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DISTRIBUTED AND MULTIPROCESSOR SCHEDULING

Steve J. Chapin, Syracuse University

Jon B. Weissman, University of Minnesota

Introduction

This chapter discusses CPU scheduling in parallel and distributed systems. CPU scheduling is

part of a broader class of resource allocation problems, and is probably the most carefully studied

such problem. The main motivation for multiprocessor scheduling is the desire for increased speed

in the execution of a workload. Parts of the workload, called tasks, can be spread across several

processors and thus be executed more quickly than on a single processor. In this chapter, we will

examine techniques for providing this facility.

The scheduling problem for multiprocessor systems can be generally stated as “How can we

execute a set of tasks T on a set of processors P subject to some set of optimizing criteria C?”

The most common goal of scheduling is to minimize the expected runtime of a task set. Examples

of other scheduling criteria include minimizing the cost, minimizing communication delay, giving

priority to certain users’ processes, or needs for specialized hardware devices. The scheduling policy

for a multiprocessor system usually embodies a mixture of several of these criteria.

Section 2 outlines general issues in multiprocessor scheduling and gives background material,

including issues specific to either parallel or distributed scheduling. Section 3 describes the best

practices from prior work in the area, including a broad survey of existing scheduling algorithms

and mechanisms. Section 4 outlines research issues and gives a summary. Section 5 lists the terms

defined in this chapter, while sections 6 and 7 give references to important research publications in

the area.

Issues in Multiprocessor Scheduling

There are several issues that arise when considering scheduling for multiprocessor systems. First,

we must distinguish between policy and mechanism. Mechanism gives us the ability to perform

an action; policy decides what we do with the mechanism. Most automobiles have the power

to travel at speeds of over 150 kilometers per hour (the mechanism), but legal speed limits are

usually set well below that (the policy). We will see examples of both scheduling mechanisms and

scheduling policies.

1



Next, we will distinguish between distributed and parallel systems. Past distinctions have

been based on whether an interrupt is required to access some portion of memory; in other words,

whether communication between processors is via shared memory (also known as tight coupling)

or via message passing (also known as loose coupling). Unfortunately, while this categorization

applies well to systems such as shared-memory symmetric multiprocessors (obviously parallel), and

networks of workstations (obviously distributed), it breaks down for message-passing multiproces-

sors such as hypercubes. By common understanding, the hypercube is a parallel machine, but by

the memory test, it is a distributed system.

The true test of whether a system is parallel or distributed is the support for autonomy of the

individual nodes. Distributed systems support autonomy, while parallel systems do not. A node is

autonomous if it is free to behave differently than other nodes within the system.1 By this test,

a hypercube is classified as a parallel machine. There are four components to the autonomy of a

multiprocessor system: design autonomy, communication autonomy, execution autonomy,

and administrative autonomy.

Design autonomy frees the designers of individual systems from being bound by other architec-

tures; they can design their hardware and software to their own specifications and needs. Design

autonomy gives rise to heterogeneous systems, both at the level of the operating system software

and at the underlying hardware level. Communication autonomy allows each node to choose what

information to send, and when to send it. Execution autonomy permits each processor to decide

whether it will honor a request to execute a task. Furthermore, the processor and has the right

to stop executing a task it had previously accepted. With administrative autonomy, each system

sets its own resource allocation policies, independent of the policies of other systems. The local

policy decides what resources are to be shared. In effect, execution autonomy allows each processor

to have a local scheduling policy; administrative autonomy allows that policy to be different from

other processors within the system.

A task is the unit of computation in our computing systems, and several tasks working towards

a common goal are called a job. There are two levels of scheduling in a multiprocessor system:

global scheduling and local scheduling [Casavant and Kuhl, 1988]. Global scheduling involves

assigning a task to a particular processor within the system. This is also known as mapping, task

placement, and matching. Local scheduling determines which of the set of available tasks at a

processor runs next on that processor.

Global scheduling takes places before local scheduling, although task migration, or dynamic

reassignment, can change the global mapping by moving a task to a new processor. To migrate a

1We speak of behavior at the operating system level, not at the application level.
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task, the system freezes the task, saves its state, transfers the saved state to a new processor, and

restarts the task. There is substantial overhead involved in migrating a running task.

Given that we have several jobs, each composed of many tasks, competing for CPU service on

a fixed set of processors, we have two choices as to how we allocate the tasks to the processors. We

can assign several processors to a single job, or we can assign several tasks to a single processor.

The former is known as space sharing, and the latter is called time sharing.

Under space sharing, we usually arrange things so that the job has as many processors as it has

tasks. This allows all the tasks to run to completion, without any tasks from competing jobs being

run on the processors assigned to this job. In many ways, space sharing is similar to old-fashioned

batch processing, applied to multiprocessor systems. Under time sharing, tasks may be periodically

preempted to allow other tasks to run. The tasks may be from a single job or from multiple jobs.

Generally speaking, space sharing is a function of the global scheduling policy, while timesharing

is a function of local scheduling.

One of the main uses for global scheduling is to perform load sharing between processors. Load

sharing allows busy processors to offload some of their work to less busy, or even idle, processors.

Load balancing is a special case of load sharing, in which the goal of the global scheduling

algorithm is to keep the load even (or balanced) across all processors. Sender-initiated load

sharing occurs when busy processors try to find idle processors to offload some work. Receiver-

initiated load sharing occurs when idle processors seek busy processors. It is now accepted wisdom

that, while load sharing is worthwhile, load balancing is generally not worth the extra effort, as the

small gain in execution time of the tasks is more than offset by the effort expended in maintaining

the balanced load.

A global scheduling policy may be thought of as having four distinct parts: the transfer policy,

the selection policy, the location policy, and the information policy. The transfer policy

decides when a node should migrate a task, and the selection policy decides which task to migrate.

The location policy determines a partner node for the task migration, and the information policy

determines how node state information is disseminated among the processors in the system. For a

complete discussion of these components, see [Singhal and Shivaratri, 1994, ch. 11].

