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Abstract 

A new formulation for the analysis of propagation of electromagnetic waves over 

imperfectly conducting planar surfaces is proposed. The classical approach for the 

analysis of this problem uses the Sommerfeld formulation. In Sommerfeld formulation, 

the wave function corresponding to a point source is expanded in terms of the 

propagation constants of the various waves in the radial direction from the source. This 

gives rise to the well-known Sommerfeld integrals which are highly oscillatory and 

slowly-decaying in nature, especially when the source is mounted just on top of a planar 

boundary between two media of arbitrary conductivity. In addition, the nature of the 

convergence for these integrals is extremely slow and may not yield stable results. In this 

dissertation we present an approach, developed originally by Schelkunoff, which expands 

the wave function in terms of the waves emanating perpendicular to the planar interface, 

not parallel to it as in Sommerfeld formulation. Expressions are given for both cases of 

vertical and horizontal electric dipoles on top of a planar interface. The debatable nature 

of this problem is unavoidable, thus a detailed analytical comparison between the 

Sommerfeld integrals and the expressions derived here is given. Based on the study given 

in this dissertation, the true rationale in relating the work of Zenneck and Sommerfeld to 

the relatively new field of surface plasmons is exposed. A detailed literature study as well 

as an analytical critique of the field of plasmonics and its relation to Sommerfeld-

Zenneck surface waves is presented. Finally, some applications of the new formulation 

are discussed using numerical simulations.    
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1 Introduction and Motivation 

No doubt that one of the most important scientific discoveries in the history of 

mankind is the discovery of the relation between light, electricity and magnetism. The 

understanding of the fact that light is a visible electromagnetic wave opened the way for 

the exploitation of the useful benefits of the invisible part of the spectrum, which we call 

now radio-waves. Based on this fact, when one comes across a very exciting natural 

phenomenon like the one shown in Fig. 1.1, the following questions should arise: 

 

1. What is the propagation mechanism by which light reaches the viewer’s eye 

generating this colorful images on the surface of the lake?  

2. What is the difference between the images seen in Fig. 1.1 and the case one can 

imagine if the surface of the water is replaced by a perfect mirror? 

3. If one is standing on the other side of the lake, where the light sources are located, 

and looking towards the lake, what would be the view in this case? 

4. If radio waves are visible, what would one expect to see from the radiation of the 

Willis tower (tallest building in Fig. 1.1) antennas which are mostly radiating in the 

VHF-UHF band? 

5. Is there any available software that can simulate this situation to give the expected 

length and intensity of the elongated images of the light sources and the radio-waves 

antennas? 

6. Is this propagation mechanism fully exploited in telecommunications? 
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Fig. 1.1 Lake View at the city of Chicago, IL, USA, showing the famous Willis tower with its top mounted 
antennas, and the city lights and their reflections on the surface of Lake Michigan. Picture is available at: 
http://jessica-joy.deviantart.com/art/Chicago-lights-64177963. The figure is to visualize the famous 
Sommerfeld half-space problem 

To answer all of those questions one should revisit the very famous Sommerfeld 

problem. In 1909, Sommerfeld published an eloquent paper about the propagation of 

electromagnetic waves over the earth’s surface. That was one of the earliest scientific 

attempts to explain how electromagnetic waves radiated from a source can reach to a 

receiver which is beyond the horizon, a situation like what happened in Marconi’s first 

transatlantic transmission. On revisiting this famous problem, one will find the following 

facts: 

 

1. Sommerfeld’s solution of the problem generated one of the most celebrated 

controversies in the last century. 

2. After more than hundred years since Sommerfeld, the debate about his solution has 

not been settled yet. 

http://jessica-joy.deviantart.com/art/Chicago-lights-64177963
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3. The most debatable part in the problem is about the existence of what is called 

Sommerfeld-Zenneck surface wave in the total radiation of elementary sources over 

ground planes.  

4. The so called Sommerfeld-Zenneck wave arises from a debatable singularity of the 

integrands that appear in Sommerfeld’s solution. 

5. Despite the discovery of the Kennelli-Heaviside layer (the ionosphere) and its role in 

the propagation of electromagnetic waves over the horizon, the interest in the 

Sommerfeld problem and the associated surface waves has never been demolished.  

 

Just to give a glimpse about the Sommerfeld controversy, we mention one 

example. After about fifty years from the first publication of Sommerfeld [1], Banos 

wrote a complete book in an attempt to settle the debate once and for all [2]. In his book, 

Banos reported most of the work on the problem up to the sixties of the twentieth 

century. He advocated for the existence of surface waves in the dipole radiation over 

imperfect grounds. He also affirmed the famous sign error that Sommerfeld did in his 

initial analysis. Fifty years later (almost a hundered years after Sommerfeld’s paper), 

Collin published a lucid paper supported with rigorous mathematical analysis to prove 

that the famous sign error of Sommerfeld is actually a myth and surface waves do not 

exist in the dipole radiation over imperfect ground planes [3]!  

Those facts mentioned above, with no doubt, had negative effects which were 

represented, for example, as a total avoidance of the problem in the design of vital 

commercial communication systems like cellular networks. 
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1.1 A Thought Experiment 

Due to the analogy between visible light and radio-waves, used in cellular 

networks for example, one can carry out the following thought experiment. Consider that 

the light sources shown in Fig. 1.1 are base station antennas of a cellular system. Imagine 

that the information to be transmitted by those base stations is whether the transmitter is 

on or off. Try to compare the two following situations: The situation which is depicted in 

Fig. 1.1, and the other situation where the lake surface is replaced by a perfect mirror. 

Note that in the later situation, the image size will be exactly as the source size. Consider 

the following question: Which of the two situations facilitates the spread of the 

information about the state of the light source whether it is on or off? 

It is quite obvious that the existence of an imperfect surface helps the information 

to be spread out more than the perfect reflector. This is because the image of a point 

source on top of a perfectly reflecting ground is of the same size as the source. On the 

other hand, the image of a point source on top of an imperfectly reflecting ground is a 

line source of theoretically infinite extent. Although this fact was mentioned explicitly by 

Van der pol in 1935 [4], very few researches mention this analogy. 

In fact, the problem of estimating the path loss exponent related to the 

electromagnetic wave propagation in different environments is a well-known problem. 

Due to its great importance to wireless systems design, this problem has been tackled by 

numerous researchers and explained in many text books as well. Conventionally, in 

wireless communications text books, such as [5], this problem is tackled first by 

explaining the two-ray model on a flat perfectly conducting earth. After explaining the 

two-ray model, empirical models are usually presented, such as the very famous 
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Okumura-Hata model [6]. Although empirical models have been extensively applied with 

good results, they suffer from some disadvantages. The main disadvantage is that 

empirical models provide no physical insight into the mechanism by which propagation 

occurs. This is besides that they are limited to the environments and parameters used in 

measurements. So to find more satisfactory models, researchers usually go into one of 

two paths. Either they go to find more sophisticated physical models which encounter 

other propagation mechanisms such as diffraction, scattering and ray tracing [6], or they 

go into statistical modeling [5]. To clarify this more, we quote a very interesting 

conclusion from [6]: 

“Although the plane earth model has a path loss exponent close to that observed 

in actual measurements (i.e. path loss exponent of 4), the simple physical situation it 

describes is rarely applicable in practice. The mobile is always almost operated (at least 

in macrocells) in situations where it does not have a line-of-sight path to either the base 

station or to the ground reflection point, so the two-ray situation on which the plane 

earth model relies is hardly ever applicable. To find a more satisfactory physical 

propagation model, we examine diffraction as a potential mechanism”. 

In our opinion, instead of examining diffraction as a potential mechanism or 

going to statistical modeling, the situation shown in Fig. 1.1 directly implies that the 

physical model of propagation in the cellular environment described above should be 

considered by solving the Sommerfeld problem. This will not only give us a physical 

insight into how waves propagate in mobile communications, but also it should answer 

the question of why smart antennas and beamforming are not very successful in cellular 

communications, despite all of the research efforts done in those fields [7]- [8]. If the real 
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scenario of propagation is something similar to what we see in Fig. 1.1, then application 

of ray tracing for channel modeling should really be questioned. In Fig. 1.1, which ray 

should be traced from any of the light sources to the lens of the camera. There is no one 

reflection point on the water surface to trace the reflected ray, instead there are infinite 

rays to be traced, though we have only one reflector. This represents a great visualization 

for the Sommerfeld problem. 

Following the line of thoughts mentioned here in this dissertation, initial attempts 

have been already made to apply the analysis of the Sommerfeld problem in cellular 

communications [9]- [10]. However, more efforts are still needed to provide the cellular 

network designer by an electromagnetic simulator that incorporates the propagation 

mechanism shown in Fig. 1.1. Mainly, what is needed is to find the most efficient, 

practical and accurate way to calculate the reflected electromagnetic fields based on the 

Sommerfeld formulation. It is not a trivial task to find this efficient and accurate way due 

to the vast amount of work reported in the literature and the associated debate mentioned 

earlier in this chapter. 

1.2 Controversial Sommerfeld Integrals 

After Sommerfeld showed his formulation given in [1], many researchers have 

tried to find different other forms for the Sommerfeld integrals. Those different trials 

generated the celebrated controversy, especially about the singularity that the integrand 

might have and associating a surface cylindrical wave arising from that singularity. The 

details of the debate can be found in countless publications which give different 

explanations from different perspectives such as [2]- [3]. However, the important thing 

that we want to mention here is that the work of Schelkunoff [11] is rarely mentioned in 
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any of the work on Sommerfeld problem. For example, in Banos’s attempt to settle the 

Sommerfeld debate [2], he did a collective comparison between all of the approaches 

done by all researchers on the subject in an attempt to settle down the debate about 

Sommerfeld’s solution. Although, Banos never mentioned the work of Schelkunoff, even 

though the latter had published his book [11] twenty years earlier. We find the work of 

Schelkunoff and his different formulation of the same exact problem are quite revealing. 

For example, Schelkunoff stated explicitly that for the case of a TM (Transverse 

Magnetic) wave, the integrands of Sommerfeld can never have a singularity. Schelkunoff 

said: “For transverse magnetic waves the characteristic wave impedance is either a 

resistance or negative reactance; hence this equation can have no roots, the integrands 

can have no poles, and there are no surface waves. This conclusion is contrary to that 

reached by early writers on the subject.” [11, p. 430]. The most interesting part of 

Schelkunoff’s work is that his integrals are performed over the vertical component of the 

propagation vector rather than the horizontal component. 

1.3 Dissertation Organization 

This dissertation is organized as follows: In chapter 2, the problem of radiation of 

a vertical electric dipole on top of a planar interface between free space and a medium of 

arbitrary parameters is studied thoroughly. The original procedure of Sommerfeld is 

studied and the source of the Sommerfeld integral tails problem is explained from a 

physical point of view. In the same chapter, an alternative procedure is derived based on 

the Schelkunoff integrals rather than the Sommerfeld integrals. The potential of having 

more numerical stability using the new integrals is illustrated with numerical examples. 

In Chapter 3, the new integrals are used to derive the expressions for the horizontal 
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electric dipole case. This case is a little more complicated than the case of chapter 2 

because the vector potential of the reflected fields is not only oriented in the horizontal 

direction parallel to the dipole, but also has a vertically oriented component which gives 

the dominant part of the field in the far field. Detailed expressions with derivations are 

given in that chapter, supported also with numerical examples.  

Due to the unavoidable debatable nature of the problem, it was so important to 

dedicate a complete chapter for studying the results of the Sommerfeld integrals as 

compared to the results of the expressions derived in this dissertation based on 

Schelkunoff integrals. This comparison is done from an analytical point view using 

complex integration theorems and is given in Chapter 4. In addition, the analytical results 

are supported with numerical examples. As explained earlier in this introduction, the 

understanding of the propagation mechanism in cellular networks is one of the most 

important motivating targets in this dissertation, most of the numerical examples are 

given for parameters that are practically suitable for cellular networks.  

Based on the analysis given in Chapter 4, it is important to have a detailed study 

of the Sommerfeld pole which is the claimed source of the term “Sommerfeld-Zenneck 

surface wave”. The mathematical origin of this term is explained in Chapter 5. In the 

light of Schelkunoff integrals given in this dissertation, the truth about the 

existence/absence of the Sommerfeld pole is exposed based on a new approach. This new 

approach, which is one of the main contributions of this dissertation, is based on the 

study of the nature of the Sommerfeld integrands in a complex domain other than the 

usual domain used in the literature. The analysis given in Chapter 5 also examines the 

rationale in relating the Sommerfeld pole to the relatively new research field of Surface 
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Plasmons. The field of Surface Plasmons is an evolving inter-disciplinary area of 

research in which many researchers relate the physical phenomenon of surface plasmon 

polaritons to the Sommerfeld pole. Unfortunately, this relation is not based on any 

scientific evidence and it is becoming more and more elusive because of the already 

controversial nature of the Sommerfeld problem. Chapter 5 gives an analytical critique of 

this subject. In chapter 6, the applications in which the new formulation is useful are 

investigated. Two applications are studied. First, the regeneration of Okumura’s 

experimental data is presented. Second the absence of surface waves/plasmons at 

terahertz frequencies is proved based on numerical simulations using the new formulation 

and experimental results published in the literature. Finally the dissertation is summarized 

and concluded in the last chapter. Five appendixes are given at the end of the dissertation 

to support some of the mathematical derivations given.         
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2 Schelkunoff Integrals for Vertical Dipoles 

2.1 Introduction 

In 1909, Sommerfeld formulated a solution for the radiation from short dipoles 

over an imperfectly conducting flat earth [1]. His formulation was based on the 

decomposition of the spherical wave function into an integral of a continuous spectrum of 

plane waves in the following form: 

 
2 2| |

0 2 2
0

( )
jkr

z ke J e d
r k

λ λλρ λ
λ

∞−
− −=

−
∫   (2.1) 

where 2 2  r zρ= + , ρ and z are the radial and vertical distances, respectively, between 

the source and the field points. J0(x) is the zeroth order Bessel function of the first kind. 

The left-hand side of (2.1) represents the Green’s function for a source in a homogeneous 

medium whose propagation constant is k. The right-hand side of (2.1) represents the 

continuous spectrum of plane wave decomposition of a spherical wave. From (2.1), it is 

seen that Sommerfeld characterized each of the plane waves by their horizontal (parallel 

to the boundary) component of the propagation vector, according to: 

 2 2 2 2 2
z zk k k kρ λ= + = +   (2.2) 

where λ is the propagation constant in the ρ-direction. It is important to note here that the 

integration in (2.1) can be decomposed mathematically into two parts: one from 0 to k 

and the other part from k to infinity. Physically, the main difference between the two 

parts of the integral is that in the first one, the integrand represents homogeneous waves 

whose horizontal and vertical components of the propagation vector are both smaller than 
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the propagation constant of the medium, k. Whereas in the second part (from k to infinity) 

the integrand represents slow inhomogeneous plane waves. Those waves have the 

component kρ (or λ) which is larger than the propagation constant of the medium, k. Thus, 

they are called slow waves, and from (2.2), we note that the vertical component, kz, of 

those waves is purely imaginary, thus they are inhomogeneous plane waves [12].  

If the source of the waves in (2.1) is placed at a height, h, over a homogenous 

medium filling the half-space z < 0, as shown in Fig. 2.1, each of those plane waves will 

be reflected by a specific reflection coefficient which depends on its angle of incidence. 

Thus, one can write the wave function (Π) associated with the reflected part of the fields 

according to the Sommerfeld formulation as follows: 

 
2 2( )

1 0 2 2
0

( ) ( )   ,     0ref z h k
z R J e d z

k
λ λλ λρ λ

λ

∞
− + −Π = >

−
∫   (2.3) 

x

z

y

( , , )x y z1R

2R
ρ

z

(0,0, )h

(0,0, )h−

θ

Dipole moment Idl

Image

medium (1) Air

medium (2) Earth

0 0 1( , , )kµ ε

0 0 2( , , )kµ ε ε

Fig. 2.1 Geometry of the problem of a vertical dipole over imperfect ground plane. 
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where R(λ) is the reflection coefficient for the plane wave whose horizontal component of 

its propagation vector is λ. The properties of the function R(λ) are discussed in more 

details later in this chapter.  

After Sommerfeld introduced this formulation given in (2.3) in 1909, it provided a 

mechanism for analysis of propagation of electromagnetic waves over real grounds (e.g. 

earth and sea). However, in the first part of the 20th century, the integrals in (2.3) had to 

be solved analytically due to a lack of powerful computing machines at that time. One of 

the major points of confusion in the past literature using the Sommerfeld formulation was 

the existence of a pole in the function R(λ) which on integration may give rise to surface 

waves. It turns out that such a pole does not exist in spite of what all the authors have 

described in the past including Sommerfeld [11, p. 430]. In this dissertation, this century 

old controversy can be cleared up by simply looking at the new expressions as we shall 

illustrate later on. In the second half of the 20th century, and with the advent of the field 

of computational electromagnetics, the numerical calculation of the Sommerfeld integrals 

became of practical interest. However, the challenge that was faced is the numerical 

computation of that part of the integral which follows a semi-infinite contour going from 

k to ∞. Along this contour, the integrand is a Bessel function, J0(x), which is an 

oscillating and slowly-decaying function, hence the problem of the integration associated 

with the tails of the Sommerfeld integrals. In this dissertation, it is shown that the source 

of this problem is primarily due to the choice that Sommerfeld made when he chose to 

carry out the integration over the horizontal rather than the vertical component of the 

propagation vectors, i.e., over  λ instead of kz in (2.2). Therefore, in this chapter, the main 

objective is to study the effect of that choice and to resolve the whole problem based on 
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the selection of a different integration variable. In other words, it is required to observe 

how the integrals in (2.1) and (2.3) will behave if the integration is carried out in terms of 

the vertical component of the propagation vectors kz and then provide a physical 

explanation for the consequences. A new approach to the classical Sommerfeld problem, 

thus, is one of the unique features of this dissertation. This chapter is organized as 

follows: In section 2.2, the Schelkunoff integrals are defined and their relationship to the 

Sommerfeld integrals is given. In section 2.3, a detailed comparison between the 

numerical behaviors of both types of integrals is shown along with a numerical example. 

This will show the potential benefits of using the new formulation in integral equation-

based solvers. Section 2.4 aims to derive a new Green’s function for vertical dipoles over 

imperfect ground planes based on the new formulation. 

2.2 Schelkunoff Formulation 

In 1935, Schelkunoff, introduced what he called the modified Sommerfeld 

integrals [13]. The purpose of this introduction is to obtain a certain integral expressing 

the fundamental wave function. In his words, this integral should be suitable to calculate 

the radiation resistances of small doublets and small loops placed inside infinite hollow 

cylinders [13]. Schelkunoff found that the well-known formulation of Sommerfeld for 

dipoles over imperfect flat earth was not suitable for satisfying the boundary conditions 

in the case of cylindrical boundaries.  

As indicated in the introduction, Sommerfeld formulated the solution by 

integrating over the horizontal component of the propagation vector, namely λ (or kρ), and 

he wrote the other component kz in terms of λ as: 
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 2 2
zk j kλ= −   (2.4) 

which appears in the exponential term in (2.1) and (2.3). The objective now is to integrate 

the function in terms of the vertical component of the propagation vector instead. By 

looking at the modified Sommerfeld integral in [13], it is found that Schelkunoff started 

from an identity which is very similar to (2.1) but has some important differences: 

 ( )2 2
0

0

2   cos( z)
jkre K k d

r
ρ ξ ξ ξ

π

∞−

= −∫   (2.5) 

The integral in (2.5) will be named from now on as the Schelkunoff formulation 

or the proposed formulation. By comparing (2.1) and (2.5) it is seen that  the later 

involves K0(x), the modified Bessel function of the second kind, which represents a 

monotonically decaying function for real 2 2kξ −  (i.e. ξ > k), whereas J0(x), in (2.1), 

represents a highly oscillatory integral and decays extremely slowly as its argument 

increases, for real values of λ. 

It is important to note that the Schelkunoff formulation is also based on 

decomposing the spherical wave into a continuous spectrum of plane waves, but this time 

the integration in (2.5) is carried out over the vertical component of the propagation 

vector kz (or ξ). Thus this formulation is in fact what we are looking for. Even though 

(2.1) and (2.5) are mathematically identical, numerically (2.5) is more stable and 

numerically accurate to compute than (2.1). The function, J0(x), is a slowly decaying 

oscillatory function, and many researchers over the years have developed methodologies 

to obtain a more efficient way to deal with the integration of the tails of the Sommerfeld 

integrals [14]- [15]- [16]. However, when the radial distance from the transmitter 
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increases  by many orders of magnitudes compared to the wavelength, the Sommerfeld 

integral tails become impossible to evaluate numerically. In this case, the Sommerfeld 

formulation will generate unstable numerical results [17]. On the other hand, the 

modified Bessel function, K0(x), is a very fast-decaying non-oscillatory function, and 

hence this problem will be nonexistent in the new formulation resulting in a more stable 

and an accurate characterization of the environment. Thus, it is important now to note the 

following identity from a mathematical point of view, whereas from a numerical point of 

view their characterizations are completely different: 

 ( ) 2 22 2 | |
0 0 2 2

0 0

2   cos( z) ( )

                           

z kK k d J e d
k

λ λρ ξ ξ ξ λρ λ
π λ

∞ ∞
− −− =

−
∫ ∫   (2.6) 

A proof of (2.6) is given in Appendix A, which is slightly different than the one 

given by Schelkunoff in [13]. 

It is important to note that both of the integrations in (2.6) are carried out along 

the positive real axis, either for λ or for ξ. The physical interpretation of this mathematical 

identity is intuitive for the portions of the contour going from 0 to k. However, this is not 
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waves
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: 0 kξ →
: kξ →∞
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Wavefront of the
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0λ =

kλ =

: 0 kλ →

: kλ →∞

Wavefront of the
Spherical waves

z z

ρρ

Fig. 2.2 Decomposition of Spherical waves into plane waves according to the two different formulations. 
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the case for the other part of the contour going from k to ∞; for the first part, being 

composed of homogeneous plane waves, while the later part is composed of 

inhomogeneous plane waves. Hence, the proof given in appendix A is considered to be 

pertinent. 

2.3 Computational Comparison 

To illustrate the differences between the two formulations in terms of numerical 

evaluation, we proceed with an example of a vertical dipole located at the origin in free 

space. Suppose that we need to calculate the fields for this case numerically. 

