
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1996

The Distributed Array Descriptor for a PCRC HPF Compiler The Distributed Array Descriptor for a PCRC HPF Compiler

Version 2.0 SCCS-770d Version 2.0 SCCS-770d

Bryan Carpenter
Syracuse University

James Cowie
Syracuse University

Donald Leskiw
Syracuse University

Xiaoming Li
Syracuse University

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Carpenter, Bryan; Cowie, James; Leskiw, Donald; and Li, Xiaoming, "The Distributed Array Descriptor for a
PCRC HPF Compiler Version 2.0 SCCS-770d" (1996). Northeast Parallel Architecture Center. 73.
https://surface.syr.edu/npac/73

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized administrator
of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215702926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/73?utm_source=surface.syr.edu%2Fnpac%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

The Distributed Array Descriptor for a PCRC HPF CompilerVersion 2.0SCCS-770dBryan Carpenter, James Cowie�, Don Leskiw, and Xiaoming LiyNortheast Parallel Architectures Center,Syracuse University,111 College Place,Syracuse, New York, 13244-4100Octobor 11, 1996AbstractWe describe a distributed array descriptor that can be used by a runtime supporting HPF-like compilers. This descriptor captures all �ve types of alignment and BLOCK and CYCLICdistribution as de�ned in HPF speci�cation. In essence, this descriptor does not distinguishwhole array and array sections.Prior to this version, we had versions 1.0, 1.1, and 1.2. This version is not only an update ofprevious versions, but more importantly it also directly reects our current practice in an HPFcompilation e�ort.IntroductionThis document is the �rst of two in a sequence; it will be followed by the Common RuntimeSystem Interface (CRSI). The CRSI will specify a common runtime library for HPF, and willinclude various collective communication primitives, standard mapping inquiry functions, andtransformational intrinsic functions.In preparation for the CRSI, this document speci�es a simple data descriptor for distributedarrays to be used by CRSI runtime functions called from SPMD node programs. We call thisspeci�cation the Distributed Array Descriptor or DAD.The DAD's primary role is to provide a standard format for arguments to common run-time system functions. By conforming to the DAD speci�cation when describing arrays and�Cooperating Systems Corporation, http://www.cooperate.comyVisiting from Harbin Institute of Technology of China1

array sections, compiler writers can take advantage of the common functionality of any CRSIimplementation.We suspect that the DAD speci�ed in this document might eventually be used more gen-erally, as a general-purpose data descriptor for arrays and array sections passed between usersubroutines, and to describe distributed arrays created in language contexts other than HPF.OverviewThe DAD is a simple, at table of data which describes a mapping from HPF's global arrayspace to the local array space in each SPMD node program. When an array section is used asan argument to a subprogram of the node program, a new DAD is created and passed.The DAD structure will be visible from both C (C++) and Fortran SPMD programs. DADsupports both C-style and Fortran-style local arrays, by including selectable row/column ma-jority.In the following sections, we �rst briey de�ne some terms; then we state the DAD require-ments, and describe the speci�c members (or \slots") of a Distributed Array Descriptor beforeconcluding with some examples.TerminologyMany of the terms we use to describe the Distributed Array Descriptor will be familiar to HPFprogrammers and compiler implementors. An index designates a speci�c array element, whilean address designates a physical memory location. The arrays described in an HPF programare global arrays; the arrays described in a SPMD node program are local arrays. Globalindices designate elements of global arrays, while local indices designate elements of localarrays. Each array in an HPF program will have, explicitly or implicitly, a template that it isaligned with. There are �ve types of alignment between an array and its template, namely, o�-set alignment, strided alignment, dimension permuted alignment, collapsed alignment, andreplicated alignment. As a result of alignment, not all elements of the local array correspondto elements in the global array from which they are derived (we assume template shape, insteadof HPF array shape, determines allocation of local arrays); those which do we call e�ectiveelements of the local array. There are three types of distribution modes by which a templatemay be distributed onto a processor grid, namely block distribution, cyclic distribution, andcollapsed distribution. Although the DAD does not support explicit parameterized distribu-tions (i.e., BLOCK(n) or CYCLIC(n)), it does support so-called rank reduced sectioning,which can be viewed as some kind of BLOCK(n) or CYCLIC(n).A regular array section selects certain elements of an array by supplying a lower bound(or section o�set), an upper bound, and a section stride per dimension. We will thereforeuse the generic term \array" to encompass both arrays and array sections. An array slice isan array expression containing scalar subscripts. In Fortran, an array slice is considered to havea reduced rank equal to the number of nonscalar subscripts.RequirementsGlobal arrays are distributed by HPF directives. The complexity of the mapping between theglobal and local arrays determines the complexity of the distributed array descriptor (DAD). TheDAD should precisely record how an array is distributed by allowable language elements/directives,2

