
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1996

A Library-Based Approach to Task Parallelism in a Data-Parallel A Library-Based Approach to Task Parallelism in a Data-Parallel

Language Language

Ian Foster
Argonne National Laboratory, Math and Computer Science Division

David R. Kohr
Argonne National Laboratory, Math and Computer Science Division

Rakesh Krishnaiyer
Syracuse University, Department of Computer and Information Science, rakesh@cat.syr.edu

Alok Choudhary
Northwestern University, Department of Electrical and Computer Engineering

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Foster, Ian; Kohr, David R.; Krishnaiyer, Rakesh; and Choudhary, Alok, "A Library-Based Approach to Task
Parallelism in a Data-Parallel Language" (1996). College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects. 10.
https://surface.syr.edu/lcsmith_other/10

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/10?utm_source=surface.syr.edu%2Flcsmith_other%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Submitted to the Journal of Parallel and Distributed Computing, November 1996.A Library-Based Approach to TaskParallelism in a Data-Parallel LanguageIan Fostery David R. Kohr, Jr.y Rakesh Krishnaiyerz Alok ChoudharyxyMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439ffoster,kohrg@mcs.anl.govzDepartment of Computer and Information ScienceSyracuse UniversitySyracuse, NY 13244rakesh@cat.syr.eduxECE Department, Technological InstituteNorthwestern University, 2145 Sheridan RoadEvanston, Illinois 60208-3118choudhar@ece.nwu.edu1

RUNNING HEAD : Library-Based Approach to Task ParallelismCORRESPONDING AUTHOR:Ian FosterArgonne National Laboratory, MCS/221Argonne, IL 60439phone: (630)252-4619FAX: (630)252-5986e-mail: foster@mcs.anl.gov AbstractThe data-parallel language High Performance Fortran (HPF) does not allow e�cientexpression of mixed task/data-parallel computations or the coupling of separately com-piled data-parallel modules. In this paper, we show how these common parallel programstructures can be represented, with only minor extensions to the HPF model, by using acoordination library based on the Message Passing Interface (MPI). This library allowsdata-parallel tasks to exchange distributed data structures using calls to simple communi-cation functions. We present microbenchmark results that characterize the performanceof this library and that quantify the impact of optimizations that allow reuse of com-munication schedules in common situations. In addition, results from two-dimensionalFFT, convolution, and multiblock programs demonstrate that the HPF/MPI library canprovide performance superior to that of pure HPF. We conclude that this synergisticcombination of two parallel programming standards represents a useful approach to taskparallelism in a data-parallel framework, increasing the range of problems addressable inHPF without requiring complex compiler technology.2

List of Symbols1. We use typewriter font, generated using the \tt command of LaTEX, to denote: languageconstructs such as FORALL; portions of a program, such as subroutine names like rowfft;and the name of the pghpf compiler.2. All letters in formulas are in either plain or italic font.

3

1 IntroductionThe data-parallel language High Performance Fortran (HPF) provides a portable, high-level no-tation for expressing data-parallel algorithms [17]. An HPF computation has a single-threadedcontrol structure, global name space, and loosely synchronous parallel execution model. Manyproblems requiring high-performance implementations can be expressed succinctly in HPF.However, HPF does not adequately address task parallelism or heterogeneous computing.Examples of applications that are not easily expressed using HPF alone [6, 14] include multidis-ciplinary applications where di�erent modules represent distinct scienti�c disciplines, programsthat interact with user interface devices, applications involving irregularly structured data suchas multiblock codes, and image-processing applications in which pipeline structures can beused to increase performance. Such applications must exploit task parallelism for e�cient exe-cution on multicomputers or on heterogeneous collections of parallel machines. Yet they mayincorporate signi�cant data-parallel substructures.These observations have motivated proposals for the integration of task and data parallelism.Two principal approaches have been investigated. Compiler-based approaches seek to identifytask-parallel structures automatically, within data-parallel speci�cations [11, 14, 21], whilelanguage-based approaches provide new language constructs for specifying task parallelismexplicitly [3, 6, 19, 24]. Both approaches have shown promise in certain application areas, buteach also has disadvantages. Compiler-based approaches complicate compiler development andperformance tuning, and language-based approaches also introduce the need to standardize newlanguage features.In this paper, we propose an alternative approach to task/data-parallel integration, based4

on specialized coordination libraries designed to be called from data-parallel programs. Theselibraries support an execution model in which disjoint process groups (corresponding to data-parallel tasks) interact with each other by calling group-oriented communication functions. Inkeeping with the sequential reading normally associated with data-parallel programs, each taskcan be read as a sequential program that calls equivalent single-threaded coordination libraries.The potentially complex communication and synchronization operations required to transferdata among process groups are encapsulated within the coordination library implementations.To illustrate and explore this approach, we have de�ned and implemented a library thatallows the use of a subset of the Message Passing Interface (MPI) [13] to coordinate HPF tasks.MPI standardizes an interaction model that has been widely used and is well understood withinthe high-performance computing community. It de�nes functions for both point-to-point andcollective communication among tasks executing in separate address spaces; its de�nition per-mits e�cient implementations on both shared and distributed-memory computers [12]. OurHPF/MPI library allows these same functions to be used to communicate and synchronizeamong HPF tasks. This integration of two parallel programming standards allows us to incor-porate useful new functionality into HPF programming environments without requiring complexnew directives or compiler technology. We argue that the approach provides a conceptually eco-nomical and hence easily understood model for parallel program development and performancetuning.In brief, the contributions of this paper are as follows:1. The de�nition of a novel parallel programming model in which group-oriented communi-cation libraries are used to coordinate the execution of process groups corresponding todata-parallel tasks. 5

