
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

1990

Mapping Finite Element Graphs on Hypercubes Mapping Finite Element Graphs on Hypercubes

Yeh-Ching Chung

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chung, Yeh-Ching and Ranka, Sanjay, "Mapping Finite Element Graphs on Hypercubes" (1990). Electrical
Engineering and Computer Science - Technical Reports. 95.
https://surface.syr.edu/eecs_techreports/95

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215702848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/95?utm_source=surface.syr.edu%2Feecs_techreports%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

School of Computer and Information Science
4-116, CST Center for Science and Technology

Syracuse University
Syracuse, NY 13244-4100

(315) 443-4457

Mapping Finite Element Graphs on Hypercubes

Yeh-Ching Chung and Sanjay RanktJ

School of Computer and Information Science
4-116, CST Center for Science and Technology

Syracuse University
Syracuse, NY 13244-4100

(315) 443-4457

Abstract - The 2-way striP.es partition mapping and the greedy assignment mapping are
proposed to map finite element graphs (FEGs) onto hypercubes. They can be used to map both
2-D and 3-D PEGs on hypercubes. The 2-way stripes partition mapping is a two phase
mapping approach. In the first phase, a 2-way stripes partition approach is used to achieve
low communication cost In the second phase, the load transfer heuristic is used to balance
the computational load among processors. The greedy assignment mapping tries to minimize
the communication cost and balance the computational load of processors simultaneously.

1. INTRODUCTION

In parallel computing, it is important to map a parallel program onto a parallel computer

such that the total execution time of a parallel program is minimized. In genera~ a parallel

program and a parallel computer can be represented by a task graph (TG) and a processor graph

(PG), respectively. For a TG, nodes represent tasks of a parallel program and edges denote

the data communication needed between tasks. The weights associated with nodes and edges

represent the computational load and communication cost, respectively. For a PG, nodes and

edges denote processors and communication channels, respectively. By using the graph

model, the mapping problem becomes a task allocation problem.

In the task allocation problem, we try to distribute the computational load of a parallel

program to the processors of a parallel computer as evenly as possible (the load balance

criterion (LBC)) and minimize the communication cost of processors (the minimum

communication cost criterion (MCCC)). The optimal assignment of tasks to processors in

order to minimize the total execution time is known to be NP-complete [GaJo79]. This means

that the optimal solution is intractable. Therefore, satisfactory suboptimal solutions are

generally sought.

In this paper, we will discuss how to map finite element graphs (FEGs) onto hypercubes.

Our schemes are general and are applicable to a wide variety of PGs. The finite element

method (FEM) is a widely used method for the structural modeling of physical system

[LaPi83]. Due to the properties of compute-intensiveness and compute-locality, it is very

attractive to implement this method on parallel computers [BeBo87] [Bokh81] [Jord78]

[SaEr87]. The number of nodes in a FEG is usually greater than the number of processors

in a parallel computer. It is important to partition a FEG into M modules such that the

computational load of modules are equal and the communication cost among modules are

minimized, where M is the number of processors of a parallel computer.

In [BeBo87], a binary decomposition approach was used to partition a nonuniform mesh

graph (a kind ofFEG) into modules such that each module has the same computational load.

These modules were then mapped onto meshes, trees, and hypercubes. This method does not

try to minimize the communication cost. [SaEr87] proposed the nearest-neighbor mapping

1

approach to map planar FEGs onto meshes. It used the stripes partition (stripes mapping)

strategy to minimize the communication cost among processors and then used the boundary

refinement heuristic to balance the computational load among processors. All of the FEGs

used by those mapping approaches are two dimensional graphs. They cannot be trivially

extended to three dimensional FEGs. In a structural modeling system, most of the cases

encountered are three dimensional FEGs. Therefore, it is important to show that a mapping

approach can be applied to all kinds of FEGs.

We propose two mapping approaches, the 2-way stripes partition mapping and the greedy

assignment mapping, which can be applied to all kinds of FEGs. The 2-way stripes partition

mapping tries to minimize the communication cost by assigning a node and its neighbor nodes

of a FEG to the same processor or neighbor processors of a hypercube (the definitions of

neighbor node and neighbor processor will be defined latter). Since the computational load

may not be equally assigned to each processor by using this approach, the load transfer

heuristic is used to balance the computational load among processors. The greedy assignment

mapping tries to minimize the communication cost and balance the computational load

simultaneously. It assigns one node of a FEG to a particular processor of a hypercube at a

time according to the current status of the neighbor nodes of that node.

In our analysis, we assume that the number of edges (E), the number of finite elements

(F), and the number of nodes (N) differ from each other by a multiplicative constant, i.e., E

= c1F = c2N, for some constants c1 and c2• These assumptions are true for most of the FEGs.

The computational complexities of the 2-way stripes partition mapping and the greedy

assignment mapping are O(MN'llogM) and O(Nlog2 M + NlogN), respectively, where M is

the number of processors of a hypercube and N is the number of nodes of a FEG. Our

simulation results show that the speedups for the 2-way stripes partition mapping are better

than those for the greedy assignment mapping when the LBC is achieved in both approaches.

However, the greedy approach gives good performance at a much lower cost.

This paper is organized as follows. Section 2 introduces the definitions and notations

used in this paper. The cost models of mapping a FEG onto a hypercube are also described

in this section. The 2-way stripes partition mapping and the greedy assignment mapping are

2

addressed in Sections 3 and 4, respectively. In Section 5, we compare the mapping results of

these two approaches.

2. PRELIMINARIES

2.1. Hypercubes

Hypercubes or n-cubes are highly concurrent loosely coupled multiprocessors based on

the binary n-cube network and are referred to by different names (such as cosmic cube [Seit85],

n-cube [HaMu86], binary n-cube [BhAg84], etc.).

Definition 1 : An n-dimensional hypercube Qn, for n > 1, can be recursively defined in

terms of the graph product x as follows [Hara69]:

(1)

where K2 = Q1 is the complete 2-node graph. •
From Definition 1, we know that an n-dimensional hypercube consists of zn processors.

The address of each processor can be represented by an n-bit binary number ranging from

0 to zn-1.

Definition 2: In ann-cube, two processors Px and Py are adjacent processors if the address

of Px differs from that of Py by one bit. •
In Figure 1, n-dimensional hypercubes are shown, for n = 1, 2, and 3. We use symbol

M to denote the total number of processors of a hypercube throughout this paper.

