
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1995

High Performance Fortran and Possible Extensions to support High Performance Fortran and Possible Extensions to support

Conjugate Gradient Algorithms Conjugate Gradient Algorithms

K. Dincer
Syracuse University, Northeast Parallel Architectures Center, dincer@npac.syr.edu

Ken Hawick
Syracuse University, Northeast Parallel Architectures Center

Alok Choudhary
Syracuse University, Northeast Parallel Architectures Center

Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Dincer, K.; Hawick, Ken; Choudhary, Alok; and Fox, Geoffrey C., "High Performance Fortran and Possible
Extensions to support Conjugate Gradient Algorithms" (1995). Northeast Parallel Architecture Center. 40.
https://surface.syr.edu/npac/40

This Working Paper is brought to you for free and open access by the College of Engineering and Computer Science
at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215702333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/40?utm_source=surface.syr.edu%2Fnpac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

NPAC Technical Report SCCS 703High Performance Fortran and Possible Extensions tosupport Conjugate Gradient AlgorithmsK.Dincer, K.A.Hawick, A.Choudhary, G.C.Fox.Northeast Parallel Architectures Center111 College Place, Syracuse, NY 13244-4100fdincer, hawick, choudhar, gcfg@npac.syr.edu �AbstractWe evaluate the High-Performance Fortran (HPF) language for the compact expression and e�cient implementa-tion of conjugate gradient iterative matrix-solvers on High Performance Computing and Communications(HPCC)platforms. We discuss the use of intrinsic functions, data distribution directives and explicitly parallel constructs tooptimize performance by minimizing communications requirements in a portable manner. We focus on implemen-tations using the existing HPF de�nitions but also discuss issues arising that may inuence a revised de�nition forHPF-2. Some of the codes discussed are available on the World Wide Web at http://www.npac.syr.edu/hpfa/alongwith other educational and discussion material related to applications in HPF.�This work sponsored in part by ARPA
1

1 IntroductionHigh Performance Fortran (HPF)[13] is a language de�nition agreed upon in 1993, and being widely adopted bysystems suppliers as a mechanism for users to exploit parallel computation through the data-parallel programmingmodel.HPF evolved from the experimental Fortran D project [11] as a collection of extensions to the Fortran90 language standard [18]. The central tenet of HPF and data-parallel programming is that program data isdistributed amongst the processors' memories in such a way that the \owner computes" rule allows the maximumcomputation to communications ratio [16]. Language constructs and embedded compiler directives allow theprogrammer to express to the compiler additional information about how to produce code that maps well to theavailable parallel or distributed architecture and thus runs fast and can make full use of the larger (distributed)memory.Consider applications problems that can be formulated in terms of the matrix equation A~x = ~b. Thestructure of the matrix A is highly dependent on the particular type of application and some applications such ascomputational electromagnetics give rise to a matrix that is e�ectively dense [9] and can be solved using directmethods [8] such as Gaussian elimination, whereas others such as computational uid dynamics [4] generate amatrix that is sparse, having most of its elements identically zero. Conjugate Gradient (CG) and other iterativemethods are preferred over simple Gaussian elimination when A is very large and sparse, and where storage spacefor the full matrix would either be impractical or too slow to access through a secondary memory system. Alarge number of computationally expensive scienti�c and engineering applications, e.g. structural analysis, uiddynamics, aerodynamics, lattice gauge simulation, and circuit simulation, are based on the solution of large sparsesystems of linear equations. Iterative methods are employed in many of these applications. While the CG methoditself is no longer considered a state-of-the art is terms of its numerical stability and convergence properties, itscomputational structure is similar to that of methods such as Bi-Conjugate Gradient (BiCG). CG codes have beenused in a number of benchmark suites such as PARKBENCH [12] and NAS [1].We focus on di�erent CG method codes and it is our intent in this paper to show how HPF makes it simplerto write portable, e�cient andmaintainable implementations of this class of iterative matrix-solvers. We willalso point out that some enhancements in the language de�nition may be useful for sparse system iterative solvers.2 Conjugate Gradient AlgorithmsThe classic Conjugate Gradient non-stationary iterative algorithm as de�ned in [7] and references therein can beapplied to solve symmetric positive-de�nite matrix equations. They are preferred over simple Gaussian algorithmsbecause of their faster convergence rate if A is very large and sparse.The non-preconditioned CG algorithm for the solution of the prototype problem A~x = ~b is summarised as:2

