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Abstract

The data-parallel language High Performance Fortran (HPF') does not allow efficient
expression of mixed task/data-parallel computations or the coupling of separately com-
piled data-parallel modules. In this paper, we show how these common parallel program
structures can be represented, with only minor extensions to the HPF model, by using a
coordination library based on the Message Passing Interface (MPI). This library allows
data-parallel tasks to exchange distributed data structures using calls to simple communi-
cation functions. We present microbenchmark results that characterize the performance
of this library and that quantify the impact of optimizations that allow reuse of com-
munication schedules in common situations. In addition, results from two-dimensional
FFT, convolution, and multiblock programs demonstrate that the HPF/MPIT library can
provide performance superior to that of pure HPF. We conclude that this synergistic
combination of two parallel programming standards represents a useful approach to task
parallelism in a data-parallel framework, increasing the range of problems addressable in

HPF without requiring complex compiler technology.



List of Symbols

1. We use typewriter font, generated using the \tt command of IATRX, to denote: language
constructs such as FORALL; portions of a program, such as subroutine names like rowfft;

and the name of the pghpf compiler.

2. All letters in formulas are in either plain or italic font.



1 Introduction

The data-parallel language High Performance Fortran (HPF) provides a portable, high-level no-
tation for expressing data-parallel algorithms [17]. An HPF computation has a single-threaded
control structure, global name space, and loosely synchronous parallel execution model. Many
problems requiring high-performance implementations can be expressed succinctly in HPF.

However, HPF does not adequately address task parallelism or heterogeneous computing.
Examples of applications that are not easily expressed using HPF alone [6, 14] include multidis-
ciplinary applications where different modules represent distinct scientific disciplines, programs
that interact with user interface devices, applications involving irregularly structured data such
as multiblock codes, and image-processing applications in which pipeline structures can be
used to increase performance. Such applications must exploit task parallelism for efficient exe-
cution on multicomputers or on heterogeneous collections of parallel machines. Yet they may
incorporate significant data-parallel substructures.

These observations have motivated proposals for the integration of task and data parallelism.
Two principal approaches have been investigated. Compiler-based approaches seek to identify
task-parallel structures automatically, within data-parallel specifications [11, 14, 21], while
language-based approaches provide new language constructs for specifying task parallelism
explicitly [3, 6, 19, 24]. Both approaches have shown promise in certain application areas, but
each also has disadvantages. Compiler-based approaches complicate compiler development and
performance tuning, and language-based approaches also introduce the need to standardize new
language features.

In this paper, we propose an alternative approach to task/data-parallel integration, based



on specialized coordination libraries designed to be called from data-parallel programs. These
libraries support an execution model in which disjoint process groups (corresponding to data-
parallel tasks) interact with each other by calling group-oriented communication functions. In
keeping with the sequential reading normally associated with data-parallel programs, each task
can be read as a sequential program that calls equivalent single-threaded coordination libraries.
The potentially complex communication and synchronization operations required to transfer
data among process groups are encapsulated within the coordination library implementations.

To illustrate and explore this approach, we have defined and implemented a library that
allows the use of a subset of the Message Passing Interface (MPI) [13] to coordinate HPF tasks.
MPI standardizes an interaction model that has been widely used and is well understood within
the high-performance computing community. It defines functions for both point-to-point and
collective communication among tasks executing in separate address spaces; its definition per-
mits efficient implementations on both shared and distributed-memory computers [12]. Our
HPF/MPI library allows these same functions to be used to communicate and synchronize
among HPF tasks. This integration of two parallel programming standards allows us to incor-
porate useful new functionality into HPF programming environments without requiring complex
new directives or compiler technology. We argue that the approach provides a conceptually eco-
nomical and hence easily understood model for parallel program development and performance
tuning.

In brief, the contributions of this paper are as follows:

1. The definition of a novel parallel programming model in which group-oriented communi-

cation libraries are used to coordinate the execution of process groups corresponding to

data-parallel tasks.



2. The demonstration that an HPF binding for MPI allows the range of problems efficiently
expressible in HPF to be extended without excessive conceptual or implementation com-

plexity.

3. The illustration and evaluation using realistic applications of design techniques for achiev-
ing communication between data-parallel tasks, for integrating MPI library calls into HPF
programs, and for exploiting information provided by MPI communication calls to im-

prove communication performance.

A preliminary report on some of the techniques and results presented here appeared as [7];
the present paper provides a more detailed description of our techniques and introduces addi-
tional optimizations that improve performance by a factor of two or more in some situations.

