
Syracuse University Syracuse University 

SURFACE SURFACE 

Northeast Parallel Architecture Center College of Engineering and Computer Science 

1997 

Experiments with "HP Java" Experiments with "HP Java" 

Bryan Carpenter 
Syracuse University 

Yuh-Jye Chang 
Syracuse University 

Geoffrey C. Fox 
Syracuse University 

Donald Leskiw 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/npac 

 Part of the Programming Languages and Compilers Commons 

Recommended Citation Recommended Citation 
Carpenter, Bryan; Chang, Yuh-Jye; Fox, Geoffrey C.; and Leskiw, Donald, "Experiments with "HP Java"" 
(1997). Northeast Parallel Architecture Center. 32. 
https://surface.syr.edu/npac/32 

This Working Paper is brought to you for free and open access by the College of Engineering and Computer 
Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Fnpac%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/32?utm_source=surface.syr.edu%2Fnpac%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Experiments with \HPJava"Bryan Carpenter, Yuh-Jye Chang,Geo�rey Fox, Donald Leskiw, Xiaoming Li,Northeast Parallel Arhitetures Centre,Syrause University,Syrause, New YorkMay 19, 2000AbstratWe onsider the possible r�ole of Java as a language for High Perfor-mane Computing. After disussing reasons why Java may be a naturalandidate for a portable parallel programming language, we desribe sev-eral ase studies. These over Java soket programming, message-passingthrough a Java interfae to MPI, and lass libraries for data-parallel pro-gramming in Java.

1



Contents1 Introdution 31.1 Overview of this artile. . . . . . . . . . . . . . . . . . . . . . . . 42 Issues 42.1 Approahes to Parallelism in Java . . . . . . . . . . . . . . . . . 42.2 Communiation in Java . . . . . . . . . . . . . . . . . . . . . . . 53 Message-passing ase studies 63.1 Java sokets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2 MPI Interfae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.3 Derived data types and higher-level MPI features . . . . . . . . . 124 Data parallellism in Java 144.1 Parallel arrays and olletive ommuniation . . . . . . . . . . . 154.2 \Array syntax" in Java. . . . . . . . . . . . . . . . . . . . . . . . 195 Disussion 19

2



1 IntrodutionThe explosion of interest in Java over the last year has been driven largely by itsr�ole in bringing a new generation of interative pages to the World Wide Web.Undoubtedly various features of the language|ompatness, byte-ode porta-bility, seurity, and so on|make it partiularly attrative as an implementationlanguage for applets embedded in Web pages. But it is lear that the ambitionsof the Java development team go well beyond enhaning the funtionality ofHTML douments. Aording to [20℄\Java is designed to meet the hallenges of appliation developmentin the ontext of heterogeneous, network-wide distributed environ-ments. Paramount among these hallenges is seure delivery of ap-pliations that onsume the minimum of system resoures, an runon any hardware and software platform, and an be extended dy-namially."Several of these onerns are mirrored in developments in the High Perfor-mane Computing world over a number of years. A deade ago the fous ofinterest in the parallel omputing ommunity was on parallel hardware. A par-allel omputer was typially built from speialized proessors integrated througha proprietary high-performane ommuniation swith. If the mahine also hadto be programmed in a proprietary language, that was an aeptable prie forthe bene�ts of using a superomputer. This attitude was not sustainable as oneparallel arhiteture gave way to another, and the ost of porting software be-ame exorbitant. For several years now, portability aross platforms had beena entral onern in parallel omputing [4, 5, 14, 13, 23℄.More fundamentally, the assumption that high performane omputing willbe done primarily on speialized superomputers is questioned inreasingly.Rapid strides in performane and onnetivity of ordinary workstations andPCs make it look equally possible that the future of parallel omputing will beon loal area networks, or even the Internet [19, 17℄.With Java positioned to beome a standard programming language on theInternet, and sienti� parallel proessing edging towards network-based om-putation, it is natural to ask how these two tehnologies will interat. Howsuitable is Java for sienti� omputing, and do lessons from researh in parallelomputing have impliations for the development of Java?Popular alaim aside, there are some reasons to think that Java may be agood language for sienti� and parallel programming.� Java is a desendant of C++. C and C++ are used inreasingly in si-enti� programming; they are already used almost universally by imple-menters of parallel libraries and ompilers. In reent years numerous vari-ations on the theme of C++ for parallel omputing have appeared. See,for example [7, 28, 11, 2, 12, 21℄. 3