~p = ~r = ~b; ~x = 0; ~q = A~p� = ~r � ~r; � = �=(~p � ~q)~x = ~x+ �~p; ~r = ~r � �~qDO k = 2, Niter�0 = �; � = ~r � ~r; � = �=�0~p = ~r + �~p; ~q = A � ~p� = �=~p � ~q~x = ~x+ �~p; ~r = ~r � �~qIF(stop criterion)exitENDDOfor the initial \guessed" solution vector ~x0 = 0.Implementation of this algorithm requires storage for four vectors:, ~x, residual or gradient vector ~r, searchdirection vector ~p and ~q as well as the matrix A and working scalars � and step size �.Notice that the work per iteration is modest, amounting to a single matrix-vector multiplication for A � ~p,two inner products ~pk � ~pk and ~rk � ~rk, and several simple �~x + ~y (SAXPY) operations, where � is scalar, and ~xand ~y are vectors. The number of multiplications and additions required for matrix-vector multiplication, innerproducts and SAXPY operations are O(n2), O(n), and O(n), respectively, for vector length n.2.1 Other CG AlgorithmsThe Bi-Conjugate Gradient (BiCG) method can be applied to non-symmetric matrices, for which the residualvectors employed by CG cannot be made orthogonal with short recurrences. More complex algorithms such asGMRES make use of longer recurrences (which require greater storage). The BiCG [2] algorithm employs analternative approach of using two mutually orthogonal sequences of residuals. This requires three extra vectors tobe stored, and di�erent choices of � and �, but otherwise the computational structure of the algorithm is similarto CG. BiCG does however require two matrix-vector multiply operations one of which uses the matrix transposeAT , and therefore any storage distribution optimisations made on the basis of row access vs. column access willbe negated with the use of BiCG.The Conjugate Gradient Squared (CGS) algorithm avoids using AT operations but also requires ad-ditional vectors of storage over the basic CG. CGS can be built using the operations and data distributions wedescribe here, but can have some undesirable numerical properties such as actual divergence or irregular rates ofconvergence and so is not discussed further here.The Stabilized BiCG algorithm also uses two matrix vector operations but avoids using AT and thereforecan be optimized using the data distribution ideas we discuss here. It does however involve four inner products,3

so will have a greater demand for an e�cient intrinsic for this than basic CG.The CG algorithmwill generally converge to the solution of the system A:~x = ~b in at most ne iterations, wherene is the number of distinct eigenvalues of the coe�cient matrix A. Thus in cases where A has many distincteigenvalues and those eigenvalues vary widely in magnitude, the CG algorithm may require a large number ofiterations before converging. A preconditioner for A can be added to any of the algorithms described above andwhich will increase the speed of convergence of the CG algorithm. Although these preconditioned conjugategradient algorithms requires a matrix inverse, and a transpose, practical implementations is formulated such thatit works with the original matrix A but maintains the same convergence rate as that for the system preconditionedsystem.
a11 a a a21 31 51 a a a a a a a a a12 22 42 62 33 24 44 15 55 a a26 66

col1 col6

a

row:

col :

a a

a a a a

a a

a a

0 0 0

0 0

0 0 0 0

a

a

11 12 15

21 22 24 26

31 33

42 44

55

66

a

a

51

62

0 0 0

0000

0

0 0 0 0

a

Sparse Matrix AFigure 1: Compressed Sparse Column(CSC) representation of sparse matrix A.3 Sparse Matrix RepresentationsIf a matrix is sparse, a majority of the matrix elements are zero and they need not be stored explicitly. Furthermore,for some very large application problems it would be simply impractical to store the matrix as a dense array eitherbecause of the prohibitive cost of enough primary memory, or because of the slow access speed of a secondarystorage medium. It is therefore customary to store only the nonzero entries and to keep track of their locations inthe matrix. Special storage schemes not only save storage but also yield computational savings. Since the locationsof the nonzero elements in the matrix are known explicitly, unnecessary multiplications and additions with zero areavoided. A number of sparse storage schemes are described in [2], some of which can exploit additional informationabout the sparsity structure of the matrix. We only consider here the compressed row and compressed columnschemes which can store any sparse matrix.The Compressed Sparse Column (CSC) storage scheme, shown in �gure 1, uses the following three arraysto store an n� n sparse matrix with nz non-zero entries:4

