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Abstract

The complete exchange (or all-to-all personalized)
communication pattern occurs frequently in many im-
portant parallel computing applications. We discuss
several algorithms to perform complete exchange on a
two dimensional mesh connected computer with worm-
hole routing. We propose algorithms for both power-
of-two and non power-of-two meshes as well as an
algorithm which works for any arbitrary mesh. We
have developed analytical models to estimate the per-
formance of the algorithms on the basis of system pa-
rameters. These models take into account the effects
of link contention and other characteristics of the com-
munication system. Performance results on the Intel
Touchstone Delta are presented and analyzed.

1 Introduction

Low-dimension high-bandwidth interconnection
networks, such as a mesh, have recently emerged as a
popular alternative to the earlier high-dimension low-
bandwidth networks, such as the hypercube, for dis-
tributed memory multicomputers. The Intel Touch-
stone Delta, the Intel Paragon and the Symult 2010
use a two-dimensional mesh while the MIT J-machine
and the Mosaic computer developed at Caltech use a
three-dimensional mesh [5]. All these machines use
wormhole routing, an important feature of which 1is
that the network latency is almost independent of the
path length when there is no link contention and the
packet size is large. In this paper, we discuss four algo-
rithms to perform complete exchange on a mesh con-
nected computer with wormhole routing. The com-
plete exchange or all-to-all personalized communica-
tion pattern is one in which all processors simultane-
ously need to communicate with all other processors.
It occurs in many applications like parallel quicksort,
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some implementations of the 2D FFT, matrix trans-
pose, array redistribution etc. It is the densest form of
communication which can result in a lot of link con-
tention. Hence it is necessary to use efficient algo-
rithms to perform complete exchange.

Complete exchange algorithms for a hypercube ar-
chitecture are described in [2, 4]. Ponnusamy, Thakur
et al [6] discuss complete exchange on the fat tree ar-
chitecture of the CM-5. These algorithms assume that
the number of processors is a power-of-two, which is
a valid assumption for those architectures. The mesh
architecture introduces different problems because of
high contention and the fact that the user can allocate
a mesh size which need not be a power-of-two and may
even be an odd number (eg. 5x5). Bokhari and Berry-
man [3] describe two algorithms for a circuit-switched
mesh, which assume that the number of processors is a
power-of-two. In this paper, we discuss algorithms for
both power-of-two and non power-of-two meshes. We
have developed analytical models to estimate the per-
formance of the algorithms. We present performance
results on the Intel Touchstone Delta.

Section 2 describes the architecture of the Delta
and the performance model used for the algorithms.
The algorithms are described in Section 3. The per-
formance of the algorithms on the Delta is discussed
in Section 4 followed by Conclusions in Section 5.

2 Architecture and Performance

Model

The Intel Touchstone Deltais a 16 x 32 mesh of com-
putational nodes; each of which is an Intel i860/XR
microprocessor. The two-dimensional mesh intercon-
nection network has bidirectional links with wormhole
routing. It uses deterministic XY routing in which
packets are first sent along the X dimension and then
along the Y dimension. In wormbhole routing, a packet
is divided into a number of flits (flow control digits) for
transmission. The size of a flit is typically the same as
the channel width. The header flit of a packet deter-
mines the route and remaining flits follow in a pipeline



fashion. The network latency for wormhole routing is
(Ly/B)D + L/B, where L; is the length of each flit,
B is the channel bandwidth, D is the path length, and
L is the length of the message. Thus, if L; << L, the
path length D will not significantly affect the network
latency provided there is no link contention. Details
of wormbhole routing techniques can be found in [5].
To model the performance of the algorithms, we
use an approach similar to that used by Barnett et al
in [1]. The following notations are used in our models

o startup time per message

doi=1,p—1
destination = xor(mynumber, i)
Exchange with destination

end do

Figure 1: Algorithm for PEX

Table 1: Communication Schedule for PEX on 8 Procs

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

01 0«2 0«3 0~ 4 0«5 0«6 0«7

2+ 3 13 12 15 1—4 17 1—6

Bep | transfer time per byte for an exchange
with no link conflicts

Osr | transfer time per byte to send to and receive
from different processors with no link conflicts

Bsat | transfer time per byte on a saturated link
L number of bytes to be exchanged
per processor pair

f(?) | maximum number of messages contending
for a saturated link at step ¢

r number of rows in the mesh

c number of columns in the mesh

total number of processors = r X ¢

The time taken for an exchange operation may be
different from the time to send to and receive from
different processors, because in the latter case the in-
coming and outgoing messages may traverse links with
different amount of contention. Hence, we use (.. or
Osr depending on the algorithm. We assume that the
time taken is independent of distance, a property of
wormhole routing. Thus, the time required for an ex-
change step 7 is given by

T=a+ Lmax(Bey, [({)Bsar)

We assume that conflicting messages share the band-
width of a network link and that there exists some pos-
itive integer v such that 3 = 270,,;. For the Delta,
v = 1 is a good approximation [1]. In other words,
even if two messages contend for a link, there is no
increase in communication time. Note that since the
Delta has bidirectional links, two messages contend for
a link only if they need to travel in the same direction
simultaneously.