The problem of parallel program coupling has been investigated by a number of other
groups, although not in this standards-based fashion. Groups building multidisciplinary models
frequently build specialized “couplers”, responsible for transferring data from one model to an-
other. Coupler toolkits have been proposed and built, but not widely adopted. MetaCHAOS [5]
provides a more general coupling tool by defining a model in which programs can export and
import distributed data structures; MetaCHAOS handles communication scheduling. These
various efforts are complementary to the work reported here, in that they could all benefit
from the efficient communication mechanisms used in our HPF/MPI library, if the models in
question were written in HPF.

In the rest of this paper, we describe the design and implementation of our HPF/MPI
library, provide an example of its use, and evaluate its performance. In the implementation

section, we focus on issues associated with point-to-point communication and describe tech-



niques for determining data distribution information and for communicating distributed data
structures efficiently from sender to receiver. We also show how specialized MPI communication
functions can be used to trigger optimizations that improve performance in typical communica-
tion structures. We use microbenchmark experiments to quantify the costs associated with our
techniques and the benefits of our optimizations. We also present results from multiblock and
two-dimensional fast Fourier transform (FFT) and convolution codes that demonstrate that

HPF/MPI can indeed offer performance advantages relative to pure HPF.

2 Data and Task Parallelism

We motivate our approach to the integration of task and data parallelism by discussing data

parallelism and HPF and then reviewing approaches to the extension of the data-parallel model.

2.1 Data Parallelism and HPF

Data-parallel languages allow programmers to exploit the concurrency that derives from the
application of the same operation to all or most elements of large data structures [15]. Data-
parallel languages have significant advantages relative to the lower-level mechanisms that might
otherwise be used to develop parallel programs. Programs are deterministic and have a sequen-
tial reading. This simplifies development and allows reuse of existing program development
methodologies—and, with some modification, tools. In addition, programmers need not spec-
ify how data is moved between processors. On the other hand, the high level of specification
introduces significant challenges for compilers, which must be able to translate data-parallel

specifications into efficient programs [1, 16, 22, 27].



High Performance Fortran [17] is perhaps the best-known data-parallel language. HPF
exploits the data parallelism resulting from concurrent operations on arrays. These opera-
tions may be specified either explicitly by using parallel constructs (e.g., array expressions and
FORALL) or implicitly by using traditional DO loops.

HPF addresses the problem of efficient implementation by providing directives that program-
mers can use to guide the parallelization process. In particular, distribution directives specify
how data is to be mapped to processors. An HPF compiler normally generates a single-program,
multiple-data (SPMD) parallel program by applying the owner computes rule to partition the
operations performed by the program; the processor that “owns” a value is responsible for
updating its value [1, 22, 27]. The compiler also introduces communication operations when
local computation requires remote data. An attractive feature of this implementation strategy
is that the mapping from user program to executable code is fairly straightforward. Hence,
programmers can understand how changes in program text affect performance.

We use a two-dimensional fast Fourier transform (2-D FFT) to illustrate the application
of HPF. The HPF implementation presented in Figure 1 calls the subroutine rowfft to apply
a one-dimensional (1-D) FFT to each row of the 2-D array A, and then transposes the array
and calls rowfft again to apply a 1-D FFT to each column. The 1-D FFTs performed within
rowfft are independent of each other and can proceed in parallel. The PROCESSORS directive
indicates that the program is to run on 8 virtual processors; the DISTRIBUTE directive indicates
that A is distributed by row. This distribution allows the rowfft routine to proceed without

communication. However, the transposition A=transpose(4) involves all-to-all communication.



2.2 Task Parallelism

Certain important program structures and application classes are not directly expressible in
HPF [6, 14]. For example, both real-time monitoring and computational steering require that
programmers connect a data-parallel simulation code to another sequential or parallel program
that handles I/O. The simulation task periodically sends arrays to the I/O task, which processes
them in some way (e.g., displays them) and perhaps also passes control information back to
the simulation.