2.2. Finite Element Graphs (FEGs)

The finite element method (FEM) is a widely used technique to solve the partial differential

equations (PDEs) by using iterative approach. In the finite element model, an object can be

viewed as a FEG. A FEG is a connected and undirected graph which consists of a number

of rectilinear 4-node finite elements (FEs).

3

Figure 1 : An example of n-cubes, for n = 1, 2, and 3

Definition 3 : A FEG is a 2-D FEG if it is a planar graph. •

Definition 4 : In a FEG, two nodes node(x) and node(y) are adjacent nodes if < node(x),

node(y) > is an edge of the FEG. •

Detipjtjop S : In a FEG, two nodes node(x) and node(y) are neighbor nodes if node(x) and

node(y) are in the same FE. •

In Figure 2(a), for example, a 40-node FEG which consists of 25 FEs is shown (The circled

and uncircled numbers denote the FE numbers and node numbers, respectively.). LetFE(x)

denote the set of nodes which form FE x, ADJ(node(y)) denote the set of adjacent nodes of

node(y), NB(node(y)) denote the set of neighbor nodes of node(y), and I{NB(node(y))) denote

the cardinality of NB(node(y)), i.e., the number of nodes in NB(node(y)). We have FE(6) =
{node(7), node(B), node(14), node{15)}, ADJ(node(14)) = {node{7), node(13), node(15),

node(19)}, NB(node(14)) = {node{6), node{7), node{8), node{13), node{15), node(18), node{19),

node(20)}, and #(NB(node(14))) = 8. It is clear thatADJ(node(y)) is a subset ofNB(node(y)),

i.e., ADJ(node(y)) c NB(node(y)). In this paper, we assume that the number of edges (E), the

number of finite elements (F), and the number of nodes (N) differ from each other by a

multiplicative constant, i.e., E = c1F = c2N, for some constants ct and c2. These assumptions

are true for most of the FEGs. We also assume that the degree of every node in a FEG is upper

4

bounded by a constant, i.e. #(ADJ(node(y))) is a constant. This assumption implies that

#(NB(node(y))) is also a constant.

In a FEG, a node represents a particular amount of computation. Each node has the

same computational load and can be executed independently. Each node has to send data

to its neighbor nodes after completing its computation and all the nodes have to finish their

communication before they can commence next iteration. The communication needed

between nodes in the FEG of Figure 2(a) are shown in Figure 2(b). We use symbol N to denote

the number of nodes of a FEG throughout this paper.

28

34

(a) : A 40-node FEG with 25 FEs. (b) The communication needed between nodes.

Figure 2 : An example of a 40-node FEG and the communication need­
ed between nodes.

2.3. The Cost Models of Mapping FEGs onto Hypercubes

From the parallel processing point of view, a FEG can be characterized as a task

interaction graph (TIG) [SaEr87]. In a TIG, nodes represent tasks and edges denote the

5

communication needed between tasks. All the tasks can be executed independently and

simultaneously, i.e., the temporal dependencies of tasks are not represented explicitly.

To map an N-node FEG onto an M-processor hypercube, we need to assign the nodes

of a FEG to the processors of a hypercube. There are MN mapping ways. The total execution

time of a FEG on a hypercube under a particular mapping MAP; is defined as follows:

Tpar(MAP;) = max{loadi(pj)} x Ttask + C;(P), (2)

where Tpar (MAPi), /oad;(pj) , Ttask. and Ci(P) represent the total execution time, the

computational load assigned to processor Pj, the time to execute a task on a processor, and

the communication cost of processors under mapping MAP;, respectively, where i = 1, ... , MN

andj = 0, ... , M-1.

The computational load assigned to each processor of a hypercube is equal to the nodes

of a FEG assigned to it. Since the processor with the maximal computational load determines

the computational cost of a mapping, Equation 2 employs the synchronous communication

mode implicitly, i.e., the communication between processors cannot be started until all the

processors have completed their computations.

If we assign the four nodes of a FE to different processors, there exists at least one pair

of nodes in a FE such that the communication distance of this pair of nodes in a hypercube

is greater than or equal to 2. In this paper, we consider only mappings such that the

communication distance between neighbor nodes of a FEG in a hypercube is less than or equal

to 2.

Definition 6 : In an n-cube, any two processors whose addresses differ by at most two

bits are neighbor processors. •

Definition 7 : A mapping is a neighbor mapping if any two neighbor nodes (nodes

corresponding to a FE) of a FEG are assigned to the same processor or two neighbor

processors of a hypercube. •

From Definitions 6 and 7, we have the following lemma.

Lemma 1 :To map a FEG onto a 2-cube, any mapping approach is a neighbor mapping.•

6

In our communication models, we assume that every processor can communicate with

all its adjacent processors in one step. Since we use the synchronous communication mode,

Ci (P) is defined as follows:

s
Ci(P) = I (Tsetup + maxj{CkJ} X Tc).

j=l
(3)

where S is the number of steps to finish the data communication among processors, Tsetup is

the setup time of the I/0 channel, maxi { CkJ} is the maximal amount of data sent from Pk to

Pt in step j, and Tc is the data transmission time of the I/0 channel per word. An I/0 channel

between two adjacent processors, Pi and Pj, of a hypercube is a bidirectional channel if Pi and

Pi can send data to each other simultaneously; otherwise, it is a unidirectional channel.

If the I/0 channel used in a hypercube is bidirectional (the bidirectional communication

model), algorithm bidirectional_comm_cost is used to compute the value of C;(P).

algorithm bidirectional_ comm_ cost(X)

I* X is the intermediate processor matrix. V xu E X, if Pi = a,_1 •.. ak+ 1a#k-1 •.. a0 and

Pi= b,_1 ... bk+1li#k-1"·ao, thenxu = a,_1 ... ak+1li#k-1 ... ao *I
1. Compute the communication cost matrix C according to a particular mapping;

2. Ci(P) = 0;
I* For the neighbor mapping, this loop is executed at most twice *I

3. while ((3 Cab > 0) and (Pa and Pb are neighbor processors)) do

4. { v cu > 0, 0 s: i, j s: M-1, send data cu from Pi to xu; Update C and Ci(P); }

5. return(Ci(P));
end_ of_ bidirectional_ comm_ cost

7

The initialization of the communication cost matrix requires O(Mlog2 M) time*. Line 1

N

requires oc_I #(NB(node(i)))) = O(N) time; line 2 requires Ct time; line 3 requires Cz time;
i=l

line 4 requires O(Mlog2 M) time, and line 5 requires c3 time, where Ct. c'b and c3 are constants.