� a(nz) containing the nonzero elements stored in the order of their columns from 1 to n.� row(nz) that stores the row numbers of each nonzero element.� col(n+1) whose jth entry points to the �rst entry of the j'th column in A and row.A related scheme is the Compressed Sparse Row (CSR) format, in which the roles of rows and columns arereversed. REAL, dimension(1:nz) :: aINTEGER, dimension(1:nz) :: colINTEGER, dimension(1:n+1) :: rowREAL, dimension(1:n) :: x, r, p, q!HPF$ PROCESSORS :: PROCS(NP)!HPF$ ALIGN (:) WITH p(:) :: q, r, x, b!HPF$ DISTRIBUTE p(BLOCK)!HPF$ DISTRIBUTE row(CYCLIC((n+NP-1)/np)!HPF$ ALIGN a(:) WITH col(:)!HPF$ DISTRIBUTE col(BLOCK)(usual initialisation of variables)DO k=1,Niterrho0 = rhorho = DOT_PRODUCT(r, r) ! sdotbeta = rho / rho0p = beta * p + r ! saypxq = 0.0 ! sparse mat-vect multiplyFORALL(j=1:n)DO i = row(j), row(j+1)-1q(j) = q(j) + a(i) * p(col(i))END DOEND FORALLalpha = rho / DOT_PRODUCT(p, q)x = x + alpha * p ! saxpyr = r - alpha * q ! saxpyIF (stop_criterion) EXITEND DOFigure 2: HPF version of sparse storage CG (CSR format).4 HPF ImplementationThe data-parallel programming model upon which HPF is based requires some well-de�ned mapping of the dataonto processors' memory to achieve a good computational load balance and thus an e�cient use of the parallelarchitecture.In this section we assume that vectors are represented as n-element one-dimensional arrays, and the arbitrarilysparse matrix A is either represented as an n by n two-dimensional matrix when a dense storage format is used,or as a (row; col; a) trio when a sparse storage format is employed.5

The full HPF code for the CG algorithm for CSR format is given in �gure 2. Each iteration of the CGalgorithm performs three main computations: the SAXPY operations, inner product and the matrix-vector mul-tiplication. HPF readily supports the inner product operations by an intrinsic function, called DOT PRODUCT().SAXPY operations are easily performed using HPF's parallel array assignments. In any parallel implementationthat distributes the vectors and matrixA across processors' memories, the inner-products and sparse matrix vectormultiplication require data communication. The element-wise multiplications in the inner-product operations canbe performed locally without any communication overhead while the merge phase for adding up the partial resultsfrom processors involves communication overhead. However, the data distributions can be arranged so that all ofthe other operations will be performed only on local data. For each operation type we will show the optimumdata distribution patterns for obtaining best performance, and how the operation can be represented in HPF. Thisis not trivial for the sparse storage schemes that we will elaborate later.The vectors used in vector operations are aligned and distributed in HPF as follows in order to minimize thecommunication requirements. Vector p is chosen as the target of the ultimate alignment thus the distribution of!HPF$ ALIGN (:) WITH p(:) :: q, r, x!HPF$ DISTRIBUTE p(BLOCK)p determines the distribution of all other vectors aligned with it. Whenever its distribution is changed, the othersare also automatically redistributed.Using NP processors, SAXPY operations can be performed in O(n=NP) time on any architecture. Onthe other hand, the inner products take O(n=NP) time for the local phase, but the communication or mergephase changes according to the network architecture type. For example on a hypercube architecture it is done intstart�up � logNP time, where tstart�up is the start-up time.Matrix-vector multiplicationWe consider the multiplication of an n�n arbitrarily sparse matrixA with an n�1 vector p that gives another n�1vector q. Each row of matrix A must be multiplied with the vector p. The computation and data communicationcosts vary depending on the distribution of the matrix A and the vectors p and q. We will keep the distributionsof vectors as de�ned above, and concentrate on the two di�erent partitioning scenarios for the sparse matrix Aand their associated costs. Then, we will generalize the results drawn from these scenarios to the cases where asparse storage format for matrix A is used.Scenario 1: Row-wise partitioningIn the �rst scenario, we would like to partition the rows of the sparse matrix A among the processors in aneven manner. We can do this by aligning the �rst dimension of A with p. When the p vector is distributed, A's�rst dimension will be distributed in an aligned manner (Figure 3.)6

