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Experiments with \HPJava"Bryan Carpenter, Yuh-Jye Chang,Geo�rey Fox, Donald Leskiw, Xiaoming Li,Northeast Parallel Ar
hite
tures Centre,Syra
use University,Syra
use, New YorkMay 19, 2000Abstra
tWe 
onsider the possible r�ole of Java as a language for High Perfor-man
e Computing. After dis
ussing reasons why Java may be a natural
andidate for a portable parallel programming language, we des
ribe sev-eral 
ase studies. These 
over Java so
ket programming, message-passingthrough a Java interfa
e to MPI, and 
lass libraries for data-parallel pro-gramming in Java.
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1 Introdu
tionThe explosion of interest in Java over the last year has been driven largely by itsr�ole in bringing a new generation of intera
tive pages to the World Wide Web.Undoubtedly various features of the language|
ompa
tness, byte-
ode porta-bility, se
urity, and so on|make it parti
ularly attra
tive as an implementationlanguage for applets embedded in Web pages. But it is 
lear that the ambitionsof the Java development team go well beyond enhan
ing the fun
tionality ofHTML do
uments. A

ording to [20℄\Java is designed to meet the 
hallenges of appli
ation developmentin the 
ontext of heterogeneous, network-wide distributed environ-ments. Paramount among these 
hallenges is se
ure delivery of ap-pli
ations that 
onsume the minimum of system resour
es, 
an runon any hardware and software platform, and 
an be extended dy-nami
ally."Several of these 
on
erns are mirrored in developments in the High Perfor-man
e Computing world over a number of years. A de
ade ago the fo
us ofinterest in the parallel 
omputing 
ommunity was on parallel hardware. A par-allel 
omputer was typi
ally built from spe
ialized pro
essors integrated througha proprietary high-performan
e 
ommuni
ation swit
h. If the ma
hine also hadto be programmed in a proprietary language, that was an a

eptable pri
e forthe bene�ts of using a super
omputer. This attitude was not sustainable as oneparallel ar
hite
ture gave way to another, and the 
ost of porting software be-
ame exorbitant. For several years now, portability a
ross platforms had beena 
entral 
on
ern in parallel 
omputing [4, 5, 14, 13, 23℄.More fundamentally, the assumption that high performan
e 
omputing willbe done primarily on spe
ialized super
omputers is questioned in
reasingly.Rapid strides in performan
e and 
onne
tivity of ordinary workstations andPCs make it look equally possible that the future of parallel 
omputing will beon lo
al area networks, or even the Internet [19, 17℄.With Java positioned to be
ome a standard programming language on theInternet, and s
ienti�
 parallel pro
essing edging towards network-based 
om-putation, it is natural to ask how these two te
hnologies will intera
t. Howsuitable is Java for s
ienti�
 
omputing, and do lessons from resear
h in parallel
omputing have impli
ations for the development of Java?Popular a

laim aside, there are some reasons to think that Java may be agood language for s
ienti�
 and parallel programming.� Java is a des
endant of C++. C and C++ are used in
reasingly in s
i-enti�
 programming; they are already used almost universally by imple-menters of parallel libraries and 
ompilers. In re
ent years numerous vari-ations on the theme of C++ for parallel 
omputing have appeared. See,for example [7, 28, 11, 2, 12, 21℄. 3



� Java omits various features of C and C++ that are 
onsidered \diÆ
ult"|notably, pointers. Poor 
ompiler analysis has often been blamed on thesefeatures. The inferen
e is that Java, like Fortran, may be a suitable sour
elanguage for highly optimizing 
ompilers (although dire
t eviden
e for thisbelief is still la
king).� Java 
omes with builtin multithreading. Independent threads may bes
heduled on di�erent pro
essors by a suitable runtime. In any 
ase mul-tithreading 
an be very 
onvenient in expli
it message-passing styles ofparallel programming [24℄.We will return to the question of whether parallel 
omputing may have impli-
ations for the development of Java in se
tion 5.The a
ronym \HPJava" was 
oined in a draft white paper produ
ed bymembers of the PCRC 
onsortium in the �rst half of 1996 [10℄. At NPAC wehave been experimenting with some of the ideas put forward there.1.1 Overview of this arti
le.Se
tion 2 outlines various options for parallel programming in Java|possibleways to express parallelism, and ways to handle inter-pro
ess 
ommuni
ation.The main te
hni
al 
ontent of the paper is in se
tions 3 and 4. Se
tion3 
ontains some 
ase studies in whi
h we explore the message-passing style ofprogramming in Java. We 
over parallel programming using so
kets dire
tly,and des
ribe our Java interfa
e to MPI. In se
tion 4 we dis
uss approa
hes todata-parallel programming in Java, and outline one of our demo programs.In this arti
le our emphasis is more on language bindings and interfa
e issues,and less on performan
e. Java 
ompilers are in an early stage of development,and we assume that 
urrent performan
e �gures are not indi
ative of futurepotential.2 Issues2.1 Approa
hes to Parallelism in JavaJava already supports 
on
urren
y through the thread me
hanism and monitorsyn
hronization built into the language. In this arti
le we are interested intruly parallel 
omputation, involving multiple CPUs. Su
h parallelism 
ould beintrodu
ed into Java in a number of ways.It 
ould be a
hieved through automati
 parallelization of sequential 
ode, butit is un
lear why this would be more su