Lines 3 and 4 form a loop and this loop is executed at most twice. The computational

complexity of this algorithm is equal to O(N + c1 + 2 x (cz + Mlog2 M) + c3) = O(N +

Mlog2 M). The communication behavior of algorithm bidirectional_comm_cost is shown in

Figure 3(a). In Figure 3(a), Sis equal to 2, max1{ ckl} = co1 + co3 = c10 + c12 = c21 + c23 =

c3o + c32 = 2, and maxz{ckl} = coz = c13 = czo = c31 = 1. We can derive that C;(P) = 2 x

Tsetup + (2 + 1) X Tc = 2 X Tsetup + 3 X Tc.

If the 1/0 channel used in a hypercube is unidirectional (the unidirectional

communication model), algorithm unidirectional_comm_cost is used to compute the value of

algorithm unidirectional_ comm_ cost(X)

/*X is the intermediate processor matrix. v X;; EX, if Pi = an-1· .. ak+1akfh-1· .• ao and

Pi= bn-1···bk+1ii#k-1···ao, thenx;; = P1 = a,._1···ak+1ii#k-1···ao *I
1. Compute the communication cost matrix C according to a particular mapping;

2. toggle = 0; Ci (P) = 0;
I* For the neighbor mapping, this loop is executed at most four times *I

3. while ((3 cab > 0) and (Pa and Pb are adjacent processors)) do

!* Set the communicating direction of channelu from Pi to P1 if Pi = a,._1 ••• ak+ 1a#k-1 ••• a0 ,

P1 = a,._1 ... ak+1ii#k-1 ... a0 •Pi = b,._1 ... bk+ 1ii#k-1 ... a0 , ak = toggle, and cii > 0 *I

4. { V cii > 0, 0 S i, j S M-l,p; = a,._1 ... ak+ 1a#k-1 •.. a0 , Pi= b,._1 ... bk+1ii#k-1···ao,

xii = p1 = a,._1 ••• ak+ 1ii#k-1 ••• a0 , and ak = toggle,

• Note that each processor can only have O(log2 M) neighbor processors. The other values of the matrix are useless. For
ease of presentation, Vcii > 0 in the algorithm refers to only c;; in which i andj are neighbor processors. Thus the
complexity of this operation is O(M log2 M) as compared to obvious O(M2). This assumption is true for the rest of the
presentation.

8

5. if (channelil is available or channelil = Pi - P1) then

{ channelil = Pi - P1; /*The communicating direction of channelil is set from Pi to Pr *I

Send data Cij from Pi to P1; Update C and Ci(P); }

I* If there are some channels channelil are still available after steps 4-5 are executed, set the

communicating direction of channe~ from Pi to P1 if Pi = b11_ 1 ••• bk+1il,.ak_1 ••• a0 ,

Pt = bn-l···bk+la,.ak-l···ao' Pi = On-1···ak+1a,.ak-l···ao, ak = toggle, and Cji > 0. *I

6. 'r/Cji > 0, 0 ~ i,j ~ M-1,pi = a,._1 ... ak+tO#k-l···a0 , Pi= h11_1 ••• bk+ 1il,.ak-l···a0 , and

Xft = p1 = b,._1 ••• bk+la,.ak_1 ••• a 0 , and ak = toggle,

7. if (channelil is available or channelil = Pi - Pt) then

{ channelil = Pi - Pt; Send data cii from Pi to Pt; Update C and Ci(P); }
8 toggle = (toggle + 1) mod 2;
9. }
10. return(Ci(P));

end_ of_ compute_ comm_ cost

N

In algorithm unidirectional_comm_cost, line 1 requires O(L II(NB(node(z)))) = O(N)
i=l

time; line 2 requires c1 time; line 3 requires Cz time; lines 5 and 7 require c3 time; line 8 requires

c4 time; and line 10 requires c5 time, where cb c:o c:» c4, and c5 are constants. Lines 3 to 9, 4

to 5, and 6 to 7 form loops and these loops have O(c), O(Mlog2 M), and O(Mlog2 M) iterations,

respectively, where c is a constant. The computational complexity of this algorithm is equal

to O(N + c1 + c X (cz + Mlog2 M X c3 + Mlog2 M X C3 + c4) + cs) = O(N + Mlog2 M).

An example of the communication behavior of algorithm compute_comm_cost is shown in

Figure 3(b). In Figure 3(b), Sis equal to 4, max1{ ckl} = co1 + co3 = c21 + c23 = 2, maxz{ ckl}

= CIO + C12 = CJO + C32 = C31 = 2, max3{ CJcl} = C02 = C13 = 1, and max.{ CJcl} = Czo = 1.

We can derive that C;(P) = 4 X Tsetup + (2 + 2 + 1 + 1) X Tc = 4 X Tsetup + 6 X Tc.

Let Tseq denote the total execution time of a FEG on a 0-cube which contains only one

processor. The speedup of a mapping MAP; is defined as follows:

9

step1 step2 C-= 1011 [
011 ~
1101 ----··~ C2Q ---........:·· c20 1110

~001~ 0001
C= 1000

0100
~000~ 0000

C= 0000
0000

Figure 3(a): The communication behavior of algorithm bidirectional_comm_cost.

[
011 ~ C= 1011
1101
1110

toggle -= 0 ...
step 1

~000~ 0000
C= 0000

0000

toggle = 1
o4

step 4
C= 0000 ~000~ 1000

0000

step 3 + toggle -= 0

Figure 3(b): The communication behavior of algorithm unidirectional_comm_cost .

. - Tseq
SpeedUp(MAP,) - T pm(MAP;) (4)

The objective of mapping a FEG onto a hypercube is to minimize the total execution time,

i.e., min{Tpar(MAP;)}, or maximize the speedup, i.e., max{SpeedUp(MAP;)}, where i = 1, 2,

10

... , MN. From Equation 2, we know that the processor with the maximal computational load;

and the communication cost of processors determine the total execution time of a FEG on

a hypercube under a particular mapping. Since our main objective is to minimize these

quantities, there are three ways to achieve the objective of a mapping. (1) First minimize

communication cost, then balance the computational load. (2) First balance the

computational load, then minimize the communication cost. (3) Minimize the communication

cost and balance the computational load simultaneously. The 2-waystripes partition mapping

and the greedy assignment mapping adopt approaches (1) and (3), respectively.

