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Abstract

Electromagnetic (EM) solvers are widely used within computer-aided design (CAD) to
improve and ensure success of circuit designs. Unfortunately, due to the complexity of
Maxwell’s equations, they are often computationally expensive. While considerable
progress has been made in the realm of speed-enhanced EM solvers, these fast solvers
generally achieve their results through methods that introduce additional error
components by way of geometric approximations, sparse-matrix approximations,
multilevel decomposition of interactions, and more. This work introduces the new method,
Unified-FFT (UFFT). A derivative of method of moments, UFFT scales as O(N log N), and
achieves fast analysis by the unique combination of FFT-enhanced matrix fill operations

(MFO) with FFT-enhanced matrix solve operations (MSO).

In this work, two versions of UFFT are developed, UFFT-Precorrected (UFFT-P) and UFFT-
Grid Totalizing (UFFT-GT). UFFT-P uses precorrected FFT for MSO and allows the use of
basis functions that do not conform to a regular grid. UFFT-GT uses conjugate gradient FFT
for MSO and features the capability of reducing the error of the solution down to machine
precision. The main contribution of UFFT-P is a fast solver, which utilizes FFT for both MFO
and MSO. It is demonstrated in this work to not only provide simulation results for large
problems considerably faster than state of the art commercial tools, but also to be capable
of simulating geometries which are too complex for conventional simulation. In UFFT-P

these benefits come at the expense of a minor penalty to accuracy.



UFFT-GT contains further contributions as it demonstrates that such a fast solver can be
accurate to numerical precision as compared to a full, direct analysis. It is shown to provide
even more algorithmic efficiency and faster performance than UFFT-P. UFFT-GT makes an
additional contribution in that it is developed not only for planar geometries, but also for
the case of multilayered dielectrics and metallization. This functionality is particularly
useful for multi-layered printed circuit boards (PCBs) and integrated circuits (ICs). Finally,
UFFT-GT contributes a 3D planar solver, which allows for current to be discretized in the z-
direction. This allows for similar fast and accurate simulation with the inclusion of some 3D

features, such as vias connecting metallization planes.



The Unified-FFT Method for Fast Solution
of Integral Equations as Applied to
Shielded-Domain Electromagnetics

by
Brian Rautio

B.S.E.E,, Rensselaer Polytechnic Institute, May 2009
M.S.E.E., Syracuse University, July 2011

Dissertation
Submitted in partial fulfillment for the degree of Doctor of Philosophy in Electrical

and Computer Engineering in the Graduate School of Syracuse University

December 2014



Copyright © 2014 Brian Rautio
All Rights Reserved



Acknowledgements

The author would, first and foremost, like to thank his girlfriend, Ms. Patricia Leusner not
only for all of her support, but also for bearing with his vast workload, idiosyncrasies, and
meltdowns during this project. His parents, Dr. Jim and Mrs. Jean Rautio for giving him the
resources and encouragement to get this far. His advisors, Prof. Jay Kyoon Lee and Prof.
Vladimir Okhmatovski, for answering endless questions, for reviewing countless
documents, and for putting up with just a bit too much work being done in the 11t Hour.
The committee members, Prof. Thong Quoc Dang, Prof. Jun H. Choi, Prof. Tomislav
Bujanovic, and Prof. Prasanta K. Ghosh, for their time, effort, and willingness to help. Mr.
Dan Ferguson and Mr. Matt Thelen of Sonnet Software, for their hard work adding the
necessary hooks and data outputs into Sonnet to make this work possible. The anonymous
MTT Transactions reviewers—the detailed process absolutely made for better results. And
finally, Mr. Petey Peterson, the author’s tabby cat, for all the times he made good company

whilst working far into the night.



Table of Contents

L« T PP i
LISE Of FISUIES ...neeeeiiieeciiei et cteieecsreneestenee e rensseseenssessenssessensssssensssssensssssensssssensssssenssnnnenn ix
List Of Tables......cuuiiiiiiiiiiiiiiiiiiine e Xiii
1. INErodUCHION...cciiiiiiiiiiiicccrerrr s e e s e s e s s ans 1
1.1 ElectromagneticS MOAeliNg OVeIVIEW .......cueuneeneeeseeseesseesesssesssesssssssssesssesssssssesssssssessss st sesssssssesssassssans 2
1.2 Full-Wave Numerical ElectromagnetiCsS OVEIVIEW ........cueeneenmeensesnesssesseessesssesssssssssssssssssssssesssssssesssssssssans 5
1.20 MEtNOA Of MOMENES (MOM) c.ueeoeveetreeerireseesseressesiseasisesssssssssssesassssasssssssssssssessssssassssesssssssssssssssssssssnssssssssssssesssesassess 6
1.2D TilNE DOMAIN MEUNOUS.co..ceuereeeereereereeriserisseessesssesssesasssassesssesssssssssassesssesssessssssssssssesssesssssssssassssssssssesssssssssassssssssssssassses 8
1.2¢ Finite E1eMENE MEEROA (FEM) .. cueeeseeeeeeessereseriseeriseseassessssesassssasssssssssssssessssssassssassssssssssssssssssssasssssssssssssesssssanssss 9

1.2d Transmission Line Matrix (TLM), Method of Lines (MoL), and Generalized Multipole Technique

[ OO 10
1.2e Methods behind Numerical EIeCtrOMAGNETICS ....cueuereererernseesserssessssassesssesssesssssssssassesssessessssssassesssesssssanssens 10
1.3 Previous Work in Speed Enhanced ElectromagnetiCs. ... eneeremsneeneesseeseeseesesssesssssssesesssesssssssesans 11
1.30 Kernel DEPENAENT METROUS .......ocuvereerererrseesserssessesasseassesssessessasssassesssessssssssssssssssesssssssssssssassesssesssssssssasssssesssssssssens 12
1.3b General Kernel INAePEndENt MEEROUTS .........ocewerreeorserseeresrsssssesssesssessssassssssesssesssssssssassesssesssssssssassssssesssssasssens 13
1.3c Comparisons of Previous Work t0 TRIS WOTK ... ereeseerseersstrssssisssessssesssssassssisssssssssssssessssssassssanns 13
1.4 ReSEATCH CONIITDULIONS wovuvreereeeeereeseerseesseesseesseesssesssess s sssessssessssssssessss s ssesssessssesssess s s s sssssssssessssensssesssessssees 15
2. FFT-Enhancement of Matrix Fill Operations .........ccccecciiiinnnmnnnninieeeiiiiininiiieneee. 19
2.1 OVETVIEW Of the K-MatliX cwemieeeceeereeseeseersseessseesseessseessesssssssessssssssssessessssessssessssesssssssssssssesssssssssssssessssesssnsssssssssees 19
2.2 General MFO FOIrMUIATION c.uuireresreseersseesssees s ssesssssssesssssessssesssssssessssessssessssssssssssessssssssessssessssesssnssssssssnees 22
2.3 UFFT-P MAtIiX Fill coooeeeceeeeeeecrseess s sess s sssssssssssss s sesss s sssesssess s s sssssssssssssssssessssesssssssesssnees 23
2.4 UFFT-GT MAtLiX Fill .o sness s ssessssss s ssssesssssssessssessssesssssss s s sssssssssssssssssessssesssmesssssssnees 25
2.5 Matrix Element Reconstruction for UFFT-GT Preconditioning.......o o eeeneensessessneesseesesssesseenes 30

vi



3. FFT-Enhancement of Matrix Solve Operations......cccccceveeceiiieecirineiirieencernennceseenscenenssesnenes 34

3.1 Conjugate Gradient (CG-FFT) vs. Pre-Corrected (PFFT) FET. .. seneeseeeseeseesseesseessessessseenns 34
3.1a Accuracy IMpProvemMeENtS Of UFFT-GT ... nerseseesssssssesssesassssissssssssesssssssssssassssssssssssssssssssssssssssssssses 36
3.1D MeMOTY USAGE IMPTOVEIMENLS ....ceorerereeereereerassrirseassesssesssssassssssessessssssassssssesssesssssassssssssssesssssssssassesssessessssssassesssesnes 37
3.1c Multilayer ANnd 3D PlANAY SUPPOIT c.ucuereerrrrereeeseessessssissssssesssesssssassssssesssssssssasssssssssssssssssssssssesssessmssssssassessesnes 38

3.2 Generalized Minimum Residual Method (GMRES) SPECIfiCs ....ccoumenmirnmernmirnmeenseinseeneesseesseesseesseesseeseenes 38
B B =] 39
3.2D PTrECONCILIONET S.cuneoorevisirirsirissisissssssisissesissesasssssssessssesassssassssssssssassssassesssssassssssssssassesssssssssssssssssassssassssassssssssassssanses 40

3.3 Conjugate Gradient Method and UFFT-GT ... sssssse s ssssssssssssssssssssssssssssssssnes 45
3.3a Implicit Matrix Setup, Structure, and MUltiplieS fOT MSOS ... nesreoseernsersssrisesessssesssesassssssssssssses 46
3.3b Discussion Of ETTOr TEIMS I UFET-GT . eoseerseerseseisssisssesssesasssssssssisssessssessssssassssssssssssssssssessssssssssssssses 55
3.3¢ Extension t0 MUILIIAYET GEOMELTIES .......cuerwwrereerecrseessssissssssesseessssssssssssesssesssssassssssesssessessssssassesssesssssssssassessesnes 61
3.30 EXEENSION 0 3D GEOMELTIES ..coueveverecrisirisssivssscvisserissisissssissssssisissesissssasssssssssssssesassssessssssssssssessssssassssassssassssanses 63

3.4 Geometry Projection and UFFT=-P ...t sessesssessssssessss s sssss st ssesssssssesssssssssasessnes 65

4. Results and DiSCUSSIONS ......eeeieiiiiiiiiiiiiiiiiiiiiinniitiieieieeieiiiieeenissssssses 74

4.1 ClOCK NEtWOTK EXAIMPIE .. iiiierierieeeteeseetseiseesse e e s s sssssesssesss s s sss s s bbb s s bbbt e 74

4.2 Interdigital Capacitor EXAMPIE. ... eerieseeseiseeseesssiecesessssss s s st et ss s s s e 77

4.3 Digital Bus With DElay LINE ...cocccecereeeeceseieieseeseeseisessssssssesssesssssssesssssssesssssssss s st s ssesssesssasssessss s st sses 81

4.4 COMPUELET MOTNEIDOATIT ....euieureereeeeeeesect s et bbb s s s ess s ss s s bbb s b s bbbt 83

4.5 Complex-Bus Example of MUItiPle PIANES .....orereenreerneeneeiseeeeesseesseesseese e ssss st sesssesssessssssssssssssssssssnses 87

4.6 3D Planar Multilayered Bus EXaMPIE ... neisetsseessessse e sssssse s sssssesssesssssssessssssssssssssssssssenses 89

5. Possible Extensions to the Algorithm ...........cccooiiiiiiiiiiiiiinniniiiiiiie, 94

5.1 LOOP-Tree IMPIEmMENTAtION cvueeurieneeeeeeseeseesseeseessesssesssesssessseessessssssesssesssesssssssessse s bbb as b s saebas 94

5.2 Calderon PreCONAItIONINE ..o eieeeeeeseeseeeseesseessesssesssesssesssesssessesssesssesssesssssssessse s s st b s s s sbs s saebaes 94

vii



5.3 SUDSECEION COMDBINIIIE cootivuieuriinreeneieeeseeeseissteseeseesse s s s s e s st s s es bbb bbb s e anb s 96

5.4 EXtENSION T0 OPLIMIZETS w.uureuieureeneteeeeesseeseesseesseessesssesssesssessse s s s sesss s sesssssssessse s st s sas b s as e s saebanes 97
5.4a Optimization of the Antenna Patch With SONNEELAD........eeoreeereteseessersrerssessserissseisssesssesssesassssans 98
5.4b Optimization of the Feed NetwWork With SONNELLAD .......cceeeeveeeeeeeesrtrssirsssrisssivssesssesissssissssssssessssesaness 100
5.4c Speed Enhancement Potential with the Unified FFT AlGOTItAM ......coveeerreeseerseerseersesissserssesnnes 103

6. CONCIUSIONS . .ccciiiiiniiiititiiiieieete ettt ssssssssre s e e e e e e sesesssssssssssssnssnnnane 105

PV o] o= e [T =T3S 109

Appendix A: UFFT TerMINOLOZY ...oeieriereeeeenseieeeseesecssesssesssesssesssesssssssssss s ssssssssssssssesssssssasssssssssssssssssssssssssssssssssas 109

Appendix B: Evaluation of DGF via DCIM Fitting and Ewald’s Transform ... 110

Appendix C: ACTONYIM DefiNitioNS. . et st sssessse e ses s s s s e sss s bbbt 113

2] =] T ol 115

(27 To =4 2= ] 1 | V2PNt 130

viii



List of Figures

Fig. 1.1-1. Breakdown of electromagnetics solution methods, from [7]. ...ccconeneenrereeneesseeneenn. 3

Fig. 1.4-1. A breakdown of the components that make up the UFFT-P implementation and
the previous projects from which the components are sourced. ........coooeereereeneeereesseenees 16

Fig. 1.4-2. A basic comparison of the two version of the new UFFT methodology.................. 17

Fig. 2.1-1. The clock network example geometry (see Section 4.1) with a close-up view of

10 0TS D R 01 {0) 001 =4 o U OO 20
Fig. 2.4-1. Example of the implicit storage of one of the 2D Hankel-type matrices, A............. 27
Fig. 2.4-2. Ordering of the Toeplitz and Hankel matrices converted to 1D......cccoomenrereerreenens 28

Fig. 2.5-1. Partial reconstruction of example matrix element Z;3 within the associated
Hankel impPliCit MALIIX, A. ..o sessessesssssssesse s sesssessesssesssssssssssssssssssssssssssssssssssssssssesans 31
Fig. 3.2-1. The density of the near part preconditioner for the example in Section 4.1......... 42
Fig. 3.2-2. Convergence of the example in Section 4.2 vs. frequency. Data courtesy Matt
TRELEI OFf [ 2] euiieeeereeeeeseeretseesseeseessee s ssses e s s e s s s s e 43
Fig. 3.2-3. The same preconditioner as Fig. 3.2-1, however, it is sorted to produce a banded
T 10 45
Fig. 3.3-1. Indexing for the two 1D current arrays. Each number represents a rooftop basis
100 0 (1 0 ) o PP 52
Fig. 3.3-2. 2D vs. 1D FFT Time, with 2D being more stable and approximately 2x faster..... 55
Fig. 3.3-3. A simple thru-line example and the associated convergence limit, which is
demonstrated by the non-monotonic behavior. ... 56

Fig. 3.3-4. Error from the implicit storage of the MatriX. ... 58

ix



Fig. 3.3-5. Error from the usage of FFTs to solve matrix-vector products. Note that scales
are different between the tWO. ... ———— 59
Fig. 3.3-6. Difference at each iteration with and without implicit FFT-based matrix vector
products. Macroscopic view at left and expanded z-axis view at right........coeneeeneenes 60
Fig. 3.3-7. A multi-layer example geometry of a co-planar waveguide circuit. Example
sourced from Greg KiNNetZ Of [Z2]. . ereeeseeseeseeecsseesessssssssesssessessssssessssssesssssesssssssssssssees 63
Fig. 3.3-8. An example circuit featuring a bond wire approximation constructed with 3D
planar features, including multiple planes and interconnecting vias........cccoceosenseereesseenees 65
Fig. 3.4-1. Projection of the MoM roof-top basis functions on the regular PFFT grid. ............ 66
Fig. 4.1-1. The fractal nature of clock networks allows for scaling the number of unknowns
in simulation of an applicable eXample........ s 75
Fig. 4.1-2. Performance comparison between UFFT-P and Sonnet for complete solution of
10 0T 01 0] o] U3 o VOO 75

Fig. 4.1-3. Scaling between UFFT-GT and Sonnet (top) and UFFT-GT and UFFT-P (bottom).

Fig. 4.2-1. The interdigital capacitor example circuit geometry. Port excitation is 1.0 V at the
DIUE ETHANEGIE. oottt es s s s e 78
Fig. 4.2-2. S11 vs. Frequency, Sonnet (blue line) vs. UFFT-P (+ marker), vs. MLFMA (triangle
marker), VS. UFFT-GT (X MATKET)....oereererseesesseesseeeessessessssssessesssssssesssssssssssssssssssssssssssssssssees 78
Fig. 4.2-3. Logarithmic timing data for MSO, MFO, and overall time, as well as memory

usage for Sonnet, UFFT, and MLFMA simulations of the interdigital capacitor geometry.



Fig. 4.3-1. The geometry for the digital delay line (meander) example. Port excitation is 1-V
P2 Lo o L o] DT 0 B U U U= TSSOSO 81
Fig. 4.3-2. Current distributions as calculated by Sonnet (top) and UFFT-P (middle), and
UFFT-GT (DOTEOIM) . cecuieureeeeureeeesseeeessesssessesssesseessesssessssssessessssssesssssssessassss s ssssssessssssessssssessssssassssssassssnees 82
Fig 4.3-3. Memory requirements and MSO time for Sonnet and UFFT for the meander
23211101 0] (=TSO 83
Fig. 4.4-1. The motherboard circuit geometry as reverse-engineered from a photograph.. 84
Fig. 4.4-2. The DSP workflow to extract the circuit geometry. The five steps that occur
Within MATLAB @re SHOWI. .. sessssesssssssssssssssss s ssssssssssssssssssesssssssssssssssnens 85
Fig. 4.4-3. The extracted polygons for the image. Each polygon is a different color, aiding
the user to identify errors in the eXtraction ProcCess. .....eeneneensesseessesseessesssessessesees 85
Fig. 4.4-4. Current distribution of the motherboard memory bus example. Left: several lines
along the left border excited with a 1 V source. Right: A single line near the center of
the figure excited With @ 1 V SOUTCE. ...t sessssssesssesssssssssesesssssssssssssssssees 86
Fig. 4.5-1. The complex-bus example structure geometry, complete with meanders and a
DTS T 4 T 0D PP 87
Fig. 4.5-2. Performance between Sonnet and UFFT-GT for the multiplane bus example...... 88
Fig. 4.5-3. Current data for the multiplane bus circuit. 3D at upper left quadrant, individual
1Y @IS IN OTNETS. .ottt s e R bR 88
Fig. 4.5-4. Current data for the multiplane circuit simulated in conventional Sonnet............ 89
Fig. 4.6-1. The 3D planar example. Top left: overhead view, top right: isometric view,
bottom left: additional isometric view. Bottom right: isometric view with thru-lines

FEMOVEA FOI ClATILY. couuieereeceeree ettt sa e s s bbb bR s 90

Xi



Fig. 4.6-2. Performance comparison for UFFT-GT and Sonnet for the 3D planar multilayer
23211101 0] (=TSO 91
Fig. 4.6-3. The current distribution in Sonnet (upper) and UFFT-GT (lower) for the 3D
PlanNAr EXAIMIPLE. ..ot eessee s ses e es s ee s e s R AR 92
Fig. 5.2-1. Convergence for a Calderon preconditioner vs. a diagonal EFIE-based
PrECONAITIONET [75]. coieureereeureeeesseeeessesssessesssesseesssessesssssse s ssssssessasssesssssss s s bbb ss s ss e s s sasssnsnes 95
Fig. 5.3-1. Three different subsection-combining schemes for the same transmission line,
from dense (left) t0 COArse (TIZNL). oo 97
Fig. 5.4-1. The general layout of the microstrip antenna array........eeeseees 98

Fig. 5.4-2. Close-up view of a single patch antenna with its parameterization. Units are mm.