Assume a small Hertizian dipole oriented along the z-axis and lies at the origin as 

shown in Fig. 2.2. The Hertz vector potential is given by: 

 ˆz zaΠ = Π


  (2.7) 

where zΠ  is the solution of: 
 2 2 0k∇ Π + Π =   (2.8) 

That is ˆ
jkr

z
eP a

r

−

Π =


  (2.9) 

where P is a constant that depends on the dipole moment, the frequency of operation, and 

the medium characteristics. Suppose, it is required to evaluate the function in (2.9) when 

0,z =  i.e., the evaluation of: 

 ( )2 2
0 02 2

0 0

2( )   
jke J d K k d

k

ρ λλρ λ ρ ξ ξ
ρ πλ

∞ ∞−

= = −
−

∫ ∫   (2.10) 

First, one should note that the singularities at λ = k and ξ = k both represent 

integrable singularities, which do not introduce any numerical problem. If the numerical 
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behavior of the integrand is to be studied as a function of the integration variable (λ in 

case of Sommerfeld and ξ in case of Schelkunoff formulation) for different values of ρ, 

then one needs to split the contour into two parts: The first part from 0 to k and the 

second from k to infinity. The differences in the two parts come from the fact that the 

integration from 0 to k involves the homogeneous waves in the spectrum, whereas the 

integration from k to infinity involves the slow inhomogeneous plane waves. This implies 

that in the Sommerfeld formulation, the integration starts over all homogeneous plane 

waves from those that are propagating in the z-direction (λ = 0) to those waves which are 

propagating in the ρ-direction (λ = k). The other part of the contour (from k to infinity) 

involves those inhomogeneous waves propagating in the ρ-direction with propagation 

constants larger than the constant of the medium (λ > k) and decay exponentially in the z-

direction. The same situation holds for Schelkunoff’s formulation but with a different 

orientation. This means that in Schelkunoff’s formulation, the integration starts for all 

homogeneous plane waves from those that are propagating in the ρ-direction (ξ = 0) to 

those waves which are propagating in the z-direction (ξ = k). The other part of the contour 

(from k to infinity) involves those inhomogeneous waves propagating in the z-direction 

with propagation constants larger than the constant of the medium (ξ > k) and decay 

exponentially in the ρ-direction. This is illustrated pictorially in Fig. 2.2. 

The numerical problem now is concentrated only in that part of the integration 

that is from k to infinity. It is possible to calculate this part of the integration only if the 



18 
 

integrand decays appropriately as the integration variable tends to infinity. It is well 

known that the Bessel function, J0(x), is a slowly-decaying and oscillating function which 

1 2 3 4 5 6 7 8 9 10
10

-20

10
-15

10
-10

10
-5

10
0

10
5

ξ or λ /k1 

A
bs

ol
ut

e 
V

al
ue

 o
f t

he
 c

om
pl

ex
 In

te
gr

an
d

ρ/λ=1 z/λ=0.01

 

 
Schelkunoff
Sommerfeld

1 2 3 4 5 6 7 8
10

-20

10
-15

10
-10

10
-5

10
0

10
5

ξ or λ /k1 

A
bs

ol
ut

e 
V

al
ue

 o
f t

he
 c

om
pl

ex
 In

te
gr

an
d

ρ/λ= z/λ=1

 

 
Schelkunoff
Sommerfeld

1 1.5 2 2.5 3 3.5 4
10

-20

10
-15

10
-10

10
-5

10
0

10
5

ξ or λ /k1 

A
bs

ol
ut

e 
V

al
ue

 o
f t

he
 c

om
pl

ex
 In

te
gr

an
d

ρ/λ=2 z/λ=5

 

 
Schelkunoff
Sommerfeld

Monotonic decay of 
Schelkunoff integrand

Same rate of decay at points 
with equal radial and vertical 
distances to the source 

Schelkunoff integrand decays 
slower than Sommerfeld
integrand when the vertical 
distance to the source is larger 
than the radial distance

1 2 3 4 5 6 7
10

-20

10
-15

10
-10

10
-5

10
0

10
5

ξ or λ /k1 

A
bs

ol
ut

e 
V

al
ue

 o
f t

he
 c

om
pl

ex
 In

te
gr

an
d

ρ/λ=10 z/λ=1

 

 
Schelkunoff
Sommerfeld

Highly oscillating and 
slowly decaying 
Sommerfeld integrand

Shelkunoff
integrand totally 
vanishing

ρ/w=1, z/w=0.01 ρ/w=10, z/w=1

ρ/w = z/w =1 ρ/w=2, z/w=5

Fig. 2.3 Comparison of the numerical behavior of the complex integrands of the Schelkunoff and the 
Sommerfeld formulation for different radial and vertical distances from the source normalized to the 
wavelength, w. 

10
-2

10
0

10
2

10
4

10
6

-120

-100

-80

-60

-40

-20

0

20

40

ρ/λ

e-jk
ρ /ρ

  i
n 

dB

 z/λ=0

 

 
Exact
Proposed Formulation
Sommerfeld Formulation

10
-2

10
0

10
2

10
4

10
6

-1

0

1

2

3

4

5

6

ρ/λ

Ti
m

e 
el

ap
se

d 
fo

r c
al

ul
at

io
n 

in
 se

c

z/λ = 0.1

 

 
Schelkunoff
Sommerfeld

z/w=0 z/w=0.1

ρ/w ρ/w

Fig. 2.4 Comparison of the numerical integration using Schelkunoff and Sommerfeld formulations in 
terms of accuracy and time for calculations, for different radial and vertical distances from the source 
normalized to the wavelength, w. 



19 
 

makes the integration in the first equality in (2.10) almost impossible to calculate 

accurately for very large radial distances. 

On the other-hand, the integrand in Schelkunoff’s formulation, which has to be 

integrated from k to infinity, is the modified Bessel function, K0(x), and on the integration 

path ξ > k, it will be of a pure real argument, and so the function K0(x) will decay 

exponentially as its argument increases. To illustrate this fact, the absolute value of the 

integrands in (2.10), or more precisely in (2.6), is plotted in terms of the integration 

variables and for different values of ρ and z.  Fig. 2.3 shows that whenever the radial 

distance ρ is greater than the vertical distance z, the integrand in the Schelkunoff 

formulation decays much faster than the integrand in the Sommerfeld formulation and 

with less oscillation. It also shows that whenever the radial distance is equal to the 

vertical distance, both integrands decay by the same rate and with the same rate of 

oscillation. However, the disadvantage of the new Schelkunoff formulation may occur 

whenever the field point lies at a point whose vertical distance is much larger than the 

radial distance to the source. If we examine (2.6) once more, we will find that in the 

Schelkunoff formulation the decay rate depends on the modified Bessel function K0 only, 

whereas the frequency of oscillation depends only on the cosine function of argument z. 

However, in the Sommerfeld formulation the rate of decay depends on both the 

exponential function in z and the Bessel function in ρ. The same statement applies to the 

frequency of oscillation; it depends on both the exponential in z and the Bessel function 

in ρ. Fig. 2.4 shows the accuracy of the calculation using both of the formulations, as well 

as the time required to perform the numerical integration. Both integrations are computed 

using the gauss quadrature method of integration [18], and the time shown in Fig. 2.4 is 
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the time elapsed to calculate the total integral in (2.6). By the total integral we mean both 

parts going from 0 to k and from k to infinity. 

It is interesting to note that on the contour going from 0 to k, both formulations 

behave identically the same. That part of the integration may take more time for large 

radial or vertical distances (for both formulations) but since the contour is finite, the 

accurate calculation of such an integral is always practically possible. In fact, the 

integrand in the Schelkunoff formulation in this finite part of the contour will be of 

complex argument, and the K0 function will be replaced by J0 and N0, the Bessel 

functions of the first and second kind, respectively. This is shown in Appendix B. The 

important observation is that on the infinite contour, the integrand in Schelkunoff 

formulation is always non-oscillatory for small values of z, no matter how large the radial 

distance is. This characteristic has great potential to facilitate the simulation of 

electrically large problems including lossy ground planes using integral equation solvers. 

One example is the calculation of the radar cross section of ships over the surface of the 

ocean which is very lossy. Such capability is missing in most of the available 

electromagnetic simulation codes. 

 The physical explanation for the numerical results that we get from the previous 

example is actually straightforward. With the aid of Fig. 2.2, and having in mind that the 

waves which contribute to the tails for the Sommerfeld integrals are the inhomogeneous 

slow waves in both formulations, we can explain the previous observations as follows:  
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2.3.1 Sommerfeld formulation: 

As shown in Fig. 2.5, the slow inhomogeneous waves propagate with a phase 

constant λ > k along the ρ-axis, and decay exponentially along the z-axis. So for small 

values of z those waves have not decayed enough to have their contribution to the total 

field neglected. For example, at z=0, no matter what is the value of λ, those waves would 

not decay anyway, and we need to take the contribution from all of them into account (till 

λ=∞). On the contrary, as z increases, the field associated with those slow waves decays 

exponentially depending on z and on the attenuation constant 2 2kλ − , so as λ increases 

along the contour of integration, those waves decay fast and hence a small portion of the 

contour is enough to get the total fields accurately.       

2.3.2 Schelkunoff formulation: 

On the other hand, the slow inhomogeneous waves in the Schelkunoff formulation 

are waves with propagation constant ξ > k propagating along the z-axis, and decay 

exponentially along the ρ-axis. So for low values of ρ those waves have not decayed 

: kξ →∞

z

ρ

zρ =

: kλ →∞

 increasesλ←

 increasesξ ↓

Schelkunoff
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in this Region
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Slow waves in 
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Fig. 2.5 Illustration of the suitable regions for Sommerfeld and Schelkunoff formulations. 
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enough to have their contribution to the total field neglected. While as ρ increases, the 

field associated with those slow waves decays exponentially along the ρ-direction and 

depending on the attenuation constant 2 2kξ − , so as ξ increases, those waves decay 

faster and hence a shorter amount of the contour is enough to get the total fields 

accurately. This is illustrated in Fig. 2.5.    

In most practical cases, we are interested in the fields near the surface of the earth. 

That was the primary reason for which Sommerfeld formulated his solution in the first 

place. However, as we see from Fig. 2.3, Fig. 2.4 and Fig. 2.5, the Sommerfeld 

formulation is not suitable for numerical calculations of the fields in regions close to the 

horizontal axis. It is quite unfortunate that for the last 100 years, we have been using the 

Sommerfeld formulation in the wrong region. Furthermore, it is not only the value of ρ 

and z that determines which of the formulations is more suitable than the other; it is also 

the orientation of the boundary that affects the numerical behavior of the two approaches 

as explained in the following section. 

2.4 Green’s Function 

As seen in Fig. 2.4, the Schelkunoff formulation has strength for small values of z 

whereas for large values of z, both formulations will perform equally well. In addition, 

for small values of ρ, the Sommerfeld formulation is suitable, but for medium and large 

values of ρ, the Schelkunoff formulation is really desirable. Given the usefulness of the 

Schelkunoff formulation, it is worthwhile to formulate a new solution for the radiation of 

Hertizian vertical dipole over an imperfectly-conducting ground plane. This solution 

should be used in the regions when it is more useful as pointed out earlier. 
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2.4.1 Vertical Antenna above arbitrary ground: 

The new formulation based on Schelkunoff’s expansion is now used to analyze 

antennas over a planar imperfect ground, as we are interested in the nature of the fields 

far away from the transmitting antenna. In this case, we choose a Hertzian vertical dipole 

over a planar imperfect ground plane of relative complex permittivity ε as shown in 

Fig. 2.1. The Hertz vector potentials can be formulated as follows: 

 sec
1 1 1

prim
zΠ = Π +Π   (2.11) 

 sec
2 2&   zΠ = Π   (2.12) 

where the subscript 1 or 2 represent the media in which the potential is calculated. The 

legend z characterizes the z- component. The superscript prim represents the direct 

contribution from the source when it is located in free space and the sec represents the 

contribution from the source due to the presence of the ground. A harmonic time 

variation of the form exp(jωt) is assumed throughout the analysis.   

 ( )2 2
1 0 1

0

2   cos( ( )) prim K k z h dρ ξ ξ ξ
π

∞

Π = − −∫   (2.13) 

 ( )sec 2 2
1 0 1

0

2  ( )  cos( ( )) R K k z h dξ ρ ξ ξ ξ
π

∞

Π = − +∫   (2.14) 

Now we have to assume a form for the solution in the second medium as 

 ( )sec 2 2
2 0 2 2 2

0

2  ( )  cos( ) T K k z h dξ ρ ξ ξ ξ ξ
π

∞

Π = − −∫   (2.15) 

For the form in (2.15) to be correct, it has to satisfy the equation 2 2
2 0k∇ Π + Π = , 

and satisfy the boundary conditions at z = 0, namely 
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 1 2z zz z
∂ ∂
Π = Π

∂ ∂
  (2.16) 

 1 2 z zεΠ = Π   (2.17) 

Following the procedure shown in Appendix B to solve for the functions R(ξ) and 

T(ξ), one obtains the total solution as: 
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 ( )2 2
2 0 1 22 2

0 1

4   cos( ) 
(1 )

z K k z h d
k

ξ ρ ξ ξ ξ ξ
π εξ ξ ε

∞

Π = − −
+ − −

∫   (2.20) 

2 2 2 2
2 1 2where k kξ ξ= − + , ε is the relative complex permittivity of the ground, k1 and k2 

are the propagation constants of medium 1 and 2 respectively. The singularity of the 

function K0(x) can easily be eliminated using the transformation: 

 1 1sin sin( )k k jξ β β β′ ′′= = +   (2.21) 

where jβ β β′ ′′= +  is a dummy complex integration variable.  Thus, we can rewrite 

(2.19) as follows: 
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( )1 0 1 1   sinh sinh cos( ( ) cosh ) k K k k z h dβ ρ β β β′′ ′′ ′′ ′′+  

  (2.22) 

 The advantage of the new methodology advocated here is illustrated by the 

second part of the right-hand side of (2.22). This part represents the integration over an 

infinite contour but, at the same time, the integrand is decaying dramatically as the 

integration variable increases. Also as ρ increases to be of a few kilometers, which is 
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more practical, the integrand decays faster and faster. Thus the problem that has plagued 

the electromagnetic community for decades related to the evaluation of the oscillatory 

Sommerfeld integrals for large values of ρ is totally eliminated for most of the practical 

cases.   

2.4.2 Features of the new integrands 

Comparing the reflection and transmission coefficients of the Sommerfeld and 

Schelkunoff formulations is quite revealing as will be seen in the following discussion. 

The comparison is shown in Fig. 2.6. 

It is clear from Fig. 2.6 that none of the reflection coefficients (either R(ξ) or R(λ) 

given in Appendix B) has any poles along the whole integration path. Hence the pole 

which gives rise to the surface waves and its associated controversies does not exist! 

What is important to note that this is true for both the Sommerfeld and the Schelkunoff 

formulation! This is stated by Schelkunoff in his book [11, p. 430]: He categorically 

states that: “the denominator of the term inside the brackets in equation (B.18 of this 

dissertation) can have no roots, the integrals can have no poles, and there are no surface 

waves. This conclusion is contrary to that reached by early writers on the subject”. More 

details about this topic can be found in [9]- [10]. The interesting observation, however, is 

the discontinuity that R(λ) goes through around λ = k1, which is non-existent in R(ξ). This 

can easily be visualized from Fig. 2.2, since at λ = k the angle of incidence of that ray is 

at the grazing angle, and therefore the value of the reflection coefficient should be −1 

regardless of the medium properties. However, in the Schelkunoff formulation resulting 

in R(ξ), the slow waves are perpendicular to the boundary, hence this function is very 
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well behaved as seen in Fig. 2.6. This is another important advantage of the proposed 

formulation. 

2.5 Conclusion 

In this chapter, Green’s function for the radiation of vertical dipoles over 

imperfectly-conducting ground planes is derived based on Schelkunoff integrals rather 

than Sommerfeld integrals. In the new formulation of the Green’s function the integrand 

is a monotonically decaying function rather than the oscillatory and slowly-decaying 

functions of Sommerfeld formulation. This holds for the regions near the planar boundary 

(e.g. earth’s surface) and for moderate as well as large radial distances from the 

transmitting antenna. The new formulation totally eliminates the well-known Sommerfeld 

integral tails problem in the indicated region (see Fig. 2.5). 

 It was aimed in this chapter to address the Sommerfeld formulation from its very 

fundamental basics. Most of the recent work start from Sommerfeld integrals and try to 

find a way to accelerate the numerical computation of those integrals either by changing 

the integration path or by extrapolating the function to avoid integrating the tails like in 

[14]- [15]. However, in this chapter we tried to solve the problem from the same point 

where Sommerfeld started. We chose a different integration variable and checked what 

does this have to mean physically. Following this path, we found that the Sommerfeld 

integral tails problem can be totally avoided from a physics point of view instead of 

having a work around as in [19].  

Using the substitution (2.21) and noting the behavior of the reflection coefficients 

in Fig. 2.6, one gets to the conclusion that the integrands in both formulations have no 

poles whatsoever neither on the contour of integration nor near to it. Thus, the pole that 
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gives rise to the surface wave in Sommerfeld solution is actually a myth, at least in the 

case of vertical electric dipole over a lossy ground. This is consistent with Schelkunoff’s 

conclusion in [11, p. 430]. The extension of this discussion to the case of multilayered 

media is considered as future work.  

The new formulation is more suitable to problems where the planar boundaries 

are parallel to the horizontal axis; since in this case the reflection coefficient R(ξ) has no 

discontinuities and is a very well behaved function suitable for integration along the 

whole contour. The numerical simulation of the well-known experimental data such as 

Okumara et al.’s experiment [20] is considered as future work to validate the derived 

formulation. It is aimed in such a simulation to show the capability of the formulas 

derived in this chapter to enhance the convergence rate of the Green’s function. 

Specially, in electrically large problems such as Okumara’s experiment which included 

the whole city of Tokyo [20]. 
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3 Schelkunoff Integrals for Horizontal Dipoles 

3.1 Introduction 

Consider an elementary dipole of moment Idl oriented horizontally over a planar 

infinite ground plane, as shown in Fig. 3.1.  The upper medium in which the dipole is 

located is termed air with the assumption 1rε = .  The dipole is located over a planar 

imperfect ground plane characterized by a complex relative dielectric constant given by 

0/r jε ε σ ωε= − , where rε represents the relative permittivity of the ground, 0ε is the 

permittivity of vacuum, σ is the conductivity of the ground, ω stands for the angular 

frequency, and j is the imaginary unit, i.e., 1j = − . A time variation of ( )exp j tω  is 

assumed throughout the analysis, where t is the time variable. The conventional way to 

solve for the fields radiated in this case is to formulate a solution in terms of a single 

Hertzian vector Π


of the electric type, as done by Sommerfeld in [1].   

The approach is to find a suitable form for this Hertizian vector. This form has to 

satisfy the wave equation in both media according to: 

 2 2
0

( ) ( ) ( )     , 1

0                                      , 2
i i i

Idl x y z h i
k j

i

δ δ δ
ωε

−
− =∇ Π + Π = 

 =



 

  (3.1) 

The subscript i stands for the medium, as shown in Fig. 3.1. Then the boundary 

conditions are applied at the interface to find the unknown parameters in the assumed 

form of the solution. Consequently the fields can be calculated according to Maxwell 

equations as: 
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 2 ( )     , 1,  2i i i iE k i= Π +∇ ∇⋅Π =
  

  (3.2) 

 0      , 1,  2i i iH j iωε ε= ∇×Π =
 

  (3.3) 

where 2 2
1 0 0k ω µ ε=   (3.4) 

 2 2
2 0 0k ω µ ε ε=   (3.5) 

Following this approach, and according to the discussion given in the previous 

chapter, it is really appealing to extend the utilization of Schelkunoff integrals to derive a 

new Green’s function for the radiation of a horizontal electric dipole over imperfect 

ground planes. This new Green’s function is expected to motivate the development of 

integral equation-based solvers which are able to incorporate imperfect ground planes 

without worrying about the convergence problem of the integral tails as in the 

Sommerfeld case for large values of ρ. The rest of this chapter shows the derivation of the 

Schelkunoff-based Green’s function for the horizontal (parallel to the boundary) dipoles. 

x

z

y

( , , )x y z1r

2r
ρ

z

(0,0, )h

(0,0, )h−

θ

Dipole moment Idl

Image

medium (1) Air

medium (2) Earth

0 0 1( , , )kµ ε

0 0 2( , , )kµ ε ε
ϕ

Fig. 3.1 Geometry of the problem of a horizontal dipole 
over imperfect ground plane. 
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3.2 Schelkunoff Formulation for Horizontal Dipoles 

In [1], Sommerfeld gave expressions for the case of a horizontal dipole, as given 

in Appendix B. In this section, we will derive similar expressions but starting from 

Schelkunoff integrals rather than Sommerfeld integrals. First we need to consider the fact 

that for the case of an x-oriented dipole over a half space filling the region 0z < , shown 

in Fig. 3.1, the Hertzian vector has to consist of both x and z components [21]:  

 sec sec
1 1 1 1 1 1ˆ ˆ ˆ ˆ( )prim

x x z z x x x z za a a aΠ = Π +Π Π +Π +Π


   (3.6) 

 sec sec
2 2 2 2 2ˆ ˆ ˆ ˆx x z z x x z za a a aΠ = Π +Π Π +Π


   (3.7) 

where the superscript prim and sec denote the direct contribution of the source, and the 

effect of the presence of the second medium respectively. Using (3.2) and (3.3), and 

applying the continuity of the tangential components of the electric and magnetic fields, 

then the boundary conditions at the plane 0z =  are given by: 

 1 2 x xεΠ = Π   (3.8) 

 1 2 x xz z
ε∂ ∂

Π = Π
∂ ∂

  (3.9) 

 1 2 z zεΠ = Π   (3.10) 

 1 2 2 1z z x xz z x x
∂ ∂ ∂ ∂
Π − Π = Π − Π

∂ ∂ ∂ ∂
  (3.11) 

where cosx ρ ϕ= , y sin ,ρ ϕ= 2 2   x yρ = + , 

and cos
x

ϕ
ρ

∂ ∂
≡

∂ ∂
  (3.12) 
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Equations (3.8) and (3.11) follow from the continuity of the x and y components 

of the electric field, respectively. Equations (3.9) and (3.10) follow from the continuity of 

the y and x components of the magnetic field, respectively. The angle ϕ  is measured in 

the x-y plane from the x-axis as shown in Fig. 3.1. The suitable form of the solution can 

be guessed by inspecting (2.5) and the boundary conditions (3.8)-(3.11). The suitable 

forms based on Schelkunoff integrals are proposed to be: 

 
1 1

2 2
1 0 1

1 0

2 ( ) cos( ( ))
jk r

prim
x

eP P K k z h d
r

ρ ξ ξ ξ
π

∞−

Π = = − −∫   (3.13) 

where 
0

,
4
IdlP

jω πε
=   (3.14) 

 2 2 ,x yρ = +   (3.15) 

and 2 2
1 ( )r z hρ= + −   (3.16) 

For simplicity, we will assume that the value of P in (3.14) is unity. Accordingly, 

the remaining components of vector potential are given by: 

 sec 2 2
1 0 1

0

2 ( ) ( ) cos( ( ))x R K k z h dξ ρ ξ ξ ξ
π

∞

Π = − +∫   (3.17) 

 sec 2 2
2 0 2 2 2

0

2 ( ) ( ) cos( )x T K k z h dξ ρ ξ ξ ξ ξ
π

∞

Π = − −∫   (3.18) 

 sec 2 2
1 1 1

0

2 cos ( ) ( )sin( ( ))z zR K k z h dϕ ξ ρ ξ ξ ξ
π

∞

Π = − +∫   (3.19) 

 sec 2 2
2 1 2 2 2

0

2 cos ( ) ( )sin( )z zT K k z h dϕ ξ ρ ξ ξ ξ ξ
π

∞

Π = − −∫   (3.20) 

2 2 2 2
2 1 2where k kξ ξ= − + . From the boundary conditions, we can define the functions: 
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2 2

1

2 2
1

(1 )
( )

(1 )

k
R

k

ξ ξ ε
ξ

ξ ξ ε

− − −
=

+ − −
  (3.21) 

 
2 2

1

2( )  
(1 )

T
k

ξξ
ε ξ ξ ε

=
+ − −

  (3.22) 

 
2 2 2 2

1 1
2 2 2

1 1

2 (1 )
( )

(1 )
z

k k
R

k k

ξ ξ ξ ξ ε
ξ

εξ ξ ε

− − − − −
=

+ − −
  (3.23) 

 
2 2 2 2

1 1
2 2 2
2 1

2 (1 )
( )

(1 )
z

k k
T

k k

ξ ξ ξ ξ ε
ξ

εξ ξ ε

− − − −
=

+ − −
  (3.24) 

The proof that the above solutions satisfy the wave equation, shown in (3.1), is 

given in Appendix C of this dissertation. The derivation of the expressions (3.21)-(3.24) 

is given in Appendix E. Consequently, the electric and magnetic fields calculated from 

(3.2)and (3.3) represent the unique solution of the problem. 