3. THE 2-WAY STRIPES PARTITION MAPPING

The 2-way stripes partition mapping is a two phase mapping approach. In the first phase

(partition and allocation phase), it uses the 2-way stripes partition heuristic and stripes merge

to partition anN-node FEG into M modules and each module contains m tasks, where 0 ~

m ~ N. These modules are assigned to processors by using the binary reflected Gray code

(BRGC). Since the computational load may not be equa11y assigned to each processor in this

phase, we will try to balance the computational load among processors by using the load

transfer heuristic in the second phase (the load balancing phase).

3.1. Phase I: The 2-way Stripes Partition and Stripes Allocation

The basic approach used in the 2-way stripes partition to partition a FEG into modules

is the stripes partition approach. The stripes partition approach starts at an arbitrary node

node(x) of a FEG and labels it as 0. Next, the neighbor nodes of node(x), NB(node(x)), are

labeled as 1. This process continues till each node in a FEG is assigned a label. Our approach

is more general than the stripes partition approach of [SaEr87]. The approach proposed in

[SaEr87] can only be used to partition 2-D FEGs and has some restrictions. Our approach

removes the restrictions in [SaEr87] and can be used to partition any kind of FEGs. The 2-way

11

stripes partition uses the stripes partition method twice. The partitioning starts at node(1)

and node(l-TJ + 1), respectively. By using this method, the labels assigned to each node can

be denoted by a 2-tuple (It, 12), where It and lz denote the labels assigned to a node by the first

and second stripes partition, respectively.

The next step is to assign these nodes to processors according to their labels. By using

the 2-way stripes partition, the 2-tuple labels assigned to nodes imply the following lemma.

Lemma 2 : For any two neighbor nodes node(i) and node(j) with labels (lip li2) and (ljp /h),

respectively, we have llh -lh I s 1 and 11;2 -lh I s 1. •
To assign nodes to processors according to their labels, we need to flatten ann-cube into

a two dimensional form. For any two neighbor processors processor(_it, h) and processor(iz,

h) in a mesh, we have I i1 - izl s 1 and I h-hi s 1. To map a FEG onto a mesh, the neighbor

mapping can be easily achieved by assigning node(i) with labels (/;1' /i2) to processor(lip /;2).

Since ann-cube can emulate 1x 2n, 2x 2n-1, ... , 2nx 1 meshes, we will try all cases. A binary

reflected Gray code (BRGC) [ChSa86] is defined as follows:

N. - {(0, 1)
k - ONk-1 + lNk-1 *

if k = 1

if k > 1
(5)

where + and * denote sequence concatenation and sequence reversal operations, respectively.

From Equation 5, we know that N1 = (0, 1), N1* = (0, 1)* = (1, 0), Nz = ON1 + lN1* = 0(0,

1) + 1(1, 0) = (00, 01) + (11, 10) = (00, 01, 11, 10), N3 = (000, 001, 011, 010, 110, 111, 101,

100), Nf....O) = 000, and Nf....3) = 010. Note thatNk{r) denotes the (r+ 1)th element ofN~o where

r = 0, ... , t' -1. To embed a 2: x 2! mesh in a (x + y)-cube, we assign processor(i, j) in a mesh

to the processor in the (x+y)-cube according to the following equation:

addr : processor(i, J) --+ Nx(i) A Ny(j), (6)

where 0 s i s 2:-1, 0 s j s 2!-1, and A is the binary string concatenation operation.

12

An example of embedding a 2 x 4 mesh in a 3-cube by using Equation 6 is shown in Figure

4(e). In Figure 4(e), the addresses of processor(O, 2) and processor(!, 0) are N1(0) A. NJ...2) =

011 and N1(1) A. NJ...O) = 100, respectively. By using the BRGCs, the addresses of any two

adjacent processors and any two neighbor processors of a mesh differ by one and two bits,

respectively, when the mesh is embedded in a hypercube.

Let L~ represent the number of nodes whose labels are equal to b in the ath stripes

partition, where a = 1 or 2 Let L1 and ~ represent the largest label numbers of the first

and the second stripes partition, respectively. Assume that a 'lf x 'l! mesh is embedded in a

(x+y)-cube by using Equation 6. If 'lf-1 < Lt ('l!-1 < LV. we will merge the two adjacent

stripes m and m+ 1 (nand n+ 1) which minimize Li + vr+l (Li + q+1), for all m = 0,

... , L1-1 (for all n = 0, ... , ~-1). This merge processing continues till L1 = 'lf-1 (~ = 'l!-1).

The computational complexity of this merge process is equal to O(N2). After this merge

processing, every node in a FEG is assigned a new 2-tuple labels (It', /z'), where 0 :s; It' <

'lf-1 and 0 :s; /z' < 'l! -1. Then, we assign nodes with new labels to processors of a (x+ y)-cube

according to the following equation:

aile: node(1)-- Nx:(.ft')A. Ny([z'), (7)

where the 2-tuple labels (lt',lz') are the new labels assigned to node(z), 0 :s; It' < 'lf-1 and 0

:s; /2' < 'l! -1. An example of partitioning a FEG into stripes and assigning stripes to a 3-cube

is shown in Figure 4.

The algorithm of the 2-way stripes partition and allocation is given as follows.

algorithm 2 _way_ stripes_yartition _ a/location(row, col)
I* row and col denote the length and width of a mesh, respectively. *I
1. Calculate the adjacent and neighbor nodes of each node in a FEG.
2 The first stripes partition.
3. The second stripes partition

13

Figure 4(a) : The labels assigned to
nodes by the first stripes partition.

Figure 4(c) : The 2-tuple labels
assigned to nodes.

Figure 4(b): The labels assigned to nodes
by the second stripes partition.

Figure 4(d) : A 3-cube.

(1,0) (1,1) (1,2) (1,3)

Figure 4(e): Emulate a 2x4 mesh.

14

Pooo

PIOI --r--
• --· Puol

I
Figure 4(f) : The new labels of nodes

after merging stripes.
Figure 4(g) : Allocate nodes to processors

by using Equation 7.