Fig. 5.4-3. S-parameters for the parameter sweep are shown. Each line graphed represents
a different combination of length and width values for the patch. ... 100
Fig. 5.4-4. The full parameterization of the patch array. Squares denote anchor points in the
O TN =N 00 L <) g2 1 0 ) o TP 101
Fig. 5.4-5. The simulated 3D antenna pattern of the array before (left) and after (right) the
OPLIMIZATION PIOCESS. ..coieiecreeeessessesses s ses s s ses s bR R s bbb 102
Fig. 5.4-6. Actual single iteration simulation times and projected full optimization time..104
Fig. 4.2-3 (Redux). Logarithmic timing data for MSO, MFO, and overall time, as well as
memory usage for Sonnet, UFFT, and MLFMA simulations of the interdigital capacitor

o000 ] TP 106

xii



List of Tables

Table 4.2-1: Detailed Magnitude and Phase Error Comparison of UFFT-GT and MoM.......... 80
Table 5.4-1: Optimized Values for the Parameterized Circuit.......coeoeneerneeneeseenseeseenseeneenns 102

Table 4.2-1 (Redux): Detailed Magnitude and Phase Error Comparison of UFFT-GT........... 107

xiil



1. Introduction

Numerical methods within electromagnetics have existed for several decades [1], even in
commercial form [2]. They are often used for microwave filter design, antenna design,
electromagnetic compatibility checking, and many others. Unfortunately, their usefulness is
often limited by the performance of the algorithm. As they generally fill and solve a dense
system of equations, such techniques may scale poorly. For example Method of Moments
(MoM) often scales in terms of operations as O(N?) and in terms of memory as O(N?). In
order to extend the usefulness of numerical methods within electromagnetics, a number of
better-scaling algorithms have been developed, however there is still great commercial
need for more specific and powerful algorithms in various applications. This work
investigates accelerated solution of integral equations by enhancing two of the most
cumbersome components of such techniques, Matrix Fill Operations (MFO) and Matrix
Solve Operations (MSO), with Fast Fourier Transforms (FFT). It is applied to create a
Galerkin Method of Moments (MoM) numerical electromagnetics algorithm, which reduces
the complexity of operations from the often prohibitively high O(N3), down to O(N log N).
As it is the first to combine FFT usage for both MFO and MSO, the new solver is termed
Unified-FFT (UFFT). Two variants of UFFT are introduced, UFFT-Precorrected (UFFT-P)
and UFFT-Grid Totalizing (UFFT-GT). The first variant, UFFT-P uses the pre-corrected FFT
(PFFT) algorithm [3] for MSO, which includes a geometry projection to allow for basis
functions that do not conform to a regular grid. The second variant, UFFT-GT features the
conjugate-gradient FFT (CG-FFT) [4] algorithm for MSO, and uses a single grid for both

MFO and MSO. This allows for fast calculation near to the numerical precision of the



computer. This chapter establishes some general principles within modeling of
electromagnetics and then other principles more specific to computational

electromagnetics. Additionally, objectives and contributions of the work are identified.

1.1 Electromagnetics Modeling Overview

Electrical, electronics, and computer engineering have benefited from modeling since their
inception as fields. Modeling is often done analytically, numerically, and by measurement,
and generally is inclusive of electrical properties such as circuit theory, full-wave
electromagnetics, and optics, depending on desired frequency range and available
resources. Increasingly, physical factors such as heat dissipation, thermal expansion, and

even fluid flow are being modeled in relation to electronic circuits [5].

This work focuses on accelerated modeling of time harmonic (i.e., sinusoidal wave), full-
wave electromagnetic behavior of circuits that are some significant fraction or some small
multiple of wavelength in size. There are a number of methods with which these problems

can be solved, as depicted in Fig. 1.1-1.
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Fig. 1.1-1. Breakdown of electromagnetics solution methods, from [7].

While some electromagnetic problems can be approximated with optical theory or circuit

theory, those of interest to this work require Maxwell’s Equations to be solved to arrive at a

precise solution. There are numerous methods for this, which can be further broken down

into theoretical and experimental methods. In early application of electromagnetic theory,

experimental methods saw considerable use, notably the development of wireless

communications [6]. However, with theoretical methods becoming increasingly easier to

implement, experimental methods are generally limited to verification of devices that have

already been produced [7].



Theoretical methods, again as shown in Fig. 1.1-1, can be subdivided into purely analytical
methods, model-based methods, computational methods, and computational intelligence
methods. Analytical methods are very accurate and efficient, however they require (both
mathematically and colloquially) complex derivations, e.g., [8]. This generally limits usage
to more easily integrable geometries, e.g., spheres and planes, however their usage can be

combined with other theoretical methods in part as will be seen in Section 2.1.

Model based methods are also useful, whereby a set of governing equations is established
for a particular problem set, and new problems can be solved by setting the appropriate
parameter values within these equations. This is particularly useful for problems involving
cavities/waveguides and/or transmission lines. A comprehensive example as applied to

cavities is found in [9].

Computational methods, one of which is the focus of this work, involve discretizing the
problem geometry and solving a set of simultaneous equations of order N, where N is the
number of discretized elements, thus calculating a solution based on Maxwell’s equations.
These methods are very versatile and generally suffer far fewer limitations as to problems
that can be solved. Accuracy varies from solver to solver but they can be quite accurate
when such is an emphasis of the method [10]. However, as all methods are representing
continuous physics with discrete numbers, they intrinsically suffer from limitations in
numerical precision, typically 64-bit in modern computers without incurring penalties to
the efficiency of the hardware. Computational methods also tend to be expensive, with the

order of operations for modern algorithms often scaling as O(N3).



Finally, there is growing development in computational intelligence methods [7]. These
methods attempt to “train” an artificial intelligence about the nature of the problem and
physics allowing it to “predict” future results. Often this takes the form of an optimization
engine driving repeated analysis of a prior method [11]. These methods are of growing

interest as research progresses; however, they are beyond the scope of this work.

1.2 Full-Wave Numerical Electromagnetics Overview

While there are a number of methods within full-wave numerical electromagnetics, the
nature of the problem yields some attributes shared by all methods. First, a governing
equation must be determined, generally some form (integral or differential, continuous or
discrete, etc.) of Maxwell’s equations. Second, a discretization of the geometry needs to be
done. As the solver is of the numerical type, even continuous equations cannot be solved as
such with a symbolic equation for a solution. This discretization applied to the governing
equation results in a system of simultaneous linear equations in the form of a matrix

equation,

[A][x]=1[b] . (1.2-1)

The width and length of the matrix (and thus number of unknowns, N) is equal to the
number of elements into which the circuit has been discretized (or, interchangeably,

subsectioned). Third, a matrix equation solver must be applied to the system. Finally, post-



processing is done on the resulting solution. This represents, e.g., converting current

distribution data into S-parameters or RADAR cross-sections (RCS) [7].

Within numerical electromagnetics there are three main methods, a number of additional
methods, and countless sub-divisions and derivatives of these. We consider Method of
Moments (MoM), Finite Difference Time Domain (FDTD), and Finite Element Method

(FEM), to be foremost.

1.2a Method of Moments (MoM)

Early examples of the Method of Moments as applied to electromagnetics include the
efforts of E. N. Vasil’ev [12] and R. F. Harrington [1], and it has since become one of the
leading computational methods within electromagnetics [13]. MoM is generally
implemented as a time-harmonic, frequency domain technique, for application exclusively
to linear problems. It is dependent on derivation of a dyadic Green’s function (DGF) (i.e.,
the field due to an impulse current source), which is analogous to a spatial impulse
response of a linear system, and thus relates electric field to current distribution through a

convolution integral, e.g. in [14],
E(F):jwu”]d?’(_}(ﬁ?')-j(?) _ (1.2-2)
Although numerical calculation of the DGF values is often difficult, time consuming, and

subject to error [10], it allows for the creation of an impedance matrix [Z]. The impedance

matrix relates a voltage array [v] and a current array [i] as a system of linear equations,



with one for each subsection of the discretized geometry. For a 2D implementation, this

results in a system of the form,

77 7V || \'%

77 7w || = v | (1.2-3)
where individual matrix elements can be calculated as
Zw_jﬂ(”GWCHUﬁ(ﬁd'VQZJﬂUaEQG3$
N LAY EURCAURAC I i inc : (1.2-4)
S. N S.

i J 1
a,f=xy; i,j=1,..N*"

This is very convenient, as it means that only boundary elements of the metallization need
to be discretized and not entire volumes, radically reducing the number of unknowns.
Indeed, some call MoM the boundary element method (BEM) [13]. However, as this matrix
must include interactions from every element to every other element (and vice versa), this
unfortunately results in a dense matrix. Due to reciprocity [14], the dense matrix is

symmetric which may be exploited.

MoM implementations often feature rectangular patches for subsections, as the derivations
(detailed in Chapters 2 and 3) are more straightforward. However, it is possible to
subsection with triangle patches as well for geometries that are not as conveniently
discretized, at additional computational cost [15]. The current for each patch is one
element of the current array [i] which may alternatively be viewed as an array of weighted
residuals. Indeed, MoM is sometimes referred to outside of electromagnetics as the method

of weighted residuals [16].



1.2b Time Domain Methods

Finite-difference-time-domain (FDTD), initially proposed in [17], is one of the leading time-
domain methods. It greatly contrasts MoM. Instead of solving the frequency domain
version of Maxwell’s equations, it is self-evidently solving the time domain version. Instead
of solving the integral equivalent of Maxwell’s equations, FDTD solves the latter directly in
their native form of coupled partial differential equations. Moreover, as it approximates the
differential operator discretely, no DGF and indeed, no matrix, is required when Maxwell’s
equations are solved explicitly [7], [13]. When they are solved implicitly, a sparse matrix is

constructed which must be solved directly or iteratively.

FDTD is implemented by discretizing the structure into a grid of nodes. The interaction
between each node is calculated at a number of “time steps.” In explicit schemes, timestep
size is limited by the Courant Limit, which in part drives scaling [13], though implicit
schemes also exist which are not subject to the Courant Limit. These methods are
particularly useful for problems where time-based “animation” of physics is necessary, as
well as those featuring sources that are not time-harmonic, e.g., transients. FDTD schemes,
unlike MoM, are able to handle non-linear problems. However, as calculations are not done
in the frequency domain, dispersive materials (i.e., those with real and/or imaginary
permittivity that vary with frequency) are particularly difficult or impossible to handle

with FDTD methods.

A widely used variant of FDTD is the finite integration technique (FIT) originally shown in

[18]. FIT solves all four of Maxwell’s equations in a consistent way, the combination of



which yields a unique solution, which is more stable. Although still dependent on the FDTD

gridding, FIT has also been extended to subgridding [19].

Also among time-domain methods is the finite volume time domain method (FVTD),
allowing for geometries that do not conform to a regular grid, e.g., hexahedrals and
tetrahedrons. It functions by casting Maxwell’s equations into the conservation law, and

then solving the resulting equations. An early use in electromagnetics can be found in [20].

Another branch of time-domain methods includes discontinous Galerkin (DG) method,
originally applied in [21] for solution of the neutron transport equation. It has since been
applied to electromagnetics in, including work such as [22]. The method takes the form of a

combination of Finite Element Method (FEM) in Section 1.2c and FVTD previously detailed.

1.2c Finite Element Method (FEM)

Finite Element Method, while previously extant, was first applied to electromagnetics by
Arlett et al. in [23]. Like MoM, the Finite Element Method can involve a matrix and arrays
representing a linear system to solve Maxwell’s equations. Like FDTD, the FEM solves them
in differential form. FEM is widely used in other computational methods for other branches
of physics, making it more easily incorporated into multiphysics environments. As it is
generally used to mesh entire volumes as opposed to surface boundaries, FEM can easily
handle materials that are inhomogeneous in nature. This volume mesh then solves for the
fields using either a MoM-like weighted residual matrix (albeit a sparse one) or with a

matrix-free variational method [13]. However, discretizing the entire volume of the
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problem geometry greatly increases the number of unknowns vs. surface-meshing methods
such as MoM/BEM, which only have to discretize the boundaries—this is demonstrated
with an example problem between surface meshing and volume meshing tools in Section
4.2. This is amortized, as the matrix equation that is generated is sparse and thus requires
less memory and processing (FLOPS) to achieve a solution. Further, FEM can mesh the

structure as nodes similar to FDTD, or as edge-based, as is commonly done in MoM [7].

1.2d Transmission Line Matrix (TLM), Method of Lines (MolL), and Generalized Multipole
Technique (GMT)

While the previous big three methods make up a large body of conventional EM solvers, the
difficult nature of Maxwell’s equations allows for development of a large number of more
specialized methods and solvers, including Transmission Line Matrix (TLM), which
discretizes circuits as a set of transmission lines, Method of Lines (MoL), which specializes
in waveguide structures, and Generalized Multipole Technique (GMT), which uses

multipoles as basis functions [13].

1.2e Methods behind Numerical Electromagnetics

While the previous subsections review several algorithms used for numerical
electromagnetics at a macroscopic level, it is worth noting some methods that are used
within them. For example, in order to convert continuous operator problems to discrete
ones, Galerkin and point matching methods are often used. For FDTD methods, simple

finite differences are implemented at multiple time steps. For matrix solutions, Gaussian
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elimination and LU factorization with back-substitution are frequently used for direct
solution, and for iterative solution, conjugate gradient and GMRES methods are often
utilized. Fourier transforms can help with time-domain/frequency-domain conversions,

and FFTs are often employed to accelerate fast solvers [7].

1.3 Previous Work in Speed Enhanced Electromagnetics

As full matrix inverse solution of the dense matrices resulting from the methods in Section
1.2 is often computationally prohibitive, there has been considerable development in other
techniques that benefit from enhanced speed and scaling. For example, within MoM solvers
there has been application of iterative conjugate gradient (CG) methods [4], [24] which
reduce processing requirements in solving the system of equations by repeating matrix
vector products in an optimization loop (see Section 3.2), however the dense nature of the
MoM matrix results in memory and operations that unfortunately both scale as O(N?), and
memory requirements actually scale worse than a full solution as preconditioner storage is
added to memory requirements. However, these works enabled a new class of iterative

solvers that employ further enhancements.

For electromagnetic characterization of high-density and/or electrically large planar
circuits there have been several classes of fast algorithms developed over the last two
decades. These methods become increasingly more unique and specific as opposed to the

general methods listed in Section 1.2.
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1.3a Kernel Dependent Methods

Among these fast methods are kernel dependent iterative fast methods, such as multi-level
fast multipole algorithm (MLFMA) [25]-[26]. MLFMA uses a hierarchical representation of
interactions within a circuit to speed matrix-vector multiplies. Those interactions that are
nearer (or at a lower level within the multi-level hierarchy) are computed together.
Interactions that are futher away (or at a higher level) are calculated at another stage, with

lower level interactions being inclusive.

CG-FFT algorithm [4], [27]-[30], accelerates the matrix-vector multiplies with implicit
matrix representation and FFT solve (see Section 3.3a for more detail). Geometries must
conform to a regular grid but can allow higher precision as shown by UFFT-GT in this work.
Another kernel dependent method, Pre-corrected FFT (PFFT) algorithm (a.k.a. Adaptive
Integral Method (AIM) [3],[31]-[35]), is similar to CG-FFT, albeit notably allows for off-grid
discretization and is utilized in the UFFT-P version of this work. It achieves this by
projecting the non-grid-conforming geometry onto a grid, interpolating the results back,

and pre-correcting based on calculations from explicit matrix elements.

Other methods worth noting include the integral equation FFT (IE-FFT) method [36] and
the sparse-matrix/canonical grid (SM/CG) Method [37]. Additionally, speed-enhanced

direct solvers have been extended to finite-element analysis in a deterministic fashion [38].
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1.3b General Kernel Independent Methods

There are several kernel-independent algorithms, such as iterative QR- and SVD-based
compression techniques [39]-[41], iterative [42]-[43], and direct [44] H-matrix based
methods, as well as iterative adaptive-cross-approximation (ACA) method [45]-[46].
Interestingly, ACA methods were originally shown in [47], albeit in a less application
specific and more general mathematical sense. Other methods include iterative wavelet-

based compression method [48].

