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Abstract 

        Flood-sourced turbidites (i.e. hyperpycnites) preserved in lake basins are proven indicators 

of hydrologic changes, yet their usefulness as recorders of tropical paleoclimate variability has 

long been overlooked. The primary focus of this dissertation research is to investigate the late 

Quaternary hydroclimatic changes in tropical Africa, using hyperpycnites, dated sediment cores, 

and high-resolution seismic reflection profiles from Lake Kivu in the East African Rift and Lake 

Bosumtwi in equatorial West Africa. A secondary focus of this dissertation is to image ancient 

turbidite systems of the Lake Albert rift in East Africa, using 2-D and 3-D seismic reflection 

data, and to assess the structural controls on turbidite sedimentation. 

        Reoccurring megaturbidites (covering >200 km2) over the past ~12 k.y. were revealed by 

integrating seismic reflection data and sediment core results from Lake Kivu, which is subject to 

potential limnic overturns and degassing events. Sedimentological evidence and seismic and 

lake-floor bathymetric data suggest that the turbidites were sourced by hyperpycnal river flows 

during exceptional floods. Time series of turbidite bed-thickness and accumulation rate were 

generated and compared with regional paleohydrologic records of tropical East Africa, and it is 

found that the temporal occurrence of the turbidites is climatically controlled. It is also suggested 

that extreme floods in Lake Kivu’s recent history may have triggered deep mixing events, and 

that potential geologic hazards associated with extraordinary turbidity currents may pose a risk to 

the current gas-extraction efforts in the lake.  



 
 

        To further evaluate the effectiveness of lacustrine hyperpycnites as indicators of tropical 

African hydroclimatic changes, a 65 k.y. record of extreme hydrologic events in equatorial West 

Africa was reconstructed, using flood-sourced turbidites, seismic and sedimentological lake-level 

indicators, and paleohydrologic proxies, including total organic carbon and carbon isotopes, from 

the Lake Bosumtwi impact crater. Peak turbidite sedimentation is found to correlate with 

intervals of high TOC and markedly negative δ13C values, suggesting that the turbidites were 

deposited during periods of high lake-levels. The multi-proxy paleohydrologic record from Lake 

Bosumtwi suggests that over the past 65 k.y., millennial-scale variability of hydrologic extremes 

in equatorial West Africa was linked to North Atlantic climate, with exceptional rainfall events 

linked to Dansgaard–Oeschger interstadials and megadrought events associated with slowdowns 

of the North Atlantic Meridional Overturning circulation during Heinrich stadials.  

        Finally, 2-D and 3-D seismic reflection data from the Lake Albert Rift were analyzed to 

assess turbidite sedimentology in tectonically active rift lakes. Large channelized turbidite 

systems were observed and characterized in 3-D seismic data using seismic attribute analyses. In 

the absence of sediment failures and related mass transport deposits from the seismic record, it is 

postulated that the turbidites were sourced by hyperpycnal river flows during floods, and that 

there was a change in the sediment source of the turbidites, caused by drainage reversals due to 

rift shoulder uplift.  Sediment dispersal pathways, changes in depositional facies, and evolution 

of the sublacustrine turbidite systems are largely controlled by syndepositional tectonism in that 

system. 
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Preface  

        Knowledge of long-term variations of floods and droughts in tropical Africa is of 

ecological, political, and socioeconomic importance, and is essential for understanding the 

effects of climate change on evolution and migration of prehistoric humans within and out of the 

Africa continent. Previous studies have established chronologies of extreme hydrologic events 

using records of flood-sourced turbidites from mid- and high-latitude lakes. However, lacustrine 

turbidites as recorders of tropical paleoclimate variability have long been overlooked. Turbidites 

comprise a large fraction of the sediment volume of lacustrine rift basins, yet, compared to 

submarine turbidite systems on passive continental margins, turbidite systems from tectonically 

active, lacustrine rift basins are underexplored.  

        This research was designed to explore the usefulness of lacustrine turbidites as indicators 

hydroclimatic changes in tropical Africa, and to advance understanding of turbidite 

sedimentology in lacustrine rift basins. This dissertation is divided into three chapters. 

        Chapter 1 assesses the climatic control of late Quaternary turbidite sedimentology of Lake 

Kivu and the potential consequences of extraordinary turbidity currents, which may have 

triggered deep mixing events in Kivu’s recent history, and which pose a risk to the current 

degassing efforts in the lake. This chapter was published as:  

Zhang, X., Scholz, C. A., Hecky, R. E., Wood, D. A., Zal, H. J., and Ebinger, C. J., 2014,   

Climatic control of the Late Quaternary turbidite sedimentology of Lake Kivu, East Africa: 

Implications for deep mixing and geologic hazards: Geology, v. 42, p. 811-814. 



xii 
 

        Chapter 2 further assesses the effectiveness of lacustrine turbidites for reconstruction of 

hydrologic and climatic changes in tropical Africa. For the first time, a record of exceptional 

floods and droughts in equatorial West Africa (over the past 65 k.y.) was generated, using 

lacustrine turbidites, total organic carbon, carbon isotopes, and high-resolution seismic reflection 

data from the Lake Bosumtwi impact crater. Chapter 2 provides new insight into the dynamics of 

the West African Monsoon system, and the teleconnection between northern high-latitude 

climate instability and millennial-scale hydrological extremes in equatorial West Africa. This 

chapter is to be submitted as: 

        Zhang, X., Scholz, C. A., Mckay, N. P., Shanahan, T. M., Heil, C. W., Overpeck, J. T., King,  

        J., and Peck, J., Millennial-scale extreme hydrologic events in equatorial West   

        Africa linked to North Atlantic climate: Nature. 

 

        Using commercially acquired 2-D and 3-D seismic reflection data, Chapter 3 seeks to 

make quantitative comparisons of the planform morphology between sublacustrine turbidite and 

subaerial fluvial systems, and to determine the source of turbidity currents and the structural 

control of turbidite sedimentology in the Lake Albert rift. This chapter is currently in review as: 

        Zhang, X. and Scholz, C. A, Sublacustrine turbidite systems of the Lake Albert Rift, East  

        Africa, from seismic reflection data: Sedimentary Geology. 
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CHAPTER 1:  

Climatic control of the late Quaternary turbidite sedimentology of Lake Kivu, East Africa: 

Implications for deep mixing and geologic hazards 

 

Xuewei Zhang1*, Christopher A. Scholz1, Robert E. Hecky2, Douglas A. Wood1, Hubert J. Zal3, 

and Cynthia J. Ebinger3 

 

1Department of Earth Sciences, Syracuse University, Syracuse, New York 13203, USA 

2Large Lakes Observatory, University of Minnesota, Duluth, Minnesota 55812, USA 

3Department of Earth and Environmental Sciences, University of Rochester, Rochester, New 
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*E-mail: xzhang39@syr.edu 
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Abstract 

        The Lake Kivu catchment in the East African Rift is subject to various geologic hazards, 

including frequent volcanic eruptions, earthquakes, and potential limnic overturns and degassing 

events. Integration of high-resolution seismic reflection data, 14C-dated sediment cores, and lake-

floor bathymetry reveals large axial and transverse turbidite systems in the eastern basin of the 

lake. The turbidites were sourced by hyperpycnal river flows during exceptional floods, and the 

temporal occurrence of the turbidites was climatically controlled. The turbidite record over the 

past ~12 k.y. is correlated with the regional paleohydrologic records from tropical East Africa. 

Our study suggests that flood-introduced turbidites preserved in deep lakes are indicators of 

hydrological changes, and that extreme floods in Lake Kivu’s recent history may have triggered 

deep mixing events. This study also has implications for the current degassing efforts in Lake 

Kivu; potential geologic hazards may be triggered by extraordinary turbidity currents, and need 

to be considered in the design and deployment of gas extraction facilities. 
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Introduction and Geological Setting 

        Turbidity currents can be initiated by sediment failures on slopes; by pyroclastic flows 

during volcanic eruptions; and by hyperpycnal river flows during floods (Meiburg and Kneller, 

2009). Because hyperpycnal flows are related to climate through flood frequency and magnitude, 

their deposits record climate changes (Mulder et al., 2001). Previous investigations have 

established chronologies of extreme hydrologic events using records of terrigenous inwash in 

mid- and high-latitude lakes (e.g. Noren et al., 2002; Schillereff, et al., 2014). However, flood-

triggered hyperpycnal flow deposits (i.e. hyperpycnites) as indicators of hydrological changes in 

tropical Africa have long been overlooked. Lake Kivu in the East African Rift provides an 

excellent opportunity to study how climate influences the temporal occurrence of hyperpycnite 

sedimentation in tropical African lakes. 

        Situated on the Precambrian metamorphic basement, Lake Kivu (2°S, 29°E; Fig. 1) 

occupies an asymmetric half-graben, and is about 100 km long, 45 km wide, and 480 m deep. 

Extension and volcanism in the Kivu rift began in the middle to late Miocene (Ebinger, 1989). 

During the Pleistocene, eruptions of the Virunga volcanoes dammed the lake’s northward 

outflow to Lake Edward, and the water accumulated in the rift valley to form the present Lake 

Kivu (Beadle, 1981). Modern Lake Kivu discharges south to Lake Tanganyika through the 

Ruzizi River, and is the major contributor to Lake Tanganyika’s hydrological and solute budget 

(Stoffers and Hecky, 1978).  
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        Volcanic and hydrothermal activity has greatly influenced the chemistry and stratification 

of the lake water, accounting for elevated solute concentrations (Degens and Kulbicki, 1973) and 

enrichment of dissolved gases (Schmid et al., 2005). Vertical profiles of temperature and 

dissolved substances indicate the presence of hundreds of double-diffusive staircases, with the 

steepest density gradient occurring at 260 m depth (Schmid et al., 2010). Recent measurements 

of gas concentrations show that ~300 km3 of CO2 (at STP, equivalent to ~0.6 GT) and 60 km3 of 

CH4 (~0.04 GT) are present in the lake's permanently stratified deep water (Schmid et al., 2005). 

A release of these gases would have deadly consequences for the riparian population in the 

Democratic Republic of the Congo and Republic of Rwanda (herein Rwanda), and may have 

occurred in the past in Lake Kivu (Haberyan and Hecky, 1987). Despite its modern depauperate 

fauna, diminished due to past overturn events (Haberyan and Hecky, 1987), Lake Kivu is the 

ancestral reservoir and ultimate source of thousands of endemic species observed in the other 

Great Lakes of East Africa (Verheyen et al., 2003). A gas-extraction project is under 

development in the territorial waters of Rwanda, attempting to extract CH4 from the deep water 

for electrical power generation of as much as to 25 MW in the near term, potentially altering lake 

dynamics. This study assesses the late Quaternary turbidite sedimentology of Lake Kivu, and the 

potential consequences of extraordinary turbidity currents. 
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Data and Methods 

        A dense grid of high-resolution seismic reflection profiles, including CHIRP (compressed 

high-intensity radar pulse; 4 - 16 kHz) and single-channel air gun (50 - 450 Hz) data, was 

collected in the eastern basin of Lake Kivu during 2010-2012 (Supplementary Fig. 1). Turbidite 

lithofacies and ages were determined from 14C-dated sediment cores (Supplementary Tables 1 

and 2), collected using a Kullenberg piston corer during 2012-2013 and logged with a GeoTek 

Multi-sensor Core Logger. The spatial distribution of turbidites was determined by integration of 

seismic and sediment core data (Fig. 2). Grain size and smear slide analyses were performed to 

study the composition and texture of the turbidite sediments. A Digital Elevation Model of the 

Kivu rift and single-beam bathymetric data were used to delineate onshore drainage basins and 

their subaqueous extensions (Fig. 1), and to determine the source of turbidity currents. Time 

series of turbidite bed-thickness and accumulation rate were compared with regional 

paleohydrologic records to understand the climatic forcing of turbidite sedimentation. 

 

Geochronology  

        Accelerator Mass Spectrometry 14C dates from 14 terrestrial plant macrofossils were used to 

constrain the core age models (Supplementary Table 1; Supplementary Fig. 2). The presence of 

numerous stratigraphic markers, including volcanic ashes, turbidites, and sedimentary laminae 

with distinctive appearance and composition, enables core-to-core correlation at a high 
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confidence level (Fig. 3; Supplementary Fig. 3), and the development of age models of 

individual cores. 

 

Turbidite Systems 

        Axial and transverse channel-lobe systems were revealed by seismic reflection data from 

two stratigraphic intervals (Fig. 2；Supplementary Fig. 4). Integration of seismic and core data 

demonstrates that most thick turbidites identified in the sediment cores are clustered within these 

two intervals (Fig. 3). The axial turbidite systems of the two intervals display similar 

depositional patterns: leveed-channels developed within a major paleo-river valley and transited 

basinward to elongate lobes, which are >30 km long and cover >200 km2 (Figs. 1, 2A, and 2B). 

The best example of a transverse turbidite system was found in the northern part of the Eastern 

Basin, where overbank sediment waves were observed on the levees of the transverse channel 

(Figs. 1 and 2C).  

        Approximately 40 unique turbidite events were identified in the sediment cores that sample 

the past ~12 k.y. Most turbidites deposited by individual turbidity-flow events can be correlated 

between cores separated more than 30 km, but vary significantly in thickness (Fig. 3). Individual 

turbidite thickness in the sediment cores ranges from 0.1 to >100 cm, with thick turbidites 

commonly capped by diatomites. Maximum sediment volume in a single event is ~4 × 107 m3. 

The turbidite sediments are silt- to coarse sand-sized (Supplementary Figs. 5 and 6), and 

moderately sorted. Rip-up clasts and centimeter-thick pieces of previously deposited mud are 
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abundant in proximal channel and levee deposits, as well as in distal lobe deposits. Their 

presence indicates the erosive and hyperpycnal nature of the turbidity currents. Interflow 

behavior is also expected. As turbidity flows move basinward, the upper, low-density part of the 

turbidity currents may become detached, and travel along the chemocline as an interflow. Both 

normal and reverse-to-normal grading were observed on grain size profiles of individual turbidite 

events (Supplementary Fig. 6). The terrigenous mineral components of the turbidite sediments 

include quartz, muscovite, and feldspar grains derived from onshore metamorphic basement 

rocks. Terrestrial plant macrofossils are common, especially in the channel deposits. Aquatic 

organic matter and diatom frustules, which were entrained into turbidity currents during flow 

processes, are also abundant in the turbidite sediments, and become dominant in the finer-

grained lobe deposits. 

 

Discussion  

Source of Turbidity Currents 

        Although the Kivu rift has been seismically and volcanically active, the majority of the 

turbidites observed in the sediment cores were most likely sourced by hyperpycnal river flows 

during extreme floods (3-4 events/k.y.), rather than by slope failures triggered by earthquakes or 

by pyroclastic flows during volcanic eruptions. Evidence supporting the flood origin of the 

turbidity currents includes: (1) the physical connection between the axial and transverse turbidite 

channels and the onshore drainages (Fig. 1); (2) the reverse-to-normal grading observed in the 
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turbidites (Supplementary Fig. 6), typical of hyperpycnal river flow deposits, that records the 

waxing and waning phases of a discharge (Mulder et al., 2001); (3) the correlation between the 

turbidite record and wet climate intervals, indicated by the regional paleohydrologic data; (4) the 

absence of pyroclastic materials in the turbidite sediments, indicating that the turbidity currents 

were not triggered by pyroclastic flows; and (5) that sediment failures and mass transport 

deposits, possibly triggered by seismic events, are only locally distributed and associated with 

isolated steep slopes (Fig. 2C), and are not observed in the southern part of the Eastern Basin 

where the axial turbidite systems originated. Accordingly, the turbidity currents are interpreted as 

primarily sourced by flood-triggered hyperpycnal flows during exceptional rainfall events. 

 

Climatic Control of Hyperpycnite Events 

        The hyperpycnite record (Supplementary Table 3) of Lake Kivu is correlated with the 

regional paleohydrologic records from tropical East Africa. Accommodation space at most of the 

core sites become available at ~12.2 ka, when the water-level of Lake Kivu began to rise after a 

pronounced -380 m lowstand indicated by paleo-deltas (Fig. 4F; Supplementary Figs. 7 and 8). 

The first hyperpycnite event in sediment cores appeared at ~11 ka (Fig. 4G). This timing 

coincides with rapid lake-level rise of Kivu and other East African lakes, e.g. Lake Turkana 

(Garcin et al., 2012; Morrissey and Scholz, 2014) and Lake Challa (Tierney and deMenocal, 

2013).  
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        The recent hydrologic connection between Lakes Kivu and Tanganyika was established at 

~10 ka, evidenced by both the elemental and 87Sr/86Sr records of Lake Tanganyika (Felton, et al., 

2007). Shells from a terrace 100 m above present lake-level were dated to 12.4 ka (Olson and 

Broecker, 1959), but Haberyan and Hecky (1987) suggested that this date is probably too old due 

to a carbon reservoir effect, and probably marks the hydrologic opening of Lake Kivu in the 

early Holocene. The hydrologic opening of Lake Kivu at ~10 ka (Felton, et al., 2007) correlates 

with a rapid increase in hyperpycnite accumulation rate (Fig. 4G). From ~12 - 10 ka, lake-level 

of Kivu had risen ~480 m (Fig. 4F); such high-magnitude lake-level changes within a short time 

are characteristic of steep-sided African lakes (Haberyan and Hecky, 1987; Scholz et al., 2007; 

Lyons et al., 2011). 

