Syracuse University

SURFACE

Electrical Engineering and Computer Science -

Technical Reports College of Engineering and Computer Science

8-1990

Mesh and Pyramid Algorithms for Iconic Indexing

Alok Choudhary
Syracuse University

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

6‘ Part of the Computer Sciences Commons

Recommended Citation

Choudhary, Alok and Ranka, Sanjay, "Mesh and Pyramid Algorithms for Iconic Indexing" (1990). Electrical
Engineering and Computer Science - Technical Reports. 91.

https://surface.syr.edu/eecs_techreports/91

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/91?utm_source=surface.syr.edu%2Feecs_techreports%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CI1S-90-25

Mesh and Pyramid Algorithms
for Iconic Indexing

Alok Choudhary! and Sanjay Ranka

August 1990

School of Computer and Information Science
Syracuse University
Suite 4-116
Center for Science and Technology
Syracuse, NY 13244-4100

(315) 443-2368

IThis work was supported in part by the Engineering Foundation grant no. 3537143.

Mesh and Pyramid Algorithms for Iconic Indexing

Alok Choudhary ! and Sanjay Ranka
School of Computer and Information Science
4-116 CST
Syracuse University

Syracuse, NY 13244-4100

August 2, 1990

1This work was supported in part by the Engineering Foundation grant no. 3537143.

Abstract

In this paper parallel algorithms on meshes and pyramids for iconic indexing are presented.

Our algorithms are asymptotically superior to previously known parallel algorithms.

Mesh and Pyramid Algorithms for Iconic Indexing

Alok Choudhary ! and Sanjay Ranka
School of Computer and Information Science
4-116 CST
Syracuse University

Syracuse, NY 13244-4100

August 2, 1990

1This work was supported in part by the Engineering Foundation grant no. 3537143.

1 Introduction

Several approaches have been proposed for pictorial information retrieval. They include
giving-by-pictorial-example [1], database queries [2], quad-trees [3], and iconic indexing [4].
As proposed in [4], images in a pictorial database can be represented by symbolic pictures.
In other words, a symbolic picture contains symbols to denote objects in the source image.
The retrieval can be performed by matching the symbolic picture representing the query
with the symbolic representation of the pictorial database. For example, a query can be
“Find all pictures containing a jeep to the right of a house,” or “Find all pictures containing
a man next to a dog.”

In [4] a method is proposed to represent a symbolic pictures and a picture query by two-
dimensional string (2-D string). The problem of pictorial information retrieval then becomes
a problem of 2-D subsequence matching. This approach allows an efficient way to construct
iconic indexes [21]. Iconic index means a linear index containing symbols from the symbolic
picture being indexed and representing the spatial relations in the picture.

In this paper we present parallel algorithms for iconic indexing on massively parallel
mesh and pyramid architectures. We present algorithms for Type-2, Type-1, and Type-0
matching problems (as defined in [4] and section 4). Furthermore, we introduce another
matching problem (called Type-3) and present algorithms for it. Given a symbolic picture
F (dimension n X n) and a symbolic pattern P (dimension m x m), the proposed algorithms
have the following asymptotic execution time on a n X n mesh and an n X n base pyramid.
Type-2 matching can be performed in O(m?) on a mesh and in O(m?) on a pyramid. By
using hashing techniques the same algorithms can be performed in O(m) on a mesh and in
O(m) on a pyramid. Type-2 matching in cases where wild characters exist (a wild character
can match with any other character) can be performed in O(m?) on a mesh and O(m?)
on a pyramid. Type-1 matching takes O(min(n? m?n)) time a mesh as well as a pyramid.
Type-0 matching can be performed in O(n) on a mesh and O(min(n,m? +logn)) time on a
pyramid. Finally, Type-3 matching takes O(m?®) on a mesh and O(m?®) on a pyramid. Our

algorithms for pyramid architecture are asymptotically superior to the one presented in [5)].

The rest of this paper is organized as follows. In Section 2, a description of mesh and
pyramid architectures is provided. Section 3 describes some preliminary operations required
for Section 4 and 5. Section 4 defines the matching problems and contains examples. Sec-
tion 5 presents the parallel algorithms for iconic indexing on massively parallel meshes and

pyramids. Concluding remarks are given in Section 6.