1.3c Comparisons of Previous Work to This Work

Though the previous group of hierarchical-matrix algorithms can be applied to acceleration
of MoM solutions in conjunction with complex DGFs of layered media and/or perfect
shielding enclosures as in this work, special implementations are required to produce
sufficient accuracy of results for full wave physics [49] and so they are considered distinct.
Conversely, the full-wave algorithms detailed previously, such as MLFMA, PFFT and CG-
FFT, natively retain both accuracy and efficiency in capturing full-wave physics, require
significant and rarely implemented modification for complex media. MLFMA has been
extended to handle full-wave layered kernels in its modification, fast inhomogeneous plane
wave algorithm (FIPWA) [50]-[51], however it does not demonstrate rigorous error
control beyond two to three significant figures. MLFMA has also been extended for the case
of static layered kernels [52]-[53], and rectangular enclosures in the absence of layered
media [54]. This is all in contrast to this work, which can handle full wave physics,
multilayered media, and a shielding enclosure while still exhibiting computational and

memory complexity as a fast solver.
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In the class of FFT-based algorithms, which are most similar to this work, several
modifications of algorithms have been developed for unshielded layered media [26], [55]-
[57]. The attempt of generalizing the PFFT method to the case of shielded stratified media
supported by this work has been made before [58]. This method, however, fell short of
expectations due to the large computational complexity associated with matrix fill
operations (MFO), with only moderate size problems having been analyzed. [ssues in [58]
are remedied here through application of an FFT-enhanced algorithm for MFO developed
by J. Rautio and implemented for rapid MFO in Sonnet® em® [2]. This MFO algorithm is
shown to scale as O(N log N), where N is approximately the number of unknowns
associated with the MoM solution. Additionally, the previously developed PFFT
generalization for shielded stratified media [59] has been further advanced through
introduction of a more accurate method for basis function projection onto the FFT grid
utilizing waveguide mode matching instead of standard multipole reproduction criteria [3].
The PFFT algorithm for fast handling of the matrix solve operations (MSO) has also been
generalized to the handling of both PEC and mixed PEC/PMC types of enclosures.

Additionally, the CG-FFT algorithm may also be used to ensure high accuracy.

Further, FFTs have been used to increase parallelization of MLFMA with the MLFMA-FFT
method [60], and a similar application to GPU clusters [61], though the use of FFT does not
increase the accuracy of the multi-level decomposition. [62] has extended an FFT-based
approach for cavities, similar to this work, albeit for scattering problems as opposed to

circuits.
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1.4 Research Contributions

While there are many previously developed O(N log N) solvers, both research-based and
commercially available, as detailed in Section 1.2, they are either not optimized for use in
shielded-domain electromagnetic problems, incur a significant and at times unsuitable

accuracy penalty, or are subject to some other mitigating factor.

With this work, a speed-enhanced method is developed for shielded domain, 3D planar,
full-wave solution of Maxwell’s equations. It is based on a combination of PFFT or CG-FFT
algorithms applied for MSO and an existing FFT-enhanced MFO algorithm. When paired
together, as shown in the block diagram of Fig. 1.4-1, this is termed Unified-FFT (UFFT). It
is to be proven that this method can perform error-controllable analysis with respect to the

direct MoM solution that scales as O(N log N) for operations and O(N) for memory.

As MFO and MSO are the two main time consuming operations in the MoM solution of the
Electric Field Integral Equation (EFIE), the novel use of FFT-accelerated versions of both in
conjunction creates the Unified-FFT methodology for the expedient MoM solution of planar

electromagnetic analysis in the shielded layered environment.
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Matrix-Fill Operations

Matrix-Solve Operations

(MFO) (MSO)
Sonnet
FFT Enhanced Conventional
MFO MSO

i

PFFT
Conventional
MFO

This Work

FFT Enhanced
MFO

FFT Enhanced
MSO

FFT Enhanced
MSO

Fig. 1.4-1. A breakdown of the components that make up the UFFT-P implementation and the previous

projects from which the components are sourced.

For clarity it should be explained that this is expressly a 3D-planar solver as opposed to an
arbitrary-3D solver. It accepts limitation of simulation capability to predominantly planar
structures, such as those printed on PCBs and ICs, in exchange for more efficient meshing of
the structure. Note that while this generally reduces the number of unknowns significantly
(as demonstrated in Section 4.2), it does not reduce the complexity of the algorithm per

unknown.

Notably, this work develops two methods of UFFT. UFFT-precorrected (UFFT-P) and UFFT-
grid-totalizing (UFFT-GT). These methods allow for more precise control of flexibility vs.
accuracy and differences are shown briefly in Fig. 1.4-2 and detailed in Section 3.1. Note

that the maximum unknowns for UFFT-GT (500 000) are in a simulation example not
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further detailed in this work. Fig. 1.4-1 also applies to UFFT-GT, with the notable exception
of the PFFT block being replaced with an equivalent CG-FFT block. UFFT-P is developed
with a FORTRAN- [63] and MATLAB- [64] coded software package that makes calls to the
existing commercial solver, Sonnet [2]. UFFT-GT is developed completely independently
from UFFT-P as both a new algorithm and new solver. It is written entirely in MATLAB-

[64], Sonnet [2], and SonnetLAB [65] as an interface between the two.

Programming Language
MATLAB

FORTRAN

— | g
Maximum Unknowns Achieved

(" Scaling h

( Accuracy h

g SN py SEE

Fig. 1.4-2. A basic comparison of the two version of the new UFFT methodology.

Chapter 2 of this dissertation explains how FFT is used to enhance the MFO of the solver,
including the K-Matrix formulation. It is detailed first in a general sense, and then in detail
for both UFFT-P and UFFT-GT, as there are small but important differences. Chapter 3
explains how FFT is used to enhance the MSO of the solver. It starts with an overview of the
differences between PFFT and CG-FFT, then it overviews GMRES, the iterative algorithm on

which both are based, and follows that with a detailed description of how the MSO works
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for both solvers. Chapter 4 includes a number of example circuits, which are simulated and
benchmarked against various commercial solvers. Chapter 5 discusses directions that
future research efforts can take which are based upon this work, including some features
that are necessary to be developed for the commercialization of this research. Finally,

Chapter 6 concludes the dissertation.
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2. FFT-Enhancement of Matrix Fill Operations

In this chapter the FFT-Enhancement of the MFO is detailed, as well as a method to perform

the DGF calculation for UFFT in an FFT-enhanced manner.

2.1 Overview of the K-Matrix

This section introduces the K-Matrix, a mathematical device which is used to rapidly
construct matrix elements through the use of FFT. Notably, while some work has been done
with high performance FFTs that sample at non-uniform intervals [66], the fastest and
most reliable FFT algorithms require sampling at uniform intervals. In this case, the FFT
takes place in 2D space across the circuit geometry. As such, a uniform grid is introduced

for basis and testing functions on the geometry, as shown in Fig. 2.1-1.

To better explain the algorithm and usage of the K-matrix, steps are described to calculate

an example matrix element, Z,/, in a Galerkin MoM for roof-top basis and testing functions

by(7) and #,(7) [67] that conform to the aforementioned regular grid. The grid-spanning

waveguide cross-section with Nj divisions from 0 to a (along the x-axis) and M}, divisions
from 0 to b (along the y-axis of the box) and is introduced. Analytic evaluation of the
integrals of basis and testing functions in (1.2-4), followed by reordering of summation as

in [68], produces the following form,
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M,/2-1N,/2-1

nEn_ nmn,  mEm_ MEm
z%= 3% 3 sin—Lsin—~Lcos £ cos L~ (2.1-1)
H 1 =l N, N, M, M, " '
m= n=

where (m,a/M,,nb/N,) and (ma/M,,nb/N,) are the centers of the test and basis

functions, respectively.

Fig. 2.1-1. The clock network example geometry (see Section 4.1) with a close-up view of the uniform grid.

Coefficients k, in (2.1-1) are defined as an infinite double series that can be calculated to

desired precision [68]. This is extremely important for UFFT-GT, as calculating these
elements to double precision is an obvious but necessary step to solving the system of

equations to double precision as compared to the reference MoM solution. These
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coefficients are independent of the locations of test and basis functions and are solely
defined by dimensions of the waveguide and the layered substrate. Using identities

sinx = [exp(jx)—exp(—jx)]/2j and cosx =[exp(jx)+exp(—jx)]/2 for each of the sine and

cosine functions in (2.1-1) we obtain the matrix element in the form

Zxx —
prq

M,/2+1  N,/2
nr(n, —n ) mr(m, —m )
2 z exp|: —]i” :|exp|:j—j\’/’[ q -

m=—M,/2—1n=—N,/2

M, 241 N2 nr(n. —n) ma(m +m )
+ 2 D>, exp| j—L2— lexp| j—LE—L
——M,/2-1n=—N,,/2 N, ] | M, 1 (2.1-2)
M, 241 N2 nr(n +n) C mn(m —m )

+ z z exp j# exp j# o
——M,/2-1n=—N,/2 b

My/2+1  N,/2

+ Z Z exp j% exp j# o
= M,/2-1n=—N,,/2

The matrix element Z7/ in (2.1-2) is seen to be the sum of the four terms, each of which is

in the form of a 2D discrete Fourier transform (DFT). Further, each of the DFTs have
convolution/correlation dependence on the indices defining spatial positions of the basis
and testing functions. Thus, any matrix element can be obtained by first calculating matrix

K™ using FFT as

M,/2-1 N,/2-1 -
Kp= 3 3 e {’ N, }XP[‘] M, }m”:FFT{kmn}; (21:3)
- b - b

for u=-M,/2,...M,/2—-1,v=-N,/2,.,N,/2-1,
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2.2 General MFO Formulation

Calculating the matrix element values from the K-matrix in the previous chapter is simply

Z)CX - KXJC +KXX KXX KXX 2 2-1
pq mp—mq,np—nq mp—mq,np+n m +m np—nq m +m I’l +I’l . ( . )

Note that for indices 1, =M and ", * 1, outside the range -Mj / 2,..,M» / 2 - 1 and -Nj /
2,..Np / 2 - 1, values are calculated according to periodicity of the DGF which is reflected in
the matrix K™ . This calculation scales as O[MpNplog(MsN5)] operations due to FFT, where

Np and M} are the number of discretization cells on the x and y axis, respectively.

Subsequently, all ZZZ matrix elements can be calculated from K* via (2.2-1). In the case of

UFFT-P and other matrix-free methods only O(N) matrix elements Zﬁj& corresponding to

the near interactions need to be computed, as opposed to O(N?) in dense methods, where

the matrix is explicitly stored. Thus, calculation of Z),, requires O[MysNylog(MyNs)]
operations with the proposed FFT enhanced approach. In a similar manner, matrices K,
K”,and K» are computed for evaluation of the remaining three blocks Z*, Z**, and Z” of

the impedance matrix Z in the general form

Zaﬁ _SﬁKr(jzﬁ m ,n_—n +S§K}Zﬁ m ,n_+n
9P q 9P q
+SﬁKZB+ -n +SﬁK}Zﬁ+m Myt , (2.2-2)
P q

where for the case of PEC walls the factors s are given by s; =s =1; 57 =—1, 55 =1;

sy =1, sy ==1; s} =5} =1, and for the case with walls made of PMC the sign factors are

S1 —s1 =1 55=-1, 55 =1; sf=-1,5)=1; 5; =s; =1, where B denotes the source basis
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function orientation, x or y. In the case of UFFT-GT, no matrix elements are explicitly
calculated from the K-matrix, however it is still used to generate the implicit matrix as

detailed in Section 2.4.

2.3 UFFT-P Matrix Fill

UFFT-P is the first fast solver algorithm that combines FFT-enhanced MFO with MSO
operations. It uses conventional Sonnet for MFO and the pre-corrected FFT (PFFT)
algorithm for MSO. The PFFT algorithm uses a projection and interpolation to put
geometries which may or may not apply to a regular grid onto a regular grid, which allows
for fast solution with FFTs. This projection and interpolation, however, introduces
additional error to the simulation. While the general MFO algorithm from Section 2.2 is
directly applicable to the evaluation of the matrix elements in the MoM formulation with
geometry conforming to a regular grid, it can also be used for a more general DGF
calculation. For example, in implementation of MoM with off-grid meshes, as used in UFFT-
P, it allows for the DGF to be calculated in an FFT-enhanced manner as opposed to slower
methods such as discrete complex image method (DCIM), detailed in Appendix B. In this
case, taking as basis and testing functions in (1.2-4) the delta-functions located at the nodes

of the regular grid, i.e.,

nqb s
YN

e
x———\0

BY(F)=0 2

M mpa
,Zp(?’)=(§ X—V

npb
Y——="=1

and doing a summation reordering according to [68], we obtain the representation for the

Green’s function samples on the regular grid in the same form as (2.1-1)
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MR2-IN2-1 uin
XX _ . p - q p q _xx
G, = 2 2 sin I sin cos cos Lo - (2.3-1)

m=1 n=1

By casting (2.3-1) into the DFT based representation similar to (2.1-2) we can calculate the

Green’s function for any pair of observation and source points on the grid as

G¥ =™ +re +re +r 2.3-2
rq my, =, =, mp—mq,np+nq mp+mq,np—nq mp+mq,np+nq; ( . )

where the generating matrix I'™ is defined on the regular grid as
I = FFT{g"}
similar to (2.2-2). From a matrix of regular grid samples I'™ the values of function

f”(x,y) at any arbitrary location on x €[0,2a], y €[0,2b] can be obtained via 2D

interpolation [69]. Following similar procedure for other components of the DGF we obtain
the following continuous dependence of the DGF on the source and observation point

coordinates

G“ﬁ(x,y;x',y') = sfF“ﬁ(x—x',y— y')+sfF“ﬁ(x—x',y+ ")

+s T (x+x,y= )+ TP (x+x,y+y") (2:3-3)
Equation (2.3-3) can be utilized in evaluation of the impedance matrix elements in MoM
defined on non-uniform meshes using standard quadrature rules. Sign factors § in (2.3-3)
are the same as in (2.2-2). The proposed approach is appropriate for evaluation of the
matrix elements in pairs of source and basis functions which do not encounter the DGF
singularity. The matrix elements involving integration of the DGF singularity in the case of

non-uniform mesh based MoM can be evaluated via direct summation over waveguide

modes in (1.2-4) after the surface integrals are evaluated analytically. Alternatively, the
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static component of the DGF can be first extracted from the waveguide DGF spectrum using
Discrete Complex Image Method (DCIM) [70], [71] prior to its casting to the form (2.3-1).
Subsequently, the infinite series of the static contribution can be calculated as described in

Appendix B [72]. Another related PFFT technique is found in [73].

2.4 UFFT-GT Matrix Fill

UFFT-GT, as previously described briefly, is a variant of UFFT which uses the CG-FFT
algorithm for MSO. This allows for fast analysis with no additional error beyond the direct
MoM solution. As mentioned, a uniform grid is first overlain on the circuit geometry
situated in the general multilayered medium transverse to the box formed by the side-walls
of a rectangular enclosure, as shown in Fig. 2.1-1. There are a total of M,, cells across the
height of the grid and N, cells across the length of grid, which lies in an XY-plane at a point
on the Z-axis where two of the stratified dielectrics interface, with the plane containing the
metallization of the circuit. Note that grid dimensions may be defined arbitrarily in both
dimensions, even for cells with wide aspect ratios, though they must sample at uniform
intervals for proper FFT usage. This uniform grid is the same as in the MoM implemention
of Sonnet’s EM engine [2]. This grid is used for FFT-application to perform MFO to machine
precision in O(N log N) operations. The MoM impedance matrix fill and storage, however, is

considerably different from that of a conventional MoM impedance matrix.

Rather than filling the traditional MoM for given circuits, the UFFT-GT method relies on the

translational invariance property of the DGF previously noted. It is quite similar to the
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K-matrix based conventional MFO in Sonnet, however it is used to store the matrix in an
implicit fashion. Indeed, all possible interactions within the totalized grid are represented
indirectly, as opposed to just those for where metallization is present. By storing all
interactions, (considerably more information than is present in even a dense O(N?) Sonnet
matrix, despite considerably less storage space), and separately storing each of the four
convolution and correlation terms from the translational invariance of the DGF, one arrives
at a set of large 4D Toeplitz and Hankel matrices, for which 2D analogs (as are used in this

work), and their 1D representations (as are stored) are of the form

Ay = Qpim1 (2.4-1a)
Bnm =brim_1 (2.4-1b)
Crm = Cnomas1 (2.4-1c)
Dy =dp it (2.4-1d)

where A and B are Hankel matrices, and € and D are Toeplitz matrices, and a, b, ¢, and d are

the arrays that represent them implicitly.

Calculating and storing all elements of these 4D matrices would indeed yield far higher
storage and computational requirements vs. a traditional MFO, however, as this abstraction
has composed matrices into strictly 2D Toeplitz and Hankel ordered structures, all

matrices are both calculated and stored merely as a single row. This, and (2.4-1), are
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demonstrated in Fig. 2.4-1 for a 2D Hankel type matrix, where elements beneath the anti-

diagonal are unimportant and not shown.

Hankel Matrix (A)
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Fig. 2.4-1. Example of the implicit storage of one of the 2D Hankel-type matrices, 4.

Conventionally the matrix takes the 2D Toeplitz form natively for circuits that are one-
dimensional and discretized along the entire length, e.g., the case of a dipole wire antenna.
For two-dimensional circuits, this translates to 4D Toeplitz and Hankel type matrices. For
this work, however, matrices are down-converted to 2D, with its unique elements stored in
a single dimension as in Fig. 2.4-1. The physical distribution of the indexing of the 1D
generating array (the first row of Fig. 2.4-1, with four forms referred to as in (2.4-1) as a, b,
¢, or d, depending on term)—is depicted in Fig. 2.4-2; all interactions between a single
source subsection and all possible observation subsections across twice the box cross-
section are shown. Book notation is used for the matrices with operators that feature

convolutions or correlations exclusively and reverse is used for matrices featuring both
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operators. Note that while this ordering shows the general form, there is some padding and
rearranging necessary to ensure Toeplitz and Hankel form in this scenario. The specific
ordering is beyond the scope of this document, however, it can be recreated by generating
all possible interactions (and not just those of a single source subsection), with each new
source subsection position filling an additional row of the set of matrices as depicted by Fig.
2.4-1. Areas of the matrix that do not adhere to the Toeplitz or Hankel format, for example

those caused from box-wall half-subsections, vias, etc., can at this point be reordered until

they do.
obs, 1
Box Width 2 orse
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= S16 {7 18 i3 2
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Fig. 2.4-2. Ordering of the Toeplitz and Hankel matrices converted to 1D.