4. Merge stripes produced by the first and second stripes partition if necessacy.
5. Assign nodes to processors according their new labels by using Equation 7.

end_ o/_2 _ way_stripes_partition_allocation

In algorithm 2_way_stripes_partition_al/ocation, line 1 requires O(the number ofFEs of
N

a FEG) = O(N) time; both lines 2 and 3 require O(L #(NB(node(1)))) = O(N) time; line 4
i=l

requires O(N2) time; and line 5 requires O(N) time. The computational complexity of this

algorithm is equal to O(N + N + N + N 2 + N) = O(N2).

15

3.2. Phase II : The Load Balance Phase

The objective of this phase is to balance the computational load assigned to processors

in the first phase while preserving the neighbor mapping property. It consists of two steps.

In the first step, an Mx M load transfer matrix A is computed. Element aij in A denotes the

number of nodes Pi needs to transfer to Pj. If aij is negative, I aij I denotes the number of nodes

Pi needs to receive from Pj. Since a ?x 'lJ' mesh is embedded in a (x+y)-cube, we can start

with computing the balanced load for processor Nx(O) A Ny(O), i.e., the number of nodes

Nx(O) A Ny(O) needs to transfer to or receive from its neighbor processors. Next, we compute

the balanced load for processor Nx(O)A Ny(1). This process continues till the balanced load

for processor Nx(T-1)A Ny('lJ'-1) have been computed.

Let load(Nx(i) A Ny(j)) denote the number of nodes assigned to Nx(i) A Ny(j),

right(Nx(i) A Ny(j)) denote the right adjacent processor of Nx(i) A Ny(j), i.e., Nx(i) A Ny(j + 1), and

down(Nx(i) "'Ny(j)) denote the down adjacent processor of Nx(i) A Ny(j), i.e., Nx(i + 1) A Ny(j).

Note that processors Nx(i) A Ny('lJ' -1) and Nx(T-1) A Ny(j) do not have right and down adjacent

processors, respectively. To balance the computational load among processors, every

processor should be assigned ~ nodes. For simplicity, we assume N is divisible by M. The

number of nodes needed to be transferred to or received from the right or down adjacent

processor of Nx(i) A Ny(j) is determined by the following rules. This scheme is similar to that

of (SaEr87].

Rule 1: load(Nx{l)A Ny(j)) > ~. If load(down(Nx(i)A Ny(j))) < load(right(Nx(i)A Ny(j))),

then Nx(i)ANy(j) needs to transfer one node to down(Nx(i)A Ny(j)); otherwise, Nx(i)A Ny(j)

needs to transfer one node to right(Nx(i)A Ny(j)). We update the load of processors and

continue to apply Rule 1 tillload(Nx(i)A Ny(j)) = ~. For those processors do not have right

or down processors, the load of their right or down processors are equal to oo.

16

Rule 2: /oad(Nx{l)"'Ny(J)) < ~- If load(down(Nx{l)"'Ny(J))) > load(right(Nx{l)"'Ny(J))),

then Nx(l)"' Ny(J) needs to receive one node from down(Nx(l)"' Ny(J)); otherwise, Nx(l)"' Ny(J)

needs to receive one node from right(Nx{l)"'Ny(J)). We update the load of processors and

continue to apply Rule 2 till/oad(Nx(l)"' Ny(J)) = ~. For those processors do not have right

or down processors, the load of their right or down processors are equal to -oo.

Rule 3: If load(Nx{l)"' Ny(J)) = Z, then the load of this processor is balanced.

The time required to compute the load transfer matrix is equal to O(MN).

In the second step, we perform the load transfer from one processor to another according

to the load transfer matrixA. The algorithm proceeds iteratively, in an incremental manner,

and is similar to that of [SaEr87].

algorithm /oad_transfer(A)

t• ND(P;) denote the set of nodes assigned to processor Pi and A is the load transfer matrix. •t
1. Q = The set of processors that need to transfer nodes to other processors and mark them

as active;
2. Make a heap H(P) for all the processors in a hypercube according to their load;
3. repeat

4. { repeat t• Consider transferring node(x) E ND(p;) to Pi such that node(x) E NB(node(y))

and node(y) E ND(Pi)).•t

5. { Pi = the active processor with the largest computational load in Q;
6. max_load = /oad(root(H(P))); t• The maximal load assigned to processors •t
7. if (3 j, node(x) such that aii > 0, load(Pi) < max_load, node(x) e ND(Pi),

ND(Pi) n NB(node(x)) is not empty, and transfer of node(x) from

Pi to Pi preserves the neighbor mapping) then

8. { Assign node(x) to Pi; load(P;) = load(Pi) - 1; load(Pi) = load(Pi) + 1;

aii = a, - 1; Update H(P)

9. if(V k = 0, ... , M-1, aik = 0) then Q = Q- {Pi};

10. if (V P1 E Q, P1 is inactive, and NB(node(x)) n ND(P1) ¢ 0) then mark P1 as active;}

11. else mark p; as inactive;
12. } until (all processors in Q are inactive);
13. Mark all the processor in Q as active;

17

14. repeat/* Consider transferring any node in ND(Pi). */

15. { Pi = the active processor with the largest computational load in Q;
16. mox_load = load(root(H(P)));
17. if (3 j, node(x) such that a, > 0, load(Pi) < mox_load, node(x) E ND(Pi),

and transfer of node(x) from Pi to Pi preseiVes the neighbor mapping) then

18. { Assign node(x) to Pi; load(Pi) = load(Pi) - 1; load(Pi) = load(Pi) + 1;

aq = aq - 1; Update H(P);

19. if(V k = 0, ... , M-1, aile = 0) then Q = Q- {Pi};

20. if (V Pt E Q, p, is inactive, and NB(node(x)) n ND(Pt) ;t. 0) then mark Pt as active;}

21. else mark Pi as inactive;
22 } until (all processors in Q are inactive);
23. } until (load is balanced or further balancing is impossible);

end_ o/_load_transfer

In algorithm load_transfer, lines 1 and 2 require O(M) time; lines 5 and 15 require O(M)

time; lines 6 and 16 require O(ct) time; line 7 requires 0(2 x #(ND(Pi)) x (#(NB(node(x)))