3 Algorithms

Scott [7] has shown that a®/4 is the lower bound
on the number of phases required to perform a com-
plete exchange on an a X a mesh such that there is
no link contention in any phase. However, if we al-
low link contention to exist, the operation can be per-
formed in fewer steps. We have adopted this approach
of allowing a small amount of link contention to exist,
thereby reducing the number of steps and keeping all

45 46 47 26 27 2~ 4 25

6 — 7 5« 7 5« 6 37 3+—~6 3+~5 3~ 4

processors active at every step. This approach takes
advantage of the fact that in machines like the Delta
and the Paragon, the links have excess bandwidth, so
that a small number of contending messages will not
affect the communication time.

3.1 Pairwise Exchange for Power-of-Two

Mesh (PEX)

The best algorithm for a hypercube architecture is
the pairwise exchange algorithm described in [2, 7] as
it guarantees no link contention in the hypercube at
every step. This algorithm has also been shown to per-
form well on the fat tree architecture of the CM-5 [6].
The algorithm is described in Figure 1. It requires
p — 1 steps and the communication schedule is as fol-
lows. In step ¢, 1 < ¢ < p—1, each processor exchanges
a message with the processor determined by taking the
exclusive-or of its processor number with ¢. Therefore,
this algorithm has the property that the entire com-
munication pattern 1s decomposed into a sequence of
pairwise exchanges. The communication schedule of
PEX for 8 processors is given in Table 1. The entry
¢ < j in the table indicates that processors ¢ and j
exchange data.

Since each step of PEX involves an exchange be-
tween pairs of processors, the maximum number of
messages contending for a link at any step is limited
by maxz(r,¢)/2. An exact expression for the maximum
number of messages contending for a link at step ¢ is

f(l) _ 2|_1g{max(mod(i,c)yi/c)}J

Hence, the time taken for step 7 is

T(i) = a4+ Lmax(Bex, f({)Bsat)

The cost of PEX can be determined by summing over
all steps of the algorithm :

Tppx = Zf:ll la + Lmaz(Ber, [(1)Bsar)]
=(p— Do+ LYFZ mar(Bew, f(i)Bsar)



q= 9Mgp]
doj=1,¢—1
destination = xor(mynumber, j)
if (destination < p) then
Exchange with destination
end if
end do

Figure 2: Algorithm for PEX-GEN

3.2 Pairwise Exchange for General Mesh
(PEX-GEN)

The PEX algorithm cannot be directly used if the
number of processors i1s not a power-of-two as the
exclusive-or function will not create all the required
processor pairs in p — 1 steps. The Pairwise Exchange
for General Mesh (PEX-GEN) algorithm described in
Figure 2 is an extension of PEX for non power-of-
two meshes. The algorithm first finds the smallest
power-of-two (say ¢) greater than the number of pro-
cessors and uses this number to schedule ¢ — 1 steps of
the pairwise exchange. In each step, every processor
checks to see if the calculated destination processor
number is less than the actual number of processors.
If so, it exchanges data with the processor, else it goes
ahead to the next step. Thus, the algorithm requires
g — 1 steps where ¢ is the nearest power-of-two larger
than the number of processors. Clearly, the algorithm
takes more steps than necessary and many processors
remain idle in several of the steps. However, this re-
duces the link contention in each step. The maximum
contention in each step is upper bounded by that in
the PEX algorithm.

3.3 PEX-GEN with Shift (PEX-GEN-
SHIFT)

The motivation for the Pairwise Exchange for Gen-
eral Mesh with Shift (PEX-GEN-SHIFT) algorithm
can be explained with the help of Figure 3(a). Assume
that the user has allocated a mesh of 20 processors
numbered 0 to 19. The nearest power-of-two larger
than 20 is 32, so PEX-GEN will require 31 steps. In
the first 15 steps of PEX-GEN, processors 0 to 15 ex-
change completely among themselves and processors
16 to 19 exchange completely among themselves. In
the next 16 steps, processors 0 to 15 exchange with
processors 16 to 19. Since there are only 4 proces-
sors greater than 15, many of the processors 0 to 15
do not do any communication in many of the last 16
steps. Hence there 1s high link contention in steps 1
to 15 and very little or no link contention in steps 16
to 31. In general, if there are p processors where p is
not a power of two, PEX-GEN will require ¢ — 1 steps
where ¢ = 20821 In the first [(¢ — 1)/2] steps, the