Atotal of Ngyrgys = 4DP? of these matrices, (stored, calculated, and henceforth referred to
as ‘arrays’), are obtained, where D represents the number of tensor elements in the DGF
and P represents the number of planes. Note that 4 represents the number of Toeplitz and

Hankel arrays into which the impedance matrix elements are decomposed, where one of

and Z format to ensure proper

0ok reverse

each of the aforementioned types is stored in Z,

matrix structure. Note that for 2D problems, D = 4, representing x-directed source and x-

directed observation interactions, x-directed source and y-directed observation
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interactions, y-directed source and x-directed observation interactions and y-directed
source and y-directed observation interactions. For 3D problems, D = 9 to account for the
additional tensor elements. It is also theoretically possible to make the reduction D = 3 for
2D and D = 6 for 3D by way of reciprocity theorem [1]. Unfortunately, while this does
reduce memory requirements, due to the way indexing is performed when translating
current and voltage data into the Toeplitz/Hankel format (which must be done at every
iteration of the simulation), this memory savings greatly increases computational

requirements and is not practical. These arrays are each of length

Xlength = 2]Wb(ZNb + 1)
YViength = 2Ny (2Mb + 1) (2.4-2)

Zlength — 2My,2Np,

where x, y, and z represent the direction of the observation basis function, and with the
overall lengths being theoretically irrespective of source observation basis function
direction. The additional +1 term is due to the presence of subsections that must cross the
box wall. In practice, the arrays stored are slightly longer and vary with a small amount
with respect to source observation direction; this is so as to allow padding for optimum

performance accessing memory during FFTs.
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2.5 Matrix Element Reconstruction for UFFT-GT Preconditioning

Preconditioning, a process used in conjunction with GMRES (see Section 3.2), is used to
help provide expedient convergence and solution of the simulator. Preconditioning
generally involves taking an inverse, an LU decomposition or otherwise, of a sparse
representation of the MoM impedance matrix. Sparse elements are selected based on
geometric proximity or other physical and numerical criteria, and might represent 0.1-2%
of the content of the full matrix. Unfortunately, with the matrix stored implicitly, none of
these elements are directly available to be used. This has two implications:

1. Matrix elements for the preconditioner must be selected based on criteria other
than their respective complex values; as such data is not available during the
selection process. Instead, criteria such as geometry proximity must be used.

2. The matrix elements must be calculated.

The solution to (1) is straightforward—elements are selected based on the geometry
proximity of the two basis functions interacting, which can be calculated from the available
circuit geometry data. For (2), there are two potential solutions. It is possible to do one of
the following (A and B):

A. Calculate the impedance matrix elements directly from the K-matrix (See Section
2.1).

B. Reconstruct matrix elements from the implicitly stored matrix, i.e., the Toeplitz and
Hankel arrays.

C. In UFFT-P, the pre-correction near part may be used as the preconditioner.

For UFFT-P, (C) is the clear choice as it reuses data already stored. For UFFT-GT this is not

an option as there is no pre-correction. Neither (A) nor (B) is without complication,
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however, as the K-matrix is not directly accessible in MATLAB, the development time for
(B) was predicted to be lower. For UFFT-GT, (B) is implemented, however it is found to be

easier to develop at a penalty to runtime performance.

Recalling that the matrix is stored as in Fig. 2.4-1, the process of element reconstruction is
essentially finding the equivalent 1D index in the Toeplitz and Hankel implicitly stored
matrices that corresponds to the 2D index in the explicitly stored matrix. An example is

shown in Fig. 2.5-1 for matrix element A43.

A, ;> a, lookup procedure
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Fig. 2.5-1. Partial reconstruction of example matrix element Z,; within the associated Hankel implicit matrix,

A.

Note that the indices 4 and 3 each have a second mapping between Toeplitz and Hankel
matrices (representing a 1D subsection array converted via the book and reverse notations)
and the original dense matrix, as detailed previously in Fig. 2.4-1. This operation is

performed for both Hankel matrices, 4 and B, corresponding to the appropriate
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plane/plane and source-direction/observation-direction set, and then a similar operation
is performed for both Toeplitz matrices, € and D, in the same set. The resulting four values
are summed to reconstruct the matrix element, which for the case of Z,,,, = Z, 3 yields,
Z,3=ag+ bg+c; +dy, (2.5-1)

where 4 and 3 are indices in a two dimensional matrix of Toeplitz or Hankel form, and a, b,
¢, and d, are the associated 1D arrays representative of the appropriate axis-axis
arrangement (e.g., Z%) and Z,, ,,—which contains the same content but has indexing
independent of Z,, ;,—is the Z matrix indexed in the positional fashion. Indexing for n and m
correspond to indices in Fig. 2.4-2, where n and m are the observation and source indices,
respectively, (for example, m = 1,..,20, and n = 1,...,20 in the case of Fig. 2.4-2). A direct
relation between n,m and p,q can be determined. In the general case,

Zym = Qnim-1+ bnim-1+ Cnomer +dymin (2.5-2)
The equivalent implicit matrix index is found based on the recurring structure of the
Hankel matrices. The source subsection represents the column in the matrix, and the field
subsection represents the row (or vice versa where reciprocity is applicable). The
intersection point of the two is an implicitly stored element which is not directly in
memory, however, in the case of Hankel, it is on the anti-diagonal of an element that is
stored, and the anti-diagonal is essentially traced back to find the element. In this case, this
component of the interaction between subsections 4 and 3 is the same as 5 and 2, is the
same as 6 and 1, etc. This is repeated for all Hankel matrices and the elements are summed.
[t is then repeated for all Toeplitz matrices (with the exception of tracing the diagonal and
not the anti-diagonal) with these terms further summed, at which point the matrix element

has been calculated. Unfortunately, while this process is more simple to develop,
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performing these indexing and lookup operations in interpreted MATLAB code was found
to be low performance. This is because significant flow control and single-threaded
operations are required, which performs slowly in MATLAB as they must be interpreted, as

opposed to FFT routines which MATLAB links to compiled routines.

In summary, Chapter 2 has described the mathematics and logistics necessary to
implement FFT-enhanced MFO within the context of both variants of the UFFT algorithm.
This includes introducing the K-matrix, a convenient way to store and access Green’s
function data that is calculated with FFT. Also introduced is the MFO formulation for the
technique for the implicit matrix storage, with a detailed mathematical description
including PEC and PMC shielding enclosures. Further, the specifics as MFO relates to both
UFFT-P and UFFT-GT are discussed. For UFFT-GT, it is convenient to explain the format of
the implicit matrix with some details of matrix-vector products and FFTs, which are
included. For UFFT-P, as there is a projection onto an additional grid of delta sources, the
mathematics are included for this as well. Finally, a method to reconstruct full, explicit,

matrix elements (impedances) from the implicitly stored matrix is explained.
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3. FFT-Enhancement of Matrix Solve Operations

In this chapter, the two methods for FFT-enhanced MSO used in this work are detailed.
These methods are UFFT-P, with MSO powered by PFFT, and UFFT-GT, with MSO powered
by CG-FFT. UFFT-P was developed first in this work, and the improvements made with the
transition to UFFT-GT are detailed in Sections 3.1a-c. Notably, both methods of FFT-
enhancement are dependent on the solver being of the iterative type. Section 3.2 contains
an overview of one of the leading iterative solvers, generalized minimum residual

(GMRES), which is used in this work.

3.1 Conjugate Gradient (CG-FFT) vs. Pre-Corrected (PFFT) FFT.

It is perhaps most illustrative to start by comparing the similarities of PFFT and CG-FFT.
First, both are ultimately fast, matrix-free methods designed to solve matrix-vector
products within iterative solvers. They are both able to compute the result of a matrix-
vector product without explicitly storing the entire matrix, and whilst performing fewer
operations than a conventional O(N?) matrix vector product. Indeed, they both scale as
approximately O(M,Nylog M,N,) . For EM method of moments (MoM) application with
PFFT and CG-FFT (the algorithms theoretically can be used outside of electromagnetics
given an appropriate problem set), the implicitly stored matrix for both is the impedance
matrix, a.k.a, moment matrix. The vector is explicitly stored and contains current
information about the circuit. Thus, the result of the matrix-vector product is simply a
voltage array, which is solved in an optimization loop, in this case, GMRES, until port

excitations are achieved.
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Functionally, the main distinction of CG-FFT is that it successfully replaces the O(N?)
matrix vector products of traditional GMRES implementations with O(Mylog M, Nylog N,)
matrix-free-vector-products, where M, and N, are the number of grid elements across
the box, without adding any significant error beyond machine precision (typically 10-12 or
so for MoM implementations). Given that GMRES itself allows for user-defined precision up
to nearly machine precision levels, this means that CG-FFT introduces virtually no error as
compared with a full, 0 (N?) LU-decomposition solution, while being several orders of
magnitude faster. Notably, CG-FFT must operate, in effect, with more unknowns for the
matrix vector product, in that M, N, > N, sometimes substantially. This is because of the
way that CG-FFT algorithms break down the impedance matrix into a set of smaller
Toeplitz and Hankel matrices, each of which is defined by only a single row and column.
However, in terms of preconditioning and optimization space, the number of unknowns

remains N.

PFFT was developed as a solution to allow for off-grid basis functions such as those in [15].
This allows for more efficient meshing of the structure and an associated reduction in
unknowns, and for potentially increased speedup for some geometries even as compared
with CG-FFT, although, it is unfortunately not possible to do so without conceding some
degree of accuracy of the result. PFFT accomplishes this capability for off-grid basis
functions by projecting the geometry onto another FFT grid and performing a traditional
CG-FFT-style matrix vector product, then interpolating the results back onto the original

geometry. While this is a good approximation for far interactions, it is not a good
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approximation for near interactions. Thus, it is necessary to do a “pre-correction,” (the
namesake of the technique), whereby interpolation results for near interactions are

replaced by accurately computed results, as
ZX=721" A+ 2" A =21" A+(Z-1-2"" 1), (3.1-1)

In this sense, PFFT can more accurately be viewed as being O(M,N,log M, N,) +
O(N Zpre_corr_), thus, it is actually less efficient (in addition to being less accurate) for

geometries which do not require non-grid conforming subsections.

An important distinction between UFFT-GT and UFFT-P is that the UFFT-P codebase was
originally written in FORTRAN, while the newer UFFT-GT codebase is written in MATLAB
for coding efficiency. Thus, when comparing the two, there is an additional factor to
consider. Porting the UFFT-P codebase to MATLAB would provide more meaningful results
for performance, however, that is a large and difficult task beyond the scope of this work.
Moreover, the main comparison between the two is the accuracy of the solvers, to which

the difference in language contributes significantly less than the algorithm itself.

3.1a Accuracy Improvements of UFFT-GT

The most notable improvement made transitioning from UFFT-P to UFFT-GT is accuracy.
Notably, full precision as compared to Sonnet [2], an extremely accurate numerical
electromagnetics tool [10] is desired, as this is fundamentally the most accuracy possible
while using Sonnet’s FFT-accelerated MFO. While it is certainly possible to make a UFFT

implementation based on other MFO techniques, there are no other FFT-accelerated
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methods available for use, and developing or getting access to another FFT-accelerated
MFO would significantly delay the development of a unified technique. Sonnet cedes only
two components to accuracy—the first, the discretization, is endemic to most or all forms
of numerical electromagnetics and well controlled by subsection density. The second is
numerical precision or quantization, which is endemic to the machine on which

computation is done, typically 64-bit.

UFFT-P has these limitations but introduces a further set of three limitations:
1. Iterative solver convergence (the residual between the calculated voltage array of
the last iteration and the initial port excitation voltage array).
2. Impedance matrix element error due to projection of the geometry.
3. Impedance matrix element error due to interpolation of the geometry.
These are all removed in part or in whole with the UFFT-GT algorithm, which eliminates
the projection entirely and can benefit from better convergence due to the removal of

noise.

3.1b Memory Usage Improvements

While memory usage of UFFT-P performs better than conventional Sonnet as well as an
MLFMA solver as demonstrated in Chapter 4, there is room for improvement. The pre-
correction of matrix elements necessitates that the matrix be stored implicitly (in the set of
Toeplitz/Hankel matrices detailed in Chapter 2), but also the pre-correction sparse matrix
needs to be stored. This matrix typically has a density that is a small percentage of the

O(N?) matrix—typically around 1% in the examples of Chapter 4—however, this can be a
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large percentage of the implicitly stored matrix and thus leaves a large amount of room for
improvement. UFFT-GT does not need to store any pre-correction matrix thus reducing
memory requirements, although this advantage is somewhat mitigated by the fact that

UFFT-GT still does require storage of a preconditioner sparse matrix.

3.1c Multilayer and 3D Planar Support

The UFFT-P implementation is limited in that it only supports simulation of planar
geometries. This is a limitation of the developed codes as opposed to theory. Given the
many other benefits of researching UFFT-GT, research on UFFT-P was halted for UFFT-GT.
As such, the ability to simulate many layered structures with interconnecting vias was not
added to the UFFT-P code, though there is still value in such a development as UFFT-P
allows for off-grid discretization. 3D planar support has been added to the UFFT-GT code,

however, and is detailed in Sections 3.3c-d.

3.2 Generalized Minimum Residual Method (GMRES) Specifics

[t is noteworthy that both PFFT and CG-FFT are methods to perform fast matrix products.
As such, to form a complete solution to the EFIE, it is necessary to perform these
accelerated matrix vector products inside of an iterative framework that converges to a

solution.

Typically, numerical electromagnetics solvers have been direct. This is to say that, e.g., for

MoM where matrix equation [A][x]=[b] is cast into [Z][i] =[V], the matrix [Z] is
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calculated and inverted. [Z ]_1 is directly calculated, which allows for the solution

[i(1=[Z]'[V] to be calculated easily.

By contrast, iterative solvers calculate [Z][i.,. ]=[v,,. ] inside of an optimization loop,

iter
where many [Z] [iiter] matrix vector products are calculated with [iiter ] being adjusted

until [Z][i,, ]1=[Vv].

3.2a Overview
The Generalized Minimum Residual method (GMRES) is an extremely popular iterative
solver algorithm. It is a Krylov subspace method that can be used to solve systems of linear

equations. It is most often applied to sparse matrices, however it can be applied to dense

matrices, like those from MoM, as well. As applied to Mo, it calculates [Z][l'iter] = [Viter]
many times, and at each iteration, produces a residual, 7, = [Z ][l'iter] —[v], which is
minimized throughout the process. The solver is driven to continue until 7, , essentially an
error term, reaches some prescribed level [74]. A common setup within electromagnetics
mightbe 7, = 107 to achieve accuracy of about 1% in interactions at a level of -60dB.
However, useable high error results can often be obtained with a residual as high as
=10"". With UFFT-GT, it is commonly possible utilize results of converge to =107"

]/;'ter r;'ter

or better, as both MFO and MSO are accurate to this precision.
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Maxwell’s equations can easily give rise to matrices which are not well conditioned. This

means that reaching a tightly defined tolerance may require excessive iterations, or worse,
could be impossible to reach. As GMRES convergence is monotonic, any iteration that does
not improve the residual denotes a stagnation—a failure which halts the algorithm [74]. So
as to ensure good convergence, it is often necessary to improve the condition of the matrix

through use of a preconditioner.

3.2b Preconditioners

Preconditioners are essentially sub-algorithms, which generate a sparse (or more sparse)
representation of the matrix that is applied to the main matrix so as to attempt to improve
the condition number of the matrix. During iteration, they are applied to the matrix,
attempting to move eigenvalues to locations where GMRES can more easily converge [74],
i.e, narrowing the spectrum of the matrix, although there is no guarantee of efficacy for any
given preconditioner type. Preconditioners are often applied as matrices, M, filled up as the
solutions of sparse representations of the impedance matrix [Z]. They are multiplied by the

matrix vector product, as
[MT'[Z][i1=[M]"'[v]. (3.2-1)

As the solution of the preconditioner itself must be calculated, stored, and applied to the
matrix at every iteration, the complexity of the preconditioner inversion must be weighed
against the benefit provided to convergence for maximum speed increase. This often
results in not only sparse matrix representations, but also methods to solve sparse

matrices that themselves produce sparse matrices—the full inverse of a sparse matrix itself
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is often far denser. Note that there are multiple methods for the solution of [M]. These
include direct LU factorization, incomplete-LU factorization, sparse-approximate inverse,

and more [74].

The most simplistic yet still effective preconditioner for MoM is generally the Jacobi

preconditioner,

(M )] = diag ([Z]). (3.2-2)

The Jacobi preconditioner is a very sparse matrix, where inverse is easy to calculate and is
equally sparse. Further, it includes all self-impedance terms of the moment matrix as they
are all on the diagonal. However, for large and complicated problems, it is seen in this work
to not be sufficient for good convergence, as the number of iterations required to converge
approaches the number of unknowns, and thus impacts scaling too greatly. In general for
this work, a preconditioner is considered effective if it can converge in fewer than 50
iterations. Unfortunately, no examples in this work meet this criterion with no

preconditioner or even a Jacobi preconditioner.

A more effective preconditioner, particularly for problems that are on the order of a
wavelength or more, is the near-interaction preconditioner. The near-interaction

preconditioner identifies all subsection interactions that are less than a threshold

A : . e
wavelength, e.g.,, — , apart. All impedance matrix elements that meet this criterion become

part of a sparse matrix, from which a solution is generated. The near part preconditioner is
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used most often in this work, and unless explicitly stated otherwise can be assumed for use
in all examples. The density of an example near-interaction preconditioner is seen in Fig.
3.2-1 for the 4 000 unknown variant of the example demonstrated in Section 4.1.
Preconditioner density for examples considered in this work ranges from approximately

0.1% to 2%.
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Fig. 3.2-1. The density of the near part preconditioner for the example in Section 4.1.

Convergence of the resultant matrix equation generally is faster as the radius of near
subsections is increased. Ultimately the near radius can be always made sufficiently large
to ensure convergence in any desired number of iterations. Indeed, taking the entire matrix
as preconditioner ensures convergence in a single iteration. Even though the general trend
is for the larger radius to produce a faster convergence of the iterative solver, in some

particular cases this trend does not hold for reasonable near radius values and becomes
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apparent only when near radius becomes excessively too large to remain practical. In
addition to storage considerations, larger preconditioners can make the time spent
applying the preconditioner—which must be done at each iteration—surpass that of the
matrix vector product. Thus, it is best to use as small a radius as possible that will still

achieve convergence.