essful for Java than for other languages.Alternatively, the Java virtual ma
hine for a shared memory multipro
essor 
ans
hedule the threads of a multi-threaded Java program on di�erent pro
essors.Some su

ess with these approa
hes has already been demonstrated [3℄. For4




omputation on a network (or distributed memory 
omputer) realisti
 optionsin
lude language extensions or dire
tives akin to HPF, or provision of libraries|
lass libraries|to support task parallelism or data parallelism.A popular approa
h in C++ has been to defer language extensions and
on
entrate on 
lass library support for parallel programming. The similaritiesbetween the two languages suggest this may be a fruitful avenue in Java too.The su

ess of this analogy is by no means automati
, however. Features su
has templates and user-de�ned operator overloading make the C++ languageinherently more 
ustomizable than Java. In C++ library-de�ned types 
an beused on an identi
al footing to primitive types|inline methods mean they 
anbe almost as eÆ
ient as primitive types. Less importantly, but 
onveniently, new
ontrol 
onstru
ts 
an often be simulated in C or C++ through use of ma
ros1.On grounds, presumably, of simpli
ity and transparen
y many of these featureshave been omitted from Java.Su
h 
aveats notwithstanding, this arti
le will 
on
entrate on 
lass librariesrather than language extensions. We will be working with 
lass libraries imple-mented in the standard Java development environment.Another open question is how multiple intera
ting Java tasks are to be initi-ated. Conventionally in network 
omputing, instru
tions to exe
ute a parti
ularuser task are sent to a spe
ialized daemon or se
ure server running on the targethost. Alternatively standard operating system daemons (rshd, rexe
d, . . . ) 
anbe used to the same e�e
t. Java brings some options of its own. One is to usestandard or enhan
ed Web servers to exe
ute Java byte-
odes. This approa
his predi
ated on the existen
e of 
ooperative servers, probably running suitableCGI s
ripts. Another option is to exploit Java-enabled browsers. Applets down-loaded from a parti
ular server 
an perform 
omputations and return the resultsto that server. In any 
ase the substantive improvement over 
onventional net-work 
omputing is that the byte-
odes 
an be downloaded on the 
y to targethosts, even in heterogenous networks. Conventionally, it was often ne
essary toinstall and 
ompile an appli
ation on ea
h target host before starting the taskremotely.2.2 Communi
ation in JavaThe standard Java API provides a simpli�ed interfa
e to Internet so
kets. Thisinterfa
e hides mu
h of the ugly detail involved in so
ket-programming at theat the traditional C/UNIX level. The java.net interfa
e provides less 
exibilitythan using the system 
alls dire
tly. On the other hand, Java's built-in supportfor threads adds some 
exibility in s
heduling 
ommuni
ations that is missingfrom raw C.We will give an example of so
ket programming in se
tion 3.1, but tradi-tionally this has not been a popular paradigm in the parallel pro
essing world.1Of 
ourse we 
ould run a prepro
essor over Java, but this is not a natural pro
edure inexisting Java environments 5



S
ienti�
 programmers have expe
ted to program inter-pro
ess 
ommuni
ationat a higher level, if at all. More su

essful s
hemes in
lude� Message-passing through language-level support [24, 15℄ or higher-levellibrary interfa
es [14℄.� Data parallelism. We restri
t the de�nition of \data parallelism" to 
overalgorithms that a
hieve parallelism through operations on distributed ar-rays. Syn
hronization is usually limited to bulk syn
hronization o

uringnaturally through 
olle
tive operations.� Communi
ation through shared memory or shared obje
ts. Some moreor less intri
ate me
hanism for inter-pro
ess syn
hronization is usuallyprovided.The 
ase studies in the rest of this arti
le restri
t themselves to message-passingand data parallelism. As observed in the previous se
tion, 
ommuni
ationthrough true shared memory is already impli
it in the Java thread model. Com-muni
ation through remote obje
ts is undoubtedly a natural and importantparadigm in Java, espe
ially for a