0 15 19 31

<——— 20 processors

(@) 20 processors allocated

0 6 15 25 31

<— 20processors ——————=>

(b) Processor numbers shifted

Figure 3: Processor Shift

g = 2Msrl
shift = (¢ — p)/2
myvirtual = mod(mynumber + shift, p)
doj=1,¢q—1
virtual_destination = xor(myvirtual, j)
destination = virtual_destination — shift
if (destination < 0) then
destination = destination + ¢
end if
if (destination < p) then
Exchange with destination
end if
end do

Figure 4: Algorithm for PEX-GEN-SHIFT

first ¢/2 processors are active and in the remaining
steps, several of them are inactive.

The Pairwise Exchange for General Mesh with Shift
(PEX-GEN-SHIFT) algorithm described in Figure 4
maintains a balance of the number of active and inac-
tive processors in all steps. This is done by defining
virtual processor numbers such that the real proces-
sors 0 to 19 are numbered 6 to 25 as shown in Fig-
ure 3(b). The processor numbers are shifted by an
amount equal to half the absolute difference between
the number of processors and the nearest higher power
of two. Thus the empty space which earlier existed
only in the half 16 — 31 is now equally divided among
the two halves. So, even in the first 15 steps of the
algorithm, there are equal number of idle processors in
both halves, which balances the contention among all
the steps of the algorithm. This algorithm also takes
g — 1 steps where ¢ is the smallest power-of-two larger
than the number of processors. The maximum con-
tention in each step is upper bounded by that in the
PEX algorithm.



doj=1,p—1
destination = MOD(mynumber + j, p)
source = mynumber — ]
if (source < 0) then
source = source 4+ p
end 1if
send to destination
recelve from source

end do

Figure 5: Algorithm for GEN

3.4 General Algorithm for any Mesh
(GEN)

The above algorithms require one less than a power
of two number of steps, because they use the exclusive-
or function to obtain processor pairs which exchange
with each other. For non power-of-two meshes, it
would be advantageous to have an algorithm which
requires only p — 1 steps. Figure 5 describes such an
algorithm, which we call the General Algorithm for
any Mesh (GEN), because it works for any number of
processors. In the GEN Algorithm, processor pairs do
not exchange with each other. Instead, at step ¢, a
processor j sends data to processor mod(j +4,p) and
receives data from processor j—i¢if j > ¢, and j—i+p
if j < i. Clearly, this algorithm will require only p— 1
steps, for any value of p.

The maximum contention at step ¢ is given by

f(&) = min[mod(i, ¢), c—mod(i, c)|+min[i/c, (p—1)/c]

The total time for all steps can obtained as :
Tepn = Y02 [+ Lmaz(Ber, f(D)Bsar)] =
(p - 1)0[ + L fz_ll max(ﬁsra f(i)ﬁsat)

4 Experimental Results

We implemented all the algorithms on the Delta
and studied their performance for different mesh con-
figurations and message sizes. The performance of
PEX 1s shown in Table 2. The number of proces-
sors is varied from 16 to 512 with message size varied
from 256 bytes to 16 Kbytes. Message size refers to
the amount of data communicated in each send and
receive operation, so the total amount of data com-
municated increases as the number of processors is
increased. Hence, the time taken increases almost lin-
early with the number of processors.

The performance of PEX-GEN is given in Table 3.
We have chosen some mesh sizes which are non power-
of-two. We observe that for mesh sizes which are only
slightly less than the nearest higher power-of-two, the
performance is close to that of PEX for that power-of-
two. But, if the mesh size is only slightly higher than
the nearest smaller power-of-two, the time taken is

Table 2: Performance of PEX

Message Size Time in sec. for a Mesh Configuration
(bytes) 4 x4 8 x 8 16 x 8 16 x 16 16 x 32
256 0.004 0.022 0.045 0.094 0.203
1K 0.008 0.064 0.120 0.290 0.860
4K 0.023 0.114 0.355 0.999 3.218
8K 0.034 0.228 0.692 2.068 6.794
16K 0.064 0.441 1.413 4.145 13.61