2 Model of Computation

The block diagram of an SIMD multicomputer is given in Figure 1. The important features

of an SIMD multicomputer and the programming notation we use are:

1. There are P processing elements connected together via an interconnection network.
Different interconnection networks lead to different SIMD architectures. Each process-
ing element (PE) has a unique index in the range [0, P — 1]. We shall use brackets
([]) to index an array and parentheses (‘()’) to index PEs. Thus, A[7] refers to the
i-th element of array A and A(7) refers to the A register of PE ¢. Also, A[j](7) refers
to the j-th element of array A in PE 7. The local memory in each PE holds data only
(i.e., no executable instructions). Hence PEs need to be able to perform only the basic

arithmetic operations (i.e., no instruction fetch or decode is needed).

2. There is a separate program memory and control unit. The control unit performs
instruction sequencing, fetching, and decoding. In addition, instructions and masks
are broadcast by the control unit to the PEs for execution. An instruction mask is a
boolean function used to select certain PEs to execute an instruction. For example, in
the instruction

A(r) = AGE) +1, (Go=1).
(1o = 1) is a mask that selects only those PEs whose index has bit 0 equal to 1; i.e.,
odd indexed PEs increment their A registers by 1. Sometimes we shall omit the PE

indexing of registers. So, the above statement is equivalent to the statement:
A=A+1, (20= 1)

2

3. We shall consider the following interconnection networks:

(a)

Mesh: A P = n x n mesh connects n? PEs that are logically arranged as a
two-dimensional array (Figure 2) . Each PE has a unique index in the range
(0...n—1,0...n —1). PE(z,7) is connected to PE((¢ — 1) mod n, j), PE((¢ +
1) mod n, 7), PE(¢,(j — 1) mod n), and PE(z, (7 + 1) mod n). Sometimes we will
use a one-dimensional indexing of the mesh. This is obtained using the standard
row major mapping in which (z, j) is mapped in+j. A number of mesh-connected
computers have been constructed. Examples include the CLIP4 [6,7], the GAPP
[8], and the MPP [9,10].

Pyramid: A pyramid with an n X n = 2% base connects P = (4n? — 1)/3
processors. These PEs form ¢ + 1 meshes of size n x n, n/2 x n/2,...,1 x 1,
respectively. These meshes are stacked one on top of the other in decreasing
order of size and interconnected as shown in Figure 3. Each PE has a unique
index PE(z,3,k), where 0 < i < g and 0 < j,k < n — 1. Examples of pyramid
computers that have been or are being built include the HCL Pyramid [11,12],
the MPP Pyramid [13], the SPHINX [14], and PAPIA [15].

The following relationships can be defined for a pyramid.
i. The father of the PE (1,1,7) is the PE (I-1, [¢/2], [7/2]), where 0 < [< logn
and 0< 4,7 <2 — 1.
ii. The sons of the PE (1,4,) are the PEs (I4+1,2i - 1,25 — 1), (I+1,2i —1,2j),
(141,214,275 — 1) and (I + 1,21¢,25), where 0 <! < logn.

4. Interprocessor assignments are denoted using the symbol «—, while intraprocessor

assignments are denoted using the symbol :=. Thus the assignment statement:

B(i,j) «— B(i,(j + 1) mod n), (i = 0)

on a mesh is executed only by those processors in the 0-th row. These processors

transmit their B register data to the processors on their left.

4
Control

SRl , Program
Memory

3

. !

Processing n

Element ;

A r

[+

Y o

n

» Memory :

[+

1

i

[+]

n

Processing | N

"I Element :

w

(o]

r

k

» Memory

Figure 1: An SIMD Multicomputer

o 0 o —
O O © -]

o o) o) o o)
O O O

o o o

o (o} o
o O O —_

Figure 2: A 4 x 4 Mesh (end around connection are not shown)

5. In a unit route, data may be transmitted from one processor to another if it is directly

connected.

6. Since the asymptotic complexity of all our algorithms is determined by the number of

unit routes, our complexity analysis will count only these.

2.1 Image Mapping

The image is mapped on the mesh such that PE(z, j) contains I(z,). For the pyramid, the
image is mapped on the base mesh. Thus PE(logn, 1,) contains I(z, 7).