ess to remote servi
es [27, 22, 21℄, but wewill not dis
uss it further here.An orthogonal issue is whether the high-level libraries used to implementthese paradigms (presuming 
lass-library implementations) should be writtenin Java on top of the standard API, or whether they should be implemented asdire
t interfa
es to native 
ode. We will have more to say about this later.3 Message-passing 
ase studiesMessage-passing remains one of the most e�e
tive and widely used 
ommuni-
ation paradigms in parallel 
omputing. In this se
tion we 
ompare two ap-proa
hes to message-passing in Java, in the 
ontext of a s
ienti�
 appli
ation.The �rst approa
h is to use the so
ket interfa
e in the standard Java API. These
ond is to work through a Java interfa
e to the message-passing standard,MPI [14℄.To minimize distra
ting details, our appli
ation will be elementary: Con-way's Life automaton.3.1 Java so
ketsThe UNIX so
ket model is most suitable for programming 
lient-server appli-
ations. Typi
al s
ienti�
 parallel programs do not �t dire
tly into this model.Before a SPMD program 
an start two 
onditions must obtain: a pool of sym-metri
 peer pro
esses must have been 
reated, and ea
h peer must be able toaddress a message to any other. This situation is typi
ally bootstrapped as fol-lows. The program is invoked on one host. This host 
reates a listening so
ket.6



It sends instru
tions to servers on some other hosts (either expli
itly or througha 
ommand su
h as rsh) to start remote invo
ations of the program (somehowsending the number of the port on whi
h it is listening in the initiation message).Ea
h new pro
ess 
reates a listening so
ket and sends its port number to theoriginal pro
ess. The original pro
ess broad
asts these address to all its slaves.At this point ea
h pro
ess knows the port number on whi
h ea
h of its peers islistening. Either they establish all-to-all 
onne
tions now, before entering theSPMD main program, or the main program starts immediately, and 
onne
tionsare established dynami
ally when a message needs to be sent.Figures 1, 2 give a s
hemati
 outline of a distributed Life program usingjava.net. The fairly intri
ate 
ode sket
hed above for initialization and establish-ment of so
ket 
onne
tions has been absorbed into the de�nition of an auxilliary
lass hpj. Its interfa
e is
lass hpj {hpj(String[℄ args) ;int my_id() ;int num_pro
essor() ;DataInputStream Input(int id) ;DataOutputStream Output(int id) ;...}The members Input and Output return streams asso
iated with so
kets 
on-ne
ted to peer pro
esses. In the example an N by N Life board is dividedblo
kwise in one dimension, ea
h pro
essor holding a lo
al blo
k of width blo
k-Size.We note� Initialization is a 
omplex pro
edure and 
learly it should not be 
odedanew for ea
h appli
ation program.� In this example the messages were 
ontiguous byte ve
tors that 
ould betransmitted eÆ
iently through the read and write methods of the Javaso
ket API. In general the messages will have more 
omplex types and thedata may not be 
ontiguous in memory. Using the typed primitives of thestandard API may then in
ur extra 
osts of 
opying and type-
onversion.For reasons su
h as these we suspe
t that dire
t so
ket programming will remainunattra
tive to s
ienti�
 parallel programmers, even with the simpli�ed Javaso
ket API.
7




lass life_java {stati
 publi
 void main(String[℄ args) throws Ex
eption {hpj HPJava = new hpj(args);int np = HPJava.num_pro
essor();int id = HPJava.my_id();... 
ompute lo
al `blo
kSize', `blo
kBase' (avoiding empty blo
ks).// `blo
k' has `blo
kSize + 2' 
olumns. This allows for ghost 
ells.byte blo
k[℄[℄ = new byte[blo
kSize+2℄[N℄;... initialize lo
al blo
k with some pattern// Main update loop.int next = (id + 1) % np;int prev = (id + np - 1) % np;for(int iter = 0 ; iter < NITER ; iter++) {// Shift this blo
k's upper edge into next neighbour's lower ghost edgeHPJava.Output(next).write(blo
k[blo
kSize℄);HPJava.Output(next).flush();HPJava.Input(prev).read(blo
k[0℄);// Shift this blo
k's lower edge into prev neighbour's upper ghost edgeHPJava.Output(prev).write(blo
k[1℄);HPJava.Output(prev).flush();HPJava.Input(next).read(blo
k[blo
kSize+1℄);... Cal
ulate a blo
k of neighbour sums.... Update blo
k of board values.}}} Figure 1: Skeleton of so
ket-based Life program.
8



int sums[℄[℄ = new int[blo
kSize℄[N℄;....// Cal
ulate blo
k of neighbour sums.for(i = 0, ib = 1 ; i < blo
kSize ; i++, ib++)for(y = 0 ; y < N ; y++) {int y_n = (y+N-1) % N ;int y_p = (y+1) % N ;sums[i℄[y℄ =blo
k[ib - 1℄[y_n℄ + blo
k[ib - 1℄[y℄ + blo
k[ib - 1℄[y_p℄ +blo
k[ib℄ [y_n℄ + blo
k[ib℄ [y_p℄ +blo
k[ib + 1℄[y_n℄ + blo
k[ib + 1℄[y℄ + blo
k[ib + 1℄[y_p℄;}// Update blo
k of board values.for(i = 0, ib = 1 ; i < blo
kSize ; i++, ib++)for(y = 0 ; y < N ; y++)swit
h (sums[i℄[y℄) {
ase 2 : break;
ase 3 : blo
k[ib℄[y℄ = 1; break;default: blo
k[ib℄[y℄ = 0; break;} Figure 2: So
ket-based Life program (detail).
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3.2 MPI Interfa
eWe have produ
ed a Java interfa
e to an existing MPI implementation [25℄ usingJava native methods2The interfa
e has been tested on a 
luster of UltraSpar
 workstations runningSolaris3. Our interfa
e is modelled on the proposed C++ bindings of MPI. Forexample, many of the most basi
 fun
tions of the library are members of the
ommuni
ator 
lass, Comm:publi
 
