in solving sizing problems, 

especially for continuous gate sizing problems, it has usually been criticized for being over 

simplified [38, 39, 40] and lacking waveform information. And as current VLSI industry 

has more design requirements with more constraints, such as transition time or slews, it is 

hard to incorporate Elmore delay to propagate slews, and thus we need more accurate 

models to solve the sizing problem.  

 
Table 1. 1. Inverter Cell in01m01 Information 

Cell Name in01m01 

Leakage Power 4uW 

Area 1 

Max Output Capacitance 14.4ff 

Pin capacitance 1ff 

 
 
 

Table 1. 2. Fall Delay Lookup Table for Inverter Cell in01m01. 

Output load capacitance are in ff, and input transition time are in ps. 
 

 
Output 

Load 

Capacitance 

Input Transition Time 

5 30 50 80 140 200 300 500 

0 10.17 16.33 20.22 24.81 32.40 38.73 47.43 61.24 

1 14.64 20.85 25.59 31.17 39.94 47.43 58.09 75.00 

2 19.10 25.31 30.29 36.81 46.76 55.00 67.08 86.60 

4 28.03 34.24 39.21 46.66 58.91 68.65 82.49 106.07 

8 45.89 52.10 57.07 64.53 79.35 92.03 109.30 137.49 

16 81.60 87.81 92.79 100.24 115.16 130.07 153.54 190.32 

32 153.03 159.24 164.21 171.67 186.59 201.50 226.36 275.35 
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Nowadays, the gates are characterized by complex timing models from standard cell 

libraries. And the gate delay is influenced by more factors compared with earlier models. 

So it is almost impossible to represent the gate delay with a simple equation like Elmore 

delay. And each gate may come with a few options of cells, as cells of the same type have 

the same functionality but different timing and power consumption characteristics. Then 

instead of using a formula, modern cell libraries are using lookup tables to represent the 

cell delay. For example, in Table 1. 1 and Table 1. 2, we shows an example of inverter cell 

in01m01 from ISPD 2012 standard cell library [6]. The basic cell information is listed in 

Table 1. 1 and the fall delay lookup table is shown in Table 1. 2. The fall delay is a function 

of input transition time and output load capacitance. Standard cell libraries also have 

lookup tables for rise delay, fall delay, rise transition time or fall transition time, which 

provides more accuracy for each cell in library. And it is more flexible in propagating 

transition time, and cover more cell features. Obviously, since it is not easy to represent 

the gate model in formula, it creates more mathematical challenges for us to solve the gate 

sizing problems.  

1.3 Previous Work  

Researchers have been studying the gate sizing problems for a long time, and many of 

the earlier works are based on continuous cell sizes [7 - 22].  

The continuous gate sizing problem traced back to [7], where Ruehli et al. proposed a 

method for logic gate delay assignment to achieve power minimization. Then Fishburn and 

Dunlop [8] presented a sensitivity-based greedy heuristic, which iteratively adjusts the 

transistors sizes to minimize area or circuit delay. Sapatnekar et al. [9] used convex 
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programming to solve the sizing program, which is guaranteed to find the exact solution. 

In [10], Chen et al. used Lagrangian relaxation to solve constrained area minimization 

problem, which allowed future researchers to apply Lagrangian relaxation to solve sizing 

problems with different optimization objectives [11, 12, 13]. Kasamsetty et al. [14] 

developed an accurate convex delay model and applied convex programming technique 

with the new delay model. Later, Boyd et al. [15] formulated the problem as geometric 

program and solved it with geometric programming. 

For the continuous gate sizing problems, all the techniques can be separated into 

several categories. Linear programming is used by [16, 17, 18] to work with linear models. 

And for posynomial models, convex programming is used by [9, 14, 19, 20].  Menezes et 

al. presented a quadratic programming approach in [21]. And a network flow based 

algorithm is proposed by Ren and Dutt in [22].  

These continuous gate sizing methods assume that gate sizes can be any continuous 

value, which is unrealistic in real life. So they all require rounding the continuous solutions 

to discrete cell sizes from a standard library, which may lead to suboptimal solutions. And 

sometime rounding may even cause timing violations or introduce extra area or power cost 

in discretization. Then some researchers use the continuous solution as a starting point, and 

then apply some methods to snap the continuous solution to discrete sizes. Shah et al. [23] 

solved discrete sizing problems using a self-snapping continuous formulations. Hu et al. 

[24] proposed a continuous-solution-guided and dynamic programming like approach. 

Rahman et al. [25] developed a branch-and-bound algorithm that maps the continuous sizes 

to the discrete sizes. 
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More recently, researchers tend to solve discrete sizing problem directly, rather than 

starting with continuous solutions. But it is hard to solve the combinatorial optimization 

problem as it is proved to be NP-hard by [26]. Chan [27] proposed an exhaustive search 

method, which is hard to afford for large size circuit. More recently, Held [28] presented a 

fast gate sizing heuristic that uses local slew gradient to estimate slew targets and minimize 

the circuit delay.  

Greedy algorithms are widely used in previous works [29, 30, 31, 32, 33], which 

selects the optimal solution at each step. Coudert [34] proposed a greedy randomization 

based greedy method solving delay or power optimization. However, greedy algorithms 

may be trapped by local optimum and sometimes fail to reach the global optimum. Then 

Coudert et al. [35] tried to stay away from the infeasible region and avoid local minimum 

by applying global sizing techniques.  

Dynamic programming is also quite useful in solving gate sizing problems [24, 27, 

36]. Liu and Hu [36] presented a dynamic-programming-like searching method which 

iteratively improve solutions using bi-directional searching.  

Lagrangian relaxation is widely used in discrete gate sizing [25, 36, 37, 38, 39, 40, 41] 

as well as continuous gate sizing[10, 11, 12, 13].  Lagrangian relaxation is a technique that 

combines the objective function with the constraints by multiplying Lagnrange multipliers 

and solves the subproblem and dual problem instead of solving the original problem 

directly. Lagrangian relaxation is flexible in solving area, delay or power minimization by 

solving. It is easy to implement and is proved to have optimal solutions with convex [10]. 

But Lagrangian relaxation also has its own limitation that it is limited to simply timing 

models, and may not solve complicated timing models.  
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In addition, there are some other techniques that have been explored by previous 

researchers. [17] used a linear program to minimize circuit power. [42] introduced the 

leakage power problem as a nonlinear mathematical program and used conjugate gradient 

method to solve.   

As we can see that, the sizing problem has been well studied as researchers start with 

continuous sizing problems, and now work on discrete problems. And the gate model has 

been evolved from simply RC model to complex posynomial model, then to current lookup 

tables from standard cell libraries. But there is still a lot of room for further improvement, 

so we intend to solve the discrete gate sizing problem with real complicated gate models, 

and we may want to deal with extra slew and load capacitance constraints. And also, we 

intend to find methods that are more versatile, reliable and efficient, compared with all the 

existing works.  

1.4 Outlines 

This dissertation presents the discrete gate sizing methodology with circuit 

optimization of delay, area and power consumption. 

The primary contributions of this dissertation are as follows: (i) We propose a series 

of methods which solves the discrete gate sizing problem concerning different optimization 

objectives, including delay, area and power consumption. (ii) Compared with other existing 

methods, our methods are faster as it applies the effective local evaluation in searching for 

cell replacement, and it is able to avoid the local minima. (iii) Our methods are compatible 

with modern gate cell models, such as lookup table from standard cell library. And it is 

able to handle complicated cell constraints, such as input/output slew constraint or 
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maximum output load capacitance constraint, which other methods may be limited with. 

(iv). We modified the oversimplified Elmore delay model with the features of the modern 

gate model so that it can be used to solve the discrete gate sizing problem with its accuracy 

and simplicity. Since the modified Elmore delay model works for gate sizing problems, 

other existing works based on Elmore delay may also be valid for library-cell-based 

problems.  

In Chapter 1, we review the gate sizing problem with different optimization goals, and 

we see how the gate delay models evolve with the development of VLSI industry, which 

motivates us to dive into the problem. And we also find the limitations of previous research 

work, which give us a lot of challenges in finding better solutions to the problem. 

In Chapter 2, we present a fast and efficient method that solves discrete gate sizing 

problem with delay minimization. In this work, when searching for the cell replacement, 

we apply the local delay difference in evaluating delay cost instead of global delay cost 

evaluation. The local delay difference greatly reduces the search space and improves the 

computational complexity. And more importantly, the method is able to avoid the local 

minima and reach the highly satisfactory global solution.  

Then in Chapter 3, we present an algorithm of discrete gate sizing for area 

minimization with delay constraint. This method also applies the local delay difference in 

evaluating the delay cost when searching for cell replacement, which is efficient in runtime. 

But we modified some details to refine it for better precision. We apply the algorithm to 

further reduce the area while maintaining the minimum delay after applying the discrete 

gate selection method introduced in Chapter 2. Thus, we are able to find a solution that has 

the minimum circuit delay and optimal circuit area.   
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In Chapter 4, we present an algorithm that solves the gate sizing problem using lookup 

tables from standard cell library instead of Elmore delay model. The algorithm comes with 

two phases that does delay minimization and power optimization in one process. In 

addition, the algorithm is able to handle input slew constraints and output load capacitance 

constraints, which makes it more robust and versatile. 

In Chapter 5, we propose a new gate model based on the classic Elmore delay model. 

The new delay model is able to characterize the timing features of the lookup tables from 

standard cell library. And with continuous Lagrangian relaxation, we are able to solve the 

gate sizing problem with delay minimization using the new model, and it is proved to 

provide good discrete solution after we apply refined nearest rounding method to 

discretization.  

At last, in Chapter 6, we summarize the dissertation and point out the directions for 

future work. 
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Chapter 2 

Delay Minimization for Discrete Gate 

Sizing Using Effective Local Delay 

Measurement and Cell Adjustment 

Gate sizing problems has been critical to circuit design. However, previous researchers 

are more focused on solving continuous gate sizing problem, which is unrealistic in the 

real industry. And discretizing continuous solutions to discrete cell sizes usually lead to 

suboptimal solution. So in this chapter, we present an optimization algorithm to solve the 

discrete gate sizing problems. The algorithm is able to minimize the circuit delay based on 

effective local delay measurement and cell assignment, which is more efficient and faster 

compared with other exhaustive global searching methods. First our algorithm uses the 

continuous sizing solution as a starting point, and performs the local search of the gate cells 

on the critical path to gradually reduce the delay, and it continuous to perform the cell 

adjustment until no improvement. The experiments proved that our method is able to avoid 

being trapped by the local optima, and reach the highly satisfactory solution eventually. 

And experiments show that our method is within 4.9% more than the solution of the 

optimal continuous solution based on Lagrangian relaxation, which is ideal in theory but 

unrealistic in real. And it improves the circuit delay by 7.5% compared with nearest 

rounding. 
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2.1 Introduction 

Generally speaking, gate sizing problem is to select proper sizes for each gate in the 

circuit for best performance. The circuit delay, layout area and power consumption may be 

varied by changing the gate sizes.  And it is one of the most efficient and power techniques 

for the performance optimization of circuit design. And with the development of the 

manufacture process and the shrinking of transistor dimension, there is an increasing urge 

for efficient methodologies to satisfy the need of the modern design requirements. 

Researchers have been working on the gate sizing problem in the past a few decades. 

Initially, people were focusing on solving continuous sizing problems [8, 10, 17, 44, 45]. 

A fundamental work about continuous gate sizing problem is proposed by Chen et al. [10], 

who presented applied Lagrangian relaxation (LR) to solve the problem. Lagrangian 

relaxation is a useful technique to solve the sizing problem, since it can also be applied to 

handle certain statistical timing model [47] and sequential circuit [11, 48]. And the global 

continuous optimal solution is guaranteed with convex delay/area/power models [10, 13, 

11, 36, 19].  

As the continuous sizing problems that the circuit sizes can be any value in the 

continuous phrase, it is apparently untrue and unrealistic in real life. Hence, current 

researchers have shifted to solve discrete size problems with discrete cell library 

information. Therefore, it is our main concern to develop efficient algorithms that can 

handle discrete gate sizing problems based on standard cell library to achieve the best 

circuit performance. 

Then people started looking for methods to discretize the continuous solutions to 

discrete sizes. Nearest Rounding [47, 48] is one of the most simply discretizing techniques, 
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which obtains an optimal continuous solution first, and then rounds the size of each gate to 

its nearest available discrete size. Though nearest rounding is simple to implement, it 

usually introduces large increment of delay and lead to suboptimal solutions after direct 

discretion, which leaves us considerable room for further improvement [24].  

Among all the existing works, most of them are focused on optimizing power 

consumption or area. For example, in [48], linear programming and some heuristics are 

used to solve the area optimization problem under double-sided delay constraints, but it 

does not address the problem of delay minimization. Hu [24] proposed a discrete gate 

sizing algorithm for area optimization, which uses a dynamic programming approach and 

reports good results. However, it is very difficult to apply their search space pruning 

technique to the problem of delay minimization. Nguyen et al. [54] used linear 

programming to minimize dynamic and static power. Livramento et al. [39] used a state-

of-the-art method to minimize leakage power with delay constraint. Liu et al. [36] proposed 

a systematic combinatorial approach with threshold voltage assignment. 

Since there is limited number of existing works for solving discrete sizing problems 

with delay minimization, we intend to focus on minimizing circuit delay as the first 

priority. Constraint free delay minimization, which is addressed in this chapter, is very 

important but rarely studied in literature; only few researchers [10, 34, 40] have performed 

work on this, but they are either limited to continuous sizing [10], outdated delay model 

[34], or much more complicated approach than our proposed one [40]. Our approach is 

able to effectively limit the search space to.  

In this chapter, we have the following contributions: we propose an approach to solve 

the discrete gate sizing problem with delay minimization, which few previous researchers 
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have done before. And we propose a few strategies to reduce the computational complexity 

and search space. First, the approach is a critical path based method, which focuses on 

reducing the critical path delay as the critical path delay determines the maximum delay of 

the entire circuit. Then we only consider replacing the current cells with those whose sizes 

are either one size larger or smaller than the current sizes. And most importantly, when 

evaluating the delay cost of cell replacement, we apply the local delay difference instead 

of global calculation, which greatly improves the efficiency. And it is able avoid the local 

minima by the “inaccurate” local delay calculation.   

The rest of this chapter is organized as follows. In Section 2.2, we first introduce the 

notations used in the chapter and then formulate the delay minimization problem. In 

Section 2.3, we present the delay minimization algorithm with cell replacement. And in 

Section 2.4, we propose the local delay difference to measure the delay cost when selecting 

cell replacement. Then in Section 2.5, we show the flexibility of our algorithm as it also 

works with other modern gate models. The experimental results are shown in Section 2.6. 

And a summary of this chapter is presented in Section 2.7. 
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2.2 Problem Formulation 

In this section, we first define the terminology and notations that we use in this chapter, 

and then formulate the problem to be discussed. 

For the sizing problem, we focus on the combinational circuit only in this work. We 

model a combinational logic circuit as a directed acyclic timing graph 𝐺(𝑉, 𝐸),  where 𝑉 

is the set of individual gates and 𝐸 is the set of wires connecting the gates. In a circuit with 

𝑛 sizable gates, a logic gate with index 𝑖 is represented as 𝑣𝑖  𝜖 𝑉, where 1 ≤ 𝑖 ≤ 𝑛. Each 

wire connecting between nodes 𝑣𝑖  and 𝑣𝑗  is represented as directed edge (𝑣𝑖 , 𝑣𝑗) ∈  𝐸 , 

which propagates from gate 𝑣𝑖 to gate 𝑣𝑗 .  

The set of primary input gates is represented as 𝑃𝐼. For all the gates that are directly 

connected to the output loads, we add a pseudo output gate to connect them together, and 

the pseudo output gate is represented as 𝑃𝑂. We use reverse topological order to label all 

the gates such that if gate 𝑣𝑖 is connected to the output pin of gate 𝑣𝑗 , then 𝑖 is less than 𝑗. 

Suppose we apply reverse topological sorting to a circuit with 𝑠 primary input gates, 𝑛 

sizable gates and 𝑡 output loads, the pseudo output gate should be labeled as 0,  the sizable 

gates are supposed to be labeled from 1 to 𝑛, as gates labeled from 1 to 𝑡 as connected to 

the pseudo output gate, and the pseudo primary input gates are supposed to be labeled from 

𝑛 + 1 to 𝑛 + 𝑠. 

Figure 2. 1 shows an example circuit with 5 primary inputs, 6 sizable gates and 2 

output loads. And all the primary inputs and sizable gates are labeled in reverse topological 

order. And the pseudo output gate 𝑃𝑂 is labeled as 𝑣0, the sizable gates are labeled from 

𝑣1 to 𝑣6, and the primary inputs are labeled from 𝑣7 to 𝑣11. 



 
15 

 

 
 

 

For simplicity, we only discuss the sizing of combinational gates in this chapter, and 

leaving alone the wires, which is easy to be further refined with our algorithm. In a circuit, 

critical path is defined as the path with the largest delay among all the gate paths in the 

circuit. And there may be a few critical paths in a circuit. Apparently, the critical path delay 

determines the delay of the entire circuit.  

Each gate 𝑣𝑖  ∈ 𝑉 has multiple implementation options from the standard cell library, 

and each implementation instance is called a cell. So we use 𝑆𝑖 to represent the set of all 

the available cells of gate 𝑣𝑖 . And for each 𝑣𝑖 ∈ 𝑉, it comes with a cell size 𝑥𝑖 ∈ 𝑆𝑖. The 

minimum cell size is called the lower bound, and the maximum cell size is called the upper 

bound. And we use 𝐿𝑖 and 𝑈𝑖 to represent the lower bound and the upper bound for the cell 

size, as  𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 . Then for a circuit with 𝑛  sizable gates, we use a vector 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛) as an 𝑛-tuple vector to represent the discrete sizes of all sizable gates, where 

each 𝑥𝑖  or 𝑋(𝑖)  represents a discrete size for gate 𝑣𝑖  and 𝑥𝑖  is referred to as the 𝑖–th 

 

 
 

Figure 2. 1. An example circuit with gates labeled in reverse topological sorting order 
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component of 𝑋. 𝑋 is simply referred as a solution point in many places of the following 

discussions.  