2. The demonstration that an HPF binding for MPI allows the range of problems e�cientlyexpressible in HPF to be extended without excessive conceptual or implementation com-plexity.3. The illustration and evaluation using realistic applications of design techniques for achiev-ing communication between data-parallel tasks, for integrating MPI library calls into HPFprograms, and for exploiting information provided by MPI communication calls to im-prove communication performance.A preliminary report on some of the techniques and results presented here appeared as [7];the present paper provides a more detailed description of our techniques and introduces addi-tional optimizations that improve performance by a factor of two or more in some situations.The problem of parallel program coupling has been investigated by a number of othergroups, although not in this standards-based fashion. Groups building multidisciplinary modelsfrequently build specialized \couplers", responsible for transferring data from one model to an-other. Coupler toolkits have been proposed and built, but not widely adopted. MetaCHAOS [5]provides a more general coupling tool by de�ning a model in which programs can export andimport distributed data structures; MetaCHAOS handles communication scheduling. Thesevarious e�orts are complementary to the work reported here, in that they could all bene�tfrom the e�cient communication mechanisms used in our HPF/MPI library, if the models inquestion were written in HPF.In the rest of this paper, we describe the design and implementation of our HPF/MPIlibrary, provide an example of its use, and evaluate its performance. In the implementationsection, we focus on issues associated with point-to-point communication and describe tech-6

niques for determining data distribution information and for communicating distributed datastructures e�ciently from sender to receiver. We also show how specializedMPI communicationfunctions can be used to trigger optimizations that improve performance in typical communica-tion structures. We use microbenchmark experiments to quantify the costs associated with ourtechniques and the bene�ts of our optimizations. We also present results from multiblock andtwo-dimensional fast Fourier transform (FFT) and convolution codes that demonstrate thatHPF/MPI can indeed o�er performance advantages relative to pure HPF.2 Data and Task ParallelismWe motivate our approach to the integration of task and data parallelism by discussing dataparallelism and HPF and then reviewing approaches to the extension of the data-parallel model.2.1 Data Parallelism and HPFData-parallel languages allow programmers to exploit the concurrency that derives from theapplication of the same operation to all or most elements of large data structures [15]. Data-parallel languages have signi�cant advantages relative to the lower-level mechanisms that mightotherwise be used to develop parallel programs. Programs are deterministic and have a sequen-tial reading. This simpli�es development and allows reuse of existing program developmentmethodologies|and, with some modi�cation, tools. In addition, programmers need not spec-ify how data is moved between processors. On the other hand, the high level of speci�cationintroduces signi�cant challenges for compilers, which must be able to translate data-parallelspeci�cations into e�cient programs [1, 16, 22, 27].7

High Performance Fortran [17] is perhaps the best-known data-parallel language. HPFexploits the data parallelism resulting from concurrent operations on arrays. These opera-tions may be speci�ed either explicitly by using parallel constructs (e.g., array expressions andFORALL) or implicitly by using traditional DO loops.HPF addresses the problem of e�cient implementation by providing directives that program-mers can use to guide the parallelization process. In particular, distribution directives specifyhow data is to be mapped to processors. An HPF compiler normally generates a single-program,multiple-data (SPMD) parallel program by applying the owner computes rule to partition theoperations performed by the program; the processor that \owns" a value is responsible forupdating its value [1, 22, 27]. The compiler also introduces communication operations whenlocal computation requires remote data. An attractive feature of this implementation strategyis that the mapping from user program to executable code is fairly straightforward. Hence,programmers can understand how changes in program text a�ect performance.We use a two-dimensional fast Fourier transform (2-D FFT) to illustrate the applicationof HPF. The HPF implementation presented in Figure 1 calls the subroutine rowfft to applya one-dimensional (1-D) FFT to each row of the 2-D array A, and then transposes the arrayand calls rowfft again to apply a 1-D FFT to each column. The 1-D FFTs performed withinrowfft are independent of each other and can proceed in parallel. The PROCESSORS directiveindicates that the program is to run on 8 virtual processors; the DISTRIBUTE directive indicatesthat A is distributed by row. This distribution allows the rowfft routine to proceed withoutcommunication. However, the transposition A=transpose(A) involves all-to-all communication.8

2.2 Task ParallelismCertain important program structures and application classes are not directly expressible inHPF [6, 14]. For example, both real-time monitoring and computational steering require thatprogrammers connect a data-parallel simulation code to another sequential or parallel programthat handles I/O. The simulation task periodically sends arrays to the I/O task, which processesthem in some way (e.g., displays them) and perhaps also passes control information back tothe simulation.As a second example, we consider the 2-D FFT once again. Assume an array of size N �Nand P processors. Because the computation associated with the FFT scales as N2 logN whilethe communication due to the transpose scales only as max(N2; P 2), the data-parallel algorithmdescribed in Section 2.1 is e�cient when N is much larger than P . However, signal-processingsystems must often process quickly a stream of arrays of relatively small size. (The arraysize corresponds to the sensor resolution and might be 256�256 or less.) In these situations,an alternative pipelined algorithm is often more e�cient [4, 14]. The alternative algorithmpartitions the FFT computation among the processors such that P=2 processors perform theread and the �rst set of 1-D FFTs, while the other P=2 perform the second set of 1-D FFTs andthe write. At each step, intermediate results are communicated from the �rst to the second setof processors. These intermediate results must be transposed on the way; since each processorset has size P=2, P 2=4 messages are required. In contrast, the data-parallel algorithm's all-to-all communication involves P (P � 1) messages, communicated by P processors: roughly twiceas many per processor.These two examples show how both modularity and performance concerns can motivate us9

to structure programs as collections of data-parallel tasks. How are such task/data-parallelcomputations to be represented in a data-parallel language such as HPF? Two principal ap-proaches have been proposed: implicit approaches based on compiler technology and explicitapproaches based on language extensions or programming environments for task coordination.Compiler-based approaches. Advocates of implicit, compiler-based approaches seek todevelop more sophisticated compilers capable of extracting task-parallel algorithms from data-parallel speci�cations. Frequently, they will use new directives to trigger the application ofspeci�c transformations. This general approach has been used to exploit pipeline [14] andfunctional parallelism [21], for example.Implicit, compiler-based approaches maintain a deterministic, sequential reading for pro-grams. However, these approaches also tend to increase the complexity of the mapping fromuser program to executable code. This increased complexity can be a disadvantage for bothprogrammers and compiler writers. For programmers, it becomes more di�cult to understandhow changes in program source a�ect achieved performance, and hence more di�cult to writee�cient programs. For compiler writers, it becomes more di�cult to build compilers that gen-erate e�cient code, particularly because optimization techniques for di�erent constructs andsituations tend to interact in complex ways.Language-based approaches. Advocates of explicit, language-based approaches proposenew language constructs that allow programmers to specify the creation and coordination oftasks explicitly. The basic concept is that of a coordination language [2, 9], except that becausethe tasks are themselves data-parallel programs, we obtain a hierarchical execution model inwhich task-parallel computation structures orchestrate the execution of multiple data-parallel10