lass Comm {publi
 int Size();publi
 int Rank();void Send(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) ;Status Re
v(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) ;...}Figure 3 is a straightforward trans
ription of the so
ket-based program inthe last se
tion4. Our MPI intefa
e uses a slightly di�erent model for a

essingglobal resour
es|stati
 members on an MPI 
lass:
lass MPI {stati
 Init() ;stati
 Finalize() ;publi
 stati
 Comm WORLD ;publi
 stati
 Datatype BYTE ;publi
 stati
 Datatype INT ;...}rather than dynami
 members of a jpi 
lass|but this di�eren
e is not parti
u-larly signi�
ant (yet another approa
h will be taken in the example of se
tion4.1). Otherwise the 
orresponden
e between this 
ode and the so
ket 
ode is2Forearlier work on interfa
ing Java to PVM see http://www.isye.gate
h.edu/
hmsr/JavaPVM/and http://www.
s.virginia.edu/~ajfzj/jpvm.html3Interfa
ing Java to MPICH/P4 was not straightforward, due to unpleasant intera
tionsbetween the Java run-time and the underlying P4 implementation. For example, standardimplementations of both use the UNIX SIGALRM signal. We found it ne
essary to pat
hthe MPICH 1.0.13 release to work round these in
ompatibilities. The ne
essary pat
hes areavailable from us on request.4MPI aÆ
ionados will note that the use of standard mode send is \unsafe", and 
oulddeadlo
k if the system does not provide enough bu�ering. The same remark 
ould be madeabout the so
ket-based version 10




lass Life {stati
 publi
 void main(String[℄ args) {MPI.Init(args);int np = MPI.WORLD.Size();int id = MPI.WORLD.Rank();... 
ompute lo
al `blo
kSize', `blo
kBase' (avoiding empty blo
ks).// `blo
k' has `blo
kSize + 2' 
olumns. This allows for ghost 
ells.byte blo
k[℄[℄ = new byte[blo
kSize + 2℄[N℄ ;... initialize lo
al blo
k with some pattern// Main update loop.int next = (id + 1) % np;int prev = (id + np - 1) % np;for(int iter = 0 ; iter < NITER ; iter++) {// Shift this blo
k's upper edge into next neighbour's lower ghost edgeMPI.WORLD.Send(blo
k[blo
kSize℄, N, MPI.BYTE, next, 0);MPI.WORLD.Re
v(blo
k[0℄, N, MPI.BYTE, prev, 0);// Shift this blo
k's lower edge into prev neighbour's upper ghost edgeMPI.WORLD.Send(blo
k[1℄, N, MPI.BYTE, prev, 0);MPI.WORLD.Re
v(blo
k[blo
kSize + 1℄, N, MPI.BYTE, next, 0);... Cal
ulate blo
k of neighbour sums.... Update blo
k of board values.}MPI.Finalize();}} Figure 3: Simple MPI Life program.
11



dire
t. In the next se
tion we illustrate some of the added value that an MPIinterfa
e brings.We have broken with the usual MPI 
onvention of returning an error statusfrom every fun
tion. This pra
ti
e is in
onvenient in Java be
ause arguments
annot be passed by referen
e and dire
tly modi�ed. This makes the returnvalue pre
ious, and using it up on an error value that everybody ignores isa waste. Java has a well integrated ex
eption me
hanism for ignoring errorinformation.3.3 Derived data types and higher-level MPI featuresDes
ription of the data bu�ers passed to 
ommuni
ation operations presentssome spe
ial problems in Java. Existing MPI bindings depend on a linear mem-ory model and expli
it or impli
it use of pointers. Java does not have a linearmemory model. Even behind the s
enes a Java array has no uniquely de�nedaddress in memory, be
ause the garbage 
olle
tor is allowed to relo
ate ob-je
ts unpredi
atably during program exe
ution to avoid fragmentation of itsworkspa
e. Our Java interfa
e tries to retain as mu
h of the MPI derived data-type me
hanism as pra
ti
al, but some fun
tionality has been sa
ri�
ed. Thebu�er argument passed to a send or re
eive operation must be a one-dimensionalarray of primitive type. Any o�set spe
i�ed in a derived type argument thenrefers to a displa
ement within this one-dimensional array, never a displa
ementin memory.All MPI derived types expressible through our interfa
e have a uniquelyde�ned base type|a Java primitive type. Interfa
es to MPI TYPE HVECTORand MPI TYPE HINDEXED are provided, but the strides and displa
ementsare in units of the base type, not bytes. An interfa
e to MPI TYPE STRUCTis provided, but all 
omponent types in the \stru
t" must have the same basetype.In the 
on
rete Java binding of the send fun
tion, for example,void Send(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) ;the formal buf argument is presented as a generi
 Java Obje
t. As explainedabove, the a
tual argument must be a linear array. The se
ond argument isthe o�set in this array of the �rst element of the message5. The remainingarguments 
orrespond dire
tly to arguments of MPI Send. The base type of thedatatype argument must be the type of the elements of buf.Figures 4, 5 sket
h a version of the Life program illustrating several of thesefeatures. As well as derived types, this program uses the Cartesian topologiesof MPI. The Cart 
lass is derived from Comm. In the example, the topology5This o�set is in units of the buf array element|or the base type of datatype|not ofany 
ompound type. The Obje
t + o�set presentation is reminis
ent of the interfa
e of thearrayCopy utility in the standard Java API. 12




