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Articles

Mercury (Hg) is a potent neurotoxin of significant
ecological and public health concern. Human and

wildlife exposure to Hg occurs largely through the con-
sumption of contaminated fish. It is estimated that over
410,000 children born each year in the United States are ex-
posed in the womb to methylmercury (MeHg) levels that are
associated with impaired neurological development (Ma-
haffey 2005). Eight percent of US women of childbearing age
have blood Hg levels in excess of values deemed safe by the
US Environmental Protection Agency (USEPA; Schober et al.
2003). Studies have also linked elevated Hg in the blood or tis-
sue of fish, birds, and mammals with negative effects such as
reduced reproductive success, hormonal changes, and motor
skill impairment (Wiener and Spry 1996, Nocera and Taylor
1998, Evers et al. 2004).

To protect human health, the USEPA set a fish tissue cri-
terion for MeHg at 0.3 µg per g under section 304(a) of the
Clean Water Act (USEPA 2001). Similar criteria for wildlife
are under development or promulgation in several states
(e.g., Maine, New York). As of 2004, fish consumption advi-
sories regarding Hg contamination have been issued for 44
states, including 21 statewide advisories for fresh waters and
12 for coastal waters. These advisories represent more than
53,000 km2 of lakes and 1,230,000 km of rivers. The extent of

fish consumption advisories underscores the extensive human
and ecological health risk posed by Hg pollution.

Important sources of Hg to the environment include elec-
tric utilities, incinerators, industrial manufacturing, wastewater
treatment plants, and improper disposal of consumer prod-
ucts (e.g., batteries, fluorescent light bulbs, Hg switches).
Considerable public policy attention is directed toward air-
borne Hg emissions, since they constitute the largest source
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Mercury Contamination in
Forest and Freshwater
Ecosystems in the Northeastern
United States

CHARLES T. DRISCOLL, YOUNG-JI HAN, CELIA Y. CHEN, DAVID C. EVERS, KATHLEEN FALLON LAMBERT,
THOMAS M. HOLSEN, NEIL C. KAMMAN, AND RONALD K. MUNSON

Eastern North America receives elevated atmospheric mercury deposition from a combination of local, regional, and global sources. Anthropogenic
emissions originate largely from electric utilities, incinerators, and industrial processes. The mercury species in these emissions have variable 
atmospheric residence times, which influence their atmospheric transport and deposition patterns. Forested regions with a prevalence of wetlands and
of unproductive surface waters promote high concentrations of mercury in freshwater biota and thus are particularly sensitive to mercury deposition.
Through fish consumption, humans and wildlife are exposed to methylmercury, which markedly bioaccumulates up the freshwater food chain.
Average mercury concentrations in yellow perch fillets exceed the Environmental Protection Agency’s human health criterion across the region, and
mercury concentrations are high enough in piscivorous wildlife to cause adverse behavioral, physiological, and reproductive effects. Initiatives are 
under way to decrease mercury emissions from electric utilities in the United States by roughly 70%.
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of Hg in the United States and globally (UNEP 2002).
Although estimates suggest that US emissions of Hg peaked
in the 1970s and have since declined (Pirrone et al. 1998),
atmospheric concentrations remain approximately three
times higher than preanthropogenic levels (Mason et al.
1994).

Neither atmospheric Hg emissions nor ambient concen-
trations of Hg in water constitute a direct public health risk
at the levels of exposure usually found in the United States.
The risk to humans and wildlife occurs as Hg is transported
to watersheds and accumulates in the aquatic food chain. Air-
borne Hg is transported over variable distances (i.e., local to
global scales), depending on the speciation of Hg emissions
and reaction pathways, and is deposited to the Earth’s surface.

Following deposition, ionic Hg (i.e., oxidized mercuric
species, including complexes and particulate forms) may be
reduced and reemitted to the atmosphere or converted to a
more bioavailable form, MeHg. Through a bioaccumulation
factor of about 10 million, MeHg accumulates to toxic levels
at the top of the aquatic food chain. This Hg linkage, from air
to water to fish and other biota, challenges the state and fed-
eral regulators charged with controlling airborne emissions
and with decreasing Hg deposition to levels that meet 
standards for concentrations in water and in fish tissue.

To improve understanding of the Hg air–water–biota con-
nection, the Hubbard Brook Research Foundation convened
a team of eight scientists to synthesize scientific information
concerning (a) Hg sources and inputs; (b) Hg transport,
transformations, exposure, and environmental effects; and 
(c) Hg policy impacts in the Northeast. This synthesis includes
the analysis of a large Hg data set compiled for eastern North
America as part of a NERC (Northeastern Ecosystem Research
Cooperative) initiative (Evers and Clair 2005). The NERC 
Hg project published summaries for water, sediment, and 
major taxonomic groups. Here we distill these studies into a
regional overview with policy applications.

Efforts have been under way at state, regional, national, and
global scales to reduce Hg emissions. Notably, in May 2005
the USEPA adopted a rule pertaining to Hg emissions from
coal-fired power plants (the Clean Air Mercury Rule, or
CAMR). This rule calls for a two-phase reduction in emis-
sions through a cap-and-trade approach that is predicted to 
produce by approximately 2025 a 70% decrease in total US
emissions from electric utilities. Rather than imposing an
emission rate limit or requiring the use of maximum achiev-
able control technology, the cap-and-trade approach allows
facilities to purchase Hg allowances in order to comply with
the regulations.