� Java omits various features of C and C++ that are onsidered \diÆult"|notably, pointers. Poor ompiler analysis has often been blamed on thesefeatures. The inferene is that Java, like Fortran, may be a suitable sourelanguage for highly optimizing ompilers (although diret evidene for thisbelief is still laking).� Java omes with builtin multithreading. Independent threads may besheduled on di�erent proessors by a suitable runtime. In any ase mul-tithreading an be very onvenient in expliit message-passing styles ofparallel programming [24℄.We will return to the question of whether parallel omputing may have impli-ations for the development of Java in setion 5.The aronym \HPJava" was oined in a draft white paper produed bymembers of the PCRC onsortium in the �rst half of 1996 [10℄. At NPAC wehave been experimenting with some of the ideas put forward there.1.1 Overview of this artile.Setion 2 outlines various options for parallel programming in Java|possibleways to express parallelism, and ways to handle inter-proess ommuniation.The main tehnial ontent of the paper is in setions 3 and 4. Setion3 ontains some ase studies in whih we explore the message-passing style ofprogramming in Java. We over parallel programming using sokets diretly,and desribe our Java interfae to MPI. In setion 4 we disuss approahes todata-parallel programming in Java, and outline one of our demo programs.In this artile our emphasis is more on language bindings and interfae issues,and less on performane. Java ompilers are in an early stage of development,and we assume that urrent performane �gures are not indiative of futurepotential.2 Issues2.1 Approahes to Parallelism in JavaJava already supports onurreny through the thread mehanism and monitorsynhronization built into the language. In this artile we are interested intruly parallel omputation, involving multiple CPUs. Suh parallelism ould beintrodued into Java in a number of ways.It ould be ahieved through automati parallelization of sequential ode, butit is unlear why this would be more suessful for Java than for other languages.Alternatively, the Java virtual mahine for a shared memory multiproessor anshedule the threads of a multi-threaded Java program on di�erent proessors.Some suess with these approahes has already been demonstrated [3℄. For4



omputation on a network (or distributed memory omputer) realisti optionsinlude language extensions or diretives akin to HPF, or provision of libraries|lass libraries|to support task parallelism or data parallelism.A popular approah in C++ has been to defer language extensions andonentrate on lass library support for parallel programming. The similaritiesbetween the two languages suggest this may be a fruitful avenue in Java too.The suess of this analogy is by no means automati, however. Features suhas templates and user-de�ned operator overloading make the C++ languageinherently more ustomizable than Java. In C++ library-de�ned types an beused on an idential footing to primitive types|inline methods mean they anbe almost as eÆient as primitive types. Less importantly, but onveniently, newontrol onstruts an often be simulated in C or C++ through use of maros1.On grounds, presumably, of simpliity and transpareny many of these featureshave been omitted from Java.Suh aveats notwithstanding, this artile will onentrate on lass librariesrather than language extensions. We will be working with lass libraries imple-mented in the standard Java development environment.Another open question is how multiple interating Java tasks are to be initi-ated. Conventionally in network omputing, instrutions to exeute a partiularuser task are sent to a speialized daemon or seure server running on the targethost. Alternatively standard operating system daemons (rshd, rexed, . . . ) anbe used to the same e�et. Java brings some options of its own. One is to usestandard or enhaned Web servers to exeute Java byte-odes. This approahis prediated on the existene of ooperative servers, probably running suitableCGI sripts. Another option is to exploit Java-enabled browsers. Applets down-loaded from a partiular server an perform omputations and return the resultsto that server. In any ase the substantive improvement over onventional net-work omputing is that the byte-odes an be downloaded on the y to targethosts, even in heterogenous networks. Conventionally, it was often neessary toinstall and ompile an appliation on eah target host before starting the taskremotely.2.2 Communiation in JavaThe standard Java API provides a simpli�ed interfae to Internet sokets. Thisinterfae hides muh of the ugly detail involved in soket-programming at theat the traditional C/UNIX level. The java.net interfae provides less exibilitythan using the system alls diretly. On the other hand, Java's built-in supportfor threads adds some exibility in sheduling ommuniations that is missingfrom raw C.We will give an example of soket programming in setion 3.1, but tradi-tionally this has not been a popular paradigm in the parallel proessing world.1Of ourse we ould run a preproessor over Java, but this is not a natural proedure inexisting Java environments 5



Sienti� programmers have expeted to program inter-proess ommuniationat a higher level, if at all. More suessful shemes inlude� Message-passing through language-level support [24, 15℄ or higher-levellibrary interfaes [14℄.� Data parallelism. We restrit the de�nition of \data parallelism" to overalgorithms that ahieve parallelism through operations on distributed ar-rays. Synhronization is usually limited to bulk synhronization ouringnaturally through olletive operations.� Communiation through shared memory or shared objets. Some moreor less intriate mehanism for inter-proess synhronization is usuallyprovided.The ase studies in the rest of this artile restrit themselves to message-passingand data parallelism. As observed in the previous setion, ommuniationthrough true shared memory is already impliit in the Java thread model. Com-muniation through remote objets is undoubtedly a natural and importantparadigm in Java, espeially for aess to remote servies [27, 22, 21℄, but wewill not disuss it further here.An orthogonal issue is whether the high-level libraries used to implementthese paradigms (presuming lass-library implementations) should be writtenin Java on top of the standard API, or whether they should be implemented asdiret interfaes to native ode. We will have more to say about this later.3 Message-passing ase studiesMessage-passing remains one of the most e�etive and widely used ommuni-ation paradigms in parallel omputing. In this setion we ompare two ap-proahes to message-passing in Java, in the ontext of a sienti� appliation.The �rst approah is to use the soket interfae in the standard Java API. Theseond is to work through a Java interfae to the message-passing standard,MPI [14℄.To minimize distrating details, our appliation will be elementary: Con-way's Life automaton.3.1 Java soketsThe UNIX soket model is most suitable for programming lient-server appli-ations. Typial sienti� parallel programs do not �t diretly into this model.Before a SPMD program an start two onditions must obtain: a pool of sym-metri peer proesses must have been reated, and eah peer must be able toaddress a message to any other. This situation is typially bootstrapped as fol-lows. The program is invoked on one host. This host reates a listening soket.6