With all the notations stated, we now formulate the discrete gate sizing problem of 

delay minimization subject to gate size restrictions as follows: given a circuit and cell 

library, find an optimal solution 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗)  such that the worst circuit delay 

or the maximum arrival time of the output 𝑎𝑜 is minimized: 

 

In the above equations, 𝑎𝑖  𝑎𝑛𝑑 𝐷𝑖 refer to the arrival time and delay of gate 𝑣𝑖 , 

and 𝑎𝑜 conrresponds to the maximum arrival time at the output. And 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖) and 

𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑖) corresponds to all the gates that are directly connected to the inputs and 

outputs of gate 𝑣𝑖 . And for the convenience of explanation and discussion, the Elmore 

delay model is employed for the timing analysis, and as we will show in section 2.5, 

our algorithm can also be applied with more accurate models, and it can also deal 

with the sizing of wires.  

    

𝑃𝑟𝑜𝑏𝑙𝑒𝑚:     𝐹𝑖𝑛𝑑 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) 𝑡ℎ𝑎𝑡 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝑎𝑂  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑎𝑗 ≤ 𝑎𝑜 , ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑃𝑂 

                𝑎𝑗 + 𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉 

                𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑖 ∈ 𝑃𝐼 

                𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖    

                𝑥𝑖 ∈ 𝑆𝑖, ∀𝑣𝑖 ∈ 𝑉, 𝑖 = 1,2, … , 𝑛 

 
 
𝑃𝑟𝑜𝑏𝑙𝑒𝑚:     𝐹𝑖𝑛𝑑 𝑋∗ = (𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛

∗) 𝑡ℎ𝑎𝑡 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝑎𝑂  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑎𝑗 ≤ 𝑎𝑜 , ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑃𝑂 

                𝑎𝑗 + 𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉 

                𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑖 ∈ 𝑃𝐼 

                𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖    

                𝑥𝑖 ∈ 𝑆𝑖, ∀𝑣𝑖 ∈ 𝑉, 𝑖 = 1,2, … , 𝑛 
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2.3 Delay Minimization with Gate Cell Replacement 

Constraint free delay minimization algorithm based on Lagrangian relaxation from 

[10] provides an optimal delay solution in continuous gate sizing field. Though it usually 

introduces extra delay cost and becomes suboptimal when it is discretized to discrete phase 

by nearest rounding, it can be a very good solution as a starting point. So our algorithm 

will first apply nearest rounding to the continuous solution, and we then do the cell 

selection and adjustment based on the initial solution. 

As a combinatorial problem, it is hard to solve discrete gate sizing problem efficiently. 

So to improve efficiency and eliminate unnecessary calculations, our priority is to resize 

those gates which will reduce the circuit delay most efficiently. Since the maximum circuit 

delay is determined by the delay along the critical path, we only focus on resizing the gates 

along the critical path.  

Our approach begins with the continuous optimal solution, and we focus on resizing 

the gates on the critical path, and the set of all the gates along the critical path is called the 

resizable gate set. Then for each gate in the resizable gate set, we define the available cells 

from the cell library for adjustment, and measure their cost on the circuit delay if they are 

to replace the current cell. For the one which will reduce the delay for the most, we will 

replace the current cell with the delay minimizing cell. And we keep exploring the gates 

along the critical path and replace them with better cells until the delay cannot be further 

reduced along the critical path. Note that the critical path may be changed after the 

adjustment is done, so once we have fully adjusted one critical path, we will move to the 

updated critical path and repeat adjusting the new critical path gates. We will keep 

adjusting all the critical paths in the circuit until all the gates in the circuit are optimally 
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sized and the circuit delay cannot be further reduced. Thus, we find a solution point for 

solving the discrete delay minimization problem.   

We outlined the discrete gate sizing algorithm with delay minimization in Figure 2. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, it is not an easy task to measure the delay cost for each available cell and 

determine which gate to be resized, as measuring the delay cost globally takes too much 

time and it is too expensive to afford. Thus, we propose a term called local delay difference 

to measure the delay cost locally, which largely reduces computational complexity and 

improves efficiency. In the following section, we will describe how to locally measure 

delay cost in detail. 

 
Algorithm 1: Discrete Gate Sizing Algorithm with Delay Minimization 

Input: Circuit and Library Cell Information 

Output: Solution 𝑋∗ which minimizes the circuit delay 

1. Solve continuous delay minimization problem using Lagrangian relaxation [10] 

2. Discretize continuous solution using nearest rounding 

3. Repeat 

4.     Update circuit timing information 

5.     Update set of critical path gates  

6.     Call Algorithm 2 to minimize delay on critical path 

7. Until no further improvement or stopping criterion is met 

8. Record solution 𝑋∗ as the best solution of all iterations 

9. Return 𝑋∗ 

 

Figure 2. 2. Pseudo code for Discrete Gate Sizing Algorithm with Delay Minimization 
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2.4 Measuring Delay Cost by Local Delay Difference 

In this section, we are to describe how to use local delay different to measure the delay 

cost when adjusting the gate sizes along the critical path. First we define some basic terms.  

A. Neighboring Solution Set 

In order to narrow down the search space, instead of investigating all the available 

standard cells for each gate, we only process the cells that are either one size smaller or one 

size larger than the current cell size 𝑥𝑖 . We use 𝑥𝑙  and 𝑥ℎ to represent the two neighboring 

cells, as 𝑥𝑙 ≤ 𝑥𝑖 ≤ 𝑥ℎ. And 𝑥𝑙  and 𝑥ℎ   are bounded by the lower bound and upper bound 

of the cell sizes, as 𝐿𝑖 ≤ 𝑥𝑙 ≤ 𝑥𝑖 ≤ 𝑥ℎ ≤ 𝑈𝑖 .  And if 𝑥𝑖  =  𝐿𝑖 , 𝑥𝑙 = 𝑥𝑖 ; if 𝑥𝑖  =  𝑈𝑖 , 

𝑥ℎ = 𝑥𝑖. 

In discrete space, the solutions are combinatorial. Even with the narrowed-down solution 

space, it is still considered exponential time for testing cases with all the solutions. In order 

to make our optimization process within linear time and not to be trapped by the local 

optima, we will only change exactly one gate cell at a time in this work. If we change the 

size of gate 𝑣𝑖 from 𝑥𝑖 to 𝑥𝑙 or 𝑥ℎ, and keep all the other gates unchanged, we call it a resize 

of gate 𝑣𝑖. Hence, we define all the solution points that could be at after any single resize at 

solution point 𝑋 as its neighboring solution.  Therefore, for each solution 𝑋, the set of all 

the neighboring solutions of 𝑋 is defined as vector : 

𝑁(𝑋, 𝑥𝑖
′) = {𝑥𝑗|

𝑥𝑗 = 𝑥𝑖
′ 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 𝑜𝑛𝑙𝑦 𝑠𝑖𝑧𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑜𝑟 𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 𝑋(𝑖)

𝑥𝑗 = 𝑋(𝑖)
     
𝑖𝑓 𝑗 = 𝑖
𝑖𝑓 𝑗 ≠ 𝑖

},  

Where 1 ≤ 𝑖 ≤ 𝑛.  
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B. Local Delay Difference 

The critical path delay with size solution 𝑋 is denoted as 𝐷(𝑋). Then among all the 

neighboring vectors 𝑁(𝑋, 𝑥𝑖
′), 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑛 , their delays are noted as 𝐷(𝑁(𝑋, 𝑥𝑖

′)). 

Then for each 𝑁(𝑋, 𝑥𝑖
′) , the delay difference is denoted as ∆𝐷(𝑁(𝑋, 𝑥𝑖

′)) = 𝐷(𝑋) −

𝐷(𝑁(𝑋, 𝑥𝑖
′)), which is defined as the delay cost of 𝑁(𝑋, 𝑥𝑖

′). Our problem is to find the 

𝑁(𝑋, 𝑥𝑖
′) with the maximum delay difference at solution point 𝑋 , which is denoted as  

∆𝐷𝑚𝑎𝑥(𝑋, 𝑥𝑖
′) = max{∆𝐷(𝑁(𝑋, 𝑥𝑖

′)), ∀𝑥𝑖
′}.  

To find the 𝑁(𝑋, 𝑥𝑖
′) with ∆𝐷𝑚𝑎𝑥(𝑋, 𝑥𝑖

′), we need to resize every gate along the critical 

path respectively and calculate ∆𝐷(𝑁(𝑋, 𝑥𝑖
′)), which requires high computational cost. To 

reduce the computational complexity, we introduce a target-path-based method to obtain 

the discrete delay difference, which only considers the gates directly connected to the gate 

being resized at the time. Since the method only evaluates the gate delay locally rather than 

globally, we call the obtained delay difference as local delay difference, which will be 

further discussed in part D of delay cost measurement. 

C. Target Local Gate Set 

Then we define the Target Local Gate Set, which is greatly helpful in determining the 

local delay difference. When considering measuring the resizing effect on a certain gate 𝑣𝑖, 

we only take two kinds of gates into consideration. First kind of gates are those gates that 

directly drive the gate 𝑣𝑖, which we call as predecessor gates. And second kind of gate is 

the one which is driven by vi  and also on the critical path, which we call it as direct 

successor gate.   
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Figure 2. 3 shows an example circuit whose critical path is shown in red ink. When we 

evaluate the delay cost of resizing the gate 𝑣𝑖, we need to take predecessor gates 𝑣𝑗0 and 

𝑣𝑗1, the direct successor gate on the critical path 𝑣𝑘, and 𝑣𝑖 itself into consideration. So the 

target local gates set include the predecessor gates, the gate being resized, and the successor 

gate. 

 

 

 

 

 

 

 

D. Delay Cost Measurement 

Then considering the gate 𝑣𝑖 on the critical path in Figure 2. 3, assume its current cell 

size is 𝑥𝑖 , gate capacitance is 𝑐𝑖 and arrival time is 𝑎𝑖, and we will see how to calculate the 

delay cost measurement of replacing it with a new cell 𝑥𝑖
′ with gate capacitance 𝑐𝑖

′ and gate 

resistance 𝑅𝑖
′.  

 We use Elmore delay to evaluate circuit delay. With Elmore delay, for gate 𝑣𝑖, its gate 

delay 𝐷𝑖 is: 

𝐷𝑖 = 𝑅𝑖 × 𝑂𝐶𝑖 (2. 1) 

 
 

Figure 2. 3. Illustration of Target Local Gate Set 
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where 𝑅𝑖 is the gate resistor of 𝑣𝑖, and 𝑂𝐶𝑖 is the output load capacitance of 𝑣𝑖.  

If we replace gate 𝑣𝑖 with a new cell 𝑥𝑖
′, obviously it will change the capacitance, delay, 

transition time and arrival time of itself, and also it will change the delay and arrival time of 

its predecessor gates. Besides, it will further affect its direct successor gate since the new 

arrival time will affect its delay and arrival time, too. So we would like to discuss the details 

in the following equations: 

1. For all the predecessor gates 𝑣𝑗  𝑤ℎ𝑒𝑟𝑒 𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)  , their new delay 𝑑𝑗
′  and 

arrival time 𝑎𝑗
′ are:  

𝑑𝑗
′ = 𝑅𝑗 × (𝑂𝐶𝑗 + 𝑐𝑖

′ − 𝑐𝑖) (2. 2) 

𝑎𝑗
′ = 𝑎𝑗 + 𝑑𝑗

′ − 𝑑𝑗 (2. 3) 

2. For gate 𝑣𝑖 itself, its new delay 𝑑𝑖
′ and arrival time 𝑎𝑖

′ are: 

𝑑𝑖
′ = 𝑅𝑖

′ × 𝑂𝐶𝑖 (2. 4) 

𝑎𝑖
′ = 𝑚𝑎𝑥(

𝑎𝑗
′

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
) + 𝑑𝑖

′ 
(2. 5) 

3. Then for the director successor gate 𝑣𝑘, its new delay 𝑑𝑘 will not change as its own 

gate size is the same, but its arrival time 𝑎𝑘
′  may change to:  

𝑎𝑘
′ = {

𝑎𝑖
′ + 𝑑𝑘 ,

𝑎𝑖
′,

          
𝑣𝑘 ∉ 𝑃𝑂
𝑣𝑘 ∈ 𝑃𝑂

 
(2. 6) 

With all the equations stated, we now evaluate the delay cost of resizing gate 𝑣𝑖 by the 

arrival time difference of its direct successor gate. Thus, we define the equation for the local 

delay difference as: 
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∆𝐷(𝑁(𝑋, 𝑥𝑖
′)) =

𝑎𝑘 − 𝑎𝑘
′

𝑣𝑘 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑖) 
 

(2. 7) 

 

With the cost measure explained, we listed the pseudo code of local delay difference 

algorithm in Figure 2. 4. In the algorithm, we iteratively examine the gates along the critical 

path, and for each gate, we explore the local delay difference of each neighboring cell, and 

find the one which will decrease the delay most and replace the gate with the new cell. And 

we keep doing the process until new further improvement.  

We will show in our experiment in Section 2.5 that our method is able to climb out of 

local minima and converge to the best solution.   

 
Algorithm 2: Local Delay Difference Algorithm 

Input: Circuit with solution set 𝑋 with critical path 𝐶𝑃 

Output:  Solution 𝑋′which minimizes the delay on 𝐶𝑃 

1. Start with initial solution set 𝑋 

2. Repeat 

3.         Foreach gate along the critical path, define the set of 𝑁(𝑋,𝑥𝑖
′) 

4.                Obtain Local Delay Difference ∆𝐷(𝑁(𝑋,𝑥𝑖
′)) 

5.         Find the 𝑁(𝑋,𝑥𝑖
′) with ∆𝐷𝑚𝑎𝑥(𝑁(𝑋,𝑥𝑖

′)) 

6.         If ∆𝐷𝑚𝑎𝑥(𝑁(𝑋,𝑥𝑖
′))  >  0,  𝑋 ← 𝑁(𝑋,𝑥𝑖

′) 

7.         Update circuit timing information 

8. Until ∆𝐷𝑚𝑎𝑥(𝑁(𝑋,𝑥𝑖
′)) ≤ 0 

9. Return 𝑋′ with minimum delay  

 

Figure 2. 4. Pseudo code for Local Delay Difference Algorithm 
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2.5 More Accurate Gate Model  

In Section 2.3, we use Elmore Delay model to illustrate our algorithm for simplicity. 

However, since Elmore delay is usually criticized for its inaccuracy, more accurate gate 

delay models are preferable for more demanding timing requirements. And modern gate 

models usually take input slews into consideration. Luckily, our approach is able to work 

with more accurate gate models. So in this section, we will show how to extend our 

algorithm to other modern delay models. Since discrete gate sizing problems are 

combinatorial, modern gate delay models can be easily adopted into our algorithm.  

With more accurate gate model, we need to modify the equations in Section 2.3. We 

generalized the gate delay of 𝑣𝑖 as 𝐷𝑖 as a function of its size, output load capacitance, and 

input slew, denoted as: 

𝑑𝑖 = 𝑓𝑖(𝑥𝑖, 𝑂𝐶𝑖, 𝐼𝑛𝑝𝑢𝑡_𝑆𝑙𝑒𝑤𝑖) (2. 8) 

Then we will repeat the equations in Section 2.3 and see how it will affect the local 

delay difference. Note that the input slew is also a function of size, output load capacitance 

and other parameters, the input slew of a gate will change its value if the sizes of its driving 

gates change. We now review the delay and arrival time of the gates in the target local gate 

set: 

1. For all the predecessor gates 𝑣𝑗  𝑤ℎ𝑒𝑟𝑒 𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)  , their new delay 𝑑𝑗
′  and 

arrival time 𝑎𝑗
′ are:  

𝑑𝑗
′ = 𝑓𝑗(𝑥𝑗 , 𝑂𝐶𝑖′, 𝐼𝑛𝑝𝑢𝑡_𝑆𝑙𝑒𝑤𝑖) (2. 9) 

𝑎𝑗
′ = 𝑎𝑗 + 𝑑𝑗

′ − 𝑑𝑗 (2. 10) 
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2. For gate 𝑣𝑖 itself, its new delay 𝑑𝑖
′ and arrival time 𝑎𝑖

′ are: 

𝑑𝑖
′ = 𝑓𝑖(𝑥𝑖, 𝑂𝐶𝑖, 𝐼𝑛𝑝𝑢𝑡_𝑆𝑙𝑒𝑤𝑖′) (2. 11) 

𝑎𝑖
′ = 𝑚𝑎𝑥(

𝑎𝑗
′

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
) + 𝑑𝑖

′ 
(2. 12) 

3. Then for the director successor gate 𝑣𝑘, its new delay 𝑑𝑘 changes as its input slew 

changes with 𝑥𝑖, but its arrival time 𝑎𝑘
′  may change to:  

𝑑𝑘
′ = 𝑓𝑘(𝑥𝑘, 𝑂𝐶𝑘, 𝐼𝑛𝑝𝑢𝑡_𝑆𝑙𝑒𝑤𝑘′) (2. 13) 

𝑎𝑘
′ = {

𝑎𝑖
′ + 𝑑𝑘

′ ,

𝑎𝑖
′,

          
𝑣𝑘 ∉ 𝑃𝑂
𝑣𝑘 ∈ 𝑃𝑂

 
(2. 14) 

 

Then with Eq. (2. 7): ∆𝐷(𝑁(𝑋)) =
𝑎𝑘 − 𝑎𝑘

′

𝑣𝑘 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑖) 
and all the equations above, 

we now can perform local delay difference for more accurate delay models. Hence, 

our algorithm can still perform with different delay models. 
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2.6 Experimental Results 

The discrete gate sizing algorithm is implemented and performed on a 3.4 GHz Intel i-

7 Core computer. We use ISCAS ’85 benchmark circuits as test cases, which are commonly 

used for circuit analysis and optimization (see [51, 52]). And we use a 22-nm technology 

cell library, and the cell library has 10 sizes for each type of gate. The 10 sizes are 1×, 2×, 

3×, 4×, 6×, 8×, 16×, 32×, 64×, 128× of the minimum size with respect to each cell type. The 

unit capacitance and resistance of each type of gate is provided by the cell library.  

First on concerning the delay performance, we compare the experimental results of our 

algorithm with the solutions of Continuous Langrangian Relaxation Algorithm [10] and 

nearest rounding. Nearest rounding algorithm obtains discrete solutions by rounding the 

continuous size solution to the nearest discrete size directly. Though Continuous Lagrangian 

Relaxation is proved to obtain the minimum continous circuit delay, it may lead to 

suboptimal solution when discetized to discrete solution. 

In Table 2. 1, we first list the minimum circuit delay from Continuous LR Solution. 

