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Abstract

Optical technology has become a significant part of communication networks. We

propose an Optical Interface Message Processor (OPT'IMP) that exploits high-bandwidth,

parallelism, multi-dimensional capability, and high storage density offered by optics.

The most time consuming operations such as switching and routing in communication

networks are performed in optical domain in the proposed system. Our design does not

suffer from the optical/electrical conversion bottlenecks and can perform switching and

routing in the range of Gigabits/s. The proposed design can have significant impact in

high-speed communication networks as well as high-speed interconnection networks for

parallel computers.

The source-destination (S-D) information from a message is first converted to the

spatial domain. The routing table stores all S-D codes and the corresponding control

cqdes for the switching module. Using a cylindrical system, the routing table is searched

in parallel (single step) and control signals corresponding to the matched S-D row from

the table are used to control the switching module. The switching module, based on the

SEED array technology, can be reconfigured in GHz range and provide high bandwidth.



1 Introduction

It is predicted that future multimedia transport networks must effectively provide a wide

range of services with different throughput requirements such as voice (64 Kbits/s), data

(Megabits/s), high definition television (100 Megabits/s), and human vision (10-100 Giga­

bits/s) [1]. Consequently, the designers of communication networks that will support this

wide range and dynamic capacity requirements will.be limited by the processing capabilities

of the nodes that perform the required routing and switching functions in the electronics

domain. Furthermore, the low.. transmission bandwidth of the electronic switches, and the

(OlE) and (EtO) conversions present an obstacle to fully exploit th~ large bandwidth offered

by optics. Currently, intensive resea.rch is focused on removing this obstacle by proposing

design alternatives that attempt to achieve transmission as well as switching in optical tech­

nology. We stress that the systems and network architectures designed based on electronics

technology may not be feasible and/or efficient when electronic devices are substituted by

equivalent optical devices ..

Optical technology has a tremendous potential in high-speed and high-bandwidth com­

munication networks due the following reasons:

(a) inherent parallel and multidimensional capabilities;

(b) high space-bandwidth and time-bandwidth products, resulting in fast transmission and

switching capabilities;

(c) immunization from routua! interference unless otherwise intended, thereby insuring

freedom from topological limitations prevalent in semiconductor technology.

In communication networks, the information exchange process can be divided into two

parts: application related layers and communication related layers. The function of the

1



latter is to route data packets, generated from the former, from one user to another. This is

achieved by using transmission lines and intelligent switching elements, which are also called

Interfa.ce Message Processors (IMPs). The IMPs examine the source-destination (SD) code

in the header of a packet to determine the outgoing link to be used in routing the packet

to its destination.

The signal processing and control based on optical technology is still in its infancy and

lags behind what can be done using electrical technology. This has led to designing of

networks, such as the overlay network, in which the IMPs strip off the packet header from

the message and convert the header into electrical signals. These electrical signals control

the state of the photonic switches that route the packet at the input port to the required

output port [2]. Others use different multiplexing techniques such as time-division and

wavelength.division multiplexing to design photonic switches to route optical signals from

their input ports to their corresponding output ports [3, 4, 5]. For example, in wavelength­

division multiplexing, each input signal is modulated with a wavelength that corresponds

to the destination port. The optical receiver at each output port is then used to select

the input signal that is modulated with its commensurate wavelength. By modifying the

tunable wavelength of these receivers, the output port can receive the input signal from any

other input. In [6], a photonic knockout switch based on wavelength division multiplexing

is proposed. Self-routing photonic switching with optically processed control is proposed in

[7]. In this network, packets headers are encoded with packet destination addresses using

either optical code-division or tiIne-division encoding techniques.

The design approaches discussed above use analog devices such as filters, optical sum­

ming circuit, and optical receivers to achieve the desired routing function. Hence, they are

sequential in nature.. In packet switching systems, the information present in the header is

examined in order to provide appropriate network routing. One control strategy could be
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based on sorting the input packet by their destination addresses. The STARLITE wide­

band digital switch is based on sorting networks that could eventually be implemented using

optical logic and interconnects [8, 9].