Figure 3: A 21-Node Pyramid

3 Preliminaries

3.1 Sorting

On a n X n mesh sorting can be done in O(n) time using the algorithm of [22][10]. The same

algorithm can be used to complete sorting on a pyramid in O(n) time.

3.2 Compress

Assume that each PE has a certain record. Further, the PEs are sorted according to some
key on the record. After performing the compress operation duplicate records are combined
together and a count field is attached to them which refers to the number of records with that
value. For example (2,2,2,3,4,4,5,6) is replaced by ((2, 3), (3,1), (4,2),(5,1),(6,1), -, —, —),
where — represents the null symbol. This can be completed in O(n) time on a mesh and a

pyramid by using the algorithms for ranking and concentrating of {17].

3.3 Hashing

As suggested in [23] a hash function can be use to reduce the two-dimensional matching
problem into a one-dimensional matching. A hash function can be defined as follows :
h(r) = r mod gq, where q is a large prime number and r is the symbol. For a pattern of
length m, each symbol is transformed into an integer and packed into a binary string (inte-
ger). This corresponds to writing the symbols as numbers in a radiz — d number system,
where d is the number of possible symbols. The number k corresponding to a pattern of

length m (say, P(z) --- P(t+m —1)) is:

k = ord(P(i) x ™) + ord(P(i + 1) x d*"2) + -+ 4+ ord(P(i + m — 1)

k= ord(P(i + m — 1)) + d(ord(P(i + m — 2)) + - - - + d(ord(P(2))))

where ord(z) is the order of the symbol z. Shifting the pattern one position to the right (or

down) corresponds to replacing k by
(k — ord(P(i) x d™1) x d + ord(P(i + m)).

Therefore, obtaining a hash of each block of consecutive patterns of size m in a string of

length M takes O(M + m) steps if it is performed sequentially.

3.4 Shift

SHIFT(A,) shifts the A register data circularly counter-clockwise by i. It can be performed

in |7[unit routes.

3.5 Data Accumulation

For this operation, PE j has an array A[0...m —1] of size m. The notation A[i](j) refers to
A[z] in PE j. In addition, each PE has a value in its I register. After the data accumulation
the m elements of A in PE j are such that:

Afi)(j) = I((j +i) mod P), 0<i <m, 0<j < P.

This operation can be performed in (m — 1) unit routes.

3.6 AC Operation

Assume that each PE ¢ has a record a;. An AC operation is an associative and commutative
operation on all values of a; (like +, X, or, and). Let * be an AC operation. The result of
the AC operation is a; * az * - - - ap. It can be performed on an n X n mesh in O(n) time and

O(logn) time on an n X n base pyramid.

3.7 Merge

Assume that each PE has two records A and B. Consider the case of 4 PEs. Let A =
(1,3,4,5) and B = (3,4,5,6). The mergeof Aand Bis(1,3,3,4,4,5,5,6). Each PE contains

8

two values. This operation can be completed in O(n) time on a mesh and a pyramid.

3.8 Random Access Read (RAR)

In this formulation an index S(7) is contained in PE(z),0 < ¢ < n. PE(7) is to receive data
from PE(S(7)). We shall assume that the data to be transmitted to PE(z) is originally in
register D(S(7)). (D(j) denotes register or memory cell D in PE(5).) Also, if PE(Z) is not
to receive data from any other PE, then S(¢) = co. Random Access Read can be completed

in O(n) time on a mesh [17} and a pyramid.

4 The Matching Problems

Let V be a set of symbols. Each symbol may represent a pictorial object (a named object
such as “house,” “car,” etc.) or a part of an object. A symbolic picture is a mapping
S xS — W where S = {1,2,...,n} and W is the power set of V. The null object is
denoted by { } [6].

A symbolic pattern is a mapping S x S — W U {#} where “#” is a wild character ,
i.e., a “don’t care symbol” which matches all the elements in W.

Given a symbolic picture F' and a symbolic pattern P (with dimensions n X n and m x m,
respectively), we want to detect the occurrences of the pattern P in F.

In the following we make use of the array-like notation F'(7,7) (resp. P(z,7)) to denote
the (z,7)-th element of F' (resp. P). Also we will use characters (“a,” “b,” etc.) as symbols
rather than named objects.