in such a way that the HPF compiler can conveniently generate it and the runtime can e�cientlyuse it to carry out collective computation and communication over the distributed arrays.Thus, in our case, a DAD will capture all �ve possible types of alignment between an arrayand its template 1, and describe how that template is distributed. The DAD must support (1)e�ective mapping between global array indices to local array indices, (2) e�cient iteration overthe local elements of an array, and (3) a mechanism for passing array information to a varietyof data movement functions.1. . . with one important assumption: if array alignment is replicated along certain dimensions of a template, thecorresponding dimensions of the template must be distributed, and the extents of the dimensions must be equal tothe extents of the corresponding dimensions of the processor grid. Otherwise, the rank of the local array may notequal that of the global array.

3

The Distributed Array DescriptorThe DAD is a collection of parameters which are su�cient to describe distributed arrays andregular array sections to be passed to the common runtime system functions of the CRSI. Wegroup these parameters into per-dimension attributes and per-array attributes. In our DAD,the DIM structure (summarized in Table ??) describes a single-dimension mapping between anarray and its distributed template. In addition, the DAD contains a few attributes which arespeci�ed once per array, rather than once per dimension; these are shown in Table ??.Group Field InterpretationGlobal g extent extent of global array/section in this dimensiont extent extent of template this array dim is aligned with.t stride stride on template, unde�ned for t extent=0t o�set o�set on template, unde�ned for t extent=0dist code template distribution codeon pdim processors dimension this array dim is distributed onLocal l extent local array shape (as allocated) in this dimensionl lb local index of �rst e�ective element in this dim.l ub local index of last e�ective element in this diml stride local stride in memory in this dimensionghost size size of ghost area at both ends of this dimensionGroup p shape # processors in this dim of the processor gridlocal coord coordinate of this processor in the gridslice coord coordinate of the sub grid holding this array.Table 1: DIM: structure of per-dimension informationType Field Interpretationvoid* base address base address of local arrayint element type code for the element data type.int rank number of dimensions of the arrayint p rank rank of the processor gridint comm a handle to the processor gridint majority 1 for Fortran and rank for C.Table 2: DAD: structure of per-array informationObserving Fortran allows up to 7 dimensions for arrays, the information above may beconveniently collected in a 15x7 matrix plus a separate entity for base address, as show inFigure ??. 4

0 1 2 3 4 5 6

0

1

2

g_extent

t_extent

t_stride

t_offset

dist_code

on_pdim

l_extent

l_lb

l_ub

slice_coord

my_coord

ghostsize

l_stride

p_shape

3

4

5

6

7

8

9

10

11

12

13

14type rank p_rank comm major

bass_addressFigure 1: A suggested layout of DAD contents5

While some of the slots are obvious, others are subtle, and some are redundant, becausethe DAD requirements for high performance and exibility conicted with the desire to con-struct a perfectly minimal, precisely orthogonal descriptor standard. For clarity, we give furtherelaboration of each slot below, followed by some examples.Most generally, the DAD describes a regular section of an array, which is aligned to atemplate, which is distributed over processors. All other cases (unsectioned (whole) arrays,arrays with default templates, etc.) are degenerate cases of this most general case.� The global portion of the DAD describes the array section and its mapping parameters.These are quantities collected from application program, independent of processors. Thisportion is mainly useful for global/local index mapping.� The local portion of the DAD is derived from the global portion for e�ciency. Theydirectly describe physical data layout in local memory. Some of the items in this portionare processor dependent. This portion is mainly useful for traversal of array elements.� The group portion of the DAD describes the processor group that owns this array section.Rank reduced array sectioning is supported. This portion is useful for knowing who shouldparticipate in some collective operations.Per-dimension informationg extent: Extent of global array/section in this dimension. Note only extent is recorded,which implies compiler should normalize parameters when calling runtime function for global/localindex mapping.t extent: Extent of template this array dimension is aligned with, t extent=0 if this arraydimension is collapsed in ALIGN directive. For convenience and w.l.o.g, we always adjust theextent to the closest multiple of number of processors this template dimension is distributed on.The possible permutation between array dimensions and template dimensions during alignmentis taken care of by this arrangement, i.e., compiler would provide appropriate t extent for DADconstructor.t stride: Stride on template, unde�ned (denoted by -1) for t extent=0. Initially, it is thealignment stride as given in application program. At runtime, it may be modi�ed due tosectioning.t o�set: O�set on template, unde�ned (denoted by -1) for t extent=0. This is not alignmentstride as in ALIGN directive. Instead, it's always the relative position of the �rst array elementon the template, starting from 0.dist code: Distribution code, < 0 for block, 0 for collapsed, > 0 for cyclic. While the codingscheme seems arbitrary, we do see one advantage of this one later.on pdim: Processors dimension this array dimension is distributed on.l extent: Local extent of this dimension in node program. This reects actual memoryallocation, including possible ghost area. 6