Now, the x-component of the Hertz potential in medium (1) is given by: 

 1 0 1x sHg g gΠ = − +   (3.25) 

where 0g is the contribution of the main source and 1g is the contribution of a virtual 

image, shown in Fig. 3.1, which represents the image in the case when the second 

medium is a perfect conductor. Those contributions are given by: 

 
1 1 1 2

0 1
1 2

    and     
jk r jk re eg g
r r

− −

= =   (3.26) 

where 2 2
2 ( )r z hρ= + + . The last term in (3.25), sHg , is the modification due to the 

imperfect conductivity (and hence imperfect reflectivity) of the ground, and it is given 

by: 
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 2 2
0 12 2

0 1

2 2  ( ) cos( ( ))
(1 )

sHg K k z h d
k

ξ ρ ξ ξ ξ
π ξ ξ ε

∞

= − +
+ − −

∫   (3.27) 

To facilitate the use of the new Green’s function in an Integral-Equation based 

software using the method of moments [22], it is useful to write the z-component of the 

vector potential in terms of the partial derivative with respect to x as follows: 

 sec
1 1 2 ,z z g

x
∂

Π = Π
∂

   (3.28) 

where 
2 2

1 2 2
2 0 12 2 2

10 1

(1 )2 2 ( )sin( ( ))
(1 )

k
g K k z h d

k k

ξ ξ εξ ρ ξ ξ ξ
π εξ ξ ε

∞ − − −
= − +

+ − −
∫   (3.29) 

The usefulness of this form becomes obvious when the mutual impedance 

between horizontal dipoles is calculated by integrating the Green’s function over the 

current distribution of the true excitation in the problem, as explained clearly in [22]. The 

details of applying the method of moments are out of scope of this chapter. What is of 

importance here is the behavior of the new Green’s function as compared to the original 

Sommerfeld formulation. Since the Hertz vector potential is totally defined in medium 

(1), therefore the fields can be easily calculated by using (3.2): 

 2
1 1 1 1 1x zE k

x z
∂ ∂ = Π +∇ Π + Π ∂ ∂ 

 

  (3.30) 

Substituting for 1xΠ using (3.25) and for 1zΠ using (3.28), we get: 

 1 1 0 1 2x z sHg g g g
x z x z
∂ ∂ ∂ ∂ Π + Π = − + + ∂ ∂ ∂ ∂ 

  (3.31) 
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where the partial derivative operator with respect to x can be taken as a common factor 

because of (3.28). Furthermore, equation (3.31) can be simplified by substituting for sHg

using (3.27) and for 2g using (3.29): 

 2 2
3 2 0 12 2

0 1

2 2 ( )cos( ( ))
(1 )

sHg g g K k z h d
z k

ξ ρ ξ ξ ξ
π εξ ξ ε

∞∂
+ = − +
∂ + − −

∫   (3.32) 

  
 

Equation (3.30) which represents the electric field in medium (1) can be rewritten now 

using (3.31) and (3.32) as: 

 2
1 1 1 0 1 3( )E k g g g

x
∂ = Π +∇ − + ∂ 

 

  (3.33) 

Accordingly, the individual components of that electric field in medium (1) become: 

 2
1 0 1 0 1 3( ) ( )x sHE k g g g g g g

x x
∂ ∂ = − + + − + ∂ ∂ 

  (3.34) 

 0 1 3( )yE g g g
y x
∂ ∂ = − + ∂ ∂ 

  (3.35) 

 2
1 2 0 1 3( )zE k g g g g

x z x
∂ ∂ ∂ = + − + ∂ ∂ ∂ 

  (3.36) 

Note that for an x-oriented Hertzian dipole, the electric field in the y-z plane 

reduces to the first term of (3.34), 2
1 0 1( )sHk g g g− + . Thus, in the numerical examples 

given in this chapter, the scope is limited to the behavior of the term sHg . 
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3.3 Features of Schelkunoff Integrals and Some Useful Expressions 

In the previous section, it was shown that the Green’s function for the case of a 

horizontal dipole can be formulated using Schelkunoff integrals instead of the 

conventional Sommerfeld integrals. For the sake of comparison, the original Green’s 

function which is based on Sommerfeld integrals is shown in Appendix D of this 

dissertation. The superiority of the expressions given in (3.27), (3.29) and (3.32) lies in 

their suitability for numerical calculation over the Sommerfeld expressions given in 

(D.13), (D.14) and (D.15). The aim of this section is to illustrate this advantage of 

Schelkunoff integrals. 

All of the integrands given in the expressions of sHg , 2g and 3g , namely in (3.27), 

(3.29) and (3.32), can be divided into three parts. The first part is a pure function in the 

integration variable ξ , the second part is a function in ξ  and ρ , the horizontal 

separation of the source and the observation point. The last part is a function in ξ  and 

( )z h+ , the vertical separation between the observation and the image points, shown in 

Fig. 3.1. Therefore, the decaying rate of the whole integrand in the previously mentioned 

equations is determined by the fastest decaying rate of those three parts. Fortunately, in 

Schelkunoff formulation derived in the previous section, the fastest decaying rate is that 

of the modified Bessel function 0 ( )K x , which decays faster than exponential when its 

argument is real valued, which is the case for 1kξ > . For the integrands shown in (D.13), 

(D.14) and (D.15)  for the Sommerfeld formulation, none of those three parts decays as 

fast as 0 ( )K x  on the integration contour, specially for small values of ( )z h+  and large 
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values of ρ , hence the famous problem of Sommerfeld integral tails which appear when 

those expressions are to be calculated numerically.  

Going back to Schelkunoff formulation, the singularity of the function 

2 2
0 1( )K kρ ξ − at the point 0ρ = is unavoidable, which limits the use of this formulation 

on the axis of the dipole, but for 1kξ = , this is an integrable singularity, exactly as the 

singularity at 1kλ = in Sommerfeld integral shown in (2.1). This singularity can be easily 

eliminated by taking the proper substitution as follows: On the main (bounded) part of the 

contour where 1: 0 kξ → , we use the substitution: 

 1 1sin            cos  ,k d k dξ β ξ β β′ ′ ′= ⇒ =   (3.37) 

 2 2
1 1 cos ,k jkξ β ′− =   (3.38) 

 2 2 2
2 1 1& (1 ) cos  k kξ ξ ε ε β ′= − − = −   (3.39) 

While on the remaining (unbounded) part of the contour where 1: kξ →∞ (which we call 

the tail of the contour), we use the substitution: 

 1 1

1

sin = cosh           
2

          sinh  

k j k

d k d

πξ β β

ξ β β

 ′′ ′′= + 
 

′′ ′′⇒ =
  (3.40) 

 2 2
1 1 sinh ,k kξ β ′′− =   (3.41) 

 2 2 2
2 1 1& (1 ) sinhk kξ ξ ε ε β ′′= − − = +   (3.42) 

Using the substitutions defined in (3.37)-(3.42), sHg becomes: 
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/2

0 1 12
0

1

0 1 12
0

2 2sin ( cos ) cos
sin cos

                                                           cos( sin ( ))

2 2cosh             ( sinh ) sinh
cosh sinh

  

sHg K jk k

k z h d

K k k

π β ρ β β
π β ε β

β β

β ρ β β
π β ε β

∞

′
′ ′=

′ ′+ −
′ ′+

′′
′′ ′′+

′′ ′′+ +

∫

∫

1                                                                   cos( cosh ( ))k z h dβ β′′ ′′+

  (3.43) 

Using the same substitutions, 2g becomes: 

/2 2

2 0 1 12
10

1

2

1

sin cos2 2sin ( cos ) cos
sin cos

                                                                        sin( sin ( ))

cosh sinh2 2cosh
cosh

g K jk k
k

k z h d

k

π β ε ββ ρ β β
π ε β ε β

β β

β ε ββ
π ε β ε

′ ′′ − − ′ ′=
′ ′+ −

′ ′+

′′ ′′′′ − +
+

′′ +

∫

0 1 12
0

1

( sinh ) sinh
sinh

                                                                         sin( cosh ( ))

K k k

k z h d

ρ β β
β

β β

∞

′′ ′′
′′+

′′ ′′+

∫
  (3.44) 

Finally, 3g can be rewritten, as: 

 

/2

3 0 1 12
0

1

0 1 12
0

2 2sin ( cos ) cos
sin cos

                                                           cos( sin ( ))

2 2cosh ( sinh ) sinh
cosh sinh

              

g K jk k

k z h d

K k k

π β ρ β β
π ε β ε β

β β

β ρ β β
π ε β ε β

∞

′
′ ′=

′ ′+ −
′ ′+

′′
′′ ′′+

′′ ′′+ +

∫

∫

1                                             cos( cosh ( ))k z h dβ β′′ ′′+

  (3.45) 

3.4 Numerical Examples 

In this section, some numerical examples are given to illustrate the usefulness of 

the new formulation which is based on Schelkunoff integrals. First, the numerical 

behavior of the complex integrands in the new formulation is compared to those in 

Sommerfeld formulation. As discussed earlier, those integrands can be divided into three 
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parts. To be specific, take sHg  as an example. The integrand in (3.27) can be divided into 

three parts, the first part is a pure function of ξ . Let’s define it as ( , )f ξ ε , where 

 
2 2

1

2( , )
(1 )

f
k

ξξ ε
ξ ξ ε

=
+ − −

  (3.46) 

which is related only to the reflection coefficient at the boundary. The remaining two 

parts can be combined in one term. Let’s define this term as ( , , )K zξ ρ , where 

 2 2
0 1( , , ) ( ) cos( ( ))K z K k z hξ ρ ρ ξ ξ= − +   (3.47) 

In Sommerfeld formulation, given in (D.13), the integrands of Som
sHg can also be 

divided in a similar way, where the reflection coefficient-related part is defined as: 

 
2 2

1

2 2 2 2
1 2

2
( , )Som k

f
k k

λ
λ ε

λ λ

−
=

− + −
  (3.48) 

and the remaining two parts can be combined in another term, let’s define it as ( , , )J zλ ρ , 

where: 

 
2 2

1( )
0 2 2

1

( , , ) ( ) z h kJ z J e
k

λ λλ ρ λρ
λ

− + −=
−

  (3.49) 

In both cases, those integrands have to be carried out on semi-infinite contour 

from 0 to ∞ . The behavior of both formulations turns out to be the same on the bounded 

part of the contour where 1(or ) kξ λ < . This is obvious because on that part of the 

contour, the argument of the modified Bessel function in (3.47) becomes imaginary and 

hence the whole function becomes oscillatory as the Bessel function in (3.49) [23].  
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Despite this fact, the integrals can be evaluated without convergence problem 

because this part of the contour is limited from 0 to 1k . Consider the problem illustrated 

in Fig. 3.1. Assume the frequency is 850 MHz, 4rε = , 0.02σ = , and ( ) 0.5mz h+ = . 

Suppose that the fields are to be calculated at a horizontal distance 10mρ =  from the 

source. Using the substitution defined in (3.37)-(3.42), one can show the behavior of the 

complex integrand in both formulations, as shown in Fig. 3.2. In this figure, the dotted 

curve (blue) represents the product of (3.46) and (3.47), while the solid curve (red) shows 

the product of (3.48) and (3.49). From Fig. 3.2a, we see the behavior of the integrands on 

the bounded part of the contour is almost the same for both formulations. However, on 

the other part of the contour, in Fig. 3.2b, where 1(or ) kξ λ > , the behaviors of both 

integrands become totally different; because the argument of the modified Bessel 

function in (3.47) becomes real, hence the whole function decays monotonically as its 

argument increases. This is the difference which is required to be illustrated here. 
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Fig. 3.2 A comparison between the integrands of Schelkunoff and Sommerfeld formulations: (a) The 
main (bounded) part of the contour: 1(or ) kξ λ <  , or equivalently : 0 / 2β π′ →  , (b) The tail 

(unbounded) part of the contour 1(or ) kξ λ >  or equivalently : 0β ′′ →∞  
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For further illustration for the different behaviors of the integrands, one can 

rewrite equations (3.46) and (3.47) as in (3.50) and (3.51), respectively, using the 

substitution defined in (3.40)-(3.42). This is shown below: 

 
2

2cosh( , )
cosh sinh

f ββ ε
β ε β

′′
′′ =

′′ ′′+ +
  (3.50) 

 0 1 1 1( , , ) ( sinh ) sinh   cos( cosh ( ))K z K k k k z hβ ρ ρ β β β′′ ′′ ′′ ′′= +   (3.51) 

0 0.01 0.02 0.03 0.04 0.05
-100

-80

-60

-40

-20

0

 | 
K

 ( 
β '

', 
ρ  

, z
 ) 

|  
in

 d
B

Schelkunoff integrand on the contour tail

β''  in π
 

 

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

 | 
f (

 β
'',
ε  

) |

Complex Integrand
εr=2, σ=0.0001

εr=4, σ=0.001

εr=10, σ=0.01

εr=81, σ=5

εr=1, σ=107

0 0.05 0.1 0.15 0.2 0.25
-100

-80

-60

-40

-20

0

 | 
J 

( β
'',

 ρ
 , 

z )
 | 

 in
 d

B

Sommerfeld integrand on the contour tail

β''  in π
 

 

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

 | 
f So

m
 ( 
β '

',ε
 ) 

|

Complex Integrand
εr=2, σ=0.0001

εr=4, σ=0.001

εr=10, σ=0.01

εr=81, σ=5

εr=1, σ=107

(a) (b)

Fig. 3.3 A comparison between the integrands on the tail part of the contour for a horizontal separation of 
10m : (a) Schelkunoff (b) Sommerfeld 
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Fig. 3.4 A comparison between the integrands on the tail part of the contour for a horizontal separation of 
100m : (a) Schelkunoff (b) Sommerfeld 
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Using the same substitution, equations (3.48) and (3.49) become equivalent to (3.52) and 

(3.53) respectively, as shown below: 

 
2

2sinh( , )
sinh cosh

Somf ββ ε
β β ε

′′
′′ =

′′ ′′+ −
  (3.52) 

 1( ) sinh
0 1 1( , , ) ( cosh ) cosh    z h kJ z J k k e ββ ρ ρ β ρ β ′′− +′′ ′′ ′′=   (3.53) 

Assume the same simulation parameters discussed earlier, and considering the tail 

of the contour : 0β ′′ →∞ . The absolute values of (3.50) and (3.51), which represent 

Schelkunoff formulation, are plotted versus β ′′ , as shown in Fig. 3.3a. The left vertical 

axis in Fig. 3.3a shows the absolute value of (3.51), while the right vertical axis shows 

the absolute value of (3.50) for different ground parameters. Remember that the function 

shown in Fig. 3.2b is the product of the two vertical axes of Fig. 3.3. For Sommerfeld 

formulation, the absolute values of (3.52) and (3.53) are plotted versus β ′′ in Fig. 3.3b. If 

the horizontal separation between the source and observation points is increased to be of 

100 m instead of 10 m, Fig. 3.3a and Fig. 3.3b will correspond then to Fig. 3.4a and 

Fig. 3.4b respectively. The results shown in those figures make the advantage of the new 

formulation quite obvious. Observe in Fig. 3.3b. and Fig. 3.4b how the integrands in 

Sommerfeld formulation are oscillatory and slowly decaying. On the other hand, 

Fig. 3.3a and Fig. 3.4a show that the integrands in Schelkunoff formulation decay 

monotonically due to the behavior of the modified Bessel function 0 ( )K x . If one 

observes the horizontal scale of Fig. 3.3 and Fig. 3.4, it would be quite obvious that the 

length of the tail of the integration contour in Schelkunoff formulation is much smaller 

than in Sommerfeld formulation.  
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For example, if the horizontal separation between the source and observation 

points is 10 m, Fig. 3.3b. shows that for the absolute value of the integrand to go below 
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Fig. 3.5 A comparison between the results obtained using 
Schlekunoff and Sommerfeld integrals for the case of seawater where 
each of the source and field points is 10 m high from the interface 
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Fig. 3.6 A comparison between the results obtained using 
Schlekunoff and Sommerfeld integrals for the case of urban ground 
where each of the source and field points is 5 m high from the 
interface. 
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410−  ( 80−  dB), the integration variable on the tail of the contour has to go to / 4β π′′ ≈ . 

While Fig. 3.3a shows that for the same conditions the integration variable has to go just 

to 0.015β π′′ ≈ . When the horizontal separation increases to 100m, Fig. 3.4b shows that 

the oscillations in Sommerfeld integrals increases while their decaying rate remains the 

same as in Fig. 3.3b. On the other hand, in Schelkunoff integrals, as shown in Fig. 3.4a 

the decaying rate becomes faster when the horizontal distance increases (Note that there 

is one order of magnitude less in the horizontal axis of Fig. 3.4a as compared to 

Fig. 3.3a). 

One more advantage that can be seen from Fig. 3.3 and Fig. 3.4 is the distinction 

made by the ground parameters which is consistent over the whole path of integration. 

While in Sommerfeld formulation, the ground parameters do not have that much 

distinction. This is because of the fact that the starting point on the lower-left corner of 

Fig. 3.3 and Fig. 3.4  represent grazing incidence in the case of Sommerfeld formulation, 

while it represents normal incidence in the case of Schelkunoff’s. This is explained in 

details in the previous chapter. This effect appears only for large horizontal separations 

between the source and the field points.  

After discussing the behavior of the integrands, it is important to check the 

numerical results of integration for both formulations. A comparison between the 

integration results is shown in Fig. 3.5 and Fig. 3.6 for two different cases. Fig. 3.5 shows 

the case of 20mz h+ = over sea water ( 81,  =5)rε σ= , while Fig. 3.6 shows the case of 

10mz h+ = over urban ground ( 4,  =0.02)rε σ= . The value of sHg  is plotted versus the 

horizontal distance ρ . On the same curves, the difference between the integration results 

is plotted in dB for both the real and imaginary parts. As seen from both figures, both 
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formulations are equivalent. For both the real and imaginary parts of the integration 

results, the error is about 60 dB less than the value of the function itself for most of the 

horizontal separations. The difference between the two formulations increases for large 

horizontal separations. This is exactly what was expected because, as shown in Fig. 3.2-

Fig. 3.4, the convergence of Sommerfeld integrals becomes more problematic as the 

value of ρ increases.  

Finally, the superiority of Schelkunoff formulation, discussed above, should 

correspond directly to the time elapsed to calculate the integrals in the Green’s function. 

This is illustrated in Fig. 3.7 and Fig. 3.8. In Fig. 3.7, the value of the computed integral 

for sHg is shown for a large dynamic range of horizontal distances and for ( ) 0.1z h w+ = , 

where w is the wavelength assumed in the simulation. In this example, the parameters of 

the ground are the same as medium (1). In this case, where there is no reflection, equation 

(3.25) dictates that the value of sHg should be exactly equal to 1g , so that the only 

contribution in the potential will be that of the original source. Therefore, in this case, we 

know the exact value of sHg which is 1 2
1 2/jk r

sHg g e r−= = . Fig. 3.7 shows that both 

Sommerfeld and Schelkunoff formulation give correct values. However, Fig. 3.8 shows 

that to get to the same accuracy from both formulations, the time elapsed to calculate 

Schelkunoff integrals is an order of magnitude less than that of Sommerfeld integrals, 

which becomes very critical when the horizontal separations between the source and 

observation points increases. In Fig. 3.9 and Fig. 3.10, the time elapsed for the same 

simulation is shown for a vertical distance ( ) 1z h w+ =  and ( ) 0z h+ =  respectively.  



46 
 

 

Fig. 3.7 The calculated integral of gsH using both Sommerfeld and Schelkunoff formulations. The 
horizontal and vertical distances are normalized to the wavelength w 

 

 

 

Fig. 3.8 Time elapsed to calculate the values of Fig. 3.7 for (z+h)/w=0.1. The horizontal and vertical 
distances are normalized to the wavelength w 
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Fig. 3.9 Time elapsed to calculate the values of Fig. 3.7 for (z+h) / w =1. The horizontal and vertical 
distances are normalized to the wavelength w 

 

 

 

Fig. 3.10 Time elapsed to calculate the values of Fig. 3.7 when (z+h) = 0. 
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The results in Fig. 3.9 show that the convergence of Sommerfeld integrals is 

better than that of Fig. 3.8. This is because the exponential function on the right hand side 

of (3.53) enhances the decay rate of Sommerfeld integrals when ( )z h+ increases. 

However, even in this case, Schelkunoff integrals have faster convergence rate as shown 

in Fig. 3.9. As the vertical distance ( )z h+  approaches zero, Sommerfeld integrals totally 

fail to converge as shown in Fig. 3.10. This represents the main advantage of the new 

formulation. That is, a numerical solution is now applicable for the case where the source 

and the field points are directly on the interface, without suffering from the integral tails 

problem which is inherent in the Sommerfeld formulation. 

3.5 Conclusion 

In this chapter, a new formulation for the Green’s function of a horizontal dipole 

over an imperfect ground plane is derived based on Schelkunoff integrals. This chapter 

extends the derivation of the vertical dipole, given in Chapter 2, for the case of the 

horizontal electric dipole. The performance of the new formulation is compared to the 

conventional Sommerfeld formulation in terms of the numerical behavior and the 

suitability for numerical integration. The given examples show the superiority of the new 

formulation over Sommerfeld’s in terms of the time needed to get the same accuracy. 