An important feature of the selection policy is whether it restricts the candidate set of tasks

to new tasks which have not yet run, or allows the transfer of tasks that have begun execution.

Nonpreemptive policies only transfer new jobs, while preemptive policies will transfer running

jobs as well. Preemptive policies have a larger set of candidates for transfer, but the overhead of

migrating a job that has begun execution is higher than for a new job because of the accumulated

state of the running job (such as open file descriptors, allocated memory, etc.).

As the system runs, new tasks arrive while old tasks complete execution (or, equivalently, are
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Figure 1: A taxonomy of distributed scheduling algorithms

served). If the arrival rate is greater than the service rate, then the process waiting queues within

the system will grow without bound and the system is said to be unstable. If, however, tasks are

serviced at least as fast as they arrive, the queues in the system will have bounded length and the

system is said to be stable. If the arrival rate is just slightly less than the service rate for a system,

it is possible for the additional overhead of load sharing to push the system into instability. A

stable scheduling policy does not have this property, and will never make a stable system unstable.

Distributed Scheduling

In most cases, work in distributed scheduling concentrates on global scheduling because of the

architecture of the underlying system. Casavant and Kuhl [Casavant and Kuhl, 1988] defines a

taxonomy of task placement algorithms for distributed systems, which we have partially reproduced

in figure 1. The two major categories of global algorithms are static and dynamic.

Static algorithms make scheduling decisions based purely on information available at compi-

lation time. For example, the typical input to a static algorithms would include the machine

configuration and the number of tasks and estimates of their running time. Dynamic algorithms,

on the other hand, take factors into account such as the current load on each processor. Adaptive

algorithms are a special subclass of dynamic algorithms, and are important enough that they are

often discussed separately. Adaptive algorithms go one step further than dynamic algorithms, in

that they may change the policy based on dynamic information. A dynamic load-sharing algorithm

might use the current system state information to seek out a lightly-loaded host, while an adaptive

algorithm might switch from sender-initiated to receiver-initiated load sharing if the system load
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rises above a threshold.

In physically non-distributed, or centralized, scheduling policies, a single processor makes

all decisions regarding task placement—this has obvious implications for the autonomy of the

participating systems. Under physically distributed algorithms, the logical authority for the

decision-making process is distributed among the processors that constitute the system.

Under non-cooperative distributed scheduling policies, individual processors make scheduling

choices independent of the choices made by other processors. With cooperative scheduling, the

processors subordinate local autonomy to the achievement of a common goal.

Both static and cooperative distributed scheduling have optimal and suboptimal branches.

Optimal assignments can be reached if complete information describing the system and the task

force is available. Suboptimal algorithms are either approximate or heuristic. Heuristic algo-

rithms use guiding principles, such as assigning tasks with heavy inter-task communication to the

same processor, or placing large jobs first. Approximate solutions use the same computational

methods as optimal solutions, but use solutions that are within an acceptable range, according to

an algorithm-dependent metric.

Approximate and optimal algorithms employ techniques based on one of four computational

approaches: enumeration of all possible solutions, graph theory, mathematical programming, or

queuing theory. In the taxonomy, the subtree appearing below optimal and approximate in the

static branch is also present under the optimal and approximate nodes on the dynamic branch; it

is elided in figure 1 to save space.

In future sections, we will examine several scheduling algorithms from the literature in light of

this taxonomy.

Scheduling for Shared-Memory Parallel Systems

Researchers working on shared-memory parallel systems have concentrated on local scheduling,

because of the ability to trivially move processes between processors. There are two main causes of

artificial delay that can be introduced by local scheduling in these systems: cache corruption and

preemption of processes holding locks.

cache corruption As a process runs, the operating system caches several types of information for

the process including its working set and recently read file blocks. If this information is not

accessed frequently, the operating system will replace it with cache information from other

processes.

lock preemption Spin locks, a form of busy waiting, are often used in parallel operating systems

when contention for a critical section is expected to be low and the critical section is short.
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The problem of lock preemption occurs when a process that holds the lock is preempted

on one processor, while another process waiting to enter the lock is running on a different

processor. Until the first process runs again and releases the lock, all of the CPU time used

by the second process is wasted.

In an upcoming section, we will examine methods to alleviate or avoid these delays.

Best Practices

In this section, we will examine the current state-of-the-art in multiprocessor scheduling. We will

first consider the techniques used in parallel systems, and then examine scheduling algorithms for

message-passing systems. Finally, we will study scheduling support mechanisms and algorithms for

distributed systems, including computational grids.

Parallel Scheduling

We will examine three aspects of scheduling for parallel systems: local scheduling for shared-memory

systems such as the SGI Altix family; static analysis tools that are beneficial for producing global

schedules for parallel systems; and dynamic scheduling for distributed-memory systems.

Local Scheduling for Parallel Systems

For most shared-memory timesharing systems, there is no explicit global placement: all processors

share the same ready queue, and so any task can be run on any processor. In contrast, local

scheduling is crucial for these systems, while it is nonexistent in space-sharing systems. We will

examine several local scheduling techniques for parallel systems. In general, these techniques are

attempting to eliminate one of the causes of delay mentioned earlier. All of these techniques are

discussed in chapter 17 of [Singhal and Shivaratri, 1994].

Coscheduling, or gang scheduling, schedules the entire pool of subtasks for a single task simulta-

neously. This can work well with fine-grained applications where communication dominates compu-

tation, so that substantial work can be accomplished in a single time slice. Without coscheduling,

it is easy to fall into a pattern where subtasks are run on a processor, only to immediately block

waiting for communication. In this way, coscheduling combines aspects of both space sharing and

time sharing.

Smart Scheduling tries to avoid the preemption of a task that holds a lock on a critical section.

Under smart scheduling, a process sets a flag when it acquires a lock. If a process has its flag set, it
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will not be preempted by the operating system. When a process leaves a critical section, it resets

its flag.

The Mach operating system uses scheduler hints to inform the system of the expected behavior

of a process. Discouragement hints inform the system that the current thread should not run for

a while, and hand-off hints are similar to coroutines in that they “hand off” the processor to a

specific thread.