Apparently, the continuous solution gives the best circuit delay in theory, which is 

unrealistic in real life. Then from the circuit delay data of the nearest rounding part, we can 

see that nearest rounding solution usually introduces a large amout of delay cost, as it has 

an average of 14.0% more than the circuit delay of continuous LR solution, which is not 

ideal for real circuit implementation. And our algorithm of discrete gate sizing is able to 

reduce the delay by around 7.5% compared with nearest rounding, and it’s no more than 

averagely 4.9% circuit delay increment from the continuous LR solutions, which is very 

close to the optimal continuous solution.  
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To better illustrate how our algorithm reduces the delay as the iterations go on, Figure 

2. 5 and Figure 2. 6 show the circuit delay sequence of circuit c2670 and circuit c3540 from 

continuous solution with Lagrangian relaxation via nearest rounding to discrete sizing 

algorithm. For c2670, we omit iterations 34 to 795 for illustration purpose. As we can see 

in the figure, after nearest rounding, circuit delay goes up for approximately 20.5%. And for 

c3540, we omit iterations 31 to 572. And the nearest rounding will introduce 13.6% circuit 

 
 

Table 2. 1. Minimum Circuit Delay comparison of discrete sizing algorithm (DS) with 

continuous solution (CS), nearest rounding (NR). 

 Delays are in ps. 
 

  

  

Circuit 

#  

of 

gates 

  

Circuit Delay 

  

  

Delay Comparison (%) 

  

Continuous 

Solution 

(CS) 

Nearest 

Rounding 

(NR) 

Discrete 

Solution 

(DS) 

DS 

vs. 

CS 

DS 

vs. 

NR 

NR 

vs. 

CS 

1 c432 160 104.0 114.9 108.6 4.4% -5.5% 10.5% 

2 c499 202 86.0 86.5 86.1 0.1% -0.5% 0.6% 

3 c880 383 83.0 91.2 86.5 4.2% -5.2% 9.9% 

4 c1355 546 109.0 111.1 111.1 1.9% 0.0% 1.9% 

5 c1908 880 117.0 144.3 121.6 3.9% 15.7% 23.3% 

6 c2670 1193 114.0 137.4 127.3 11.7% -7.4% 20.5% 

7 c3540 1669 148.0 168.2 158.5 7.1% -5.8% 13.6% 

8 c5315 2307 137.0 151.2 143.9 5.0% -4.8% 10.4% 

9 c6288 2416 386.6 519.2 407.4 5.4% -21.5% 34.3% 

10 c7552 3512 135.4 156.1 143.0 5.6% -8.4% 15.3% 

Avg.   1327 142.0 168.0 149.4 4.9% -7.5% 14.0% 
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Figure 2. 5. Circuit delay sequence of c2670, iterations 34 to 795 are eliminated. 

(Continuous Solution -> Nearest Rounding -> Discrete Sizing) 

 
 

 
Figure 2. 6. Circuit delay sequence of c3540, iterations 31 to 572 are eliminated. 

(Continuous Solution -> Nearest Rounding -> Discrete Sizing) 
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delay as shown in the figure. And during the discrete sizing process, the circuit delay may 

increase at some iterations, which is caused by the “inaccurate” delay cost measurement of 

local delay difference. And it is because of the inaccuracy which allows the delay not to be 

trapped by the local minima and gradually reach the global optima in the end.  

To compare the runtime performance,  Table 2. 2 shows the runtime comparison of our 

algorithm (DS) with continuous solution (CS). Since our algorithm needs the continuous 

solution as the starting point, the total runtime is the sum of CS and DS. And it’s displayed 

that the runtime of DS is within average of 36.74% more than CS.  

 
Table 2. 2. Runtime Comparison between Discrete Solution and Continuous Solution.  

 Runtimes are in seconds (s). 
 

 Circuit 
# of 

gates 

Runtime Comparison 

Continuous 

Solution (CS) 

Discrete 

Solution (DS) 
DS vs. CS 

1 c432 160 0.124 0.022 17.74% 

2 c499 202 0.064 0.061 95.31% 

3 c880 383 0.204 0.080 39.22% 

4 c1355 546 0.088 0.110 125.00% 

5 c1908 880 0.204 0.082 40.20% 

6 c2670 1193 0.257 0.055 21.40% 

7 c3540 1669 1.275 0.650 50.98% 

8 c5315 2307 2.553 0.179 7.01% 

9 c6288 2416 7.396 1.144 15.47% 

10 c7552 3512 1.767 2.735 154.78% 

Avg.  1327 1.393 0.512 36.74% 
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2.7 Summary 

We have presented an approach to the discrete sizing problem of delay minimization. 

Our algorithm is able to reach highly satisfactory solution in a fast fashion as it largely 

reduces search space by only considering resizing the gates on the critical path and 

allowing a small amount of resizable cells. Most importantly, with local delay difference, 

which is used to measure the resizing delay cost, it is able to avoid local minima and finally 

reach the highly satisfactory global optimum as the iteration goes on. 

We have experimented our algorithm on 10 circuits of ISCAS ’85 benchmarks, and 

the experimental results show that this approach can handle gate sizing problem fast and 

efficiently, with a 7.5% delay improvement compared with nearest rounding method, 

which is commonly used. And the average runtime of our algorithm is within only 36.74% 

more than that of the continuous Lagrangian relaxation sizing process. 
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Chapter 3  

Post Area Optimization with Minimum 

Circuit Delay Constraint 

In this chapter, we present an approach which reduces circuit area in a quick fashion 

while maintaining its current circuit delay. We may apply this area optimization method 

after we obtain the discrete solution with minimum circuit delay using the method 

introduced in Chapter 2. In this way, we will have a solution with minimum circuit delay 

and optimized circuit area at the same time. Since this method is intended to be applied 

after running the delay minimization method, we call it as post area optimization.  

The post area optimization method is an iterative heuristic method. It starts with the 

discrete solution with minimum circuit delay obtained from Chapter 2. To reduce the 

circuit area and not to violate the minimum delay constraint, we search for possible cells 

with smaller sizes for replacement. And we use the local delay difference to measure the 

delay cost when determining whether to replace a cell or not.   

From our experiment, our method is able to reduce the area by 5.6% on the average 

and it is within 8.0% more than the optimal continuous solution. 
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3.1 Introduction 

Gate sizing is an important part in circuit design as it can be used to improve the circuit 

performance. And since the gate sizing problems has been studied for several decades, 

many researchers have been working on the problem from different aspects. Thus, we will 

first review the existing gate sizing methods.  

First of all, the existing gate sizing methods can be divided as continuous methods and 

discrete methods. The continuous methods take the gate sizes as continuous numbers, while 

the discrete methods solve the gate sizes as discrete numbers. Among the continuous 

methods [7, 9, 10, 12, 14, 19, 44], an early representative work is from Fishburn and 

Dunlop [8], who presented a sensitivity-based greedy heuristic to solve the continuous 

sizing problems. And another important work is from Chen et al [10], who solved the 

continuous sizing problem using Lagrangian relaxation, which is proved to gain the optimal 

solution.  

Then among the discrete methods, Roy et al. [48] rounded the continuous solution to 

discrete solution. Some works [23, 24, 43] used the continuous solution as a starting point. 

And some other works [34, 36, 50, 54] solve the discrete gate sizing problems directly. 

Continuous methods usually depend on the mathematical methods to solve and are proved 

get optimal solution, but the continuous solutions are impractical in real life. Discrete 

solutions are hard to solve and most existing works rely on heuristic methods, and cannot 

guarantee optimality.  

Then for the optimization goal, the existing gate sizing methods can be divided as area 

minimization, timing/delay minimization and power minimization. Among the works with 

area minimization [9, 10, 11, 24, 49], Sapatnekar et al. [9] used convex programming to 
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solve delay constrained area minimization problem. Hu et al. [24] introduces a 

continuous-solution-guided dynamic programming approach to solve cell-library-

based design problems on minimizing circuit area under delay constraint. Then in 

[49], linear programming and some heuristics are used to solve the area optimization 

problem under double-sided delay constraints. Among the works of delay minimization 

[24, 25, 34, 36, 38, 40], Coudert [34] presented a discrete gate sizing algorithm to 

minimize the maximum circuit delay by maximizing the smallest slack. Liu and Hu 

[36] propose a method to select cells by iteratively relaxation and restoration. Among 

the works of power minimization [12, 25, 29 - 33, 50], Livramento et al. [50] presents an 

algorithm for leakage power minimization based on Lagrangian Relaxation.  

In this chapter, we propose a method to optimize the circuit area while remaining the 

circuit delay. We apply the local delay difference from Chapter 2 when searching for 

available cell replacement.  

The rest of this chapter is organized as follows. In Section 3.2, we first introduce the 

notations used in the chapter and then formulate the area optimization problem. In Section 

3.3, we present the area optimization methodology with local searching for the cell 

replacement. Then we show the experimental results in Section 3.4. A summary of this 

chapter is presented in Section 3.5. 

3.2 Problem Formulation 

In this section, we will formulate the discrete gate sizing problem for area 

minimization under delay constraint. Before that, we would like to give a short introduction 

of the notations that we use in this chapter. 
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For the notations, we follow our circuit model defined in Chapter 2, where the set of 

gates is noted as 𝑉, and the set of wires that connect the gates is noted as 𝐸. And the circuit 

is modeled as a directed acyclic timing graph, noted as 𝐺(𝑉, 𝐸). The set of primary input 

gates is represented as 𝑃𝐼, and the pseudo output gate is noted as 𝑃𝑂.  And in a circuit with 

𝑛 sizable gates, each individual gate with an index 𝑖 is noted as gate 𝑣𝑖 ∈ 𝑉, where 1 ≤

𝑖 ≤ 𝑛 . And all the gates are labeled in reverse topological sorting order. And each 

individual gate comes with a size 𝑥𝑖, gate delay 𝑑𝑖 and arrival time 𝑎𝑖. And the arrival time 

of the pseudo output gate 𝑎0 is the same as the circuit delay. And we use an n-tuple vector 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) to represent the discrete sizes of all the gates in the circuit. 

We state the discrete sizing problem with area minimization as follows: given a circuit 

and solution point 𝑋 with its current circuit delay or arrival time 𝑎0 , find the optimal 

solution 𝑋∗ that minimizes the total circuit area while maintaining its circuit delay. Hence, 

the problem can be formulated as following: 

 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚:     𝐹𝑖𝑛𝑑 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) 𝑡ℎ𝑎𝑡 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 ∑𝑥𝑖

𝑛

𝑖=1

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑎𝑗 ≤ 𝑎𝑜 , ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑃𝑂 

                𝑎𝑗 + 𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉 

                𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑖 ∈ 𝑃𝐼 

                𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖   

          𝑥𝑖 ∈ 𝑆𝑖, ∀𝑣𝑖 ∈ 𝑉, 𝑖 = 1,2, … , 𝑛 
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3.3 Optimization Methodology 

We intend to reduce the total circuit area by replacing certain gates with smaller cells 

while not violating the timing constraint. Now it becomes a critical problem since each 

gate may have a few options of smaller cells and it is hard to tell which ones to be replaced. 

And it may be computationally expensive if we recalculate the circuit delay when 

evaluating the delay cost of each cell. So to reduce the computational complexity, we 

follow the concept of local delay difference introduced in Chapter 2 to help us decide which 

cell to be replaced.  

Before we describe our methodology, we would like to start with the definitions of 

some basic terms.  

A. Available Cell Set 

For the gate 𝑣𝑖 with current size 𝑥𝑖, we only consider all the cells whose sizes are smaller 

than 𝑥𝑖. So we define the set of all the available cells as 𝐴(𝑋) = {𝑥𝑖
′ < 𝑥𝑖,   | ∀𝑣𝑖 ∈   𝐺, 𝑖 =

1,2, … , 𝑛}.  

B. Delay Cost Measurement 

Again, we follow the analysis in Chapter 2 to evaluate the delay cost measurement, but 

since all the resizable cells are smaller than the current size, as 𝑥𝑖
′ < 𝑥𝑖 , and their gate 

capacitance are also smaller, as 𝑐𝑖
′ < 𝑐𝑖  , we can elaborate more features from those 

equations: 

1. For all the predecessor gates 𝑣𝑗𝑤ℎ𝑒𝑟𝑒 𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)  , their new delay 𝑑𝑗
′  and 

arrival time 𝑎𝑗
′ are:  
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𝑑𝑗
′ = 𝑅𝑗 × (𝑂𝐶𝑗 + 𝑐𝑖

′ − 𝑐𝑖) (3. 1) 

 

𝑎𝑗
′ = 𝑎𝑗 + 𝑑𝑗

′ − 𝑑𝑗  (3. 2) 

 

𝑎𝑗
′ = 𝑎𝑗 + 𝑑𝑗

′ − 𝑑𝑗 ⇒ ∆𝑑𝑗 = 𝑎𝑗
′ − 𝑎𝑗 < 0 , so the arrival time of all the 

predecessor gates will be decreased, and will not affect the arrival time of those 

gates. 

2. For gate 𝑣𝑖 itself, its new delay 𝑑𝑖
′ and arrival time 𝑎𝑖

′ are: 

𝑑𝑖
′ = 𝑅𝑖

′ × 𝑂𝐶𝑖 (3. 3) 

𝑎𝑖
′ = 𝑚𝑎𝑥(

𝑎𝑗
′

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
) + 𝑑𝑖

′ 
(3. 4) 

 

Now let’s take a look at  ∆𝑑𝑖 = 𝑎𝑖
′ − 𝑎𝑖. Concerning the value of  ∆𝑑𝑖, we have the 

following three cases: 

Case 1: ∆𝑑𝑖 = 𝑎𝑖
′ − 𝑎𝑖 ≤ 0.  

If the local delay difference is non-positive, it means that resizing the gate with a 

smaller cell will not increase the delay along the path, so we can definitely replace it 

with the new smaller cell.  

Case 2: ∆𝑑𝑖 = 𝑎𝑖
′ − 𝑎𝑖 > 0 and gate 𝑣𝑖 is on the critical path. 

Apparently replacing it will increase the entire circuit delay, so we can’t replace it 

and abort this option. 

Case 3: ∆𝑑𝑖 = 𝑎𝑖
′ − 𝑎𝑖 > 0 but 𝑣𝑖 is not on the critical path. 
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In this case, we need to further investigate the effect of the increased delay to the 

output gates of 𝑣𝑖. 

Figure 3. 1 shows an example circuit with gates 𝑣𝑖0, 𝑣𝑖1 and 𝑣𝑘, and gate 𝑣𝑖1 and 

𝑣𝑘 are on the critical path. When considering replacing gate gates 𝑣𝑖0 with a smaller 

size, we find its local delay difference  ∆𝑑𝑖0 = 𝑎𝑖0
′ − 𝑎𝑖0 > 0. Since we can not 

determine whether it will increase the entire circuit delay, we need to continue 

investigate the effete on its output gate 𝑣𝑘. For gate 𝑣𝑘, its critical input may or may 

not change because of the replacement. If 𝑎𝑖0
′ > 𝑎𝑖1, the arrival time of gate 𝑣𝑘 will 

be increased since its input arrival time has increased, thus we are not supposed to 

do this replacement. But for the case 𝑎𝑖0
′ ≤ 𝑎𝑖1, then the arrival time of gate 𝑣𝑘will 

not be changed since it input arrival time does not change, thus we can do the 

replacement. 

 
 

Figure 3. 1. An example circuit. 
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So for each gate 𝑣𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑣𝑘 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑖), we simply calculate its new added delay 

∆𝑑𝑘 = 𝑎𝑖 + ∆𝑑𝑖 − 𝑎𝐶𝐼(𝑣𝑘), 𝑤ℎ𝑒𝑟𝑒 𝑎𝐶𝐼(𝑣𝑘)  is the arrival time of critical input of 𝑣k , as 

critical input is the input gate which has the largest arrival time. Then we can propagate the 

increased delay and continue the investigation. 

We define all the three cases in a function called Replaceable. Function Replaceable 

returns true if we can replace a gate with a new cell. The pseudo code for the function is 

shown in Figure 3. 2. 

 
Function Replaceable (gate 𝑣𝑖, delay differenc ∆𝑑𝑖  ) 

Input: gate 𝑣𝑖 and its gate delay difference ∆𝑑𝑖 

Output: True if the circuit delay will not be increased with ∆𝑑𝑖. False if else. 

1. If (∆𝑑𝑖 ≤ 0)  

2.          Return true. 

3. Else 

4.         If (𝑣𝑖 is on Critical Path)     

5.                  Return false. 

6.         Else 

7.                 Foreach gate 𝑣𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑣𝑘 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑖) 

8.                                 ∆𝑑𝑘 = 𝑎𝑖 + ∆𝑑𝑖 − 𝑎𝐶𝐼(𝑣𝑘)    

9.                                 If (Replaceable(𝑣𝑘, ∆𝑑𝑘) == false)     

10.                                            return false. 

11.                  Return true. 

 

Figure 3. 2. Pseudo code for Function Replaceable 
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 The Post Area Optimization algorithm is outlined in Figure 3. 3. 

 

 

  

 
Algorithm 3: Post Area Optimization Algorithm 

Input:  Solution 𝑋 with minimum circuit delay 

Output:  Solution 𝑋∗ with same minimal circuit delay but optimized area 

1. Start with initial solution set 𝑋 

2. Repeat 

3.         Define the set of 𝐴(𝑋) 

4.         Foreach gate 𝑣𝑖 

5.                Foreach cell 𝑥𝑖
′ in 𝐴(𝑋), start from minimum size 

6.                               Obtain ∆𝑑𝑖(𝐴(𝑋)) 

7.                               If(Replaceable ( 𝑣𝑖 , ∆𝐷𝑚𝑎𝑥(𝐴(𝑋)))== true) 

8.                                        𝑋 ← 𝐴(𝑋), break 

9.         Update circuit timing information 

10. Stop until no further improvement or stop requirement is met 

11. Return 𝑋∗with minimum circuit delay and optimized area 

 

Figure 3. 3. Pseudo code for Post Area Optimization algorithm 
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3.4 Experimental Results 

We have implemented the post area optimization algorithm and performed the 

experiments on a 3.4 GHz Intel i-7 Core computer. We use ISCAS 85’ benchmark for 

circuit optimization and performance analysis. And the 22-nm standard cell library is used 

as a discrete cell library. Each type of gates has ten different cells, and they are either 1 ×,

2 ×, 3 ×, 4 ×, 6 ×, 8 ×, 16 ×, 32 ×, 64 ×,  or  128 × of the minimum size.  

 

Table 3. 1. Minimum Circuit Area and Delay Comparison of Post Area Optimization (PAO) 

with Initial Discrete Solution (DS),and Continuous Solution (CS). 

Delays are in ps. 

 

 Circuit 
# of 

gates 

Initial 

Discrete 

Solution 

Discrete 

Solution 

w/ PAO 

Continuous 

Solution 

Area 

Comparison 

Area Delay Area Delay Area Delay 

PAO 

vs.  

DS 

PAO  

vs.  