It sends instrutions to servers on some other hosts (either expliitly or througha ommand suh as rsh) to start remote invoations of the program (somehowsending the number of the port on whih it is listening in the initiation message).Eah new proess reates a listening soket and sends its port number to theoriginal proess. The original proess broadasts these address to all its slaves.At this point eah proess knows the port number on whih eah of its peers islistening. Either they establish all-to-all onnetions now, before entering theSPMD main program, or the main program starts immediately, and onnetionsare established dynamially when a message needs to be sent.Figures 1, 2 give a shemati outline of a distributed Life program usingjava.net. The fairly intriate ode skethed above for initialization and establish-ment of soket onnetions has been absorbed into the de�nition of an auxilliarylass hpj. Its interfae islass hpj {hpj(String[℄ args) ;int my_id() ;int num_proessor() ;DataInputStream Input(int id) ;DataOutputStream Output(int id) ;...}The members Input and Output return streams assoiated with sokets on-neted to peer proesses. In the example an N by N Life board is dividedblokwise in one dimension, eah proessor holding a loal blok of width blok-Size.We note� Initialization is a omplex proedure and learly it should not be odedanew for eah appliation program.� In this example the messages were ontiguous byte vetors that ould betransmitted eÆiently through the read and write methods of the Javasoket API. In general the messages will have more omplex types and thedata may not be ontiguous in memory. Using the typed primitives of thestandard API may then inur extra osts of opying and type-onversion.For reasons suh as these we suspet that diret soket programming will remainunattrative to sienti� parallel programmers, even with the simpli�ed Javasoket API.
7



lass life_java {stati publi void main(String[℄ args) throws Exeption {hpj HPJava = new hpj(args);int np = HPJava.num_proessor();int id = HPJava.my_id();... ompute loal `blokSize', `blokBase' (avoiding empty bloks).// `blok' has `blokSize + 2' olumns. This allows for ghost ells.byte blok[℄[℄ = new byte[blokSize+2℄[N℄;... initialize loal blok with some pattern// Main update loop.int next = (id + 1) % np;int prev = (id + np - 1) % np;for(int iter = 0 ; iter < NITER ; iter++) {// Shift this blok's upper edge into next neighbour's lower ghost edgeHPJava.Output(next).write(blok[blokSize℄);HPJava.Output(next).flush();HPJava.Input(prev).read(blok[0℄);// Shift this blok's lower edge into prev neighbour's upper ghost edgeHPJava.Output(prev).write(blok[1℄);HPJava.Output(prev).flush();HPJava.Input(next).read(blok[blokSize+1℄);... Calulate a blok of neighbour sums.... Update blok of board values.}}} Figure 1: Skeleton of soket-based Life program.
8



int sums[℄[℄ = new int[blokSize℄[N℄;....// Calulate blok of neighbour sums.for(i = 0, ib = 1 ; i < blokSize ; i++, ib++)for(y = 0 ; y < N ; y++) {int y_n = (y+N-1) % N ;int y_p = (y+1) % N ;sums[i℄[y℄ =blok[ib - 1℄[y_n℄ + blok[ib - 1℄[y℄ + blok[ib - 1℄[y_p℄ +blok[ib℄ [y_n℄ + blok[ib℄ [y_p℄ +blok[ib + 1℄[y_n℄ + blok[ib + 1℄[y℄ + blok[ib + 1℄[y_p℄;}// Update blok of board values.for(i = 0, ib = 1 ; i < blokSize ; i++, ib++)for(y = 0 ; y < N ; y++)swith (sums[i℄[y℄) {ase 2 : break;ase 3 : blok[ib℄[y℄ = 1; break;default: blok[ib℄[y℄ = 0; break;} Figure 2: Soket-based Life program (detail).

9



3.2 MPI InterfaeWe have produed a Java interfae to an existing MPI implementation [25℄ usingJava native methods2The interfae has been tested on a luster of UltraSpar workstations runningSolaris3. Our interfae is modelled on the proposed C++ bindings of MPI. Forexample, many of the most basi funtions of the library are members of theommuniator lass, Comm:publi lass Comm {publi int Size();publi int Rank();void Send(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) ;Status Rev(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) ;...}Figure 3 is a straightforward transription of the soket-based program inthe last setion4. Our MPI intefae uses a slightly di�erent model for aessingglobal resoures|stati members on an MPI lass:lass MPI {stati Init() ;stati Finalize() ;publi stati Comm WORLD ;publi stati Datatype BYTE ;publi stati Datatype INT ;...}rather than dynami members of a jpi lass|but this di�erene is not partiu-larly signi�ant (yet another approah will be taken in the example of setion4.1). Otherwise the orrespondene between this ode and the soket ode is2Forearlier work on interfaing Java to PVM see http://www.isye.gateh.edu/hmsr/JavaPVM/and http://www.s.virginia.edu/~ajfzj/jpvm.html3Interfaing Java to MPICH/P4 was not straightforward, due to unpleasant interationsbetween the Java run-time and the underlying P4 implementation. For example, standardimplementations of both use the UNIX SIGALRM signal. We found it neessary to paththe MPICH 1.0.13 release to work round these inompatibilities. The neessary pathes areavailable from us on request.4MPI aÆionados will note that the use of standard mode send is \unsafe", and oulddeadlok if the system does not provide enough bu�ering. The same remark ould be madeabout the soket-based version 10