        The cessation of hyperpycnite sedimentation between ~8.6 and 7.6 ka (Fig. 4G) may 

correlate with the 8.2 ka event, a prominent cold and dry event identified in widespread proxy 

records in the Northern Hemisphere (Alley et al., 1997). The synchronous lake-level lowstands 

observed in numerous tropical East African lakes at ~8 ka, e.g. Lakes Ziway-Shala (Gillespie et 

al., 1983) and Turkana (Garcin et al., 2012), were linked to this short-lived event (Gasse, 2000). 

Following the 8.2 ka event, warm and humid conditions in tropical East Africa resumed and 

remained until ~5 ka, when a wet-dry transition took place, marking the end of the East African 

Humid Period (EAHP, 11-5 ka; Tierney and deMenocal, 2013). The δD data of terrestrial leaf 

waxes from Lakes Challa (Fig. 4A; Tierney and deMenocal, 2013), Tanganyika (Fig. 4B Tierney 

et al., 2008), and Victoria (Fig. 4C; Berke et al., 2012) indicate that climate in tropical East 
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Africa generally stayed dry from the end of EAHP until ~3.2 ka. Between ~5 and 3.2 ka, 

minimum rainfall (Berke et al., 2012) and widespread lake-level lowstands (Gasse, 2000) were 

observed. The hyperpycnite accumulation rate of Lake Kivu generally followed these changes; it 

first dramatically increased following the 8.2 ka event, and later ceased between ~5.5 and 4 ka. 

After that, hyperpycnite sedimentation resumed but accumulation rate remained low until ~3 ka 

(Fig. 4G). During the 8.2 ka event and between ~5 and 3.2 ka, Lake Kivu, like many other East 

African lakes (Gasse, 2000), probably had lake-level lowstands (Fig. 4F).   

        Lakes Kivu and Tanganyika were hydrologically connected during the late Holocene, based 

on the evidence that the Ca concentration of the Lake Tanganyika sediments (Fig. 4D) covaried 

with the total inorganic carbonate (TIC) record of Lake Kivu (Fig. 4E; Supplementary Table 4) 

between ~3.2 ka and present. This suggests that lake-levels of Kivu were close to or at the spill 

point during most of the late Holocene. Regional paleohydrologic records suggest a shift from 

the rainfall minimum to relatively wetter conditions in tropical East Africa at ~3.2 ka (Berke et 

al., 2012; Tierney and deMenocal, 2013). Lake-level transgressions at ~3 ka were also observed 

in various tropical East African lakes, e.g. Lakes Abhe (Gasse, 1977) and Ziway-Shala (Gillespie 

et al., 1983). During the late Holocene, the temporal occurrences of hyperpycnites, especially 

decimeter-thick layers, generally correlate with wet climate intervals (Fig. 4). The hyperpycnite 

record of Lake Kivu over the past ~12 ka demonstrates that flood-introduced turbidites preserved 

in deep lakes are indicators of millennial-scale hydrological changes. 
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Implications for Deep Mixing and Geologic Hazards 

        The sediment stratigraphy of Lake Kivu suggests that exceptional floods may have triggered 

deep mixing events in the lake’s recent history. Most thick diatomites (>1 cm) in the sediment 

cores are associated with the centimeter- to meter-thick turbidites deposited between ~9.5 and 7 

ka, and between ~3 and 1 ka (Fig. 3). The diatomite beds capping the thick turbidites 

(Supplementary Figs. 3, 5, and 6) are probably the result of deep mixing events, when upwelling 

of nutrient-rich deep waters led to intense diatom blooms. Thick diatomites are observed in cores 

recovered from shallower water depths in the eastern basin without any accompanying 

hyperpycnites (Supplementary Fig. 9), as well as from cores collected in the 1970’s in the 

northern basin of the lake (Haberyan and Hecky, 1987). The northern basin is separated from the 

Eastern Basin by the Idjwi Island horst and subaqueous volcanic domes (Fig. 1; Supplementary 

Fig. 1). This suggests that the diatomites capping the hyperpycnites were more likely caused by 

lake-wide events rather than as a result of sorting during turbidity-flow processes. The diatomites 

are predominantly comprised of centric species, and there is a sharp decrease in grain size across 

the hyperpycnite-diatomite boundary (Supplementary Fig. 6). The hyperpycnite sediments 

contain abundant diatom frustules, indicating that the diatoms were not preferentially sorted on 

top. These indicate that the diatomites above the hyperpycnites were probably not a result of 

sorting or interflow behavior. The turbulence of extraordinary turbidity-flows may disrupt the 

micro- and macro-scale staircase stratification of the lake (Schmid et al., 2010), inducing deep 

mixing. The response of diatoms to such deep mixing events was probably heterogeneous across 
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the lake. The thickest diatomite beds (~9 cm) were found in core 12-16B (Fig. 3; Supplementary 

Fig. 3) from the central part of the Eastern Basin, where basinward-traveling turbidity flows were 

probably uplifted by narrowed lake-floor topography (Fig. 1), resulting in enhanced upwelling.  

        The turbidity currents triggered by extreme floods appear to be highly erosive, indicated by 

the presence of numerous large rip-up clasts (Supplementary Fig. 5), even in distal and marginal 

lobe deposits. Erosive channel features are also present on the axial lobes (Fig. 2B). These 

suggest that extraordinary turbidity currents, due to their strong erosivity, may trigger geologic 

hazards, which are potential risks for the current degassing efforts in Lake Kivu. Such risks need 

be recognized in the design and deployment of gas extraction facilities.   
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Figure 1. Regional topography and structural framework of the Kivu rift. Main map shows 

major intrabasinal structures, lake-floor bathymetry, onshore drainage basins and their 

subaqueous extensions, and development of axial and transverse turbidite systems in the Eastern 

Basin of the lake. Depositional thickness of the axial turbidite lobe (bounded by the red and 

yellow seismic horizons in Figure 2) is contoured in milliseconds two-way travel time (ms 

TWTT, 1 ms TWTT ≈ 0.75 m). I-I’, II-II’ and III-III’ are CHIRP seismic profiles displayed in 

Figure 2. DRC = Democratic Republic of the Congo; RWD = Republic of Rwanda. 
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Figure 2. Axial and transverse channel-lobe systems were revealed by seismic and core data 

from two stratigraphic intervals, i.e. the intervals bounded by the red and yellow seismic 

horizons, and by the blue and orange horizons. The green seismic horizon shows the acoustic 

basement of the CHIRP seismic data. Turbidites thicker than 1 cm from cores 12-19A, 13-3A, 

and 12-16B are shown in yellow. TWTT = two-way travel time; MTDs = mass transport 

deposits. See Figure 1 for the locations of the seismic lines.  
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Figure 3. Correlation of sediment cores 12-19A, 12-16B, and 12-15A based on various 

stratigraphic markers. Radiocarbon samples are indicated by the solid red (dates from core 12-

19A) and black (dates from other cores) circles. The blue and red curves alongside core images 

and lithologic columns are GeoTek measurements of gamma-ray attenuation density (g/cm3) and 

magnetic susceptibility (MS, SI units × 10-5), respectively. The red, yellow, blue, orange, and 

green correlation lines correspond to the seismic horizons in Figure 2. Downcore depth scale is 

in meters. See the core locations in Figure 1.    
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Figure 4. A–C: δDleaf wax (‰) records of Lakes Challa (Tierney and deMenocal, 2013), 

Tanganyika (Tierney et al., 2008), and Victoria (Berke et al., 2012). D: Inductively coupled 

plasma–mass spectrometry (ICP-MS) Ca measurements (cps) of Lake Tanganyika sediments 

(Felton et at., 2007). E: Total inorganic carbon (TIC, %) record of Lake Kivu. F: Lake-level 

(meters above present lake-level) history of Kivu. I: -380 m lake-level lowstand at ~12.2 ka, 

indicated by paleodeltas (Fig. 1; Supplementary Figs. 7 and 8); II: opening of Lake Kivu at ~10 

ka (Felton et at., 2007). III and IV: postulated water-level lowstands during the 8.2 ka event and 

at the end of EAHP; and V: the hydrologic connection between Lakes Kivu and Tanganyika 

during the late Holocene suggests generally high lake-levels of Kivu. G: Time series of 

hyperpycnite thickness and accumulation rate from cores 12-19A (red), 12-16B (green), and 12-

15A (dark blue). The vertical bars indicate individual layer thickness (cm), and the dashed lines 

indicate accumulative thickness per 0.5 k.y. Shadings highlight the EAHP and the later 

occurrences of thick turbidites (>10 cm). YD = the Younger Dryas. 
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Supplementary Figure 1. Basemap of Lake Kivu showing regional Digital Elevation Model 

(ASTER GDEM, a product of METI and NASA), lake-floor bathymetry (Zal, 2014), seismic 

tracklines, and sediment core stations. DEM = Digital Elevation Model; and WD = water depth. 

IV-IV’ and V-V’ are seismic profiles displayed in Supplementary Figures 4 and 7. 
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Supplementary Figure 2. The age model of sediment core 12-19A. 14C dates indicated by * are 

not used (Also see Supplementary Table 1). The upper ~1.5 m sediment column of 12-19A is 

disturbed and saturated with water due to outgassing when the core was brought to surface. 
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Supplementary Figure 3. An example of core-to-core correlation over ~30 km, using various 

distinctive stratigraphic markers. Note the turbidites are capped by thick diatomites. See the core 

locations in Supplementary Figure 1.  
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Supplementary Figure 4. A CHIRP seismic profile showing the development of turbidite 

systems in the deepest part of the Eastern Basin. Turbidites identified in core 12-15A are shown 

in yellow. See the location of the seismic line in Supplementary Figure 1.  
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Supplementary Figure 5. Rip-up clasts and centimeter-thick previously deposited mud 

(outlined in white) are abundant in thick beds (bounded by the red lines) of turbidite channel (13-

3A and 13-14A) and lobe (12-16B) deposits. Terrestrial macroplants are indicated by arrows. 

Note the thick turbidites are commonly capped by diatomites. See the core locations in 

Supplementary Figure 1.  
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Supplementary Figure 6. Sediment texture and composition of correlative hyperpycnite beds 

(bounded by the white dash lines) and the overlying diatomites from cores 13-2A, 13-10A, and 

13-15A. Note the sharp decrease in particle size (measured with a Beckman Coulter LS230 Laser 

Diffraction Particle Size Analyzer) across the hyperpycnite-diatomite boundary. Large rip-up 

clasts are present in core 13-2A. M = muscovite; Q = quartz; GS = grain size; and D90 = the 90th 

particle size percentile. See the core locations in Supplementary Figure 1.   
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Supplementary Figure 7. A single-channel air gun seismic reflection profile showing the ~12.2 

ka lowstand indicated by paleo-deltas that are 380 m below present lake-level. See the core 

image of 13-5A in Supplementary Figure 8 and the location of the seismic line in Supplementary 

Figure 1.  
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Supplementary Figure 8. A-B: Core images of 13-5A and 12-14A showing the transition from 

deltaic and ooid facies to laminated mud facies at ~12 ka. C: Ooids from core 12-14A. D: 

Petrographic image of the ooids with calcite stained in red. Note the nuclei of many ooids are 

quartz grains. See the core locations in Supplementary Figure 1. 
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Supplementary Figure 9. Correlation between sediment cores 12-16B and 13-11A showing the 

presence of diatomites without the presence of hyperpycnites in shallower water cores. Cores 12-

16 and 13-11 were recovered in water depth of 414 m and 364 m, respectively. See the core 

locations in Supplementary Figure 1. 
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Supplementary Table 1. Accelerator Mass Spectrometry 14C ages. 

Core 

 

Section 

 

Section Depth 

(cm) 

Material 

 

SD  

(cm) 

Age  

(14C yr BP) 

Age  

(cal yr BP) 

12-19A 4 55 macroplant 371, 334 3390 ± 30 3641 ± 40 

 5 12.5 macroplant 413.5, 376.4 4440 ± 30 5104 ± 117 

 6 45.5 macroplant 515.5, 476.7 5960 ± 30 6800 ± 44 

 6 94 macroplant 564, 524.8 6270 ± 40 7212 ± 36 

 7 18 macroplant 638, 566.1 7430 ± 40 8265 ± 52 

 7 35 macroplant 655, 582.8 8100 ± 40 9051 ± 40 

13-12C 4 60 macroplant 473.5, 435.4 5270 ± 40 6068 ± 84 

 5 51 macroplant 615, 544.1 7060 ± 40 7900 ± 38 

13-15A 5 104 macroplant 608.5, 537.6 6670 ± 40 7545 ± 32 

 6 39.5 macroplant 642, 570.1 7210 ± 40 8044 ± 57 

13-20A 3 123 macroplant 297, 266.8 2140 ± 30 2172 ± 95 

 7 59 macroplant 776.5, 691.5 9100 ± 50 10284 ± 54 

13-2A 7 104 macroplant 711, 626.8 8390 ± 40 9408 ± 59 

 7 135.5 gastropod 852, 766.8 25220 ± 240 30095 ± 291* 

13-5A 6 49.5 macroplant 796.5, 711.3 10000 ± 40 11496 ± 142 

 6 92-95 bulk 

sediments 
845.5, 760.3 19380 ± 80 23142 ± 272* 

 6 106 macroplant 849, 763.8 160 ± 30 144 ± 114* 

 6 108 macroplant 851, 765.8 1860 ± 30 1799 ± 48* 

 6 108 macroplant 851, 765.8 8420 ± 40 9469 ± 28* 

 

SD: standardized depth scale relative to core 12-19A. The SD depths before and after 

adjustments for core caps and turbidites are given for each radiocarbon sample. Due to the 

instantaneous nature of turbidite sedimentation, turbidites were removed from the depth scale 

before developing age models. Measured radiocarbon dates were calibrated using the calibration 

curve CalPal2007_HULU (CalPal-2007online, Danzeglocke et al., 2013). 

 

*: 14C dates that are excluded. The 14C samples of bulk sediments and gastropod shells give 

extremely old dates due to input of geogenic old carbon from hydrothermal activity. The three 

macroplant samples appearing above ooids at the bottom of core 13-5A give inverted dates; these 

were contaminated from shallower depths during the coring process.   

 

 

 

 

 

http://www.calpal.de/wp/?page_id=5
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Supplementary Table 2. Metadata of sediment cores. 

Core  

 

Latitude 

(degree) 

Longitude 

(degree) 

Water Depth 

(m) 

Core Length 

(m) 

12-11A -2.01180 29.28016 318 7.9 

12-13A -1.98098 29.24598 319 8 

12-14A -1.97789 29.22484 356 7.9 

12-15A -1.81299 29.19967 455 6.9 

12-16B -1.93542 29.19668 414 8 

12-17C -2.07861 29.17939 365 7.1 

12-19A -2.08513 29.21562 352 8.6 

13-2A -2.09288 29.19973 355 7.4 

13-3A -2.08340 29.20585 372 7.1 

13-5A -2.05102 29.22775 361 6.9 

13-10A -1.97307 29.18649 412 6.6 

13-11A -1.97778 29.22491 364 6.4 

13-12C -1.93763 29.20860 385 8.4 

13-14A -1.84836 29.22823 428 8.7 

13-15A -1.81590 29.22179 444 8.1 

13-20A -2.08260 29.20123 370 8.2 
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Supplementary Table 3. Turbidites observed in cores 12-19A, 12-16B, and 12-15A. 