Under affinity-based scheduling, a task is said to have an affinity for the processor on which it

last ran. If possible, a task is rescheduled to run on the processor for which it has affinity. This can

ameliorate the effects of cache corruption. The disadvantage of this scheme is that it diminishes

the chances of successfully doing load sharing because of the desire to retain a job on its current

processor. In effect, affinity-based scheduling injects a measure of global scheduling into the local

scheduling policy.

Static Analysis

There are several systems that perform static analysis on a task set and generate a static task

mapping for a particular architecture. Examples of such systems include Parallax, Hypertool,

Prep-P, Oregami, and Pyrros (see [Shirazi et al., 1995] for individual papers on these systems).

Each of these tools represents the task set as a directed acyclic graph, with the nodes in the graph

representing computation steps. Edges in the graph represent data dependencies or communication,

where the result of one node is made ready as input for another node. These tools attempt to map

the static task graph onto a given machine according to an optimizing criterion (usually, minimal

execution time, although other constraints such as minimizing the number of processors used can

also be included). The scheduling algorithm then uses some heuristic to generate a near-optimal

mapping.

Parallax (Lewis and El-Rewini) is a partitioning and scheduling system that implements seven

different heuristic policies. The input to the system is a graph representing the structure of the

tasks and a user-selectable representation of the machine architecture. Parallax will then generate

schedules based on each of the available heuristics, and present the expected results to the user.

This system is unique in its ability to permit the user to explore different combinations of scheduling

heuristics and machine architecture for a given task set.

Hypertool (Wu and Gajski) takes as input C source code and generates the task graph repre-

senting the program. This is distinct from Parallax, where the user must supply the task graph

(and may therefore study the behavior of algorithms which have not been explicitly expressed in

any particular programming language). Hypertool then schedules the derived task graph on a

hypercube.
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Sarkar and Hennessy built one of the first tools to extract parallelism from a functional program,

partition the individual tasks into jobs, and then place the jobs on a multiprocessor. They developed

a new representation for parallel computation called Macro-Dataflow, and applied their work to

programs written in SISAL for the VAX.

Prep-P (Berman and Stramm) is a mapping tool that runs in conjunction with the Poker

programming environment for the Pringle machine. Prep-P was one of the earliest program mapping

tools, and uses a Graph Description Language as input to describe the program structure. Prep-P

uses an iterative partitioning algorithm, wherein an initial partitioning is derived and the system

repeatedly attempts to improve upon the partition by moving a task from one partition into another.

Whenever the proposed move results in a lower-cost schedule, the move is kept.

Oregami (Lo, et al.) is similar to Prep-P in functionality, with the addition of a new model

for representing the computation called the Temporal Communications Graph (TCG). The TCG

represents each event (computation, message send, or message receipt) as a node within a directed

acyclic graph. Thus, it represents a combination of the static task graph with Lamport’s process-

time graphs.

In many ways, Pyrros (Yang and Gersoulis) represents a merger between several ideas from

earlier static scheduling systems. Pyrros uses Sarkar and Hennessy’s Macro-Dataflow model, and

is targeted for a hypercube architecture. The system takes a Macro-Dataflow graph as input, then

performs partitioning and scheduling. It can produce optimal schedules for several restricted classes

of algorithms.

Distributed-Memory Systems

In distributed-memory systems, such as hypercube systems, global scheduling is done. Most hy-

percube systems use space sharing, in that they reserve subcubes of the larger hypercube for use

by a single application. Several algorithms have been proposed for this, including that found in

[Huang et al., 1989]. A typical algorithm maintains a binary tree listing the various sizes of hyper-

cubes available in the system. When a request for an m-dimensional cube is made, the scheduling

system searches the tree to see if a hypercube of that exact size is available, and if so, allocates it.

If no such hypercube is available, the system splits the smallest hypercube of dimension > m into

multiple hypercubes, allocates one, and updates the binary tree to reflect the new set of available

hypercubes.

For example, consider a request for four processors from a 16-processor hypercube, with all

nodes currently free. Four processors comprise a two-dimensional hypercube (a square). The

scheduling system would split the 16 processors into two eight-processor cubes, and then split one

of the eight-processor cubes into two four-processor squares. One of the squares would be allocated
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to the job, leaving one two-dimensional and one three-dimensional hypercube for other jobs.

It is interesting to examine the coexistence of space sharing and time sharing on a single machine.

The ASCI Red machine at Sandia National Laboratories is a distributed-memory system that

divides its nodes into two partitions: a service partition which runs a general-purpose, full-featured

operating system (Unix), and a compute partition that runs a special-purpose, highly efficient

operating system (Cougar). The service partition runs in time-sharing mode, while Cougar provides

low-latency communication under a mixed space-sharing and time-sharing paradigm (nodes are

dedicated to a single job, but that job can run multiple tasks on a single node). Users launch

their jobs from the service partition, and the scheduling system reserves a portion of the compute

partition to run the tasks for those jobs.

Distributed Scheduling Algorithms

Many researchers have devised algorithms for task placement in distributed systems. This section

categorizes several of these techniques in terms of the taxonomy presented earlier.

Table 1 displays information garnered from a survey of existing scheduling algorithms. For each

algorithm, an entry indicates whether the method is distributed or centralized, supports hetero-

geneity, minimizes overhead, or supports scalability. Entries are either Y, N, P, or x, indicating

the answer is yes, no, partially, or not applicable. The remainder of this section contains a brief

description of each method, with a discussion of its place in the taxonomy and its salient properties.

Interested readers are referred to the cited publications to obtain full details about the algorithms.

Dynamic, Distributed, Cooperative, Suboptimal Algorithms

Blake [Blake, 1992] describes four suboptimal, heuristic algorithms. Under the first algorithm, Non-

Scheduling (NS), a task is run where it is submitted. The second algorithm is Random Scheduling

(RS), wherein a processor is selected at random and is forced to run a task. The third algorithm

is Arrival Balanced Scheduling (ABS), in which the task is assigned to the processor that will

complete it first, as estimated by the scheduling host. The fourth method uses receiver-initiated

load balancing, and is called End Balanced Scheduling (EBS). NS, RS, and ABS use one-time

assignment; EBS uses dynamic reassignment.