In this paper we present an Optical Interface Message Processor (OPTIMP) that ex­

ploits high-bandwidth, parallelism, multi-dimensional capability, and high storage density

offered by optics. The most time consuming operations such as switching and routing in

communication networks are performed in optical domain in the proposed system. Further­

more, the OPTIMP does not suffer from the optical/electrical conversion bottlenecks and

can perform switching and routing in the range of Gigabits/s.

The rest of this paper is organized as follows. Section 2 presents our design approach

and design considerations. Functional description of OPTIMP is presented in Section 3.

Section 4 describes the architecture of OPTIMP. Furthermore, an alternative design us­

ing holographic technique for reconfigurable switching network is also presented. Finally,

conclusions and future research is outlined in Section 5.

2 Design Approach

This research proposes designs of an Optical Interface ~Iessage Processor (OPTIMP) hat

performs the functions associated with the subnet layers in optics, hereby removing the OlE

and E/O conversion bottlenecks. Consequently, an optical packet will be routed through

several successive IMPs until it reaches its destination where the packet is converted back to

electrical signals and processed by the upper layers before it is delivered to the corresponding

host (end user). The current optical devices lag far behind in sophistication and the control

capability offered by electronic devices. Consequently, the optical subnet design must take

into consideration and adopt schemes that are simple and can be implemented efficiently

using the available optical technology.
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The proposed design of an OPTIMP takes into considerations the points discussed above

and performs simple routing and switching functions. The main characteristics of our design

are:

1. The routing function is deterministic and all source-destination (SD) pairs are stored

in a look-up table. For each input-output pair, the table· stores information about

which outgoing link to choose in order to route the packet. Most of the time, the

topology of a network is fixed. However, infrequent changes can be made in the

routing table (due to congestion or link failure). The contents of this routing table

can be stored on an optical mask (hologram, or any other type of recording device

viz., spatial light modulators). This technique takes advantage of the capability of

optics to perform parallel search (single step search) on a two-dimensional optical

array (routing table) as well as the high density storage capability of optics.

2. The control signals required to setup the optical switching devices use micropro­

gramming. This simplifies the generation of control signals and can be performed in

real- time. The routing table stores the patterns of the control signals' needed to route

a packet coming at an input port to the appropriate output port. The control are

just read out from the appropriate row of the routing table. This operation can be

performed in a single step due to the optical parallel search capabilities.

3. The switching network to connect the appropriate input and output links uses optical

devices. This avoids OlE and E/O bottlenecks. Therefore, high data transmission

rates that are available on the optical fibers can be sustained through the switches.
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Figure 1: An Example of a Communication Network

3 Functional Description

Figure 1 shows an example of a communication network which shows the communications

subnet portion as well as the names of the upper function layers. For example, in Figure 1

the dark lines show the path to be used to transport one packet from end-user A to end-user

B. The routing table associate with 1MPI routes every incoming packet with SD=AB to

link L3 , while 1MP2 routes that packet to link L4 , and so on until 1MP6 that delivers

it to the end-user B through LiD- Infrequently, the routing table information needs to be

modified to reflect the new status of the communication subnet. For example, if Ls fails, the

routing table of 1MP4 should be updated to route a packet with SD = AB to L1 instead of

L8 . Furthermore, the routing table of IMPs should also be modIfied to route that packet

to £9 where it is delivered to end-user B through LiD-

Conflict occurs when there are several packets that use the same output port to reach
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their destinations and a protocol that addresses this type of conflicts can be developed

for OPTIMP. For example, the control beams readout from the table for one packet are

compared with those read for another packet and OPTIMP routes these two packets simul­

taneously only if the superimposition of these two sets of control beams do no lead to a

conflict (such as using the same output port). In case there is a conflict, some arbitration

mechanism is used to choose one of them or delay it using optical delay lines.