Core  

 

Section 

 

Top  

(cm) 

Bottom  

(cm) 

Downcore Depth  

(cm) 

Thickness  

(cm) 

Age 

(cal yr) 

12-19A 2 32.5 33 173.5 0.5 1266 

12-19A 3 9 9.5 252 0.5 1901 

12-19A 3 15 24 258 9 1946 

12-19A 3 49.3 51.5 292.3 2.2 2449 

12-19A 4 4.7 7.5 320.7 2.8 2918 

12-19A 4 9.2 11 325.2 1.8 2951 

12-19A 4 45.5 45.6 361.5 0.1 3620 

12-19A 4 50.5 50.6 366.5 0.1 3715 

12-19A 4 73.6 73.7 389.6 0.1 4161 

12-19A 6 6 6.1 476 0.1 5815 

12-19A 6 6.7 6.9 476.7 0.2 5826 

12-19A 6 7.8 8 477.8 0.2 5844 

12-19A 6 30.3 30.5 500.3 0.2 6276 

12-19A 6 63.3 63.5 533.3 0.2 6912 

12-19A 6 88.9 89.1 558.9 0.2 7405 

12-19A 6 89.3 102.5 559.3 13.2 7412 

12-19A 6 102.8 104.2 572.8 1.4 7414 

12-19A 6 109.4 109.5 579.4 0.1 7515 

12-19A 6 114.5 131.5 584.5 17 7612 

12-19A 7 34 34.3 654 0.3 8611 

12-19A 7 42 43 662 1 8760 

12-19A 7 72.3 83.3 692.3 11 9328 

12-19A 7 116.3 116.9 736.3 0.6 9968 

12-19A 7 147.4 147.6 767.4 0.2 10559 

12-19A 8 18.3 18.5 788.3 0.2 10961 

12-16B 1 80 93.5 80 13.5 970 

12-16B 1 117 117.8 117 0.8 1266 

12-16B 2 58.5 59.5 184.5 1 1709 

12-16B 2 88 88.3 214 0.3 1901 

12-16B 

2 94.8 -- 

220.8 25.2 1946 3 -- 2.5 

12-16B 3 36.5 66 280 29.5 2449 

12-16B 4 2.5 5.5 317 3 2579 

12-16B 4 29.5 57 344 27.5 2918 

12-16B 4 65.3 65.5 379.8 0.2 3203 

12-16B 4 91 91.1 405.5 0.1 3715 

12-16B 4 112.6 112.7 427.1 0.1 4161 

12-16B 5 75.5 75.6 519 0.1 5847 

12-16B 5 84.8 84.9 528.3 0.1 5815 
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12-16B 5 85.3 85.6 528.8 0.3 5826 

12-16B 5 87.2 87.5 530.7 0.3 5844 

12-16B 5 109 109.2 552.5 0.2 6276 

12-16B 5 121.6 121.8 565.1 0.2 6719 

12-16B 5 125.9 126.2 569.4 0.3 6798 

12-16B 5 137.3 137.5 580.8 0.2 6912 

12-16B 5 142.1 142.9 585.6 0.8 7204 

12-16B 5 145.5 145.8 589 0.3 7152 

12-16B 5 148.5 148.7 592 0.2 7204 

12-16B 6 11.9 15.3 607.4 3.4 7405 

12-16B 6 21 62.5 616.5 41.5 7412 

12-16B 6 64.5 65.7 660 1.2 7414 

12-16B 6 71.4 71.7 666.9 0.3 7515 

12-16B 6 75.9 94.5 671.4 18.6 7612 

12-16B 7 2.2 2.5 711.2 0.3 8611 

12-16B 7 11.4 51.5 720.4 40.1 8760 

12-16B 7 79.2 134 788.2 54.8 9328 

12-15A 

1 99 -- 

99 24.5 970 2 -- 20 

12-15A 2 54 55.5 157.5 1.5 1266 

12-15A 2 110.7 121 214.2 10.3 1709 

12-15A 3 19 22 243.5 3 1901 

12-15A 3 25 55.5 249.5 30.5 1946 

12-15A 

3 86.5 -- 

311 56 2449 4 -- 15 

12-15A 4 22 57.5 376 35.5 2579 

12-15A 

4 78.5 -- 

432.5 55 2918 5 -- 1.5 

12-15A 5 10.9 11.2 496.9 0.3 3203 

12-15A 5 12.5 15.5 498.5 3 3217 

12-15A 5 22.2 22.3 508.2 0.1 3385 

12-15A 5 23.3 23.4 509.3 0.1 3410 

12-15A 5 24.6 24.8 510.6 0.2 3440 

12-15A 5 38 43 524 5 3620 

12-15A 5 46.2 46.5 532.2 0.3 3715 

12-15A 5 62.8 64.5 548.8 1.7 4161 

12-15A 5 125.5 125.7 611.5 0.2 5847 

12-15A 6 5.9 6 618.9 0.1 5815 

12-15A 6 6.5 7 619.5 0.5 5826 

12-15A 6 8 9 621 1 5844 

12-15A 6 23.6 23.8 636.6 0.2 6276 

12-15A 6 33.5 35.5 646.5 2 6719 
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12-15A 6 38.5 38.8 651.5 0.3 6798 

12-15A 6 48.1 48.4 661.1 0.3 6912 

12-15A 6 52 53 665 1 7204 

12-15A 6 55 55.3 668 0.3 7152 

12-15A 6 56.4 56.5 669.4 0.1 7204 

12-15A 6 59.5 63.5 672.5 4 7171 

12-15A 6 65.5 73.5 678.5 8 7221 
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Supplementary Table 4. Total inorganic carbon (TIC) of core 13-12C. 

Section 

 

Section Depth 

(cm) 

Downcore Depth 

(cm) 

TIC 

(%) 

Age  

(yr) 

1 2 2 3.18 18  

1 6 6 2.98 54  

1 10 10 3.34 90  

1 14 14 3.17 127  

1 18 18 3.28 163  

1 22 22 3.12 199  

1 26 26 3.22 235  

1 30 30 2.72 271  

1 34 34 3.18 307  

1 38 38 3.11 344  

1 42 42 3.25 380  

1 46 46 2.25 416  

1 50 50 2.75 452  

1 54 54 2.03 488  

1 58 58 2.06 524  

1 62 62 1.95 561  

1 66 66 1.19 597  

1 70 70 1.04 633  

1 74 74 1.13 669  

2 3 82 0.58 742  

2 7 86 0.82 778  

2 11 90 0.63 814  

2 15 94 0.78 850  

2 19 98 0.70 886  

2 23 102 0.81 922  

2 27 106 0.81 959  

2 31 110 0.82 995  

2 35 114 0.75 1031  

2 39 118 0.76 1067  

2 43 122 0.63 1103  

2 47 126 0.73 1139  

2 50 129 0.81 1167  

2 52.5 131.5 1.20 1189  

2 55 134 2.77 1212  

2 57.5 136.5 2.61 1234  

2 60 139 2.20 1257  

2 63 142 1.71 1286  

2 67 146 2.62 1326  

2 71 150 3.18 1365  

2 75 154 3.02 1405  
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2 79 158 3.12 1445  

2 83 162 2.84 1485  

2 87 166 3.33 1524  

2 91 170 2.08 1564  

2 94 173 2.30 1594  

3 2.5 176.5 0.31 1628  

3 6 180 0.63 1661  

3 9 183 0.35 1689  

3 11.5 185.5 0.30 1713  

3 14 188 0.47 1737  

3 16.5 190.5 0.33 1761  

3 19 193 0.42 1784  

3 22 196 0.58 1813  

3 24.5 198.5 0.33 1836  

3 27 201 0.35 1860  

3 30 204 0.70 1889  

3 32.5 206.5 1.63 1917  

3 35 209 0.89 1955  

3 38 212 2.12 2049  

3 42 216 4.16 2175  

3 46 220 4.07 2301  

3 50 224 4.57 2427  

3 54 228 4.10 2547  

3 62 236 4.32 2784  

3 66 240 3.83 2903  

3 70 244 2.91 3073  

3 74 248 3.49 3251  

3 78 252 2.06 3429  

3 82 256 1.52 3606  

3 86 260 1.12 3772  

3 90 264 0.33 3887  

3 94 268 0.12 4002  

3 98 272 0.09 4118  

3 102 276 0.15 4214  

3 106 280 0.07 4300  

3 110 284 0.14 4385  

3 118 292 0.17 4556  

4 2 300 0.18 4727  

4 10 308 0.21 4897  

4 18 316 0.23 5068  

4 26 324 0.20 5239  

4 34 332 0.31 5410  

4 42 340 0.53 5581  
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4 50 348 0.43 5752  

4 58 356 0.34 5935  

4 66 364 0.42 6139  

4 74 372 0.36 6385  

4 82 380 0.23 6719  

4 90 388 0.31 6897  

5 1 396.5 0.69 7154  

5 9 404.5 0.37 7402  

5 17 412.5 0.11 7636  

5 25 420.5 0.17 7828  

5 33 428.5 0.23 8020  

5 41 436.5 0.21 8212  

5 49 444.5 0.17 8404  

5 57 452.5 0.20 8596  

5 65 460.5 0.26 8779  

5 73 468.5 0.18 8974  

5 81 476.5 0.23 9168  

5 89 484.5 0.17 9355  

6 4 494.5 0.11 9548  

6 12 502.5 0.08 9702  

6 20 510.5 0.16 9856  

6 28 518.5 0.17 10013  

6 36 526.5 0.18 10176  

6 44 534.5 0.16 10338  

6 52 542.5 0.24 10501  

6 60 550.5 0.23 10664  

6 68 558.5 0.22 10827  

6 76 566.5 0.22 10975  

6 84 574.5 0.11 11056  

6 92 582.5 0.10 11137  

6 100 590.5 0.09 11217  

6 108 598.5 0.04 11298  

6 116 606.5 0.03 11379  

7 8 617.5 0.02 11490  

7 16 625.5 0.02 11571  

7 24 633.5 0.07 11652  

7 32 641.5 0.06 11732  

7 40 649.5 0.17 11813  

7 48 657.5 0.24 11894  

7 56 665.5 0.31 11975  

7 64 673.5 0.56 12056  

7 72 681.5 1.47 12136  

7 76 689.5 8.55 12192  
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Abstract 

        Pronounced millennial-scale air temperature oscillations recorded in Greenland ice cores 

referred to as Dansgaard–Oeschger events, and episodes of massive iceberg discharges into the 

North Atlantic ocean known as Heinrich events punctuated the last glaciation. In the low 

latitudes, these millennial-scale events were reflected by altered patterns of precipitation, and 

may have overridden orbital forcing in modulating regional hydrologic cycles. However, little is 

known about the relationship between hydrologic extremes and northern high-latitude climate 

variability. Here, we reconstructed extreme hydrologic events in equatorial West Africa over the 

past 65 k.y., using flood-introduced turbidites, total organic carbon, carbon isotopes, and seismic 

reflection data from Lake Bosumtwi, Ghana. Our data suggest that on millennial time scales, 

extreme rainfall events were linked to Dansgaard–Oeschger interstadials, whereas exceptional 

drought events were associated with North Atlantic cooling during Heinrich events.  
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Introduction 

        During the last glacial period, the North Atlantic region experienced two types of 

millennial-scale climate events, known as Dansgaard–Oeschger (D–O) oscillations, characterized 

by abrupt shifts between cold stadial conditions and relatively warm interstadial conditions, and 

Heinrich events, characterized by periods of massive iceberg discharges1. First observed from 

Greenland ice cores2 and North Atlantic deep-sea sediments1,3,4, D–O and Heinrich events reflect 

reorganizations of the ocean–atmosphere circulation5-10, and their global teleconnections have 

been identified in widespread proxy records11-19. In the tropics and subtropics, millennial-scale 

fluctuations in hydrologic cycles were linked to northern high-latitude climate variability, with 

enhanced monsoonal precipitation occurring during D–O interstadials and reduced rainfall 

associated with Greenland stadials13,15-19, some of which coincided with Heinrich events. 

However, whether hydrologic extremes in the low latitudes, such as exceptional floods and 

droughts, were linked to North Atlantic climate remains poorly constrained, because of the lack 

of long, continuous, and well-dated records that can capture the variability of extreme hydrologic 

events. In this study, we analyzed sediments from Lake Bosumtwi for reconstruction of 

exceptional floods and droughts in equatorial West Africa. 

 

Background to Lake Bosumtwi                                                                                                                                          

        Lake Bosumtwi (6°30’N, 1°25’W; Fig. 1) is ideally located for reconstructing 

paleohydrologic changes in the West African Monsoon (WAM) regime20. The lake occupies a 
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1.08 Ma meteorite impact crater in the forested tropical lowland of southern Ghana, where 

precipitation is primarily controlled by the seasonal migration of the Intertropical Convergence 

Zone (ITCZ; Extended Data Fig. 1). During Northern Hemisphere summer months, the ITCZ 

and associated rain belt migrate to the north of Lake Bosumtwi, and the moisture-laden 

southeasterly winds bring heavy monsoonal precipitation to study site; during winter months, the 

ITCZ is positioned to the south of the lake, and dry, dust-laden northeasterly winds dominate 

over southern Ghana. 

        With a maximum water depth of ~75 m, Lake Bosumtwi is permanently stratified with a 

well-mixed epilimnion and anoxic hypolimnion below 15–18 m depth21. This results in the 

preservation of finely-laminated sediment varves that allow for high-resolution paleoclimatic and 

paleohydrologic reconstructions22, including variations in the WAM. Due to the hydrologically-

closed nature of the lake basin and its isolation from groundwater table21, the water budget of 

Lake Bosumtwi is extremely sensitive to the balance between precipitation and 

evaporation21,23,24. Previous investigations have demonstrated that Lake Bosumtwi experienced 

profound hydrologic changes during the late Pleistocene and Holocene, as recorded by seismic 

and sedimentological lake-level indicators25-28, magnetic dust properties22,29, elemental 

abundances20,29, as well as hydrogen30, carbon31,32, and oxygen20,29 isotopes measured from 

terrestrial leaf waxes, organic matter, and authigenic carbonates. Although these proxies provide 

insight into the temporal occurrence and magnitude of severe drought events in equatorial West 

Africa, they fail to record exceptional flood events. The dynamics of both types of extreme 
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hydrologic events recorded in the sediments of Lake Bosumtwi reflect the degree of variability in 

the WAM. 

 

Paleohydrologic Proxies for Reconstruction of Exceptional Floods and Droughts  

        We generated a multi-proxy record of exceptional floods and droughts in Equatorial West 

Africa, using annually laminated20,29 sediment cores BOS04-5B and BOS04-5C, both recovered 

from the deep water drill site 5 of the ICDP (International Continental Scientific Drilling 

Program) Lake Bosumtwi Drilling Project (Fig. 1). Applying a Bayesian approach, a 

combination of radiocarbon, optically stimulated luminescence, and U-series dating as well as 

paleomagnetic excursions was used to generate a geochronology for the upper 150 k.y. of 

sedimentation at Lake Bosumtwi33,34. This study focuses on the upper 65 k.y. (or ~34 m) of the 

sediment record, where relatively small uncertainties of the geochronology enable correlations 

between paleohydrologic records of Lake Bosumtwi and well-dated records of marine sediment 

cores and ice cores.  

        We use flood-introduced turbidites (Extended Data Table 1) observed in the sediment cores 

for reconstruction of exceptional precipitation events. Using a bin width of 100 yr, time series of 

accumulation rate and frequency of the turbidites were generated to reflect variations in 

magnitude and frequency of exceptional floods.  Exceptional drought events were identified by 

the presence of unconformities on high-resolution air gun and CHIRP (compressed high-

intensity radar pulse) seismic reflection profiles, or were inferred from δ13C (Extended Data 

http://www.icdp-online.org/home/
http://www.icdp-online.org/home/
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Table 2) measured from bulk organic sediments. Although macrofossil and palynological studies 

suggest that the relative proportions of C3 and C4 plants have varied considerably in tropical 

West Africa in the late Pleistocene and Holocene31,32,35, comparisons of carbon isotope ratios in 

bulk organic matter and fossil grass epidermal fragments from Lake Bosumtwi indicate that δ13C 

measured from bulk organic sediments is dominated by hydrologic processes within the lake32.  

Previous studies suggest that the dissolved inorganic carbon (DIC) reservoir of Lake Bosumtwi 

tends to be enriched in 13C during lake-level lowstands, as indicated by the markedly positive 

δ13C in primary carbonates36. During low water periods when combined effects of high pH and 

elevated salinity reduce dissolved CO2 to very low levels, HCO3
–-based photosynthesis in a 13C-

enriched DIC reservoir may have led to the production of organic matter with markedly high 

δ13C (ref. 31). A highly positive δ13C value (˗11.9‰) in an algal crust from the littoral zone of 

Lake Bosumtwi indicates that HCO3
–-based metabolism may be occurring in the present lake31. 

Thus, sediment intervals having markedly positive δ13C are interpreted as deposited during 

pronounced lake-level lowstands under severe arid conditions in equatorial West Africa, whereas 

intervals showing highly enriched δ13C are interpreted as accumulated during more humid 

conditions. The record of total organic carbon (TOC) is interpreted to reflect lake-level; a deep 

lake with anoxic bottom waters favors organic carbon preservation by preventing organic matter 

degradation, while a shallow, well-mixed lake does the opposite. However, other variables, such 

as insolation-driven changes in primary productivity, may also influence the accumulation of 

TOC. 
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Turbidites and Source of Turbidity Flows  

        Frequent occurrences of turbidites preserved in the late Quaternary sediments of Lake 

Bosumtwi have been described in a number of studies22,25,29,37. Here, we present a 65 k.y. record 

of turbidites, and discuss their origins and usefulness as indicators of past environmental 

changes. Intercalated with finely-laminated muds or massive, sapropelic muds, over 300 turbidite 

layers that are thicker than 1 mm were identified in the upper 65 k.y. of the lake sediments 

(Extended Data Figs. 2 & 3; Extended Data Table 1), on average approximately 1 event every 

200 years; their thickness ranges from 1 to 168 mm, with an average of 5.5 mm and a median of 

1.3 mm. The turbidite layers contain less organic matter, and are coarser and denser than the 

surrounding laminated muds (Extend Data Fig. 4). The moderately- to well-sorted millimeter-

thick turbidites are fine- to medium silt-sized, consist of primarily quartz and feldspar grains, and 

therefore display a distinct light-gray color; centimeter- to decimeter-thick turbidites are massive, 

medium- to coarse silt-sized, moderately sorted, and are characterized by a light-gray cap29 

(Extend Data Figs. 5–7). 

        The centimeter- to decimeter-thick turbidites commonly display reverse-to-normal grading 

(Extended Data Fig. 7), typical of hyperpycnal river flow deposits during floods, that records the 

waxing and waning phases of discharge38. Although sediment failure on slopes, usually triggered 

by earthquakes, commonly initiates turbidity flows in marine and lake basins39, it is not likely a 

trigger of frequent turbidity currents in Lake Bosumtwi, which is situated on the tectonically 

stable West African craton. Due to the steep gradient of the crater wall and the small size of the 



46 
 

lake basin, any mass transport deposits that resulted from failed slopes would leave a 

depositional record in the center of the basin. However, over the interval presented here, we find 

no evidence of mass transport deposits even in the sediment cores recovered in deep water, nor 

any sediment failure-related structures on the decimeter- to meter-resolution seismic reflection 

profiles. We therefore interpret the turbidites as sourced by hyperpycnal river flows during 

exceptional floods.   