CS 

1 c432 160 364.0 108.6 348 109.4 322.2 109.1 -4.4% 8.0% 

2 c499 202 1241.0 86.1 1185 87.06 1021.2 86.2 -4.5% 16.0% 

3 c880 383 1184.0 86.5 1098 87.31 974.4 85.1 -7.3% 12.7% 

4 c1355 546 1960.0 111.1 1910 111.99 1807.4 110 -2.6% 5.7% 

5 c1908 880 1969.0 121.6 1880 122.6 1816.5 121.7 -4.5% 3.5% 

6 c2670 1193 2247.0 127.3 1961 128.3 1711.1 128.1 -12.7% 14.6% 

7 c3540 1669 2724.0 158.5 2500 159.3 2297.8 158.1 -8.2% 8.8% 

8 c5315 2307 3385.0 143.9 3300 144.8 3323.4 144 -2.5% -0.7% 

9 c6288 2416 3889.0 407.4 3685 408.4 3536.2 408.6 -5.2% 4.2% 

10 c7552 3512 4936.0 143.0 4748 143.9 4415.5 142 -3.8% 7.5% 

Avg.  1327 2389.9 149.4 2262 150.3 2122.6 149 -5.6% 8.0% 
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Table 3. 1 shows the area and delay of initial discrete solution, discrete solution with 

post area optimization (PAO) method applied, and continuous solution from area 

minimization with delay constraint based on Lagrangian relaxation [10]. In our 

experiments, we first apply the post area optimization algorithm to the discrete solution 

with minimum delay, which was introduced in Chapter 2. And we compared the area of 

PAO algorithm with the initial discrete solution. As shown in Table 3. 1, compared with 

the initial discrete solution, the circuit area after applying PAO is reduced by an average of 

5.6%, ranging from 12.7% to 2.5%.  Then to judge the efficacy of our algorithm, we 

compared our results with continuous solution which is derived from area minimization 

with delay constraint using Lagrangian relaxation [10]. And compared with the continuous 

solution, our algorithm is only within 8% more area in average. 

The post area minimization method is to shrink the size of certain gates whose size 

decrement will not affect the circuit delay. To better illustrate this idea, the histogram of 

gate size percentage for before and after PAO are shown in Figure 3. 4 and Figure 3. 5. 

And we can see that after running PAO, the percentage of smaller cells after PAO is much 

more increased.  

Table 3.2 shows the runtime comparison between the post area minimization algorithm 

and continuous area minimization algorithm with Lagrangian relaxation [10]. And the 

runtime of the two algorithms are very close as the runtime of PAO is 5.24% less on 

average.  
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Table 3.2 shows comparison between runtime of PAO and the number of gates. By 

performing a linear regression on the logarithm of the data in Figure 3. 6, we find the 

empirical runtime of PAO algorithm is about 𝑂(𝑛1.07).   

 
 

Figure 3. 4. Gate-Size percentage histogram for before and after PAO of c2670 

 

 
 

Figure 3. 5. Gate-Size percentage histogram for before and after PAO of c3540 
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Table 3.2. Runtime Comparison between Post Area Optimization (PAO) with 

Continuous Solution (CS). Runtimes are seconds(s). 

 Circuit 
# of 

gates 

Runtime Comparison 

PAO 
Continuous 

Solution (CS) 
PAO vs. CS 

1 c432 160 0.058 0.238 -75.63% 

2 c499 202 0.421 0.235 79.15% 

3 c880 383 0.279 0.452 -38.27% 

4 c1355 546 0.759 0.653 16.23% 

5 c1908 880 1.193 1.999 -40.32% 

6 c2670 1193 2.118 2.570 -17.59% 

7 c3540 1669 4.126 3.044 35.55% 

8 c5315 2307 7.985 6.839 16.76% 

9 c6288 2416 11.327 10.323 9.73% 

10 c7552 3512 17.665 22.117 -20.13% 

Avg.  1327 4.593 4.847 -5.24% 

 

 

 

 

 
 

Figure 3. 6. The runtime of PAO algorithm vs. the number of gates 
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3.5 Summary 

In this chapter, we intend to further reduce the circuit area after gaining the circuit 

solution with minimum delay using the method introduced in Chapter 2. Thus, we have 

presented a discrete gate sizing method which aims to minimize circuit area while 

remaining the minimum circuit delay. Our algorithm also applies the local delay difference 

introduced in Chapter 2 to evaluate the delay cost when selecting cell replacement, which 

is efficient as it largely reduces computational complexity.   

We have experimented our area minimization algorithm on ISCAS ’85 benchmarks, 

and the experimental results show that this approach is able to reduce the area by 5.6% and 

it is within 8.0% more than the optimal continuous solution. 
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Chapter 4 

Library-Cell-Based Discrete Gate 

Selection for Delay Minimization and 

Power Optimization 

We present a fast and efficient critical-path-based heuristic for the discrete gate sizing 

problems, which, as a first objective, minimizes circuit delay and then, as a post-processing 

step, minimizes power consumption. Experimental data also exhibit a trend of linear time 

behavior for the proposed heuristic. The approach works with discrete cell library gates 

under the constraints of input/output transition time and load capacitance, as specified in 

the timing tables of the library cells. The search space is significantly reduced by 

considering the set of resizable neighboring solutions and gates on the critical path only. A 

non-greedy method is used to assess the effect of a specific gate sizing, which allows the 

proposed heuristic to effectively climb out of local optima, and eventually lead to highly 

optimized global solutions. Then we propose a post power optimization method to further 

minimize the power consumption while retaining the minimized circuit delay. The 

experimental results show that our algorithm is able to achieve very satisfactory solutions 

and it takes less than 1 second for a circuit with about 4000 gates.   
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4.1 Introduction  

As the technology scales down and the density of transistors grows up, there is an 

increasing urge for efficient methodologies to better achieve the performance of modern 

very large scale integrated (VLSI) circuits. Thus, with the objective to optimize circuit 

performance, the gate sizing problem of selecting appropriate size for each gate has been a 

critical issue. Changing gate sizes in a circuit can significantly affect its delay, layout area 

and power consumption. Earlier researchers focused on continuous size solutions with a 

highly simplified delay model [8, 10, 11, 15, 48], however with the development of 

integrated circuit industry, developers are more concerned about selecting discrete gate sizes 

from standard cell library to optimize their circuit design [24, 28]. Therefore, it is of crucial 

importance to develop efficient algorithms, which can handle discrete gate sizing problems 

based on standard cell library to achieve the best circuit performance. 

Although only discrete gate sizing is practical and what designers really need in the IC 

industry, it is very hard to solve the discrete problem considering its NP-hard complexity, 

as described by Li [26]. So previous researchers were more focusing on continuous sizing 

problems, assuming that the circuit sizes can be any value in the continuous phrase [8, 10, 

44, 45, 17, 46]. Chen et al. [10] presents an algorithm to solve constrained continuous gate-

sizing problems by Lagrangian relaxation. With convex delay/area/power models, the 

global continuous optimal solution is guaranteed [10, 13, 11, 36, 19]. It has been shown that 

with proper reformulations, LR can also handle certain statistical timing model [47] and 

sequential circuit [11, 48].    
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It’s not long before researchers start working on the discrete sizing problems [24, 49, 

34, 38] and one commonly used approach is called Nearest Rounding [47, 48], which 

obtains an optimal continuous solution first, and then rounds the size of each gate to its 

nearest available discrete size. However, the results of NR usually introduce large increment 

of delay and leave considerable room for further improvement [24].  

Circuit performances are evaluated by a few factors, such as circuit delay, area, power 

consumption, etc. Among them, circuit delay is of vital importance in evaluating the circuit 

performance, since smaller circuit delay will lead to faster circuit speed. So we would like 

to work on the algorithms that can achieve minimum circuit delay, while previous 

researchers are more focused on the area or power minimization rather than delay 

minimization. For an example, Hu et al. [24] proposed a discrete gate sizing algorithm for 

area optimization under the constraints of maximum delay bounds. It uses a dynamic 

programming approach and reports good results. However, it is very difficult to apply their 

search space pruning technique to solve the problem of delay minimization. Then in [49], 

linear programming and some heuristics are used to solve the area optimization problem 

under double-sided delay constraints, but it does not address the problem of delay 

minimization. Livramento et al. [50 ] presents a dynamic programming algorithm for 

leakage power minimization based on Lagrangian Relaxation.  

Although the problem of circuit delay minimization has been studied before, the 

problem is still quite challenging and there is great room to improve the existing academic 

algorithms. Coudert [34] presented a discrete gate sizing algorithm to minimize the 

maximum circuit delay by maximizing the smallest slack. It is supposed to reduce the 

computational cost by evaluating the gradient of subcircuits around gates whose sizes are 



 
48 

 

 
 

being considered for changes. Also power and area optimization issues are addressed. 

However, experimental results show the results of implementing this concept can be greatly 

affected by the choice of initial gate sizes, and in many cases only limited effectiveness is 

observed. Both [34] and [24] adopt stage-based or subcircuit-based methodologies to locally 

evaluate the circuit. There are other approaches, like branch-and-bound [25], dynamic 

programming [24, 36, 38], etc. Our observations show that for delay minimization 

problems, path-based delay evaluations are much more accurate and effective since all 

delays are path-sensitive. That is the reason why we apply the path-based delay concept in 

our discrete gate size selection algorithm. 

In this work, by exploring such concept, we propose a fast and efficient technique for 

discrete gate size selection, which is able to select a proper size for each gate in a circuit 

from a standard cell library, with the aim to minimize the maximum delay of a circuit, and 

with further post-power-minimization method to keep the total power as minimum as 

possible. 

The rest of this chapter is organized as follows. In Section 4.2, we present the problem 

formulation and explain the notations we used. We introduce library-cell-based selection 

algorithm in Section 4.3.  Then in Section 4.4, we define the neighboring solution set and 

discrete delay difference algorithm which uses a fast local search method in measuring the 

delay cost. Then the post-power-optimization algorithm is presented in Section 4.5, which 

further reduces the power consumption by local searching. Experimental results are shown 

in Section 4.6. Finally a summary of this chapter is presented in Section 4.7.  
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4.2 The Disrete Gate Sizing Problem Formulation 

In this section, we will model the circuit components and formulate the discrete gate 

sizing problem. 

For a circuit with 𝑛 sizable gates, we model it as a directed acyclic graph 𝐺(𝑉, 𝐸), 

where 𝑉 is the set of individual gates and 𝐸 is the set of wires connecting the gates. We use 

𝑣𝑖 ∈ 𝑉  to denote an individual gate, where 𝑖  is the index of gate, 1 ≤ 𝑖 ≤ 𝑛 . Then 𝑃𝐼 

denotes the set of primary input and 𝑃𝑂 represents the set of primary output. Let 𝑆𝑖 be the 

set of all the cells of the same gate type (like INV, NAND2, NOR3, etc) as 𝑣𝑖. Thus, each 

gate 𝑣𝑖 has a total number of |𝑆𝑖| implementation options. For convenience, we use 𝑥𝑖 ∈ 𝑆𝑖 

to denote that the cell corresponding to size 𝑥𝑖 is in 𝑆𝑖. And we define solution point 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛) as an 𝑛-tuple vector representing the sizes of all sizable gates. 

We state the discrete library-cell-based sizing problem with delay and power 

optimization as follows: given a circuit, find an optimal solution 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗)  such 

that the worst circuit delay or the maximum arrival time of the output 𝑎𝑜 is minimized and 

the following constraints are satisfied:  

1) The input/output transition time or slew of each gate should be within a reasonable 

range 

2) The output load capacitance of each gate should be no more than the maximum load 

it is able to drive 
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3) To reduce the total power cost of the circuit, the leakage power of each gate should 

be kept as small as possible while not violating the maximum circuit delay constraint. 

Hence, the minimizing maximum delay problem can be formulated as following: 

 

where 𝑎𝑖, 𝐷𝑖  𝑎𝑛𝑑 𝑇𝑇𝑖  refer to the arrival time, gate delay and output transition time of 

gate 𝑣𝑖, respectively. 𝑎𝑜 conrresponds to the maximum arrival time at the output. 𝑀𝑖𝑛_𝑇𝑇𝑖 

and 𝑀𝑎𝑥_𝑇𝑇𝑖 are the minimum and maximum transition time of gate 𝑣𝑖. 𝑂𝐶𝑖 is the output 

load capacitance of 𝑣𝑖 , and 𝑀𝑎𝑥_𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑎𝑑_𝑐𝑎𝑝𝑖(𝑥𝑖)  is the maximum output load 

capacitance allowed for gate 𝑣𝑖 with size 𝑥𝑖. 

We refer to the lookup tables from the standard cell library to gather all the gate 

information, including the cell size 𝑥𝑖 , cell capacitance 𝑐𝑖 , max_output_load_cap, 

fall/rise_input_transition_time 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 , fall/rise delay 𝑑𝑖 . Linear interpolation is 

performed for value lookup.  Mathematically, we use function 𝑓𝑑 and 𝑓𝑇𝑇 to represent the 

delay and transition time function, and since they are the functions of input transition time, 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚:     𝐹𝑖𝑛𝑑 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) 𝑡ℎ𝑎𝑡 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝑎𝑂  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑎𝑗 ≤ 𝑎𝑜 , ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑃𝑂 

                𝑎𝑗 + 𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉 

                𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑖 ∈ 𝑃𝐼 

                𝑀𝑖𝑛_𝑇𝑇𝑖 ≤ 𝑇𝑇𝑖 ≤ 𝑀𝑎𝑥_𝑇𝑇𝑖, ∀𝑣𝑖 ∈ 𝑉 

                𝑂𝐶𝑖 ≤ 𝑀𝑎𝑥_𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑎𝑑_𝑐𝑎𝑝𝑖(𝑥𝑖), ∀𝑣𝑖 ∈ 𝑉 

                𝑥𝑖 ∈ 𝑆𝑖, ∀𝑣𝑖 ∈ 𝑉, 𝑖 = 1,2, … , 𝑛 
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output load capacitance and gate cell itself,  we have: 𝑑𝑖 = 𝑓𝑑𝑖(𝑥𝑖, 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖, 𝑂𝐶𝑖) and 

𝑇𝑇𝑖 = 𝑓𝑇𝑇𝑖(𝑥𝑖, 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖, 𝑂𝐶𝑖), and 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 is the input transition time of gate 𝑣𝑖, it  is 

defined as the maximum transition time of all its input gates, as 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 =

𝑚𝑎𝑥(
𝑇𝑇𝑗

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
).  

4.3 Optimization Methodology 

The discrete gate sizing problem is NP-hard problem [26], which is slow and 

inefficient. So instead of searching all library cells for all the gates in the circuit, we reduce 

our search space to qualified cells and gates only. 

First, our algorithm is a critical-path-based approach, since the critical path delay 

determines the worst delay of the circuit. So we put our discretization efforts on the gates 

on the critical path only. In addition, we only consider changing their sizes with neighboring 

cells, which will greatly reduce the search space and improve the efficiency of the algorithm. 

Our approach begins with assigning each gate with an initial cell from the standard cell 

library. We allow any initial sizes as long as they do not violate the timing constraints. We 

may adjust the related cells in case of violation.  Then for each gate along the critical path, 

we try different available cell sizes to see its effect on delay and determine the best one to 

replace, which will be discussed in the next section. And we keep exploring the gates on the 

same critical path. Once one critical path is fully explored with no further improvement, we 

will review the whole circuit and work on another critical path. With the best solution of the 

minimized circuit delay, we then perform the post power operation to further decrease its 

power consumption, which will be discussed in Section 4.5, and we apply the same local 
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difference method to do the fast replacement of cells that consume less power. Finally, the 

discrete selection algorithm will return a solution with minimum circuit delay and power 

consumption. 

Figure 4. 1 presents the outline of the algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Delay Minimization with Local Discrete Delay Difference 

In this section, we are to describe the technique of selecting the cells of the gates along 

the critical path based on the calculated local discrete delay difference. First we need to 

define some basic terms. 

 
Algorithm 1: Library-Cell-Based Gate Selection Algorithm  

Input: Circuit and Library Cell Information 

Output: Solution 𝑋∗ which minimizes the circuit delay and optimizes power 

1. Assign each gate with an initial cell from standard cell library 

2. Adjust sizes with input transition time and output load capacitance constraints  

3. Repeat 

4.     Update circuit timing information 

5.     Update set of critical path gates  

6.     Call Algorithm 2 to minimize delay on critical path 

7. Until no further improvement or stopping criterion is met 

8. Record solution X as the best solution of all iterations 

9. Call Algorithm 3 to do post power optimization of the X  

10. Return post power optimization result 𝑋∗ 

 

Figure 4. 1. Pseudo code for Library-Cell-Based Gate Selection algorithm 
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A. Neighboring Solution Set 

In order to narrow down the search space, instead of investigating all the standard cells 

for each gate, we only process the cells that are either one size smaller or one size larger 

than the current cell size 𝑥𝑖 . We use 𝑥𝑙  and 𝑥ℎ to represent the two cells, as 𝑥𝑙 ≤ 𝑥𝑖 ≤ 𝑥ℎ. 

If 𝑥𝑖  = min cell size, 𝑥𝑙 = 𝑥𝑖. If 𝑥𝑖  = max cell size, 𝑥ℎ = 𝑥𝑖. 

In discrete space, the solutions are combinatorial. Even with the narrowed-down 

solution space, it is still considered exponential time for testing cases with all the solutions. 

In order to make our optimization process within linear time and not to be trapped by the 

local optima, we will only change exactly one gate cell at a time in this work. If we change 

the size of gate 𝑣𝑖 from 𝑥𝑖 to 𝑥𝑙 or 𝑥ℎ, and keep all the other gates unchanged, we call it a 

resize of gate 𝑣𝑖. Hence, we define all the solution points that could be at after any single 

resize at solution point 𝑋 as its neighboring solution.  Therefore, for each solution 𝑋, the set 

of all the neighboring solutions of 𝑋  is defined as vector: 𝑁(𝑋) =

{𝑊| 𝑊 𝑎𝑛𝑑 𝑋 𝑑𝑖𝑓𝑓𝑒𝑟 𝑖𝑛 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑜𝑛𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡}.  

B. Local Discrete Delay Difference 

Then starting with current solution 𝑋 with critical path delay 𝐷(𝑋) , among all the 

neighboring vectors 𝑁(𝑋) with new delays  𝐷(𝑁(𝑋)), our problem is to find the one that 

maximizes  ∆𝐷 = 𝐷(𝑋) − 𝐷(𝑁(𝑋)), which is defined as Discrete Delay Difference. We 

call the maximum delay difference as the delay difference at solution point 𝑋, denoted as  

∆𝐷𝑚𝑎𝑥(𝑋).  