tasks.Language-based approaches have been proposed that use a graphical notation [3], chan-nels [6], remote procedure calls [19], and a simple pipeline notation [24] to connect data-parallelcomputations. Promising results have been obtained. Nevertheless, there is as yet no consensuson which language constructs are best. Since successful adoption depends on consensus andthen standardization, language-based approaches clearly are not a near-term solution.3 An HPF Binding for MPIExplicit task-parallel coordination libraries represent an alternative approach to the integrationof task and data parallelism that avoids the di�culties associated with compiler-based andlanguage-based techniques. We use the example of an HPF binding for MPI to illustrate theapproach and to explore practical issues associated with its implementation.MPI provides a set of functions, datatypes, and protocols for exchanging data among andotherwise coordinating the execution of multiple tasks; a \binding" de�nes the syntax used forMPI functions and datatypes in a particular language. Previous MPI implementations havesupported bindings only for the sequential languages C and Fortran 77 [12]. However, thereis no reason why MPI functions may not also be used for communication among data-paralleltasks. Our HPF binding for MPI makes this possible. It is intended to be used as follows:� A programmer initiating a computation requests (using some implementation-dependentmechanism) that a certain number of tasks be created; each task executes a speci�edHPF program on a speci�ed number of processors.� Tasks can call MPI functions to exchange data with other tasks, using either point-11

to-point or collective communication operations. In point-to-point communications, asender and a receiver cooperate to transfer data from sender to receiver; in collectivecommunications, multiple tasks cooperate|for example, to perform a reduction.When reading HPF/MPI programs, HPF directives can be ignored, and code understood as ifit implements a set of sequential tasks that communicate using MPI functions.Figure 2 uses HPF/MPI to implement the pipelined 2-D FFT algorithm described in Sec-tion 2.2. Task 0 calls rowfft to apply a 1-D FFT to each row of the array A (8�8 complexnumbers, distributed by row) and then calls the MPI function MPI Send to send the contentsof A to task 1. Task 1 implements the transpose by using MPI Recv to receive this data fromtask 0 into an array B, distributed by column, and then calls a subroutine colfft to apply a1-D FFT to each column. The value 99 is a message tag.A comparison with Figure 1 shows that the HPF/MPI version is not signi�cantly morecomplex. In essence, we have replaced the transpose in the HPF program with two subroutinecalls. Notice that these calls specify only the logical transfer of data from one data-parallel taskto another: the potentially complex communication operations required to achieve this transferare encapsulated within the HPF/MPI library. This example illustrates how a coordinationlibrary can gain leverage from a data parallel language's high-level support for the managementof distributed data structures and associated index translation operations, while providing anexplicit, easily-understood notation for specifying task-parallel computations. In more complexsituations|such as multiblock codes| an HPF/MPI formulation can actually be more succinctthan a pure HPF version. 12

4 ImplementationA number of factors in
uenced the design of our prototype implementation of HPF/MPI. Forexample, we wanted our library to be portable among di�erent hardware platforms, and tobe able to operate with di�erent HPF compilation systems. At the same time, we wantedtypical HPF/MPI applications to achieve good performance with only modest e�ort by theprogrammer.4.1 Design OverviewWe now describe the techniques that we have developed to address these requirements. Forbrevity, we examine only the case of point-to-point operations on distributed-memory multi-computers; elsewhere we discuss techniques for implementing other operations [8]. Figure 3illustrates the basic processing steps performed by our library for a single point-to-point trans-fer. The actions taken by senders and receivers are symmetrical, so it su�ces to examine justthe processing steps of a send operation. These seven steps are as follows:1. Distribution inquiry. Standard HPF inquiry intrinsics such as HPF DISTRIBUTION arecalled to determine the distribution of the array being sent.2. Extrinsic call. The portion of the library that is written in HPF calls a coordinationlibrary function that is written in C and declared as extrinsic (foreign) to HPF. Thiscauses the execution model of each processor in the task to change from data-parallel(globally single-threaded) to SPMD (separate threads of control on each processor, as inHPF's local mode of execution [17]). 13

3. Array descriptor exchange. Sending processors exchange distribution information withreceiving processors about the source and destination arrays. After Step 1, all sendershave distribution descriptors for the source array and all receivers have descriptors forthe destination. We exploit this fact to avoid expensive broadcast operations and insteadperform pairwise exchanges between individual senders and receivers.4. Communication scheduling. Sending processors use the distribution information obtainedin Step 3 to compute communication schedules, that is, the subsections of the source arraythat should be sent to each receiving processor.5. Transfer bu�er pack. Using the communication schedule computed in Step 4, we pack thearray elements required by a particular receiver into a contiguous communication bu�er.6. Data send. The contents of the bu�er packed in Step 5 are sent to the correspondingreceiver.7. Extrinsic return. By returning from the extrinsic function called in Step 2, the executionmodel of each processor reverts to data-parallel, so that execution of the HPF programmay resume.Steps 5 and 6 are repeated once for each processor to which data must be sent. The orderin which each sender transfers array subsections to each receiver is chosen so as to maximizeparallelism among the individual transfers; a detailed description of this ordering appears in [18].
14