        The millimeter-thick turbidites are interpreted as deposited from non-erosive turbidity flows 

sourced by less extreme flood events. During such events, there is little entrainment of 

previously deposited sediments (including aquatic and terrestrial organic matter) into the 

turbidity flows as they travel downslope on the lake floor. This may explain why the millimeter-

thick turbidites comprise predominantly siliciclastic mineral grains derived from onshore 

drainages, but contain little organic matter.  In contrast, the centimeter- to decimeter-thick 

turbidites have abundant aquatic and terrestrial organic matter (Extended Data Fig.6), and some 

show rip-up clasts; they are interpreted as deposited by erosive turbidity currents during 

extremely heavy rainfall events.  The thicker turbidites display a light-gray cap29 that is 

texturally and compositionally similar to the light-colored thin turbidites (Extended Data Fig.5); 

the light-gray caps are interpreted as deposited during the final stage of extreme turbidity flow 

events, when the flows became non-erosive in response to diminishing flood discharges.  
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Exceptional Rainfall Events 

        Over the past 65 k.y., turbidite sedimentation at Lake Bosumtwi followed the millennial-

scale climate events in δ18O records of Greenland ice cores40 and sea surface temperature (SST) 

records of the North Atlantic ocean41. Peak accumulation rate and frequency of the flood-sourced 

turbidites generally occurred during D–O interstadials (Fig. 2), indicating that variations in 

magnitude and frequency of exceptional rainfall events in equatorial West Africa were coupled 

to millennial-scale climate instability of the northern high latitudes. This is consistent with 

previous studies of the WAM. Geochemical and isotopic analyses of marine sediments from the 

Gulf of Guinea in the eastern equatorial Atlantic suggest that in the past ~155 k.y., centennial- to 

millennial-scale variations of sea surface salinity (SSS), a proxy for riverine freshwater input, 

were synchronous with northern high-latitude stadials and interstadials16.  Low SSS in the Gulf 

of Guinea, due to high riverine freshwater input from enhanced precipitation over the drainage 

basin of the Niger and Sanaga Rivers, is linked to interstadials16.  This suggests that high-

magnitude and high-frequency flood events occurred in the wet phases of tropical West Africa.  

        The correspondence between the temporal occurrence of turbidite events at Lake Bosumtwi 

and wet climate intervals in equatorial West Africa is also evident in the paleohydrologic records 

of the lake. Peak turbidite sedimentation correlates with intervals of markedly negative δ13C 

values (Fig. 2), suggesting that the flood-sourced turbidites were deposited during lake-level 

highstands under humid conditions. A well-constrained lake-level curve25-27, which extends back 

to ~16.5 k.a., was reconstructed using a variety of lake-level indicators, including seismic 
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unconformities, root-rich exposure surfaces, as well as previous beach and near-shore deposits 

that are now exposed on the lake shore (Fig. 2). Between ~16.5 ka and present, the temporal 

occurrence of the turbidites observed in the sediment cores correlates with lake-level highstands, 

although their accumulation rate and frequency appear not to scale with lake elevation. This is 

likely due to greatly reduced drainage basin area (as a result of elevated lake-levels) and 

amplified vegetation feedback during the African Humid Period (AHP, 14.8–5.5 ka; ref. 42), 

when water-level of Lake Bosumtwi was ~20–120 m higher than present25,27 and dense 

vegetation under the wettest climate over the past 520 k.y. (ref. 35) limited the amount of 

sediments available during flood events. 

        Insolation forcing may also have contributed to the magnitude of rainfall extremes. 

Although the imprints of northern high-latitude millennial-scale climate events are clearly 

expressed in the TOC and reconstructed water-level records25,27 of Lake Bosumtwi, long-term 

variations of TOC and lake-level seem to followed local summer insolation (Extended Data Fig. 

8). Had it not been the flooding of drainage basins on the cater wall and land surface feedback 

during the AHP, accumulation rate of the flood-sourced turbidites would be much higher than 

that is preserved in the sediment record, and its long-term variations would also generally follow 

orbital-scale changes in summer insolation, at least between ~50 k.a. and present (Extended Data 

Fig. 8). Compared to the magnitude of exceptional rainfall events, the frequency of rainfall 

extremes seems to be less dependent on orbital insolation.  
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Exceptional Drought Events 

        Severe drought events lasting for periods ranging from decades to millennia have been a 

persistent feature in the late Pleistocene and Holocene sediment record of Lake Bosumtwi, and 

have been linked to northern high-latitude climate and changes in Atlantic SST20,22,29,32,33. Here, 

we extend the record of prominent drought events preserved in the sediments of Lake Bosumtwi 

to 65 k.a. 

        The bulk organic-based δ13C record of Lake Bosumtwi, which we interpreted as a proxy for 

lake-level and humidity, is remarkably similar to the alkenone-based North Atlantic sea surface 

temperature (SST) record from marine sediment core MD94-204241, suggesting that over the 

past 65 k.y., the hydroclimatic variability in equatorial West Africa is strongly linked the North 

Atlantic climate. Exceptional drought events, indicated by markedly positive δ13C, low TOC, and 

reduced or absent turbidite sedimentation, occurred during North Atlantic cooling, especially 

during Heinrich stadials (Fig. 2). Some of these events caused large-scale unconformities. The 

most pronounced drought event over the past 65 k.y. occurred between ~65 and 62 ka, and is 

probably linked to Heinrich event 6 (H6). This event correlates with a lake-wide unconformity 

on both the CHIRP and single-channel air gun seismic reflection profiles, and in the sediment 

cores, it is characterized by ~1.5 m thick structureless dense clay deposits (Fig. 3; Extended Data 

Fig. 2). During this event, Lake Bosumtwi was ~105 m below present lake-level, and possibly 

dried out for brief periods.       
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        The presence of shallow burial gases (Extended Data Fig. 2) in the lake sediments limits the 

use of the decimeter-resolution CHIRP seismic data for identification of lake-level lowstands. 

However, within the resolution of the single-channel air gun seismic data, at least another two 

pronounced drought events are observed.  An onlap seismic surface is observed ~70 m below 

present lake-level. Seismic–sediment core integration suggests that this event occurred between 

~48.5 and 47.5 ka, and probably correlates with H5 (Fig. 3).  Another seismic unconformity 

indicated by stratal truncations that are ~55–70 m below present lake-level correlates with a 

rootlet-rich exposure surface in a piston sediment core recovered from ~60 m water depth26; this 

event was dated to ~16.5 ka26, and is linked to H1  (Figs. 2 & 3).  Severe drought events also 

occurred during the Younger Dryas (YD or H0) and the 8.2 ka cold event44. These two events are 

registered in the lake-level record of Lake Bosumtwi25,27, and the latter correlates with period of 

sharply increased delivery of Sahara- and Sahel-derived dusts by strengthened NE trade wind 

under arid conditions22.  

 

North Atlantic Forcing of West African Hydroclimate 

        The strength of the North Atlantic meridional overturning (NAMO) circulation is widely 

believed to affect West African hydroclimate and vegetation45-48. Previous studies have 

suggested that millennial-scale arid conditions in tropical and subtropical West Africa are 

associated with slowing of the NAMO circulation during Heinrich stadials45-48, whereas 

relatively humid conditions with expansions of C3 vegetation in the Sahara and Sahel region 
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correlate with strengthened NAMO circulation during D-O interstadials46,47.  Geochemical 

proxies for deep-sea ventilation6,7,49,50  and climate modeling8 suggest that the NAMO circulation 

operates in distinctively different modes during Heinrich stadials versus during D-O interstadials. 

A large freshwater input due to massive iceberg discharges during Heinrich events may 

temporally switch off the North Atlantic Deep Water formation, leading to the collapse of the 

NAMO circulation8,10. Modeling simulations indicate that weakening of NAMO circulation 

induces surface cooling of the North Atlantic, a southward shift of the WAM trough (i.e. the 

ITCZ), and an intensification and southward expansion of the African Easterly Jet, leading to 

arid conditions in the entire West African region45, including the Guinea coast where Lake 

Bosumtwi is located.  

        Our data support the climate modeling results. The organic-based δ13C record of Lake 

Bosumtwi is correlated with the δ13C records of benthic foraminifera from marine sediments core 

MD95-2042 (refs 41,50) and GeoB7920-2 (ref. 46) in the North Atlantic. Highly positive δ13C in 

bulk organic matter of Lake Bosumtwi, which implies exceptional drought events in equatorial 

West Africa due to reduced monsoonal precipitation, correlates with markedly low δ13C in 

benthic foraminifera of the North Atlantic, which indicates reduced NAMO circulation41,46 (Fig. 

4). Conversely, over the past 65 k.y., high-magnitude and high-frequency extreme rainfall events 

in equatorial West Africa generally correspond to D-O interstadials when NAMO circulation was 

strengthened (refs 41,46,50). This implies that during the D-O interstadials of the last glaciation, 

the ITCZ summer position was located to the north of Lake Bosumtwi, and relatively humid 
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conditions prevailed in equatorial West Africa due to strengthened WAM. Simulations of abrupt 

millennial-scale climate changes suggest that surface air temperature in the tropical North 

Atlantic was 0.5 – 1 °C and 0.5 – 1.5 °C warmer during D-O interstadials than during stadial 

conditions and Heinrich events8. Both satellite observations and model simulations investigating 

the response of tropical precipitation to atmospheric warming suggest a direct link between 

rainfall extremes and surface air temperature, with extreme precipitation events increasing during 

warm periods and decreasing during cold periods51. This amplification of rainfall extremes by 

atmospheric warming may explain the general correspondence between exceptional rainfall 

events in equatorial West Africa and D-O oscillations in the northern high latitudes.  

 

Implications for Future Research   

        Much of West Africa has recently experienced severe droughts and floods. For example, the 

Sahel drought beginning in the 1960s and continuing into the 1990s endangered millions of lives, 

and contributed significantly to regional geopolitical instability52. Since the 1990s, catastrophic 

floods have frequently occurred in the Sahel and wider West African region, with those occurred 

in the years of 1995, 1998, and 1999 each affecting more than one million people in five, eight, 

and eleven countries53. Better knowledge of natural, long-term variability of floods and droughts 

in tropical West Africa is therefore of political and socioeconomic importance. The flood-

introduced turbidites of Lake Bosumtwi, together with the bulk organic-based δ13C and seismic 

reflection data, provide new insights into the dynamics of the WAM, suggesting that hydrologic 
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extremes, more severe than the recent floods and droughts in West Africa, are characteristics of 

the WAM, and are linked to millennial-scale climate instability of the North Atlantic. This study 

and previous investigations54,55 demonstrate that flood-sourced turbidites preserved in lake (and 

ocean) basins are valuable indictors of tropical hydrological changes. 

 

Methods 

Layer Identification, Time series, and Particle Size of Turbidites 

        Both core images and X-ray radiographs were used for identification of turbidites in drill 

cores BOS04-5B and BOS04-5C. Layer identification was supplemented by smear slide and 

grain size analyses. Submillimeter- to millimeter-thick turbidites display distinctive light-gray 

color, and are denser than the surrounding laminated muds on the X-radiographs. Centimeter- to 

decimeter-thick turbidites can be readily distinguished from the surrounding muds by their high 

density and massive sedimentary structure; these thicker layers display a distinctive light-gray 

cap29, and commonly show reverse-to-normal grading, although normal grading is also observed. 

        Numerous submillimeter-thick microturbidites are present in the studied interval. Only 

layers thicker than 1 mm were used for times series analysis. After applying the 

geochronology33,34 to the identified layers, time series of accumulation rate and frequency of the 

turbidites were generated, using a bin width of 100 yr. Core BOS04-5C was used to bridge gaps 

(due to sediment loss during drilling) in core BOS04-5B. 
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        Grain size of the sampled centimeter- to decimeter-thick turbidites were analyzed with a 

Beckman Coulter LS230 Laser Diffraction Particle Size Analyzer, which measures sediment size 

ranging from 0.04 to 2000 µm. Instrumental performance was verified by running control 

samples. Inorganic carbon, organic carbon, and biogenic silica were removed before running the 

turbidite samples for grain size analysis. 

 

TOC and Carbon Isotopes  

        Wet sediments were sampled every 30 cm (~500 yr resolution) from core BOS04-5B.  

The samples were dried, crushed, weighed, and acidified to remove inorganic carbon using acid 

fumigation for 48 hours. The samples were desiccated for another 48 hours prior to analysis for 

TOC and δ13C. The weight percentage and δ13C values of TOC were measured at the 

Environmental Science Stable Isotope Laboratory (EaSSIL) at the State University of New York, 

College of Environmental Science and Forestry (SUNY-ESF), using a Costech ECS41010 

elemental analyzer linked via a ThermoFinnigan Conflo III interface to a ThermoFinnigan Delta 

XL Plus stable isotope mass spectrometer (EA-IRMS). The accuracy and precision of stable 

isotope measurements were verified using National Institutes of Standards and Technology 

RM8573 (δ13C = -26.4 ± 0.1‰) and RM8574 (δ13C = 37.6 ± 0.2‰). Daily precision of the 

instrument was verified by repeated analyses of internal laboratory standards including 

acetanilide (δ13C = -29.9 ± 0.2‰) and peach leaves (δ13C = -25.2 ± 0.2‰) during the sample 

runs. 
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Figure 1: Map of Lake Bosumtwi showing drainage development on the crater wall, 

bathymetry (contoured at 10 m interval), and core location of BOS04-5B(5C).  
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Figure 2: Comparison of δ13C and turbidite records of Lake Bosumtwi with δ18O and SST 

records of the North Atlantic ocean. a, δ18O record of GRIP ice core40. YD = the Younger 

Dryas; and LGM = the Last Glacial Maximum. b, Alkenone-based SST record from marine 

sediment core MD95-2042 (37.8°N, 10.2°W) 41. c, δ13C in bulk organic sediments of Lake 

Bosumtwi drill core BOS04-5B (this study) and piston cores B6 and B7 (ref. 31). d, Time series 

(100 yr bin width) of accumulation rate (green; mm/100 yr) and frequency (red; number of 

events/100 yr) of turbidite events at Lake Bosumtwi. e, Water-level history of Lake Bosumtwi 

over the past ~16.5 k.y. (refs 25–27). Shadings highlight D–O interstadials and reconstructed 

water-level highstands of Lake Bosumtwi. 
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Figure 3: Exceptional drought events and lake-level lowstands revealed by seismic 

unconformities. From shallow to deep, the three unconformable surfaces indicated by dashed 

yellow lines represent ~55–70 m, ~70 m, and ~105 m lake-level lowstands, and correspond to 

Heinrich events 1, 5, and 6. The green and black arrows indicate onlap and truncation stratal 

termination, respectively. Interpretation of faults and the base of the sedimentary section is 

modified after Scholz et al.43. 
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Figure 4: Exceptional drought events recorded in the Lake Bosumtwi sediments over the 

past 65 k.y. were associated with slowdowns of the NAMO circulation during Heinrich 

events. a, δ13C in benthic foraminifera from core MD95-2042 (37.8°N, 10.2°W)41,50. b, δ13C in 

benthic foraminifera from core GeoB7920-2 (20.8N°, 18.6°W) 46. c, Bulk-organic based δ13C 

records of drill core BOS04-5B (this study) and piston cores B6 and B7 (ref. 31) of Lake 

Bosumtwi. 
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Extended Data Figure 1: January and July monthly mean precipitation from 1981 to 2010, 

calculated by the International Research Institute for Climate and Society 

(http://iri.colombia.edu) based on CAMS (Climate Anomaly Monitoring System)–OPI (Outgoing 

longwave radiation Precipitation Index) data. Green shading indicates the monthly precipitation 

contoured at 50 mm interval. The dashed red line indicates the positions of the Intertropical 

Convergence Zone (ITCZ) over the African continent in January and July1. The red dot denotes 

Lake Bosumtwi.  

 



68 
 

 

 

Extended Data Figure 2: Seismic–sediment core integration showing that many of the high-

amplitude reflectors on the decimeter-resolution CHIRP seismic profiles are correlated with 

thick turbidites. The red and dark blue curves are turbidite thickness (mm in logarithmic scale) 

and gamma ray attenuation density (g/cm3) of core BOS04-5B, respectively.  
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Extended Data Figure 3: Thickness versus frequency of the past 65 k.y. turbidite events at 

Lake Bosumtwi.  The total 315 turbidite events (>1 mm thick) have a mean thickness of 5.5 

mm. A bin width of 1 mm is used to plot the data. 
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Extended Data Figure 4: An example of core images and x-radiographs showing the 

millimeter- to decimeter-thick turbidites (highlighted in red) observed in core BOS-04-5B.  
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Extended Data Figure 5: Smear-slide photomicrographs of the light-gray cap of a thick 

turbidite bed from core BOS04-5B-10-1 (39 - 46.5 cm; Extended Data Fig. 7). The 

centimeter- to decimeter thick turbidites display a light-gray cap2 that is texturally and 

compositionally similar to the light-colored, millimeter-thick turbidites; both comprise 

predominantly fine- to medium silt-sized quartz and feldspar grains, and contain little organic 

matter. a, Raw turbidite cap sediments under plane-polarized light. b, Raw turbidite cap 

sediments under cross-polarized light. 
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Extended Data Figure 6: Smear-slide photomicrographs of a thick turbidite bed from core 

BOS04-5B-6-1 (130.3 – 138.4 cm; Extended Data Fig. 7). a–b, Raw sediments (136.5 – 137.5 

cm) under plane-polarized light and cross-polarized light. Note the turbidite sediments contain 

abundant aquatic and terrestrial organic matter. c, Processed sediments (136.5 – 137.5 cm) under 

cross-polarized light. Inorganic and organic carbon and biogenic silica were removed from the 

turbidite sediments. TO = terrestrial organic matter; AO = aquatic organic matter; and Q = 

quartz.  
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Extended Data Figure 7:  Examples of grain size profiles and distributions of the 

centimeter- to decimeter thick turbidite sediments. a, Thick turbidites commonly display 

reverse-to-normal grading, typical of flood-introduced turbidites. Inorganic and organic carbon 

and biogenic silica were removed before running particle size analysis. GS = grain size; and D90 

= the 90th particle size percentile. b, Particle sizes of the turbidite sediments generally show 

bimodal, lognormal distributions. 
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Extend Data Figure 8: Possible insolation forcing of turbidite accumulation rate at Lake 

Bosumtwi. a, June insolation at 10° N (W/m2). b, TOC (%) of core BOS04-5B of Lake 

Bosumtwi. c, δ13C in bulk organic matter of drill core BOS04-5B (this study) and piston cores 

B6 and B7 (ref. 3) of Lake Bosumtwi. d, Time series (100 yr bin width) of accumulation rate 

(green; mm/100 yr) and frequency (red; number of events/100 yr) of turbidite events at Lake 

Bosumtwi. e, Water-level history of  Lake Bosumtwi over the past ~16.5 k.y. (refs 4–6). 