As a second example, we consider the 2-D FFT once again. Assume an array of size N x N
and P processors. Because the computation associated with the FFT scales as N*log N while
the communication due to the transpose scales only as max(N?, P?), the data-parallel algorithm
described in Section 2.1 is efficient when N is much larger than P. However, signal-processing
systems must often process quickly a stream of arrays of relatively small size. (The array
size corresponds to the sensor resolution and might be 256256 or less.) In these situations,
an alternative pipelined algorithm is often more efficient [4, 14]. The alternative algorithm
partitions the FFT computation among the processors such that P/2 processors perform the
read and the first set of 1-D FFTs, while the other P/2 perform the second set of 1-D FFTs and
the write. At each step, intermediate results are communicated from the first to the second set
of processors. These intermediate results must be transposed on the way; since each processor
set has size P/2, P?/4 messages are required. In contrast, the data-parallel algorithm’s all-to-
all communication involves P(P — 1) messages, communicated by P processors: roughly twice
as many per processor.

These two examples show how both modularity and performance concerns can motivate us



to structure programs as collections of data-parallel tasks. How are such task/data-parallel
computations to be represented in a data-parallel language such as HPF? Two principal ap-
proaches have been proposed: implicit approaches based on compiler technology and explicit

approaches based on language extensions or programming environments for task coordination.

Compiler-based approaches. Advocates of implicit, compiler-based approaches seek to
develop more sophisticated compilers capable of extracting task-parallel algorithms from data-
parallel specifications. Frequently, they will use new directives to trigger the application of
specific transformations. This general approach has been used to exploit pipeline [14] and
functional parallelism [21], for example.

Implicit, compiler-based approaches maintain a deterministic, sequential reading for pro-
grams. However, these approaches also tend to increase the complexity of the mapping from
user program to executable code. This increased complexity can be a disadvantage for both
programmers and compiler writers. For programmers, it becomes more difficult to understand
how changes in program source affect achieved performance, and hence more difficult to write
efficient programs. For compiler writers, it becomes more difficult to build compilers that gen-
erate efficient code, particularly because optimization techniques for different constructs and

situations tend to interact in complex ways.

Language-based approaches. Advocates of explicit, language-based approaches propose
new language constructs that allow programmers to specify the creation and coordination of
tasks explicitly. The basic concept is that of a coordination language [2, 9], except that because
the tasks are themselves data-parallel programs, we obtain a hierarchical execution model in

which task-parallel computation structures orchestrate the execution of multiple data-parallel
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tasks.

Language-based approaches have been proposed that use a graphical notation [3], chan-
nels [6], remote procedure calls [19], and a simple pipeline notation [24] to connect data-parallel
computations. Promising results have been obtained. Nevertheless, there is as yet no consensus
on which language constructs are best. Since successful adoption depends on consensus and

then standardization, language-based approaches clearly are not a near-term solution.

3 An HPF Binding for MPI

Explicit task-parallel coordination libraries represent an alternative approach to the integration
of task and data parallelism that avoids the difficulties associated with compiler-based and
language-based techniques. We use the example of an HPF binding for MPI to illustrate the
approach and to explore practical issues associated with its implementation.

MPI provides a set of functions, datatypes, and protocols for exchanging data among and
otherwise coordinating the execution of multiple tasks; a “binding” defines the syntax used for
MPI functions and datatypes in a particular language. Previous MPI implementations have
supported bindings only for the sequential languages C and Fortran 77 [12]. However, there
is no reason why MPI functions may not also be used for communication among data-parallel

tasks. Our HPF binding for MPI makes this possible. It is intended to be used as follows:

e A programmer initiating a computation requests (using some implementation-dependent
mechanism) that a certain number of tasks be created; each task executes a specified

HPF program on a specified number of processors.

o Tasks can call MPI functions to exchange data with other tasks, using either point-
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to-point or collective communication operations. In point-to-point communications, a
sender and a receiver cooperate to transfer data from sender to receiver; in collective

communications, multiple tasks cooperate—for example, to perform a reduction.

When reading HPF/MPI programs, HPF directives can be ignored, and code understood as if
it implements a set of sequential tasks that communicate using MPI functions.

Figure 2 uses HPF/MPI to implement the pipelined 2-D FFT algorithm described in Sec-
tion 2.2. Task 0 calls rowfft to apply a 1-D FFT to each row of the array A (8x8 complex
numbers, distributed by row) and then calls the MPI function MPI_Send to send the contents
of A to task 1. Task 1 implements the transpose by using MPI Recv to receive this data from
task 0 into an array B, distributed by column, and then calls a subroutine colfft to apply a
1-D FFT to each column. The value 99 is a message tag.