4.2 Implementation DetailsBased on the above design, we have implemented a prototype HPF/MPI library that supportsa subset of MPI's point-to-point communication functions. This prototype operates with thecommercial HPF compiler pghpf (version 2.0), developed by the Portland Group, Inc. [25]Because of our desire for portability, we de�ned a run-time initialization interface betweenpghpf and HPF/MPI that minimizes the dependence of HPF/MPI upon the internals of theHPF runtime system. The interface establishes separate MPI communicators for each HPFtask and for HPF/MPI, so that the communications of the HPF tasks and HPF/MPI cannotinterfere with one another. We believe that this interface will work also with other HPFcompilation systems that use MPI for communications.In some circumstances, it is desirable to reduce the total volume of communicated data bysending only a portion of an array, rather than an entire array. HPF permits programmersto denote portions of arrays using array section notation. Our implementation of HPF/MPIaccepts array sections as the source or destination of a point-to-point operation. As an example,the following call sends just the �rst row of the source array A:call MPI_Send(A(1, :), N, MPI_FLOAT, 1, 99, MPI_COMM_WORLD)While developing HPF/MPI, we encountered design choices in which one must make trade-o�s between portability and performance. The tradeo�s center around whether HPF/MPIaccesses distributed arrays using the portable extrinsic call mechanism, which copies arrays be-tween the non-portable layout of a particular HPF compiler and the portable, contiguous layoutused by C and Fortran 77. A system that does not use extrinsic calls, and instead accessesarrays directly in HPF's internal representation, saves data copying at the cost of portability.15

We have implemented two di�erent versions of HPF/MPI, one called \non-DIRECT" whichuses extrinsic calls, and another (\DIRECT") which avoids extrinsic calls by directly accessingarrays. In the next section we quantify the overhead of using the extrinsic call mechanism.Communication schedules are generated in Step 4 using algorithms based on the FALLS(FAmiLy of Line Segments) distributed array representation of Ramaswamy and Banerjee [20].These algorithms compute the minimal sets of array elements that must be transferred fromsending to receiving processors. The algorithms rely on modulo arithmetic, and are highlye�cient: for typical redistributions, their running time is proportional to the number of partic-ipating processors. As we shall see in the next section, schedule computation never constitutesmore than a small fraction of total transfer time.MPI provides programmers with facilities for optimizing communication between processors.Many of these facilities are useful in the context of inter-task communication also. For example,the functions MPI Send init and MPI Recv init de�ne what are called persistent requests forpoint-to-point operations; once de�ned, a request can be executed repeatedly using MPI Start.As illustrated in Figure 4, MPI programmers can use these functions to indicate that thesame data transfer will be performed many times. Our HPF/MPI implementation of thesecalls computes a communication schedule just once, when the request is de�ned. Subsequentcalls to MPI Start reuse the schedule, so that costs associated with Steps 1, 3, and 4 can beamortized over many transfers. In [8] we discuss how other MPI optimization features couldbe incorporated into HPF/MPI.
16

5 Performance StudiesWe use a simple microbenchmark to quantify the costs associated with the implementationscheme just described. This \ping-pong" program, presented in Figure 5, repeatedly exchangesa 2-D array of �xed size between two tasks. The array is distributed (BLOCK,*) in the senderand (*,BLOCK) in the receiver, which induces a worst-case communication pattern in which allsenders must communicate with all receivers.We run the benchmark using tasks of varying size exchanging both small (4 kilobyte)and large (4 megabyte) arrays. This allows us to determine how the cost components oftransfer operations vary with task and array size. We measure three di�erent versions ofthe benchmark: one that uses neither persistent operations nor direct access to HPF ar-rays (\Non-persistent/Non-direct"), one that uses persistent operations but not direct access(\Persistent/Non-direct"), and one that uses both persistent operations and direct access (\Per-sistent/Direct"). By comparing these di�erent versions, we can gauge the e�ectiveness of thepersistent operation optimization and the cost of the extrinsic call mechanism.All experiments are performed on the Argonne IBM SP2, which contains 128 Power 1processors connected by an SP2 multistage crossbar switch. We record the maximum executiontime across all processors. As the underlying sequential communication library we use theportable MPICH implementation of MPI.5.1 Description of ResultsThe plots of Figure 6 show the resulting measurements. Each vertical bar represents theone-way transfer time obtained from one experiment, and the shaded regions within each bar17

represent the fraction of time spent in the processing steps described in the previous section.For brevity, we have combined into one shaded region the times for corresponding steps in thesender and receiver. In addition, pack and unpack are combined as Message Assembly, and sendand receive are labeled Data Transfer. We have also merged Extrinsic Return into ExtrinsicCall.In studying these results, we �rst note that for small problem sizes (N), the total costincreases with the number of processors (P), while for large N , total time decreases with P .These results are to be expected: for smallN , the dominant contributor to total communicationcost is the message startup time, or latency, which increases with P ; for large N , the dominantcontributor is the message transfer time, which is proportional to message length and thereforedecreases with P .5.2 Processing Step CostsWe now analyze the costs related to each of the processing steps. Steps 1, 3, and 4 areassociated with determining how to perform a communication, and their cost are amortizedover repeated transfers if persistent communications are used. These three cost componentsare shown uppermost in each bar, which in most cases allows us to distinguish the costs fornonpersistent and persistent communication. By comparing the Non-persistent/Non-directcases with the Persistent/Non-direct cases, we see that for small messages, using persistentoperations results in a savings of up to 40% of the total time. The savings for large messagesis negligible, because per-byte transfer costs dominate the total time.We note that the time for Step 3 (Array Descriptor Exchange) includes synchronizationdelays resulting from extra processing performed at receiving processors in other steps, such as18