+ #(NB(node(x))))) = O(N); lines 8 and 18 require O(Iog.M) time; lines 9, 13, and 19 require

O(M) time; lines 10 and 20 require O(Mx #(NB(node(x))) = O(M) time; lines 11 and 21 require

O(c2); lines 12 and 22 require O(c3) time; line 17 requires 0(2 x #(ND(p;)) x #(NB(node(x))))

= O(N) time; line 23 requires O(c4) time, where c1, c2, c3, and c4 are constants. Unes 3 to 23,

lines 4 to 12, and lines 14 to 22 form loops and these loops have O(c), O(MN), and O(MN)

iterations, respectively, where cis a constant. The computational complexity of this algorithm

under this assumption is equal to O(M + M + c x (MN X (M + Ct + N + logM + M +

M + c2 + c3) + M + MN x (M + c1 + N + logM + M + M + c2 + c3) + c4) = O(MlN

+ MN'l). We assume that N is usually greater than M. The worst case of the computational

complexity of this algorithm is O(MlN + MN2) ~ O(MNl).

18

Algorithm load_transfer does not guarantee to balance the computational load of

processors. If the computational load of processors can be balanced by this algorithm, the

values of all the elements in A are equal to zeros.

The 2-way stripes partition mapping algorithm is given as follows.

algorithm 2_way_stripes_partition_mapping(M, N. X)

I* X is the intermediate processor matrix. V Xv EX, if p; = a,._1 ... ak+ 1alif1k-t···ao and

Pi = bn-1···bk+tli~k-1···ao' then Xij = Pt = an-1···ak+1a~k-1•••ao *I
1. row = 1; col = M; best_bi = 0; best_uni = 0;
2. repeat
3. { 2 _way_ stripes _partition_ allocation(row, col);
4. Compute the load transfer matrix A;
5. load_transfer(A);
6. if (best_ hi < bidirectional_comm_cost(X)) then best_bi = bidirectional_comm_cost(X);
7. if(best_uni < unidirectional_comm_cost(X))thenbest_uni = unidirectional_comm_cost(X);
8. row = row * 2; col = col I 2;
9. } until (row > M);

end_ of_ 2 _way_ stripes _partition_ mapping

In algorithm 2_way_stripes_partition_mapping, line 1 requires O(cJ) time; line 3 requires

O(N2); line 4 requires O(MN) time; line 5 requires O(MN2) time; lines 6 and 7 require O(N

+ Mlog2 M) time; line 8 requires O(cz) time; and line 9 requires O(c3) time, where c11 c2, and

c3are constants. Lines 2 to 9 form a loop and this loop has logMiterations. The computational

complexityofthis algorithm is equal to0(c1 + logM x (N2 + MN + MN2 + (N + Mlog2 M)

+ (N + Mlog2 M) + c2 + c3) = O(MN21ogM).

Lemma 3 : The 2-way stripe partition mapping is a neighbor mapping. •

4. THE GREEDY ASSIGNMENT MAPPING

19

The greedy assignment mapping is a heuristic approach. It assigns a node to a particular

processor according to the current status of its neighbor nodes. Initially, it assigns node(a),

which has the largest number of adjacent nodes in a FEG, to processor 0 and the adjacent

nodes of node(a) are put into a queue Q. The node node(i) in Q which has the largest number

of adjacent nodes is selected as the next node to be assigned. Let P(NB(node(i))) denote the

set of processors which the neighbor nodes of node(i) are assigned and P(POS(node(i))) denote

the set of processors whose addresses differ from the address of each processor in

P(NB(node(i))) by at most two bits. If P(POS(node(i))) is empty, it implies that the neighbor

mapping is impossible for this approach; otherwise, for all Px, Py E P(POS(node(i))) and

load(Px) ::::;; load(Py), it assigns node(i) to Px. Then, the adjacent nodes of node(i) are inserted

in Q. This process continues till all the nodes are assigned or the neighbor mapping is

impossible. The algorithm is given as follows.

algorithm greedy_ assignment_ mapping(X)

!* X is the intermediate processor matrix. 'V xii E X, if Pi = a,._1 ... ak+ 1a#k-l· •• a0 and

pj = bn-l···bk+!ll#k-l···ao, thenxii =PI= an-l···ak+lll#k-l···ao *!
1. Calculate the adjacent and neighbor nodes of each node in a FEG;
2. Q = 0;
3. node(a) = The node with the largest number of adjacent nodes in a FEG;
4. Assign node(a) to processor 0 and Q = Q U ADJ(node(a));
5. Make a heap H(Q) for the nodes in Q according to the number of their adjacent nodes ;
6. while (Q is not empty) do
7. { node(i) = root(H(Q)); !*the node with the largest number of adjacent nodes in Q *I
8. Compute P(POS(node(i))).
9. if (P(POS(node(i))) is empty) then stop ("The neighbor mapping is impossible");

10. Px = the processor with the smallest load in P(POS(node(i)));

11. load(Px) = load(Px) + 1; Q = Q- {node(i)};
Q = Q u {those nodes in ADJ(node(i)) which have not been assigned} ; Update H(Q);

12. }
13. best_bi = bidirectional_comm_cost(X);
14. best_uni = unidirectional_comm_cost(X);

end_ of _greedy _assignment_ mapping

20

In algorithm greedy_assignment_mapping, line 1 requires O(the number of FEs of FEG)

= O(N) time; line 2 requires O(ct) time; line 3 requires O(N) time; line 4 requires O(c2) time;

line 5 requires O(c3) time; line 7 requires O(c4) time; line 8 requires O(#(NB(node(z))) X

log2 M) = O(log2 M) time; line 9 requires O(cs) time; line 10 requires O(log2 M) time; line

11 requires O(logN) time; and lines 13 and 14 require 0 (N + Mlog2 M), where ct, c2, CJ, c-~,

and cs are constants. Lines 6 to 12 form a loop. This loop has N iterations. The computational

complexity of this algorithm is equal to O(N + c1 + N + c2 + CJ + N x (c4 + log2 M +

cs + log2 M + logN) + (N + Mlog2 M) + (N + Mlog2 M)) = O(Nlogl M + NlogN). An

example of mapping a FEG onto a hypercube by using algorithmgreedy_assignment_mapping

is shown in Figure 5.

Figure 5 : Mapping a FEG onto a hypercube by using the greedy as­
signment mapping.