lass Life {void main(String args) {MPI.Init(args) ;int dims [℄ = new int [2℄ ;... Set `dims', et
Cart p = new Cart(MPI.WORLD, dims, periods, false) ;int 
oords = new int [2℄ ;p.Get(dims, periods, 
oords) ;... Compute lo
al `blo
kSizeX', `blo
kBaseX', `blo
kSizeY', `blo
kBaseY'.// Create `blo
k', allowing for ghost 
ells.int sX = blo
kSizeX + 2 ;int sY = blo
kSizeY + 2 ;blo
k = new byte [sX * sY℄ ;... Define initial state of Life board// Pre
ompute parameters of shift 
ommuni
ations.Datatype edgeXType = MPI.BYTE.Contiguous(sY) ;edgeXType.Commit() ;Datatype edgeYType = MPI.BYTE.Ve
tor(sX, 1, sY) ;edgeYType.Commit() ;CartShift pX = p.shift(0, 1) ;CartShift nX = p.shift(0, -1) ;CartShift pY = p.shift(1, 1) ;CartShift nY = p.shift(1, -1) ;// Main update loop.for(int iter = 0 ; iter < NITER ; iter++) {... Exe
ute shifts.... Cal
ulate blo
k of neighbour sums.... Update blo
k of board values.}MPI.Finalize();}...} Figure 4: Life program using full MPI.
13



// Exe
ute shifts...// Shift this blo
k's upper x edge into next neighbour's lower ghost edgep.Sendre
v(blo
k, blo
kSizeX * sY, 1, edgeXType, pX.dst, 0,blo
k, 0, 1, edgeXType, pX.sr
, 0) ;// Shift this blo
k's lower x edge into prev neighbour's upper ghost edgep.Sendre
v(blo
k, sY, 1, edgeXType, nX.dst, 0,blo
k, (blo
kSizeX + 1) * sY, 1, edgeXType, nX.sr
, 0) ;// Shift this blo
k's upper y edge into next neighbour's lower ghost edgep.Sendre
v(blo
k, blo
kSizeY, 1, edgeYType, pY.dst, 0,blo
k, 0, 1, edgeYType, pY.sr
, 0) ;// Shift this blo
k's lower y edge into prev neighbour's upper ghost edgep.Sendre
v(blo
k, 1, 1, edgeYType, nY.dst, 0,blo
k, blo
kSizeY + 1, 1, edgeYType, nY.sr
, 0) ;Figure 5: Full MPI Life program (detail).p represents a two dimensional periodi
 grid of pro
esses. The Get memberreturns the 
oordinates of the lo
al pro
ess. From these the parameters of thelo
al array blo
k are 
omputed.The values sX, sY represent the sides of the lo
ally held array segment,in
luding ghost regions. This segment is 
reated as a one-dimensional Javaarray, blo
k. The derived type edgeXType des
ribes the stru
ture of ghost areaon the upper or lower x sides: 
ontiguous regions of the blo
k array of extent sY.The type edgeYType des
ribes the y-side ghost areas: non-
ontiguous regions of
ount sX, regular stride sY.The shiftmember of Cart 
orresponds to the MPI fun
tion MPI CART SHIFT:it returns the sour
e and destination pro
essors for a 
y
li
 shift. The Javabinding returns these values in an obje
t of 
lass CartShift whi
h just 
on-tains two integers. Finally, in the main loop, the shifts are exe
uted by usingthe Comm member Sendre
v, whi
h 
orresponds to the standard MPI fun
tionMPI Sendre
v. This performs a send and a re
eive 
on
urrently (avoiding apotential deadlo
k in the implementations given in the previous se
tions).4 Data parallellism in JavaThe most 
omprehensive statement of the data parallel model of 
omputation isthe High Performan
e Fortran standard [13, 23℄. That do
ument is supposed to14