Casavant and Kuhl [Casavant and Kuhl, 1984] describes a distributed task execution environ-

ment for UNIX System 7, with the primary goal of load balancing without altering the user inter-

face to the operating system. As such, the system combines mechanism and policy. This system

supports execution autonomy, but not communication autonomy or administrative autonomy.

Ghafoor and Ahmad [Ghafoor and Ahmad, 1990] describes a bidding system that combines
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Table 1: Summary of distributed scheduling survey
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Blake [Blake, 1992] (NS, RS) Y N Y Y

(ABS, EBS) Y N N Y

(CBS) N N N N

Casavant and Kuhl [Casavant and Kuhl, 1984] Y N x P

Ghafoor and Ahmad [Ghafoor and Ahmad, 1990] Y N Y P

Wave Scheduling [Van Tilborg and Wittie, 1984] Y N x P

Ni and Abani [Ni and Abani, 1981] (LED) Y N x N

(SQ) Y N Y Y

Stankovic and Sidhu [Stankovic and Sidhu, 1984] Y N x P

Stankovic [Stankovic, 1985] Y N x N

Andrews et al. [Andrews et al., 1982] Y x x Y

Greedy Load-Sharing [Chowdhury, 1990] Y N X Y

Gao, et al. [Gao et al., 1984] (BAR) Y N x N

(BUW) Y N x N

Stankovic [Stankovic, 1984] Y N x P

Chou and Abraham [Chou and Abraham, 1983] Y N x Y

Bryant and Finkel [Bryant and Finkel, 1981] Y N x Y

Casey [Casey, 1981] (dipstick, bidding) Y N x N

(adaptive learning) Y N Y Y

Klappholz and Park [Klappholz and Park, 1984] Y N x Y

Reif and Spirakis [Reif and Spirakis, 1982] Y N x N

Ousterhout, et al., see [Singhal and Shivaratri, 1994] N N x N

Hochbaum and Shmoys [Hochbaum and Shmoys, 1988] N Y x x

Hsu, et al. [Hsu et al., 1989] N Y x x

Stone [Stone, 1977] N Y x x

Lo [Lo, 1988] N Y x x

Price and Salama [Price and Salama, 1990] N Y x x

Ramakrishnan et al. [Ramakrishnan et al., 1991] N Y x x

Sarkar and Hennessy, in [Shirazi et al., 1995] N Y x x
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mechanism and policy. A module called an Information Collector/Dispatcher runs on each node

and monitors the local load and that of the node’s neighbors. The system passes a task between

nodes until either a node accepts the task or the task reaches its transfer limit, in which case the

current node accepts the task. This algorithm assumes homogeneous processors and has limited

support for execution autonomy.

Van Tilborg and Wittie [Van Tilborg and Wittie, 1984] presents Wave Scheduling for hierar-

chical virtual machines. The task force is recursively subdivided and the processing flows through

the virtual machine like a wave, hence the name. Wave Scheduling combines a non-extensible

mechanism with policy, and assumes the processors are homogeneous.

Ni and Abani [Ni and Abani, 1981] presents two dynamic methods for load balancing on systems

connected by local area networks: Least Expected Delay and Shortest Queue. Least Expected Delay

assigns the task to the host with the smallest expected completion time, as estimated from data

describing the task and the processors. Shortest Queue assigns the task to the host with the

fewest number of waiting jobs. These two methods are not scalable because they use information

broadcasting to ensure complete information at all nodes. [Ni and Abani, 1981] also presents an

optimal stochastic strategy using mathematical programming.

The method described in Stankovic and Sidhu [Stankovic and Sidhu, 1984] uses task clusters

and distributed groups. Task clusters are sets of tasks with heavy inter-task communication that

should be on the same host. Distributed groups also have inter-task communication, but execute

faster when spread across separate hosts. This method is a bidding strategy, and uses non-extensible

system and task description messages.

Stankovic [Stankovic, 1985] lists two scheduling methods. The first is adaptive with dynamic

reassignment, and is based on broadcast messages and stochastic learning automata. This method

uses a system of rewards and penalties as a feedback mechanism to tune the policy. The second

method uses bidding and one-time assignment in a real-time environment.

Andrews, et al. [Andrews et al., 1982] describes a bidding method with dynamic reassignment

based on three types of servers: free, preferred, and retentive. Free server allocation will choose any

available server from an identical pool. Preferred server allocation asks for a server with a particular

characteristic, but will take any server if none is available with the characteristic. Retentive server

allocation asks for particular characteristics, and if no matching server is found, a server, busy or

free, must fulfill the request.

Chowdhury [Chowdhury, 1990] describes the Greedy load-sharing algorithm. The Greedy algo-

rithm uses system load to decide where a job should be placed. This algorithm is non-cooperative

in the sense that decisions are made for the local good, but it is cooperative because scheduling

assignments are always accepted and all systems are working towards a global load balancing policy.

11



Gao, et al. [Gao et al., 1984] describes two load-balancing algorithms using broadcast informa-

tion. The first algorithm balances arrival rates, with the assumption that all jobs take the same

time. The second algorithm balances unfinished work. Stankovic [Stankovic, 1984] gives three vari-

ants of load-balancing algorithms based on point-to-point communication that compare the local

load to the load on remote processors. Chou and Abraham [Chou and Abraham, 1983] describes a

class of load-redistribution algorithms for processor-failure recovery in distributed systems.

The work presented in Bryant and Finkel [Bryant and Finkel, 1981] combines load balancing,

dynamic reassignment, and probabilistic scheduling to ensure stability under task migration. This

method uses neighbor-to-neighbor communication and forced acceptance to load balance between

pairs of machines.