This superiority is achieved when the field point is at large horizontal distance from the 

source and for small vertical distances. This gives potential to reduce the time elapsed for 

a single calculation of the Green’s function by at least one order of magnitude, and hence 

abolishing the well-known problem of Sommerfeld integral tails. This advantage 

becomes critical when trying to solve electrically large problems in the presence of real 
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grounds like the earth or the sea, especially when the source and field points are very 

close to the interface. 
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4 A Comparison between Sommerfeld and Schelkunoff 

Formulations 

4.1 Introduction 

The problem of dipole radiation over an infinite half-space is more than a hundred 

years old. Throughout this whole century, tremendous amount of work was done and 

published to address the same problem which is known as the Sommerfeld problem, or 

sometimes Sommerfeld half-space problem. The original work of Sommerfeld can be 

divided into two main stages. First, finding a suitable formulation (expressions) for the 

components of the Hertz potential, and then the second stage is to carry out the integrals 

which appear in his expressions to find a closed form solution for the radiated fields. In 

the previous two chapters of this dissertation, we addressed only the first stage, where 

analogous expressions were given based on the modified Sommerfeld integrals, which we 

call Schelkunoff integrals. We did not address the second stage which is the analytical 

solution given by Sommerfeld. Instead, numerical solutions were given using the state of 

the art desktop computers which were not available at the time of Sommerfeld.  

However, due to the debatable nature of the problem at hand, it is not avoidable to 

have some questions arise about the relation between the new formulation presented here 

and the original Sommerfeld formulation. To answer those questions, we need to have a 

closer look at the relation between the two formulations and whether they should yield 

the same results or not from a theoretical point of view. This chapter is dedicated solely 

for this purpose.  
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4.2 Anatomy of Sommerfeld and Schelkunoff Integrals 

Starting from the homogeneous space Green’s function, one can write: 

 

1 2 2
1

2 2
1

( )
0 2 2

0 1

( )(2)
0 2 2

1

( ) 

1 ( ) 
2

jk R
z h k

z h k

e J e d
R k

H e d
k

λ

λ

λλρ λ
λ

λλρ λ
λ

∞−
− + −

∞
− + −

−∞

=
−

=
−

∫

∫
  (4.1) 

where 2 2 2( )R z hρ= + +  and the second line has been written using the following 

identities [23]: 

 (1) (2)
0 0 0

1( ) ( ) ( )
2

J H Hλρ λρ λρ = +    (4.2) 

 (1) (2)
0 0( ) ( )H x H x− = −   (4.3) 

Also, one can write: 

 

1
2 2

0 1
0

2 2 ( )
0 1

2 ( ) cos( ( ))

1 ( ) 

jk R

j z h

e K k z h d
R

K k e dξ

ρ ξ ξ ξ
π

ρ ξ ξ
π

∞−

∞
− +

−∞

= − +

= −

∫

∫
  (4.4) 

Accordingly one can conclude that: 

 
2 2

1( )(2) 2 2 ( )
0 0 12 2

1

1 1( ) ( )
2

z h k j z h

C

H e d K k e d
k

λ ξλλρ λ ρ ξ ξ
πλ

− + − − +

Γ

= −
−

∫ ∫   (4.5) 

where the integration contours Γ  and C  are shown in Fig. 4.1. The proof of (4.5) for 

0z h+ =   is given in Appendix A. The generalization of the proof of Appendix A to the 

case where 0z h+ ≠  is quite cumbersome because of the multiplication by the complex 
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exponential function. However, an alternative approach to prove (4.5) using complex 

analysis is quite straight forward. Consider the following substitution: 

 2 2 2 2 2 2 2
1 1 1                  k j k j kλ ξ λ ξ ξ λ+ = ⇒ = ± − ⇒ = ± −   (4.6) 

where d dλ λ ξ ξ= − . Since one can write the following relation from the properties of the 

Bessel functions [23]: 

 (2)
0 0( ) ( ),         arg( ) 2

2 2
K x j H jx xπ π π= − < ≤   (4.7) 

where arg( )x is the phase angle of the complex number x. Therefore, the integrand on the 

left-hand side of (4.5) can be written as: 

 

2 2
1( )(2) (2) 2 2 ( )

0 0 12 2
1

2 2 ( )
0 1

1 1( ) ( )
2 2

1                                                   ( )

                  ( )                              (

z h k j z h

j z h

d dH e H j k e
jk

K k e d

G d F

λ ξ

ξ

λ λ ξ ξλρ ξ ρ
ξλ

ξ ρ ξ
π

λ λ

− + − − +

− +

−
= −

−−

= −

⇒ = )dξ ξ

  (4.8) 

This means that the integrands on both sides of (4.5) are identical based on the 

substitution given in (4.6). The trick however is in the contours of integration. To 

understand this trick very clearly, one should consider the mapping of the integration 

contours from the complex planeλ −  to the complex planeξ − and vice versa. In words, 

one can see from (4.6) that as λ goes from −∞ to 1k−  , ξ goes from j− ∞ to 0, and as λ

goes from 1k− to 0, ξ goes from 0 to 1k . Then as λ increases on the positive real axis, ξ

goes back from 1k to 0 and then from 0 to j− ∞ . This means that the planeλ −  contour, 

Γ in Fig. 4.1-(a), is mapped to the planeξ −  contour 
1BCC in Fig. 4.1-(b). Note that 
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because of the quadratic relation between ξ  and λ , namely 2 2
1j kξ λ= ± − , the 

planeξ −  contour 
1BCC is not the unique representation of the contour Γ . Another 

possible contour in the planeξ −  is the one that goes from 1k−  to j+ ∞ , which is not 

drawn in Fig. 4.1-(b) just for the sake of simplicity. For more illustration, the contour Γ  

is mapped into two additional planes, namely the planeα −  and the planeβ − , where α  

and β are the physical angles shown in the right angle triangle of Fig. 4.1.  

It is important now to see how the planeξ −  contour C on the right-hand side of 

(4.5) is mapped into the other planes. This is shown in Fig. 4.2, where we can see that 

contour C is represented by the contour 
1BCΓ in the λ  plane. The subscript “BC1” in 

1BCC

and 
1BCΓ stands for the branch cut emanating from the point 1k in either of the planes. 

This comes from the fact that the expressions on both sides of (4.5) are double valued. 

This results from the presence of the square root functions: 2 2
1kλ − and 2 2

1kξ − . To 

visualize the effect of those branch cuts, a numerical example is shown where we plot the 

expressions of (4.5) for the case 0z h+ = . The branch cuts shown in Fig. 4.3 and Fig. 4.4 

can be identified by the sharp transitions in color (phase). Those branch cuts represent the 

lines on which the square roots in the integrands have zero real part. This is easily 

calculated using Matlab which always yields the square root with a positive real part. 

Those branch cuts are shown in Fig. 4.1-(b) and Fig. 4.2-(a) as 
1BCC and 

1BCΓ respectively. 

With the aid of Fig. 4.1-(a), Fig. 4.1-(b) and equation (4.8), one can write: 

 
1

( ) ( )
BCC

G d F dλ λ ξ ξ
Γ

=∫ ∫   (4.9) 
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Similarly,  
1

( ) ( )
BC C

G d F dλ λ ξ ξ
Γ

=∫ ∫   (4.10) 

Note that the original contours of integration in (4.5) are along the real axes in 

either the planeλ − or the planeξ − . Thus, the remaining task is to prove that the left-hand 

side of (4.9) is equal to the left-hand side of (4.10) and also to prove the same for the 

right-hand sides. One can easily do so by applying Cauchy’s theorem.  

 

Fig. 4.1 Mapping of the real axis of λ  in different complex planes : (a) planeλ − , (b) planeξ − , (c) 
planeα −  , (d) planeβ −  
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Fig. 4.2 Mapping of the real axis of ξ  in different complex planes : (a) planeλ − , (b) planeξ − , (c) 
planeα −  , (d) planeβ −  

To calculate the integral on the left-hand side of (4.9), consider the picture shown 

in Fig. 4.5-(a). Applying Cauchy’s theorem, since the integrands have no singularity 

except the branch point singularity at 1kλ = , therefore 
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Since the integrand vanishes at ∞ in the third and fourth quadrants, therefore the integral 

along ∞Γ has no contribution, accordingly: 

 

Fig. 4.3 Representation of the integrands in the complex planeλ − (a) and the complex planeξ −  (b) for 
the case of 1 1k = . The color bar is in degrees and represents the phase angle of the integrands. The contour 
lines in black represent the lines of constant magnitudes of the integrands. 

 

Fig. 4.4 Representation of the integrands in the complex planeλ − (a) and the complex planeξ −  (b) for 
the case of 1 1 0.25k j= − . The color bar is in degrees and represents the phase angle of the integrands. The 
contour lines in black represent the lines of constant magnitudes of the integrands. 
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(a) (b)
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Fig. 4.5 Application of Cauchy’s theorem in the planeλ − (a) and the complex planeξ −  (b). 
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Similarly, from Fig. 4.5-(b), one can prove that the integrals on the right-hand 

side of (4.9) and (4.10) are identical by applying Cauchy’s theorem: 
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1
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BCC C

F d F dξ ξ ξ ξ⇒ =∫ ∫   (4.14) 

Where the integral along C∞ vanishes because of the integrand in this case also vanishes 

at ∞ in the third and fourth quadrants. Substituting (4.9) in (4.14) or (4.10) in (4.12), we 

get: 
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4.3     Formulations for the half-space problem 

To summarize the forms given in Chapter 2 and compare it to the original 

Sommerfeld problem, we present the solution of the vertical electric dipole over an 

infinite half-space in a very compact form as follows: 

 sec
1 1 1 1ˆ ˆ( )prim

z z z z za aΠ = Π = Π +Π


  (4.16) 

 sec
2 2 2ˆ ˆz z z za aΠ = Π = Π


  (4.17) 

The boundary conditions at 0z =  are given by: 

 1 2 1 2         &          z z z zz z
ε ε∂ ∂

Π = Π Π = Π
∂ ∂

  (4.18) 

4.3.1 Sommerfeld Formulation for vertical electric dipole: 

The suitable form of solutions are given by: 

 (2) 2 2
1 0 1 2 2

1

1 ( ) exp( ( )) ,        0
2

prim
z H k z h d z h

k
λλρ λ λ

λ

∞

−∞

Π = − − < <
−

∫   (4.19) 

 sec (2) 2 2
1 0 1 2 2

1

1 ( ) ( ) exp( ( )) ,          0
2z R H k z h d z

k
λλ λρ λ λ

λ

∞

−∞

Π = − − + >
−

∫   (4.20) 

sec 2 2 2 2 2
2 0 2 1 2 2

1

1 ( ) ( ) exp( ) ,     0
2z T H k z k h d z

k
λλ λρ λ λ λ

λ

∞

−∞

Π = − − − <
−

∫   (4.21) 

The conditions for convergence of the above integrals are enforced by the 

radiation condition as follows: 

1. { }Im 0λ <  

2. { }2 2
1Re 0kλ − >  
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3. { }2 2
2Re 0kλ − >  

From the boundary conditions, we get: 

 
2 2 2 2

1 2

2 2 2 2
1 2

( )
k k

R
k k

ε λ λ
λ

ε λ λ

− − −
=

− + −
  (4.22) 

 
2 2

1

2 2 2 2
1 2

2
( )

k
T

k k

λ
λ

ε λ λ

−
=

− + −
  (4.23) 

4.3.2 Schelkunoff Formulation for vertical electric dipole: 

The suitable form of solutions are given by: 

 2 2
1 0 1

1 ( ) exp( ( )) ,         0prim
z K k j z h d z hρ ξ ξ ξ

π

∞

−∞

Π = − − < <∫   (4.24) 

 sec 2 2
1 0 1

1 ( ) ( ) exp( ( )) ,         0z R K k j z h d zξ ρ ξ ξ ξ
π

∞

−∞

Π = − − + >∫   (4.25) 

 sec 2 2
2 0 2 2 2

1 ( ) ( ) exp( ) ,         0z T K k j z j h d zξ ρ ξ ξ ξ ξ
π

∞

−∞

Π = − − <∫   (4.26) 

The conditions for convergence are given by: 

1. { }2 2
1Re 0kξ − >  

 
2. { } { }Re 0       Im 0jξ ξ> ⇒ <  

 

3. 
{ } { }

{ } { }
2 2

2 2 2 2
1 1

Re 0                               Im 0

Re ( 1)  0         Im ( 1)  0  

j

j k k

ξ ξ

ξ ε ξ ε

> ⇒ <

+ − > ⇒ + − <
 

 
From the boundary conditions, we get: 
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2 2

12
2 2

2 1

( 1)
( )   

( 1)

j j kj jR
j j j j k

εξ ξ εεξ ξξ
εξ ξ εξ ξ ε

− + −−
= =

+ + + −
  (4.27) 

 
2 2

1

2( )
( 1)

jT
j j k

ξξ
εξ ξ ε

=
+ + −

  (4.28) 

 2 2 2 2
1 2 2k kξ ξ− = −   (4.29) 

In the previous section, we have proved that (4.19) is identical to (4.24). The main 

goal now is to examine whether (4.20) and (4.21) are identical to (4.25) and (4.26) 

respectively or not. To answer this question, we take the following steps: 

Substitute for λ  by (4.6) in (4.20), and using (4.22) and (4.27), we get: 

 

1

sec (2) 2 2
1 0 1 2 2

1

2 2
0 1

1 ( ) ( ) exp( ( )) ,    0
2

1 ( ) ( ) exp( ( )) ,         0
BC

z

C

R H k z h d z
k

R K k j z h d z

λλ λρ λ λ
λ

ξ ρ ξ ξ ξ
π

Γ

Π = − − + >
−

= − − + >

∫

∫
  (4.30) 

subject to the conditions: { }2 2
1Re 0kλ − > , { }2 2

1Re 0kλ − > , { }Im 0ξ <  and 

{ }2 2
1Im ( 1)  0kξ ε+ − < , and the contours Γ and 

1BCC are shown in Fig. 4.1-(a) and 

Fig. 4.1-(b) respectively. 

Similarly, and under the same conditions, if one substitute for ξ  by (4.6) in (4.25) and 

using (4.22) and (4.27), we get: 

 

1

sec 2 2
1 0 1

(2) 2 2
0 1 2 2

1

1 ( ) ( ) exp( ( )) ,         0

1 ( ) ( ) exp( ( )) ,      0
2

BC

z
C

R K k j z h d z

R H k z h d z
k

ξ ρ ξ ξ ξ
π

λλ λρ λ λ
λΓ

Π = − − + >

= − − + >
−

∫

∫
  (4.31) 
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where the contours C and 
1BCΓ are shown in Fig. 4.2-(b) and Fig. 4.2-(a) respectively. 

Therefore, the two formulations are identical if and only if:  

 
1

( ) ( ) ( ) ( )
BCC C

R F d R F dξ ξ ξ ξ ξ ξ=∫ ∫   (4.32) 

or equivalently, 

 
1

( ) ( ) ( ) ( )
BC

R G d R G dλ λ λ λ λ λ
Γ Γ

=∫ ∫   (4.33) 

An identical analysis can be done for the forms of medium 2 which are given in 

(4.21) and (4.26). The problem now is that the deformation of the contours in either the 

planeλ −  or in the planeξ −  becomes tricky and not as straight forward as in the 

previous section. This is because the integrands in (4.32) and (4.33) contain the functions 

( )R ξ and ( )R λ which add more singularities in the complex planes. What type of 

singularities are added and what are the effect of those singularities; those questions are 

addressed in the rest of this chapter.  

4.3.3 Properties of the reflection coefficient in the complex planes 

The case of a vertical dipole represent a TM case where the magnetic field is 

perpendicular to the plane of incidence for all the elementary waves under the integration 

sign. The reflection coefficients in this case are given by (4.22) and (4.27), which are 

identical because of the relation given in (4.6). Remember that those expressions are 

derived from the continuity of the tangential electric and magnetic fields as shown in 

(4.18).  
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Fig. 4.6 Numerical plot of the reflection coefficient function in: (a) the complex , and (b) the 
complex . 

Fig. 4.6 shows a numerical plot for equations (4.22) and (4.27) for the second 

medium parameters of  and . It is clear in the Fig. 4.6, that the reflection 

coefficient function adds one more branch point singularity in either domains in addition 

to the already existing branch point singularity at  shown in Fig. 4.5. Therefore, the 

integrands would have two branch cuts and accordingly four different Riemann sheets. 

To be more specific, let’s consider each plane separately. 

4.3.3.1 Properties of  in the : 

The function given in (4.22) has two branch point singularities at and at 

. The branch cuts associated with those branch points are illustrated clearly in 

Fig. 4.6-(a). Only the two branch cuts in the lower half-plane are of interest to us. Those 

two branch points divide the complex  into four different Riemann sheets as 

follows: 
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Sheet 1:  Real ( 2 2
1kλ − )  > 0   and  Real( 2 2

2kλ − )  >  0 

Sheet 2:  Real ( 2 2
1kλ − )  < 0   and  Real( 2 2

2kλ − )  >  0 

Sheet 3: Real ( 2 2
1kλ − )  > 0   and  Real( 2 2

2kλ − )  <  0 

Sheet 4: Real ( 2 2
1kλ − )  < 0   and  Real( 2 2

2kλ − )  <  0 

Along the branch cuts emanating from the point 1kλ =  the real part of 2 2
1kλ −  

is equal to zero, while along the branch cut emanating from the point 2kλ =  the real part 

of 2 2
2kλ − is equal to zero. Sommerfeld originally chose the only permissible Riemann 

sheet to be Sheet 1 on which the radiation condition is satisfied. In addition to the branch 

point singularity there is a pole/zero singularity at the point: 

 1 2
12 2

1 2
1S

k k k
k k

ελ
ε

= ± = ±
++

  (4.34) 

where ε is the complex relative permittivity of medium 2. Depending on the value of ε , 

the point sλ λ= represents a zero of the function ( )R λ on two Riemann sheets and at the 

same time it represents a pole of the function on the other two sheets. 

4.3.3.2 Properties of ( )R ξ  in the planeξ − : 

While the analysis given in the previous subsection can be found in a vast amount 

of sources in the literature, the analysis given here in this subsection can hardly be found. 

The function given in (4.27) has two branch point singularities at 0ξ =  and at

1( 1)kξ ε= ± − − . The first branch point has two associated branch cuts aligned with the 

real axis as shown in Fig. 4.6-(b). The other branch points lie in the first and third 
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quadrants and their associated branch cuts are as shown in Fig. 4.6-(b). Only the branch 

cuts in the third quadrant are of interest due to the enforced condition, Im{ } 0ξ ≤ , 

mentioned in the previous section, which guarantees the convergence of the fields at 

infinity. Those two considered branch cuts result in four different Riemann sheets.  In 

addition to the branch point singularities, there is a pole/zero singularity at the point: 

 1
1

1s kξ
ε

= ±
+

  (4.35) 

where ε is the complex relative permittivity of medium 2. Depending on the value of ε , 

the point sξ ξ= represents a zero of the function ( )R ξ on two Riemann sheets and at the 

same time it represents a pole of the function on the other two sheets. It is very important 

to note the effect of the value of ε on determining whether the singularity in (4.35) is a 

pole or a zero of the function. A detailed analysis of this effect is left for the next chapter 

of this dissertation, as it also represents one of the unique contributions of this 

dissertation. While in the rest of this chapter, the common aspects about the previously 

mentioned singularities which are widely accepted in the literature are discussed. We 

address those widely accepted concepts because they are likely to give rise to some 

controversies about the new formulation, given in this dissertation, as compared to the 

conventional Sommerfeld formulation. 

4.3.4 Cauchy’s theorem applied in the complex planes 

A straight forward application of the Cauchy’s theorem in the planeλ −  to 

calculate the left-hand side of (4.33) yields an equation very similar to (4.11) but with 

additional two terms as follows: 
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Fig. 4.7 Application of the Cauchy’s theorem on the integrals that include the reflection coefficient function 
in: (a) the complex planeλ − , and (b) the complex planeξ − . 

 
1 2

( ) ( ) 0
BC BC P

R G dλ λ λ
∞Γ Γ −Γ −Γ −Γ

  ⋅+ ⋅+ ⋅+ ⋅+ ⋅ = 
  
∫ ∫ ∫ ∫ ∫   (4.36) 

where 
2BCΓ is the contour along the branch cut emanating from the branch point 2kλ = , 

and PΓ  is the contour around the pole location as shown in Fig. 4.7-(a). Accordingly, 

Sommerfeld decomposed his original integral into three different terms as follows: 

 
1 2

( ) ( ) ( ) ( )
BC BC P

R G d R G dλ λ λ λ λ λ
Γ Γ Γ Γ

  = ⋅+ ⋅+ ⋅ 
  

∫ ∫ ∫ ∫   (4.37) 

Then, Sommerfeld called the branch cut contributions “the space waves” and he called 

the pole contribution “the surface wave”. Remember that our target is to prove that the 

integral along Γ is equivalent to the integral along 
1BCΓ only, so that we can say based on 

P−Γ Re{ }λ

Im{ }λ

1k−

Γ

planeλ −

(a)

∞Γ

1k

1BC−Γ
Re{ }ξ

Im{ }ξ

1k−C

planeξ −

(b)

C∞

1k

1BCC−
2k

2BC−Γ
2BCC− PC−
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(4.30) and (4.31) that Sommerfeld and the new formulations are identical. In other words, 

we need to prove that the term 
2

{ } ( ) ( )
BC P

R G dλ λ λ
Γ Γ

⋅+ ⋅∫ ∫ can be neglected.   

The proof of this fact can be easily found in the literature. For example, in the 

year 1950 in the proceedings of IRE, a paper by Kahan and Eckart states explicitly in the 

introduction: “The integral taken over the branch cut of 2k  may be neglected. The 

integral of 1k is developed asymptotically and yields the part of the solution which 

Sommerfeld calls the “space wave,” and which as we shall see, represents by itself the 

correct solution” [24]. 

Regarding the pole contribution, it is very important to note that the location of 

the pole in the -planeλ shown in figure-28 of Sommerfeld’s book [21, p. 251] is wrong. 

This becomes quite obvious if one recalls the formula of the location of the pole in the 

planeλ − , given by (4.34) which directly implies two important facts: 

1- The pole should lie inside a circle of radius 1k whose center is the origin of the 

planeλ − . Thus, the location shown in Sommerfeld’s book is wrong. 

2- As the magnitude of ε increases, the pole comes to a closer proximity of the point 1k  

which becomes the saddle point for calculating the field along the surface [24] [3, p. 67]  

The first fact indicates that the branch cuts if taken vertically downwards, the pole 

will automatically go off the proper Riemann sheet implied from the convergence 

conditions specified earlier by Sommerfeld. A very rigorous analysis which proves this 

fact is given by Jin A. Kong in [25]. The second fact indicates that if the branch cuts are 

taken in such a way that the pole is on the proper Riemann sheet, there must be a saddle 
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point very close to the pole such that their contributions cancel out. More than one proof 

of this fact is given in [24] and [3, p. 70].  

After all, it is well known that the residue of the pole, P, has the form of “Zenneck 

Surface Wave”, which have been proven experimentally not to exist in the radiation of a 

dipole over a half-space medium [26] and hence should not appear in the final solution.  