Shadings highlight Heinrich interstadials and the last glacial maximum (LGM). 
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Supplementary Table 1. Turbidites (>1 mm) from the upper 65 k.y. of core BOS04-5B of 

Lake Bosumtwi. Core BOS04-5C from the same drill site was used to bridge gaps (due to 

sediment loss during drilling) in core BOS04-5B. 

Section  

 

Top 

(mm) 

Bottom 

(mm) 

Thickness  

(mm) 

 Downcore Depth  

(m) 

Age  

(ka) 

B0S04-5B-1H-1 112.8 115.2 2.4  0.114 0.18 

B0S04-5B-1H-1 641.8 645.8 3.9  0.644 0.64 

B0S04-5C-1H-1 117.0 118.4 1.4  0.850 1.05 

B0S04-5C-1H-1 160.0 161.8 1.8  0.892 1.14 

B0S04-5B-1H-2 129.8 132.5 2.7  0.911 1.18 

B0S04-5B-1H-2 212.0 213.6 1.7  0.993 1.36 

B0S04-5B-1H-2 251.8 253.3 1.5  1.033 1.42 

B0S04-5B-1H-2 350.9 352.1 1.2  1.132 1.56 

B0S04-5B-1H-2 352.4 353.4 1.1  1.133 1.56 

B0S04-5B-1H-2 391.0 392.3 1.3  1.172 1.61 

B0S04-5B-1H-2 590.9 592.0 1.1  1.371 2.03 

B0S04-5B-1H-2 617.6 618.8 1.1  1.398 2.09 

B0S04-5B-1H-2 669.6 672.9 3.2  1.451 2.23 

B0S04-5B-1H-2 687.8 690.9 3.1  1.469 2.27 

B0S04-5B-1H-2 728.0 730.7 2.7  1.509 2.38 

B0S04-5B-1H-2 751.3 753.5 2.2  1.532 2.44 

B0S04-5B-1H-2 768.1 769.1 1.0  1.549 2.48 

B0S04-5B-1H-2 842.1 855.5 13.4  1.629 2.66 

B0S04-5B-1H-2 1223.6 1224.6 1.1  2.004 3.15 

B0S04-5B-1H-2 1309.9 1311.2 1.4  2.091 3.22 

B0S04-5B-1H-2 1313.5 1314.6 1.1  2.094 3.22 

B0S04-5B-1H-2 1317.6 1318.8 1.3  2.098 3.22 

B0S04-5B-1H-2 1328.6 1329.6 1.0  2.109 3.23 

B0S04-5B-1H-2 1338.2 1342.4 4.2  2.120 3.24 

B0S04-5B-1H-2 1345.5 1346.7 1.2  2.126 3.25 

B0S04-5B-1H-2 1351.0 1372.5 21.5  2.142 3.26 

B0S04-5B-1H-2 1422.4 1423.4 1.1  2.203 3.33 

B0S04-5B-1H-2 1427.0 1431.1 4.1  2.209 3.38 

B0S04-5C-1H-2 108.9 110.0 1.2  2.657 5.81 

B0S04-5C-1H-2 118.5 119.5 1.0  2.667 5.86 

B0S04-5C-1H-2 126.2 127.6 1.4  2.675 5.91 

B0S04-5C-1H-2 193.4 194.7 1.3  2.742 6.32 

B0S04-5C-1H-2 200.4 204.2 3.8  2.750 6.37 

B0S04-5C-1H-2 266.9 267.9 1.0  2.815 6.72 

B0S04-5C-1H-2 273.5 274.5 1.0  2.822 6.74 

B0S04-5C-1H-2 285.1 286.6 1.5  2.834 6.78 

B0S04-5C-1H-2 324.1 325.8 1.7  2.873 6.90 
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B0S04-5C-1H-2 402.1 404.4 2.3  2.951 7.13 

B0S04-5B-2H-1 161.6 163.2 1.5  3.162 7.71 

B0S04-5B-2H-1 192.5 194.6 2.1  3.194 7.79 

B0S04-5B-2H-1 318.5 319.5 1.0  3.319 8.16 

B0S04-5B-2H-1 378.5 379.9 1.4  3.379 8.33 

B0S04-5B-2H-1 494.8 495.8 1.0  3.495 8.80 

B0S04-5B-2H-1 591.6 592.6 1.1  3.592 9.21 

B0S04-5B-2H-1 603.8 605.5 1.6  3.605 9.26 

B0S04-5B-2H-1 606.6 607.8 1.2  3.607 9.28 

B0S04-5B-2H-1 649.7 650.8 1.2  3.650 9.51 

B0S04-5B-2H-1 669.3 670.5 1.2  3.670 9.62 

B0S04-5B-2H-1 727.6 728.6 1.0  3.728 9.93 

B0S04-5B-2H-1 739.7 740.8 1.1  3.740 10.00 

B0S04-5B-2H-1 762.7 775.5 12.8  3.769 10.15 

B0S04-5B-2H-1 952.5 954.6 2.1  3.954 10.87 

B0S04-5B-2H-1 1013.2 1014.5 1.3  4.014 11.11 

B0S04-5B-2H-1 1110.1 1111.2 1.0  4.111 11.61 

B0S04-5B-2H-1 1423.7 1425.3 1.6  4.424 13.31 

B0S04-5B-2H-2 11.7 13.0 1.3  4.512 13.38 

B0S04-5B-2H-2 68.9 70.4 1.6  4.570 13.43 

B0S04-5B-2H-2 74.5 75.8 1.3  4.575 13.43 

B0S04-5B-2H-2 282.7 283.8 1.1  4.783 13.98 

B0S04-5B-2H-2 377.9 379.1 1.2  4.879 14.41 

B0S04-5B-2H-2 408.8 409.9 1.0  4.909 14.56 

B0S04-5B-2H-2 542.1 543.1 1.0  5.043 15.06 

B0S04-5B-2H-2 568.7 570.0 1.3  5.069 15.10 

B0S04-5B-2H-2 624.4 626.0 1.6  5.125 15.17 

B0S04-5B-2H-2 693.0 694.4 1.4  5.194 15.26 

B0S04-5B-2H-2 927.2 928.4 1.2  5.428 16.12 

B0S04-5B-2H-2 962.1 963.3 1.1  5.463 16.22 

B0S04-5B-2H-2 964.5 965.9 1.4  5.465 16.23 

B0S04-5B-2H-2 986.2 987.3 1.1  5.487 16.30 

B0S04-5B-2H-2 1189.0 1190.2 1.2  5.690 16.80 

B0S04-5B-2H-2 1197.5 1198.5 1.0  5.698 16.82 

B0S04-5B-2H-2 1210.9 1212.0 1.1  5.711 16.84 

B0S04-5B-2H-2 1214.9 1216.0 1.1  5.715 16.85 

B0S04-5B-2H-2 1244.6 1245.7 1.1  5.745 16.90 

B0S04-5B-2H-2 1315.6 1316.7 1.1  5.816 17.01 

B0S04-5B-2H-CC 19.0 21.6 2.5  5.910 17.04 

B0S04-5B-3H-1 477.8 479.3 1.6  6.479 17.52 

B0S04-5B-3H-1 504.4 505.4 1.0  6.505 17.60 

B0S04-5B-3H-1 531.7 533.1 1.4  6.532 17.68 

B0S04-5B-3H-1 597.6 598.6 1.0  6.598 17.87 
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B0S04-5B-3H-1 615.0 616.4 1.4  6.616 17.88 

B0S04-5B-3H-1 617.0 618.1 1.1  6.618 17.88 

B0S04-5B-3H-1 618.8 620.9 2.1  6.620 17.88 

B0S04-5B-3H-1 621.4 623.0 1.6  6.622 17.89 

B0S04-5B-3H-1 642.0 643.0 1.0  6.642 17.90 

B0S04-5B-3H-1 678.6 679.8 1.2  6.679 17.93 

B0S04-5B-3H-1 681.3 682.4 1.1  6.682 17.93 

B0S04-5B-3H-1 750.6 751.6 1.0  6.751 17.98 

B0S04-5B-3H-1 752.1 753.4 1.3  6.753 17.98 

B0S04-5B-3H-1 754.8 755.8 1.1  6.755 17.98 

B0S04-5B-3H-1 805.2 806.8 1.6  6.806 18.01 

B0S04-5B-3H-1 833.6 834.7 1.1  6.834 18.03 

B0S04-5B-3H-1 1045.6 1048.3 2.8  7.047 18.19 

B0S04-5B-3H-1 1280.2 1287.5 7.3  7.284 18.37 

B0S04-5B-3H-1 1297.5 1465.3 167.7  7.381 18.46 

B0S04-5B-3H-1 1490.7 1492.2 1.5  7.491 18.55 

B0S04-5B-3H-2 46.6 48.0 1.4  7.547 18.59 

B0S04-5B-3H-2 72.2 73.2 1.1  7.573 18.61 

B0S04-5B-3H-2 87.6 172.4 84.8  7.630 18.65 

B0S04-5B-3H-2 276.3 279.6 3.2  7.778 18.78 

B0S04-5B-3H-2 395.5 396.8 1.3  7.896 19.03 

B0S04-5B-4H-1 204.6 205.7 1.2  9.205 22.30 

B0S04-5B-4H-1 267.7 268.8 1.1  9.268 22.51 

B0S04-5B-4H-1 276.7 277.9 1.1  9.277 22.54 

B0S04-5B-4H-1 376.8 377.9 1.1  9.377 22.86 

B0S04-5B-4H-1 381.2 382.7 1.5  9.382 22.88 

B0S04-5B-4H-1 384.1 385.5 1.4  9.385 22.89 

B0S04-5B-4H-1 391.2 393.4 2.2  9.392 22.91 

B0S04-5B-4H-1 396.9 398.8 1.9  9.398 22.93 

B0S04-5B-4H-1 426.0 427.1 1.1  9.427 23.04 

B0S04-5B-4H-1 454.0 455.1 1.1  9.455 23.14 

B0S04-5B-4H-1 499.6 500.7 1.0  9.500 23.31 

B0S04-5B-4H-1 527.5 528.6 1.1  9.528 23.41 

B0S04-5B-4H-1 643.3 644.4 1.1  9.644 23.73 

B0S04-5B-4H-1 1031.8 1032.8 1.0  10.032 24.01 

B0S04-5B-4H-1 1280.5 1281.5 1.1  10.281 24.57 

B0S04-5B-4H-2 166.7 167.8 1.0  10.657 25.42 

B0S04-5B-4H-2 244.4 245.5 1.1  10.735 25.77 

B0S04-5B-4H-2 463.6 464.7 1.0  10.954 26.27 

B0S04-5B-4H-2 521.4 522.4 1.1  11.012 26.36 

B0S04-5B-4H-2 743.4 744.5 1.1  11.234 26.80 

B0S04-5B-4H-2 748.5 749.5 1.0  11.239 26.81 

B0S04-5B-4H-2 753.4 754.4 1.0  11.244 26.82 
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B0S04-5B-4H-2 869.0 870.3 1.4  11.360 27.08 

B0S04-5B-4H-2 874.3 875.3 1.0  11.365 27.09 

B0S04-5B-4H-2 890.6 891.9 1.3  11.381 27.13 

B0S04-5B-4H-2 894.8 895.9 1.1  11.385 27.14 

B0S04-5B-4H-2 1052.7 1053.7 1.1  11.543 27.63 

B0S04-5B-4H-2 1066.4 1067.5 1.1  11.557 27.68 

B0S04-5B-4H-2 1201.7 1203.0 1.3  11.692 27.99 

B0S04-5B-4H-2 1247.1 1248.2 1.0  11.738 28.07 

B0S04-5B-4H-2 1257.3 1258.4 1.0  11.748 28.09 

B0S04-5B-4H-2 1288.5 1289.8 1.3  11.779 28.15 

B0S04-5B-4H-2 1340.1 1341.3 1.2  11.831 28.22 

B0S04-5C-4H-2 395.5 396.6 1.1  12.060 28.47 

B0S04-5B-5H-1 379.4 380.5 1.1  12.380 28.64 

B0S04-5B-5H-1 442.7 443.8 1.1  12.443 28.66 

B0S04-5B-5H-1 460.8 462.4 1.5  12.462 28.67 

B0S04-5B-5H-1 464.7 466.3 1.6  12.466 28.67 

B0S04-5B-5H-1 477.6 478.7 1.2  12.478 28.67 

B0S04-5B-5H-1 710.9 712.1 1.2  12.711 28.81 

B0S04-5B-5H-1 730.9 732.1 1.2  12.731 28.83 

B0S04-5B-5H-1 874.9 876.1 1.2  12.875 28.98 

B0S04-5B-5H-1 949.3 950.4 1.1  12.950 29.06 

B0S04-5B-5H-1 970.8 971.8 1.0  12.971 29.09 

B0S04-5B-5H-1 1156.4 1157.5 1.1  13.157 29.26 

B0S04-5B-5H-1 1231.5 1232.7 1.2  13.232 29.34 

B0S04-5B-5H-1 1264.3 1265.3 1.1  13.265 29.38 

B0S04-5B-5H-1 1276.2 1277.5 1.3  13.277 29.40 

B0S04-5B-5H-2 508.1 509.3 1.2  14.009 29.83 

B0S04-5B-5H-2 544.7 550.7 6.0  14.048 29.88 

B0S04-5B-5H-2 555.4 558.2 2.8  14.057 29.89 

B0S04-5B-5H-2 750.3 752.0 1.7  14.251 30.08 

B0S04-5B-5H-2 761.4 762.6 1.2  14.262 30.09 

B0S04-5B-5H-2 813.1 814.2 1.1  14.314 30.12 

B0S04-5B-5H-2 894.7 896.1 1.5  14.395 30.17 

B0S04-5B-5H-2 909.1 910.2 1.1  14.410 30.18 

B0S04-5B-5H-2 1037.6 1039.2 1.6  14.538 30.35 

B0S04-5B-5H-2 1063.6 1064.8 1.2  14.564 30.39 

B0S04-5B-5H-2 1095.8 1096.8 1.0  14.596 30.43 

B0S04-5B-5H-2 1117.8 1118.8 1.0  14.618 30.45 

B0S04-5B-5H-2 1152.1 1153.2 1.1  14.653 30.48 

B0S04-5B-5H-2 1158.5 1159.6 1.1  14.659 30.48 

B0S04-5B-5H-2 1162.4 1163.6 1.2  14.663 30.49 

B0S04-5B-5H-2 1205.2 1206.2 1.1  14.706 30.52 

B0S04-5B-5H-2 1273.6 1275.7 2.1  14.775 30.58 
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B0S04-5B-5H-2 1372.7 1373.7 1.0  14.873 30.61 

B0S04-5B-5H-2 1385.8 1387.7 1.9  14.887 30.62 

B0S04-5B-5H-2 1401.6 1403.0 1.4  14.902 30.62 

B0S04-5B-6H-1 21.6 22.9 1.3  15.022 30.65 

B0S04-5B-6H-1 52.1 53.7 1.6  15.053 30.66 

B0S04-5B-6H-1 131.2 133.0 1.8  15.132 30.69 

B0S04-5B-6H-1 289.8 290.9 1.0  15.290 31.05 

B0S04-5B-6H-1 412.1 413.1 1.0  15.413 31.48 

B0S04-5B-6H-1 577.3 578.4 1.1  15.578 31.96 

B0S04-5B-6H-1 622.4 623.5 1.1  15.623 32.05 

B0S04-5B-6H-1 1074.1 1079.5 5.4  16.077 33.13 

B0S04-5B-6H-1 1165.2 1166.2 1.0  16.166 33.31 

B0S04-5B-6H-1 1172.7 1173.8 1.1  16.173 33.33 

B0S04-5B-6H-1 1303.2 1383.8 80.6  16.344 33.83 

B0S04-5B-6H-2 53.0 54.1 1.1  16.554 34.54 

B0S04-5B-6H-2 113.7 119.5 5.9  16.617 34.72 

B0S04-5B-6H-2 707.5 717.1 9.6  17.212 36.23 

B0S04-5B-6H-2 924.9 930.6 5.7  17.428 36.45 

B0S04-5B-6H-2 1330.6 1331.7 1.1  17.831 37.31 

B0S04-5B-7H-1 232.9 234.1 1.2  18.233 38.46 

B0S04-5B-7H-1 282.3 283.3 1.0  18.283 38.52 

B0S04-5B-7H-1 429.2 430.4 1.2  18.430 38.73 

B0S04-5B-7H-1 544.8 545.9 1.1  18.545 39.00 

B0S04-5B-7H-1 594.5 595.7 1.2  18.595 39.11 

B0S04-5B-7H-1 598.3 599.4 1.2  18.599 39.12 

B0S04-5B-7H-1 853.9 854.9 1.0  18.854 39.67 

B0S04-5B-7H-1 1156.9 1158.0 1.1  19.157 40.41 

B0S04-5B-7H-1 1174.4 1175.5 1.1  19.175 40.48 

B0S04-5B-7H-1 1349.9 1353.7 3.9  19.352 41.00 

B0S04-5B-7H-1 1482.3 1484.1 1.7  19.483 41.54 

B0S04-5B-7H-2 36.4 42.0 5.7  19.539 41.81 

B0S04-5B-7H-2 139.0 144.1 5.1  19.642 42.20 

B0S04-5B-7H-2 150.1 158.7 8.6  19.654 42.23 

B0S04-5B-7H-2 197.8 199.0 1.2  19.698 42.33 

B0S04-5B-7H-2 757.2 758.3 1.1  20.258 43.34 

B0S04-5B-7H-2 953.8 986.8 33.0  20.470 43.67 

B0S04-5B-7H-2 1006.4 1109.6 103.2  20.558 43.73 

B0S04-5B-7H-2 1111.8 1150.0 38.2  20.631 43.84 

B0S04-5B-7H-2 1223.5 1224.5 1.0  20.724 44.08 

B0S04-5C-7H-2 448.4 450.6 2.2  20.967 44.84 

B0S04-5C-7H-2 475.2 476.4 1.2  20.993 44.93 

B0S04-5B-8H-1 5.9 60.4 54.6  21.033 45.10 

B0S04-5B-8H-1 259.1 260.5 1.4  21.260 45.97 
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B0S04-5B-8H-1 290.8 324.7 33.8  21.308 46.09 