lass Life {stati publi void main(String[℄ args) {MPI.Init(args);int np = MPI.WORLD.Size();int id = MPI.WORLD.Rank();... ompute loal `blokSize', `blokBase' (avoiding empty bloks).// `blok' has `blokSize + 2' olumns. This allows for ghost ells.byte blok[℄[℄ = new byte[blokSize + 2℄[N℄ ;... initialize loal blok with some pattern// Main update loop.int next = (id + 1) % np;int prev = (id + np - 1) % np;for(int iter = 0 ; iter < NITER ; iter++) {// Shift this blok's upper edge into next neighbour's lower ghost edgeMPI.WORLD.Send(blok[blokSize℄, N, MPI.BYTE, next, 0);MPI.WORLD.Rev(blok[0℄, N, MPI.BYTE, prev, 0);// Shift this blok's lower edge into prev neighbour's upper ghost edgeMPI.WORLD.Send(blok[1℄, N, MPI.BYTE, prev, 0);MPI.WORLD.Rev(blok[blokSize + 1℄, N, MPI.BYTE, next, 0);... Calulate blok of neighbour sums.... Update blok of board values.}MPI.Finalize();}} Figure 3: Simple MPI Life program.
11



diret. In the next setion we illustrate some of the added value that an MPIinterfae brings.We have broken with the usual MPI onvention of returning an error statusfrom every funtion. This pratie is inonvenient in Java beause argumentsannot be passed by referene and diretly modi�ed. This makes the returnvalue preious, and using it up on an error value that everybody ignores isa waste. Java has a well integrated exeption mehanism for ignoring errorinformation.3.3 Derived data types and higher-level MPI featuresDesription of the data bu�ers passed to ommuniation operations presentssome speial problems in Java. Existing MPI bindings depend on a linear mem-ory model and expliit or impliit use of pointers. Java does not have a linearmemory model. Even behind the senes a Java array has no uniquely de�nedaddress in memory, beause the garbage olletor is allowed to reloate ob-jets unprediatably during program exeution to avoid fragmentation of itsworkspae. Our Java interfae tries to retain as muh of the MPI derived data-type mehanism as pratial, but some funtionality has been sari�ed. Thebu�er argument passed to a send or reeive operation must be a one-dimensionalarray of primitive type. Any o�set spei�ed in a derived type argument thenrefers to a displaement within this one-dimensional array, never a displaementin memory.All MPI derived types expressible through our interfae have a uniquelyde�ned base type|a Java primitive type. Interfaes to MPI TYPE HVECTORand MPI TYPE HINDEXED are provided, but the strides and displaementsare in units of the base type, not bytes. An interfae to MPI TYPE STRUCTis provided, but all omponent types in the \strut" must have the same basetype.In the onrete Java binding of the send funtion, for example,void Send(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) ;the formal buf argument is presented as a generi Java Objet. As explainedabove, the atual argument must be a linear array. The seond argument isthe o�set in this array of the �rst element of the message5. The remainingarguments orrespond diretly to arguments of MPI Send. The base type of thedatatype argument must be the type of the elements of buf.Figures 4, 5 sketh a version of the Life program illustrating several of thesefeatures. As well as derived types, this program uses the Cartesian topologiesof MPI. The Cart lass is derived from Comm. In the example, the topology5This o�set is in units of the buf array element|or the base type of datatype|not ofany ompound type. The Objet + o�set presentation is reminisent of the interfae of thearrayCopy utility in the standard Java API. 12



lass Life {void main(String args) {MPI.Init(args) ;int dims [℄ = new int [2℄ ;... Set `dims', etCart p = new Cart(MPI.WORLD, dims, periods, false) ;int oords = new int [2℄ ;p.Get(dims, periods, oords) ;... Compute loal `blokSizeX', `blokBaseX', `blokSizeY', `blokBaseY'.// Create `blok', allowing for ghost ells.int sX = blokSizeX + 2 ;int sY = blokSizeY + 2 ;blok = new byte [sX * sY℄ ;... Define initial state of Life board// Preompute parameters of shift ommuniations.Datatype edgeXType = MPI.BYTE.Contiguous(sY) ;edgeXType.Commit() ;Datatype edgeYType = MPI.BYTE.Vetor(sX, 1, sY) ;edgeYType.Commit() ;CartShift pX = p.shift(0, 1) ;CartShift nX = p.shift(0, -1) ;CartShift pY = p.shift(1, 1) ;CartShift nY = p.shift(1, -1) ;// Main update loop.for(int iter = 0 ; iter < NITER ; iter++) {... Exeute shifts.... Calulate blok of neighbour sums.... Update blok of board values.}MPI.Finalize();}...} Figure 4: Life program using full MPI.
13