Regarding the integral along the branch cut emanating from the branch point 

2kλ =  in the planeλ − , as mentioned earlier, this contribution is always neglected by 

many authors who wrote on the subject. For example: 

In 1967, James R. Wait states that: “The branch line integration associated with 

2k is carried out in a manner similar to that for 0k  but now the contribution is 

proportional to 2
2exp( )ikρ ρ− −  which is heavily damped since 2k has an appreciable 

imaginary part when the lower medium is finitely conducting. Therefore, in what follows, 

we assume that this contribution to the integral F is negligible.” [27]   

Another example is what R. E. Collin says: “The integral around the branch cut 

running from the point k2 can be neglected, since the contributions from this part of the 

integral will have an attenuation at least as great as that of exp(ik2r), which is very large 

for even modest values of r” [3, p. 67].  

Furthermore, in the rigorous analysis given by Jin A. Kong in [25], it is concluded 

that the path of the branch cut emanating from 2k in the planeλ − does not even affect 

whether the pole exists on the proper Riemann sheet or not. It is only the path of the 

branch cut of 1k that is important. 

According to the contemporary solutions given in the current literature, one can 

conclude that the pole contribution cannot stand independently in the final solution. After 
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all, the function ( )R λ  represents physically the reflection coefficient as a function of the 

angle of incidence. For a two-media problem, this reflection coefficient can have no 

poles. There is no meaning to have a reflected field without an incident one. More 

explanations about this issue are discussed in details in the following chapter.  

Now, let’s consider applying the Cauchy’s theorem in the planeξ − , an equation 

similar to (4.37) should occur: 

 
1 2

( ) ( ) ( ) ( )
BC BC PC C C C

R F d R F dξ ξ ξ ξ ξ ξ
  = ⋅+ ⋅+ ⋅ 
  

∫ ∫ ∫ ∫   (4.38) 

where the contours are shown in Fig. 4.7-(b). Again, the target is to prove that the integral 

along C  is equivalent to the integral along 
1BCC  only. In other words we need to prove 

that the term 
2

{ } ( ) ( )
BC PC C

R F dξ ξ ξ⋅+ ⋅∫ ∫ can be neglected in order to say that the formulation 

of Sommerfeld and the new formulation are identical. Regarding the pole contribution, 

the following chapter of this dissertation is dedicated for a detailed explanation of this 

pole and whether it should affect the result or not. In the following chapter, it is proved 

that this pole should not be captured while solving the two-media problem. The 

remaining term now is the contribution of the integral along the second branch cut 
2BCC . 

The contribution of this term can always be neglected in almost all practical cases. A 

numerical study on this issue is given next in this chapter. 

4.4 Numerical Analysis of the Half-Space Problem 

The philosophy in the numerical analysis given in this section is the same as what 

was used to get Fig. 3.5 and Fig. 3.6. For a vertical electric dipole, the vector potential of 
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(2.22), which is identical to the first line of (4.31), is calculated numerically using 

adaptive gauss quadrature routine of integration. Then, the results are compared to those 

of the first line of (4.30) calculated using the same routine of integration with the same 

relative tolerance and number of iterations.   

Assume a vertical electric dipole located at a height h  from the interface between 

air and a medium of ( , 1, )r rε µ σ= . The observation point is at a height z  from the 

interface. The results of numerical integration are calculated and plotted versus the 

horizontal separation ρ between the source and field points. The plot is repeated for 

different heights and different ground parameters. All distances in the plots are then 

normalized to the free space wavelength w .  

The results shown in Fig. 4.8 show a comparison between the performance of the 

two formulations. The frequency is 850 MHz, the height of the source is 20 wavelengths 

and the height of the field point is 80 wavelengths. The ground parameters are chosen as 

the urban ground parameters where 10rε = and 0.2 S/mσ = . Fig. 4.8-(a) shows the 

numerical integration results along with the relative error in the real and imaginary parts. 

The absolute value of the error between the two formulations, in both the real and the 

imaginary parts, is more than 40 dB lower than absolute value of the numerical result 

itself. This indicates that for the given parameters, both formulations give identical 

results. In Fig. 4.8-(b) The total Green’s function, which is the sum of the primary and the 

secondary stimulations, is plotted as a function of the horizontal separation between the 

field and source points, ρ . The plot show that both formulations give identical results. 

The time for calculating each of the integrals for each ρ  is shown in Fig. 4.8-(c).  
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Fig. 4.8 Numerical comparison between Schelkunoff and Sommerfeld formulations for a vertical electric 
dipole over urban ground, z+h=100 wavelengths: (a) The secondary part of the vector potential, (b) The 
total magnitude of the vector potential, (c) time to numerically calculate the integrals, (d) the tail-to-main 
ratio.  

The Tail-to-Main ratio is shown in Fig. 4.8-(d). This ratio represents the ratio of 

the second term to the first term of (2.19). Fig. 4.8-(d) show that Schelkunoff formulation 

does not suffer from the integral tails problem. However, Fig. 4.8-(c) show that the time 

to calculating the value of the integral on the tail part of the contour does not affect the 

total time because of the presence of the exponential function in the Sommerfeld 

formulation as explained in Chapter 2.  
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Fig. 4.9 Numerical comparison between Schelkunoff and Sommerfeld formulations for a vertical electric 
dipole over urban ground, z+h=1 wavelengths: (a) The secondary part of the vector potential, (b) The total 
magnitude of the vector potential, (c) time to numerically calculate the integrals, (d) the tail-to-main ratio. 

The previous example show that Schelkunoff formulation and Sommerfeld 

formulation give exactly identical results which supports the validity of the new 

formulation. However, in this example the superiority of the new formulation is not very 

clear since both formulation need approximately the same time for calculation. As the 

source and field points go closer to the interface, the integral tails in Sommerfeld 

formulation become more problematic. This is illustrated in the following example where 

z+h=1 wavelength.  
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Fig. 4.10 Numerical comparison between Schelkunoff and Sommerfeld formulations for a vertical electric 
dipole over a very good conductor, z+h=1 wavelengths: (a) The secondary part of the vector potential, (b) 
The total magnitude of the vector potential, (c) time to numerically calculate the integrals, (d) the tail-to-
main ratio. 

The results shown in Fig. 4.9 show a comparison between the performance of the 

two formulations when the height of the source is 0.2 wavelengths and the height of the 

field point is 0.8 wavelengths. The ground parameters are chosen as the urban ground 

parameters where 10rε = and 0.2 S/mσ = . Fig. 4.9-(a) show that the error between the 

secondary potential in the two formulations is significant for small values of ρ and the 

error decreases as ρ increases.  
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Fig. 4.11 Numerical comparison between Schelkunoff and Sommerfeld formulations for a vertical electric 
dipole over a very good conductor, z+h=0.1 wavelengths: (a) The secondary part of the vector potential, (b) 
The total magnitude of the vector potential, (c) time to numerically calculate the integrals, (d) the tail-to-
main ratio. 

However, after adding the secondary part of the potential to the primary (direct) 

stimulation, the result look different for both formulations, especially for large values of 

ρ . This could be caused by the instability of the integrands in the Sommerfeld 

formulation when z+h is small compared to the wavelength. This claim is supported by 

Fig. 4.9-(c) where it is clear that the time needed to calculate Sommerfeld integrals 

increased as compared to the Schelkunoff formulation.      
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Fig. 4.12 Numerical comparison between Schelkunoff and Sommerfeld formulations for a vertical electric 
dipole over a conducting ground, 410  S/mσ = , z+h=0.1 wavelengths: (a) The secondary part of the vector 
potential, (b) The total magnitude of the vector potential, (c) time to numerically calculate the integrals, (d) 
the tail-to-main ratio. 

In Fig. 4.10, the same results are shown but for a much higher conductivity of the 

ground where 810  S/mσ = . Again both formulations give identical results. Even if we 

check for much smaller heights where z+h=0.1 wavelengths and 810  S/mσ = , still both 

formulations give identical results but with a much smaller calculation time for the 

Schelkunoff formulation as compared to the Sommerfeld formulation as shown in 
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Fig. 4.11. If we keep all parameters the same except decreasing the conductivity of the 

ground to be , the results in this case would be as shown in Fig. 4.12. 

To give a more detailed picture for the numerical difference between the results of 

Schelkunoff and Sommerfeld formulations, a two dimensional map for the absolute value 

of the error is shown in Fig. 4.13 for ground parameters of and  . In 

this case, an x-oriented horizontal dipole is considered and the values are to be calculated 

along the y-axis. Thus, the value of interest will be that of  given in (3.43), and the 

error shown is given by: 

   (4.39) 

   

 

Fig. 4.13 Absolute value of the error in dB as compared to the absolute value of the result of Schelkunoff 
formulation. Ground parameters of and  . The vertical and horizontal axes are 
normalized to the wavelength w. 
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Fig. 4.14 Absolute value of the error in dB as compared to the absolute value of the result of Schelkunoff 
formulation for the horizontal dipole. Ground parameters of and  . The vertical and 
horizontal axes are normalized to the wavelength w. 

 

Fig. 4.15 Absolute value of the error in dB as compared to the absolute value of the result of Schelkunoff 
formulation for the horizontal dipole. Ground parameters of and  . The vertical and 
horizontal axes are normalized to the wavelength w. 
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Note that in Fig. 4.13, a value of -20 dB corresponds to 10% relative error 

whereas a value of -40 dB corresponds to 1% relative error. Observe that the regions 

where the two formulations do not give identical results are those regions where one of 

the two formulations has poor convergence behavior. One can easily relate those regions 

in Fig. 4.13 to the regions indicated in Fig. 2.5. The same comparison is shown for 

different ground parameters in Fig. 4.14 and Fig. 4.15 below. 

For the sake of completeness, another two dimensional map for the complete 

Green’s function of the vertical dipole case, , is given below for different ground 

parameters. The error plotted in this case is given by: 

   (4.40) 

 

Fig. 4.16 Absolute value of the error in dB as compared to the absolute value of the result of Schelkunoff 
formulation for the vertical dipole. Ground parameters of and  . The vertical and 
horizontal axes are normalized to the wavelength w. 
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Fig. 4.17 Absolute value of the error in dB as compared to the absolute value of the result of Schelkunoff 
formulation for the vertical dipole. Ground parameters of and  . The vertical and 
horizontal axes are normalized to the wavelength w. 

 

4.5 Conclusion 

In this chapter, it is shown that from a mathematical point view, the two 

formulations are identical when calculated in one homogeneous medium. Whereas, in a 

two-media problem the Sommerfeld and Schelkunoff formulations differ possibly by the 

pole and branch cut contributions associated with the reflection coefficient function 

added inside the integration sign. Numerically, both formulations give identical results 

when the field and source points are at relatively high elevations as compared to the 

operating wavelength. When both the field and source points are at an electrically small 

distance from the interface, both formulations give different results except for very high 

conductivity of the ground. In the following chapter, based on physical and mathematical 
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explanations, it will be shown that this difference between the two formulations cannot be 

due to the pole of the reflection coefficient function; as this pole has to be excluded when 

solving the two-media problem. Thus, the difference will be shown to be only due to the 

second branch cut associated with the second medium. However, this contribution has no 

effect when the source and/or the field points are at a vertical distance from the interface 

that is large compared to the wavelength. Furthermore, the second branch cut 

contribution has no effect when the conductivity of the ground is large even if the source 

and field point are very close to the interface. 
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5 Surface Waves versus Surface Plasmons 

The main goal in this chapter is to explain the physics related to the Sommerfeld 

pole of the reflection coefficient function. The claim found in the literature is that this 

pole is what gives rise to “Surface Waves”. Recently, an inter-disciplinary research area 

has been emerged related to what is called “Surface Plasmons”. It is interesting, and also 

somewhat confusing, to see in the literature that Surface plasmons are claimed to be the 

same phenomenon as surface waves but at a different frequency, and the mathematical 

explanation of both is the Sommerfeld pole. This claim is theoretically examined in this 

chapter.  

The term “Surface Plasmons” was first coined in the middle of the twentieth 

century to study the response of thin metal foils in response to fast electron 

bombardment. In the literature, Surface Plasmons are frequently related to 

Electromagnetic Surface Waves, which were first studied by Zenneck and independently 

by Sommerfeld in the early 1900’s. However, Zenneck and Sommerfeld surface waves 

are rarely examined thoroughly in the current literature on Surface Plasmons. Looking for 

a good technical understanding of the relation between Surface Plasmons and 

Electromangetic Surface Waves, it was necessary to carry out a detailed literature review 

on the two subjects. In the light of this literature review, an attempt to explain the true 

relation between the two phenomena is presented in this chapter. This is in direct intact 

with the discussion given in the previous chapter since the claimed mathematical 

explanation of the two phenomena is usually taken as the pole of the reflection coefficient 
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function. Hence, in the discussion given in this chapter, the uncertainty about the pole 

contribution is going to be clarified.   

5.1 Introduction 

In 1959, Sergei A. Schelkunoff from Bell Labs wrote on the “Anatomy of Surface 

Waves” [28]. He recognized eleven types of different electromagnetic phenomena, all of 

which are called “surface waves”. He concluded: “The loose use of the term surface wave 

is unfortunate and causes a great deal of unnecessary confusion. If it is continued, the 

best that one could hope for is that the term will become entirely devoid of meaning. This 

writer (Schelkunoff) hopes however, that the classical definition of the term (Lord 

Rayleigh’s) will be restored. Sommerfeld and Zenneck adhered to it, although they have 

made an unfortunate slip in their analysis which subsequently confused the issue”.  

In the opinion of the author of this dissertation, Schelkunoff’s interpretation about 

the term was true, and one of the hardest tasks nowadays is to define exactly what an 

electromagnetic surface wave is, and the task is more complicated to find the true relation 

between what is known now as Surface Plasmons, and Electromagnetic Surface Waves. 

According to [29], Ritchie was the first, in 1957, to use the term “surface 

plasmons” to study the response of thin metal foils to fast electron bombardment. Since 

then the surface plamsons found a variety of applications in different areas of science. 

Frequently, one can find the surface plasmons related to Zenneck and Sommerfeld waves 

such as in [30]- [31]. It is interesting to see in the title in [30] that the word "Surface 

plasmon" was put between brackets as a substitute to the Zenneck wave as follows: "THz 

Zenneck surface wave (THz surface plasmon) propagation on a metal sheet". That's 

where confusion might arise. At least the question is: Do we really mean the Zenneck 
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type of surface waves? Or which type from the 11 types mentioned by Schelkunoff in 

[28]. Another example is in [31] where the term “Sommerfeld wave” was used to 

represent the propagation of THz pulses on a single metal wire. One more example is in 

[32] where the experimental study was entitled: “Surface plasmons and Sommerfeld-

Zenneck waves on corrugated surfaces”.  

In this chapter, and up to this point only, the reader might have the following 

questions in mind. What is the standard definition of the word “plasmon”? “surface 

plasmon”? “is there a volume plasmon”? What is meant by “surface plasmon polaritons”? 

What is the standard definition of “surface waves” in general and “Sommerfeld waves” 

and “Zenneck waves” in specific? Then the important question comes: what is the true 

physical relation between all of those terminologies?  

As a matter of fact, the task of answering those questions is not trivial. The main 

purpose of this chapter is to attempt to give a satisfying answer for those issues. Hence, 

one could reach a satisfying conclusion about the physical and mathematical aspects 

related to the surface waves in general and the Sommerfeld pole in specific. The chapter 

is organized as follows: A detailed literature review on the terms related to plasmons is 

given in section 5.2, where we tried to search the literature for the points where surface 

plasmons were related to surface electromagnetic waves and try to explain the rationale 

in relating the two phenomena. In section 5.3, on the other hand, different definitions of 

surface electromagnetic waves are given. Specifically, the work of Sommerfeld on 

relating the pole of the reflection coefficient function to the phenomena of surface waves 

is examined. The slip in the analysis of Sommerfeld mentioned earlier by Schelkunoff is 

highlighted from an unconventional point of view. This explanation is given in section 
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5.4. In the last section, a physical visualization of some of the discussed electromagnetic 

phenomena is given. 

5.2 Evolution of the word Plasmons 

The starting point in our literature review was chosen to be the paper by Ritchie 

on Plasma losses by fast electron in thin films, published in 1957 [33]. That was one of 

the earliest paper in which the term “surface plasmon, SP” was found. Ritchie was 

studying the angle-energy distribution of a fast electron bombarding a metal foil and 

losing its energy to plasma oscillations in the sea of the conduction electrons in the metal. 

Ritchie called the plasma oscillations of the conduction electrons “plasmons”. He then 

used the term “surface plasmon” trying to differentiate between the plasma oscillations 

that appear on the surface of the metal from those which appear in the volume of a thick 

metal foil. In fact, “volume plasmons” were studied by the Nobel laureate, Dennis Gabor. 

He first criticized Ritchie’s work and negated the existence of “surface plasmons”. Then 

Ritchie showed in [33] that Gabor was studying only volume plasmon modes in bounded 

media. This made Gabor enforce the electric field to be zero at the surface of the metal, 

which does not apply in the case of very thin metal films. By the year 1985, Ritchie’s 

paper had been already cited in more than 435 scientific publications [34]. The reason for 

citing his paper so frequently was, as Ritchie said, the rapid development in surface 

science. It was also because surface plasmons were a prominent feature in electron 

energy loss experiments, electron spectroscopy, optical response of solids, low energy 

electron diffraction, etc. Also surface plasmons were a stimulus to the development of the 

many-body theory of the bounded electron gas [34]. In 1961, Ritchie wrote another paper 

on the optical radiation of foils irradiated by charged particles [35]. In that paper, he 
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made a detailed prediction of the energy and angle distribution of the photons emitted 

from the excited surface plasmon in the foil. Twelve years later, in 1973, Ritchie wrote a 

review of what he called “surface plasmon physics” [36]. That was due to the significant 

progress made toward the systematic use of surface plasmons as a diagnostic tool to 

characterize the state of matter at the surface and in the bulk of solids. By that time, the 

effects of surface plasmons which he also called “surface collective modes in solids” 

were found to be related to energy loss spectra of fast electrons passing through thin solid 

films and tunneling of electrons through thin insulating layers, etc [36]. The very 

important point that needs to be noticed is that in [33]- [36], electromagnetic surface 

waves were never related to the research work done on surface plasmons. Ritchie never 

mentioned Sommerfeld or Zenneck in the papers he wrote over the period of more than 

two decades, except in his latest paper, [36], where he wrote only three lines in a twenty-

page paper! He said: “Note that the analogous case of very long wavelength surface 

waves in radio transmission over a plane air-earth or air-water interface has been much 

discussed in the theoretical literature [37]. These are termed Sommerfeld-Zenneck 

waves”. He directed his reader to the book by Stratton on electromagnetics [37], which is 

a very classical book on electromagnetic theory. Ritchie’s view was that surface 

plasmons were related to very short wavelength phenomena in the optical regime, 

whereas “Sommerfeld-Zenneck waves” are related to very long wavelength transmission 

on top of planar boundaries. There is nothing else that can be inferred about the analogy 

which he mentioned in those three lines. 

In 1968, another paper was published by Otto on the optical excitation of plasma 

oscillations in silver by the method of frustrated total reflection [38]. In that paper, Otto 
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showed a method to excite electron oscillations in metal films (the surface plasmons of 

Ritchie) but using optical excitation rather than fast charged particles. Otto introduced the 

term “surface plasma waves”, which he defined as: “transverse magnetic waves 

travelling along interfaces of two different media”. Then he defined the “surface 

plasmons” as the quanta of the “surface plasma waves” [38]. The only time Otto referred 

to Sommerfeld in that paper was in only one line where he wrote: “Nonradiative surface 

plasma waves are known as solutions of Maxwell’s equations since Sommerfeld [1]- 

[21]”. Note that Otto never used the term “Sommerfeld-Zenneck wave”. He just tried to 

justify that his “surface plasma waves” are indeed a valid solution of Maxwell’s equation. 

Otto concluded in the paper that nonradiative surface plasma waves can be coupled to 

light waves by the method of frustrated total reflection. This coupling is usually referred 

to as “surface plasmon polariton”. Unfortunately, in later work by different authors, this 

coupling between surface plasmons and electromagnetic waves is claimed at different 

frequency bands and without even the use of Otto’s method of frustrated total reflection. 

This will be shown later in this section.  

In 1988, a book by Raether was published on the basic physics of surface 

plasmons on smooth and rough surfaces [39]. In the preface of the book, Raether defined 

surface plasmons as: “SPs represent electromagnetic surface waves that have their 

intensity maximum in the surface and exponentially decaying fields perpendicular to it”. 

Then in his text, Raether mentioned electromagnetic surface waves only once more. He 

said that at low frequencies or large permittivity the field of the surface plasmon 

resembles a guided photon field. He added between brackets the term “Zenneck-

Sommerfeld wave” [39, p. 7]. This is very similar to what Ritchie did in [36]. 
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In 1998, experimental results were published on an observed extraordinary optical 

transmission through sub-wavelength hole-arrays [40]. The interest in surface plasmons 

was renewed because the phenomenon reported in [40] was explained by surface 

plasmons. A surface plasmon-based theory for that extraordinary optical transmission 

through sub-wavelength hole-arrays in metal films was reported in [41]. Then the theory 

in [41] was questioned because similar optical transmission enhancement occurred in 

nonmetallic systems that do not support surface plasmons. A different theory was 

developed based on what is called “diffracted evanescent wave” and was reported in [42]. 

A comparison between the two theories was given in [43]. As will be shown in the rest of 

this literature review, the research work reported in [40]- [42] has a great influence on the 

later work in which surface plasmons are put in a clueless relation to electromagnetic 

surface waves. However, the authors in [40]- [43] never referred to electromagnetic 

surface waves, and never mentioned Sommerfeld or Zenneck waves. 

However, in the same year, 1998, a paper was published in Surface Science about 

the application of surface plasmons to high-Tc superconductors [32]. It was reported in 

[32] that: “Another feature we found in our experiment, as ( )iε ω  becomes larger than 

| ( ) |rε ω in the relevant frequency regime for cT T>  is that the surface plasmon 

resonances change into Sommerfeld-Zenneck waves [44]” The only reference which was 

given to that statement was Zenneck’s paper in 1907!  

In the first decade of the 21st century, various research efforts were directed to the 

field of terahertz science. Interest was there to apply the plasmonics research in the 

terahertz regime since this could enable near field imaging and bio-sensing with 

unprecedented sensitivity [45]. The problem faced was that surface plasmons give their 
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interesting features only close to the plasma frequency of the conductors which for most 

metals is near the visible and the ultraviolet part of the spectrum [45]. Then the authors in 

[45] wrote: “At terahertz frequencies, on the other hand, metals resemble in many ways a 

perfect conductor, and the negligible penetration of the electromagnetic fields leads to 

highly delocalized surface plasmon polaritons akin to grazing-incidence light fields. In 

this frequency range, surface plasmon polaritons are also known as Sommerfeld-Zenneck 

waves [46].”  Reference [46] is Goubou’s work which is well known to be related to 

surface waves only and not to surface plasmons. Then in many papers to follow, 

specifically in the terahertz research, the terms “surface waves” and “surface plasmons” 

were used interchangeably, such as in [30], [31], [47]- [48]- [49]. In the same time, 

however, in one of the earliest papers on the experimental results of terahertz surface 

palsmon polaritons, one can find no mention of Sommerfeld-Zenneck waves at all [50]. 