1

2

3

Procs

0 0

2

1

3

Vector pMatrix A Vector q

0

1

2

3

ProcsProcs

Figure 3: Matrix vector multiplication where A is distributed in a (BLOCK, *) fashion, and the vectors aredistributed in a (BLOCK) fashion.!HPF$ ALIGN A(:, *) WITH p(:)Since the nonzero elements are at random positions in A, a row can have a nonzero entry in any column.This requires the entire vector p to be accessible by each row so that any of its nonzero entries can be multipliedwith the corresponding element of the vector. As the vector p is partitioned among the processors, this wouldrequire an all-to-all broadcast of the local vector elements. This all-to-all broadcast of messages containing n=NPvector elements among NP processors, takes tstart�up � logNP + tcomm � n=NP time if a tree-like broadcastingmechanism is used. Here tstart�up is the start-up time, and tcomm is the transfer time per byte.After the local computation phase, each processor has the corresponding block of n=NP elements of theresulting vector which is assigned to that processor originally. Hence, no communication is needed to rearrangethe distribution of the results.If A is stored using the CSR format then the sparse matrix A is represented by the trio of (row; col; a). Inorder to keep the locality in accessing the elements of individual rows, the HPF's BLOCK distribution is appropriateto partition all those vectors. To ensure that the (n + 1)'th element of row is placed in the last processor, weexplicitly specify the block size in the directive. When the CSR format is used for storing the sparse matrix, theHPF DISTRIBUTE row(BLOCK((n+NP-1)/NP))HPF ALIGN a(:) WITH col(:)HPF DISTRIBUTE col(BLOCK)following HPF code fragment can be applied for the matrix-vector multiplication: where the FORALL expressesparallelism across the j-loop. This works because A(i; j) = A(j; i) for the case of CG where Amust be symmetric.The operation runs in row order, �nishing up with one element of q at each iteration and iterations are independentof each other. 7

q = 0.0FORALL(j = 1:n)DO k = row(j), row(j+1)-1q(j) = q(j) + a(k) * p(col(k))END DOEND FORALLSimilar to the dense storage format, CSR too will incur the same broadcast overhead. In addition, thereis an additional overhead not found in dense storage format. Since the index set of the FORALL in the outerloop is partitioned among the processors, a processor that is responsible from a speci�c row may not have all theactual data elements (i.e., col and a) on that row. Therefore, additional communication is needed to bring in thosemissing elements.Scenario 2: Column-wise partitioning
1

2

3

Procs

0 0

2

1

3

Procs

Vector pMatrix A Vector q

0

1

2

Procs

3Figure 4: Matrix vector multiplication where A is distributed in a (*, BLOCK) fashion, and the vectors aredistributed in a (BLOCK) fashion.If a dense storage format is used to represent A, then the second dimension of A should be aligned with thep and q vectors. When vector p is distributed, columns of A are automatically partitioned among the processors(�gure 4). The HPF directive for this purpose is:!HPF$ ALIGN A(*, :) WITH p(:)As the vector p is already aligned with the columns of A, performing the element-wise multiplication will notrequire any interprocessor communication. However, since each processor will have a partition of the �nal vector q,each time some other processor produces a result corresponding to an element that is owned by another processor,it has to communicate this value to the owner of it. Since the owner may also update the same element, thisoperation will cause an inter-processor dependency. Therefore the matrix-vector operation can not be performed8

in parallel and the following serial code is used:q = 0.0DO j = 1, npj = p(j)DO i = 1, nq(i) = q(i) + A(i, j) * pjEND DOEND DOIf we used the message-passing SPMD model, then each processor would have a private copy of the vector qwhich would be used to gather the partial results locally, and a merge operation would be employed at the end toobtain the �nal product (q vector) of the matrix-vector multiplication. We could simulate the same thing usingtwo dimensional temporary local vectors in place of vector q in each processor. At the end of the outer loop weuse the HPF SUM intinsic to generate the �nal vector.If the matrix A is stored in CSC Format then the following distribution and alignment directives and serialcode fragment arises for the matrix-vector multiply (A � ~p = ~q):HPF DISTRIBUTE col(BLOCK((n+NP-1)/NP))HPF ALIGN a(:) WITH row(:)HPF DISTRIBUTE row(BLOCK)q = 0.0DO j = 1, npj = p(j)DO k = col(j), col(j+1)-1q(row(k)) = q(row(k)) + a(k)*pjEND DOEND DOThis operates in Fortran column-major order where each i-iteration gives a partial sum at several elementsof q. As in the dense case, there are dependencies between j-iterations and no parallel loop execution is possible.This part can also be parallelized by using a two dimensional local array as described as above.The communication time for Scenario 2 is the same as the communication time for the global broadcast usedin Scenario 1. Hence, it is not possible to reduce the communication time if the matrix is partitioned into regularstripes either in a row-wise or column-wise fashion.5 Proposed HPF ExtensionsWe propose two kinds of extensions to the current HPF de�nition that will make writing the above mentionedalgorithms easier and will enhance load balance to support CG codes.9