B0S04-5B-8H-1 343.7 345.8 2.1  21.345 46.18 

B0S04-5B-8H-1 720.7 721.8 1.0  21.721 46.59 

B0S04-5B-8H-2 45.1 46.3 1.2  22.546 47.35 

B0S04-5B-8H-2 49.4 50.9 1.5  22.550 47.36 

BOS04-5C-8H-1 1272.7 1273.7 1.0  23.426 48.45 

BOS04-5C-8H-1 1283.7 1284.7 1.0  23.437 48.46 

BOS04-5C-8H-1 1391.2 1392.2 1.0  23.544 48.64 

BOS04-5C-8H-1 1394.4 1395.5 1.1  23.547 48.64 

BOS04-5C-8H-1 1415.6 1416.7 1.1  23.569 48.68 

BOS04-5C-8H-1 1418.4 1419.8 1.3  23.571 48.68 

BOS04-5C-8H-1 1421.1 1422.6 1.5  23.574 48.69 

BOS04-5C-8H-1 1425.3 1426.5 1.2  23.578 48.70 

BOS04-5C-8H-1 1459.0 1461.0 2.1  23.612 48.75 

BOS04-5C-8H-1 1464.6 1465.8 1.2  23.618 48.76 

B0S04-5B-9H-1 1006.3 1007.5 1.2  25.007 50.52 

B0S04-5B-9H-1 1042.0 1043.1 1.0  25.043 50.55 

B0S04-5B-9H-1 1071.5 1072.5 1.0  25.072 50.57 

B0S04-5B-9H-1 1119.1 1121.0 1.8  25.120 50.61 

B0S04-5B-9H-1 1133.5 1134.7 1.2  25.134 50.62 

B0S04-5B-9H-1 1192.7 1262.7 70.0  25.228 50.70 

B0S04-5B-9H-1 1322.9 1324.1 1.2  25.323 50.78 

B0S04-5B-9H-1 1365.3 1366.7 1.4  25.366 50.81 

B0S04-5B-9H-1 1379.0 1380.2 1.1  25.380 50.82 

B0S04-5B-9H-1 1448.1 1449.2 1.0  25.449 50.90 

B0S04-5B-9H-1 1487.2 1493.1 5.8  25.490 50.95 

B0S04-5B-9H-2 13.3 15.4 2.1  25.514 50.97 

B0S04-5B-9H-2 40.1 41.3 1.2  25.541 51.01 

B0S04-5B-9H-2 212.8 214.2 1.4  25.713 51.21 

B0S04-5B-9H-2 306.3 307.5 1.2  25.807 51.32 

B0S04-5B-9H-2 457.2 459.0 1.8  25.958 51.50 

B0S04-5B-9H-2 539.8 541.0 1.2  26.040 51.60 

B0S04-5B-9H-2 542.0 543.2 1.2  26.043 51.60 

B0S04-5B-9H-2 547.1 548.3 1.1  26.048 51.60 

B0S04-5B-9H-2 548.5 549.6 1.1  26.049 51.61 

B0S04-5B-9H-2 560.6 561.6 1.0  26.061 51.62 

B0S04-5B-9H-2 603.6 604.8 1.2  26.104 51.67 

B0S04-5B-9H-2 617.2 618.4 1.2  26.118 51.69 

B0S04-5B-9H-2 620.6 622.2 1.6  26.121 51.69 

B0S04-5B-9H-2 672.9 674.1 1.1  26.174 51.75 

B0S04-5B-9H-2 687.8 695.5 7.7  26.192 51.78 

B0S04-5B-9H-2 708.2 709.3 1.2  26.209 51.80 

B0S04-5B-9H-2 717.1 718.6 1.5  26.218 51.81 
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B0S04-5B-9H-2 718.6 720.5 1.9  26.220 51.81 

B0S04-5B-9H-2 761.9 764.1 2.2  26.263 51.86 

B0S04-5B-9H-2 769.6 773.0 3.4  26.271 51.87 

B0S04-5B-9H-2 776.0 897.0 121.0  26.337 51.95 

B0S04-5B-9H-2 905.2 907.0 1.8  26.406 52.03 

B0S04-5B-9H-2 924.4 963.1 38.6  26.444 52.07 

B0S04-5B-9H-2 973.5 981.7 8.2  26.478 52.10 

B0S04-5B-9H-2 985.3 1073.5 88.3  26.529 52.16 

B0S04-5B-9H-2 1095.8 1109.7 13.9  26.603 52.23 

B0S04-5B-9H-2 1176.4 1177.8 1.4  26.677 52.31 

B0S04-5B-9H-2 1247.2 1252.5 5.3  26.750 52.39 

B0S04-5B-9H-CC 6.0 7.0 1.1  26.937 52.58 

B0S04-5B-10H-1 280.1 281.2 1.1  27.281 52.94 

B0S04-5B-10H-1 389.6 465.4 75.8  27.427 53.09 

B0S04-5B-10H-1 966.7 967.7 1.0  27.967 53.52 

B0S04-5B-10H-1 1094.2 1135.8 41.6  28.115 53.64 

B0S04-5B-10H-1 1261.7 1263.7 1.9  28.263 53.76 

B0S04-5B-10H-1 1266.3 1284.9 18.6  28.276 53.77 

B0S04-5B-10H-1 1408.9 1412.2 3.3  28.411 53.88 

B0S04-5B-10H-2 187.0 189.1 2.2  28.698 54.25 

B0S04-5B-10H-2 191.5 192.7 1.3  28.702 54.25 

B0S04-5B-10H-2 411.7 412.9 1.3  28.922 54.53 

B0S04-5B-10H-2 504.8 506.5 1.8  29.016 54.65 

B0S04-5B-10H-2 678.1 679.7 1.6  29.189 54.87 

B0S04-5B-10H-2 686.9 688.1 1.3  29.197 54.88 

B0S04-5B-10H-2 953.8 955.6 1.8  29.465 55.23 

B0S04-5B-11H-1 35.4 36.4 1.1  30.036 56.12 

B0S04-5B-11H-1 37.6 39.0 1.4  30.038 56.12 

B0S04-5B-11H-1 221.7 222.9 1.2  30.222 56.41 

B0S04-5B-11H-1 698.6 700.0 1.4  30.699 57.33 

B0S04-5B-11H-1 793.1 794.5 1.4  30.794 57.53 

B0S04-5B-11H-1 794.8 795.8 1.0  30.795 57.53 

B0S04-5B-11H-1 801.1 806.4 5.3  30.804 57.55 

B0S04-5B-11H-1 843.2 844.5 1.3  30.844 57.64 

B0S04-5B-11H-1 859.1 864.8 5.6  30.862 57.67 

B0S04-5B-11H-1 1003.4 1005.3 2.0  31.004 57.98 

B0S04-5B-11H-1 1027.9 1028.9 1.0  31.028 58.03 

B0S04-5B-11H-1 1033.3 1058.0 24.7  31.046 58.07 

B0S04-5B-11H-1 1093.5 1122.4 28.9  31.108 58.20 

B0S04-5B-11H-1 1124.6 1126.5 1.9  31.126 58.24 

B0S04-5B-11H-1 1148.0 1149.1 1.2  31.149 58.29 

B0S04-5B-11H-1 1154.4 1220.1 65.7  31.187 58.37 

B0S04-5B-11H-1 1234.4 1236.1 1.7  31.235 58.47 
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B0S04-5B-11H-1 1266.8 1270.5 3.7  31.269 58.55 

B0S04-5B-11H-1 1305.6 1306.9 1.3  31.306 58.63 

B0S04-5B-11H-1 1416.3 1420.2 3.9  31.418 58.86 

B0S04-5B-11H-1 1492.5 1493.5 1.1  31.493 59.01 

B0S04-5B-11H-2 16.3 17.7 1.4  31.497 59.01 

B0S04-5B-11H-2 27.8 28.8 1.0  31.508 59.03 

B0S04-5B-11H-2 31.7 36.8 5.1  31.514 59.05 

B0S04-5B-11H-2 74.1 75.5 1.4  31.555 59.12 

B0S04-5B-11H-2 105.3 106.9 1.7  31.586 59.18 

B0S04-5B-11H-2 139.9 141.9 2.0  31.621 59.25 

B0S04-5B-11H-2 195.8 196.9 1.1  31.676 59.35 

B0S04-5B-11H-2 197.3 205.6 8.3  31.681 59.36 

B0S04-5B-11H-2 222.4 224.9 2.6  31.704 59.41 

B0S04-5B-11H-2 754.6 758.3 3.7  32.236 60.42 

B0S04-5B-11H-2 843.2 845.0 1.8  32.324 60.59 

B0S04-5B-11H-2 1057.4 1059.0 1.6  32.538 61.22 

B0S04-5B-11H-2 1087.0 1088.1 1.2  32.568 61.33 

B0S04-5B-11H-2 1128.2 1129.2 1.0  32.609 61.47 

B0S04-5B-11H-2 1183.5 1185.1 1.7  32.664 61.67 

B0S04-5B-11H-2 1208.9 1210.8 1.9  32.690 61.76 
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Supplementary Table 2. TOC and δ13C measurements of core BOS04-5B.  

Section 

 

Section Depth 

(cm) 

Downcore 

Depth (m) 

Age 

 (ka) 

TOC  

(%) 

δ13C 

(‰) 

BOS04-5B-1H-1 4-6 0.05 0.05 8.1 -32.9 

BOS04-5B-1H-1 36-38 0.37 0.44 7.2 -34.8 

BOS04-5B-1H-1 68-70 0.69 0.73 10.5 -33.1 

BOS04-5B-1H-2 12-19 0.94 1.23 5.1 -38.1 

BOS04-5B-1H-2 52-54 1.31 1.89 10.1 -31.3 

BOS04-5B-1H-2 84-86 1.63 2.66 6.3 -27.1 

BOS04-5B-1H-2 116-118 1.95 3.08 10.9 -27.5 

BOS04-5B-1H-CC 0-3 2.20 3.31 17.6 -27.9 

BOS04-5B-2H-1 4-6 3.05 7.41 18.7 -31.6 

BOS04-5B-2H-1 36-38 3.37 8.31 17.7 -28.1 

BOS04-5B-2H-1 68-70 3.69 9.72 18.5 -29.4 

BOS04-5B-2H-1 100-102 4.01 11.09 13.7 -27.9 

BOS04-5B-2H-1 132-134 4.33 12.87 15.5 -30.4 

BOS04-5B-2H-2 4-6 4.55 13.41 20.1 -30.6 

BOS04-5B-2H-2 36-38 4.87 14.37 12.7 -32.2 

BOS04-5B-2H-2 68-70 5.19 15.25 9.7 -20.0 

BOS04-5B-2H-2 100-102 5.51 16.37 9.9 -11.2 

BOS04-5B-2H-2 132-134 5.83 17.01 4.6 -15.7 

BOS04-5B-2H-CC 0-6 5.92 17.05 3.5 -16.3 

BOS04-5B-3H-1 12-14 6.13 17.10 7.8 -11.3 

BOS04-5B-3H-1 44-46 6.45 17.44 5.4 -18.4 

BOS04-5B-3H-1 76-78 6.77 17.99 9.5 -20.2 

BOS04-5B-3H-1 108-110 7.09 18.22 7.9 -24.8 

BOS04-5B-3H-1 140-142 7.41 18.49 9.2 -30.9 

BOS04-5B-3H-2 12-14 7.63 18.65 5.5 -33.2 

BOS04-5B-3H-2 44-46 7.95 19.17 7.7 -28.6 

BOS04-5B-3H-2 76-78 8.27 19.58 8.2 -15.5 

BOS04-5B-3H-2 108-110 8.59 20.11 6.5 -13.6 

BOS04-5B-3H-2 140-142 8.91 21.18 9.5 -9.1 

BOS04-5B-2H-CC 0-6 8.98 21.45 9.8 -7.4 

BOS04-5B-4H-1 3-4 9.04 21.68 9.7 -21.0 

BOS04-5B-4H-1 36-37 9.37 22.82 6.5 -27.4 

BOS04-5B-4H-1 68-69 9.69 23.78 8.0 -24.2 

BOS04-5B-4H-1 100-101 10.01 23.96 8.2 -15.0 

BOS04-5B-4H-1 132-133 10.33 24.73 5.1 -15.7 

BOS04-5B-4H-2 12-13 10.62 25.24 7.2 -21.7 

BOS04-5B-4H-2 52-53 11.02 26.37 8.8 -24.4 

BOS04-5B-4H-2 76-77 11.26 26.85 6.0 -29.3 

BOS04-5B-4H-2 108-109 11.58 27.73 6.6 -22.6 
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BOS04-5B-4H-2 140-141 11.90 28.30 6.2 -15.0 

BOS04-5B-4H-CC 0-10 11.99 28.41 8.4 -9.7 

BOS04-5B-5H-1 4-5 12.05 28.46 7.4 -14.3 

BOS04-5B-5H-1 36-37 12.37 28.64 4.9 -17.1 

BOS04-5B-5H-1 68-69 12.69 28.79 9.1 -11.2 

BOS04-5B-5H-1 100-101 13.01 29.13 8.8 -13.7 

BOS04-5B-5H-1 132-133 13.33 29.47 7.0 -11.6 

BOS04-5B-5H-2 4-5 13.55 29.60 10.9 -23.7 

BOS04-5B-5H-2 36-37 13.87 29.74 10.9 -17.6 

BOS04-5B-5H-2 68-69 14.19 30.03 6.8 -18.5 

BOS04-5B-5H-2 100-101 14.51 30.31 3.9 -18.7 

BOS04-5B-5H-2 132-133 14.83 30.60 9.6 -20.2 

BOS04-5B-5H-CC 0-7 14.96 30.63 8.5 -23.3 

BOS04-5B-6H-1 12-13 15.13 30.69 10.1 -22.8 

BOS04-5B-6H-1 44-45 15.45 31.58 7.4 -23.3 

BOS04-5B-6H-1 76-77 15.77 32.25 10.3 -23.5 

BOS04-5B-6H-1 108-109 16.09 33.14 15.1 -26.6 

BOS04-5B-6H-1 140-141 16.41 34.02 22.2 -27.8 

BOS04-5B-6H-2 20-21 16.71 34.84 17.4 -28.9 

BOS04-5B-6H-2 52-53 17.03 36.12 11.4 -24.7 

BOS04-5B-6H-2 84-85 17.35 36.36 16.5 -27.5 

BOS04-5B-6H-2 116-117 17.67 36.86 11.3 -27.4 

BOS04-5B-6H-2 140-141 17.91 37.55 15.3 -25.7 

BOS04-5B-6H-CC 0-8 17.98 37.78 8.5 -24.7 

BOS04-5B-7H-1 28-29 18.29 38.52 8.0 -13.4 

BOS04-5B-7H-1 60-61 18.61 39.13 7.2 -21.7 

BOS04-5B-7H-1 92-93 18.93 39.76 10.0 -20.7 

BOS04-5B-7H-1 124-125 19.25 40.69 5.0 -24.1 

BOS04-5B-7H-2 4-5 19.55 41.83 15.1 -26.4 

BOS04-5B-7H-2 12-13 19.63 42.16 25.4 -28.5 

BOS04-5B-7H-2 36-37 19.87 42.69 17.8 -26.5 

BOS04-5B-7H-2 68-69 20.19 43.20 16.0 -21.4 

BOS04-5B-7H-2 100-101 20.51 43.70 7.3 -24.6 

BOS04-5B-7H-2 132-133 20.83 44.36 11.2 -26.0 

BOS04-5B-7H-CC 0-6 20.89 44.58 7.2 -27.1 

BOS04-5B-8H-1 4-5 21.05 45.15 4.9 -24.4 

BOS04-5B-8H-1 36-37 21.37 46.23 9.8 -25.7 

BOS04-5B-8H-1 68-69 21.69 46.55 10.6 -20.6 

BOS04-5B-8H-1 100-101 22.01 46.83 5.2 -17.4 

BOS04-5B-8H-2 4-5 22.55 47.35 2.7 -12.2 

BOS04-5B-8H-2 36-37 22.87 47.74 2.6 -10.9 

BOS04-5B-8H-2 68-69 23.19 48.14  -10.3 

BOS04-5B-8H-CC 0-8 23.39 48.39 8.5 -7.9 



85 
 

BOS04-5B-9H-1 12-13 24.13 49.58 2.8 -17.4 

BOS04-5B-9H-1 44-45 24.45 50.07 4.8 -18.4 

BOS04-5B-9H-1 76-77 24.77 50.33 5.7 -11.7 

BOS04-5B-9H-1 108-109 25.09 50.58 3.6 -20.1 

BOS04-5B-9H-1 140-141 25.41 50.84 5.3 -7.7 

BOS04-5B-9H-2 20-21 25.71 51.20 5.7 -18.0 

BOS04-5B-9H-2 52-53 26.03 51.58 6.8 -23.5 

BOS04-5B-9H-2 84-85 26.35 51.96 3.7 -27.1 

BOS04-5B-9H-2 116-117 26.67 52.30 12.0 -27.9 

BOS04-5B-9H-CC 0-6 26.96 52.61 12.8 -27.5 

BOS04-5B-10H-1 4-5 27.05 52.70 12.4 -31.5 

BOS04-5B-10H-1 36-37 27.37 53.03 12.6 -30.3 

BOS04-5B-10H-1 67-68 27.68 53.29 12.1 -33.6 

BOS04-5B-10H-1 100-101 28.01 53.55 8.7 -34.9 

BOS04-5B-10H-1 132-133 28.33 53.81 6.0 -20.8 

BOS04-5B-10H-2 12-13 28.64 54.17 3.5 -25.2 

BOS04-5B-10H-2 44-45 28.96 54.57 5.0 -24.6 

BOS04-5B-10H-2 76-77 29.28 54.98 3.6 -30.0 

BOS04-5B-10H-2 108-109 29.60 55.44 4.3 -22.6 

BOS04-5B-10H-CC 0-6 29.92 55.94 2.8 -22.6 

BOS04-5B-11H-1 4-5 30.05 56.13 3.0 -25.8 

BOS04-5B-11H-1 36-37 30.37 56.63 5.0 -28.4 

BOS04-5B-11H-1 68-69 30.69 57.30 3.1 -12.3 

BOS04-5B-11H-1 100-101 31.01 57.98 5.8 -29.0 

BOS04-5B-11H-1 132-133 31.33 58.67 6.3 -29.7 

BOS04-5B-11H-2 12-13 31.61 59.22 5.7 -32.1 

BOS04-5B-11H-2 44-45 31.93 59.83 5.3 -28.9 

BOS04-5B-11H-2 76-77 32.25 60.44 3.1 -27.1 

BOS04-5B-11H-2 108-109 32.57 61.32 0.4 -22.5 

BOS04-5B-11H-CC 0-6 33.00 62.84 0.3 -22.6 

BOS04-5B-12H-1 4-5 33.05 63.01 0.4 -24.4 

BOS04-5B-12H-1 36-37 33.37 64.13 0.4 -26.0 

BOS04-5B-12H-1 68-69 33.69 65.36 0.5 -32.0 
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Abstract 