Mercury emissions and deposition 
in the northeastern United States
The northeastern United States (i.e., New England and New
York) is an important region in which to investigate Hg,
because it receives elevated Hg deposition and contains
ecosystems sensitive to Hg inputs. Mercury-sensitive areas are
typically forested areas with shallow surficial materials, abun-

dant wetlands, and low-productivity surface waters. In the
Northeast, the fish in many lakes and streams and the asso-
ciated wildlife have elevated Hg, which in some instances is
high enough to constitute a “biological Hg hotspot,” which 
requires special attention from both a scientific and a policy
perspective (Evers et al. 2007). A biological Hg hotspot is a 
location on the landscape that, compared with the sur-
rounding landscape, is characterized by elevated concentra-
tions of MeHg in biota (e.g., fish, birds, mammals) in excess
of established human health or wildlife criteria as deter-
mined by a statistically adequate sample size.

Mercury emissions. Globally, approximately 6600 metric tons
of Hg are emitted to the atmosphere annually, with 33% to
36% attributed to direct anthropogenic emissions. The re-
mainder originates from natural sources or from past anthro-
pogenic emissions that are rereleased (Mason and Sheu 2002).
These values suggest that about two-thirds of atmospheric Hg
emissions are derived from either direct or reemitted an-
thropogenic sources. Coal-fired power plants are the largest
single category of Hg emissions, with 1450 metric tons per
year, comprising about 50% of anthropogenic sources (Pacyna
et al. 2003).

Total anthropogenic Hg emissions from all sources in the
United States are calculated to be 103 metric tons per year, with
the Northeast contributing about 4.7 metric tons per year
(USEPA 1999). Mercury emissions in the United States have
declined markedly over the past decade (table 1) as a result
of federal regulations that mandated large reductions in Hg
emissions in medical waste incinerators and in municipal 
incinerators (USEPA 2005). Unlike incinerator emissions,
emissions from electric utilities have remained largely un-
changed, and their relative contribution to total US emissions
has increased from 25% to 40%. Municipal waste incinera-
tors (23%) and electric utilities (16%) are the largest point-
source categories in the Northeast.

Mercury is emitted to the atmosphere from point sources
in three forms: elemental Hg (Hg0), gaseous ionic Hg (reac-
tive gaseous mercury, or RGM), and particulate Hg (PHg).
This speciation exerts significant control over the fate of at-
mospheric Hg emissions and varies widely among sources
(table 2). Therefore, Hg can be a local, regional, or global pol-
lutant, depending on the speciation of the emissions and the
associated residence times in the atmosphere (Dastoor and
Larocque 2004).

In 1999, 57% of calculated point-source Hg emissions in
the Northeast occurred as Hg0, 33% as RGM, and 10% as PHg
(USEPA 1999). Studies indicate that emissions from coal
combustion in the United States are roughly 50% Hg0, 40%
RGM, and 10% PHg (Pacyna et al. 2003). However, emissions
from coal combustion in the northeastern states have a higher
percentage of RGM (68%) and a lower percentage of Hg0

(30%) and PHg (2%; NESCAUM 2005). The actual Hg emis-
sion speciation profile for a specific power plant depends on
the type of coal used and the air pollution control technol-
ogy employed (NESCAUM 2003).
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Elemental Hg, which is relatively unreactive and generally
slowly oxidized, constitutes by far the largest pool of Hg in the
atmosphere because of its relatively long residence time (0.5
to 2 years) and long-range transport potential (tens of thou-
sands of kilometers). However, under some conditions Hg0

can be rapidly oxidized and deposited locally or regionally, as
observations have shown in the Arctic and Antarctic (Lind-
berg et al. 2002), at the marine and continental boundary layer,
and in areas downwind of urban areas (Weiss-Penzias et al.
2003). Elemental Hg can also be directly deposited to forested
ecosystems through stomatal gas exchange (Grigal 2002). As
a result, the atmospheric lifetime of Hg0 is probably closer to
0.5 year than to 2 years.

Reactive gaseous Hg consists predominantly of gaseous
chloride and oxide forms of ionic Hg. This species is highly
soluble in water and readily deposits to surfaces within tens
to a few hundreds of kilometers from emission sources. Be-
cause of RGM’s short atmospheric residence time (0.5 to 2
days), elevated Hg deposition can occur near RGM emission
sources.

The atmospheric residence time of PHg is also relatively
short (0.5 to 3 days). Although the fraction of PHg in ambi-
ent air in remote areas is generally less than 5% of total at-
mospheric Hg (Horvat 1996), concentrations may be higher
near Hg emission sources and under certain atmospheric
conditions (Lu et al. 2001).

Atmospheric deposition. Atmospheric deposition of Hg 
occurs in two forms: wet deposition (the deposition of Hg 
associated with rain and snow) and dry deposition (the de-
position of PHg and RGM, cloud and fog deposition, and
stomatal uptake of Hg0). Although some areas have been
contaminated by land disposal of Hg or discharge of Hg in
wastewater effluent, the predominant input of Hg to most 
watersheds is atmospheric deposition. Fitzgerald and col-
leagues (1998) systematically rule out alternate hypotheses,
such as natural weathering, as a significant cause of the ob-
served widespread Hg contamination.