This is also totally missing from one of the latest collective works on the physics and 

applications of surface plamson polaritons [51]. How this could be possible, unless there 

is no real connection between the two phenomena. 

In 2004, in a paper in the field of metamaterials, the existence of microwave 

surface plasmons was reported at the interface between right-handed and left-handed 

media [52]. In that paper, a definition for the relation between Zenneck waves and 

surface plasmons was given explicitly as: “The main physical difference between Zenneck 

waves and surface plasmons is that in the latter case the real (propagating) part of the 

normal component of the wave number in the metal region has generally (but not always) 

the same (instead of opposite) sign as that in the positive permittivity region, as pointed 

out in [53]. Thus a surface plasmon is the same physical entity as a Zenneck wave”. The 
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work of [52] gives the idea that the problem of the existence of a surface plasmon (which 

is defined by the authors in [52] to be the same exact entity as a Zenneck wave) lies in the 

value of the permittivity of metals at microwave frequencies. They proposed to overcome 

this problem by using left handed media so as to be able to excite a surface plasmon at 

microwave frequencies. Then one finds in [54], an experimental study of microwave 

transmission through a single sub-wavelength slit. This work represents a replica of the 

work reported in [40] but in the microwave rather than the optical regime. The 

transmission reported in [54] is also explained by the surface-wave assistance, exactly as 

what was done in [40] which was then proved to be not strictly true as shown in [42]. 

Morever, the surface-wave assistance reported in [54] is claimed to exist in the 

microwave regime without facing the same problem of the permittivity of metals and 

without the need of left-handed media which is reported in [52]. 

It is clear now that indeed, in the literature, surface plasmons are frequently defined 

as Sommerfeld-Zenneck waves, sometimes it’s related to Zenneck Waves and some other 

times it’s related to Sommerfeld waves. However, in the early times, when surface 

plasmon were first discovered in the 1950’s, this relation was never mentioned, and the 

phenomena were never shown to be related. However, it is amazing to note that with time 

and misuse of these terms mentioned above, surface plasmons were related to surface 

waves, which is not true as shown in the detailed literature survey given in this chapter. It 

is exactly as Schelkunoff wrote in 1959: “For obvious reasons the same word conveys 

different meanings to different individuals. Hence, some “noise” in communication 

between us is unavoidable. As long as the noise level is relatively low, we manage to 

understand each other reasonably well. When the noise level becomes high, serious 
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misunderstandings are inevitable, and needless as well as wasteful controversies may 

arise. Such a situation has arisen in microwave theory in connection with the so called 

Surface waves” [28]. If that was the case at the time before even the discovery of surface 

plasmons, then what would one expect if the surface plasmons, at some point, were 

defined as any of the types of surface waves. It is clear from the given literature review 

that the definition of the true and physical relation between surface plasmons and any 

type of surface waves needs first a standard definition of the terms used. Since the term 

used by Ritchie, one of the earliest authors on the topic, was the Sommerfeld-Zenneck 

wave. Therefore, the rest of the chapter is dedicated to the clarification of the physical 

fundamentals of that term. 

5.3 Evolution of the term Sommerfeld-Zenneck Wave 

It should be clear to the reader from the previous section that most of the surface 

wave terminologies are loosely used and are not defined from a scientific point of view. 

There are often offhand remarks connecting the various phenomena without providing 

any scientific details. It is not avoidable, however, to use some of the terms in our 

discussion. Thus, it is of great importance to note that no strict meaning should be 

connected to any of the surface wave terms unless it is explicitly mentioned. 

In this section, the term Sommerfeld-Zenneck wave is of main concern. This term 

is composed of two parts. One is the Zenneck wave, which was the topic of a seminal 

paper by Zenneck in 1907 [44]. The other part is Sommerfeld wave. Let’s start by 

Zenneck waves. 

The main contribution of Zenneck was the exposure of a specific type of solution 

of Maxwell’s equations in a three dimensional space. This solution is an inhomogeneous 
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type of plane waves, whose field components can be derived as follows: In the three 

dimensional rectangular coordinates, consider that the plane z=0 is the boundary between 

medium 1, free space, and medium 2 which is of arbitrary parameters ( , , )ε µ σ . Zenneck 

showed that there exists a solution for Maxwell’s equation in this two-layer problem. 

This solution represents a wave that has progressive phase propagation in the x-direction, 

while at the same time decays exponentially in the positive and negative z-directions. 

This wave has to be a TM wave with respect to the x-z plane. The field components for 

such a wave in medium 1 are given by: 

 1 1 1exp( )             , 0x x zE E jk x k z z= − − >   (5.1) 

 1 1 1exp( )           , 0y x zH H jk x k z z= − − >   (5.2) 

where a harmonic time variation of frequency ω is assumed. The corresponding forms in 

medium 2 are given by: 

 2 2 2exp( )             , 0x x zE E jk x k z z= − + <   (5.3) 

 2 2 2exp( )           , 0y x zH H jk x k z z= − + <   (5.4) 

where 1E , 2E , 1H  and 2H are constant values representing the amplitude of the field 

components. xk is the magnitude of the propagation vector component in the direction 

tangential to the boundary. 1zk and 2zk represent the propagation constants in the positive 

and negative z-directions respectively. According to Zenneck, the real parts of 1zk and 2zk

should be positive. Thus the wave given in (5.1)-(5.4) decays exponentially away from 

the boundary which lies at the plane 0z = . The dispersion relation relating the 

propagation vector components is determined by the value of the frequency ω  and the 
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medium parameters ( , , )ε µ σ . An attempt to bridge the gap between plasmonics and 

Zenneck waves was given in [55]. The explanation given in [55] depends mainly on 

checking the relation between xk , 1zk and 2zk  for different frequencies and different 

values of ( , , )ε µ σ . The conclusion in [55] was: “The analysis in the present article has 

shown how the field and wave solutions of the Zenneck wave carry over to the epsilon 

near-zero and plasmonic regimes, as long as the square roots and proper character of 

the wave vectors are correctly accounted for… As was shown in the numerical examples, 

the character of the Zenneck wave changes drastically, even if continouously, when 

entering the plasmonic region”. There are two things to be noted here. First, there is in 

fact a need to understand the true relation between plasmonics and Zenneck waves. This 

is primarily the motivation of this chapter. Second, the analysis done in [55] depends on 

the field components given in (5.1)-(5.4) which represent plane wave solutions. It is well 

known that in a realistic situation, plane waves do not exist. 

If we assume temporarily that plasmons are indeed a Zenneck wave, then the 

question is how to excite such a wave in a realistic situation. Thus, the bottom line is: If a 

Zenneck wave cannot be excited in a two-layer problem (discussed earlier), then surface 

plasmons cannot be excited either, regardless the frequency or the medium parameters. 

Nonetheless, if it is argued that surface plasmons can indeed be excited in metal foils of 

special thickness and in response to charged particle bombardment, as Ritchie showed in 

[33], then surface plasmons should not be related to Zenneck waves and the exciting 

conditions should be strictly defined. Unfortunately, this is missing, for example, in most 

of the recent work on terahertz surface plasmons as discussed in the previous section. 
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Sommerfeld, in 1909, tried to address the question of whether a Zenneck wave 

can be excited by a practical source in a two-layer problem or not. Unfortunately, 

Sommerfeld concluded that a Zenneck wave can be excited in a two-layer problem. 

Hence, the term “Sommerfeld-Zenneck wave” was originated in 1909. In contrary to 

what Sommerfeld concluded, it was shown later by experiments that such kind of wave 

does not exist and cannot be excited in a two-layer problem. See for example the 

experimental results collected on top of Seneca Lake by Burrows in [26]. At this point, it 

is not intended in this chapter to raise a controversy about Sommerfeld’s work; since the 

debate is already there for almost a century. As an alternative, the approach taken in this 

chapter is to expose a mathematical problem that Sommerfeld might have missed in his 

solution.  

5.4 Examining the theoretical basis of the Sommerfeld Pole 

As explained in details in the previous chapters, Sommerfeld formulation was 

based on the decomposition of the spherical wave function into an integral of a 

continuous spectrum of plane waves. Then, to find the reflected fields represented by a 

vector potential, a specular reflection function is multiplied under the integration sign as 

shown in (2.3) for example. The reflection coefficient ( )R λ for the case of a vertical 

dipole is rewritten here for clarity: 

 
2 2 2 2 2 2

2 1 1 2

2 2 2 2 2 2
2 1 1 2

( )
k k k k

R
k k k k

λ λ
λ

λ λ

− − −
=

− + −
  (5.5) 

where k2 is the propagation constant in the imperfect ground plane whose complex 

relative permittivity is ε, filling the half-space z < 0. 2 2
2 1i.e. k kε= . If the ground plane is 
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metallic perfect conductor with ( ) 1R λ = , then the reflected vector potential represents a 

spherical wave emanating from the perfect image location. If the ground plane does not 

have perfect reflectivity, then ( )R λ  represents a complex function that has four branch 

points at 1k± and 2k± . This divides the complexλ plane into four different Riemann 

sheets. Sommerfeld chose the proper Riemann sheet according to what he called the 

radiation condition, which is the physical constraint that requires the fields at infinity to 

be zero. Namely, the sheet that has 2 2
1,2Re{ } 0.kλ − > On this Riemann sheet, there is a 

pole for the function ( )R λ . This pole is always thought of as what gives rise to 

Sommerfeld-Zenneck wave. Moreover, recently this pole is presented as the source of the 

phenomenon of SP. In fact, both statements are far from being true. 

   The main goal in this chapter is to show the reasons for which this cannot be the 

proper analysis of SP. Those reasons are given below: 

First, Sommerfeld associated the presence of a surface wave (Sommerfeld-zenneck 

wave) in his final solution to the contribution of the pole; because this contribution has 

the form of the Hankel function, (2)
0 ( )pH λ ρ , where pλ is the location at which the pole 

appears in the complexλ plane. Sommerfeld was proven wrong in this point by 

experiment [26] and extensive theoretical analysis [3]. It is important to stress here that 

the error is much more serious than the famous sign error which is actually a myth [3]. 

Collin in [3] showed that the pole contribution must be cancelled out by a part of the 

contribution from the branch-cut emanating from 1kλ = . 

Second, when the first reason mentioned above is made clear, the claim that 

usually arises is the following: “The pole does not give rise to a Sommerfeld-Zenneck 
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wave until there is a change in sign in the real part of the permittivity (i.e. ε  has a 

negative real part), and in this case the wave is called SP”. Our aim here is to bring 

awareness to the confusion that such a statement adds to the already controversial issues 

of surface waves.  

To clarify our point, we present a very important conceptual question about the 

pole of ( )R λ . This pole appears when the denominator in (2) vanishes, i.e. 

 2 2 2 2
1 1 1=0       at      

1pk k kεε λ λ ε λ λ
ε

− + − = = ±
+

  (5.6) 

If one substitute back by pλ in (5.5), we get: 

 
2

2

1/ ( 1) / ( 1)
( , )

1/ ( 1) / ( 1)
pR

ε ε ε ε
λ ε

ε ε ε ε

− + − − +
=

− + + − +
  (5.7) 

which is a complex valued function in the complex variableε . In the complexε plane, 

this function has one branch cut emanating from the point 0ε = . This branch cut 

separates two distinct Riemann surfaces. The question now is which Riemann surface of 

the complexε plane is supposed to be the proper Riemann surface. Remember that 

Sommerfeld chose the proper Riemann surface in the complexλ plane according to the 

physical constraint of the radiation condition. Similarly, one should intuitively expect that 

there must be a physical constraint governing the choice of the proper Riemann surface in 

the complexε plane. Unfortunately, the reflection coefficient in (5.5) has never been 

studied as a complex function of two complex variables. Its behavior has been always 

studied only in the complexλ plane. In this section, the behavior of the reflection 

coefficient at pλ λ= is studied in the complexε plane. Fig. 5.1 shows the value of the 
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denominator of (5.7) as a function of the complex permittivity . This is done by 

calculating the value of the denominator using Matlab where the square root function of a 

complex variable always yields the solution that has a positive real part. The plot shown 

in Fig. 5.1 confirms that on the positive real axis of , the denominator of (5.7) does not 

vanish, i.e. there is no pole, whereas in the rest of the plane the denominator is zero. This 

implies that no matter how small the imaginary part of is, as long as it is not exactly 

zero, there is a pole and the function in (5.5) blows up. This behavior cannot be accepted 

if we associate with the presence of the pole the presence of a certain guided mode in the 

propagating fields. This is because, as Collin mentioned in [3], a solution to a physical 

problem must vary continuously with the physical parameters. Moreover, Fig. 5.1 shows 

that there is no transition in the nature of the pole when we go from the left half-plane to 

the right half-plane. In other words, the pole does not depend on the sign of the real part 

of . 

 

 
Fig. 5.1 The absolute value (height) and phase in degrees (color-bar) of the denominator of the reflection 
coefficient in the complex plane. Riemann surface with horizontal branch cuts. 
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Fig. 5.2 The absolute value (height) and phase in degrees (color-bar) of the denominator of the reflection 
coefficient in the complex plane. Riemann surface with vertical branch cuts 

  

Furthermore, a different choice of the branch cut yields a totally different picture. 

For example, by taking the minus sign under the square root as a common factor from 

(5.7), the plot will be as shown in Fig. 5.2. In this case, the denominator does not vanish 

in the plane except inside the circle whose center is  and radius is 1. 

The third reason for the unsuitability of Sommerfeld’s analysis is that it deals 

purely with linear interactions between the incident source and the planar interface. SP 

involve nonlinear effects like Raman scattering [56], in which the scattered field has a 

frequency which is different from the incident one. Those effects can never be studied 

using the type of analysis shown here because it neither takes any microscopic nonlinear 

effects into account nor it requires any special type of excitation like that described by 

Otto [38]. Instead one needs to use the Maxwell-Bloch equations to study the SP as they 
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are due to the inelastic Raman scattering rather than the elastic Rayleigh scattering which 

is guided by Maxwell equations. 

5.5 Physical visualization of the problem 

We have seen now that the formulation of Sommerfeld solution depends on the 

decomposition of the spherical wave into cylinderical waves. Those cylinderical waves 

are represented by the integrand in (2.3) in terms of the horizontal propagation constant, 

λ. The integration limits however go from 0 to infinity. For that part of the integration 

contour where λ is less than k1, the integrand represents a normal homogeneous 

cylindrical wave. However, for the rest (tail) of the contour, going from k1 to infinity, the 

integrand represents inhomogeneous waves which are propagating in the ρ direction 

tangential to the boundary, and exponentially decaying in the z-direction perpendicular to 

the boundary. The form of the latter waves resembles the form of Zenneck waves given 

in (5.1)-(5.4). However, this does not necessarily imply that the result of integration 

contains the same form of Zenneck waves, or that those waves are guided by the 

boundary. This might be clear if one examines the other formulation. In Schelkunoff 

formulation, the integration contour can be decomposed in the same manner. However, 

the inhomogenous Zenneck-like waves are propagating in the z-direction perpendicular to 

the boundary while they decay exponentially in the direction tangential to the surface. 

The integration result in the two formulations in free space, however, is proved 

mathematically to be identical, as shown in Appendix A.  

  What physically happens in a two-layer problem can be visualized by inspecting 

the path of each of the waves represented by the integrands in (2.3), for example, 

especially, those waves represented by the main part of the contour going from 0 to k1.  
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Fig. 5.3 A visualization of the Sommerfeld problem of two-layer reflection. The figure represents the 
comparison between the two cases of perfect (left) and imperfect (right) reflectivity. 

 
Fig. 5.4 A visualization of the Sommerfeld problem of two-layer reflection. The imperfect reflectivity in 
this case is due to the roughness of the surface 

Those waves when they hit the ground, which is imperfectly conducting, they 

suffer from different reflection coefficients which depend on their different angles of 

incidence. On reflection, the rays diverge forming a semi-infinite image. The rays will 

never converge to form a perfect image of the same size as the source except in case that 

the second medium is perfectly conducting and perfectly smooth. This fact was predicted 

in 1935 by Van der Pol [4] which explains the elongated image of the moon on a wavy 

lake. This can be visualized in the pictures shown in Fig. 5.3 and Fig. 5.4. 
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Note that the visualized examples given here are for the light frequencies and not 

for radio frequencies. Yet, the concept of both Sommerfeld and Schelkunoff formulations 

along with Van Der Pol’s interpretation still apply. Note that the earliest hint on the 

analogy between surface plasmons and Sommerfeld-Zenneck waves, given by Ritchie, 

relied only on the frequency separation between the two phenomena. The pictures shown 

in Fig. 5.3 and Fig. 5.4 show that the Sommerfeld problem can be visualized and 

interpreted in the optical regime without relying on any surface wave concept. It is just 

the decomposition of a bundle of rays originating from a spherical wave source.      

At terahertz frequencies, if one considers the experimental work presented in [3], 

one could find a great similarity in concept as what is shown in Fig. 5.3. The only 

difference is the frequency scaling and the high permittivity of the ground plane used in 

[3] (ε= 33000 1.6 6j e− − ). This frequency scaling between what is shown in Fig. 5.3 and 

the terahertz experiment in [3] does not necessarily imply that the concepts of surface 

plasmons should be invoked. In our theory, the high magnitude of the permittivity will 

make the fields reduce to the form of a spherical wave and the fields would decay as 1/R, 

which is exactly the conclusion in [3]. Note that a field that decays as 1/R can never 

represent a surface wave, at least in Sommerfeld’s terminology. This is because a surface 

wave is a two-dimensional wave. It is known that for a wave propagating in three 

dimensions, its field decays as 1/R where R is the distance from the source to the field 

point. This is because its energy is distributed over the surface of a sphere. Accordingly 

the field of a two-dimensional surface wave should decay as 1/2R−  . Those facts however 

cannot be inferred from the forms of Zenneck wave given in (5.1)-(5.4) because those 

forms are addressing only the case of plane waves, not for cylindrical waves. This is also 
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something that is always missing in the analogy of plasmons and Zenneck waves such as 

in [29]. A detailed analysis of the decay rate of “surface waves” is given in [40-41]. 

5.6 Conclusion 

Finally, based on the critical analysis given in this chapter, one can conclude: The 

claim which says surface plasmons are one form of the Sommerfeld-Zenneck wave 

arising from the pole of Sommerfeld integrands is not legitimate. The pioneers of the 

field of surface plasmons, such as Ritchie, did not attempt in the first place to relate the 

two phenomena. This kind of relation was done after more than twenty years of the 

discovery of surface plasmons. However, this relation was not based on any scientific 

analysis. The claimed pole of Sommerfeld integrands did not give rise to the 

Sommerfeld-Zenneck wave in the first place. This directly implies that relating the pole 

of Sommerfeld to surface plasmons is nothing but a demonstration of the worries of 

Schelkunoff about the misuse of the term “surface waves”. It is recommended by the 

author of this dissertation to avoid any attempt to relate the Sommerfeld-Zenneck wave to 

the electron oscillations of surface plasmons. The later being a microscopic phenomenon 

which might give rise to a certain mode of radiation. This mode, of course, must satisfy 

Maxwell’s equations and might take a similar form like the Zenneck wave, however, any 

attempt to relate that mode to the solution of Sommerfeld of a two-media problem will 

confuse the issue more than clarify it.        
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6 Applications of Schelkunoff Formulation 

6.1 Regeneration of Okumura’s Data 

The analysis presented in the previous chapters is now used for the analysis of the 

propagation data measured by Okumura et al. [20] in their classic propagation 

measurements in the city of Tokyo. Okumura placed a transmitting antenna with different 

heights in Tokyo, Japan, we will choose the height of 140 m. The signal is received by 

another vertically polarized antenna located on top of a van 3 m above the ground. The 

receiving antenna had a gain of 1.5 dB. The transmitting antenna was a 5 element Yagi 

having a gain of approximately 11 dB and radiating 150 W of power. The van was then 

driven in the city of Tokyo from 1 km to 100 km from the transmitting antenna. Here we 

consider the measurements done at 453 MHz. Since, the 5-element Yagi was an antenna 

composed of wires, in our simulations we used an optimized 5-element Yagi antenna 

array which had a gain of 11 dB. In our analysis, the Yagi antenna was synthesized and 

was used in the computations.  

First the integral equation using the Schelkunoff formulation for the Green’s 

function was used to solve for the current distribution on the transmitting antenna and 

then these currents were used to compute the radiating fields. The way we solve for the 

fields is by replacing the new Green’s function instead of the Sommerfeld Green’s 

function in a code that has been already developed for the analysis of radiation over 

imperfect ground planes based on Sommerfeld integrals. An example for such a code is 

AWAS [57]. The parameters for the urban ground were: relative permittivity of 4rε = , 

and 42 10 mhos/mσ −= × [6]. However, since we did not know how Okumura et al. 
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matched their antennas and how it was exactly fed, we used a simple 1 V as an excitation 

for the Yagi. Then we shifted all of our computations by a constant value in decibels (98 

dB), so that the two plots matched at 7 km as shown in Fig. 6.1-(a). We then overlaid the 

two plots, theoretical predictions by the Schelkunoff formulation and Okumura et al.’s 

experimental data. The two plots show remarkable similarity. It is interesting to note that 

the simulation using the Schelkunoff Green’s function provided a good qualitative plot of 

the field from 1 km to 100 km from the base station antenna. The results here are 

numerically much more stable than the results provided by the code AWAS which used 

the Sommerfeld formulation [57]. This is also shown in Fig. 6.1 Comparison between the 

experimental (Okumura et al.) and theoretical predictions (Schelkunoff and Somerfeld 

formulations) computed through a macro model for predicting propagation path loss in an 

urban environment at: (a) 453 MHz, (b) 922 MHz, (c) 1920 MHz. In AWAS, the results 

for the fields became somewhat unstable when the horizontal distance from the 

transmitting antenna becomes quite large, say greater than 10 km. This is due to the 

Sommerfeld integral tails problem which is totally abolished in the new formulation. It is 

also important to point out that for both the theoretical and experimental data, the slope 

for the path loss exponent between 1 km and 10 km is about 30 dB per decade, which 

was expected from the theoretical analysis using the saddle point method in [9]- [10]. The 

slope between 10 km and 100 km is 40 dB per decade, as predicted by the Norton ground 

wave for the far field. This illustrates that an accurate electromagnetic macro modeling of 

the environment is sufficient to predict the path loss as evidenced by the comparison 

between theory and experiment. This macro modeling is facilitated through the use of the 

new formulation by giving more numerically stable results. Use of an electromagnetic 
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macro model makes sense as the image generated by the transmitting antenna located 

over an imperfect ground is a semi-infinite line source and an optical analogue will reveal 

that such a source does not cast shadows [9]- [10]. This is illustrated in the thought 

experiment of Chapter 1.  