        Analyses of 2-D and 3-D seismic reflection data from the Lake Albert Rift, East Africa 

reveal the presence of large channelized turbidite systems, which accumulated during late 

Pliocene to early Pleistocene when Lake Albert is a deep lake system. Geomorphic parameters of 

imaged channels were measured and compared with data from river and submarine channels, and 

it is found that the meander geometry of the sublacustrine turbidite channels is morphologically 

close to river and submarine channels. In the Semliki River plain area to the southwest of the 

present lake, turbidite systems from two depositional units connect updip to two different fluvial 

catchments on the eastern rift shoulder. It is postulated that the turbidites were sourced by 

hyperpycnal river flows during floods, and there was a change in the sediment source during the 

accumulation of the two units, caused by drainage reversals due to rift shoulder uplift. Sediment 

dispersal pathways, changes in depositional facies, and evolution of the sublacustrine turbidite 

systems appear to be greatly influenced by syndepositional tectonism. 

Keywords: turbidite; 3-D seismic; meander geometry; Lake Albert; East Africa Rift 
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Introduction  

        Deep-water depositional processes have been the focus of many recent studies, and much 

has been learned about the morphology, architecture, and evolution of turbidite systems, 

especially those developed along passive continental margins (Kneller, 2003; Peakall et al., 

2003; Posamentier, 2003; Posamentier and Kolla, 2003; Pirmez and Imran, 2003; Deptuck et al., 

2007; Gee et al., 2007; Gee and Gawthorpe, 2007; Kolla et al., 2007; Posamentier et al., 2007; 

Wynn et al., 2007; Babonneau et al., 2010; McHargue et al., 2011). However, turbidite systems 

from non-marine, tectonically active basins, such as lacustrine rift basins, are underexplored and 

less understood. Compared to passive continental margin submarine environments, lacustrine rift 

basins are characterized by rapid and spatially variable extensional tectonics (Ebinger, 1989; 

Gawthorpe and Hurst, 1993; Contreras et al., 2000; Gawthorpe and Leeder, 2000; Lezzar et al., 

2002) and high-frequency and high-amplitude lake-level changes (Scholz et al., 2007; McGlue et 

al., 2008; Lyons et al., 2011), all of which play important roles in controlling the sedimentation 

of rift lake turbidites.  

        Quantitative relationships of various planform geomorphic parameters of river channels 

have been empirically derived (Table 1), including channel width, meander wavelength, 

amplitude, and mean radius of curvature (Leopold and Wolman, 1957, 1960; Dury, 1965; Ritter 

et al., 2002). Previous studies have suggested that the meander geometry of submarine channels 

on passive continental margins is close to that of fluvial channels (Flood and Damuth, 1987; 
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Clark et al., 1992; Pirmez and Imran, 2003). However, no studies have considered the meander 

geometry of sublacustrine turbidite channels.   

        Sublacustrine turbidite systems comprise a large fraction of the sediment volume of 

lacustrine rift basins, and have been observed from modern deep-water rift valleys, e.g. Lake 

Baikal (Nelson et al., 1999), Lake Malawi (Soreghan et al., 1999), and Lake Kivu (Zhang et al., 

2014), as well as from ancient lacustrine rift basins (Feng et al., 2010).  Using 2-D and 3-D 

seismic reflection data from the Lake Albert rift, East Africa, this paper: 1) makes quantitative 

comparisons of the planform geometry between sublacustrine turbidite and subaerial fluvial 

channels; and 2) assesses the source of turbidity currents and the structural controls on the 

deposition of turbidite systems in this extensional basin. 

 

Geological Setting 

        The East African Rift System (EARS) is a north-south alignment of rift basins forming a 

plate boundary on the east side of Africa, and is divided into two structural branches (Ebinger, 

1989; Corti, 2009). The western branch of the EARS (i.e. the Western Rift Valley), initiated 

about 25 million years ago in the late Oligocene (Roberts et al., 2012), is composed of a series of 

half-graben and full-graben basins, which are occupied by large lake systems. Lake Albert, 

located at the northern end of the Western Rift Valley, is ~150 km long and ~40 km wide (Fig. 

1). The lake occupies an asymmetric full-graben bordered on the northwest by the Bunia Border 

Fault accommodating most of the extension, and on the southeast by a complex of steeply 
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dipping faults (Karp et al., 2012; Figs. 1, 2). The boundary faults on either side of the basin have 

been continuously active throughout the late Cenozoic (Karp et al., 2012). Analyses of seismic 

reflection data suggest that the main depocenter, with a maximum thickness of ~5 km in the 

sedimentary section, is located on the northwest side of the basin adjacent to the Bunia Border 

Fault (Karp et al., 2012). The sedimentary section observed in seismic data extends from the 

present lake into the Semliki River plain to the southwest (Fig. 1). With a maximum 

displacement of >1000 m on the sediment-crystalline basement interface, the Semliki Fault (Fig. 

3), which is antithetic to the Bunia Border Fault, is the largest intrabasinal fault in the Semliki 

River plain area, and is probably the northeastward extension of the West Ruwenzori Fault (Fig. 

1).  

        Evidence from mollusk fossils suggests that Lake Albert and Lake Edward/Lake George 

may have existed as a single large lake, i.e. the paleolake Obweruka, during the late-Miocene to 

mid-Pliocene times (Van Damme and Pickford, 2003). At ~2.5 Ma in the early Pleistocene, 

paleolake Obweruka is postulated to have broken up into the southern and northern basins by 

uplift of the Ruwenzori Mountains (Van Damme and Pickford, 2003). Large drainage systems at 

the northern end of the Western Rift Valley, including the Kafu, Katonga, and Kagera Rivers 

(Fig. 1), were once westward flowing during the Miocene, Pliocene and part of the Pleistocene 

(Beadle, 1981). Today, these rivers are much diminished and flow bidirectionally, divided by a 

broad upwarp in western Uganda (McGlue et al., 2006). The drainage reversals which gave birth 
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to Lakes Kyoga and Victoria (Beadle, 1981) were caused by rift-related flank uplift beginning in 

the Miocene and continuing into the Pleistocene (Kendall, 1969).  

        The Lake Albert Rift has experienced long-term environmental changes, from a 

continuously open-lacustrine, deep lake system in the Miocene and Pliocene, to an alternating 

shallow-lacustrine and fluvial system in the mid- and late-Pleistocene (Karp et al., 2012; Fig. 4). 

Modern-day Lake Albert has an average depth of ~25 m, and is an open hydrologic system that 

outflows northward through the Albert Nile, and receives its major input from the Semliki River 

in the southwest and the Victoria Nile in the northeast (Fig. 1).  

        This study focuses on the stratigraphic interval accumulated during late Pliocene to early 

Pleistocene (by correlation with Karp et al., 2012; Figs. 3, 4). By correlation with drill core data 

(Sserubiri, 2011; Karp et al., 2012), the studied interval is composed of organic-rich shales 

interbedded moderately-sorted quartz sandstones containing pyrites (Fig. 4), indicating reducing, 

deep lacustrine depositional conditions. 

 

Datasets and Methodology                                                   

        The data sets used in this study include the Semliki 3-D seismic survey on the southern 

coast of Lake Albert and a dense grid of offshore 2-D seismic reflection profiles covering the 

entire lake (Fig. 1). The commercially-acquired 3-D and 2-D seismic data are zero-phase and 

normal polarity, following SEG conventions. The Semliki 3-D seismic data were acquired in 

2004 using a dynamite source, and have a line spacing of 25 m and a dominant frequency of ~25 



93 
 

Hz. The offshore 2-D seismic data acquired in 2002 used a 120 c.i. air gun array as a seismic 

source, and have a line spacing of 1.5–3.5 km and a dominant frequency of ~55 Hz.   

        Using 3-D seismic data, a variety of seismic attributes can be used to image and visualize 

ancient depositional systems in the subsurface (Posamentier, 2002; Posamentier and Kolla, 2003; 

Posamentier et al., 2007). Seismic attributes extracted on stratal slices and reflection 

configurations within the studied interval were analyzed to assess turbidite systems of the Lake 

Albert rift. To better characterize the turbidite systems, interpretations of various seismic 

attributes were integrated. These attributes include instantaneous amplitude, RMS amplitude, 

instantaneous phase, coherence, and ‘edge detection’ (a seismic attribute for the detection of 

geologic boundaries).  

        To quantitatively compare channel geometry between sublacustrine turbidite and subaerial 

fluvial systems, measurements of meander wavelength, amplitude, radius of curvature, channel 

width, and sinuosity were made at the individual meander level on seismic attribute slices. 

Because the widths of the channels in some cases display large variations, five evenly-spaced 

measurements were taken to estimate the mean width of each channel meander. Intrabasinal 

faults were interpreted from the Semliki 3-D seismic volume in order to assess the structural 

control of turbidite sedimentation in the Semliki River plain area. 

 

Results 

 Intrabasinal Faults Observed in The Semliki 3-D Seismic Survey 
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        A number of intrabasinal faults were interpreted from the Semliki 3-D seismic volume, with 

some showing surface expressions. Digital elevation models indicate that the surface scarp of the 

Semliki Fault has relief of ~0.5 m in the northeast and >100 m in the southwest part of the 

Semliki 3-D seismic survey, indicating its recent activity. Surface scarps are also associated with 

the arcuate faults striking subparallel or at low-angle to the Semliki Fault in the eastern and 

northeastern part of the Semliki 3-D seismic survey (Fig. 5). The Semliki Fault and those 

described are syndepositional to the studied interval, as indicated by isochron mapping (Fig. 5). 

A fault-related fold, also syndepositional to the studied interval, developed on the hanging wall 

of the Semliki Fault (Figs. 3, 5). The approximately SW-NE and NW-SE striking faults in the 

western and southwestern part of the Semliki 3-D seismic survey appear to be postdepositional to 

the studied interval (Fig. 5); there are no apparent changes in sedimentary thickness across these 

faults. 

 

Turbidite Systems  

         Turbidite systems that developed during different episodes were observed from the Semliki 

3-D and offshore 2-D seismic data. In the Semliki River plain area, channelized turbidite systems 

were observed on a number of seismic surfaces, with the most extensively distributed ones 

associated with the ‘Green’ and ‘Purple’ seismic surfaces (Fig. 3). The ‘Green’ seismic surface 

was characterized by a highly continuous, high-amplitude seismic reflection event; the ‘Purple’ 

seismic surface, which is ~50 m above the ‘Green’ surface, is associated with a continuous, 
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medium- to high-amplitude seismic reflection event. Depositional thickness between the ‘Green’ 

and ‘Purple’ surfaces is largely correlated with syndepositional faulting and fault-related folding, 

and varies from ~30 ms TWTT (Two-way Travel Time; ~25 m) in the southeast to ~80 ms 

TWTT (~70 m) in the northwest of the Semliki 3-D seismic survey (Fig. 5).  

        Turbidity-flow channel and lobe elements were imaged by various seismic attributes 

extracted on the ‘Green' seismic surface, including but not limited to instantaneous amplitude 

(Fig. 6A), RMS amplitude (Fig. 6B), and ‘edge detection’ (Fig. 6C). Characterized by a coupled 

flat channel-top and concave-up channel-base seismic reflection configuration, the sublacustrine 

channels of the ‘Green’ depositional unit (Figs. 7, 8) are ~5–25 km long and ~120–250 m wide 

within the Semliki 3-D seismic survey. The widths of the channels may vary significantly, due to 

meander growth (Fig. 6A). The channels are low to moderately sinuous, with sinuosity varying 

from 1.01 to 1.28. Some channels exhibit bifurcation, with the angle of bifurcation about 30°–

45° (Figs. 6A, 7). At least one of these channels has an attached lobe (Fig. 6A), and the channel-

to-lobe transition is associated with an intrabasinal fault. The channels are oriented 

approximately E-W, with an exception of a SW-NE running channel, which may connect up-dip 

to a sublacustrine fan on the footwall of the Semliki Fault (Fig. 7). The fan is characterized by 

high-amplitude anomalies on seismic attribute images (Fig. 6B), and shows channel-like features 

in cross-sectional views.  

        Later development of sublacustrine channel and fan systems in the Semliki River plain area 

can be observed on horizon slices between 44 ms TWTT (Fig. 9A) and 60 ms TWTT (Fig. 9B) 
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above the ‘Green’ seismic surface (Fig. 10); the bases of all imaged channels correspond to the 

same reflection event, i.e. the ‘Purple’ seismic surface (Fig. 11). These channels are better 

imaged on the stratal slice generated by amplitude extraction on the ‘Purple’ surface (Fig. 9C); 

more channels are observed on the stratal slice that represents a geological-time surface (Zeng 

and Hentz, 2004), compared to the horizon slices that are less chronologically significant. The 

turbidite channels of the ‘Purple’ depositional unit show lengths, widths, and depths comparable 

to those of the channels of the ‘Green’ depositional unit. Channel width of the ‘Purple’ unit 

shows variations of as much as ~70 %. The channels are of low to moderate sinuosity, with 

values ranging from 1.02 to 1.34. Orientated SE-NW, these channels are probably secondary and 

connected updip to the sublacustrine fan on the footwall of the Semliki Fault (Figs. 9, 10). 

Although it was also observed on seismic amplitude images of the ‘Green’ seismic surface (Fig. 

6B), sedimentation of the fan was probably more active during accumulation of the ‘Purple’ unit, 

where a higher degree of channelization of the fan was observed. Compared to the turbidite 

systems of the ‘Green’ unit, a distributary channel network and complex crosscutting fabric 

characterize the turbidite systems of the ‘Purple’ unit (Fig. 10).  

        Large turbidite systems were also observed in the northern part of the Lake Albert rift. 

Sublacustrine fans that are ~300–350 m below the ‘Green’ and ‘Purple’ depositional units were 

revealed from offshore 2-D seismic profiles (Fig. 12). Deposited against the N. Toro Bunyoro 

Fault, the mounded sublacustrine fans show bidirectional downlap on seismic profiles in the 

strike direction (Fig. 12A), similar to the seismic reflection configuration of submarine basin-
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floor fans (e.g. Mitchum, 1985), and are progradational on seismic profiles in the dip direction 

(Fig. 12B). One of these fans appears to be channelized (Fig. 12A); the channels on the fan, also 

characterized by coupled flat channel-top and concave-up channel-base reflections, probably 

form a distributary pattern like its submarine counterparts (e.g. the Amazon Fan, Pirmez and 

Imran, 2003).      

 

Discussion 

Meander Geometry 

        Channel width (W), meander wavelength (λ), amplitude (A), and mean radius of curvature 

(Rm) of river channels have all been observed to scale with W as linear or power-law functions 

with exponents close to unity (Leopold and Wolman, 1957, 1960; Dury, 1965; Ritter et al., 

2002). Previous work demonstrates that the empirical relationships derived from river channels 

apply to sinuous submarine channels as well (Flood and Damuth, 1987; Clark et al., 1992; 

Pirmez and Imran, 2003).  

        Compared to submarine channels, the sublacustrine channels of the Lake Albert rift are 

much smaller in scale; values of λ, A, Rm, and W are only about 1/10 to 1/5 of those observed 

from the submarine channels studied by Clark et al. (1992) and Pirmez and Imran (2003). The 

values of λ, A, and Rm for all measured meanders are plotted versus W (Fig. 13A, 13B, 13C). 