Casey [Casey, 1981] gives an earlier and less complete version of the Casavant and Kuhl tax-

onomy, with the term centralised replacing non-distributed and decentralised substituting for dis-

tributed. This paper also lists three methods for load balancing: Dipstick, Bidding, and Adaptive

Learning, then describes a load-balancing system whereby each processor includes a two-byte status

update with each message sent. The Dipstick method is the same as the traditional watermark

processing found in many operating systems. The Adaptive Learning algorithm uses a feedback

mechanism based on the run queue length at each processor.

Dynamic Non-cooperative Algorithms

Klappholz and Park [Klappholz and Park, 1984] describes Deliberate Random Scheduling (DRS)

as a probabilistic, one-time assignment method to accomplish load balancing in heavily-loaded

systems. Under DRS, when a task is spawned, a processor is randomly selected from the set of

ready processors, and the task is assigned to the selected processor. DRS dictates a priority scheme

for time-slicing, and is thus a mixture of local and global scheduling. There is no administrative

autonomy or execution autonomy with this system, because DRS is intended for parallel machines.

Reif and Spirakis [Reif and Spirakis, 1982] presents a Resource Granting System (RGS) based

on probabilities and using broadcast communication. This work assumes the existence of either an

underlying handshaking mechanism or of shared variables to negotiate task placement. The use of

broadcast communication to keep all resource providers updated with the status of computations

in progress limits the scalability of this algorithm.

Dynamic Non-distributed Algorithms

Ousterhout, et al. (see [Singhal and Shivaratri, 1994]) describes Medusa, a distributed operating

system for the Cm* multiprocessor. Medusa uses static assignment and centralized decision making,
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making it a combined policy and mechanism. It does not support autonomy, nor is the mechanism

scalable.

In addition to the four distributed algorithms already mentioned, Blake [Blake, 1992] describes

a fifth method called Continual Balanced Scheduling (CBS), that uses a centralized scheduler. Each

time a task arrives, CBS generates a mapping within two time quanta of the optimum, and causes

tasks to be migrated accordingly. The centralized scheduler limits the scalability of this approach.

Static Algorithms

All the algorithms in this section are static, and as such, are centralized and without support for

autonomy. The are generally intended for distributed-memory parallel machines, in which a single

user can obtain control of multiple nodes through space sharing. However, they can be implemented

on fully distributed systems.

Hochbaum and Shmoys [Hochbaum and Shmoys, 1988] describes a polynomial-time, approxi-

mate, enumerative scheduling technique for processors with different processing speeds, called the

dual-approximation algorithm. The algorithm solves a relaxed form of the bin packing problem

to produce a schedule within a parameterized factor, ε, of optimal. That is, the total run time is

bounded by (1 + ε) times the optimal run time.

Hsu, et al. [Hsu et al., 1989] describes an approximation technique called the critical sink

underestimate method. The task force is represented as a directed acyclic graph, with vertices

representing tasks and edges representing execution dependencies. If an edge (α, β) appears in

the graph, then α must execute before β. A node with no incoming edges is called a source, and

a node with no outgoing edges is a sink. When the last task represented by a sink finishes, the

computation is complete; this last task is called the critical sink. The mapping is derived through

an enumerative state space search with pruning, which results in an underestimate of the running

time for a partially mapped computation, and hence, the name critical sink underestimate.

Stone [Stone, 1977] describes a method for optimal assignment on a two-processor system based

on a Max Flow/Min Cut algorithm for sources and sinks in a weighted directed graph. A maximum

flow is one that moves the maximum quantity of goods along the edges from sources to sinks. A

minimum cutset for a network is the set of edges with the smallest combined weighting, which,

when removed from the graph, disconnects all sources from all sinks. The algorithm relates task

assignment to commodity flows in networks, and shows that deriving a Max Flow/Min Cut provides

an optimal mapping.

Lo [Lo, 1988] describes a method based on Stone’s Max Flow/Min Cut algorithm for scheduling

in heterogeneous systems. This method utilizes a set of heuristics to map from a general system

representation to a two-processor system so that Stone’s work applies.
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Price and Salama [Price and Salama, 1990] describes three heuristics for assigning precedence-

constrained tasks to a network of identical processors. With the first heuristic, the tasks are sorted

in increasing order of communication, and then are iteratively assigned so as to minimize total

communication time. The second heuristic creates pairs of tasks that communicate, sorts the pairs

in decreasing order of communication, then groups the pairs into clusters. The third method,

simulated annealing, starts with a mapping and uses probability-based functions to move towards

an optimal mapping.

Ramakrishnan, et al. [Ramakrishnan et al., 1991] presents a refinement of the A* algorithm

that can be used either to find optimal mappings or to find approximate mappings. The al-

gorithm uses several heuristics based on the sum of communication costs for a task, the task’s

estimated mean processing cost, a combination of communication costs and mean processing cost,

and the difference between the minimum and maximum processing costs for a task. The algo-

rithm also uses ε-relaxation similar to the dual-approximation algorithm of Hochbaum and Shmoys

[Hochbaum and Shmoys, 1988].

Sarkar and Hennessy (in [Shirazi et al., 1995]) describes the GR graph representation and static

partitioning and scheduling algorithms for single-assignment programs based on the SISAL lan-

guage. In GR, nodes represent tasks and edges represent communication. The algorithm consists

of four steps: cost assignment, graph expansion, internalization, and processor assignment. The

cost assignment step estimates the execution cost of nodes within the graph, and communication

costs of edges. The graph expansion step expands complex nodes, e.g. loops, to ensure that suffi-

cient parallelism exists in the graph to keep all processors busy. The internalization step performs

clustering on the tasks, and the processor assignment phase assigns clusters to processors so as to

minimize the parallel execution time.

Wide-Area Distributed Scheduling: the Grid

Recent advances in distributed scheduling algorithms have occurred in a distributed computing

environment known as the Grid, an ensemble of shared, geographically-dispersed computers that

may not be fully under the control of a single scheduler.