The condition of the matrix, with subsectioning constant, generally gets worse as frequency
goes down, as shown in Fig. 3.2-2. As the geometrical size of subsections is unimportant
when compared to the electrical size, this is effectively demonstrating performance with
frequency as well as performance with discretization density, without influence from the
number of unknowns. Note that this data is for the capacitor example in Section 4.2, and
that data is a courtesy of Matt Thelen of [2]. The figure contains data for multiple
simulations across a broad frequency band and is not the convergence of a single
simulation. Note that the flat line at 122 total iterations represents an iteration cutoff limit;

convergence is not achieved at these frequencies.
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capacitor (Section 4.2)

140

100 - \
80 \'\
60 \’\v
40 \\
\_,-\

20 —

Total Iterations

0 0.2 0.4 0.6 0.8 1 1.2

Frequency (MHz)

Fig. 3.2-2. Convergence of the example in Section 4.2 vs. frequency. Data courtesy Matt Thelen of [2].
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Small electrical size of the structure inevitably causes small electrical size of the basis
functions. A key idea of [75] is leveraging the Calderon identity to turn the unbounded
spectrum of the EFIE to the bounded one. This eliminates the low frequency breakdown
described here, which is not mitigated by the near-interaction preconditioner. As such, it is
also generally advisable to use as coarse a grid as possible to achieve the desired accuracy.
In practice, it is not a suitable solution to increase the frequency of simulation to achieve
better convergence. In this work, however, it is used sometimes as a short-term solution to
improve convergence for more finely discretized examples. This is considered acceptable
only because this work focuses mainly on algorithmic efficiency as opposed to the efficacy
of preconditioners. To mitigate the effect of low frequency breakdown for simulation in
practice standard techniques based on loop-tree decomposition [83] of the MoM basis

functions and the Calderon Multiplicative Preconditioner can be applied for this work.

It is further noteworthy that, depending on the numbering of the subsections, the form of
the sparse matrix can be radically shifted. Important and close interactions do not
necessarily end up close to the self-impedance diagonal of the matrix. However, sparse
matrix algorithms generally perform better when the sparse matrix density is closer to the
diagonal [76]. As mentioned previously, the inverse of a sparse matrix is often denser than
the matrix itself when, e.g., the first row or column is very dense. Thus, for maximum
performance of the preconditioner, it is often beneficial to sort the matrix to achieve a more
sparse solution, particularly if the density of the matrix exceeds approximately 15% as has

been found in this work. Fig. 3.2-3 shows the same 269 628 non-zero element
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preconditioner as Fig. 3.2-1, albeit sorted such that elements are closer to the diagonal.
This is sometimes called a “banded” version of the matrix. A popular algorithm for such

matrix banding is found in [77].
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Fig. 3.2-3. The same preconditioner as Fig. 3.2-1, however, it is sorted to produce a banded matrix.

There are any number of possible types of preconditioners that can be made specific to the
type of problem. When creating such preconditioners, it should be possible to use singular
value decomposition [76] (a.k.a., principal component analysis), essentially, a matrix
decomposition that gives information about the respective eigenvalues, to gauge the

potential usefulness.

3.3 Conjugate Gradient Method and UFFT-GT

It is notable that, as iterative methods require only the result of the matrix-vector product,

[v]=[Z][{], it is possible to calculate this result without ever storing [Z] explicitly. This type
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of method is called a “matrix-free” algorithm. Through utilization of the periodicity of the
DGF as applied to MoM, it is possible to decompose the matrix into a set of Toeplitz and
Hankel ordered arrays. These arrays can be vector-vector multiplied with [i], along with
some signal processing, to produce the desired result in O(NyM; log NpMj) operations [76].
Although presented first due to the more simplistic nature of the algorithm, it is
noteworthy that UFFT-GT was developed secondary to UFFT-P (Section 3.4) as a vehicle to

reduce simulation error. Additionally, it was implemented as a completely new codebase.

3.3a Implicit Matrix Setup, Structure, and Multiplies for MSOs
The electric field integral equation (EFIE) for this implementation of UFFT-GT starts in the

form

b a _ N —
t- J J G(x,x',y,y')-J(x',y’)dx'dy'=t-Emc (x,y), (3.3-1)

»'=0x'=0

where { is the tangential unit vector to the surface of the structure, x€ [0,a],y€[0,b], and

(:;(x,x‘, v, y') is the dyadic Green'’s function of the multilayered medium situated

transversally to the axis of a rectangular waveguide. The Green’s function can be

represented as a sum of four terms according to the image theory [24] as follows;

(:}(x,x',y,y')z G~ (x—x',y—y')+ G (x—x',y+y')

\ _ (3.3-2)
+G* (x+x',y— y')+ G" (x+x‘,y+ y')

where the dyadic product representation of G for planar examples is

G = ﬁﬁGxx + )A(}A'ny + yfiny + §’§’ny + ... ' (3.3-3)
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noting that there are five terms involving z components not shown as they are unused and

not calculated or stored for planar examples. The current discretization is of the form

_ M,~1N,~1 — M,~1N, -1 —
J(x',y') = Z z J. B (x'— X Y= yn,)+ Z z J B (x'—xm.,y'— yn,), (3.3-4)
m'=0 n'=0 m'=0 n'=0

with the circuit being discretized over the entire M5 x Ny box, where J, . . is the weighted
residual within MoM, and B are the basis functions. While J . . is inherently zero at

indices where there is no metallization, all possible basis functions (E) are used at this
level so as to leverage their periodicity. “Empty” basis functions where there is no current,
however, are not treated as unknowns with respect to the overall solution. Combining (3.3-
4) with (3.3-1), effectively applying our linear operator (EFIE) to the discretization, yields a
discretized form of the EFIE featuring a dyadic Green'’s function (DGF),
b a — [ M~1N,-1 _ _ _
t .[ J G'{ 2> (invn-B;'n' + J,ﬁ-n'Bfn'n'ﬂdX'dy' =t-Eu(x,y). (339
7'=0x'=0 m'=0 n'=0

The MoM is implemented as a Galerkin method [1] so as to benefit from electromagnetic
reciprocity and resultant matrix symmetry, and applying (3.3-5) as an inner product with

the same function used for basis function results, for x and y,
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b a ,__ b a [ M-IN,-1 . .
| (Bfmj- | J.G-{Z z(J:;,n,Bfnvn'+J;,n,B,ynvn'ﬂdx'dy'dxdy

y=0x=0 y'=0x'=0 m'=0 n'=0
b a , _

= J '[(B;n)-Emc(x,y)dxdy
y=0x=0

i o, (336
jj(Bj j JG{ZOZOK Buw+J?, anﬂdx dy'dxdy

y=0x=0 y'=0x'=0

where the right-hand-side (RHS) of (3.3-6) reduces simply to the voltage V', and V)

_jj(m),mxﬂﬁ@
y=0 x=0

mn’

respectively. In order to arrive at a linear operator that may be applied in the fashion of an

impedance matrix, (3.3-6) is reordered as

M,~1N,-1 a _ —
B - G B dx 'dy'dx dy
m'=0 nO( yjo x‘[O yJ.OxJ.O
[7 -1N /, -1 a _
+ JJan-ijB dx'dy'dxdy |=
m=0 n'= y=0x=0 y'=0x'=0
M,~1N,-1 a —, : (3.3-7)
ZJmnjijn-ijB xdydxdyj
m'=0 n'=0 y=0x=0 y'=0x'=0
M,—-1N, -1 a _
+ JJan-ijB dx'dy'dxdy |=
m'=0 ”O[ y=0x=0 y'=0x'=0
The integrals in (3.3-7) are more conveniently represented as impedance matrices, Z, as in
M,-1N,-1 _ _
Z ' lel V ny 1 lJyl 1 = Vx
| mnm n mnm n mn
m'=0 n'=0
M M e ) - . (3.3-8)
Z ' |J n' Z ' vJyv ' = Vy
| mnm n mnm - n mn
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Due to decomposition of the Green’s function according to (3.3-3) each of the ‘xx’, ‘xy’, ‘yx’,
and ‘yy’ blocks the above system of linear algebraic equations (SLAE) can be cast into the

form of 2D correlations/convolutions as demonstrated below for the ‘xx’ component of the

SLAE:
M,~1 N,
XX __ XX X
an - 2 zZmnm'n'J o
m'=0 n'=0
M,~1 N,
Z, ot Z Z Z rin i+
m—m',n— n m—m';n+n'" m'n
m'=0 n'=0 m'=0 n'=0
M—1N,-1 M,-1N, -1
XX X
2 2 m+m',n— n m'n '+ 2 2 Zm+m',n+n"]mvnv (3.3-9)
m'=0 n'=0 m'=0 n'=0

[t is now beneficial to examine the terms for the impedance matrix in detail, from which the
periodicity necessary to perform the proposed CG-FFT algorithm hails. As an example, we

find elements which couple x-directed sources to x-directed observation points
corresponding to the G (x -x',y— y') component of the dyadic Green’s function,

2= | (B (=00

Yprkay X, +ax _ T . : (3.3-10)
j J x—x',y—y')-B (x'—xm,,y'—yn,)dx'dy'dxdy

T AY X, —AX

Letting é":x—xm, 77=y—yn, f':x'—xm., 77'=y'—yn,,and dx=d§, dy=d77,

dx'= dé", dy'=dn', (3.3-10) can be rewritten as
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Z T“TdédnB (&)
_Aj J_[ (£+x,) (5'”»1')’(’7_yn)_(”'_ynv)]'l_gx(§'=77')d5'd’7', (3.3-11)

which is further rewritten so as to produce convolution-correlation pairs as

ze o= | [aédnB (&n):
sy ax o . (3.3-12)
[ [ 6[e-&%Axm—m)n—n+avin—n) B (&.0)dE dn'

—AYy—aX

With a complete Z;f/ calculated and stored, it is conveniently possible to exploit the

periodicity of gg:x—xm' §'=x"=x, N=y-J, and 1'=y'-y ., andasaresult

produce any element of Z° | with three arithmetic operations and four memory
m—m',n—n

accesses from data which is not sequentially indexed. Further, this process is only
necessary for sparse preconditioner elements that need to be explicitly stored. The dense
matrix need not be stored with the CG-FFT algorithm as the periodic storage of the data can
further be exploited to accelerate matrix vector products via FFT. Note that this precludes
the use of full matrix inverse with this technique, however it does allow for the use of
iterative methods. To explain, first it is beneficial to demonstrate full O(Ny?M»?) matrix
vector product which explicitly calculates each matrix element and performs directly the

2D convolutions and correlations below,
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M-1N-1
XX sk X _ xx X
Z++ Jbook _ Zm+m',n+n' m'n'
m'=0n'=0
M-1N-1
7% *Jx _ zzxx | 'Jx' |
+— reverse m+m'.n—n'" m'n
m'=0 n'=0
M-1N-1
Zxx *Jx — xx X
—+ reverse m—m'.n+n'" m'n'
m'=0 n'=0
M-1N-1
XX sk X _ XX X
Z—— Jbook o ZZm—m',n—n’Jm'n' ) (3.3-13)
m'=0 n'=0

XX XX XX XX 5 : XX XX
where Z2Z, Z3%, 273, and Z¥ are simply 1D re-orderings of 2~ v 0 Z0 "0,
XX
m-m' n+n

XX

r, and m+m' n+m

1, respectively, with appropriate and selective padding so as to

preserve the Toeplitz and Hankel structures for the 1D ordering. JJ,,; and J%perse are both 1D
re-orderings of J;,,,,,, where the former re-orders basis functions as though they are lines in a
book and the later organizes them as though the lines are reversed down the page, as shown in
Fig. 3.3-1, which shows an ordering of the basis functions for an extremely coarse 2 by 2 grid
with 6 potential basis function locations—at indices 1, 2, 3, 6, 7, and 8. They also feature a
second type of padding, doubling the length with zeros so as to allow matrix-vector products
with the circulant form of the Toeplitz and Hankel matrices. Each numbered rectangle represents
the center of an x-directed rooftop basis function on the 2D grid, with the number being its
associated index in each of the 1D current arrays. Note that the array spans twice the cross-

section of the box to ensure Toeplitz and Hankel structure of the implicit matrix.
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Fig. 3.3-1. Indexing for the two 1D current arrays. Each number represents a rooftop basis function.

Matrix vector products are enhanced to O (N, M, log N,M,)) by performing a series of 1D
discrete convolutions through the use of digital signal processing [61], with the x source

and x observation coupling producing,
Vxx —
IFFT{ FFT{Z }o FFT{J} , }}

reverse

+IFFT{ FFT{Z2 }o FFT{J 1}

+IFFT{ FFT{Z" }o FFT{J} 1} - (3314

reverse

+IFFT{ FFT{Z" }o FFT{J} , }}

Using 1D orderings and FFTs is unconventional, typically 2D orderings are used, which
implement four terms for /* as opposed to two. The increased time to perform 1D FFTs is
negated by the need to do fewer of them, whilst preserving memory. Note that, unlike
UFFT-P, the MFO is no longer split between a gridded set of point source basis and testing

functions (which require the geometry projection and interpolation to use), and the set of
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full rectangular rooftop basis functions (necessary for pre-correction due to error from the
projection and interpolation). With this work, it is made possible to fill the implicit matrix
directly with full rectangular rooftop basis functions, negating the need for projection and
interpolation as discussed at the beginning of Section 2.3. An explicitly-defined near-

interaction matrix is still generated for pre-conditioning purposes.

The generalized minimum residual (GMRES) iterative method [74] is used to provide a
solution in a fashion most similar to existing CG-FFT implementations, e.g., [24], though

very often Conjugate Gradient method may be used.

Note that although no traditional matrix elements (i.e., impedances) are directly calculated
or stored, for the near-interaction matrix used for pre-conditioning purposes they are
available through the summation of four array elements as discussed in Section 2.5. As
such, solving a sparse matrix representation of geometrically close interactions in the

circuit forms the near-interaction pre-conditioner.

As the implicitly stored matrix is a set of Toeplitz and Hankel arrays encompassing all
interactions possible on the grid, and the current array that is generated by GMRES is
dense and represents only interactions between elements where metallization is present, a
sparse transform of the current array is made. The Toeplitz and Hankel matrices are then
converted to circulant form, which is shown in [26] to allow matrix vector multiply

calculations with the use of FFT.
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Thus, it is possible to compute the matrix vector multiplies V. = Z,,;; - I with implicitly

stored matrix elements by calculating and summing

Vintermediate = FFT_l(FFT(Zcirc) ' FFT(lcirc))a (3.3-15)

for each of the Ny;rqys = 4DP? arrays, where Z_;,. are circulant representations of the

matricesZ,,,Z,,,Z,,,or Z,, from (3.3-14), and J ;. are padded versions of either J; ,,x
Or J everse from (3.3-14). This process is repeated for a new full current vector I at every
iteration of GMRES. Once all matrix-vector multiplies are completed, the sparse
representation of the voltage vector V;,ermediate 1S cOnverted back to the dense

representation which is equivalent numerically to V.

As stated previously in this section, the FFTs in (3.3-15) are being calculated
unconventionally as one-dimensional. It is conventional to solve them as two-dimensional
FFTs for a decrease in FFT compute time; however, this involves storing and computing at
each iteration a set of four current arrays, while the 1D FFTs use two. Thus, it saves
memory for a slight impact on performance. It is shown in Fig. 3.3-2 that 2D FFTs are
slightly more than twice as fast as 1D FFTs within MATLAB. The 2D times also appear to be

more stable vs. FFT length than the 1D times.
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Fig. 3.3-2. 2D vs. 1D FFT Time, with 2D being more stable and approximately 2x faster.

3.3b Discussion of Error Terms in UFFT-GT

A key contribution of UFFT-GT is fast characterization of a device without loss of accuracy
compared to the direct MoM solution. In UFFT-GT, there are three error components as
compared to conventional Sonnet that all must demonstrate near-equivalency to numerical

noise to make this claim. These components are:

1. Error from performing an iterative solve (GMRES)

2. Error from implicit storage of the matrix

3. Error from implicit matrix vector multiplies with FFT

An error budget for these terms is calculated. The first error component is demonstrated
to reliably perform better than 10-19, and commonly 10-12, however it is seen to be
dependent on the kernel of individual problems that are simulated. The second and third
error components are shown in this work to reliably demonstrate error residual of 10-12 or

better, nearly within numerical precision.
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To make such a claim, it is important to quantify each type of error. For the first error type,

iterative solve error, a simple example shown in Fig. 3.3-3 is considered.

A

A R R R R RN RS

R

Y

Fig. 3.3-3. A simple thru-line example and the associated convergence limit, which is demonstrated by the

non-monotonic behavior.

By using such a simple example the condition of the matrix is kept good so as to keep

preconditioning from affecting results. As GMRES converges monotonically—any iteration
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worse than the preceding indicates that the algorithm can do no better—it is possible to set
the desired residual to an impossibly small number, ensuring that GMRES will fail at the
maximum possible precision. Results of this simulation are also shown in Fig. 3.3-3, with
GMRES going non-monotonic and failing at a residual smaller than 10-11. This proves that it
is possible for GMRES to reach close to numerical precision (approximately 10-15
depending on data types). Indeed, some examples in Chapter 4 show even better

convergence.

For the second error type—error that is due to the implicit storage of the matrix—the
matrix-vector multiplies are carried out as a set of full matrix-vector multiplies (i.e., no
usage of FFT) on a set of dense, fully reconstructed Toeplitz and Hankel matrices. As a
lossless circuit is considered, all real values of matrix elements are zero and the error is
restricted to the imaginary component. More specifically for the lossless condition with all

real values being zero, there are three conditions.

1. There is no dielectric loss.

2. Conductivity is infinite.

3. The shielding enclosure fully encompasses the circuit and also has infinite

conductivity.

Once a voltage array (the result of the matrix-vector multiply) has been calculated, it is
then compared with a second full matrix-vector product, where the vector is the same but
the matrix is now the original dense MoM matrix. The difference between the two is the

error vs. conventional Sonnet due to the implicit storage of the matrix, and is shown on the
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z-axis of Fig. 3.3-4. The x-axis shows iteration count and the y-axis shows the subsection

index.