5. PERFORMANCE EVALUATION AND SIMULATION RESULTS

21

The samples of FEGs tested in this paper consist of four 2-D graphs and three 3-D

graphs which are shown in Figures 7(a)-(d) and 7(e)-(g), respectively. The number of nodes

of these FEGs are ranging from a few tens to a few hundreds. According to the communication

models described in Section 23, we derive the estimated lower bound speedup (ELBS) and the

estimated upper bound speedup (EUBS) for both of the bidirectional and unidirectional

communication models to measure our mapping results. They are given as follows:

N X Ttask

X Trask+ Tsetup + 2 X Tc {
EUBSbi = rMNl

N X Ttask
ELBsbi = -=r~Z"""l,.---x_r,_ras_k_+_2_x_T_se_tup_+_(....;.2=x~l-o-gM---1-)-x--;:-r"Z~l-x_T_c

X Trask + 2 X (Tsetup + 2 X Tc) {
EUBSuni = rMNl

N X Ttask
ELBSuni = -=-r~N1=---------=:.:.__ __ --:-;:r N';";"1-­

M X Trask+ 4 X Tsetup + (4 X logM-2) X M X Tc

(8.1)

(8.2)

(9.1)

(9.2)

where T task• Tsetup and Tcdenote the time required by a processor to execute the computation

of a node, the setup time of the I/0 channel, and the data transmission time of the I/0 channel

per word, respectively; EUBSbi and ELBSbi denote the EUBS and ELBS of the bidirectional

communication model, respectively; EUBSum and ELBSum denote the EUBS and ELBS of

the unidirectional communication model, respectively.

The EUBS and ELBS are obtained by assuming that both the LBC and the neighbor

mapping are achieved. If the LBC is achieved by a mapping, the item max{load;(pi)} in

Equation 2 is equal to r ~1- If a mapping is a neighbor mapping, the best case of the

communication cost is that any two neighbor nodes of a FEG are assigned to the same

processor or two adjacent processors of a hypercube and every processor only need to send

two nodes' data to each of its adjacent processors (see Figure 6). According to the

communication models described in Section 23, we can derive Equations 8.1 and 9.1.

22

Figure 6 : The best case of the communication cost of a mapping.

If a mapping is a neighbor mapping, the worst case of the communication cost is that

any two neighbor nodes of a FE are assigned to two processors whose addresses differ by two

bits in a hypercube. For the bidirectional communication model, the maximal number of steps

to finish the data communication among processors is equal to 2. In step 1, a processor

receives data from its adjacent processors and sends data to its neighbor processors

simultaneously. The maximal amount of data sent by processors is equal to logMX r ~1. In

step 2, the maximal amount of data sent from a processor to its adjacent processors is equal

to (logM-l)x rz1 (see Figure 3(a)). Therefore, we can derive Equation 8.2 For the

unidirectional communication mode~ the maximal number of steps to finish the data

communication among processors is equal to 4. A processor may receive (send) data from

(to) its adjacent (neighbor) processors in step 1 and then send (receive) data to (from) its

neighbor (adjacent) processors in step 2. The maximal amount of data sent by processors in

steps 1 and 2 are both equal to logMx r ~1- A processor may receive (send) data from (to)

its adjacent (adjacent) processors in step 3 and then send (receive) data to (from) its adjacent

(adjacent) processors in step 4. The maximal amount of data sent by processors in steps 3 and

4 are both equal to logMX r ~1 - 1. (see Figure 3(b)). Therefore, we can derive Equation

9.2.

23

We make the following assumptions about the capabilities of the processors of a

hypercube [SaEr87]. T task is equal to 1190 flS. Tsetup is equal to 1150 flS. Tc is equal to 10 J..LS

per word. By using the 2-way stripes partition mapping and the greedy assignment mapping,

the speedups of all the test samples on n-cubes are shown in Thbles 1, 2, and 3, for n = 3,

4, and 5, respectively. The following conclusions can be drawn from Thbles 1, 2, and 3.

1) : Both mappings give excellent performance. The estimated speedups of these

mappings are near optimal (given by EUBS) for most cases.

2) : The greedy assignment mapping, in general, can produce a good mapping at a low

computation cost. This method is not restricted to hypercubes and can be applied to a wide

variety of parallel architectures. It fails to preserve the neighbor mapping for sample 5 onto

4- and 5-cube. Every node in sample 5 has the same number of adjacent nodes. It is difficult

for this algorithm to determine which node is the best node to be assigned next because the

degree of all nodes are the same.

3): For the cases where the LBC is achieved, the speedups for the 2-way stripes partition

mapping are better than those for the greedy assignment mapping. The reason is that, by using

algorithm 2_way_stripes_partition_mapping, most of the nodes assigned to the same processor

are connected. It produces a smaller communication cost than that of the greedy assignment

mapping.

4) : In Thble 3, although the LBC is not achieved in sample 6 by using the 2-way stripes

partition mapping, the speedup for the 2-way stripes partition mapping is greater than the

value of the ELBS when the unidirectional communication model is used. The is because that

the number of steps, denoted by S, to finish the data communication among processors in the

unidirectional communication model is greater than 1 and less than 5, i.e. 2 s S s 4. If the

maximal computational load assigned to processors by the 2-way stripes partition mapping

is equal to r ~l + 1 and sis equal to 3, according to Equation 9.2, it is possible that the

speedup for the 2-way stripes partition mapping is greater than the value of the ELBS.

6. CONCLUSIONS

24

We proposed two mapping approaches, the 2-way stripes partition mapping and the

greedy assignment mapping, to map FEGs onto hypercubes. The 2-way stripes partition

mapping uses the stripes partition and BRGCs allocation to achieve the MCCC and uses the

load transfer heuristic to achieve the LBC. The greedy assignment mapping uses greedy

heuristic to achieve both MCCC and LBC. The cost models of mapping a FEG onto a

hypercube are developed for the bidirectional communication model and the unidirectional

communication model. Four 2-D and three 3-D FEGs are used as the test samples. To

measure the mapping results, the EUBS and ELBS are derived for both of the communication

models. The simulation results show that the speedups for the 2-way stripes partition

mapping are better than those for the greedy assignment mapping when the LBC is achieved

in both approaches. However, the greedy approach gives good performance at a much lower

cost.