communication and bu�er unpacking at the end of the receive. Hence the high Step 3 times forlarge N and small P in the Non-persistent/Non-direct case are an artifact of the experimentalprotocol, not a sign of ine�ciency in the implementation of descriptor exchange. A similarsynchronization e�ect causes increased times for Data Transfer in the two persistent cases.Step 2 (Extrinsic Call) represents the costs associated with the extrinsic call mechanism.This component represents a �xed cost for multiple subroutine calls, plus a per-byte overheadfor copying array data between HPF's memory layout and a contiguous layout. For P = 1and an array of size 4 kilobytes, Step 2 costs about 350 microseconds; for P = 1 and a4 megabyte array, the cost is about 36 milliseconds. These data suggest a �xed cost of roughly300 microseconds and an incremental cost of about 0.0086 microseconds/byte (116 MB/seccopy bandwidth). Because the source array in the ping-pong benchmark is an input argumentto the send operation, and is not changed between sends, pghpf optimizes the extrinsic call byperforming a copy during the extrinsic call of just the �rst send operation. In contrast, a copymust be performed during the extrinsic return step of each receive operation. Therefore theper-byte costs of Extrinsic Call in Figure 6 re
ect copying only on the receiving side.By comparing the Persistent/Non-direct and Persistent/Direct cases, we can evaluate thebene�t of avoiding the extrinsic call mechanism. For small arrays, elimination of the �xedextrinsic call costs improves performance by up to 30%. For large arrays, elimination of thecopying performed during an extrinsic call provides improvements of up to 20%.Step 5 (bu�er pack/unpack) corresponds to the costs of assembling messages from poten-tially noncontiguous locations before transmission, and disassembling them upon reception.Our implementation performs this assembly and disassembly explicitly in all cases; optimizedimplementations might be able to avoid this extra copying for some distributions on some plat-19

forms. For large messages the pack/unpack steps execute at a rate of about 64 megabytes/sec.As we would expect, this is about half the rate achieved for the Extrinsic Call step, whichperforms copying in the receiver but not the sender.The �nal cost component is the actual communication (the Data Transfer shaded region).Since our transfer strategy permits senders to perform their transfers to receivers in parallel,we expect that the execution time of inter-task transfers is governed by Pts + (N=P)tb, wherets is the per-message startup cost, N is the amount of data in the array (in bytes), and tb isthe per-byte data transfer time. The experimental data �t this simple model reasonably well.A more detailed model and more extensive analysis appear in [18].5.3 Performance SummaryFor large arrays, HPF/MPI achieves a bandwidth of about 12 megabytes/sec. in the two non-direct cases, and up to about 17 megabytes/sec. in the Persistent/Direct case. The underlyingMPICH library can transfer data at a maximum rate of about 30 megabytes/sec on the SP.Hence HPF/MPI achieves roughly half the bandwidth available on this platform. The datatransfer rate for large arrays during the Data Transfer step is about 25 megabytes/sec. persender-receiver processor pair, which indicates that transfers are proceeding in parallel at closeto the maximumrate. The degradation in overall bandwidth in HPF/MPI compared to MPICHis due chie
y to the extra copying in the extrinsic call and bu�er pack/unpack steps.In summary, the microbenchmark results show that the persistent communication optimiza-tion provides signi�cant bene�ts when transferring small arrays; that our HPF/MPI implemen-tation achieves reasonable performance for small arrays when the persistent communicationoptimization is applied, and for large arrays in all cases; and that a considerable performance20

improvement is realized by directly manipulating arrays stored in HPF's internal representation.6 ApplicationsWe also studied the performance of HPF/MPI implementations of application kernel bench-marks like 2-D FFT, 2-D convolution, and multiblock codes, comparing each with an equivalentpure HPF program. In each case, we employ the persistent communication optimization whentransferring data between tasks. Our results demonstrate that in most instances the HPF/MPIlibrary achieves performance superior to that of pure HPF.6.1 2-D FFTThe HPF/MPI and HPF implementations are based on the codes given in Figures 2 and 1,respectively. For our experiments, we replace the read call in the 2-D FFT with a statementthat initializes array A, and eliminate the write call entirely. The code was tuned for goodcache performance with an experimentally-determined blocking parameter. The HPF/MPIcode is executed as a pipeline of two tasks, with an equal number of processors assigned to eachtask. Figure 7 presents our results, which are performed for a number of images large enoughto render pipeline startup and shutdown costs insigni�cant. The execution times shown arethe average per image. The speedup obtained over a sequential version of the code is shownin Figure 8. The performance of the HPF/MPI version is generally better. In particular, for a�xed image size, HPF/MPI provides an increasing improvement in speedup as P increases.21

6.2 2-D ConvolutionConvolution is a standard technique used to extract feature information from images [4, 23]. Itinvolves two 2-D FFTs, an elementwise multiplication, and an inverse 2-D FFT and is appliedto two streams of input images to generate a single output stream. A data-parallel convolutionalgorithm performs the steps illustrated in Figure 9 in sequence for each image, while a pipelinedalgorithm can execute each rectangular block in the �gure as a separate module. As in the 2-DFFT, this pipeline structure can improve performance by reducing the number of messages.Moreover, each module involves two 2-D FFTs, which are further pipelined as explained in theprevious section.The HPF/MPI code consists of 6 tasks, each of size P/6, where P is the total numberof processors available for each experiment. The values of P were chosen to provide 1, 2or 4 processors per task for the HPF/MPI version. Figure 10 shows our results. The graphcompares the average of the total elapsed time between HPF and HPF/MPI for performing 2-Dconvolution on one data set. Once again, we see that the HPF/MPI version is often signi�cantlyfaster than the pure HPF version. On the largest image size plotted (1024 x 1024), HPF/MPIprovides an improvement of up to 37% over pure HPF. A comparison of the speedups is shownin Figure 11.6.3 MultiblockMultiblock codes decompose a complex geometry into multiple simpler blocks [26]. A solver isrun within each block, and boundary data is exchanged between blocks periodically. For ourexperiments, we use a program that applies a simple Poisson solver within each block and that22