200

Fig. 3.3-4. Error from the implicit storage of the matrix.

This error term is calculated for each subsection (y-axis), and at each iteration of the
convergence process (x-axis). The maximum error seen is 1.45*%10-11, while average error is
4.6*10-13. More promising is the shape of the error—it appears to be noise, which further
suggests that the root of this error is numerical precision. Note that there are flat spots on
the graph at low iteration and low subsection noise; this is due to the way GMRES assigns
current to subsections. Early in the process, many subsections are assigned no current and

thus exhibit no error.
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The third and final type of error is that due to the precision of the FFTs. This error term is
calculated by comparing the result of a full O(N?) matrix-vector product with a set of dense
matrices reconstructed from the implicitly stored Toeplitz and Hankel matrices, and the
result of an O(NyM)p log NpMj) matrix vector product calculated with Toeplitz and Hankel
arrays via FFT. Results are shown in Fig. 3.3-5, again with iteration on x-axis, subsection on

y-axis, and difference on z-axis.

80 - /l_./’\a
LT —~ @
L o . > e
e AN _ai® on LN
RealPart = = \te' Imaginary Part * —..— = ¢
0 0

Fig. 3.3-5. Error from the usage of FFTs to solve matrix-vector products. Note that scales are different

between the two.

Interestingly, despite a real part that should be precisely zero, error is seen almost equally
on the real and imaginary parts of the result. This is because the numerical precision error
is accumulated regardless of value as the multiplication takes place in the Fourier domain.
The maximum error due to this component is shown to be 1.45*10-11 and the mean error is

6.33*10-13. Note that in Fig. 3.3-6 the scales are different between real and imaginary data
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to better show the distribution. The average error between the two is not significantly

different.

Finally, although not a source of error, it is interesting to examine the different path that
GMRES takes due to the error terms previously mentioned. Shown in Fig. 3.3-6 is the

difference in calculated voltage at every iteration due to error types (2) and (3).

Fig. 3.3-6. Difference at each iteration with and without implicit FFT-based matrix vector products.

Macroscopic view at left and expanded z-axis view at right.

At left is a macroscopic view, and at right is a view with the z-axis greatly expanded to
show error in the earlier iterations. The final solution (specifically the last iteration) is
identical within the limits previously shown, however each iteration is slightly different,
getting worse as iteration count increases. This represents a difference in the path GMRES

takes within the optimization space.

This means that the UFFT-GT solver is operating with precision limited, in effect, by the
numerical precision of the computer. In this case, conventional 64-bit hardware is used,

which is limited to double precision without poor performance. It is expected that with a
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128-bit machine able to efficiently perform quad precision calculations, precision could

improve up to double.

More generally, within the context of both UFFT solvers, the UFFT-P version has
demonstrated considerably less control of error, often with residual norms on the order of
10-#to 10-6. This is because PFFT-based solvers by nature must include all error sources
present in the UFFT-GT solver (with exception for the ability to simulate geometries which
are off-grid), as well as additional sources of error from the projection and interpolation of
the geometry. This error is only partially removed by pre-correction routines. In terms of
error percentage, calculated S-parameters generally were within 1-3% of Sonnet results. In
terms of current distribution, areas with low interaction (e.g., subsections which are far
away from significant sources or circuit activity) might see error up to or above 15% in

their calculated current.

3.3c Extension to Multilayer Geometries

In previous sections, both versions of UFFT operate on a single, planar metallization layer
at the boundary of two stratified dielectrics spanning the cross-section of a waveguide.
UFFT-GT has been further developed to be capable of simulating structures with
metallization on multiple planes at the boundaries of stratified media. This is well suited
for multi-layer circuit boards and integrated circuits as compared with volume meshing
tools, since increasingly complicated dielectric stack-ups do not significantly increase the

size of the problem space. Moreover, very thin layers of dielectric and equivalently layers of
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metallization close together do not affect the discretization of the circuit geometry or of the

grid.

However, this multi-level capability does come at the expense of a minor penalty to scaling.
Given N /P unknowns per layer (where N is the number of unknowns and P is the number
of metallization planes), interactions must be calculated and stored for all unknowns on
each layer for every combination of layers, P2. Computational complexity thus becomes
0(P2N,M,log (N,My)). Memory is O(P?N,M,). Since N, M,, is commonly very large (e.g.,
N,M, =200 000) as compared with P (e.g., P = 10) this is typically not a major performance
penalty, although it remains noteworthy for some thick-metal cases which may require up
to P = 200 layers. Notably, structures that feature many metal layers usually confine the
bulk of their respective subsections to a few layers. In theory, it should be possible to save
time and memory by calculating the contribution of these layers to the matrix-vector
product with direct and full multiplies for their respective components rather than explicit

FFT-driven multiplies.

A multilayer example geometry, sourced from Greg Kinnetz of [2], is shown in Fig. 3.3-7
with layers of coplanar waveguide (CPW). A multilayer example simulation is

demonstrated further in Section 4.5.
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Fig. 3.3-7. A multi-layer example geometry of a co-planar waveguide circuit. Example sourced from Greg
Kinnetz of [2].

3.3d Extension to 3D Geometries

Note that there are generally two types of 3D solvers. Arbitrary 3D solvers discretize
volumes or surfaces in such a way that the problem geometry is relatively unrestricted in
terms of angles, planes, etc. 3D planar solvers are an extension of multiplane solvers, which
allow for current to be discretized in the z-direction between planes. For this work, the
multiplane solver is extended to a 3D planar solver. Scaling still remains

O(PZN,,M,, log(Nbe)) and memory remains O(P%N, M, ), however, at this point it is no
longer possible to ignore the five z-component terms of (3.3-3), and so all terms, between

all P2 layer interactions must be stored as,

422G, + 29G,, + 22G,,, (3.3-16)
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And in a similar fashion to (3.3-4), current is discretized and stored for each of P layers as,

<
=

(x',y') = J;;.n,ﬁx (x'— X, V= yn,)

n'=0

el
I

S—
I

M-1 N-1

+Z > JiB (x=x,,5-,)

m'=0n'=0 (3.3-17)
—1

+2 ZJZ, ,_ (x'=x,,y'-=y,)

m'=0n'=0

2

Note that (3.3-17) does not reflect a z-dependence for the basis functions. This is because z-
oriented current, just like planar x- and y-oriented current, may not be at arbitrary
locations along the z-axis. Rather, it extends from the plane, P, that it is located on upward
to the next plane. If there are no further planes, it extends to the top of the waveguide
enclosure. The matrix vector product is calculated by iterating through each set of P2 layer
interactions and using FFT to perform the matrix vector multiply of the impedance matrix
data with the appropriate current array. Results of the 4 x 9 x P2 multiplies are
cumulatively summed in the appropriate voltage array, where four represents the
convolution correlation terms and nine represents each component of the DGF. This has
implications on the performance of the matrix-vector product, as previously it was only

4 x 5 x P2 multiplies.

It also affects memory usage, although, the full P? arrays do not need to be stored.
Interactions between basis functions on the same axis show reciprocity for level
interaction. This means that from level 1 to level 2, the interactions for x-directed source

and x-directed observation will be the same as from level 2 to level 1. This is also true for y-
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to y-, z- to z-, and even x- to y- and y- to x-. It is not, however, true for x- to z-, y- to z-, z- to x-

,and z- to y-, so these arrays must be stored additionally.

Fig. 3.3-8 shows an example of a geometry with z-directed currents, in the form of

interconnecting vias to approximate a 3D bond wire interconnect using multiple planes

with interconnecting vias. Section 4.6 shows the solution of an example geometry.

Fig. 3.3-8. An example circuit featuring a bond wire approximation constructed with 3D planar features,

including multiple planes and interconnecting vias.

3.4 Geometry Projection and UFFT-P
In the context of MSO for UFFT-P, modification of the PFFT algorithm [3] is used for

acceleration of the matrix-vector product 27 1 1tis important to emphasize that the

distinction between near-zone and far-zone interactions in the PFFT algorithm is not based
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on electrical distance [56], [58], [78]. Thus, the method can still be applied without loss of

effectiveness for structures ranging from electrically large to sub-wavelength [58].

First, a regular rectangular grid is introduced with discrete increments Ax=a/(K; -1) and

Ay=0b/(K, —1), which is referred to as the PFFT grid. Unlike UFFT-GT in the previous
section, this is a new grid that is distinct from the regular grid used in MFO for off-grid

elements. The grid is overlain on the rectangle defined by the intervals X € [0,2a] and

¥€[0,2b] corresponding to twice the waveguide cross-section over x and y. In the

following, the indices kl,2 = 0,---,2(1{1,2 —1) are used to identify the nodes of the grid. In

Fig. 3.4-1, a portion of this grid for &, =0,...,K| ;, —1 is shown by circles for the case when

the structure under study is a six-patch antenna array. Also shown in Fig. 3.4-1 is the MoM
grid that is used for the discretization of the unknown current density on patches. It is

noted that the MoM mesh can be non-uniform.

o o o o le) o o o o o o
o o o o o o o o o o Regular
!  — PFFT
©O o[ P[9O 9 O[O 9 [° © ]
MW
o o o al d al o )
MoM expansion
° © d ° ° 9 © o functions
o of |e o @ o |[e| « e| o .
© © 9 A W o Expansion
(o] o o o o o PY ° ° o box
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Fig. 3.4-1. Projection of the MoM roof-top basis functions on the regular PFFT grid.
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It is stressed that the PFFT grid, like the CG-FFT grid, is introduced over an area four times
that of the original cross-section, in order for the DGF used in (2.3-3) to yield all elements

of the periodicity [79] for the Z-matrix elements. Once the PFFT grid is introduced, each of

the basis and testing functions b;x(F) and ¢ (7) are replaced by M’ delta sources, where M

sets the density of the projection as shown in Fig. 3.4-1. This defines the so-called
expansion box (a.k.a. stencil) [3],
2(K,~1)2(K,-1)

b= 3 X By St=xp )8(v=yi ), (3.4-1a)

k=0 k=0

2(K,-1)2(K,-1)

i)=Y X T8 Sa=xl D=y ). (3.4-1b)

k=0 k=0

In the above, {xg,i,y,f;’l-} are the locations of the delta sources associated with the ith basis

or testing function, and B and T are the original basis and testing functions. Even though

the indices of summation in (3.4-1) run over the entire PFFT grid, only M’ terms are non-
zero for each basis/test function, which depicts the way the delta-source representation
(3.4-1) is performed for a basis function in the case of M =3, a commonly used value.

Lower values involve fewer calculations at the risk of increased error. Given the order M of

the expansion box, M *nodes of the PFFT grid are allocated for the assignment of the delta
sources. The choice of the expansion coefficients, represented in compact form through the
arrays B and T, is not unique. Various criteria may be used to specify their values.
Investigation shows that even though the multipole reproduction criteria of [3]
traditionally used in PFFT for open structures provides sufficient accuracy, more specific

criteria based on the least squares approximation of the fields of the waveguide eigen-
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modes can provide better accuracy. One may consider the expression for the  component

: . : . B
of field produced by jth expansion function bj (7) ,

m=0 n=0

EP ()=, 3 1% (7) [ B (7 )0l (7)as', (3.4-2)
S

J

where a and 3 represent x or y directions for observation and source basis functions, f

. , . _ B -
represents the spectrum of the waveguide Green'’s function, and ‘Pzn(i’ ) and @,,,(7 ") are

the part of the mnth waveguide mode depending on observation and source coordinates,

respectively. It appears that should bf () be replaced with an approximation, bjﬂ (7) , the

error in the scattered field produced by the jth expansion function is given by the

functional, © ,

0,,,= | WL -6 )el (7)as (3.43)
S.

J
for m=0,...,00 and 7 =0,...,%° Hence, the problem of projecting the jth expansion
function on the PFFT grid can be formulated as the problem of minimization of the

functional (3.4-3) in the least squares sense [79] as follows:
u v
minimize over BY | .- 2 2 Ch

kyskoj m.n,j (3.4-4)

m=0n=0
where y and vare truncation indices that must be chosen such that all eigen-modes that

are excited appreciably by the specific expansion function are taken into account. One can
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show [79] that minimization of (3.4-4) is equivalent to the solution of the following

redundant set of i -vlinear algebraic equations with A/? unknowns Bml,mz J

M M
Y X ohOh ok DB =J¢£n(7)bf(7)ds, (3.4-5)

=1m,=l1
=1, j

where m =0,...,4, n=0,..,v .Theindices M, are used in (3.4-5) instead of k1,2 to

single out the M? non-zero elements B’ from the elements B . of the entire array,
my,my,j kl ,kz i

where k, =0,...,2(K , —1). The procedure for defining the coefficients of the projection of

a testing function on the PFFT grid is the same as the one for the expansion functions.

Once the coefficients of the arrays B and T have been determined, substitution of (3.4-1)

into the integrals in (1.2-4) yields the following expressions for the matrix-vector product

71,
NB 2K, -1)2(K,—1)
2 — o B _
Z'Iaﬁ—zzﬁj’ I = > X Tk?,kz,ix
J=1 k=0 k=0
2(K, =1)2(K,~1) NB (3.4-6)
1 ’ B pB
2 Gop(k bk Ay k{Ax k500 Y 17 By o
K =0 k=0 J=1

where i=12,...,N ,and «.B isxory for 2D. Substitution of (2.3-3) into (3.4-6) with
well-known MoM procedure yields the convolution-correlation representation for the

matrix-vector product Z1,



2(K,~1)2(K,~1)

Z.I(xﬁ: 2 2 T;:ikz,ix

k=0 k=0

2(K,-1) 2(K,-1)
{sf > > L[k, = k) Ax, (k, = k) AVIAL, .
k=0 k=0
2(K,-1) 2(K,-1)
DAY L[k, = k) Ax, (K, + k) AVIAL, .

K=0 k=0

2(K,~1) 2(K,~1)

+s2 DD TP(k, + k) Ax,(k, —kz')Ay]Af{,k;

k=0 k=0

2(K,-1)2(K,~1)
+50 D TPk, + k) Ax,(k, + k) AVIAY }

- - ki k5
k=0 k;=0

where the matrix Azﬁk; is defined in terms of the product

NB
A =N B 0P
k! K, kLKL
j=1
In matrix form,
Z . Tx'Gxx‘(Bx)T'Ix+Tx‘ny'(By)T'Iy

T-¢*-BY) -r'+17-6¢"-(8) -

4 4
T | Y s T (A + ) T (A
n=l1 n=l1
B 4 4
T D ST (A ) ST (A
n=l1 n=l1

where Fffﬂ , n=1,...,4, denote the Toeplitz and Hankel matrices formed by the four
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(3.4-7)

(3.4-8)

(3.4-9)

convolution-correlation terms entering in (3.4-7), and the superscript T stands for matrix
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transpose. Each partial matrix-vector product 1% .(A?)” can be computed using the FFT

algorithm [79], thus providing the desired O(Nlog N) complexity for the MSO
e (APy = FFr! {FFTn {reel-prr f(a? )T}} ,

where FFT {K }and FFT;Z_l{K } are operations of forward and inverse DFT, respectively.
The index n has been assigned to the FFT operations because in the case when the matrix-
vector product Fffﬂ -(Aﬂ )T contains correlation dependence over a certain index, in

addition to the forward FFT operation one has to perform a certain rearrangement of the

elements in the spectral domain with respect to that index [79].

Since the FFTs of the DGF matrices FFT, {Fz’g} are computed once and then stored, it is
straightforward to show that, for an iterative matrix solution with number of iterations

N, , the number of required operations scales as Nl.teerogN ,where N10gN is the

time per FFT operation.

At every iteration, the above process calculates the product Z-1 (see (3.1-1)). While the

calculation of the far-zone interactions using the PFFT process are reasonably accurate, the

calculated near-zone interactions are not. Thus, the operation Z-1-Z_, -1 is required to

near
correct the calculation of the near-zone interactions by replacing the PFFT calculated ones
with those obtained using the exact MoM representation of the expansion function

interactions (see (2.2-2)). These operations are of O(N)complexity. In addition to reduction
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in the computational complexity of iterative solutions, PFFT implementation relaxes

memory requirements.

Since only the near-zone matrix elements are stored, the O(n?) overhead associated with

the storage of the MoM matrix is avoided. Instead, storing of the “near-zone” interactions

results in memory requirements that scale as O(N) with aggressive near part sizing.

However, one can increase the size of the near part to provide better convergence
behavior, essentially trading memory capacity for CPU time, and potentially, accuracy.

Furthermore, due to the Toeplitz/Hankel-like characteristics [79] of the Green’s function

o
matrices I’ ﬂon the PFFT grid, those memory requirements scale similarly as

O(NpMp).

For the benefits of PFFT to be meaningful, the far-zone interactions need to be calculated
with sufficient accuracy. This, in turn, is dependent on the accuracy of the equivalence from

the projection defined in (3.4-1).

In summary, Chapter 3 covers the theory and implementation of the FFT-enhanced MSO for
UFFT. It explains the differences between the two variants of UFFT, UFFT-GT and UFFT-P.
Further discussion involves improvements that are made in the transition between the two
solvers, with UFFT-P being able to handle off-grid circuit discretization and UFFT-GT being
faster, more efficient, and extremely accurate. Given the high-accuracy nature of UFFT-GT,
an error budget is established, explained, and verified experimentally. Moreover, an

overview of the general iterative algorithm, GMRES, is given, including the effects of
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preconditioning and matrix banding. Finally, the specifics of MSO as applied to UFFT-GT
and then UFFT-P are detailed, including the geometry projection in UFFT-P and the

extension of the technique to multilayer geometries as well as 3D geometries in UFFT-GT.
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4. Results and Discussions

To demonstrate the performance of the proposed UFFT scheme for shielded structures,

many examples are considered. For parity, all examples are analyzed on a microstrip

substrate with &, =4,

4.1 Clock Network Example

An example is developed that is easily scalable with regards to unknowns for
demonstration of scaling effects on a common geometry. A digital clock network is chosen
as it is a fractal geometry for which scaling of N is readily observed by extending the depth
of the fractal as in Fig. 4.1-1. The example is tested with many different geometries, each
with successively more fractal elements, scaling from N =4 190 to N = 50 658 (Sonnet), to
N> 125000 (UFFT-P), and to N > 500 000 (UFFT-GT). All examples are analyzed ona 1 cm
2 (5/32in? ) square substrate at 100 GHz. Note that the number of unknowns in
conventional Sonnet is limited by the 32-GB memory capacity of the test system. Timing
and memory usage are benchmarked against conventional Sonnet for each example
possible. Additionally, accuracy is compared in the form of Y-parameters and also

calculated current distributions.
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=

Fig. 4.1-1. The fractal nature of clock networks allows for scaling the number of unknowns in simulation of

an applicable example.