An occurrence of a pattern P can be searched for inside the picture, depending on three
different criteria. Given a symbolic pattern P(m x m) and a symbolic picture F(n x n), P

has a type-t (t = 0,1, 2 and 3) occurrence in F if:

(t = 2) there exists a pair (k,[) of indices with 1 <k<n-m+landl1<I<n-m+1
such that F(k,!) = P(1,1) and

Flk+i—1,14j—1) = P(,j)

9

forl1<i<mandl1<j3<m.

In other words, P has a type-2 occurrence in F' if it occurs somewhere in F in its native
configuration; this can be viewed as a 2-D pattern-matching problem. Note that the right

member of the equality above determines the occurrence of P in F.

(t = 1) there exists a pair (k,) of indices and two ascending sequences of positive integers
(z1,%2y -+ s Tm-1)s (Y1, Y25+ - Ym—1) With 1 Sk <n—z,_yand 1 <1< n—yp,g such
that F(k,1) = P(1,1) and

F(k+ zioa, 1+ yj1) = P(3,5)
for1<i<m, 1<j<mandzg=1yo=0.

In other words, the elements of F', obtained by intersecting the m rows of F in po-
sitions (k,k + z1,...,k + Zm-1) with the m columns in positions (I,! + y1,...,] + yu_1)
determine the elements which form the occurrence of P in F. This can potentially lead to
an exponential number of matches in a particular row or column, e.g., matching a;a,...a,
with ajajazaqaszas. .. ana,. Thus any algorithm to recognize this matching may potentially
have to consider exponential possibilities and may take exponential time. We restrict this
matching by requiring that F(k + z,l+y) # P(i,5) for ziy < z < i,y = 0 (first row);
and y;-1 <y < y;,z =0 (first column). By a similar argument this matching may have to
consider exponential number of matches in the presence of wild cards; and hence may take

exponential execution time. We restrict this matching to be without any wild cards.

(t = 0) each symbolic item ¢ in P occurs in F', and whenever ¢ occurs k times in P it occurs

at least k times in F'.

(t = 3) each symbolic item ¢ in P occurs in a size m X m sub-block of F, and whenever ¢

occurs k times in P it occurs at least k£ times in that sub-block.

We say that P is a type-t subpicture of F' if it has at least one type-t occurrence in
F(t=0,1,2,3). For example, in Figure 4 the pictures f2, f1, and f0 are type-0 subpictures
of F; f2 and f1 are type-1 subpictures of f; only f2 is a type-2 subpicture of F.

10

Figure 4: Examples of Matching

t #
hol

p:‘.

Figure 5: An Example Query (Type-2)

Examples

Type-2 Query. Figure 5 shows an example of type-2 query. The query is “Find all
images containing a house with a lake on the east and a tree on the north.” # represents a
wild character that can match with any symbol.

Type-1 Query. In type-1 query we are interested in finding all images in which the
symbols in the pattern maintain alignments between each other but in which the distance
between any two symbols is different than in the original pattern. Figure 6 shows an example
of type-1 query.

Type-0 Query. In type-0 query we are interested in finding all the pictures containing
specified symbols (objects). For example, the query shown in Figure 7 is “Find all pictures
containing at least one house, two trees, and a lake.” In such a query, relative positions of
symbols do not matter.

Type-3 Query is a variant of type-0 query. In this variant we want to find out an

m X m sub-block of the picture which has at least as many symbols of each kind as an m xm

t a
t # a t # # a
a b
()h#l ()h## (c);:;ié

Figure 6: Examples of Type-1 Query

11

h 1t {

Figure 7: Example of Type-0 Query

pattern. In this query the relative positions of symbols do not matter. However, the locality

of the appearance should be limited to m x m block.

5 Iconic Indexing Algorithms

In this section we describe our results for performing iconic indexing on meshes and pyramids.

5.1 Type-2 Matching

We will classify the type-2 matching into two kinds: the first variation in which no wild cards
are allowed (exact matching), and the second variation in which wild cards are allowed.

By using a suitable hashing function a two-dimensional matching can be reduced to a
one-dimensional matching. In this case each symbol in the symbolic query array is replaced
by the hash of all the m — 1 symbols below it and itself. This computation can be performed
on a mesh in parallel in O(m) time. The same hashing function is used to convert the pattern
into a one-dimensional pattern.