Judging from global models (Hudson et al. 1995), recon-
structions of mass balances (Mason et al. 1994), and paleo-
limnological techniques (Engstrom and Swain 1997), it
appears that deposition of Hg has increased two- to threefold
over the past two centuries, following increases in Hg emis-
sions associated with industrialization and Hg use. Paleo-
limnological studies in the Northeast typically show Hg
deposition starting to increase in the late 1800s or early 1900s
and increasing 2.5- to 15-fold by the late 20th century (1970s
to 1990s) (figure 1; Kamman and Engstrom 2002). Decreases
in sediment Hg deposition in the Northeast (approximately
25%) have been evident in recent years, coincident with re-
ductions in US emissions and with static global emissions.
Because inventories of Hg emissions have been limited, it is
not clear what is responsible for the declines in Hg deposition
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Table 1. Mercury (Hg) emissions (in metric tons per year), by source category, in the United States from 1990 through
2002 and in the Northeast region in 2002.

Emissions (metric tons per year)
United States Northeast,

Source 1990 1996 1999 2002 2002

Utility coal boilers 54 46 44 45 0.74

Medical waste incinerators 46 36 3 0.3 0.015

Municipal waste combustors 52 29 5 4 1.1

Industrial/commercial/ 13 11 11 10 0.33
institutional boilers and 
process heaters

Chlorine production 9 7 6 5 0

Electric arc furnaces 7 – – 10 –

Hazardous waste incineration 6 4 6 5 0.001

Total 222 168 109 103 4.7

Note: Individual source categories do not sum to the totals because area sources and minor point-source categories are not shown.
Source: USEPA 2002, 2005, NESCAUM 2005.

Figure 1. Changes in historical deposition of mercury
(Hg) to sediments in (a) Spring Lake and (b) Wallingford
Pond, Vermont, from 1820 to the present (after Kamman
and Engstrom 2002). The sediment patterns reflect
changes in Hg emissions and deposition over time.



over the past few decades. However, it seems likely that 
controls on particulate matter and sulfur dioxide from elec-
tric utilities, and reductions in consumer and industrial Hg
use, are important factors (Engstrom and Swain 1997).

In the eastern United States, Hg deposition is high (USEPA
1997), but it is difficult to identify its specific sources. Of the
estimated 52 metric tons of Hg deposited per year in the
United States from US sources, 24 metric tons (46%) are
likely to originate from domestic utility coal boilers (half of
the 48 metric tons of Hg that the coal-fired utilities emit
each year is likely to be deposited within the United States;
USEPA 1997). Likewise, for regions of New York it is estimated
that 11% to 21% of the Hg deposited is derived from emis-
sions within New York, 25% to 49% originates from other US
sources, and 13% to 19% originates from Asia (Seigneur et
al. 2003). Given that most coal-fired utilities emit 50% to 70%
of Hg as RGM and PHg (table 2), local sources are most
likely an important component of the deposition in areas
within 50 km of these sources. An analysis of emissions 
and deposition in southern New Hampshire shows a local 
region of high deposition associated with local electric util-
ity emissions (Evers et al. 2007).

In the United States and Canada, measurements of wet Hg
deposition, which are largely made through the Mercury De-
position Network (MDN), show that wet Hg deposition is
highest in the Southeast (e.g., Florida, Mississippi) and low-
est in the West. There are currently seven MDN sites in the
Northeast, with average annual wet deposition ranging from
3.8 to 12.6 µg per m2 per year (http://nadp.sws.uiuc.edu/mdn/).
There do not appear to be broad spatial patterns in wet Hg
deposition across the region, but the network is sparse.
Because of the placement of collectors in rural areas, the 
deposition values for the region do not include elevated 
deposition that would be expected near Hg sources and in 
urban areas.

Estimates of dry Hg deposition are highly uncertain because
of the complex interrelationships of atmospheric conditions,
collection surface characteristics and terrain, and chemical
properties of the contaminants. Several modeling efforts

have been used to estimate dry deposition of Hg, however. In
regions of New York, estimated dry Hg deposition was 4 to
10 µg per m2 per year (Seigneur et al. 2003). Another model
estimate specifically for the Northeast suggests that dry 
deposition of RGM plus Hg0 was 37 µg per m2 per year (Xu
et al. 2000). Both studies indicate that dry deposition provides
a significant pathway of Hg inputs (50% to 75% of total 
deposition) and agree with USEPA predictions that Hg dry
deposition in the Northeast is the highest in the country,
in part as a result of the abundant forests whose canopies 
effectively collect Hg from the atmosphere.

Because of the large surface area associated with canopy
foliage, atmospheric deposition of contaminants is elevated
in forests compared with other types of ecosystems. Forest
studies have indicated that total atmospheric Hg deposition
may be estimated using fluxes of throughfall (precipitation
that passes through the canopy) plus litterfall (plant mate-
rial that falls to the forest floor; Rea et al. 2001). Grigal
(2002) suggests that the ratio of Hg fluxes resulting from wet
deposition, throughfall, and litterfall, respectively, is 1.0 to
1.8 to 2.2. So for the 5 µg per m2 per year of wet deposition
that might be typical of the Northeast, anticipated through-
fall would be 9 µg per m2 per year, and litterfall would be 11
µg per m2 per year, resulting in total Hg deposition of 20 µg
per m2 per year and dry deposition of 15 µg per m2 per year
(75% of total).