A comparison with Figure 1 shows that the HPF/MPI version is not significantly more
complex. In essence, we have replaced the transpose in the HPF program with two subroutine
calls. Notice that these calls specify only the logical transfer of data from one data-parallel task
to another: the potentially complex communication operations required to achieve this transfer
are encapsulated within the HPF/MPI library. This example illustrates how a coordination
library can gain leverage from a data parallel language’s high-level support for the management
of distributed data structures and associated index translation operations, while providing an
explicit, easily-understood notation for specifying task-parallel computations. In more complex
situations—such as multiblock codes— an HPF/MPI formulation can actually be more succinct

than a pure HPF version.
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4 Implementation

A number of factors influenced the design of our prototype implementation of HPF/MPI. For
example, we wanted our library to be portable among different hardware platforms, and to
be able to operate with different HPF compilation systems. At the same time, we wanted
typical HPF/MPI applications to achieve good performance with only modest effort by the

programimmer.

4.1 Design Overview

We now describe the techniques that we have developed to address these requirements. For
brevity, we examine only the case of point-to-point operations on distributed-memory multi-
computers; elsewhere we discuss techniques for implementing other operations [8]. Figure 3
illustrates the basic processing steps performed by our library for a single point-to-point trans-
fer. The actions taken by senders and receivers are symmetrical, so it suffices to examine just

the processing steps of a send operation. These seven steps are as follows:

1. Distribution inquiry. Standard HPF inquiry intrinsics such as HPF_DISTRIBUTION are

called to determine the distribution of the array being sent.

2. Extrinsic call. The portion of the library that is written in HPF calls a coordination
library function that is written in C and declared as extrinsic (foreign) to HPF. This
causes the execution model of each processor in the task to change from data-parallel
(globally single-threaded) to SPMD (separate threads of control on each processor, as in

HPF’s local mode of execution [17]).
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3. Array descriptor exchange. Sending processors exchange distribution information with
receiving processors about the source and destination arrays. After Step 1, all senders
have distribution descriptors for the source array and all receivers have descriptors for
the destination. We exploit this fact to avoid expensive broadcast operations and instead

perform pairwise exchanges between individual senders and receivers.

4. Communication scheduling. Sending processors use the distribution information obtained
in Step 3 to compute communication schedules, that is, the subsections of the source array

that should be sent to each receiving processor.

5. Transfer buffer pack. Using the communication schedule computed in Step 4, we pack the

array elements required by a particular receiver into a contiguous communication buffer.

6. Data send. The contents of the buffer packed in Step 5 are sent to the corresponding

receiver.

7. Fzxtrinsic return. By returning from the extrinsic function called in Step 2, the execution
model of each processor reverts to data-parallel, so that execution of the HPF program

may resume.

Steps 5 and 6 are repeated once for each processor to which data must be sent. The order
in which each sender transfers array subsections to each receiver is chosen so as to maximize

parallelism among the individual transfers; a detailed description of this ordering appears in [18].
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4.2 Implementation Details

Based on the above design, we have implemented a prototype HPF/MPI library that supports
a subset of MPI’s point-to-point communication functions. This prototype operates with the
commercial HPF compiler pghpf (version 2.0), developed by the Portland Group, Inc. [25]
Because of our desire for portability, we defined a run-time initialization interface between
pghpf and HPF/MPI that minimizes the dependence of HPF/MPI upon the internals of the
HPF runtime system. The interface establishes separate MPI communicators for each HPF
task and for HPF/MPI, so that the communications of the HPF tasks and HPF/MPI cannot
interfere with one another. We believe that this interface will work also with other HPF
compilation systems that use MPI for communications.

In some circumstances, it is desirable to reduce the total volume of communicated data by
sending only a portion of an array, rather than an entire array. HPF permits programmers
to denote portions of arrays using array section notation. Our implementation of HPF/MPI
accepts array sections as the source or destination of a point-to-point operation. As an example,

the following call sends just the first row of the source array A:

call MPI_Send(A(1, :), N, MPI_FLOAT, 1, 99, MPI_COMM_WORLD)

While developing HPF/MPI, we encountered design choices in which one must make trade-
offs between portability and performance. The tradeoffs center around whether HPF/MPI
accesses distributed arrays using the portable extrinsic call mechanism, which copies arrays be-
tween the non-portable layout of a particular HPF compiler and the portable, contiguous layout
used by C and Fortran 77. A system that does not use extrinsic calls, and instead accesses

arrays directly in HPF’s internal representation, saves data copying at the cost of portability.
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We have implemented two different versions of HPF/MPI, one called “non-DIRECT” which
uses extrinsic calls, and another (“DIRECT”) which avoids extrinsic calls by directly accessing
arrays. In the next section we quantify the overhead of using the extrinsic call mechanism.