Assume that the symbol is stored in register B of each processor and the hashed bit
pattern of the m symbols (of the symbol with the processor and m — 1 symbols of the
processors below it) is to be stored in register A of each processor. In the following algorithm
each processor computers m hash values and sends m — 1 values to the processors above it.

All processors execute in parallel. The following algorithm is given for processor P(z,j).
Ti,5):=B]s,]
Ali, jl:=(ord(B([z,])) mod ¢
fork=1tom—1do
tmpli, j] « tmpli + 1, 7]
Ali, jl:=(d x A[z, 5]+ tmpli, j]) mod ¢

12

After the above algorithm is executed, each processor’s register A contains the hash value
of the m symbols below it including its own symbol. The algorithm takes O(m) steps to
execute.

Once the hashing is performed, the problem is reduced to performing a one-dimensional
matching and can be completed in another O(m) steps. Thus the total time required is

O(m) on a mesh. The same can be performed in O(m) time on a pyramid.

Theorem 1 Exact matching can be performed on a mesh in O(m?) time on a mesh and
O(m?) on a pyramid by using a variant of template matching algorithm [18]. The amount

of memory required per PE is O(1).

Theorem 2 With hashing, type-2 exact matching can be performed in O(m) on a mesh

and O(m) time on a pyramid. The amount of memory required per node is O(1).

Theorem 3 With wild cards, the type-2 matching can be performed in O(m?) on a mesh
and O(m?) time on a pyramid. The amount of memory required per PE is O(1). This can

be done by a variant of template matching algorithm [18]

5.2 Type-1 Matching

A high-level description of the algorithm for computing the type-1 matching is given in
Figure 8. Step 1 and Step 2 can be completed in O(m) time. Steps 3 and 4 can be completed
in O(n) time. Step 5 can be completed in O(m?n) time. Step 5 can also be completed in
O(n?) by passing the whole image through every PE. This requires storing the whole pattern

in every PE. The amount of memory required is O(m?).

Theorem 4 Type-1 matching can be completed in O(m?n) time on a mesh and a pyramid
using O(m) memory per PE. It can also be completed in O(n?) time using O(m?) amount

of memory.

13

Step 1: Broadcast PAT[0...m — 1,0] to all PEs. Each PE stores them in C[0...m —1].
Step 2: Broadcast PAT[0,0...m — 1] to all PEs. Each PE stores them in R[0...m —1].

Step 3:
CMATCH: = FALSE

11(5,) = 16,)
b:=0
fora=0ton—1do
if not CMATCH then
if C[b] = I1 then
b:=b+1
CMATCHARRAY [b] :=a
if (b = m) then CMATCH: = TRUE.
I1[z, 7] «— I1[i,(j + 1) mod n]
end;

CMATCH := CMATCH and (I(i,j) = C[0])

Step 4: Same as Step 3 but along rows. The result is stored in RMATCH and RMATCHAR-
RAY [1...m}.

Step 5:
MATCH:=RMATCH and CMATCH
fora:=1tomdo
forb:=1tomdo
BROADCAST PAT(a,b) to all PEs
S(i,7) = (t+ RMATCHARRAY (a),; + CMATCHARRAY (b))
D(i,) = I(i,)
RAR
MATCH :=MATCH and (D(i,j) = PAT(a,b))
end

end

Figure 8: Type-1 Matching Algorithm

14

5.3 Type-0 Matching

In type-0 matching we are supposed to find out whether the symbols appearing in the pattern
also appear in the picture. This can be performed by the algorithm in Figure 9.

Steps 1, 2, 3, and 4 require O(n),0(n),0(m) and O(m) time, respectively. Step 5
requires O(n) time. Steps 6 and 7 require O(1) time. Step 8 requires O(n) time on a mesh

and O(logn) time on a pyramid.

Theorem 5 If the pattern is already stored in the PEs, type-0 matching can be completed
in O(n) time of a mesh and a pyramid. The amount of memory required is O(1). If the

pattern is in the controller the total time is O(n + m?) on a mesh and on a pyramid.

There is another possible algorithm for pyramids. The pattern is first sorted. After
sorting, the pattern values are broadcast to all the PEs in a pipelined fashion. At every step
the PEs find a match with the current pattern value.The output of each PE is 1, if there is
a match. These values are added up in a pyramid and sent back to the corresponding PE.
There is a pipeline of result summed up and results sent down. This can be completed in
O(m? + logn) time. At the end of this stage, each PE compares the (symbol, count) with
the corresponding (pat-symbol, count) and outputs a 1 appropriately. An and of all the PEs
having pat-symbol gives the desired result. The total time required is O(m? + logn). The
complexity of the algorithm is independent of the fact whether the pattern is already loaded

on the pyramid or not.