l lb: Index of the �rst e�ective element in local array in this dimension.l ub: Index of the last e�ective element in local array in this dimension. If l ub is less thanl lb, no e�ective element in this processor. Usually, l lb and l ub are processor dependent.l stride: Local stride in this dimension. l lb, l ub, and l stride are provided for e�cienttraversal of local array elements.ghost size: Ghost area size in this dimension, both ends. This is intended as a support forshift operations.p shape: Number of processors in the processor grid. Note, rank of processor grid may bedi�erent from that of array.local coord: Coordinate of this processor in the processor grid.slice coord: Coordinates of the sub processor grid that holds this distributed array/section.-1 is used for \full dimension". Per-array informationbase address: Base address of local array. May be di�erent from the address of the �rste�ective element. It may also change upon rank reduced sectioning.type: Data type code for array element. We de�ne 1 for INTEGER, 2 for REAL, 3 forDOUBLE PRECISION, 4 for CHARACTER.rank: Rank of the array, changes upon rank reduced array sectioning.p rank: Rank of the processor grid.comm: A handle to the processor grid, for example, MPI COMM.major: Majority of array storage, so that the DAD may work for both Fortran and C.ExamplesWe show some examples on DAD contents for various situations. In particular, we demonstratehow a DAD gets modi�ed upon sectioning. Algorithms have been designed to �ll/modify DADe�ciently. 7

For the following speci�cationREAL X(100)!HPF$ PROCESSORS P(4)!HPF$ TEMPLATE T(-10:200)!HPF$ ALIGN X(i) WITH T(2*i-3)!HPF$ DISTRIBUTE T(BLOCK) ONTO Pwe would have the following DAD for processor (1)g_extent :100 0 0 0 0 0 0t_extent :212 0 0 0 0 0 0t_stride : 2 0 0 0 0 0 0t_offset : 9 0 0 0 0 0 0distCode : -1 0 0 0 0 0 0on_pdim : 1 0 0 0 0 0 0l_extent : 53 0 0 0 0 0 0l_lb : 9 0 0 0 0 0 0l_ub : 51 0 0 0 0 0 0l_stride : 2 0 0 0 0 0 0ghostSize : 0 0 0 0 0 0 0p_shape : 4 0 0 0 0 0 0my_coord : 1 0 0 0 0 0 0slice_coord : -1 0 0 0 0 0 0Note: (1) the original template is of size 211, and we've brought it up to a multipleof 4, the number of processors; (2) t o�set is 9, since 2*1-3 = -1, and -1 - (-10) = 9; (3)local array is of extent 212/4; (4) assuming local array is 0-based, i.e., X(0:52), the �rste�ective element in processor 1 is X(9).Now suppose X(4:100:3) is used as an argument to some subroutine. A new DAD,for processor (1), as the following is formed and passed to the subroutine.g_extent : 33 0 0 0 0 0 0 *t_extent :212 0 0 0 0 0 0t_stride : 6 0 0 0 0 0 0 *t_offset : 15 0 0 0 0 0 0 *distCode : -1 0 0 0 0 0 0on_pdim : 1 0 0 0 0 0 0l_extent : 53 0 0 0 0 0 0l_lb : 15 0 0 0 0 0 0 *l_ub : 51 0 0 0 0 0 0l_stride : 6 0 0 0 0 0 0 *ghostSize : 0 0 0 0 0 0 0p_shape : 4 0 0 0 0 0 0my_coord : 1 0 0 0 0 0 0slice_coord : -1 0 0 0 0 0 0Note: (1) changed entries are indicated by *; (2) l ub may also change in general.8