Some portion of the Hg deposited to Earth’s surface is
reemitted to the atmosphere. However, rates of volatiliza-
tion vary widely in association with differences in vegeta-
tion, soil moisture, temperature, solar radiation, and
landscape characteristics. In general, volatilization rates
from soil are high immediately after inputs of ionic Hg to
the soil (Schluter et al. 1995). On the basis of a review of the
literature, Grigal (2002) estimated a mean rate of Hg0

volatilization from soil of approximately 11 µg per m2 per
hour. This rate is more than adequate to reemit most of the
atmospheric Hg deposition. The magnitude and uncer-
tainty of this process demonstrate the acute need for ad-
ditional research on Hg reemissions.

Articles

20 BioScience  •  January 2007 / Vol. 57 No. 1 www.biosciencemag.org

Table 2. Percentage of mercury species emitted, by source category.

Particulate mercury Reactive gaseous mercury Elemental mercury
Source (percentage) (percentage) (percentage)

Coal-fired electric utilities (United States) 10 40 50

Coal-fired electric utilities (Northeast) 2 68 30

Utility oil boilers 20 30 50

Municipal waste combustors 20 58 22

Medical waste incinerators 20 75 5

Pulp and paper production 20 30 50

Chlorine production 0 5 95

Hazardous waste incinerators 22 20 58

Primary and secondary metal production 10 10 80

Municipal landfills 10 10 80

Source: USEPA 1999, Pacyna et al. 2003, NESCAUM 2005.



Transport and transformation of mercury 
in forest–wetland–lake ecosystems
Following deposition to the landscape, Hg may be sequestered
in soil, reemitted to the atmosphere, or transported through
the watershed, with a fraction of these inputs ultimately 
supplied to surface waters. Watershed and water chemistry
characteristics influence the transport of Hg to surface 
waters. Anoxic zones in wetlands and lakes provide suitable
conditions for the methylation of ionic Hg to MeHg. The ex-
tent to which MeHg is biomagnified in the freshwater food
chain depends on the nature and length of the food chain and
on water chemistry characteristics.

Mercury transport and fate in upland forest ecosystems.
Although there have been few direct studies of soil seques-
tration of Hg, immobilization of Hg in forest soil is known
to correspond with the retention of organic carbon (Schwe-
sig et al. 1999). Pools of Hg in upland soil in northern tem-
perate regions are about 7 mg per m2, although higher levels
have been reported in central Europe (Grigal 2003).

The export of Hg by waters draining upland soils to sur-
face waters is generally low. Concentrations and fluxes of Hg
in soil waters, as in soil, are closely related to dissolved organic
carbon (DOC; Schwesig et al. 1999). In northern forests,
concentrations of total Hg are highest in waters draining the
upper soil, coinciding with high concentrations of DOC.
Concentrations and fluxes of total Hg decrease as DOC is 
immobilized with depth in mineral soil (Grigal 2002).

Limited studies suggest that MeHg concentrations in up-
land soils and groundwaters are generally low, although
higher concentrations occur in upper soil waters and de-
crease with soil depth (Grigal 2002). Low concentrations
and fluxes of MeHg in drainage waters suggest that rates of
methylation are low, and freely draining upland soils are
generally not important in the supply of MeHg to downstream
surface waters, with the possible exception of recently har-
vested forests (Porvari et al. 2003).

Transport and transformation of mercury in wetlands. Wet-
lands are important features of the landscape that influence
the supply of different Hg species to adjacent surface waters.
Wetlands are typically net sinks of total Hg and sources of
MeHg (Grigal 2002, 2003). Rates of total Hg accumulation are
greater in wetlands than in upland soils because of the strong
association of Hg with organic matter (Grigal 2003). An-
nual rates of MeHg production in wetlands are approxi-
mately 0.1 to 1 µg per m2 per year (Galloway and Branfireun
2004). The factors controlling methylation of Hg in wet-
lands are not completely understood, but they most likely in-
volve the amounts and types of organic matter, hydrologic flow
paths, and rates of microbial activity (Galloway and Branfireun
2004).Wetlands are also a major source of DOC. Organic mat-
ter produced in wetlands forms complexes with both ionic Hg
and MeHg, enhancing the transport of these Hg species to 
surface waters but decreasing their bioavailability (Hudson et
al. 1994). An elevated supply of DOC to downstream surface 

water could also stimulate methylation and limit pho-
todegradation of MeHg and photoreduction of ionic Hg.
Furthermore, wetlands support sulfate-reducing bacteria,
which appear to be largely responsible for Hg methylation
(Benoit et al. 2003). Concentrations of MeHg in wetland
porewaters (waters filling the spaces between solid material
in sedimentary deposits) and surface waters vary seasonally,
with the highest concentrations evident during the late sum-
mer, presumably as a result of warmer temperatures, higher
rates of microbial activity, and longer hydraulic residence
times (Galloway and Branfireun 2004).

Mercury concentrations and transformations in surface 
waters. Freshwater ecosystems are among the most sensitive
to Hg pollution. Total Hg concentrations in surface waters in
the Northeast vary by more than an order of magnitude,
from less than 0.5 to 12.7 nanograms per liter (5th to 95th 
percentile; figure 2; Dennis et al. 2005). Most of the Hg in 
surface water occurs as ionic Hg, with MeHg ranging from
1% to 35% of total Hg (figure 3). Under conditions of high
total Hg loading, MeHg production can vary widely, de-
pending on the methylation efficiency of a particular eco-
system (Krabbenhoft et al. 1999).