Communication schedules are generated in Step 4 using algorithms based on the FALLS
(FAmiLy of Line Segments) distributed array representation of Ramaswamy and Banerjee [20].
These algorithms compute the minimal sets of array elements that must be transferred from
sending to receiving processors. The algorithms rely on modulo arithmetic, and are highly
efficient: for typical redistributions, their running time is proportional to the number of partic-
ipating processors. As we shall see in the next section, schedule computation never constitutes
more than a small fraction of total transfer time.

MPI provides programmers with facilities for optimizing communication between processors.
Many of these facilities are useful in the context of inter-task communication also. For example,
the functions MPI_Send_init and MPI Recv_init define what are called persistent requests for
point-to-point operations; once defined, a request can be executed repeatedly using MPI_Start.
As illustrated in Figure 4, MPI programmers can use these functions to indicate that the
same data transfer will be performed many times. Our HPF/MPI implementation of these
calls computes a communication schedule just once, when the request is defined. Subsequent
calls to MPI_Start reuse the schedule, so that costs associated with Steps 1, 3, and 4 can be

amortized over many transfers. In [8] we discuss how other MPI optimization features could

be incorporated into HPF/MPI.
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5 Performance Studies

We use a simple microbenchmark to quantify the costs associated with the implementation
scheme just described. This “ping-pong” program, presented in Figure 5, repeatedly exchanges
a 2-D array of fixed size between two tasks. The array is distributed (BLOCK,*) in the sender
and (*,BLOCK) in the receiver, which induces a worst-case communication pattern in which all
senders must communicate with all receivers.

We run the benchmark using tasks of varying size exchanging both small (4 kilobyte)
and large (4 megabyte) arrays. This allows us to determine how the cost components of
transfer operations vary with task and array size. We measure three different versions of
the benchmark: one that uses neither persistent operations nor direct access to HPF ar-
rays (“Non-persistent/Non-direct”), one that uses persistent operations but not direct access
(“Persistent/Non-direct”), and one that uses both persistent operations and direct access (“Per-
sistent/Direct”). By comparing these different versions, we can gauge the effectiveness of the
persistent operation optimization and the cost of the extrinsic call mechanism.

All experiments are performed on the Argonne IBM SP2, which contains 128 Power 1
processors connected by an SP2 multistage crossbar switch. We record the maximum execution

time across all processors. As the underlying sequential communication library we use the

portable MPICH implementation of MPI.

5.1 Description of Results

The plots of Figure 6 show the resulting measurements. FEach vertical bar represents the

one-way transfer time obtained from one experiment, and the shaded regions within each bar
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represent the fraction of time spent in the processing steps described in the previous section.
For brevity, we have combined into one shaded region the times for corresponding steps in the
sender and receiver. In addition, pack and unpack are combined as Message Assembly, and send
and receive are labeled Data Transfer. We have also merged Extrinsic Return into Extrinsic
Call.

In studying these results, we first note that for small problem sizes (), the total cost
increases with the number of processors (P), while for large N, total time decreases with P.
These results are to be expected: for small V, the dominant contributor to total communication
cost 1s the message startup time, or latency, which increases with P; for large N, the dominant
contributor is the message transfer time, which is proportional to message length and therefore

decreases with P.

5.2 Processing Step Costs

We now analyze the costs related to each of the processing steps. Steps 1, 3, and 4 are
associated with determining how to perform a communication, and their cost are amortized
over repeated transfers if persistent communications are used. These three cost components
are shown uppermost in each bar, which in most cases allows us to distinguish the costs for
nonpersistent and persistent communication. By comparing the Non-persistent/Non-direct
cases with the Persistent/Non-direct cases, we see that for small messages, using persistent
operations results in a savings of up to 40% of the total time. The savings for large messages
is negligible, because per-byte transfer costs dominate the total time.

We note that the time for Step 3 (Array Descriptor Exchange) includes synchronization

delays resulting from extra processing performed at receiving processors in other steps, such as
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communication and buffer unpacking at the end of the receive. Hence the high Step 3 times for
large N and small P in the Non-persistent/Non-direct case are an artifact of the experimental
protocol, not a sign of inefficiency in the implementation of descriptor exchange. A similar
synchronization effect causes increased times for Data Transfer in the two persistent cases.