Figure 2 shows a block diagram of an OPTIMP. It performs parallel search on 2D optical

routing table, which has high-density storage capacity that permits efficient storage of the

routing information on a relatively small optical mask. There are m incoming fiber-in ports

and n outgoing fiber-out ports. When a packet is received at one of these input ports as an

optical signal, the optical power divider routes one copy of this packet to the Time-Space

Converter (TSC) unit and another one to the Delay Line Unit. The TSC extracts the

SD information from the packet header and displays it on a one-dimensional array of laser

diodes. At this stage, a parallel search on all the columns of the ronting table in the Optical

Microprogrammed Routing Unit (OMRU) is performed to select the column corresponding

to the given SD pair. The selected column provides the image pattern required to configure

the Optical Switching Network (OSN) so that the incoming packet can be routed to the

proper fiber-out port. The function of the delay line unit is to delay connecting the incoming

packet to the OSN until the OMRU has produced the control beams required to configure

the OSN.

4 Arc"hitecture

As we discussed in the previous section, the operation of the OPTIMP consists of several

steps: time domain to spatial domain conversion, parallel table look-up, control pattern

generation, and configuration of optically controlled interconnection network to achieve
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real-time data. routing. To achieve a non-blocking operation, a delay of the input data

stream is also needed. In the following, we will discuss an implementation of the proposed

OPTIMP.

The schematic diagram of the proposed OPTIMP is shown in Figure 3. For simplicity,

most of the light guiding elements, such as mirrors, cylindrical lenses, and beam splitters

are omitted. Also, only the main functional modules of OPTIMP are shown and details are

omitted. In the diagram, SD and SD are laser diode arrays that are driven by a high-speed

shift register; THis an optical intensity thresholding device; and RT, RT and CT are

programmable spatial light modulators (5LMs). We emphasize here that the modulators

are used to display static routing and control patterns. The reading time will be the time

for the light to pass them.. Therefore, the slower writing response of the 8LMs does not

present any bottlenecks in the normal operations of the OPTIMP.

4.1 Time Domain to Space Domain Conversion

The input source and destination code from the incoming fiber is first converted into elec­

trical pulses (for the 5D code only). High-speed multiple quantum well photo-diode with

switching time less than a nanosecond can be used for this purpose. The pulses are fed into

a high speed electronic shift register that drives the two laser diode arrays. Notice that the

shift register can store both the source destination code and its complement simultaneously.

Therefore, the laser arrays simultaneously display the source and destination code and its

complement in the spatial domain, respectively. Since both the shift register and laser ar­

rays can operate at a rate above Gbits/s [10], this time domain to spatial domain conversion

can also be in the range of Gbits/s, which is the data rate of fiber communications. The

purpose of time to spatial domain conversion is that we can then use the parallel processing

advantage of optics to achieve real-time and high-speed routing table search.
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4.2 Parallel Routing Table Search

The source destination code and its complement are displayed on SD and SlJ, respectively.

Here, we use positive logic (i.e., a binary one is represented by lasing and a binary zero

is represented by no lasing). The routing table and its complement are displayed by two

programmable spatial light modulators (RT and RT), respectively. The magneto-optical

spatial light modulator (MOD) [11] produced by Semitek can be used for this purpose. The

device uses the Faraday effect to control the polarization of the light passing through it.

An analyzer then converts the polarization into binary intensity transmittance. Therefore,

according to the predetermined routing table, a pixel on the MOD is transparent (if it is a

binary one) or opaque (if it is a binary zero). Each SD code of the routing table is designated

by a column of pixels on the MOD. In other words, an m X n pixel MOD can represent n sets

of source-destination codes with the length of each one being m. Although the achievable

framerate (to update the routing table) of MOD is in the order of microseconds, we stress

that during normal routing operations, the patterns displayed on the MODs (routing table

entries) do not need to be changed. To read these patterns by light beams takes less than a

nanosecond (10-9 sec., light travels a few centimeters). Therefore, the relative slow writing

speed of the MOD does not limit the performance of the system in normal operation.

The cylindrical optical system (not shown in the figure) spreads each of the input bit

on the laser arrays into a horizontal row that illuminates a row in one of the MOD masks.