Mercury enters remote surface waters through direct 
atmospheric deposition and through soil water, wetland, or
groundwater drainage. Streams and rivers can exhibit marked
temporal variation in Hg concentrations, which is associ-
ated with variations in concentrations of DOC or suspended
matter. Large increases in Hg concentrations can occur 
during high flow events (Shanley et al. 2005).

Some inputs of Hg to lakes are removed from the water 
column by the volatilization of Hg0 and by sediment depo-
sition. In freshwater lakes, photochemical processes are largely
responsible for the reduction of ionic Hg to Hg0 (Amyot et
al. 1997). Microbial reduction has been observed in labora-
tory studies, but only at higher than ambient concentrations
of Hg (Morel et al. 1998). Biogeochemical processes in lakes
also result in net production of MeHg due to methylation in
anoxic sediments and in the water column.

The geographic distribution of average surface water Hg
concentrations in the Northeast (figure 2) shows landscape-
level heterogeneity in lake and river Hg concentrations, and
areas where concentrations are elevated across several con-
tiguous 18-minute grid cells. Areas of elevated Hg concen-
trations in surface waters can be explained by high
concentrations of DOC, as in the Adirondacks; by high inputs
of suspended solids, from rivers along Lake Champlain, re-
lated to high flow events; and by elevated atmospheric Hg
deposition, as in lakes in southeastern New Hampshire and
eastern Massachusetts. A large portion of the variation in 
total Hg and MeHg across the region can be explained by vari-
ation in DOC (Dennis et al. 2005). Areas with the highest
mean surface water Hg concentrations also have the greatest
range in Hg concentrations (figure 2). This variation may be
attributed to heterogeneity in watershed characteristics or to
high flow events (Shanley et al. 2005).
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Other factors controlling mercury dynamics in surface waters.
Other factors, such as water chemistry, land cover and land
use, and watershed disturbances, alter the transport, trans-
formation, and bioavailability of Hg in surface waters.

The Northeast receives elevated loading of acidic deposi-
tion as well as Hg deposition, and contains a relatively large
number of acidified surface waters. Acidic deposition and the
associated sulfur alter the acid–base status of surface waters,
thereby influencing Hg transformation and accumulation
in fish. Sulfur transformations are closely coupled with Hg 
dynamics. The solubility of Hg increases with increasing 
sulfide concentrations in anoxic waters through complexation
reactions, potentially increasing the pool of Hg available for
methylation (Benoit et al. 2003). Experimental observations
show that when sulfate is added to wetlands or lakes, sulfate
reduction is enhanced, leading to increased methylation and
MeHg export (Branfireun et al. 1999, Watras et al. 2006).

Widespread observations show an inverse relationship 
between fish Hg concentrations and surface water pH (e.g.,
Kamman et al. 2004). Hrabik and Watras (2002) used refer-
ence data and observations from a lake experimentally acid-
ified with sulfuric acid to examine the relative contribution
of atmospheric Hg deposition and acidic deposition to Hg
concentrations in fish. They found that half of the decrease
in fish Hg over a six-year period during which the lake was
recovering from acidification could be attributed to decreases
in sulfuric acid loading.

In a study of 21 river basins nationwide, watersheds with
mixed agriculture and forest land cover had the highest
methylation efficiency, even where these watersheds had low
total Hg in sediments (Krabbenhoft et al. 1999). Some waters

draining largely agricultural lands have relatively high con-
centrations of total Hg and MeHg, but lower concentrations
in fish, presumably due to algal “bloom dilution” associated
with high phosphorus loading (Kamman et al. 2004; see 
below) or elevated DOC concentrations (which could stim-
ulate methylation but limit bioaccumulation), or both.

Land disturbance influences Hg export and availability
for methylation. Forest harvesting has been shown to 
increase export of total Hg and MeHg (Porvari et al. 2003).
Fire results in a complex pattern of Hg loss from watersheds.
During and shortly after fire, elevated Hg losses are associated
with volatilization and drainage losses (Grigal 2002). Over the
longer term, Hg transport to surface waters is reduced in
burned areas as a result of decreases in soil carbon and DOC
concentrations.

In reservoirs, rates of Hg methylation can be altered by 
water level fluctuation associated with hydropower produc-
tion or flood control. Many large bodies of water in the
Northeast are impounded to increase their storage or daily
peaking capacity, and these water bodies may fluctuate tens
of centimeters on a daily basis or several meters over the
course of a summer. As the littoral zone experiences periodic
wetting and drying, varying cycles of reduction and oxidation
may enhance the production of MeHg, depending on a 
variety of factors (Sorensen et al. 2005, Evers et al. 2007).

Trophic transfer of mercury in surface waters of the North-
east. Concentrations of total Hg or MeHg in surface waters
often do not correlate well with the Hg content of freshwater
biota, such as fish. There are many physical, chemical, eco-
logical, and land-use factors controlling the trophic transfer
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Figure 2. Average water mercury (Hg) concentrations within 18-minute grid cells for lakes and streams across
northeastern North America. Inset shows the distribution of Hg concentrations comprising the mean for each
quintile.



of MeHg, which are key to predicting MeHg concentrations
in fish and other freshwater organisms.