The �rst one speci�cally addresses the CG codes which uses the CSC format to store the sparse matrices.As seen above, in the current HPF de�nition it is not easy to express this loop in a parallel fashion although anexplicit message-passing program is able to do that. We propose a new way to eliminate the existing dependenciescaused by the many-to-one assignments and partition the resulting parallel loops in an elegant way.The second type of extensions are related to the cases where the load imbalance may become an importantissue due to the sparsity of the data structures. We propose ways to partition the sparse matrix in a mannerthat will allow the compiler not to disturb the logical structure of the matrix. That is rows and columns may beidenti�ed as indivisable entities while the distribution is performed.5.1 Private variables and ReductionsIn HPF, the DO loops have sequential semantics. Single- or multi-statement FORALL and INDEPENDENT FORALLor INDEPENDENT DO's are provided for expressing the parallelism in loops. In the case of CG codes where the Amatrix is represented using CSC format, the main obstacle that prevents us from parallelizing both loops of thesparse matrix-vector multiply is that in the inner loop, the row(k) values are not unique and so many left handsides accumulate into a single right hand side in a many-to-one fashion which introduces a dependency in the innerloop that even prevents us parallelizing the outer loop.The matrix-vector multiplication loops can not be expressed in paralllel using neither the FORALL constructnor the INDEPENDENT DO construct. The option of using a FORALL is eliminated because its semantics require thatall the right-hand sides should be computed before an assignment to the left-hand sides be done. An accumulationoperation like we would like to express is not allowed within the FORALL body. At the same time, the write-after-write dependency violates Bernstein's conditions [3], and eliminates the possibility of using an INDEPENDENTDO. If we could eliminate the dependency in the inner loop by using private arrays, we could express the outerloop in a parallel fashion. Hence, we propose a new mechanism which we call PRIVATE abstraction to allow theprogram to fork copies of a data structure that are private to each processor. Private variables are di�erent fromthe ones declared using the HPF NEW in loops because they will stay alive until the end of the private region asopposed to new variables that stays alive until the end of the loop iteration that it is de�ned. The private variablesare merged into a global single copy again (WITH MERGE option) (Figure 5) or discarded completely (WITH DISCARDoption) at the end of the loop(private region.)In practice, this can be implemented in HPF by assuming NP virtual processors and by allocating storagefor NP temporary vectors each of length n. The loop is then executed in parallel where each iteration of theouter loop is assigned to a speci�c processor and the operation of each processor is truly independent of eachother. A runtime library function similar to Fortran 90 SUM intrinsic reduction function can provide the necessarymerging of these temporary values into a single vector outside the loop. This is somewhat unsatisfactory, due tothe potentially unnecessary storage requirements, particularly if n� NP , and our proposed HPF extension would10

relieve the programmer of a lot of the cumbersome temporary storage allocation and alignments.Using two-dimensional arrays as shown in the previous section seems to be favorable at �rst considering thatit eliminates the allocation/deallocation costs of vectors at each loop entry/exit. However, keeping large vectorsin each processor's memory permanently is costly especially if both n and NP are very big and this kind of loopsare executed just a few times in the lifetime of the program.q = 0.0!EXT$ ITERATION j ON PROCESSOR(j/np), &!EXT$ PRIVATE(q(n)) WITH MERGE(+), &!EXT$ NEW(pj, k), PRIVATE(q(n))DO j = 1, npj = p(j)DO k = col(j) , col(j+1)-1q(row(k)) = q(row(k)) + A(k)*pjEND DOEND DOC -- private copies of q() are merged toC -- a global q at the termination of outer loop.In terms of the implementation cost of this PRIVATE mechanism, it is cheap and easy to implement in termsof storage and computation time. Once the privatization is established, the loop can be parallelized. Most HPFcompilers uses the well-known owners compute rule where an iteration is assigned to the processor which owns theleft-hand-side (lhs) array element that is assigned to in that iteration. As the array q is accessed through a levelof indirection, the value of its index (i.e.row(k)) can be known only at run-time. Inspector-executor mechanisms[15] which are costly in nature should be employed for the determination of the owner of the lhs. However, inour case, a much simpler mechanism can be used. We propose using a ON PROCESSOR(f(i)) construct which willmap iteration i onto processor f(i). In this way we can specify the iteration mapping at compile-time without anyruntime overhead. A similar mechanism was used in the implementation of the Kali and Vienna Fortran compilers[14, 5]. Actually, in some cases as above we are obligated to specify the iteration mapping while using the privateabstraction, because the lhs arrays have been privatized and they have no speci�c owner. Of course, if privatearrays are used only on the rhs (possibly with a DISCARD option), then using the ON clause is just an option. Forthose cases, private mechanism helps the compiler to prefetch the future data before it is needed and withoutnecessitating expensive inspector loops.5.2 Compressed Sparse Block DistributionsConsider how the sparse data may be blocked prior to distribution. We discuss two sparse block distributions:one of them is regular or uniform which is used in cases where the number of elements across rows or columns ofthe sparse matrix is approximately the same and the other one uses a load-balancing heuristic and distributes andaligns related data structures accordingly since the number of elements across rows or columns varies a lot.11