Step 2 (Extrinsic Call) represents the costs associated with the extrinsic call mechanism.
This component represents a fixed cost for multiple subroutine calls, plus a per-byte overhead
for copying array data between HPF’s memory layout and a contiguous layout. For P = 1
and an array of size 4 kilobytes, Step 2 costs about 350 microseconds; for P = 1 and a
4 megabyte array, the cost is about 36 milliseconds. These data suggest a fixed cost of roughly
300 microseconds and an incremental cost of about 0.0086 microseconds/byte (116 MB/sec
copy bandwidth). Because the source array in the ping-pong benchmark is an input argument
to the send operation, and is not changed between sends, pghpf optimizes the extrinsic call by
performing a copy during the extrinsic call of just the first send operation. In contrast, a copy
must be performed during the extrinsic return step of each receive operation. Therefore the
per-byte costs of Extrinsic Call in Figure 6 reflect copying only on the receiving side.

By comparing the Persistent/Non-direct and Persistent/Direct cases, we can evaluate the
benefit of avoiding the extrinsic call mechanism. For small arrays, elimination of the fixed
extrinsic call costs improves performance by up to 30%. For large arrays, elimination of the
copying performed during an extrinsic call provides improvements of up to 20%.

Step 5 (buffer pack/unpack) corresponds to the costs of assembling messages from poten-
tially noncontiguous locations before transmission, and disassembling them upon reception.
Our implementation performs this assembly and disassembly explicitly in all cases; optimized

implementations might be able to avoid this extra copying for some distributions on some plat-
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forms. For large messages the pack/unpack steps execute at a rate of about 64 megabytes/sec.
As we would expect, this is about half the rate achieved for the Extrinsic Call step, which
performs copying in the receiver but not the sender.

The final cost component is the actual communication (the Data Transfer shaded region).
Since our transfer strategy permits senders to perform their transfers to receivers in parallel,
we expect that the execution time of inter-task transfers is governed by Pt, + (N/P)t;, where
ts is the per-message startup cost, N is the amount of data in the array (in bytes), and #; is
the per-byte data transfer time. The experimental data fit this simple model reasonably well.

A more detailed model and more extensive analysis appear in [18].

5.3 Performance Summary

For large arrays, HPF/MPI achieves a bandwidth of about 12 megabytes/sec. in the two non-
direct cases, and up to about 17 megabytes/sec. in the Persistent/Direct case. The underlying
MPICH library can transfer data at a maximum rate of about 30 megabytes/sec on the SP.
Hence HPF/MPI achieves roughly half the bandwidth available on this platform. The data
transfer rate for large arrays during the Data Transfer step is about 25 megabytes/sec. per
sender-receiver processor pair, which indicates that transfers are proceeding in parallel at close
to the maximum rate. The degradation in overall bandwidth in HPF/MPI compared to MPICH
is due chiefly to the extra copying in the extrinsic call and buffer pack/unpack steps.

In summary, the microbenchmark results show that the persistent communication optimiza-
tion provides significant benefits when transferring small arrays; that our HPF/MPI implemen-
tation achieves reasonable performance for small arrays when the persistent communication

optimization is applied, and for large arrays in all cases; and that a considerable performance
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improvement is realized by directly manipulating arrays stored in HPF’s internal representation.

6 Applications

We also studied the performance of HPF/MPI implementations of application kernel bench-
marks like 2-D FFT, 2-D convolution, and multiblock codes, comparing each with an equivalent
pure HPF program. In each case, we employ the persistent communication optimization when
transferring data between tasks. Our results demonstrate that in most instances the HPF/MPI

library achieves performance superior to that of pure HPF.

6.1 2-D FFT

The HPF/MPI and HPF implementations are based on the codes given in Figures 2 and 1,
respectively. For our experiments, we replace the read call in the 2-D FFT with a statement
that initializes array A, and eliminate the write call entirely. The code was tuned for good
cache performance with an experimentally-determined blocking parameter. The HPF/MPI
code is executed as a pipeline of two tasks, with an equal number of processors assigned to each
task. Figure 7 presents our results, which are performed for a number of images large enough
to render pipeline startup and shutdown costs insignificant. The execution times shown are
the average per image. The speedup obtained over a sequential version of the code is shown
in Figure 8. The performance of the HPF/MPI version is generally better. In particular, for a

fixed image size, HPF/MPI provides an increasing improvement in speedup as P increases.
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6.2 2-D Convolution

Convolution is a standard technique used to extract feature information from images [4, 23]. It
involves two 2-D FFTs, an elementwise multiplication, and an inverse 2-D FFT and is applied
to two streams of input images to generate a single output stream. A data-parallel convolution
algorithm performs the steps illustrated in Figure 9 in sequence for each image, while a pipelined
algorithm can execute each rectangular block in the figure as a separate module. As in the 2-D
FFT, this pipeline structure can improve performance by reducing the number of messages.
Moreover, each module involves two 2-D FFTs, which are further pipelined as explained in the
previous section.