Trophic transfer of Hg in freshwater food webs begins
with the bioaccumulation of ionic Hg and MeHg by pri-
mary producers. Bioaccumulation factors in the transfer of
Hg from water to algae are by far higher (approximately 105

to 106) than at subsequent trophic levels (figure 3). Although
both ionic Hg and MeHg are taken up by aquatic organ-
isms, MeHg is assimilated four times more efficiently than
ionic Hg (Mason et al. 1994). However, the absolute and rel-
ative assimilation efficiencies of ionic Hg and MeHg vary with
trophic level, uptake pathway, and water chemistry conditions.
Freshwater grazers and predators acquire MeHg mainly from
their food rather than from water (Harris and Bodaly 1998).
Methylmercury is efficiently transferred to the higher levels
of the food web and largely incorporated within proteins, as
in muscle tissue.

The NERC data show that MeHg increases in concentra-
tion and comprises a greater percentage of the total Hg in
freshwater consumers and predators as it progresses up the
food chain (figure 3). Thus organisms consuming prey at
higher trophic levels are exposed to higher concentrations of
total Hg and MeHg (Vander Zanden and Rasmussen 1996).
Fish Hg occurs almost entirely as MeHg.

A variety of physical, chemical, and biological factors in-
fluence the biomagnification of MeHg. Fish Hg concentra-
tions tend to vary positively with lake or watershed area and
negatively with pH, acid neutralizing capacity (ANC), nutrient
concentrations, zooplankton density, and human land use
(Chen et al. 2005). Furthermore, the Hg added to the lake 
surface each year appears to be more available for conversion
to MeHg than Hg that has been in the ecosystem for longer
periods (Gilmour et al. 2003).

Both experimental and field studies show that nutrient 
enrichment diminishes Hg bioaccumulation in phytoplank-
ton through the biodilution of Hg under algal bloom condi-
tions (Pickhardt et al. 2002). Mercury concentrations in
zooplankton also decrease with increasing zooplankton 
densities that in turn are correlated with lower Hg concen-
trations in fish (Chen and Folt 2005). Growth dilution in fish,
also under conditions of high productivity and food avail-
ability, may be related to lower Hg concentrations in fish
(Essington and Houser 2003).

Within given fish populations, Hg burdens increase with
the age and size of individuals in part because of the slower
rates of elimination and longer exposure in larger individu-
als, and in part because of the consumption of higher-trophic-
level foods by older and larger individuals (Wiener and Spry
1996). Mercury concentrations in top predator fish are higher
in food webs with longer chain lengths and less omnivory
(Stemberger and Chen 1998).

Indicators of mercury sensitivity. Four simple and common
measures of water quality—DOC, ANC, pH, and total 
phosphorus—have been shown by Chen and colleagues
(2005) and many others to be related to fish Hg concentra-

tions. To develop indicators of Hg sensitivity, we combined
data from two stratified, random-probability surveys of
northeastern lakes (USEPA EMAP [Environmental Moni-
toring and Assessment Program], Northeast Lakes Program,
1991–1994, and Vermont–New Hampshire REMAP 
[Regional EMAP], 1998–2000) with the survey data sets of
Chen and colleagues (2005) to examine these four water-
chemistry characteristics in lakes with standard-age yellow
perch (Perca flavescens) whose tissue contained mean
concentrations of Hg above and below the USEPA criterion
(0.3 µg per g; figure 4). The standard age for yellow perch 
examined in this analysis was 4.6 years (Kamman et al. 2004).
This analysis showed that lakes with Hg levels above 0.3 µg
per g in yellow perch had significantly higher DOC (t =
–3.099, p = 0.003) and lower pH (t = –6.282, p < 0.001),
ANC ( t = 2.835, p = 0.007), and total phosphorus (t = 3.840,
p < 0.001) than lakes with fish Hg concentrations below 0.3
µg per g. As yellow perch have low to moderate Hg concen-
trations, these thresholds are conservative and help identify
the most sensitive lakes.

Twenty percent of lakes in the region had total phosphorus
concentrations above 30 µg per L. In those lakes, Hg con-
centrations in yellow perch were below 0.3 µg per g. In the 
remaining 80%, we found that most lakes (75%) had yellow
perch Hg concentrations exceeding 0.3 µg per g when surface
waters had a DOC level of more than 4.0 mg carbon per L,
a pH of less than 6.0, or an ANC of less than 100 micro-
equivalents (µeq) per L. These commonly monitored indi-
cators provide natural resource managers with a useful tool
for evaluating the likelihood of high fish Hg concentrations
in individual lakes.
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Figure 3. Box and whisker plots of mercury (Hg) concen-
trations in water and aquatic biota in eastern North
America. Also shown are the ranges for the percentage of
total Hg occurring as methylmercury (MeHg). All values
were obtained from NERC (Northeastern Ecosystem Re-
search Cooperative) data and represent wet weight, ex-
cept those for phytoplankton, which were obtained from
Watras and colleagues (1998).



Taxonomic patterns of mercury exposure
Biota are exposed to MeHg primarily through fish and insect
consumption. The NERC data establish robust Hg exposure
profiles for fish, birds, and mammals (table 3; Evers and Clair

2005), and highlight the importance of habitat type, forag-
ing guild, trophic structure, and demographics on MeHg 
exposure (Evers et al. 2005).