25

Sample

1 (64)

2 (40)

3 (160)

4 (505)
5 (160)

6 (340)

7 (198)

Sample

1 (64)

2 (40)

3 (160)
4 (50S}
5 (160)

6 (340)
7 (198)

Sample

1 (64)

2 (40)

.~n6m

4 (50S)

5 (160)

6 (340)
7 (198)

Unidirectional communication model Bidirectional communication model

EUBS ELBS Greedy 2-way stripes partition EUBS ELBS Greedy 2-way stripes partition

6.42 5.10 5.19* 6.36* 7.12 6.13 6.32* 7.08*

5.74 4.31 3.92 4.44* 6.69 5.47 4.94 5.n•

7.28 6.26 6.09 7.20* 7.63 6.97 6.78 7.57*
7.66 6.89 7.00* 7.61" 7.77 7.34 7.44* 7.75*

7.28 6.26 6.07 6.57* 7.63 6.97 6.77 7.20*

7.56 6.74 6.80* 7.18* 7.73 7.25 7.33* 7.52*

7.34 6.39 6.48* 7.23* 7.62 6.30 7.12* 7.29*

Thble 1 : The speedups of mapping FEGs onto 3-cubes.

Unidirectional communication model Bidirectional communication model

EUBS ELBS Greedy 2-way stripes partition EUBS ELBS Greedy 2-way stripes partition

10.73 7.68 6.97 7.93* 12.84 10.10 9.00 10.61*

8.05 5.54 5.68* 5.70* 10.04 7.58 7.97" 7.96*

13.37 10.64 10.14 11.23* 14.57 12.61 12.01 13.17*

14.87 12.74 13.31* 14.74* 15.31 14.03 14.43* 15.24*

13.37 10.64 - 11.13* 14.57 12.61 - 13.06*

14.19 11.95 12.46* 12.79* 14.79 13.39 13.77* 13.99*
13.23 10.76 11.19* 11.47* 14.16 12.48 12.90* 13.06*

Thble 2 : The speedups of mapping FEGs onto 4-cubes.

Unidirectional communication model Bidirectional communication model

EUBS ELBS Greedy 2-way stripes partition EUBS ELBS Greedy

16.14 10.38 9.02 9.06 21.45 15.05 12.65

10.08 6.49 6.65* 6.66* 13.41 9.41 9.94*

22.97 16.63 14.21 14.21 26.74 21.39 17.44
28.11 22.66 24.15* 24.75* 29.74 26.15 27.30*

22.97 16.63 - 11.97 26.74 21.39 -
26.22 20.57 21.61* 20.65 28.37 24.40 25.43*
22.08 16.60 17.41* 17.57* 24.80 20.56 21.46*

Table 3 : The speedups of mapping FEGs onto 5-cubes.

* : The LBC is achieved in this case.

2-way stripes partition

12.67

9.96"

17.53
27.64*

14.31

23.81
21.60*

- : The neighbor mapping cannot be achieved in this case.

26

(a) (e)

~ >-9

I I

-'"'

1
~~ H

~ :r--<>

(b)

. ' ~
I J

[:;:;:: ~
I 7

(f)

J
~

V"-\j/~\j
(c)

(d)

(g)

Figure 7 : The test samples.

References :

[BeBo87] M.J. Berger and S.H. Bokhari, "A Partitioning Strategy for Nonuniform Problems

on Multiprocessors," IEEE Trans. on Computers, Vol. C-36, No. 5, pp. 570-580,

1987.

[BhAg84] L.N. Bhuyan and D.P. Agrawal, "Generalized Hypercube and Hyperchannel

structures for a Computer Network," IEEE Trans. on Computers, Vol. C-33, pp.

323-333, 1984.

[Bokh81] S.H. Bokhari, "On the mapping problem," IEEE Trans. on Computers, Vol. C-30,

pp. 207-214, 1981.

[ChSa86] 'I:R Chan and Y. Saad, "Multigrid Algorithms on the Hypercube

Multiprocessors," IEEE Trans. on Computers, Vol. C-35, pp. 969-977, 1986.

[GaJo79] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to Theory

of NP-completeness. San Francisco, CA: Freeman, 1979.

[HaMu86] J. Hayes and 'I Mudge, "Architecture of a Hypercube Supercomputer," Proc. of

Int'l Conference on Parallel Processing, pp. 653-660, 1986.

[Jord78] H. Jordan, "A special purpose architecture for finite element analysis," Int'l

Conference of Parallel Processing, pp. 263-266, 1978.

[LaPi83] L. Lapidus and G.R Pinder, Numerical Solution of Partial Differential Equations

in Science and Engineering. New York: Wiley, 1983.

[Peas77] M.C. Pease, "The Indirect Binary n-cube Multiprocessor Array," IEEE Trans.

on Computers, Vol. 26, pp. 458-473, 1977.

[SaEr87] P. Sadayappan and R Erca~ "Nearest-Neighbor Mapping of Finite Element

Graphs onto Processor meshes," IEEE Trans. on Computers, Vol. C-36 No. 12,

pp. 1408-1424, 1987.

[Seit85] C.L. Seitz, ••The Cosmic Cube;• Communications of ACM, Vol. 28, pp. 22-33,

1985.

28

	Mapping Finite Element Graphs on Hypercubes
	Recommended Citation

	SU-CIS-90-19_001c
	SU-CIS-90-19_002c
	SU-CIS-90-19_003c
	SU-CIS-90-19_004c
	SU-CIS-90-19_005c
	SU-CIS-90-19_006c
	SU-CIS-90-19_007c
	SU-CIS-90-19_008c
	SU-CIS-90-19_009c
	SU-CIS-90-19_010c
	SU-CIS-90-19_011c
	SU-CIS-90-19_012c
	SU-CIS-90-19_013c
	SU-CIS-90-19_014c
	SU-CIS-90-19_015c
	SU-CIS-90-19_016c
	SU-CIS-90-19_017c
	SU-CIS-90-19_018c
	SU-CIS-90-19_019c
	SU-CIS-90-19_020c
	SU-CIS-90-19_021c
	SU-CIS-90-19_022c
	SU-CIS-90-19_023c
	SU-CIS-90-19_024c
	SU-CIS-90-19_025c
	SU-CIS-90-19_026c
	SU-CIS-90-19_027c
	SU-CIS-90-19_028c
	SU-CIS-90-19_029c
	SU-CIS-90-19_030c