The HPF/MPI code consists of 6 tasks, each of size P/6, where P is the total number
of processors available for each experiment. The values of P were chosen to provide 1, 2
or 4 processors per task for the HPF/MPI version. Figure 10 shows our results. The graph
compares the average of the total elapsed time between HPF and HPF /MPI for performing 2-D
convolution on one data set. Once again, we see that the HPF/MPI version is often significantly
faster than the pure HPF version. On the largest image size plotted (1024 x 1024), HPF/MPI
provides an improvement of up to 37% over pure HPF. A comparison of the speedups is shown

in Figure 11.

6.3 Multiblock

Multiblock codes decompose a complex geometry into multiple simpler blocks [26]. A solver is
run within each block, and boundary data is exchanged between blocks periodically. For our

experiments, we use a program that applies a simple Poisson solver within each block and that
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supports only simple geometries [10]. For ease in HPF implementation, we fixed the number
of blocks to 3. We chose a geometry such that each block is square, but the middle block has
one-fourth the area of the end blocks. For example, the largest geometry in our experiment
has end blocks of size 512x512 and a middle block of size 256 x256. We chose values of P such
that fewer processors were assigned the smaller middle block under HPF/MPI. In particular,
for P =5, two processors work on the end blocks and one on the middle (a mapping of 2/1/2);
for P =9 the mapping is 4/1/4; and for P = 18 the mapping is 8/1/8.

We compare the performance of an HPF program that computes each of the three blocks in
turn and an HPF/MPI program in which three tasks compute the three blocks concurrently.
In the HPF version, each block is represented as one array which is distributed over all the
available processors. In the HPF/MPI code, each task executes one block, and processors
are allocated to blocks in proportion to their size. The blocks were distributed in a (*,BL0OCK)
fashion for both HPF and HPF/MPI codes. Figures 12 and 13 show our results. The HPF/MPI
program is always faster than the pure HPF program. This application is more communication
intensive than the other two applications. The superior performance of the HPF/MPI code is

due to lower communication overhead and better scalability.

7 Conclusions

An HPF binding for MPI can be used to construct task-parallel HPF applications and to cou-
ple separately compiled data-parallel programs, without a need for new compiler technology or
language extensions. Our implementation of this binding executes efficiently on multicomput-

ers, allowing us to write task/data-parallel 2-D FFT, convolution, and multiblock codes that
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execute faster than equivalent codes developed in HPF alone. On the basis of these results, we
argue that the combination of the HPF and MPI standards provides a useful and economical
approach to the implementation of task/data-parallel computations.

Microbenchmark results reveal various overheads associated with the HPF/MPI library.
The MPI persistent request facility can be used to trigger optimizations that avoid overheads
associated with exchange of distribution information and the computation of communication
schedules. Overheads associated with the HPF extrinsic interface can be avoided by providing
direct access to the internal representation used for HPF arrays. It is a topic for future research
to determine the extent to which performance can be improved further by a tighter coupling
between HPF/MPI and pghpf, by refining the HPF extrinsic interface, and by using compiler-
derived information to select specialized communication functions.

The ideas developed in this paper can be extended in a number of ways. It appears likely
that similar techniques can be used to support other task interaction mechanisms. MPI and
HPF extensions also suggest directions for further work. For example, MPI extensions proposed
by the MPI Forum support client-server structures, dynamic task management, and single-sided
operations. These constructs could be incorporated into an HPF/MPI system to support, for
example, attachment to 1/O servers and asynchronous coupling. Similarly, proposed support
for mapping constructs within HPF (task regions) would allow the creation of task-parallel
structures within a single program, by using HPF/MPI calls to communicate between task

regions.
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I HPF$ processors pr(8)
compl ex A(8, 8)

| HPF$ distribute A(BLOCK, *) A
doi =1, 100
call read(A)
call rowfft(8, A

A = transpose(A)

call rowfft(8, A

call wite(A
end do

Figure 1: An HPF implementation of a 2-D FFT, in this case configured to use 8 processors and to
operate on an array of size 8x8. Shading indicates the elements of the array A that are mapped to

processor 0.