PRV$pj=PRV$p(j) PRV$pj=PRV$p(j) PRV$pj=PRV$p(j) PRV$pj=PRV$p(j)

A p = PRV$q A p = PRV$q A p = PRV$q A p = PRV$q

j=l1:u1

BEGIN

j=l2:u2 j=l3:u3 j=l4:u4

MERGE PRV$q’s into q

ENDFigure 5: Illustration of the private abstraction for parallel loops.5.2.1 Regular (Uniform) Sparse Block DistributionsThe uniform or regular sparse block distribution can be used in cases where each sparse matrix row(or column) isknown to have approximately the same number of elements, therefore there is an approximate load balance. Insuch a case, it is su�cient to distribute A and row (or col) so that each corresponding row (or column) is stored inits entirety in only one processor. The HPF regular block distributions divide the data array in an even fashionwithout paying attention to whether the division point is at the middle of a column or not. It is su�cient to adjustthe partition to reduce communication among intra-column elements.Since in typical CG applications the number of nonzero elements and the structure of the matrix is not knownuntil runtime, compiler cannot determine the layout patterns for row (or col) and A at compile-time. Therefore,these data structures are initially distributed using HPF's regular distribution primitives. In the case of CSCformat, we use the following initial distribution statements:!HPF$ PROCESSORS :: PROC(NP)!HPF$ DISTRIBUTE col(BLOCK((N+NP-1)/NP))!HPF$ DYNAMIC, ALIGN a(:) WITH row(:)!HPF$ DYNAMIC, DISTRIBUTE row(BLOCK)The DYNAMIC keyword warns the compiler that this distribution is temporary, actual data distribution isdependent on the runtime data. Distributed array descriptors (DAD) for the dynamically distributed arrays aregenerated at runtime. DADs contain information about the portions of the arrays residing on each processor. Thecompiler uses this hint to generate communication calls and to distribute corresponding loop iterations.We now introduce the concept of indivisable entities within larger data structures. An indivisable entity(atom) is a logical abstraction consisting of a chunk of elements enclosed within two border elements, and it12

cannot be divided among processors during the data distribution process. It should completely belong to onesingle processor. The following directive is used to inform the compiler on the logical grouping of subdata withina larger data structure.!EXT$ INDIVISABLE row(ATOM:i) :: col(i:i+1)The above directive speci�es that atomic entity i of row is encapsulated by the elements i and i + 1 of theindirection array col.The REDISTRIBUTE directive indicates that the data is available for use in the partitioning of the data arrays.The user is responsible for putting the REDISTRIBUTE directive in the proper place to improve the performance.Given the concept of atoms, redistribution can be made, depending on the runtime data, in an elegant manner.!EXT$ REDISTRIBUTE row(ATOM: BLOCK)This directive ensures that the elements of the row vector are distributed in a similar fashion to the regularHPF BLOCK distribution, yet the atoms instead of individual elements are used as the basis in the distribution.This ensures that elements of an atom is not divided among two or more processors. We could use an (ATOM:CYCLIC) distribution in a similar way. Since we still keep the continuity of the column (or row) elements, thecompiler avoids generating a full distribution map of the size of the target arrays. A small array in the size of thenumber of processors keeps the cut-o� points, and it is replicated over all processors.Another possibility may be extending the de�nition of HPF ALIGN to permit the alignment of atoms of onearray with the elements of another. For example, if atoms of row array are aligned with the elements of col array:!HPF$ ALIGN row(ATOM:i) WITH col(i)then any change in the distribution of the col array is spontaneously followed by a corresponding change thedistribution pattern of the atoms (i.e., individual columns) pointed to by the col array.5.2.2 Irregular Sparse Block DistributionsIn some types of problems, the structure of the sparse matrix is completely irregular - or in fact has some problemspeci�c structure that is identi�able to a human but not to a compiler. For example, this might arise from a veryirregular grid model in which some grid points may have many neighbours, while others have very few. In thosecases, neither the HPF regular block distributions nor the above proposed uniform distributions will allow a goodload balance.As in the regular case, the arrays are distributed initially using HPF regular distribution directives. Indivis-able entities are de�ned in a suitable way. 13