To find the 𝑁(𝑋) with ∆𝐷𝑚𝑎𝑥(𝑋), we have to resize every gate along the critical path 

respectively and calcualte ∆𝐷, which obviously requires high computational cost. So to 
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reduce the computational complexity, we introduce a target-path-based method to obtain 

the discrete delay difference, which only considers the gates directly connected to the gate 

being resized at the time. Since the method only evaluates the gate delay locally rather than 

globally, we call the obtained delay difference as local discrete delay difference, which will 

be further discussed in part D of delay cost measurement. 

C. Target Local Gate Set 

Then we followed the Target Local Gate Set defined in Chapter 2, which is greatly 

helpful in determining the local discrete delay difference. When considering measuring the 

resizing effect on a certain gate 𝑣𝑖, we only take two kinds of gates into consideration. First 

kind of gates are those gates that directly drive the gate 𝑣𝑖, which we call as predecessor 

gates. And second kind of gate is the one which is driven by 𝑣𝑖 and also on the critical path, 

which we call it as direct successor gate.    

D. Delay Cost Measurement 

With standard cell library, the delay cost measure will need some minor changes from 

the one in Chapter 2. Consider the gate 𝑣𝑖 on the critical path in Figure 2. 3, assume its 

current cell size is 𝑥𝑖 , gate capacitance is 𝑐𝑖 and arrival time is 𝑎𝑖, and we will see how to 

calculate the delay cost measurement of replacing it with a new cell 𝑥𝑖
′ with gate capacitance 

𝑐𝑖
′ . 

If we replace it with new cell 𝑥𝑖
′ , obviously it will change the capacitance, delay, 

transition time and arrival time of itself, so it will change the delay, transition time and 

arrival time of its predecessor gates. And it will further affect its direct successor gate since 
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the changed transition time will affect its delay and arrival time, too. So we would like to 

discuss the details in the following equations: 

1. For all gates 𝑣𝑗  𝑤ℎ𝑒𝑟𝑒 𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖) , their new Transition Time 𝑇𝑇𝑗
′, delay 𝑑𝑗

′ and 

arrival time 𝑎𝑗
′ are:  

𝑇𝑇𝑗
′ = 𝑓𝑇𝑇𝑗(𝑥𝑗 , 𝑚𝑎𝑥(

𝑇𝑇𝑚
𝑣𝑚 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑗)

), 𝑂𝐶𝑗 + 𝑐𝑖
′ − 𝑐𝑖) 

𝑑𝑗
′ = 𝑓𝑑𝑗(𝑥𝑗 , 𝑚𝑎𝑥(

𝑇𝑇𝑚
𝑣𝑚 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑗)

), 𝑂𝐶𝑗 + 𝑐𝑖
′ − 𝑐𝑖) 

𝑎𝑗
′ = 𝑎𝑗 + 𝑑𝑗

′ − 𝑑𝑗  

2. For gate 𝑣𝑖 itself, its new delay 𝑑𝑖
′ and arrival time 𝑎𝑖

′ are: 

𝑑𝑖
′ = 𝑓𝑑𝑖(𝑥𝑖

′, 𝑚𝑎𝑥(
𝑇𝑇𝑗

′

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
), 𝑂𝐶𝑖) 

𝑎𝑖
′ = 𝑚𝑎𝑥(

𝑎𝑗
′

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
) + 𝑑𝑖

′ 

𝑇𝑇𝑖
′ = 𝑓𝑇𝑇𝑖(𝑥𝑖

′, 𝑚𝑎𝑥(
𝑇𝑇𝑖

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
), 𝑂𝐶𝑖) 

3. Then for the director successor gate 𝑣𝑘, its new delay 𝑑𝑘
′  and arrival time 𝑎𝑘

′  are:  

𝑑𝑘
′ = {

𝑓𝑑𝑘(𝑥𝑘, 𝑇𝑇𝑖
′, 𝐶𝑘),

0,   
    
𝑣𝑘 ∉ 𝑃𝑂
𝑣𝑘 ∈ 𝑃𝑂

 

𝑎𝑘
′ = {

𝑎𝑖
′ + 𝑑𝑘

′ ,

𝑎𝑖
′,

          
𝑣𝑘 ∉ 𝑃𝑂
𝑣𝑘 ∈ 𝑃𝑂

 

Then the cost measurement of local discrete delay difference ∆𝐷(𝑋) =

𝑎𝑘 − 𝑎𝑘
′

𝑣𝑘 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑖) 
 . 



 
56 

 

 
 

With the cost measure explained, we listed the pseudo code of discrete delay difference 

algorithm in Figure 4. 2. We iteratively exam the gates along the critical path, and for each 

gate, we explore the local discrete delay difference of each neighboring cell, and find the 

one which will decrease the delay most and replace the gate with the new cell. And we keep 

doing the process until new further improvement. We will show in our experiment that our 

method is able to climb out of local minima and converge to the best solution.  

4.5 Post Power Optimization 

After discrete selection algorithm finds a solution of the minimal circuit delay, there is 

still room to further reduce the total power consumption of the circuit, by possibly replacing 

 
Algorithm 2: Local Discrete Delay Difference Algorithm 

Input: Circuit with solution set 𝑋 with critical path 𝐶𝑃 

Output:  Solution 𝑋′which minimizes the delay on 𝐶𝑃 

1. Start with initial solution set 𝑋 

2. Repeat 

3.         Foreach gate along the critical Path, define the set of 𝑁(𝑋) 

4.                  Obtain Local Discrete Delay Difference ∆𝐷(𝑁(𝑋)) 

5.                   Find the 𝑁(𝑋) with ∆𝐷𝑚𝑎𝑥(𝑁(𝑋)) 

6.                    If ∆𝐷𝑚𝑎𝑥(𝑁(𝑋))  >  0,  𝑋 ← 𝑁(𝑋) 

7.         Update circuit timing information 

8. Until ∆𝐷𝑚𝑎𝑥(𝑁(𝑋)) ≤ 0 

9. Return 𝑋′ with minimum delay  

 

Figure 4. 2. Pseudo code for Local Discrete Delay Difference Algorithm 
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the gates with lower leakage power while remaining the minimum circuit delay. So we 

obtain a method called Post Power Optimization to achieve that.  

However, the replacing and measuring process would be computationally extravagant 

if we measure the delay globally. So to improve the time efficiency, we need to reduce the 

resizable gate set and then follow the concept of local discrete delay difference in Section 

4.4.B  to minimize the total power consumption. We will start with the definitions of the 

resizable gate set, available cell set and delay cost measurement.  

A. Resizable Gate and Available Cell Set 

For the gate 𝑣𝑖  with size 𝑥𝑖  and leakage power 𝑝𝑖 , we consider all the cells whose 

leakage power  are less than 𝑝𝑖. And among those cells, we eliminate those that will violate 

the constraints of input transition time and output capacitance. So we define set of all the 

available cells as  

𝑃(𝑋) = {𝑝𝑖
′ < 𝑝𝑖 𝑎𝑛𝑑 𝑥𝑖

′ 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑖𝑛𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  

𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑜𝑎𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡| ∀𝑣𝑖 ∈   𝐺, 𝑖 = 1,2, … , 𝑛}. 

B. Delay Cost Measurement 

Again, we follow the analysis in Section 4.4.B to evaluate the delay cost measurement, 

but since all the resizable cells 𝑝𝑖
′ < 𝑝𝑖. And for cells with same threshold voltage, cells with 

less leakage power have less intrinsic capacitance, so we have their gate capacitance as 𝑐𝑖
′ <

𝑐𝑖 , we can elaborate more features from those equations: 

1. For all gates 𝑣𝑗𝑤ℎ𝑒𝑟𝑒 𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖) , their new Transition Time 𝑇𝑇𝑗
′ , delay 𝑑𝑗

′ 

and arrival time 𝑎𝑗
′ are:  
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𝑇𝑇𝑗
′ = 𝑓𝑇𝑇𝑖{𝑥𝑗, 𝑚𝑎𝑥(

𝑇𝑇𝑚
𝑣𝑚 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑗)

), 𝑂𝐶𝑗 + 𝑐𝑖
′ − 𝑐𝑖} < 𝑇𝑇𝑗 

𝑑𝑗
′ = 𝑓𝑑𝑗{𝑥𝑗 , 𝑚𝑎𝑥(

𝑇𝑇𝑚
𝑣𝑚 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑗)

), 𝑂𝐶𝑗 + 𝑐𝑖
′ − 𝑐𝑖}  < 𝑑𝑗  

𝑎𝑗
′ = 𝑎𝑗 + 𝑑𝑗

′ − 𝑑𝑗 ⇒ ∆𝑑𝑗 = 𝑎𝑗
′ − 𝑎𝑗 < 0 , so the arrival time of all the 

predecessor gates will be decreased, and will not affect the arrival time of those 

gates. 

2. For gate 𝑣𝑖 itself, its new delay 𝑑𝑖
′ and arrival time 𝑎𝑖

′ are: 

𝑑𝑖
′ = 𝑓𝑑𝑖

′ {𝑥𝑖
′, 𝑚𝑎𝑥(

𝑇𝑇𝑗
′

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
), 𝑂𝐶𝑖} 

𝑎𝑖
′ = 𝑚𝑎𝑥(

𝑎𝑗
′

𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖)
) + 𝑑𝑖

′ 

Now let’s take a look at  ∆𝑑𝑖 = 𝑎𝑖
′ − 𝑎𝑖. Concerning the value of  ∆𝑑𝑖, we have the 

following three cases: 

Case 1: ∆𝑑𝑖 = 𝑎𝑖
′ − 𝑎𝑖 ≤ 0, which means resizing the gate with a smaller cell will 

not increase the delay along the path, so we can definitely replace it.  

Case 2: ∆𝑑𝑖 = 𝑎𝑖
′ − 𝑎𝑖 > 0 and gate 𝑣𝑖 is on the critical path, apparently replacing it 

will increase the circuit delay, so we can’t replace it.  

Case 3: ∆𝑑𝑖 = 𝑎𝑖
′ − 𝑎𝑖 > 0  but 𝑣𝑖  is not on the critical path, then we need to 

investigate the effect of the increased delay to the output gates of 𝑣𝑖. So for each gate 

𝑣𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑣𝑘 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑖), we simply calculate its new added delay ∆𝑑𝑘 = 𝑎𝑖 +

∆𝑑𝑖 − 𝑎𝐶𝐼(𝑣𝑘), 𝑤ℎ𝑒𝑟𝑒 𝑎𝐶𝐼(𝑣𝑘)  is the arrival time of critical input of 𝑣k , as critical 
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input is the input gate which has the largest arrival time. Then we can propagate the 

increased delay and continue the investigation. 

The pseudo code for the three cases is defined in the function Replaceable in Figure 4. 

3. And the post power optimization algorithm is outlined in Figure 4. 4.   

 

Function Replaceable (gate 𝑣𝑖, delay differenc ∆𝑑𝑖  ) 

Input: gate 𝑣𝑖 and its gate delay difference ∆𝑑𝑖 

Output: True if the circuit delay will not be increased with ∆𝑑𝑖. False if else. 

1. If (∆𝑑𝑖 ≤ 0)  

2.          Return true. 

3. Else 

4.         If (𝑣𝑖 is on Critical Path)     

5.                  Return false. 

6.         Else 

7.                 Foreach gate 𝑣𝑘 , 𝑤ℎ𝑒𝑟𝑒 𝑣𝑘 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑖) 

8.                                 ∆𝑑𝑘 = 𝑎𝑖 + ∆𝑑𝑖 − 𝑎𝐶𝐼(𝑣𝑘)    

9.                                 If (Replacable(𝑣𝑘 , ∆𝑑𝑘) == false)     

10.                                            return false. 

11.                  Return true. 

 
 

Figure 4. 3. Pseudo code for Function Replacable 
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4.6 Experimental Results 

To evaluate the proposed discrete gate sizing technique, we implemented the algorithm 

in C++ and the experiments are performed on a 3.4 GHz Intel Core i-7 computer. We use 

the standard cell library provided by the ISPD 2012 Discrete Gate Sizing Contest [6]. The 

ISPD 2012 standard cell library includes 11 combinational gates, and each type of gates has 

3 threshold voltage (𝑉𝑡) levels and 10 sizes (drive strengths) for each 𝑉𝑡 level. In our 

 
Algorithm 3: Post Power Optimization Algorithm 

Input:  Solution 𝑋 with minimum circuit delay 

Output:  Solution 𝑋∗ with same minimal circuit delay but optimized power 

1. Start with initial solution set 𝑋 

2. Repeat 

3.         Define the set of 𝑃(𝑋) 

4.         Foreach gate 𝑣𝑖 

5.                Foreach cell 𝑥𝑖
′  in 𝑃(𝑋), start from minimum power consumption 

6.                       If replaceing 𝑥𝑖
′  will not violate the constraints 

7.                               Obtain ∆𝑑𝑖(𝑃(𝑋)) 

8.                               If(Replacable ( 𝑣𝑖, ∆𝐷𝑚𝑎𝑥(𝑃(𝑋)))== true) 

9.                                        𝑋 ← 𝑃(𝑋), break 

10.                        Else 

11.                               Continue 

12.         Update circuit timing information 

13. Stop until no further improvement or stop requirement is met 

14. Return 𝑋∗with minimum circuit delay and optimized power 

 

Figure 4. 4. Pseudo code for Post Power Optimization algorithm 
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experiment, for better comparison, we only consider the gates at the same 𝑉𝑡 level, limiting 

each gate with 10 choices of gate size, whose cell ID range from 0 to 9, as 0 is smallest cell 

size and 9 is the largest cell size. Then we use ISCAS ’85 benchmark circuits, which are 

commonly used for circuit analysis and optimization (see [51, 52]). To judge the efficacy 

of our discrete gate sizing algorithm, we consider the algorithm performance from three 

different aspects, which are delay, power, and runtime costs.  

First on concerning the delay performance, for each circuit, we did 6 test cases with 

different starting gate sizes. We set all the gates with the initial cell ID = 0, 2, 4, 6, 8 and 9, 

then compare the final circuit delay and power after running the algorithm.  In Table 4. 1, 

we listed the original circuit delay with different initial cell sizes, and the minimum circuit 

delay after running our algorithm. We can see that for each circuit, the final circuit delay 

ranges from 1.3% to 7.1%, with an average of 4.4%, which means that the algorithm is able 

to reach a final solution whose circuit delay is very close to each other, no matter what the 

initial cell sizes are.   

Then in Table 4. 2, we listed the original circuit power with different initial cell sizes 

and the circuit power after running the algorithm. And it shows that, the final circuit power 

ranges from 0.6% to 10%, with an average of 4.2%, which also proves that the algorithm is 

able to reach a final solution whose circuit power is very close to each other, no matter what 

the initial cell sizes are. So concerning both the result of circuit delay and power, we can 

conclude that our algorithm is able to reach a final solution which is very close to the optimal 

global solution, no matter what the initial sizes are. 
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Table 4. 1. Minimum Circuit Delay Comparison with Different Initial Cell Size. 
Delays are in ps. 

 

Circuit Initial Cell ID  

= 0 
Initial Cell ID  

= 2 

Initial Cell ID  

= 4 

Initial Cell ID 

 = 6 

Initial Cell ID 

 = 8 

Initial Cell ID  

= 9 
Max 

After 

Delay 

Min 

After 

Delay 

Max/ 

Min 

-1 Before After Before After Before After Before After Before After Before After 

C432 1012 701 919 701 861 703 1090 694 1328 698 1371 699 703 694 1.3% 

C499 682 557 672 531 639 558 905 558 973 569 1001 538 569 531 7.2% 

C880 1495 842 1037 858 1051 857 1360 840 1507 845 1577 844 859 840 2.3% 

C1355 1089 959 1024 981 1062 936 1374 975 1521 984 1638 977 981 936 4.8% 

C1908 1524 1167 1194 1018 1187 1067 1353 1117 1526 1098 1574 1098 1066 1018 4.7% 

C2670 1667 1015 1183 1009 1104 994 1279 1016 1516 1019 1571 1027 1027 994 3.3% 

C3540 2547 1477 1780 1467 1803 1489 1931 1506 2078 1451 2216 1461 1506 1451 3.8% 

C5315 2103 1320 1478 1342 1426 1354 1615 1330 1874 1316 2012 1366 1366 1316 3.8% 

C6288 5723 4089 5636 4086 4306 4179 4605 4096 5642 4279 6210 4320 4320 4086 5.7% 

C7552 1710 1266 1316 1250 1267 1182 1501 1240 1643 1221 1724 1200 1266 1182 7.1% 

Avg.               4.4% 

 
 

Table 4. 2. Final Power Comparison with Different Initial Cell Size. 

 

Circuit 

Initial Cell ID 

= 0 

Initial Cell ID 

= 2 

Initial Cell ID 

= 4 

Initial Cell ID 

= 6 

Initial Cell ID 

= 8 

Initial Cell ID 

= 9 
Max 

After 
Delay 

Min 

After 
Delay 

Max/ 

Min 
-1 Before After Before After Before After Before After Before After Before After 

C432 1696 2248 3748 2248 6908 2280 18068 2280 53780 2372 88460 2364 2372 2248 5.5% 

C499 3664 5072 7232 5100 14816 4864 33696 4952 74720 4896 107232 4848 5072 4848 4.6% 

C880 3028 3352 7212 3288 13408 3264 33308 3364 87936 3328 136564 3592 3592 3264 10.0% 

C1355 4464 5068 10688 4972 19766 5312 47424 5220 143680 5000 256416 5336 5336 4972 7.3% 

C1908 6116 6448 14820 6824 28228 4288 71524 6468 265544 6652 490556 6656 6824 6448 5.8% 

C2670 8668 9136 20768 9188 39420 9352 104568 9152 380312 9204 668100 9220 9352 9136 2.4% 

C3540 11844 12872 29000 12944 53520 12980 132180 13040 409384 13056 682564 13032 13056 12872 1.4% 

C5315 19608 20628 43040 20548 80896 20540 202280 20548 641764 20572 1010088 20512 20628 20512 0.6% 

C6288 19588 23432 48064 23520 84288 22952 213248 23436 681440 23080 1059376 22936 23520 22936 2.5% 

C7552 25424 26160 62048 26248 117056 26600 304068 26304 1157484 26364 2187764 26428 26600 26160 1.7% 

Avg.               4.2% 
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In Table 4. 3, we listed the minimum delay and corresponding power from our 

algorithm in Table 4. 1, and compared it with the previous work from Liu [36]. The work 

of [36] employs bi-directional solution search which searches for potential solution in the 

backward direction and prune the solution in the forward search.  However, with the new 

standard cell library where the change of the cell size may affect its input transition time, 

one problem with this method is that it is not able to predict its effect on its input side 

information, so it may cause great imprecision in searching and pruning solution. We 

implemented the JRR from [36] to obtain the minimum delay solution first and then 

minimize power with the minimum delay constraint. As the data in Table 4. 3, we can see 

the delay and power of our algorithm is 8.36% and 5.66% less than that of [36].  