embody mu
h of the 
olle
tive experien
e of the s
ienti�
 parallel programming
ommunity. Presumably, then, any attempt to in
orporate data parallelism intoJava should build on the HPF model wherever possible.The HPF de�nition 
onsists of a large set of dire
tives that 
an be used toannotate a standard Fortran program, a small handful of language extensions,and a library of new fun
tions for operating on arrays. An initial data-parallelJava may well be implemented through a 
lass-library. This library would as-sume the r�oles of the dire
tives and language extensions in HPF as well as theHPF library.We will loosely distinguish two di�erent levels at whi
h a library implemen-tation of the HPF semanti
s 
an operate.� The �rst is the level of the so-
alled run-time libraries [1, 8, 9, 6℄. This kindof library provides fun
tions for s
heduling and exe
uting spe
i�
 patternsof 
olle
tive 
ommuni
ation already identi�ed by a 
ompiler (in the HPF
ase) or else by an appli
ation programmer using the library dire
tly.Su
h a library may also provide fun
tions for translating between globalsubs
ripts and lo
al, node-level subs
ripts|ie, for 
omputing the mappingof a distributed array into the address spa
es of individual pro
essors.� Alternatively, a library 
an operate at a higher level that 
on
eals allaspe
ts of data lo
alization and transfer from the user. The only responsi-bility of the user is to spe
ify the distribution format of arrays when theyare de
lared. Subsequently the user just tells the library to do parti
ularoperations on parti
ular distributed arrays. It is left to the library to workout whether or not a 
ommuni
ation is implied. In e�e
t the library isoperating at the same level as the HPF language. An example of su
h alibrary is A++/P++ [26℄.In either 
ase a 
lass library version is likely to in
lude 
lasses to des
ribe theelements of the HPF data model, su
h as pro
essor arrangements and the dis-tributed arrays themselves.4.1 Parallel arrays and 
olle
tive 
ommuni
ationAt the run-time level, a 
lass library implementation of the HPF model is likelyto in
lude� Classes to des
ribe pro
ess arrays and distributed data arrays.� Classes or fun
tions to simplify a

ess to lo
ally held elements of a dis-tributed array (in
luding parallel iteration).� Fun
tions for 
olle
tive 
ommuni
ation through operations on distributedarrays: regular \
opying" operations in
luding shifts and transposes, arith-meti
 redu
tion operations, irregular gather/s
atter operations, and so on.15



Our �rst experiments with a Java binding only tou
h the surfa
e of the fullHPF semanti
s, but they provide some hints about a general framework. Theinterfa
e given here borrows from the C++ 
lass library, Adlib, developed byone of us [6℄.A distributed array is parametrized by a member of the Array 
lass. In C++Array would naturally be a template for a 
ontainer 
lass. In Java, generi
 
on-tainer 
lasses are problemati
. Without the template me
hanism, the obviousoptions are that a 
ontainer holds items of type Obje
t, the base 
lass for all non-primitive types, or that a separate 
ontainer 
lass is provided for ea
h allowedtype of element. The �rst option doesn't allow for array elements of primitivetype, and prevents 
ompile-time type-
he
king (reminis
ent of using void* inC). The se
ond approa
h presumably involves restri
ting elements to the �niteset of primitive types (int, 
oat, . . . )6. For now we have side-stepped the issueby leaving the data elements out of the Array 
lass. Array de�nes the shapeand distribution of an array, but spa
e for elements is allo
ated in a separatelyde
lared ve
tor of the appropriate type7.The 
onstru
tor for an Array de�nes its shape and distribution format. Thisis expressed through two auxilliary 
lasses: the Pro
s and Range 
lasses. ThePro
s 
lass 
orresponds dire
tly to the HPF pro
essor arrangement. It mapsthe set of physi
al pro
esses on whi
h the program is exe
uting to a multi-dimensional grid. A Range des
ribes a single dimension of an HPF array. Itembodies an array extent (the size of the array in the dimension 
on
erned),and a mapping of the subs
ript range to a dimension of a Pro
s grid.In our pilot implementation any parallel Java appli
ation is written as a
lass extending the library 
lass Node. The Node 
lass maintains some globalinformation and provides various 
olle
tive operations on arrays as memberfun
tions. The 
ode for the \main program" goes in the run member of theappli
ation 
lass8.A simpli�ed version of the 
ode for the \Life" demo is given in �gure 6.The obje
t p represents a 2 by 2 pro
ess grid. The Pro
s 
onstru
tor takesthe 
urrent Node obje
t as an argument, from whi
h it obtains information onthe available physi
al pro
esses. In this simpli�ed example we assume that theprogram exe
utes on exa
tly four pro
essors.The obje
ts x and y represent index ranges of size N distributed over the�rst and se
ond dimensions of the grid p. The default distribution format isblo
kwise. Cy
li
 distribution format 
an also be spe
i�ed by using a rangeobje
t of 
lass CRange, whi
h is derived from Range (the pilot implementationdoes not provide any more general distribution or alignment options).6Perhaps a good 
ompromise is to provide one 
ontainer 
lass for ea
h primitive type andone for Obje
t.7Confusingly enough, this makes our Array more akin to an HPF template than an HPFarray. Needless to say, there is no 
onne
tion between C++ templates and HPF templates.8This approa
h is modelled on the Thread and Applet 
lasses in the standard Java API.Other approa
hes to providing library-wide resour
es were illustrated in earlier se
tions.16