!HPF$ PROCESSORS :: PROCS(NP)!HPF$ ALIGN (:) WITH p(:) :: q, r, x, b!HPF$ DISTRIBUTE p(BLOCK)!HPF$ DYNAMIC, DISTRIBUTE row(CYCLIC((n+NP-1)/np)!HPF$ DYNAMIC, ALIGN a(:) WITH col(:)!HPF$ DYNAMIC, DISTRIBUTE col(BLOCK)!EXT$ INDIVISABLE row(ATOM: i) :: col(i:i+1)!EXT$ INDIVISABLE a(ATOM: i) :: col(i:i+1)Sparse storage format speci�cationAnother alternative for informing the compiler that there is a sparse matrix represented by a sparse matrix storagescheme is to use an explicit directive:!HPF$ SPARSE_MATRIX (CSR) :: smA(row, col, a)This directive gives two clues to the compiler:1) which sparse storage representation format is used.2) what are the three vectors (possibly, in pointing order) representing the sparse matrix, named smA.A sparse matrix de�nition puts a tight binding between the members of this trio, whenever any one's distributionis changed, the other two should be aligned accordingly. Furthermore, if an element of row is to be accessed, mostprobably the elements it points to in col and a will be also accessed, therefore compiler should generate code forbringing them into memory if they are not local. In short, the compiler can exploit the locality rule by knowingthe relation among the members of the trio.Load balancing sparse partitionersIt may be desirable to control the number of non zero elements stored on each processor if there is some identi�ablestructure to the sparse matrix that would otherwise lead to a load imbalance. Generally this would require adata mapping that forces processors to perform the same number of scalar multiplications and additions whilemultiplying the matrix with a vector. This however requires that A(k; i) and p(i) or q(k) no longer necessarily beassigned to the same processor which requires communication before the required multiplication.It is possible to specify a load-balancing heuristic that is applied to the A, row and col arrays to clusterthe rows in a way that can be distributed among the processors in an almost even-load fashion. This could mapsparse columns onto processors in a balanced way if the compiler applies the heuristic to the kernel arrays �rst,and redistributes the elements of dependent vectors accordingly later.Extended syntax for expressing the redistribution of smA using a special partitioner in an HPF way might14

be: !EXT$ REDISTRIBUTE smA USING CG_BALANCED_PARTITIONER_1The compiler generates code for calling necessary partitioners to determine the new data distribution andarranging all dependent vectors accordingly.A similar mechanism has been proposed in the Vienna Fortran compilation system [6] whereby an indirectmapping is constructed and passed through the HPF DISTRIBUTE or REDISTRIBUTE directives. It remains to beseen whether this can be e�ectively implemented on present generation architectures.6 ConclusionsWe have illustrated some of the issues arising from the use of HPF for expressing conjugate gradient algorithms.The advantages are the potential for faster computation on parallel and distributed computers, and additionalcode portability and ease of maintainance by comparison with message-passing implementations. Disadvantages(in common with any parallel implementation) over serial implementations are additional temporary data-storagerequirements of parallel algorithms.We have identi�ed how existing features in HPF allow e�cient expression and implementation of some ofthe components of conjugate gradient algorithms. We have also highlighted where possible extensions to HPF willallow a compilation system to produce even more memory-e�cient and compute-e�cient executable code.Current HPF distribution directives only allow arrays to be distributed according to regular structures suchas BLOCK and CYCLIC. Whilst this is adequate for dense or regularly structured problems it does not providethe necessary exibility for the e�cient storage and manipulation of arbitrarily sparse matrices. We also proposeextensions for the iteration mapping of the loops employed by CG codes.Although we have described the limitations of the current HPF-1 de�nition and the basic requirements forthe further development of HPF-2, we have not attempted to discuss how these should be implemented withinthe compiler itself through directives, intrinsic functions or some other mechanism. Instead we have indicatedin general terms that the provision of some additional exibility to cope with irregular problems such as thosedescribed within this paper is essential if HPF is to be widely adopted in place of existing message passingtechnologies.References[1] Bailey, D., Barton, J., Lasinski, T. and Simon, H., Editors, \The NAS Parallel Benchmarks", NASA Ames, NASATechnical Memorandum 103863, July 1993.[2] Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato,. J., Dongarra, J.J., Eijkhout, V., Pozo, R., Romine, C., vander Vorst, H.A. \Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods", SIAM, 1994.15