The same numerical analysis of Fig. 6.1 Comparison between the experimental 

(Okumura et al.) and theoretical predictions (Schelkunoff and Somerfeld formulations) 

computed through a macro model for predicting propagation path loss in an urban 

environment at: (a) 453 MHz, (b) 922 MHz, (c) 1920 MHzis shown in Fig. 6.1-(b) for 

922 MHz (with 130 dB added to the theoretical data) and in Fig. 6.1-(c) for 1920 MHz 

(with 125 dB added to the theoretical data, note that those numbers include the 

adjustment of the reference from 1 V/m to 1 μV/m). For these two frequencies the plots 

in Fig. 6.1-(b) and (c) are not with perfect match with the experiment because in our 

simulations, at these two frequencies, we used simply a half wave dipole as the 

transmitter whereas Okumura et al. used a highly directive antenna like a parabolic 

reflector whose dimensions were not reported in their paper. Next we illustrate the nature 

of the propagation mechanism over a two layer medium. 
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(a) 453 MHz 

 
(b) 922 MHz 
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(c) 1920 MHz 

Fig. 6.1 Comparison between the experimental (Okumura et al.) and theoretical predictions (Schelkunoff 
and Somerfeld formulations) computed through a macro model for predicting propagation path loss in an 

urban environment at: (a) 453 MHz, (b) 922 MHz, (c) 1920 MHz 

6.2 A Distinction between Various Types of Surface Waves 

First we start by describing the properties of a surface wave and observe how it 

differs from the other type of ground waves and then illustrate those principles using 

numerical computations based on the Schelkunoff formulation proposed in this 

dissertation. 

As has been pointed out by Schelkunoff [28] the word “Surface waves” conveys 

different meanings to different individuals.  Hence, some “noise” in communication 

between us is unavoidable.  As long as the noise level is relatively low, we manage to 

understand each other reasonably well.  When the noise level becomes high, serious 

misunderstandings are inevitable, and needless as well as wasteful controversies may 

arise.  Such a situation has arisen in electromagnetics in connection with the so-called 

“surface waves”. As stated by Schelkunoff [28], Dr. James R. Wait, the Chairman of a 

working group formed during the URSI General Assembly in Boulder, Colorado, 
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compiled a list of 11 types of waves which at some time or another has been described by 

various writers as a surface wave.  The list is presented in Table 1, which deals with 

propagation of plane waves in semi-infinite, nonmagnetic, non-dissipative media, 

separated by a plane boundary.  

Table 1 

1. Zenneck Surface Wave (interface at half-space) 

2. Sommerfeld Surface Wave (dipole radiating over a conducting half-space) 

3. Norton Surface Wave (distant fields produced by a dipole radiating over a conducting 

half-space) 

4. Sommerfeld Axial Surface Wave (imperfectly conducting cylindrical wire) 

5. Harms-Goubau Axial Surface Wave (a dielectric coated wire) 

6. Plane Trapped Surface Wave (dielectric coated plane conductor, corrugated surface, 

or other inductive boundaries) 

7. Cylindrical Trapped Surface Wave (same as above in cylindrical form) 

8. Plane Quasi-Trapped Surface Wave (stratified conductor when the surface 

impedance has both a resistive and inductive component) 

9. Cylindrical Quasi-Trapped Surface Wave (same as above in cylindrical form) 

10. Azimuthal Surface Waves (on dielectric coated and corrugated cylinders and spheres 

for propagation in the azimuthal direction) 

11. Composite Axial–Azimuthal Surface Wave (same as above when propagation has a 

component in both the axial and azimuthal directions) 
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According to Schelkunoff, the waves listed in 1-4 of Table 1, will propagate when 

there are only two planar semi-infinite media. The presence of a coating or a corrugation 

is considered to be a third medium beside the media above the plane boundary, 

considered to be air, and the one below the coating which is another medium.  Hence, in 

this classification of Schelkunoff of all the various types of waves outlined in Table 1, 

only the first four of these waves can propagate over only a two semi-infinite planar 

medium. The other waves require either a coating or a corrugation to propagate. 

According to Schelkunoff [28], the first four of these waves are not surface waves in the 

classical sense defined first by Lord Rayleigh. Wave types 5-11 are trapped waves and in 

the classical sense, the term “surface wave” applies only to those types 5-11 of all those 

eleven types of waves mentioned in Table 1 as they can be shown to exist without an 

explicit presence of an incident wave and are zeroes of the denominator of (7) often 

termed the ‘poles’. 

We first describe what Schelkunoff meant by a surface wave in the classical 

sense. Then we illustrate that for this two layer problem, the total reflected fields do not 

indicate presence of a surface wave. In addition, we illustrate that the reflected fields are 

primarily affected by the Brewster zeros and therefore their variations will be expected to 

be independent of frequency of operation. Hence these fields are associated with 

radiating waves and not surface waves which by definition do not radiate. 

A surface wave is generally guided by a boundary of two dissimilar media and 

has a phase velocity smaller than the velocity of light [28], [58].  For the propagation of a 

wave over two planar media as we have discussed in this dissertation, the planar interface 

does not support a surface wave [28]. In addition, there is no radiation from a surface 
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wave [58]. The fields associated with such a wave, perpendicular to the direction of 

propagation are evanescent in nature as one moves away from the planar boundary. As 

the frequency increases, the wave is more confined to the interface. The evanescent 

nature of the wave thus also varies with frequency. This is a very important property of a 

surface wave and thus it differs from a radiated wave where the evanescent nature in the 

transverse direction is generally independent of frequency [28]. Thus a Zenneck or a 

Sommerfeld wave over a two layer surface are not surface waves as the variation of the 

fields in the transverse direction are essentially independent of frequency. Also, the phase 

velocity of a Zenneck or a Sommerfeld wave is faster than the speed of light.  In addition, 

the evanescent nature of the fields orthogonal to the direction of propagation does not 

vary with frequency, even though the phase constant changes with frequency. 

In addition, it is well known that when a TM wave is incident at the two media at 

the Brewster’s angle, then there will be no reflection and that the incident wave will 

penetrate into the second medium without reflection. And this phenomenon of total 

transmission will occur independent of frequency whereas the presence of a surface wave 

will display a high dependence of the field strength as a function of frequency. As the 

frequency increases the fields of the surface wave will be more confined to the planar 

boundary. We will illustrate these points when we deal with propagation of radio waves 

over earth and visualize in what form is the energy being carried. 

We now demonstrate that only the Zenneck/Sommerfeld wave type and not a 

surface wave in the classical sense [28], [58] propagates over a two medium problem. 

This is illustrated not only by evaluating (1) by an accurate numerical electromagnetics 

code using the Schelkunoff formulation but also confirmed by experiments carried out 
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even in the Terahertz region, confirming nonexistence of high frequency surface waves 

[30].  

First to illustrate that the propagation in the Okumura et al. experiment which is 

due to a Sommerfeld wave is not a surface wave we plot the decay of the fields along the 

vertical z-direction at a fixed distance from the transmitting antenna. As we have seen 

that for a surface wave this vertical attenuation of the fields should be a function of 

frequency whereas for a Zenneck wave or a Sommerfeld wave the vertical decay of the 

fields is independent of frequency. We consider a half wave dipole radiating over an 

urban ground. The transmitting antenna is located 10 m above the ground plane. We plot 

the variation of the magnitude of the reflected field only as a function of z for a fixed 

distance of ρ = 100 m from the ground up to a height of 100 m as seen in the plot of 

Fig. 6.2. It is seen that even though the frequency changes from 453 MHz, to 906 MHz 

and then to 1350 MHz, the magnitude of the decay of the fields in the vertical direction to 

the planar air-earth interface remain practically the same. As there is no appreciable 

variation of the fields even though the frequency changed by a factor of three, indicates 

that the term surface wave should not be associated with the Zenneck or the 

Sommerfeld/Norton type of waves as correctly suggested by Schelkunoff [28]. This also 

applies to the waves propagating over a two-layer medium like radio wave propagation in 

an urban environment. Also, in the plot of Fig. 6.2 for the absolute value of the reflected 

fields indicate a dip at 40 m from the source. Considering urban ground which has an 

4rε =  , the Brewster’s angle is given by 1tan ( 4) 63.4− =  . However because of the 

presence of the conductivity the Brewster’s angle will be complex and also the reflection 

coefficient will not be exactly zero. 
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Fig. 6.2 Plot of the transverse component of the reflected fields at 100 m from the source. 

From the geometry of the problem, it is seen that the angle subtended by the 

antenna with respect to the ground will be given by 1tan (10 / 20) 26.56− =  . Therefore, the 

angle with respect to the vertical is 90 26.56 63.44− =   , indicating that the dip in the 

field strength is occurring near the Brewster angle of 63.4 . In summary, the plot of the 

reflected field strength from the dipole over an imperfect ground reflects the strong 

influence of the Brewster angle which is due to a zero of the reflection coefficient. The 

plot also demonstrates the practical invariance of the reflected fields as a function of 

frequency which is also true for the Brewster’s angle as it is also independent of 

frequency. Finally, the effect of the pole is not seen in Fig. 6.2. The conclusion that is 

easily reached is that for propagation over urban ground the surface wave phenomenon is 

nonexistent. Therefore, this plot confirms that the reflected field is a Zenneck–

Sommerfeld type of a radiating wave strongly influenced by the Brewster zero of the 

reflection coefficient. 
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6.3 Absence of Surface Waves/Plasmons at Terahertz Frequencies 

We further illustrate the absence of surface waves for propagation in a two layer 

media using both an accurate numerical analysis based on Schelkunoff integrals and 

experimental data measured by other researchers [30]- [31] in the THz region. In this 

case, the second medium has a negative ε, and so the goal is to see if the surface waves 

exist in the final solution of the reflected fields from the boundary. We observe this 

phenomenon from both a theoretical standpoint and measurement data [30] carried out by 

other researchers. 

We illustrate the absence of surface waves in the reflected fields when a THz 

wave is propagating over an Aluminum sheet. This experiment was carried out by Jeon 

and Grischowsky at THz frequencies [30]. The basic block diagram of the experiment is 

illustrated in Fig. 6.3 where a wave at 0.4 THz is launched over an Aluminum sheet. The 

propagation of the direct wave is prevented by placing a screen and in addition making a 

dent on the Aluminum sheet so that only the wave guided by the surface will be 

propagated. The authors of the paper then measured the attenuation of the transmitted 

THz wave by a detector. The amplitude of the current in the detector decreased from 34 

pA to 5.1 pA when the distance of the detector was varied from 14 cm to 98 cm. To 

estimate the propagation path loss exponent for this scenario we assume the field to vary 

as p

AE
R

∝ ; or equivalently 34
(14) p

A
=  and 5 1

(14 84) p

A. =
+

, where A is the 

proportionality constant. 
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Fig. 6.3 Measurement setup of the work presented in [30] in search of the surface waves at THz frequency. 

The solution for p is then obtained as 0 98 1p . or p= ≈ .  Therefore the path loss 

exponent (This will be related to power and hence proportional to 2E  and therefore in 

this case will vary as 1/R2) is 2 indicating that this transmitted field beyond the 

Aluminum partition is generated from a point source, representing a spherical wave and it 

is not a surface wave, as the field varies as 1/Rp →1/R. 

Now if we apply the Schelkunoff formulation to analyze this same problem with 

33000rε = − , and 73.54 10 mhos/mσ = × for Aluminum at 0.4 THz (the same parameters 

assumed in [30]), with a source dipole placed 0.001 m from the Aluminum sheet and the 

field is observed at a height of 0.001 m as a function of the radial distance. The transverse 

component of the reflected electric field is now plotted from a distance of 10 cm to 10 m 

as shown in Fig. 6.4. The propagation path loss for the reflected field appears to be 

approximately 20 dB per decade near the source indicating that the path loss exponent is 

2. This implies that the variation of the field strength with distance is exactly 1/R as 

predicted from the measurements. So, in this case the dominant propagation mechanism 

is through the Sommerfeld Ground wave and there are no surface waves in the reflected 

fields even though the dielectric constant for the aluminum sheet at THz frequency is 

negative.  
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Finally, in Fig. 6.5 the strength of the transverse component of the electric field is 

plotted as a function of the vertical distance at 0.4 THz for different locations for the 

radial distance. It is clearly seen that there are no evanescent nature in the reflected fields. 

It is also interesting to note that when the transverse components of the fields for the 

same scenario is calculated at 0.3 THz and depicted in Fig. 6.6, it is seen that there is very 

little difference between Fig. 6.5 and Fig. 6.6 indicating that there is a radiating field and 

no surface waves in the total solution of the problem as the variation of the transverse 

components of the electric field is independent of frequency! In addition, even if the 

metal is made of a perfect electric conductor (PEC), there is also no difference in the 

magnitude of the transverse components of the fields indicating that at THz frequencies 

this Aluminum metal act similar to a PEC even though its permittivity is negative. This 

confirms that there are no surface waves in the total solution at THz frequencies and the 

computed results obtained by the Schelkunoff formulation agree well with the 

experimental data further validating the theory. 

 

Fig. 6.4 Plot of the transverse component of the reflected fields as a function of the radial distance from the 
source. 
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Fig. 6.5 Plot of the transverse component of the reflected fields as a function of the vertical distance from 
the interface at 0.4 THz. 

 

Fig. 6.6 Plot of the transverse component of the reflected fields as a function of the vertical distance from 
the interface at 0.3 THz. 
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7 Summary, Conclusion and Future Work 

7.1 Summary and Conclusion 

A spherical wave in the form /jkre r−  can be decomposed into an infinite 

summation of cylindrical waves. The expressions of those cylindrical waves could be 

written in terms of either the horizontal or the vertical component of the propagation 

vector. Sommerfeld’s original work made use of the summation in terms of the horizontal 

component of the propagation vector. The work presented in this dissertation aims to 

exploit the other representation which depends on the vertical component of the 

propagation vector. This representation was originally derived by Schelkunoff and hence 

we called it “the Schelkunoff representation” after his name. 

In Chapters 2 and 3 of this dissertation, the original solution of Sommerfeld for 

the radiation of elementary dipoles mounted on top of infinite ground planes of arbitrary 

parameters was repeated based on the Schelkunoff representation of the spherical wave. 

The work presented in those chapters along with the five appendixes at the end of the 

dissertation give the full mathematical details that could have been done by Sommerfeld 

in case he started with the vertical component representation of the spherical wave. The 

characteristics of the numerical behavior of each representation were presented. The 

conclusion is that the solution based on Schelkunoff integrals totally abolish the 

numerical problem of Sommerfeld integral tails. This problem appears in the numerical 

solution of cases where the field and source points have large horizontal separation but 

both are very close to the ground plane. It is well known that in this case the Sommerfeld 

integral tails are not convergent because of the oscillatory behavior of the Bessel function 
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of the first kind 0 ( )J x . This problem was totally avoided in the Schelkunoff 

representation which is based on the monotonically decaying modified Bessel function of 

the second kind  0 ( )K x .  

Since the Sommerfeld problem is more than hundred years old, therefore one can 

find a plethora of papers and contributions from many researchers all over the globe who 

wrote on the subject throughout the whole twentieth century. Some of those contributions 

were written before the advent of computers and some appeared after. Before the 

computers era all of the researchers were focusing on the analytical solution of 

Sommerfeld integrals, mainly, using Cauchy’s complex integration theorem. The debate 

was whether this solution contained a surface wave or not. After the development of 

computers for scientific computation, most of the researchers were focusing on the 

numerical solution of Sommerfeld integrals and how to find mathematical ways to 

accelerate the convergence of those integrals. No effort was dedicated to question the 

source of the numerical problem, instead people were trying to find workarounds just to 

solve it. The different feature in the work presented in this dissertation is that the main 

work of Sommerfeld itself was questioned, the source of the numerical problem is 

understood and the alternative solution was given as explained in the previous paragraph. 

However, due to this debatable nature of the problem a complete chapter had to be 

dedicated for the theoretical comparison between Sommerfeld integrals and the new 

Schelkunoff integrals derived in this dissertation. The aim of Chapter 4 was not to settle 

the debate because it is almost impossible to do so. Instead we aimed in Chapter 4 to give 

a very clear idea to the reader about our stand point in the debate.  
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The claim that might arise against the new formulas derived in this dissertation 

was found to be based on the analytical solution of Sommerfeld integrals which include 

two branch cuts and one pole contributions. Our conclusion is that the pole in a two-

media problem should not be included on the proper Riemann sheet. This is because: 

• This pole does not give a solution which varies continuously with the physical 

parameters of the problem. 

• This pole gives a field decay rate which was never reported in a real-life 

measurement. 

• This pole was used by Sommerfeld to explain the propagation of Marconi’s waves 

beyond the horizon. This was proven to be wrong after the discovery of the 

ionosphere. 

• This pole is a pole of the reflection coefficient which is a function of two complex 

variables. This means that the Riemann sheets should be studied in two domains 

instead of one. This analysis is one of the unique contributions of this dissertation and 

is explained in Chapter 5. 

• As proved by Collin in [3], if the pole is mathematically included, then there must be 

a saddle point contribution which totally cancels the pole contribution. 

It is also concluded that one of the branch cut contributions gives the total correct 

solution of the problem while the other branch cut associated with the second medium 

gives a contribution that dies out exponentially as the height of either the field point or 

the source point increases. Thus, both formulations give identical results except for the 

case when the second branch cut contribution is not neglected which correspond 
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physically to the case where both the source and field points are very close to the 

interface. 

Since a physical problem should only have one unique solution, thus we conclude 

that in this rare case where both the source and field points are very close to the interface 

either one of the formulation is wrong or both are wrong. This confusion can be settled 

by logical intuition. This is achieved by noticing a very important statement made by 

Sommerfeld [21, p. 239]: “Hence if for Π


we substitute /ikre r and determine the free 

constant in terms of the strength of the alternating current in the antenna, then according 

to Maxwell, we have in (4) the field radiated from the antenna, valid for all distances that 

are large compared to 2 / kλ π= . For the immediate neighborhood of the antenna our 

description breaks down owing to the excessive idealization of our antenna model.” This 

simply means that when the source point is very close to the interface, the primary 

stimulation to begin with is not developed as a spherical wave in the form /jkre r− . 

Therefore, the philosophy of representing this spherical wave in terms of cylindrical 

waves in any form simply breaks down because the spherical wave does not exist. It is 

just an approximation which is totally not valid in the vicinity of the source.   

Based on those conclusions, Chapter 5 was dedicated to the study of the 

Sommerfeld elusive pole and its effect on the new area of research of plasmonics. The 

evolution of the term plasmonics was traced back to the middle of the twentieth century. 

A detailed literature review was given in Chapter 5 to show that there is no relation what 

so ever between surface plasmons and surface waves which are related to the elusive 

Sommerfeld pole. Finally in Chapter 6, some applications of the new formulations were 

given to prove the validity of the analysis presented in the dissertation. The new 
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formulation was used to duplicate the famous measurement data of Okumura [20]. Also, 

it was used to duplicate the results of a THz surface plasmon experiment [30] and analyze 

the existence/absence of surface waves in the radiated field from a dipole over an 

imperfect ground plane.                          

7.2 Future Work 

There are some interesting topics of research that might be considered as an 

extension for the work presented in this dissertation. First, the consideration of a three 

layer problem where lateral waves needs to be considered instead of the elusive 

Sommerfeld surface waves. Second, the redesign of Burrow’s experiment [26] in a lab 

environment should be considered. The only experiment that simulates the propagation in 

a two-media problem where the source and field points are very close to the interface is 

Burrow’s experiment. However, this experiment was done in the 1930’s which of course 

is limited to the accuracy of the measurement equipment available at that time. This 

experiment needs to be redone preferably in a lab environment while making use of the 

state of the art measurement equipment hopefully to settle down the Sommerfeld surface 

wave debate once and for all.   
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Appendix A: Proof of the Schelkunoff Identity 

We will give a slightly different proof than that given by Schelkunoff in [13]. We 

will prove (2.6), while Schelkunoff proved (2.5). However, for simplicity, as Schelkunoff 

did, it is sufficient to show that the identity (2.6) holds for z=0, and since they are wave 

functions, then the identity will hold for any other value of z. The Sommerfeld integral is 

given by: 

 0 2 2
0

( )somI J d
k

λλρ λ
λ

∞

=
−

∫   (A.1) 

As indicated earlier, the integral (A.1) can be decomposed into two intervals:  

 0 02 2 2 2
0

( ) ( )
k

som
k

som som

I J d j J d
k k

A jB

λ λλρ λ λρ λ
λ λ

∞

= −
− −

= −

∫ ∫   (A.2) 

where Asom and Bsom are the real and the negative of the imaginary parts of the 

Sommerfeld integral respectively. Starting with the real part: 

 0 2 2
( )som

k

A J d
k

λλρ λ
λ

∞

=
−

∫   (A.3) 

Substituting 2 2t kλ = + , then ,   we getut
ρ

=  

 ( )2 2 2
0

0

1 ( )  somA J u k duρ
ρ

∞

= +∫   (A.4) 

Proceeding to the imaginary part which is given by: 
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 0 2 2
0

( )
k

somB J d
k
λλρ λ
λ

=
−

∫   (A.5) 

Substituting 2 2k sλ = − , then ,     we getvs
ρ

=  

 ( )2 2
0

0

1 ( )  
k

somB J k v dv
ρ

ρ
ρ

= −∫   (A.6) 

It is required now to prove that the real and imaginary parts of Schelkunoff 

integrals are identical to those of Sommerfeld integrals given in (A.4) and (A.6). 

Schelkunoff integral is given by: 

 ( )2 2
0

0

2   schI K k dρ ξ ξ
π

∞

= −∫   (A.7) 

The integral in (A.7) can also be decomposed into two intervals as follows: 

 ( ) ( )2 2 2 2
0 0

0

2 2   +   
k

sch
k

I K j k d K k dρ ξ ξ ρ ξ ξ
π π

∞

= − −∫ ∫   (A.8) 

 0 0 0( ) ( ) ( )
2 2

K jx N x j J xπ π
= − −   (A.9) 

 
( ) ( )

( )

2 2 2 2
0 0

0

2 2
0

0

2     

                                                               

k

sch
k

k

I N k d K k d

j J k d

ρ ξ ξ ρ ξ ξ
π

ρ ξ ξ

∞

∴ = − − + −

− −

∫ ∫

∫
  (A.10) 

where the real part is given by: 

 ( ) ( )2 2 2 2
0 0

0

2     
k

sch
k

A N k d K k dρ ξ ξ ρ ξ ξ
π

∞

= − − + −∫ ∫   (A.11) 
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 0 02 2 2 2
0

2 cos cos( )       &   ( )  
x

N x d K x d
x x
τ ττ τ

π τ τ

∞ ∞

= − =
− +

∫ ∫   (A.12) 

 2 2
2 2 2

0 0( ) ( )

1 2

2 cos +        
( ) ( )

         

k

sch
kk

dA d
k

I I

ρξ ρ ρξτ τ

ρξ ρξ ρ ττ ρ ρξ

τ τ ρξ
πρ τ ρ ρξ

= =∞=∞ =∞

= = == −

 
 ∴ =
  − + 

= +

∫ ∫ ∫ ∫   (A.13) 

where I1 and I2 are as shown in Fig. A.1. Substituting using the transformation in (A.14), 

which is illustrated in Fig. A.1, we get: 

 
( ) ( )22 2

cos ,           sin     

    &     

R R

R d d d d RdRd

τ ψ ρξ ψ

τ ρξ τ ρξ ρ τ ξ ψ

= = ⇒

= + = =
  (A.14) 

 
/2

2 2
0

2 cos( cos )   
( )

R

sch
R k

RA RdRd
R k

ψ π

ρ ψ

ψ ψ
πρ ρ

==∞

= =

⇒ =
−

∫ ∫   (A.15) 

 
Fig. A.1. Transformation of variables used in (A.15). 