For the following speci�cationINTEGER X(8,6)(6)PROCESSORS P(4,2)ALIGN X(i,j) WITH T(i,j)DISTRIBUTE T(BLOCK,BLOCK) ONTO P...CALL FOO(X(6,:))...We have dad X:g_extent 8 6t_extent 8 6t_stride 1 1t_offset 0 0dist_code -1 -1on_pdim 1 2l_extent 2 3l_lb 0 0l_ub 1 2l_stride 1 1ghstsize 0 0p_shape 4 2my_coord * *slice_coord -1 -11 2 2 comm majorbase_address = address of local X(0,0)We include the base address now, since it will change soon. Now X(6,:) is passed tosubroutine, we would have dad X(6,:),dad_X(6,:):g_extent 6t_extent 6t_stride 1t_offset 0dist_code -2 <- dist_code(2)*l_extent(1)on_pdim 2l_extent 6 <- l_extent(2)*l_extent(1)l_lb 0 <- l_lb(2)*l_extent(1)l_ub 4 <- l_ub(2)*l_extent(1)l_stride 2 <- l_stride(2)*l_extent(1)ghstsize 0p_shape 4 2my_coord * *slice_coord 3 -1 changed !1 1 2 comm majorbase_address = address of local X(1,0) !!!9

Note: the change of base address is subtle | global X(6,:) is local X(1,:) on the 3rdslice of the two dimensional processor grid.For the following speci�cationREAL X(10,20,30)!HPF$ PROCESSORS P(4,4)!HPF$ TEMPLATE T(30,50)!HPF$ ALIGN X(i,*,j) WITH T(j,3*i+5)!HPF$ DISTRIBUTE T(CYCLIC,CYCLIC) ONTO Pwe would have the following DAD for processor (1,1)g_extent : 10 20 30t_extent : 52 0 32t_stride : 3 -1 1t_offset : 7 -1 0dist_code : 1 0 1on_pdim : 2 -1 1l_extent : 13 20 8l_lb : 4 0 0l_ub : 7 19 7l_stride : 3 1 1ghost_size : 0 0 0p_shape : 4 4my_coord : 1 1slice_coord : -1 -1: 2 3 2 comm major: local base addressNow suppose X(:,:,1:30:2) is used as an argument to some subroutine. A new DAD,for processor (1,1), as the following is formed and passed to the subroutine.g_extent : 10 20 15t_extent : 52 0 32t_stride : 3 -1 2t_offset : 7 -1 0dist_code : 1 0 1on_pdim : 2 -1 1l_extent : 13 20 8l_lb : 4 0 0l_ub : 7 19 6l_stride : 3 1 2ghost_size : 0 0 0p_shape : 4 4my_coord : 1 1slice_coord : -1 -1: 2 3 2 comm major: local base address, no change10

Thus, the subroutine e�ectively sees some array X1(10,20,15) aligned on some tem-plate, and distributed on a two dimensional processor grid.Now suppose this subroutine uses X1(1,:,:) to call another subroutine. We havea rank reduced sectioning situation. We would like the callee to e�ectively see a twodimensional array. The following DAD would be generated.g_extent : 20 15t_extent : 0 32t_stride : -1 2t_offset : -1 0dist_code : 0 1on_pdim : -1 1l_extent :260 8l_lb : 0 0l_ub :247 6l_stride : 13 2ghost_size : 0 0p_shape : 4 4my_coord : 1 1slice_coord : 1 -1: 2 2 2 comm major: local base address, no change.References[1] HPFF, High Performance Fortran Language Speci�cation (version 1.0). May 3,1993.[2] James Cowie, Don Leskiw, and Xiaoming Li, "The Distributed Array Descriptorfor a PCRC HPF Compiler," Ver. 1.0, SCCS-770, NPAC, Jan. 31, 1996.[3] James Cowie, Don Leskiw, and Xiaoming Li, "The Distributed Array Descriptorfor a PCRC HPF Compiler," Ver. 1.1, SCCS-770b, NPAC, May 1, 1996.[4] James Cowie, Don Leskiw, and Xiaoming Li, "The Distributed Array Descriptorfor a PCRC HPF Compiler," Ver. 1.2, SCCS-770c, NPAC, Sept 22, 1996.
11

	The Distributed Array Descriptor for a PCRC HPF Compiler Version 2.0 SCCS-770d
	Recommended Citation

	tmp.1285859524.pdf.gECJm