Table 4. 3. Delay and Power Comparison between Our Algorithm (NEW)  

and Liu’s Algorithm [36]. Delays are in ps. 

 

Circuit 
# of 

gates 

New Liu [36] New vs. Liu [36] 

Delay Power Delay Power Delay Power 

c432 160 694 2280 870.4 2684 -20.27% -15.05% 

c499 202 531 5100 627.2 3664 -15.34% 39.19% 

c880 383 840 3364 1052.7 4574 -20.21% -26.45% 

c1355 546 936 5312 960.5 5176 -2.55% 2.63% 

c1908 880 1018 6824 1074.4 6246 -5.25% 9.25% 

c2670 1193 994 9352 1068.3 9388 -6.95% -0.38% 

c3540 1669 1451 13056 1687.9 17618 -14.04% -25.89% 

c5315 2307 1316 20572 1338.9 23904 -1.71% -13.94% 

c6288 2416 4086 23520 3837.4 30484 6.48% -22.84% 

c7552 3512 1182 26600 1227.9 27450 -3.74% -3.10% 

Avg. 1327 1304.8 11598 1374.56 13118.8 -8.36% -5.66% 
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Figure 4. 5 shows the delay sequence of circuit c880, with different initial cell IDs. As 

we can see from the figure, with different initial circuit delays, it will converge to a close 

final circuit delay as the iteration goes on, and it takes fewer iterations to reach the final 

solution if the initial cell sizes are closer to the optimal solution. 

Figure 4. 6 and Figure 4. 7 show the delay sequence of circuit c880 with initial cell ID 

= 0 and 9, and for better illustration, we only mark the delay with the first 100 and 50 

iterations. It’s shown that at some iterations, the circuit delay may be allowed to increase 

temporarily to make a better chance to lead to the better solution finally. Similar cases are 

found in sequences of other test cases. 

To evaluate the runtime performances, Table 4. 4 shows the runtime of each circuit 

with different initial cell sizes. Figure 4. 8 shows the runtime versus the # of gates. And the 

linear curve is plotted for comparison. 

 
 

Figure 4. 5. Delay Sequence of Circuit c880, with Initial Cell ID = 0, 2, 4, 6, 8,9 
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Figure 4. 6. Delay Sequence of Circuit c880, with Initial Cell ID =0 

 
 

 
 

Figure 4. 7.  Delay Sequence of Circuit c880, with Initial Cell ID =9 
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Table 4. 4. Runtime Comparison between Different Circuits with Different Initial Cell Size. 

Runtimes are in seconds (s). 

Circuit 
#of 

gates 

Initial 
Cell ID = 

0 

Initial 
Cell ID = 

2 

Initial 
Cell ID =  

4 

Initial 
Cell ID = 

6 

Initial 
Cell ID = 

8 

Initial 
Cell ID = 

9 
Avg. 

c432 160 0.04 0.03 0.04 0.05 0.04 0.05 0.04 

c499 202 0.01 0.00 0.01 0.02 0.02 0.01 0.01 

c880 383 0.05 0.04 0.04 0.04 0.05 0.06 0.04 

c1355 546 0.03 0.06 0.06 0.06 0.06 0.08 0.06 

c1908 880 0.11 0.15 0.11 0.10 0.15 0.16 0.13 

c2670 1193 0.16 0.16 0.15 0.16 0.18 0.18 0.16 

c3540 1669 0.41 0.14 0.21 0.44 0.44 0.45 0.35 

c5315 2307 0.50 0.48 0.51 0.27 0.55 0.48 0.47 

c6288 2416 2.16 2.72 2.36 2.32 2.17 2.22 2.32 

c7522 3512 0.77 0.59 0.68 0.75 0.84 0.88 0.75 

Avg. 1326.8 0.4241 0.4365 0.4156 0.4209 0.4506 0.4545 0.4337 

 
 
 

 
 

Figure 4. 8. The Comparison between Runtime and # of Gates 
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Table 4. 5 shows the runtime comparison between our algorithm (New) with Liu’s 

algorithm [36]. On average, our algorithm saves 30.84% time compared with Liu’s 

algorithm.  

  

 
Table 4. 5. Runtime Comparison between Our Algorithm (New) with Liu’s Algorithm  

[36].  

Runtimes are seconds(s). 

Circuit #of gates New Liu [36] New vs. Liu [36]  

c432 160 0.04 0.02 206.67% 

c499 202 0.01 0.063 19.05% 

c880 383 0.04 0.059 75.71% 

c1355 546 0.06 0.96 5.80% 

c1908 880 0.13 0.128 101.17% 

c2670 1193 0.16 0.099 165.15% 

c3540 1669 0.35 2.177 16.00% 

c5315 2307 0.47 1.063 43.92% 

c6288 2416 2.32 0.434 535.60% 

c7522 3512 0.75 1.27 59.11% 

Avg. 1326.8 0.4337 0.6273 69.14% 
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4.7 Summary 

In this work, we have presented a library-cell-based discrete gate sizing selection 

method for delay minimization and power optimization afterwards. Our algorithm is able to 

work fast and efficiently in minimizing the circuit delay by evaluating the local discrete 

delay difference of the target local gate set, which greatly reduces the search space. Then 

we further minimize the power consumption while retaining the minimized circuit delay 

using the similar local search on cell replacement. 

We implement our algorithm on ISCAS ’85 benchmarks with ISPD 2012 standard cell 

library, and the experimental results show that this approach is able to converge to a near-

optimal solution with different initial sizes. In addition it is able to handle about 4000 gates 

within a second, and runtime is almost linear to the number of gates. 
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Chapter 5 

Discrete Gate Sizing from Standard 

Library Cell with Modified Elmore Delay 

Model and Lagrangian Relaxation 

In this chapter, we present how to modify the classic Elmore delay model to 

characterize the lookup tables from standard cell library, and revise the existing continuous 

Lagrangian relaxation method to solve the discrete delay and power optimization problem. 

Elmore delay model was thought to be an outdated model because of its inaccuracy and its 

inability to take into account input waveforms. However, with our revision, it is able to 

adapt to the features of the updated lookup tables from the standard cell library, and keep 

its simple elegance at the same time. In our proposed method, we use a two-phase method 

that first finds the optimal continuous solution that minimizes the circuit delay by using the 

Lagrangian relaxation approach, which is fast in convergence. And then we project the 

continuous solution to discrete solution using nearest rounding with refinement and further 

reduce the power consumption by using the post power optimization method. In our 

experiment, compared with the heuristic we proposed in Chapter 4, the delay of our new 

method is within 3.8% or more and the power is averagely 0.1% less, which proves that 

the modified Elmore delay model is effective in evaluating circuit performance.  
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5.1 Introduction 

With the development of vary large scale integrated (VLSI) technology, it has been 

more and more important to have the circuit designs with optimized performance. So 

people having been researching for the techniques to optimize the circuit for a long time. 

There are a few gate sizing techniques; however, they all have certain limitations. Some 

techniques can only handle continuous solutions, while others focus on optimizing 

power/area rather than optimized the circuit delay directly. And in this work, we are 

focusing on the problem of discrete gate sizing with delay minimization. Besides, we will 

modify the classic Elmore delay model, which is replaced by lookup tables now because 

of its inefficiency and inaccuracy, and we will solve the discrete gate sizing problem using 

Lagrangian relaxation with the new model. The problem of discrete gate sizing problems 

is to assign a proper cell to each gate from a few options in the standard cell library. We 

intend to solve the constraint free delay minimization problem by assigning discrete gate 

cells from the standard cell library, which few people have done before.  

First, let us have a quick review of the gate sizing problem, which has been extensively 

studied. A lot of former researchers were focusing on solving continuous sizing problems, 

which is unrealistic in real life and impractical to manufacture. Fishburn et al. [8] used 

convex optimization technique TILOS to size transistors. Chen et al. [10] solved 

constrained continuous gate and wire sizing problems using Lagrangian relaxation, which 

was later refined by Wang et al. in [11]. Tennakoon et al. [13] utilized a gradient based 

approach with Elmore delay model.  

However, from [24], discretization of continuous solutions may lead to timing 

violations for sparse cell libraries. So nowadays people are trying to solve sizing problems 
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directly, which is more practical and accurate. But with the complexity of the problem, 

only until recently, researchers started working on the discrete sizing problems. Coudert 

[34] proposed a randomization-based greedy search algorithm. Hu et al. [24] applied a 

dynamic programming approach guided by continuous solution.  

Second, when concerning the models in solving gate sizing problems, Elmore delay 

model [2] has significant impact in the history. Elmore delay is a simply approximation in 

calculating circuit delay through an RC network. The delay of each gate is its resistance 

times its download capacitance. Because of its simplicity, Elmore delay model has been 

widely used to evaluate circuit performance and solving sizing problems. Chen et al. [10] 

built gate and wire delay more based on Elmore model. And in [13], Elmore delay model 

is adopted to formulate the problems.  

But with modern complex timing models, classic Elmore delay cannot fully 

characterize the features of current standard cell libraries. Thus nowadays, researchers tend 

to use lookup tables for describing gate delays, transition times, etc. But it is hard for 

researchers to model the lookup table. Ozdal et al. [53] proposed a graph model to capture 

library cell feature. However, we find that the Elmore delay model is still valuable and 

effective for solving gate sizing problems with its simplicity, if we properly modify the 

model to fit the features of the lookup tables, which will be discussed in the next sections.  

Furthermore, circuit performance is evaluated by delay, area, power, etc. Among them, 

circuit delay is of vital importance, since smaller circuit delay will lead to faster circuit 

speed. However, previous researchers primarily focus on optimizing power or area rather 

than delay. Nguyen et al. [54] used linear programming to minimize dynamic and static 

power. Livramento et al. [39] used a state-of-the-art method to minimize leakage power 
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with delay constraint. Liu et al. [36] proposed a systematic combinatorial approach with 

threshold voltage assignment.  

Constraint free delay minimization, which is addressed in this chapter, is very 

important but rarely studied in literature; only few researchers [10, 34, 40] have perform 

work on this, but they are either limited to continuous sizing [10], outdated delay model 

[34], or much more complicated approach than our proposed one [40].  

In this work, we have proved that the classic Elmore delay model can be modified to 

characterize the feature of the discrete lookup table, and furthermore, with its simplicity, 

we present an algorithm that is able to solve the gate sizing problems using Lagrangian 

relaxation with the modified Elmore delay model, which is efficient and guaranteed to 

converge to optimal global solution.  

The rest of this chapter is organized as follows. In Section 5.2, we first define the 

notations and terminology that we use in this work. And in Section 5.3 we show how to 

modify the classic Elmore Delay model to fit the lookup tables from ISPD 2012 standard 

cell library.  Then in Section 5.4, we present our algorithm to solve the delay minimization 

problem using Lagrangian relaxation with the modified Elmore delay model. In Section 5.5, 

we project the continuous solution to discrete field using nearest rounding with delay cost 

refinement, and we apply the post power optimization later to further reduce power 

consumption while maintaining the minimum circuit delay. The experimental results are 

shown in Section 5.6. And the summary follows in Section 5.7. 
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5.2 Preliminaries 

Before we present our algorithm, we first define the notations and terminology that we 

use in this work.  

For simplicity, we only focus on combinational circuits and ignore all the latches. And 

we only consider gates and ignore wires since current standard libraries do not provide 

lookup table for wires, so we focus on the sizing of gates only.  

 For a circuit with 𝑛 sizable gates, we model it as a directed acyclic graph (DAG). The 

DAG is represented as 𝐺(𝑉, 𝐸), where 𝑉 is the set of individual gates and 𝐸 is the set of 

wires connecting the gates. And we use 𝑣𝑖 ∈ 𝑉 to represent an individual gate in the DAG, 

where 𝑖 is the index of the gate, as 1 ≤ 𝑖 ≤ 𝑛. Concerning a circuit with 𝑠 primary inputs, 

 
 

Figure 5. 1. An illustration of circuit notations 
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we use 𝑃𝐼 to represent the set of primary inputs. And we add a pseudo output 𝑃𝑂 to connect 

all the primary outputs. Then we use reverse topological sorting to label all the gates from 

output to input, so that if gate 𝑖 is more closed to the pseudo output than gate 𝑗, then 𝑖 < 𝑗. 

Thus, in the circuit with 𝑛 resizable gates and 𝑠 primary inputs, the 𝑃𝑂 is labeled as gate 0, 

all the resizable gates are labeled from 1 𝑡𝑜 𝑛, and the primary inputs are labeled from 𝑛 +

1 to 𝑛 + 𝑠. As an example, Figure 5. 1 shows a circuit with 5 sizable gates and 3 inputs.  

Then we use 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) as an 𝑛-tuple vector to represent the discrete sizes of 

all sizable gates in the circuit. And each 𝑥𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,… , 𝑛, represents a discrete size for 

gate 𝑣𝑖 . 𝑥𝑖  is referred as the 𝑖 -th component of 𝑋 , and 𝑋  is simply referred as a 

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 in our following discussions. And for each type of gate i, it comes with a 

lower bound and an upper bound for its size, denoted as 𝐿𝑖 and 𝑈𝑖, and we have 𝐿𝑖 ≤ 𝑥𝑖 ≤

𝑈𝑖. 

For each gate 𝑖, where 1 ≤ 𝑖 ≤ 𝑛,  we use 𝑖𝑛𝑝𝑢𝑡(𝑖) to represent the set of indexes of 

components that are directly connected to the inputs of component 𝑖. And we use 𝑜𝑢𝑡𝑝𝑢𝑡(𝑖) 

to represent the set of indexes of components that are directly connected to the outputs of 

component 𝑖. In addition, for each component 𝑖, where 1 ≤ 𝑖 ≤ 𝑛 + 𝑠,   𝑎𝑖 𝑎𝑛𝑑 𝐷𝑖 are used 

to denote its arrival time and delay. 𝑂𝐶𝑖 is donoted as its output load capacitance, and we 

use 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 to denote the input transition time of gate 𝑖. We use the modified Elmore 

delay model to calculate the component delay, which will be discussed in detail in the next 

section.   
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5.3 Modified Elmore Delay Model 

In this section, we modify the classic Elmore delay model so that it fits the characters 

of the look up table from ISPD 2012 [6] standard cell library.  

First we would like to review the timing model from ISPD 2012 standard cell library. 

The cell timing delay and output transition time are implemented as lookup tables, and 

these lookup tables take the output load capacitance and input transition time as inputs and 

generate gate delay and output transition time. Mathematically, we use function 𝑑𝑖 =

𝑓𝑑𝑖(𝑥𝑖, 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 , 𝑂𝐶𝑖)   and 𝑇𝑇𝑖 = 𝑓𝑇𝑇𝑖(𝑥𝑖, 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖, 𝑂𝐶𝑖)  to represent the delay and 

output transition time of gate 𝑖. And we can use a simple 2-dimensional linear interpolation 

model for specific values from the table.  

Then let us see how to modify the classic Elmore delay to feature the ISPD 2012 

library. 

A. Delay and transition time 

Each cell from ISPD 2012 standard cell library comes with fall/rise delay and fall/rise 

transition time, which are delays and transition times for fall or rise transitions separately. 

Even though it comes with four types of look up tables, their values at each parameter are 

so close that we can use only one of the four to represent all of them. On the other hand, 

since Elmore delay model only deals with delay, we can use the delay of a gate to 

approximate its output transition time. So we have the following equations for defining the 

output transition TTi and input transition time Input_TTi using delay only: 

 𝑇𝑇𝑖 = 𝐷𝑖  

 

(5. 1) 
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𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 = 𝑚𝑎𝑥(

𝑇𝑇𝑗
𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑖)

) = 𝑚𝑎𝑥(
𝐷𝑖

𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑖)
) 

 

(5. 2) 

B. Gate model 

We keep modeling the gates as resistor-capacitor (RC) only, as shown in Figure 5. 2. 

However, we need to make some revisions on the gate capacitance 𝑐𝑖 and gate resistance 

𝑟𝑖 as follows: 

 𝑐𝑖 = �̂�𝑖 × 𝑥𝑖, where �̂�𝑖 = 1/(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑎𝑡𝑒 𝑖𝑛𝑝𝑢𝑡𝑠) (5. 3) 

 𝑟𝑖 = �̂�𝑖/𝑥𝑖 + 𝑟𝑖0 (5. 4) 

In the two equations above, �̂�𝑖 is the unit size capacitance, which is the reciprocal of 

the number of gate inputs, for examples, if gate 𝑖 is an inverter, then �̂�𝑖 = 1; if gate 𝑖 is a 

two-input NAND gate, then �̂�𝑖 = 1/2. And �̂�𝑖 is the unit output resistance, and 𝑟𝑖0 is the 

intrinsic resistance. 

C. Maximum output load capacitance limit 

Each cell from the standard library comes with a feature called maximum output load 

capacitance, which defines the maximum output load capacitance that the output pin is able 

to drive.  

 
 

Figure 5. 2. Example of RC model of an inverter 
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And we find that the maximum output load capacitance is a linear function of the cell 

size from ISPD 2012 library. Thus, we define the maximum output capacitance for gate 𝑖 

as:  

𝑀𝑎𝑥_𝑐𝑎𝑝_𝑙𝑜𝑎𝑑𝑖 = 𝑈𝑛𝑖𝑡_𝑐𝑎𝑝𝑖 × 𝑥𝑖  (5. 5) 

where 𝑈𝑛𝑖𝑡_𝑐𝑎𝑝𝑖 is the maximum capacitance that can be drive by a unit size cell.  

D. Modified Elmore Delay Model 

By deep reviewing of the lookup tables, we make some minor modifications on the 

Elmore delay model, and the new delay for gate 𝑖, where 1 ≤ 𝑖 ≤ 𝑛, is: 

 𝐷𝑖 = 𝛼𝑖(𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖) × 𝛽𝑖(𝑂𝐶𝑖) × (𝑟𝑖 ∙ 𝑂𝐶𝑖 + 𝐷0)

= 𝛼𝑖(𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖) × 𝛽𝑖(𝑂𝐶𝑖) × ((
�̂�𝑖
𝑥𝑖
+ 𝑟𝑖0) ∙ 𝑂𝐶𝑖 + 𝐷𝑖0) 

= 𝛼𝑖 ∙ 𝛽𝑖 ∙ ((
�̂�𝑖
𝑥𝑖
+ 𝑟𝑖0) ∙ 𝑂𝐶𝑖 + 𝐷𝑖0) 

 

 

 

 

(5. 6) 

In the equation above, we define 𝐷𝑖0 as the intrinsic delay of gate 𝑖, and it is the delay 

of gate 𝑖 when its output load capacitance is 0.  