publi
 
lass Life extends Node implements Runnable {...publi
 void run() {Pro
s p = new Pro
s(this, 2, 2) ;Range x = new Range(N, p, 0) ;Range y = new Range(N, p, 1) ;Array r = new Array(p, x, y) ;int s = r.seg();byte[℄ w = new byte[s℄;byte[℄ 
n_ = new byte[s℄;byte[℄ 
p_ = new byte[s℄;... et
, 
reate arrays for 8 neighbours// Initialize the Life boardfor(r.forall(); r.test(); r.next())w[r.sub()℄ = fun(r.idx(0), r.idx(1)) ;// Main loopfor (int k=0; k<NITER; k++) {// Get neighboursshift(
n_, w, r, 0, 1, CYCLIC);shift(
p_, w, r, 0, -1, CYCLIC);... et
, 
opy arrays for 8 neighbours// Life update rulefor(r.forall(); r.test(); r.next()) {int i = r.sub() ;swit
h (
n_[i℄ + 
p_[i℄ + 
_n[i℄ + 
_p[i℄ +
nn[i℄ + 
np[i℄ + 
pn[i℄ + 
pp[i℄) {
ase 2 : break;
ase 3 : w[i℄ = 1; break;default: w[i℄ = 0; break;}}}}} Figure 6: Simpli�ed 
ode of the Life demo program.17



The obje
t r represents the shape and distribution of a two dimensionalarray. This \template" is be shared by several distributed arrays|it does not
ontain a data ve
tor. The data ve
tors that hold the lo
al segments of arraysare 
reated separately using the inquiry fun
tion seg, whi
h returns the numberof lo
ally held elements. In the example the elements of the main data arrayare held in w. The extra arrays 
n , 
p , ..., 
nn, ... will be used to hold arraysof neighbour values9.The \forall loop" initializing w should be read as something likeforall(i in range x, j in range y)w(i, j) = fun(i, j)where fun is some fun
tion of the global indi
es de�ning the initial state of theLife board. The members forall, test, next update internal state of r so thatr.sub() returns the lo
al subs
ript for the 
urrent iteration, and r.idx(0) andr.idx(1) return the global index values for the 
urrent iteration. We are using ras an iterator 
lass10.The main loop uses 
y
li
 shift operations to obtain neighbours, 
ommuni-
ating data where ne
essary. The shift operation is a member of the Node 
lass.It should be overloaded to a

ept data ve
tors of any primitive type|here thearray elements are bytes.Finally w is updated in terms of its neighbours.Note some 
hara
teristi
 features of the data-parallel style of programming:� The distribution format of the arrays 
an be 
hanged just by altering a fewparameters at the start of the program|the main program is insensitiveto these details� low level message-passing is abstra
ted into high-level 
olle
tive operationson distributed array stru
tures.It may be un
lear that this framework has the same power as HPF. If thedistributed array model is extended to the full HPF model, as it 
an be, andthe shift operation is augmented by some more powerful 
olle
tive operationsin
luding gather and s
atter operations parametrized by subs
ript arrays, we
laim that it does. The proof lies in the observation that this is, as advertised,a simpli�ed model of the kind of run-time library that various HPF translatorstarget. This is not to say that programming in this style is always as straight-forward as the example given here, or as 
omprehensible as the 
orrespondingHPF program (if it was, there would be no need for HPF).9Here we will use whole arrays of neighbours and a shift operation. This is arguably themore 
onventional approa
h in a data-parallel setting, but the the ghost-edge me
hanism 
analso be �tted into this framework.10Our Array 
lass is per
hed somewhere between STL 
ontainer and iterator 
lasses. Thisis a slightly awkward position, and it may be more satifa
tory to separate these fun
tions intodi�erent 
lasses. 18