// Exeute shifts...// Shift this blok's upper x edge into next neighbour's lower ghost edgep.Sendrev(blok, blokSizeX * sY, 1, edgeXType, pX.dst, 0,blok, 0, 1, edgeXType, pX.sr, 0) ;// Shift this blok's lower x edge into prev neighbour's upper ghost edgep.Sendrev(blok, sY, 1, edgeXType, nX.dst, 0,blok, (blokSizeX + 1) * sY, 1, edgeXType, nX.sr, 0) ;// Shift this blok's upper y edge into next neighbour's lower ghost edgep.Sendrev(blok, blokSizeY, 1, edgeYType, pY.dst, 0,blok, 0, 1, edgeYType, pY.sr, 0) ;// Shift this blok's lower y edge into prev neighbour's upper ghost edgep.Sendrev(blok, 1, 1, edgeYType, nY.dst, 0,blok, blokSizeY + 1, 1, edgeYType, nY.sr, 0) ;Figure 5: Full MPI Life program (detail).p represents a two dimensional periodi grid of proesses. The Get memberreturns the oordinates of the loal proess. From these the parameters of theloal array blok are omputed.The values sX, sY represent the sides of the loally held array segment,inluding ghost regions. This segment is reated as a one-dimensional Javaarray, blok. The derived type edgeXType desribes the struture of ghost areaon the upper or lower x sides: ontiguous regions of the blok array of extent sY.The type edgeYType desribes the y-side ghost areas: non-ontiguous regions ofount sX, regular stride sY.The shiftmember of Cart orresponds to the MPI funtion MPI CART SHIFT:it returns the soure and destination proessors for a yli shift. The Javabinding returns these values in an objet of lass CartShift whih just on-tains two integers. Finally, in the main loop, the shifts are exeuted by usingthe Comm member Sendrev, whih orresponds to the standard MPI funtionMPI Sendrev. This performs a send and a reeive onurrently (avoiding apotential deadlok in the implementations given in the previous setions).4 Data parallellism in JavaThe most omprehensive statement of the data parallel model of omputation isthe High Performane Fortran standard [13, 23℄. That doument is supposed to14



embody muh of the olletive experiene of the sienti� parallel programmingommunity. Presumably, then, any attempt to inorporate data parallelism intoJava should build on the HPF model wherever possible.The HPF de�nition onsists of a large set of diretives that an be used toannotate a standard Fortran program, a small handful of language extensions,and a library of new funtions for operating on arrays. An initial data-parallelJava may well be implemented through a lass-library. This library would as-sume the r�oles of the diretives and language extensions in HPF as well as theHPF library.We will loosely distinguish two di�erent levels at whih a library implemen-tation of the HPF semantis an operate.� The �rst is the level of the so-alled run-time libraries [1, 8, 9, 6℄. This kindof library provides funtions for sheduling and exeuting spei� patternsof olletive ommuniation already identi�ed by a ompiler (in the HPFase) or else by an appliation programmer using the library diretly.Suh a library may also provide funtions for translating between globalsubsripts and loal, node-level subsripts|ie, for omputing the mappingof a distributed array into the address spaes of individual proessors.� Alternatively, a library an operate at a higher level that oneals allaspets of data loalization and transfer from the user. The only responsi-bility of the user is to speify the distribution format of arrays when theyare delared. Subsequently the user just tells the library to do partiularoperations on partiular distributed arrays. It is left to the library to workout whether or not a ommuniation is implied. In e�et the library isoperating at the same level as the HPF language. An example of suh alibrary is A++/P++ [26℄.In either ase a lass library version is likely to inlude lasses to desribe theelements of the HPF data model, suh as proessor arrangements and the dis-tributed arrays themselves.4.1 Parallel arrays and olletive ommuniationAt the run-time level, a lass library implementation of the HPF model is likelyto inlude� Classes to desribe proess arrays and distributed data arrays.� Classes or funtions to simplify aess to loally held elements of a dis-tributed array (inluding parallel iteration).� Funtions for olletive ommuniation through operations on distributedarrays: regular \opying" operations inluding shifts and transposes, arith-meti redution operations, irregular gather/satter operations, and so on.15