All results for this example are computed on the inexpensive Intel Core i5-3570k 3.4-GHz

Quad-Core CPU, and can be seen in Fig. 4.1-2.
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Fig. 4.1-2. Performance comparison between UFFT-P and Sonnet for complete solution of the problem.

UFFT demonstrates substantial performance benefits over conventional Sonnet both in
terms of memory utilization and CPU time. Moreover, while Sonnet is able to take
advantage of all CPU cores, multi-threading is left to future work for UFFT, meaning
optimized code will see further performance increases. In a similar fashion to the first

example, the overhead of the PFFT algorithm results in circuits featuring a small number of
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unknowns being computed faster in traditional Sonnet. This takeover occurs for UFFT-P

when unknowns surpass around 7 000.

Accuracy in this example is compared to conventional Sonnet by way of Y-parameters and
current distributions. Generally, switching to UFFT-P from conventional Sonnet yields an

additional 1 to 3% error component for dominant Y-parameters in multiport circuits.

UFFT-GT is an improvement to UFFT-P, as discussed in Section 3.1, which yields greater
accuracy and efficiency. In this example the efficiency is demonstrated by comparing the
scaling data from UFFT-GT against Sonnet and UFFT-P. It is expected to see similar scaling
to UFFT-P albeit slightly faster. What was somewhat unexpected is that the curvature of the
scaling is also different between the two, as is shown in Fig. 4.1-3. The relatively smooth
lines—exhibiting linear behavior when plotted on a logarithmic scale—presented by UFFT-
P are not demonstrated with UFFT-GT, and while performance is generally better, at low
unknown counts they interchange. In hindsight, this is relatively easy to explain. As UFFT-
GT is coded in MATLAB and UFFT-P in FORTRAN, with circuit geometry that is limited by
the FFT time (e.g., a large box size with a relatively small number of unknowns), the
interpreted code is intrinsically slower. For code with a large number of unknowns where
the FFT time is not a limiting factor (and instead, projecting and interpolating the basis
functions becomes a limiting factor), the algorithm efficiency significantly outweighs the

penalty for interpreted code.
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Fig. 4.1-3. Scaling between UFFT-GT and Sonnet (top) and UFFT-GT and UFFT-P (bottom).

Notably, the largest clock network example features more than 250 000 unknowns and was

able to run on an Intel i5-3570k quad core CPU in under 3 hours.

4.2 Interdigital Capacitor Example

The capacitance of an interdigitated filter is extracted so as to benchmark the accuracy of

the UFFT solver, as well as to compare performance vs. a state of the art MLFMA algorithm

[80]. The example circuit is a microstrip configuration containing three terminals for two

capacitors for device loading, following general principles established in [81], and is shown

in Fig. 4.2-1.
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Fig. 4.2-1. The interdigital capacitor example circuit geometry. Port excitation is 1.0 V at the blue triangle.

The structureisona 1l cm? (5/32 in? ) square microstrip substrate of thickness 0.1 mm
(0.004 in) and is simulated at 100 - 140 GHz. All fingers are 3.55 mm (0.140 in) long and
0.2 mm (0.008 in) wide. The structure is centered on the substrate with feed lines to the

edges. All other lines and gaps are also 0.2 mm (0.008 in) wide with their length being
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deterministic based on other defined parameters. S-parameters are seen in Fig. 4.2-2, and

times are shown in Fig. 4.2-3. UFFT-P converged in 16 iterations to 10-6, while UFFT-GT

converged in 34 iterations to 10-13.

Fig. 4.2-2. S11 vs. Frequency, Sonnet (blue line) vs. UFFT-P (+ marker), vs. MLFMA (triangle marker), vs.
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Fig. 4.2-3. Logarithmic timing data for MSO, MFO, and overall time, as well as memory usage for Sonnet,

UFFT, and MLFMA simulations of the interdigital capacitor geometry.

Note that while the UFFT-based and Sonnet solvers share partial data from matrix fill
operations (MFO), the methodology, code, results, required resources, and even language
used for coding, are distinct between the two. MFO times in Fig. 4.2-3 are measured as
longer than would be seen in practice due to prototype-mandated diagnostics. As they are
uniformly increased as a percentage, times are valid for comparison. Note that the
performance of the UFFT algorithms exceed MLFMA in a large part due to the 3D Planar
nature of the UFFT implementations vs. the arbitrary 3D implementation of the MLFMA
algorithm used [80]. Simply, UFFT and Sonnet have more efficient meshing of the structure.
This is because only the conductor needs to be surface-meshed in UFFT while the entire
substrate needs to be volume-meshed in MLFMA, as discussed in Section 1.2. This results in

N =12 491 for UFFT vs. N = 97 944 for MLFMA.
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TABLE 4.2-1: DETAILED MAGNITUDE AND PHASE ERROR COMPARISON OF UFFT-GT AND MOM
DETAILED MAGNITUDE COMPARISON DETAILED PHASE COMPARISON

Freq. Freq.

S11 Magnitude (dB) S11 Phase (Degree)

(GHz) (GHz)
UFFT-GT Sonnet UFFT-GT Sonnet
100 -5.427606066924  -5.427606066925 100 -60.00573797465 -60.00573797460
105 -4.711806439012  -4.711806439013 105 -113.8468205447 -113.8468205447
108 -8.422235655276  -8.422235655271 108 -149.0690098914 -149.0690098914
110 -16.37773802790  -16.37773802790 110 -178.7939190381 -178.7939190381
112.3 -15.69878289660  -15.69878289659 112.3 -23.91528562615 -23.91528562616
117 -6.710118871767  -6.710118871773 117 -81.98287649010 -81.98287649013
125 -4.303694252007  -4.303694252007 125 -107.2371265149 -107.2371265149
132.5 -5.570591718543  -5.570591718542 132.5 -110.8248949553 -110.8248949553
140 -4.489905666691  -4.489905666690 140 -155.1378164179 -155.1378164179

As S-parameter data appears virtually identical, a detail of S-parameters written out from
high-precision Touchstone files is included in Table 4.2-1. The results are identical to 12-13
significant figures, with the notable exception of rounding differences. This level of
precision is notable even in slow direct O(N3) solvers, it is unheard of and has not
previously been done in a speed-enhanced O(N log N) solver. For categories of circuits that
require high accuracy design, such as superconducting filters and spiral inductors, UFFT-
GT enables a paradigm shift in what can be simulated accurately. Note that the term
precision, specifically, has been used as opposed to the term accuracy. MoM itself makes an
approximation in terms basis functions and discretization. Accuracy as compared to a ‘true’
solution is difficult to discern; accuracy as compared to measurement is validated

extensively in [10].
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4.3 Digital Bus with Delay Line

A digital bus with a meander delay line example is used to demonstrate the accuracy of the
UFFT solver for circuits featuring curved metallization. The example geometry, shown in
Fig. 4.3-1, consists of N = 26 286 unknowns modeling an 8-bit bus printed in a microstrip
configuration on a 10 cm by 10 cm by 1 mm (3.94 in by 3.94 in by 0.039 in) substrate. The
bus features lines with width and separation of 1 mm (0.039 in), two of which have delays
of separate amounts. The meander geometry is of interest as it demonstrates the capability
of the solver to accurately model rounded surfaces despite being discretized solely by

rectangular basis functions.
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Fig. 4.3-1. The geometry for the digital delay line (meander) example. Port excitation is 1-V at the blue

triangle.

Results of current distribution behavior, shown in Fig. 4.3-2 with excitation of the upper
delay line, are highly similar. Plots show accurate physical behavior in terms of full-wave
patterns, edge singularities, and other physical phenomena. The figure compares Sonnet
(top), UFFT-P (middle), and UFFT-GT (bottom). While they are all very similar, Sonnet and
UFFT-GT are visually indistinguishable. As such, it is necessary to compare the current

distributions numerically. The current data is loaded into MATLAB and the difference
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between each element is explicitly calculated. The maximum difference is found to be 7.456

* 10-13, while the mean of all differences is calculated as 2.955 * 10-18,
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Fig. 4.3-2. Current distributions as calculated by Sonnet (top) and UFFT-P (middle), and UFFT-GT (bottom).

As seen in Fig. 4.3-3, simulation time and memory requirements again heavily favor both
UFFT varieties vs. conventional Sonnet, despite the single-threaded implementation for
UFFT-P vs. multi-threaded implementation for Sonnet, and the interpreted implementation
of UFFT-GT vs. the compiled version of Sonnet. This suggests that when UFFT-GT is ported
to a compiled version it will vastly outperform UFFT-P. UFFT-P converged in 7 iterations to
10-%, while UFFT-GT converged in 20 iterations to 10-13. This discrepancy is likely not

related to the algorithm; converging to more precision takes additional iterations.
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Fig 4.3-3. Memory requirements and MSO time for Sonnet and UFFT for the meander example.

4.4 Computer Motherboard

Between the capacity to handle a large number of unknowns and the meshing efficiency of
the shielded planar EFIE, UFFT-GT can handle circuit board geometries of unprecedented
complexity. As there are few existing examples capable of pushing the limits of the solver
without resorting to unnecessarily dense meshes, a new methodology is developed to

reverse-engineer existing circuit geometries.

Starting with the code-base developed in [82], a photograph of a computer motherboard is
used to reverse-engineer the geometry of the memory to CPU bus—one of the highest
performance parts of the board. The resulting geometry is shown in Fig. 4.4-1. Digital signal
processing (DSP) is used in conjunction with SonnetLab to extract and draw polygons from

the photograph.
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Fig. 4.4-1. The motherboard circuit geometry as reverse-engineered from a photograph.

The DSP process involves eight steps. First, the image is manually retouched in a photo-
editing editing program to enhance details and remove artifacts produced by dirt and
camera equipment. Then, the image is loaded into MATLAB for the remaining five DSP
steps, as shown in the upper left of Fig. 4.4-2. Second, a Gaussian low-pass filter (a blur) is
applied, as shown in the upper center. The blur helps to reduce small artifacts from
creating polygons. Third, the background level of the image is extracted to produce a
gradient, which is shown at the upper right. This gradient is subtracted from the image,
shown at the lower left, to account for non-uniform lighting, as well as non-uniform editing
during the manual editing process. Fourth, the image is converted to gray scale and the
contrast is boosted, shown in the lower center. Finally, the image is “thresholded,” whereby
values darker than a certain quantity are made black and lighter than the same quantity are

made white, making the storage of each pixel simply a “1” or a “0.”
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Fig. 4.4-2. The DSP workflow to extract the circuit geometry. The five steps that occur within MATLAB are

shown.

The seventh step is to iterate through the “binary” image and produce polygons, shown in
Fig. 4.4-3, where each polygon is a drawn in a distinct color to ease the process of finding

errors. Finally, the polygons are drawn in a Sonnet project file using the SonnetLAB

interface.

Fig. 4.4-3. The extracted polygons for the image. Each polygon is a different color, aiding the user to identify

errors in the extraction process.
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The circuit covers approximately 4 cm x 4 cm (1.57” x 1.57”), and is simulated at 100 GHz,
which represents the top end of a broadband sweep which would be necessary for
transient analysis. It features 300,385 unknowns, and MSO is completed in an average time
of 11.4 minutes per port, while consuming 6.8 GB of memory without preconditioning. It
converges to 10-13 in 40 iterations. The calculated current distribution is shown in Fig. 4.4-
4. At left is with every other line that meets the left boundary excited with 1V, as is

indicated by the blue arrows. At right is a single line excited with 1V near the center of the

figure, as is indicated by the blue arrow.
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;’»;J:Nj?f;?/
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Fig. 4.4-4. Current distribution of the motherboard memory bus example. Left: several lines along the left

border excited with a 1 V source. Right: A single line near the center of the figure excited with a 1 V source.

Notably absent from this discussion is a comparison with other solvers. While there are
other solvers available which can simulate this number of unknowns, none of these high-
level of complexity solvers also feature the ability to efficiently mesh the structure as a

planar circuit in a shielded environment. The capability of UFFT-GT to solve this circuit on
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a conventional desktop computer is unique, and thus there is no other currently available

solver to compare the results to with the available computing resources.

4.5 Complex-Bus Example of Multiple Planes

In order to demonstrate the capability of UFFT-GT to handle structures featuring multiple
planes, the example from Section 4.3 is extended to a larger bus featuring additional lines,
two additional metallization layers, and reversal network—a type of structure not

geometrically possible on a single plane. The example is shown in Fig. 4.5-1.

Fig. 4.5-1. The complex-bus example structure geometry, complete with meanders and a reversal network.

The circuit features 57,866 unknowns. It is simulated in 25.2 minutes and occupies 5.49 GB
of RAM, vs. 2 hours 24 minutes and 25.5 GB for simulation in conventional Sonnet, as
shown in Fig. 4.5-2. Convergence was achieved in 34 iterations for each port to better than
10-13. This, compared with convergence of 20 iterations in the previous meander example
(which featured considerably less unknowns), suggests that having multiple planes does

not significantly impact the condition of the matrix.
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Fig. 4.5-2. Performance between Sonnet and UFFT-GT for the multiplane bus example.
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Fig. 4.5-3 shows current distribution data for the multiplane bus circuit, with a 3D view at

the upper left and individual planes in all other quadrants.

e

Fig. 4.5-3. Current data for the multiplane bus circuit. 3D at upper left quadrant, individual layers in others.

For comparison purposes, a similar plot of current is shown generated from conventional

Sonnet data in Fig. 4.5-4. The two are visually identical.



89

Fig. 4.5-4. Current data for the multiplane circuit simulated in conventional Sonnet.

4.6 3D Planar Multilayered Bus Example

For demonstration of the 3D planar capability of the solver, the meander example from
Sections 4.3 and 4.5 is extended to include vias. All lines of the bus start and end on the
same plane as they would likely lie in actual designs, however, they must cut through
different levels of the PCB so as to allow crossing over. The example is shown in Fig. 4.6-1.
The upper left quadrant shows an overhead view, the upper right shows an isometric view,
the lower left shows another isometric view, and the bottom right shows an isometric view

with the thru-lines removed so that the crossover network details can be more easily seen.
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Fig. 4.6-1. The 3D planar example. Top left: overhead view, top right: isometric view, bottom left: additional

isometric view. Bottom right: isometric view with thru-lines removed for clarity.

The example consists of a total of 65 159 subsections. In UFFT-GT, it takes 2 hours 4
minutes for MSO, although most of this time is spent with an overly dense and largely
ineffective preconditioner, as well as the sheer number of iterations required (101
iterations, whereas 30-40 seen in previous examples is a more common and reasonable
number). This means that vias significantly degrade the condition number of the matrix.
Individual matrix-vector products take 35 seconds, meaning that with an effective and
efficient preconditioner, it should be possible to simulate the circuit in approximately 20
minutes. Simulation consumes 8 GB of memory before solving the preconditioner, and a
maximum of less than 20 GB when solving and applying the preconditioner, although this
number can be drastically reduced through the use of a more efficient preconditioner.
Comparatively, in conventional Sonnet, it takes 2 hours and 27 minutes and consumes 32.4

GB of memory to solve, as shown in Fig. 4.6-2.
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Fig. 4.6-2. Performance comparison for UFFT-GT and Sonnet for the 3D planar multilayer example.

In Fig. 4.6-3, the current distribution of the example is shown for both Sonnet and UFFT-GT.
It is very close to visually identical, particularly on the planar subsections. There are slight
variances for the current values within the vias at the convergence level that was achieved
(approximately 10-°). Better convergence will be achieved with further research into
preconditioners as applied to vias, which is observed to have unique requirements for

preconditioning as compared to planar subsections.
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Fig. 4.6-3. The current distribution in Sonnet (upper) and UFFT-GT (lower) for the 3D planar example.

In summary, Chapter 4 has introduced six example circuits featuring a variety of topologies
and configurations. These circuits are used to benchmark the accuracy, computational

performance, and memory consumption of UFFT-GT and/or UFFT-P, and comparisons with
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various other solvers are included. The six circuits start with a digital clock network, from
which the fractal nature of the geometry is exploited to demonstrate the scaling of the
algorithm. The relatively simple layout of an interdigital capacitor is then used as an easily
portable geometry to various simulators. A digital bus with a delay line is used three times,
once to demonstrate curved structures, again to demonstrate multilayer geometries, and to
demonstrate 3D geometries. Finally, a large area of a computer motherboard is simulated
to show the capability of the solver on large and intricate circuits for which full-wave

electromagnetics are not generally possible to simulate by conventional means.
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5. Possible Extensions to the Algorithm

Although considerable work has been completed and both variants of UFFT have been

tested extensively, there are still many future improvements that can be made.

5.1 Loop-Tree Implementation

A high priority extension to this work is the addition of Loop-Tree and or Loop-Star basis
functions [56], [83], [84]. Currently, GMRES performance is good for high frequencies,
however, the noise and the condition number of the matrix rise as frequency goes down.
This can be combatted with loop-tree basis functions. Essentially, the circuit is split into
basis functions featuring current loops (curling) and current trees (curl-free). This allows
the splitting of the contributions made from electrostatics and magnetostatics at low
frequency. By splitting them, it is possible to improve the convergence of GMRES at low

frequency for a more robust solution.

5.2 Calderon Preconditioning

While this work focuses on the algorithmic efficiency of GMRES and the matrix vector
products, the overall performance of implementations of the presented algorithm is highly
dependent on preconditioning. The near-interaction preconditioner used extensively in
this work is highly effective for electrically large structures (i.e., those which have features
on the order of a wavelength or more), however for electrically small structures an

adequate preconditioner is not implemented. One such preconditioner, the Calderon
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Multiplicative Preconditioner (CMP) [75], partially resolves this issue and is a natural

extension for this work.