Scheduling in a Computational Grid environment introduces several challenges that go beyond

that of traditional distributed system schedulers: heterogeneity, scale, and ownership. In a Grid,

resources are highly heterogeneous ranging from supercomputers to PCs, from high-end mass stor-

age devices to low-end disks. Grid resources may number in hundreds or thousands making efficient

run-time scheduling more difficult. Finally, in a Grid resources may be under the control of resource

owners, putting constraints on how schedulers can use them. The scheduling approaches described

below deal with these issues in different ways and to differing degrees.
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Figure 2: A sample virtual system

MESSIAHS

The first scheduling system for grids, then called metasystems, was the messiahs (Mech-

anisms Effecting Scheduling Support In Autonomous, Heterogeneous Systems) system

[Chapin and Spafford, 1994]. messiahs provided extensive support for autonomy, using hierar-

chically structured systems based on administrative domains. This structuring was based on an

observation of a social aspect of computing: people are willing to allow outside utilization of their

unused resources, as long as they maintain control of the system. This means that the local sys-

tems are autonomous, and the local administrators can set their own access policies. An example

distributed autonomous system is in figure 2.

Each node within the messiahs system is a virtual system, which represents a subset of the

resources of one or more real systems, and has a hierarchical structure modeling the administrative

hierarchies of computer systems and institutional organization. Virtual systems can be combined

into encapsulating virtual systems. For example, in figure 2, the University, National Laboratory,

and Industry are each virtual systems, and are collected into a single large distributed (virtual)

system. Within the University, National Lab, and Industry virtual systems are other virtual sys-

tems, giving a hierarchical structure. These intermediate groupings may correspond to divisions

which contain departments, and the departments may contain research groups, etc.. At the lowest

level of grouping, each virtual system typically consists of a subset of the capabilities of a single

machine. Together, these virtual systems form a directed acyclic graph topology.

There is no centralized resource management in messiahs. Instead, each virtual system runs
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a scheduling module, which maintains the system description information for that node. The

scheduling module also exchanges service requests with neighboring virtual systems within the

hierarchy, and is responsible for starting and stopping jobs.

messiahs provides two interfaces with which administrators can define the scheduling policy

for a system: an interpreted language called the messiahs Interface Language (MIL) dedicated to

implementing schedulers, and a library of functions for the C programming language. Using these

interfaces, administrators write small event handlers that are linked into the scheduling system.

Thus, messiahs has extensive support for autonomy.

Matchmaking

Matchmaking is a highly distributed scheduling process that accounts for the heterogeneity of

resources and the distribution of ownership. This approach consists of a semi-structured data

model that combines schema, data, and query in a specification language, and a separation of

matching and claiming phases of resource allocation. Both resources and jobs use a mechanism

known as classads to specify attributes and constraints (Figure 3). A classad is a mapping from

attribute names to expressions. This mechanism allows the heterogeneity and ownership issues

inherent to the Grid to be addressed. Issues of scale are not addressed by this mechanism, and the

locality of resources is not captured by classads.

Scheduling is accomplished by a matchmaker that matches resource classads to job classads,

satisfying the constraints of both. The implementation of the decision is negotiated between the

resource and the job using matchmaking and resource claiming protocols. The matching (aka

scheduling) algorithm first determines feasible matches (schedules) by determining compatible re-

source and job classads via the Constraint expression. The next phase of the algorithm is to choose

among compatible matches by maximizing the Rank attribute of the job. This scheme has been

designed for localized resources within a single Grid site.

AppLeS

The AppLeS scheduling approach is a conceptual framework for the design of Grid schedulers tuned

specifically for the application. The goal is to select a potentially efficient configuration of resources

based on load and availability, evaluate the potential performance of such configurations based on

application-specific performance criteria, and interact with the relevant resource management sys-

tems to carry out the decision. AppLeS agents perform the scheduling task for the user and exploit

several generic components such as the Network Weather Service [NWS, 1999] which provides re-

source load predictions. Specific AppLeS scheduling agents have been developed for tightly-coupled
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Machine Classad

[

Type = "Machine";

Activity = "Idle";

DayTime = 36107;

KeyboardIdle = 1432;

Disk = 323496;

Memory = 64;

State = "Unclaimed";

LoadAvg = 0.042969;

Mips = 104;

Arch = "INTEL";

OpSys = "SOLARIS251";

KFlops = 21893;

Name = "leonardo.cs.wisc.edu";

ResearchGroup = { "raman", "miron",

"solomon", "jbasney" };
Friends = { "tannenba", "wright" };
Untrusted = { "rival", "riffraff" };
Rank = member(other.Owner,

ResearchGroup)

*10+member(other.Owner, Friends);

Constraint = !member(other.Owner,

Untrusted)

&& Rank >= 10 ? true

: Rank > 0 ? LoadAvg<0.3

&& KeyboardIdle>15*60

: DayTime < 8*60*60

DayTime > 18*60*60;

]

Job Classad

[

Type = "Job";

QDate = 886799469;

// Submit time secs. past 1/1/1970

CompletionDate = 0;

Owner = "raman";

Cmd = "run sim";

WantRemoteSysCalls = 1;

WantCheckpoint = 1;

Iwd = "/usr/raman/sim2";

Args = "-Q 17 3200 10";

Memory = 31;

Rank = KFlops/1E3 + other.Memory/32;

Constraint = other.Type == "Machine"

&& Arch == "INTEL"

&& OpSys == "SOLARIS251"

&& Disk >= 10000

&& other.Memory >= self.Memory;

]

Figure 3: Classads describing a Machine and a Job

parallel scientific computations [Berman et. al., 1996], data replica selection [Su et. al., 1999], pa-

rameter sweeps [Casanova et. al., 2000], and gene sequence comparison [Spring and Wolski]. These

AppLeS agents address the issue of Grid scale by considering a subset of Grid resources and the

issue of heterogeneity by dynamic cost modeling via static and dynamic cost functions. An ex-

ample of an AppLeS scheduling algorithm is shown in Figure 4. The issue of ownership is not

addressed. The more recent thrust in this project is to generalize the AppLeS approach to build

template schedulers applicable to a wider class of applications. Templates have been constructed

for master-slave applications and parameter sweep applications [Casanova et. al., 2000].