In general, Hg concentrations vary by taxonomic group,
with a higher proportion of MeHg at higher trophic levels.
Mercury in benthic invertebrates and larval insects has been
extensively studied in northeastern lakes and reservoirs,
and is found to increase with trophic level (odonates > hemip-
terans and coleopterans > trichopterans > dipterans and
ephemeropterans; Tremblay et al. 1996). The NERC data on
Hg in over 15,000 fish show that the mean fillet Hg levels in
10 of the 13 species are above 0.3 µg per g, with the highest
levels in large predatory fish such as walleye (Sander vitreus)
and lake trout (Salvelinus namaycush; figure 5; Kamman et al.
2005).

Habitat type also has an important influence on MeHg 
concentrations. Data for two-lined salamanders (Eurycea 
bislineata) suggest that amphibians found in headwater
streams have significantly higher MeHg concentrations than
those in lakes (Bank et al. 2005). Larval insects in reservoirs
have total Hg concentrations that are 3 to 10 times higher than
those in natural lakes (Tremblay et al. 1996). Northern cray-
fish (Orconectes virilis) in headwater streams have Hg con-
centrations up to five times greater than those in lakes
(Pennuto et al. 2005).

Comprehensive bird studies illustrate differences in MeHg
exposure in foraging guilds. Piscivorous species with partic-
ularly high MeHg levels include the common loon (Gavia im-
mer; Evers et al. 2005), wading birds (Frederick et al. 1999),
and the bald eagle (Haliaeetus leucocephalus; Bowerman et al.
2002). Exposure studies in common loons have shown hor-
monal changes, reduced reproductive success, and motor
skill impairment, resulting in the establishment of a wildlife
criterion for blood Hg of 3.0 µg per g (Evers et al. 2004).
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Table 3. Mercury exposure for selected biota in representative habitats in the Northeast.

Mercury level (µg per g)
Sample Tissue

Major habitat and organism size sampled Mean ± SD Range Reference

Lakes

Yellow perch 841 Whole body 0.29 ± 0.07 < 0.05–3.17 Kamman et al. 2005
2888 Fillet 0.35 ± 0.20 < 0.05–5.03 Kamman et al. 2005

Common loon 770 Adult blood 2.04 ± 1.39 0.05–8.63 Evers et al. 2005
660 Egg 0.78 ± 0.60 0.01–9.00 Evers et al. 2005

Estuaries

Saltmarsh sharp-tailed sparrow 108 Adult blood 0.63 ± 0.26 0.18–1.68 Lane and Evers 2005

Rivers

Belted kingfisher 117 Adult blood 0.99 ± 0.82 0.07–4.57 Evers et al. 2005

Mountains

Bicknell’s thrush 242 Adult blood 0.08 ± 0.38 0.03–0.80 Rimmer et al. 2005

General aquatic

Bald eagle 108 Juvenile blood 0.30 ± 0.27 0.01–1.20 Evers et al. 2005

Tree swallow 53 Adult blood 0.41 ± 0.21 0.11–1.00 Evers et al. 2005

Mink 126 Fur 20.7 1.78–68.5 Yates et al. 2005

Otter 160 Fur 18.0 1.14–73.7 Yates et al. 2005

SD, standard deviation.

Figure 4. Relationship between methylmercury (MeHg)
concentrations in standard-length yellow perch and total
phosphorus concentration in lakes (a), and box and
whisker plots of concentrations of dissolved organic 
carbon (b), pH (c), and acid neutralizing capacity 
(d) for lakes in the northeastern United States contain-
ing average concentrations of standard-age yellow perch 
with MeHg concentrations less than and greater than 
0.3 µg per g.



Exposure to MeHg is not limited to pisciv-
orous birds. Data for insectivorous song-
birds, such as the northern waterthrush
(Seiurus noveboracensis) and red-winged
blackbird (Agelaius phoeniceus), show blood
Hg levels that can exceed levels in piscivorous
birds (Evers et al. 2005). Moreover, elevated
MeHg has been measured in several breed-
ing populations of saltmarsh sharp-tailed
sparrows (Ammodramus caudacutus) in some
New England estuaries (Lane and Evers
2005), and in terrestrial species such as Bick-
nell’s thrush (Catharus bicknelli) and other
montane songbirds (Rimmer et al. 2005).

Terrestrial mammals, particularly mink
(Mustela vision) and river otter (Lontra
canadensis; table 3), also experience elevated
MeHg in the Northeast.Yates and colleagues
(2005) found that Hg levels tend to be higher
in mink than in otter, in interior than in
coastal populations, and in females than in
males. Recent evidence for MeHg exposure in insectivores has
led to ongoing investigations in bats and other nonpiscivorous
mammal species.

Comprehensive data on fish and wildlife exposure are 
being used to identify species, habitats, and regions that are
likely to be at the highest risk for MeHg contamination, and
will be useful for measuring progress resulting from future
management actions.

Evaluating reductions in mercury emissions
At present, most state and national policy attention is focused
on Hg emissions from electric utilities (i.e., coal-fired power
plants). Although controlling other sources (e.g., emissions
from incinerators, discharges from wastewater treatment
plants) and implementing other management options (e.g.,
biomanipulation, land-use management) may also hold
promise for reducing and mitigating Hg bioaccumulation, we
focus on the potential effect of reducing Hg emissions from
electric utilities, because they are the largest single source of
airborne emissions in the United States and the second largest
source in the Northeast, and because their emissions have 
remained unchanged both regionally and nationally over
the past decade (NESCAUM 2005). Although municipal
waste combustors are the largest Hg emission source in the
Northeast, effective strategies for reducing their emissions are
under way, as evidenced by the decline of approximately
80% in emissions from this source between 1998 and 2003
(NESCAUM 2005).