 
/2

0
0

2( )  cos( cos )J R R d
π

ψ ψ
π

= ∫   (A.16) 

 
1

0
2 2

1

( )1   
( )

sch
k

J RA RdR
R kρρ ρ

∞

∴ =
−

∫   (A.17) 

Substituting 2 2
1( )R u k ρ= + , we get: 

1k ρ ξρ

1k ρ

τ

ψ

R cosR ψ

sinR ψ

1I 2I
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 2 2
0

0

1   ( ( ) )schA J u k duρ
ρ

∞

= +∫   (A.18) 

Finally, the imaginary part of the Schelkunoff integral is given by: 

 ( )2 2
0

0

 
k

schB J k dρ ξ ξ= −∫   (A.19) 

Substituting: ,vξ
ρ

= we get: 

 ( )2 2
0

0

1 ( )  
k

schB J k v dv
ρ

ρ
ρ

= −∫   (A.20) 

Comparing (A.4) to (A.18) and (A.6) to (A.20), we conclude the validity of the 

identity (2.6). Also from (A.6) and (A.20), we conclude that: 

 2 2 2kξ λ= −   (A.21) 

Equation (A.21) enforces our physical description which assumes λ to be the 

horizontal component of the propagation vector, and ξ corresponds to the vertical 

component, kz, in (2.2). 
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Appendix B: Validation of the Vertical Dipole Formulation 

In this appendix, it is required to prove the validity of the forms in (2.15). It is 

also required to find the reflection and transmission coefficients, namely R(ξ) and T(ξ). 

 2
2 22 ( . )z zz∇ Π =∇ ∇Π −∇×∇×Π

 

  (B.1) 

 
2

2
2 2 22

1ˆz z z za
z

ρ
ρ ρ ρ

  ∂ ∂ ∂
⇒∇ Π = Π + Π  ∂ ∂ ∂  

  (B.2) 

 
2

2
2 2 22 z zz

ξ∂
Π = − Π

∂
   (B.3) 

 

( )

( ) ( )

2 2
2 2 2

0

2 2
0 2 2 2 2

0 2 2 22 2
2 2

1 2&  ( )  .

            . cos( ) 

z T k

K k
K k z h d

k

ρ ξ ξ
ρ ρ ρ π

ρ ξ
ρ ξ ξ ξ ξ

ρ ξ

∞ ∂ ∂
Π = − ∂ ∂ 

 ′ −
 ′′+ − − −  

∫
  (B.4) 

Using the properties of the modified Bessel function of the second type [23], 

namely: 

 0
0 0

( )( ) ( )K zK z K z
z
′

′′= +   (B.5) 

 
( ) ( )2 2 2 2 2 2

2 2 2 2 0 2 2 2
0

2 2
2 2 2

2  ( ) cos( ) z

z z

T k K k z h d

k

ξ ξ ξ ρ ξ ξ ξ ξ
π

∞

∴∇ Π = − + − − −

⇒∇ Π = − Π

∫   (B.6) 

Therefore, Π2z satisfies the wave equation in medium (2). Examining the 

boundary conditions in (2.16) implies to: 
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[ ] ( )

[ ] ( )

2 2
1 0 1

0

2 2
0 1

0

2   sin( ( )) 

2         ( )  sin( ( )) 

z K k z h d
z

R K k z h d

ξ ρ ξ ξ ξ
π

ξ ξ ρ ξ ξ ξ
π

∞

∞

∂
Π = − − −

∂

+ − − +

∫

∫
  (B.7) 

 [ ] ( )2 2
2 2 0 2 2 2

0

2  ( )  sin( ) z T K k z h d
z

ξ ξ ρ ξ ξ ξ ξ
π

∞∂
Π = − − −

∂ ∫   (B.8) 

 1 2        at 0z z z
z z
∂ ∂
Π = Π =

∂ ∂
   (B.9) 

 
[ ] ( )

[ ] ( )

2 2
0 1

0

2 2
2 0 2 2

0

2  ( )  sin( ) 

2      ( )  sin( ) 

R K k h d

T K k h d

ξ ξ ξ ρ ξ ξ ξ
π

ξ ξ ρ ξ ξ ξ
π

∞

∞

∴ − + − −

= − − −

∫

∫
  (B.10) 

For the above equation to be satisfied at all values of ρ, 

 2 2 2 2 2 2 2 2
1 2 2 2 1 2k k k kξ ξ ξ ξ− = − ⇒ = − +   (B.11) 

which is the phase matching condition; since the integration is done over the vertical 

(normal to the boundary) component of the propagation vector. Furthermore, to be 

satisfied at all values of ρ: 

 2( ) ( )R Tξ ξ ξ ξ ξ− + = −   (B.12) 

One more equation is still needed to find the expressions for T(ξ) and R(ξ). This 

equation comes from the remaining boundary condition (2.17): 

 1 2     at 0z z zεΠ = Π =   (B.13) 
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[ ] ( )

[ ] ( )

2 2
0 1

0

2 2
0 2 2

0

2  1 ( )  cos( ) 

2     ( )  cos( ) 

R K k h d

T K k h d

ξ ρ ξ ξ ξ
π

ε ξ ρ ξ ξ ξ
π

∞

∞

∴ + −

= −

∫

∫
  (B.14) 

The above equation again implies the phase matching condition, and gives one 

more equation in T(ξ) and R(ξ): 

 1 ( ) ( )R Tξ ε ξ+ =    (B.15) 

Solving the two equations (B.12) and (B.15) gives: 

 
2 2

1

2 2
1

(1 )
( )

(1 )

k
R

k

εξ ξ ε
ξ

εξ ξ ε

− − −
=

+ − −
  (B.16) 

 
2 2

1

2( )
(1 )

T
k

ξξ
εξ ξ ε

=
+ − −

  (B.17) 

It is interesting to note that (B.16) and (B.17) can be achieved by substituting 

(A.21) in the functions originally given by Sommerfeld in his formal solution, shown 

below [1]: 

 
2 2 2 2

1 2

2 2 2 2
1 2

( )
k k

R
k k

ε λ λ
λ

ε λ λ

− − −
=

− + −
  (B.18) 

 
2 2

1

2 2 2 2
1 2

2
( )

k
T

k k

λ
λ

ε λ λ

−
=

− + −
  (B.19) 

 However, it is important to get the expressions as shown in this appendix since 

the integrals include inhomogeneous waves which are hard to predict their associated 

reflection coefficients.
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Appendix C: Validation of the Horizontal Dipole Formulation 

 In this appendix, it is required to prove the validity of the forms in (3.13), (3.17)-

(3.20). It is sufficient to do it for one of the two media. If we choose medium (2), the 

vector potential is assumed to be: 

 2 2 2ˆ ˆx x z za aΠ = Π +Π


  (C.1) 

In this section, the proof is given in cylindrical coordinates. This decision was 

taken to prove the validity of the assumed forms for any horizontal dipole (parallel to the 

x-y plane). However, without loss of this generality, the dipole is assumed to be x-

oriented as shown in Fig. 1, where for any other horizontal dipole which makes an angle 

0ϕ from the x-axis, it would be sufficient just to replace the term ϕ by 0( )ϕ ϕ− in the rest 

of the proof.  

In cylindrical coordinates the vector potential is given by: 

 2 2 2 2ˆ ˆ ˆcos  sin  x x z za a aρ ϕϕ ϕΠ = Π − Π +Π


  (C.2) 

It is required to prove that: 

 2 2
2 2 2 0k∇ Π + Π =
 

  (C.3) 

where 2
2 2 2( )∇ Π =∇ ∇⋅Π −∇×∇×Π
  

  (C.4) 

In cylindrical coordinates, the vector Laplace operator is defined as: 
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( )

2 2
2 2 2 22 2

2
2 2 22 2

2
2

2 cosˆ cos  sin  

2 sinˆ sin  cos  

ˆ+

x x x

x x x

z z

a

a

a

ρ

ϕ

ϕϕ ϕ
ρ ϕ ρ

ϕϕ ϕ
ρ ϕ ρ

 ∂
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 ∂
+ −∇ Π + Π + Π ∂ 

∇ Π



  (C.5) 

From the ρ-component: 

2 2
2

2 2 2 22 2 2

1 1cos  cos  cos  cos  x x x xz
ϕ ρ ϕ ϕ ϕ

ρ ρ ρ ρ ϕ
 ∂ ∂ ∂ ∂

∇ Π = Π + Π + Π ∂ ∂ ∂ ∂ 
  (C.6) 

where the first term of (C.6) is given by: 
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2 2 2

0

2 2
0 2 22 2

0 2 2 22 2
2 2
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( )
                                 ( ) cos( )

x T k

K k
K k z h d

k

ρ ϕ ϕ ξ ξ
ρ ρ ρ π

ρ ξ
ρ ξ ξ ξ ξ

ρ ξ

∞ ∂ ∂
Π = − ⋅ ∂ ∂ 

 ′ −
 ′′ ⋅ − + −
 − 

∫
  (C.7) 

 0
0 0

( )( ) ( ) K xK x K x
x
′

′′= +   (C.8) 

 
( )2 2

2 2 2
0

2 2
0 2 2 2

1 2cos  cos ( )

                              ( ) cos( )

x T k

K k z h d

ρ ϕ ϕ ξ ξ
ρ ρ ρ π

ρ ξ ξ ξ ξ

∞ ∂ ∂
∴ Π = − ∂ ∂ 

− −

∫   (C.9) 

The second term of (C.6) is given by: 

 
2

2 22 2 2

1 coscos  x x
ϕϕ

ρ ϕ ρ
∂ −

Π = Π
∂

  (C.10) 

and the last term of (C.6) is given by: 

 ( )
2

2 2 2
2 2 0 2 2 22

0

2cos  cos ( ) ( ) cos( )x T K k z h d
z

ϕ ϕ ξ ξ ρ ξ ξ ξ ξ
π

∞∂
Π = − − −

∂ ∫   (C.11) 
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The second term of the ρ-component in (C.5) is defined as: 

 2 22 2

2 2cossin   x x
ϕϕ

ρ ϕ ρ
∂

Π = Π
∂

  (C.12) 

Adding all the equations (C.9)-(C.12) and substituting in the ρ- component of 

(C.5), then comparing the result to (3.18): 

 2 2
2 2 2 2 22 2

2 coscos  sin  cos  x x x xkϕϕ ϕ ϕ
ρ ϕ ρ

∂
⇒∇ Π + Π − Π = − Π

∂
  (C.13) 

Similarily; from the φ-component of (C.5): 
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( ) ( )

2
2 2

2 2

2 22 2 2

1sin  sin  

1 sin  sin  

x x

x xz

ϕ ρ ϕ
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∂ ∂
+ − Π + − Π

∂ ∂

  (C.14) 

where the first term of (C.14) is given by: 

 

( ) ( ) ( )2 2
2 2 2

0

2 2
0 2 22 2

0 2 2 22 2
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1 2sin  sin ( )

( )
                                 ( ) cos( )

x T k
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k

ρ ϕ ϕ ξ ξ
ρ ρ ρ π

ρ ξ
ρ ξ ξ ξ ξ

ρ ξ

∞ ∂ ∂
− Π = − − ⋅ ∂ ∂ 

 ′ −
 ′′ ⋅ − + −
 − 

∫
  (C.15) 

Using (C.8) in (C.15), we get: 

( ) ( ) ( )2 2
2 2 2

0

2 2
0 2 2 2

1 2sin  = sin ( )

                                                                     ( ) cos( )

x T k

K k z h d

ρ ϕ ϕ ξ ξ
ρ ρ ρ π

ρ ξ ξ ξ ξ

∞ ∂ ∂
− Π − − ∂ ∂ 

− −

∫  (C.16) 

The second term of (C.14) is given by: 
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 ( )
2

2 22 2 2

1 sinsin  x x
ϕϕ

ρ ϕ ρ
∂

− Π = Π
∂

  (C.17) 

and the last term of (C.14) is given by: 

( ) ( ) ( )
2

2 2 2
2 2 0 2 2 22

0

2sin  sin ( ) ( ) cos( )x T K k z h d
z

ϕ ϕ ξ ξ ρ ξ ξ ξ ξ
π

∞∂
− Π = − − − −

∂ ∫   (C.18) 

The second term of the φ-component in (C.5) is defined as: 

 2 22 2

2 2sincos   x x
ϕϕ

ρ ϕ ρ
∂ −

Π = Π
∂

  (C.19) 

Adding all the equations (C.16)-(C.19) and substituting in the φ- component of 

(C.5), then comparing the result to (3.18): 

 2 2
2 2 2 2 22 2

2 sinsin  cos  sin  x x x xkϕϕ ϕ ϕ
ρ ϕ ρ

∂
⇒ −∇ Π + Π + Π = Π

∂
  (C.20) 

Finally, from the z-component of (C.5): 

 
2 2

2
2 2 2 22 2 2

1 1
z z z zz

ρ
ρ ρ ρ ρ ϕ

 ∂ ∂ ∂ ∂
∇ Π = Π + Π + Π ∂ ∂ ∂ ∂ 

  (C.21) 

The first term of (C.21) is given by: 

 

( )2 2
2 2 2

0

2 2
1 2 2 2 2

1 2 2 22 2
2 2

1 2 cos ( )

( )
                                  ( ) sin( )

z zT k

K k
K k z h d

k

ρ ϕ ξ ξ
ρ ρ ρ π

ρ ξ
ρ ξ ξ ξ ξ

ρ ξ

∞ ∂ ∂
Π = − ⋅ ∂ ∂ 

 ′ −
 ′′ ⋅ + − −
 − 

∫
  (C.22) 

while the second term of (C.21) can be written as: 
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2

2 22 2 2

2 2
1 2 2 22

0

1 1

2 1cos ( ) ( )sin( )

z z

zT K k z h d

ρ ϕ ρ

ϕ ξ ρ ξ ξ ξ ξ
π ρ

∞

∂ −
Π = Π

∂

 −
= − − 

 
∫

  (C.23) 

and the last term of (C.21) is given by: 

 
( )

2
2

2 2 22

2 2 2
2 1 2 2 2

0

2 cos ( ) ( )sin( )

z z

z

z

T K k z h d

ξ

ϕ ξ ξ ρ ξ ξ ξ ξ
π

∞

∂
Π = − Π

∂

= − − −∫
  (C.24) 

Adding (C.22)-(C.24), we get: 

 

( ){

( )
}

2 2 2
2 2 2

0

2 2 2 2
1 2 2 1 2 22 2

1 2 2 2 2 22 2
2 22 2

2 2 2
2 1 2 2 2

2 cos ( )

( ) ( )
( )

                                               ( ) sin( )

z zT k

K k K k
K k

kk

K k z h d

ϕ ξ ξ
π

ρ ξ ρ ξ
ρ ξ

ρ ξρ ξ

ξ ρ ξ ξ ξ ξ

∞

∇ Π = ⋅ − ⋅

 ′ − −
 ′′ + − −
 −− 

− − −

∫

  (C.25) 

Utilizing some properties of the modified Bessel function of the second kind [23]: 

 1
1 0

( )( ) ( ) K xK x K x
x

−′ = − +   (C.26) 

 1 1
1 0 2

( ) ( )( ) ( ) xK x K xK x K x
x

′ − ′′ ′∴ = − −   
  (C.27) 

 1 0( ) ( )K x K x′= −   (C.28) 

 1 1
1 1 2

( ) ( )( ) ( ) K x K xK x K x
x x
′

′′∴ = − +   (C.29) 

 1 1
1 12

( ) ( )( ) ( )K x K xK x K x
x x
′

′′⇒ + − =   (C.30) 
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Substituting (C.30) in (C.25) and comparing to (3.20), we get: 

 

( ){ }

2
2

0

2 2 2 2 2 2 2
2 2 1 2 2 2 1 2 2 2

2 cos ( )

              ( ) ( ) sin( )

z zT

k K k K k z h d

ϕ ξ
π

ξ ρ ξ ξ ρ ξ ξ ξ ξ

∞

⇒∇ Π = ⋅

− ⋅ − − − −

∫
  (C.31) 

 2 2
2 2 2i.e.   z zk∇ Π = − Π   (C.32) 

Using (C.13), (C.20) and (C.32) in (C.5) and comparing to (C.2), we get: 

 
( ) ( ) ( )2 2 2 2

2 2 2 2 2 2 2

2
2 2

ˆ ˆ ˆcos  sin  +

                                                                                Q.E.D.
x x z za k a k a k

k
ρ ϕϕ ϕ∇ Π = − Π + Π − Π

= − Π





  (C.33) 
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Appendix D: Sommerfeld Formulation for Horizontal Dipoles 

 In this appendix, the original solution of Sommerfeld for the horizontal case is 

shown for the sake of comparison. The forms of the solutions assumed by Sommerfeld 

were [21]: 

 
1 12 2

1
1 0 2 2

10 1

( ) 
jk r

z h kprim
x

eJ e d
rk

λ λλρ λ
λ

∞ −
− − −Π = =

−
∫   (D.1) 

 
2 2

1( )sec
1 0 2 2

0 1

( ) ( ) z h k
x R J e d

k
λ λλ λρ λ

λ

∞
− + −Π =

−
∫   (D.2) 

 
2 2 2 2

2 1sec
2 0 2 2

0 1

( ) ( ) z k h k
x T J e d

k
λ λ λλ λρ λ

λ

∞
− − −Π =

−
∫   (D.3) 

 
2 2

1( )sec
1 1 2 2

0 1

cos ( ) ( ) z h k
z zR J e d

k
λ λϕ λ λρ λ

λ

∞
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−
∫   (D.4) 

 
2 2 2 2

2 1sec
2 1 2 2

0 1

cos ( ) ( ) z k h k
z zT J e d

k
λ λ λϕ λ λρ λ

λ

∞
− − −Π =

−
∫   (D.5) 

From the boundary conditions, we can define the functions: 

 
2 2 2 2

1 2

2 2 2 2
1 2

( )
k k

R
k k

λ λ
λ

λ λ

− − −
=

− + −
  (D.6) 

 
2 2

1

2 2 2 2
1 2

2( )  
k

T
k k

λ
λ

ε λ λ

−
=

− + −
  (D.7) 

 
2 2 2 2 2 2

1 1 2
2 2 2 2 2

1 1 2

2
( )  z

k k k
R

k k k

λ λ λ λ
λ

ε λ λ

− − − − −
=

− + −
  (D.8) 
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2 2 2 2 2 2

1 1 2
2 2 2 2 2
2 1 2

2
( )  z

k k k
T

k k k

λ λ λ λ
λ

ε λ λ

− − − − −
=

− + −
  (D.9) 

Following a procedure like what is shown in Chapter 3, one can write the electric 

field expressions as: 

 2
1 0 1 0 1 3( ) ( )Som Som

x sHE k g g g g g g
x x
∂ ∂ = − + + − + ∂ ∂ 

  (D.10) 

 0 1 3( )Som
yE g g g

y x
∂ ∂ = − + ∂ ∂ 

  (D.11) 

 2
1 2 0 1 3( )Som Som

zE k g g g g
x z x
∂ ∂ ∂ = + − + ∂ ∂ ∂ 

  (D.12) 

where 0g and 1g are defined in (3.26), while Som
sHg , 2

Somg  and 3
Somg  are defined as: (The 

superscript “Som” stands for Sommerfeld formulation) 

 
2 2

1

2 2
( )1

02 2 2 2 2 2
0 1 2 1

2
  ( ) z h kSom

sH

k
g J e d

k k k
λλ λλρ λ

λ λ λ

∞
− + −−

=
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∫   (D.13) 

2 2
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2 2 2 2 2 2
( )1 1 2

2 02 2 2 2 2 2 2
10 1 2 1

2
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g J e d
k k k k

λλ λ λ λλρ λ
ε λ λ λ

∞
− + −− − − −
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∫   (D.14) 
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ε λ λ λ

∞
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=
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Appendix E: Derivation of the Boundary Conditions for the 

Horizontal Dipole Case 

 In this appendix, the derivation of the expressions (3.21)-(3.24) is shown based on the 

boundary conditions (3.8)-(3.11). 

Substituting (3.17)-(3.19) in (3.8) at 0z = and for all values of ρ gives: 

 2 2 2 2 2 2 2 2
1 2 2 2 1 2k k k kξ ξ ξ ξ− = − ⇒ = − +   (E.1) 

and 1 ( ) ( )R Tξ ε ξ+ =   (E.2) 

Equation (E.1) is the phase matching condition; since the integration is done over 

the vertical (normal to the boundary) component of the propagation vector. Substituting 

(3.17)-(3.19) in (3.9) at 0z = and for all values of ρ gives: 

 2( ) ( )R Tξ ξ ξ εξ ξ− + = −   (E.3) 

Solving (E.2) and (E.3) simulataneously gives the expressions in (3.21) and (3.22). 

Substituting (3.19)-(3.20) in (3.10) at 0z = gives: 

 ( ) ( )z zR Tξ ε ξ= −   (E.4) 

To apply the boundary condition in (3.11), the following expressions are useful: 

 sec 2 2
1 1 1

0

2 cos  ( ) ( ) cos( ( ))z zR K k z h d
z

ϕ ξ ξ ρ ξ ξ ξ
π

∞∂
Π = − +

∂ ∫   (E.5) 

 sec 2 2
2 2 1 2 2 2

0

2 cos  ( ) ( ) cos( )z zT K k z h d
z

ϕ ξ ξ ρ ξ ξ ξ ξ
π

∞∂
Π = − −

∂ ∫   (E.6) 
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 sec 2 2 2 2
2 2 2 1 2 2 2

0

2 cos  ( ) ( ) cos( )x k T K k z h d
x

ϕ ξ ξ ρ ξ ξ ξ ξ
π

∞∂
Π = − − − −

∂ ∫   (E.7) 

 2 2 2 2
1 1 1 1

0

2 cos  ( ) cos( ( ))prim
x k K k z h d

x
ϕ ξ ρ ξ ξ ξ

π

∞∂
Π = − − − −

∂ ∫   (E.8) 

 sec 2 2 2 2
1 1 1 1

0

2 cos  ( ) ( ) cos( ( ))x k R K k z h d
x

ϕ ξ ξ ρ ξ ξ ξ
π

∞∂
Π = − − − +

∂ ∫   (E.9) 

Using (E.5)-(E.9) in (3.11) gives: 

 2 2 2 2
2 2 2 1( ) ( ) ( ) (1 ( ))z zR T k T k Rξ ξ ξ ξ ξ ξ ξ ξ− = − − + − +   (E.10) 

Solving (E.4) and (E.10) simultaneously and using (E.1)-(E.3) give the expressions in 

(3.23) and (3.24). 
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