supports only simple geometries [10]. For ease in HPF implementation, we �xed the numberof blocks to 3. We chose a geometry such that each block is square, but the middle block hasone-fourth the area of the end blocks. For example, the largest geometry in our experimenthas end blocks of size 512�512 and a middle block of size 256�256. We chose values of P suchthat fewer processors were assigned the smaller middle block under HPF/MPI. In particular,for P = 5, two processors work on the end blocks and one on the middle (a mapping of 2/1/2);for P = 9 the mapping is 4/1/4; and for P = 18 the mapping is 8/1/8.We compare the performance of an HPF program that computes each of the three blocks inturn and an HPF/MPI program in which three tasks compute the three blocks concurrently.In the HPF version, each block is represented as one array which is distributed over all theavailable processors. In the HPF/MPI code, each task executes one block, and processorsare allocated to blocks in proportion to their size. The blocks were distributed in a (*,BLOCK)fashion for both HPF and HPF/MPI codes. Figures 12 and 13 show our results. The HPF/MPIprogram is always faster than the pure HPF program. This application is more communicationintensive than the other two applications. The superior performance of the HPF/MPI code isdue to lower communication overhead and better scalability.7 ConclusionsAn HPF binding for MPI can be used to construct task-parallel HPF applications and to cou-ple separately compiled data-parallel programs, without a need for new compiler technology orlanguage extensions. Our implementation of this binding executes e�ciently on multicomput-ers, allowing us to write task/data-parallel 2-D FFT, convolution, and multiblock codes that23

execute faster than equivalent codes developed in HPF alone. On the basis of these results, weargue that the combination of the HPF and MPI standards provides a useful and economicalapproach to the implementation of task/data-parallel computations.Microbenchmark results reveal various overheads associated with the HPF/MPI library.The MPI persistent request facility can be used to trigger optimizations that avoid overheadsassociated with exchange of distribution information and the computation of communicationschedules. Overheads associated with the HPF extrinsic interface can be avoided by providingdirect access to the internal representation used for HPF arrays. It is a topic for future researchto determine the extent to which performance can be improved further by a tighter couplingbetween HPF/MPI and pghpf, by re�ning the HPF extrinsic interface, and by using compiler-derived information to select specialized communication functions.The ideas developed in this paper can be extended in a number of ways. It appears likelythat similar techniques can be used to support other task interaction mechanisms. MPI andHPF extensions also suggest directions for further work. For example, MPI extensions proposedby the MPI Forum support client-server structures, dynamic task management, and single-sidedoperations. These constructs could be incorporated into an HPF/MPI system to support, forexample, attachment to I/O servers and asynchronous coupling. Similarly, proposed supportfor mapping constructs within HPF (task regions) would allow the creation of task-parallelstructures within a single program, by using HPF/MPI calls to communicate between taskregions.
24

AcknowledgmentsWe are grateful to the Portland Group, Inc., for making their HPF compiler and runtimesystem available to us for this research, and to Shankar Ramaswamy and Prith Banerjee forallowing us to use their implementation of the FALLS algorithm. The multiblock Poisson solveris based on a code supplied by Scott Baden and Stephen Fink. We have enjoyed stimulatingdiscussions on these topics with Chuck Koelbel and Rob Schreiber. This work was supported bythe National Science Foundation's Center for Research in Parallel Computation under ContractCCR-8809615.References[1] D. Callahan and K. Kennedy. Compiling programs for distributed-memorymultiprocessors.The Journal of Supercomputing, 2:151{169, October 1988.[2] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444{458, April 1989.[3] G. Cheng, G. Fox, and K. Mills. Integrating multiple programming paradigms on Connec-tion Machine CM5 in a data
ow-based software environment. Technical report, NortheastParallel Architectures Center, Syracuse University, 1993.[4] A. N. Choudhary, B. Narahari, D. M. Nicol, and R. Simha. Optimal processor assign-ment for pipeline computations. IEEE Transactions on Parallel and Distributed Systems,5(4):439{445, 1994. 25

[5] G. Edjlali, A. Sussman, and J. Saltz. Interoperability of data parallel runtime librarieswith Meta{Chaos. Technical Report CS-TR-3633 and UMIACS-TR-96-30, University ofMaryland, Department of Computer Science and UMIACS,May 1996. A condensed versionsubmitted to Supercomputing'96.[6] I. Foster, B. Avalani, A. Choudhary, and M. Xu. A compilation system that integratesHigh Performance Fortran and Fortran M. In Proceedings of the 1994 Scalable HighPerformance Computing Conference, pages 293{300. IEEE Computer Society Press, 1994.[7] I. Foster, D. R. Kohr, Jr., R. Krishnaiyer, and A. Choudhary. Double standards: Bringingtask parallelism to HPF via the Message Passing Interface. In Proceedings of Supercom-puting '96. ACM Press, 1996.[8] I. Foster, D. R. Kohr, Jr., R. Krishnaiyer, and A. Choudhary. MPI as a coordination layerfor communicating HPF tasks. In Proceedings of the 1996 MPI Developers Conference,pages 68{78. IEEE Computer Society Press, 1996.[9] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall,Englewood Cli�s, N.J., 1990.[10] K. S. Gatlin and S. B. Baden. Brick: A benchmark for irregular block structured applica-tions. Technical report, University of California at San Diego, Department of ComputerScience and Engineering, 1996.[11] M. Girkar and C. Polychronopoulos. Automatic extraction of functional parallelism fromordinary programs. IEEE Transactions on Parallel and Distributed Systems, 3(2):166{178,1992. 26

[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementa-tion of the MPI message passing interface standard. Technical Report ANL/MCS-TM-213,Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill.,1996.[13] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Processing with theMessage-Passing Interface. The MIT Press, Cambridge, Mass., 1994.[14] T. Gross, D. O'Hallaron, and J. Subhlok. Task parallelism in a High Performance Fortranframework. IEEE Parallel and Distributed Technology, 2(2):16{26, Fall 1994.[15] W. Hillis and G. Steele, Jr. Data parallel algorithms. Communications of the ACM,29(12):1170{1183, 1986.[16] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD distributed-memory machines. Communications of the ACM, 35(8):66{80, August 1992.[17] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel. The High PerformanceFortran Handbook. The MIT Press, 1994.[18] D. R. Kohr, Jr. Design and optimization of coordination mechanisms for data-paralleltasks. Master's thesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1996. Online at http://www.mcs.anl.gov/fortran-m.[19] P. Mehrotra and M. Haines. An overview of the Opus language and runtime system. ICASEReport 94-39, Institute for Computer Application in Science and Engineering, Hampton,Va., May 1994. 27