4.2 \Array syntax" in Java.The higher level approa
h would make Array 
lasses look like true 
ontainer
lasses (for a restri
ted set of types) and all operations on arrays 
olle
tive,something like:ArrayFloat a = new ArrayFloat(p, x, y) ;ArrayFloat b = new ArrayFloat(p, x, y) ;ArrayInt 
 = new ArrayInt(p, x, y) ;a = MATMUL(b, 
) ;Communi
ation would be handled automati
ally inside array operations likeMATMUL. Individual array elements would not be a

essed in the Java programex
ept, possibly, through getElement, putElement members.This s
heme 
an be implemented on top of an SPMD Java array libraryof the kind outlined in the previous se
tion or by making the Java run as a
oordination program 
ontrolling a parallel ba
k end. It 
an be 
ompared with[26, 16℄.So far we have not attempted to implement (or spe
ify in detail) su
h anapproa
h for Java. The la
k of user-de�ned operator-overloading may be par-ti
ularly frustrating here.5 Dis
ussionWe have explored the pra
ti
ality of doing parallel 
omputing in Java, and ofproviding Java interfa
es to High Performan
e Computing software. For variousreasons, the su

ess of this exer
ise was not a foregone 
on
lusion. Java sits ona virtual ma
hine model that is signi�
antly di�erent to the hardware-orientedmodel whi
h C or Fortran exploit dire
tly. Java dis
ourages or prevents dire
ta

ess to the some of the fundamental resour
es of the underlying hardware(most extremely, its memory).Our earliest experiments in this dire
tion (in
luding the work des
ribed inse
tion 4, whi
h predates the MPI work) involved working entirely within Java,building new software on top of the 
ommuni
ation fa
ilities of the standardAPI. The more re
ent work in se
tions 3.2 and 3.3 involved 
reating a Javainterfa
e to an existing HPC pa
kage. Whi
h is the better strategy? In the longterm Java may be
ome a major implementation language for large softwarepa
kages like MPI. It 
ertainly has advantages in respe
t of portability that
ould simplify implementations dramati
ally. In the immediate term re
odingthese pa
kages does not appear so attra
tive. Java wrappers to existing softwarelook more sensible. On a 
autionary note, our experien
e with MPI suggeststhat interfa
ing Java to non-trivial 
ommuni
ation pa
kages may be less easythan it sounds. Nevertheless, we intend in the future to 
reate a Java interfa
eto an existing run-time library for data parallel 
omputation.19



So is Java, as it stands, a good language for High Performan
e Computing?It still has to be demonstrated that Java 
an be 
ompiled to 
ode of eÆ
ien
y
omparable with C or Fortran. Many avenues are being followed simultaneouslytowards a higher performan
e Java. Besides the Java 
hip e�ort of Sun, it hasbeen reported at this workshop that IBM is developing an optimizing Java 
om-piler whi
h produ
es binary 
ode dire
tly, that Ri
e University and Ro
hesterUniversity are working on optimization and restru
turing of byte
ode generatedby java
, and that Indiana University is working on sour
e restru
turing to par-allelize Java. Parallel interpretation of byte
ode is also an emerging pra
ti
e.For example, the IBM JVM, an implementation of JVM on shared memoryar
hite
tures, was released in spring 1996, and UIUC has re
ently started workaimed at parallel interpretation of Java byte
ode for distributed memory sys-tems.Another promising approa
h under investigation [18℄ is to integrate interpre-tation and 
ompilation te
hniques for parallel exe
ution of Java programs. Insu
h a system, a partially ordered set of interpretive frames is generated by anII/CVM 
ompiler. A frame is a des
ription of some subtask, whose granularitymay range from a single s
alar assignment statement to a solver for a systemof equations. Under supervision of the virtual ma
hine (II/CVM), the a
tionsspe
i�ed in a frame may be performed in one of three ways:� Exe
uted by an interpretive module dire
tly, whi
h also in
orporates JIT
ompilation 
apability.� Some pre
ompiled 
omputational library fun
tion is invoked lo
ally to a
-
omplish the task; this fun
tion may be exe
uted sequentially or in paral-lel.� The frame is sent to some registered remote system, whi
h will get thework done, on
e again either sequentially or in parallel.With this approa
h, optimized binary 
odes for well formed 
omputation sub-tasks exist in runtime libraries, supporting a high level interpretive environment.Task parallelism is observed among di�erent frames exe
uted by the three me
h-anisms simultaneously, while data parallelism is observed in the exe
ution ofsome of the runtime fun
tions.Presuming these e�orts satisfa
torily address the performan
e issue, the se
-ond aspe
t in question 
on
erns expressiveness of the Java language. Our �nalinterfa
e to MPI is quite elegant, and provides mu
h of the fun
tionality of thestandard C and Fortran bindings. But 
reating this interfa
e was a more diÆ
ultpro
ess than one might hope, both in terms of getting a good spe
i�
ation, andin terms of making the implementation work. In se
tion 4 we noted that the la
kof features like C++ templates (or any form of parametri
 polymorphism) anduser-de�ned operator overloading (available in many modern languages, fromfun
tional programming languages to Fortran) made it diÆ
ult to produ
e a20




ompletely satisfying interfa
e to a data parallel library. The Java language as
urrently de�ned imposes various limits to the 
reativity of the programmer.In many respe
ts Java is undoubtedly a better language than Fortran. Itis obje
t-oriented to the 
ore and highly dynami
, and there is every reason tosuppose that su
h features will be as valuable in s
ienti�
 
omputing as in anyother programming dis
ipline. But to displa
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