5.4 Type-3 Matching

Type-3 matching is a variant of type-0 matching. In this variant we want to find out an
m X m sub-block of the picture which has at least as many symbols of each kind as an
m X m pattern. There is a potential match at every sub-block of size m x m starting at
0 <1i,j7 <n-—m+ 1. The algorithm consists of m? stages. Each stage is similar to the one
given in Figure 9. Each of the steps of Figure 9 are performed in an m x m sub-block. We

assume that each m x m sub-block contains a copy of the pattern (This can be loaded in

15

Step 1: [SORT] Sort the elements of the picture I and store the result in S (in a snakelike
order).

Step 2: [COMPRESS] Perform the compress operation on S. Each processor stores the
result as
A(SYMBOL, COUNT, 1).

Step 3: [SORT] Sort the elements of the pattern P and store the result in 7" (in a snakelike
order).

Step 4: [COMPRESS] Perform the compress operation on T. Each processor stores the
result as
B(SYMBOL, COUNT, 0).

Step 5: [MERGE] C =MERGE (A4, B). Each processor has at most two tuples (the last
few may have null tuples). Let these tuples be represented by C1 and C2, respectively.
The third field of C represents whether the tuple is from pattern or picture (0 or 1).

Step 6: X «— C2 (LEFT) where LEFT represents the left PE in the snakelike order.
Step T:

MATCH:=TRUE
if C1(3) = 0 then
if not((X-SYMBOL=C1-SYMBOL) and (X-SYMBOL> C1-SYMBOL))
then MATCH:=FALSE
if C2(3) = 0 then
if not ((C2-SYMBOL= C1-SYMBOL)and (C1-SYMBOL> C2-SYMBOL))
then MATCH:=FALSE

Step 8: Perform an AC operation (and) on MATCH.

Figure 9: Type-0 Matching Algorithm

16

O(m?) time if required). Thus one stage can be completed in O(m) amount of time. This
gives possible matches for the top left hand corner for each sub-block. This algorithm has to
be applied m? number of times by choosing suitable sub-block boundaries at every stage so
that the match is found for all possible n? points. The complexity of the resultant algorithm
is O(m®)) on a mesh (including the initial loading). It can be completed in the same amount

of time on the pyramid.

Theorem 6 Type-3 matching can be completed in O(m?®) on a mesh and O(m®) on a

pyramid. The amount of memory required per PE is O(1).

6 Conclusions

In this paper we have presented algorithms for iconic indexing on pyramids and meshes.
Our algorithms are asymptotically superior to the algorithms presented in [16]. In many
cases our algorithms are optimal. We are currently implementing these algorithms on the

Connection Machine.

7 Acknowledgment

The authors would like to thank Ms. Elaine Weinman for converting the handwritten text

of this paper into JATRX.

References

[1] N.S. Chang and K. S. Fu. “Query-by-pictorial-example.” Proc. COMPSAC 79, IEEE
Comput. Soc. (1979), 325-330.

(2] S. K. Chang and T. Kunii. “Pictorial database systems.” Computer (special issue on

pictorial information systems). S. K. Chang, Ed. (Nov. 1981), 13-21.

17

3]

(4]

[5]

[6]

[7]

(8]

[9]

(10]

[11]

[12]

(13]

H. Samet. “The quadtree and related data structures.” ACM Comput. Survey, vol.
16, no. 2 (June 1984), 187-260.

S. K. Chang, Q. Y. Shi, C. W. Yan. “Iconic indexing by 2-D strings.” IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-9 (May 1987), 413-428.

G. Tortora, Y. Costagliola, T. Arndt, S. K. Chang. “Pyramidal Algorithms for Iconic

Indexing.” Manuscript.
g

M. J. Duff. “CLIP 4: A Large Scale Integrated Circuit Array Parallel Processor.”
IEEE Intl. Joint Conf. on Pattern Recognition (Nov. 1976), 728-733.