Our �rst experiments with a Java binding only touh the surfae of the fullHPF semantis, but they provide some hints about a general framework. Theinterfae given here borrows from the C++ lass library, Adlib, developed byone of us [6℄.A distributed array is parametrized by a member of the Array lass. In C++Array would naturally be a template for a ontainer lass. In Java, generi on-tainer lasses are problemati. Without the template mehanism, the obviousoptions are that a ontainer holds items of type Objet, the base lass for all non-primitive types, or that a separate ontainer lass is provided for eah allowedtype of element. The �rst option doesn't allow for array elements of primitivetype, and prevents ompile-time type-heking (reminisent of using void* inC). The seond approah presumably involves restriting elements to the �niteset of primitive types (int, oat, . . . )6. For now we have side-stepped the issueby leaving the data elements out of the Array lass. Array de�nes the shapeand distribution of an array, but spae for elements is alloated in a separatelydelared vetor of the appropriate type7.The onstrutor for an Array de�nes its shape and distribution format. Thisis expressed through two auxilliary lasses: the Pros and Range lasses. ThePros lass orresponds diretly to the HPF proessor arrangement. It mapsthe set of physial proesses on whih the program is exeuting to a multi-dimensional grid. A Range desribes a single dimension of an HPF array. Itembodies an array extent (the size of the array in the dimension onerned),and a mapping of the subsript range to a dimension of a Pros grid.In our pilot implementation any parallel Java appliation is written as alass extending the library lass Node. The Node lass maintains some globalinformation and provides various olletive operations on arrays as memberfuntions. The ode for the \main program" goes in the run member of theappliation lass8.A simpli�ed version of the ode for the \Life" demo is given in �gure 6.The objet p represents a 2 by 2 proess grid. The Pros onstrutor takesthe urrent Node objet as an argument, from whih it obtains information onthe available physial proesses. In this simpli�ed example we assume that theprogram exeutes on exatly four proessors.The objets x and y represent index ranges of size N distributed over the�rst and seond dimensions of the grid p. The default distribution format isblokwise. Cyli distribution format an also be spei�ed by using a rangeobjet of lass CRange, whih is derived from Range (the pilot implementationdoes not provide any more general distribution or alignment options).6Perhaps a good ompromise is to provide one ontainer lass for eah primitive type andone for Objet.7Confusingly enough, this makes our Array more akin to an HPF template than an HPFarray. Needless to say, there is no onnetion between C++ templates and HPF templates.8This approah is modelled on the Thread and Applet lasses in the standard Java API.Other approahes to providing library-wide resoures were illustrated in earlier setions.16



publi lass Life extends Node implements Runnable {...publi void run() {Pros p = new Pros(this, 2, 2) ;Range x = new Range(N, p, 0) ;Range y = new Range(N, p, 1) ;Array r = new Array(p, x, y) ;int s = r.seg();byte[℄ w = new byte[s℄;byte[℄ n_ = new byte[s℄;byte[℄ p_ = new byte[s℄;... et, reate arrays for 8 neighbours// Initialize the Life boardfor(r.forall(); r.test(); r.next())w[r.sub()℄ = fun(r.idx(0), r.idx(1)) ;// Main loopfor (int k=0; k<NITER; k++) {// Get neighboursshift(n_, w, r, 0, 1, CYCLIC);shift(p_, w, r, 0, -1, CYCLIC);... et, opy arrays for 8 neighbours// Life update rulefor(r.forall(); r.test(); r.next()) {int i = r.sub() ;swith (n_[i℄ + p_[i℄ + _n[i℄ + _p[i℄ +nn[i℄ + np[i℄ + pn[i℄ + pp[i℄) {ase 2 : break;ase 3 : w[i℄ = 1; break;default: w[i℄ = 0; break;}}}}} Figure 6: Simpli�ed ode of the Life demo program.17



The objet r represents the shape and distribution of a two dimensionalarray. This \template" is be shared by several distributed arrays|it does notontain a data vetor. The data vetors that hold the loal segments of arraysare reated separately using the inquiry funtion seg, whih returns the numberof loally held elements. In the example the elements of the main data arrayare held in w. The extra arrays n , p , ..., nn, ... will be used to hold arraysof neighbour values9.The \forall loop" initializing w should be read as something likeforall(i in range x, j in range y)w(i, j) = fun(i, j)where fun is some funtion of the global indies de�ning the initial state of theLife board. The members forall, test, next update internal state of r so thatr.sub() returns the loal subsript for the urrent iteration, and r.idx(0) andr.idx(1) return the global index values for the urrent iteration. We are using ras an iterator lass10.The main loop uses yli shift operations to obtain neighbours, ommuni-ating data where neessary. The shift operation is a member of the Node lass.It should be overloaded to aept data vetors of any primitive type|here thearray elements are bytes.Finally w is updated in terms of its neighbours.Note some harateristi features of the data-parallel style of programming:� The distribution format of the arrays an be hanged just by altering a fewparameters at the start of the program|the main program is insensitiveto these details� low level message-passing is abstrated into high-level olletive operationson distributed array strutures.It may be unlear that this framework has the same power as HPF. If thedistributed array model is extended to the full HPF model, as it an be, andthe shift operation is augmented by some more powerful olletive operationsinluding gather and satter operations parametrized by subsript arrays, welaim that it does. The proof lies in the observation that this is, as advertised,a simpli�ed model of the kind of run-time library that various HPF translatorstarget. This is not to say that programming in this style is always as straight-forward as the example given here, or as omprehensible as the orrespondingHPF program (if it was, there would be no need for HPF).9Here we will use whole arrays of neighbours and a shift operation. This is arguably themore onventional approah in a data-parallel setting, but the the ghost-edge mehanism analso be �tted into this framework.10Our Array lass is perhed somewhere between STL ontainer and iterator lasses. Thisis a slightly awkward position, and it may be more satifatory to separate these funtions intodi�erent lasses. 18