In this manner, the input SD and its complement codes represented by column laser arrays

are simultaneously multiplied by each column in the routing table RT and its complement

RT, respectively. A beam splitter ( not shown in the figure) combines the results of each bit

multiplication. The following cylindrical lens (not shown in the figure) focuses each column

of the multiplication results onto a pixel in the one-dimensional thresholding device TH.
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From the Boolean logic point of view, the light intensity behind each column in the routing

table RT is the AND operation between input SD code and a routing code, and the intensity

behind each column in RT is the AND operation between the corresponding complement

codes. After beam combination and then focusing in the column direction, the intensity on

the corresponding pixel of the thresholding device is expressed by Boolean function:

SD · RT + S D · RT = Equivalence.

The Equivalence function determines the best match between the input SD code and one

of the columns on the routing table. To be specific, if the input SD code matches one of the

columns in the routing table, the total light energy passing the column will be maximum.

Similarly, the total light energy passing the corresponding column on the RT will also

be a maximum. Upon adding them together by the beam splitter and cylindrical lens

combination, the total energy on the pixel of the one-dimensional thresholding device T H

that corresponding to these two columns is the maximum value.

4.3 Control Pattern Generation

The intensity 'thresholding value of the THis properly set such that a pixel transmits light

through it only if the total intensity impinging on it is above a predetermined value.Hence,

there will be only one pixel on the device to be transparent. This pixel indicates the result

of the parallel table search. Since the process is based on energy operation (i.e., incoherent

optical operation), it has no requirement for the wavefront quality and a phase relationship

for the laser source arrays. This results in a design with greater flexibility and lower cost.

The thresholding behavior of the TH device is shown in Figure 4. As can be observed,

if the thresholding value is carefully chosen, a no-match (incorrect incoming SD code) can

also be detected and ignored. Currently, the research for high-speed optical thresholding

11
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Figure 4: Non-Linear Behavior of a Thresholding Device

nonlinear etalon devices is underway at Syracuse University [?]. To insure accurate table

search, the S D codes and the routing codes have to be properly designed. In other words,

each column in the routing table must be able to transmit equal amount of light intensity,

and the added results on the one-dimensional thresholding device T H must be sufficiently

different so that the T H can make a correct decision. The design and implementation of

the S D codes and the routing tables will be an integral part of the proposed research.

The cylindrical optical system behind TH (not shown in the figure), expands the light

transmitted through the pixel in column direction to illuminate a corresponding column in

the control table CT. This selected column is imaged onto the output plane to provide a

binary control pattern for the optically controlled interconnection network.

4.4 Delay Generation

To achieve non-blocking real-time routing, the input data need to be delayed until the

control signals are generated and the optical switches are set appropriately. The delay lines
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in OPTIMP can be realized by means of optical fibers. However, if we desire delays of

the order of picoseconds, an ordinary fiber can become prohibitively long for the purpose.

We propose to construct periodic serrations into a single-mode fiber in order to achieve

programmable delays. The serrations can be inserted by simply cutting grooves around the

fiber at a small distance into the glass. A similar technique has been used previously in

acoustics to introduce dispersion in the path of ultrasound traveling through an acousto­

optics cell [12]. In principle, the section of glass between the serrations act as "locally

reacting" strips which "impede" the propagation of, say, a Gaussian beam. through the fiber.

It can be shown that a typical dispersion curve obtainable is of the form k2 =11W tan(;2W)

where wand k denote the angular frequency and propagation constant, and 1'1 and ;2

are constants dependent on the design parameters (e.g., the thickness and depth of the

serrations). IT the device is operated at a frequency commensurate with the spacing between

the periodic serrations, one obtains a tunable filter with a large queue. On the other hand,

in the "detuned" mode of operation, the device can accomplish a wide variation of group

velocities depending on the frequency of the operation. A delay of 100 ns/rn can be achieved

for an operating wavelength of approximately of 1 micrometer. In fact, the group velocity

can be changed to any desirable value over a large range simply by changing the periodicity,

and the depth and width of the serrations.

4.5 Switching Network

The last functional module in the OPTIMP is the optically controlled switching network.

In our schematic diagram in Figure 3, we show an light controlled SEED array network.