M. J. Duff. “Review of the CLIP Image Processing System.” National Computer
Conference, Anaheim, California (1978).

NCR Microelectronics Division, Product Description ncr45¢g72, NCR Corporation,
Dayton, Ohio (1984).

K. Batcher. “Design of a Massively Parallel Processor.” IEEE Trans. on Computers,
vol. 29, no. 9 (1980), 836-840.

C. P. Schnorr and A. Shamir, "An optimal sorting algorithm for mesh-connected
computers” Proceeding of the 18th ACM Symposium on Theory of Computing, May
1986, 255-261.

J. E. Devaney. “The MPP—A Totally Different Approach to Programming.” IEEE
Workshop on Computer Architecture for Pattern Analysis and Image Database Man-

agement (Nov. 1985), 420-427.

S. L. Tanimoto, T. J. Ligocki, R. Ling. “A Prototype Pyramid Machine for Hierar-
chical Cellular Logic.” Parallel Hierarchical Computer Vision, L. Uhr, Ed. Academic
Press, London (1987).

S. L. Tanimoto. “A Hierarchical Cellular Logic for Pyramid Computers.” Journal of
Parallel and Distributed Computing, vol. 1 (1984), 105-132.

18

[14] D. H. Schaefer, D. H. Wilcox, G. C. Harris. “A Pyramid of MPP Processing

Elements—Experience and Plans.” Hawaii Intl. Conf. on System Sciences (1985),

178-184.

[15] A. Merigot, B. Zavidovique, F. Devos. “SPHINX, A Pyramidal Approach to Parallel
Image Processing.” IEEE Workshop on Computer Architecture for Pattern Analysis
and Image Database Management (Nov. 1985), 107-111.

[16] V. Cantoni, M. Ferretti, S. Levialdi, F. Maloberti. “A Pyramid Project Using Inte-
grated Technology.” Integrated Technology for Parallel Image Processing. Academic
Press, London (1985), 121-132.

[17] D. Nassimi and S. Sahni. “Data Broadcasting in SIMD Computers.” IEEE Transac-
tions on Computers, vol. C-30 (May 1981), 342-346.

[18] S. Y. Lee and J. K. Agarwal. “Parallel 2-D convolution on a mesh connected com-
puter.” IEFE Transactions on Pattern Analysis and Machine Intelligence. (July
1987), 590-594.

[19] N. Ahuja and S. Swamy, “Multiprocessor Pyramid Architectures for Bottom-up Im-
age Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-6, (July 1984), 463-475.

[20] P. J. Burt, T. H. Hong, and A. Rosenfeld, “Segmentation and Estimation of Image
Region Properties through Cooperative Hierarchical Computation,” IEEE Transac-
tions on Systems, Man and Cybernatics, Vol. SMC-11, (1981), 802-809.

[21] S. L. Tanimoto, “An iconic/symbol data structuring scheme,” in Pattern Recognition

and Artificial Intelligence, C. H. Kohen, Ed., New York, Academic, 1976.

[22] D. Nassimi and S. Sahni, “Bitonic Sort on a mesh connected parallel computer,”

IEEE Transactions on Computers, Vol. C-28, (January 1979), pp. 2-7.

19

[23] R. F. Zhu and T. Takaoda, “A technique for two-dimensional pattern matching,”
Communication of the ACM, Vol. 32, (September 1989), pp. 1110-1120.

20

	Mesh and Pyramid Algorithms for Iconic Indexing
	Recommended Citation

	SU-CIS-90-25_001c
	SU-CIS-90-25_002c
	SU-CIS-90-25_003c
	SU-CIS-90-25_004c
	SU-CIS-90-25_005c
	SU-CIS-90-25_006c
	SU-CIS-90-25_007c
	SU-CIS-90-25_008c
	SU-CIS-90-25_009c
	SU-CIS-90-25_010c
	SU-CIS-90-25_011c
	SU-CIS-90-25_012c
	SU-CIS-90-25_013c
	SU-CIS-90-25_014c
	SU-CIS-90-25_015c
	SU-CIS-90-25_016c
	SU-CIS-90-25_017c
	SU-CIS-90-25_018c
	SU-CIS-90-25_019c
	SU-CIS-90-25_020c
	SU-CIS-90-25_021c
	SU-CIS-90-25_022c
	SU-CIS-90-25_023c
	SU-CIS-90-25_024c