[20] S. Ramaswamy and P. Banerjee. Automatic generation of e�cient array redistributionroutines for distributed memory multicomputers. In Frontiers '95: The 5th Symposium onthe Frontiers of Massively Parallel Computation, pages 342{349, McLean, Va., February1995.[21] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A framework for exploiting data and func-tional parallelism on distributed memory multicomputers. Technical Report CRHC-94-10,Center for Reliable and High-Performance Computing, University of Illinois, Urbana, Ill.,1994.[22] A. Rogers and K. Pingali. Process decomposition through locality of reference. In Proceed-ings of the SIGPLAN '89 Conference on Program Language Design and Implementation,Portland, OR, June 1989. ACM Press.[23] A. Rosenfeld and A. Kak. Digital Picture Processing. Academic Press, New York, 1976.[24] B. Seevers, M. Quinn, and P. Hatcher. A parallel programming environment supportingdata-parallel modules. International Journal of Parallel Programming, 21(5), October1992.[25] The Portland Group, Inc. pghpf Reference Manual. 9150 SW Pioneer Ct., Suite H,Wilsonville, Oregon 97070.[26] V. N. Vatsa, M. D. Sanetrik, and E. B. Parlette. Development of a
exible and e�cientmultigrid-based muliblock
ow solver; AIAA-93-0677. In Proc. 31st Aerospace SciencesMeeting and Exhibit, January 1993. 28

[27] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMDparallelization. Parallel Computing, 6:1{18, 1988.

29

!HPF$ processors pr(8)
 complex A(8, 8)
!HPF$ distribute A(BLOCK,*)
 do i = 1, 100
 call read(A)
 call rowfft(8, A)
 A = transpose(A)
 call rowfft(8, A)
 call write(A)
 end do

A :

Figure 1: An HPF implementation of a 2-D FFT, in this case con�gured to use 8 processors and tooperate on an array of size 8�8. Shading indicates the elements of the array A that are mapped toprocessor 0.
!HPF$ processors pr(4)
 complex A(8,8)
!HPF$ distribute A(BLOCK,*)
 do i = 1, 100
 call read(A)
 call rowfft(8, A)
 call MPI_Send(A,8*8,MPI_COMPLEX,1,99
 MPI_COMM_WORLD,ierr)
 end do

!HPF$ processors pr(4)
 complex B(8,8)
!HPF$ distribute B(*,BLOCK)
 do i = 1, 100
 call MPI_Recv(B,8*8,MPI_COMPLEX,0,99,
 MPI_COMM_WORLD,status,ierr)
 call colfft(8, B)
 call write(B)
 end do

A :

B :

Figure 2: HPF/MPI implementation of a task/data-parallel pipelined 2-D FFT con�gured as twotasks, each on four processors and operating on arrays of size 8�8. Shading indicates array elementsmapped to processor 0 in task 0 and in task 1. Note that the arrays A and B are mapped to disjointsets of processors. 30

Data Send

Distribution Inquiry

SPMD execution
Multiple local threads of control

HPF execution
Single global thread of control

Extrinsic Call

Communication Scheduling

Extrinsic Return

Transfer Buffer Unpack

Transfer Buffer Pack Data Receive

On Sender On Receiver

Once per receiver Once per sender

SPMD execution

HPF execution

Array Descriptor Exchange

Figure 3: The steps executed during an HPF/MPI point-to-point transfer. The thick boxes distinguishthe steps that require communication. The sending and receiving sides di�er only in the �fth andsixth steps.
!HPF$ processors pr(4)
 complex A(8,8)
 integer request
!HPF$ distribute A(BLOCK,*)
 call MPI_Send_init(A,8*8,MPI_COMPLEX,1,99,
 MPI_COMM_WORLD,request,ierr)
 do i = 1, 100
 call read(A)
 call rowfft(8, A)
 call MPI_Start(request,ierr)
 end doFigure 4: An alternative HPF/MPI formulation of the sending side of the pipelined 2-D FFT, in whichMPI Send init is used to de�ne a persistent request that is then executed repeatedly by MPI Start.31

!HPF$ processors pr(P)
 real From(N,N), To(N,N)
!HPF$ distribute From(BLOCK,*), To(*,BLOCK)
 call MPI_Init(ierr)
 call MPI_Comm_Rank(MPI_COMM_WORLD,myid,ierr)
 if (myid .eq. 0) then
 do i = 1, 100
 call MPI_Send(From,N*N,MPI_REAL,1,99,
 MPI_COMM_WORLD,ierr)
 call MPI_Recv(To,N*N,MPI_REAL,1,99,
 MPI_COMM_WORLD,status,ierr)
 end do
 else
 do i = 1, 100
 call MPI_Recv(To,N*N,MPI_REAL,0,99,
 MPI_COMM_WORLD,status,ierr)
 call MPI_Send(From,N*N,MPI_REAL,0,99,
 MPI_COMM_WORLD,ierr)
 end do
 endif
 call MPI_Finalize(ierr)
 endFigure 5: The microbenchmark used to quantify HPF/MPI communication costs. This program isintended to execute as two tasks. MPI Init and MPI Finalize set up and shut down the MPI library,respectively, while MPI Comm rank returns the rank of the calling task (0 or 1 in this case).

32

1 2 4 8 16
Processors per Task

0.0

100.0

200.0

300.0

400.0

T
im

e
in

 M
ill

is
ec

.