Prophet and Gallop

Data parallel applications are a large and important class of parallel scientific applications. Effi-

ciently scheduling these applications in a Grid is difficult due to the potential sharing and hetero-
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Resource Selection

let locus = machine having the maximum criterion value
let list = a sort of the remaining machines according to

their logical distance
begin for k = 0 to I − 1

let S = locus + the first k elements of list

parameterize Ci and Pi for 1 ≤ i ≤| S |
with Weather Service forecasts
solve linear system of equations using this

parameterization
if (not all Ai > 0)

then reject partitioning as infeasible fi

else if (there exists an Ai that does not fit
in free memory of processor i)
then reject partitioning as infeasible fi

else record expected execution time for subset S

end

implement the partitioning corresponding to the minimum
execution time using the S for which it was computed

Performance Model

Ti = time for processor i to compute region i

Ai = the area of region i

Pi = time for processor i to compute a point
Ci = time for processor i to send/recv its borders

Ti = Ai × Pi + Ci

Require T1 = T2 = . . . = TI s.t.
∑

I

i=1
Ai = N ×M

Ci = f{Recv (i± 1, i), Send (i, i± 1)}
Send/Recv (i, j) = N × sizeof(element) × Bandwidth(i, j)

Figure 4: Jacobi Resource Selection and Performance Model

geneity of resources. In addition, selecting the appropriate number of processors and data domain

decomposition are all difficult problems that depend on the available resources, their load and het-

erogeneity, network load, and problem characteristics. Most systems leave this complex problem

up to the end-user. Even if the user figures out the best resource combination by running their

application multiple times, this same resource combination may not be available all of the time due

to resource sharing, and even if it was, it is unlikely to be best for a different problem instance of

the same application. Finally, such optimizations are tailored to the specific application and are not

available to another user’s application. Prophet [Weissman, 1999] is an automated scheduler for

data parallel applications that utilizes a performance model for predicting application performance

on different resource combinations that automates processor selection, task placement, and data

domain decomposition for data parallel applications. Prophet uses a callback mechanism to allow

the run-time scheduler to obtain application-specific information to construct cost functions.

Gallop [Weissman, 1998] is a wide-area Grid scheduling system that provides a federated

scheduling model across different sites in a Grid. In the Gallop model, each site can run its own

local scheduler, and decide which resources are to be made available to Gallop. Gallop utilizes a

bid-based distributed scheduling algorithm to decide which site to select from among a network of

sites (See Figure 5.) A multi-site Gallop testbed was constructed in which the local sites each ran

a version of Prophet to provide performance prediction estimates for using their resources. Gallop

demonstrated that the overhead of remote execution can be tolerated for applications of sufficiently
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Local SM component

1. local SM receives WA sched (Job class) request
2. local SM chooses k candidate SM1 . . .SMk

3. for each SMi

call besti = SMi.get best(Job class)
4. the best = min(besti.elapsed time) over all i in 1 . . . k
5. for each SMi

if (SMi == the best site)
result = SMi.go SM(Job class,the best)

else
SMi.no go SM(Job class,the best)

6. Return result and scheduling info to front-end

Remote SM Component

1. remote SM receives get best(Job class) from local SM
2. call scheds = LS.get scheds(Job class)
3. call best = LS.eval scheds(scheds,Job class)
4. lock best, return best to local SM
5. if remote SM receives go SM(Job class,the best)

result = LS.go ls(Job class,the best)
return result to local SM

else if remote SM receives no go SM(Job class,the best)
store the best in table

6. release lock on best

Figure 5: Sample Wide-area Scheduling Algorithm

large granularity in the Grid. It achieved performance gains up to 25% over local site execution

for a range of applications: a Poisson solver, an image processing pipeline, and a genomic sequence

comparison.

Stochastic Scheduling

Stochastic scheduling [Schopf and Berman, 1999] harnesses the variability inherent in Grid com-

puting to produce performance-efficient schedules. Stochastic scheduling models the performance

variance of a resource using a stochastic value (i.e. distribution) and then proposes scheduling

heuristics that use this value. By parameterizing models with stochastic information, the result-

ing performance prediction is also a stochastic value. Such information can be more useful to a

scheduler than point predictions with an unknown range of accuracy. The authors introduce a

tuning factor which represents the variability of the system as a whole as some constant number

of standard deviations away from a mean value. Resource platforms with a smaller variability are

given scheduling priority in this scheme. Extensions of well-known scheduling methods such as

time-balancing are shown to achieve better performance under stochastic time-balancing.

Co-allocation

Resource co-allocation of multiple resources introduces a new scheduling problem for Grid ap-

plications. In the co-allocation model, the Grid application requires access to a specific set

of resources concurrently. Several approaches for addressing this problems have been proposed
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[Chapin, et al., Foster et. al., 1999]. Scheduling techniques include atomic all-or-nothing seman-

tics in which either all resources are acquired and the application starts, or it must wait. If the

application starts and one or more resources are taken away or fail, then the application must

abort. Another approach is advanced reservations in which resources can be locked at some future

time so that they are available together. Co-allocation based reservation schemes usually try to

provide the soonest time a reservation of the desired length can be accomodated across all desired

resources (See Algorithm 1).

begin

rh-a ← CreateReservation(contact-a, “&(reservation type=compute)
(start time=“10:30pm”) (duration=“1 hour”) (nodes=32)”);
if rh-a is null then exit ;
repeat

(contact-b, id-b, contact-net) ← FindNextCandidate();
rh-b ← CreateReservation(contact-b, “&(reservation type=compute)
(start time=“10:30pm”) (duration=“1 hour”) (percent cpu=75)”);
if rh-b is null then continue ;
rh-net ← CreateReservation(contact-net, “&(reservation type=network)
(start time=“10:30pm”) (duration=“1 hour”) (bandwidth=200)
(endpoint-a=id-a)(endpoint-b=id-b)”);
if rh-net is null then CancelReservation (rh-b);

until rh-b and rh-net are defined ;
if rh-b is null then signal that search failed;

end

Algorithm 1: Pseudo-code for a ReserveResources Subroutine

Legion [Chapin, et al.] provided the first co-allocation system for the Grid, and supports both co-

allocation and advanced reservations. Legion provides full autonomy support, allowing an schedul-

ing request to return a scheduling token which is later redeemed when the job is actually started.