As we can see from the lookup table of ISPD 2012 standard cell library, with the same 

output load, the gate delay slightly increases if the input transition time increases. So we 

use 𝛼𝑖(𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖) as a function of the input transition time of gate 𝑖 to reflect this feature. 

We can use define 𝛼𝑖(𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖)  either as a linear function of 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖  or as a 

piecewise linear function for more precision. Similarly, the delay may slightly change with 

the output load capacitance, so we use 𝛽𝑖(𝑂𝐶𝑖) to reflect the change. And we use 𝛼𝑖 and 

𝛽𝑖 to represent the two parameters 𝛼𝑖(𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖)  and 𝛽𝑖(𝑂𝐶𝑖)  for short.  
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We list the modified Elmore delay parameters in Table 5. 1. We refer to the ISPD 2012 

standard cell library to gather all the information of the gate cells and formulate those 

parameters such as cell sizes, unit resistance, unit capacitances, and intrinsic delay, etc. 

 

E. Gate Example 

We use the inverter cell in01m01 in Table 1. 2 as an example to compare our new 

delay model with the original lookup table. We list all the new delay model parameters in 

Table 5. 2. Since the transition time constraint set the slew between 5ps – 300ps and the 

maximum output load capacitance of cell in01m01 is 14.4ff, we only consider the input 

transition time between 5ps – 300ps and output load capacitance less than 16ff. And the 

new model delay for inverter cell in01m01 is listed in Table 5. 3. Table 5. 4 shows the 

delay comparison between Modified Elmore delay model and the classic Elmore delay 

model. They are very close when the input transition time and output load capacitance are  

Table 5. 1. Modified Elmore Delay Parameters 

Gate capacitance 
𝑐𝑖 = �̂�𝑖 × 𝑥𝑖 , 

where �̂�𝑖 = 1/(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑎𝑡𝑒 𝑖𝑛𝑝𝑢𝑡𝑠) 

Gate resistance 𝑟𝑖 = �̂�𝑖/𝑥𝑖 + 𝑟𝑖0 

Gate delay 
𝐷𝑖 = 𝛼𝑖(𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖) × 𝛽𝑖(𝑂𝐶𝑖) × (𝑟𝑖 ∙ 𝑂𝐶𝑖 + 𝐷𝑖0) 

= 𝛼𝑖 ∙ 𝛽𝑖 ∙ ((�̂�𝑖/𝑥𝑖 + 𝑟𝑖0) ∙ 𝑂𝐶𝑖 + 𝐷𝑖0) 

Transition time 𝑇𝑇𝑖 = 𝐷𝑖  

Input transition time 
𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 = 𝑚𝑎𝑥 (

𝑇𝑇𝑗
𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑖)

) 

= 𝑚𝑎𝑥(
𝐷𝑖

𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑖)
) 

Maximum output 
capacitance 

𝑀𝑎𝑥_𝑐𝑎𝑝_𝑙𝑜𝑎𝑑𝑖 = 𝑈𝑛𝑖𝑡_𝑐𝑎𝑝𝑖 × 𝑥𝑖 
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Table 5. 2. Modified Elmore Delay Parameters for Inverter Cell in01m01  

�̂�𝑖 1ff 

�̂�𝑖 4.465 kΩ 

𝑟𝑖0 0 kΩ 

𝐷𝑖0 10.17 ps 

𝛼𝑖(𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖) 

 

{
 
 
 

 
 
 

0.8 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 ∈ [5, 30)

0.97 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 ∈ [30, 50)
1.14 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 ∈ [50, 80)

1.35 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 ∈ [80, 140)

1.7 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 ∈ [140, 200)
2.05 𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 ∈ [200, 300)
2.5          𝐼𝑛𝑝𝑢𝑡_𝑇𝑇𝑖 = 300

 

 

𝛽𝑖(𝑂𝐶𝑖) 

 

{
 
 

 
 
1.75 𝑂𝐶𝑖 ∈ [0,1)
1.55 𝑂𝐶𝑖 ∈ [1,2)

1.4 𝑂𝐶𝑖 ∈ [2,4)
1.23 𝑂𝐶𝑖 ∈ [4,8)
1.1 𝑂𝐶𝑖 ∈ [8,16)
1 𝑂𝐶𝑖 = 16

 

 

𝑈𝑛𝑖𝑡_𝑐𝑎𝑝𝑖 14.4 ff 

 
 
 

Table 5. 3. Modified Elmore Delay for Inverter Cell in01m01 

Output 
Input Transition Time 

Load 

Capacitance 5 30 50 80 140 200 300 

0 10.17 17.2636 20.2892 24.0266 30.2558 36.4849 44.4938 

1 14.64 22.0112 25.8689 30.6342 38.5764 46.5186 56.73 

2 19.1 25.9378 30.4836 36.099 45.458 54.817 66.85 

4 28.03 33.4426 39.3037 46.5438 58.6107 70.6776 86.1923 

8 45.89 48.9646 57.5461 68.1467 85.8143 103.482 126.198 

16 81.61 79.1617 93.0354 110.174 138.737 167.301 204.025 
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far less than the maximum value, and they may vary a bit when they are reaching the 

maximum limit. Since in most cases, the input transition time and output load capacitance 

are far below the maximum value, these variations are acceptable.  

5.4 Minimizing Circuit Delay with Lagrangian Relaxation 

In this section, we solve the problem of minimizing the maximum delay in continuous 

domain with Lagrangian relaxation. We use the modified Elmore delay subject to the 

transition time constraints and output load capacitance constraints. 

In part A, we first represent how to formulate the problem. And in part B, C and D, 

the primal problem is solved by introducing Lagrangian multipliers and solving its sub and 

dual problems.  

 

Table 5. 4. Delay Comparison between Modified Elmore Delay Model and Classic Elmore 

Delay Model 

Delay Comparison (Modified Elmore Delay Model vs. Classic Elmore Delay Model) 

Output 
Input Transition Time 

Load 

Capacitance 5 30 50 80 140 200 300 

0 0.00% 5.72% 0.34% -3.16% -6.62% -5.80% -6.19% 

1 0.00% 5.57% 1.09% -1.72% -3.41% -1.92% -2.34% 

2 0.00% 2.48% 0.64% -1.93% -2.78% -0.33% -0.34% 

4 0.00% -2.33% 0.24% -0.25% -0.51% 2.95% 4.49% 

8 0.00% -6.02% 0.83% 5.60% 8.15% 12.44% 15.46% 

16 0.01% -9.85% 0.26% 9.91% 20.47% 28.62% 32.88% 
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A. Problem Formulation 

The delay of the circuit can be defined as the maximal delay of all the paths in the 

circuit. And minimizing the circuit delay is the same as minimizing the arrival time of the 

pseudo output. So the primal problem of minimizing maximum delay can be formulated as 

following: 

 

B. Lagrangian Relaxation 

We use Lagrangian relaxation procedure to solve the primal problem. For each 

constraint on arrival time, we introduce a nonnegative Lagrange multiplier 𝜆 to formulate 

a new subproblem 𝐿𝜆 as follows: 

𝐿𝜆 = 𝑎0 + ∑ 𝜆𝑗0(𝑎𝑗 − 𝑎0)

𝑗∈𝑃𝑂

+∑ ∑ 𝜆𝑗𝑖(𝑎𝑗 + 𝐷𝑖 − 𝑎𝑖)

𝑗∈𝑖𝑛𝑝𝑢𝑡(𝑖)

𝑛

𝑖=1

+ ∑ 𝜆𝑖(𝐷𝑖 − 𝑎𝑖)

𝑛+𝑠

𝑖=𝑛+1

 
 

(5. 8) 

 

𝑃𝑟𝑖𝑚𝑎𝑙 𝑃𝑟𝑜𝑏𝑙𝑒𝑚:     𝐹𝑖𝑛𝑑 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) 𝑡ℎ𝑎𝑡 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝑎𝑂  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑎𝑗 ≤ 𝑎𝑜 , 𝑣𝑗 ∈ 𝑃𝑂 ∕∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ∗/ 

                𝑎𝑗 + 𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉 

                𝐷𝑖 ≤ 𝑎𝑖, ∀𝑣𝑖 ∈ 𝑃𝐼  /∗ 𝑖𝑛𝑝𝑢𝑡𝑠 ∗/ 

                𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 , ∀𝑣𝑖 ∈ 𝑉 

                𝑀𝑖𝑛_𝑇𝑇𝑖 ≤ 𝐷𝑖 ≤ 𝑀𝑎𝑥_𝑇𝑇𝑖, ∀𝑣𝑖 ∈ 𝑉  /∗ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∗/ 

                𝑂𝐶𝑖 ≤ 𝑈𝑛𝑖𝑡_𝑐𝑎𝑝 × 𝑥𝑖 , ∀𝑣𝑖 ∈ 𝑉  /∗ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∗/ 

                     ∀𝑣𝑖 ∈ 𝑉, 𝑖 = 1,2, … , 𝑛                                                                    (5. 7)    
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Then the Lagrangian relaxation subproblem associated with the Lagrange multipliers 

λ is: 

 

Where 

𝐿𝜆(𝑥, 𝑎) = 𝑎0 + ∑ 𝜆𝑗0(𝑎𝑗 − 𝑎0)

𝑗∈𝑃𝑂

+∑ ∑ 𝜆𝑗𝑖(𝑎𝑗 + 𝐷𝑖 − 𝑎𝑖)

𝑗∈𝑖𝑛𝑝𝑢𝑡(𝑖)

𝑛

𝑖=1

+ ∑ 𝜆𝑖(𝐷𝑖 − 𝑎𝑖)

𝑛+𝑠

𝑖=𝑛+1

 

 

From the Kuhn-Tucker conditions [55], which imply 𝜕𝐿/𝜕𝑎𝑗 = 0,1 ≤ 𝑗 ≤ 𝑛 + 𝑠 for 

optimal solutions of the primal problem, we have the following optimality conditions on 

𝜆: 

1 = ∑ 𝜆𝑗0
𝑗∈𝑖𝑛𝑝𝑢𝑡(0)

 

 

 

(5. 10) 

∑ 𝜆𝑘𝑖
𝑖𝜖𝑜𝑢𝑡𝑝𝑢𝑡(𝑘)

= ∑ 𝜆𝑖𝑗
𝑗𝜖𝑖𝑛𝑝𝑢𝑡(𝑖)

, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 𝑛 + 𝑠  

(5. 11) 

 

Then for λ satisfying the conditions, we can simplify 𝐿𝑅𝑆/𝜆 to the following problem: 

 

 

𝐿𝑅𝑆/𝜆: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝜆(𝑥, 𝑎) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖, ∀𝑣𝑖 ∈ 𝑉  

                   𝑀𝑖𝑛_𝑇𝑇𝑖 ≤ 𝐷𝑖 ≤ 𝑀𝑎𝑥_𝑇𝑇𝑖 , ∀𝑣𝑖 ∈ 𝑉   

                   𝑂𝐶𝑖 ≤ 𝑈𝑛𝑖𝑡_𝑐𝑎𝑝 ∙ 𝑥𝑖 , ∀𝑣𝑖 ∈ 𝑉  

                   ∀𝑣𝑖 ∈ 𝑉, 𝑖 = 1,2, … , 𝑛                                                          (5. 9)                              
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C. Solving 𝐿𝑅𝑆/𝑢 

With the modified Elmore delay model discussed in Section 5.3, we will see how to 

solve 𝐿𝑅𝑆/𝑢  with any fixed 𝑢 ≥ 0. 

 

 

 

 

 

 

For 1 ≤ 𝑖 ≤ 𝑛, with Eq (5. 4): 𝑟𝑖 = 𝑟�̂�/𝑥𝑖 + 𝑟𝑖0, we have: 

𝐿𝑢(𝑥) = ∑ 𝑢𝑖𝑟𝑖𝐶𝑖
′

𝑛+𝑠

𝑖=𝑛+1

+∑𝑢𝑖𝛼𝑖𝛽𝑖 ∙ (𝑟�̂�/𝑥𝑖 + 𝑟𝑖0) ∙ 𝐶𝑖
′

𝑛

𝑖=1

+∑𝑢𝑖𝛼𝑖𝛽𝑖 ∙ 𝐷𝑖0

𝑛

𝑖=1

 

 

= ∑ 𝑢𝑖𝑟𝑖𝐶𝑖
′

𝑛+𝑠

𝑖=𝑛+1

+∑𝑢𝑖𝛼𝑖𝛽𝑖 ∙ (𝑟�̂�/𝑥𝑖 + 𝑟𝑖0)𝐶𝑖
′

𝑛

𝑖=1

+∑𝑢𝑖𝛼𝑖𝛽𝑖 ∙ 𝐷𝑖0

𝑛

𝑖=1

 
  

(5. 12) 

 

𝐿𝑅𝑆/𝑢: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑢(𝑥, 𝑎) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖, ∀𝑣𝑖 ∈ 𝑉  

              𝑀𝑖𝑛_𝑇𝑇𝑖 ≤ 𝐷𝑖 ≤ 𝑀𝑎𝑥_𝑇𝑇𝑖 , ∀𝑣𝑖 ∈ 𝑉   

              𝑂𝐶𝑖 ≤ 𝑈𝑛𝑖𝑡_𝑐𝑎𝑝 ∙ 𝑥𝑖 , ∀𝑣𝑖 ∈ 𝑉 

              ∀𝑣𝑖 ∈ 𝑉, 𝑖 = 1,2, … , 𝑛 

𝑤ℎ𝑒𝑟𝑒 𝑢 = (𝑢0, … , 𝑢𝑛+𝑠), 𝑢𝑖 = ∑ 𝜆𝑗𝑖  𝑗∈𝑖𝑛𝑝𝑢𝑡(𝑖)  for 0 ≤ 𝑖 ≤ 𝑛 + 𝑠, and 𝐿𝑢(𝑥) =

∑ 𝑢𝑖𝐷𝑖
𝑛+𝑠
𝑖=1  

 

 

𝐿𝑢(𝑥) =∑𝑢𝑖𝐷𝑖

𝑛+𝑠

𝑖=1

 

= ∑ 𝑢𝑖𝐷𝑖

𝑛+𝑠

𝑖=𝑛+1

+∑𝑢𝑖𝐷𝑖

𝑛

𝑖=1

 

= ∑ 𝑢𝑖𝑟𝑖𝐶𝑖
′

𝑛+𝑠

𝑖=𝑛+1

+∑𝑢𝑖𝛼𝑖𝛽𝑖 ∙ (𝑟𝑖 ∙ 𝐶𝑖
′ + 𝐷𝑖0)

𝑛

𝑖=1
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For any 1 ≤ 𝑖 ≤ 𝑛 , if 𝑗∉ 𝑖𝑛𝑝𝑢𝑡(𝑖) , 𝑢𝑗𝑟𝑗𝐶𝑗
′  is independent of 𝑥𝑖 . If 𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑖) , 

𝑢𝑗𝑟𝑗𝐶𝑗
′ = 𝑢𝑗𝛼𝑗𝛽𝑗 ∙ 𝑟𝑗 ∙ 𝑐�̂�𝑥𝑖 + terms independent of 𝑥𝑖. So we have: 

𝐿𝑢(𝑥) = ( ∑ 𝑢𝑗𝛼𝑗𝛽𝑗𝑟𝑗𝑐�̂�
𝑗∈𝑖𝑛𝑝𝑢𝑡(𝑖)

) ∙ 𝑥𝑖 +
𝑢𝑖𝛼𝑖𝛽𝑖𝑟�̂�𝐶𝑖

′

𝑥𝑖
+ 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑥𝑖  

 

 

(5. 13) 

Then the optimal value of 𝑥𝑖 is: 

𝑥𝑖
∗ = √

𝑢𝑖𝛼𝑖𝛽𝑖𝑟�̂�𝐶𝑖
′

(∑ 𝑢𝑗𝛼𝑗𝛽𝑗𝑟𝑗𝑐�̂�𝑗∈𝑖𝑛𝑝𝑢𝑡(𝑖) )
 

 

(5. 14) 

Then concerning the transition time constraints and output capacitance constraints, we 

have the following size constraints: 

 

 

 

 

Considering the modified Elmore delay model with 𝐷𝑖 = 𝛼𝑖𝛽𝑖{(𝑟�̂�/𝑥𝑖 + 𝑟𝑖𝑜) ∙ 𝐶𝑖′ +

𝐷𝑖0}, we have 

𝑟�̂�
(𝑀𝑎𝑥_𝑇𝑇𝑖/𝛼𝑖𝛽𝑖 − 𝐷𝑖0)/𝐶𝑖

′ − 𝑟𝑖𝑜
 ≤  𝑥𝑖 ≤

𝑟�̂�
(𝑀𝑖𝑛_𝑇𝑇𝑖/𝛼𝑖𝛽𝑖 − 𝐷𝑖0)/𝐶𝑖

′ − 𝑟𝑖𝑜
 

and 

𝑥𝑖 ≥ 𝑂𝐶𝑖/𝑈𝑛𝑖𝑡_𝑐𝑎𝑝𝑖 

So combing all the constraints, we set new lower bound 𝐿𝑖
∗ and upper bound 𝑈𝑖

∗ as: 

𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 

𝑀𝑖𝑛_𝑇𝑇𝑖 ≤ 𝐷𝑖 ≤ 𝑀𝑎𝑥_𝑇𝑇𝑖 

𝑂𝐶𝑖 ≤ 𝑈𝑛𝑖𝑡_𝑐𝑎𝑝 ∙ 𝑥𝑖 
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𝐿𝑖
∗ = 𝑚𝑎𝑥 {𝐿𝑖 ,  𝑂𝐶𝑖/𝑈𝑛𝑖𝑡_𝑐𝑎𝑝𝑖 ,

𝑟�̂�
(𝑀𝑎𝑥_𝑇𝑇𝑖/𝛼𝑖𝛽𝑖 − 𝐷𝑖0)/𝐶𝑖

′ − 𝑟𝑖𝑜
} 

 

  

(5. 15) 

and 

𝑈𝑖
∗ = 𝑚𝑖𝑛 {𝑈𝑖 ,

𝑟�̂�
(𝑀𝑖𝑛_𝑇𝑇𝑖/𝛼𝑖𝛽𝑖 − 𝐷𝑖0)/𝐶𝑖

′ − 𝑟𝑖𝑜
} 

 (5. 16) 

 

And combing the Eq. (5. 14), (5. 15) and (5. 16), then the optimal local resizing of 

component 𝑖 is given by the following equation: 

𝑥𝑖
∗ = 𝑚𝑖𝑛 {𝑈𝑖

∗,𝑚𝑎𝑥 (𝐿𝑖
∗, √

𝑢𝑖𝛼𝑖𝛽𝑖𝑟�̂�𝐶𝑖
′

(∑ 𝑢𝑗𝛼𝑗𝛽𝑗𝑟𝑗𝑐�̂�𝑗∈𝑖𝑛𝑝𝑢𝑡(𝑖) )
)} 

  

(5. 17) 

 

 

As proved by Chen et al. in [10], the algorithm to solve 𝐿𝑅𝑆/𝑢 always converges and 

the solution is optimal to 𝐿𝑅𝑆/𝑢. 