[3] Bernstein, A.J., \Analysis of Programs for Parallel Processing," IEEE Transactions on Computers, 15(5), October1966.[4] Bogucz, E.A., Fox, G.C., Haupt, T., Hawick, K.A., Ranka, S., \Preliminary Evaluation of High-Performance Fortranas a Language for Computational Fluid Dynamics," Paper AIAA-94-2262 presented at 25th AIAA Fluid DynamicsConference, Colorado Springs, CO, 20-23 June 1994.[5] Chapman, B., Mehrotra, P., and Zima, H., \Programming in Vienna Fortran," Scienti�c Programming, 1(1):31-50,Fall 1992.[6] Chapman, B., Mehrotra, P., Mortisch, H., and Zima, H., \Dynamic data distributions in Vienna Fortran," In Proceed-ings of Supercomputing '93, Portland, OR, 1993, p.284.[7] Dongarra, J.J., Du�, I.S., Sorensen, D.C., van der Vorst, H.A., \Solving Linear Systems on Vector and Shared MemoryComputers", SIAM, 1991.[8] Du�, I.S., Erisman, A.M., Reid, J.K., \Direct Methods for Sparse Matrices", Clarendon Press, Oxford 1986.[9] Cheng, Gang., Hawick, Kenneth A., Mortensen, Gerald, Fox, Geo�rey C., \Distributed Computational Electromag-netics Systems", to appear in Proc. of the 7th SIAM conference on Parallel Processing for Scienti�c Computing, Feb.15-17, 1995.[10] Dincer, K., Hawick, K., Choudhary, A., and Fox, G., \Implementation of Conjugate Gradient Algorithms in Fortran90 and HPF and Possible extensions toward HPF-2", NPAC Technical Report, SCCS 639, October 1994.[11] Fox, G., S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C.-W. Tseng, Wu, M., Fortran D LanguageSpeci�cation, Technical Report CRPC-TR90079, Center for Research on Parallel Computation, December 1990.[12] Hockney, R.W., and Berry, M., (Editors) PARKBENCH Committee Report-1, \Public International Benchmarks forParallel Computers", February 1994.[13] High Performance Fortran Forum (HPFF), \High Performance Fortran Language Speci�cation," Scienti�c Program-ming, vol.2 no.1, July 1993.[14] Koelbel, C. and Mehrotra, C., \Compiling Global Name-Space Parallel Loops for Distributed Execution", IEEETrans.of Par.and Dist.Systems, 2(4):440-451, October 1991.[15] Koelbel, C.H., Mehrotra, P., Saltz, J., and Berryman, H., \Parallel Loops on Distributed Machines," in Proc. of theFifth Distributed Memory Computing Conference, 1990.[16] Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Steele, G.L., Zosel, M.E., \The High Performance Fortran Handbook",MIT Press 1994.[17] Kumar, V., Grama, A., Gupta, A., and Karypis, G., \Introduction to Parallel Computing: Design and Analysis ofAlgorithms," Benjamin/Cummings, 1994.[18] Metcalf, M., Reid, J., \Fortran 90 Explained", Oxford, 1990.[19] Ponnusamy, R., \Runtime and Compilation Methods for Irregular Computations on Distributed Memory Multiproces-sors", Ph.D. Dissertation, Syracuse Un., May 1994.[20] Ponnusamy, R., Saltz, J. and Choudhary, A., \Runtime Compilation Techiques for Data Partitioning and Communi-cation Schedule Reuse", Technical Report, UMIACS-93-32, University of Maryland, April 1993.
16

	High Performance Fortran and Possible Extensions to support Conjugate Gradient Algorithms
	Recommended Citation

	tmp.1285252205.pdf.L9TgC