The high speed ( less than 1 ps) and low energy (of the order of fJ) self electro-optical

device (SEED) [13] has drawn a great attention because of its inherent advantages suited

for optical computing. A SEED device can function as an optically controlled light switch
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that changes its transmittance according to the control (binary) light intensity. Therefore,

the control pattern from the parallel table search can be used to control a two-dimensional

SEED array. In other words, each SEED element in the array is individually switched "on"

(transparent) or "off" (opaque). By doing so, any input port can be connected to any of

the output port. Since SEED fabrication fabrication is based on molecular beam epitaxy

(MBE), the number of SEED elements on a chip can be, in theory, very large. The control

patterns can be imaged onto the SEED array by a refined optical imaging system. Thus we

can achieve a very high density high speed crossbar or multistage network.

The SEED device, being still in research and development stage, is promising but ex­

pensive at present time. In the following, we describe an alternative using commercially

available devices and materials for the switching network module of the OPTIMP.

Holographic Reconfigurable Interconnection Network (HRIN)

Another possible architecture for reconfigurable interconnections with volume holograms

is spatial division. A page-oriented holographic setup is shown in Figure 5. We shall apply

the pinhole hologram technique as proposed by Xu et. [14] into a nonlinear photorefractive

crystaL The angular sensitivity of the recorded volume hologram would have a larger

storage capacity as compared with thin holographic plates. The recording arrangement is

shown in Figure 5(a), in which an SLM is in the focal plane of the condenser lens L1 and

the interconnection pattern masks are placed at the page plane p. The object beam B is

focused by L 1, after passing the SLM the beam is directed toward the recording medium.

We notice that the SLM is used to generate a changeable pinhole, that allows only an object

beam to pass in one direction. In other words, the interconnection mask is illuminatea oy

an object beam in one direction, where the pinhole of 8LM is set at a spatial location to

allow the object beam to pass through. It may be seen that a set of interconnection masks

14
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Figure 5: Geometry for Reconfigurable Interconnections with Spatial Division (a) recording

setup (b) Reading Setup

can be encoded in the crystal for a given reference beam A', and so on. In the read-out

process, a I-D laser diode array is placed at the front focal plane Q of the collimating

lens £2 as shown in Figure 5(b). Each diode generates a reading beam that is conjugate

to a specific reference beam A. When the SLM pinhole is set at one position, a set of

interconnection patterns will be diffracted at the page plane P. As the pinhole position is

moved, the interconnections between the laser diode array and the page plane can be made

reconfigurable by a programming SLM.

Unlike the wavelength tuning reconfigurable interconnection, the spatial division recon­

figuration requires low wavelength sensitivity. We will use transmission type holograms
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for interconnections. To have a higher angular sensitivity, the average write-in angle (20)

should be about 90°. If the thickness of the photorefractive crystal (i.e. LiNb03 ) is about

1 to 2 em then the bandwidth of the hologram would be much wider than the signal band­

width. Due to the degeneration of Bragg diffraction, only a one-dimensional laser diode

array can be used. IT the full range of N x N SLM pinholes is used, the total number of

interconnection patterns would be M = N2 X K, where K is the number of channels (i.e.,

the number of laser diodes).

In principle, the architecture can be used for massive information storage. As an example

if N = 32, K = 103 , the total number of patterns (or pictures) would be 106 which is about

the capacity of 10 hours of a TV program. This architecture does not require a high space­

bandwidth product of the SLM (only 32 x 32). The requirement of the pinhole size is about

mAF/ a, where m x m is the number of pixels, a is the size of the pictures, F is the focal

length of the condenser lens L 1 • The size of the SLM is about mN)"F/ a. The advantage of

holographic interconnection is high interconnection density. For a detailed description the

reader is referred to [15].

5 Conclusions

In this paper, we have presented a design for an Optical Interface Message Processor

(OPTIMP) that exploits high-bandwidth, parallelism, multi-dimensional capability, and

high storage density offered by optics. The most time consuming operations, such as source­

destination table search and switching network setup are implemented fully in optics. In

addition, since the switching network is all-optical, the system offers a high bandwidth.

Our design does not suffer from the optical/electrical conversion bottlenecks and can per­

form switching and routing in the range of Gigabits/s. This design can be adapted for

interconnection networks for massively parallel computers.
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