Legion supports multiple simultaneous schedulers, including per-application, per-user, and default

schedulers; these can in fact implement the techniques described here, such as Prophet or stochastic

scheduling. Under Legion, schedulers produce a list of proposed target schedules ranked by desir-

ability, and an Enactor component is responsible for verifying that the resources are in fact available

and implementing the schedule. This allows maximum flexibility and support for autonomy.

Research Issues and Summary

The central problem in distributed scheduling is assigning a set of tasks to a set of processors in

accordance with one or more optimizing criteria. We have reviewed many of the algorithms and
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mechanisms developed thus far to solve this problem. However, much work remains to be done.

Algorithms

Until now, scheduling algorithms have concentrated mainly on systems of homogeneous processors.

This has worked well for parallel machines, but has proved to be unrealistically simple for distributed

systems. Some of the simplifying assumptions made include constant-time or even free inter-task

communication, processors with the same instruction set, uniformity of available files and devices,

and the existence of plentiful primary and secondary memory. In fact, the vast majority of the

algorithms listed in the survey model the underlying system only in terms of CPU speed and a

simplified estimate of interprocessor communication time.

These simple algorithms work moderately well to perform load balancing on networks of work-

stations that are, in most senses, homogeneous. However, as we look to the future and attempt to

build wide-area distributed systems composed of thousands of heterogeneous nodes, we will need

policies capable of making good scheduling decisions in such complex environments.

Distributed Scheduling Mechanisms

As we have seen, current scheduling systems do a good job of meeting the technical challenges of

supporting the relatively simplistic scheduling policies that have been developed to date. Future

work will expand in new directions, especially in the areas of heterogeneity, security, and the social

aspects of distributed computing.

Just as scheduling algorithms have not considered heterogeneity, distributed scheduling mech-

anisms have only just begun to support scheduling in heterogeneous systems. Some of the major

obstacles to be overcome include differences in the file spaces, speeds of the processors, processor

architectures (and possible task migration between them), operating systems and installed software,

devices, and memory. Future support mechanisms will have to make this information available to

scheduling algorithms to fully utilize a large, heterogeneous distributed system.

The challenges in the preceding list are purely technical. Another set of problems arises from

the social aspects of distributed computing. Large-scale systems will be composed of machines

from different administrative domains; the social challenge will be to ensure that computations

that cross administrative boundaries do not compromise the security or comfort of users inside

each domain. To be successful, a distributed scheduling system will have to provide security both

for the foreign task and for the local system; neither should be able to inflict harm upon the other.

In addition, the scheduling system will have to assure users that their local rules for use of their

machines will be followed. Otherwise, the computing paradigm will break down, and the large
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system will disintegrate into several smaller systems under single administrative domains.

Defined Terms

Autonomy The freedom to be different or behave differently than other nodes within the system.

Centralized mechanisms Mechanisms in which data is stored at a single node, or which pass all

data to a single node for a decision.

Distributed mechanisms Mechanisms in which decisions are made on the local system, based

on data located on that system.

Distributed memory A system in which processors have different views of memory. Often, each

processor has its own memory and cannot directly access another processor’s local memory.

Distributed systems Systems with a high degree of autonomy.

Global scheduling The assignment of tasks to processors (also called task placement and match-

ing).

Heterogeneous systems The property of having different underlying machine architecture or

systems software.

Job A group of tasks cooperating to solve a single problem.

Load balancing A special form of load sharing in which the system attempts to keep all nodes

equally busy.

Load sharing The practice of moving some of the work from busy processors to idle processors.

The system does not necessarily attempt to keep the load equal at all processors; instead, it

tries to avoid the case where some processors are heavily loaded while others sit idle.

Local scheduling The decision as to which task, of those assigned to a particular processor, will

run next on that processor.

Loosely-coupled hardware A message-passing multiprocessor.

Mechanism The ability to perform an action.

Parallel systems Systems with a low degree of autonomy.

Policy A set of rules that decide what action will be performed.
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Shared memory A system in which all processors have the same view of memory. If processors

have local memories, then other processors may still access them directly.

Space sharing A system in which several jobs are each assigned exclusive use of portions of a

common resource. For example, if some of the processors in a parallel machine are dedicated

to one job, while another set of processors is dedicated to a second job, the jobs are space

sharing the CPUs.

Stability The property of a system that the service rate is greater than or equal to the arrival

rate. A stable scheduling algorithm will not make a stable system unstable.

Task The unit of computation in a distributed system; an instance of a program under execution.

Task migration The act of moving a task from one node to another within the system.

Tightly-coupled hardware A shared-memory multiprocessor.

Time sharing A system in which jobs have the illusion of exclusive access to a resource, but in

which the resource is actually switched among them.
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For Further Information

Many of the seminal theoretical papers in the area are contained in Scheduling and Load Balancing

in Parallel and Distributed Systems, edited by Shirazi, Hurson, and Kavi [Shirazi et al., 1995]. This

volume contains many of the papers cited in this chapter, and is an excellent starting point for

those interested in further reading in the area.

Advanced Concepts in Operating Systems by Singhal and Shivaratri [Singhal and Shivaratri,

1994] contains two chapters discussing scheduling for parallel and distributed systems. These two

references contain pointers to much more information than could be presented here.

Descriptions of other distributed scheduling systems may be found in papers de-

scribing Stealth [Singhal and Shivaratri, 1994][Ch. 11], Utopia [Zhou et al., 1993], as well

as in [Theimer and Lantz, 1989, Litzkow, 1987, Stumm, 1988]. The Global Grid Forum

(http://www.gridforum.org) is codifying best practices for all aspects of Grid systems. More in-

formation about scheduling in distributed operating systems such as Sprite, the V System, Locus,

and MOSIX can also be found in [Singhal and Shivaratri, 1994].
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