Many proposals have been introduced at both the federal
and the state level to control Hg emissions from electric util-
ities. The main differences among them include (a) the level
and timing of the cuts, (b) the existence of an emissions cap
or emissions rate limit, and (c) whether or not trading is al-
lowed. In general, the level and timing of Hg emission re-
ductions are likely to control the extent and rate of recovery

in the region, and the use of trading has prompted questions
regarding the persistence or expansion of biological Hg
hotspots (Evers et al. 2007).

Here we estimate the changes in emissions and deposition
that are associated with the CAMR and discuss the potential
effect of these changes on freshwater ecosystems using field
data. The USEPA estimates that the CAMR will result in a 70%
decrease in Hg emissions from electric utilities by 2025. We
estimate that the CAMR, when fully implemented, would re-
sult in a decrease of approximately 18% to 30% in deposition
in the northeastern United States. This estimate is based on
an analysis of US emissions and deposition that assumes 
(a) that current and reemitted anthropogenic emissions each
constitute one-third of the emissions in the United States, and
(b) that electric utilities account for 50% of each of these two
emission categories. It follows that if electric utilities reduce
their emissions by 70%, current and reemitted anthropogenic
emissions would each decrease by 35%.

We further assume that US emissions are responsible for
40% to 65% of Hg deposition in the Northeast (Seigneur et
al. 2003) and that reemitted US emissions contribute 
another 10% to 20%. If deposition attributed to these emis-
sion categories were reduced by 35% as a result of the CAMR,
then total deposition would decline by approximately 18% to
30%. These predictions are consistent with the decrease of
approximately 25% in sediment Hg deposition that occurred
coincident with decreases in Hg emissions in the United
States between 1970 and 1999.

An 18% to 30% decrease in Hg deposition is likely to 
provide significant ecological benefits in the region. Detailed
biological data from a group of nine lakes in New Hampshire
show that the Hg concentrations in the blood and eggs of the
common loon declined 50% between 1999 and 2002 as emis-
sions in the vicinity were cut 45% between 1997 and 2002, sug-
gesting that some ecosystems in close proximity to large
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Figure 5. Mean and standard deviation of mercury (Hg) concentrations of 13
species of fish in eastern North America (Kamman et al. 2005). The downward-
pointing arrow indicates the US Environmental Protection Agency’s criterion
for fish Hg concentrations.



emissions sources may experience rapid improvement (Evers
et al. 2007). Hrabik and Watras (2002) found that Hg fish con-
centrations declined 30% between 1994 and 2000 as a result
of decreased atmospheric Hg loading to a lake in northern
Wisconsin; they concluded that modest changes in Hg or
acidic deposition can significantly affect Hg bioaccumulation
over short timescales. The range and rate of ecosystem re-
sponse are most likely related to the variation in the physical,
chemical, and biological characteristics of lakes and water-
sheds.

We expect that the CAMR will produce important results,
but these changes may not be sufficient to protect human and
environmental health. Given that average fish Hg concentra-
tions sampled across the region currently exceed the USEPA
human health criterion by 10% to 88%, depending on the
species, significant additional reductions in Hg emissions
from other US and global sources will probably be necessary
to bring about widespread recovery to Hg levels that are 
below this criterion in most fish species in the northeastern
United States.

Conclusions
A large Hg database produced by the NERC Hg working
group was used to document and examine the widespread Hg
contamination across eastern North America. From this syn-
thesis, it is evident that the Northeast receives elevated Hg
deposition derived mostly from direct emissions and re-
emissions of anthropogenic sources. Paleolimnological stud-
ies suggest that Hg deposition is substantially influenced by
US emissions and responds to reductions in these sources.

Direct anthropogenic emissions of Hg originate largely
from electric utilities, incinerators, and industrial processes.
Current understanding of speciation and deposition processes
suggests that, while speciation exerts important influence
over patterns of atmospheric transport and deposition, all
forms of Hg have the potential to deposit locally or regionally.

Forest regions are particularly sensitive to Hg inputs as a
result of numerous factors: the filtering effects of the canopy
and the associated elevated deposition; the prevalence of
wetlands, which are critical in the transport of Hg and the pro-
duction of MeHg; and low-productivity lakes, which promote
high concentrations of Hg in fish. Although Hg is highly
variable in surface waters across the region, we have identi-
fied several chemical thresholds to predict high fish Hg: to-
tal phosphorus concentrations of less than 30 µg per L; pH
of less than 6.0; ANC of less than 100 µeq per L; and DOC of
more than 4 mg carbon per L. Freshwater food chains are char-
acterized by marked bioaccumulation of MeHg (106 to 107),
with the largest increase occurring from water to plankton
(105). Many freshwater and terrestrial animals in the North-
east exhibit high concentrations of Hg. For the common
loon, existing Hg concentrations can cause adverse indi-
vidual (behavioral and reproductive) and population-level 
effects.

Our analysis suggests that (a) cuts in Hg emissions from
electric utilities in the United States will decrease Hg depo-

sition in the region; (b) decreased Hg deposition will result
in lower Hg levels in biota, although significant time lags
may exist in many ecosystems; and (c) widespread recovery
to Hg levels that no longer pose a human health risk or pop-
ulation risk to the common loon will be a long-term process
that is likely to require additional reductions in Hg emissions.
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