I HPF$ processors pr(4) A -
conpl ex A(8, 8)
I HPF$ di stribute A(BLOCK, *)
doi =1, 100
call read(A)
call rowfft(8, A
call MPI _Send(A, 8*8, MPI _COWPLEX, 1, 99
MPI _COMM WORLD, i err

end do

I HPF$ processors pr(4)
conpl ex B(8, 8)
I HPF$ distribute B(*, BLOCK)
doi =1, 100
call MPI _Recv(B, 88, MPl _COWPLEX, 0, 99,
I COMM WORLD, st atus,ierr)
call colfft(8, B)
call wite(B)
end do

Figure 2: HPF/MPI implementation of a task/data-parallel pipelined 2-D FFT configured as two
tasks, each on four processors and operating on arrays of size 8 X8. Shading indicates array elements
mapped to processor 0 in task 0 and in task 1. Note that the arrays A and B are mapped to disjoint

sets of processors.
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‘ Distribution Inquiry ‘

HPF execution
Single global thread of control

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4 Extrinsic Call

SPMD execution
Multiple local threads of control

| Array Descriptor Exchange I

¢

‘ Communication Scheduling ‘

On Sender / \On Receiver
Transfer Buffer Pack ‘ |Data Receive I

Once per receiver Once per sender

Data Send ‘ Transfer Buffer Unpack ‘

SPMD execution /

777777777777777777777777777777 4 Extrinsic Return ‘

HPF execution

Figure 3: The steps executed during an HPF/MPI point-to-point transfer. The thick boxes distinguish
the steps that require communication. The sending and receiving sides differ only in the fifth and

sixth steps.

I HPF$ processors pr(4)
conpl ex A(8, 8)
i nt eger request
I HPF$ di stribute A(BLOCK, *)
call MPI_Send_init (A, 88, MPl _COWLEX, 1, 99,
MPI _COVM WORLD, request ,ierr)
doi =1, 100
call read(A)
call rowfft(8, A
call MPI_Start(request,ierr)
end do

Figure 4: An alternative HPF/MPI formulation of the sending side of the pipelined 2-D FFT, in which
MPI Send_init is used to define a persistent request that is then executed repeatedly by MPI_Start.
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I HPF$ processors pr(P)
real From(N,N), To(N N
I'HPF$ distribute From(BLOCK, *), To(*, BLOCK)
call MPI Init(ierr)
cal |l MPI _Conm Rank(MPI _COVM WORLD, nyi d,ierr)
if (nyid .eq. 0) then
doi =1, 100
call MPI _Send(From N*N, VPl _REAL, 1, 99
MPI _COVM WORLD, i err)
call MPI _Recv(To, NN, MPI _REAL, 1, 99,
MPI _COVM WORLD, status,ierr)
end do
el se
doi =1, 100
call MPI _Recv(To, NN, MPI _REAL, 0, 99,
MPI _COVM WORLD, status,ierr)
cal I MPI _Send( From N*N, MPl _REAL, 0, 99
MPI _COVM WORLD, i err)
end do
endi f
call MPI _Finalize(ierr)
end

Figure 5: The microbenchmark used to quantify HPF/MPI communication costs. This program is
intended to execute as two tasks. MPI_Init and MPI _Finalize set up and shut down the MPI library,
respectively, while MPI_Comm_rank returns the rank of the calling task (0 or 1 in this case).
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Non-persistent/Non—-direct Persistent/Non—direct Persistent/Direct
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D Array Descriptor Exchange
[] communication Scheduling
l Extrinsic call
| Message Assembly

| ] Data Transfer

Figure 6: Time required for a one-way HPF/MPI point-to-point communication on an IBM SP2, for
various array sizes, task sizes, and implementation versions.
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Figure 7: Execution time per input array for HPF and HPF/MPI implementations of the 2-D FFT
application, as a function of the number of processors. Results are given for different problem sizes.
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Figure 9: Convolution algorithm structure. Two image streams are passed through forward FFTs

and then to a pointwise matrix multiplication (MM) and inverse FFT.
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Figure 10: Execution time per input array for HPF and HPF/MPI implementations of convolution,
as a function of the number of processors. Results are given for different problem sizes.
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Figure 11: Speedup obtained for HPF and HPF/MPI implementations of convolution, as a function
of the number of processors.
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Figure 12: Execution time for HPF and HPF/MPI implementations of the multiblock code, as a
function of the number of processors.
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Figure 13: Speedup obtained for HPF and HPF/MPI implementations of the multiblock code, as a

function of the number of processors.
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