Hence, with a fixed 𝑢 ≥ 0, we can solve 𝐿𝑅𝑆/𝑢 by an iterative and greedy algorithm 

which resizes the gate components. Figure 5. 3 outlines the algorithm, denoted as 

𝑆𝑂𝐿𝑉𝐸_𝐿𝑅𝑆/𝑢. Initially, we set all the gates with minimum sizes. For each iteration, we 

adjust the gates one at a time. Then each time, we only adjust one gate based on Eq.(5. 17), 

and keep all the other gates fixed. Thus, we exam all the gates until they converge to the 

optimal sizes. Obviously, each iteration take 𝑂(𝑛) time. And Chen et al. [10] proved that 

the complexity of 𝑆𝑂𝐿𝑉𝐸_𝐿𝑅𝑆/𝑢 is 𝑂(𝑛). 
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Algorithm 𝑆𝑂𝐿𝑉𝐸_𝐿𝑅𝑆/𝑢 

Input: 𝑢 = (𝑢0, … , 𝑢𝑛+𝑠), and all gate information 

Output: 𝑋 = (𝑥1, … , 𝑥𝑛), which minimizes 𝐿𝑢(𝑋) 

1. Repeat 

2.      Update timing information 

3.      For each gate 𝑖, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑛 

4.           𝐿𝑖
∗ = 𝑚𝑎𝑥 {𝐿𝑖 ,   

 𝑂𝐶𝑖

𝑈𝑛𝑖𝑡𝑐𝑎𝑝𝑖
,

𝑟�̂�

(𝑀𝑎𝑥_𝑇𝑇𝑖/𝛼𝑖𝛽𝑖−𝐷𝑖0)/𝐶𝑖
′−𝑟𝑖𝑜

} 

5.           𝑈𝑖
∗ = 𝑚𝑖𝑛 {𝑈𝑖 ,

𝑟�̂�

(𝑀𝑖𝑛_𝑇𝑇𝑖/𝛼𝑖𝛽𝑖−𝐷𝑖0)/𝐶𝑖
′−𝑟𝑖𝑜

} 

6.           𝑥𝑖
∗ = 𝑚𝑖𝑛 {𝑈𝑖

∗, 𝑚𝑎𝑥 (𝐿𝑖
∗, √

𝑢𝑖𝛼𝑖𝛽𝑖𝑟�̂�𝐶𝑖
′

(∑ 𝑢𝑗𝛼𝑗𝛽𝑗𝑟𝑗𝑐�̂�𝑗∈𝑖𝑛𝑝𝑢𝑡(𝑖) )
)} 

7. Until no further improvement 

 

Figure 5. 3. Pseudo code for 𝑆𝑂𝐿𝑉𝐸_𝐿𝑅𝑆/𝑢 algorithm 

D. Adjust 𝜆 

In this part, we represent how to adjust the Lagrangian multipliers for maximizing 

𝐿𝑅𝑆/𝜆.  

Chen et al. [10] introduced the method called subgradient-based direction, which 

calculates the subgradient direction by adding the product of step size ρk and the difference 

between the current arrival time and the expected arrival time. However, this method is not 

well effective and may easily lead to negative λ in some cases. Zhou et al. [40] introduced 
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a subgradient method to update the multipliers according to the percent of the current 

arrival time to the expected arrival time. And we further refined it so that it has different 

updates depending on its locations in the circuit. We define the following equations to 

update multipliers 𝜆𝑗𝑖 , where 𝑗 ∈ 𝑖𝑛𝑝𝑢𝑡(𝑖): 

𝜆𝑗𝑖 =

{
  
 

  
 𝜆𝑗𝑖 × (

𝑎𝑗

𝑎0
)𝜌𝑘                      𝑖𝑓 𝑖 = 0     

𝜆𝑗𝑖 × (
𝑎𝑗 + 𝐷𝑖

𝑎𝑖
)𝜌𝑘          𝑖𝑓 1 ≤ 𝑖 ≤ 𝑛 

𝜆𝑗𝑖 × (
𝐷𝑖
𝑎𝑖
)𝜌𝑘      𝑖𝑓 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑠

 

 

 

(5. 18) 

 

We have outlined the pseudo code for delay minimization by Lagrangian relaxation 

(DMLR) in Figure 5. 4.  

Algorithm DMLR 

Input: Circuit and library information 

Output: Solution X with minimum circuit delay  

1. Set initial size as minimum cell size 

2. Repeat 

3.     Update timing information 

4.     Adjust 𝜆 with Eq. (5. 18) 

5.     Project  𝜆 to satisfy Kuhn-Tucker conditions: 

       

1 = ∑ λj0
j∈input(0)

 

∑ λki
iϵoutput(k)

= ∑ λij
jϵinput(i)

 

 

6.     Call  SOLVE_LRS/u to find the X 

7. Until no further improvement 

 

Figure 5. 4. Pseudo code for DMLR algorithm  
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5.5 Modified Nearest Rounding and Post Power Optimization 

In this section, we present our algorithm to project continuous solution to discrete 

solution and keep reducing extra delay cost during nearest rounding. And we apply the post 

power optimization afterwards to further reduce the power consumption. 

Our algorithm presented in Section 5.4 gives us an optimal continuous solution. After 

getting the continuous solution, we usually apply nearest rounding to project to discrete 

solution. However, during the nearest rounding, it is a hard to tell whether we should round 

up or round down the continuous size, since it may introduce extra cost when the 

continuous solution is either rounded up or rounded down. Then we propose a quick 

procedure to reduce the extra delay cost by considering resizing the gates with either one 

size up or one size down. And we use the local discrete delay difference introduced in 

Chapter 4 to calculate delay cost, which is much more time efficient.  

The pseudo code of Modified Nearest Rounding (MNR) is outlined in Figure 5. 5. 
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Algorithm MNR 

Input: Continuous solution 𝑋 with minimum circuit delay 

Output: Discrete solution 𝑋’ 

1. Project continuous solution 𝑋  to discrete solution 𝑋′  using classic nearest 

rounding   

2. Foreach gate 𝑖 

3.      𝑣𝑖 . 𝑟𝑒𝑠𝑖𝑧𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒 

4. Repeat 

5.     Update timing information 

6.     Foreach gate 𝑖 

7.          If 𝑣𝑖. 𝑟𝑒𝑠𝑖𝑧𝑎𝑏𝑙𝑒 == 𝑡𝑟𝑢𝑒 

8.                  Find ∆𝐷𝑚𝑎𝑥(𝑖) 

9.      𝑥𝑖 = 𝑥𝑖
′ , and 𝑣𝑖 . 𝑟𝑒𝑠𝑖𝑧𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒 

10. Until no further improvement 

 

Figure 5. 5. Pseudo code for Modified Nearest Rounding algorithm 

 

 

Our entire algorithm of discrete gate sizing with Lagrangian relaxation (DSLR) is 

outlined in Figure 5. 6. 

Algorithm DSLR 

Input: Circuit and library information 

Output: Solution 𝑋∗′ with minimum circuit delay and optimized leakage 

power consumption 

1. Call DMLR to find the continuous solution 𝑋 with minimum circuit delay 

2. Call MNR to project continuous solution 𝑋  to discrete solution 𝑋′ 

3. Apply post power optimization to further reduce power consumption 

 

Figure 5. 6. Pseudo code for discrete gate sizing with Lagrangian relaxation 
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5.6 Experimental Results 

We implemented the algorithm in C++ and the experiments are performed on a 3.4 

GHz Intel Core i-7 computer. We use the test circuits from ISCAS 87’ benchmark, and the 

standard cell library provided by the ISPD 2012 Discrete Gate Sizing Contest [6].  

Table 5. 5. Circuit Delay and Power Comparison between Our Algorithm and Discrete 

Optimal Solution. Delays are in ps. Powers are in uW. 

 

Circuit 

# 

Of 

Gate 

Continuous 

Solution 

Nearest 
Rounding with 

Adjustment 

Post Power 
Optimization 

Discrete 
Optimal 

Solution from 
Algorithm in 

Chapter 4 

Comparison 

Our Algorithm 
vs.Heuristics in 

Chapter 4 

Delay Power Delay Power Delay Power Delay Power Delay Power 

C432 160 799 7577 759 6790 753 2152 694 2280 +8.4% -5.6% 

C499 202 473 9979 565 10432 565 4864 531 5100 +6.4% -4.6% 

C880 383 818 8863 885 6094 884 3340 840 3364 +5.2% -1% 

C1355 546 791 16422 878 12064 868 5072 936 5312 -7.2% -4.5% 

C1908 880 816 20092 1055 16846 1054 7104 1018 6824 +3.6% +4.1% 

C2670 1193 786 13213 1020 15408 1020 9154 994 9352 +2.6% -2.1% 

C3540 1669 1090 22344 1518 24446 1518 13230 1451 13056 +4.6% +1.3% 

C5315 2307 1031 28193 1447 32838 1446 20474 1316 20572 +9.9% -0.05% 

C6288 2416 2759 25688 4151 64552 4151 26216 4086 23520 +1.6% +11.5% 

C7552 3512 950 31584 1227 35452 1217 26608 1182 26600 +2.9% 0.0% 

Avg. 1327 1031 18395 1350 22492 1348 11821 1305 11598 +3.8% -0.1% 
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Table 5. 5 shows the delay and power in each stage of our algorithm. We listed the 

delay and power after continuous solution, nearest rounding with adjustment, and after post 

power optimization. And we compare those with the discrete optimial solution  from the 

heuristic algorithm in Chapter 4. As we can see from the table that on average, the delay of 

our new algorithm is within 3.8% more than the minimum solution of the algorithm in 

Chapter 4. And the power is averagely 0.1% less than the optimal solution of the algorithm 

in Chapter 4, which proves that our algorithm is effective in calculating the minimum delay 

with optimized power.  

 

 
Table 5. 6. Delay and Power Comparison between Our Algorithm (NEW) and 

Liu’s Algorithm [36]. Delays are in ps. Powers are in uW. 

 

Circuit 
New Liu [36] New vs Liu [36] 

Delay Power Delay Power Delay Power 

c432 752.6 2152 870.4 2684 -13.54% -19.82% 

c499 564.8 4864 627.2 3664 -9.95% 32.75% 

c880 884.0 3340 1052.7 4574 -16.02% -26.98% 

c1355 868.4 5072 960.5 5176 -9.59% -2.01% 

c1908 1054.5 7104 1074.4 6246 -1.86% 13.74% 

c2670 1020.0 9154 1068.3 9388 -4.52% -2.49% 

c3540 1517.5 13230 1687.9 17618 -10.09% -24.91% 

c5315 1446.4 20474 1338.9 23904 8.03% -14.35% 

c6288 4150.6 26216 3837.4 30484 8.16% -14.00% 

c7552 1216.7 26608 1227.9 27450 -0.91% -3.07% 

Average 1347.5 11821.4 1374.6 13118.8 -5.03% -6.11% 
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And to validate the effectiveness of our algorithm, we also compared our 

algorithm with the previous work from Liu and Hu [36], who proposed a method that 

employs bi-directional solution search.  However, the method cannot predict the 

effect of cell change on its input side, which causes imprecision in searching and 

pruning solution. We implemented the JRR from [36] to obtain the minimum delay 

solution first and then minimize power with the minimum delay constraint. As the 

data Table 5. 6, we can see the delay and power of our algorithm is 5.03% and 6.11% 

less than that of [36].  

 

 
 

Figure 5. 7. Delay sequence of circuit c1355, c1908 and c2670. 

Delays are in ps. 
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Figure 5. 7 shows the delay sequence of circuit c1355, c1908 and c2670. As we can 

see, the delay decreases as the iterations go on, and finally converges to the optimal solution. 

And it usually takes more iterations to converge for circuits with more gates.  

To compare the runtime performances, Figure 5. 8 shows the runtime versus the 

number of gates. And polynomial curve is plotted for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

Figure 5. 8. Runtime comparison vs. # of gates. 

Runtimes are in seconds(s). 
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5.7 Summary 

In this work, we have modified the classic Elmore delay model so it fits the features 

of the lookup tables from ISPD 2012 standard cell library. And we have presented a new 

algorithm to solve the discrete gate sizing problems by reusing the Lagrangian relaxation 

method, which was previously used to solve the continuous gate sizing problems only. We 

have presented how to use the modified Elmore delay model to minimize circuit delay for 

combinational circuit using the revised Lagrangian relaxation approach. And we also take 

consideration of the input transition time constraints and output load capacitance 

constraints. The Lagrangian relaxation approach is composed of two subproblems, denoted 

as the Lagrangian relaxations subproblem and the Lagrangian dual problem. With the 

Kuhn-Tucker conditions, we can solve the Lagrangian subproblem with an iterative 

algorithm, which is approved to converge to the global optimal. The classical subgradient 

optimization method is used to update the Lagrangian multipliers.  

The experimental results show that the revised Lagrangian relaxation method with the 

modified Elmore delay model is able to achieve the minimum delay within 4% more of the 

optimal values.  
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Chapter 6  

Conclusion 

6.1 Summary 

In this work, we have a thorough review of the gate sizing problem, which evolved 

from continuous solutions to discrete solutions, and it has been studied with different 

methods and techniques, which are applied to solve the delay, area, power consumption 

etc. However, the existing works all have their limitation; some are dedicated to solving 

unrealistic continuous problems, and others can only handle outdated simple delay model. 

Hence, all the limitations challenge us to explore better ways to solve the problem. 

In this work, we have proposed a series of discrete sizing methodologies which can be 

applied to improve circuit performance with different optimization concerns and deal with 

different modern gate models.  

In Chapter 2, we have proposed an algorithm which directly solves the discrete gate 

sizing problem with delay minimization. We use local delay difference to evaluate the 

delay cost when selecting cell replacement, which is much faster than global search. And 

another great thing about the local search is that it is able to avoid trapped at the local 

minima and reach the highly satisfactory global solution. And our algorithm is only within 

4.9% more than the optimal continuous solution.  

In Chapter 3, we have proposed a method to optimize the circuit area while 

maintaining the minimum circuit delay. We also apply the local delay difference in 
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searching for appropriate smaller cells locally, which takes much less time compared with 

that uses global search.  

In Chapter 4, we have proposed a two-phase optimization method, which is able to 

minimize the circuit delay in phase 1 and reduce the power consumption in phase 2. This 

method works with the lookup tables from standard cell library. A unique part of this 

method is that it is able to handle the constraint of input slews and output load capacitance, 

which no existing techniques can do now. 

In addition to algorithms, we also deal with the problem from the modeling aspect in 

Chapter 5. We modified the classic Elmore delay model so that it not only captures the 

features of the standard cell library model, but also keeps its original simplicity at the same 

time. With our modified new gate model, we are able to solve the discrete problem using 

continuous Lagrangian relaxation, which was thought to solve continuous sizing problem 

only. But now, with our new model, it is easier to solve and implement other discrete sizing 

problems. 

As a conclusion of this work, we have proposed a series of methods which can be 

applied to solve the discrete gate sizing problems with different optimization aims. They 

are able to deal with modern accurate gate models, like lookup tables from standard cell 

library. And we used the latest standard cell library information for experiments and 

comparisons.  Compared with other existing works, our methods are more flexible and 

robust as they can deal with more complicated models and it takes much less time to run. 

And we contribute to the discrete gate sizing field by providing our experiments, and we 

welcome any advice, judgment and critics.  
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6.2 Suggestions for future work 

We may suggest continuing the research of discrete gate sizing from the following 

main aspects: 

1. Circuit optimization with double-sided delay constraint 

In our current work, the circuit delay only has one maximum delay constraint, as an 

upper bound of delay constraint, and we allow the circuit delay to be as minimum as it 

could be. However, sometimes the circuit delay is required to be more than a certain 

amount of time. For example, the signal should hold up more than the hold time. So we 

may set a minimum delay constraint for the circuit, as the lower bound of delay 

constraint. Thus, we may improve our work so that it can deal with both maximum 

(upper bound) and minimum delay (lower bound) constraint, or we call it as double-

sided delay constraint.  

To solve this problem, our initial idea is to define the gates on the shortest path, as the 

delay of the shortest path determines the shortest delay. And we may applied the 

algorithm proposed in Chapter 2, Chapter 3 and Chapter 4 to search for the best cell 

replacement on the shortest path and optimize the circuit delay, area or power 

consumption.   

However, some gates may be on both the critical path and shortest path, and the change 

of their sizes may violate either of the constraint, which makes it more complicated 

than the one-sided constraint. Thus, we need to see how to solve this problem and make 

it work for the double-sided constraints. 

2. Separate delay constraint at output nodes 
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In this dissertation research work, we assume all the output nodes in the circuit has the 

same delay constraints, and we use a pseudo output node connecting all the output 

nodes, thus we can easily define the critical path by starting from the pseudo output 

node and trace back to the input nodes.  

In the future, we may want to separate the delay constraint of each output node, which 

is apparently more versatile for circuit design. But the challenge is that it may be hard 

to define the critical path if each output node has different delay requirement. And since 

our proposed methods are critical-path based sizing algorithms, we may need to do 

further work on that part. 

3. Combine threshold voltage assignment in gate selection 

There are many existing works optimizing leakage power consumption using threshold 

voltage assignment. And surely we can also combine the threshold voltage assignment 

into our methods.  

4. Keep refining the gate model with the modern cell library 

We will keep refining our proposed gate model in Chapter 5 so that it will always stay 

updated with the features of new modern cell library in the future. And we need to keep 

refining our method with the development of the VLSI industry.  

In addition to the aspects above, since the VLSI industry will keep improving, there 

always will be new issues and concerns coming out for gate sizing problems in circuit 

design, such as more accurate gate models, or other versatile timing constraints, etc. We 

always need to keep refining our methods so that it will keep updated with the development 

of the industry.  
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