4.2 \Array syntax" in Java.The higher level approah would make Array lasses look like true ontainerlasses (for a restrited set of types) and all operations on arrays olletive,something like:ArrayFloat a = new ArrayFloat(p, x, y) ;ArrayFloat b = new ArrayFloat(p, x, y) ;ArrayInt  = new ArrayInt(p, x, y) ;a = MATMUL(b, ) ;Communiation would be handled automatially inside array operations likeMATMUL. Individual array elements would not be aessed in the Java programexept, possibly, through getElement, putElement members.This sheme an be implemented on top of an SPMD Java array libraryof the kind outlined in the previous setion or by making the Java run as aoordination program ontrolling a parallel bak end. It an be ompared with[26, 16℄.So far we have not attempted to implement (or speify in detail) suh anapproah for Java. The lak of user-de�ned operator-overloading may be par-tiularly frustrating here.5 DisussionWe have explored the pratiality of doing parallel omputing in Java, and ofproviding Java interfaes to High Performane Computing software. For variousreasons, the suess of this exerise was not a foregone onlusion. Java sits ona virtual mahine model that is signi�antly di�erent to the hardware-orientedmodel whih C or Fortran exploit diretly. Java disourages or prevents diretaess to the some of the fundamental resoures of the underlying hardware(most extremely, its memory).Our earliest experiments in this diretion (inluding the work desribed insetion 4, whih predates the MPI work) involved working entirely within Java,building new software on top of the ommuniation failities of the standardAPI. The more reent work in setions 3.2 and 3.3 involved reating a Javainterfae to an existing HPC pakage. Whih is the better strategy? In the longterm Java may beome a major implementation language for large softwarepakages like MPI. It ertainly has advantages in respet of portability thatould simplify implementations dramatially. In the immediate term reodingthese pakages does not appear so attrative. Java wrappers to existing softwarelook more sensible. On a autionary note, our experiene with MPI suggeststhat interfaing Java to non-trivial ommuniation pakages may be less easythan it sounds. Nevertheless, we intend in the future to reate a Java interfaeto an existing run-time library for data parallel omputation.19



So is Java, as it stands, a good language for High Performane Computing?It still has to be demonstrated that Java an be ompiled to ode of eÆienyomparable with C or Fortran. Many avenues are being followed simultaneouslytowards a higher performane Java. Besides the Java hip e�ort of Sun, it hasbeen reported at this workshop that IBM is developing an optimizing Java om-piler whih produes binary ode diretly, that Rie University and RohesterUniversity are working on optimization and restruturing of byteode generatedby java, and that Indiana University is working on soure restruturing to par-allelize Java. Parallel interpretation of byteode is also an emerging pratie.For example, the IBM JVM, an implementation of JVM on shared memoryarhitetures, was released in spring 1996, and UIUC has reently started workaimed at parallel interpretation of Java byteode for distributed memory sys-tems.Another promising approah under investigation [18℄ is to integrate interpre-tation and ompilation tehniques for parallel exeution of Java programs. Insuh a system, a partially ordered set of interpretive frames is generated by anII/CVM ompiler. A frame is a desription of some subtask, whose granularitymay range from a single salar assignment statement to a solver for a systemof equations. Under supervision of the virtual mahine (II/CVM), the ationsspei�ed in a frame may be performed in one of three ways:� Exeuted by an interpretive module diretly, whih also inorporates JITompilation apability.� Some preompiled omputational library funtion is invoked loally to a-omplish the task; this funtion may be exeuted sequentially or in paral-lel.� The frame is sent to some registered remote system, whih will get thework done, one again either sequentially or in parallel.With this approah, optimized binary odes for well formed omputation sub-tasks exist in runtime libraries, supporting a high level interpretive environment.Task parallelism is observed among di�erent frames exeuted by the three meh-anisms simultaneously, while data parallelism is observed in the exeution ofsome of the runtime funtions.Presuming these e�orts satisfatorily address the performane issue, the se-ond aspet in question onerns expressiveness of the Java language. Our �nalinterfae to MPI is quite elegant, and provides muh of the funtionality of thestandard C and Fortran bindings. But reating this interfae was a more diÆultproess than one might hope, both in terms of getting a good spei�ation, andin terms of making the implementation work. In setion 4 we noted that the lakof features like C++ templates (or any form of parametri polymorphism) anduser-de�ned operator overloading (available in many modern languages, fromfuntional programming languages to Fortran) made it diÆult to produe a20