Table 3: Performance of PEX-GEN

Message Size Time in sec. for a Mesh Configuration
(bytes) 4 x5 6 X8 16 X 9 16 x 14 16 x 30
256 0.008 0.019 0.085 0.092 0.211
1K 0.017 0.038 0.191 0.270 0.899
4K 0.037 0.091 0.576 0.977 3.588
8K 0.073 0.174 1.188 2.007 7.616
16K 0.138 0.333 2.403 4.056 15.82

almost twice the time taken by PEX for that power-of-
two. For example, the time taken by PEX-GEN on a
16 x9 mesh is much higher than the time taken by PEX
on a 16 x 8 mesh, but the time taken by PEX-GEN on
a 16 x 14 mesh is very close to the time taken by PEX
on a 16 x 16 mesh. This is because of the difference
in the number of steps required. Another interesting
observation is that the time taken by PEX-GEN on
a 16 x 30 mesh is in fact higher than the time taken
by PEX on a 16 x 32 mesh. This is because since the
processors are numbered in row major order, a change
in the number of columns from a power-of-two to a
non power-of-two, changes the communication pattern
in the mesh completely for an algorithm which uses
the exclusive-or function to determine processor pairs.
Hence, there is more contention in the 16 x 30 case than
in the 16 x 32 case.

Table 4 shows the performance of PEX-GEN-
SHIFT. In most cases, it performs better than PEX-
GEN. Table 5 gives the performance of GEN on a
power-of-two mesh. GEN performs better than PEX
for small message sizes and small number of proces-
sors. However, for large number of processors (> 64)
and large message sizes (> 1 Kbytes) PEX performs

Table 4: Performance of PEX-GEN-SHIFT

Message Size Time in sec. for a Mesh Configuration
(bytes) 4 x5 6 X8 16 x 9 16 x 14 16 x 30
256 0.008 0.019 0.085 0.092 0.211
1K 0.017 0.038 0.188 0.263 0.894
4K 0.036 0.091 0.543 0.933 3.526
8K 0.071 0.170 1.111 1.948 7.515
16K 0.129 0.333 2.242 3.844 15.74




Table 5: Performance of GEN on power-of-two mesh

Message Size Time in sec. for a Mesh Configuration
(bytes) 4 x4 8x 8 16 x 8 16 x 16 16 x 32
256 0.004 0.016 0.042 0.089 0.283
1K 0.008 0.042 0.123 0.346 1.217
4K 0.018 0.145 0.461 1.220 3.944
8K 0.037 0.290 0.933 2.511 8.007
16K 0.069 0.576 1.947 5.052 16.15

Table 6: GEN on non power-of-two mesh

Message Size Time in sec. for a Mesh Configuration
(bytes) 4x5 6 X 8 16 x 9 16 x 14 16 x 30
256 0.004 0.015 0.046 0.074 0.246
1K 0.009 0.027 0.146 0.285 1.069
4K 0.025 0.083 0.527 0.998 3.706
8K 0.052 0.186 1.071 2.011 7.752
16K 0.098 0.369 2.182 4.005 15.94

better. The GEN algorithm has a certain amount of
asymmetry in the communication in the sense that
each communication operation consists of a send to
one processor and a receive from some other pro-
cessor. Thus, the incoming and outgoing messages
may traverse a different number of links with differ-
ent amounts of contention, and the path which has
the highest amount of contention adversely affects the
communication time. On the other hand, in the PEX
algorithm, processor pairs exchange with each other
at every step, so the incoming and outgoing messages
travel the same number of links with the same amount
of contention.

The performance of GEN on non power-of-two
meshes is given in Table 6. GEN reduces the num-
ber of steps from ¢ — 1 in PEX-GEN and PEX-GEN-
SHIFT, where ¢ = 20871 to p — 1. For small number
of processors, PEX-GEN performs the best and the
improvement in performance is higher when ¢ — p is
large. However, if ¢—p is small and the number of pro-
cessors is large, the performance of PEX-GEN-SHIFT
tends to that of PEX and and the performance of GEN
tends to that for a power-of-two mesh. So in this case,
PEX-GEN-SHIFT performs better than GEN.

5 Conclusions

In this paper, we have discussed algorithms to
perform complete exchange on a wormhole routed
mesh with performance results on the Intel Touchstone
Delta.

For power-of-two meshes, when the number of pro-
cessors is small (< 64) and message size is small (< 1
Kbytes), the GEN algorithm performs the best. For
larger message and mesh sizes; PEX performs better.
For non power-of-two meshes, PEX-GEN-SHIFT per-

forms better than PEX-GEN, but they both require
¢—1 steps where ¢ = 2['€71. GEN reduces the number
of steps to p— 1 and performs better than PEX-GEN-
SHIFT when ¢ — p is large. As p tends to ¢, the mesh
tends to a power-of-two mesh and the performance
of PEX-GEN-SHIFT tends to PEX, while the perfor-
mance of GEN tends to that for a power-of-two mesh.
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