The regressions derived from measurements of the sublacustrine channels are similar to 

submarine channels (Flood and Damuth, 1987; Clark et al., 1992; Pirmez and Imran, 2003), and 
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correspond closely with those derived from river data by Leopold and Wolman (1957, 1960) and 

Ritter et al. (2002). The linear best-fit between λ and Rm (Fig. 13D) is also similar to that 

observed in river channels (Leopold and Wolman, 1957). 

        Sinuosity (Si) also scales with channel width, but as a negative power-law function (Fig. 

13E). A negative power-law relationship between sinuosity and channel width was also 

demonstrated by Hickson and Lowe (2002), based on data of numerous modern submarine 

channels from Clark and Pickering (1996). Accordingly, the planform morphology of turbidite 

channels, including both submarine and sublacustrine channels, and that of fluvial channels are 

not significantly different.    

 

Sediment Sources 

        Turbidity currents can be initiated by slope failures triggered by earthquakes, meteorite 

impacts, storms, and sea/lake level changes (Normark and Piper, 1991; Piper et al., 1991; 

Bralower et al., 1998; Canals et al., 2004; Puig et al., 2004; Gee et al., 2006; Girardclos et al., 

2007), and by hyperpycnal river flows during floods (Mulder et al., 2003; Plink-Bjröklund and 

Steel, 2004; Dadson et al., 2005; Khripounoff et al., 2009; Osleger et al., 2009; Bourget et al., 

2010). Hyperpycnal flows form in marine environments when rivers discharge into the oceans 

with suspended concentrations in excess of 36 kg/m3; they are more frequent in lakes where only 

small sediment concentrations are necessary to induce plunging behavior (Mulder et al., 2003).  
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        Within the studied interval of the Lake Albert basin, there is no evidence of large-scale 

sediment failures and related mass transport deposits that can be observed from the 3-D and 2-D 

seismic data. Sediment failure on slopes is therefore not likely the trigger of turbidity currents 

over the studied interval. We postulate that the turbidite systems are connected to onshore 

drainage basins (Fig. 14), and that hyperpycnal river flows during floods are the most likely 

mechanism for the initiation of turbidity currents.  

        In the Semliki River plain area, turbidite systems of the ‘Green’ and ‘Purple’ depositional 

units can be traced landward to two of the largest drainage basins on the eastern rift shoulder, 

marking a possible change in the sediment source between accumulation of the two units. The 

turbidite channels of the ‘Green’ unit are mainly orientated E-W. They were probably primarily 

fed by the Kafu River catchment from northeast (Fig. 14; Fig. 15A), which drained an area of 

~50,000 km2 over a distance of ~ 500 km prior to the drainage reversal (Beadle, 1981). The later 

turbidite systems of the ‘Purple’ unit are oriented approximately SE-NW, and were probably 

sourced by the Muzizi River (Fig. 15B). The Muzizi River catchment is located to the west of the 

axis of upwarp (Figs. 1, 14), and therefore was not reversed when the rift shoulder was uplifted. 

Also oriented SE-NW, the Muzizi River drains an area of ~ 4,000 km2 over a distance of ~ 100 

km. Sourced by the Muzizi River catchment from southeast, the turbidite fan on the footwall of 

the Semliki Fault was more active during the accumulation of the ‘Purple’ unit than during the 

deposition of the ‘Green’ unit, and it probably served as a secondary sediment source feeding the 

turbidite channels of the ‘Purple’ unit (Figs. 10, 14B, 15B) and the SW-NE running channel of 
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the ‘Green’ unit (Figs. 7, 15A). The sublacustrine fans deposited along the N. Toro Bunyoro 

Fault in the northern part of the lake were also most likely sourced by hyperpycnal river flows 

(Figs. 12, 14). The Tonya River drainage basin, which has a drainage area of ~ 800 km2, was 

probably the source of the sublacustrine fans.  

        The change in the sediment source of the turbidites in the Semliki River plain area between 

accumulation of the ‘Green’ and ‘Purple’ units was probably a consequence of tectonic activity. 

We postulate that such change in the sediment source is due to a drainage reversal (Beadle, 

1981) as a result of complex rift-shoulder uplift. Analysis of the Semliki 3-D seismic data 

suggests that during the accumulation of the studied interval, Lake Albert was a much larger and 

deeper lake. It occupied the northern basin of the paleolake Obweruka (Van Damme and 

Pickford, 2003), and covered the Semliki River plain area. Seismic stratigraphic evidence, 

including orientation and distribution of sublacustrine channels (e.g. these from the ‘Green’ unit 

and other older units) and dip direction of shingled clinoforms (~100–300 m beneath the ‘Green’ 

unit), suggests that the Kafu River drainage system had been actively delivering terrigeneous 

sediments to the Semliki River plain area prior to the accumulation of the ‘Purple’ depositional 

unit. We postulate that during the accumulation of the ‘Purple’ unit, the Kafu River had already 

reversed as a result of rift-flank uplift, thereby limiting sediments inputs. The exact timing of 

these drainage changes awaits further detailed geochronological analyses and additional 

subsurface data.  
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        Axial turbidite systems typical of confined, linear rift-lake basins (Scholz et al., 1998; 

Nelson et al., 1999; Soreghan et al., 1999) were not observed in the Semliki River plain area. 

However, Lake Albert was a much larger and deeper lake system during the accumulation of the 

studied interval in the late Pliocene to early Pleistocene, and axial turbidite systems, if present, 

were likely located farther southwest beyond the coverage of the Semliki 3-D seismic survey. 

Since the middle Pleistocene, Lake Albert has been much shallower, characterized by alternating 

shallow-lacustrine and fluvial-deltaic depositional environments (Karp et al., 2012).    

 

Structural Control of Turbidite Sedimentation 

        Syndepositional tectonism influences rift topography, evolution of drainage systems, and 

the sedimentary patterns of extensional basins (Gawthorpe and Hurst, 1993; Ravnas and Steel, 

1998; Gupta et al., 1999; Gawthorpe and Leeder, 2000). Sediment dispersal pathways, changes 

in depositional facies, and evolution of the sublacustrine turbidite systems of the Lake Albert 

Rift are largely controlled by syndepositional tectonism. 

        The sediment dispersal pathways of the ‘Purple’ depositional unit are structurally 

controlled. In the Semliki River plain area, the channels of the ‘Purple’ unit are connected updip 

through relay ramps to the sublacustrine fan on the footwall of the Semliki Fault. The fault-

controlled relay ramp played an important role in directing turbidity currents downbasin (Figs. 

10 and 15B), similar to the modern turbidite systems observed in the south Rukuru area of the 

Lake Malawi rift (Soreghan et al., 1999).         
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        The transition between different turbidity-flow depositional elements is also structurally 

controlled. In the Semliki River plain area, one of the turbidite channels of the ‘Green’ 

depositional unit has an attached lobe, and the channel-to-lobe transition is associated with an 

intrabasinal fault (Figs. 6B, 7), which was active during deposition. A channel-to-lobe transition 

associated with syndepositional faulting has also been documented by Adeogba et al. (2005) in 

their study of submarine turbidite systems on the Niger Delta continental slope.  

        The turbidite channels of the ‘Green’ and ‘Purple’ units are transient systems. Neither 

significant lateral accretion nor apparent vertical aggradation is observed, although some 

channels do show evidence of meander growth. The channels are only minimally to moderately 

sinuous, with the highest sinuosity of ~1.4, which is significantly lower than that of high-

sinuosity submarine channels (e.g. Gee et al., 2007). It is, therefore, suggested that the turbidite 

channels discussed here only correspond to the first stage of the 3-stage evolution model (i.e. 

initiation and meander growth, equilibrium-phase aggradation, and abandonment) for submarine 

channels proposed by Peakall et al (2003).  

        Sublacustrine channels in tectonically active rift basins, such as the Lake Albert Rift, are 

less likely to undergo all the three evolutionary stages. Spatially variable basin subsidence 

(Ebinger, 1989; Gawthorpe and Hurst, 1993; Gawthorpe and Leeder, 2000), complex rift 

shoulder uplift (Contreras et al., 2000; Lezzar et al., 2002), and high-frequency and high-

amplitude lake-level changes (Scholz et al., 2007; McGlue et al., 2008; Lyons et al., 2011) are 

typical of lacustrine rift basins, and these factors, alone or combined, may switch off 
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channelization processes shortly after channel initiation in rift lakes, preventing sublacustrine 

channels from further evolution.  

 

Conclusions 

        The Semliki 3-D seismic survey covering the southern coast of Lake Albert combined with 

offshore 2-D seismic data reveal the existence of large sublacustrine channels and fans, which 

accumulated during late Pliocene to early Pleistocene. The turbidite channels are minimally to 

moderately sinuous, and commonly present themselves by coupled flat channel-top and concave-

up channel-base reflections. The channels are ~5 to 25 km long and ~100 to 300 m wide. 

Bifurcation, channel-to-lobe transition, complex cross-cutting, and distributary channel networks 

are observed.  

        Width, sinuosity, meander wavelength, amplitude, and radius of curvature of the 

sublacustrine turbidite channels were measured and compared with the empirically derived 

relationships from river data. The meander geometry of the sublacustrine channels is 

morphologically close to fluvial channels, as in the case of submarine channels.  

        In the Semliki River Plain area, turbidite systems from two depositional units can be traced 

landward toward two of the largest drainage basins on the eastern shoulder of the Lake Albert 

Rift, suggesting hyperpycnal river flow origin of the turbidity currents and a change in the 

sediment source, probably caused by regional catchment adjustments due to rift shoulder uplift. 



104 
 

Sediment dispersal pathways, channel-to-lobe transitions, and evolution of the sublacustrine 

turbidite systems are greatly influenced by syndepositional tectonism.  
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Figure 1. Regional topography, structural framework, and drainage systems at the northern end 

of the Western Rift Valley (modified after McGlue et al., 2006). Fault interpretations are 

modified from Ebinger (1989), Lardal and Talbot (2002), McGlue et al. (2006), and Karp et al. 

(2012). The Semliki 3-D seismic survey is located on the southern coast of Lake Albert. Waki-

B1 is an exploration well on the northeastern coast of the lake. Offshore 2-D seismic lines are 

shown in black. The dashed white line on the eastern rift shoulders of Lakes Albert and Edward 

marks the axis of surface upwarp due to rift-related flank uplift. The blue circles indicate the 

locations of drainage reversals (Beadle, 1981). KF = Kafu River; KG = Kagera River; KT = 

Katonga River; MZ = Muzizi River; SR = Semliki River; TY = Tonya River; VN = Victoria 

Nile; BB = Bunia Border Fault of Lake Albert; BT = Butiaba Fault of Lake Albert; LB = Lubero 

Border Fault of Lake Edward; NT = N. Toro Bunyoro Fault of Lake Albert; TO = Tonya Fault of 

Lake Albert; WR = West Ruwenzori Fault; and RM = Ruwenzori Mountains. 
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Figure 2. A multichannel 2-D seismic profile showing the asymmetric full-graben structure of 

the Lake Albert Rift and inferred stratigraphic boundaries (after Karp et al., 2012). The red line 

at surface of the profile indicates regional topography. See the location of the seismic line in 

Fig.1.  
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Figure 3. Seismic profile I-I’ from the Semliki 3-D seismic survey showing major intrabasinal 

faults and inferred stratigraphic boundaries (by correlation with Karp et al., 2012). Channelized 

turbidite systems developed during different episodes were observed, and the most extensively 

distributed ones are associated with the ‘Green’ and ‘Purple’ seismic surfaces. See the location 

of the seismic line in Fig. 5. 
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Figure 4. Stratigraphy of the Lake Albert rift showing the lithology log of Waki-B1 (after Karp 

et al., 2012), characteristic seismic facies, and inferred depositional environments. 
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Figure 5. Isochron map of the interval between the ‘Green’ and ‘Purple’ seismic surfaces within 

the Semliki 3-D seismic survey. Intrabasinal faults are displayed with ticks indicating dip 

directions. The Semliki Fault and the arcuate faults striking subparallel or at low-angle to the 

Semliki Fault in the eastern and northeastern part of the Semliki 3-D seismic survey are 

syndepositional (black) to the studied interval. I-I’ is the seismic profile displayed in Fig. 3. 

 



120 
 



121 
 



122 
 

 

 

Figure 6. Seismic attributes extracted on the ‘Green' seismic surface, including instantaneous 

amplitude (A), RMS amplitude (B), and ‘edge detection’ (C), showing the development of 

turbidite systems of the ‘Green’ depositional unit. Arrows indicate locations of channels. A 40 

ms window, i.e. from 20 ms above to 20 ms below the ‘Green’ surface, was used for RMS 

attribute extraction. 
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Figure 7. Distribution of turbidite systems of the ‘Green’ depositional unit through integrated 

interpretation of various seismic attributes. TWTT structural map of the ‘Green’ seismic surface 

is shown by color-filled contours. Intrabasinal faults are shown in black with ticks indicating dip 

directions. Arrows indicate predicted sediment transport pathways. Inset map defines 

measurements of meander wavelength (λ), amplitude (A), and radius of curvature (Rm). II-II’ is 

the seismic line displayed in Fig. 8. 
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Figure 8. Seismic profile II-II’ from the Semliki 3-D seismic survey showing the turbidite 

channels (indicated by arrows) of the ‘Green’ depositional unit. The channels are characterized 

by coupled flat channel-top and concave-up channel-base reflections in cross-sectional views. 

See the location of the seismic line in Fig. 7. 
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Figure 9. Images of horizon slices that are 44 ms (A) and 60 ms (B) above the ‘Green’ seismic 

surface showing later development of turbidite systems of the ‘Purple’ depositional unit. Arrows 

indicate locations of channels. The same channels can also be imaged on the stratal slice (C) 

generated by amplitude extraction on the ‘Purple’ seismic surface; more channels (indicated by 

arrows) are observed on the stratal slice than on the horizon slices. These channels were probably 

connected updip to the turbidite fan on the footwall of the Semliki Fault. 
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Figure 10. Distribution of turbidite systems of the ‘Purple’ depositional unit through integrated 

interpretation of various seismic attributes. TWTT structural map of the ‘Purple’ seismic surface 

is shown by color-filled contours. Intrabasinal faults are shown in black with ticks indicating dip 

directions. Arrows indicate predicted sediment transport pathways. Inset map defines 

measurements of meander wavelength (λ), amplitude (A), and radius of curvature (Rm). III-III’ 

and IV-IV’ are the seismic lines displayed in Fig. 11. 
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Figure 11. Seismic profiles III-III’ (A) and IV-IV’ (B) from the Semliki 3-D seismic survey 

showing turbidite channels (indicated by arrows) of the ‘Purple’ depositional unit. See the 

locations of the seismic lines in Fig. 10.  
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Figure 12. Strike (A) and dip (B) seismic lines showing sublacustrine fans deposited along the 

N. Toro Bunyoro Fault in the northern part of the lake. A channelized (indicated by white 

arrows) fan is characterized by mounded seismic reflection configuration with bi-directional 

downlap in the strike direction and progradational reflection configuration in the dip direction. 

Note the change in the lake-floor topography due to deposition and differential compaction of the 

fan. See the distribution of the fan in Fig. 14 and the locations of the seismic lines in Fig. 1. 
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Figure 13. (A) - (C): Channel width (W) versus meander wavelength (λ), amplitude (A), and 

mean radius of curvature (Rm). (D): Mean radius of curvature versus meander wavelength. 

Dashed lines are regressions of the sublacustrine turbidite channels of the Lake Albert rift, and 

solid lines are the empirical relationships derived from river channels (Leopold and Wolman, 

1957, 1960; Ritter et al., 2002). (E): Channel width versus sinuosity (Si). 
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Figure 14. (A): Correlations between the observed turbidite systems and onshore drainage 

basins. The dashed white line marks the dividing boundary between the west-flowing and the 

east-flowing drainages, and the blue circle indicates the location of the Kafu river reversal. 

Within the Semliki 3-D seismic survey, turbidite systems of the ‘Green’ and ‘Purple’ 

depositional units connect updip to two different drainage catchments on the eastern rift 

shoulder. Turbidite systems of the ‘Green’ unit were primarily fed by the Kafu catchment from 

northeast; later turbidite development of the ‘Purple’ unit was sourced by the Muzizi catchment 

from southeast. Arrows indicate predicted sediment transport pathways. The burial depth (ms 

TWTT) of the ‘Green’ seismic surface is displayed as color-filled contours overlapped with the 

turbidite systems of the two units and intrabasinal structures. See Fig. 1 for the location of the 

area. Lake Albert; BT = Butiaba Fault of Lake Albert; NT = N. Toro Bunyoro Fault of Lake 

Albert; TO = Tonya Fault of Lake Albert; and WR = West Ruwenzori Fault. (B): Magnified 

from Fig. 14A. 
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Figure 15. 3-D visualization of the ‘Green’ (A) and ‘Purple’ (B) seismic surfaces with observed 

turbidite channels and fans highlighted in yellow. Arrows indicate predicted sediment dispersal 

pathways. 
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Table 1. Empirical relationships derived from planform geomorphic parameters of fluvial 

channels. Modified after Ritter et al. (2002). 

Relationship   Source 

λ = 10.9W 1.1      Leopold and Wolman (1957, 1960) 

A = 2.7W1.1      Leopold and Wolman (1957, 1960) 

Rm = 2.3W    Ritter et al. (2002) 

λ = 4.7 Rm
0.98          Leopold and Wolman (1957, 1960) 

 

λ: meander wavelength; W: channel width; A: meander amplitude; and Rm: mean radius of 

curvature. 
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