N = 4 megabytes

1 2 4 8 16
0.0

1.0

2.0

3.0

Non−persistent/Non−direct
N = 4 kilobytes

1 2 4 8 16
0.0

100.0

200.0

300.0

400.0
N = 4 megabytes

Distribution Inquiry

Array Descriptor Exchange

Communication Scheduling

Extrinsic Call

Message Assembly

Data Transfer

1 2 4 8 16
0.0

1.0

2.0

3.0

Persistent/Non−direct
N = 4 kilobytes

1 2 4 8 16
0.0

100.0

200.0

300.0

400.0
N = 4 megabytes

1 2 4 8 16
0.0

1.0

2.0

3.0

Persistent/Direct
N = 4 kilobytes

Figure 6: Time required for a one-way HPF/MPI point-to-point communication on an IBM SP2, forvarious array sizes, task sizes, and implementation versions.33

0 10 20 30 40
Number of Processors

0.000

0.010

0.020

0.030

0.040

0.050

T
im

e
in

 M
ill

is
ec

on
ds

128 by 128

HPF
HPF/MPI

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20
256 by 256

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0
512 by 512

0 10 20 30 40
0.0

1.0

2.0

3.0

4.0
1024 by 1024

Figure 7: Execution time per input array for HPF and HPF/MPI implementations of the 2-D FFTapplication, as a function of the number of processors. Results are given for di�erent problem sizes.
0 10 20 30 40

Number of Processors
0.0

10.0

20.0

30.0

40.0

S
pe

ed
up

128 by 128

HPF
HPF/MPI

0 10 20 30 40
0.0

10.0

20.0

30.0

40.0
256 by 256

0 10 20 30 40
0.0

10.0

20.0

30.0

40.0
512 by 512

0 10 20 30 40
0.0

10.0

20.0

30.0

40.0
1024 by 1024

Figure 8: Speedup obtained for HPF and HPF/MPI implementations of the 2-D FFT application, asa function of the number of processors.
FFT

FFT

 MM
FFT-1

Convolution
of data and

operatorImage
stream 2

(operator)

Image
stream 1

(data)Figure 9: Convolution algorithm structure. Two image streams are passed through forward FFTsand then to a pointwise matrix multiplication (MM) and inverse FFT.34

0 10 20 30
Number of Processors

0.000

0.020

0.040

0.060

T
im

e
in

 M
ill

is
ec

on
ds

128 by 128

HPF
HPF/MPI

0 10 20 30
0.00

0.10

0.20

0.30

0.40
256 by 256

0 10 20 30
0.0

0.5

1.0

1.5
512 by 512

0 10 20 30
0.0

1.0

2.0

3.0

4.0
1024 by 1024

Figure 10: Execution time per input array for HPF and HPF/MPI implementations of convolution,as a function of the number of processors. Results are given for di�erent problem sizes.
0 10 20 30

Number of Processors
0.0

10.0

20.0

30.0

S
pe

ed
up

128 by 128

HPF
HPF/MPI

0 10 20 30
0.0

10.0

20.0

30.0
256 by 256

0 10 20 30
0.0

10.0

20.0

30.0
512 by 512

0 10 20 30
0.0

10.0

20.0

30.0
1024 by 1024

Figure 11: Speedup obtained for HPF and HPF/MPI implementations of convolution, as a functionof the number of processors.
0 5 10 15 20

Number of Processors
0.000

0.010

0.020

0.030

0.040

T
im

e
in

 M
ill

is
ec

on
ds

192/96/192

HPF
HPF/MPI

0 5 10 15 20
0.000

0.020

0.040

0.060
256/128/256

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20
512/256/512

Figure 12: Execution time for HPF and HPF/MPI implementations of the multiblock code, as afunction of the number of processors. 35

0 5 10 15 20
Number of Processors
0.0

5.0

10.0

15.0

20.0

S
pe

ed
up

192/96/192

HPF
HPF/MPI

0 5 10 15 20
0.0

5.0

10.0

15.0

20.0
256/128/256

0 5 10 15 20
0.0

5.0

10.0

15.0

20.0
512/256/512

Figure 13: Speedup obtained for HPF and HPF/MPI implementations of the multiblock code, as afunction of the number of processors.
36

BIOGRAPHY: Ian FosterIan Foster received his Ph.D. in computer science from Imperial College in 1988. He iscurrently a Scientist in the Mathematics and Computer Science Division of Argonne NationalLaboratory, and Associate Professor of Computer Science at the University of Chicago. Hisresearch interests include languages, software tools, and applications of parallel computers, andthe techniques required to integrate high-performance computers into networked environments.He recently served as software architect for the I-WAY distributed computing experiment.BIOGRAPHY: David R. Kohr, Jr.David R. Kohr, Jr. graduated in 1988 from Washington University in St. Louis with aB.S. in Computer Science. From 1988 to 1991 he was on the sta� of MIT Lincoln Laboratory,developing software for radar data acquisition and signal processing. From 1991 to 1994 he was agraduate student at the University of Illinois at Urbana-Champaign, where he investigated toolsand techniques for performance analysis of parallel application and system software, and fromwhich he earned an M.S. in Computer Science. Since 1994 Kohr has been with Argonne NationalLaboratory, where he performs research on parallel run-time library support for communication,multithreading, and input-output.BIOGRAPHY: Rakesh KrishnaiyerRakesh Krishnaiyer is a Ph.D. candidate in Computer Science at Syracuse University. Hereceived his M.S. in the same �eld from Syracuse University in 1995 and his B.Tech in Com-puter Science and Engineering from the Indian Institute of Technology, Madras in 1993. Heis currently pursuing his research in the Mathematics and Computer Science Division of Ar-gonne National Laboratory. His research interests are in parallel and distributed computing,compilers, languages and networks. He is a member of the IEEE Computer Society and the37

ACM.BIOGRAPHY: Alok ChoudharyAlok Choudhary received his PhD. from University of Illinois, Urbana-Champaign, in Elec-trical and Computer Engineering, in 1989, and his M.S. from University of Massachusetts,Amherst, in 1986. He has been an associate professor in the Electrical and Computer En-gineering Department at Northwestern University since September 1996. Alok Choudharyreceived the National Science Foundation's Young Investigator Award in 1993 (1993-1999). Hismain research interests are in high-performance computing and communication systems andtheir applications in many domains including multimedia systems, information processing andscienti�c computing. Alok Choudhary served as the conference co-chair for the InternationalConference on Parallel Processing, and is currently the chair of the International Workshop onI/O Systems in Parallel and Distributed Systems.

38

	A Library-Based Approach to Task Parallelism in a Data-Parallel Language
	Recommended Citation

	tmp.1286816405.pdf.qqnZA