ompletely satisfying interfae to a data parallel library. The Java language asurrently de�ned imposes various limits to the reativity of the programmer.In many respets Java is undoubtedly a better language than Fortran. Itis objet-oriented to the ore and highly dynami, and there is every reason tosuppose that suh features will be as valuable in sienti� omputing as in anyother programming disipline. But to displae established sienti� program-ming languages Java will surely have to aquire some of the failities taken forgranted in those languages.Referenes[1℄ A. Agrawal, A. Sussman, and J. Saltz. An integrated runtime and ompile-time approah for parallelizing strutured and blok strutured applia-tions. IEEE Transations on Parallel and Distributed Systems, 6, 1995.[2℄ Susan Atlas, Subhankar Banerjee, Julian C. Cummings, Paul J. Hinker,M. Srikant, John V. W. Reynders, and Mary Dell Tholburn. POOMA: Ahigh performane distributed simulation environment for sienti� applia-tions. In Superomputing `95, 1995.[3℄ Aart J.C. Bik and Dennis B. Gannon. Automatially exploiting impliitparallelism in Java. This workshop.[4℄ J. Boyle, R. Butler, T. Disz, B. Glikfeld, E. Lusk, R. Overbeek, J. Pat-terson, and R. Stevens. Portable Programs for Parallel Proessors. Holt,Rinehart and Winston, 1987.[5℄ Ralph Butler and Ewing Lusk. Monitors, messages, and lusters: The p4parallel programming system. Parallel Computing, 20:547{564, April 1994.[6℄ D. B. Carpenter. Adlib: A distributed array library to support HPF trans-lation, 1995. Presented at the 5th International Workshop on Compilersfor Parallel Computers. URL: http://www.npa.syr.edu/users/db/Adlib.[7℄ K.M. Chandy and C. Kesselman. CC++: A delarative onurrent objet-oriented programming notation. In Gul Agha, Peter Wegner, and AkinoriYonezawa, editors, Researh Diretions in Conurrent Objet-Oriented Pro-gramming, page 24. MIT Press, 1993. ISBN: 0-262-01139-5.[8℄ A. Choudhary, G. Fox, S. Ranka, S. Hiranandani, K. Kennedy, C. Koel-bel, and J. Saltz. Software support for irregular and loosely synhronousproblems. Computing Systems in Engineering, 3:43{52, 1992.[9℄ Parallel Compiler Runtime Consortium. Common runtime support forhigh-performane parallel languages. In Superomputing `93. IEEE Com-puter Soiety Press, 1993. 21



[10℄ Parallel Compiler Runtime Consortium. HPCC and Java|a re-port by the Parallel Compiler Runtime Consortium, 1996. URL:http://www.npa.syr.edu/users/gf/hpjava3.html.[11℄ J.J. Dongarra, R. Pozo, and D.W. Walker. An objet oriented design forhigh performane linear algebra on distributed memory arhitetures. InObjet Oriented Numeris Conferene, 1993.[12℄ Stephen J. Fink and Sott B. Baden. The KeLP User's Guide. Universityof California, San Diego, La Jolla, CA, Marh 1996. URL: http://www-se.usd.edu/groups/hpl/sg/kelp.html.[13℄ High Performane Fortran Forum. High Performane Fortran languagespei�ation. Sienti� Programming, speial issue, 2, 1993.[14℄ Message Passing Interfae Forum. MPI: A Message-Passing InterfaeStandard. University of Tenessee, Knoxville, TN, June 1995. URL:http://www.ms.anl.gov/mpi.[15℄ I. Foster and K. M. Chandy. Fortran M: A language for modular parallelprogramming. Journal of Parallel and Distributed Computing, 26(1):24,1995.[16℄ G.C. Fox and W. Furmanski. Towards interpreted run-time For-tran90D environment. Tehnial report, NPAC, 1992. URL:http://www.npa.syr.edu/projets/hpsin/hp�.html.[17℄ Geo�rey C. Fox and Wojtek Furmanski. Computing on the Web: new ap-proahes to parallel proessing|petaop and exaop performane in the year2007, 1997. URL: http://www.npa.syr.edu/users/gf/petastu�/petaweb/.[18℄ Geo�rey C. Fox, Xiaoming Li, Yuhong Wen, and Guansong Zhang. Stud-ies of integration and optimization of interpreted and ompiled languages.Tehnial Report SCCS-780, NPAC, February 1997.[19℄ A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manhek, and V. Sun-deram. PVM: Parallel Virtual Mahine|A Users' Guide and Tutorialfor Networked Parallel Computing. Sienti� and Engineering Series. MITPress, 1994. ISBN: 0-262-57108-0.[20℄ James Gosling and Henry MGilton. The Java Language Environ-ment: A White Paper. JavaSoft, Sun Mirosystems, In, 1996. URL:http://www.javasoft.om/do.[21℄ A.S. Grimshaw. An introdution to parallel objet-oriented programmingwith Mentat. Tehnial Report 91 07, University of Virginia, 1991.22



[22℄ JavaSoft, Sun Mirosystems, In. RMI Doumentation, 1996. URL:http://java.sun.om/produts/JDK/1.1/.[23℄ C.H. Koelbel, D.B. Loveman, R.S. Shreiber, G.L. Steel, Jr., and M.E.Zosel. The High Performane Fortran Handbook. MIT Press, 1994. ISBN:0-262-61094-9.[24℄ Inmos Ltd. oam 2 Referene Manual. Prentie-Hall International, 1988.ISBN: 0-13-629312-3.[25℄ MPICH|a portable implementation of MPI. URL:http://www.ms.anl.gov/mpi/mpih/.[26℄ R. Parsons and D. Quinlan. A++/P++ array lasses for arhiteture in-dependent �nite di�erene alulations. In Objet Oriented Numeris Con-ferene, 1994.[27℄ Jon Siegel. CORBA Fundamentals and Programming. Wiley, 1996. ISBN:0471-12148-7.[28℄ P. Sivilotti and P. Carlin. A tutorial for CC++. Tehnial Report CS-TR-94-02, Calteh, 1994.

23


	Experiments with "HP Java"
	Recommended Citation

	tmp.1285252205.pdf.bbuQi