The CMP is, relatively speaking, straight forward to implement in that it still uses a
standard GMRES with a standard (multiplicative) way to apply the preconditioner. There
are other methods that aim to achieve similar results, which require sophisticated routines
to apply the preconditioner [85]. The complexities of the CMP technique lie instead in
replacing existing rooftop basis functions for similar but different Buffa-Christiansen [86]
basis functions. Rather than treating the edges of the rooftops as the basis functions, it is
the nodes between rooftops that make up the basis functions in this scheme. Current flows
both in a divergent fashion from the node as well as in a curling fashion around the node.
Fig 5.2-1 from [75] shows a comparison between a standard diagonal preconditioner

(EFIE) and a Calderon preconditioner.
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Fig. 5.2-1. Convergence for a Calderon preconditioner vs. a diagonal EFIE-based preconditioner [75].
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Note that the blue curve in this figure is remarkably similar to the curve shown in Fig. 3.2-
2. The y-axis shows iteration count and the x-axis shows electrical size of subsections. The
low-frequency behavior of the diagonal preconditioner is quite poor, and the high-

frequency behavior is merely acceptable. Conversely, CMP is effective at low-frequencies.

5.3 Subsection Combining

In this work, all subsections span only a single edge on the grid. This effectively performs a
uniform resolution for current distributions at the expense of an increased unknown count.
As current behavior can sometimes be predicted, e.g., higher currents at the edges of
transmission lines, it is often a good approximation to increase resolution in some parts of
the circuit while having lower resolution at others, as in Fig. 5.3-1. At the left of the figure,
no subsections are combined, although the cells have a wide aspect ratio as the uniform
grid is divided more densely on the y-axis than on the x-axis. This means that the number of
elemental subsections equals the number of unknowns (Ne = N). In the center, some
elemental subsections are combined into fewer regular subsections to reduce the number
of unknowns (N. > N), while subsections along the edge of the metal are not combined. At
the right, subsections are aggressively combined in the center, and less aggressively at the

edges (Ne >> N).
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Fig. 5.3-1. Three different subsection-combining schemes for the same transmission line, from dense (left) to

coarse (right).

Although combining subsections will not affect the timing or scaling for the matrix vector
multiply, which scales with the size of the grid (N» and M) and not the number of
unknowns (N), subsections may still be combined with UFFT to reduce N. This will not only
reduce the size of the optimization space within which GMRES must find a minimum, but
also reduces the number of matrix elements in the preconditioner and thus reduces the
preconditioner application time, often a limiting factor. As such, it is a high-priority

extension of UFFT.

5.4 Extension to Optimizers

While the faster simulation time provided by this work is a very important contribution to
any EDA/CAD workflow, the high quantity of numerical simulations required in
optimization workflows, such as those employed in antenna design, makes speed
increasingly important. To demonstrate potential efficacy, an example antenna
optimization is carried out in conventional software, and a theoretical approximation is

made for the speed enhancement of this workflow with UFFT-P.
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A 2.4 GHz patch antenna array is designed based on [87] to present an example workflow.
The structure, shown in Fig. 5.4-1, features a meshing with N = 2 858 unknowns requiring

87 MB of memory to simulate.

Fig. 5.4-1. The general layout of the microstrip antenna array.

5.4a Optimization of the Antenna Patch With SonnetLab

The first component of the design requiring optimization is the antenna patch itself. As this
can generally be narrowed down to two parameters—length and width—it is both possible
and convenient to sweep both parameters across a range of possible values. While this
process could be rolled into the next section, it is both a convenient way to get an
approximate design and a good demonstration of the parameterization process that is

used.
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Parameters (shown in Fig. 5.4-2) are created in Sonnet’s Xgeom user interface to
automatically control the length and width of each of the four patch antennas in unison. An

initial nominal guess consists of a width of 36 mm and length of 35 mm.

= Patch_Width=38 [ J———

Patch_Length=35

Fig. 5.4-2. Close-up view of a single patch antenna with its parameterization. Units are mm.

The Sonnet simulation is set up to automatically simulate all possible combinations of
values between 25 mm and 35 mm for width (with a step of 5 mm) and between 30 mm
and 40 mm (with a step of 2 mm) for length. This procedure results in a total of 18
simulations of the structure, each of which calculates approximately 300 frequency points
with an adaptive band sweep. In total, all 18 simulations complete on a 2.3 GHz Intel Core

i7 Quad Core CPU in around 10 minutes.

Once completed, the VSWR of all combinations of both parameter values can be plotted on

the same graph as shown in Fig. 5.4-3.
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Fig. 5.4-3. S-parameters for the parameter sweep are shown. Each line graphed represents a different

combination of length and width values for the patch.

As a preliminary sizing for the patch elements, it is convenient to simply take the values for
the curve that features the lowest VSWR at our desired design frequency, 2.4 GHz. These
values are a length of 34 mm and a width of 35 mm, and result in a VSWR of 1.61, which,
while unacceptable for a final design, represents a good starting point for work in the next
section. Note that while VSWR is far from the only parameter to consider in antenna design,
it is convenient to choose it as a singular design goal so as not to confuse engineering

tradeoffs and design goals with operation of the optimizer in this generalized example.

5.4b Optimization of the Feed Network with SonnetLab
With an approximate size for the patch antennas in place, lower VSWR and thus a better
antenna design can yet be achieved with adjustment of additional parameters of the

corporate feed network. For this work, a symmetric feed network is used, although the
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design could also be implemented with an asymmetric network for additional control of

phase and pattern of the array. The layout is split into 11 parameters (including the

original 2) as shown in Fig. 5.4-4. While it would be possible to simulate and plot all

combinations of these parameters as in Fig. 5.4-3, with just 3 values per parameter this

would result in a prohibitively large set of

59 049 simulations. Thus, instead of using a

brute force approach, the SonnetLab application-programming interface (API) is leveraged

to interface the circuit and its associated parameter variables to a nonlinear optimizer [88]

in MATLAB [64]. This optimizer controls each of the variables and attempts to find a

minimum for the scalar VSWR result from the simulation.
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Fig. 5.4-4. The full parameterization of the patch array. Squares denote anchor points in the

parameterization.
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After 113 iterations which took a total of less than 54 minutes, the SonnetLab/MATLAB

optimizer converges to a VSWR of 1.048, with variables as in Table 5.4-1.

TABLE 5.4-1: OPTIMIZED VALUES FOR THE PARAMETERIZED CIRCUIT

Parameter gggﬁﬁ:le d Parameter gg:ﬁﬁ::f d
Patch Width 37.794 Length 1 9.7035
Patch Length 34.786 Length 2 10.272
Width 1 11.522 Length 3 25.141
Width 2 6.4368 Separation 1 64.301
Width 3 3.0244 Separation 2 155.81
Width 4 3.0837

Additionally, as the SonnetLab API is used, it is possible to generate a full 3D plot of the

antenna pattern, shown in Fig. 5.4-5. This functionality is not typically available in 3D

planar simulators such as Sonnet. While it would also be possible to use this data to

optimize phasing of the area to control the pattern, this is beyond the scope of this work.

Fig. 5.4-5. The simulated 3D antenna pattern of the array before (left) and after (right) the optimization

process.
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5.4c Speed Enhancement Potential with the Unified FFT Algorithm

This represents a direct-electromagnetic-optimization based on MoM solution for which
CPU time scales with problem size N as O(N?3) [2]. While this is acceptable for simple
structures such as the demonstrated example, (N = 2 858), as geometries get more
complex, the full electromagnetic simulation required at every iteration becomes
increasingly more time and memory prohibitive. There are numerous optimization
methods that can be used to circumvent the need for a fully electromagnetic simulation
every iteration, e.g. [89], however, recent advancements in full electromagnetic simulation
may make this optimization workflow a viable alternative with the potential for
considerably easier end-user implementations. In this example, UFFT-P is applied to a very
tightly meshed, single-patch antenna example, and a projected optimization time is
extracted. This new example features N = 27 915 unknowns, and based on a similar
optimization of 133 iterations, would take a projected 38 hours to simulate, vs. less than 24
hours with the UFFT algorithm, as seen in Fig. 5.4-6. Moreover, as UFFT is not linearly
faster but rather scales better, as N increases, this gap becomes larger. Thus, a UFFT-based
electromagnetic solver used with this optimization workflow should be able to obtain
similar VSWR in considerably less time. The positive results of this example demonstrate

that future work applying optimizers to both variants of UFFT should be carried out.
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Fig. 5.4-6. Actual single iteration simulation times and projected full optimization time.
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In summary, Chapter 5 explains a number of research directions that this topic may take in

the future. Most of these are natural progressions to make the algorithm more robust and

powerful, such as loop-tree basis functions and Calderon preconditioning, which can

ensure that the iterative solver has good convergence for an even wider range of

structures. Others include methods to further increase the efficiency of the solver. Indeed,

some of these extensions may be considered a pre-requisite for the commercialization of

the algorithm to take place. Finally, a detailed examination of the potential benefits of

UFFT as applied to optimizer workflows is discussed.
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6. Conclusions

This work has developed two new methodologies for speed-enhanced full-wave
electromagnetic numerical simulation. It combines two existing forms of speed-enhanced
MSO with a speed-enhanced MFO to form the UFFT-GT and UFFT-P solvers. Both
demonstrate high accuracy simulation with great speed improvements vs. existing code
bases, with UFFT-GT notably demonstrating accuracy to numerical precision and UFFT-P

notably allowing for off-grid basis functions.

This work makes three primary contributions. First, FFT-enhancement is unified for both
MFO and MSO in a single solver. Previously, existing solvers have employed FFT for either
MFO or MSO exclusively. Solvers with only FFT-enhanced MSO commonly require slow,
inaccurate, or pre-stored data for the Green’s function. Solvers with only FFT-enhanced
MFO are generally slow to simulate. By combining FFT-enhanced operations for both MFO
and MSO, UFFT makes it possible to have a simulator that is fast, accurate, reliable, and that
does not require any Green'’s function or matrix data to be pre-computed and stored before
starting the simulator. Fig. 4.2-3 below is repeated to demonstrate the speed of the UFFT-

based solvers developed in this work.
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Fig. 4.2-3 (Redux). Logarithmic timing data for MSO, MFO, and overall time, as well as memory usage for

Sonnet, UFFT, and MLFMA simulations of the interdigital capacitor geometry.

Second, a fast electromagnetic solver is developed which does not lose precision compared
to full, direct MoM. Conventional wisdom suggests that doing something faster often means
doing it with lower quality. Many existing speed-enhanced solvers that lose accuracy
compared to full, direct MoM reinforce this notion. In contrast, UFFT-GT is able to perform
high-speed analysis with no loss in precision compared to MoM to the numerical precision
of the computer, commonly 12 significant figures. Table 4.2-1, which compares results from
a direct solver to those from UFFT-GT to a full 13 digits for an example circuit, are repeated

below to show this level of precision.
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TABLE 4.2-1 (REDUX): DETAILED MAGNITUDE AND PHASE ERROR COMPARISON OF UFFT-GT
DETAILED MAGNITUDE COMPARISON DETAILED PHASE COMPARISON

Freq. Freq.
S11 Magnitude (dB)

S11 Phase (Degree)

(GHz) (GHz)
UFFT-GT Sonnet UFFT-GT Sonnet
100 -5.427606066924  -5.427606066925 100 -60.00573797465 -60.00573797460
105 -4.711806439012  -4.711806439013 105 -113.8468205447 -113.8468205447
108 -8.422235655276  -8.422235655271 108 -149.0690098914 -149.0690098914
110 -16.37773802790  -16.37773802790 110 -178.7939190381 -178.7939190381
112.3 -15.69878289660  -15.69878289659 112.3 -23.91528562615 -23.91528562616
117 -6.710118871767  -6.710118871773 117 -81.98287649010 -81.98287649013
125 -4.303694252007  -4.303694252007 125 -107.2371265149 -107.2371265149
132.5 -5.570591718543  -5.570591718542 132.5 -110.8248949553 -110.8248949553
140 -4.489905666691  -4.489905666690 140 -155.1378164179 -155.1378164179

Third, a fast, shielded 3D planar extension is made to the solver. Conventional planar
research solvers typically omit this step as it adds additional data and complexity to the
solver. However, rarely are real circuits limited to a single plane. By adding support for
multilayer geometries to the UFFT-GT solver, it makes it possible to simulate structures
with multiple layered planes of metallization, such as those commonly found on a PCBs and
I[Cs. The additional contribution of z-directed basis and testing functions allows for the
simulator to handle vias between these planes of metallization. This is all proven to work
with the same precision as the most accurate conventional solvers and with similar or

better performance as compared to speed-enhanced solvers.

The new UFFT solvers have been demonstrated in many practical examples in both the

microwave and high-speed digital engineering domains, including a digital clock network,



108

an interdigital capacitor, three variants of a digital bus with a meander line, and a partial
computer motherboard memory bus. This rigorously defines robustness, performance, and
capability. The initial results show extreme potential, surpassing a level that warrants
commercial development of the algorithms for potential widespread use within both
industry and academic research. As such, significant effort has been put into defining and
outlining future directions that research on the topic may take. Research effort is intended

to continue well beyond this work.
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Appendices

Appendix A: UFFT Terminology

N - The number of unknowns as seen by GMRES (e.g., after subsectioning)

N. - The number of elemental unknowns

Np - The number of cells across the box (X-axis), columns.

M}, - The number of cells down the box (Y-axis), rows.

P - The number of planes occupied by metal

i - The number of GMRES iterations

Ng - The number of diagonals in the banded pre-conditioner matrix
Npre—corr—The number of “near-interaction” unknowns involved in the PFFT pre-
correction.

K - The matrix that speeds MFO through the use of FFT.
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Appendix B: Evaluation of DGF via DCIM Fitting and Ewald’s Transform

For evaluation of the near interactions between elements non-conformal to the uniform
grid, the approach based on subtraction and analytic integration of the 1/r Green’s function
singularity followed by quadrature based integration [90] of the non-singular part of the

DGF is commonly used [78],[56], and [58].

First, the components Gaﬁ are expressed in terms of the scalar potentials [91] as in

o - 82 FxTM k2 82 FXTE
o ax2 B ayZ (B1)

where k is the wave number of the media at the observation point. The scalar potentials

F /3TM’TE are the contributions to the total field. Their spatial dependence has the form
Fgt ™ (x, %7, 57)
— Slﬁq)TE,TM (x _ x/,y _ y/) + S5¢TE,TM (x _ x/,y + y/) (BZ)

+S£CI)TE’TM (x+x",y—y")H+ stI)TE’TM (x+x",y+y")

where sign factors are as in (2.2-2) and potential ®"*" s,

S e e TEJTIM
TE,TM _ Nt 1 Q.. ik E+ik m
(I) (5»77)— 8ab kmgwn:z_w—kmn e y , (BS)

where 1), is the intrinsic impedance of free space, kmn is the wavenumber for the mnth

element of the series, and kx and k; are the x and y components of the wavenumber. In (B3)

(p;f;’TM is dimensionless and defined by the layered media and waveguide, as in equations.

Consider the case where the media consist of a single layer of thickness I and of relative

permittivity € Let 1 denote free space and 2 dielectric.
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is the propagation constant of the mnth mode inside the j*» domain, j = 1,2. In (B4) it is

assumed that the source and observation points have the same location, Z = zZ’=0 ,
corresponding to the plane located above the air-dielectric interface. The reflection
coefficients in (B4a) and (B4b) for this single layer configuration are for a waveguide
terminated with a grounded substrate, and are analogous to the reflection coefficient of

plane waves incident on a grounded single layer substrate, which can be found in [92].

)2 2)\27: 2
o7 _ L)~ () Jitan(ly,,) 55
mn (1), (2 1)\2 2)\21: 2)y > a
20 i () + () Nitan(ly)
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The key to the acceleration of the series in (B3) is the fitting of the spectra ¢@,,,” " asa

function of knn by exponentials, making use of the generalized pencil-of-function technique

TE,TM
(GPOF) [93]. Herewith, the fitting is performed for such k,,, > K that the spectra @,,,

are purely real. Hence, it is,
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where all constants, § TeTM , P = L...,P , in (B6) are positive real, and u«, is the

residue. Then the series in (B3) with the approximate spectra ¢/ can be taken as the

reference series for the application of Kummer’s transformation [94]. Thus, (B3) is
computed as

oo
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In the above expression the series containing the difference (¢, —@,,” " ) converges

very fast as soon as the indices m and » assume values such that k,,,, > K . The second

term is first reduced to the free space periodic DGF using Poisson summation formula [90],

[95]

(B8)

The series in the right hand side of (B8) can be evaluated using Ewald’s technique yielding

exponential convergence [96].



Appendix C: Acronym Definitions

ACA - adaptive-cross-approximation
BEM - boundary element method
CAD - computer aided design

CG - conjugate gradient

CG-FFT - conjugate-gradient FFT

CMP - Calderon multiplicative preconditioner

DFT - discrete Fourier transform

DG - discontinuous Galerkin

DGF - dyadic Green’s function

EDA - electronic design automation
EFIE - electric field integral equation
EM - electromagnetic

FDTD - finite difference time domain
FEM - finite element method

FFT - fast Fourier transform

FIPWA - fast inhomogeneous plane wave algorithm

FIT - finite integration technique

FVTD - finite volume time domain

GMRES - generalized minimum residual
GMT - generalized multipole technique

GPOF - generalized pencil-of-function technique

GPU - graphics processing unit
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IC - integrated circuit

IE-FFT - integral equation FFT

MFO - matrix fill operations

MLFMA - multi-level fast multipole algorithm
MoL - method of lines

MoM - method of moments

MSO - matrix solve operations

PCB - printed circuit board

PEC - perfect electric conductor

PFFT - pre-corrected FFT

PMC - perfect magnetic conductor

RCS - RADAR cross-section

SLAE - system of linear algebraic equations
SM/CG - sparse-matrix/canonical grid
TLM - transmission line matrix

UFFT - unified-FFT

UFFT-GT - UFFT-grid totalizing

UFFT-P - UFFT-Precorrected

VSWR - voltage standing wave ratio
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